

Lecture Notes in Computer Science 3760
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Robert Meersman Zahir Tari
Mohand-Saïd Hacid John Mylopoulos
Barbara Pernici Ozalp Babaoglu
H.-Arno Jacobsen Joseph Loyall
Michael Kifer Stefano Spaccapietra (Eds.)

On the Move to Meaningful
Internet Systems 2005:
CoopIS, DOA, and ODBASE

OTM Confederated International Conferences
CoopIS, DOA, and ODBASE 2005
Agia Napa, Cyprus, October 31 – November 4, 2005
Proceedings, Part I

13

Volume Editors

Robert Meersman
Vrije Universiteit Brussel , STAR Lab
Pleinlaan 2, Bldg G/10, 1050 Brussels, Belgium
E-mail: meersman@vub.ac.be

Zahir Tari
RMIT University, School of Computer Science and Information Technology
City Campus, GPO Box 2476 V, Melbourne, Victoria 3001, Australia
E-mail: zahirt@cs.rmit.edu.au

Library of Congress Control Number: 2005934471

CR Subject Classification (1998): H.2, H.3, H.4, C.2, H.5, I.2, D.2.12, K.4

ISSN 0302-9743
ISBN-10 3-540-29736-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29736-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11575771 06/3142 5 4 3 2 1 0

CoopIS
Mohand-Saïd Hacid

John Mylopoulos
Barbara Pernici

DOA
Ozalp Babaoglu

H.-Arno Jacobsen
Joseph Loyall

ODBASE
Michael Kifer

Stefano Spaccapietra

OTM 2005 General Co-chairs’ Message

The General Chairs of OnTheMove 2005, Agia Napa, Cyprus, are happy to
observe that the conference series that was started in Irvine, California in 2002,
and continued in Catania, Sicily, in 2003, and in the same location in Cyprus last
year, clearly supports a scientific concept that attracts a representative selection
of today’s worldwide research in distributed, heterogeneous and autonomous yet
meaningfully collaborative computing, of which the Internet and the WWW are
its prime epitomes.

Indeed, as such large, complex and networked intelligent information systems
become the focus and norm for computing, it is clear that there is an acute
need to address and discuss in an integrated forum the implied software and
system issues as well as methodological, theoretical and application issues. As
we all know, email, the Internet, and even video conferences are not sufficient for
effective and efficient scientific exchange. This is why the OnTheMove (OTM)
Federated Conferences series has been created to cover the increasingly wide
yet closely connected range of fundamental technologies such as data and Web
Semantics, distributed objects, Web services, databases, information systems,
workflow, cooperation, ubiquity, interoperability, and mobility. OTM aspires to
be a primary scientific meeting place where all aspects for the development
of internet- and intranet-based systems in organizations and for e-business are
discussed in a scientifically motivated way. This fourth 2005 edition of the OTM
Federated Conferences therefore again provides an opportunity for researchers
and practitioners to understand and publish these developments within their
individual as well as within their broader contexts.

The backbone of OTM is formed by the co-location of three related, com-
plementary and successful main conference series: DOA (Distributed Objects
and Applications, since 1999), covering the relevant infrastructure-enabling tech-
nologies; ODBASE (Ontologies, DataBases and Applications of SEmantics, since
2002), covering Web semantics, XML databases and ontologies; and CoopIS (Co-
operative Information Systems, since 1993), covering the application of these
technologies in an enterprise context through, e.g., workflow systems and knowl-
edge management. Each of these three conferences encourages researchers to
treat their respective topics within a framework that incorporates jointly (a)
theory , (b) conceptual design and development, and (c) applications, in partic-
ular case studies and industrial solutions.

Following and expanding the model created in 2003, we again solicited and
selected quality workshop proposals to complement the more “archival” nature
of the main conferences with research results in a number of selected and more
“avant garde” areas related to the general topic of distributed computing. For
instance, the so-called Semantic Web has given rise to several novel research areas
combining linguistics, information systems technology, and artificial intelligence,

VIII Preface

such as the modeling of (legal) regulatory systems and the ubiquitous nature of
their usage. We were glad to see that in 2005 under the inspired leadership of Dr.
Pilar Herrero, several of earlier successful workshops re-emerged with a second
or even third edition (notably WOSE, MIOS-INTEROP and GADA), and that
5 new workshops could be hosted and successfully organized by their respective
proposers: AWeSOMe, SWWS, CAMS, ORM and SeBGIS. We know that as
before, their audiences will mutually productively mingle with those of the main
conferences, as is already visible from the overlap in authors!

A special mention for 2005 is again due for the second and enlarged edition
of the highly successful Doctoral Symposium Workshop. Its 2005 Chairs, Dr.
Antonia Albani, Dr. Peter Spyns, and Dr. Johannes Maria Zaha, three young and
active post-doc researchers defined an original set-up and interactive formula to
bring PhD students together: they call them to submit their research proposals
for selection; the resulting submissions and their approaches are presented by
the students in front of a wider audience at the conference, where they are
then independently analyzed and discussed by a panel of senior professors (this
year they were Domenico Beneventano, Jaime Delgado, Jan Dietz, and Werner
Nutt). These successful students also get free access to “all” other parts of the
OTM program, and only pay a minimal fee for the Doctoral Symposium itself
(in fact their attendance is largely sponsored by the other participants!). The
OTM organizers expect to further expand this model in future editions of the
conferences and so draw an audience of young researchers into the OTM forum.

All three main conferences and the associated workshops share the distributed
aspects of modern computing systems, and the resulting application-pull created
by the Internet and the so-called Semantic Web. For DOA 2005, the primary
emphasis stayed on the distributed object infrastructure; for ODBASE 2005, it
became the knowledge bases and methods required for enabling the use of formal
semantics, and for CoopIS 2005, the topic was the interaction of such technologies
and methods with management issues, such as occur in networked organizations.
These subject areas naturally overlap and many submissions in fact also treat an
envisaged mutual impact among them. As for the earlier editions, the organiz-
ers wanted to stimulate this cross-pollination by a “shared” program of famous
keynote speakers: this year we got no less than Erich Neuhold (Emeritus, Fraun-
hofer/IPSI), Stefano Ceri (Politecnico di Milano), Doug Schmidt (Vanderbilt
University), and V.S. Subrahmanian (University of Maryland)! We also encour-
aged multiple event attendance by providing “all” authors, also those of work-
shop papers, with free access or discounts to one other conference or workshop
of their choice.

We received a total of 360 submissions for the three main conferences and a
whopping 268 (compared to the 170 in 2004!) in total for the workshops. Not only
can we therefore again claim success in attracting an increasingly representative
volume of scientific papers, but such a harvest of course allows the program
committees to compose a higher quality cross-section of current research in the
areas covered by OTM. In fact, in spite of the larger number of submissions, the
Program Chairs of each of the three main conferences decided to accept only

Preface IX

approximately the same number of papers for presentation and publication as in
2003 and 2004 (i.e, average 1 paper out of 4 submitted, not counting posters).
For the workshops, the acceptance rate varies but was much stricter than before,
about 1 in 2-3, to almost 1 in 4 for GADA and MIOS. Also for this reason, we
continue to separate the proceedings in two books with their own titles, with
the main proceedings in two volumes, and we are grateful to Springer for their
suggestions and collaboration in producing these books and CD-ROMs. The re-
viewing process by the respective program committees as usual was performed
very professionally and each paper in the main conferences was reviewed by at
least three referees, with email discussions in the case of strongly diverging evalu-
ations. It may be worthwhile to emphasize that it is an explicit OTM policy that
all conference program committees and chairs make their selections completely
autonomously from the OTM organization itself. Continuing a costly but nice
tradition, the OTM Federated Event organizers decided again to make all pro-
ceedings available as books and/or CD-ROMs to all participants of conferences
and workshops, independently of one’s registration.

The General Chairs are once more especially grateful to all the many people
directly or indirectly involved in the set-up of these federated conferences and
in doing so made this a success. Few people realize what a large number of in-
dividuals have to be involved, and what a huge amount of work, and sometimes
risk, the organization of an event like OTM entails. Apart from the persons
in their roles mentioned above, we therefore in particular wish to thank our
8 main conference PC Co-chairs (DOA 2005: Ozalp Babaoglu, Arno Jacobsen,
Joe Loyall; ODBASE 2005: Michael Kifer, Stefano Spaccapietra; CoopIS 2005:
Mohand-Said Hacid, John Mylopoulos, Barbara Pernici), and our 26 workshop
PC Co-chairs (Antonia Albani, Lora Aroyo, George Buchanan, Lawrence Cave-
don, Jan Dietz, Tharam Dillon, Erik Duval, Ling Feng, Aldo Gangemi, Annika
Hinze, Mustafa Jarrar, Terry Halpin, Pilar Herrero, Jan Humble, David Martin,
Gonzalo Médez, Aldo de Moor, Hervé Panetto, Maŕıa S. Pérez, Vı́ctor Robles,
Monica Scannapieco, Peter Spyns, Emmanuel Stefanakis, Klaus Turowski, Es-
teban Zimányi). All, together with their many PCs, members did a superb and
professional job in selecting the best papers from the large harvest of submis-
sions. We also thank Laura Bright, our excellent Publicity Chair for the second
year in a row, our Conference Secretariat staff and Technical Support Daniel
Meersman and Jan Demey, and last but not least our hyperactive Publications
Chair and loyal collaborator of many years, Kwong Yuen Lai.

The General Chairs gratefully acknowledge the logistic support and facilities
they enjoy from their respective institutions, Vrije Universiteit Brussel (VUB)
and RMIT University, Melbourne.

We do hope that the results of this federated scientific enterprise contribute
to your research and your place in the scientific network... We look forward to
seeing you again at next year’s edition!

August 2005 Robert Meersman, Vrije Universiteit Brussel, Belgium
Zahir Tari, RMIT University, Australia
(General Co-chairs, OnTheMove 2005)

Organization Committee

The OTM (On The Move) 2005 Federated Conferences, which involve CoopIS
(Cooperative Information Systems), DOA (Distributed Objects and Applica-
tions) and ODBASE (Ontologies, Databases and Applications of Semantics),
are proudly supported by RMIT University (School of Computer Science, In-
formation Technology) and Vrije Universiteit Brussel (Department of Computer
Science) and Interop.

Executive Committee

OTM 2005 General Co-chairs Robert Meersman (Vrije Universiteit Brussel,
Belgium) and Zahir Tari (RMIT University,
Australia)

CoopIS 2005 PC Co-chairs Mohand-Said Hacid (Université Claude
Bernard Lyon I), John Mylopoulos (University
of Toronto), and Barbara Pernici (Politecnico
di Milano)

DOA 2005 PC Co-chairs Ozalp Babaoglu (University of Bologna), Arno
Jacobsen (University of Toronto), and Joe Loy-
all (BBN Technologies)

ODBASE 2005 PC Co-chairs Michael Kifer (Stony Brook University) and
Stefano Spaccapietra (Swiss Federal Institute of
Technology at Lausanne)

Publication Co-chairs Kwong Yuen Lai (RMIT University, Australia)
and Peter Dimopoulos (RMIT University,
Australia)

Organizing Chair Skevos Evripidou (University of Cyprus,
Cyprus)

Publicity Chair Laura Bright (Oregon Graduate Institute,
Oregon, USA)

CoopIS 2005 Program Committee

Wil van der Aalst
Bernd Amann
Lefteris Angelis
Naveen Ashish
Alistair Barros
Zohra Bellahsene
Boualem Benatallah

Salima Benbernou
Djamal Benslimane
Elisa Bertino
Athman Bouguettaya
Mokrane Bouzeghoub
Christoph Bussler
Barbara Carminati

XII Organization

Fabio Casati
Malu Castellanos
Barbara Catania
Henning Christiansen
Bin Cui
Umesh Dayal
Alex Delis
Drew Devereux
Susanna Donatelli
Marlon Dumas
Schahram Dustdar
Johann Eder
Rik Eshuis
Opher Etzion
Elena Ferrari
Avigdor Gal
Paul Grefen
Manfred Hauswirth
Geert-Jan Houben
Michael Huhns
Paul Johannesson
Latifur Khan
Manolis Koubarakis
Akhil Kumar
Winfried Lamersdorf
Steven Laufmann
Qing Li

Maristella Matera
Massimo Mecella
Michael zur Muehlen
Werner Nutt
Andreas Oberweis
Jean-Marc Petit
Evaggelia Pitoura
Alessandro Provetti
Zbigniew W. Ras
Manfred Reichert
Tore Risch
Marie-Christine Rousset
Kai-Uwe Sattler
Monica Scannapieco
Ralf Schenkel
Antonio Si
Farouk Toumani
Susan Urban
Athena Vakali
Mathias Weske
Kyu-Young Whang
Jian Yang
Ming Yung
Arkady Zaslavsky
Leon Zhao
Roger Zimmermann

CoopIS 2005 Additional Reviewers

Rong Liu
Jianrui Wang
Agnieszka Dardzinska
Samuil Angelov
Yigal Hoffner
Sven Till
Jochem Vonk
Stratos Idreos
Christos Tryfonopoulos
Harald Meyer
Hagen Overdick
Hilmar Schuschel
Guido Laures
Frank Puhlmann

Camelia Constantin
Florian Rosenberg
Benjamin Schmit
Wil van der Aalst
Ana Karla Alves de Medeiros
Christian Guenther
Eric Verbeek
Aviv Segev
Mati Golani
Ami Eyal
Daniela Berardi
Fabio De Rosa
Woong-Kee Loh
Jae-Gil Lee

Organization XIII

Horst Pichler
Marek Lehmann
Renate Motschnig
Diego Milano
Xumin Liu
Qi Yu
Zaki Malik
Xu Yang
George Zheng
Florian Daniel
Federico Michele Facca
Jialie Shen
Min Qin
Hong Zhu
Wei-Shinn Ku
Leslie S. Liu
Bart Orriens
James Pruyne
George Pallis
Vasiliki Koutsonikola
Konstantina Stoupa
Theodosios Theodosiiou
Sarita Bassil
Fabien DeMarchi

Etienne Canaud
Dickson Chiu
Xiang Li
Zhe Shan
Elvis Leung
Jing Chen
Jingshan Huang
Armin Haller
Kostas Stefanidis
Nikos Nikolaidis
Mick Kerrigan
Massimo Marchi
Brahmananda Sapkota
Hamid Reza Motahari
Julien Ponge
Halvard Skogsrud
Aixin Sun
Quan Zheng Sheng
Guy Gouardéres
Mar Roantree
Pierre Pompidor
Ela Hunt
Anna Cinzia Squicciarini

ODBASE 2005 Program Committee

Juergen Angele
Alessandro Artale
Mira Balaban
Denilson Barbosa
Daniela Berardi
Sonia Bergamaschi
Abraham Bernstein
Leo Bertossi
Harold Boley
Alex Borgida
Christoph Bussler
Jos de Bruijn
Gilberto Câmara
Marco Antonio Casanova
Kajal Claypool
Mariano Consens
Isabel Cruz
Rainer Eckstein

Johann Eder
Tim Finin
Enrico Franconi
Fausto Giunchiglia
Mohand Said Hacid
Jeff Heflin
Ian Horrocks
Arantza Illarramendi
Mustafa Jarrar
Christopher Jones
Vipul Kashyap
Larry Kerschberg
Roger (Buzz) King
Werner Kuhn
Georg Lausen
Bertram Ludaescher
Sanjay Madria
Murali Mani

XIV Organization

Leo Mark
Wolfgang May
Michele Missikoff
Boris Motik
Saikat Mukherjee
Moira Norrie
Maria Orlowska
Yue Pan
Christine Parent
Torben Bach Pedersen
Axel Polleres
Louiqa Raschid
Monica Scannapieco

Amit Sheth
Michael Sintek
Naveen Srinivasan
Steffen Staab
Jianwen Su
York Sure
David Toman
Christophides Vassilis
Holger Wache
Gerd Wagner
Guizhen Yang
Esteban Zimanyi

ODBASE 2005 Additional Reviewers

Alex Binun
David Boaz
Lior Limonad
Azzam Marii
Steffen Lamparter
Johanna Voelker
Peter Haase
Denny Vrandecic
Carsten Saathoff
Kalyan Ayloo
Huiyong Xiao
Jesús Bermúdez
Alfredo Goñi
Sergio Ilarri
Birte Glimm
Lei Li
Jeff Pan
Evgeny Zolin
Francesco Taglino
Antonio De Nicola
Federica Schiappelli
Fulvio D’Antonio

Karl Wiggisser
Christian Koncilia
Diego Milano
Dimitris Kotzinos
Ansgar Bernardi
Malte Kiesel
Ludger van Elst
Hans Trost
Adrian Giurca
Sergey Lukichev
Michael Lutz
Fabio Machado Porto
Aida Boukottaya
Matthew Moran
Roberta Benassi
Domenico Beneventano
Stefania Bruschi
Francesco Guerra
Mirko Orsini
James Scicluna
Cristina Feier

DOA 2005 Program Committee

Cristiana Amza
Matthias Anlauff
Mark Baker

Guruduth Banavar
Alberto Bartoli
Judith Bishop

Organization XV

Gordon Blair
Alex Buchmann
Harold Carr
Michel Chaudron
Shing-Chi Cheung
Geoff Coulson
Francisco “Paco” Curbera
Wolfgang Emmerich
Patrick Eugster
Pascal Felber
Kurt Geihs
Jeff Gray
Mohand-Said Hacid
Rebecca Isaacs
Mehdi Jazayeri
Bettina Kemme
Fabio Kon
Doug Lea
Peter Loehr
Frank Manola
Philip McKinley

Keith Moore
Francois Pacull
Simon Patarin
Joao Pereira
Rajendra Raj
Andry Rakotonirainy
Luis Rodrigues
Isabelle Rouvellou
Rick Schantz
Heinz-W. Schmidt
Douglas Schmidt
Richard Soley
Michael Stal
Jean-Bernard Stefani
Stefan Tai
Hong Va Leong
Maarten van Steen
Steve Vinoski
Norbert Voelker
Andrew Watson
Doug Wells

DOA 2005 Additional Reviewers

Jochen Fromm
Steffen Bleul
Roland Reichle
Thomas Weise
An Chunyan
Glenn Ammons
Norman Cohen
Thomas Mikalsen
Paul Grace
António Casimiro
Hugo Miranda
Yuehua Lin
Shih-hsi Liu
Jing Zhang
Marc Schiely
Jaksa Vuckovic
Partha Pal
Paul Rubel
Franklin Webber
Jianming Ye
John Zinky

Vinod Muthusamy
Arlindo Flávio da Conceião
Raphael Camargo
David Cyrluk
Klaus Havelund
Arnaud Venet
Asuman Suenbuel
S. Masoud Sadjadi
Eric Kasten
Zhinan Zhou
Farshad Samimi
David Knoester
Chunyang Ye
Chang Xu
Thomas Mikalsen
Norman Cohen
Glenn Ammons
Chi-yin Chow
Kei Shiu Ho
Hans P. Reiser

Table of Contents – Part I

OTM 2005 Keynotes

Probabilistic Ontologies and Relational Databases
Octavian Udrea, Deng Yu, Edward Hung, V.S. Subrahmanian 1

Intelligent Web Service - From Web Services to .Plug&Play. Service
Integration

Erich Neuhold, Thomas Risse, Andreas Wombacher,
Claudia Niederée, Bendick Mahleko . 18

Process Modeling in Web Applications
Stefano Ceri . 20

Cooperative Information Systems (CoopIS)
2005 International Conference

CoopIS 2005 PC Co-chairs’ Message . 21

Workflow

Let’s Go All the Way: From Requirements Via Colored Workflow Nets
to a BPEL Implementation of a New Bank System

W.M.P. van der Aalst, J.B. Jørgensen, K.B. Lassen 22

A Service-Oriented Workflow Language for Robust Interacting
Applications

Surya Nepal, Alan Fekete, Paul Greenfield, Julian Jang, Dean Kuo,
Tony Shi . 40

Balancing Flexibility and Security in Adaptive Process Management
Systems

Barbara Weber, Manfred Reichert, Werner Wild,
Stefanie Rinderle . 59

Workflow and Business Processes

Enabling Business Process Interoperability Using Contract Workflow
Models

Jelena Zdravkovic, Vandana Kabilan . 77

XVIII Table of Contents – Part I

Resource-Centric Worklist Visualisation
Ross Brown, Hye-young Paik . 94

CoopFlow : A Framework for Inter-organizational Workflow Cooperation
Issam Chebbi, Samir Tata . 112

Mining and Filtering

Process Mining and Verification of Properties: An Approach Based on
Temporal Logic

W.M.P. van der Aalst, H.T. de Beer, B.F. van Dongen 130

A Detailed Investigation of Memory Requirements for Publish/Subscribe
Filtering Algorithms

Sven Bittner, Annika Hinze . 148

Mapping Discovery for XML Data Integration
Zoubida Kedad, Xiaohui Xue . 166

Petri Nets and Processs Management

Colored Petri Nets to Verify Extended Event-Driven Process Chains
Kees van Hee, Olivia Oanea, Natalia Sidorova . 183

Web Process Dynamic Stepped Extension: Pi-Calculus-Based Model
and Inference Experiments

Li Zhang, Zhiwei Yu . 202

Petri Net + Nested Relational Calculus = Dataflow
Jan Hidders, Natalia Kwasnikowska, Jacek Sroka, Jerzy Tyszkiewicz,
Jan Van den Bussche . 220

Information Access and Integrity

On the Controlled Evolution of Access Rules in Cooperative
Information Systems

Stefanie Rinderle, Manfred Reichert . 238

Towards a Tolerance-Based Technique for Cooperative Answering of
Fuzzy Queries Against Regular Databases

Patrick Bosc, Allel Hadjali, Olivier Pivert . 256

Filter Merging for Efficient Information Dissemination
Sasu Tarkoma, Jaakko Kangasharju . 274

Table of Contents – Part I XIX

Heterogeneity

Don’t Mind Your Vocabulary: Data Sharing Across Heterogeneous Peers
Md. Mehedi Masud, Iluju Kiringa,
Anastasios Kementsietsidis . 292

On the Usage of Global Document Occurrences in Peer-to-Peer
Information Systems

Odysseas Papapetrou, Sebastian Michel, Matthias Bender,
Gerhard Weikum . 310

An Approach for Clustering Semantically Heterogeneous XML Schemas
Pasquale De Meo, Giovanni Quattrone, Giorgio Terracina,
Domenico Ursino . 329

Semantics

Semantic Schema Matching
Fausto Giunchiglia, Pavel Shvaiko, Mikalai Yatskevich 347

Unified Semantics for Event Correlation over Time and Space in Hybrid
Network Environments

Eiko Yoneki, Jean Bacon . 366

Semantic-Based Matching and Personalization in FWEB, a
Publish/Subscribe-Based Web Infrastructure

Simon Courtenage, Steven Williams . 385

Querying and Content Delivery

A Cooperative Model for Wide Area Content Delivery Applications
Rami Rashkovits, Avigdor Gal . 402

A Data Stream Publish/Subscribe Architecture with Self-adapting
Queries

Alasdair J.G. Gray, Werner Nutt . 420

Containment of Conjunctive Queries with Arithmetic Expressions
Ali Kiani, Nematollaah Shiri . 439

Web Services, Agents

Multiagent Negotiation for Fair and Unbiased Resource Allocation
Karthik Iyer, Michael Huhns . 453

XX Table of Contents – Part I

QoS-Based Service Selection and Ranking with Trust and Reputation
Management

Le-Hung Vu, Manfred Hauswirth,
Karl Aberer . 466

An Integrated Alerting Service for Open Digital Libraries: Design and
Implementation

Annika Hinze, Andrea Schweer,
George Buchanan . 484

Security, Integrity and Consistency

Workflow Data Guards
Johann Eder, Marek Lehmann . 502

Consistency Between e3-value Models and Activity Diagrams in a
Multi-perspective Development Method

Zlatko Zlatev, Andreas Wombacher . 520

Maintaining Global Integrity in Federated Relational Databases Using
Interactive Component Systems

Christopher Popfinger, Stefan Conrad . 539

Chain and Collaboration Mangement

RFID Data Management and RFID Information Value Chain Support
with RFID Middleware Platform Implementation

Taesu Cheong, Youngil Kim . 557

A Collaborative Table Editing Technique Based on Transparent
Adaptation

Steven Xia, David Sun, Chengzheng Sun,
David Chen . 576

Inter-enterprise Collaboration Management in Dynamic Business
Networks

Lea Kutvonen, Janne Metso, Toni Ruokolainen 593

Distributed Objects and Applications
(DOA)2005 International Conference

DOA 2005 PC Co-chairs’ Message . 612

Table of Contents – Part I XXI

Web Services and Service-Oriented Architectures

Developing a Web Service for Distributed Persistent Objects in the
Context of an XML Database Programming Language

Henrike Schuhart, Dominik Pietzsch,
Volker Linnemann . 613

Comparing Service-Oriented and Distributed Object Architectures
Seán Baker, Simon Dobson . 631

QoS-Aware Composition of Web Services: An Evaluation of Selection
Algorithms

Michael C. Jaeger, Gero Mühl, Sebastian Golze 646

Multicast and Fault Tolerance

Extending the UMIOP Specification for Reliable Multicast in CORBA
Alysson Neves Bessani, Joni da Silva Fraga,
Lau Cheuk Lung . 662

Integrating the ROMIOP and ETF Specifications for Atomic Multicast
in CORBA

Daniel Borusch, Lau Cheuk Lung, Alysson Neves Bessani,
Joni da Silva Fraga . 680

The Design of Real-Time Fault Detectors
Serge Midonnet . 698

Communication Services (Was Messaging and
Publish/Subscribe)

A CORBA Bidirectional-Event Service for Video and Multimedia
Applications

Felipe Garcia-Sanchez, Antonio-Javier Garcia-Sanchez,
P. Pavon-Mariño, J. Garcia-Haro . 715

GREEN: A Configurable and Re-configurable Publish-Subscribe
Middleware for Pervasive Computing

Thirunavukkarasu Sivaharan, Gordon Blair,
Geoff Coulson . 732

Transparency and Asynchronous Method Invocation
Pierre Vignéras . 750

XXII Table of Contents – Part I

Techniques for Application Hosting

COROB: A Controlled Resource Borrowing Framework for Overload
Handling in Cluster-Based Service Hosting Center

Yufeng Wang, Huaimin Wang, Dianxi Shi, Bixin Liu 763

Accessing X Applications over the World-Wide Web
Arno Puder, Siddharth Desai . 780

Exploiting Application Workload Characteristics to Accurately
Estimate Replica Server Response Time

Corina Ferdean, Mesaac Makpangou . 796

Mobility

Automatic Introduction of Mobility for Standard-Based Frameworks
Grègory Häık, Jean-Pierre Briot, Christian Queinnec 813

Empirical Evaluation of Dynamic Local Adaptation for Distributed
Mobile Applications

Pablo Rossi, Caspar Ryan . 828

Middleware for Distributed Context-Aware Systems
Karen Henricksen, Jadwiga Indulska, Ted McFadden,
Sasitharan Balasubramaniam . 846

Timely Provisioning of Mobile Services in Critical Pervasive
Environments

Filippos Papadopoulos, Apostolos Zarras, Evaggelia Pitoura,
Panos Vassiliadis . 864

Mobility Management and Communication Support for Nomadic
Applications

Marcello Cinque, Domenico Cotroneo, Stefano Russo 882

Platform-Independent Object Migration in CORBA
Rüdiger Kapitza, Holger Schmidt, Franz J. Hauck 900

Author Index . 919

Table of Contents – Part II

Distributed Objects and Applications
(DOA) 2005 International Conference
(continued)

Security and Data Persistence

Evaluation of Three Approaches for CORBA Firewall/NAT Traversal
Antonio Theophilo Costa, Markus Endler, Renato Cerqueira 923

On the Design of Access Control to Prevent Sensitive Information
Leakage in Distributed Object Systems: A Colored Petri Net Based Model

Panagiotis Katsaros . 941

Offline Business Objects: Enabling Data Persistence for Distributed
Desktop Applications

Pawel Gruszczynski, Stanislaw Osinski, Andrzej Swedrzynski 960

Component Middleware

Middleware Support for Dynamic Component Updating
Jaiganesh Balasubramanian, Balachandran Natarajan,
Douglas C. Schmidt, Aniruddha Gokhale, Jeff Parsons,
Gan Deng . 978

Two Ways of Implementing Software Connections Among Distributed
Components

Selma Matougui, Antoine Beugnard . 997

On the Notion of Coupling in Communication Middleware
Lachlan Aldred, Wil M.P. van der Aalst, Marlon Dumas,
Arthur H.M. ter Hofstede . 1015

Java Environments

A Task-Type Aware Transaction Scheduling Algorithm in J2EE
Xiaoning Ding, Xin Zhang, Beihong Jin, Tao Huang 1034

Application Object Isolation in Cross-Platform Operating Environments
Stefan Paal, Reiner Kammüller, Bernd Freisleben 1046

XXIV Table of Contents – Part II

Garbage Collection in the Presence of Remote Objects: An Empirical
Study

Witawas Srisa-an, Mulyadi Oey, Sebastian Elbaum 1065

Peer-to-Peer Computing Architectures

Peer-to-Peer Distribution Architectures Providing Uniform Download
Rates

Marc Schiely, Pascal Felber . 1083

JXTA Messaging: Analysis of Feature-Performance Tradeoffs and
Implications for System Design

Emir Halepovic, Ralph Deters, Bernard Traversat 1097

Aspect Oriented Middleware

An Aspect-Oriented Communication Middleware System
Marco Tulio de Oliveira Valente, Fabio Tirelo, Diana Campos Leao,
Rodrigo Palhares Silva . 1115

Using AOP to Customize a Reflective Middleware
Nélio Cacho, Tháıs Batista . 1133

Ontologies, Databases and Applications of Semantics
(ODBASE) 2005 International Conference

ODBASE 2005 PC Co-Chairs’ Message. 1151

Information Integration and Modeling

Inferring Complex Semantic Mappings Between Relational Tables and
Ontologies from Simple Correspondences

Yuan An, Alex Borgida, John Mylopoulos . 1152

Ontology Transformation and Reasoning for Model-Driven Architecture
Claus Pahl . 1170

Multidimensional RDF
Manolis Gergatsoulis, Pantelis Lilis . 1188

GeRoMe: A Generic Role Based Metamodel for Model Management
David Kensche, Christoph Quix, Mohamed Amine Chatti,
Matthias Jarke . 1206

Table of Contents – Part II XXV

Query Processing

Probabilistic Iterative Duplicate Detection
Patrick Lehti, Peter Fankhauser . 1225

Efficient Processing of XPath Queries with Structured Overlay
Networks

Gleb Skobeltsyn, Manfred Hauswirth, Karl Aberer 1243

Community Based Ranking in Peer-to-Peer Networks
Christoph Tempich, Alexander Löser, Jörg Heizmann 1261

Ontology–Based Representation and Query of Colour Descriptions from
Botanical Documents

Shenghui Wang, Jeff Z. Pan . 1279

Ontology Construction

Creating Ontologies for Content Representation—The OntoSeed
Suite

Elena Paslaru Bontas, David Schlangen, Thomas Schrader 1296

Fully Automatic Construction of Enterprise Ontologies Using Design
Patterns: Initial Method and First Experiences

Eva Blomqvist . 1314

Automatic Ontology Extraction from Unstructured Texts
Khurshid Ahmad, Lee Gillam . 1330

Metadata

Metadata Management in a Multiversion Data Warehouse
Robert Wrembel, Bartosz B ↪ebel . 1347

Metadata Management for Ad-Hoc InfoWare - A Rescue and
Emergency Use Case for Mobile Ad-Hoc Scenarios

Norun Sanderson, Vera Goebel, Ellen Munthe-Kaas 1365

Managing Petri Nets in MOF Repositories
Hélio L. dos Santos, Paulo R.M. Maciel, Nelson S. Rosa,
Roberto S.M. Barros . 1381

A Meta-ontological Architecture for Foundational Ontologies
Heinrich Herre, Frank Loebe . 1398

XXVI Table of Contents – Part II

Information Retrieval and Classification

Web Image Semantic Clustering
Zhiguo Gong, Leong Hou U, Chan Wa Cheang . 1416

Biomedical Retrieval: How Can a Thesaurus Help?
Leonie IJzereef, Jaap Kamps, Maarten de Rijke 1432

Hybrid Model for Semantic Similarity Measurement
Angela Schwering . 1449

Ontology-Based Spatial Query Expansion in Information
Retrieval

Gaihua Fu, Christopher B. Jones, Alia I. Abdelmoty 1466

Security Ontology for Annotating Resources
Anya Kim, Jim Luo, Myong Kang . 1483

System Verification and Evaluation

An Ontology for Mobile Agents in the Context of Formal
Verification

Paulo Salem da Silva, Ana Cristina Vieira de Melo 1500

Evaluating Ontology Criteria for Requirements in a Geographic Travel
Domain

Jonathan Yu, James A. Thom, Audrey Tam . 1517

A Self-monitoring System to Satisfy Data Quality Requirements
Cinzia Cappiello, Chiara Francalanci, Barbara Pernici 1535

Active Rules and Web Services

An Ontology- and Resources-Based Approach to Evolution and
Reactivity in the Semantic Web

Wolfgang May, José Júlio Alferes, Ricardo Amador 1553

Automatic Web Service Composition Based on Graph Network Analysis
Metrics

John Gekas, Maria Fasli . 1571

Table of Contents – Part II XXVII

ODBASE 2005 Short Papers

Two Reasoning Methods for Extended Fuzzy ALCH
Dazhou Kang, Jianjiang Lu, Baowen Xu, Yanhui Li,
Yanxiang He . 1588

Expressing Preferences in a Viewpoint Ontology
Rallou Thomopoulos . 1596

Architecting Ontology for Scalability and Versatility
Gang Zhao, Robert Meersman . 1605

OWL-Based User Preference and Behavior Routine Ontology for
Ubiquitous System

Kim Anh Pham Ngoc, Young-Koo Lee, Sung-Young Lee 1615

Reasoning on Dynamically Built Reasoning Space with Ontology
Modules

Fabio Porto . 1623

An Efficient Branch Query Rewriting Algorithm for XML Query
Optimization

Hyoseop Shin, Minsoo Lee . 1629

Automated Migration of Data-Intensive Web Pages into Ontology-Based
Semantic Web: A Reverse Engineering Approach

Sidi Mohamed Benslimane, Mimoun Malki,
Djamel Amar Bensaber . 1640

Author Index . 1651

Probabilistic Ontologies and Relational
Databases

Octavian Udrea1, Deng Yu1, Edward Hung2, and V.S. Subrahmanian1

1 University of Maryland, College Park MD 20742, USA
{udrea, yuzi, vs}@cs.umd.edu

2 The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong�

csehung@comp.polyu.edu.hk

Abstract. The relational algebra and calculus do not take the semantics
of terms into account when answering queries. As a consequence, not
all tuples that should be returned in response to a query are always
returned, leading to low recall. In this paper, we propose the novel notion
of a constrained probabilistic ontology (CPO). We developed the concept
of a CPO-enhanced relation in which each attribute of a relation has
an associated CPO. These CPOs describe relationships between terms
occurring in the domain of that attribute. We show that the relational
algebra can be extended to handle CPO-enhanced relations. This allows
queries to yield sets of tuples, each of which has a probability of being
correct.

1 Introduction

Over the years, there has been an implicit assumption that relational databases
correctly answer queries. However, relational databases are being increasingly
populated by people who know very little about how databases work. They are
also being used more and more by people who do not know much about the
innards of a DBMS. It is therefore important that the DBMS must be smart
enough to return answers that have both a high precision and a high recall.
Databases today do very well in terms of precision, but not as well with respect
to recall. Our goal in this paper is to compute probabilistic answers to queries
internally, but only return a tuple to the user if its probability of being correct
exceeds a given threshold pthr. As a consequence, the end user does not even
see the probabilities (either in the data or in the answer) unless he really wants
to. For example, suppose the user poses a query Q. Our PARQ (Probabilistic
Answers to Relational Queries) system may compute that tuple t should be
in the answer with 90% probability. If the threshold pthr ≤ 0.9, then t will
be returned to the user, otherwise not. Thus, PARQ’s use of probabilities is
completely hidden from the user - the inputs are the same old relations and
queries, and the output is also just an ordinary relation. The probabilities are
only used internally by the system. We should emphasize, however, that a DB
administrator can and should have visibility into some of the workings of PARQ.
� Work performed while at the University of Maryland, College Park MD 20742, USA.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 1–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 O. Udrea et al.

This raises two questions: (I) How should we assign a probability to a tuple
t being in the answer to query Q, and (II) how should the threshold pthr be set?
Most of this paper will focus on answering question (I). Question (II) will be
answered experimentally towards the end of this paper.

The organization and contributions of this paper are summarized below.

1. We first provide a detailed motivating example from the domain of astron-
omy in Section 2.

2. Our first major contribution is the concept of a constrained probabilistic ontol-
ogy (CPO) introduced inSection3.We introduce thenotionof aCPO-enhanced
relation in which a CPO is associated with each attribute of a relation.

3. In Section 4, we provide a formal definition of what it means for a CPO to be
consistent. We show that checking consistency ofCPOs is NP-complete. Fortu-
nately, there is a class of CPOs that are guaranteed to be consistent and there
are polynomial algorithms to check if a given CPO belongs to this class or not.

4. When performing various operations, we might need to merge two CPOs to-
gether. For example, when doing a condition-join between two CPO-
enhanced relations with the condition A1 = A2, we might need to merge the
CPOs associatedwith A1 and A2. We develop the CPOMerge algorithm that
merges two CPOs together in the presence of certain “interoperation
constraints” linking together terms in the two ontologies in Section 5.

5. In Section 6, we extend the relational algebra to utilize CPOs. In particular, we
define selection, join, and the set operations.Projection is unaffected by CPOs.

2 Motivating Example

There are numerous astronomical databases1 in existence today. These, in turn,
are accompanied by several stellar classification schemes based on diverse char-
acteristics such as luminosity, mass, size, composition, etc. For instance, the most
popular scientific classifiers are the spectral class classification and the Yerkes
luminosity classes. Uncertainty in star classifications occurs for many reasons:
first, some celestial bodies are discovered purely by mathematical means and
most classifiers are based on direct observation of the body in question. Sec-
ondly, even with the possibility of direct observation there is often not enough
information to assume that a star belongs to some specialized class. One may
also need to classify a star according to multiple scientific classifiers at once.
Figure 1 (without the underlined elements) shows a simple CPO (we will give
the formal details later) for holding star data, together with an ontology for star
classification. The stars are classified according to size, brightness and color.
Each such decomposition is disjoint and mutually disjoint classes are joined by
a ”d”. For instance, stars that are red cannot be yellow at the same time. We
can easily see that the ontology in this example is an is-a graph with arrows in-
dicating the relationship. The labels on the edges of the graph have an intuitive
1 A quick Google search on astronomy database reveals over a million hits - the first

five pages returned led to several databases.

Probabilistic Ontologies and Relational Databases 3

stars

d d

large small

giant supergiant dwarf neutron

blue red orange

0.
9 0.1 0.
5 0.3

0.3 0.7
0.12

0.
27 0.3

Red giant Blue giant Yellow dwarf Red dwarf

0.3

0.3

0.4

0.
9

0.6

0.
7

0.27

0.35

0.6 | (luminosity>0.8) ^
(density<10)

0.1 | (luminosity>0.8)^
(density>30)

0.2 | (luminosity <
0.4) ^ (size < 0.7)

d
d

Stars:={luminosity:real, mass: real, density: real, size: real, name:
string, star_type: starType}

d

d

d

Fig. 1. A simple CPO

meaning: if edge u→v is labeled with quantity p then there is a p probability
that an arbitrary object in class v is in fact in class u. The underlined elements in
Figure 1 represent constrained probabilities, which give circumstances in which
the default probability of an edge may change. Using such an ontology, users
may ask queries such as:

– Select all stars that are small. Clearly, any entity listed explicitly as a
small star should be returned. However, in addition, any entity listed as a
dwarf, neutron, etc. should be returned using class-subclass relationships.
Now consider an entity e listed in a database as a star. There is a 70%
probability that any star is small - so if pthr ≤ 0.7, e should be returned as
a response to this query.

– Join example. Given two relations containing star data with attributes
R1 = {name, density, star type} and R2 = {mass, location, star type}, we
want to join these relations based on the star type attribute. Classical re-
lational join cannot capture the fact that different values in the star type
attribute can in fact refer to the same set of objects and thus will not return
all tuples. If we know for instance that a red star is the same as a crimson
star, using CPO enhanced relations we can also join the tuples that have
R1.star type = red and R2.star type = crimson.

– Select all stars that are dwarf with a 50% probability or more. This
kind of query cannot be answered using a relation alone (with no probabilities
encoded in it). For a simple condition such as star type = dwarf it adds a
certainty threshold. The result of such an operation would consist of all stars
that have star type either dwarf, yellow dwarf, red dwarf as well as all

4 O. Udrea et al.

stars that have star type=small, since there is a 0.5 probability that these
are dwarf as well. We define such a selection operation in Section 6.

We will use these examples throughout the rest of this article to illustrate our
definitions. By the end of the article we will have defined selection, projection,
join and set operations for CPO-enhanced relations.

3 Constrained Probabilistic Ontology (CPO)

Eiter et. al. [1] proposed the concept of a probabilistic object base (POB) in
which they defined a structure called a POB-schema. They then showed how to
embed probabilities into object bases. In contrast, we will slightly modify their
POB-schema definition and then use it to define our main structure, a CPO. Of
course, we use CPOs in a very different way than Eiter et. al.[1] — we use it to
improve the recall of answers to queries posed to relational databases with no
probabilities anywhere in the DB.

Definition 1. (POB-schema). A POB-schema is a quadruple (C,⇒,me,ψ) where:

(1) C is a finite set of classes.
(2) ⇒ is a binary relation on C such that (C,⇒) is a directed acyclic graph. The

relation c1 ⇒ c2 says that the class c1 is an immediate subclass of c2.
(3) me maps each class c to a set of disjoint subsets of the immediate subclasses of

c. In our example, me(stars) = {{large,small}, {blue, red, orange}}. me
produces clusters corresponding to the disjoint decompositions of a class.

(4) ψ maps each edge in (C,⇒) to a positive rational number in the interval [0,1] such
that for all classes c andall clustersL ∈ me(c), it is the case that

∑
d∈L ψ(d, c) ≤

1. This property will ensure that the sum of the probabilities on the edges orig-
inating from a disjoint decomposition is less than or equal to 1.

If we strip away all the conditional probabilities in Figure 1 (i.e. the condition
probabilities from the node small to dwarf and neutron, then we would have a
POB-schema. Our definition is identical to that in [1] except for the tuple types
associated with the classes in the graph. We now define the transitive closure of
the ⇒ relation in a POB-schema.

Definition 2. (⇒∗). The ⇒∗ relation is the reflexive, transitive closure of ⇒.

A CPO is obtained from a POB-schema by allowing edges to be labeled with
multiple constrained/conditional probabilities. When associating a relation with
a POB-schema, one may want to express that when certain conditions are met,
the probability of an object being in a certain subclass of a given class increases
or decreases. For instance, in Figure 1, we might want to express the fact that
when luminosity > 0.8 (which is true of our sun), the probability that a small
star is a dwarf increases to 0.75.

Probabilistic Ontologies and Relational Databases 5

Definition 3. (Simple constraint). A simple constraint is of the form Ai ∈ D,
where Ai is an attribute name, and D ⊂ dom(Ai). A particular case of a simple
constraint is the nil constraint, defined by Ai ∈ dom(Ai). For a set of objects
O, we denote by Oγ the subset of objects for which constraint γ holds. Two
constraints γ1, γ2 are disjoint if for all sets of objects O, Oγ1 ∩ Oγ2 = φ.

The definition above is a generalization of the normal comparison operators, in
that every comparison of an attribute to a value can be re-written in the form
of a simple constraint. For the rest of the paper, we will abuse notation and use
the usual comparison operators to denote simple constraints.

Definition 4. (Constraint probability). A constraint probability is a pair (p, γ),
where p is a rational number in the interval [0,1] and γ is a conjunction of simple
constraints. (p, γ) is called a nil constraint probability when γ is true. We will
denote these probabilities by (p, true).

Example 1. For example, in Figure 1, (0.6, luminosity > 0.8) is a constraint
probability. The 0.3 (or (0.3, true)) label between nodes orange and stars is a nil
constraint probability. Intuitively, the constraint probability (0.6, luminosity >
0.8) for the edge dwarf⇒ small states that for objects classified as small that
have luminosity > 0.8, there is a 0.6 probability that these are in fact dwarf.
Thus, additional information allows us to refine the default probability of 0.5 for
the respective edge. We will now discuss the concept of labeling for the edges
of a CPO. In the following definition, we denote by E(G) the set of edges for a
graph G.

Definition 5. (Labeling). Suppose G is a graph whose set of edges is E(G), and
suppose Γ is the set of all possible constraint probabilities associated with some
set of attributes. A labeling of G is any mapping ℘ : E(G) → 2Γ . As usual, 2Γ

is the powerset of Γ .

Definition 6. (Valid labeling). A labeling function ℘ with respect to a graph G,
a relation R and an attribute A ∈ R is called a valid labeling if:

(V1) ∀ edges (c, d) ∈ E(G),∀(p, γ) ∈ ℘(c, d), γ refers only to attributes inR−{A};
(V2) ∀ edges (c, d) ∈ E(G), there is exactly one nil constraint probability in ℘(c, d).

A valid labeling maps each edge of a graph to a set of constraint probabilities.
The set of constraint probabilities for an edge c ⇒ d contains only one nil
constraint probability – as this represents the probability of an object in d being
in c, it must be unique. Intuitively,A will be the attribute whose domain of values
is represented by the ontology, and thus we require that any simple constraints
do not refer to the value of A itself.

We are now ready to define a CPO based on the concepts of constraint prob-
abilities and labeling. A CPO can be informally defined as a POB-schema with
edges labeled by multiple constraint probabilities. The valid labeling property
will ensure that we have at least one nil constraint probability on every edge.
Thus, a CPO is a generalization of a POB-schema.

6 O. Udrea et al.

Definition 7. (Constraint Probabilistic Ontology). A CPO with respect to a
relation R and an attribute A ∈ R is a quadruple (C, ⇒, me, ℘) where:

(1) C is a finite set of classes. C is a superset of the domain of A. We should
note that a CPO can be defined in such manner as to be associated with
more than one attribute of a relation. This is in fact the case with our
implementation. However, for the purpose of simplicity the discussion will
assume that a CPO is associated with only one attribute within a relation.

(2) ⇒ is a binary relation on C such that (C,⇒) is a directed acyclic graph. The
relation c1 ⇒ c2 says that the class c1 is an immediate subclass of c2.

(3) me maps each class c to a partition of the set of all immediate subclasses of
c.

(4) ℘ is a valid labeling with respect to the graph (C,⇒), relation R and attribute
A.

Definition 8. (CPO enhanced relation). A CPO enhanced relation is a triple
(T,R, f), where T is a set of CPOs, R is a relation with schema (A1, . . . ,An)
and f : {A1, . . . ,An} → T ∪{⊥} is a mapping called the mapping function such
that:

- ∀ S ∈ T , ∃ j such that f(Aj) = S. Intuitively, this means that any CPO in
T has at least one attribute it is associated with.

- ∀S ∈ T , suppose f(Ai) = S. We then require that dom(Ai) ⊆ CS. Intuitively,
this means that any CPO is well defined with respect to the relation and all
attributes it is associated with.

Example 2. Suppose S denotes the CPO in Figure 1. Then ({S}, Stars, f) is
a CPO-enhanced relation, with f(star type) = S and for any other attribute
A ∈ Stars, A = star type, f(A) = ⊥. The conditions above are satisfied as there
is an attribute that maps to S and S is well defined with respect to Stars and
the star type attribute.

Definition 9. (CPOk). A k-order CPO (or CPOk for short) is a CPO such
that for all edges (c, d) in the CPO, |℘(c, d)|≤k. In particular, a CPO1 is a
simple POB.

Intuitively, a k-order CPO is one that associates at most k constraint probabil-
ities with each edge.

Definition 10. (Probability path). For a CPO S=(C, ⇒, me, ℘), we say that
two classes c, d∈C have a path of probability q (written c�qd) if c⇒∗d through
c1, . . . , ck and there is a function g defined on the set of edges in the c, c1, . . . , ck, d
chain, such that g(x, y) ∈ ℘(x, y) ∀(x, y) edges along the chain (i.e. g selects one
constraint probability from each edge along the path) and

∏
g(x,y)=(p,γ) p≥q. We

also denote by Γg(c�qd) the set of constraints selected by g along the path.

We will often abuse notation and just use (T,R) to denote a CPO-enhanced
relation, leaving f implicit.

Probabilistic Ontologies and Relational Databases 7

4 Consistency

Intuitively, a CPO is consistent if for any universe of objects O, we can find
an assignment of objects to the classes of the CPO that satisfy the conditions
required by subclassing and constraint probabilities. As proven in [1], consistency
checking for POBs is NP-complete, thus we expect a similar result for CPOs.

Definition 11. (Consistent CPO). Let S=(C,⇒,me,℘) be a CPO. An interpre-
tation of S is a mapping ε from C to the set of all finite subsets of a set O (an
arbitrary universe of objects). An interpretation ε of S is called a taxonomic
probabilistic model if and only if:

(C1) ε(c) = φ, ∀c ∈ C;
(C2) ε(c) ⊆ ε(d), ∀c, d ∈ C, c⇒ d
(C3) ε(c)∩ε(d) = φ, ∀c, d ∈ C, c = d that belong to the same cluster L ∈ ∪me(C).
(C4) ∀ edges u ⇒ v ∈ (C,⇒), ∀ constraint probabilities (p, γ) ∈ ℘(u, v), |ε(u)| ≥

p ∗ |ε(v)|γ , where by |ε(v)|γ we denote the number of objects assigned to
class v that meet constraint γ. All objects in a class meet the nil constraint.

A CPO is consistent if and only if it has a taxonomic probabilistic model.

Theorem 1. The problem of deciding whether a given CPO S is consistent is
NP-complete.

The problem is NP-complete since the NP-complete problem of deciding
whether a weight formula is satisfiable in a measurable probability structure [2]
can be polynomially reduced to consistency checking for a CPO. Furthermore,
a non-deterministic algorithm that performs consistency checking in polynomial
time can be devised.

Nonetheless, polynomial time algorithms for deciding the consistency of a
CPO in relevant special cases may be possible. Eiter at. al. [1, 3] introduced the
concept of a pseudoconsistent POB — we extend their definition to the case of
a CPO and then present a notion of well structured CPOs. A pseudoconsistent
and well structured CPO is guaranteed to be consistent. We will introduce the
concept of a pseudoconsistent CPO that encompasses most of the properties for
pseudoconsistent and well structured POB schemas. Furthermore, we will define
our own concept of well-structuredness.

Definition 12. (Pseudoconsistent CPO). For a CPO S = (C,⇒, me, ℘), we
denote S*(c) = {d ∈ C|d⇒∗c}. S is pseudoconsistent if (rule labeling follows
the one in [1]):

(P2) For all classes c ∈ C and for all clusters L ∈ me(c), no two distinct classes
c1, c2 ∈ L have a common subclass.

(W1) The (C,⇒) graph has a top (or root) element.
(W2) For every class c ∈ C, any two distinct immediate subclasses have either

no common subclass or a greatest common subclass which is different from
them.

8 O. Udrea et al.

(W3) For every class c ∈ C, the undirected graph GS(c) = (ν, ε) that is defined by
ν = me(c) and ε = {{L1×L2} ∈ ν×ν|L1 = L2,

⋃
S*(L1)∩

⋃
S*(L2) = φ}

is acyclic (i.e., for every class c ∈ C, the partition clusters in me(c) are
not cyclically connected through common subclasses). In short, multiple
inheritance does not cyclically connect partition clusters.

(W4) ∀c ∈ C, if the graph GS(c) has an edge (i.e. two distinct clusters in me(c)
have a common subclass), then every path from a subclass of c to the top
element of (C,⇒) goes through c. In short, multiple inheritance can be
locally isolated in the graph (C,⇒).

Finding a method that checks for consistency in polynomial time requires that
we “summarize” the edge labeling information. Even though we lose informa-
tion through this process, we can determine a subset of CPOs that allow for a
reasonable consistency checking algorithm.

Definition 13. (Weight factor). Let P be a set of non-nil constraint probabili-
ties. Then we define a weight factor wf (P) as follows:

- If P = φ, then wf (P) = 0;
- If P = {(p, γ)}, then wf (P) = p;
- Otherwise, we define wf recursively with the formula: wf (P∪Q) = wf (P) +

wf (Q)− wf (P)·wf (Q).

Lema 1 Let O be an arbitrary set of objects and let (p1, γ1), (p2, γ2) be two
non-nil constraint probabilities. Then we can always select a set O′ with |O′| ≤
(p1 + p2 − p1·p2)·|O| such that:

- O′ contains at least p1·|Oγ1 | objects that meet constraint γ1 (Oγ1 is the set
of objects from O that meet γ1);

- O′ contains at least p2·|Oγ2 | objects that meet constraint γ2;

Theorem 2. Given a consistent CPO S = (C, ⇒, me, ℘) and c⇒d an edge in
(C,⇒), we write ℘(c, d) = {(p0, true)}∪℘′(c, d) (i.e. we isolate the nil constraint
probability). Then condition (C4) of Definition 11 for c⇒d can be satisfied by
assigning w(c, d) .= max(p0, wf (℘′(c, d))) objects from class d into class c. (Note:
this condition can be satisfied by selecting fewer objects in some instances, but as
mentioned before we are trying to identify a subset of CPO viable for consistency
checking).

The proof is based on induction on the size of ℘′(c, d).

Definition 14. (Well structured CPO). A CPO S = (C, ⇒, me, ℘) is well-
structured if the following conditions hold:

(W5) ∀d, c1, c2 ∈ C such that c1⇒d, c2⇒d, c1 = c2 and c1, c2 are in the same
cluster L ∈ me(d) and ∀(p1, γ1) ∈ ℘(c1, d), ∀(p2, γ2) ∈ ℘(c2, d), if γ1, γ2 =
true, then γ1 and γ2 are disjoint.

(W6) ∀ d ∈ C, ∀ L ∈ me(d), ∀ c ∈ L,
∑

c w(c, d) ≤ 1.

Probabilistic Ontologies and Relational Databases 9

Theorem 3. A well structured and pseudoconsistent CPO is consistent.

The proof is immediate. Conditions of pseudoconsistency account for (C1)–(C3)
in Definition 11, as shown in [1]. Conditions (W5) and (W6) account for (C4) in
Definition 11.

We can now give an algorithm for consistency checking. Such an algorithm
decides on consistency by checking that a CPO belongs to the set defined in
the previous theorem. We will use only such CPOs for the discussions and ex-
periments to follow. The Consistency-Check(S) algorithm is two fold: the first
part determines whether S is pseudoconsistent according to Definition 12. This
algorithm is the well-structured(S) algorithm defined for POB schemas, comple-
mented with a simple operation to determine the top (if any) of a CPO schema.
We can simply reuse this algorithm since it only deals with properties involving
inheritance and not with edge labeling. The well-structured(S) algorithm runs in
O(n2e) time, where n = |C| and e is the number of directed edges in (C,⇒). We
will now define a new algorithm that checks for conditions (W5) and (W6). The
algorithm is described below.

Algorithm: well-structured-CPO(S)
Input: Pseudoconsistent CPO S=(C, ⇒, me, ℘).
Output: true if S is well-structured and false otherwise.
Notation: We denote by top(S) the top element of (C, ⇒). Q is a FIFO queue, initially
empty.
1) Q ← {top(S)};
2) while ¬empty(Q) do
3) c ← dequeue(Q);
4) for each L ∈me(c) do
5) Q ← enqueue(L,Q); (add all elements within L to the queue)
6) for each d1, d2∈L, d1 �= d2 do
7) for each (p1, γ1), (p2, γ2)∈℘(d1, c) × ℘(d2, c), γ1, γ2 �= nil do
8) if γ1, γ2 are not disjoint, then
9) return false; (S does not satisfy (W5))
10) end;
11) end;
12) Sum ← 0;
13) for each d∈L do
14) Compute w(d, c);
15) Sum ← Sum + w(d, c).
16) end;
17) if Sum > 1 then return false; (S does not satisfy (W6))
18) end;
19) end;
20) return true (S is a well structured CPO);

It is easy to see that the algorithm described here runs inO(n2k2) for a CPOk.
The for statements on lines 6 and 7 account for this limit. Computation of w(d, c)
is done in O(k) for every class d, according to the recursive definition given.

10 O. Udrea et al.

So far, we have extended the POB-schema defined by Eiter et. al. [1] in sev-
eral ways. First, we have added constrained probabilities to the ontology. Second,
we have generalized the well-structuredness property, by allowing different paths
between two classes to have different probabilities. In the following sections, we
introduce new concepts that allow us to extend the relational algebra to handle
CPOs.

5 CPO Merging

Suppose we wish to perform a natural join operation on two relations, R =
R1ΘAR2. Suppose R1.A is associated with CPO S1 andR1.A is associated with
CPO S2. As each attribute has only one associated CPO, we need a method to
integrate S1 and S2. We will declaratively define what the integration of two on-
tologies is, and then provide an algorithm to implement it. The notion of an inter-
operation constraint specifies any known relationships between terms in the two
ontologies.

Definition 15. (Interoperation constraints). For the purpose of merging two
CPOs S1 = (C1,⇒1, me1, ℘1), S2 = (C2,⇒2, me2, ℘2), a set of interoperation
constraints will contain elements of the following type:

- (Equality constraint). c1 :=: c2, where c1 ∈ C1 and c2 ∈ C2. This type of con-
straint specifies that two classes from different CPOs always refer to the same
set of objects. In order to avoid situations where by transitivity of the equal-
ity constraint we would have two classes from the same CPO in an equality
relation, we require that each class from each CPO appear at most once in the
set of equality constrains.

- (Immediate subclassing constraint). Such constraints are in the form
c1 �(p0,true),(p1,γ1),...,(pk,γk) c2, where c1 ∈ C1, c2 ∈ C2 and (p0, true), (p1, γ1),
. . . , (pk, γk) are constraint probabilities such that there is exactly one nil con-
straint probability. This constraint states that c1 should be an immediate sub-
class of c2 in the merged ontologieswith the given labeling on the edge between
the two.

The subclassing constraints specify a relation of immediate subclassing. This is
done firstly in order to simplify the merge algorithm. Secondly, in the extended
version of the paper available at http://www.cs.umd.edu/users/udrea/
ProbOntologies.pdfwe provide algorithms to infer equality constraints and thus
immediate subclassing constraints would be used when provided by a DB admin-
istrator.

Definition 16. (Integration witness). Given two CPOs, S1 = (C1,⇒1, me1, ℘1),
S2 = (C2,⇒2, me2, ℘2) and a set of interoperation constraints I defined on S1, S2,
we define a witness to the integration of S1, S2 as S

.= μI(S1, S2) if the following
conditions hold:

(O1) S is a CPO (C,⇒, me, ℘). This states that the result of merging two CPOs
is a CPO, thus abiding by Definition 7.

Probabilistic Ontologies and Relational Databases 11

(O2) ∀c ∈ C1 ∪ C2, only one of the following holds: either c ∈ C or ∃d ∈ C1 ∪ C2
such that d ∈ C and (c :=: d) ∈ I. This condition states that all classes from
both ontologies would be present in the result, either directly or through a
representative if they are part of an equality constraint. We will denote by
CR(x) the representative of class x in C.

(O3) ∀ c1 ⇒1 d1∈ (C1,⇒1) , c2 ⇒2 d2 ∈ (C2,⇒2), CR(c1)⇒ CR(d1), CR(c2) ⇒
CR(d2) ∈ (C,⇒). Intuitively, this states that no edges are lost during the
merging process.

(O4) ∀ c1 ⇒1 d1 ∈ (C1,⇒1), c2 ⇒2 d2 ∈ (C2,⇒2) such that {c1 :=: c2, d1 :=:
d2} ⊆ I, and ∀ (p1, γ1) ∈ ℘1(c1, d1) and (p2, γ2) ∈ ℘2(c2, d2):

(O4.1) If γ1 = γ2, then (p1, γ1) ∈ ℘(CR(c1), CR(d1)) and (p2, γ2) ∈ ℘(CR(c1),
CR(d1)).

(O4.2) If γ1 = γ2, then ∃!p ∈ [min(p1, p2), max(p1, p2)] such that (p, γ1) ∈
℘(CR(c1), CR(d1)).

This rule gives guidelines for solving conflicts between edges present in both
ontologies; the interesting case occurs when two constraint probabilities
from the same edge in the different CPOs have the same constraint. In such
cases, the constraint appears in S with a probability value between the two
probabilities on the conflicting edges.

(O5) Every c1 �(p0,true),(p1,γ1),...,(pk,γk) c2 ∈ I induces an edge between CR(c1)
and CR(c2) in (C,⇒), labeled with (p0, true), (p1, γ1), . . . , (pk, γk). If the in-
duced edge conflicts with another edge, then rule (O4) applies. Otherwise, the
induced edge is part of the graph (C,⇒). Intuitively, this rules states that im-
mediate subclassing constraints induce new edges in S and they are treated
as standard edges in case of conflict.

(O6) ∀c ∈ C1 ∪ C2, ∀L ∈ me1|2(c) (me1 or me2 is applied depending on where c is
from), ∃!L′ ∈ me(CR(c)) such that L ⊆ L′. Intuitively, this rule tell us that
a disjoint decomposition cannot be split as a result of merging.

(O7) S is pseudoconsistent and well-structured according to Definitions 12 and 14.
Intuitively, this rule states that the resulting CPO is consistent and this can
be verified in polynomial time.

There can be zero, one or many witnesses to the integration of two CPOs. Two
CPOs are said to be unmergeable if no witnesses exist. We now present an algo-
rithm that takes two consistent CPOs and either returns a witness to the integra-
tion of the two if such a witness exists or throws an exception.

Algorithm: CPOmerge(S1, S2, I)
Input: S1 = (C1, ⇒1, me1, ℘1), S2 = (C2, ⇒2, me2, ℘2) – consistent CPOs, interoperation
constraint set I.
Output: S = μI(S1, S2) or throws cannot merge exception.
Notation: We will use union-find semantics [4] for the first part of the algorithm. We will
denote by CR(x) the union-find class representative for element x and we will assume that
unify is written such that CR(x) will always be in C1. We will regard [⇒] and [me] as data
structures, although they are functions (the parentheses are used for notation purposes only).
We will initialize these structures for each of the corresponding function’s domain values.

12 O. Udrea et al.

(* INITIALIZATION *)
1) C = C1;
2) [⇒] = [⇒1];
3) [me]=[me1] ∪ [me2];
(* ADDING NODES FROM S2*)
4) for each c2 ∈ C2 do
5) if ∃ (c1 :=: c2) ∈ I then
6) unify(c1,c2);
7) else
8) C = C ∪ {c2};
9) end;
10) end;
(* CLEARING UP me *)
11) replace all classes x from all clusters within me with CR(x);
12) for each c ∈ C do
13) for each clusters L1, L2 ∈ me(c), L1 �= L2, do
14) for each (c1, c2) ∈ L1 × L2 do
15) if CR(c1) = CR(c2) then
16) [me](c) = [me](c) – {L1, L2} ∪ {L1 ∪ L2};
17) break;
18) end;
19) end;
20) end;
21) end;
(* ADDING NEW EDGES *)
22) for each (c, d) edge in S2 or subclassing constraint in I do
23) if CR(c) ⇒ CR(d) �∈ [⇒] then
24) [⇒] = [⇒] ∪ (c, d);
25) set ℘(c, d) to ℘2(c, d) or the label of the subclassing constraint;
26) else
27) e = [⇒](c, d);
28) e1 = the second edge (c, d)
28’) (from subclassing constraint or S2).
29) for each (p, γ) ∈ ℘∗

2(e1) do
29’) (℘∗

2 means either ℘2 or the the subclassing constraint label)
30) if ∃(p1, γ) ∈ ℘(e) then
31) ℘(e) = ℘(e) − {(p1, γ)} ∪ {(min(p, p1), γ)};
32) ℘∗

2(e1) = ℘∗
2 − {(p, γ)};

33) end;
34) end;
35) ℘(e) = ℘(e) ∪ ℘∗

2;
36) end;
37) end;
38) if not Consistency-Check(S) then throw cannot merge exception;
39) return S;

Probabilistic Ontologies and Relational Databases 13

stars

d

d

large

giant supergiant

blue red

0.
9 0.1

0
.3

0.12

0.
27

Red giant Blue giant

0.3

0.3

0.4

0.
9

d

stars

d d

small

dwarf neutron

crimson orange

0.
5 0.3

0.7

0.
34 0.3

Yellow dwarf Red dwarf

0.6

0.
7

0.27

0.35

0.6 | (luminosity>0.8) ^
(density<10)

0.1 | (luminosity>0.8)^
(density>30)

0.2 | (luminosity <
0.4) ^ (size < 0.7)d

big

0.3CPO1

CPO2

large :=: big
crimson:=:red

d

Red giant

0.4

d
d

Fig. 2. Merging example

CPOmerge starts by using the class hierarchy of one of the two CPOs being
merged. We can then use any of the numerous well-known union-find algorithms
(Tarjan [4]) to add classes from the second ontology to the merge result. Since
every class in the two ontologies appears at most once in the equality constraints,
the size of each union-find set is at most 2, which means that there is almost no
time penalty for using union-find.

The next step is needed to generate the new clustering function me for the
resulting ontology. The property enforced here is: if we have two pairs of classes
c1 :=: c2 and d1 :=: d2 and c1 ⇒ d1 and c2 ⇒ d2, then all siblings of c2 need to
be in the same disjoint decomposition as the siblings of c1. Note that this “cluster
contraction” process does not need to be recursively repeated. If that were the
case, we would be contracting different clusters from the same ontology, which
would lead to an inconsistent merge result.

The next step implies adding the edges from the second ontology, as well as
those implied by the subclassing constraints. Note that in case of conflict, we al-
ways take the minimum probability of the two constraint probabilities. Intuitively,
this tends to minimize w(c, d) and thus lead to a consistent merge result. The
last step implies checking for consistency. If the resulting CPO is not consistent,
then the merge operation fails. There are a number of techniques that can extend
the merge operation to recover from inconsistencies, using loop elimination for in-
stance. These are beyond the scope of this paper. Using the algorithm above, we
can extend the merge operation to an arbitrary number of CPOs, by performing
merging in pairs. The algorithm above is bounded by O(n3), given by the loops
involved in restructuring me. The two ontologies in Figure 2 can be merged into
the ontology in Figure 1 using the rules depicted.

Theorem 4. (CPOmerge correctness).

(i) CPOmerge(S1, S2, I) returns a witness iff there exists a witness to the integra-
bility of S1, S2 under interoperation constraints I.

(ii) CPOmerge is guaranteed to terminate.

14 O. Udrea et al.

The proof is based on the structure of the algorithm that directly corresponds to
conditions (O1)-(O7). Also, the choice of probability in cases of conflict is conser-
vative.

6 CPO Operations

We now extend the relational algebra to accommodate CPO-enhanced relations.

6.1 Selection

Definition 17. (Simple condition). Suppose C is the set of classes in the CPO
associated with relation R with attributes {A1, . . . , Am}. Then: a simple condition
is of the form Ai in T , where T ⊆ dom(Ai) ⊆ C.

Example 3. The definition states that in the context of a CPO, simple conditions
are those that refer to the attributes represented in the CPO. This is very similar
to Definition 3 for simple constraints. However, simple constraints can refer to all
attributes of a relation except those associatedwith the currentCPO,while a simple
condition refers only to the attributes associated with the CPO. For instance, in
the example of Figure 1, luminosity > 0.8 is a simple constraint, but not a simple
condition since the CPO does not contain values for the luminosity attribute. On
the other hand, star type in {dwarf, orange} is a simple condition, but cannot be
a simple constraint, since it refers to the attribute associated with the CPO.

Definition 18. (Probability condition). A probability condition for selection is of
the form (δ, p), where δ is a simple condition and p is a rational number in the [0,1]
interval.

Intuitively, a probability condition ensures that only those tuples which satisfy δ
with probability p or more will be returned.

Definition 19. (Selection condition). A selection condition is any combination of
probability conditions or simple conditions using the ∨, ∧ and ¬ logical operators.

Example 4. Intuitively, the selection conditions we are interested in are combina-
tions of simple and probability conditions and thus refer only to the attributes
associated with a CPO. All other selection operations can be reduced to classical
relational algebra. For example,

(star type in {dwarf, giant}, 0.5)∧ ¬(star type in {blue})
is a selection condition.

We now give an extension for the relational selection operation. This definition
uses the concept of probability path defined in Section 3.

Definition 20. For a CPO-enhanced relation defined by the CPO S = (C,⇒, me,
℘) and the relation R = {A1, . . . , Am}, we define CPO-enhanced selection as fol-
lows (Note: As stated above, we are only interested in cases not covered by rela-
tional algebra’s selection).

Probabilistic Ontologies and Relational Databases 15

- (Simple selection). We define

σAiinT (R) = {t ∈ R|t.Ai ∈ T ∨ ∃c ∈ T s.t. t.Ai⇒∗c}.

- (Probabilistic selection). We define σ(AiinT,p)(R) = {t ∈ R|(t.Ai ∈ T)∨(∃c ∈
T s.t. t.Ai⇒∗c) ∨ (∃c′ ∈ T s.t. c′�pt.Ai and t.Ai meets every constraint in
Γ (c′�pt.Ai))}.

- (Composite selection). For every selection condition of the form Δ = Δ1 op
Δ2, σΔ(R) = σΔ1(R) op σΔ2 (R). Here, the op operator is the set operation
corresponding to the logical operation op. For instance, ∪ corresponds to ∨, ∩
to ∧ and so on.

Example 5. In the examples of Section 1, the query σ(star type in {dwarf},0.5)(Stars)
would return:

- All tuples with star type=dwarf;
- All tuples with star type∈ {yellow dwarf, red dwarf};
- All tuples with star type=small. If the probability threshold had been 42%,

then we would have also included all tuples that have star type=star and
meet the conditions luminosity > 0.8 and density < 10.

6.2 Projection and Cartesian Product

Projection for a CPO-enhanced relation is the same as in relational algebra. An
operation that would “trim” the CPO graph is possible, but that would lead to loss
of data within the relation, A cartesian product operation on two CPO-enhanced
relations will not alter the structure of the respective CPOs, nor the association
between the CPOs and the attributes of the two relations. Thus, we reduce the
cartesian product operation to its correspondent in classical relational algebra.

6.3 Join

Consider two CPO-enhanced relations (T1,R1) and (T2,R2) with mapping func-
tions f1 and f2 respectively and suppose their attribute names are renamed so
that they share no attributes in common. Suppose ξ(A1,A2) is a join-condition
linking attribute A1 fromR1 with attribute A2 fromR2. We say that (T1,R1) and
(T2,R2) are join compatible w.r.t. a finite set I of interoperability constraints iff
the CPOs f1(A1) and f2(A2) are mergeable w.r.t. I and join-condition ξ(A1,A2).

Definition 21. (Join operation). Suppose (T1,R1) and (T2,R2) are join-
compatible w.r.t. I and the join-condition ξ(A1,A2). Let S be a witness to the in-
tegrability of the ontologies associated with A1,A2. Then

Table 1. Simple relation examples for join

Relation R1
Name Density Star type

Gliese623a 0.9 red
Gliese623b 1.2 red dwarf

Relation R2
Mass Location Star type
0.1 Hercules crimson
143 Leo blue giant

16 O. Udrea et al.

– R = R1 ��ξ(A1,A2) R2
– T = (T1 ∪ T2 ∪ {S})− {S1, S2} where Si is the ontology associated with Ai.

Table 2. Merge result for (CPO1, R1) ��R1.Star type=R2.Star type (CPO2, R2)

Name Density R1.Star type Mass Location R2.Star type
Gliese623a 0.9 red 0.1 Hercules crimson

Example 6. Given the relations R1 and R2 in Table 1, assume that the attribute
R1.Star type is mapped to CPO1 in Figure 2 and that attribute R2.Star type is
mapped to CPO2 in the same figure. Also, we denote by I(S1, S2) the set of in-
teroperation constraints for the purpose of merging S1 and S2. I will contain the
equality constraints depicted in Figure 2, as well as any other constraints based
on class names that are identical in the two ontologies. Then the result of the join
operation (CPO1, R1) ��Star type (CPO2, R2) is presented in Table 2, with the
R1.Star type and R2.Star type being mapped to the CPO presented in Figure 1
(here we abbreviate the condition that the Star type attributes of the two rela-
tions should be equal). We obtain this result by first performing the merge between
CPO1 and CPO2 and then checking for the join condition, taking into account
any equality constraints inferred.

6.4 Union

Definition 22. (Union operation). Suppose (T1,R1) and (T2,R2) are CPO-
enhanced relations with the same schema. For each attribute Ai, let S1

i , S2
i be the

CPO associated with attribute Ai in (T1,R1) and (T2,R2) respectively. Let Ii be
a set of interoperation constraints. We say (T2,R2) are CPO-union compatible
if S1

i , S2
i have a witness Si to their integrability under Ii. In this case, we define

(T1,R1) ∪ (T2,R2) as (T ,R) where:

– R = R1 ∪R2 Here, ∪ denotes the relational algebra union operation.
– T = {Si | Ai is an attribute of Ri}.

6.5 Intersection and Difference

In order to perform intersection and difference in relational algebra, the relations
involved must be union compatible. Therefore, the intersection and difference op-
erations for CPO-enhanced relations are defined similarly to the union operation.
The resulting relationR is eitherR1−R2 for difference orR1∩R2 for intersection.

7 Related Work and Conclusions

Wiederhold’s group was the first to notice that ontologies can be used to improve
the quality of answers to queries. They proposed an ontology algebra [5, 6, 7]. Their

Probabilistic Ontologies and Relational Databases 17

algebras consisted of logical statements [5] using a LISP style syntax. Their later
work included graphs which were combined in their ONION system using the
three set operations of union, intersection and difference. In addition, a frame-
work called TOSS [8] was recently proposed to increase the recall of queries to
XML databases.

In this paper, we present the concept of a probabilistic ontology that builds on
the work of Eiter et. al. [1, 3]. We extend the concept of a POB-schema by Eiter
et. al. to the case of a constrained probabilistic ontology (CPO) and show how
the consistency of POB-schemas can be extended to CPOs. However, our path
from there is very different. We show how the answers to relational queries can
be greatly improved by using probabilities within the system hidden from users.
We show how multiple CPOs can be combined under a variety of interoperation
constraints. Based on these ideas, we develop a relational-style algebra to handle
querying with associated ontologies. The interested reader may find initial exper-
imental results, as well as a discussion on how CPOs can be inferred from data
sources using a number of different methods in the extended version of the paper
available at http://www.cs.umd.edu/users/udrea/ProbOntologies.pdf.

Acknowledgements

Work supported in part by ARO grant DAAD190310202, NSF grants IIS0329851
and 0205489, and by a DARPA subcontract from the Univ. of California Berkeley.

References

1. Eiter, T., Lu, J.J., Lukasiewicz, T., Subrahmanian, V.: Probabilistic object bases.
ACM Trans. Database Syst. 26 (2001) 264–312

2. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf.
Comput. 87 (1990) 78–128

3. Eiter, T., Lukasiewicz, T., Walter, M.: A data model and algebra for probabilistic
complex values. Ann. Math. Artif. Intell. 33 (2001) 105–252

4. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM 22
(1975) 215–225

5. Maluf, D., Wiederhold, G.: Abstraction of representation for interoperation. Lecture
Notes in AI, subseries of LNCS 1315 (1997)

6. Mitra, P., Wiederhold, G., Kersten, M.: A graph-oriented model for articulation
of ontology interdependencies. In: Proceedings Conference on Extending Database
Technology, (EDBT’2000). (2000) 303–316

7. Wiederhold, G.: Interoperation, mediation and ontologies. In: International Symp.
on Fifth Generation Computer Systems, Workshop on Heterogeneous Cooperative
Knowledge Bases. (1994) 33–48

8. Hung, E., Deng, Y., Subrahmanian, V.S.: Toss: an extension of tax with ontologies
and similarity queries. In: Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, ACM Press (2004) 719–730

Intelligent Web Service - From Web Services
to .Plug&Play. Service Integration

Erich Neuhold, Thomas Risse, Andreas Wombacher,
Claudia Niederée, and Bendick Mahleko

Fraunhofer Institute (IPSI), Germany

Abstract. The service oriented architecture and its implementation by
Web services have reached a considerable degree of maturity and also
a wide adoption in different application domains. This is true for the
R&D as well as for the industrial community. Standards for the descrip-
tion, activation, and combination of Web services have been established;
UDDI registries are in place for the management of services, and devel-
opment environments support the software engineer in the creation of
Web services.

However, the major benefit of service oriented architectures, the loose
coupling of services, is still seldom explored in real world settings. The
reason is the heterogeneity on different levels within the service oriented
architecture. The heterogeneity problems reach from the semantics of
service descriptions to compatibility problems between workflows, which
have to be connected via service interfaces. In spite of compatible service
signatures, workflows might, for example, not be compatible in their
semantics.

This talk discusses challenges and solutions for a real .Plug&Play.
service infrastructure, i.e. a Web service infrastructure, where integration
of new Web services becomes as simple and straightforward as plugging
a USB stick into your laptop. To achieve this goal various issues have to
be addressed:

– Semantics of services as a foundation for intelligent service mediation
and usage

– Effective, automatic, and intelligent service discovery taking into ac-
count application context

– Dynamic context-aware composition of services into processes

The challenges and approaches for a “Plug&Play” service infrastructure
are illustrated with a real world example.

Brief Speaker Bio

Erich Neuhold received his M. S. in Electronics and his Ph.D. degree in Mathe-
matics and Computer Science at the Technical University of Vienna, Austria, in
1963 and 1967, respectively. Since 1986 he has been Director of the Institute for
Integrated Publication and Information Systems (IPSI) in Darmstadt, Germany
(a former Institute of the German National Research Center for Information

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 18–19, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Intelligent Web Service 19

Technology - GMD, since July 2001 a Fraunhofer Institute). He is a member
of many professional societies, an IEEE senior member, and currently holds the
chairs of the IEEE-CS the Technical Committee on Data Engineering.

Dr. Neuhold is also Professor of Computer Science, Integrated Publication
and Information Systems, at the Darmstadt University of Technology, Germany.
His primary research and development interests are in heterogeneous multimedia
database systems in Peer-to-Peer and GRID environments, WEB technologies
and persistent information and knowledge repositories (XML, RDF, ...) and
content engineering. In content engineering special emphasis is given to all tech-
nological aspects of the publishing value chain that arise for digital products
in the WEB context. Search, access and delivery includes semantic based re-
trieval of multimedia documents. He also guides research and development in
user interfaces including virtual reality concepts for information visualization,
computer supported cooperative work, ambient intelligence, mobile and wireless
technology, security in the WEB and applications like e-learning, e-commerce,
e-culture and e-government.

Process Modeling in Web Applications

Stefano Ceri

Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Italy

Abstract. While Web applications evolve towards ubiquitous,
enterprise-wide or multi-enterprise information systems, their features
must cover new requirements, such as the capability of managing complex
processes spanning multiple users and organizations, by interconnecting
software provided by different organizations. Significant efforts are cur-
rently being invested in application integration, to support the composi-
tion of business processes of different companies, so as to create complex,
multi-party business scenarios. In this setting, Web applications, which
were originally conceived to allow the user-to-system dialogue, are ex-
tended with Web services, which enable system-to-system interaction,
and with process control primitives, which permit the implementation
of the required business constraints. This talk presents new Web engi-
neering methods for the high-level specification of applications featuring
business processes and remote services invocation. Process- and service-
enabled Web applications benefit from the high-level modeling and au-
tomatic code generation techniques that have been fruitfully applied to
conventional Web applications, broadening the class of Web applications
that take advantages of these powerful software engineering techniques.
All the concepts presented in this talk are fully implemented within a
CASE tool.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, p. 20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CoopIS 2005 PC Co-chairs’ Message

This volume contains the proceedings of the Thirteenth International Conference
on Cooperative Information Systems, CoopIS 2005, held in Agia Napa, Cyprus,
November 2 - 4, 2005.

CoopIS is the premier conference for researchers and practitioners concerned
with the vital task of providing easy, flexible, and intuitive access and organi-
zation of information systems for every type of need. This conference draws on
several research areas, including CSCW, Internet data management, electronic
commerce, human-computer interaction, workflow management, web services,
agent technologies, and software architectures.

These proceedings contain 33 original papers out of 137 submissions. Papers
went through a rigorous reviewing process (3 reviewers per paper) and were
sometimes discussed by email. The papers cover the fields of Workflows, Web
Services, Peer-to-Peer interaction, Semantics, Querying, Security, Mining, Clus-
tering, and Integrity. We wish to thank the authors for their excellent papers, the
Program Committee members, and the referees for their effort. They all made
the success of CoopIS 2005 possible.

August 2005 Mohand-Said Hacid, Université Claude Bernard Lyon 1
John Mylopoulos, University of Toronto

Barbara Pernici, Politecnico di Milano
(CoopIS 2005 Program Committee Co-Chairs)

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, p. 21, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Let’s Go All the Way: From Requirements Via
Colored Workflow Nets to a BPEL

Implementation of a New Bank System

W.M.P. van der Aalst1,2, J.B. Jørgensen2, and K.B. Lassen2

1 Department of Technology Management, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl
2 Department of Computer Science, University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

{jbj, krell}@daimi.au.dk

Abstract. This paper describes use of the formal modeling language
Colored Petri Nets (CPNs) in the development of a new bank system.
As a basis for the paper, we present a requirements model, in the form of
a CPN, which describes a new bank work process that must be supported
by the new system. This model has been used to specify, validate, and
elicit user requirements. The contribution of this paper is to describe two
translation steps that go from the requirements CPN to an implementa-
tion of the new system. In the first translation step, a workflow model is
derived from the requirements model. This model is represented in terms
of a so-called Colored Workflow Net (CWN), which is a generalization of
the classical workflow nets to CPN. In the second translation step, the
CWN is translated into implementation code. The target implementa-
tion language is BPEL4WS deployed in the context of IBM WebSphere.
A semi-automatic translation of the workflow model to BPEL4WS is
possible because of the structural requirements imposed on CWNs.

Keywords: Business Process Management, Workflow Management,
BPEL4WS, Colored Petri Nets.

1 Introduction

Bankdata is a Danish company that is currently developing a new system called
the Adviser Portal (AP). AP has been bought by 15 Danish banks and will be
used by thousands of bank advisers in hundreds of bank branches. The scope of
the system is to support advising private customers and small businesses. The
total development effort is 15 developers over a period three years. The first
version is planned to become operational in September 2005.

The main goal of AP is to increase the efficiency and quality of bank advisers’
work. Currently, prior to the deployment of AP, the advisers in Bankdata’s
customer banks often need information, which is scattered over many places: in
different IT systems, on paper sheets in binders or in piles on a desk, on post-
it notes, or even only in the minds of advisers. This hampers both efficiency

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 22–39, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Let’s Go All the Way 23

and quality; it is time-consuming to search for information, and an adviser may,
e.g., sometimes forget to call a customer when she has promised to do so. The
scattering of information makes it difficult for an adviser to get an overview,
both of her own current and future tasks, and of the information pertaining to a
particular task. Moreover, it makes it difficult for the bank, as an organization,
to coordinate, distribute, and plan work.

Problems like these are mainly caused by the nature of the bank advisers work
processes. To overcome the problems, the AP system will represent a change in
perspective for Bankdata’s software development. Previously, Bankdata focused
on the development of traditional data-centric systems. For the new AP system,
Bankdata uses a process-centric approach: In the new system, there is more focus
on the work processes that must be supported than there has been previously.
Thus, a workflow management system is a central component of AP.

Our focus in this paper is on AP’s support of one specific work process: The
process describing how bank advisers give advice to customers enquiring about
getting a so-called blanc loan. A blanc loan is a simple type of loan, which can
be granted without requiring the customer to provide any security. This is in
contrast to, e.g., mortgage credits and car loans. Blanc loans are typically used
for consumption purposes like travels, weddings, and gifts. They constitute a
relatively high risk for the banks and have a correspondingly high interest rate.

We will describe the use of the formal modeling language Colored Petri Nets
(CPNs) [16, 20] in the development of AP. First, CPN has been used as a vehicle
for requirements engineering for AP. This involved using a requirements model in
the form of a CPN as the core ingredient of an Executable Use Case (EUC) [17] to
describe new work processes and their proposed computer support. This has been
a means to specify, validate, and elicit requirements in a number of workshops
with future users and systems analysts from Bankdata. We will present the
Requirements CPN (RCPN), and we will briefly outline how it has been used.
However, the main focus of this paper is on two translation steps taken to close
the gap between the requirements model and the implementation of the new
system. The first step translates the RCPN into a workflow model in the form of
a Colored Workflow Net (CWN), a new class of Petri nets that we will introduce.
The second step translates the CWN into the chosen implementation language,
which is Business Process Execution Language for Web Services (BPEL4WS)
[5]. (In this paper we will simply use “BPEL” to refer to this de-facto standard.)

The CPNs we present in this paper are created using CPN Tools, a graphical
environment to model, enact and analyze CPNs. (CPN Tools can be downloaded
from www.daimi.au.dk/CPNtools/.)

This paper is structured as follows. Section 2 introduces the overall approach,
including the two translation steps in focus. Section 3 presents the requirements
model. Section 4 introduces the CWN modeling language and describes how the
RCPN is translated into a workflow model in the form of a CWN. Section 5 dis-
cusses how the CWN is translated into BPEL. Section 6 discusses related work.
Section 7 concludes the paper by summarizing the main results and discussing
future work.

24 W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen

real world
(a bank)

requirements
model

workflow
model AP system

T0 T1 T2

textual description
Requirements CPN (RCPN)

animation

Colored Workflow Net
(CWN)

BPEL

focus on context (processes and organization) focus on realization (system and software)

Fig. 1. Overview of the different models and translations between these models

2 Overall Approach

Figure 1 summarizes the overall approach. Translation T0 creates a model of
the real world, in this case the processes and people within banks. The result
of T0 is the requirements model. In the technical report [18], we describe how
T0 is made in cooperation between users and Bankdata analysts, and how the
requirements model is used in an iterative, prototyping fashion; it is constructed
based on informal textual descriptions and diagrams and has served as an engine
to drive a graphical animation.

Translation T1 derives the workflow model from the requirements model.
The latter includes both: (1) actions that are to remain manual, when the new
system is deployed; (2) actions that will be supported by the new system in
interaction with human users; (3) actions that are to be fully automated by
the new system. The workflow model includes only actions in categories (2)
and (3). Moreover, the workflow model adds more details. The requirements
model uses the CPN language in an unrestricted manner, e.g., tokens, places,
and transitions may represent any entity deemed to be relevant. In the workflow
model, we restrict ourselves to use only concepts and entities, which are common
in workflow languages. More specifically, we propose Colored Workflow Nets
(CWNs) as the language for making workflow models. A CWN is a CPN model
restricted to the workflow domain and can be seen a high-level version of the
traditional Workflow Nets (WF-nets) [1].

Translation T2 goes from the CWN into skeleton code for the chosen im-
plementation platform. AP is implemented using the IBM WebSphere platform;
IBM WebSphere includes the workflow management tool IBM Process Chore-
ographer, which will be used to orchestrate some of the work processes that are
currently carried out manually in the banks. IBM Process Choreographer uses
BPEL. Therefore, translation T2 translates the CWN into BPEL.

As shown in Figure 1 by a dashed line, translationT1 represents a shift in focus.
Left of T1, the focus is on the context (processes and organization). Right of T1,
the focus is on the realization (system and software). The use of CPN as a common
language for both the requirements model and the workflow model provides a nat-
ural link of these two views. This facilitates a smooth transition and is an attempt
to avoid the classical “disconnect” between business processes and IT.

Let’s Go All the Way 25

All translationsT0,T1 andT2 inFigure 1 are donemanually for theAP system
in consideration.BothT0 andT1 are likely to remainmanual given their character-
istics; they inherently involve human analysis, decisions, and agreements between
stakeholders. Translation T2, however, can be supported using a computer tool
that generates template code for the chosen implementation platform. We have
developed a systematic approach to transform a CWN into BPEL code. This ap-
proach is semi-automatic, i.e., the template code is generated on the basis of the
structure of the underlying workflow net, as described in the technical report [4].

The translations we present should be seen as a proof-of-concept: They do not
yield a full implementation of the AP system, but they merely demonstrate the
viability of our approach.

3 Requirements Model

In this section, we first present the requirementsmodel, i.e., the RCPN. The RCPN
hasbeenusedas an ingredient of anExecutableUseCase (EUC) [17],which support
specification, validation, and elicitation of requirements. EUCs spur communica-
tion between stakeholders and can be used to narrow the gap between informal
ideas about requirements and the formalization that eventually emerges when a
system is implemented. An EUC may be seen as a context-descriptive prototype [6].
In this way, the RCPN has played a similar role as a high-fidelity prototype imple-
mented in a programming language.

The use of EUCs in the development of AP is described in [18] (this is trans-
lation T0 of Figure 1). In the present paper, we merely give an impression of the
EUC by showing the animation, which is part of it. Figure 2 mimics a situation in a
bank in which there are two advisers, Ann and Bill, their manager Mr. Banks, and
one customer, Mr. Smith. The circles represent blanc loan enquiries. The anima-

Fig. 2. Snapshot of graphical animation

26 W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen

tion user can play with the animation and try out various scenarios and carry out
experiments. Note that the animation is constructed using the animation facilities
offered on top of CPN Tools and that the animated objects interact directly with
the running CPN model.

We now present the RCPN; an extract is shown in Figure 3. At the same time,
we also give an informal primer to CPN, which allows the reader to understand
the CPNs in general terms. The primer does not account for all the technicalities
of CPN; its purpose is only to provide an overall impression of the most basic con-
cepts of the CPN language. For a more thorough introduction, the reader is referred
to [16, 20].

ACPNdescribes a system’s states and actions. The state of a system is modeled
by places, drawn as ellipses. Places can hold tokens, which have different types or
colors in CPN jargon. These types are a subset of the data types in Standard ML
suchas theprimitive types integer and string andcompositional types suchas tuple,
list and record. Each place can hold tokens of a certain type. Usually the type of a
place is written in capital letters close to it. All places in this CPN model have the
type LOAN. Figure 4 shows the definition of LOAN.

LOAN is a record type; it consists of a caseid for separating different loan case
instances, a customer, a responsible person (either an adviser or a manager), the
status of the loan (ongoing, grant, etc.), the amount to loan, the monthlyFee to pay
for the loan with a given loan setup, the interestRate, the duration for paying back
the loan, the purpose for loaning the money and the account to put the money into.

A CPN’s actions are represented by transitions, which are drawn as rectangles.
Arcs connect transitions and places. An arc can only connect a transition with a
place or vice versa; it is not possible to e.g. connect two places to each other.

A CPN can be executed, i.e., there is a semantics specifying when a transition is
enabled and what happens when the transition occur. A transition is enabled if cer-
tain tokens required for the action are present on the transition’s input places. The
input arcs to the transitiondescribewhich tokens are needed for the transition to be
enabled. For example, for transition Lookup customer information and credit
information to occur, a token of type LOANmust be present on the place Customer
observed.

When a transition occurs, all tokens that are needed for its enabling are con-
sumed and tokens are produced on all output places as described by the outgoing
arcs. For example, when transition Lookup customer information and credit
information occurs, a token of type LOAN is consumed from Customer observed
anddepending onwhether the status of theLOAN token is set torefusalorongoing,
the token will be moved to either Early refusal or Ready for advising.

A CPN may consist of multiple modules, organized in a hierarchy. The RCPN
consists of 7 modules and the module shown in Figure 3 is the top level model.
As placeholders for modules on lower levels, so-called substitution transitions are
used. A substitution transition is represented as a rectangle with a small box with
the module name near it. For example, Advising / Simulation is a substitution
transition.Thismeans that thedetails of howadvising andwhat is called simulation
is done are modeled on another module of the model. Note that in the jargon used

Let’s Go All the Way 27

Ready for
advising

LOAN

Ready for further
processing

LOAN

Refusal

LOAN

Recommendation
given

LOAN

Loan
established

LOAN

Grant or
prior approval

given
LOAN

Customer
observed

LOAN

Early
refusal

LOAN

Observe
customer
enquiry

Advising
/

Simulation
Advising / Simulation

Make / review / change
 decision

[s<>ongoing andalso
s<>established]

Production [grantgivet loan]

Production

Lookup
customer information and

credit information

Recommendation

Recommendation

Prior approval

Prior approval

Refuse

#status loan = refusal

loan

loan

loan
[s = refusal]%
(setStatus loan s)

[s = recommendation]%
(setStatus loan s)

loan

[(s = priorApproval)
orelse (s = grant)]%
(setStatus loan s)

loanForTravelling

loan

[s <> refusal]%loan

[s = refusal]%loan

loan

loan

loan

loan

loan

loan

loan

Fig. 3. Extract of the RCPN

in the banks, simulation means that an adviser does some calculations and suggests
various values for monthly payment, interest rate, and loan period to a customer.

The RCPN describes the control flow of actions which can happen from the
point when a customer makes a blanc loan application until the request is either

28 W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen

colset LOAN = record caseid: INT
* customer: STRING
* responsible: STRING
* status: STATUS
* amount: AMOUNT
* monthlyFee: MONTHLYFEE
* interestRate: INTEREST
* duration: DURATION
* purpose: STRING
* account: INT;

Fig. 4. LOAN type

refused or established and in what sequence actions can occur. In the following, we
describe how a single loan application is handled.

When transition Observer customer enquiry occurs, a LOAN token is put on
Customer observed. Two things can happen at this point: (1) The adviser refuses
the loan right away, e.g. if he knows that the customer has a bad credit history;
(2) the adviser agrees to handle the loan application. In (1), the blanc loan appli-
cation is terminated and a LOAN token is put on the place Early refusal. In (2),
a LOAN token is put on Ready for advising. When the loan is in the state Ready
for advising, it can go into the module Advising/ Simulation.This is a module
which models the creation of a task in a advisers task list and the first blanc loan
application setup; i.e. how much money to loan, at which interest rate and so on.
After this is done the LOAN token is put on Ready for further processing.

A choice is made at transition Make / review / change decision. This models
the choice which the adviser must take at this point. The choices are grant, recom-
mendation, prior approval or refusal, which are explained below.

– Grant is given if the blanc loan application is reasonable this choice is made.
The LOAN token will be moved to Grant or prior approval given and then
into the Production module. Here the blanc loan is finalized. This involves
printing some necessary documents. Finally, the token is placed on the place
Loan established.

– Recommendation means that the adviser’s manager must make the decision.
E.g., advisers are onlypermitted to grant loansup toa certainamountofmoney.
This is modeled by the LOAN token being moved to Recommendation given.
After this point it can enter the Recommendationmodule in which the behav-
ior of the manager changing the status of the loan to either grant or refusal
is modeled. After the module has executed, the token is moved to Ready for
advising. The behavior described earlier from this point can occur again.

– Prior approval is the case where the adviser accepts the blanc loan application
but needs more information from the customer before continuing to process the
blanc loan. Here the token is moved to Grant or prior approval given. From
here it can enter the module Priorapprovalwhich models the situation where
the processing of the loan is postponed. After this has been executed, the LOAN

Let’s Go All the Way 29

token is moved to Ready for advising. If a blanc loan has been given a prior
approval it will always be granted at some point.

– Refusal applies if the adviser and customer cannot agree on a loan setup the
application is refused. This is modeled by moving the LOAN token to Refusal.
Then no other activities are possible for that particular loan application; this
models that the case is ended.

All runs of a blanc loan application either end up in the state Early refusal,
Refusal, or Loan established. The first two are for cases where applications are
refused and the third is for cases where applications are approved.

4 From Requirements Model to Workflow Model

In this section, we address translation T1 of Figure 1, which takes the RCPN de-
scribed in the previous section and transforms it into a workflowmodel represented
in terms of a CWN. We first motivate the need for a workflow model, then we in-
troduce the class of CWNs, and finally, we present the CWN model for our case
study.

4.1 Requirements Models Versus Workflow Models

In an RCPN, tokens, places and transitions may be used to represent arbitrary
concepts relevant for requirements engineering. For example, tokens are used to
represent customers, meeting rooms, conflicts, office equipment, paper document,
etc. Some of these concepts have no counterpart in the final system. Given that
a workflow management system is to be used, the vocabulary must be limited to
the concepts supported by that system. For example, a workflow management sys-
tem may know about cases, case attributes, tasks, roles, etc. but may not sup-
port concepts like meeting rooms and conflicts. Therefore, we propose a system-
independent language in-between the requirements level and the implementation
level. To do this, we first define some standard terminology and discuss differences
between the requirements-level and workflow-level models.

Workflowprocesses, like theprocessing ofblanc loans, are case-driven, i.e., tasks
are executed for specific cases. A case may represent a blanc loan, but also the re-
quest to open a bank account, a customer complaint, or an insurance claim. These
case-driven processes, also called workflows, are marked by at least the following
three dimensions: (1) the control-flow dimension, (2) the resource dimension, and
(3) the case dimension [1]. The control-flow dimension is concerned with the par-
tial ordering of tasks. The tasks which need to be executed are identified and the
routing of cases along these tasks is determined. Conditional, sequential, parallel
and iterative routing are typical structures specified in the control-flow dimension.
Tasks are executed by resources. Resources are human (e.g., an adviser) and/or
non-human (e.g., a printer). In the resource dimension these resources are classi-
fied by identifying roles (resource classes based on functional characteristics) and
organizational units (groups, teams or departments). Each resourcemay havemul-
tiple roles and belong to multiple organizational units. For the execution of a task,

30 W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen

a collection of resources may be required. (Although most workflow management
systems assume only one resource to be involved in the execution of a task.) The
requiredproperties of the resources involvedmaybedefined in termsof roles andor-
ganizational units, e.g., task “Recommend” needs to be executed by a “manager”
of the “loans department”. Both the control-flow dimension and the resource di-
mension are generic, i.e., they are not tailored towards a specific case. The third
dimension of a workflow is concerned with individual cases which are executed ac-
cording to the process definition (first dimension) by the proper resources (second
dimension). Cases may have attributes, e.g., some account number or the interest
rate. The attribute names and their types are generic while the concrete attribute
values are specific for a concrete case.

In summary, workflow models should have the following three properties:

W1 The workflow model should use a restricted vocabulary common for workflow
management systems as indicated above. Only concepts such as case, task, re-
source, role, organizational unit, and attribute may be used to construct work-
flow models.

W2 The workflow model includes only actions (i.e., tasks) which are to be sup-
ported by the workflow management system (i.e., it includes no tasks, e.g. man-
ual actions, the system will not be aware of).

W3 Theworkflowmodel refines selectedparts of the requirementsmodel to enable
system support. Note that granularity of tasks may not be dealt with in detail
at the requirements-level. However, at the workflow-level, the splitting and/or
merging tasks is important as it directly influences the implementation of the
system.

This paper proposesCWNsas aworkflowmodeling language sitting in-between
the RCPN and BPEL, as shown in Figure 1.

4.2 Colored Workflow Nets

A Colored Workflow Net (CWN) is a CPN as defined in [16, 20]. However, it is re-
stricted as indicated in Section 4.1. Note that a CWN covers the control-flow per-
spective, the resource perspective, and the data/case perspective, and abstracts
from implementation details and language/application specific issues. A CWN
should be a CPN with only places of type Case, Resource or CxR. These types are
as defined in Figure 5.

A token in a place of type Case refers to a case and some or all of its attributes.
Tokens in a place of type Resource represent resources. Places of type CxR hold
tokens that refer to both a case and a resource. Such places are used if resources
need to execute a sequence of tasks for the same case, e.g., chained execution.

A CWN where all places of type Resource are removed should correspond to
a Sound Workflow Net (sound WF-net) as defined in [1]. Although WF-nets have
been defined for classical Petri nets it is easy to generalize the definition to CPN as
discussed in [1, 2]. The basic requirement is that there is one source place and one
sink place and all other nodes (places and transitions) are on a path from source

Let’s Go All the Way 31

colset CaseID =union C:INT;
colset AttName = string;
colset AttValue = string;
colset Attribute = product AttName * AttValue;
colset Attributes = list Attribute;
colset Case = product CaseID * Attributes timed;
colset ResourceID = union R:INT;
colset Role = string;
colset Roles = list Role;
colset OrgUnit = string;
colset OrgUnits = list OrgUnit;
colset Resource = product ResourceID * Roles * OrgUnits timed;
colset CxR = product Case * Resource timed;

Fig. 5. Places in a CWN need to be of type Case, Resource or CxR

to sink. Moreover, given a token on the input place, eventually one token should
appear on the output place and the rest of the places should be empty.

There should be conservation of cases and resources. This can be formulated in
terms of colored place invariants [16]. For every resource place r there should be a
(colored) place invariant associatingweight 1 to r and selected places of type CxR (if
any) and weight 0 to all other places. Moreover, there is a (colored) place invariant
associating weight 1 to the source and sink place and positive weights to all other
places of type Case or CxR (and weight 0 to all places of type Resource).

Transitions correspond to tasks supportedby theworkflowsystem.They should
not violate the soundness and conservationpropertiesmentioned above.Therefore,
we propose the following guidelines.

– The following variables should be defined: c, c1, c2, c3, etc. of type Case and r,
r1, r2, r3, etc. of type Resource. Using a fixed set of variables facilitates both
the interpretation and automated translation of CWNs. For similar reasonswe
structure the arc inscriptions and guards (see below).

– Arcs from a place to a transition (i.e., input arcs) should only use the following
inscriptions:
• c, c1, c2, c3, etc. for arcs from places of type Case.
• r, r1, r2, r3, etc. for arcs from places of type Resource.
• (c,r), (c,r1), (c1,r1), (c2,r1), etc. for arcs from places of type CxR.

– Arcs from a transition to a place (i.e., output arcs) should satisfy the same re-
quirements unless they are conditional and of the form [C]%c or [C]%(c,r)
(where C is some condition depending on the case attributes).

– Guards should be logical expressions created only using functions such as
match, has role, has orgunit, etc. Function match can be used to make sure
that all arc inscriptions involved in one transition bind to the same case id.
Function has role can be used to make sure that the resource selected has a
given role. Function has orgunit can be used to make sure that the resource

32 W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen

selected is a member of a specific organizational unit. The definitions of these
functions are straightforward but beyond the scope of this paper.

– Each transition should have a code region.This is executed when the transition
occurs. In the context ofCWNs, code regions are used to link the case attributes
of the input tokens to the output tokens. Since arc expressions cannot manipu-
late the case content, i.e., only route cases, this is the only way of changing the
attributes of a case.

As indicated above, guards should only be used tomake sure that only tokens corre-
sponding to the same case aremerged and that the tasks are executed by the proper
resources. A typical guard is: match(c1,c2) andalso has_role(r1,"manager")
andalsohas_orgunit(r1,"loans").We do not put any requirements on the code
regions other than that the conservation of cases and resources should be guaran-
teed. Note that tasks are executed by humans using applications. In a CWN model
one can try to model these but it will always be an approximation. Typically it is
impossible to make a complete/accurate model of some bank application or bank
advisor. Therefore, we can only try to approximate them and mapping the CPN
code regions to some implementation language (e.g., BPEL) will have to be partly
manual either at implementation/configuration-time or at run-time.

In this paper, we will not give a formal definition of CWNs. Rather, we focus on
the CWN for the AP system.

4.3 Workflow Model for AP

Figure 6 shows the CWN, which is derived from the RCPN of Figure 3. The CWN
reflects the parts in the RCPN that should be orchestrated by the workflow sys-
tem. As stated in W2, it should not contain actions which are not supported by the
system. We therefore leave out transitions Observer customer enquiry, Lookup
customer information and credit information and Refuse, and the places
Customer observed, Early refusal, and Ready for advising. The rest of the
RCPN has been mapped into the CWN form as shown in Figure 6.

It can be observed that the CPN shown in Figure 6 is a CWN as defined in
Section 4.2. It is easy to see that all places are of type Resource, Case or CxR. If the
resource places are removed from the model, a WF-net emerges, i.e. all nodes are
on a path from start to end node. In this context it is also evident that the net has a
start and endnode and is indeed sound, i.e., all cases begin fromthe placeStartand
end up in one of the places in the Endstate fusion set. Also the guidelines regarding
the arc inscriptions and guards of transitions representing tasks are satisfied. Note
the code regions in Figure 6 linking input to output via an action part.

Apart from satisfying properties (W1)-(W3) mentioned in Section 4.1, as a nat-
ural result of being created later than the requirements model, the workflow model
improves a number of things — the workflowmodel corrects some errors and short-
comings in the RCPN and improves the modelling of a number of aspects. As an
example, the RCPN contained traces which are not possible in the real world. For
example, a loan could be given a prior approval and then rejected. In the real world
a loan can only be granted if a prior approval had been given. Therefore we have
restricted the behavior in the workflow model to avoid such execution paths.

Let’s Go All the Way 33

Fig. 6. The result of translation T2 : the CWN for AP

In the following we give a structured translation of the requirements model to
the workflow model beginning from the first activity in a blanc loan application
process.

Generally, resource places are put in themodel to reflectwhichhuman resources
are available/needed at certain steps in the process. Note that place fusion [16] is
used in Figure 6, i.e., the three resource places are actually the same place.

The first activity that occurs in the process is that an adviser proposes a loan
setup in the module Advising / Simulation, this is mapped to transition
Simulatewhich is the first possible activitywhich can occur in theworkflowmodel.
(Recall that the term “simulation” is part of the jargon used in banks and refers to
a specific activity.) For this to happen an adviser must perform the work which
is reflected by the arc from Res 1 and the guard [has role(r,"adviser")] on
Simulate. The adviser resource is not put back before a decision about the loan is
made in the transition Make decision. It is modeled in this way to reflect that it is
the same adviser that proposed the loan which makes the decision.

The decision can have four possible outcomes as in the RCPN: (1) grant, (2)
recommendation, (3) prior approval or (4) refusal. In contrast to the RCPN it is
not possible to make this decision twice, i.e., the flow of the loan case will not loop
back to the decision node Make/review/changedecision.Below we describe how
each of the four following scenarios are translated:

34 W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen

– In the RCPN, the case went into the module Production if a grant was given.
This is reflected by the transitions Finalize loan and Print and establish.
These are bothdone by the same adviser.This is reflectedby the arcs connected
to resource place Res 3 and the guard of Simulate.

– If recommendation is given, the activityRecommend canoccur.This is the trans-
lation of the module Recommendation in the requirement CPN. It is modeled
by two outgoing arcs from the transition Recommend and a required manager
resource from the resource place Res 2. In case of a refusal the case ends which
is reflected by the case being moved to the end state of the workflow model.

– If a prior approval is given, the case moves to a waiting position on the place
Waiting for information until the information arrives. When this happens,
Informationreceivedoccurs and the status of the loan is set to grant and the
case follows the path for a loan with a grant from this point.

– Whena refusal is issued, theblanc loan ismoved to the end statewitha rejection
as status to reflect the termination of the case.

5 From Workflow Model to Implementation

Now we focus on translation T2 of Figure 1. We do not present our technique to
map a CWN onto BPEL in detail. For more details we refer to a technical report
defining the mapping from WF-nets to BPEL [4].

The key issue is that CWNs can be used to semi-automatically generate BPEL
code. It is possible to fully automatically generate template code. However, to come
to a full implementation, programmers must manually complete the work, e.g., by
providing the “glue” to existing applications and data structures.

BPEL offers many routing constructs. The atomic activity types are: invoke
to invoke an operation of a web service described in WSDL, receive to wait for
a message from an external source, reply to reply to an external source, wait to
remain idle for some time, assign to copy data from one data container to another,
throw to indicate errors in the execution, terminate to terminate the entire ser-
vice instance, and empty to do nothing. To compose these atomic activity types,
the following structured activities are provided:sequence for defining an execution
order, switch for conditional routing, while for looping, pick for race conditions
based on timing or external triggers, flow for parallel routing, and scope for group-
ing activities to be treated by the same fault-handler. Typically there are multiple
ways of realizing the same behavior, e.g., the flow construct can be used to build
sequences and switches but also the sequenceand switch constructs may be used.

We have developed an iterative approach to “discover” patterns in CWNs that
correspond to constructs in BPEL and generate template code based on this. The
approach works as follows. First, the CWN is mapped onto an annotated WF-net.
(Figure 7 shows an example of such mapping.) This involves removing the resource
places and resource-related inscriptions, removing the color-related information,
and replace transitions that represent choices by a small network. The resulting
“uncolored” WF-net is annotated with information that can be used for the BPEL
translation, e.g., conditions for choices. In the annotated WF-net we try to select a

Let’s Go All the Way 35

Simulate

Make
decision

Choice 1 To
Recommendation

given

Choice 1 To
Waiting for
information

Choice 1
To Grant

Given

Choice 1
To Reject

Recommend
Information

received

Choice 2 To
Reject 2

Finalize
loan

Start
state

Ready for
further

processing

Choice 1

Recommendation
given

Waiting for
information

Grant
given

End
state

Choice 2
Loan

finalized

Print and
establish

Choice 2
To Grant

given

<receive name=”Simulate”/>

<sequence name=”Sequence 1”>
 <receive name=”Simulate”/>
 <invoke name=”Make decision”/>
</sequence>

<invoke name=”Make decision”/>

Sequence 1

Fig. 7. The “uncolored” WF-net with some snippets of generated BPEL code

maximal sequence component, i.e., a sound workflowsubnet that is both a state ma-
chine andamarkedgraph [1, 26].This part of thenet is reduced to a single transition
representing the sequence (cf. Figure 7). If there is no maximal sequence compo-
nent, the algorithm looks for some other structured component (e.g., a “switch”,
“pick”, “while”, or “flow”) that is maximal in some sense. Again this component is
reduced to a single transition. (The approach also allows for ad-hoc and reusable
components with a corresponding BPEL mapping.) By applying these rules itera-
tively the Petri net is parsed completely and the parse tree is used to generate the
BPEL code as illustrated by Figure 7.

We have applied the algorithm to map the CWN shown in Figure 6 onto BPEL
codeand tested this using IBMWebSphereStudio.TheBPELcodeand screenshots
of WebSphere Studio can be downloaded from http://www.daimi.au.dk/~krell
/CoopIS05/.

36 W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen

6 Related Work

Since the early nineties, workflow technology has matured [14] and several text-
books have been published, e.g., [2, 10]. Petri nets have been used for the modeling
of workflows [2, 7, 10] but also the orchestration of web services [22]. The Workflow
Management Coalition (WfMC) has tried to standardize workflow languages since
1994 but failed to do so. XPDL, the language proposed by the WfMC, has seman-
tic problems [1] and is rarely used. In a way BPEL [5] succeeded in doing what the
WfMC was aiming at. However, BPEL is really at the implementation level rather
than the workflowmodeling level or the requirements level (thus providing the mo-
tivation for this paper).

Several attempts have been made to capture the behavior of BPEL [5] in some
formalway. Some advocate the use of finite state machines [13], others process alge-
bras [12], and yet others abstract state machines [11] or Petri nets [23, 21, 24, 25].
(See [23] for a more detailed literature review.) For a detailed analysis of BPEL
based on the workflow patterns [3] we refer to [28].

Most papers on BPEL focus on the technical aspects. This paper focuses on the
life-cycle of getting from informal requirements to a concrete BPEL implementa-
tion based on a concrete case study. Therefore, the work is perhaps most related to
the work of Juliane Dehnert who investigated the step from informal business mod-
els expressed in terms of Event-driven Process Chains (EPCs) to workflow models
expressed in terms of WF-nets [8, 9]. However, her work is mainly at theoretical
level and does not include concrete case studies or mappings onto some implemen-
tation language.

Thework reported in this paper is also related to the various tools andmappings
used to generate BPEL code being developed in industry. Tools such as the IBM
WebSphere Choreographer and the Oracle BPEL Process Manager offer a graphi-
cal notation for BPEL. However, this notation directly reflects the code and there is
no intelligent mapping as shown in this paper. This implies that users have to think
in terms of BPEL constructs (e.g., blocks, syntactical restrictions on links, etc.).
More related is thework of StevenWhite that discusses themapping ofBPMNonto
BPEL [27] and the work by Jana Koehler and Rainer Hauser on removing loops in
the context of BPEL [19]. Our work differs from these publications in the following
way: we address the whole life-cycle (i.e., not a specific step or a specific problem
as in [19]), we provide algorithms to support the mapping (unlike, e.g., [27]), and
we use CPNs as a basis (i.e., start from a language with formal semantics).

The translation from WF-nets to BPEL (translation T2) is described in more
detail in a technical report [4].

7 Conclusions

In this paper, we have used a real-life example (the new AP system of Bankdata) to
go from a requirements model to a proof-of-concept BPEL implementation using
the CPN language and CPN Tools. Figure 1 summarizes our approach and shows
the different models and translations proposed. The focus of this paper has been on

Let’s Go All the Way 37

translationsT1 and T2. Essential for this approach is the use of the CPN language,
first in unrestricted form (the RCPN) and then in restricted form (the CWN). The
restrictions facilitate the automatic generation of (template) code.

In this paper,we introduced theCWNmodel and the translation toBPELcode.
We believe that our approach can be generalized to other systems within and out-
side Bankdata. We also believe that our approach can be modified for other target
implementation languages (e.g., languages used by systems of TIBCO/Staffware,
FLOWer, COSA, and FileNet). Further case studies are needed to prove this point.
We also aim at concrete tool support for the translation of CWN to BPEL. At this
point in time, we provide only a manual procedure to accomplish this. We plan to
develop a dedicated tool for this.

Another direction for future research is to develop techniques, tools, and ani-
mations specific for CWN. The CWN model can be seen as the high-level variant of
the classical workflow nets, adding the data and resource perspectives. For work-
flow nets there are strong theoretical results, dedicated editors, and analysis tools
[1, 26]. The goal is to offer similar support for CWNs. For example, it is interesting
to explore different notions of soundness including the data and resource perspec-
tives [1, 8, 15].

Acknowledgements. We thank Bankdata for allowing us to participate in the
AP project. We thank the users and analysts we have worked with, in particular
Gert Schmidt Sofussen, who has contributed significantly to the RCPN.

References

1. W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on
Models, Systems and Standards for Workflow Management. In Lectures on Concur-
rency and Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 1–65.
Springer-Verlag, Berlin, 2004.

2. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

3. W.M.P. vanderAalst,A.H.M. terHofstede,B.Kiepuszewski, andA.P.Barros. Work-
flow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

4. W.M.P. van der Aalst and K.B. Lassen. Translating Workflow Nets to BPEL4WS.
BETA Working Paper Series, Eindhoven University of Technology, Eindhoven, 2005.

5. T. Andrews, F. Curbera, et al. Business Process Execution Language for Web Ser-
vices, Version 1.1. Standards proposal by BEA Systems, International Business Ma-
chines Corporation, and Microsoft Corporation, 2003.

6. C.Bossen and J.B. Jørgensen. Context-descriptivePrototypes andTheirApplication
to Medicine Administration. In Proc. of Designing Interactive Systems DIS 2004,
pages 297–306, Cambridge, Massachusetts, 2004. ACM.

7. P. Chrzastowski-Wachtel. A Top-down Petri Net Based Approach for Dynamic
Workflow Modeling. In International Conference on Business Process Management
(BPM 2003), volume 2678 of Lecture Notes in Computer Science, pages 336–353.
Springer-Verlag, Berlin, 2003.

8. J. Dehnert. A Methodology for Workflow Modeling: From Business Process Modeling
Towards Sound Workflow Specification. PhD thesis, TU Berlin, Berlin, Germany,
2003.

38 W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen

9. J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business Mod-
els and Workflow Specifications. International Journal of Cooperative Information
Systems, 13(3):289–332, 2004.

10. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems. Wiley & Sons, 2005.

11. D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative control
flow. In Proc. 12th International Workshop on Abstract State Machines, pages 131–
151, Paris, France, March 2005.

12. A. Ferrara. Web services: A process algebra approach. In Proceedings of the 2nd
international conference on Service oriented computing, pages 242–251, New York,
NY, USA, 2004. ACM Press.

13. J.A. Fisteus, L.S. Fernández, and C.D. Kloos. Formal verification of BPEL4WS
business collaborations. In Proceedings of the 5th International Conference on Elec-
tronic Commerce and Web Technologies (EC-Web ’04), volume 3182 of Lecture Notes
in Computer Science, pages 79–94, Zaragoza, Spain, August 2004. Springer-Verlag,
Berlin.

14. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3:119–153, 1995.

15. K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Workflow
Nets in the Stepwise Refinement Approach. In Application and Theory of Petri Nets
2003, volume 2679 of Lecture Notes in Computer Science, pages 335–354. Springer-
Verlag, Berlin, 2003.

16. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 1. EATCS monographs on Theoretical Computer Science. Springer-Verlag,
Berlin, 1997.

17. J.B. Jørgensen and C. Bossen. Executable Use Cases: Requirements for a Pervasive
Health Care System. IEEE Software, 21(2):34–41, 2004.

18. J.B. Jørgensen and K.B. Lassen. Aligning Work Processes and the Adviser Portal
Bank System. In International Workshop on Requirements Engineering for Business
Need and IT Alignment, 2005.

19. J. Koehler and R. Hauser. Untangling Unstructured Cyclic Flows A Solution Based
on Continuations. In CoopIS 2004, volume 3290 of Lecture Notes in Computer Sci-
ence, pages 121–138, 2004.

20. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Technology Trans-
fer, 2(2):98–132, 1998.

21. A. Martens. Analyzing Web Service Based Business Processes. In Proceedings of
the 8th International Conference on Fundamental Approaches to Software Engineer-
ing (FASE 2005), volume 3442 of Lecture Notes in Computer Science, pages 19–33.
Springer-Verlag, Berlin, 2005.

22. M. Mecella, F. Parisi-Presicce, and B. Pernici. Modeling E-service Orchestration
through Petri Nets. In Proceedings of the Third International Workshop on Tech-
nologies for E-Services, volume 2644 of Lecture Notes in Computer Science, pages
38–47. Springer-Verlag, Berlin, 2002.

23. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede, and
H.M.W. Verbeek. Formal Semantics and Analysis of Control Flow in WS-BPEL.
BPM Center Report BPM-05-13, BPMcenter.org, 2005.

24. C. Stahl. Transformation von BPEL4WS in Petrinetze (In German). Master’s thesis,
Humboldt University, Berlin, Germany, 2004.

Let’s Go All the Way 39

25. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes using Petri
Nets. In Proceedings of the Second International Workshop on Applications of Petri
Nets to Coordination, Workflow and Business Process Management, pages 59–78.
Florida International University, Miami, Florida, USA, 2005.

26. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow Pro-
cesses using Woflan. The Computer Journal, 44(4):246–279, 2001.

27. S. White. Using BPMN to Model a BPEL Process. BPTrends, 3(3):1–18, 2005.
28. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of

Web Services Composition Languages: The Case of BPEL4WS. In 22nd Interna-
tional Conference on Conceptual Modeling (ER 2003), volume 2813 of Lecture Notes
in Computer Science, pages 200–215. Springer-Verlag, Berlin, 2003.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 40 – 58, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Service-Oriented Workflow Language for Robust
Interacting Applications

Surya Nepal1,*, Alan Fekete2, Paul Greenfield1, Julian Jang1,
Dean Kuo3,**, and Tony Shi1

1 ICT Centre, PO Box 76, Epping NSW 1710, Australia
{Surya.Nepal, Paul.Greenfield, Julian.Jang, Tony.Shi}@csiro.au

2 School of Information Technologies, University of Sydney, NSW 2006, Australia
fekete@it.usyd.edu.au

3 School of Computer Science, The University of Manchester, Manchester M13 9PL, UK
 dkuo@cs.man.ac.uk

Abstract. In a service-oriented world, a long-running business process can be
implemented as a set of stateful services that represent the individual but coor-
dinated steps that make up the overall business activity. These service-based
business processes can then be combined to form loosely-coupled distributed
applications where the participants interact by calling on each other’s services.
A key concern is to ensure that these interacting service-based processes work
correctly in all cases, including maintaining consistency of both their stored
data and the status of the joint activities. We propose a new model and notation
for expressing such business processes which helps the designer avoid many
common sources of errors, including inconsistency. Unlike most existing or-
chestration or workflowa languages used for expressing business processes, we
do not separate the normal case from exceptional activity, nor do we treat ex-
ceptional activity as a form of failure that requires compensation. Our model
has been demonstrated by developing prototype systems.

1 Introduction

The Web Services vision of next generation large-scale cross-organizational distrib-
uted applications will further drive both inter- and intra-business integration. Services
are loosely coupled and the detailed implementation of a service is opaque to other
interacting services, so the implementation of service can be changed without affect-
ing other interacting services. One common way to implement large stateful server
applications is to use a workflow language to combine and orchestrate a number of
individual services such as checking the customer’s status, checking stock levels,
asking for and receiving payments, checking that the invoice is fully paid, or sending
notification of a delivery date in an ecommerce application.

The major vendors are proposing Web Services standards for defining business
processes, including BPEL4WS [1] and WSCI [2]. These proposals use existing ideas

* This work is completed as part of CeNTIE project that is supported by the Australian Gov

ernment through the Advanced Networks Program of the Department of Communications,
Information Technology and the Arts.

** This work was completed while the author was working at CSIRO.

 A Service-Oriented Workflow Language for Robust Interacting Applications 41

from the database community, including workflow descriptions based on graph-like
arrangements of the steps, and advanced transaction models with compensators and
failure-handlers for nested scopes. We have previously discussed the shortcomings of
this approach for programming consistency-preserving services in [14].

This paper offers an alternate way to express the workflow within such a business
process. Our approach, which we call GAT (standing for guard-activity-triggers),
extends previous work on event-based programming models and adds several features
that help the software designer avoid common classes of errors.

In our GAT model, a workflow involves the coordinated execution of a number of
individual stateful actions. Each of these actions is just a conventional code segment,
perhaps a legacy transaction, that may access and modify persistent data. Unlike the
proposed graph-based standards, in the GAT model the flow of control between ac-
tions is not defined explicitly. Our approach instead is based on the event-driven
model. Actions are invoked when a corresponding event is raised, and only if appro-
priate guard condition holds. This programming style is often called ECA, and is
common in active databases and agent-based systems [28], and has been proposed for
workflows [6, 7, 25].

Our GAT proposal goes beyond previous ECA workflow languages and has a
number of key features which together assist a software developer in avoiding a num-
ber of common mistakes.

• Uniform processing: there is no separation of the “normal” case from “excep-
tional” processing. All events are equal and just result in the execution of their
corresponding actions.

• Resumption: business processes can execute actions handling “normal” cases
after executing actions handling ‘exceptional’ cases.

• Access to state: there is no hidden or implicit state. The equivalent of the im-
plicit ‘current position’ state in a graph-based workflow is replaced with normal
state that can be examined and updated from within actions.

• Uniform outcome: for the business process as a whole, there is no inbuilt notion
of return to an initial state or compensation. Individual actions may act as atomic
transactions and abort and rollback, but the whole GAT process merely contin-
ues executing actions as they become enabled until the process completes. Of
course, the software designer may choose to define actions that act as compensa-
tors for others.

• Coverage: alternate actions for the same event are grouped together and condi-
tions specify which of these actions should be executed. Simple “closure” tests
on conditions can guarantee that at least one action will be executed whenever
any event is raised.

• Protected action: each action has a guard that is sufficient to ensure the code of
the action runs without errors. This prevents common mistakes arising from lack
of isolation where the code within an action assumes some property (such as ex-
istence of the customer) that was checked earlier in the process, but may have
since been modified by concurrent processes.

• Response to non-occurrence: the trigger mechanism used to raise events that
drive business processes forward can also be used to detect the expiry of a time-
out, so actions can be taken when expected messages fail to arrive.

42 S. Nepal et al.

• Integration: The raising of new events is separated from the action code that
modifies state, allowing legacy code to be used as actions. This adds to the ECA
model the same uncoupling of control flow and processing steps that is found in
graph-based models.

The significant contribution of the GAT model is in the way that it combines these
features to assist developers in the construction of more robust distributed applica-
tions.

One of the most important robustness properties of a business process is that the
application will always terminate in one of a specified set of consistent “acceptable”
states. Some of these acceptable states may correspond to “successful” outcomes,
such as goods received and paid for in full, while others represent “less desirable”
outcomes, such as purchase order cancelled and cancellation fee paid. These consis-
tent outcomes are all acceptable to all the participants in the distributed application,
and none of them are treated as “failures” or “successes”. This is supported by the
“uniform outcome” feature of the GAT model.

Another key robustness property of a business process is the complete specification
of an application. The application must be able to handle all arriving messages at any
stage of its execution. Some of the messages may arrive even after when they are no
longer expected by the application. For example, the merchant may receive the can-
cellation request from the customer when the goods are in transit or delivered. This is
supported by the “coverage” and “access to state” features of the GAT model. The
application must also be able to deal with non-arrival of an expected message such as
when the merchant has not received the payment even after the due date. This is sup-
ported by the “response to non-occurance” feature of the GAT model.

The safe and concurrent execution of services is another important requirement for
a robust distributed application. For example, the merchant must be able to run pay-
ment service concurrently with delivery service without violating business rules, de-
fined by integrity constrains on application data. The “protected action” feature of the
GAT model supports this requirement.

The rest of the paper is organized as follows: section 2 describes an e-procurement
application as well as discussing the problems that need to be solved. Details of the
GAT approach are given in section 3. We carried out an extensive case study for an e-
procurement system and this is discussed in section 4. We have used the GAT ap-
proach to develop an executing example system based on .NET technology and in
section 5 we show how a designer can build applications based on the GAT concepts.
Related work is presented in section 6.

2 A Motivating Situation

Fig. 1 shows an e-procurement example. It includes a customer, a merchant, (two)
shippers and (three) suppliers. The customer initiates the business process by sending
a quote request. When the merchant receives a quote request, it responds with a quote
or a rejection message. If the customer service decides to go ahead with the purchase,
it will send a purchase order message and the merchant service will then confirm the
order by sending a confirmation message. Messages for coordinating payment and
delivery such as invoice, payment, receipt, goods shipped and goods received are

 A Service-Oriented Workflow Language for Robust Interacting Applications 43

normally sent and received after the confirmation message. The merchant service also
exchanges messages with suppliers to order goods if they are not available in the
warehouse. Messages for coordinating supply of ordered goods and delivering them
to the warehouse by a shipper are then exchanged between the merchant service,
supplier services and shipper services.

Fig. 1. E-Procurement Scenario

The purchase process is completed when the customer pays for the invoice (i.e., re-
ceives the receipt) and receives the goods (i.e., sends an acknowledgement message
for the goods received); similarly, the merchant delivers the goods and receives the
full payment.

2.1 Problems

We described the behaviours of services in a purchase process when everything goes
according to plan above. Such behaviours can be specified easily with business proc-
ess modelling languages such as BPEL4WS and WSCI. These approaches have short-
comings in describing robust applications. For example, they use fault and compensa-
tion handlers to deal with exceptional cases. Describing all ways of processing excep-
tions using fault and compensation handlers is either clumsy or impractical due to the
interactions between each handling and the rest of the business process [14], and the
developer may easily introduce errors.

A business process must seek to avoid common errors, including inconsistency.
The consistency requirements are business process dependent. For example, the mer-
chant service is consistent at termination when it receives the full payment and deliv-
ers the goods; whereas the customer service is consistent when it receives the goods
and pays for the invoice. We next describe a few examples that are difficult to express
in standard approach and could be sources of inconsistency.

Threats to consistency can arise due to the lack of coverage if the merchant’s code
doesn’t fix all the issues when a customer’s cancellation is received after shipment
has been arranged, leading to an outcome where the customer is unwilling to receive
goods which are in transit! Moreover, if the customer’s cancellation request is re-
jected, rather than treating it as a fault and rolling back the entire sale process, the
merchant must resume the normal processing. The importance of offering resumption
in dealing with failures was identified by Goodenough [12].

44 S. Nepal et al.

An example of failure due to unprotected action is if the code for issuing an in-
voice fails catastrophically when a concurrent activity has changed the customer’s
status in the database after an earlier step checked that the status was appropriate.
Similarly, rather than using compensation to back out from the entire sale, the mer-
chant must seek an alternate payment method if the selected method could not be used
for some reasons.

Incomplete specification is one of the common mistakes programmers make while
describing business processes. Every possible message must be handled and there
must be some way to proceed if an expected message does not arrive. Asynchronous
communication between services may make the processing a message even more
difficult. The message may come at any time. For example, the merchant may receive
a payment while processing a previously received payment. The execution of a cor-
rect action depends not only on the arrival of a message, but also on access to states.
For example, if a payment is received, the correct action to be executed depends on
whether this completes the amount due, or leads to an overpayment, or leaves some
amount still owing. Moreover, if a process is expecting a payment and the payment
has not been received by a due date, the process must send a reminder as a response
to non-occurrence of a payment.

The distributed application must be able to handle these situations and make sure
that all participants in the distributed application always maintain the consistency.
The challenge to application programmers or developers is to write the individual
services participating in a distributed application in such a way that they maintain
consistency despite concurrency, exceptions and failures. We next describe the prop-
erties that a process must have to avoid the problems discussed in this section.

2.2 Robustness Properties

The fundamental robustness property is that a process must always terminate in an
acceptable state even if there are concurrent processes executing, and regardless of the
outcomes of any activities within process. In order to achieve this goal, the program-
ming model should have the following features.

• Safe concurrent execution: Arbitrary number of activities from different proc-
esses may access and update share data. Activities must be able to execute con-
currently without corrupting data; otherwise, the system may end up in an incon-
sistent state. This property guarantees an isolated execution of activities.

• Termination in acceptable distributed state: An activity may have more than one
outcome. The process must be able to deal with all these outcomes and move
towards the defined set of acceptable termination states. There could be more
than one acceptable state as they are dependent on business rules and defined by
application programmers. There is no such state as failure. Once the process has
begun, the process always terminates in an acceptable termination state and the
states are explicit.

• Distributed process always complete: There are no deadlocks, all participants
should be able to complete and there are no messages left unprocessed at termi-
nation.

 A Service-Oriented Workflow Language for Robust Interacting Applications 45

• Completeness of components: The process should be able to handle all messages
received under all possible circumstances; that is, activities must be defined for
all possible combinations of states and messages.

3 GAT Programming Model

This section discusses the GAT programming model and how it provides the features
that are needed to build robust distributed applications.

A process is defined by a set of activity groups where each activity group consists
of an event (a newly arriving message) and a set of related activities, as shown in Fig.
2. All arriving messages, whether they deal with normal or exceptional processing,
are treated uniformly.

Process
 Event 1
 Activity 1.1
 Activity 1.2

…
Event 2
 Activity 2.1
 Activity 2.2

…

 ….

 Event n

 Activity n.1

 Activity n.2

 ….

Activity Group 1

Activity Group 2

Activity Group n

Fig. 2. Activity Groups and Activities

Fig. 3 shows just one activity from an activity group. Each activity represents one

possible response to its event and consists of a guard, an action and a set of trigger
groups. Each trigger group consists of a set of triggers. Guards are Boolean expres-
sions that can refer to parameters that came with the event (message fields) and also
they can access the state (referring to variables in the workflow engine), and the
guard controls whether or not their corresponding action should execute as part of the
response to the event. The action part of an activity is conventional code written to
correctly handle the incoming event, this code is protected because it can assume the
properties checked in the guard. Trigger expressions are evaluated after the action has
completed to determine what other events need to be raised to further handling of the
initial event. The separation of triggers from action enables developers to integrate
legacy codes with GAT structure.

Fig.3 shows an activity composed of a guard, an action and two trigger groups, the
first containing two triggers and the second containing four triggers.

46 S. Nepal et al.

if (a and b) {
 perform some action
 when a and b are both true
}
if (x) { raise events X1}
if (not x) { raise events X2 }

if (a & b) { raise events … }
if ((not a) & b) { raise events … }
if ((a & (not b)) {raise events … }
if ((not a) & (not b)) {raise events …}

Trigger
groups

Action

Guard

Group

Group

Fig. 3. Structure of an activity

A trigger consists of a condition and a set of events (messages). Each trigger con-
dition expression is evaluated in turn and the corresponding events are sent if the
condition is true. These events can be sent immediately or can be deferred for a speci-
fied period of time. The deferred events is used to compose a response to non-
occurrence of an expected message.

The guard expressions in any one activity group are closed, meaning that the
guard of exactly one activity in an activity group has to be true. That is, in an activity
group, when an event is received, the Boolean expression of one of the activities must
be true and all the other Boolean expressions must be false. This property lets us
guarantee coverage, so that we will always take some action every time an event is
received. In order to meet closure requirements, this group must also include other
activities that will specify what should be done if the expression (a and b) does not
turn out to be true.

The trigger expressions in each trigger group are also closed. That is, in a single
trigger group, exactly one trigger expression must be true and only events in that trigger
expression will be raised as a result. Activities can have multiple independent trigger
groups, each corresponding to a different and parallel possible course of action.

Fig. 3 shows an activity with two trigger groups, both of which are closed. This
property lets us guarantee that we will always consider all possible outcomes of an
activity. The formal model is omitted here due to the limitation of space (see [24]).

In the GAT model, evaluation of guards and the execution of action as well as
evaluation of trigger conditions and raising events form an isolated unit (under locks
that prevent interleaving by other concurrent actions) in order to ensure the action is
properly protected. Note however that response to any events raised due to the trig-
gers will be in a different isolation block.

In other work [19], we have proposed a related model for the external interface
(choreography) of a service, where again there is no separation of success from failure
outcomes.

4 Case Study: Payment Process

The aim of this section is to illustrate how the GAT programming model has ad-
dressed the problems identified in section 2.1 above. The overall structure of the
process that implements the normal behaviour of the merchant service is shown in

 A Service-Oriented Workflow Language for Robust Interacting Applications 47

Fig. 4. The normal payment process consists of sending an invoice, receiving payment
and sending a receipt. While we concentrate on payment (sub)process in the rest of
this section, similar issues arise in other (sub)processes within the merchant process
such as quote, purchase and delivery.

SendInvoice

RecPayment
SendGoodsNotify

SendReceipt

ReserveGoods

ArrangeTransport

RecQuoteReq

CheckCustomer

CalculatePrice

SendQuote

RecPurchaseOrder

RecGoodsDeliveredAck

End

O
K

ShipGoods

Fig. 4. Merchant's Service

 There are a number of other possible execution paths in the payment process not
shown in the figure. For example,

• If the payment does not arrive by the due date, the merchant sends a re-
minder and extends the due date. If the merchant receives the payment within
the extended due date, the merchant sends the receipt and terminates the
payment process.

• If the merchant receives an order cancellation request from the customer be-
fore receiving a payment, the merchant may accept the cancellation request
and terminate the payment process.

• The merchant rejects the cancellation request and proceeds ahead if it re-
ceives the cancellation request when the goods are in transit.

There exist other possible execution paths due to race conditions such as if the
full payment was in transit when the merchant sends non-payment notification mes-
sage to the manager or if the late fee notification was in transit when the customer
sends the full payment. There exist another large number of possible execution paths
in other sub-processes. Representing all these possibilities in graph form as shown in
Fig. 4 is very clumsy, and soon becomes infeasible for practicing developers.

The payment process has four acceptable termination states: cancelled, paid in
full, non-payment and refund. It does not have any failure state as indicated in Section
2.3. The above description of payment process clearly indicates that even when an
activity within the process fails or an exception occurs, the process terminates in one
of the acceptable termination states.

48 S. Nepal et al.

We next describe merchant’s payment process in GAT programming model and il-
lustrate how it addresses the problems identified in Section 2.1. It also illustrates how
easier it is to construct business processes that cover a large number of complex cases
using just a couple of activity groups.

Send Invoice
The activity group “sendInvoice” prepares and sends an invoice to the customer. Its
event is raised when the ordered goods have been reserved successfully. The activity
group contains two activities, the first executes when the customer is valid (e.g., there
is no overdue payment for the customer) and the second activity executes when the
customer is invalid.

The action part of the first activity in the group prepares the invoice and the trig-
gers sends it. The guard protect the action, so that the customer remains valid during
its execution. It also sets a deferred event to receive the payment from the customer
within due date. That is, the event “overduePayment” is set, but not fired; it is fired if
the condition “not(PaidinFull)” is true even after the “duedate”.

The action part of the second activity in the group prepares a notification message
and the triggers sends it to the customer. If the customer pays the overdue payment
within due date, the process resumes as normal. Otherwise, the merchant raises an
event “invalidCust” and defines appropriate activity groups to deal with it (not de-
fined here). This also shows how GAT provides uniform processing methods for
both valid and invalid customers.

Group: sendInvoice
Event goodsReserved

Activity: invoicing
Guard The customer is valid

Action prepare invoice message invoice to be sent to the customer;
set PaidInFull to be False;
set balance to be the invoiced amount;
set duedate for the payment from the customer to 30 days;
construct the overduePayment message to be sent back to its
own process if the full payment is not received by the due date ;

Triggers (True) invoice

 (True) (not(paidinFull), duedate, overduePayment)
Activity: cancelling order

Guard The customer is invalid

Action construct a notification message invalid to be sent to the cus-
tomer;
set duedate for the response from the customer to 7 days;
construct the invalidCust message to be sent back to its own
process if the customer is still invalid by the due date ;

Triggers (True) invalid

 (True) (not(custValid), duedate, invalidCust)

 A Service-Oriented Workflow Language for Robust Interacting Applications 49

Process Overdue Payment
Distinctive processing (corresponding to an exception in other models) may occur due
to timeouts, in response to non-occurrence of messages. Timeouts are a critical part
of most business processes. Whenever a process is waiting for an incoming message,
there is usually some limit placed on how long it can wait and the path of execution
may change when a wait times out.

If a full payment is not received within due date, an exception caused by timeout
occurs. In this situation, a reminder is sent to the customer. If the payment is not re-
ceived fully in response to this reminder, then the reminder is re-sent. If the payment
is not received fully after three reminders have sent out, then an alarm notification is
raised to the manager. Mourani and Antunes [22] describe a way that allows user
involvement in workflow exception handling. This is also possible in our model by
raising appropriate events in triggers that report to human such as “alarmMsg” in our
example below.

Group: overduePayment
Event overduePayment

Activity: sendReminder
Guard Full payment has not been received from the customer and fewer

than 3 reminders sent
Action Extend the duedate by 7 days;

increment the sent reminder counter;
construct the reminderNotification message;
construct the overduePayment message to be sent back to its own
process if the full payment is not received by the due date ;

Triggers (true) reminderNotification
 (true) (not(paidinFull), duedate, overduePayment)

Activity: notPaidInFull
Guard Full payment has not been received after sending three reminders
Action construct an alarm message alarmMsg to be sent to manager

set non-payment to True;
Triggers (true) alarmMsg

Activity: receivedFullPayment
Guard Full payment has been already received // no need to do anything
Action // do nothing
Triggers // do nothing

Process Payment
The customer responds to an invoice by sending back payment. The customer may
choose two options for payment: full at once or instalments. The “recPayment” activ-
ity group is illustrated in GAT syntax in Section 5. The activity groups “sendRefund”
and “sendReceipt” are not shown here due to the limitation of space (see [24]).

Process Cancellation
Payment may be cancelled due to the cancellation of the order. Cancellation may be
requested at anytime during the payment process. However, cancellation need not
mean arriving in a state equivalent to having no order at all, since (depending on the
business logic in the ordering processing) there may be a cancellation fee.

50 S. Nepal et al.

The simplest cancellation scenario is where the cancellation request is received
anytime before the payment is received, the payment process can be terminated with-
out taking any further action if the cancellation does not attract any cancellation fee.
Note that some actions might be taken in the larger ordering process such as cancella-
tion of reserved goods and cancellation of booked shipper. However, our discussion
here shows only actions in the payment process. A slightly more complex class of
cancellation is the one where the cancellation request is received after the payment is
received, but before the goods in transit. The cancellation of the process then only
requires the refund of the received amount or the remaining amount after deducting
the cancellation fee. If the cancellation request is received when the goods are in tran-
sit, the merchant rejects the cancellation request and continues the normal processing,
that is, we must have resumption.

The activity group that deals with the cancellation request in the payment process
is defined below. The right behavior of the payment process due to cancellation de-
pends on access to state of the concurrently running processes in the merchant, such
as the “goods in transit” property in the delivery process. There are three activities in
the activity group to handle these three different scenarios.

Group: recCancelRequest
Event cancelRequest

Activity: paymentNotReceived
Guard Payment not received and goods not in transit
Action set cancelled to be True;

set cancelfee to be True if the cancellation occurs after 7 days of
order confirmation;
if cancelfee {
construct a message cancellationInvoice to be sent to the customer;
}
construct an event cancelConfirm to be sent to the customer;

Triggers (true) cancelConfirm
 (cancelfee) cancellationInvoice
 not(cancelfee) // do nothing

Activity: paymentReceived
Guard Payment received and goods not in transit
Action set cancelled to be True;

set overpaid to be True if the received amount is greater than cancel-
lation fee;
if (overpaid){
construct an event overPayment to be sent back to its own process;}
construct an event cancelConfirm to be sent to the customer;

Triggers (true) cancelConfirm
Triggers (overpaid) overPayment
 not(overpaid) // do nothing

Activity: goodsInTransit
Guard Goods in transit (payment received or not)
Action construct a cancelllaton rejection message rejectCancellation to be

sent to the customer;
Triggers (true) rejectCancellation

 A Service-Oriented Workflow Language for Robust Interacting Applications 51

We ensure coverage by the GAT model requirement that the guard conditions on
three activities are closed; that is, only one of the guards is going to be true when the
merchant receives the cancellation request. The first and second activities have two
trigger groups that are closed; that is, exactly one trigger condition from each group is
going to be true. The closure properties on guards and triggers thus forced developers to
define complete specification handling cancellation request within payment sub-process.

 The rejection of cancellation request is not well handled by the standard
fault/compensation approach. If a customer’s cancellation request is rejected, then
normal processing should continue. The most natural method to handle cancellation
request in the standard approach is to throw a fault, but there is no way to handle a
fault and then go back to normal processing, thus it is difficult, if not impossible, to
implement the required behaviour. However, this is easy to implement in GAT model
as shown above by the third activity in the activity group “recCancelRequest”.

5 Prototype Implementation

Fig. 5 depicts the overall design for the merchant service as a specific example to
illustrate different components of the prototype system implementation and the tech-
nologies, which are used to support each aspect. We next describe important compo-
nents.

Fig. 5. Design for the merchant service

User Interface: User interface is a front end presentation layer to capture data from
human operators (i.e., purchase order form, payment form etc.,) or to render a collec-
tion of data received from the processes. The service uses this layer to monitor the
business activities such as what messages have been received from (or sent to) other
services.

Process: Process is a core part of the implementation where business logic is defined.
The designer writes each process with a structure corresponding to a set of activity
groups and activities using GAT syntax. Below is an example merchant “recPayment”
activity group in GAT syntax.

 IN_EVENT: Payment // incoming event
 ACTIVITY GROUP: ProcessPayment
 ACTIVITY: ProcessFullPayment
 GUARD: FullPayment(payment) <AND> sent(Invoice)
 ACTION: UpdateInvoice(payment)
 TRIGGERS: {true} <INT>PaidInFull(payment)

User Interface

Processes

Windows Form

SQL erver

Remote
communication

module

Activity
 group

.NE
T Events

.NETrem
ote message

ev
t

e

52 S. Nepal et al.

 ACTIVITY: processUnderPayment
 GUARD: UnderPayment(payment) <AND> sent(Invoice)
 ACTION: UpdateInvoice(payment)
 TRIGGERS: none
 ACTIVITY: processOverPayment
 GUARD: OverPayment(payment) <AND> sent(Invoice)
 ACTION: UpdateInvoice(payment)
 TRIGGERS: {true} <INT>OverPayment(payment)
 ACTIVITY: processFaultPayment
 GUARD: <NOT> sent(Invoice)
 ACTION: ProcessFaultPayment(payment)
 TRIGGERS: {true} <OUT>CustomerRemoteService.FaultPayment(payment)

The prototype implementation has a translator that converts the GAT specification
to running code. We use C# as an underlying language for program codes; however,
the .NET framework would allow us to work with different programming languages.

Events: The engine generates new events and raises (publishes) them as necessary
with event data each event can carry. Activity groups subscribe to specific events so
that an activity group can be notified about an event when it is raised. For example,
in the merchant service, the activity group ‘ProcessPayment’ subscribes to the event
‘Payment’. When the customer sends in a payment, the engine raises an event ‘Pay-
ment’ that is to be signaled to the merchant’s activity group ‘ProcessPayment’. There
are four types of events: incoming, outgoing, internal and conditional.

We use three interrelated elements of .NET Event mechanism to define internal
events: a class that defines events and event data, then raises (publishes) events, and
these events are consumed by interested event subscribers. The code below shows
how to convert GAT event to .NET Events.

// defining an event and an event data
public static event PaymentEventHandler ePayment;
public class PaymentEventArgs : EventArgs {…. }
// raising an event
public virtual void OnEPayment(PaymentEventArgs paymentArgs) {….}
// consuming an event
this.ePayment += PaymentEventHandler(ReceivePayment)
Public void ReceivePayment(object sender, PaymentEventArgs pArgs) {…}

An additional step is required to implement outgoing and incoming events. A
proxy object needs to be created first to communicate with the remote service. Then
the remote methods can be called in the same way as methods exist in a local service.
The remote communication module listens for any incoming and outgoing messages.
The module converts the incoming .NET remoting messages to internal events and
sends them to the activity groups. Similarly, the module receives certain outgoing
events raised by the activities, and converts them to outgoing .NET remoting mes-
sages to other services.

A different approach is used to implement a conditional (or deferred) event, as it is
invoked immediately but consumed after specific period of time. We use an interme-
diate event handler that consumes a direct event invocation. At the same time it starts
a timer event that points to another method. Once the timer expires, the other method
will be invoked. The overall effect is the event is fired immediately, but actually con-
sumed later.

 A Service-Oriented Workflow Language for Robust Interacting Applications 53

Inter Process Communication: The incoming and outgoing messages are used for
inter process communication and they are asynchronous in nature. These messages
are handled by remote communication module. The module supports asynchronous
programming in .NET remoting scenario. Developers define objects with methods to
receive remote calls. Then they wrap the objects with the specific object (AsyncDele-
gate) to indicate that the methods are to be called asynchronously. Below example
shows sending asynchronous quote requests using remoting.

//defining a callback method
public void OurRemoteAsyncCallBack (IAsyncResult ar) {..}
//sending asynchronous quote requests
public void SendQuoteRequest(object sender, QuoteRequestEventArgs e){..
 AsyncCallback RemoteCallback =
new AsyncCallback this.OurRemoteAsyncCallBack);
 RemoteAsyncDelegate RemoteDel =
new RemoteAsyncDelegate (ms.ReceiveQuoteRequest);
IAsyncResult RemAr=
RemoteDel.BeginInvoke (e.quoteRequest,RemoteCallback,null …}

Data storage and access: Any mission critical data to run the business activities are
kept in a persistent storage. The data is accessed by the code representing activities,
and manipulated for further processing. For example, the merchant service saves the
payment information in a SQL database, and accesses this during guard evaluation.
The activity group uses ADO.NET classes to connect to these data sources, and re-
trieve and update data.

Activity group: In the running code, an activity group is coded as a functional
method within an outmost {}, and each activity is defined inside the if-else-then block
whose exclusive business case is defined at an “if clause”. The guard is a conditional
expression evaluated in an if statement. An action is a piece of code written in C# (or
any conventional languages such as C++ or Java) to carry on business logic in a cir-
cumstance evaluated by the guard expression. The following code is generated for the
merchant’s payment activity group described above in the GAT syntax.

// Activity Group ProcessPayment
public virtual void ProcessPayment(object sender, PaymentEvent e) {
// Activity : processFullPayment
 if ((mp.FullPayment(e.payment))) {
 // guard evaluation run action code generate trigger(s) }
// Activity : processUnderPayment
 if ((mp.UnderPayment(e.payment))) { ….}
// Activity : processOverPayment
 if ((mp.OverPayment(e.payment))) { …}
// Activity : processFaultPayment
 if ((mp.FaultPayment(e.payment))) { …}

We now show the sequence of steps involved in the execution of a merchant’s code
for receiving a payment.

• The customer submits a payment via payment form. The customer’s remote
communication module sends this as a “Payment” message to the merchant.

54 S. Nepal et al.

• The “Payment” message is received by the merchant’s remote communication
module. The module converts and raises the “Payment” message as an event ‘e’
with an event object ‘payment’.

• The event ‘e.payment’ is then received by the activity group which subscribes to
this event.

• When the event is received by the activity group, the guard expression is evalu-
ated. Also the action of the activity whose guard expression evaluates true is
executed. On completion of the action, trigger expression is handled and the
event whose trigger condition evaluates true is executed.

• On the completion of the execution, the engine produces the log file which
shows the list of incoming events and which activity group send/receive them
with the timestamp.

We draw the following lessons from the prototype implementation. We are able to
establish that it is possible to implement real service oriented distributed applications
with GAT model using widely-accepted technologies. We are also able to demon-
strate that it is possible to check correctness properties of the specification at compile
time. Those correctness properties include that all events are handled, guard condi-
tions are closed and trigger conditions are closed. The implementation also provides
us an insight about the isolation requirements of the GAT model. We found that the
level of isolation required depends on the types of state. This observation will lead to
further work on classification of types of states. Our implementation also provides the
following guidelines for the developers to build a robust distributed application. We
also develop tools to check the compliance of these guidelines at compile time.

• All guards and triggers must be closed.
• At least one activity group must be defined for each incoming event.
• An activity group defined for an incoming event must have a navigational state

in guard if the incoming event is expected a response to the outgoing event for
which a conditional event is defined. For example, the “payment” activity
group must have navigational state “sent(Invoice)” in guards.

6 Related Work

The database community has very well accepted ways to help application program-
mers ensure consistency and robustness in OLTP systems, through the notion of
ACID transactions, supported by locking and logging [13]. However, since the early
1980s, much effort was given to exploring advanced transaction models that might
offer similar assistance to developers of long-running activities, where holding locks
throughout the activity is infeasible for reasons of performance or system autonomy.
Many of these models can be used with business process or workflow systems, as
shown by Alonso et al. [4]. We concentrate here on the approaches that have been
important in the workflow community. By far the most influential advanced transac-
tion model for workflows has been Sagas [9]. In this model, a long-running activity is
constructed from a sequence of steps each of which is atomic, and so can be aborted if
a failure occurs while the step is running. If this happens, or if the whole sequence is
unable to complete for any reason, then the system will invoke user-supplied compen-

 A Service-Oriented Workflow Language for Robust Interacting Applications 55

sators in reverse chronological order for each step that did commit. This is the model
used in the proposed standards for Web Services, such as BPEL4WS.

Another advanced transaction model that had less uptake elsewhere, but has influ-
enced our GAT model, is called ConTract [27]. One key aspect is that each step has
an associated condition which must be checked dynamically just before the step takes
place, to ensure that all accessed state is suitable for the step. These conditions were
checked by previous steps in the workflow, but ConTract introduced the idea of re-
peating the check to protect against errors caused by concurrent processes which are
not isolated. These conditions inspired the GAT models guards.

There are many sorts of failure or exception that can arise in workflows. These
were catalogued by Eder and Liebhart [8]. Early workflow systems like FlowMark
only aimed to deal automatically with system failures [3], but later models [20] have
seen more types such as semantic failures and engine failures encompassed in the
exception-handling framework.

There is a huge literature on notations for describing business processes, work-
flows, or long-running activities. Many of these notations have been implemented in
systems offering workflow-management or business process support [10]. The domi-
nant approach in commercial systems presents a graph controlling the flow of control
between steps, or as a simplification of this, a block-structured language with fork and
join constructs as well as sequential flow and conditional branching. This is also the
model used in standards such as BPEL4WS [1], and WSCI [2]. A smaller group of
research papers and prototypes however have considered an event-based approach
similar to the one in our GAT model. For space reasons, we will here focus on the
most closely relevant research, which is event-based.

The initial impetus for event-based control flow came from the flurry of research
in active databases[28] where triggers are used to respond to situations whenever they
occur. The first paper to adopt this idea for managing control flow in a long-running
activity was Dayal et al. [7], where the ECA (Event-Condition-Action) notation was
proposed. The idea has proved especially valuable for building prototypes of distrib-
uted workflow execution engines such as C2offein[20], IRules[25], EVE [25] and
WIDE [6]. Semantics for the ECA model are proposed by Geppert et al. [11]. Key
features of our GAT model not found in these ECA systems include the grouping of
actions with closure property on the conditions (to ensure coverage), the capacity to
raise events which will occur later but only if some appropriate condition does not
happen in the meantime (in order to provide time-outs), the concept of final events,
and the idea of uniform outcome.

One paper does suggest some grouping and coverage condition: Knolmayer et al.
[18] have proposed an ECAA (Event-Condition-Action-AlternateAction) model,
which is in essence an activity group of exactly two actions with conditions that are
complementary to one another. The paper mentions the possibility of larger numbers
of actions being grouped, but gives no details.

Several other proposals have used ECA rules for dealing with exceptional condi-
tions, while graph models are used for normal case processing (these are often called
the “blue sky” paths). These proposals focus especially on the need to adapt and vary
the way exceptions are handled, as the system evolves. Casati et al. have defined a
language (Chimera-Exc) and implemented a system FAR [5], Hagen and Alonso built

56 S. Nepal et al.

OPERA [15, 16, 17], and Muller et al describe AGENT WORK [23]. Because these
systems do not offer uniform handling, and they terminate the normal case when the
exception is raised, thus they have difficulties in all the situations we described above
where resumption and access to state are needed to decide the proper response to a
cancellation or other exception.

Most of the workflow literature deals with a single uniform workflow engine
within which the entire business activity occurs. Our emphasis on interacting concur-
rent workflows, as in a service-oriented system, seems novel. The closest relevant
work we know is [17], where an ECA style is used for interaction between subproc-
esses within a single workflow engine.

7 Conclusions

We have proposed a new model and notation for expressing interacting business
processes. The proposed model goes beyond previous workflow languages. It has a
number of key features which together help the designer avoid many common sources
of errors, including inconsistent outcomes. Unlike most existing workflow languages
used for expressing business processes, we do not separate the normal case from ex-
ceptional activity, nor do we treat exceptional events as failures that require compen-
sation.

Defining a normal behavior in a process is easy and straightforward in the standard
graph-based languages. But the same can not be said for the exceptions and failures.
The main reason is that the standard approach uses fault handlers or compensation
handlers to deal with most exceptional situations. Such approaches can handle certain
class of exceptions, but not all possible exceptions. Moreover, handling exceptions
leads to the termination of a process. Describing all possible execution paths includ-
ing exceptions using just fault and compensation handlers becomes either clumsy or
impractical.

The event-based GAT model presented in this paper overcomes the limitation of
existing programming models by effectively getting rid of exceptions. That is, there is
no distinction between the exception and normal processing. Guards always define
the correct action to take when an event occurs, taking into account of the current
system state. The closure properties for activities ensure that no combinations of
events and system state can be omitted from the definition of a process. The closure
property for trigger expressions ensures that the result of an execution can also not be
omitted. The result is that the specification is complete. It is important to note that it is
very complex to define the ordering of activities and activity groups. We plan to ad-
dress this problem in future through graphical user interface.

We have carried out an extensive case study based on an e-procurement applica-
tion. This work shows that our model enables programmers to write the individual
services participating in a distributed application in such a way that they deliver
consistent outcomes despite concurrency, exceptions and failures. We have also
tested our model by developing operational systems based on .NET technology. The
insight gains from the prototype implementation leads us to further work on isola-
tion, the classification of states and description of external interface (choreography).

 A Service-Oriented Workflow Language for Robust Interacting Applications 57

References

1. Business Process Execution Language for Web Services (BPEL4WS), Version 1.0.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

2. Web Service Choreography Interface (WSCI) 1.0 Specification.
http://wwws.sun.com/software/xml/developers/wsci/

3. G. Alonso, A. El Abbadi, M. Kamath, R. Gunthor, D. Agrawal, and C. Mohan. Failure
handling in large scale workflow management systems. 1994, Technical Report IBM
RJ9913.

4. G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Gunthor, and C. Mohan. Advanced
transaction models in workflow contexts. IEEE Conference on Data Engineering, pp 574-
581, 1996.

5. F. Casati, S. Ceri, S. Parboschi and G. Pozzi. Specification and Implementation of Excep-
tions in Workflow Management Systems. ACM Transactions on Database Systems, vol.
24, no. 3, pp. 405-451, 1999.

6. S. Ceri, P. Grefen, G. Sanchez. WIDE – a distributed architecture for workflow manage-
ment. Proc RIDE’97, pp 76-81, 1997.

7. U. Dayal, M. Hsu, and R. Ladin. Organizing Long-Running Activities with Triggers and
Transactions. Proc ACM International Conference on Management of Data (SIGMOD).,
pp. 204-214, 1990.

8. J. Eder and W. Liebhart. The Workflow Activity Model WAMO. Proceedings of the 3rd
International Conference on Cooperative Information Systems, Vienna, Austria, 1995.

9. H. Garcia-Molina and Salem, K., "Sagas," ACM International Conference on Management
of Data (SIGMOD)., pp. 249-259, 1987.

10. D. Georgakopoulos, M. F. Hornick, and A. P. Sheth, “An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure,” Distributed and
Parallel Databases, vol. 3, no. 2, pp. 119–153, 1995.

11. A. Geppert, D. Tombros, and K. Dittrich. Defining the Semantics of Reactive Components
in Event-Driven Workflow Execution with Event Histories. Information Systems
23(3/4):235-252, 1998.

12. J.B. Goodenough. Exception Handling Issues and a Proposed Notation. Communications
of the ACM, 18(12):683-696, 1975.

13. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques, Morgan
Kaufmann Publishers, 1993.

14. P. Greenfield, A. Fekete, J. Jang, and D. Kuo. Compensation is Not Enough. In 7th IEEE
International Enterprise Distributed Object Computing Conference (EDOC'03), September
2003, pp. 232-239,Brisbane, Australia

15. C. Hagen and G. Alonso. Exception Handling in Workflow Management Systems. IEEE
Transactions on Software Engineering, 26(10):943-958, October 2000.

16. C. Hagen and G. Alonso. Flexible Exception Handling in the OPERA Process Support
System. Proc IEEE International Conference on Distributed Computing Systems, pp 526-
533, 1998.

17. C. Hagen and G. Alonso. Beyond the Black Box: Event-Based Inter-process Communica-
tion in Process Support Systems. Proc IEEE International Conference on Distributed
Computing Systems, pp 450-457, 1999.

18. G. Knolmayer, R. Endl, and M. Pfahrer. Modeling Processes and Workflows by Business
Rules. In Business Process Management, ed W. van der Aalst, LNCS 1806, pp 16-29,
2000.

58 S. Nepal et al.

19. D. Kuo, A. Fekete, P. Greenfield, and S. Nepal. Consistency for Service-Oriented Sys-
tems, Technical Report 05/017, CSIRO ICT Centre, Australia, 2005.

20. A. Koschel, and R. Kramer: Applying Configurable Event-triggered Services in Heteroge-
neous, Distributed Information Systems. Engineering Dederated Information Systems,
Proceedings of the 2nd Workshop EFIS'99, May 5-7, 1999, Kühlungsborn, Germany,pp.
147-157

21. Z. Luo, A. Sheth, K. Kochut, and J. Miller. Exception Handling in Workflow Systems.
Applied Intelligence 13(2):125-147, September 2000.

22. H. Mourani and P. Antunus. Exception Handling Through a Workflow. CoopIS 2004, pp.
37-54.

23. R. Muller, U. Greiner, and E. Rahm. AGENTWORK: a workflow system supporting rule-
based workflow adaptation. Data and Knowledge Engineering, 51(2):223-256, November
2004.

24. S. Nepal, A. Fekete, P. Greenfield, J. Jang, D. Kuo and T. Shi. A Service-oriented Work-
flow Language for Robust Interacting Applications. CSIRO ICT Centre Technical Report
05/091, 2005.

25. S. D. Urban, S. Kambhampati, S. W. Dietrich, Y. Jin, A. Sundermier, An Event Processing
System for Rule-Based Component Integration, Proceedings of the International Confer-
ence on Enterprise Information Systems, Portugal, April, 2004. pp.312-319.

26. D. Tombros and A. Geppert. Building Extensible Workflow Systems using an Event-
Based Infrastructure. In Proc CAiSE’00, pp 325-339

27. H. Wächter and A. Reuter. The ConTract Model. In: Database Transaction Models for
Advanced Applications, ed. A. K. Elmagarmid. Morgan Kaufmann, 1992.

28. J. Widom and S. Ceri, Active Database Systems: Trigger and Rules For Advances Data-
base Processing. Morgan Kaufmann, 1995.

Balancing Flexibility and Security
in Adaptive Process Management Systems

Barbara Weber1, Manfred Reichert2, Werner Wild3, and Stefanie Rinderle4

1 Quality Engineering Research Group, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

2 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

3 Evolution Consulting, Innsbruck, Austria
werner.wild@evolution.at

4 Dept. Databases and Information Systems, University of Ulm, Germany
rinderle@informatik.uni--ulm.de

Abstract. Process–aware information systems (PAIS) must provide suf-
ficient flexibility to their users to support a broad spectrum of applica-
tion scenarios. As a response to this need adaptive process management
systems (PMS) have emerged, supporting both ad-hoc deviations from
the predefined process schema and the quick adaptation of the PAIS to
business process changes. This newly gained runtime flexibility, however,
imposes challenging security issues as the PMS becomes more vulnerable
to misuse. Process changes must be restricted to authorized users, but
without nullifying the advantages of a flexible system by handling autho-
rizations in a too rigid way. This paper discusses requirements relevant
in this context and proposes a comprehensive access control (AC) model
with special focus on adaptive PMS. On the one hand, our approach
allows the compact definition of user dependent access rights restricting
process changes to authorized users only. On the other hand, the defini-
tion of process type dependent access rights is supported to only allow
for those change commands which are applicable within a particular pro-
cess context. Respective AC mechanisms will be key ingredients in future
adaptive PMS.

1 Introduction

In order to support a broad spectrum of applications, process-aware information
systems (PAIS) must provide sufficient flexibility at run-time [1,2]. First, PAIS
should be quickly adaptable to changes of the real-world processes (e.g., due to
business reengineering efforts) [3,4,5]. Second, during the execution of individual
process instances users must be able to flexibly deviate from the pre-modeled
process schema (e.g., by adding or skipping tasks). Such ad-hoc deviations may
become necessary to deal with exceptional situations [1,6].

In response to these needs adaptive process management systems (PMS) have
emerged during recent years. Examples include ADEPT [1], CBRFlow [7], ME-
TEOR [8] and WASA2 [9]. All these PMS aim at the flexible support of changes

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 59–76, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

60 B. Weber et al.

at the process type and/or the process instance level. This newly gained flex-
ibility, however, imposes challenging security issues as the PMS becomes more
vulnerable to misuse. For example, the uncontrolled addition of long-running
activities to an ongoing process instance may delay the execution of the whole
process. Appropriate access control (AC) mechanisms are thus even more impor-
tant for adaptive than for traditional PMS [10,11,12,13,14,15,16] to avoid such
misuse scenarios. Process changes must be restricted to authorized users only,
but without nullifying the advantages of a flexible system by handling autho-
rizations in a too rigid way.

Although there are several approaches for AC in traditional process manage-
ment systems (PMS), the special requirements of adaptive PMS have not been
addressed in a sufficient way so far. Existing approaches either assume that pro-
cess schemes are modeled only once and then remain unchanged (i.e., covering
access rights for the execution of tasks only) (e.g., [13,10]) or they only support
the definition of change rights at a very coarse-granular level [17]. This restricted
view, however, is not applicable to adaptive PMS, which require adequate ac-
cess rights for the different kinds of changes. In particular, access rights must be
simple to define, easy to maintain and fast to check.

In addition, it must be possible to enforce the execution of particular activ-
ities (e.g., due to legal requirements) and to ensure that only activities which
are applicable in a specific context can be inserted into a process instance. For
a drug procurement process in a hospital, for instance, the insertion of a patient
treatment step makes no sense and should thus not be allowed.

Defining process changes requires user experience and is error prone if not
supported by suitable tools. Therefore, adaptive PMS should assist the user
while performing changes by displaying only those change commands which are
applicable in the current context and for which the user holds the necessary
access rights.

In the past we developed detailed concepts for the dynamic modification of
process instances, for the evolution of process types and for the memorization and
the reuse of process instance changes. This work has been done in the ADEPT
and CBRFlow projects [1,7,18,19,20], security issues have not been considered
in detail so far. In this paper we introduce an advanced AC model which covers
the particular requirements of adaptive PMS. The paper is organized as follows:
Section 2 covers adaptive PMS and their characteristics. Section 3 describes
the requirements for an AC model, Section 4 extends the core RBAC model
to meet the specific requirements for adaptive PMS. Section 5 adds process
type dependent access rights to the extended RBAC model. Section 6 describes
practical issues and Section 7 discusses related work. The paper concludes with
a summary and an outlook in Section 8.

2 Adaptive PMS and Their Characteristics

This section describes background information on adaptive PMS as needed for
the further understanding of this paper.

Balancing Flexibility and Security in Adaptive PMS 61

Schema Version S:

A B

C

D
E F

a) Process Type Level:

C

ED
B

A

Process Instance Level:

Process Instance I1:

Activity Templates:

F

L
Y

Process Instance I2
(ad-hoc changed):

Process Instance I3
(ad-hoc changed):

…

Admit

patient
Inform patient

Prepare patient

Examine

patient

Deliver

report

Schema Version S:

Make

appointment

A B

C

D
E F

Lab

test

Schema Version S‘:

Admit

patient

A B L EC F
Make

appointment

Prepare

patient

Examine

patient

Deliver

report

L Lab

test
Process Type

Change

b) Process Type Level:

serialInsert(S, L, C, E)

deleteActivity(S, D)

Admit

patient

Inform patient

Prepare patient

Examine

patient

Deliver

report
Make

appointment

activated

completed

Fig. 1. Different Levels of Process Change (Clinical Example)

2.1 Basic Concepts

In a PMS, for each supported business process (e.g., booking a business trip or
handling a medical order) a process type T has to be defined. For a particular type
one or more process schemes (process templates) may exist reflecting different
schema versions of T . In Fig. 1 (b), for example, S and S′ correspond to different
schema versions of the same type. A process schema itself is represented by a
directed graph, which consists of a set of activities a1, . . . , an and the control
edges connecting them. Process schema version S from Fig. 1 (b) consists of six
activities; Activity Admit patient is followed by activity Make appointment
in the flow of control, whereas Prepare Patient and Inform Patient can be
processed in parallel. Each activity is based on a predefined activity template,
which is maintained and stored in a repository. In general, a particular activity
template can be reused within different process schemes.

Based on a schema S new process instances I1, . . . , Im can be created and
executed at runtime. In Fig. 1 (a), for process instance I1 activity Admit patient
has already been completed whereas activity Make appointment is currently
activated (i.e., it is offered to users in their worklists).

2.2 Process Change

Adaptive PMS are characterized by their ability to correctly and efficiently han-
dle process changes. In general, changes are triggered and performed at two levels
– the process type and the process instance level.

62 B. Weber et al.

Changes to a process type T may become necessary to cover the evolution
of real-world business processes [3,4,9]. Process engineers can accomplish a type
change by applying a set of change commands to the current schema version S
of type T . This results in the creation of a new schema version S′ of the same
type (cf. Fig. 1 a). Execution of future process instances is then based on S′. For
long-running processes it might be necessary to migrate already running process
instances to the new schema version S′ [18].

By contrast, ad-hoc changes of individual process instances are usually per-
formed by process participants (i.e., end users). Ad-hoc changes are necessary
to react to exceptions or unanticipated situations [1,7,8]. The effects of such
instance-specific changes are kept local, i.e., they do not affect other process in-
stances of the same type. In Fig. 1 (a) instance I2 has been individually modified
by dynamically deleting activity Deliver report. Thus the execution schema
of I2 deviates from the original process schema S of this instance.

In order to facilitate exception handling, adaptive PMS should allow for the
memorization and the reuse of ad-hoc deviations. For this, our approach applies
case-based reasoning techniques [19,21]. More precisely, changes of individual
process instances can be performed either by explicitly defining the change from
scratch or by reusing information about previous changes (which were success-
fully applied to other process instances in similar problem situation before).

In our approach both process type and process instance changes are based
on a complete set of change commands with well-defined semantics [1,22]. Table
1 presents selected high-level change commands provided in this context.

Table 1. A Selection of ADEPT Change Commands∗

Change Command Effects on Schema S
applied to Schema S

Additive Change Commands

serialInsert(S, X, A, B) insert activity X into schema S between
the two directly connected activities A and B

parallelInsert(S, X, A) insert activity X into schema S parallel to activity A

Subtractive Change Commands

deleteActivity(S, X) delete activity X from schema S

Order-Changing Commands

serialMove(S, X, A, B) move activity X from its current position in schema
S to the position between two directly connected ac-
tivities A and B

∗A detailed description of all change commands supported by ADEPT can be found in [18,22].

Balancing Flexibility and Security in Adaptive PMS 63

A B D
X

C E

Schema S‘:

Examine

patient

Make

appointm

ent

Ente

r

orde

r

Inform

patient

Make

appointm

ent

Schema S:

Process
Engineer

Create Process Type

Schema

A B C ED

In
st

an
tia

tio
n

Pro
ce

ss
Exe

cu
tio

n

Notify Process Engineer (frequent deviation)

Change Proce
ss

Typ
e Sch

ema

Process Instance I:

A B DC

Ad-hoc changed Process
Instance I:

Ad-hoc Change
of Process Instance

by Adding (a) or Reusing Cases (b)

Process
Participant

Process
Participant

Monitor

Case-Base

Fig. 2. Major Use Cases for an Adaptive PMS

2.3 Major Use Cases for an Adaptive PMS

In order to construct a comprehensive AC model for adaptive PMS we must focus
on the major use cases of such a system in detail [20]. An overview is given in Fig.
2. At buildtime an initial computerized representation of a company’s business
processes is created either by business process analysis or by applying process
mining techniques (i.e., by observing process and task executions) (1). At run-
time new process instances are created from these predefined process schemes
(2). In general, process instances are then executed according to the process type
schema they were derived from and activities are allocated to authorized process
participants to perform the respective tasks (3). However, when deviations from
the predefined schema become necessary at the process instance level (e.g., due
to exceptions), process participants must be able to deviate from it. They can
either specify a new ad-hoc deviation and document the reasons for the changes
in a case-base (4 a), or they can reuse a previously specified ad-hoc modification
from the case-base (4 b). The PMS monitors how often a particular schema
is instantiated and how frequently deviations occur. When a particular ad-hoc
modification is frequently reused, the process engineer is notified that a process
type change should be performed (5). The process engineer can then evolve the
process type schema, and, as far as possible, migrate running instances to the
new schema version (6). During run-time process instances can be monitored by
process participants (7). Finally, in addition to these use cases, all PMS must
support granting access rights.

64 B. Weber et al.

3 Requirements for an AC Model for Adaptive PMS

To our best knowledge most existing AC models for PMS [10,11,12,13,14,15,16]
ignore the problem of process change and therefore do not meet the specific
requirements posed by adaptive PMS (cf. Section 7). In this section specific
requirements for AC models in adaptive PMS are elaborated. All requirements
stem from real world case studies in the medical domain [23].
Requirement 1 (Support of user dependent and process type depen-
dent access rights). An AC model for adaptive PMS should support the def-
inition of both user dependent and process type dependent access rights in an
integrated way. While the former restrict access to authorized users in order to
avoid misuse (e.g., only users with role physician are authorized to insert the
X-ray activity), the latter are applied to only allow for change commands that
are useful within a particular context (e.g., activity vacation request must not
be inserted in medical treatment processes).
Requirement 2 (Completeness of the AC model). In order to adequately
support adaptive processes it is not sufficient to only provide access rights for
executing activities. In addition, all presented use cases (cf. Fig. 2) must be cov-
ered. Furthermore, the rights to change process types and process instances must
be granted separately, as, for example, a user who is allowed to change a specific
process instance usually is not authorized to change the process type schema as
well. As another example consider the introduction of a process instance change
by reusing information about a previously defined ad-hoc modification: autho-
rization for this use case does not necessarily imply that respective users are also
authorized to define a new ad-hoc change from scratch.
Requirement 3 (Fine-grained definition of access rights). In general, it
must be possible to specify access rights for individual change commands or
groups of change commands (e.g., a particular role is only allowed to insert
additional process activities, but not to delete existing ones). In any case, an AC
model for adaptive PMS must allow the definition of access rights for all change
commands and their parameterizations. For example, a physician is authorized
to insert additional activities. However, this authorization may be restricted to
medical treatment activities (e.g., X-ray, Computer Tomography) and selected
processes (e.g., patient examination).
Requirement 4 (Usability and maintainability of access rights). A sig-
nificant challenge is to balance flexibility and security in such a way that the
advantages provided by adaptive PMS are not nullified by a too rigid AC model.
Thus, access rights themselves should be simple to define and easy to maintain.
In order to support the easy and compact definition of access rights, objects
should be hierarchically composed and allow for the definition of access rights at
different levels of granularity. For instance, it might be reasonable to authorize
a particular role to perform process type changes for all process type schemes
supported by the PMS. However, in corporations with a large number of process
type schemes different users might be responsible for individual process type
schemes or for groups of process type schemes.

Balancing Flexibility and Security in Adaptive PMS 65

PrivilegeRoleUser

can-play holds

is-a implies

Fig. 3. Core Access Control Model

4 User Dependent Access Rights

An AC model for (adaptive) PMS must allow the system administrator to restrict
access to authorized users to avoid misuse. In Section 4.1 we first review basic
properties of the core RBAC model, in Section 4.2 and Section 4.3 we then derive
an extended role-based AC model to meet the specific requirements of adaptive
PMS.

4.1 Core AC Model

The RBAC model is frequently used to specify access rights in PMS [24,25,26].
Access rights are not directly linked to concrete users, but to the more abstract
concept of a role. Such roles group privileges (i.e., classes of access rights) and
are assigned to users based on their capabilities and competences. Physician,
nurse, and technician are examples for roles in a hospital. The role physician
may include the privileges to order a lab test or to perform a medical exami-
nation. Users possessing the same role are considered as being interchangeable,
i.e., all users holding a particular role qualify for the privileges associated with
that role. A user can hold several roles. In addition, roles can be hierarchically
organized, which allows to (transitively) propagate the privileges associated with
a particular role to the more specific roles. A head nurse, for instance, is a nurse
and therefore inherits all privileges of role nurse. Finally, privileges themselves
are organized hierarchically to foster inheritance of access rights. The privilege
to order restricted drugs (e.g., morphine) up to quantity 1000 implies the more
restricting privilege to order such drugs up to quantity 50. Formally, a RBAC
model [10] consists of a set of users U , a set of roles R, and a set of privileges P
as well as the relationships between elements of these sets (cf. Fig. 3).

In the following the entities and relationships from Fig. 3 are described in
more detail.

– A user u ∈ U represents an individual actor.
– A role r ∈ R denotes a grouping of privileges which can be assigned to one

or more users.
– A privilege p ∈ P represents a class of rights, e.g., to perform certain oper-

ations or to access certain data.
– can-play (u, r) states that user u holds role r.
– is-a (r1, r2), r1, r2 ∈ R states that role r1 specializes role r2 and thus inherits

all privileges from r2.

66 B. Weber et al.

– holds(r, p), r ∈ R, p ∈ P states that role r holds privilege p.
– implies(p1, p2), p1, p2 ∈ P states that privilege p1 includes privilege p2.

4.2 Extended Access Control Model

In this section we extend the core RBAC model by adding additional entities
and relationships to construct an adequate AC model for adaptive PMS, which
meets Requirements 1-4 of Section 3.

Operation. AC models for adaptive PMS must cover all use cases from
Fig. 2 (e.g., changing processes, executing process activities, monitoring process
instances, etc.) and be able to grant access rights to each of them separately. We
therefore add the entity operation to the core RBAC model introduced above.

As illustrated in Fig. 4 (a) we distinguish between seven major operations:
ChangeProcess, CreateSchema, ExecuteActivity, GrantPrivilege, InstantiateSch-
ema, MonitorProcessInstance and NotifyUser. The abstract operation Change-
Process is further divided into process type and process instance changes. Process
instance changes can further be split into two groups depending on whether in-
formation about a previously defined ad-hoc modification is reused or a new
change has to be defined from scratch.

Operations are hierarchically organized, so privileges for a particular opera-
tion are automatically extended to their decendents as well (include relationship
in Fig. 7). As illustrated in Fig. 4 (a), a user holding the privilege for abstract op-
eration ChangeProcess is authorized to perform changes at both the process type
and the process instance level. The latter can be handled either by adding new
or by reusing existing ad-hoc change cases. In contrast, the operation ReuseEx-
istingProcessInstanceChange only authorizes for process instance changes based
on the reuse of previously defined ad-hoc modifications, but not to define new
ad-hoc changes.

Change Command. Although the concept operation allows for separate access
rights for process type and process instance changes, it does not differentiate be-
tween change commands. However, this is indispensable for AC in adaptive PMS
as a user might be authorized to skip an activity, but not to perform structural
changes by inserting an additional activity. Therefore, we further extend our
model with the entity change command.

In adaptive PMS both process type and process instance changes can be
accomplished by applying a set of well–defined change commands (cf. Fig. 4
b)1. When applying the command serialInsert an additional activity is inserted
between two succeeding process activities. For skipping a particular activity, for
example, the command deleteActivity can be used. Using different kinds of change
commands requires different levels of user experience, which should be taken into
account when defining privileges for process change. For example, the deletion
of a particular process activity during runtime is always limited in scope and
1 For illustration we use the ADEPT change commands; however, the model is appli-

cable to other command sets as well.

Balancing Flexibility and Security in Adaptive PMS 67

All

a) Operations

b) Change Commands

All

ChangeProcess CreateSchema ExecuteActivity GrantPrivilege InstantiateSchema MonitorProcessInstance NotifyUser

ProcessTypeChange
ProcessInstanceChange

DefineNewProcessInstanceChange ReuseExistingProcessInstanceChange

additiveCommandsubtractiveCommand orderChangingCommand

serialInsert parallelInsertdeleteActivity serialMove...

Fig. 4. Operations and Change Commands

can therefore easily be accomplished by end users (i.e., only a few parameters
have to be specified when defining the change). In contrast, the insertion of
an activity usually requires more comprehensive parameter specifications (e.g.,
parameters specifying the position of the newly inserted activity) and is therefore
more complex to handle.

In order to be able to define access rights at different levels of granularity
we allow for the hierarchical organization of change commands (specializes rela-
tionship in Fig. 7). As illustrated in Fig. 4 (b), the abstract change command
All includes all kinds of subtractive, additive and order changing commands. If
a user holds the right to perform this abstract change command he automati-
cally inherits the right to perform all change commands lower in the hierarchy
as well (e.g., serialInsert, deleteActivity). On the one hand this approach allows
us to define privileges in a very compact way. On the other hand we are able to
provide fine-grained specifications as well.

Object. So far we have only considered operations and different change com-
mands. However, we not only must be able to express that a certain role is
allowed to delete or add process activities, but also to state which object a par-
ticular operation or change command uses (e.g., the process instance that may
be monitored or the activity that may be added by an insert command), i.e., the
parameterization of operations and change commands has to be considered as
well. Therefore we introduce the entity object as another dimension in our AC
model (cf. Fig 5). For instance, while examining a patient a physician can insert
an additional activity X-ray (object).

Objects are hierarchically organized to achieve maintainable models (con-
tainsObject relationship in Fig. 7). As illustrated in Fig. 5 access rights can be

68 B. Weber et al.

All

Process Typ

Process Schema

Activity

1

*

1

*

Activity Group

0..*0..*

0..*0..*

Process Type GroupActivity Template

1

*

1

0..*

Activity Template Group

0..*0..*

Process Segment

1

*

1

*

0..* 0..*

Process Segment Group

1

*

1

*

1

*

1

*

Fig. 5. Object Hierarchy

defined, for instance, for the whole PMS (least detailed level) down to the gran-
ularity of single process types or activities (most detailed level). As illustrated
in Fig. 6 a particular role holds the privilege to perform the deleteActivity com-
mand for process type T1 (=object). Thus this role is authorized to delete all
activities which are part of process schemes related to T1, i.e., activities a11, a12,
a21 and a311.

Note that a particular operation may not be applicable to all kinds of ob-
jects. Table 2 summarizes which combinations of operations and objects are
applicable. For example, the ChangeProcess operation in combination with an
order-changing change command can be used with the following objects: process

Table 2. Granularity of Objects Depending on the Operation∗

Operation All T PTG S PS PSG A AG AT ATG
Change Process
- additive change X X
- subtractive change X X X X X X X X X X
- order-changing change X X X X X X X X
Create Schema X X
Execute Activity X X
Grant Privilege X X X X X X X X X X
Instantiate Schema X X X X
Monitor Process Instance X X X X X X
Notify User X X X X X X
∗All = Process Management System, T = Process Type Schema, PTG = Process Type Group,

S = Process Schema Version, PS = Process Segment, PSG = Process Segment Group,

A = Activity, AG = Activity Group, AT = Activity Template, AT = Activity Template Group.

Balancing Flexibility and Security in Adaptive PMS 69

management system (All), process type, process type group, process schema
version, process segment, process segment group, activity and activity group. In
contrast, for the ChangeProcess operation in combination with additive change
commands only activity templates or groups of activity templates can be used
as the object.

Subject. Finally, we introduce the entity subject to specify what is subject to
change. For example, when an additional lab test activity (object) is inserted
(change command), we must know the process schema version or the process
segment it will be added to, i.e., the subject for this insertion command must
be specified.

Like objects, subjects are organized in a hierarchy too (containsSubject rela-
tionship in Fig. 7). When specifying subjects only a sub-set of the elements from
Fig. 5 is required. Candidates for subjects are the whole process management
system, process types, groups of process types, process schema versions and pro-
cess segments; however, activities, groups of activities, activity templates and
groups of activity templates are not applicable.

As illustrated in Fig. 6, if a particular role has the privilege to perform pro-
cess instance changes (=operation) using the serialInsert command for activity
template at1 (=object) and subject T1, then this role is authorized to insert
activity template at1 into process instances based on process type schema T1.

Specifying a subject is only needed for additive change commands. For all
other operations no subject must be specified as the subject is automatically
known by the system, due to the containment relationships (cf. Fig. 5). When,
as illustrated in Fig. 6, the object for operation ExecuteActivity is activity a11,
then the subject is implicitly known to be S1, the process schema version activity
a11 is part of.

Privilege. As illustrated in Fig. 6 a privilege is defined by specifying an op-
eration, an object, a change command, and a subject. For example, privilege
(ProcessInstanceChange, at1, serialInsert, T1) states that activities derived from
activity template at1 can be added to any process instance created from process
type T1. Fig. 6 shows the field values of the selected privilege in dark grey. The
selected privilege automatically extends to the light grey boxes as well; for ex-
ample, in Fig. 6 the subject is T1, this extends the privilege to process schema
versions S1 and S2 too.

As indicated in Fig. 6 not all entities are mandatory in all situations. The
entities operation and object are always mandatory, while the entity change com-
mand is only mandatory when the ChangeProcess operation is selected. The
entity subject is only mandatory for additive change commands.

4.3 Extended Model - Overview

We added the additional entities operation OP , object O, change command C and
subject SUB as well as the relationships includes, containsObject, specializes
and containsSubject to the core RBAC model. In addition the entity privilege

70 B. Weber et al.

PMS

T1 T2 at1 at2

S1 S2 S3 S4

a11 a21 a311a12

Objects

Change Commands All

PMS

T1 T2

S1 S2 S3 S4

T1

T1

Subjects

Operations
All

Execute
Activity

Notify
User

Create
Schema

Instantiate
Schema

Monitor
Process
Instance

SubtractiveCommand AdditiveCommand

parallelInsertserialInsertDeleteActivity serialMove

Order ChangingCommand

Change
Process

Grant
Privilege

Privileges

Operation Object
Change

Command
Subject

ExecuteActivity a11 -

ProcessInstanceChange T1 deleteActivity

ProcessTypeChange PMS All -

ProcessInstanceChange at1 serialInsert T1

-

-

ProcessTypeChange ProcessInstanceChange

DefineNewProcessInstanceChange ReuseExistingProcessInstanceChange

Fig. 6. Extended Access Control Model - Example

P has been defined in a more detailed way. The meta-model of the extended AC
model is illustrated in Fig. 7.

– Object o ∈ O represents one of the following entities: the entire process man-
agement system, a process type, groups of process types, a process schema,
a process segment, groups of process segments, an activity, a group of activ-
ities, an activity template or a group of activity templates.

– Operation op ∈ OP represents a use case supported by the adaptive PMS
(e.g., ExecuteActivity, GrantPrivilege or ChangeProcess).

– Change Command c ∈ C represents a change command (e.g., deleteActivity
or serialInsert).

– Subject sub ∈ SUB represents what is subject to change, i.e., the entire
process management system, a process type, a group of process types, a
process schema, a process segment and a group of process segments.

– Privilege p ∈ P is a tuple(op, o, c, sub) representing the right to perform
a particular operation op with an object o using change command c on a
subject sub.

– includes(op1, op2), op1, op2 ∈ OP states that operation op1 includes op2.
Having a privilege for op1 thus includes the privileges for op2.

– containsObject(o1, o2), o1, o2 ∈ O states that object o1 includes object o2.

Balancing Flexibility and Security in Adaptive PMS 71

Privilege

ObjectChangeCommand

Operation

RoleUser

can-play holds

is-a implies

containsObjectspecializes

include

Subject

containsSubject

Fig. 7. Extended Access Control Model

– specializes(c1, c2), c1, c2 ∈ C states that change command c1 includes change
command c2.

– containsSubject(sub1, sub2), sub1, sub2 ∈ Sub states that subject sub1 in-
cludes subject sub2.

5 Process Type Dependent Constraints

An AC model for adaptive PMS must not only allow to restrict access to au-
thorized users. It must also enforce the execution of particular activities (e.g.,
a particular activity must not be deleted due to legal requirements) and ensure
that only semantically correct activities can be inserted in the given context
(e.g., no patient related activities must be inserted into a drug procurement
process).

Process type dependent access rights allow to specify which activities, activity
templates, which groups of activities and which groups of activity templates can
be inserted into, deleted from or moved within process instances based on a
particular process type.

Process type dependent access rights are defined independently of the in-
dividual users and roles performing the process instance change, thus only a
sub-set of the extended AC model in Fig. 7 is needed; the entities role and user
can be omitted. Like user dependent access rights, a privilege for process type de-
pendent access rights consists of the entities operation, object, change command
and subject.

Example 1. Privilege (ProcessInstanceChange, MedicalTreatmentStep, additive-
Command, GroupMedicalTreatmentProcess) says that any activity template of
group MedicalTreatmentStep (i.e., X-ray, Lab Test, Computer Tomography)
can be inserted into any medical treatment process by using an additive change
command.

72 B. Weber et al.

PMS SecurityService

(2) requestAuthorizedOperations(user)

listOfOperations

(4) requestAuthorizedObjects(user, operation, subject)

listOfObjects

(6) requestAuthorizedChangeCommands(user, subject, operation, object)

listOfChangeCommands

User Client

(1) login(user)

listOfOperations

(3) performOperation(operation, subject)

listOfObjects

(5) getValidChangeCommandsForActivity(object)

listOfChangeCommands

(7) performChangeCommand(changeCommand)

updateMenus(listOfOperations)

showSelectActivityDialog(listOfObjects)

showSelectChangeCommandDialog(listOfChangeCommands)

Fig. 8. PMS and Security Service Interactions (Process Instance Change)

6 Practical Issues

Our extended AC model is currently implemented as a separate Security Service
(SECS) which can be used independently of a specific PMS. To demonstrate the
interactions between a PMS and the SECS this section walks the reader through
a process instance change (cf. Fig. 8).
Dynamic Menu Configuration. When the user logs in to the PMS via his user
client (1) the PMS interacts with the SECS to request the list of operations the
user is authorized for (2) (Query: requestAuthorizedOperations(User)). Based on
the results of this query the menu of the user client is dynamically configured, i.e.,
only those operations are displayed in the user’s menu for which he is authorized.
Thus, the user is never presented a menu item he is not authorized for, which
prevents annoying ”not authorized” warnings.

Example 2. The physician John logs in to the PMS via his user client. The PMS
then dynamically configures the menu items based on the privileges which have
been assigned to the role physician and which comply with the process type
dependent access rights (cf. Fig. 9 a). John, for instance, is authorized to in-
sert activity templates of group MedicalTreatmentSteps (i.e., X-ray, Lab Test,
Computer Tomography) into process instances of medial treatment processes.

Perform Ad-hoc Changes. When an authorized user wants to deviate from
the predefined process schema at runtime he can select the respective menu item
to perform a process instance change in his user client (3).

Balancing Flexibility and Security in Adaptive PMS 73

Admit

patient
Inform patient

Prepare patient

Examine

patient

Deliver

report

Make

appointment

 Change Process Instance

OK Cancel

 Select Change Command

OK Cancel

Retrieved Change Commands:

(c)

(d)

 Search Activity / Activity Template

GO

X-ray

Lab Test

Computer Tomography

OK Cancel

Search for:

Retrieved Activities / Activity Templates:

(b)

X-ray

serialInsert

Operation

User dependent access rights

Change Command Object Subject

ProcessInstanceChange serialInsert MedicalTreatmtentSteps GroupMedicalTreatmentProcess
Role

Physician

Operation

Process type dependent access rights

Change Command Object Subject

ChangeProcess serialInsert MedicalTreatmtentSteps GroupMedicalTreatmentProcess

(a)

(e)

Fig. 9. Example Privileges (a) and User Interactions (b-e)

He then has to select the object for the change, e.g., the activity template
to be inserted into the process instance schema or the concrete activity to be
deleted or moved (cf. Fig. 9 b).

For insert operations the PMS requests the set of activity templates the user
is authorized to insert into process instances based on process schema version
S (4). It further requests the set of activities in process schema S the user is
authorized to delete or move and which comply with the process type depen-
dent access rights (Query: requestAuthorizedObjects(User, Subject, Operation)).
Completed activities are not listed, as already passed process graph regions can
no longer be modified. The user can then select one of the displayed activities
or activity templates (5).

Example 3. Assume that John decides to perform a new ad-hoc modification
(e.g., to insert a new activity based on template X-ray) for a process instance
created from process schema version S1 (cf. Fig. 9 b). He selects the respec-
tive operation in the menu bar of his user client, and the system then requests
the list of activity templates (requestAuthorizedObjects(John, S1, ProcessIn-
stanceChange)) he is authorized to add to this schema. In our example, the
SECS returns activity templates X-ray, Lab Test, and Computer Tomography.

The system then shows a graphical representation of process schema S (cf. Fig.
9 c) and suggests those change commands to the user which comply with both
his authorizations and the process type dependent access rights (6) (Query:
requestChangeCommands(User, Operation, Object, Subject)). The user can then
choose one of the displayed change commands for execution (7). When necessary,
the system requests any required parameters from the user (cf. Fig. 9 d).

Example 4. John selects activity X-ray. The PMS then displays S1, the pro-
cess schema on which the process instance to be modified was created from.

74 B. Weber et al.

After this, the PMS requests a list of change commands which are presented
to John (requestChangeCommands(John, ProcessInstanceChange, X-ray, S1)).
John then selects the serialInsert change command to insert the additional
X-ray activity. Furthermore, the system asks him where the X-ray activity
should be inserted and ensures that he does not insert it into already passed
process graph regions. John replies that the X-ray activity is to be performed
after activity Examine Patient and before activity Deliver Report
(cf. Fig. 9 e).

7 Related Work

There are several AC models for PMS discussed in literature [10,11,12,13,14,15,
16,17]. Most of them use RBAC models and support static as well as dynamic
constraints (e.g., [10,11,12,13,14]). However, they only provide limited support
for adaptive processes: either they only cover privileges for the execution of
tasks, but do not deal with privileges for process changes at all (e.g., [10,13]),
or specify change rights at a very coarse-grained level (e.g., not distinguishing
between change commands) [17].

W-RBAC [10] provides a specific AC model for workflow systems which
focuses on the definition of task execution rights and allows for the defini-
tion of static and dynamic constraints (e.g., separation of duties). Dynamic
constraints have not been the focus of this paper, but will be considered in
our overall approach as well, we plan to apply concepts provided by existing
approaches [10,11,12,13,14]. In order to deal with exceptional situations W-
RBAC allows authorized users to override constraints. However, as the defi-
nition of change rights is not supported, W-RBAC is not suited for adaptive
PMS.

Case-handling systems provide an alternative to adaptive PMS. FLOWER
[15], for example, allows defining change rights to some degree. For each process
and for each activity an execution role (for carrying out the activity or to start the
process), a redo role (to undo activities) and a skip role (to omit an activity) can
be defined. The handling of more complex change commands (e.g., the insertion
of new activities) is not addressed.

Domingos et al. [17] propose an AC model for adaptive workflows, which also
considers the evolution of access rights. Though their approach differentiates be-
tween process type and process instance change, it does not allow for fine-grained
definition of privileges at the level of individual change commands. Their focus is
on user dependent access rights, process dependent rights are not considered. As
no abstraction mechanisms (e.g., hierarchies) are used, the compact definition
of access rights is not possible.

An approach to control flexibility other than by AC is the Pockets of Flexibil-
ity model [27]. Flexibility is limited to certain predefined points in the workflow,
where the workflow can be dynamically extended at run-time.

Balancing Flexibility and Security in Adaptive PMS 75

8 Summary and Outlook

In this paper we presented an AC model which allows for the compact defini-
tion of access rights as needed in adaptive PMS. We support both the definition
of user dependent and process type dependent access rights (cf. Requirement
1). Our approach supports the use cases provided by an adaptive PMS (cf. Re-
quirement 2), and allows the specification of access rights for individual change
commands (cf. Requirement 3). If desired, access rights can be specified at an
abstract (i.e., coarse-grained) level by using the hierarchical organization of our
model. Fine-grained specification of access rights is supported as well, allowing
context-based assistance of users when performing a change. However, the more
detailed the respective specifications, the more costly their definition and mainte-
nance becomes. Based on our experience with processes from several application
domains, different granularities must be supported (cf. Requirement 4).

Currently we are working on the implementation of the Security Service and
its integration into the adaptive PMS ADEPT [1] and CBRFlow [7]. We further
plan a thorough evaluation of the AC model in real world settings, including
its performance and scalability. Next, dynamic constraints will be elaborated in
more detail and integrated into our AC model.

References

1. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

2. Jørgensen, H.D.: Interactive Process Models. PhD thesis, Norwegian University of
Science and Technology, Trondheim, Norway (2004)

3. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering, Special Issue on
Advances in Business Process Management 50 (2004) 9–34

4. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge
Engineering 24 (1998) 211–238

5. v.d. Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling
problems related to change. Theoret. Comp. Science 270 (2002) 125–203

6. Strong, D., Miller, S.: Exceptions and exception handling in computerized infor-
mation processes. ACM–TOIS 13 (1995) 206–233

7. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational case-based reasoning. In: Proc. Eurpean Conf. on
Case–based Reasoning (ECCBR’04), Madrid (2004) 434–448

8. Luo, Z., Sheth, A., Kochut, K., Miller, J.: Exception handling in workflow systems.
Applied Intelligence 13 (2000) 125–147

9. Weske, M.: Workflow management systems: Formal foundation, conceptual design,
implementation aspects. University of Münster, Germany (2000) Habil Thesis.

10. Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC - a workflow security model
incorporating controlled overriding of constraints. IJCIS 12 (2003) 455–485

11. Bertino, E., Ferrari, E., Alturi, V.: The specification and enforcement of autho-
rization constraints in wfms. ACM Trans. on Inf. and Sys. Sec. 2 (1999) 65–104

12. Botha, R., Eloff, J.: A framework for access control in workflow systems. Informa-
tion Management and Computer Security. 9 (2001) 126–133

76 B. Weber et al.

13. Casati, F., Castano, S., Fugini, M.: Managing workflow authorization constraints
through active database technology. Inf. Sys. Frontiers. 3 (2001) 319–338

14. Liu, D.R., Wu, M.Y., Lee, S.T.: Role-based authorization for workflow systems in
support of task-based separation of duty. The Journal of Systems and Software.
73 (2004) 375–387

15. van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for
business process support. Data and Knowledge Engineering. 53 (2005) 129–162

16. Atluri, V., Huang, W.K.: Enforcing mandatory and discretionary security in work-
flow management systems. Journal of Computer Security. 5 (1997) 303–339

17. Domingos, D., Rito-Silva, A., Veiga, P.: Authorization and access control in adap-
tive workflows. In: ESORICS 2003. (2003) 23–38

18. Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis,
University of Ulm (2004)

19. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and
process evolution - a semantics based approach. In: BPM 2005. (2005)

20. Weber, B., Reichert, M., Rinderle, S., Wild, W.: Towards a framework for the agile
mining of business processes. In: Proc. of Int’l BPI workshop. (2005)

21. Weber, B., Rinderle, S., Wild, W., Reichert, M.: CCBR–driven business process
evolution. In: ICCBR’05, Chicago (2005)

22. Reichert, M.: Dynamic Changes in Workflow-Management-Systems. PhD thesis,
University of Ulm, Computer Science Faculty (2000) (in German).

23. Konyen, I.: Organizational structures and business processes in hospitals. Master’s
thesis, University of Ulm, Computer Science Faculty (1996) (in German).

24. Ferraiolo, D., Kuhn, D.: Role based access control. In: 15th National Computer
Security Conference. (1992)

25. Sandhu, R.S., Coyne, E., Feinstein, H., Youman, C.: Role-based access control
models. IEEE Computer 29 (1996) 38–47

26. Ferraiolo, D.F., Chandramouli, R., Kuhn, D.R.: Role-Based Access Control. Artech
House, Incorporated (2003)

27. Sadiq, S., Sadiq, W., Orlowska, M.: Pockets of flexibility in workflow specifications.
In: Proc. Int’l Entity–Relationship Conf. (ER’01), Yokohama (2001) 513–526

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 77 – 93, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Enabling Business Process Interoperability Using
Contract Workflow Models

Jelena Zdravkovic1,2 and Vandana Kabilan 2

1 Department of Computer Science, University of Gävle
Kungsbäcksvägen 47, 80 277 Gävle, Sweden

2 Department of Computer and Systems Sciences, Stockholm University
 and Royal Institute of Technology, Forum 100, SE-164 40 Kista, Sweden

{jzc, vandana}@dsv.su.se

Abstract. Business transactions are governed by legally established contracts.
Contractual obligations are to be fulfilled by executing business processes of
the involved parties. To enable this, contract terms and conditions need to be
semantically mapped to process concepts and then analyzed for compliance
with existing process models. To solve the problem, we propose a methodology
that, using a layered contract ontology, deduces contract requirements into a
high-level process description named Contract Workflow Model (CWM). By
applying a set of transformation rules, the CWM is then compared for compli-
ance with existing, executable process models. By the use of its concepts, the
methodology enables comprehensive identification and evolution of require-
ments for interoperability of processes of the contracting parties.

1 Introduction

The purpose of establishing a business contract is to agree upon the rules and regula-
tions governing interactions between the agreement partners. A contract testifies the
legal binding nature of an agreement, as well as the remedial options and rights
granted to the partners in case of any disagreement or dispute. Information contained
in a contract needs to be assimilated as knowledge, which may be analyzed and re-
used in the business process management.

The contract management domain has existed for some time as well as the business
process management. However, most available solutions such as Enterprise Resource
Planning (ERP), Customer Relationship Management (CRM) or other database appli-
cations for enterprise or contract management, have not managed to integrate the two
domains seamlessly. A business contract is like a master plan for expected business
behavior of the parties involved. Generally, it covers most contingencies and probable
scenarios for planned execution of the commitments the parties make to each other.
Thus, non-compliance to the contract terms could lead to legal, economic and busi-
ness repercussions. This means the actual business processes of the parties must fol-
low the rules established by a contract.

A successful contract is negotiated such that the terms are beneficial to all the par-
ties involved. The contract stipulates both implied and explicit obligations, which are
legal bindings, and need to be fulfilled as agreed. Therefore, a contract once negoti-

78 J. Zdravkovic and V. Kabilan

ated and signed cannot be forgotten. It needs to be realized by the business process.
To ensure interoperability of the partners’ business processes, it is necessary to have
ability to examine the compliance between the process models and the respective
contract requirements. Existing methodologies fail to bridge the chasm in between the
two domains.

In this work, we first present a detailed conceptual model for modeling contract
knowledge in a structured and layered form, named Multi Tier Contract Ontology.
Secondly, we analyze different types of contract obligations and we identify the
states through which each obligation passes through. Thirdly, based on the contract
ontology and obligation state classification, we deduce a high-level process model
named Contract Workflow Model (CWM). Lastly, by utilizing a structured process
design framework, we set up a comprehensive set of rules for examining the com-
pliance between CWM and existing executable business processes (or simply, busi-
ness processes). The use of the rules enables continuous traceability of alignment
between the contract obligations represented by a CWM, and a business
process.

The paper is structured as follows. Section 2 gives an overview of related research.
In Section 3 we first summarize our previous work on the Multi Tier Ontology; using
a case study based on the INCOTERMS delivery patterns, we then introduce the
methodology for deducing the Contract Workflow Model from the MTCO. In Section
4, by applying a comprehensive process design framework, we define the compliance
rules between the CWM and the business process. Finally, Section 5 concludes the
paper and gives suggestions for further research.

2 Related Research

Modeling of business contracts has been widely studied in the research community
[1], [2], [3], [4], [5]. We have considered and enhanced those approaches when defin-
ing our contract ontology (MTCO, [6]). We have modeled obligation states to capture
the information relevant to that obligation, as the fulfillment is being executed. Rela-
tionship between obligations, obligation states and performance events forms the
foundation for the proposed CWM methodology. Our identification of the different
obligation states is based on Yao-Hua Tan’s work in [4]. The SweetDeal project [7] is
closest to our MTCO and CWM in that they try to capture the semantics of different
contract scenarios.

Many efforts have been made toward realization of electronic contracts using proc-
esses [5], [8], [9], [10]. Our methodology differs in two ways. First, in contract mod-
eling, we focus on grasping the necessary semantic content irrespective of technology
used. Second, in contract realization, we aim for integrating contract models with
existing business processes rather then creating new process models. In that context
our works is closest to van der Aalst’s concept of workflow inheritance [11] used to
compare public and private processes. In contrast to that work, our contract process
model (CWM) comprises both public and private behavior; in addition, we compare
the CWM with existing (private) processes using a less-formal method than van der
Aalst, but more comprehensive.

 Enabling Business Process Interoperability Using Contract Workflow Models 79

3 Deducing the Contract Workflow Model (CWM) Using the
Multi-tier Contract Ontology (MTCO)

In this section we first summarize our previous work on the contract knowledge mod-
eling, in the form of a contract ontology named MTCO. Then we describe
INCOTERMS delivery patterns, which are later used in our Sale of Goods case study
for analyzing buyer’s and seller’s obligations. Based on the concepts of the MTCO,
we define the Contract Workflow Model for the INCOTERMS-based case study.

3.1 MTCO

We follow Daskalopulu et al [1] in their identification of the roles of the contractual
provisions. They prescribe certain behavior for the parties, under a set of conditions,
and for a certain period of time. Thereby, contracts specify procedures that need to be
followed. For example, the delivery terms inform the buyer regarding the time limit
by which he has to inform the seller regarding his transporter, or any change in venue
for the delivery, or delivery date etc.

We also follow [2] in their analysis of contracts from various perspectives such as:

A contract is an organized collection of concepts, obligations, permissions, entitlements,
etc. A contract has also been viewed as a collection of protocols that specify its opera-
tional aspects (how the business exchange is to be carried out in reality) or simply pa-
rameters (the parties, product, price, delivery quantity, delivery date).

The MTCO is a combination of the above aspects as has been presented in [6]. A
brief summary is presented below:

 The Upper Level Core Contract Ontology represents a general composition of a
contract, which may be applicable across most of the prevalent types of contracts.
The concepts defined here may be considered to be atomic blocks based on which
all other contract types may be defined. Fundamental concepts like role, consid-
eration, and obligation are defined here.

 The second layer is Specific Domain Level Contract Ontology or contract type
specific collection of several contract type ontologies. Each ontology represents a
specific contract type, such as Property Lease Rental, Employment Contract, Sale
of Goods, etc. Each contract type inherits all fundamental features of the upper
layer and thus specializes on the knowledge particular to that contract domain.

 The third layer, Template Level Contract Ontology consists of a collection of
templates such as definitions for contract models, such as the International Cham-
ber of Commerce’s contract model for International Sale of Goods [12].

In our approach, we model the life-cycle of the contractual obligations as they pass
through a set of states in response to identified performance events. For instance, an
obligation, such as the seller’s primary obligation to deliver, is inactive when the
contract is signed. It becomes active when the buyer sends a purchase order and the
seller accepts the order. Thereafter, the obligation becomes fulfillment triggered when
the seller packs and starts the delivery process. Once the buyer accepts and sends
notification of acceptance to the seller, the seller’s obligation to deliver may become
fulfilled. On the chance that the delivery is rejected and compensation is sought by the

80 J. Zdravkovic and V. Kabilan

buyer, then the seller’s primary obligation is pending while the reconciliatory obliga-
tion is now active. In case the buyer cancels the order then the seller’s obligation to
deliver becomes cancelled. This proposed classification of obligation states, is the key
concept for creating process-based contract choreography in the form of the Contract
Workflow Model.

In the next section we discuss the INCOTERMS delivery patterns, which are later
used in our Sale of Goods case study for analyzing the obligations and the expected
business behavior from the seller and the buyer respectively.

3.2 Case Study Scenario: INCOTERMS Delivery Patterns

Sale of Goods business contracts form the domain of interest for our knowledge mod-
els. Such legal contracts, pertaining to purchase and sale, cover a wide arena. We
chose a smaller domain of interest as a case study, to model our research goals on. We
chose to analyze and model the contractual knowledge from a recommended standard
of contract patterns ICC’s INCOTERMS [13]. INCOTERMS provide a set of interna-
tional rules for the interpretation of the most commonly used trade terms in foreign
trade.

INCOTERMS form only a part of the vast contractual knowledge contained in a
Sale of Goods contract, as recommended by ICC International Sale of Commercial
Goods. These are delivery terms agreed between the two parties involved in a sale of
goods business transaction. They are internationally accepted as standardized patterns
for delivery terms. In this paper, we propose the use of INCOTERMS as a horizontal
extension or an individual reusable ontology in the specific domain level of the
MTCO. Either the “delivery terms” of a Sale of Goods contract may refer to one of
the INCOTERMS standard codes, or the contracting parties may define their own, as
the established business practices.

The main INCOTERMS concepts are summarized below:

 Actor. Two or more parties who participate in the purchase and sale of goods.
 Obligation. An obligation is a promise or commitment made by one party to the

other, which is backed up by legal intent to fulfill and uphold the promise.
 Role. The part an actor plays in the specific contract (i.e. seller, buyer, etc.).
 Goods. Goods are legally defined as commodities or items of all types, expecting

services, which are involved in trade or commerce. Goods are characterized by a
description, technical specification, type of packaging required, type of cargo etc.

 Performance. Every obligation is expected to be fulfilled through the execution
of some business, economic or legal action. This expected business behavior is
termed as performance.

 Delivery Terms. Delivery terms are agreed terms and conditions, which govern
the actual process of delivery of goods between the seller and the buyer.

 Packaging. In most cases the parties know beforehand which type of packaging is
required for the safe carriage of the goods to the destination. As the seller's obliga-
tion to pack the goods may vary depending upon the type and duration of the
transport, it has been stipulated that the seller is obliged to pack the goods in the
way it is required for the transport.

 Inspection of Goods. In many cases the buyer may be advised to arrange for the
inspection of goods before, or at the time the goods are handed over by the seller.

 Enabling Business Process Interoperability Using Contract Workflow Models 81

 Payment Terms. In relation with delivery terms, Sale of Goods includes payment
terms, which are expected in exchange for the goods delivered. Though the
INCOTERMS does not go into specific details for the payment terms, the obliga-
tion and the performances are outlined.

In order to specify the obligations, roles and responsibilities of different delivery
protocols, the INCOTERMS have been grouped in four different categories. In our
study we will use the term Ex Works, whereby the seller makes the goods available to
the Buyer at the seller's own premises, to bring the goods to the country of destina-
tion. In Table 1 below, we present a summary Ex Works, in order to elucidate the
nature and type of obligations that are present in any such delivery term. In the next
section, we base a sample contract example (provided in Annexure A) on the Ex
Works obligations from Table 1, and thereafter, we deduce a process-based contract
choreography in the form of the Contract Workflow Model.

Table 1. Extract of distribution of obligations in Ex Works delivery terms

Obligation Seller Buyer

Provision of goods
and Comm. Invoice

Yes No

Delivery Place the goods at the named place of deliv-
ery on the date or within the period stipu-
lated.

Take delivery as soon
as they have been
placed at his disposal.

Payment of price None Pay the price as pro-
vided in the contract.

Notice to the buyer Give notice as to when and where the goods
shall be placed at the buyer’s disposal.

Not applicable

Packaging, marking Provide at his own cost packaging as it is
required by the circumstances relating to the
mode of transport, destination etc. Packag-
ing is to be appropriately marked.

Providing the transport
modalities and inform-
ing the seller of the
required packaging.

Inspection of goods None Pay the shipment
inspection and inspec-
tion mandated by the
country of exportation.

3.3 Contract Workflow Model for the INCOTERMS Case Study

As we have explained in Section 3.1, the Multi Tier Contract Ontology defines the
states the contract obligations may pass, and based on them, a set of performance
events that initiate transitions of those states. The expected flow of the performance
events (i.e. business actions [14]) is then modeled as a Contract Workflow Model. In
[15] we have defined the CWM as:

A partial choreography of performance events for each of the parties concerned as
deduced from the perspective of the governing business contract and is an indicative
model for the contract compliant business process model.

82 J. Zdravkovic and V. Kabilan

Following this, below we outline the procedure for obtaining a CWM from a con-
tract:

- The contract document is analyzed to extract the data contained in it.
- The extracted data are compared and matched to the specified meta-data concepts

as established in the Multi Tier Contract Ontology. The two steps are repeated it-
eratively to obtain all the concepts and their instances in the contract.

- From the identified contract type ontology (in this study – INCOTERMS), the
common obligations and their performances, defined or suggested, are considered.
Added to the specific information from the contract instance, the list of all stipu-
lated obligations and the required or inferred performance events is obtained.

By applying the outlined procedure to our Sale of Goods contract instance (provided
in Annexure A), which is based on the Ex Works/INCOTERMS, we sort out the list
of the contract obligations and associated performance events (Table 2):

Table 2. Partial list of obligations and deduced performance events from the contract sample

Obligation Possible list of Performance Events

Deliver goods
(implied from Ex Works)

Take order (implied from the contract)

Arrange carrier (implied from the contract)

Deliver at the agreed place for point of destination
(implied from Ex Works)
Notify buyer on delivery (implied from the contract)

Obligation to deliver

Compensate rejected delivery (implied from the contract)

Pack goods (implied from Ex Works) Obligation to package

Mark goods (implied from Ex Works)
Inspect Goods (implied from Ex Works)

Notify seller of any discrepancy and demand remedy
(implied from the contract)

Obligation to Pay

Pay for goods (implied from Ex Works)

The identified obligations and the performance events are further grouped accord-
ing to the actor performing them. In our case study, the information on responsibilities
for the obligations is identified from the list of distribution of obligations in Ex Works
delivery terms (Table 1) and the contract example (Annexure A).

As we explained in the previous section, the contractual obligations pass through a
set of states in response to the identified performance events. Following this, the per-
formance events from Table 2 are ordered in a time-based sequence according to the
life-cycles of the identified obligations. For instance, the seller’s obligation to deliver
is changed from the inactive state (when the contract is signed) to the active state
when the seller takes (receives) the order from the Buyer; the obligation changes to
the fulfillment-triggered state when the goods are to be packed and when the carrier is
arranged. By continuing in this way, all identified performance events are ordered in a
common, process-based, contract choreography.

 Enabling Business Process Interoperability Using Contract Workflow Models 83

In order to obtain a “valid” process model, the obtained choreography is then trans-
formed to a Business Process Modeling Notion model [17]. The BPMN is an expres-
sive, graphical process modeling notation, easy understandable by process modelers.
In [16], we have defined the core mapping patterns between the concepts of the CWM
and the BPMN:

- The performance event to the BPMN sub-process,
- The obligation states to the BPMN events,
- The choreography of performance events to the BPMN sequence flow,
- The simultaneous processing of two or more performance events to the BPMN

AND gateway,
- The exclusive processing of performance events to the BPMN XOR gateway, etc.

Following the patterns, we have deduced the CWM for our Sale of Goods example to
the BPMN form (Figure 1):

Fig. 1. The Contract Workflow Model of the buyer and the seller represented as a BPMN high-
level process

The CWM in Figure 1 is, by the previously described procedure, partitioned on a
per-actor basis. The performance events from Table 2 are presented as sub-processes,
which are triggered by obligation state changes (represented as message-based events
in Figure 1). In this way formalized, the CWM forms a high-level business process
model, which complies with the agreed contractual terms and conditions. In such way
conceptualized, the CWM is used for comparison with existing business processes.

84 J. Zdravkovic and V. Kabilan

4 Compliance Between CWM and Existing Business Processes

In the B2B context, the CWM specifies the agreed contract patterns in the form of a
process. As defined the previous section, the CWM represents both the interaction
and coordination flow. In terms of interaction, the CWM specifies the protocol for the
public message exchange. In terms of coordination, the CWM specifies the flow of
business activities. A CWM differs from a business process in the way that it defines
the flow of high-level activities. For that reason, the CWM of the seller presented as a
BPMN model in Figure 1, may be considered as a partial and high-level specification
of seller’s business process.

 As shown in the previous section, the BPMN technique allows for visualized
process modeling. A business process, designed as a BPMN model may be further
converted to a BPEL4WS specification [18], using a set of mapping formalisms. In
contrast to the language format of a BPEL4WS process specification, a BPMN model
enables designer to intuitively and easily capture various aspects of process design.

In the following, we define a process design framework to provide a basis for a
systematical examination of compliance between a CWM and a business process,
both given in the form of BPMN models. By following the framework, we identify
compliance rules when mapping CWM to business processes. The total set of rules
covers the transformations that may be applied during the assessment of compliance
between a CWM and a business process.

4.1 Process Design Framework

In this section we introduce a conceptual framework to classify different aspects that
constitute design of a BPMN process. The framework is based on the modelling as-
pects of workflows, as proposed in [19], [20].

The functional aspect considers the activities of a process. Functionality of each
activity is determined by three elements: the activity name which describes the result
to be fulfilled, exchanged messages, and input and output constraints, i.e. pre-
conditions and post-conditions. In the BPMN, activities can be non-atomic, such as
sub-processes, or atomic, such as tasks.

The behavioural aspect depicts the control flow of a process. For specification of
dependencies and coordination rules among activities, process models rely on a set of
basic control flow constructs: sequence, parallel execution (AND), conditional
branching (OR/XOR) and looping. In addition, activities may be triggered by events,
which are signalled by internal or external occurrences. In the BPMN semantics, the
normal flow is used to model the basic sequence, while gateways are used to model
AND, OR/XOR controls, and loops. Activities might be triggered by three types of
events: start, end or intermediate. The BPMN includes the events that affect the se-
quence or timing of activities of a process. Events are categorized as Start, End, or
Intermediate (may be time-, message, cancel-, rule- or error-based).

The informational aspect of concerns the information concepts needed for repre-
senting process instance data. In a process specification, instance data are represented
using internal process attributes upon which flow rules are set and controlled, and
with the information that the process exchanges with the external environment in the
form of messages (and documents). In the BPMN, the internal data are stored as the

 Enabling Business Process Interoperability Using Contract Workflow Models 85

properties of a process, message flows indicate information to be exchanged between
two entities, while data objects are used to depict documents attached to messages
without any information on their content and structure.

The organizational aspect concerns the distribution of responsibility for executing
activities of a process. This responsibility is assigned to business roles such as seller
or buyer. By using roles it is possible to dedicate and control responsibilities of par-
ticipants engaged in a process. The BPMN uses pools to represent process participants
(i.e. business roles).

The transactional aspect manages consistent execution of a set of activities. As
process activities may have short or long duration, process transactions comply with
two different models. The atomic transaction model [21] governs shorter activities,
that all agree to enforce a single visible result by two-phase commit. The long-
running transaction model [22] administers more durable activities, where each activ-
ity imposes a globally visible outcome independently of the others; when an activity
fails, the parent transaction rolls back to a consistent process state by compensating
activities that had successfully completed. In the BPMN, a transaction is one mean to
ensure the consistent process states by forcing all activities involved to complete or to
be cancelled by following one of the two transactional models. Another way is to
define custom error-handling that will lead the process to specified consistent states.

Fig. 2. The five-aspect framework used for examination of compliance between CWM and
business processes

By following the described framework, in the next section we define rules for
compliance between CWM and business processes, for each process design aspect.

4.2 Compliance Rules Between CWM and Business Processes

To ensure contract obligations are to be fulfilled in the execution phase, the CWM
and the business process need to be compliant. This means that, when enacting a
contract, for a business process to be compliant with a CWM, the process must trace
the states of the CWM. That ensures that from the CWM view, all obligation states
might be monitored. As described in the previous section, five aspects constitute de-
sign of a BPMN process; this means that every state in the process comprises the
current status of each of the design aspects. To support a CWM, a business process
must be thus compliant with the CWM in all five design aspects.

Functional

Behavioural

Informational

Organizational

Transactional

CWM Business Process

86 J. Zdravkovic and V. Kabilan

Functional Aspect. The CWM models functionality at the level of sub-processes,
while the business process does it on the task level. When comparing the CWM with
the business process from the functional perspective, we investigate whether activities
in the business process are compliant with the CWM activities, with respect to their
results, message exchange, and/or imposed pre- and post-conditions. Following this,
the functional aspect of a business process will be compliant with a CWM, if the
design of the business process satisfies the following rules:

 Result/Messages. One or more activities in the business process correspond to one
activity in the CWM, where the process activities jointly provide the same result
and exchange the same messages as the CWM activity. This ensures that the busi-
ness process can trace the messages and the results of activities in the CWM.

 Constraints. The pre-conditions of the activities in the business process must be
same or weaker than in the CWM, while post-conditions must be same or
stronger. This ensures that the constraints of the activities, as defined in the CWM,
are supported in the business process.

To illustrate compliance of the functional aspect, we consider the CWM of the seller in
the example from Figure 1, and an excerpt of the seller’s business process (due to space
limitations we cannot depict the whole business process). The contract implies (Figure
3a) that goods are to be packed by executing the activity “Package goods” with the post-
condition that packaging must be done according to a given specification. In the busi-
ness process, packaging of goods is designed as shown in Figure 3b.

Package Goods

Post-condition: goods
 are packed according

to the specification

(a) (b)

Get packaging
specification

Get packaging
material Packaging

ER
P

Post-condition: goods are packed
according to the specification

com
pliance

Fig. 3. Packaging of goods – in the CWM (a) and in the business process (b). The models are
compliant by the result/message and the constraints rules.

In this case, the result/messages rule is satisfied, because the joint result of the
three activities in the business process corresponds to the result of the CWM activity
and the message exchange is equivalent (since none of the business process activities
exchange the external messages). The constraints rule is also satisfied, because the
post-condition of the last activity in the business process is equivalent to the post-
condition of the activity in the CWM.

Behavioural Aspect. When investigating the behavioural aspect, the control flow in
the business process must be compliant with the flow of activities in the CWM. It
means that the business process must be able to trace all the control flow states from
the CWM. This implies that the behaviour of a business process will be compliant
with the behaviour of a CWM, if the business process fulfils the following rules:

 Enabling Business Process Interoperability Using Contract Workflow Models 87

 Ordering. In the business process, ordering of activities must be the same or
stronger than in the CWM. This means, for instance, that the parallel flow in a
CWM is compliant with both parallel and sequence flow in a corresponding busi-
ness process.

 Branching. In the business process, branching must be designed such that every
branching condition in the CWM has a corresponding branching condition in the
business process. This means the business process may also specify additional
conditional branches.

 Events. Events, as specified in the CWM, must exist in the business process. An
exception of this rule is mapping of message-based events defined in a CWM, which
denote interaction points between the partners; those events may be modelled in a
corresponding business process either as events or as “receive” tasks, because both
elements model an equivalent behaviour from the BPMN view.

An example of the event and branching rules is given in Figure 4. In the seller’s
CWM, the event that captures the buyer’s cancellation notification (Figure 4a), and
the activity “Receive cancellation request” in the business process (Figure 4b), model
the equivalent actions. As for the branching rule, the CWM includes two branches to
model possible flows upon receiving a request for cancellation, while the business
process includes an additional branch that examines the number of days passed from
the receipt of order. The compliance between the CWM and the business process
holds, because in the business process, the value for the number of days may be set
high enough so that the task “Send request for penalty” is never triggered.

Fig. 4. Processing order cancellation - in the CWM (a) and in the business process (b). The
models are compliant by the event and the branching rules.

Informational Aspect. Regarding the internal process data, the CWM includes the
information upon which contract flow rules are controlled (such as buyer’s address,
timeframes for order cancellation, etc.). Regarding data exchanged with the external
environment, as explained at the end of Section 3.3, the CWM indicates only the
messages that are to be exchanged (and not contained documents). Following this, the
informational aspect of a business process will be compliant with a CWM, if the busi-
ness process satisfies the following rule:

 Information concept. The business process must include at least the information
concepts included in the CWM. This means the business process must provide re-
quired messages, and support required internal process data. The business process
may support additional informal concepts not required by the CWM, in the form
of messages or internal process attributes.

88 J. Zdravkovic and V. Kabilan

As an illustration, in the example in Figure 1, the CWM specifies a timed-dependent
condition expression (10 days) for the notification of the reject of goods, where the
number of days is hold as the internal data. In Figure 5, it may be seen that the busi-
ness process supports the required time attribute, which means that the rule for the
inclusion of the information concept is satisfied.

Transactional Aspect. By following the contract terms, a CWM specifies what are to
be considered the consistent process states. For instance, a customer may agree with a
travel agency that it is obliged to confirm booking of both a flight and a hotel, or if
this is not possible, to notify the customer on inability to perform the bookings. The
consistent states of the corresponding CWM are, therefore, those when both bookings
are done, or none of them. This implies that a business process, in order to be compli-
ant in the transactional aspect with a CWM, must satisfy the following rule:

 Consistent states. The business process must support either an adequate transac-
tional model (i.e. atomic or long-running) or a “custom” error-handling flow of ac-
tivities which lead to the same consistent process states as defined in the CWM.

For instance (Figure 1), when the seller receives the “Goods rejected notification” the
CWM specifies a compensation sub-process to be started (if the notification is sent
less than 10 days after delivery). In the business process (Figure 5), the compensation
procedure is implemented as a long-running transaction. However, as the consistent
states are equivalent (i.e. both processes are revised to the state before packaging of
goods), it means the business process is complaint with the CWM.

Bu
ye

r

Ca
rri

er

Fig. 5. Reject of goods in the business process; the procedure is compliant with the reject of
goods in the CWM in Figure 1, by information concept and the consistent states rules

Organizational Aspect. In the CWM, the organizational aspect is represented at the
level of the contracting parties, while in the business process activities are associated
with the parties that actually perform those activities. The organizational aspect as
defined in a business process will, therefore, be compliant with a CWM, if the follow-
ing rule is fulfilled:

 Role. The activities in the business process must be under supervision of the party
that is responsible for the corresponding business activities in the CWM.

In the example in Figure 1, it is the seller who is responsible (on the buyer’s request, as
specified in the contract sample in Annexure A), to deliver the goods to a point specified

 Enabling Business Process Interoperability Using Contract Workflow Models 89

in the contract (Figure 6a). In the business process, as we see it in Figure 6b, the seller
contacts a transport company (the carrier) to arrange the delivery. However, as the
activities of the carrier are under the supervision of the seller’s process, from the buyer
perspective, the contract terms are fulfilled. In contrast, if the seller process might not
support management of the delivery, such as when the seller cannot himself provide the
delivery, or when it cannot supervise the delivery (as there is no communication be-
tween the seller and the carrier), the contract terms cannot be fulfilled.

4.3 Compliance Assessment

The transformation rules stated in the previous section give the possibility to assess
the compliance between a CWM and a business process. The assessment requires
examination of all five design aspects in order to discern whether a business process
conforms to a CWM. In the following, we describe the main steps for assessing the
compliance between a CWM a business process:

- Examining the functional aspect, the activities in the CWM are mapped to activi-
ties in the business process, by following the result/messages rule. This means that
a sub-process from the CWM will be mapped to one or more tasks in the business
process. At the end of the procedure, non-mapped CWM sub-processes, if such
exist, are denoted. The pre- and post-conditions of every mapped sub-processes in
the CWM are further controlled against the conditions of the tasks in the business
process, by following the constraints rule. Those sub-processes which do not com-
ply with the rule are denoted.

- The transactional aspect is examined by locating the transactions and/or error-
handling sub-processes in the CWM. By following the consistent states rule de-
scribed in the previous section, the located elements in the CWM are compared for
the compliance with the business process. If they do not lead to the same consistent
process states, the CWM elements are denoted.

- For the behavioural aspect, first the business process tasks that are mapped by the
CWM sub-processes in two previous phases are enclosed in those sub-processes.
The rest of the tasks in the business process are, if possible, “hidden” by being la-
belled as silent (i.e. not considered in the process flow [23]):
a. All tasks that model internal business behaviour (such as “verify order”, “make

goods”, etc.) could be denoted as silent, as they are neither regarded by the
contract nor by the public interactions.

b. The tasks that model public interaction (such as “send order acknowledge to
the buyer”) are hidden from the process behaviour if they conform to the pro-
tocol inheritance notion [11].

As an illustration of the hiding principle we consider the example in Figure 6.
The business process task “Send notification on shipment” models an interaction
not specified by the contract. However, by following the notion of the protocol
inheritance, the execution of a task in the sequence flow may be hidden by dis-
regarding it (in the contrast, it would not be possible to hide a task if it follows
an implicit XOR gateway, as it might prevent the execution of the other task in
the gateway).

90 J. Zdravkovic and V. Kabilan

Deliver Goods

Bu
ye

r

(a) (b)

Send request for
shipment/Receive

notification

Send notification
on delivery

C
ar

rie
r

Bu
ye

r

Notification
on delivery

Se
lle

r

Se
lle

r

Send notification
on shipment

Receive
notification on

delivery

Fig. 6. Deliver goods in the CWM (a); hiding redundant activities in the business process (b)

The compliance of events and gateways between the CWM and the business proc-
ess is examined by applying the event and branching rules. Those elements that
are coupled are labelled equally.
If after the described steps all tasks are hidden, and all events and gateways are la-
belled, the CWM and the business process are compared for the flow equivalence
using the branching bissimulation1 algorithm; if, not the conflicting tasks, events
and/or gateways are denoted.

- The realisation of informational aspect is examined by applying the information
concept rule. The compliance of the messages is examined when the re-
sult/messages rule of the functional aspect is investigated. The internal CWM in-
formation concepts are compared for matching with those in the business process,
by comparing the BPMN property elements. If some information concept from the
CWM is not included in the business process, it is denoted.

- For the organisational aspect, it is examined if the roles (represented with pools)
that supervise the compliant sub-processes in the CWM and in the business proc-
ess are same, by following the role rule. The CWM roles that might not be
matched are denoted.

The described procedure has the purpose to guide the process designer through the
assessment of compliance between a CWM and a business process. During the as-
sessment, each of the design aspects is examined. If all design aspects all compliant, it
means the CWM may be realised with the existing business process. If not, the non-
matched CWM elements are used as a guideline on how the business process should
be changed. This means that the proposed methodology may be used in the way that
the found non-compliances form a knowledge base of the elements and logic required
for the process evolution (such as which activities must be added or removed; in what
way the control flow should be changed; what information concepts are missing, etc.).
This is especially important for tracing the “un-happy” CWM paths (i.e. exceptions,
cancellations, etc.), as in the most of cases those are not supported by existing busi-
ness processes due to lack of knowledge.

1 The relation of branching bissimilarity may be used to compare observable behavior of two

state-based process models, as it allows abstracting from the non-observable behavior, i.e.
silent transitions. For more details, the reader is referred to [24] and [23].

 Enabling Business Process Interoperability Using Contract Workflow Models 91

5 Conclusion and Future Work

In this paper, we have proposed a methodology for transforming contract require-
ments to concepts of processes and comparing them for compliance with existing
executable business process models. Our main aim was to define an approach for
bridging the contract and process domains in a comprehensive and realistic manner.
To achieve that, in the contract domain, we aimed for concepts that might grasp broad
contract options; in the process domain, we strived for comprising the aspects that
constitute process design. We believe that our methodology, with its concepts, sub-
sumes the following issues:

− Mapping of contract requirements to process concepts. The utilization of the
Multi Tier Contract Ontology as a framework for modeling contract knowledge
enables identification of the states through which contract obligations are passing.
By composing those states in a time-based sequence, the contract choreography
(namely, the Contract Workflow Model) is obtained in the form of a high-level
BPMN process model.

− Traceability of contract requirements. By using the framework based on five
main aspects that constitute process design, a set of compliance rules between the
Contract Workflow Model and low-level (i.e. executable) business process models
is defined. Those rules are used to, on the per-aspect basis, examine compliance of
an existing business process with the CWM. In this way, traceability between con-
tract terms and conditions, and existing business processes is enabled.

− Process interoperability. By assessing compliance of the partners’ business proc-
esses with the corresponding Contract Workflow Models, it is determined whether
those processes may realize the required contract requirements, i.e. whether they
are interoperable on the level of the rules implied from the contract. In case a proc-
ess is not compliant with a respective CWM, the results from the assessment might
be used as a guideline for needed changes of the process, for each of five design
aspects.

A subject for further work is contract monitoring. Though we have not focused on
that aspect in this paper, the identified mappings between the CWM and the business
process can be used for monitoring the commitment fulfillment and performance
analysis after each contract execution. Another subject for further research is to, by
considering the suggested set of compliance rules, conceptualize the used process
design framework in the form of a process ontology, and as such, employ it as a basis
when comparing the CWM with the existing business process.

References

1. Daskalopulu, A., Sergot, M.: The Representation of Legal Contracts. AI and Society Vol.
11, Nr 1&2. Springer-Verlag (1997)

2. Griffel, M., et al.: Electronic Contracting with COSMOS - How to Establish, Negotiate
and Execute Electronic Contracts on the Internet. Proceedings of the Int. Workshop EDOC
'98, San Diego 1998

3. Lee, R.: Toward Open Electronic Contracting. The International Journal of Electronic
Markets, Vol. 8, Nr 3 (1998)

92 J. Zdravkovic and V. Kabilan

4. Tan, Y. H., Thoen, W.: A Logical Model of Directed Obligations and Permissions to Sup-
port Electronic Contracting. The International Journal of Electronic Markets, Vol. 10, Nr
1 (2000)

5. Karlapalem, K., Dani, A., Krishna, R.: A Framework for Modeling Electronic Contracts;
International Conference on E-R Modeling (ER 2001). LNCS 2224 pp 193 – 207

6. Kabilan, V. Johannesson, P. Rugaimukammu, D. Business Contract Obligation Monitor-
ing through use of Multi-Tier Contract Ontology. Proceedings of Workshop on Regulatory
Ontologies (Worm CoRe 2003), November 2003, Italy. Springer-Verlag 2003 LNCS
2889, pp 690-702

7. Grosof B., Poon T.: SweetDeal: Representing Agent Contracts with exception using XML
rules, Ontologies and process descriptions. Proceedings of the 12th International World
Wide Web Conference (WWW2003), Budapest, Hungary. ACM (2003)

8. Alonso, G., et al.: WISE: Business-to-Busibness E-Commerce. Proceedings of 9th Interna-
tional Workshop on Research Issues and Data Engineering, Sidney, Australia. IEEE Com-
puter Society (1999)

9. Grefen, P. et al.: CrossFlow: Cross-organizational Workflow Management in Dynamic
Virtual Enterprises. International Journal of Computer Systems, Vol. 15., No. 5, (2000)

10. Angelov, S., Grefen, P.: Support for B2B E-Contracting – The Process Perspective. 5th Int.
Conf. on Information Technology for Balanced Automation Systems in Manufacturing and
Services (BASYS'02), Mexico. IFIP Conference Proceedings 229. Kluwer (2002)

11. Aalst, W. M. P. van der: Inheritance of Interorganizational Workflows to Enable Business-
to-Business E-commerce. Electronic Commerce Research Vol. 2, Nr 3. Springer-Verlag
(2002)

12. ICC International contract for sale of goods, published by ICC books, 2002
13. Ramberg, J.: ICC Guide to INCOTERMS 2000. Understanding and Practical Use; Interna-

tional Chamber of Commerce (2000)
14. IEEE’s Suggested Upper Merged Ontology, http://suo.ieee.org
15. Kabilan V, Zdravkovic J, Johannesson P. Use of Multi-Tier Contract Ontology to deduce

Contract Workflow Models for Enterprise Interoperability. Proceedings of 2nd INTEROP-
EMOI open workshop on Enterprise Models and Interoperability collocated with CAISE
2005, Porto

16. Kabilan V. Contract Workflow Model Patterns Using BPMN. Proceedings of the 10th In-
ternational Workshop on Exploring Modeling Methods in Systems Analysis and Design
(EMMSAD 05), co located with Caise 2005, Porto.

17. White, S.: Business Process Modeling Notation, version 1.0, Business Management Initia-
tive, May 2004; http://www.bpmi.org

18. BEA, IBM, Microsoft, SAP and Siebel. Business Process Execution Language for Web
Services (BPEL). http://www-106.ibm.com/developerworks/library/ws-bpel/, June 9 2004.

19. Jablonski, S. A Software Architecture for Workflow Management Systems. Proceedings of
the Ninth International Workshop on Database and Expert Systems Applications
(DEXA’98) (Vienna, Austria, August 1998). IEEE Computer Society, 1998, 739-744

20. Rausch-Scott, S. TriGSflow – Workflow Management Based on Active Object-Oriented
Database Systems and Extended Transaction Mechanisms. PhD Thesis, Univ. at Linz,
1997

21. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Data-
base Systems. Addison-Wesley, 1987

22. Garcia-Molina, H. Modeling Long-Running Activities as Nested Sagas. IEEE Data Engi-
neering Bulletin, 14, 1, 1991, 14–18

 Enabling Business Process Interoperability Using Contract Workflow Models 93

23. Aalst, W. M. P. van der, Basten, T.: Inheritance in Workflows. An Approach to Tackling
Problems Related to Change. In: Theoretical Computer Science, Vol. 270(1-2). (2002)
125-203

24. Groote J. F., Vaandrager F.: An Efficient Algorithm for Branching Bisimulation and Stut-
tering Equivalence. In: Proceedings 17th ICALP. Lecture Notes in Computer Science Vol.
443. Springer-Verlag, (1990) 626-638

ANNEXURE A: Sample Sale Contract Model

CONTRACT FOR SALE OF GOODS
Agreement made and entered into this [12th Jan 2005], by and between [ABC Computers
Incorporated Ltd], of [Österogatan 17, Kista, Sweden], herein referred to as "Seller", and
[Financial Movers AB], of [Strandvägen 2,Stockholm, Sweden], herein referred to as "Buyer".

1. Seller hereby agrees to transfer and deliver to buyer, within 30 days from the date of order
receipt, the following goods: DELL PC Dimension 4550, Intel Pentium 4 processor, 333
MHz DDR SDRAM desktops conforming to the technical specifications. Product details
specified separately.

2. Buyer agrees to accept the goods and pay for them in accordance with the terms of the
contract.

3. Buyer and Seller agree that identification shall not be deemed to have been made until both
parties have agreed that the goods in question are to be appropriated and fulfil the require-
ments of performance of said contract with the buyer.

4. Delivery shall be in accordance to standard INCOTERMS “EX-Works”. However, upon
buyer’s request, the seller is obliged to make the necessary arrangements for transportation
and all costs pertaining to that shall be borne by the buyer.

5. Buyer agrees to pay for the goods at the time they are delivered and at the place where he
receives said goods.

6. Goods shall be deemed received by buyer when delivered to address of buyer as herein
described.

7. Until such time as said buyer has received goods, all risk of loss from any casualty to said
goods shall be on seller.

8. Seller warrants that the goods are free from any security interest or encumbrance, that they
shall be free from it at the time of delivery, and that he neither knows nor has reason to
know of any outstanding title or claim of title hostile to his rights in the goods.

9. Buyer has the right to examine the goods on arrival and has 10 days to notify seller of any
claim for damages on account of the condition or quality of the goods. His failure to either
notice seller or to set forth specifically the basis of his claim will constitute irrevocable ac-
ceptance of the goods.

10. This agreement has been executed in duplicate, whereby both Buyer and Seller have re-
tained one copy each, on [12th Jan 2005].

Resource-Centric Worklist Visualisation

Ross Brown1 and Hye-young Paik2

1 Faculty of Information Technology,
Queensland University of Technology, Brisbane, Australia

2 School of Computer Science and Engineering,
University of New South Wales, Sydney, Australia
r.brown@qut.edu.au, hpaik@cse.unsw.edu.au

Abstract. Business process management, and in particular workflow
management, are a major area of ICT research. At present no coherent
approach has been developed to address the problem of workflow visual-
isation to aid workers in the process of task prioritisation. In this paper
we describe the development of a new, coherent approach to worklist
visualisation, via analysis and development of a resource-centric view of
the worklist information. We then derive appropriate visualisations for
worklists and the relevant resources to aid worker in decision making. A
worklist visualisation system has been implemented as an extension to an
open-source workflow system, YAWL (Yet Another Workflow Language).

1 Introduction

Visualisation techniques offer powerful tools for understanding data and pro-
cesses within complex systems. However, visualisation in the area of Business
Process Management (BPM), and in particular workflow management systems
lags behind the state of the art in other areas such as medicine, engineering and
mining [1]. A recent Gartner’s report suggests that many business organisations
consider BPM to be a fundamental driver of business innovation. This is demon-
strated by the large amount of money and expert resources invested in business
process modelling, analysis and roll-out of the models. Workflow Management
Systems (WfMS) play a vital role in BPM in that the business process models
are implemented and executed through a WfMS, which routes and dispatches
the tasks defined in a model to the individual workers1. The result of “routing”
tasks is presented to the workers as a worklist. A worklist can be understood as
a “to-do” list of tasks that the workers need to carry out in order to complete
the process defined by the model.

The success of business process models depends on communicating them
to the model consumers effectively. However, modern workflow systems have
largely overlooked the needs of the workers of understanding their given tasks
in the manner that would help manage them efficiently. For example, it is quite
common that the workers would have questions such as “how urgent is this
1 The workers are the “consumers” of the model who will carry out the tasks. In this

paper, we use the terms “workers” and “model consumers” interchangeably.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 94–111, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Resource-Centric Worklist Visualisation 95

task?”, “who else can do the task?”, “where do you have to go to carry out the
task? (eg., where is this meeting room B809)”, “do I have enough resources?
(eg., are there enough chairs for 20 people in the meeting room B809)”, etc.

A typical representation of a worklist includes a list of tasks with short textual
descriptions, and/or attachments (eg., email, document forms, etc). It, however,
does not include any support (context) information about the tasks that may
assist the worker in planning the tasks. At any point in time, a given worker may
be involved in many workflows and may thus be presented with a large to-do
list. The worker needs to have available tools to help them decide which would
be the “best” task to undertake next.

We believe that visualisation techniques can be applied to many areas of BPM
due to their previous use in application domains that support decision making
processes. In decision support systems, information is typically provided to enable
the user to be adequately informed to the direction to be taken for a particular
scenario. This applies to all levels of business systems, and to BPM as a whole.

For the purpose of this paper, we limit the scope of the work to the area of
workflow management, in particular, managing worklists. We apply a visualisa-
tion technique to provide workers with information about the context of a task, in
order to improve their understanding of the process models and the communica-
tion of such models between the model designers and the consumers. The visual
information is designed to help workers make decisions in managing worklists (eg.,
accepting, postponing, delegating, or rejecting tasks).

In this paper, we propose a generic visualisation framework that is used to
provide support (context) information about the tasks in a worklist. Our contri-
butions are three folds:

– An analysis of the decision making process in managing workflow tasks, espe-
cially in relation to the resources available to the worker

– A novel and generic visualisation technique for worklists
– The implementation of the framework as a proof of concept

The rest of the paper is organised as follows: Section 2 investigates the state of
the art in worklist visualisation. Section 3 details the development of a resource
centric approach to the management of worklists. Section 4 explains the mapping
of important worklist resources to appropriate visualisation techniques to aid the
process of task selection by workers. Section 5 describes the general approach to
using these visualisations in workflow systems. Section 6 details the implemen-
tation of a visualisation system incorporated into a workflow system. The paper
then concludes with a discussion of future work.

2 Related Work

Computerised data visualisation is a broad field that has its beginning in picto-
rial representations used in pre information technology timesr [2]. Today it has
developed to the point of being one of the main areas of application for computer
graphics, and is a powerful tool for the analysis and presentation of data [1]. Many

96 R. Brown and H.-y. Paik

areas in science and mathematics have benefited from the exploitation of modern
computing power in data exploration. Business experts are now using advanced
computerised visualisations to analyse multi-dimensional business data and pro-
cesses. We believe that there is a very good opportunity to apply these leading edge
techniques to the visualisation of business processes models and their execution.

The present state of play for the visualisation of BPM systems uses process
state tables [3], simple icon based 2D visualisations [4] and more complex 2D vi-
sualisations [5]. Some have explored the use of 3D extensions to 2D diagrams [6]
to 3D representations using such techniques as Cone Trees [7] to full virtual real-
ity implementations for distributed interaction with detailed process models [8].
Some used abstract representations such as Self-Organising Maps (SOM) [9].

A body of research has been carried out into visualisation of business process
data and is collectively known as BizViz (Business Visualisation) [10,11,12]. Bizviz
consists of the visualisation of data alone, and not business process information.
At present, it is ad hoc in nature, without a rigorous assessment of a number of
the following factors: potential valid visualisation techniques from other fields and
business requirements for such visualisations.

While there has been evidence of research into user requirements for business
process modelling [13,5], much work still remains with regards to the following:

– Data gathering for requirements analysis, the current research is often tied to
software implementations which restrict creative solutions;

– No real evidence of systematic analysis of sophisticated 2D and 3D visualisa-
tion techniques for use in complex business process models;

– Abstract representational techniques are often ignored despite their power in
representing multi-dimensional data that occurs in business systems;

– Application domain information is not factored into the representations;
– No assessment of visualisation effectiveness via real case studies.

What is needed is a thorough data gathering-based analysis of user require-
ments for the visualisation of business processes, and the analysis of the many
2D/3D techniques and visualisation wisdom for such representations. In particu-
lar, the area of concurrent process visualisation [14] is expected to provide many
useful visualisation techniques. Furthermore, there is a need to provide an ap-
proach to visualisation of business processes that accounts for domain specific fac-
tors in their representations. Such a visualisation approach needs to allow for both
the designers [15] and the users of the business process model [3,13], as both these
people have different requirements for visualisations, with regards to design, anal-
ysis, and usage tasks.

What these other workflow visualisation techniques lack is a focus on support-
ing information to assist the worker in managing the tasks in a worklist. Each of
the techniques provides a presentation of the worklist that is rudimentary in na-
ture, lacking any support information for the main task required by a workflow
system; deciding to accept, delegate, suspend a presented task. We believe this
should be the main reason for such workflow visualisations, and that an analysis
of this choice process and derivation of appropriate visualisation techniques is re-
quired to support this process. Analysis of such requirement is best taken from

Resource-Centric Worklist Visualisation 97

a resource oriented point of view [16], as the available resources in an organisa-
tion control the acceptance or rejection of the task2 into the active worklist of the
worker. We now proceed to analyse this worklist management problem from a re-
source perspective, in order to derive appropriate worklist visualisations.

3 Resource-Centric Views of Worklists

In this section, we introduce a notion of resource-centric views for worklists. It
should be noted that we use the term resources specifically to refer to any work
environment element or context that may be considered when workers make de-
cisions in managing their tasks.

3.1 Example Scenarios

To illustrate our concept, we use the following two simple workflows as running
examples throughout the paper3. The first case represents a process given to a
university student who needs to obtain proper access to the university facilities.
According to Fig. 1, the student will have to visit several service centres situated
in different locations in the campus to obtain a computer account and a student
card. The second case describes a stocktaking process given to an asset manage-
ment officer who has to record all computer assets managed by a company. Fig. 2
describes that, after stocktaking is announced, the officer has to plan and schedule
field trips to various sites to physically locate an asset and record the asset number
using a barcode scanner. This process will continue until all the sites have been
visited.

3.2 Analysis of Resources for Worklists

For the workers to be able to carry out each task, some context information may
be required. For example, the student, from the first scenario, may want to know
where the buildings are located in the university campus. Also, the office hour in-
formation showing opening and closing times of each service centre will help him
find the optimum route. The same principle applies to the asset management offi-
cer from the second scenario. Extra information such as how far rooms are located
from each other, how many assets are to be collected at each location, etc. may
help him schedule the field trips efficiently.

The resources to be considered by the workers may differ depending on the
nature of the tasks, the skill level of the workers, or the kind of roles the work-
ers play in an organisation. In deed, we believe that a thorough study into the
requirements of the workers in making decisions as well as a survey of effective
visualisation techniques have not been explored. This is an important part of our
current on-going investigations, in which we look at identifying various types of re-
sources that a worklist can provide to help the workers carry out the tasks. Also,
2 By rejection of tasks, we mean choosing not to accept the task. Such task can be

delegated, suspended, or re-allocated by the workflow system.
3 The readers are noted that these examples are simplified for illustration purposes.

98 R. Brown and H.-y. Paik

Offer letter
received

New student
card issued

The password
issued

Obtain a Computer
Account Request form
from Ground Floor, Building M

The request form
obtained

Complete and submit
the form to Level 4, Building S

Collect a university
access password
from the Printing Services

Event Function

Legend

Obtain new student
card from the student
centre

The form completed
and submitted

Fig. 1. First Case: Event-Process-Chain diagram of the student process

Stocktaking
announced

Schedule visits
to the locations

Schedule is
prepared

The scanner
is ready

Visit the location

Location
found

Scan the
room code

Room code
scanned

Check whether all
locations visited

Asset code
scanned

Scan the
asset code

All scheduled locations
visited

More locations
to be visited

XOR

Update/test
the barcode scanner

XOR

Upload scanner data
into FITSIS

Data
uploaded

Event Function Exclusive OR

Legend

XOR

Fig. 2. Second Case: Event-Process-Chain diagram of the stocktaking process

we examine multiple aspects of the issue involving the nature of tasks, workers
background, etc. Ultimately, the study aims to develop a detailed analysis of re-
sources that will help identify the factors and their inter relationships that affect
the worker’s worklist management.

In this paper, we identify a few common types of resources that may have some
generic applications. A list of the resources we have identified so far is presented
Table 14.
4 More resources will be added as the analysis becomes more complete.

Resource-Centric Worklist Visualisation 99

Table 1. Generic types of resources

Resources Descriptions

space

size or spatial information relevant to the tasks. It may be a diagram
showing available storage rooms and their sizes, or meeting rooms and
their capacities. This type of resource may be used to determine, for
example, where 20 computers should be stored. It is separate from lo-
cation, as sometimes the visualisation may not relate space with actual
location of the space – space to store computers, but not interested in
where.

materials
materials or consumable information relevant to the tasks. It may be an
inventory list of materials to be used in the task, and whether you have
enough of those things: number, volumes, weights, dimensions.

equipment
equipment information relevant to the tasks. It may be, for example, an
inventory of barcode scanners showing their availabilities.

services
internal or external services information. It may be a list of travel book-
ing agencies, printing services, or messaging services and their con-
tacts/availabilities.

time

any “time” information relevant to tasks. It could be deadlines (ie., the
time each task should be completed by), opening hours (ie., the time a
particular service, for example a printing centre, is available) or a simply
calendar showing working days. This type of resource will be useful in
one Rs planning of the sequence of task executions.

location

geographical “location” information relevant to tasks. It could be a map
of a campus showing locations of university facilities, a floor plan of an
office block, or a diagram showing relative distances between locations.
This type of resource also can be used in scheduling of tasks. We separate
this resource from space as our model uses location in both the sense of a
resource (maps), and as a generic place holder for the work item location
in the visualisation (grid layout).

people

information about people and their roles in an organization. It could
be an organizational chart showing roles and responsibilities of people.
This type of resource may be used in finding the right person to seek for
specific help or delegate a task to.

active worklist

current (active) tasks that are being carried out by the worker. This
type of resource will help the worker determine the desirable workload,
and effectively manage the current/future tasks. This can be represented
by an arbitrary grid arrangement, where each cell represents a task to
be performed, and may or may not contain other resource information
regarding the task.

4 Mapping Resources to a Worklist Visualization

In this section, we describe our generic framework built for worklist visualization
based on the resources we presented earlier. Again, for illustration purpose, we
choose the four resources we described in the previous section; time, location, peo-
ple and active worklist.

100 R. Brown and H.-y. Paik

The visualisation framework is based on a layered approach, in which a back-
ground and overlay planes are used. A 2D representation of any of the resources
forms the background layer. For example:

– The time resource uses a time line form of representation (eg., GANTT chart);
– The location resource uses a map representation that shows whereabouts and

distance between locations (eg., Street maps)5;
– The people resource uses a chart or diagram form of representation (eg., or-

ganisational charts);
– The active worklist resource uses a regular grid spatial arrangement; an ar-

rangement different to irregular different layouts like maps.

The overlayplane consists of the tasks in a worklist. Each task is given (x,y) co-
ordinates in relation to the background, which indicates the resource information
allocated to the task.

Let us consider the first scenario. The student has four tasks to complete and
he has to visit different service centres in the campus;

1. Obtain new student card from the student centre
2. Collect university access password from the printing service
3. Obtain a computer account request form from Ground floor, Building M
4. Complete and submit the form to Level 4, Building S

With our worklist visualization framework, we can present the four tasks as
shown in Fig. 3. On the left-hand side of the figure, the background layer shows a
campus map (ie., a form of the location resource). Each task (shown as a (round)
coloured icon in the figure) is given (x,y) coordinates in relation to the map which
indicates the location where the task is supposed to be carried out. For instance,
the first task (a green icon on Building A) is placed on top of the building where
the student centre is situated, and so on. The same worklist can be presented from
the point of view of other resources. On the right hand side of Fig. 3, the chart
diagram illustrates a visualisation of the same worklist from the perspective of
the people resource. In this view, each task is given (x,y) coordinates in relation
to a chart of organisational units. It shows which organisational unit is responsible
for administrating each task. For instance, the first task (a green icon on Student
Centre) is placed on top of the administration unit the student needs to contact
if he/she needs help.

All of the worklist items on a case appears on every “view”. If the system se-
lectively placed worklist items on a view, then the worker may miss items, or get
confused by the changes from view to view. In addition, the item may require as-
sessment from a number of resource viewpoints before being accepted or rejected
by the worker. Therefore, we have the entire worklist shown on each view. The
workers can easily switch from one view to another.

The framework is simple yet generic in that any types of resources can be pre-
sented using the overlaying technique. The same worklist can be viewed from dif-
ferent resource perspectives.
5 Note that this could be different from the spatial map used to represent the space

resource that shows occupying space, eg., building plan.

Resource-Centric Worklist Visualisation 101

University
Services

Library
Services

Faculty
Services

Student
Centre

Printing
Services Desk

contact: Paul
extension:x9871

IT support
Services

contact: Jan
extension: x7761

contact: Sue
extension: x7712

contact: John
extension: x1001

Service Centres in QUT

Fig. 3. Illustration of background and overlay structure of visualisation

Grid Arrangement Time Arrangement

Spatial Map Arrangement Chart Arrangement

visit Student Centre

collect password

submit form

collect account form

Fig. 4. Examples of the visualization categories

While having separate “views” can be useful, there is a requirement for cross-
over with regards to the background-foreground information. For instance, the
time resource may be shown as an overlay plane resource on a grid background;
via the use of numbers overlayed on the grid locations. In Fig 4, examples of dif-

102 R. Brown and H.-y. Paik

Table 2. Table enumerating the broad categories of resources, their use in worklist
choice decisions and appropriately mapped visualisations

Resources Worklist Choice Function Visualisation

time

To compare the relative start and
finish times for each task and in-
sert it into the worklist at appropri-
ate moments if time resources are
available, either by leaving the task
as whole, or dividing it into smaller
components for insertion into small
time gaps.

Gantt Chart showing all available
tasks on a time line in stacked man-
ner to identify insertion points for
the worklist components.

location

To compare the spatial locations of
tasks to be performed for logistical
purposes.

Map detailing the arrangements of
tasks in space, to aid the worker in
identifying efficient ordering of the
work.

people

To show visualisations of number of
people available for task and their
capabilities to assess who is appro-
priate for the task.

Overlays of people available to
meet task with encoding of match
between people and the tasks –
colours/textures, including hi-
erarchical views, social network
views.

space
To compare the space resources re-
quired for a task to the space re-
sources available.

Map detailed with space allocations
showing empty spaces at certain
times.

active worklist

To see a list of active tasks which
can be checked out; user chooses ac-
cording to the number of tasks they
are able to perform.

Worklist dialogue, with overlaid
data for comparison and choice of
task.

materials

To view materials to be used in the
task, and whether you have enough
of those things: number, volumes,
weights, dimensions

Overlays of information onto base
background for any of the visuali-
sations to compare materials with
other materials available at that lo-
cation, or a calculated indication of
ability to meet this role.

equipment

To view equipment to be used in the
task

Overlays of information onto base
background for any of the visualisa-
tions to compare Equipment count
with equipment available at that lo-
cation, or a calculated indication of
ability to meet this role.

services
To view availability of services from
internal or external agencies in or-
der to complete the task

Overlays of information onto base
background of the availability of
these services to meet the task.

ferent views are shown; a worklist (in a grid format), location map and timeline.
In each case the task is given a coordinate to arrange it in 2D on the surface of the
background.

Resource-Centric Worklist Visualisation 103

Each is a representation that can be used within a push-based task dissemina-
tion system to decide about task choices, with regards to the relevant resources.
They can be turned on and off by the designer of the workflow visualisation to al-
low or deny access to extra information regarding tasks. Each one can be modified
to suit a particular application area, thus leaving room for development of novel
visualisations tailor-made for different applications [1]. So the general rules are
able to be modified but can still be encapsulated in the development of a set of vi-
sualisation tools. Table 2 maps each resource type to an appropriate visualisation.
The table is by no means exhaustive, and is only limited by the number of appli-
cation areas intended for the visualisations. We present some that are appropriate
for general visualisation applications [2].

5 Worklist Management with Visualisation

In this section, we explain how the workers can interact with the visualized work-
list. First, we introduce a generalized algorithm that workers use to manage their
tasks, and then we explain the interactions between the workers and the visualised
worklist.

5.1 A Generic Algorithm for Managing a Worklist

The resource view specified by [16] treats a resource as being human or non-
human, and will have tasks directed to them by the workflow system. In this pa-
per, for the sake of clarity, we use the term worker to differentiate human resources
from non-human resources. Worklist items are distributed to workerswithin an or-
ganisation according to the process illustrated in the life cycle diagram in Fig. 5.

Inherent in this distribution process by the workflow system is the choice by
the system of whom to give the task, via the offer actions. The workflow system

Fig. 5. Illustration of task life cycle; modified from [16]. Each box is the state of the task
in a running workflow case. The prefix S and R refer to actions enacted by the Workflow
System and the Resource (Worker) respectively.

104 R. Brown and H.-y. Paik

will have a resource view that evaluates the capabilities of the intended recipient of
the task. Furthermore, some of the resources will have an optimisation performed
upon them by the resource view; eg. time and space, and will have this information
offered to the worker to help them with their decision. The worker upon receiv-
ing the task, must make a decision for themself about accepting or not accept-
ing the task. This process is out of the control of the workflow system, as it only
can push tasks to the worker to request acceptance. The workers’ responses have
been characterised by detour process. A worker may delegate – hand to another
worker, de-allocate – reject a task, re-allocate – task is handed to another worker
by the system, suspend/resume – halt and then recommence a task allocated to a
worker.

The question for the worker is the choice of adding or rejecting (ie., detouring)
a task from his/her worklist. The task allocation can be a push or pull approach;
push being system selected, pull being worker selected. Assuming a more pull ori-
ented model of worklist task selection, our resource centric views of a worklist will
aid the worker in this worklist management task, as they are able to decide which
item to choose based upon critical resource issues.

The workflow system may offer a number or only one instance of the task to
the worker, and at this point the worker may decide to perform the task by check-
ing them out and adding them to a list of active tasks, or the user may decide to
return the task to the unallocated pool via the detour process. Furthermore, the
worker upon completion of the task checks the task in, thus removing it from the
active checked out worklist. This task acceptance process may be represented by
the following formula for the acceptance process, them being the check out pro-
cesses respectively:

Wr = Wr ∪ {I} ⇐⇒ CWr ,T > C{I},T (1)

where:

– Wr is the set of worklist items for worker(s) r;
– I is the new worklist item to be added;
– Cx,y is the capability for the task(s) x of type y;
– T is the type of resource being processed (eg. Computer Equipment).

So, at any stage a worker will make a decision about whether to add a worklist
item to its set of worklist items, by looking at the capabilities of the worker for
the present worklist as compared to the requirements of the new task. This can be
automated, but the worker must be allowed to make such decisions as well, in or-
der to promote a healthy attitude within the workforce. But it must be recognised
that people will simply decide not to do a task, if they do not want to or decide
to prioritise using undefined criteria. Furthermore, these visualisations may give
information to the worker regarding the reasoning behind the choice of been al-
located the task, and so the worker is left in an informed state about the reasons
for work allocation.

Resource-Centric Worklist Visualisation 105

0 1

3 1

Prepare Stock Check Report

Fig. 6. Illustration of an aggregated icon made up of single task icons. The example
shows a task titled “Prepare Stock Check Report” with zero checked in, one checked
out, three available and one task unavailable.

5.2 Interacting with the Visualized Worklist

In the visualised worklist, each task is represented by a coloured icon. Some work-
flow systems support the generation of a number of instances of tasks, that may
be disseminated to workers [17]. Thus at times an aggregated icon has to be used
to represent multiple instances of the task in question. Fig. 6 shows an example of
a task with multiple instances. An aggregated icon is shown with four icons with
numeric information regarding the number of instances and their status within
the system. The state of any delivered task at one time may be the following: in-
active, available, checked out and suspended, and included is the colour we have
mapped to the state using the traffic light metaphor of red, green and amber:

– Inactive – unavailable to the worker (grey);
– Available – available to the worker to check out (amber);
– Checked Out – has been checked out by the worker (green);
– Checked In – has been checked in and completed by the worker (red);
– Suspended – has been checked out by the worker, is still incomplete, but

checked in to the user (amber – dashed);

We use the traffic light metaphor due to its intuitive mapping to the status of
the tasks: green active (go), red completed (stop) and amber available (in between
go and stop). Furthermore, the available state is refined to have a dashed amber
appearance for those items that are suspended, and so the dashed appearance rep-
resents a partially completed task.

The worker interacts with the icons in a similar manner to previous worklists,
by clicking on the icons to check out available tasks, and by clicking on checked out
icons to check in completed tasks. Whenever appropriate, a form will be presented
by the workflow system, to obtain data from the worker.

6 Implementation

A major test of any workflow visualisation approach is its ability to be incorpo-
rated into amodern client server-basedworkflow system.We have built a prototype

106 R. Brown and H.-y. Paik

of the proposed visualisation framework, and interfaced it with the workflow sys-
tem YAWL. This section discusses the system architecture and implementation in
detail.

6.1 The YAWL Environment

Our implementation is based on the open source workflow environment named
YAWL (Yet Another Workflow Language), which is a research initiative at
Queensland University of Technology [4,17]. YAWL is based on a set of workflow
patterns developed via analysis and comparison of a number of commercial work-
flow systems. It provides powerful and formal workflow description language, as
well as an execution environment.

To understand the architecture of our visualisation framework, let us first
present the overall architecture of YAWL. Workflow specifications are created in
the YAWL designer which is a graphical editor, and deployed to the YAWL en-
gine. The engine performs verification of the specifications and stored them in the
YAWL repository. The specification can be loaded and launched for execution via
the YAWL manager, and is hereafter referred to as a schema. The execution itself
is managed by the YAWL engine.

The YAWL engine interacts with the components labelled as YAWL services
through Interface B. The YAWL services (worklist handler, web services broker,
interoperability broker and custom YAWL services) are based on the web services
paradigm and all are abstracted as services in YAWL.

How the engine communicates with the YAWL worklist handler is of particular
interest in our work. The worklist handler is the component that is responsible for
dispatching tasks to the workers.Through the worklist handler, the workers accept
tasks and mark their completions.

In conventional workflow systems, the worklist handler is part of the workflow
engine. However, in the YAWL environment, it is a separate component that in-
teracts with the engine through Interface B. Through the interface, a custom ser-
vice or application can be developed to extract worklist information for display in
whatever manner is required.

6.2 Worklist Visualisation Architecture

Based on the existing YAWL architecture, we have developed a new type of YAWL
worklist handler which interacts with the engine through Interface B. The
overview architecture is shown in Fig. 7. It has capabilities to (i) display the vi-
sualised resources and (ii) dispatch tasks like a normal worklist handler. The ar-
chitecture consists of two components which have designed and partially imple-
mented: a visual worklist handler and a visualisation designer.

The visual worklist handler can view multiple cases of running workflows, with
multiple resource-centric views matched to the requirements devised by the
YAWL schema designer. The worker loads the cases and is presented with a list
of tasks, and a tabbed view list to switch between difference representations of

Resource-Centric Worklist Visualisation 107

A

B

YAWL
engine

YAWL
Visualisation

designer

visualisation
specifications

YAWL
Visual

worklist handler

visualisation
applets

workflow
specifications

YAWL
repository

visualisation
applets

Fig. 7. YAWL Visualisation Framework: Overall architecture

the worklists. In the following two sections we describe the two components, and
illustrate them with mock ups containing partially developed examples.

6.3 YAWL Visualisation Designer

The designer application is the most complete at this stage. It is designed around
the structure of the visualisation approach we have developed, and is implemented
in Java, as is the rest of the YAWL implementation. The visualisation designer al-
lows the user to load Scalable Vector Graphics (SVG) files as backgrounds and
icons for the overlay planes. This allows easy modification of images via other
drawing tools. The SVG component of the designer is managed by the BATIK
Java package [18]. This is thus an implementation of the task coordinates scheme
we detailed earlier. This designer allows the easy outlaying of tasks as icons across
the background in the program.

The process of designing a visualisation view for a schema is as follows:

1. First decide on the background and overlay images, editing them in a separate
tool and saving them as an SVG file;

2. Decide on the spatial arrangement of the tasks to be displayed according to
the resources that need to be analysed, for example a map for logistics on QUT
campus that will help a worker to decide where to perform their tasks;

3. Load the workflow schema into the editor to obtain the tasks in the system,
which appear in a mouse menu on a right click at the chosen location on the
background;

4. Load the background image;
5. Set the current icon to be used by choosing from the list in a dialog;
6. Move pointer to location of worklist item and right click to choose a task, and

icon, repeating for all worklist items.

Fig. 8 illustrates the major components of the visualisation designer user in-
terface via the stocktaking example on campus map (Fig. 2). The large window
(right) is the main window for visualisation design, and the smaller window (left)

108 R. Brown and H.-y. Paik

Fig. 8. Yawl Visualisation Designer: main components

shows a list of potential icons to be placed at locations on the visualisation. Each
view is placed into a tabbed list, as they are to be displayed in the visualisation
agent. The menu is displayed using a mouse right click, showing the tasks defined
in the schema. The icon can be placed at the location of the right click of the mouse,
or using actual coordinates in the text entry boxes at the bottom of the screen.
The icon at the bottom left of the image is the current task icon, “CollectScanner”
and is shown using a disk icon.

This visualisation design information is stored in an XML file that defines an
arbitrary number of views per schema, and the task icons, gained from the number
of tasks within the YAWL schema. This file is then read by the Visual Worklist
Handler to form the visualisation structure for communication to the YAWL en-
gine. The following is a snippet from a visualisation specification. A specification
may have a number of <view>s, and each view may have a number of <task>s.
A view is associated with a background representing a resource. Each task is as-
signed a color for the description, coordinates, and an icon.

<specification id = "TSSstockTake.ywl"
uri = "file:/D:/Yawlstuff/batik/demo/TssStockTake.xml">

<view id = "file:/D:/Yawlstuff/batik/demo/map-1/newmap.svg">
<task id = "3_CollectScanner">
<color> -16777216</color>
<coordX> 240</coordX> <coordY> 760</coordY>
<icon width="75" height="75">file:/D:/Yawlstuff/demo/floppy.svg</icon>
</task>
</view>
</specification>

Resource-Centric Worklist Visualisation 109

Fig. 9. Screen dump of a running visualisation handler, showing a campus map visuali-
sation with an icon showing the “CollectScanner” icon from the PC Stocktake example
as an available worklist item in orange amongst multiple instances

We have implemented the beginnings of a visualisation editor and visualisation
viewer, which we show in this paper. In a final implementation, additional resource
information will be selected from the resource view of the YAWL schema as it
is running. For now we are able to design worklists arranged according to grid,
spatial and time arrangements.

6.4 YAWL Visual Worklist Handler

Worklists are disseminated in YAWL via the default worklist handler as simple di-
alogs containing lists of tasks, with no other resource information being displayed.
We have begun implementing a visual worklist handler that is an extension of the
default handler. The YAWL workflow implementation is structured around a com-
ponent architecture that communicates via XML formatted commands. Thus the
worklist handler is able to utilise the B interface to the running YAWL case in the
same manner as the default worklist handler. The visual worklist handler is able
to execute the visualisation developed with the designer that is stored in a file (see
Fig. 7).

The new worklist handler allows a more intuitive mapping of task coordinates
to the check in and check out process. The user is able to check items in and out by
simply clicking on the potential worklist item in its location on a map or hierarchy
diagram. right image is a mock up of the student enrolment example visualisation
running within the visualisation handler.

With a spatial organisation to the tasks, the person doing this registration pro-
cess can evaluate the task, using the map to make a decision about the acceptance
of the worklist item in consideration of the location resources.

110 R. Brown and H.-y. Paik

7 Conclusion

We have described the beginnings of a thorough analysis of workflow visualisa-
tion; its theoretical basis, resource centric approach and appropriate visualisation
techniques. Analysis in our paper showed to use these techniques within a typi-
cal workflow system. The task coordinate approach was described, showing how
this can be generalised across a number of visualisations using a background and
overlay approach. We have also begun the development of a visualisation develop-
ment environment, with an editor and visualisation agent that uses SVG files and
is easily integrated into the YAWL workflow system created by the BPM group at
QUT. Thus we have indicated that this visualisation approach can be used within
a fully featured workflow environment.

Further analysis will continue to refine the visualisation mappings to produce
a knowledge base for development of visualisations within workflow applications.
In particular, there will be refinement of the broad categories of resources into
more fined grained categories to derive a rule-base for an intelligent design agent
to be incorporated into the visualisation designer. Evaluation experiments will be
performed within a case study in order to ascertain the effectiveness of the resource
centric visualisation approach with users of workflow tools.

In addition, we will exploit the latest resource view developments that are be-
ing implemented within YAWL, to enable the run time specification of resources
associated with a task, and thus extend the implementation to include automated
run time visualisations of resources such as people and equipment, associated with
the tasks. We will thus extend the visualisation editor and agent to accommodate
these resources in a structured manner, according to our table of visualisation
mappings.

Acknowledgement

This project is partially supported by a QUT Faculty of Information Technol-
ogy collaborative grant. We acknowledge the programming assistance provided
by Tore Fjellheim and Guy Redding, who programmed the visualisation editor
and agent applets and integrated them into the YAWL workflow system. Their
dedication and hard work towards implementing this project have been greatly
appreciated. We thank Prof. Wil van der Aalst for his invaluable contribution.

References

1. Keller, P., Keller, M.: Visual Cues. IEEE Press., Piscataway USA (1993)
2. Tufte, E.: The Visual Display of Quantitative Information. Graphics Press,

Cheshire, USA (1983)
3. Andersson, T., Bider, I.: Introduction of bps systems into operational practice:

Achievements and setbacks. In: Proc. of BPMDS, Riga, Latvia (2004)
4. Aalst, W.M.P.v.d., Aldred, L., Dumas, M., Hofstede, A.H.M.t.: Design and imple-

mentation of the YAWL system. In: Proc. of CAiSE, Riga, Latvia (2004)

Resource-Centric Worklist Visualisation 111

5. Luttighuis, P., Lankhorst, M., van de Wetering, R., Bal, R., van den Berg, H.: Vi-
sualising business processes. Computer Languages (2001) pp.39–59

6. UNISYS: 3d visible enterprise (2004) www.3dvisibleenterprise.com/3dv/.
7. Schonhage, B., van Ballegooij, A., Elliens, A.: 3d gadgets for business process vi-

sualization:a case study. In: Symposium on Virtual Reality Modeling Language,
Monterey, California, ACM Press (2000) pp.131–138

8. Systems, I.S.: Interactive software (2004) www.interactive-software.de/.
9. Grohn, M., Jalkanen, J., Haho, P., Nieminen, M., Smeds, R.: Visualizing human

communication in business process simulations. In: Visual Data Exploration and
Analysis VI., San Jose, SPIE-Int. (1999) pp.140–148

10. Hsu, C., Yee, L.: Model-based visualization for enterprise information management.
In: Proc. of 4th Annual Conf. on Artificial Intelligence, Simulation, and Planning
in High Autonomy Systems, Tucson, Arizona (1993) pp.324–327

11. Gershon, N., Eick, S.G.: Information visualization. Computer Graphics and Appli-
cations 17 (1997) pp.29–31

12. Wright, W.: Business visualization adds value. Computer Graphics and Applica-
tions (1998) p.39

13. Latva-Koivisto, A.: User interface design for business process modelling and visu-
alisation. Technical report, Department of Computer Science, Helsinki University
of Technology, Helsinki (2001) Masters Thesis.

14. Leroux, H., Exton, C.: Coope: a tool for representing concurrent object-oriented
program execution through visualisation. In: Proc. of 9th Euromicro Workshop
Parallel and Distributed Processing. (2001) pp.71–76

15. Jennings, N., Norman, T., Faratin, P.: Adept: An agent-based approach to business
process management. ACM SIGMOD Record 27 (1998) pp.32–29

16. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow re-
source patterns: Identification, representation and tool support. In: Proc. of CAiSE,
Porto, Portugal, Springer Verlag (2005) (to appear).

17. Aalst, W.M.P.v.d., Hofstede, A.H.M.t.: YAWL: Yet another workflow language.
Information Systems 30 (2005) pp.245–275

18. Batik: Batik svg toolkit (2005) http://xml.apache.org/batik.

CoopFlow : A Framework for Inter-organizational
Workflow Cooperation

Issam Chebbi and Samir Tata

Department of Computer Science, GET/INT,
(Institut National des Télécommunications),
9, Rue Charles Fourier 91011 Evry, France

{Issam.Chebbi, Samir.Tata}@int-evry.fr
http://www-inf.int-evry.fr/~tata

Abstract. The work we present here is in line with a novel approach
for inter-organizational workflow cooperation spanning several organi-
zations without being managed by one physical organization. Our ap-
proach consists of three steps: workflow advertisement, workflow inter-
connection, and workflow cooperation. Hence, to implement a virtual
organization it is important to provide a mechanism whereby organiza-
tions can advertise their workflow parts, other organizations can look at
them and cooperate these with their own workflows. In this paper, we
present CoopFlow, a workflow cooperation framework, supporting dy-
namic plugging and cooperation between heterogeneous workflow man-
agement systems (WfMS). Can be connected to CoopFlow any WfMS
that is able to invoke external applications (programs, Web services, etc.)
and that allows external applications to invoke any step within a work-
flow it manages. CoopFlow presents many advantages. First, it provides
powerful ways for inter-organizational workflow cooperation and code
reduction. In fact, partners can change their WfMS without changing
the global proxy behaviour. Furthermore, it permits a dynamic intercon-
nection and disconnection of participating organizations. In addition, it
preserves the privacy and autonomy of process participants by reduc-
ing inter-visibility as tiny as the cooperation needs based on the view
principle. Finally, our framework preserves established workflows : par-
ticipants don’t modify their internal systems. Instead, they have just to
implement a proxy to integrate CoopFlow.

1 Introduction

In context of globalization, a high competitive pressure characterizes the gen-
eral situation on businesses. Competition can lead to intensive re-structuring of
organizational structures and processes to make production and services more
efficient and less expensive. Additionally, new forms of inter-organizational col-
laboration between organizations may emerge. In this case, organizations es-
pecially Small and Medium sized Enterprises (SMEs), cooperate to fulfil con-
ditions of complex projects. Thus, partners with complementary competencies

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 112–129, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CoopFlow : A Framework for Inter-organizational Workflow Cooperation 113

and knowledge can be gathered to carry out projects, which are not within
the range of only one organization (especially SMEs): cooperation allows each
partner to benefit from knowledge of the other partners in the virtual
organization.

Parallel to this evolution, organizations are increasingly utilizing process-
aware information systems to perform their business processes in an automated 1

way. Based on such information systems, organizations focus on their core com-
petencies and access other competencies through cooperation, moving towards
a new form of network known as virtual organization.

There is still no agreed-upon definition of virtual organizations. As for us,
we define a virtual organization as a set of partners (“real organizations”) dis-
tributed in time and in space sharing resources and competencies and cooper-
ating to reach some shared objectives using information technologies [2]. In this
context intention, partner workflows are not carried out in an isolated manner,
but interact during their execution, while sharing common data in a coordinated
way. Coordination brings a synergy that contributes to the improvement of each
partner work performances.

In this paper, we focus our work especially on workflow cooperation in a
context of virtual organizations. Cooperation in this case is temporal and struc-
tured by a common objective and for the duration of a project. We think that
the number of virtual organizations is huge and that they are an important
market for Internet technology which allows short duration and low cost con-
nections between partners ((especially SMEs) who cannot, in general, establish
specialized and “hard coded” cooperations. In line with an approach we have
proposed for workflow cooperation [3, 4, 5], we propose in this paper CoopFlow,
a workflow cooperation framework, that in addition to interoperability supports
workflow interconnection, cooperation, monitoring and control in flexible and
efficient manner.

Our work aims at supporting cooperation in inter-organizational workflows.
one of our fundamental objectives is to address tow main issues. (i) How to
provide a mechanism whereby organizations can advertise their workflow parts,
other organizations can look at them and, finally, cooperate these with their own
business process? (ii) How to execute an inter-organizational workflow spawning
several organizations without being managed by one physical organization?

The remaining of this paper is structured as follows. In Section 2 we give the
requirements for inter-organizational workflows as well as related work in the
area of inter-organizational workflows. In Section 3, we summarize our bottom-
up approach to inter-organizational workflows cooperation. In Section 4, we de-
scribe the framework architecture for cooperation enforcement and detail its
components. Section 5 is devoted to the framework implementation solution.
Conclusions and perspectives are presented in Section 6.

1 A workflow is seen as an “automation of a business process, in whole or part, during
which documents, information or tasks are passed from one participant to another
for action, according to a set of procedural rules” [1].

114 I. Chebbi and S. Tata

2 Requirements and Related Work

In this section, we present requirements we have to deal with in order to support
workflow cooperation in virtual organizations as well as related work.

2.1 Requirements for Inter-organizational Workflows Cooperation

In a context of workflow cooperation one has to deal with three main require-
ments: flexibility support, privacy respect principle, and established workflow
and WfMS preservation.

Flexibility support: Since there is some dynamic structure to the cooperation
between the organizations (constant evolution of the partner’s set, dynamic
join/leave of participating organizations), we think that cooperation descrip-
tion is difficult (if not impossible). Therefore, solutions for workflow cooperation
have provide whatever means possible for dialing with flexibility.

Privacy respect principle: On one hand, cooperation needs a certain degree of
workflow inter-visibility in order to perform interactions and data exchange. On
the other hand, cooperation may be employed as a cover for organizations to
internalize the know-how of their partners. The question here is how to best
preserve the know-how of each partner and capitalize on the accumulated ex-
perience and knowledge to allow cooperation and to improve productivity. In
order to preserve privacy and autonomy of process participants, one must re-
duce workflow inter-visibility to be as little as the cooperation needs.

Established workflow and WfMS preservation: For enabling cooperative organi-
zations to integrate their disparate workflows it is necessary to allow them to use
established workflows. When planning projects, it’s important to note that any
changes to established workflows or systems that manage them will cost money
and time. Therefore, if organizations are to achieve the efficiencies and reduction
in costs that the cooperation promises especially if they are SMEs, approaches
for workflow cooperation must fully integrate pre-established workflows.

2.2 Related Work

Recently research on workflow management has focused on inter-organizational
cooperation issues which have been addressed by numbers of approaches using
the notion of contracts, workflow interoperability or specification languages.

Workflow Contracting. The inter-organizational cooperation problem has
been addressed by using the notion of contracts to define the business relation-
ships between organizations. Examples of this type of cooperation support are
COSMOS [6], TOWEC [7], CrossFlow [8], WISE [9, 10] and ebXML [11, 12]. In
the following three paragraphs we briefly discuss CrossFlow,WISE, and ebXML.

CrossFlow: The CrossFlow [8] project investigates some issues which are con-
cerned with business processes crossing organizational boundaries. A contract-
based approach is used to define the business relationships between the orga-
nizations. Within this contractual basis, inter-organizational processes can be

CoopFlow : A Framework for Inter-organizational Workflow Cooperation 115

defined and performed. However, the approach does not support arbitrary pub-
lic processes and no standard definition language and semantics is provided for
the enforcement of contracts between two enterprises. In addition, all enterprises
involved are required to use the same software for contract enforcement.

WISE: The WISE [9, 10] (Workflow based Internet SErvices) project aims at
designing, building, and testing commercial infrastructures for developing dis-
tributed applications over the Internet. It proposed a framework to compose a
virtual business process through process interfaces of several enterprises. This
architecture provides means to define, enact, and monitor virtual enterprises
business processes, as well as to manage context aware communication among
process participants. It includes an Internet workflow engine to control the busi-
ness process execution, a process modeling tool to define and monitor processes,
and a catalogue tool to find the building blocks for the processes. The accessibil-
ity over the Internet makes WISE scalable and open but service descriptions and
the service catalogue are not in line with standards. Moreover, the centralized
workflow engine inhibits dynamic selection and exchange of partners since all
participants have to comply with stipulated interfaces.

ebXML: ebXML [11, 12] aims at providing a framework for business to busi-
ness transactions. ebXML can be seen as a global electronic market place where
enterprises of any size, anywhere can find each other electronically and con-
duct business through exchange of XML based business messages. It supports
re-usable data types, interorganizational transactions, and profiles and agree-
ments. It offers interaction primitives to support timing, security, and atomicity
properties. Capabilities of an individual party is described in term of Collabo-
ration Protocol Profile (CPP) which is stored in ebXML registry (i.e., Business
partners can find each other’s CPP through registry). Capabilities that trading
partners have agreed to use to perform a particular business collaboration are
described in term of Collaboration Protocol Agreement (CPA).

In the contracting approaches, it is clear that support for inter-organizational
workflows can be improved substantially. In fact, flexibility and workflow preser-
vation requirements are not met. In the CrossFlow approach, for example, all
enterprises involved are required to use the same software for contract enforce-
ment. Moreover, the approach does not support arbitrary public processes.

Workflow Interoperability. In [13], the author presents some forms of
workflow-interoperability and focuses on capacity sharing, chained execution,
subcontracting, case transfer, loosely coupled, and public-to-private architec-
tures. In the following we present chained execution and public-to-private ap-
proaches.

Chained execution: In the chained execution approach, the process is divided
into subsequent phases and each business partner takes care of one phase. The
workflow process is split into a number of disjunctive sub processes executed by
different business partners in a sequential order [14]. This form of interoperability
is only useful for applications where the process is composed of sequentially

116 I. Chebbi and S. Tata

ordered parts. Nevertheless, it was generalized into an approach to distributed
workflow execution where parts are inter-mixed [15]. However, this last approach
is static since it starts from a global centralized workflow where all activities are
known a priori and assumes that for each activity there exists an assignment to
a department or business unit of the enterprise.

Public-to-private: In the public-to-private approach, a common public workflow
is specified and partitioned according to the organizations involved by private
refinement of the parts based on a notion of inheritance. Each partner has a copy
of the workflow process description. The public-to-private approach consists of
three steps. Firstly, the organizations involved agree on a common public work-
flow, which serves as a contract between these organizations. Secondly, each task
of the public workflow is mapped onto one of the domains (i.e., organization).
Each domain is responsible for a part of the public workflow, referred to as its
public part. Thirdly, each domain can now make use of its autonomy to create
a private workflow. To satisfy the correctness of the overall inter-organizational
workflow, however, each domain may only choose a private workflow which is a
subclass of its public part [16].

Problems to be encountered on the way to workflow interoperability include
mainly autonomy of local workflow processing, confidentiality that prevents com-
plete view of local workflow [17], and especially flexibility that needs no definition
of a global workflow that defines cooperation between local workflows. In addi-
tion, a drawback of the approach presented in [16], is the lack of the preservation
of preestablished workflows. In fact, in this approach, one has to look for which
rules, in what order and how many times one has to apply in order to match the
presestablished workflow with the public part which is deduced from partition-
ing of the public workflow. If not impossible, this is hard to do. Moreover, there
is no defined procedure to do that.

Specification Languages. To specify workflows interoperability, big efforts
have been made and many specifications have been proposed. We cite among
others SWAP, Wf-XML [18, 19] and ASAP [20]. In the following, we present a
very brief survey of the Wf-XML and ASAP specifications.

Wf-XML: Wf-XML [19] is a simple process request/response protocol that de-
fines how to install a process definition into a process engine for execution.
Although it enhances some of its predecessor’s capabilities by providing a struc-
tured and well-formed XML body protocol and synchronous or asynchronous
message handling and a transport independent mechanism, Wf-XML in insuffi-
cient for workflows cooperation and suffers from a number of lacks.

Asynchronous Service Access Protocol (ASAP): ASAP [20] is an OASIS stan-
dard that enables Web services to be used in business processes where a response
to a service request might take a long time, usually because there is human inter-
vention required. When used in conjunction with the new version of Wf-XML,
ASAP allows different companies to link up their business process management
systems, regardless of the BPM vendor and without additional programming.

CoopFlow : A Framework for Inter-organizational Workflow Cooperation 117

Despite their diversity, it is clear that the workflow interoperability specifi-
cations don’t offer enough means for cooperation and lacks functionalities to
control and enforce cooperation policies in inter-organizational workflows.

3 An Approach for Workflow Cooperation

In line with our fundamental objective to support a virtual organization we have
developed a novel approach that consists in three steps: (1) advertisement of
parts of organizations’ workflows that could be exploited by other organizations,
(2) interconnection of cooperative workflows and (3) workflow cooperation and
monitoring according to cooperation policies (rules). In this section we present
this approach using an example. Next sections focus on the CoopFlow architec-
ture and implementation.

3.1 Example

For illustration, consider an example involving two business partners: a client
and a product provider. Figure 1-(a) presents the workflow of the client using
Petri nets as specification language [21]. First, the client sends an order for a
product. Then she receives a notification. When the product is ready, the client
receives the delivery and the invoice. Finally, she pays for the ordered product.
Figure 1-(c) presents the workflow of the product provider. First, the provider
waits for an order request. Then he notifies the client that her order was taken
into account and he assembles the components of the product. After that, two
cases can happen: the client is a subscriber (she often orders products) or she is
not. In the first case, the provider sends the product and the invoice and waits
for the payment. In the second case, the provider sends the invoice, waits for
the payment and then sends the product. Filled activities, in Figure 1, are the
ones that cooperate with external partners. The examples given here only show
cooperation between two partners. Nevertheless, the contribution we propose
here also addresses cooperation between more than two partners.

The approach we present here is inspired by the Service-oriented Architecture
that requires three operations: publish, find, and bind. Service providers publish
services to a service broker. Service requesters find required services using a ser-
vice broker and bind to them. Accordingly, our approach consists of three steps:
workflow advertisement, workflow interconnection, and workflow cooperation.

Figure 2 presents the sequence diagram of the different steps of workflows
cooperation. The diagram involves a cooperating partners set, a registry, par-
ticipants, and a contracting authority ensuring the cooperation monitoring and
control. We identify three logical blocks that can be implemented by one or
several physical entities. These blocks correspond to workflow advertisement,
workflow interconnection, and workflow cooperation.

3.2 Steps for Workflow Cooperation

Step 1: Workflow Advertisement. For building an inter-organizational work-
flow, each partner has to advertise, using a common registry, its offered and

118 I. Chebbi and S. Tata

i
SEND

ORDER

RECEIVE
NOTIF

RECEIVE
PRODUCT

AND
 INVOICE

SEND
PAYMENT

(a) (b)

NOTIF

COMPONENT1

i

RECEIVE
ORDER

o

ASSEMBLE

COMPONENT2

SEND
PRODUCT

 AND
 INVOICE

RECEIVE
PAYMENT

SEND
INVOICE

RECEIVE
PAYMENT

SEND
PRODUCT

DATABASE
UPDATE

(d)(c)

The client

The provider

Fig. 1. Workflows and cooperative interfaces of the client and the provider

required activities within their workflows. In the first block of the Figure 2,
partners publish their cooperative activities, control flows and data flows, that
we call cooperative interface, into the registry.

Figure 1-(b) presents the workflow cooperative interface of the client and Fig-
ure 1-(d) presents the workflow cooperative interface of the provider. Broadly
speaking, a workflow cooperative interface is a projection of a workflow on the
cooperative activities. Semantic description of cooperatives interfaces are pub-
lished in the registry: the flow control, the data flow and a semantic description
of cooperation activities. We have described activities using a language inspired
by OWL-S [22].

Step 2: Workflow Interconnection. To carry out a work that is not with
the range of only one organization, a partner begins by searching organizations
with complementary skills via the cooperative interfaces they published (see
the second block of the Figure 2). In order to construct a virtual organization,
we have to match cooperative interfaces. Matchmaking takes into account the
flow control, the data flow and semantic descriptions of cooperation activities.
Given two cooperative interfaces, the matchmaking result can be (1) positive (i.e.
interfaces match) (2) negative (i.e. interfaces do not match) or (3) conditional
(i.e. interfaces match if a given condition holds). If the matchmaking result is
not negative, the cooperative interfaces are then interconnected.

CoopFlow : A Framework for Inter-organizational Workflow Cooperation 119

: REGISTRY : Partner :: P1 : Partner :: P2

publish(...)
publish(...)

find(...)

partner(...)
partner(...)

Advertisement

request(...)

notify(...)

response(...)

Workflow
interconnection negociate(...)

negociate(...)

connect(...)

connect(...)

: Contracting Authority

monitor(...)

monitor(...)

Workflow
cooperation state(...)

state(...)

Fig. 2. Sequence diagram for workflow cooperation

In our example presented above, the matchmaking result is conditional: the
client cooperative interface (see Figure 1-(b)) and the provider cooperative in-
terface (see Figure 1-(d)) match if the client is a subscriber. Note that here we
did not consider the semantic matchmaking. This is not within the scope of
this paper. The result of this step (i.e. workflow interconnection) is an inter-
organization workflow, presented in Figure 3, and a set of cooperation policies
that define cooperative partners and their interfaces (i.e. cooperative activities,
their order of execution,. . .) and constraints on workflow interactions (e.g. the
matchmaking condition).

Step 3: Workflow Cooperation and Monitoring. The third and last step
within our approach for workflow cooperation consists in the inter-organizational
workflow deployment and execution. To do that, we have developed CoopFlow,
a workflow cooperation framework, that allows different WfMSs to interconnect
and cooperate their workflows. In addition to cooperation, this framework mainly
enforces cooperation policies identified during the workflow interconnection step.

Cooperation policies enforcement could be implemented by many styles, we
can cite: (1) organizations trust each other sufficiently to interact directly with
each other. Cooperation policies enforcement is completely distributed. (2) no
direct trust between the organizations exist, so interactions take place through
trusted third parties acting as intermediaries.

120 I. Chebbi and S. Tata

NOTIF

COMPONENT1

i
RECEIVE

ORDER

o

ASSEMBLE

COMPONENT2

SEND
PRODUCT

 AND
 INVOICE

RECEIVE
PAYMENT

SEND
INVOICE

RECEIVE
PAYMENT

SEND
PRODUCT

DATABASE
UPDATE

i
SEND

ORDER

RECEIVE
NOTIF

RECEIVE
PRODUCT

AND
 INVOICE

SEND
PAYMENT

CLIENT PROVIDER

Fig. 3. Interconnection of client and provider workflows

In Figure 2, contracting authority is presented as one logical entity that can
be implemented by one or several physical entities. In this later case, additional
steps in the diagram are required as illustrated by Wombacher [23]. In the rest
of this paper, we focus on the architecture of the framework we propose as well
as its implementation.

4 The CoopFlow Architecture

After presenting the different steps of our workflow cooperation approach, we
focus in the following, on the CoopFlow architecture.

One of the objectives of our framework is to allow partners distributed in
time and place, to cooperate with each other and provide them with power-
ful and flexible ways permitting not only to simplify the inter-organizational
workflow interoperability but also cooperation. To ensure these ends, the frame-
work we propose, allows a dynamic join/leave of all existing WfMSs that are
able to call external applications and that allow external applications to invoke
any step within a workflow they manage. Moreover, our framework respects
the privacy of participating organizations as well as their autonomy by reduc-
ing the workflows inter-visibility as tiny as the cooperation needs, based on the
view principle. In addition, in order to enable cooperative organizations to in-
tegrate their disparate workflows, our framework fully integrate pre-established
workflows. Furthermore, the framework allows the integration of WfMS’s imple-
menting standardized interoperability languages such as Wf-XML. Finally, the

CoopFlow : A Framework for Inter-organizational Workflow Cooperation 121

Business
process

Organization 1 Organization 2

Proxy Proxy

Middleware

Registry Cooperation policies

Contracting Authority

WfMS1 WfMS2

Business
process

Fig. 4. CoopFlow : A framework for inter-organizational workflow

framework offers centralized and distributed control of cooperation depending
on the trust degree between participating organizations. The global architecture
is composed of a set of cooperating partners, a possible contracting authority (in
the case where there is no sufficient trust between partners), and proxies. The
communication between organizations is ensured by a middleware (see Figure 4).

In the remaining of this section, we detail the different components
of CoopFlow in both centralized and distributed cases. Figure 5 illustrates the
case of centralized control where there is no sufficient trust between partners.
While Figure 6 shows the case of distributed control.

4.1 Contracting Authority

Once each participating organization identifies the different partners with com-
plementary skills to cooperate with and cooperation policies are established, the
different partners interconnect to each other and are ready to cooperate. The
contracting authority role is to monitor and control the workflow cooperation.
It includes a registry containing the partners’ profiles, the cooperation policies
defining the partners’ responsibilities, a controller and a database (see Figure 5).

The registry provides enterprises with searching and publication capabilities
to allow them to get partners with useful skills and giving them the ability to
share business semantic information and business process resources. Moreover,
registry technology enables trading partners to identify common data sets, data
structures, business processes and mappings. Furthermore, the registry offers a
matchmaking service that allows bringing together partners with complementary
skills in order to construct an inter-organizational workflow. Matchmaking takes
into account the flow control, the data flow and semantic descriptions of coop-
eration activities. Given two cooperative interfaces, the matchmaking result can
be (1) positive (i.e. interfaces match) (2) negative (i.e. interfaces do not match)

122 I. Chebbi and S. Tata

WfMS

wrapper

Controller

input output

cooperation policies

Wrappers
MiddleWare

partnerid localActivity remoteActivity

ViewView

Registry

persistent
store

WfMS

wrapper

input output

Fig. 5. CoopFlow : A centralized architecture

or (3) conditional (i.e. interfaces match if a given condition holds). If the match-
making result is not negative, the cooperative interfaces are interconnected. The
result of this matchmaking is a set of cooperative policies.

The cooperation policies describe the responsibilities and the roles played
by the partners in the cooperation. They define cooperative partners and their in-
terfaces (i.e. cooperative activities, their order of execution,. . .) and constraints
on workflow interactions (e.g. the matchmaking condition).

The local database serves to store local and transient information during
the execution of the inter-organizational workflow (e.g. workflow and cooperative
execution state)

The controller represents the regulating body of the proxy that manages in-
teractions between workflows according to the established cooperation policies.
It is generic and independent of WfMSs of participating organizations. This
component belongs to the contracting authority if no direct trust between the
organizations exists, so interactions take place through trusted third parties act-
ing as intermediaries. Otherwise, i.e. organizations trust each other sufficiently to
interact directly with each other, cooperation policies enforcement is completely
distributed and assumed by the controllers of the different proxies.

Figure 6 illustrates the case where organizations trust each other. In addition
to the internal and external requests control and coordination, the controller per-
mits to interact with the contracting authority as well as controllers of partners

CoopFlow : A Framework for Inter-organizational Workflow Cooperation 123

WfMS

wrapper Controller
input output

partnerid localActivity remoteActivity

Persistent
Store

cooperation policies

Wrappers
MiddleWare

wrapperController

input output

Persistent
Store

v
i
e
w
s

v
i
e
w
s

WfMS

Profiles

Registry

partnerid localActivity remoteActivity

cooperation policies

Proxy Proxy

Fig. 6. CoopFlow : A distributed architecture

with complementary skills in the case of distributed architecture. In short, the
controller permits functionalities: (1) partners profiles search and publication,
(2) partners interconnection, (3) send/reception of data to/from partners, and
(4) monitoring and control of the inter-organizational workflows cooperation.

When receiving an incoming request, the controller authenticates the sender
and verifies whether it is allowed to execute the asked actions and/or transmit
data. In the case where the requested operations are authorized, the controller
forwards the request as well as the corresponding data to the WfMS via the
wrapper. Otherwise, the controller rejects the sender request.

4.2 The Proxy Architecture

In the case where no direct trust between the organizations exists, interactions
take place through trusted third parties acting as intermediaries that includes
the cooperation policies. Otherwise, the interaction is direct and cooperation
policies are distributed among partners and both monitoring and control are
ensured by proxies.

In the following we present the second case where interactions are assumed by
the partners’ proxies. Each partner proxy is composed of a Controller, a Wrapper
and Cooperation policies components. The controller is generic, i.e. independent
of the plugged WfMS whereas the wrapper depends on how plugged WfMS inter-
act with its environment. The organization of the proxy as generic and specific
parts provides powerful ways for inter-organizational workflow cooperation and
hard code reduction. Furthermore, this provides workflow participants with the
freedom to change their specific workflows without changing the behaviour of
the global proxy. This increases flexibility and is an important step to increase
efficiency as well as reduction in costs for inter-organizational workflows and
permit to easily change internal WfMS.

124 I. Chebbi and S. Tata

In the case of a distributed architecture, the controller interacts with other
controllers of partners with complementary skills. The wrapper represents an
internal component interfacing the specific WfMS with the controller. In fact,
when receiving an incoming request (from the Controller or the WfMS), it adapts
the call and then sends it to its destination (controller or WfMS). Two types
of wrappers are offered by the framework: standardized wrappers that allow
WfMS implementing some standards such as Wf-XML to directly plug-in into
our framework without any added code. This kind of wrappers support oper-
ations allowing the WfMS interoperability and extends them with cooperation
capabilities such monitoring and control features according to established coop-
eration policies. The second type of wrappers represents the specific wrappers
that are implemented in the case where WfMS don’t implement any interoper-
ability language or use a non-standardized one. This allows them, to be interfaced
with the controller and adapt specific WfMS operations to be able to commu-
nicate with the generic controller. Finally, cooperation policies determine the
partners’ roles and interactions rules as well as all data required for the cooper-
ation accomplishment. These data include partner views, cooperative interfaces,
partners responsibilities,. . . and are preserved in persistent stores.

5 Implementation Issues

Above, we have presented the proxy architecture and described its different
components. In this section, we present how we have implemented the proxy
and then we present the implementation of Proxies for Xflow, Osworkflow, and
Shark WfMS.

5.1 Proxy Implementation

The proposed framework supports the dynamic cooperation between organi-
zations as well as dynamic and transparent integration of existing WfMSs dis-
tributed in time and place. This permits not only to simplify the inter-
organizational workflows cooperation but also to hide the complexity of lower-
level and location details for participating partners. To ensure these objectives,
the chosen implementation technology must define facilities not only for develop-
ment and deployment of transactional and distributed object but also for creat-
ing composable components. Among the solutions proposed to satisfy the men-
tioned needs, we have chosen the Enterprise JavaBeans (EJB) for facilitating the
re-use as well as interoperability of components and thus their development and
their integration, and simplifying the transaction management. In the remaining
of this section we present the Proxy different components implementation that
are the Controller, the wrapper, Cooperation Policies and Interconnection. (see
Figure 7).

Controller: The controller permits to implement a business activity allowing
the send/reception of data as well as orders/notifications, and may be used
by remote applications such as remote partners with complementary skills to

CoopFlow : A Framework for Inter-organizational Workflow Cooperation 125

Persistent
Store

Entity Bean

WfMS

wrapper
(Stateless SessionBean)

(Stateless SessionBean)

Controller

(Statefull SessionBean)

Interconnection

input output
A
P
P
L
I
C
A
T
I
O
N

S
E
R
V
E
R

Entity Bean Entity Bean

M
i
d
d
l
e

W
a
r
e

Fig. 7. Wrapper Implementation

cooperate with. Moreover, the controller is meant to be distributed and easy to
access by hiding, from remote applications, its location as well as the complexity
of its implementation details. Thus, it’s well suited to expose the controller as
a Web Service. Since SOAP and Web Services are stateless by nature, we use
stateless session beans to expose the controller as Web Service.

Wrapper: The wrapper allows interfacing the controller with the WfMS and is
implemented as a stateless session bean that is exposed as a Web Service. This
allows it to be distributed and deployed in a location that can be different from
the controller one.

Cooperation policies: After establishing contracts with partners having comple-
mentary skills, the controller needs to store cooperation policies and the different
local data into databases. This information will be presented as business objects
in a persistent storage mechanism using entity beans. Some examples of theses
business objects are Rules, Partners, Views, Virtual Activities, and Mappings.

Interconnection: To conserve resources during the entire cooperation life, we
have interfaced the controller and the different entity beans with a statefull
session bean providing a set of methods permitting to the controller the manip-
ulation of business objects. Hence, all data used and contracts required for the
controller cooperation are persisted after the controller interrogation.

To allow the send and reception of requests/responses and orders/notifications,
partners must just add a proxy composed of the components mentioned above: a
controller stateless session bean, an interconnection statefull session bean and the
set of entity beans allowing the resources preservation. To communicate with a
specific WfMS, partners must add a stateless session bean to interface this later
with the controller. To ensure internal interoperability between the controller

126 I. Chebbi and S. Tata

output

wrapper

C
o
n
t
r
o
l
l
e
r

I
n
t
e
r
c
o
n
n
e
c
t
i
o
n

input output

VirtualActivityBean

MappingBean

ViewBean

LinkBean

InstanceBean

PartnerBean

RuleBean

Persistent
Store

wrapper

input

Persistent
Store

OSWorkflow

I
n
t
e
r
c
o
n
n
e
c
t
i
o
n

C
o
n
t
r
o
l
l
e
r

VirtualActivityBean

MappingBean

ViewBean

LinkBean

InstanceBean

PartnerBean

RuleBean

Xflow

J2EE SUNJ2EE SUN

EJB Container (JBOSS)
J
D
B
C

XFlow Processor (Message-Driven Bean)

HTTP

JMS

Servlet Container (TOMCAT)
XFlow Web Services

Persistent
store

Servlet Container
(TOMCAT)

Osworkflow Web Services

Osworkflow Persistent
store

J
D
B
C

HTTP

Fig. 8. Xflow and Osworkflow workflows cooperation

and the wrapper, the implementation we propose support organizations, either
implementing Wf-XML or not. If the WfMS doesn’t support Wf-XML, it must
just add a wrapper to be interconnected to the controller.

5.2 Application : The Case of Xflow, Osworkflow and Shark

Recently, we have developed three proxies for three existing WfMSs: XFlow 2,
OSWorkflow 3, and Shark 4 (see Figure 8). In the following, we present the three
WfMS’s and then describe the cooperation scenario between them.

XFlow is a pure J2EE framework for building, executing and managing busi-
ness processes and workflows. It runs within an EJB and servlet container.
JBoss 4.0 (with bundled Tomcat) is the container used in our implementation.
The architecture of XFlow supports distributed and parallel processes within an
organizations’ firewall as well as across organizational boundaries.

OSWorkflow is a Java based open source project. In our application it runs
within the servlet container Tomcat and communicates with database via JDBC.

2 XFlow: http://xflow.sourceforge.net/
3 OSWorkflow: http://www.opensymphony.com/osworkflow/
4 Shark: http://shark.objectweb.org/

CoopFlow : A Framework for Inter-organizational Workflow Cooperation 127

Shark is an extendable workflow engine framework including a standard im-
plementation completely based on WfMC specifications using XPDL as its native
workflow process definition format and the WfMC ToolAgents API for server
side execution of system activities.

We mention here that all of these WfMSs fulfil cooperation conditions that
are the capability of calling external applications and allowing these ones to
invoke any step within a workflow they manage.

The communication between the systems is supported by a Web service mid-
dleware. In order to preserve the systems privacy and limit accesses to workflow
resources (data access rights, method visibility, etc.), incoming/outgoing invoca-
tions are filtered by the proxies. For Shark interoperability, we have developed
a Wf-XML wrapper. The wrapper presents the advantage of being generic and
allows the plug-in of any WfMS implementing Wf-XML specification. In fact, if
a cooperating WfMS implements the fourth interface of WfMC, then it would be
directly connected to our framework without added code. Otherwise, organiza-
tions must just add a simple wrapper to interconnect and cooperate within our
framework. The implemented proxies are in the form of EJBs deployed in J2EE
application servers where both of the controller and the wrapper are exposed as
Web services.

6 Conclusions

In this paper we have presented a framework enabling the cooperation of inter-
organizational workflows. The framework we proposed allows the plug-in of any
existing WfMS able to invoke external applications and that can be invoked from
external applications (including workflows hosted by heterogeneous a WfMS). To
adapt incoming and outgoing invocations and control them we have used proxies
that are organized in term of a generic part that is common to all participating
organizations and a specific one permitting the interaction with specific WfMS.
This provides powerful ways for inter-organizational workflow cooperation and
code reduction. In fact, this allows partners to change the WfMS executing
their workflow without changing the global proxy behaviour and this separation
permits to deploy the framework components in different locations.

Furthermore, the cooperation framework we propose provides a high degree
of flexibility and addresses to workflows cooperation requirements. In fact, it
permits a dynamic interconnection and disconnection of participating organiza-
tions. Moreover, it preserves the privacy and autonomy of process participants
by reducing inter-visibility as tiny as the cooperation needs based on the view
principle. In addition, our framework preserves established workflows. Partici-
pants don’t modify their internal system. Instead, they have just to implement
a proxy to integrate our framework.

To validate and test our framework applicability, we have built a prototype
permitting the cooperation between three existing WfMS that are able to invoke
external application and that can be invoked from external applications, Xflow,
Osworkflow and Shark, by implementing the corresponding proxies. In addition,

128 I. Chebbi and S. Tata

we have developed a Wf-XML wrapper. The wrapper presents the advantage
of being generic and allowing the plug-in of any WfMS implementing Wf-XML
specification. In fact, if a cooperating WfMS implements the fourth interface of
WfMC, then it would be directly connected to our framework without any added
code. Otherwise, organizations must just add a simple wrapper to interconnect
and cooperate within our framework.

References

1. Allen, R.: Workflow: An introduction. In Fisher, L., ed.: Workflow Handbook.
Future Strategies, Lighthouse Point, FL (2001) 15–38

2. Tata, S., Boughzala, I.: Modeling contribution for virtual enterprise support. In:
12th IEEE International Workshops on Enabling Technologies, Infrastructure for
Collaborative Enterprises, Linz, Austria, IEEE Computer Society (2003) 165–170

3. Tata, S., Chebbi, I.: A bottom-up approach to inter-enterprise business processes.
In: 13th IEEE International Workshops on Enabling Technologies, Infrastructure
for Collaborative Enterprises, Modena, Italy (2004)

4. Chebbi, I., Tata, S., Dustdar, S.: Cooperation policies for inter-organizational
workflows. In: Teamware: supporting scalable virtual teams in multi-organizational
settings, Symposium on Applications and the Internet, Trento, Italy (2005)

5. Chebbi, I., Dustdar, S., Tata, S.: The view-based approach to dynamic inter-
organizational workflow cooperation. Data and Knowledge Engineering Journal
(2005, forthcoming)

6. Griffel, F., Boger, M., Weinreich, H., Lamersdorf, W., Merz, M.: Electronic con-
tracting with cosmos - how to establish, negotiate and execute electronic contracts
on the internet. In: Enterprise Distributed Object Computing Workshop. (1998)

7. Verharen, E., Papazoglou, M.: Introduction to contracting in distributed transac-
tional workflow. In: Annual Hawaii International Conference on System Science.
(1998)

8. Grefen, P., Aberer, K., Hoffer, Y., Ludwig, H.: Crossflow: Cross-organizational
workflow management for service outsourcing in dynamic virtual enterprises. IEEE
Data Engineering Bulletin 24 (2001) 52–57

9. Alonso, G., Fiedler, U., Hagen, C., Lazcano, A., Schuldt, H., Weiler, N.: Wise:
Business to business e-commerce. International Workshop on Research Issues on
Data Engineering: Information Technology for virtual Enterprises (1999)

10. Lazcano, A., Alonso, G., Schuldt, H., Schuler, C.: The wise approach to electronic
commerce. International Journal of Computer Systems Science & Engineering,
special issue on Flexible Workflow Technology Driving the Networked Economy
vol. 15 (2000)

11. Kotok, A., Webber, D.R.: ebXML: The New Global Standard for Doing Business
on the Internet. New Riders Publishing (2001)

12. Christian, B.H.: ebxml: Status, research issues, and obstacles (2002)
13. van der Aalst, W.M.P.: Loosely coupled interorganizational workflows: Model-

ing and analyzing workflows crossing organizational boundaries. Information and
Management 37 (2000) 67–75

14. van der Aalst, W.M.P.: Process-oriented architectures for electronic commerce and
interorganizational workflow. Inf. Syst. 24 (1999) 639–671

15. Muth, P., Wodtke, D., Weissenfels, J., Angelika Kotz Dittrich, G.W.: From central-
ized workflow specification to distributed workflow execution. Journal of Intelligent
Information Systems (1998) 10(2):159–184

CoopFlow : A Framework for Inter-organizational Workflow Cooperation 129

16. van der Aalst, W.M.P., Weske, M.: The p2p approach to interorganizational work-
flows. In: Proceedings of the 13th International Conference on Advanced Informa-
tion Systems Engineering, Springer-Verlag (2001) 140–156

17. Zhao, J.L.: Workflow management in the age of e-business. In: Tutorial at the 35th
Hawaii International Conference on System Sciences, Waikoloa, Hawaii (2002)

18. Hollingsworth, D.: An xml based architecture for collaborative process manage-
ment. In Fischer, L., ed.: Workflow Handbook 2002. Future Strategies, Lighthouse
Point (FL) (2002) 95–116

19. WfMC: Workflow process definition interface - xml process definition language.
document status - 1.0 final draft. Document number wfmc-tc-1025, Workflow
Management Coalition (2002)

20. Ricker, J., Swenson, K.D., Silverstein, M.: Asynchronous service access protocol
working draft 01. Standards specification, Organization for the Advancement of
Structured Information Standards (2003)

21. van der Aalst, W.M.P.: Interorganizational workflows: An approach based on mes-
sage sequence charts and petri nets. Systems Analysis - Modelling - Simulation 34
(1999) 335–367

22. Martin, D.L., Paolucci, M., McIlraith, S.A., Burstein, M.H., McDermott, D.V.,
McGuinness, D.L., Parsia, B., Payne, T.R., Sabou, M., Solanki, M., Srinivasan,
N., Sycara, K.P.: Bringing semantics to web services: The owl-s approach. In:
Semantic Web Services and Web Process Composition Workshop. Volume 3387 of
Lecture Notes in Computer Science., San Diego, CA, USA (2004) 26–42

23. Wombacher, A., Fankhauser, P., Aberer, K.: Overview on decentralized estab-
lishment of consistent multi-lateral collaborations based on asynchronous commu-
nication. In: IEEE International Conference on e-Technology, e-Commerce, and
e-Services, IEEE Computer Society (2005) 164–170

Process Mining and Verification of Properties:
An Approach Based on Temporal Logic

W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen

Department of Technology Management,
Eindhoven University of Technology, P.O.Box 513,

NL-5600 MB, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tm.tue.nl

Abstract. Information systems are facing conflicting requirements. On
the one hand, systems need to be adaptive and self-managing to deal with
rapidly changing circumstances. On the other hand, legislation such as
the Sarbanes-Oxley Act, is putting increasing demands on monitoring
activities and processes. As processes and systems become more flexible,
both the need for, and the complexity of monitoring increases. Our ear-
lier work on process mining has primarily focused on process discovery,
i.e., automatically constructing models describing knowledge extracted
from event logs. In this paper, we focus on a different problem comple-
menting process discovery. Given an event log and some property, we
want to verify whether the property holds. For this purpose we have
developed a new language based on Linear Temporal Logic (LTL) and
we combine this with a standard XML format to store event logs. Given
an event log and an LTL property, our LTL Checker verifies whether the
observed behavior matches the (un)expected/(un)desirable behavior.

Keywords: Process mining, temporal logic, business process manage-
ment, workflow management, data mining, Petri nets.

1 Introduction

A constantly changing reality is forcing organizations and their information sys-
tems to adapt at an ever increasing pace. Business Process Management (BPM)
and Workflow Management (WFM) systems increasingly allow for more flexibil-
ity. Instead of recoding the system it typically suffices to reconfigure the system
on the basis of a process model [3]. Several researchers have addressed the prob-
lems related to workflow change [1,15,29,30]. Although the work on workflow
change is highly relevant, in reality many processes are not bound by a WFM
system, or a BPM system driven by an explicit process model. In contrast, some
systems, e.g., the case handling system FLOWer, allow for implicit routing, other
systems allow for much more behavior than desired. For example, people using
the SAP R/3 system are not limited by process models described in the SAP
R/3 Reference Model database [25]. Deviations from the “normal process” may
be desirable but may also point to inefficiencies or even fraud. New legislation

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 130–147, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Process Mining and Verification of Properties 131

such as the Sarbanes-Oxley (SOX) Act [33] and increased emphasis on corpo-
rate governance has triggered the need for improved auditing systems [23]. For
example, Section 404 of the SOX Act [33] states two requirements: (1) Section
404(a) describes management’s responsibility for establishing and maintaining
an adequate internal control structure and procedures for financial reporting
and assessing the effectiveness of internal control over financial reporting, and
(2) Section 404(b) describes the independent auditors responsibility for attesting
to, and reporting on, management’s internal control assessment. Both require-
ments suggest an increased need for the detailed auditing of business activities.
To audit an organization, these business activities need to be monitored. As
enterprises become increasingly automated, a tight coupling between auditing
systems and the information systems supporting the operational processes be-
comes more important.

Today’s information systems need to compromise between two requirements:
(1) being adaptive and self-managing and (2) being able to be audited. Within
the context of this struggle, we have developed a tool called LTL Checker. This
tool has been developed in the context of our ProM framework1. The ProM
framework offers a wide range of tools related to process mining, i.e., extracting
information from event logs [7]. Process mining is motivated by the fact that
many business processes leave their “footprints” in transactional information
systems (cf. WFM, ERP, CRM, SCM, and B2B systems), i.e., business events
are recorded in so-called event logs. Until recently, the information in these
logs was rarely used to analyze the underlying processes. Process mining aims at
improving this by providing techniques and tools for discovering process, control,
data, organizational, and social structures from event logs, i.e., the basic idea
of process mining is to diagnose business processes by mining event logs for
knowledge.

The work presented in this paper is related to process mining, but, unlike
most process-mining approaches, the emphasis is not on discovery. Instead we
focus on verification, i.e., given an event log we want to verify certain properties.
One example is the 4-eyes principle, i.e., although authorized to execute two
activities, a person is not allowed to execute both activities for the same case.
For example, a manager may submit a request (e.g., to purchase equipment, to
make a trip, or to work overtime) and he may also approve requests. However,
it may be desirable to apply the 4-eyes principle implying that the manager
is not allowed to approve his own request. If there is an event log recording
the events “submit request” and “approve request”, the 4-eyes principle can be
verified easily. More difficult are properties relating to the ordering or presence of
activities. For example, activity A may only occur if it is preceded by activity B
or activity C and immediately followed by activity D. Therefore, we propose an
approach based on temporal logic [26,28]. More specifically, we use an extension
of Linear Temporal Logic (LTL) [17,20,21] tailored towards event logs holding
information on activities, cases (i.e., process instances), timestamps, originators
(the person or resource executing the activity), and related data.

1 Both documentation and software can be downloaded from www.processmining.org.

132 W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen

information
system

operational
process

process
models

event
logs

models

process
discovery

conformance
testing

records

configures

supports/
controls

(un)desired
properties

log-based verification

refers to

Fig. 1. The role of verification in the context of process mining

Figure 1 shows the “bigger picture”, i.e., the role of log-based verification
in relation to other process-mining methods such as process discovery. The in-
formation system is there to support, control and/or follow operational pro-
cesses. Through the information system (parts of) the operational process is
(are) recorded. Using process discovery, models (e.g., Petri nets) may be gener-
ated to explain the observed behavior. Unfortunately, process discovery may be
intractable for many processes. However, for most processes one can formulate
(un)expected/(un)desirable properties. These properties can be directly com-
pared with the event log. Note that, in principle, one can first build a model
and then compare the model and some property using model checking. We do
not do this because in the discovery process typically information is lost and
for some logs process discovery may be intractable. Note that log-based verifi-
cation is also different from conformance testing where the model and event log
are compared (see Figure 1). Log-based verification is more robust than most
other process-mining approaches. For example, even for very complicated pro-
cesses resulting in spaghetti-like diagrams it is easy to verify the 4-eyes principle
mentioned before.

This paper reports on the language developed to formulate properties in the
context of event logs, the approach used to check these properties, the imple-
mentation of the LTL Checker in the ProM framework, and the relation between
this work and process discovery. It is important to note that process discovery
is difficult in situations where a lot of flexibility is offered. As indicated, an ap-
proach based on verification is more robust because it can focus on the essential
properties. Hence, the LTL Checker is a welcome addition towards a wider range
of process mining tools.

Process Mining and Verification of Properties 133

This paper is organized as follows. Section 2 introduces a running example
that will be used to illustrate the concept of process mining. The ProM frame-
work and the XML format used to store event logs is presented in Section 3.
Then the new LTL language is introduced and it is shown how properties can be
specified. Section 5 shows how these properties can be verified using the newly
developed LTL Checker in ProM. Finally, some related work is discussed and
the paper is concluded.

2 Running Example

Today, many enterprise information systems store relevant events in some struc-
tured form. For example, WFM systems typically register the start and comple-
tion of activities. ERP systems like SAP log all transactions, e.g., users filling
out forms, changing documents, etc. Business-to-Business (B2B) systems log the
exchange of messages with other parties. Call center packages but also general-
purpose Customer Relationship Management (CRM) systems log interactions
with customers. These examples show that many systems have some kind of
event log often referred to as “history”, “audit trail”, “transaction log”, etc. [7,8].
The event log typically contains information about events referring to an activity
and a case. The case (also named process instance) is the “thing” which is being
handled, e.g., a customer order, a job application, an insurance claim, a building
permit, etc. The activity (also named task, operation, action, or work-item) is
some operation on the case. Typically, events have a timestamp indicating the
time of occurrence. Moreover, when people are involved, event logs will typically
contain information on the person executing or initiating the event, i.e., the
originator. Based on this information several tools and techniques for process
mining have been developed.

As a running example, we will use the process shown in Figure 2. The process
describes the reviewing process of a paper for a journal and is represented in
terms of a Petri net (more specifically a workflow net [3]). After inviting three
reviewers (activity A) each of the reviewers returns a review or a time-out occurs,
e.g., for the first review either B or C occurs. Then the reviews that were returned
in time are collected (activity G) and a decision is made (activity H). There are
three possible outcomes of this decision: (1) the paper is accepted (I), (2) the
paper is rejected (J), or (3) an additional reviewer is needed (K). Similar to the
original three reviewers, the additional reviewer may return the review in time
(L) or not (M).

For the process shown in Figure 2, we may log events such as the ones shown
in Table 1. As discussed before, each event refers to a case (e.g., case 1) and
an activity (e.g., invite reviewers). Moreover, in this case the timestamp and
originator are logged. The first line of the fragment shown in Table 1 states
that John executed step A (invite reviewers) for case 0 on the first of January
2005. Table 1 does not show that for some events additional data is logged.
For example, each case has a data element title and each review result (e.g.,
get review 1) has a result attribute which is either accept or reject. Table 1

134 W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen

A

E

G

invite
reviewers

D

get review 2

time-out 2

collect
reviews

H

decide

I

accept

J

reject

invite
additional
reviewer

K

M

L

get review X

time-out X

C

B

get review 1

time-out 1

G

F

get review 3

time-out 3

Fig. 2. Running example

Table 1. A fragment of the event log

case id activity id originator timestamp
...

case 0 invite reviewers John 2005-01-01T08:00
case 1 invite reviewers John 2005-01-01T08:00
case 0 get review 1 Nick 2005-02-06T08:00
case 0 get review 2 Pete 2005-03-07T08:00

...

only shows a fragment of the log used throughout this paper. The log holds
information about 48 cases (i.e., papers) and 354 events and is used as a running
example.

3 ProM Framework and XML Format

The LTL Checker presented in this paper is embedded in the ProM framework
and should be seen as an addition to a collection of process mining tools. There-
fore, we first describe the ProM framework and some of the process mining
techniques that have been developed in this framework. The goal of this section
is to introduce the format used to log events and to provide a brief overview of
some of the techniques complementing the results presented in this paper.

In Table 1 we showed a fragment of some event log. We assume a standard
log format, named MXML, and have developed several adaptors to map logs
in different information systems onto our log format (e.g., Staffware, FLOWer,
MS Exchange, MQSeries, etc.). Figure 3 shows the hierarchical structure of

Process Mining and Verification of Properties 135

Fig. 3. XML schema for the MXML format used by ProM

MXML. The format is XML based and is defined by an XML schema (cf.
www.processmining.org).

The ProM framework has been developed as a completely plug-able environ-
ment. It can be extended by simply adding plug-ins, i.e., there is no need to
know or recompile the source code. Currently, more than 30 plug-ins have been
added. The most interesting plug-ins are the mining plug-ins and the analysis
plug-ins. The architecture of ProM allows for five different types of plug-ins:

Mining plug-ins which implement some mining algorithm, e.g., mining algo-
rithms that construct a Petri net based on some event log.

Export plug-ins which implement some “save as” functionality for some ob-
jects (such as graphs). For example, there are plug-ins to save EPCs, Petri
nets, spreadsheets, etc.

Import plug-ins which implement an “open” functionality for exported ob-
jects, e.g., load instance-EPCs from ARIS PPM.

Analysis plug-ins which typically implement some property analysis on some
mining result. For example, for Petri nets there is a plug-in which constructs
place invariants, transition invariants, and a coverability graph.

Conversion plug-ins which implement conversions between different data for-
mats, e.g., from EPCs to Petri nets.

For the process perspective, four mining plug-ins are available including the α
plug-in [9], a genetic miner, and a multi-phase miner. The goal of these plug-ins
is to extract a process model from a given event log without using any additional
knowledge of the process. For example, based on the log mentioned in Section 2
(i.e., the log holding information on 48 papers and 354 events), the α plug-in
discovers the process model shown in Figure 4. Note that this model is identical
to the one shown in Figure 2. Of course the layout is different since it is automat-
ically generated. For the organizational/social perspective, one mining plug-in
named MinSoN is available [6]. If we apply this plug-in to the same log, ProM
constructs the social network shown in Figure 5. A social network shows all ac-
tors in the organization and their relationships. Based on an analysis of the log

136 W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen

Fig. 4. The α mining plug-in in ProM used to discover the underlying process model

(e.g., transfer of work or similarity of work profiles), the relationships and their
relative strength are derived. Figure 5 shows how these can be analyzed, e.g., us-
ing a tool like NetMiner. The screenshot on the left shows that John and Mike are
the two central players in the reviewing process. This is no surprise since John is
the editorial assistant (responsible for the contacts with reviewers and authors)
and Mike is the editor of the journal. The screenshot on the right-hand-side of
Figure 5 illustrates how NetMiner can discover “cliques” in a social network.

Figures 4 and 5 show how process mining techniques can be used to discover
models based on some event log. The results presented in this paper are related
to process mining, but unlike the mining plug-ins mentioned the focus is not on
discovery. Instead, the focus is on verification. Therefore, in the context of the
ProM framework, the LTL Checker should be considered as an analysis plug-in
rather than a mining plug-in.

Fig. 5. The social network discovered by ProM exported to the SNA tool NetMiner

Process Mining and Verification of Properties 137

4 Formulating Properties: The LTL Language

Assuming that the information system at hand left a “footprint” in some event log,
it is interesting to check whether certain properties hold or not. Before being able
to check such properties, a concrete language for formulating dynamic properties is
needed. Given the fact that we consider behavioral properties where ordering and
timing are relevant, some temporal logic seems to be the best basis to start from
[26,28]. There are two likely candidates:Computational TreeLogic (CTL) and Lin-
ear Temporal Logic (LTL) [17,20,21]. Given the linear nature of an event log, LTL
is the obvious choice. It would only make sense to use CTL if first a model (e.g., an
automaton) was built before evaluating the property. Unlike most of the existing
process mining techniques supported in the ProM framework, we try to avoid this
and simply use LTL as a basis directly working on the event log.

It is not sufficient to select LTL as a language. To easily specify properties in
the context of MXML, a dedicated language is needed that exploits the structure
shown in Figure 3. Therefore, in addition to standard logical operators, we need
dedicated statements to address the properties of cases and events. For example,
it should be easy to use the various attributes of a case (both standard ones such
as case, activity, timestamp, originator and event type, and context specific ones
such as data values).

We have developed a powerful language that includes type definitions, renam-
ing, formulas, subformulas, regular expressions, date expressions, propositional
logic, universal and existentional quantification, and temporal operators such as
nexttime (©F), eventually (�F), always (�F), and until (F � G). A complete
description of the language is beyond the scope of this paper but is given in [11].
To illustrate the language we use the examples shown in Table 2.

The notation ate.X is used to refer to some attribute X of an audit trail
entry (ate), i.e., an event in the event log. Similarly pi.X is used to refer to
attribute X of a process instance (pi), i.e., a case. There are several predefined
attributes, e.g., ate.WorkflowModelElement refers to the activity (or other pro-
cess elements) being executed. ate.Originator is the resource executing it, i.e.,
the person. ate.Timestamp is the timestamp of the event. ate.EventType is
the type of the event (i.e., schedule, assign, reassign, withdraw, start, complete,
suspend, etc.). The three set declarations shown in Table 2 (lines 1-3) declare
that ate.WorkflowModelElement,ate.Originator, and ate.EventType can be
used for quantification, e.g., ate.WorkflowModelElementmay refer to the activ-
ity related to the current event but may also be used to range over all activities
appearing the a case. Line 5 declares the DateTime format used when specifying
a value (note that this allows for shorter notations than the standard XML for-
mat). Line 6 declares a data attribute at the level of an event. The data attribute
result is used to record the outcome of a single review in the running example.
Line 7 shows a data attribute at the level of a case. Note that both attributes
are of type string. To allow for shorter/customized names our language allows
for renaming. As shown in lines 9-11, ate.Originator, ate.Timestamp, and
ate.WorkflowModelElement are renamed to person, timestamp, and activity
respectively. These names are used in the remainder of Table 2.

138 W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen

Table 2. Some LTL formulas for the running example

1 set ate.WorkflowModelElement;
2 set ate.Originator;
3 set ate.EventType;
4

5 date ate.Timestamp := "yyyy-MM-dd";
6 string ate.result;
7 string pi.title;
8

9 rename ate.Originator as person;
10 rename ate.Timestamp as timestamp;
11 rename ate.WorkflowModelElement as activity;
12

13 formula accept_or_reject_but_not_both() :=
14 (<>(activity == "accept") <-> !(<>(activity == "reject")));
15

16 formula action_follows_decision() :=
17 []((activity == "decide" -> _O(((activity == "accept" \/
18 activity == "reject") \/ activity == "invite additional reviewer"))));
19

20 subformula execute(p : person, a : activity) :=
21 <> ((activity == a /\ person == p)) ;
22

23 formula not_the_same_reviewer() :=
24 forall[p:person |
25 (((!(execute(p,"get review 1")) \/ !(execute(p,"get review 2"))) /\
26 (!(execute(p,"get review 1")) \/ !(execute(p,"get review 3")))) /\
27 (!(execute(p,"get review 2")) \/ !(execute(p,"get review 3"))))];
28

29 subformula accept(a : activity) :=
30 <> ((activity == a /\ ate.result == "accept")) ;
31

32 formula dont_reject_paper_unjustified() :=
33 (((accept("get review 1") /\ accept("get review 2")) /\
34 accept("get review 3"))
35 -> <> (activity == "accept"));
36

37 formula started_before_finished_after(start_time:timestamp,
38 end_time:timestamp) :=
39 (<>(timestamp < start_time) /\ <>(timestamp > end_time));

The goal of the LTL language is to specify properties. Properties are de-
scribed using the formula construct. Formulas may be nested and can have
parameters. To hide formulas that are only used indirectly, the subformula con-
struct should be used. Table 2 describes five formulas and two subformulas. Lines
13-14 specify a formula without any parameters. The property holds for a given

Process Mining and Verification of Properties 139

event log if for each paper there was an acceptance (activity I in Figure 2) or
a rejection (activity J in Figure 2) but not both. To formulate this both tem-
poral and logical operators are used: <> is the syntax for the temporal operator
eventually (�F), <-> denotes “if and only if”, and ! is the negation. Line 14
uses the shorthand activity defined in Line 11 twice. activity == "accept"
is true if the WorkflowModelElement attribute of the current event points to
the acceptance activity. Hence, <>(activity == "accept") holds if the accep-
tance activity was executed. Similarly, <>(activity == "reject") holds if the
rejection activity was executed. Using <-> and ! we can formulate that exactly
one of these two should hold. The formula accept_or_reject_but_not_both
can be evaluated for each case in the log. If it holds for all cases, it holds for the
entire log.

Lines 16-18 define the property that any decision (activity H in Figure 2)
should be directly followed by a rejection (J), acceptance (I) or invitation (K).
The following logical and temporal operators are used to achieve this: [] to de-
note the always operator (�F), -> for implication, _O denote the nexttime oper-
ator (©F), and \/ for the logical or. The part []((activity == "decide" ->
states that it should always be the case that if the current activity is decide, the
following should hold. The second part starts with _O to indicate that immedi-
ately after the decision step the current activity should be of one of the three
mentioned.

The formula specified in lines 23-27 uses the parameterized subformula de-
fined in lines 20-21. The subformula states whether at some point in time activity
a was executed by person p. Note that both parameters are typed through the
declarations in the top part of Table 2. Formula not_the_same_reviewer calls
the subformula six times to express the requirement that no reviewer should
review the same paper twice. In terms of Figure 2: activities B, D, and F should
be executed by different people. Note that universal quantification over the set
people involved is used (cf. forall[p:person | ...) where person is renamed
in Line 9 and declared to be a set type in Line 2.

The formula specified in lines 32-34 uses the parameterized subformula de-
fined in lines 29-30. The subformula checks whether there is some event corre-
sponding to activity a that has a data attribute result set to value accept, i.e.,
ate.result == "accept". Note that ate.result was declared in Line 6. For-
mula dont_reject_paper_unjustified states that a paper with three positive
reviews (three accepts) should be accepted for the journal.

The last formula in Table 2 (lines 36-37) shows that it is also possible to use
timestamps. The formula has two parameters (start and end time) and it holds
if each case was started before the given start time and ended after the given
end time.

The formulas shown in Table 2 are specific for the running example intro-
duced in Section 2. However, many generic properties can be defined, e.g., the
4-eyes principle. Recall that this principle states that, although authorized to
execute two activities, a person is not allowed to execute both activities for the
same case. The following formula can be used to verify this:

140 W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen

formula four_eyes_principle(a1:activity,a2:activity) :=
forall[p:person |(!(execute(p,a1)) \/ !(execute(p,a2)))];

The property four_eyes_principle("invite reviewers","decide") checks
whether activities A and H in Figure 2 are indeed executed by different people.
This example and the formulas in Table 2 provide an impression of the LTL
language we have developed. It can be seen as a temporal logic tailored towards
events logs. For more details we refer to [11] and www.processmining.org. The
next section elaborates on the tool support for this language.

5 Verifying Properties: The LTL Checker

In Section 3, the ProM framework has been introduced. To be able to verify prop-
erties using the language presented, three plug-ins are needed: (1) a mining plug-
in to load and filter an MXML file, (2) an import plug-in to load LTL files like the
one shown in Table 2, and (3) an analysis plug-in providing the graphical inter-
face and doing the actual verification. For convenience a large number of generic
properties have been specified (e.g., the 4-eyes principle). There are about 60
application-independent properties focusing on the ate.WorkflowModelElement
(activity), ate.Originator (person), ate.Timestamp, and ate.EventType at-
tributes. Only for specific questions (e.g., related to data) the user needs to spec-
ify new formulas. The 60 standard formulas are stored in a default file that can be
applied directly without any knowledge of the LTL syntax described in the pre-
vious section. It is possible to link HTML markup to any formula. This markup
is shown to the user when selecting a formula. This should support the selec-
tion and interpretation of the corresponding property. Note that formulas may be
parameterized and users need to type a value for each parameter, e.g., the two ac-
tivity names in four_eyes_principle("invite reviewers","decide"). The
graphical user interface shows the HTML text and a form that need to be filled
out, cf. Figure 6.

The implementation of the actual LTL Checker is rather complicated. How-
ever, the core structure of the checker is fairly straightforward as is sketched
in the remainder of this section. Let L denote the event log and F a formula
expressed in the language described in the previous section. (If F is parame-
terized, then it is evaluated for concrete parameter values.) checklog(L, F) =
∀π∈L(check(F, π, 0)) evaluates to true if F holds for the log L. π ∈ L is a process
instance (i.e., case) represented by a sequence of audit trail entries (i.e., events).
|π| is the length of π, i.e., the number of events, and πi is the (i − 1)-th entry,
i.e., π = π0π1 . . . π|π|−1.

check(F, π, 0) checks whether the formula F holds for the first process-in-
stance π ∈ L (i.e., the π at position 0 in L). For temporal operators, the position
in the sequence π is relevant as well. Therefore, let F denote a formula, π a case,
and i a number (0 ≤ i < |π|).

Process Mining and Verification of Properties 141

Fig. 6. Formula selection, help text, and configuration in the LTL Checker

check(F, π, i) =
if F =

expr(πi) ⇔
true, expr is atomic and holds for i-th audit trail entry of π, i.e., πi;
false, expr is atomic and does not hold for i-th audit trail entry of π;

¬φ ⇔ ¬check(φ, π, i);
φ ∧ ψ ⇔ check(φ, π, i) ∧ check(ψ, π, i);
φ ∨ ψ ⇔ check(φ, π, i) ∨ check(ψ, π, i);
φ → ψ ⇔ check(φ, π, i) → check(ψ, π, i);
φ ↔ ψ ⇔ check(φ, π, i)↔ check(ψ, π, i);
∀x∈X(φx)⇔ ∀x∈X(check(φx, π, i));
∃x∈X(φx)⇔ ∃x∈X(check(φx, π, i));
�φ ⇔

check(φ, π, i) ∧ check(F, π, i + 1), 0 ≤ i < (|π| − 1);
check(φ, π, i), i = (|π| − 1);

�φ ⇔
check(φ, π, i) ∨ check(F, π, i + 1), 0 ≤ i < (|π| − 1);
check(φ, π, i), i = (|π| − 1);

©φ⇔
check(φ, π, i + 1), 0 ≤ i < (|π| − 1);
false, i = (|π| − 1);

φ � ψ ⇔
check(ψ, π, i) ∨ (check(φ, π, i) ∧ check(F, π, i + 1)), 0 ≤ i < (|π| − 1);
check(ψ, π, i) ∨ check(φ, π, i), i = (|π| − 1);

142 W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen

Fig. 7. The LTL Checker detected a problem when checking the 4-eyes principle

The expr function is a function which computes atomic Boolean expressions
that may involve all kinds of attributes (e.g., timestamps etc. but also data values
or case attributes). Given the fact that there are many comparison operators,
typing issues and advanced features such as pattern matching, the coding of the
LTL Checker is more complex than the sketch just given suggests.

The unfolding of the quantifications may be an expensive operation. How-
ever, no quantification is bigger than the number of events within a single case.
Moreover, each case (process instance) can be checked in isolation thus making
the algorithms tractable. Note that logs may contain thousands or even mil-
lions of cases. However, the number of events per case is typically less than 100.
Therefore, from a practical point of view, the core algorithm is linear in the size
of the log.

To conclude, we show a screenshot of the result, cf. Figure 7. It shows the
result of four_eyes_principle("get review 1","get review 3") applied to
the log with 48 cases. 47 of these cases satisfy the property. Only for one case
(case 2), the property is not satisfied as shown in Figure 7. Indeed the paper is
reviewed by Trudy twice. In one review, she rejects the paper while in another
one she accepts it.

For every property, the LTL Checker partitions the set of cases into two sets:
LOK (the cases that satisfy the property) and LNOK (the ones that do not).
If LNOK = ∅, the property holds. Otherwise, LNOK provides counterexamples.
Both sets can be saved and analyzed further. For example, it is possible to
construct a process model or social network for LOK or LNOK . This may be
helpful when analyzing (root) causes for violations of a desirable property.

Process Mining and Verification of Properties 143

6 Related Work

Although focusing on a completely different problem, the work reported in this pa-
per is related to earlier work on process mining, i.e., discovering a process model
based on some event log. The idea of applying process mining in the context of
workflow management was first introduced in [10]. Cook and Wolf have investi-
gated similar issues in the context of software engineering processes using different
approaches [13]. Herbst and Karagiannis also address the issue of process mining
in the context of workflowmanagement using an inductive approach [22]. They use
stochastic task graphs as an intermediate representation and generate a workflow
model described in the ADONIS modeling language. Then there are several vari-
ants of the α algorithm [9,35]. In [9] it is shown that this algorithm can be proven
to be correct for a large class of processes. In [35] a heuristic approach using rather
simple metrics is used to construct so-called “dependency/frequency tables” and
“dependency/frequency graphs”. This is used as input for the α algorithm. As a
result it is possible to tackle the problem of noise. For more information on process
mining we refer to a special issue of Computers in Industry on process mining [8]
and a survey paper [7]. Given the scope of this paper, we are unable to provide a
complete listing of the many papers on process mining published in recent years.
Instead, we refer to our website www.processmining.org and the references there
for a more elaborate overview.

Conformance testing, i.e., checking whether a given model and a given event
log fit together, can be a seen a very specific form of log-based verification. Instead
of some logical formula, a process model (e.g., Petri net) is used to verify whether
the log satisfies some behavioral properties. Therefore, the work of Cook et al.
[14,12] is closely related to this paper. In [14] the concept of process validation
is introduced. It assumes an event stream coming from the model and an event
stream coming from real-life observations. Both streams are compared. Only in
the last part of the paper an attempt is made to selectively try and match possi-
ble event streams of the model to a given event stream. As a result only fitness is
considered and the time-complexity is problematic as the state-space of the model
needs to be explored. In [12] the results are extended to include time aspects. The
notion of conformance has also been discussed in the context of security [5], busi-
ness alignment [2], and genetic mining [4].

Monitoring events with the goal to verify certain properties has been
investigated in several domains, e.g., in the context of requirements engineering
[16,31,32] and program monitoring [17,20,21]. It is also interesting to note the pos-
sible applications of such techniques in the context of monitoring web services. In
such a distributed environment with multiple actors, it is highly relevant to be
able to monitor the behavior of each actor.

The work of Robinson [31,32] on requirements engineering is highly related. He
suggests the use of LTL for the verification of properties. Important differences be-
tween this approach and ours are the focus on real-time monitoring (with model-
checking capabilities to warn for future problems) and the coding required to check
the desired properties. The following quote taken from [31] illustrates the focus
of this work: “Execution monitoring of requirements is a technique that tracks

144 W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen

the run-time behavior of a system and notes when it deviates from its design-
time specification. Requirements monitoring is useful when it is too difficult (e.g.,
intractable) to prove system properties. To aid analysis, assumptions are made
as part of the requirements definition activity. The requirements and assump-
tions are monitored at run-time. Should any such conditions fail, a procedure can
be invoked (e.g., notification to the designer).” In a technical sense, the work of
Havelund et al. [20,21] is highly related. Havelund et al. propose three ways to eval-
uate LTL formulas: (1) automata-based, (2) using rewriting (based on Maude), (3)
and using dynamic programming. We use the latter approach (dynamic
programming).

Process mining, conformance testing, and log-based verification can be seen in
the broader context of Business (Process) Intelligence (BPI) and Business Activ-
ity Monitoring (BAM). In [18,19,34] a BPI toolset on top of HP’s Process Manager
is described. The BPI tools set includes a so-called “BPI Process Mining Engine”.
In [27] Zur Muehlen describes the PISA tool which can be used to extract perfor-
mance metrics from workflow logs. Similar diagnostics are provided by the ARIS
Process Performance Manager (PPM) [24]. The latter tool is commercially avail-
able and a customized version of PPM is the Staffware Process Monitor (SPM)
which is tailored towards mining Staffware logs. Note that none of the latter tools
is supporting conformance testing or the checking of (temporal) properties. In-
stead, the focus of these tools is often on performance measurements rather than
monitoring (un)desirable behavior.

For a more elaborate description of the LTL language and checker we refer to
manual of the LTL Checker [11]. Note that this is the first paper describing both.
Moreover, it is the first paper discussing the application of log-based verification
in the context of process mining.

7 Conclusion

This paper presents both a language and a tool to enable the verification of prop-
erties based on event logs. The language is based on LTL and is tailored towards
events logs stored in the MXML format. The MXML format is a tool-independent
format to log events and can be generated from audit trails, transaction logs and
other data sets describing business events. Current software allows for the easy col-
lection of such data, cf. BPM, WFM, CRM, BAM systems. Moreover, the need for
both flexibility [1,15,29,30] and auditing capabilities (cf. the Sarbanes-Oxley Act
[33]) underpins the relevance of the results presented in this paper.

We have predefined 60 typical properties one may want to verify (e.g., the 4-
eyes principle). These can be used without any knowledge of the LTL language.
In addition the user can define new sets of properties. These properties may be
application specific and may refer to data. Each property is specified in terms of
a so-called formula. Formulas may be parameterized, are reusable, and carry ex-
planations in HTML format. This way both experts and novices may use the LTL
Checker. The LTL Checker has been implemented in the ProM framework and the
results can be further analyzed using a variety of process mining tools.

Process Mining and Verification of Properties 145

We do not propose to solely use LTL for the type of analysis discussed in this
paper. In addition to the LTL Checker and the process mining tools, conventional
tools such as SQL and XPath can also be used to query and filter event logs. For
example, in the context of a case study we loaded MXML files into an Oracle
database to query them using SQL. SQL allows for the analysis of simple questions
like the 4-eyes principle but not for the easy formulation of temporal questions,
e.g., action_follows_decision (cf. lines 16-18 in Table 2). Recently, we also de-
veloped a so-called conformance checker that measures the “difference” between
a process model and a log (cf. www.processmining.org).

References

1. W.M.P. van der Aalst. Exterminating the Dynamic Change Bug: A Concrete Ap-
proach to Support Workflow Change. Information Systems Frontiers, 3(3):297–317,
2001.

2. W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool for
Delta Analysis. In J. Grundspenkis and M. Kirikova, editors, Proceedings of the 5th
Workshop on Business Process Modeling, Development and Support (BPMDS’04),
volume 2 of Caise’04 Workshops, pages 138–145. Riga Technical University, Latvia,
2004.

3. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

4. W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters. Genetic
Process Mining. In G. Ciardo and P. Darondeau, editors, Applications and Theory
of Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 48–69.
Springer-Verlag, Berlin, 2005.

5. W.M.P. van der Aalst and A.K.A. de Medeiros. Process Mining and Security: De-
tecting Anomalous Process Executions and Checking Process Conformance. In
N. Busi, R. Gorrieri, and F. Martinelli, editors, Second International Workshop on
Security Issues with Petri Nets and other Computational Models (WISP 2004), pages
69–84. STAR, Servizio Tipografico Area della Ricerca, CNR Pisa, Italy, 2004.

6. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Interac-
tion Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, editors,
International Conference on Business Process Management (BPM 2004), volume
3080 of Lecture Notes in Computer Science, pages 244–260. Springer-Verlag, Berlin,
2004.

7. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

8. W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special Is-
sue of Computers in Industry, Volume 53, Number 3. Elsevier Science Publishers,
Amsterdam, 2004.

9. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

10. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow
Logs. In Sixth International Conference on Extending Database Technology, pages
469–483, 1998.

146 W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen

11. H. de Beer. The LTL Checker Plugins: A Reference Manual. Eindhoven University
of Technology, Eindhoven, 2004.

12. J.E. Cook, C. He, and C. Ma. Measuring Behavioral Correspondence to a Timed
Concurrent Model. In Proceedings of the 2001 International Conference on Software
Mainenance, pages 332–341, 2001.

13. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

14. J.E. Cook and A.L. Wolf. Software Process Validation: Quantitatively Measuring
the Correspondence of a Process to a Model. ACM Transactions on Software Engi-
neering and Methodology, 8(2):147–176, 1999.

15. C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow sys-
tems. In N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, and S. Kaplan, editors,
Proceedings of the Conference on Organizational Computing Systems, pages 10 – 21,
Milpitas, California, August 1995. ACM SIGOIS, ACM Press, New York.

16. S. Fickas, T. Beauchamp, and N.A.R. Mamy. Monitoring Requirements: A Case
Study. In Proceedings of the 17th IEEE International Conference on Automated
Software Engineering (ASE’02), page 299. IEEE Computer Society, 2002.

17. D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal
Properties on Running Programs. In Proceedings of the 16th IEEE International
Conference on Automated Software Engineering (ASE’01), pages 412–416. IEEE
Computer Society Press, Providence, 2001.

18. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business
process intelligence. Computers in Industry, 53(3):321–343, 2004.

19. D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Process Qual-
ity through Exception Understanding, Prediction, and Prevention. In P. Apers,
P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snodgrass, editors,
Proceedings of 27th International Conference on Very Large Data Bases (VLDB’01),
pages 159–168. Morgan Kaufmann, 2001.

20. K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Proceed-
ings of the 16th IEEE International Conference on Automated Software Engineering
(ASE’01), pages 135–143. IEEE Computer Society Press, Providence, 2001.

21. K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Pro-
ceedings of the 8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2002), volume 2280 of Lecture Notes in
Computer Science, pages 342–356. Springer-Verlag, Berlin, 2002.

22. J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings
11th European Conference on Machine Learning, volume 1810 of Lecture Notes in
Computer Science, pages 183–194. Springer-Verlag, Berlin, 2000.

23. T. Hoffman. Sarbanes-Oxley Sparks Forensics Apps Interest: Vendors Offer Moni-
toring Tools to Help Identify Incidents of Financial Fraud. ComputerWorld, 38:14–
14, 2004.

24. IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, Analyze
and Optimize Your Business Process Performance (whitepaper). IDS Scheer, Saar-
bruecken, Gemany, http://www.ids-scheer.com, 2002.

25. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

26. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

Process Mining and Verification of Properties 147

27. M. zur Mühlen and M. Rosemann. Workflow-based Process Monitoring and Con-
trolling - Technical and Organizational Issues. In R. Sprague, editor, Proceedings
of the 33rd Hawaii International Conference on System Science (HICSS-33), pages
1–10. IEEE Computer Society Press, Los Alamitos, California, 2000.

28. A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE Annual
Symposium on the Foundations of Computer Science, pages 46–57. IEEE Computer
Society Press, Providence, 1977.

29. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflow
without Loosing Control. Journal of Intelligent Information Systems, 10(2):93–129,
1998.

30. S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria For Dynamic Changes
in Workflow Systems: A Survey. Data and Knowledge Engineering, 50(1):9–34, 2004.

31. W.N. Robinson. Monitoring Software Requirements using Instrumented Code. In
Proceedings of the 35th Annual Hawaii IEEE International Conference on Systems
Sciences, pages 276–276. IEEE Computer Society , 2002.

32. W.N. Robinson. Monitoring Web Service Requirements. In Proceedings of 11th
IEEE International Conference on Requirements Engineering (RE 2003), pages 56–
74. IEEE Computer Society , 2003.

33. P. Sarbanes, G. Oxley, and et al. Sarbanes-Oxley Act of 2002, 2002.
34. M. Sayal, F. Casati, U. Dayal, and M.C. Shan. Business Process Cockpit. In Pro-

ceedings of 28th International Conference on Very Large Data Bases (VLDB’02),
pages 880–883. Morgan Kaufmann, 2002.

35. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from
Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering,
10(2):151–162, 2003.

A Detailed Investigation of Memory Requirements for
Publish/Subscribe Filtering Algorithms

Sven Bittner and Annika Hinze

University of Waikato, New Zealand
{s.bittner, a.hinze}@cs.waikato.ac.nz

Abstract. Various filtering algorithms for publish/subscribe systems have been
proposed. One distinguishing characteristic is their internal representation of
Boolean subscriptions: They either require conversions into DNFs (canonical
approaches) or are directly exploited in event filtering (non-canonical approaches).

In this paper, we present a detailed analysis and comparison of the memory
requirements of canonical and non-canonical filtering algorithms. This includes
a theoretical analysis of space usages as well as a verification of our theoretical
results by an evaluation of a practical implementation. This practical analysis also
considers time (filter) efficiency, which is the other important quality measure of
filtering algorithms. By correlating the results of space and time efficiency, we
conclude when to use non-canonical and canonical approaches.

1 Introduction

Publish/subscribe (pub/sub) is a communication pattern targeting on the active noti-
fication of clients: Subscribers define Boolean subscriptions to specify their interests;
publishers disseminate their information by the help of event messages containing at-
tribute/value pairs. A pub/sub system is acting as broker; it filters all incoming event
messages and notifies subscribers if their registered subscriptions are matching. An
integral and essential part of pub/sub systems is this filtering process, i.e., the deter-
mination of all subscribers interested in an incoming event message (also referred to
as primitive event filtering). Generally, filtering algorithms for pub/sub systems should
fulfil two requirements [6]:

– Efficient event filtering (fast determination of interested subscribers)
– Scalable event filtering (supporting large numbers of subscriptions)

For efficiency, current pub/sub systems apply main memory filtering algorithms. Thus,
we can directly deduce the scalability characteristics of the central components of these
systems from their memory requirements [2, 3, 10]. This characteristic implies the need
to economize the usage of memory resources.

We can distinguish between two classes of filtering approaches for pub/sub sys-
tems: (i) algorithms directly filtering on Boolean subscriptions [3, 4, 11] (referred to as
non-canonical approaches in the following), and (ii) algorithms filtering on subscrip-
tions in canonical forms [1, 5, 6, 8, 12] (referred to as canonical approaches). Internally,

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 148–165, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Detailed Investigation of Memory Requirements 149

algorithms of Class (ii) either filter on disjunctive normal forms (DNF) [5] or only sup-
port conjunctive subscriptions [1, 6, 8, 12]. Thus, if supporting arbitrary Boolean sub-
scriptions, these approaches always require conversions of subscriptions to DNFs. If
algorithms only allow conjunctions, each disjunctive element of a DNF is treated as a
separate subscription [9].

Canonical approaches store subscriptions plainly as canonical forms. Hence, if sub-
scriptions merely utilize such forms, this class of algorithms allows for efficient event
filtering. This results from the ability to neglect arbitrary Boolean expressions while
filtering. However, due to the need of converting Boolean subscriptions to DNFs, sub-
scriptions consume more space than required by their original forms [3]. Additionally,
the matching process works over more (or, in case of supporting DNFs, larger) sub-
scriptions. For non-canonical approaches holds the opposite: Subscriptions demand less
memory for storage but involve a more sophisticated matching. Hence, the benefits and
drawbacks (you can find a more detailed discussion in [3]) of both classes of filtering
algorithms are twofold and necessitate a thorough analysis to allow solid statements
about their advantages and disadvantages.

In this paper, we present a thorough analysis and evaluation of the memory re-
quirements of canonical and non-canonical filtering algorithms. This includes a theo-
retical analysis as well as a practical investigation of space usages. Furthermore, we
correlate the memory requirements of the analyzed algorithms to their filter efficiency
(time efficiency). As representatives of canonical algorithms we analyzed the count-
ing [1, 12] and the cluster approach [6, 8], which are known to be efficient and reason-
ably memory-friendly [3]. Non-canonical algorithms are represented by the filtering
approach in [3] because of its time efficiency due to the utilization of indexes. Our de-
cision to compare these particular algorithms is also driven by their similar exploitation
of one-dimensional indexes for filtering. In detail our contributions in this paper are:

1. A characterization scheme for qualifying primitive subscriptions
2. A theoretical analysis and comparison of the memory requirements of canonical

and non-canonical filtering algorithms
3. A practical verification of our theoretical results of memory usages
4. A correlation of memory usage and filter efficiency of filtering algorithms
5. Recommendations for the utilization of non-canonical and canonical algorithms

The rest of this paper is structured as follows: Section 2 gives an overview of the an-
alyzed algorithms and presents related work. Our characterization scheme qualifying
subscriptions can be found in Sect. 3 as well as our theoretical analysis of memory
requirements. Section 4 includes a comparison of the theoretical memory usages and
their graphical presentation. We practically verify our results in Sect. 5.1, followed by
the correlation of memory usage to filtering efficiency in Sect. 5.2. Finally, we conclude
and present our future work in Sect. 6.

2 Analyzed Algorithms and Related Work

In this section, we outline the three filtering algorithms used in our later analysis. Af-
terwards, we present related work that is evaluating and comparing different filtering
approaches in Sect. 2.2.

150 S. Bittner and A. Hinze

2.1 Review of Analyzed Algorithms

We now give a brief overview of the algorithms analyzed in Sect. 3, namely the counting
algorithm [1, 12], the cluster algorithm [6, 8], and the non-canonical algorithm [3]. We
have chosen these algorithms for our analysis due to their time and space efficiency
characteristics1. We restrict this subsection to a short review of the approaches and
refer to the original works for thorough study and description of the algorithms.

Review of the Counting Algorithm. The counting algorithm was originally pro-
posed in [12] for filtering on plain text in combination with secondary storage. Later, it
was adopted as pure main memory filtering approach working on attribute/value pairs,
e.g., [1]. It only supports conjunctive subscriptions and requires the conversion of sub-
scriptions involving disjunctions into DNFs. Then, each element (i.e., a conjunction)
participating in the one disjunction of a DNF is treated as separate subscription [9].

Filtering works in two steps: Firstly, matching predicates are determined by utilizing
one-dimensional indexes (predicate matching). Secondly (subscription matching), all
subscriptions involving these predicates are derived by exploiting a predicate subscrip-
tion association table. Counters in hit vectors are increased for each matching predicate
per subscription. Finally, hit and subscription predicate count vector are compared.

Review of the Cluster Algorithm. The cluster algorithm is described in detail in [6]
and is based on the algorithm presented in [8]. Similar to the counting algorithm, only
conjunctive subscriptions are supported by this approach. This requires a conversion to
DNFs when supporting arbitrary Boolean subscriptions. Subscriptions are grouped into
clusters according to their access predicates2 and total number of predicates.

Again, event filtering works in two steps: In predicate matching all matching pred-
icates are determined by the help of one-dimensional indexes. For all matching access
predicates, clusters with potentially matching subscriptions can be found by utilizing a
cluster vector. Then, the subscriptions inside these clusters are evaluated by testing if
all their predicates have been fulfilled (subscription matching).

Review of the Non-Canonical Algorithm. The non-canonical algorithm is presented
in [3]. It comprises no restriction to conjunctive subscriptions as the previous two ap-
proaches. Instead, it directly exploits the Boolean expressions used in subscriptions.

Also the non-canonical algorithm utilizes one-dimensional indexes to efficiently de-
termine predicates matching incoming events. Subscriptions are encoded in subscrip-
tion trees representing their Boolean structure and involved predicates. A minimum
predicate count vector states the minimal number of fulfilled predicates required for
each subscription to match (variation of [3]). A hit vector is used to accumulate the
number of fulfilled predicates per subscription (also a variation from [3]).

Once more, this matching approach involves a two-step event filtering process be-
ginning with the determination of matching predicates (predicate matching). Then, by
the help of a predicate subscription association table all potential candidate subscrip-
tions are determined (subscription matching step). The work in [3] proposes to evaluate

1 Refer to [2] and Sect. 1 for a more detailed argumentation.
2 Common predicates that have to be fulfilled by an event to lead to fulfilled subscriptions.

A Detailed Investigation of Memory Requirements 151

all candidate subscriptions. However, if using a minimum predicate count vector, only
subscriptions with more than the minimum number of matching predicates (minimum
number of fulfilled predicates required for matching |pmin|) have to be evaluated. An
example is the following: If a subscription consists of three disjunctive elements that
contain conjunctions of nine, five, and seven predicates it holds |pmin| = 5. The accu-
mulation of matching predicates per subscription is obtained using a hit vector.

2.2 Previous Evaluations

There have already been some comparative evaluations of event filtering approaches
for primitive events. However, nearly all of them merely target evaluations of time ef-
ficiency in specifically chosen settings. Additionally, a detailed theoretical analysis of
memory requirements of filtering algorithms cannot be found so far. The results of cur-
rent practical evaluations of space efficiency are too restricted to be generalizable.

In [1] several implementations of the counting algorithm have been evaluated, but
there is no comparison of this approach to other filtering solutions. For the investigation
of subscription matching, subscriptions consist of only one to five predicates over do-
mains of only ten different values. Thus, we cannot generalize the results of [1] to more
complex and sophisticated settings utilizing expressive Boolean subscription languages.
Additionally, a satisfactory theoretical evaluation is missing.

The work in [6] compares implementations of counting and cluster algorithm. How-
ever, the assumptions are similarly restricted as in [1]: only five predicates are used per
subscription, domains consist of thirty-five possible values. Furthermore, subscriptions
mainly define equality predicates in [6]. Naturally, this leads to a well-performing clus-
ter algorithm, which is specifically designed to exploit this characteristic. Hence, the
results of [6] do not present general settings and are mainly targeting filter efficiency.

In [3] the counting and the non-canonical approach are compared briefly. Thus, this
analysis allows only limited conclusions about the behaviors of these algorithms. Again,
a theoretical analysis of memory requirements is missing.

3 Theoretical Characterization and Analysis of Memory Usage

In this section we firstly present our characterization scheme allowing for a general rep-
resentation of Boolean subscriptions. Our theoretical analysis of memory requirements
based on our characterization can then be found in Sect. 3.2.

3.1 Characterization of Boolean Subscriptions

We now present our approach of characterizing subscriptions (and their management in
algorithms). Since we target an evaluation of memory requirements, our methodology
is based on attributes affecting the memory usage for storing subscriptions for efficient
event filtering. Our approach also allows for a successful representation of the space
requirements of the three filtering algorithms presented in Sect. 2.1.

We have identified 14 parameters, which are compactly shown in Table 1. The pa-
rameters of Class S allow for both a representation of the characteristics of subscriptions
and a determination of their memory requirements for index structures. These six pa-
rameters directly describe subscriptions in their quantity |s| and their average number

152 S. Bittner and A. Hinze

Table 1. Overview of parameters characterizing subscriptions (Class S – subscription-related,
Class A – algorithm-related, Class C – conversion-related, Class E – subscription-event-related)

Symbol Parameter Name (Calculation) Class

|p| Number of predicates per subscription S

|op| Number of Boolean operators per subscription S

opr Relative number of Boolean operators per subscription (opr = |op|
|p|) S

|s| Number of subscriptions S

|pu| Number of unique predicates S

rp Predicate redundancy (rp = 1.0 − |pu|
|p||s|) S

w(s) Width of subscription identifiers A

w(p) Width of predicate identifiers A

w(l) Width of subscription locations A

w(c) Width of cluster references A

Ss Number of disjunctively combined elements after conversion C

sp Number of conjunctive elements per predicate after conversion C

sr Relative no. of conjunctive elements per predicate after conversion (sr = sp

Ss
) C

pe Number of fulfilled predicates per event E

of predicates |p| and operators |op|. Parameter opr expresses the number of operators
relatively to the number of predicates. To determine predicate redundancy rp, we also
require the number of unique predicates registered with the system |pu|.

Class A of parameters explicitly deals with filtering algorithm-related character-
istics influencing the internal storage of subscriptions. The behavior of canonical ap-
proaches is expressed by the three parameters of Class C. The number of disjunctively
combined elements in a converted DNF (which have to be treated as separate subscrip-
tions [9]) is described by Ss. The average number of such elements containing a predi-
cate from an original subscription sp also strongly influences the behavior of canonical
approaches. We can combine these two parameters to the relative number of conjunc-
tive elements per predicate sr. The parameter pe of Class E incorporates the relation
between subscriptions and events, which influences both space and time efficiency of
filtering algorithms. For a detailed description of these parameters, we refer to [2].

Altogether, these fourteen parameters allow to characterize subscriptions, to derive
the major memory requirements of filtering algorithms, and to describe the relation
between events and subscriptions affecting the time efficiency of event filtering.

3.2 Theoretical Analysis of Memory Requirements

After presenting the parameters required to analyze the memory usage of filtering algo-
rithms, we now continue with our theoretical analyzes. Note that our theoretical obser-

A Detailed Investigation of Memory Requirements 153

vations do not take into account implementation issues and other practical considera-
tions. Our results are a base line helping to find a suitable filtering algorithm. An actual
comparison of the theoretical memory requirements can be found in Sect. 4 as well as
considerations for practical implementations.

Theoretical Memory Analysis of the Counting Algorithm. We now analyze the
memory requirements of the counting algorithm [1, 12] in respect to the characteriz-
ing parameters defined in Sect. 3.1. According to [1] and our review in Sect. 2.1, the
counting algorithm requires a fulfilled predicate vector, a hit vector, a subscription pred-
icate count vector, and a predicate subscription association table. To efficiently support
unsubscriptions, we also necessitate a subscription predicate association table. In the
following we describe these data structures and derive their minimal memory require-
ments. We start our observations for cases with no predicate redundancy (rp = 0.0).
Subsequently, we extend our analysis to more general settings involving predicate re-
dundancy.

Fulfilled predicate vector: The fulfilled predicate vector is required to store matching
predicates in the predicate matching step. In an implementation, we might apply
an ordinary vector (pew(p) bytes) or a bit vector implementation (|p||s|8 bytes) de-
pending on the proportion of matching predicates.

In cases of high predicate redundancy there is only a small number of unique
predicates. Thus, a bit vector implementation might require less memory compared
to an ordinary vector implementation. However, if the fraction of fulfilled pred-
icates per event pe and totally registered predicates (|p||s| predicates in total) is
quite small, utilizing an ordinary vector might be advantageous.

Hit vector: The hit vector accumulates the number of fulfilled predicates per subscrip-
tion. For simplicity, we assume a maximum number of 255 predicates per sub-
scription (we can easily relax this assumption). Thus, each entry in the hit vector
requires 1 byte. Altogether, for |s| subscriptions creating Ss disjunctively combined
elements due the canonical conversion, the space requirements are |s|Ss bytes for
the hit vector. Since this vector consists of one entry per subscription, its memory
usage is independent of predicate redundancy rp.

Subscription predicate count vector: We also require to store the total number of
predicates each subscription consists of. According to our assumption for the hit
vector, each subscription can be represented by a 1-byte entry. Thus, we require
|s|Ss bytes in total due to the applied canonical conversions (cp. hit vector).
Similar to the hit vector, the subscription predicate count vector does not depend
on predicate redundancy rp (it consists of entries per subscription).

Predicate subscription association table: This table has to be applied to efficiently
find all subscriptions a predicate belongs to. In an implementation, each predicate
has to be mapped to a list of subscriptions due to the required canonical conver-
sions. This also holds in cases of no predicate redundancy (rp = 0). Least memory
is demanded if predicate identifiers might be used as indexes in this table (this re-
quires consecutive predicate identifiers). For storing the list of subscriptions we
have to store the corresponding number of subscription identifiers at a minimum
(neglecting additional implementation overhead, such as the length of each list).
Thus, altogether we have to record the list of subscription identifiers (requiring

154 S. Bittner and A. Hinze

w(s)sp bytes per predicate) for all registered predicates (|p||s| predicates in total),
which requires w(s)sp|p||s| bytes in total.

If considering predicate redundancy rp, for unique predicates (including one of
each redundant predicate) the following amount of memory is required in bytes:
(1.0 − rp)w(s)sp|p||s|. Redundant predicates use rpw(s)sp|p||s| bytes. Thus, rp

does not influence the size of the predicate subscription association table.
Subscription predicate association table: The previously described data structures

are required to support an efficient event filtering. However, unsubscription are sup-
ported very inefficiently. This is due to missing associations between subscriptions
and predicates [1].

Least memory for subscription predicate associations is utilized when using a
subscription identifier as index in a subscription predicate association table. Each
entry maps this identifier to a list of predicate identifiers (there is also some imple-
mentation overhead as described for the previous table). Thus, we have to store a list
of predicates for each subscription (|s|Ss subscriptions in total due to conversions).
Each list has to hold |p| sp

Ss
predicate identifiers, which leads to w(p)|s|Ss|p| sp

Ss

=w(p)|s||p|sp bytes in total for a subscription predicate association table.
Predicate redundancy rp does not influence this table because it contains entries for
each subscription. Thus, redundant predicates do not allow for the storage of less
associations between subscriptions and predicates.

When accumulating the former memory usages, we require the following amount of
memory in bytes (we exclude the fulfilled predicate vector since it is utilized by all
three analyzed algorithms)

memcounting = |s|(2Ss + w(s)sp|p|+ w(p)sp|p|) . (1)

This observation holds in all cases of predicate redundancy rp as shown above.

Theoretical Memory Analysis of the Cluster Algorithm. This section presents an
evaluation of the memory requirements of the cluster algorithm [6, 8] according to the
characterizing parameters defined in Sect. 3.1. However, this algorithm has several re-
strictions (e.g., usage of highly redundant equality predicates) and strongly depends on
the subscriptions actually registered with the pub/sub system. Thus, we are not able
to express all memory requirements of this algorithm based on our characterization
scheme. In our following analysis we neglect the space usage of some data structures
(cluster vector, references to cluster vector) and focus on the most space consuming
ones, which leads to an increased amount of required memory in practice.

To efficiently support unsubscriptions, [6] suggests to utilize a subscription cluster
table to determine the cluster each subscription is stored in. In our opinion, this data
structure is not sufficient for a fast removal of subscriptions: The subscription cluster
table allows for the fast determination of the cluster a subscription is stored in. Thus, we
are able to remove subscriptions from clusters. It remains to determine when predicates
might be removed from index structures due to the inherent assumption of predicate
redundancy in [6]3. Also the necessity of canonical conversions leads to shared pred-

3 The motivation for [6] is the existence of shared predicates (predicate redundancy) because the
clustering of subscriptions is obtained via access predicates, i.e., predicates need to be shared.

A Detailed Investigation of Memory Requirements 155

icates. Thus, to allow for a deletion of predicates in index structures, we require an
association between predicates and subscriptions utilizing these predicates, e.g, by the
application of a predicate subscription association table or by storing these associations
inside index structures themselves.

The memory requirements of the cluster algorithm are as follows. Again, we firstly
derive the space usage of the algorithm in case of no predicate redundancy (rp = 0.0).
Secondly, we generalize our results to cases involving predicate redundancy.

Predicate bit vector: This vector is similar to the fulfilled predicate vector applied in
the counting algorithm. However, we require a bit vector implementation (as stated
in [6]) due to the requirement of accessing the state of predicates (fulfilled or not
fulfilled) directly. Thus, we demand |p||s|

8 bytes for the predicate bit vector. High
predicate redundancy does not influence these memory requirements.

Clusters: Subscriptions themselves are stored in clusters according to both their access
predicates and their total number of predicates. Clusters consist of a subscription
line storing an identifier for each subscription (w(s) bytes required per subscrip-
tion). Furthermore, they contain a predicate array holding the predicates each sub-
scription consists of (on average sp

Ss
|p|w(p) bytes per subscription if only storing

predicate identifiers). Clusters storing subscriptions with the same number of pred-
icates and access predicates are linked together in a list structure. However, we
neglect the memory requirements for this implementation-specific attribute.

Altogether, clusters require |s|Ss(w(s) + sp

Ss
|p|w(p)) bytes to store |s|Ss sub-

scriptions. Predicate redundancy does not influence the size of clusters. This results
from the observation that clusters store predicates for all subscriptions. This storage
happens in all cases of rp and does not vary according to the uniqueness of predicates.

Subscription cluster table: This table is an additional data structure required to sup-
port efficient unsubscriptions (see argumentation above). It allows for the determi-
nation of the cluster each subscription is stored in. Utilizing subscription identifiers
as indexes for the subscription cluster table, we require |s|Ssw(c) bytes for the
storage of |s|Ss cluster references. Also this table is focussed on a mapping of
subscriptions. Thus, its size is independent of predicate redundancy rp.

Predicate subscription association table: As shown above, an association between
predicates and subscriptions is required to allow for an efficient support of un-
subscriptions. This information could be stored in a separate predicate subscription
association table or as part of indexes themselves. Both options require the same
amount of additional memory. If using predicate identifiers as indexes (or storing
associations inside indexes), we require w(s)sp|p||s| bytes for these associations of
|p||s| predicates. Each predicate is contained in w(s)sp subscriptions on average.
Similar to our observation for the counting algorithm, predicate redundancy does
not influence the size of predicate subscription associations.

Accumulating the memory requirements of the formerly mentioned data structures (ex-
cluding the predicate bit vector) leads to the following number of bytes

memcluster = |s|(Ssw(s) + sp|p|w(p) + Ssw(c) + sp|p|w(s)) . (2)

Again, our observation represents the memory requirements of the cluster algorithm
regardless of predicate redundancy rp as shown before.

156 S. Bittner and A. Hinze

Theoretical Memory Analysis of the Non-canonical Algorithm. As last algorithm
for our analysis, we have chosen a variant of the non-canonical approach [3] as pre-
sented in Sect. 2. According to [3], inner nodes of subscription trees store Boolean
operators and leaf nodes store predicate identifiers. Each leaf node requires w(p) bytes
to store its predicate identifier and 1 byte to denote itself as a leaf node. For inner nodes,
we store the Boolean operator in 1 byte and use 1 byte to denote the number of chil-
dren (this implies that at least 255 predicates are supported per subscription as in the
other algorithms presented before). In contrast to [3], we do not store the width of the
children of inner nodes in bytes. Hence, to access the last out of n children, we have to
compute the widths of all n− 1 previously stored children.

The non-canonical approach inherently supports efficient unsubscriptions due to its
characteristic to store associations between subscriptions and predicates and vice versa.
In the following, we analyze the memory requirements of the non-canonical approach
beginning with the case of no predicate redundancy (rp = 0.0). Afterwards, our analysis
is extended to general settings involving predicate redundancy rp > 0.

Fulfilled predicate vector: This vector serves the same purpose as its counterpart in
the counting algorithm. Therefore, it requires the same amount of memory accord-
ing to its realization and depending on rp (min(|p||s|8 , pew(p)) bytes).

Subscription trees: The encoding of subscription trees has been presented above. For
predicates stored in leaf nodes, we require (w(p) + 1)|p| bytes per subscription.
Inner nodes demand 2|op| bytes of memory for each subscription. Thus, for all
registered subscriptions, we need |s|((w(p) + 1)|p| + 2|op|) bytes. Subscription
trees have to store operators and predicate identifiers in all cases. Thus, they do not
depend on predicate redundancy rp.

Subscription location table: This table is applied to associate subscription identifiers
and subscription trees. If utilizing subscription identifiers as indexes in this table
(consecutive identifiers necessitated), we require w(l)|s| bytes. Since the subscrip-
tion location table stores entries per subscription, its memory usage is not influ-
enced by predicate redundancy rp.

Predicate subscription association table: The predicate subscription association ta-
ble requires less memory than its counterparts in the previously analyzed algo-
rithms. This is implied by the fact that subscriptions do not need a conversion
in canonical forms. Thus, predicates are involved in less subscriptions (only one
subscription in case of rp = 0.0). Altogether, we require |s||p|w(s) bytes for the
predicate subscription association table.

Similar to the counterparts of this table in the two other algorithms, the memory
usage of the predicate subscription association table is independent of predicate
redundancy rp.

Hit vector: Similar to the hit vector in the counting approach, this vector accumulates
the number of fulfilled predicates per subscription. The hit vector requires |s| bytes
of memory since no conversions to canonical expressions are required by the non-
canonical approach and according to the common assumption of a maximum of
255 predicates per subscription.

Minimum predicate count vector: This vector stores the minimum number of pred-
icates per subscription that are required to be fulfilled |pmin| in order to lead to

A Detailed Investigation of Memory Requirements 157

a fulfilled subscription. According to our assumption of a maximum of 255 pred-
icates per subscription, the minimum predicate count vector requires |s| bytes of
memory.

The required data structures (excluding the fulfilled predicate vector) sum up to the
following amount of memory in bytes

memnon−canonical = |s|(w(p)|p| + |p|+ 2|op|+ w(l) + |p|w(s) + 2) . (3)

Analogous to the previously described algorithms, the theoretical memory usage of the
non-canonical approach does not depend on rp as shown in our analysis.

4 Comparison of Theoretical Memory Requirements

After our analysis of three filtering algorithms and the derivation of their theoretical
memory requirements, we now compare the memory usage of the two canonical ap-
proaches (counting and cluster algorithm) to the non-canonical algorithm. From this
analysis we can deduce under which circumstances a non-canonical approach should
be preferred (in respect to memory usage and thus scalability) and which settings favor
canonical filtering algorithms.

In our following analysis, we focus on differing data structures of algorithms, i.e.,
we neglect the fulfilled predicate/predicate bit vector, which is incidentally required by
all three algorithms. Thus, we directly compare (1) to (3).

All memory requirements derived in the last section grow linearly with increasing
numbers of subscriptions. Moreover, all of them cut the ordinate in zero. Hence, for a
comparison we solely need to analyze the first derivations of (1) to (3) in |s|

mem′
counting(|s|) = 2Ss + w(s)sp|p|+ w(p)sp|p| . (4)

mem′
cluster(|s|) = Ssw(s) + sp|p|w(p) + Ssw(c) + sp|p|w(s) . (5)

mem′
non−canonical(|s|) = w(p)|p| + |p|+ 2|op|+ w(l) + |p|w(s) + 2 . (6)

To eliminate some parameters, let us assume fixed values for parameters of Class A:
w(s) = 4, w(p) = 4, w(l) = 4, and w(c) = 4, i.e., the widths of subscription iden-
tifiers, predicate identifiers, subscription locations and cluster references are 4 bytes
each. Furthermore, let us reduce the number of characterizing parameters specifying
fixed values by utilizing the relative notions of opr and sr as introduced in Sect. 3.1.

We now compare the memory requirements (using the gradients) of the canonical
algorithms (Equations (4) and (5)) to the memory requirements of the non-canonical ap-
proach (Equation (6)). We use the following notation to denote the canonical algorithm
compared to the non-canonical approach: Ss(algorithm

non−canonical).
The inequalities shown in the following denote the point when the non-canonical

approach requires less memory for its event filtering data structures than the respective
canonical solution. These points are described in terms of the characterizing parameter
Ss, i.e., if more than the stated number of disjunctively combined elements is created
by the canonical conversion to DNF, the non-canonical approach requires less memory.

Ss(
counting

non− canonical
) >

|p|(2opr + 9) + 6
2 + 8sr|p| . (7)

158 S. Bittner and A. Hinze

Ss(
cluster

non− canonical
) >

|p|(2opr + 9) + 6
8 + 8sr|p| . (8)

In the following subsection we illustrate these observations graphically.

4.1 Graphical Illustration of Interchanging Memory Requirements

After the determination if the inequalities denoting the point when a non-canonical
approach requires less memory than canonical algorithms (Equations (7) and (8)), we
now present this turning point graphically.

Figure 1 shows the point of interchanging memory requirements for the counting al-
gorithm and the cluster algorithm. We have chosen opr = 1.0 in Fig 1(a) and Fig. 1(b);
the parameter sr is varied from 0.3 to 0.7. The abscissae of both figures show the
number of predicates per subscription |p|, the ordinates are labeled with the number of
disjunctively combined elements per subscription after conversion Ss. Both graphs de-
note which number of disjunctively combined elements have to be created by canonical
conversions to DNF to favor the non-canonical approach in respect to memory require-
ments (cf. (7), (8)).

We can realize that the counting algorithm requires less memory in cases of small
predicate numbers |p| than the cluster algorithm. However, with increasing predicate
numbers |p| both algorithms behave nearly the same, i.e., for 50 or more predicates per
subscription, it holds Ss ≈ 2.0 (counting) and Ss < 2.0 (cluster) in case of sr = 0.7.
Thus, even if DNFs only consist of approximately 2 disjunctively combined elements, a
non-canonical approach requires less memory. Smaller values of sr favor the counting
and the cluster algorithm. This is due to the fact of requiring less associations between
predicates and subscriptions in these cases.

In Fig. 1(a) and Fig. 1(b), we have chosen opr = 1.0, which describes the worst case
scenario of the non-canonical algorithm. In practice, it always holds opr < 1.0, since
each inner node of a subscription tree has at least two children. Hence, a subscription
tree containing |p| leaf nodes (i.e., predicates) consists of a maximum of |p| − 1 inner
nodes (i.e., operators). This implies opr ≤ |p|−1

|p| < 1.0. In practice, we have to expect
much smaller values than 1.0 for opr, because in subscription trees consecutive binary
operators can be subsumed to n-ary ones.

These observations for the characterizing parameter opr lead to further improved
memory characteristics of the non-canonical approach. Figure 1(c) shows this behav-
ior using opr = 0.5 for the counting approach; the cluster algorithms is presented in
Fig. 1(d). Thus, even if subscriptions use only one disjunction, a non-canonical ap-
proach shows less memory usage and better scalability than the counting algorithm
(sr = 0.7).

4.2 Considerations in Practice

Our previous analysis shows a comparison of the theoretical memory requirements of
three algorithms. However, a practical implementation requires additional space for
managing data structures, e.g., to link lists together, store lengths of variable-sized ar-
rays, or practically realize hash tables. Thus, a practical implementation implies increas-
ing space requirements of filtering algorithms compared to our theoretical analysis.

A Detailed Investigation of Memory Requirements 159

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

D
is

ju
nc

tiv
e

el
em

en
ts

 S
s

No. of predicates per subscription |p|

opr=1.0, sr=0.3
opr=1.0, sr=0.5
opr=1.0, sr=0.7

(a) Counting vs. non-canonical, opr = 1.0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

D
is

ju
nc

tiv
e

el
em

en
ts

 S
s

No. of predicates per subscription |p|

opr=1.0, sr=0.3
opr=1.0, sr=0.5
opr=1.0, sr=0.7

(b) Cluster vs. non-canonical, opr = 1.0

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

D
is

ju
nc

tiv
e

el
em

en
ts

 S
s

No. of predicates per subscription |p|

opr=0.5, sr=0.3
opr=0.5, sr=0.5
opr=0.5, sr=0.7

(c) Counting vs. non-canonical, opr = 0.5

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

D
is

ju
nc

tiv
e

el
em

en
ts

 S
s

No. of predicates per subscription |p|

opr=0.5, sr=0.3
opr=0.5, sr=0.5
opr=0.5, sr=0.7

(d) Cluster vs. non-canonical, opr = 0.5

Fig. 1. Theoretically required number of disjunctively combined elements Ss to achieve less
memory usage in the non-canonical approach compared to the counting and cluster algorithm
using opr = 1.0 (Fig. 1(a) and Fig. 1(b)) and opr = 0.5 (Fig. 1(c) and Fig. 1(d))

Next to this general increase in memory requirements, data structures have to be im-
plemented in a reasonable way, e.g., they have to support dynamic growing and shrink-
ing if this is demanded in practice. Generally, constantly required data structures require
a dynamic implementation. For data structures solely used in the event filtering process,
i.e., fulfilled predicate, predicate bit and hit vector, a static implementation is sufficient
due to the requirement of initializing them for each filtered event.

We have implemented such dynamic data structures in a space-efficient manner for
our practical evaluation. Their comparison to the memory requirements of standard im-
plementations, i.e., STL hash (multi) sets, has resulted in much less space consumptions
for our implementations. We present our practical analysis in the next section.

5 Practical Analysis of Memory Requirements and Efficiency

In Sect. 3 and 4 we have presented a theoretical investigation of memory requirements
of filtering algorithms and described the influence of a practical implementation on
our theoretical results. In this section we extend our theoretical work and show the ap-
plicability of our theoretical results to practical settings (Sect. 5.1). Furthermore, we

160 S. Bittner and A. Hinze

Predicates per subscription |p| Disju
nctive elements S s

 5 15 25 35 45 1
 2

 3
 4

 5
 0

 200
 400
 600
 800

 1000

Memory in MB

(a) Perspective view

D
is

ju
nc

tiv
e

el
em

en
ts

 S
s

 5 15 25 35 45
Predicates per subscription |p|

 1

 2

 3

 4

 5

(b) Top view

Fig. 2. Memory requirements in our practical experiments in case of sr = 0.3, opr = 0.5 and
|s| = 1, 000, 000 (cf. Fig. 1(c) for theoretical results in the same scenario)

present a brief comparison of efficiency characteristics of the compared algorithms
(Sect. 5.2).

We compare the non-canonical approach to one canonical algorithm by experiment.
Because of the restrictions of the cluster approach (cf. Sect. 3.2), we have chosen the
counting algorithm as representative of canonical algorithms for our practical analysis.
This allows the generalization of our results to other settings than equality predicate-
based application areas and areas dealing with less predicate redundancy as assumed by
the cluster approach. Furthermore, the counting algorithm behaves more space efficient
than the cluster approach (cf. Fig. 1). In a practical implementation the cluster approach
without efficiently supported unsubscriptions and the counting approach show nearly
the same memory requirements [6].

5.1 Practical Analysis of Memory Requirements

In this section, we compare the memory requirements of the counting algorithm and
the non-canonical approach. Our actual implementations of these algorithms follow our
descriptions in Sect. 4.2.

In our experiments, we want to verify our results shown in Fig. 1(c), i.e., in case
of opr = 0.5. Here we present the memory usage of the required data structures4 in
case of 1, 000, 000 registered subscriptions with a growing number of predicates per
subscription |p| and a growing number of disjunctively combined elements after con-
version Ss. For the parameter sr (relative number of conjunctive elements per predicate
after conversion), we have chosen to present the cases sr = 0.3 and sr = 0.7.

Our results are presented in three-dimensional figures. Figure 2(a) shows both al-
gorithms in case of sr = 0.3; Fig. 3(a) presents the case of sr = 0.7. The x-axes in
the figures represent the number of predicates per subscription |p| ranging from 5 to 50,
z-axes show the number of disjunctively combined elements after conversion Ss in the

4 We show the total memory requirements of our filtering process to allow for the incorporation
of all influencing parameters, e.g., heap management structures.

A Detailed Investigation of Memory Requirements 161

Predicates per subscription |p| Disju
nctive elements S s

 5 15 25 35 45 1
 2

 3
 4

 5
 0

 400
 800

 1200
 1600

Memory in MB

(a) Perspective view

D
is

ju
nc

tiv
e

el
em

en
ts

 S
s

 5 15 25 35 45
Predicates per subscription |p|

 1

 2

 3

 4

 5

(b) Top view

Fig. 3. Memory requirements in our practical experiments in case of sr = 0.7, opr = 0.5 and
|s| = 1, 000, 000 (cf. Fig. 1(c) for theoretical results in the same scenario)

range of 1 to 5. The actually required amount of memory for holding the required data
structures is illustrated at the y-axes of the figures.

There are two surfaces shown in each of the figures. The brighter ones illustrate
the behaviors of the counting algorithm, the darker ones represent the non-canonical
approach. As shown in our theoretical analysis, the non-canonical approach does not
change its memory usage with growing Ss. Thus, its surface does always show the same
memory requirements (y-axis) regardless of Ss (z-axis), e.g, approx. 900 MB for |p| =
50. This holds for both figures, Fig. 2(a) and 3(a), since the memory requirements of the
non-canonical approach are independent of sr. The counting algorithm, however, shows
increasing memory requirements with growing Ss as described in (1). Furthermore,
according to (1), increasing sp (and thus sr) results in advanced space usage.

As depicted in our theoretical comparison in Fig. 1(c), there exists a point of in-
terchanging memory requirements of canonical and non-canonical algorithms. This
point is denoted by a cutting of the surfaces of the two algorithms. In Fig. 2(a), this
cutting occurs at Ss ≈ 4, in Fig. 3(a) it happens at Ss ≈ 2. To exactly determine
the point of cutting surfaces we present a top view of the diagrams in Fig. 2(b) and
Fig. 3(b), respectively. Figure 2(b) shows that the point of interchanging memory re-
quirements can be found between Ss = 3 and Ss = 5 dependent on |p|. For sr = 0.7
(Fig. 3(b)), it is always located slightly below Ss = 2. Comparing these practical re-
sults to our theoretical results in Fig. 1(c), we realize that our theoretical analysis has
predicted nearly the same behavior of the two algorithms: Even if only 2 (sr = 0.7)
or 4 (sr = 0.3) disjunctively combined elements Ss are created by canonical conver-
sions, a non-canonical approach is favorable. Thus, our practical experiments verify
our theoretical results and show their correctness even in case of a certain practical
implementation.

Practical Analysis of Influences of Redundancy. In our theoretical analysis we have
shown that predicate redundancy rp does not influence the memory requirements of al-
gorithms. However, in a practical realization this property does not hold. The influence
of rp on our implementation is illustrated in Fig. 4. Ordinates show an increasing num-

162 S. Bittner and A. Hinze

 0

 200

 400

 600

 800

 1000

 1200

 5 10 15 20 25 30 35 40 45 50

M
em

or
y

in
 M

B

Predicates per subscription |p|

Ss varies, rp=0.0
Ss varies, rp=0.25
Ss varies, rp=0.5

(a) Non-canonical algorithm

 0

 200

 400

 600

 800

 1000

 1200

 5 10 15 20 25 30 35 40 45 50

M
em

or
y

in
 M

B

Predicates per subscription |p|

Ss=2, rp=0.0
Ss=2, rp=0.25
Ss=2, rp=0.5
Ss=5, rp=0.0
Ss=5, rp=0.25
Ss=5, rp=0.5

(b) Canonical: counting algorithm

Fig. 4. Influence of predicate redundancy rp on the algorithms in case of |s| = 1, 000, 000,
opr = 0.5 and sr = 0.3

ber of predicates per subscription |p|, abscissae are labeled with the required memory
in MB. In this experiment we have registered 1, 000, 000 subscriptions, further charac-
terizing parameters are opr = 0.5 and sr = 0.3. The behavior of the non-canonical
approach with varying predicate redundancy is shown in Fig. 4(a), the counting algo-
rithm is presented in Fig. 4(b) for varying Ss and rp.

Both algorithms show decreasing memory requirements with increasing rp. This
behavior results out of the decreasing memory overhead in a practical implementation:
Both algorithms utilize a predicate subscription association table, which requires a dy-
namic implementation causing more memory usage. If there are less unique predicates,
which is caused by predicate redundancy, the amount of memory overhead decreases.
Thus, the total memory requirements decrease as observable in Fig. 4.

5.2 Practical Analysis of Efficiency

We are aware of the correlation between memory usage and filter efficiency of filter-
ing algorithms: We cannot utilize the most space efficient algorithm in practice if it
shows poor time efficiency. Vice versa, time efficient solutions, such as [7], might be-
come inapplicable due to their memory requirements [3]. Thus, in our analysis we also
compared the time efficiency of the counting (CNT) and the non-canonical approach
(NCA) to confirm the applicability of the non-canonical approach in practice. In our ex-
periments, we only have to compare the time efficiency of subscription matching, since
predicate matching works the same in both algorithms. Time efficiency is represented
by the average filtering time for subscription matching per event, i.e., increasing times
denote decreasing efficiency. We ran our experiments several times to obtain negligible
variances. Thus, in the figures we only show the mean values of filtering time.

Figure 5 shows the influence of the number of subscriptions registered with the
pub/sub system. In Fig. 5(a), we have used |p| = 10, Fig. 5(b) illustrates time efficiency
in case of |p| = 30. We show the behavior of the counting algorithm for the two cases
Ss = 4 and Ss = 8. Predicate redundancy is chosen with rp = 0.0 and rp = 0.5.
We also present the non-canonical approach assuming the worst case behavior, i.e., if

A Detailed Investigation of Memory Requirements 163

 0

 0.05

 0.1

 0.15

 0.2

1m700,000400,000100,000

T
im

e
in

 s
ec

on
ds

Number of subscriptions |s|

CNT rp=0, Ss=4
CNT rp=0.5, Ss=4
CNT rp=0, Ss=8
CNT rp=0.5, Ss=8
NCA rp=0
NCA rp=0.5

(a) |p| = 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1m700,000400,000100,000

T
im

e
in

 s
ec

on
ds

Number of subscriptions |s|

CNT rp=0, Ss=4
CNT rp=0.5, Ss=4
CNT rp=0, Ss=8
CNT rp=0.5, Ss=8
NCA rp=0
NCA rp=0.5

(b) |p| = 30

Fig. 5. Influence of number of subscriptions |s| for varying rp and Ss

a candidate subscription is evaluated, its whole Boolean expression is analyzed. Thus,
we always test entire subscription trees in our experiments. In this experiment, we have
increased the number of fulfilled predicates per event pe with growing subscription
numbers: pe = |s||p|

50 . We have chosen the minimum number of fulfilled predicates
required for matching |pmin| with 5 in case of |p| = 10 and with 10 in case of |p| = 30.

Figure 5 illustrates the average filtering times at the ordinates. Both algorithms show
linearly increasing filtering times in case of growing subscription numbers. In case of
Ss = 8 and |p| = 30 (Fig. 5(b)), the counting algorithm requires more memory than
the available resources (sharp bends in curves). Thus, the operation system starts page
swapping resulting in strongly increasing filtering times in case of more than 700, 000
and 800, 000 subscriptions (according to rp, cf. Sect. 5.1). Generally, increasing predi-
cate redundancy rp leads to growing filtering times for both algorithms in the evaluated
setting. This is due to the fact that more candidate subscriptions have to be evaluated
(non-canonical algorithm) and more counters have to be increased in the hit vector (both
algorithms). The counting algorithm in case of Ss = 8 always shows the worst time ef-
ficiency. According to the number of predicates |p|, either the non-canonical approach
(Fig. 5(b)) or the counting algorithm with Ss = 4 (Fig. 5(a)) are the most efficient
filtering approaches (nearly on par with the other approach).

The influence of |p| is shown in Fig. 6. In Fig. 6(a), it holds pe = 50, 000, Fig. 6(b)
shows the case of pe = 1, 000, 000. For the non-canonical approach we analyzed the
two settings |pmin| = 5 and |pmin| = 10. The counting approach is presented in two
variants with Ss = 4 and Ss = 8. We have registered 1, 000, 000 subscriptions.

Again, sharp bends in the curves in Fig. 6 denote the point of exhausted main mem-
ory resources. The non-canonical approach shows the best scalability, followed by the
counting approach in case of Ss = 4. We can also observe improved time efficiency
in the non-canonical approach in case of higher |pmin|. This effect becomes more ap-
parent with a high value of pe (Fig. 6(b)) due to more candidate subscriptions requiring
evaluation. In case of a small number of fulfilled predicates per event pe, the counting
(case Ss = 4) is more efficient than the non-canonical algorithm; large numbers of pe

clearly favor the non-canonical approach. The reason is the increased number of hits
(incrementing the hit vector) in the counting approach due to canonical conversions.

164 S. Bittner and A. Hinze

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10 15 20 25 30 35 40 45 50

T
im

e
in

 s
ec

on
ds

Predicates per subscription |p|

NCA |pmin|=5
NCA |pmin|=10
CNT Ss=4
CNT Ss=8

(a) pe = 50, 000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 15 20 25 30 35 40 45 50

T
im

e
in

 s
ec

on
ds

Predicates per subscription |p|

NCA |pmin|=5
NCA |pmin|=10
CNT Ss=4
CNT Ss=8

(b) pe = 1, 000, 000

Fig. 6. Influence of number of predicates |p| for varying pe

Our efficiency analysis shows that counting and non-canonical approach perform
similarly for increasing problem sizes. In some cases, the counting approach shows
slightly better time efficiency, other settings favor the non-canonical approach. For large
Ss, the non-canonical approach shows both better time and space efficiency. Thus, a
non-canonical solution offers better scalability properties in these situations.

6 Conclusions and Future Work

In this paper, we have presented a detailed investigation of two classes of event filtering
approaches: canonical and non-canonical algorithms. As a first step we introduced a
characterization scheme for qualifying primitive subscriptions in order to allow for a
description of various practical settings. Based on this scheme, we thoroughly analyzed
the memory requirements of three important event filtering algorithms (counting [1, 12],
cluster [6, 8] and non-canonical [3]). We compared our results to derive conclusions
about the circumstances under which canonical algorithms should be preferred in re-
spect to memory usage and which settings favor non-canonical approaches.

To show the applicability of our theoretical results in a practical implementation, we
proposed an implementation and investigated its memory requirements by experiment.
This practical evaluation clearly verified our theoretical results: Even when conversions
to canonical forms result in only two canonical subscriptions (i.e., subscription use only
one disjunction), a non-canonical approach is favorable.

We also correlated the memory requirements of the practically analyzed algorithms
to their filter efficiency. Generally, non-canonical algorithms show approximately the
same time efficiency as canonical ones. In case of increasing numbers of disjunctions
in subscriptions, the time efficiency of non-canonical approaches improves compared
to canonical solutions. In this case, a non-canonical approach also shows much bet-
ter scalability properties as demonstrated in our analysis of memory requirements.
Thus, if subscriptions involve disjunctions, non-canonical algorithms are the preferred
class of filtering solutions due to their direct exploitation of subscriptions in event
filtering.

A Detailed Investigation of Memory Requirements 165

For future work, we plan to describe different application scenarios using our char-
acterization scheme. A later analysis of these scenarios will allow conclusions about
the preferred filtering algorithm for these applications. We also plan to further extend
the non-canonical filtering approach to a distributed algorithm.

References

1. G. Ashayer, H. A. Jacobsen, and H. Leung. Predicate Matching and Subscription Matching
in Publish/Subscribe Systems. In Proceedings of the 22nd IEEE International Conference on
Distributed Computing Systems Workshops (ICDCSW ’02), Vienna, Austria, July 2–5 2002.

2. S. Bittner and A. Hinze. Investigating the Memory Requirements for Publish/Subscribe
Filtering Algorithms. Technical Report 03/2005, Computer Science Department, University
of Waikato, May 2005.

3. S. Bittner and A. Hinze. On the Benefits of Non-Canonical Filtering in Publish/Subscribe
Systems. In Proceedings of the 25th IEEE International Conference on Distributed Comput-
ing Systems Workshops (ICDCSW ’05), pages 451–457, Columbus, USA, June 6–10 2005.

4. A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient Filtering in Publish-
Subscribe Systems using Binary Decision Diagrams. In Proceedings of the 23rd Interna-
tional Conference on Software Engineering (ICSE 2001), Toronto, Canada, May 2001.

5. A. Carzaniga and A. L. Wolf. Forwarding in a Content-Based Network. In Proceedings of the
2003 ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communications (SIGCOMM ’03), Karlsruhe, Germany, March 2003.

6. F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and D. Shasha. Filtering Algorithms
and Implementation for Very Fast Publish/Subscribe Systems. In Proceedings of the 2001
ACM SIGMOD, pages 115–126, Santa Barbara, USA, May 21–24 2001.

7. J. Gough and G. Smith. Efficient Recognition of Events in a Distributed System. In Pro-
ceedings of the 18th Australasian Computer Science Conference, Adelaide, Australia, 1995.

8. E. N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang. A Predicate Matching Algo-
rithm for Database Rule Systems. In Proceedings of the 1990 ACM SIGMOD International
Conference on Management of Data (SIGMOD 1990), Atlantic City, USA, May 23–25 1990.

9. G. Mühl and L. Fiege. Supporting Covering and Merging in Content-Based Pub-
lish/Subscribe Systems: Beyond Name/Value Pairs. IEEE DSOnline, 2(7), 2001.

10. F. Peng and S. S. Chawathe. XPath Queries on Streaming Data. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data (SIGMOD 2003), pages
431–442, San Diego, USA, June 9–12 2003.

11. B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service
with quenching. In Proceedings of the Australian UNIX and Open Systems User Group
Conference (AUUG97), Brisbane, Australia, September 3–5 1997.

12. T. W. Yan and H. Garcı́a-Molina. Index Structures for Selective Dissemination of Informa-
tion Under the Boolean Model. ACM Transactions on Database Systems, 19(2), 1994.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 166 – 182, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Mapping Discovery for XML Data Integration

Zoubida Kedad and Xiaohui Xue

Laboratoire PRiSM, Université de Versailles,
45 avenue des Etats-Unis, 78035 Versailles, France

{Zoubida.kedad, Xiaohui.Xue}@prism.uvsq.fr

Abstract. The interoperability of heterogeneous data sources is an important is-
sue in many applications such as mediation systems or web-based systems. In
these systems, each data source exports a schema and each application defines a
target schema representing its needs. The way instances of the target schema are
derived from the sources is described through mappings. Generating such map-
pings is a difficult task, especially when the schemas are semi structured. In this
paper, we propose an approach for mapping generation in an XML context; the
basic idea is to decompose the target schema into subtrees and to find map-
pings, called partial mappings, for each of them; the mappings for the whole
target schema are then produced by combining the partial mappings and check-
ing that the structure of the target schema is preserved. We also present a tool
supporting our approach and some experimental results.

1 Introduction

A broad variety of data is available on the Web in distinct heterogeneous sources. The
exchange and integration of these data sources is an important issue in many applica-
tions such as mediation systems or web-based systems.

In these systems, each data source has a schema (called source schema) that pre-
sents its data to the outside world. Applications needs are represented by target sche-
mas. The way instances of the target schema are derived from instances of the source
schemas is described through mappings. One example of systems using these map-
pings is mediation systems, where the target schema is called mediation schema and
the mappings are called mediation queries. The user queries are expressed over the
mediation schema and rewritten in terms of the source schemas using the mappings.

Defining mappings is a difficult task which requires a deep understanding not only
of the semantics of the source schemas, but also the semantic links between the
sources and the target schema. The complexity of this task increases when the number
of data sources is high. The amount of required knowledge makes the manual defini-
tion of the mappings extremely difficult for a human designer. When the target
schema and the source schemas are in XML, the definition of the mappings is more
complex because of the hierarchical nature of the data.

In [7], we have proposed a general framework for mapping generation. In this pa-
per, we present the algorithms for automatic mapping generation and a tool to support
this task. We consider that the target and source schemas are described in XML
Schema, and we assume that a set of correspondences is provided. These correspon-
dences relate elements of a source and elements of the target schema and express that

 Mapping Discovery for XML Data Integration 167

these elements represent the same concept. Our tool produces a set of mappings, cor-
responding to different ways to derive instances of the target schema from instances
of the sources. The generated mappings can be expressed in a standard language, such
as XQuery or XSLT.

Due to the semi-structured nature of XML sources, it is extremely difficult to di-
rectly define mappings for the whole target schema. The basic idea of our approach is
(i) firstly to decompose the target schema into a set of subtrees, called target sub-
trees; (ii) then to find the different ways, called partial mappings, to define each
target subtree from the source schemas; (iii) and finally to combine the partial map-
pings to generate the mappings for the whole schema, called target mappings.

The paper is organized as follows. In Section 2, we give some basic assumptions
and preliminary definitions. Section 3 presents the decomposition of the target
schema. Section 4 and Section 5 detail the determination of the partial mappings and
the generation of the target mappings respectively. Section 6 gives some experimental
results obtained by our system. Some related works are presented in Section 7 and
Section 8 concludes the paper.

2 Preliminaries

In this section we present the underlying assumptions of our approach: the representa-
tion of the target and the source schemas, and the correspondences between the
schemas.

2.1 Representation of Target and Source Schemas

We consider source schemas and target schema expressed using XML Schema. Fig-
ure 1 shows two source schemas and a target schema representing information about
books in a library. To avoid confusions, in the rest of the paper, each node will be
suffixed by the name of its schema: AuthorIds1 will refer to the node AuthorId in S1
while ISBNs2 will refer to the node ISBN in S2. Every node in the tree may be either a
text node (e.g. AuthorIds1), that is, a node containing only text, or an internal node
(e.g. Chapters1). The leaf nodes of the tree are always text nodes.

The cardinality of every node is characterized by the attributes minOccur and
maxOccur, representing respectively the minimum and maximum number of in-
stances for this node in the tree with respect to its parent. Each node is monovalued
(maxOccurs = 1) or multivalued (maxOccurs > 1); it is also optional (minOccurs = 0)
or mandatory (minOccurs > 0). In Figure 1, the symbol ‘+’ represents a multivalued
and mandatory node (e.g. Books2); the symbol ‘*’ represents a multivalued and op-
tional node (e.g. Bookts); and the symbol ‘?’ represents a monovalued and optional
node (e.g. Abstractts). A node without symbol is monovalued and mandatory
(e.g. Ids1).

Keys are defined either in the whole schema or only in a subtree of the schema. In
the first case, the key is absolute. In the second case, the key is relative and its scope
is an antecessor of the identified node, except the root. In Figure 1, the nodes written
in bold represent keys. If the name of the key node is followed by a bracket, then the
key is a relative key and its scope is the node between brackets (e.g. Numbers2 is a

168 Z. Kedad and X. Xue

relative key and its scope is Books2), otherwise it is an absolute key (e.g. ISBNs1). A
schema may also contain references; each one is a set of text nodes referencing an-
other set of text nodes defined as a key. In our example, AuthorIds1 references Ids1,
and this is represented by an arrow in Figure 1.

TS

Library
Author +

Id
Name
Address
Book *

ISBN
BookTitle
Chapter +

Number[scope:book]
ChapterTitle
Abstract ?

TS

Library
Author +

Id
Name
Address
Book *

ISBN
BookTitle
Chapter +

Number[scope:book]
ChapterTitle
Abstract ?

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
ChapterTitle

S1
Library

Author +
Id
Name

Book +
ISBN
BookTitle
Chapter +

Number
Abstract

Address +
AuthorId
AuthorAddress

Fig. 1. Schemas and correspondences

2.2 Semantic Correspondences

We suppose that a set of semantic correspondences is provided between each source
schema and the target schema. The definition of these correspondences is an impor-
tant issue and several approaches have been proposed to solve this problem
[4][5][12].

In our work, we consider two kinds of correspondences: 1-1 and 1-n. A 1-1 corre-
spondence relates a target node n with a source node n’, and states that the two nodes
represent the same concept. This correspondence is denoted n ≅ n’ (e.g. Ids1 ≅ Idts,
Numbers2 ≅ Numberts). In Figure 1, dotted lines represent correspondences. A trans-
formation function may be applied to the source node. For example, a correspondence
can be specified to relate a target node PriceInEuro to a source node PriceInDollar; if
the exchange rate is 1€ = 0,797$, such correspondence is denoted PriceInEuro ≅ 0.
797*PriceInDollar.

A 1-n correspondence relates a target node n to a set of source nodes combined by
the mean of a transformation function. For example, a target node Name represents
the same concept as the concatenation of two source nodes FirstName and LastName.
This correspondence is denoted Name ≅ concat(FirstName, LastName).

More generally, we consider the correspondences relating a target node n and a set
of source nodes n1, …, nk combined using a function f. Such correspondences are

 Mapping Discovery for XML Data Integration 169

denoted n ≅ f(n1, .., nk). For simplicity, in this paper we will restrict ourselves to 1-1
correspondences.

We use the same notation to represent correspondences between sets of nodes.
There is a correspondence between two sets of nodes s1 and s2 if (i) both s1 and s2
contain the same number of nodes (ii) and for each node n1 in s1 there is exactly one
node n2 in s2 such that n1 ≅ n2, and vice versa. The correspondence between the two
sets s1 and s2 is denoted s1 ≅ s2 (e.g. {ISBNs1, BookTitles1} ≅ {ISBNts, BookTitlets}).

Correspondences between two source schemas are derived though their correspon-
dences with the target schema. Given two source nodes n and n’ in S and S’ respec-
tively, the correspondence n ≅ n’ holds if there is a node n” in the target schema such
that n” ≅ n and n” ≅ n’. Some correspondences may also be provided between the
source schemas; they will be used in our approach for mapping generation.

3 Decomposing the Target Schema

To handle the complexity of mapping definition, we decompose the target schema
into a set of subtrees, called target subtrees; we will first find mappings for each target
subtree then combine these mappings to generate the mappings for the whole schema,
called target mappings.

Given a target schema, each target subtree t is a subtree of the target schema satis-
fying the following conditions:

− the root r of the subtree is either a multivalued node or the root of the target
schema;

− all the other nodes in t are descendents of r and are monovalued;
− there is at least one text node in t (t may contain a single node).

This decomposition of the target schema gives several subtrees in which every
node is monovalued. The mapping generation problem for the target schema is de-
composed into two steps: finding mappings for every target subtree, then combining
these mappings. Since a target subtree contains only monovalued nodes except the
root, finding a mapping for this subtree consists in finding some equivalent nodes in
the sources that satisfy the cardinalities constraints regardless their hierarchical or-
ganization. The hierarchical structure of the different target subtrees is checked during
the second step.

Our target schema given in Figure 1 has three target subtrees shown on the right
side of Figure 2: t1 is composed of the multivalued node Authorts and its three
monovalued children Idts, Namets and Addressts; t2 is composed of Bookts and its
two monovalued children ISBNts and BookTitlets; and t3 is composed of Chapterts,
Numberts, ChapterTitlets and Abstractts. The root Libraryts doesn’t belong to any
target subtree.

Given two target subtrees t and t’ such that the root of t’ is a child of a node in t,
we say that t is the parent of t’ and t’ is a child of t (e.g. in Figure 2, t2 is the child of
t1 and the parent of t3).

170 Z. Kedad and X. Xue

S1
Library

Author +
Id
Name

Book +
ISBN
BookTitle
Chapter +

Number
Abstract

Address +
AuthorId
AuthorAddress

sp1

sp2

sp4

sp6

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
ChapterTitle

sp3

sp5

sp7

TS

Library
Author +

Id
Name
Address
Book *

ISBN
BookTitle
Chapter +

Number[scope:book]
ChapterTitle
Abstract ?

t3
t2

t1

Fig. 2. Target subtrees and source parts

A target subtree can be either mandatory or optional in a target schema. Consider a
target schema with the root R and a subtree t of this schema with the root r. If t has a
parent subtree t’ with the root node r’, we say that t is mandatory if all the nodes on
the path from r to r’ (except r’) are mandatory. If t has no parent subtree, it is manda-
tory if all the nodes on the path from r to R are mandatory. In all the other cases, t is
optional. In our example, t1 and t3 are mandatory and t2 is optional.

4 Determining Partial Mappings

Each partial mapping represents a way to derive instances of a target subtree from the
instances of the source schemas. The partial mappings of a given target subtree are
determined independently from the other subtrees in three steps: (i) identifying the
parts of the sources (called source parts) that are relevant for the considered target
subtree; (ii) searching the joins to combine these source parts; (iii) and determining
the partial mappings from the source parts and the joins between them. Each target
subtree may have several partial mappings with different semantics. In the rest of this
section, we will describe these three steps.

4.1 Identifying Source Parts

A source part of a given target subtree is a set of text nodes in the source schemas that
can contribute to derive instances for this target subtree.

Before defining source parts, we first present an extended definition of node cardi-
nality. In XML Schema, the cardinality of a node is given with respect to the parent
node: a node is multivalued or monovalued with respect to its parent. We generalize
this definition to any pair of nodes.

 Mapping Discovery for XML Data Integration 171

Def. 1. Extended definition of Cardinality. Given two nodes n and n’ in a schema
and their first common antecessor m, n is monovalued with respect to n’ if every node
on the path from m to n (except m) is monovalued. Otherwise, n is multivalued with
respect to n’.

According to the definition, ISBNs1 is monovalued with respect to BookTitles1: their
common antecessor is Books1 and the only node on the path from Books1 to ISBNs1
(except Books1) is ISBNs1, which is monovalued. Similarly, BookTitles1 is monovalued
with respect to ISBNs1. Numbers1 is multivalued with respect to ISBNs1 because their
common antecessor is Books1 and the path from Books1 to Numbers1 contains Chap-
ters1 which is multivalued. On the contrary, ISBNs1 is monovalued with respect to
Numbers1.

1Library

3
Book

2
Book

8
Chapter

…

6
Chapter

5
Chapter

10

ChapterTitle

9

Number

"Introduction""1"

12

ChapterTitle

11

Number

"Nuts and Bolts""2"

4
ISBN

"0596001975"

…

14

ChapterTitle

13

Number

"Schemas: An Introduction"“1"

7
ISBN

"0130655678"

…

Fig. 3. An example of instances for the source S2

Note that this extended definition of cardinality is different from the definition of
functional dependency. Consider the nodes ChapterTitles2 and Numbers2 in S2. Chap-
terTitles2 is monovalued with respect to Numbers2. However, the functional depend-
ency Numbers2 → ChapterTitles2 doesn’t hold as we can see in Figure 3: two different
instances of chapter number may have the same value, but associated with different
titles; in fact, there are several titles for a given chapter number, one for each book.

Given a target subtree t, a source part sp for t in the source schema S is a set of text
nodes that satisfies the following conditions:

− there is a set of text nodes c in t such that c ≅ sp;
− there is at least one node n in sp such that the other nodes in sp are monoval-

ued with respect to n;
− except c, there is no set of text nodes c’ in S such that sp ⊆ c’ and c’ satisfies

the two above conditions.

Given a target subtree t, every source node involved in a correspondence with the
nodes of t is found in at least one source part for t. If no source part is found for a
target subtree, this means that there is no correspondent node in the sources for any of
the nodes of this target subtree.

Consider the target subtree t1 having the text nodes Idts, Namets and Addressts.
These nodes have the corresponding nodes Ids1, Names1, AuthorIds1 and AuthorAd-
dresss1 in S1. In the set {Ids1, Names1}, both Ids1 and Names1 are monovalued with

172 Z. Kedad and X. Xue

respect to the other; this set is therefore a source part for t1. In {AuthorIds1, Au-
thorAddresss1}, both AuthorIds1 and AuthorAddresss1 are monovalued with respect to
the other; this set is therefore a source part for t1. {Ids1} is not a source part because it
is a subset of {Ids1, Names1}. {AuthorIds1, AuthorAddresss1, Ids1} is not a source part
also because Ids1 is multivalued with respect to both AuthorIds1 and AuthorAddresss1
and both AuthorIds1 and AuthorAddresss1 are multivalued with respect to Ids1.

The source parts for the target subtrees of our running example are shown on the
left side of Figure 2. The subtree t1 has two source parts sp1 and sp2 in S1 and one
source part sp3 in S2; t2 has two source parts sp4 and sp5 in S1 and S2 respectively;
and t3 has two source parts sp6 and sp7.

4.2 Identifying Join Operations

The joins between source parts are identified using keys and key references. There are
two distinct cases: the two source parts either belong to the same source schema or to
different ones.

Given two source parts sp and sp’ in the same source schema, a join is possible if
there are two sets of text nodes c and c’ in the schema such that:

− c is a key and c’ references c;
− there is a node n in c such that every node in sp is monovalued with respect to

n;
− there is a node n’ in c’ such that every node in sp’ is monovalued with respect

to n’.

In this case, a join is possible between sp and sp’ with the join predicate c = c’; it is
denoted j[c = c’](sp, sp’). For example, the join j[Ids1 = AuthorIds1](sp1, sp2) is possi-
ble between sp1 and sp2 since AuthorIds1 is a reference on Ids1.

S
CustomerInfo

Customer +
cname
orderID

Order +
orID
itemID

Product +
prID
productName

sp2

sp1 T
Orders

Item +
cname
productName

S
CustomerInfo

Customer +
cname
orderID

Order +
orID
itemID

Product +
prID
productName

sp2

sp1 T
Orders

Item +
cname
productName

Fig. 4. Relating two source parts through several references

This definition can be generalized by considering a sequence of references from c’
to c instead of a single one. Consider the example shown in Figure 4. In the source S,
two source parts sp1 and sp2 correspond to the single subtree of the target schema and
no join is possible between them using the previous rule because no reference relates
them directly. However, they are related through the two references: orderIDs

 Mapping Discovery for XML Data Integration 173

referencing orIDs and itemIDs referencing prIDs. A join is therefore possible and it is
denoted j[orderIDs1 = orIDs1, itemIDs1 = prIDs1](sp1, sp2).

A join can also be possible between sources parts of different schemas. Consider
two source parts sp and sp’ in the source schemas S and S’ respectively. Given a set
of text nodes c in S and a set of text nodes c’ in S’, a join can be applied to sp and sp’
with the predicate c = c’ if the following conditions hold:

− c ≅ c’;
− either c or c’ is an absolute key in its schema;
− there is a node n in c such that every node in sp is monovalued with respect to

n;
− there is a node n’ in c’ such that every node in sp’ is monovalued with respect

to n’.

In our example, the join j[Ids1 = Ids2](sp1, sp3) is possible between sp1 and sp2 be-
cause both Ids1 and Ids2 are defined as absolute keys. The join between sp6 and sp7
with the predicate Numbers1 = Numbers2 is not possible because neither Numbers1 nor
Numbers2 is defined as an absolute key. However, we know that the combination
{Numbers2, ISBNs2} is unique in the whole schema because the scope of Numbers2 is
Books2 which h as the absolute key ISBNs2. We have therefore to consider the com-
bination {Numbers2, ISBNs2} as an absolute key and use it instead of Numbers2. In
fact, each time a relative key is found, it is combined with other key nodes to get an
absolute key if possible. Figure 5 shows all the possible joins in our example.

S1
Library

Author +
Id
Name

Book +
ISBN
BookTitle
Chapter +

Number
Abstract

Address +
AuthorId
AuthorAddress

sp1

sp2

sp4

sp6j2

Ids1=Authors1

j1 Ids1 = Ids2

j3 Authors1 = Ids2

j4 ISBNs1 = ISBNs2

j5 ISBNs1 = ISBNs2 and
Numbers1 = Numbers2

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
ChapterTitle

sp3

sp5

sp7

S1
Library

Author +
Id
Name

Book +
ISBN
BookTitle
Chapter +

Number
Abstract

Address +
AuthorId
AuthorAddress

sp1

sp2

sp4

sp6j2

Ids1=Authors1

j1 Ids1 = Ids2

j3 Authors1 = Ids2

j4 ISBNs1 = ISBNs2

j5 ISBNs1 = ISBNs2 and
Numbers1 = Numbers2

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
ChapterTitle

sp3

sp5

sp7

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
ChapterTitle

sp3

sp5

sp7

Fig. 5. Join operations

In our approach, we consider that a join is possible in a limited number of cases;
we do not therefore generate all the possible joins but only a subset of them. For ex-
ample, a join involving two different sources is considered as possible only if the join
predicate involves an absolute key. We could also have considered that a join is pos-
sible each time a correspondence is found between two sets of nodes, regardless the
key definitions. But in our opinion, the semantics of this operation is not clear and we
therefore do not consider these joins. Consequently, only a subset of all the possible
target mappings is generated in our approach.

174 Z. Kedad and X. Xue

4.3 Defining Partial Mappings from the Source Parts and the Joins

The partial mappings of a target subtree are determined using the corresponding
source parts and the joins between them.

The source parts and the joins corresponding to a given target subtree are repre-
sented by a graph called join graph where every node is a source part and every edge
between two source parts is a join between them; the edges are numbered and labeled
with the join predicate.

Given the join graph G for a target subtree t, each partial mapping for t, denoted
pm, is defined as a connected acyclic sub-graph of G such that for every mandatory
text node n in t, there is at least a node n’ in one of its source parts such that n ≅ n’.

Number[scope:book]
Title

sp7
Number
Abstract

sp6
j5 ISBNs1 = ISBNs2 and
Numbers1 = Numbers2

pm1

pm2

Number[scope:book]
Title

sp7
Number
Abstract

sp6
j5 ISBNs1 = ISBNs2 and
Numbers1 = Numbers2

pm1

pm2

Fig. 6. Join graph of t3

Partial_Mapping_Determination(G(SP, J), st, PM)
Begin

PM := ∅;
for each source part sp in SP:

J’ := ∅;
SP’ := {sp};
Build_Partial_Mapping (G’(SP’, J’), G(SP, J), st, PM);

return (PM);
End

Build_Partial_Mapping (G’(SP’, J’), G(SP, J), st, PM)
Begin

if mandatory_text_nodes(SP’, st) //returns true if SP’ contains all the mandatory text nodes in st
then

PM := PM ∪ {G’(SP’, J’)};
//adds a new partial mapping represented by the graph G’ to set PM

for each join j between the source parts sp and sp’ such that sp’ ∈ SP’ and sp ∉ SP’
SP’’ := SP’ ∪ {sp};
J’’ := J’ ∪ {j};
if G’’(SP’’, J’’) ∉ PM
// adding the edge representing the join j to the subgraph G’ does’nt give an element of PM
then
Build_Partial_Mapping (G’’(SP’’, J’’), G(SP, J), st, PM);

End

Fig. 7. The algorithm of partial mapping determination

Considering the subtree t3 of Figure 2, the corresponding join graph is shown in
Figure 6. It contains two source parts sp6, sp7 and the join j5. In this graph, there are
two partial mappings: pm1 containing a single source part sp7 and pm2 containing
sp6 and sp7 related by j5. Both are connected acyclic sub-graphs of the join graph and
both produce instances for the mandatory text nodes Numberts and ChapterTitlets in
t3; pm1 does not produce instances for the optional node Abstractts; pm2 joins the two

 Mapping Discovery for XML Data Integration 175

source parts; it may produce fewer chapters than pm1 but more information for every
chapter (its abstract).

For simplicity, in the rest of the paper, we refer to a partial mapping by the source
part name if it contains a single source part, or by the names of the corresponding
joins if it contains more than one source part. In our example, pm1 and pm2 are de-
noted {sp7} and {j5} respectively.

The algorithm for partial mapping determination is given in Figure 7. It is a recursive
algorithm that takes as input one target subtree (st) and the corresponding join graph
G(SP, J) where SP represents the set of nodes (the source parts) and J the set of edges
(the possible joins). The algorithm produces the set of all the partial mappings (PM) for
st; each partial mapping in PM is represented by the corresponding sub-graph.

5 Generating Target Mappings

The mappings for the whole target schema, called target mappings, are defined using
the partial mappings. To perform this task, candidate mappings are first generated
by combining the partial mappings of the different target subtrees. Then the parent-
child relations between the target subtrees are checked to produce target mappings.

A candidate mapping cm for the target schema TS is a set of partial mappings such
that:

− there is at most one partial mapping for each target subtree in TS;
− for each mandatory target subtree t having no parent subtree, there is one par-

tial mapping for t;
− for each mandatory subtree t having the parent subtree t’, if there is a partial

mapping for t’ then there is also a partial mapping for t, and vice versa.

Consider the following partial mappings in our example: pm3 = {j2} and pm4 =
{j1, j2} for t1; pm5 = {j4} for t2; and pm2 = {j5} for t3. Since t2 is optional and its
child t3 is mandatory, each candidate mapping denoted cmi either contains no partial
mapping for both t2 and t3 such as cm1 = {pm3} and cm2 = {pm4}, or contains a
partial mapping for both t2 and t3 such as cm3 = {pm3, pm5, pm2}and cm4 = {pm4,
pm5, pm2}.

The algorithm for candidate mapping generation is given in Figure 8. This algo-
rithm takes as input the target schema TS and the sets of partial mappings PM1, ...,
PMn corresponding respectively to the subtrees t1, ..., tn in TS. The algorithm per-
forms a top-down browsing of the subtrees in TS and generates the set of candidate
mappings CM.

Target mappings are derived from the candidate mappings that satisfy the parent-
child relations between the target subtrees. Consider a target subtree t, its parent sub-
tree t’ and their respective partial mappings pm and pm’; pm and pm’ preserve the
parent-child relation between t and t’ if the following conditions hold:

− there is a source part sp in pm and a source part sp’ in pm’ which are in the
same source;

− there is either a node in sp with respect to which all the nodes in sp’ are mono-
valued; or a node in sp’ with respect to which all the nodes in sp are monoval-
ued.

176 Z. Kedad and X. Xue

Candidate_Mapping_Generation(TS, PM1, …, PMn, CM)
Begin

CM := ∅; // each element of CM is a set of partial mappings
for each target subtree ti in get-mandatory-top-subtrees(TS)

// get-mandatory-top-subtrees(TS) returns the subtrees in TS that are mandatory and has not parent subtrees
if PMi == ∅
then return (∅);
//if a mandatory top subtree has no partial mapping, then the target schema has no target mapping
if CM == ∅
then

for each partial mappings pm in PMi
CM := CM ∪ {pm};

else
for each set S in CM

for each partial mapping pm in PMi
S’ := S ∪ {pm};
CM := CM ∪ {S’};

CM := CM - {S};

for each target subtree ti in TS not in get-mandatory-top-subtrees(TS) from top to down:
if (top(ti)) // returns true if ti has not parent subtree

for each set S in CM
for each partial mapping pm in PMi

else
for each set S in CM

if contains_parent_mapping(ti, S)
//returns true if the set S contains a partial mapping for the parent subtree of ti
then

for every pm in PMi
S’ := S ∪ {pm};
CM := CM ∪ {S’};

if (mandatory(ti)) then CM := CM - {S};
return (CM);

End

Fig. 8. The algorithm of candidate mapping generation

If there is a node in sp with respect to which all the nodes in sp’ are monovalued,
then for every instance of sp we can find the corresponding instance of sp’, and for
every instance of sp’ we can find the corresponding instances of sp. The parent-child
relation is therefore satisfied.

For the target schema of our example, there are two parent-child relations to check:
one between t1 and t2 and the other between t2 and t3.

Consider the candidate mapping cm4 = {pm4, pm5, pm2}. The parent-child rela-
tion between t1 and t2 is satisfied in cm4 because every node in sp5 (involved in
pm5) is monovalued with respect to both Ids2 and Names2 in sp3 (involved in pm4).
The parent-child relation between t2 and t3 is also satisfied because every node in sp5
is monovalued with respect to both Numbers2 and ChapterTitles2 in sp7 (in pm2).
Therefore, cm4 is a target mapping for TS.

The candidate mappings cm1 and cm2 are also target mappings because both con-
tain a single partial mapping. The candidate mapping cm3 does not lead to a target
mapping because the parent-child relation between t1 and t2 is not satisfied.

Other target mappings can be derived by applying set-based operations like Union,
Intersection and Difference to two or more mappings. For example the union of cm1
and cm4 is a new target mapping that takes the union of pm4 and pm3 for t1, pm5 for
t2 and pm2 for t3.

Each target mapping is an abstract query that can be translated into a specific query
language such as XQuery or XSLT. To translate a target mapping into XQuery, each
partial mapping is translated into a FWR (For-Where-Return) expression. For each

 Mapping Discovery for XML Data Integration 177

<Library>{
for $au in distinct(S1/Library/Author/Id, S1/Library/Address/AuthorId, S2/Library/Book/Author/Id)
for $sp1 in S1/Library/Author
for $sp2 in S1/Library/Address
for $sp3 in S2/Library/Book/Author
where $sp1/Id=$sp2/AuthorId and $sp1/Id=$sp3/Id and $sp1/Id=$au
return <Author>{

<Id>{data($sp1/Id)}</Id>,
<name>{data($sp1/Name)}</name>,
<Address>{data($sp2/AuthorAddress)}</Address>

for $b in distinct(S2/Library/Book/ISBN, S1/Library/Author/Book/ISBN)
for $sp4 in S1/Library/Author/Book
for $sp5 in S2/Library/Book[Author/Id = sp3/Id]
where $sp4/ISBN = $sp5/ISBN and $sp4/ISBN = $b
return <Book>{

<ISBN>{data($sp4/ISBN)}</ISBN>,
<BookTitle>{data($sp4/title)}</BookTitle>
for $c in distinct(S1/Library/Author/Book/Chapter/Number, S2/Library/Book/Chapter/Number)
for $sp6 in S1/Library/Author/Book/Chapter
for $sp7 in S2/Library/Book[ISBN=sp5/ISBN]/Chapter
where $sp6/Number = $sp7/Number and $sp7/Number = $c
return <Chapter>{

<Number>{data($sp6/ISBN)}</Number>,
<ChapterTitle>{data($sp7/ChapterTitle)}</ChapterTitle>,
<Abstract>{data($sp6/Abstract)}</Abstract>

}</Chapter>
}</Book>

}</Author>
}</Library>

Fig. 9. An XQuery target mapping

target subtree t and its parent t’, the FWR expression of t is nested in the FWR ex-
pression of t’. A grouping operation is added for every key in the target schema. For
example, Figure 9 gives the translation to XQuery of the target mapping cm4.

6 Experimental Results

We implemented a system [8] in Java and we have run five scenarios to evaluate its
performance. Table 1 summarizes the main characteristics of these scenarios, such as
the number of nodes in the target schema, the number of data sources and the number
of nodes for each one, the number of correspondences between the sources and the
target schema, and the number of the key definitions in the sources.

The first scenario is from the Mediagrid project1 which proposes a mediation frame-
work for a transparent access to biological data sources; it considers three biological
sources SGD, GOLD, SMD and a target schema built by domain experts. The Library1
scenario contains six source schemas. The Library2 scenario is similar to Library1 but
the overlap between the sources is more important (more correspondences are defined
for the same number of text nodes in the target schema). The ABC1 and ABC2 scenar-
ios contain 50 source schemas. They are similar, except that the ABC2 scenario contains
58 key definitions while ABC1 contain no key definitions.

1 Supported by the French Ministry of Research through the ACI Grid program, www-

lsr.imag.fr/mediagrid/.

178 Z. Kedad and X. Xue

Table 1. Characterizing the scenarios

Target schema Source schemas
Scenarios

Depth Nodes
Text

nodes

Corresp-
ondences Schemas Nodes

Text
nodes

Keys Refs

Mediagrid 6 18 12 22 3 1674 825 412 413

Library1 5 18 14 26 6 56 30 9 1

Library2 5 18 14 30 6 62 35 10 1

ABC1 7 47 36 1300 50 1650 1434 0 0

ABC2 7 47 36 1300 50 1650 1434 58 0

We have run these different scenarios on a PC-compatible machine, with a 2.8G

Hz P4 CPU and 516MB RAM, running Windows XP and JRE1.4.1. Each experiment
is repeated five times and the average of the five is used as the measurement.

Table 2. Measuring the scenarios

Execution time (s)
Scenarios

Load
Target Schema
Decomposition

Partial Mapping
Determination

Target Mapping
Generation

Mediagrid 1.44 0.001 0.02 0.002

Library1 0.44 0.001 0.067 0.095

Library2 0.046 0.001 0.105 0.25

ABC1 0.98 0.001 0.06 1.997

ABC2 1.03 0.001 316 27

The time needed for the main steps of our approach using the different scenarios

are shown in Table 2. The loading time indicates the time to read the schemas and the
correspondences into our internal representation. As expected, it is correlated to the
size of the schemas and the number of their correspondences.

The target schema decomposition time indicates the time to decompose the target
schema into target subtrees. We can see that the time needed to perform the task is
negligible.

The partial mapping determination (pmd) time is proportional to the number of
correspondences between target nodes and source nodes and the key and key refer-
ences in the sources. The pmd time for Library1 which has 26 correspondences is
smaller than the one of Library2 which has 30 correspondences; the two scenarios
have the same number of sources and the same target schema. The pmd time for the
ABC2 scenario which has 58 keys is largely greater than the one of the ABC1

 Mapping Discovery for XML Data Integration 179

scenario. This is because the number of keys of the ABC2 scenario makes the join
graph very complex.

The target mapping generation (tmg) time indicates the time to find all the candi-
date mappings and to generate the target mappings. The tmg time is greater in ABC2
than in the other scenarios because in ABC2, most of the target subtrees have a lot of
partial mappings (about 150), which leads to much more combinations to consider.

Some evaluations for the partial mapping determination and the target mapping
generation are shown in Figure 10. The pmd time is decomposed into source part
identification time, join identification time and partial mapping determination time.
Figure 10 (a) shows the source part identification time with respect to the number of
the semantic correspondences between the target schema and the source schemas. The
measures are done using the ABC2 scenario and considering 52 to 1300 correspon-
dences. This task is proportional to the number of correspondences and its time is
almost negligible (about only 0.022 second for 1300 correspondences).

Figure 10 (b) shows the time of join identification with respect to both the number
of key definitions and the number of correspondences on the keys. We have consid-
ered the ABC2 scenario and we have successively increased both the number of key
definitions and the number of correspondences involving keys. The time needed to
perform this task is influenced by the two parameters. With 300 key definitions and
300 correspondences on the keys (which represents a complex case), the time for the
join identification is about 15 seconds.

0

0.005

0.01

0.015

0.02

0.025

52 26
0

46
8

67
6

88
4

10
92

13
00

Total correspondences number

T
im

e
(s

) Source part
identification

(a) The time of source part identification with respect to the
number of correspondences

(b) The time of join identification with respect to the number of
key definitions in the sources and the number of
correspondences on the keys

(c) The time of partial mapping determination with respect to the
number of correspondences on the keys and the total number of
correspondences

(d) The time of target mapping generation with respect to the
average number of correspondences per target subtree and the
number of target subtrees in the target schema

0

5

10

15

20

25

30

69 115 230 230 253 46

1 3 3 5 5 10

the average correspondences per target
subtree (a) and the number of target

subtrees (b)

T
im

e
(s

)

Target mapping
generation

(a)

(b)

0

2

4

6
8

10

12

14

16

20 60 100 140 180 220 260 300

20 60 100 140 180 220 260 300

The number of key definitions (a) and
the number of correspondences on

the keys (b)

Ti
m

e
(s

)

Join identification

(a)

(b)

0

50

100

150
200

250
300

350

60 100 140 180 220 260

240 420 600 880 1060 1300

The number of correspondences on the
keys (a) and the total number of

correspondences (b)

T
im

e
(s

)

Partial mapping
determination

(a)

(b)

Fig. 10. Evaluating the time for the different steps of mapping generation

180 Z. Kedad and X. Xue

The time required for the determination of partial mappings for a given target sub-
tree depends on the size of the corresponding join graph. Figure 10 (c) shows the time
for partial mapping determination with respect to both the total number of correspon-
dences and the number of correspondences for the keys. We have successively in-
creased the values of these two parameters from 60 correspondences for the keys and
240 total correspondences to 260 correspondences for the keys and 1300 total corre-
spondences. The other parameters of the scenarios used in this experiment are the
same as the ABC2 scenario. We can see in the graph that a scenario having 880 corre-
spondences among which 180 correspondences involving source keys takes about 100
seconds for the partial mapping determination.

The target mapping generation depends on the number of partial mappings and the
structure of the target schema, that is, the number of parent-child relations between
the target subtrees. Figure 10 (d) shows the time required for this task with respect to
the number of the target subtrees and the average correspondences per subtree. We
have increased both parameters using the same sources as for the ABC2 scenario. For
example, in the case of 5 target subtrees and 230 correspondences per subtree, it takes
about 12 seconds for generating the target mappings; note that this case is a complex
one, since the scenario contains 50 sources, 1300 correspondences and 58 key defini-
tions. The complexity of this process is exponential with respect to the number of
partial mappings. It is possible to reduce this complexity using some quality criteria
(for example, selecting the partial mappings that use the sources having a high confi-
dence factor) or some heuristics (for example, selecting the partial mappings using a
high number of sources).

7 Related Works

Several approaches [1][6][10] have been proposed to generate mappings when the
target and the source schemas are expressed using the relational model. The approach
presented in [1][6] generates a set of mappings from a set of source schemas using
linguistic correspondences between target attributes and source attributes expressing
that these elements represent the same concept. The work presented in this paper is
inspired by this approach and also uses correspondences to define the mappings.

The approach presented in [10] generates a set of mappings from one source
schema using a set of pre-defined value correspondences which specify how a target
attribute is generated from one or more source attributes. In our work we also assume
that correspondences are provided but we consider several source schemas.

Unlike the previously presented approaches ([1][6][10]), where the schemas are re-
lational ones, we consider that either the target schema or the data sources are de-
scribed in XML schema. In the case of XML sources, the complexity of mapping
generation increases: we have to find instances for nodes of the tree representing the
target schema, but also to preserve its structure.

An approach is proposed in [11] for generating mappings from one source schema
to a target schema when these schemas are in XML Schema. In [14], a query rewrit-
ing algorithm which uses these mappings is proposed for integrating data sources. In
our approach, the mappings are defined for a set of data sources; the mappings gener-

 Mapping Discovery for XML Data Integration 181

ated in our approach express the way instances of different schemas are combined to
form instances of the target schema.

Other approaches have been proposed [2], [13], and [15] to generate mappings
from several source schemas. These approaches comprise two steps: (i) the definition
of rules to restructure each source schema according to the structure of the target
schema; (ii) and the generation of mappings from these restructured schemas. In these
approaches, source schemas must be restructurable with respect to the target schema
in order to use them for mapping definition. In our approach, we do not impose such
constraint, because some mapping may exist even is the restructuring of a source
schema is not possible.

8 Conclusion

In this paper, we have presented algorithms for automatically generating mappings;
we have implemented a system to support this task and presented some experimental
results. This system produces a set of mappings for a target schema considering a set
of source schemas and a set of correspondences; each target mapping has a different
semantics.

Since the result of our system is a set of target mappings, one interesting perspec-
tive is to take advantage of these multiple semantics; the system should be able to
select the mapping that most fits the needs of a specific user, using some preferences
or some quality criteria. To achieve this goal, our system is already integrated in a
platform that also provides tools for evaluating the quality of mappings considering
user preferences [9]. Another perspective of our work is the maintenance of the map-
pings: if some changes occur in the data sources or in the target schema, some of the
mappings may become inconsistent; the problem is therefore to detect the inconsistent
mappings and to propagate the changes into the mapping definitions.

References

1. Bouzeghoub, M., Farias Lóscio, B., Kedad, Z., Salgado, A.-C.: Managing the evolution of
mappings. Proc. of the 11th. Int. Conf. on Cooperative Information Systems (CoopIS’03),
Catania, Italy (2003) 22-37

2. Claypool, K. T., Rundensteiner, E. A.: Gangam: A Transformation Modeling Framework.
Proc. of Eighth Int. Conf. on Database Systems for Advanced Applications (DASFAA’03),
Kyoto, Japan (2003) 47-54

3. Collet C., Belhajjame K., Bernot G., Bruno G., Bobineau C., Finance B., Jouanot F., Ke-
dad Z., Laurent D., Vargas-Solar G., Tahi F., Vu T.-T., Xue X.: Towards a target system
framework for transparent access to largely distributed sources. Proc of the Int. Conf. on
Semantics of a Networked World Semantics for Grid Databases (IC-SNW’04), Paris,
France (2004) 65-78

4. Dhamankar, R., Lee, Y., Doan, A., Halevy, A. Y., Domingos, P.: iMAP: Discovering
Complex Mappings between Database Schemas. Proc. of Int. Conf. ACM SIGMOD
(SIGMOD’04), Paris, France (2004) 383-394

182 Z. Kedad and X. Xue

5. Do, H.H., Rahm, E.: COMA - A System for Flexible Combination of Schema Matching
Approaches. Proc. of the 28th Int. Conf. on Very Large Data Bases (VLDB’02), Hong
Kong, China (2002) 610-621

6. Kedad, Z.; Bouzeghoub, M.: Discovering View Expressions from a Multi-Source Informa-
tion System. Proc. of the 4th. Int. Conf. on Cooperative Information Systems (CoopIS’99),
Edinburgh, Scotland (1999) 57-68

7. Kedad, Z., Xue, X.: Mapping Generation for XML Data Sources: a General Framework.
Proc. of the Int. Workshop on Challenges in Web Information Retrieval and Integration
(WIRI’05), in conjunction with the 21st Int. Conf. on Data Engineering (ICDE’05), Tokyo,
Japan (2005)

8. Kostadinov, D., Peralta, V., Soukane, A., Xue, X. (Demonstration) : Système adaptif à
l’aide de la génération de requêtes de médiation. Proc. of 20th Conf. of Bases de données
avancées (BDA’04) ,Montpellier, France (2004) 351-355

9. Kostadinov, D., Peralta, V., Soukane, A., Xue, X.: Intégration de données hétérogènes basée
sur la qualité. Proc. of INFORSID 2005 (Inforsid’05), Grenoble, France (2005) 471-486

10. Miller, R.J., Haas, L. M., Hernández, M. A.: Schema Mapping as Query Discovery. Proc.
of the 26th Int. Conf. on Very Large Data Bases (VLDB’00), Cairo, Egypt (2000) 77-88

11. Popa L., Velegrakis Y., Miller R.J., Hernandez M.A., Fagin R.: Translating web data.
Proc. of the 28th Int. Conf. on Very Large Data Bases (VLDB’02), Hong Kong, China
(2002) 598-609

12. E. Rahm, P. A. Bernstein, A survey of approaches to automatic schema matching. Proc. of
the 27th Int. Conf. on Very Large Data Bases (VLDB’01), Roma, Italy (2001) 334-350

13. Yang, X., Lee, M. L., Ling, T. W.: Resolving structural conflicts in the integration of XML
schemas: a semantic approach. Proc. of 22nd Int. Conf. on Conceptual Modeling (ER’03),
Chicago (2003) 520-533

14. Yu, C., Popa, L.: Constraint-based XML query rewriting for data integration. Proc. of Int.
Conf. ACM SIGMOD (SIGMOD’04), Paris, France(2004) 371-382

15. Zamboulis, L., Poulovassilis, A.: XML data integration by Graph Restructuring. Proc. of the
21st Annual British National Conf. on Databases (BNCOD21), Edinburgh (2004) 57-71

Colored Petri Nets to Verify Extended
Event-Driven Process Chains

Kees van Hee, Olivia Oanea, and Natalia Sidorova

Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{k.m.v.hee, o.i.oanea, n.sidorova}@tue.nl

Abstract. Business processes are becoming more and more complex
and at the same time their correctness is becoming a critical issue: The
costs of errors in business information systems are growing due to the
growing scale of their application and the growing degree of automa-
tion. In this paper we consider Extended Event-driven Process Chains
(eEPCs), a language which is widely used for modeling business pro-
cesses, documenting industrial reference models and designing workflows.
We describe how to translate eEPCs into timed colored Petri nets in
order to verify processes given by eEPCs with the CPN Tools.

Keywords: Extended EPCs, semantics, verification, colored Petri nets.

1 Introduction

Event-driven Process Chains (EPC) [15,17] is a popular language for model-
ing business processes, documenting industrial reference models and designing
workflows. EPCs describe the flow of control of business processes as a chain
of functions, events, and logical connectors. Functions represent activities in a
business process. An event expresses a precondition (trigger) for a function or
a postcondition that signals the termination of a function. Logical connectors
and, or, and xor are used according to their names to build the control flow of
a process in a natural way.

EPCs extended with data, resources, time and probabilities, called extended
EPCs (eEPCs) [17], are intensively used in commercial tools like A

¯
r
¯
chitecture

of Integrated I
¯
nformation S

¯
ystems (ARIS) [15] and SAP R/3 [11]. These tools

support modeling and simulation of organizational processes with eEPCs, and
they are widely used in such branches of industry and consultancy as banks,
insurance companies, transportation. The complexity of business processes in
these branches is growing throughout the years. Due to informatisation, which
concerns all aspects of organizational activities, less and less manual work is
involved into the supervision of business processes. This accelerates processes
significantly, but also puts higher requirements to the correctness of process
specifications, since an error in a process design would demonstrate itself in an
automated system too late, when it would already cause a snowball effect.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 183–201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

184 K. van Hee, O. Oanea, and N. Sidorova

We choose to use an available tool for modeling, simulation and analysis
of the constructed model, e.g. model checking which covers the whole system
behavior, and we provide a translation from eEPCs to the input language of
this tool. Petri nets are appropriate for modeling EPCs since all EPC ele-
ments can be translated to places and transitions of Petri nets in a natu-
ral way (see e.g. [1,7,13]). Extended EPCs have such additional features as
data, time and probabilities. Therefore timed colored Petri nets (TCPNs) [10]
are a natural choice for modeling eEPCs. CPN Tools [3] provides modeling,
simulation, and model checking options for TCPNs and thus satisfies our
requirements.

In this paper, we provide a formal definition for eEPCs and present their
semantics in terms of a transition system. We provide a translation from eEPCs
to TCPNs and describe how we can analyze the behavior of an eEPC with the
CPN Tools. We conclude by comparing our method to other approaches for
formalizing the syntax and the semantics of EPCs.

The rest of the paper is organized as follows. In Section 2 we describe the
syntax of eEPCs. In Section 3 we provide the semantics of eEPCs as used in
practice. Section 4 gives a translation from eEPCs to timed colored Petri nets
and discusses some verification issues. In Section 5 we give an account of related
work and discuss some future work.

2 Syntax of Extended Event-Driven Process Chains

In this section, we give a brief description of the syntax of eEPCs taking into
account requirements given in [15] as well as the ones imposed by practice. We
use ARIS [6,9,15,17] as a reference point of our study. However, this approach
can be applied to other tools supporting eEPCs, since they are based on the
same concepts.

ARIS offers a conceptual framework for describing companies, their orga-
nizational structure, processes and resources (material as well as human). In
addition to process modelling, ARIS offers the possibility to analyze process
performance based on simulation. In order to structure process modelling and
to show different angles of an organization, ARIS distinguishes five main views:

Data view uses the entity-relationship models (ERM) to design data models:
entities (e.g. data objects of the environment that are processed by the sys-
tem), their attributes and relationships between entities;

Function view describes functions as tasks performed on objects to support
different company goals; it includes descriptions of procedures, processes,
subfunctions and elementary functions;

Organization view models the relations between company units and the clas-
sification of these units in the organizational hierarchy;

Product/service view describes the products and services produced by the
company as a result of human act or technical procedures;

Control view integrates the previously mentioned views and defines the
dynamic, behavioral aspects. The control flow of a process is described with

Colored Petri Nets to Verify Extended Event-Driven Process Chains 185

an EPC extended with the description of the resources and data involved in
the process, and timed and probabilistic aspects of the behavior.

The control view is essential for process verification, so we concentrate our
study on this view. In what follows, we define generic EPCs and extend them to
eEPCs as they are presented in the control view of ARIS.

2.1 Syntax of EPCs

First we give some basic definitions from algebra and the graph theory we
need here.

– Let S be a set. |S| denotes the number of elements in S. B denotes the
boolean set, N the set of natural numbers, Z the set of integers, R the set of
real numbers and R+ the set of positive real numbers.

– A multiset (bag) over S is a mapping m : S → N. The set of all multisets over
S is NS . We use + and − for the sum and the difference of two multisets and
=, <, >, ≤, ≥ for comparisons of multisets. ∅ denotes the empty multiset
and ∈ denotes element inclusion. We write m = 2‘a for a multiset m with
m(a) = 2 and m(x) = 0 for any x ∈ S − {a}.

– Let R ⊆ S × S be a binary relation over a set S. R−1 denotes the converse
relation of R, R+ denotes the transitive closure of R, R∗ denotes the tran-
sitive reflexive closure of R and (R ∪ R−1)∗ is the symmetric, reflexive and
transitive closure of R.

– A directed graph is a tuple G = (N, A), where N is a set of nodes and
A ⊆ N × N is a set of arcs. Every arc a ∈ A is a pair (n1, n2) ∈ N × N
consisting of the input node n1 and the output node n2.

– A path σ of length m in a graph G = (N, A) is a finite sequence of nodes
σ = n0n1 . . . nm (ni ∈ N for i = 0, . . . , m) such that each pair (vj , vj+1) ∈ A
(j = 0, . . . , m− 1) is an arc. We denote the length of a path by |σ|(= m). σ
is an empty path if |σ| = 0. We denote the set of all finite, possibly empty,
paths by N∗ and the set of finite non-empty paths by N+. A path σ is a
prefix of a path γ if there is a path σ′ with γ = σσ′.

– A graph G = (N, A) is weakly connected if for every two nodes n1, n2 ∈ N ,
(n1, n2) ∈ (A ∪A−1)∗.

– We denote the set of output nodes of n ∈ N as n•, i.e. n• = {n′|(n, n′) ∈ A}.
Similarly, •n = {n′|(n′, n) ∈ A} is the set of input nodes of n ∈ N . Given a
set of nodes X ⊆ N , we define •X =

⋃
n∈X

•n and X• =
⋃

n∈X n•.
– We denote the set of ingoing arcs of a node n ∈ N as Ain

n , i.e. Ain
n =

{(n, x)|x ∈ n•} and the set of outgoing arcs of n as Aout
n , i.e. Aout

n =
{(x, n)|x ∈ n•}. In case Ain

n is singleton, ain
n denotes the ingoing arc of

the node n. Similarly, if Aout
n is singleton, aout

n denotes the outgoing arc of
the node n.

Now we can give a definition of a generic EPC.

Definition 1 (EPCs). An event-driven process chain (EPC) is defined by a
weakly connected directed graph G = (N, A) that satisfies the following properties:

186 K. van Hee, O. Oanea, and N. Sidorova

1. The set N of nodes is the union of three pairwise disjoint sets E, F and C,
where
– E is the set of events. E = Es ∪ Ef ∪ Ei, where Es, Ef and Ei are

pairwise disjoint sets of start events, final events, and internal events
respectively, with |Es| ≥ 1 and |Ef | ≥ 1;

– F = ∅ is a set of functions;
– C is a set of connectors of types xor, or, and, i.e. C = Cxor∪Cor∪Cand,

where Cxor, Cor and Cand are disjoint sets. Furthermore, each of these
sets is partitioned into two sets representing split and join connectors:
Cxor = Cxs∪Cxj, Cor = Cos∪Coj and Cand = Cas∪Caj, and Cs stands
for set of split connectors, and Cj stands for the set of join connectors;

2. Every element from the set A of arcs connects two different nodes. Moreover,
– •es = ∅ and e•f = ∅, for each es ∈ Es and ef ∈ Ef ;
– |n•| = 1 for each n ∈ F ∪Ei∪Es, and |•n| = 1 for each n ∈ F ∪Ei∪Ef ;
– each split connector c ∈ Cs satisfies |•c| = 1 and |c•| > 1; similarly each

join connector c ∈ Cj satisfies |•c| > 1 and |c•| = 1;
3. Each node is on a path from a start event to a final event, i.e. for any n ∈ N ,

there is a path σ from some es ∈ Es to some ef ∈ Ef , such that n ∈ σ;
4. Functions and events alternate along the control flow, i.e. each path starting

in an event e ∈ E − Ef and ending in an event ef ∈ Ef has a prefix of the
form eσcf , where σc ∈ C∗ and f ∈ F . Similarly, for each path σ starting
in a function f ∈ F and ending in an event ef ∈ Ef there is a prefix fσce,
where σc ∈ C∗ and e ∈ E − Es;

5. Events do not precede the xor and the or split, i.e. ∀c ∈ Cxs∪Cos: •c∩E = ∅;
6. There is no cycle that consists of connectors only, i.e. for any path

σ = v0v1 . . . vn ∈ C+ : n ≥ 2: v0 = vn.

2.2 Syntax of Extended EPCs

The control view of an eEPC has an EPC as a skeleton. Data attributes, re-
sources, time and probabilities are linked to different EPC elements to form an
extended EPC.

Functions represent activities that may take time, may require access to
diverse resources and may perform operations on some data or resources.

Functions that perform operations on data attributes are annotated with
expressions denoting the operation performed (see for example Figure 1(a)).
Personnel, material or information resources can be used to execute functions.
We call these objects capacity resources, since they are characterized by mini-
mum and maximum capacities to run the process. Functions are annotated with
a nonnegative integer or real constant denoting the number of resources required,
produced or consumed. In Figure 1(b), function finish products produces 1000
items of resource Item 1 with the capacity domain [100, 5000] and consumes 500
items of resource Item 2.

Furthermore, functions can be either timed, i.e. they may have a duration,
or immediate, i.e they take zero time. The duration of each timed function is
described by a probability distribution.

Colored Petri Nets to Verify Extended Event-Driven Process Chains 187

Order
received

Finish
products

XOR

Products are
sent to

warehouse

Products are
sent for sale

produces

r1 < r2

Item 1

Item 1

r1min=100
r1max =5000
r1 =1000

1000
Item 2

Item 2

consumes
500

r2min=100
r2max =5000
r2 =1000

r1 >= r2

Event

Function

XOR

Condition
event 1

Condition
event 2

Data
Attribute

Data
Attribute

 a := a + 450

Type(a)=Integer
a=5000

a < 7500 a >= 7500

(a) Condition events on a data
attribute

(b) Condition events on resources

Fig. 1. Condition events on data attributes and resources

Events define either conditions on data attributes or resource capacities, or
triggers from elements outside the process.

Processes are instantiated at start events. Start events may be grouped
in start event sets1 that contain events which are synchronized, i.e. a pro-
cess is started at the same time at all the events of the respective set. A
probability distribution is assigned to each start event set, denoting the fre-
quency with which process instances are created for the events in the respect-
ive set.

Conditions (boolean expressions) on data attributes or on resources deter-
mine the terms of the respective event. An event that follows an or split or an xor
split connector and is determined by a condition is called a condition event.
Condition events may have attributes or capacity resources connected to
them and conditions are specified as:

– conditions on one operand that have a constant value of the same type as
the attribute or the capacity value of a resource as comparison criterion.
Figure 1(a) shows two condition events annotated with boolean expressions
on a data attribute;

– conditions on two operands that compare two attribute values or the capacity
values of two resources. In Figure 1(b), the condition events products are sent
to warehouse and products are sent for sale are annotated with the boolean
expressions r1 < r2 and r1 ≥ r2 on the resources Item 1 and Item 2.

The rest of events are used to model triggers from outside the process and
they have a probability value assigned. This value is used during the simulation
to determine whether the execution stops or continues at the respective event.
Probability values for events following and split connectors are 1 since the exe-
cution cannot stop at events following such a connector. The sum of probability
1 In ARIS, event diagrams are used to represent start event sets.

188 K. van Hee, O. Oanea, and N. Sidorova

values for events following xor split connectors is exactly 1 as the execution
can continue only on one outgoing branch. Furthermore, the sum of probability
values for events following or split connectors is greater than 1 as the execution
can continue on one or more outgoing branches.

Or join connectors may also contain some timeout information, called syn-
chronization timeout.

We give a formal definition of eEPCs as they are used in ARIS Toolset.

Definition 2 (eEPC). An extended event-driven process chain (eEPC) is a
tuple Ge = (G,A,R,Type,Expr, PDF,Pr), where

– G is an underlying EPC.
– A is a set of data attributes. We write A =

⋃
f∈F Af for a partition of the

set of data attributes w.r.t. the function performing operations on them.
– R is a set of capacity resources. We partition the set of resources according

to the function performing operations on them: R =
⋃

f∈F Rf such that
these sets are not disjoint (several functions can perform operations on the
same resource). Moreover, we consider a partition of the set of resources
used by a function f into used, produced and consumed resources, i.e. Rf =
Ru

f ∪R
p
f ∪Rc

f such that these sets are disjoint (a function can perform just
one type of operation on a resource).

– Type maps each attribute to one of the types Text, Enum, B, Z, or R and
each capacity resource r to a real or integer subtype [rmin, rmax], where rmin
and rmax are the minimum and maximum capacities of resource r.

– Expr = Exprb ∪
⋃

x∈R∪A Exprx maps condition events and functions into
expressions on the attributes or capacity resources linked to them as follows:

• Ec denotes the set of condition events, i.e. events folowing or and
xor split connectors that have conditions on data attributes or resources.
Every condition event e ∈ Ec is mapped to a boolean expression Exprb(e)
of the form v1 x v2 or v1 x c, where v1, v2 are either attributes or resource
capacities, c is a constant so that Type(v1) = Type(v2) = Type(c) and
x is the comparison operator compatible with the types used.

• every function f performing an operation on an attribute a is mapped
to an expression on a, namely Expra(f), having the form a := c, where
c is a constant value with Type(a) = Type(c), or a := a x c, with
Type(a) = Z or Type(a) = R, constant c with Type(a) = Type(c)
and x∈ {+,−, ∗}.

• Exprr(f) maps function f using, producing or consuming a resource
r ∈ Rf to constant cf

r ∈ Type(r), denoting the quantity of resources
used, consumed or produced.

– Ft denotes the timed functions, and Cs denotes the set of or join connec-
tors with synchronization timeout. We consider the set of start events Es

partitioned into start event sets, i.e.
⋃

d∈Is
Ed

s , for some index set Is.

Colored Petri Nets to Verify Extended Event-Driven Process Chains 189

Trade
executed

Monitor
receipt of

trade
confirmation

and
administration

V

XOR

XOR

Trade
Administrated
(manual use)

Trade
Administrated

(electronic
use)

Received
trade

confirmation
(manual)

V

Received
trade

confirmation
(electronic)

V

Visual trade
check

Match BLIM

XOR

XOR

Release
process
started

BLIM
Match

No BLIM
match

0.40 0.60

Trade use

Trade use

Start release
process

tu:=manual

Type(tu)= {manual, electronic}

Reject BLIM

BLIM rejected

tu = manual tu = electronictu = electronictu = manual

Trade
checked

Fig. 2. Trade matching eEPC

PDF =
⋃

k∈(Ft∪Cs∪Is) pdfk denotes a family of continuous or discrete
probability distributions2 for the duration of timed functions, for the syn-
chronization timeouts of synchronized or join connectors, and for the delays
of start event sets.

– Pr : E −Es −Ec → [0, 1] which maps events to their probability values such
that:
•
∑

e∈Ec Pr(e) = 1, for each set of events Ec following an xor split con-
nector c ∈ Cxs that have probability values;

2 In this paper, a probability distribution pdf ∈ PDF refers to a probability distribu-
tion function (we do not mention the word function in order to avoid confusion with
functions as nodes of eEPCs).

190 K. van Hee, O. Oanea, and N. Sidorova

•
∑

e∈Ec Pr(e) ≥ 1, for each set of events Ec that have probability values
and follow an or split connector c ∈ Cos;

• Pr(e) = 1 for each e ∈ Cas
•.

Figure 2 shows an eEPC modeling a part of a trade matching process taking
place in a company. The process checks the timely receipt of a confirmation,
administrates the trade internally and matches the confirmation against the
internal data before the release process can be started.

The process starts with the event trade executed (deal made) that triggers the
function monitor receipt of trade confirmation and administration. This results
in a change of the data attribute trade use. The execution is then split into two
parallel threads, which is modeled by an and split. The left thread models the
check whether the confirmation of the trade has been received electronically or
manually by means of an xor split and two condition events: Received trade con-
firmation (manual) and Received trade confirmation (electronic) that are linked
to a data attribute Trade use. The second thread models the check whether the
trade is administered for manual or electronic use by means of conditions on the
attribute trade use.

The two and join connectors make sure that the matching process continues
either manually or electronically. The visual (manual) check is performed by the
function visual trade check and results in the event trade checked. The result of
the electronic matching of the internal information with BLIM messages has 40%
probability to succeed. In case the trade has been matched either manually or
electronically, which is modeled by an xor join, the process is released by start
release process. If the data registered internally does not match the information
contained in the BLIM message, the message is rejected.

3 Semantics of eEPCs

We introduce first the notions of a process folder and a state of an eEPC necessary
to define the semantics of eEPCs.

A process folder is an object that resides at a node (function or start
event) or at an arc. Furthermore, it carries a folder number and a timestamp
denoting the value of the timer associated to the folder. Timestamps are either
nonnegative numbers indicating the delay after which the folder may be used, or
⊥, denoting that the timer of the process folder is off and the folder can be used
directly. A state of an eEPC is defined by a multiset of process folders together
with a valuation of data attributes and capacity resources.

For the rest of the paper, we consider the discrete time domain N⊥ = N∪{⊥}
and discrete probability distributions for durations. We denote the domain of
a discrete probability distribution pdf ∈ PDF by Dom(pdf) ⊆ N. The same
approach can be applied for continuous time and continuous probability distri-
butions. We consider process folder numbers to take values from N. Formally:

Definition 3. Let Ge = (G,A,R,Type,Expr, PDF,Pr) be an eEPC. A pro-
cess folder is a tuple p = (n, (i, t)) where n ∈ Es ∪ F ∪ A is a start event,

Colored Petri Nets to Verify Extended Event-Driven Process Chains 191

a function or an arc, i ∈ N is a process folder number and t ∈ N⊥ is a timestamp.
A state of Ge is a tuple s = (m,Val), where m is a multiset of process folders,
i.e. m : ((F ∪ A ∪ Es) × (N × N)) → N, and Val is a valuation function that
maps every resource r ∈ R into some value Val(r) ∈ Type(r) and every data
attribute a ∈ A to some value Val(a) ∈ Type(a).

We denote the timestamp of a process folder p by pt. We will say that a
process folder has its timer off when pt =⊥ and its timer on when pt ≥ 0. We
call a process folder with the timer on active if it has the timestamp 0. If pt > 0,
the process folder is waiting to become active.

Every start event of a start event set has initially an active process folder
with the index of the start event set as its folder number. The initial state
is thus s0 = (m0,Val0) and contains one active process folder on every start
event so that for every start event set (es, (i, 0)) ∈ m0 for all es ∈ Ei

s, and
every resource and data attribute has an initial value according to the
specification.

Probability distributions are used in eEPCs to model the behavior of the
environment or to describe nondeterminism in the system (when decisions need
to be made), and for performance analysis. Since all events that have Pr(e) > 0
can occur and the errors in a model (eEPC) having probabilistic events can
thus be detected on the model without probabilities, we do not take prob-
abilities further into consideration, as they are irrelevant to our verification
purposes. In order to express nondeterminism without probabilities, we ex-
tend the mapping Expr to non-condition events and set Exprb(e) = true,
for every event e ∈ (Cos ∪ Cxs)• − Ec, and subsequently extend the set of
condition events to all events following an or and xor split connector, i.e.
Ec = (Cos ∪ Cxs)•.

Let eval be the evaluation function for expressions, such that:

– eval(Exprb(e),Val) ∈ B is the evaluation function of the boolean expression
of condition events e ∈ Ec in the valuation Val.

– eval(Expra(f),Val) ∈ Type(a) is the evaluation function of the expression
Expra(f) on some data attribute a ∈ Af in the valuation Val that computes
a new value for a from the right hand side expression of Expra(f).

For any r ∈ R, we introduce a variable r such that Val0(r) = Val0(r) in
order to keep track of resources that would be modified by several functions. We
denote the set of variables newly introduced by R.

We describe the semantics of an eEPC by means of a transition relation
between states as follows:

Definition 4. Let Ge = (G,A,R,Type,Expr, PDF,Pr) be an eEPC. The se-
mantics of an eEPC is given by a transition system TS = (Σ, s0,→), where Σ is
the set of states of Ge, s0 is the initial state, and →⊆ Σ×Σ is a transition rela-
tion described by the rules (a)− (j) below. Let s = (m,Val) and s′ = (m′,Val′)
be two states in Σ.

192 K. van Hee, O. Oanea, and N. Sidorova

(a) start event set rule Let Ed
s be a start event set such that there is a process

folder on each of its start events and all the folders have the same folder
number and are active. Then a step can be taken that results in removing
all the folders on the events of Ed

s and producing a process folder on each of
the outgoing arcs of Ed

s which have the same folder number as the original
process folders and their timers are set to off. Furthermore, a new process
folder is generated on each event of Ed

s ; all these new process folders have
the same newly generated folder number and the same timestamp which is
drawn from the probability distribution of the start event set.
Formally, if (e, (i, 0)) ∈ m for all e ∈ Ed

s , d ∈ Is and i ∈ N, then s → s′, with
m′ = m−

∑
e∈Ed

s
(e, (i, 0))+

∑
e∈Ed

s
(aout

e , (i,⊥))+
∑

e∈Ed
s

(e, (i + |Is|, t)), for
some t ∈ Dom(pdfd).

(b) event rule Let ain
e be the incoming arc for an event e such that there is a

process folder on ain
e . Then, the process folder can be removed from ain

e and
placed on the outgoing arc of the event aout

e . Formally, if (ain
e , (i,⊥)) ∈ m

for some i ∈ N and e ∈ E − Es − Ec − Ef , then (m,Val) → (m′,Val) with
m′ = m + (aout

e , (i,⊥))− (ain
e , (i,⊥)).

(c) function rule Let ain
f be the incoming arc of a function f such that there

is a process folder on ain
f . The function rule consists of two steps:

– if the resources may be used, consumed or produced, the process folder
is removed from the incoming arc of the function, and a new process
folder having the same folder number as the original folder and a times-
tamp from the time distribution interval of the function is placed on the
function, and resources are consumed.
Formally, if (ain

f , (i,⊥)) ∈ m, for some f ∈ F and i ∈ N, Val(r) −
Exprr(f) ≤ rmin for all r ∈ Ru

f ∪ Rc
f , Val(r) + Exprr(f) ≤ rmax for

all r ∈ Rp
f , then s → s′, where s′ = (m′,Val′), m′ = m− (ain

f , (i,⊥)) +
(f, (i, t)), where t = 0 if t ∈ F − Ft and t ∈ Dom(pdff) if t ∈ Ft,
Val′(r) = Val(r) − Exprr(f) for all r ∈ Rc

f ∪ Ru
f , Val′(r) = Val(r) −

Exprr(f) for all r ∈ Rc
f , Val′(r) = Val(r) + Exprr(f) for all r ∈ Rp

f

and Val′(x) = Val(x) for all x ∈ (R∪R ∪A)− (Rc
f ∪Ru

f ∪R
c

f ∪R
p

f).
– Let f be a function such that there is an active process folder on it.

Then, the active process folder is removed from the function, and a new
process folder is produced on the outgoing arc of the function; this new
folder has the same folder number as the removed one and the timer
off; attributes are evaluated and resources are produced or released. For-
mally, if (f, (i, 0)) ∈ m, for some f ∈ F and i ∈ N, then s → s′, with
s′ = (m′,Val′), m′ = m − (f, (i, 0)) + (aout

f , (i,⊥)), where Val′(a) =
eval(Expra(f),Val) for all a ∈ Af , Val′(r) = Val(r) + Exprr(f) for
all resources r ∈ Rp

f ∪ Ru
f produced or used, and Val′(x) = Val(x) for

all x ∈ (R∪R ∪A)− (Af ∪Rp
f ∪Ru

f).
(d) and split rule Let ain

c be the ingoing arc of an and split connector c such
that there is a process folder on ain

c . The rule results in removing the process
folder from ain

c and placing a process folder on each outgoing arc of the and
split connector such that all new process folders have the same folder number

Colored Petri Nets to Verify Extended Event-Driven Process Chains 193

as the removed folder. Formally, if (ain
c , (i,⊥)) ∈ m, for some i ∈ N and

c ∈ Cas, then s → s′ with s′ = (m,Val) and m′ = m+
∑

a′∈Aout
c

(a′, (i,⊥))−
(ain

c , (i,⊥)).
(e) xor split rule Let ain

c be the incoming arc of an xor split connector c such
that there is a process folder on ain

c . Then the process folder is removed from
the arc ain

c and

– if the xor split leads to a non-final condition event whose boolean ex-
pression is evaluated to true, a process folder with the same number as
the removed one is placed on the outgoing arc of the event;

– if there is an outgoing arc of the xor split leading to a final condition
event whose boolean expression is evaluated to true or to another con-
nector, then a process folder with the same number as the removed one
is placed on the respective arc.

Formally, if (ain
c , (i,⊥)) ∈ m, for some i ∈ N and c ∈ Cxs, then s → s′, with

s′ = (m′,Val) and m′ = m + (a′, (i,⊥))− (ain
c , (i,⊥)), where

– a′ = aout
e if eval(Exprb(e),Val) = true for some event e ∈ c• − Ef , or

– a′ = (c, e), if eval(Exprb(e),Val) = true for some final event e ∈ c• ∩
Ef , or

– a′ = (c, c′) for some c′ ∈ C.

(f) or split rule Let ain
c be the ingoing arc of an or split connector c such that

there is a process folder on ain
c . The rule results in removing this folder from

ain
c and placing a process folder with the same folder number on at least one

of the outgoing arcs of the non-final condition events that have a true boolean
expression or the outgoing arcs of the or split connector leading to final
condition events with boolean expression evaluated to true or to connectors.
Formally, if (ain

c , (i,⊥)) ∈ m, for some i ∈ N and c ∈ Cos, then s → s′,
with s′ = (m′,Val) and m′ = m− (ain

c , (i,⊥)) +
∑

a∈A′∪A′′(a, (i,⊥)), where
A′ ⊆ {aout

e |e ∈ c• ∩ (Ec − Ef) ∧ eval(Exprb(e),Val) = true} and A′′ ⊆
{(c, e) ∈ Aout

c |e ∈ c• ∩ (Ec ∩ Ef) ∧ eval(Exprb(e),Val) = true} ∪ {(c, c′) ∈
Aout

c |c′ ∈ C} and A ∩A′′ = ∅.
(g) and join rule Let Ain

c be the set of all incoming arcs of an and join con-
nector c. If all arcs of Ain

c have process folders with the same folder num-
ber, the rule can be applied resulting in the removal of these process fold-
ers from Ain

c , and the production of a process folder with the same pro-
cess folder number as the original folders on the outgoing arc of the con-
nector. Formally, if there is a c ∈ Caj such that (a, (i,⊥)) ∈ m, for all
arcs a ∈ Ain

c and some i ∈ N, then s → s′ with s′ = (m′,Val), and
m′ = m + (aout

c , (i,⊥))−
∑

a∈Ain
c

(a, (i,⊥)).
(h) xor join rule Let a be an incoming arc of an xor join connector such

that there is a process folder on a. Then, the folder is removed from a and
placed on the outgoing arc of the connector. Formally, if (a, (i,⊥)) ∈ m
for some i ∈ N, c ∈ Cxj and a ∈ Ain

c , then s → s′ with s′ = (m′,Val),
m′ = m + (aout

c , (i,⊥))− (ain
c , (i,⊥)).

194 K. van Hee, O. Oanea, and N. Sidorova

(i) or join rule Let A′ be the set of incoming arcs of an or join connector that
have process folders with timers off and the same folder number. The rule
consists of one or more steps (depending on whether the connector has a
synchronization time or not):

– (or join unsynchronized) In case the or connector does not have a syn-
chronization timeout, the rule results in removing all the folders with
timers off and the same folder number on A′ and producing a pro-
cess folder with the same folder number as the original folders and the
timer off on the outgoing arc of the connector. Formally, if there is
a c ∈ Coj − Cs such that A′ = {a ∈ Ain

c |(a, (i,⊥)) ∈ m} = ∅, for some
i ∈ N, then s → s′ with s′ = (m′,Val) and m′ = m + (aout

c , (i,⊥)) −∑
a′∈A′(a′, (i,⊥)).

– (or join synchronized waiting) Let A′′ be a set of incoming arcs of a
synchronized or join connector that have waiting process folders on them
with the same folder numbers as the folders on A′. The rule results in re-
moving the process folders with timers off and the same folder number on
A′ and producing new process folders on A′ having the same folder num-
ber as the removed ones and a timestamp that is either the synchroniza-
tion time of the or connector in case A′′ is empty or the timestamp of the
folders in A′′ if A′′ is non-empty. Formally, let A′ = {a = (x, c) ∈ A|x ∈
N ∧ (a, (i,⊥)) ∈ m} = ∅ and A′′ = {a ∈ Ain

c |(a, (i, t′′)) ∈ m ∧ t′′ > 0}
for some i ∈ N and c ∈ Cs. If A′′ = ∅ then let t′ = t be the times-
tamp of the process folders p = (a, (i, t)) ∈ m, where a ∈ A′′, oth-
erwise let t ∈ Dom(pdff). Then, s → s′ with s′ = (m′,Val) and
m′ = m +

∑
a′∈A′(a′, (i, t′))−

∑
a′∈A′(a′, (i,⊥)).

– (or join synchronized firing) Let A′′ be the set of incoming arcs of an or
connector that have an active process folder on them and all these folders
on A′′ have the same folder number. Then these process folders are re-
moved from A′′ and a new process folder is produced on the outgoing arc
of the connector, so that it has the same folder number as the original
folders and the timer off. Formally, if for some c ∈ Coj −Cs and i ∈ N,
A′′ = {a ∈ Ain

c |(a, (i, 0)) ∈ m} = ∅, then s → s′ with s′ = (m′,Val) and
m′ = m + (aout

c , (i,⊥))−
∑

a′∈A′′(a′, (i, 0)).

(j) time step rule This rule has the lowest priority, i.e. the rule is applied
if no other rule can be applied. Time passage is applied when all process
folders with timers on in a state are waiting (have a strictly positive times-
tamp) and results in decreasing the timestamp of all process folders of the
state by the minimal timestamp of the folders with timers on. Formally, if
P ′ = {p ∈ m|pt > 0} = ∅ and st = min{pt|p ∈ P ′} > 0 and there is no
other state s′′ = s′ such that s → s′′, then s → s′, with s′ = (m′,Val), where
m′ = m +

∑
(x,(i,t))∈P ′(x, (i, t− st))−

∑
p∈P ′ p.

Remark 5 (Uniqueness of newly generated folder numbers). Folder numbers gen-
erated at some start event set Ed

s (d ∈ Is) have the form d+k ·n, where n = |Is|
and k ∈ N. Therefore, all folder numbers produced at Ed

s are equal modulo the

Colored Petri Nets to Verify Extended Event-Driven Process Chains 195

index number of the start event set, i.e. d. As a result, all process folder numbers
that are generated are unique.

Remark 6 (Time progress). The time step rule decreases the timestamp of a
waiting process folder until it becomes active (its timer expires). Note that all
other steps have the same higher priority than the time progress and their seman-
tics is interleaving. The time progress problem reduces to the situation where no
other rule can be applied or to the situation where there is an infinite sequence
of (timeless) rules that can be applied. We therefore assume that there is a finite
number of process folder numbers such that the states contain a finite number
of process folders with the same folder number.

4 Verification of eEPCs Using CPN Tools

To verify the correctness of eEPCs, we use the CPN Tools [3] which are based
on colored Petri nets [10] as modeling and analysis language. (Timed) Colored
Petri nets (TCPNs) combine the expressive power of classical PNs, which are
suitable for modeling the logical behavior of a control flow, with the modeling
of data and time by means of timed color sets and a global clock. A state of
a TCPN is called a marking and represents the distribution of (timed) colored
tokens on places. Tokens belonging to a timed color set have a timestamp and
they can only be used if the value of the timestamp is less than the value of the
global clock.

Let Ge be an arbitrary eEPC and TS = (Σ, s0,→) the transition system de-
scribing the semantics of Ge. We denote the timed integer color corresponding to
the set of process folders numbers by PF, and for each capacity resource and data
attribute, we define a place having the corresponding untimed color type. The
locations at which process folders can reside correspond to TCPN places having
type PF and local steps in TCPNs are depicted by transitions. A step that can
be taken in the eEPC corresponds to a transition firing, given preconditions and
postconditions expressed as expressions on arcs or guards (boolean expressions)
on transitions. The global clock (model time) advances the timestamps of all
timed tokens with the smallest amount of time needed to make at least one token
active, which corresponds to the time step rule in eEPCs in which timers de-
crease their values. Token delays are positioned on transitions or on outgoing arcs
of transitions.

4.1 Transformation of eEPCs into TCPNs

For mapping of eEPCs into TCPNs, we first identify generic eEPC patterns
and provide their translation into TCPN patterns, and then we show how the
obtained TCPN patterns can be fused together to form a TCPN.

We define eEPC patterns taking into account the rules of the semantics
given in Section 3 (except for the time step rule), covering all patterns that
would allow us to build an arbitrary eEPC. An eEPC pattern consists of in-
coming and outgoing arc(s) and other elements necessary for the rule to occur.

196 K. van Hee, O. Oanea, and N. Sidorova

Figures 3(a-i) and 4 show instances of these patterns having the incoming (out-
going) arcs dotted and their corresponding TCPN pattern. In what follows we
describe these transformations in more detail.

Start event set pattern. Let Ed
s be a start event set for some d ∈ Is and let

n = |Ed
s |. The corresponding TCPN pattern is represented by a place which

is initially marked with a token d@0 (with timestamp 0) and where a newly
generated token with a delay is deposited; a transition that generates a new
token, adds a delay to its timestamp and puts the token from the former
place on the places corresponding start events of the start event set. Figure
3(a) shows the eEPC pattern and the TCPN pattern for a start event set
with two start events.

Event pattern. Let e ∈ E − Es − Ef − Ec be an event. The corresponding
TCPN pattern is shown in Figure 3(b). Note that final events are not trans-
lated.

Function pattern. Let f be a (timed) function connected to the set of re-
sources Rf and to the set of data attributes Af . The corresponding TCPN
pattern has two transitions and an intermediate place depicting the two steps
of the function rule. Figure 3(c) shows the pattern and its translation operat-
ing on an attribute, a resource that is used, a resource that is produced and
a resource that is consumed. The operations on the resources and attributes
are described on the arc inscriptions.

and split, and join, and xor join patterns. These patterns are parameter-
ized by the number of the outgoing and incoming arcs, respectively. Figure
3(d-f) shows the respective patterns with two incoming, respectively outgo-
ing arcs;

xor split pattern. Let c be an or split connector. The TCPN pattern con-
sists of a place with outgoing transitions. The boolean expressions on the
condition events of c (on resources or attributes) become guards for the
transitions. Figure 3(g) shows an or split connector having a condition
event linked to an attribute or resource, a condition event with condition
true and a connector on the outgoing arcs and the corresponding TCPN
pattern.

or split pattern. Let c be an or split connector. The TCPN pattern con-
tains a transition and a non-deterministic choice is implemented in the code
segment of the transition by means of generation of boolean variables for
each outgoing arc of the transition corresponding to outgoing arcs lead-
ing to non-conditional events. Figure 3(h) shows an instance of the pattern
and its translation. In case at least one of the boolean expressions corre-
sponding to conditions on attributes or resources is true, a boolean variable
generated for each arc that does not lead to a condition event with con-
ditions on attributes or resources. In case all the boolean expressions on
attributes or resources are false or there are no condition events on data
attributes or resources, the boolean variables generated for the rest of the
arcs must have at least one true value. The boolean expressions on the con-
dition events and the boolean values generated become conditions in the arc
inscriptions.

Colored Petri Nets to Verify Extended Event-Driven Process Chains 197

start
event 1

start
event 2

Start event set Ed
s

pdfd

PF

d

outgoing 1

PF

outgoing 2

PF

start event
 set

i
i

i (i+n)@+Delay()

event
incoming

PF

outgoing

PF

event
i i

(a) Start event set pattern (b) Event pattern

f

Resource
to be useduses Exprru(f)

Attribute

[rumin,, rumax]

a:A t
Expra(f)

Resource to
be

consumed

consumes
Exprrc(f)

[rcmin,, rcmax]

Resource
to be

produced
produces Exprrp(f)

[rpmin,, rpmax]

Attribute

TypeA

ca
resource
to be used

TypeRU

rv

functionPFP
resource to be
consumed

TypeRC

rv
resource
to be produced

TypeRP

rv

incoming PF

outgoing PF

function
consuming

(ru-c>=rumin) andalso
(rp+c<=rpmax) andalso
(rc-c>=rcmin)

@+Delay()

function
producing

a

ru
(i,a)

(i,a)
ru+cexpra(a)

ru-c

ru

rc-c
rc

rp

rp+c

rp

rp
i

i

(c) Function pattern

V

outgoing1

PF

outgoing 2

PF

incoming

PF

and
split

i

i

i

V
incoming 1 PF incoming 2

PF

outgoing PF

and
join

i

i

i
XOR

xor
join PF

incoming 1

PF

incoming 2

PF

t1 t2

i i

i i

(d) and split (e) and join (f) xor join pattern

XOR

condition
event 1

C
condition
event 2

Attribute/
Resource

Exprb
x(e) truex:X

xor
split PF

Attribute/
Resource

X

outgoing
 1

PF

outgoing
 2

PF

outgoing
 3

PF

condition
event 1

exprb(x)

condition
event 2 t

i
i

xx

i

i i i

(g) xor split pattern

condition
event 1

C
condition
event 2

V

Attribute/
Resource

Exprb
x(e)x:X

outgoing 1

PF

outgoing 2

PF

outgoing 3

PF

Attribute/
Resource

X

c

incoming

PF

d

or split

input (x);
output (b1,b2);
action
let
 val bbb=gen(exprb(x));
 val b1=(#1 bbb);
 val b2=(#2 bbb);
in
 (b1,b2)
end

if exprb(x) then 1‘i else empty if b1 then 1‘i else empty
if b2 then 1‘i else empty

xx
i

color BB=product BOOL*BOOL;
fun or(x,y)=(x orelse y);
color BBT = subset BB by or;
fun gen(x)=if x then BB.ran() else BBT.ran();

(h) or split pattern

Fig. 3. Translation of the eEPC patterns into TCPN patterns

198 K. van Hee, O. Oanea, and N. Sidorova

V
t

incoming

PF

waiting
folders

PFL

[]

waiting

PF

outgoing

PF

or join
waiting

or join
firing

i

i

i

if isin(i,l1) then l1 else i::l1

l1

if isin(i,l1) then empty else 1‘i@+Delay()

i

i

l1

filter (equal i) l1

incoming

PF

waiting
folders

PFL

[]

outgoing

PF

or join
collector

or join
firing

input (l1);
output (i);
action
let
val x=rand(l1);
in x
end

l1<>[]

i

i

i

if isin(i,l1) then l1 else i::l1
l1

i

l1
filter (equal i) l1

Fig. 4. or join pattern (synchronized and unsynchronized)

or join pattern. Figure 4 shows the pattern with two incoming arcs. In the
TCPN pattern, place incoming collects all the tokens on the incoming arcs.
The or join waiting transition decides whether the token will receive a de-
lay by checking if the folder number is already in the list of waiting fold-
ers (in the place waiting folders). The or join firing transition becomes
enabled, then the timestamp of the tokens in place waiting expires and
the firing removes the token from the list of waiting tokens present in the
place waiting folders. Note that in the untimed version the place waiting is
eliminated.

Two eEPC patterns are called adjacent if an outgoing arc of a pattern co-
incides with an ingoing arc of another pattern. Two TCPN patterns are called
adjacent if the corresponding eEPC patterns are adjacent. Adjacent TCPN pat-
terns are fused, i.e. for every two adjacent patterns, if they have the same input
and output nodes (e.g. both are either transitions or places), then the two nodes
are fused; otherwise, a directed arc is added between them.

4.2 Verification

A TCPN obtained using the translation procedure described in the previous
section can be simulated and analyzed by the CPN Tools [3], using state-space
analysis (which is basically an exhaustive search through all possible states of
the model).

The first check on eEPCs to be performed is whether the semantics of diverse
connectors is respected. For xor join connectors, this coincides with checking
whether there are reachable markings having two tokens in the places corre-
sponding to xor join connectors. If there are, we can conclude that the eEPC
model is not correct and we can provide a simulation of the TCPN that leads to
this error.

Colored Petri Nets to Verify Extended Event-Driven Process Chains 199

If an or split has condition events on all its outgoing arcs, at least one of the
conditions should be evaluated to true at every reachable marking. The violation
of this requirement can be easily checked by finding a marking with at least one
token on the place corresponding to the incoming arc of the or split such that
all boolean expressions on resources or data attributes are false.

CPN Tools can provide a report on the state space of the constructed TCPN
that includes information about dead markings (marking at which no transition
is enabled). In case the only dead markings of the TCPN are markings having
tokens on the places corresponding to incoming arcs of final events, we can
conclude that the original eEPC terminates properly. Dead markings can also
provide information about deadlocks in the eEPC, e.g. functions that cannot
execute due to non-availability of resources or non-synchronization. Furthermore,
the CPN Tools can verify properties of the model which are defined as temporal
logic formulas in ASK-CTL [4].

5 Related and Future Work

Related work. There are different approaches to the formalization of the syntax
and semantics of EPCs.

One approach is to use Petri nets to specify their semantics. An EPC is
translated into a PN using a set of transformation rules. The semantics of EPCs
is defined as the semantics of resulting Petri nets. Van der Aalst [1] and Dehnert
[7] use a subclass of PNs — workflow nets that is suitable to describe EPCs
and use specific verification methods developed for PNs in order to verify EPCs.
In [1], an EPC is considered to be correct if and only if the workflow obtained
as the translation of an EPC is sound. Langner, Schneider and Wehler [13] use
a transformation into boolean nets which are colored Petri nets with a single
color of type boolean and formulas from the propositional logic as guards. The
correctness criterion is the well-formedness of the corresponding boolean net,
which is too strict for some practical applications.

Another approach is to consider the transition systems-based semantics. In
[16], [2] and [12], the dynamic behavior of an EPC is defined in terms of transition
systems. In [2] and [12], the state of an EPC is defined as a mapping of the set
of arcs to {0, 1} and is represented by the presence or absence of process folders
on the arcs of the EPC. Moreover, [2] proposes a non-local semantics of the xor
and or join connector that refers to checking certain conditions that depend on
the overall behavior of the EPC. An xor join has to wait for a folder on one of
its input arcs in order to propagate it to its output arc. However, if a process
folder is present or could arrive at some other input arc, the xor join should not
propagate the folder. For an or join, the propagation of a process folder from
its input arcs is delayed as long as a process folder could possibly arrive at one
of the other input arcs. Computing the transition relation of an EPC has been
implemented and tested in [5] using symbolic model checking.

In our paper we consider the semantics of extended event-driven process
chains, i.e. EPCs extended with data, resources, and time as it is specified in the

200 K. van Hee, O. Oanea, and N. Sidorova

ARIS Toolset [9]. We provide a formal definition of their semantics in terms of a
transition system. This can be further used as a base for behavioral (functional)
verification of eEPCs using different model checkers.

Furthermore, we provide a translation to timed colored Petri nets and formu-
late some correctness criteria for eEPCs that can be checked on the translated
eEPCs using CPN Tools.

Future work. For future research, it would be interesting to consider an auto-
matic translation of eEPCs to colored Petri nets and perform verification exper-
iments on large case studies. Since verification by model checking could lead to
a blow-up of the state space, reduction techniques would be beneficial (see [8]
for an overview). Another line of investigation is the development of a classifi-
cation of correctness requirements for business processes like it is already done
for software processes [14].

References

1. W. van der Aalst. Formalization and verification of event-driven process chains.
Information and Software Technology, 41(10):639–650, 1999.

2. W. M. P. van der Aalst, J. Desel, and E. Kindler. On the semantics
of EPCs: A vicious circle. In EPK 2002, Proceedings des GI-Workshops
und Arbeitskreistreffens (Trier, November 2002), pages 71–79. GI-Arbeitskreis
Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten, 2002.

3. The CPN Tools Homepage. http://www.daimi.au.dk/CPNtools.
4. A. Cheng, S. Christensen, and K. Mortensen. Model Checking Coloured Petri Nets

Exploiting Strongly Connected Components. In M. Spathopoulos, R. Smedinga,
and P. Kozak, editors, Proceedings of the International Workshop on Discrete Event
Systems, WODES96, pages 169–177, 1996.

5. N. Cuntz and E. Kindler. On the semantics of EPCs: Efficient calcula-
tion and simulation. In M. Nüttgens and F. J. Rump, editors, EPK 2004:
Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten, Gesellschaft
für Informatik, pages 7–26, Bonn, 2004.

6. R. Davis. Business Process Modeling with ARIS: A Practical Guide. Springer-
Verlag, 2001.

7. J. Dehnert. A Methodology for Workflow Modeling - From business process model-
ing towards sound workflow specification. PhD thesis, TU Berlin, 2003.

8. C. Girault and R. Valk. Petri Nets for Systems Engineering - A Guide to Modeling,
Verification, and Applications. Springer, 2003.

9. IDS Scheer AG. ARIS Methods Manual, 2003.
10. K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical.

Springer-Verlag, 1992.
11. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation: Iterative

Process Prototyping. Addison-Wesley, 1998.
12. E. Kindler. On the semantics of EPCs: A framework for resolving a vicious circle.

In J. Desel, B. Pernci, and M. Weske, editors, Business Process Management, BMP
2004, volume 3080 of Lecture Notes in Computer Science, pages 82–97. Springer,
2004.

Colored Petri Nets to Verify Extended Event-Driven Process Chains 201

13. P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event-
Driven Process Chains. In 19th Int. Conf. on Application and Theory of Petri
Nets, volume 1420 of LNCS, pages 286–305. Springer, 1998.

14. G. S. A. Matthew B. Dwyer and J. C. Corbett. Patterns in Property Specifications
for Finite-state Verification. In Proceedings of the 21st International Conference
on Software Engineering, 1999.

15. K. G. Nüttgens and A.-W. Scheer. Semantische Prozeßmodellierung auf der
Grundlage Ereignisgesteuerter Prozeßketten (EPK). Technical report, Scheer, A.-
W. (Hrsg.): Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft 89,
Saarbrücken, 1992.

16. M. Nüttgens and F.J.Rump. Syntax und Semantik Ereignisgesteuerter Processket-
ten (EPK). In J. Desel and M. Weske, editors, Promise 2002- Processorientierte
Methoden und Werkzeuge für die Entwiklung von Informationssystemen, volume
LNI, pages 64–77, 2002.

17. A.-W. Scheer. ARIS : business process modeling. Springer-Verlag, Berlin, 2nd
edition, 1998.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 202 – 219, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Web Process Dynamic Stepped Extension:
Pi-Calculus-Based Model and Inference Experiments

Li Zhang and Zhiwei Yu

School of Software, Tsinghua University, Beijing¸ 100084, China
lizhang@tsinghua.edu.cn, yzw03@mails.tsinghua.edu.cn

Abstract. Web Processes combine traditional workflow management with Web
Services technology. A key challenge to support dynamic composition of Web
Processes is to solve the conflicts between process deployment and process
execution caused by the inner dependencies. To address this, we have presented
a dynamic extension pattern, termed the Web Process Dynamic Stepped
Extension (WPDSE). In this approach the process is divided into multiple sub
processes, and each sub process is defined and deployed at different times
during process execution based on the requirements. A rigorous mathematic
modeling language, pi-calculus, is used to define the framework and extension
units of the WPDSE. The primary benefit derived from using the pi-calculus is
that both the correctness and dynamic performance of the WPDSE model can
be effectively verified and analyzed using a mathematically sound approach.
This is done using a pi-calculus inference prototype tool called the Interactive
Inferring Tool (InferTool).

1 Introduction

Web Processes have a potential for allowing corporations to build inter-organizational
business processes. One way to realize Web Processes is by combining of traditional
workflow management and Web Services that provide better interoperability in the
web-centric world. Such Web Processes represent an inevitable evolution of the
pervasive business process management technology [1].

Among the more ambitious architectures for Web Process is that of creating
dynamic business processes on the fly. Support for dynamic process requires the
capability for dynamic Web services discovery as well as dynamic Web Process
deployment. Dynamic discovery of Web services has been proposed in semantic Web
service projects like METEOR-S[2]. An approach of semantic Web service
composition with the help of semantic templates, which represent abstract capabilities
of Web services, has been proposed in [3, 4]. On the fly discovery and integration of
services in Web processes leads to creation of dynamic Web processes, which must
be modeled for studying dynamism and verifying correctness. This paper deals with
mathematical modeling of dynamic processes based using pi-calculus. In order to
illustrate a dynamic process, consider the example of an order management process
that can dynamically send orders to any number of suppliers based on the order. The
number of suppliers is unknown at design time. Hence at design time the number of
parallel branches in the process is unknown. Modeling such a process allows us to

 Web Process Dynamic Stepped Extension 203

study the level of dynamism with respect the number of suppliers. This can help us
evaluate system load as well the pattern used for process design.

Previous work on analyzing workflows has used Petri-nets [7,8], but they have
been restricted to static workflow patterns. In this paper, we model our system using
pi-calculus and show the results of our inference tool. This tool is valuable for not
only detecting standard faults like livelock or deadlock, but also for measuring the
degree of parallelism a process. In this paper, we will focus on discussing Web
Process Dynamic Stepped Extension Model, which contains two parts: Dynamic
Stepped Extension Framework Model (DSEFM) and Static Process Model (SPM).
This work was done as part of the METEOR-S project at the University of Georgia,
which aims to study and model the role of semantics in the complete lifecycle of Web
Processes. The BPEL4WS/WSDL based implementation framework will not be
discussed in this paper. The interested readers are referred to the literatures [5, 6].

This paper is organized as follows: The motivation scenario is depicted in section
2. In Section 3 we explain the concept of the stepped process and describe the
framework of WPDSE in detail. In section 4, the Dynamic Stepped Extension
Framework Model based on pi-calculus is discussed. In the section 5, we provide the
Static Process Model and show how to construct it. In the section 6, a new graphic
representation method is provided to illustrate WPDSE model. In the section 7, the
inference tool prototype of the pi-calculus model is described and we will illustrate
how to use the inference tool to analyze typical dynamic extension processes. We will
review the related work in this area in Section 8. Finally, we present our conclusions
and plans for future work in Section 9.

2 Motivation Scenario

Consider a process that supports an electronic product order. The steps involved
include the following: (1). receive an electronic product order sent by a retailer; (2).
analyze the order and split it in several part items; (3). find out all candidate suppliers
for each item; (4). check the compatibility between the different candidate items and
select the suppliers; (5).correspondingly deliver a purchase order to each supplier;
(6).monitor the status of each order item on a regular basis.

A control flow for such an electronic product order process is shown as Figure 1-b.
The number of the parallel branch of the process flows cannot be determined when
deploying this process because it is dependent on the result of executing activity
“split order items”. In addition, finding and binding the Web Services for the activity
“deliver order” also cannot be completed because the suppliers for the item are
unknown before checking the compatibility of the part items.

The approach we use to address this conflict is to divide the whole process into
three smaller processes: one top process and two sub processes, and follow this up by
deploying the top process. As shown in Fig. 1-a, the top process consists of four
activities. When deploying, only two activities, “receive order” and “check
compatibility” can be bound to their corresponding Web Services, the others cannot
be deployed. After executing activity “receive order”, the following activity, “find
suppliers”, can be extended. At this time, all the activities in this sub process can be

204 L. Zhang and Z. Yu

Fig. 1. The electronic product order process

deployed. Similarly, after the activity “check compatibility” is completed, the activity
“delivery order and monitor status” can be extended and all the activities in this sub
process can be deployed.

3 The Framework of WPDSE

In this section, we will describe the overall framework of WPDSE. A high level view
of WPDSE framework is shown as Fig. 2. It is composed of four components as
following:

Process Template Manager (PTM): An abstract process template contains some
semantic and structure information. We call abstract process template as static process
model, which is used as a basic extension unit. The functions of Process Template
Manager are to produce and manage the process templates. On the initial status,
Process Template Manager receives the request from the START and creates the
request for the first Process Template (PT), which is the top process of all the sub
processes. After that, Process Template Manager will constantly receive the process
template request through the feedback channel from the Process Interaction Engine
(PIE) and create a process template sequence: {PT1, PT2,…,PTn}.

Process Deployment System (PDS): The Process Deployment System receives the
process templates PTi from the Process Template Manager and translates them into
executable processes according to the semantic and structure information contained in
process templates.

Process Execution Engine (PEE): Process Execution Engine receives executable
processes from Process Deployment System and invokes them as a new static process
SPi.. In the Process Execution Engine, there is a static process pool, which is a set of

 Web Process Dynamic Stepped Extension 205

static processes SPi and its initial status is null. The first element in the static process
pool is the top process. The number of the static processes in the static process pool is
constantly changing. New extended static processes are added to the static process
pool and the finished static processes are removed from the static process pool. Only
after the static process pool becomes null again, the whole process is terminated.

Fig. 2. The framework of WPDSE

Activity is one of basic elements of the static process. In the framework of WPDSE,
each activity contains an extension property “activityType” which is used to judge if
current activity needs to be extended. If an activity needs not to be extended, it will be
directly bound with a Web Service. Otherwise, when this activity is executed, new
sub process should be extended.

Process Interaction Engine (PIE): Although the activities contain the information
for judging if current activity needs to be extended, the extension operations are not
implemented at the activity level. All the interaction operations defined in the activity
must be processed by the Process Interaction Engine. If an activity needs to be
extended, Process Interaction Engine will send an extension request to Process
Template Manager by the feedback channel.

4 Dynamic Stepped Extension Framework Model

In the late 1980s, Robin Milner developed a formal theory of mobile processes: pi-
calculus [9], which has two aspects. First, it is a theory of mobile systems, which
provides a conceptual framework for understanding mobility. Second, it is a
mathematical model of process whose interconnections change as they interact. In this
paper, we use standard pi-calculus syntax to model WPDSE.

Dynamic Stepped Extension Framework Model�DSEFM�is a pi-calculus based
model which is only used to describe interaction behaviors between the components
of the framework of WPDSE given in the Fig. 1. DSEFM consists of four
independent and parallel agents or engines which are modeled by pi-calculus. So,
according to the theory of pi-calculus, as soon as the DSEFM is launched, all the
agents or engines in it are simultaneity invoked and run in parallel. At the initial

206 L. Zhang and Z. Yu

status, each agent or engine in the DSEFM contains only one transactional process to
monitor its special channels for receiving the input requests. Once an input request
arrives, this transactional process immediately deals with it, and at same time, a new
transactional process is forked for the next request.

DSEFM :: = CA | PTIE | PEE | PIE (1)

4.1 ClientAgent (CA)

CA defines the basic interaction behaviors implemented in START and END
components in the framework of WPDSE. CA is an initiator of the whole Web
Process. In CA model, the requestPT1 is an input request, created by a client, for the
first Process Template. The inputPT1 is an input related to launch a new Web Process.
The returnPT1 is a mobile channel which is created by CA and will be transmitted to
the executed static process (SP1). The returnPT1 is a key parameter for implementing
dynamic extension because it helps to dynamically establish the connection between
CA and SP1. All the messages above are sent to PTIE through a common channel
chlPT. Finally, CA monitors the channel “returnPT1” for receiving the results of the
whole process execution.

CA::=(v requestPT1, returnPT1, inputPT1)
 chlPT<requestPT1, returnPT1, inputPT1>. returnPT1 (result)

(2)

4.2 Process Template Instantiation Engine (PTIE)

We integrate the dynamic behaviors in both PTM and PDS components in the
framework of WPDSE into the PTIE model. In order to emphasize the interaction
features in WPDSE, we ignore those complex logics related to process template
design and Web Services discovery. These complex logics are abstractly represented
as two inner transaction processes: PTM and PDS.

The identifier “i” indicates that PTIE(i) is the ith transaction process which is
responsible of dealing with the ith process template PTi. The chlSPi is a new channel
which is dynamically created for transmitting process template PTi.

PTIE(i) first receives the process template request requestPTi on the channel
chlPT, which is a common channel and can be used by multiple different transaction
process. For example, If i=1, the channel chlPT is used as input channel between CA
and PTIE. Otherwise, the chlPT is used as a feedback channel between PIE(i) and
PTIE(i). After PTE(i) receives the PTi’s request, two inner transaction processes,
PTM and PDS, will be invoked in order. Their output is an executable static process
SPi. Finally, PTE(i) will forks three parallel transaction process: (1).sending the SPi to
PEE by the channel add; (2).transmitting inputTPi to SPi through channel chlSPi;
(3).launching a new PTIE’s transaction process PTIE(i+1).

PTIE(i)::= (v chlSPi)chlPT(PT i, returnTPi, inputTP i) .
 (PTM. PDS .(add< SPi > | chlSPi<inputTP i > | PTIE(i+1));

(3)

 Web Process Dynamic Stepped Extension 207

4.3 Process Execution Engine (PEE)

In pi-calculus, a process also can be transmitted as a parameter from one location to
another and be invoked on its target location. In DSEFM, the variable SP is one
executable process which is send as a parameter from PTIE to PEE and invoked by
PEE in static process pool.

PEE(i)::= add(SP).(SP | PIE(i+1)) (4)

PEE(i) is the ith transaction process of PEE. It receives ith static process SPi and
invokes it. At the same time, it launches a new PEE(i+1) transaction process to deal
with the next static process SPi+1. All the static processes are run in parallel. Like
traditional workflow process, each SPi consists of several basic elements. The details
about the Static Process Model (SPM) and its basic elements are discussed in next
section. Here, we only take a simple example to explain relationships between
DSEFM and SPM.

Suppose that SP1 is a sequence static process which only consists of three basic
elements: one “Entry” element, one “Activity” elements and one “Exit” element. The
SP1’s Model is shown as following:

SP1 (chlSP1, returnTP1)::= Entry(chlSP1,.chlActA)
 | Activity(chlActA, sendResult)
 | Exit�sendResult�returnTP1�

(5)

SP1 has two input parameters: one is channel chlSP1 which connected with PTIE;
another is also a mobile channel returnTP1 which originally comes from CA or PAE.
If the SP1 is a top process, the channel returnPT1 is used to connect with CA and to
transmit the final results of the whole process. Otherwise, it is linked to PIE for
returning the result of the sub process.

The models of three types of basic elements contained in SP1 are provided as
following to illustrate how to extend a new sub process during executing SP1.

Entry::= chlSP1 (input). chlAct<input> (6)

Activity(chlAct,sendResult) ::=(v activityInfo, returnAct, type)
 chlAct (input).chlPAE<activityInfo, type, inputAct, returnAct>
 returnAct(resultAct).sendResult<resultAct>

(7)

Exit(sendResult, returnPT) ::= sendResult(result).returnTP <resultSP> (8)

Like traditional workflow process, we limits each SPM has only one entry and exit
point. In this example, “Entry” is the start point. It receives input parameters through
channel chlSP1 and then transfers them to its next node through channel chlAct.

Every Activity in the SPM has four channels: chlAct, sendResult, returnAct and
chlPAE. First three of them are mobile channels. The channel chlAct and sendResult
are inputted as parameters and respectively used to connect with previous and next
node of the current Activity. The channel chlPAE is a common channel which is
specially used to communicate with PIE for transmitting the messages related to sub
process extension. The channel returnAct is created in current Activity and also used
to connect PIE for receiving the results after the current activity is finished.

208 L. Zhang and Z. Yu

4.4 Process Interaction Engine (PIE)

All the Activities are managed by PIE and each Activity is associated to a PIE
transaction process. For example, PIE(i) is the ith transaction process to deal with the
ith Activity. The connection between Activity and PIE are established through channels
chlPAE and returnAct. The chlPAE is common channel used to receive the input
requests. The returnAct is a mobile channel which is transmitted through the channel
chlPAE. In SPM, there are two types of activities: Extensible Activity (EA) and Non-
Extensible Activity (NEA). If the type of an Activity is non-extensible, an inner
transaction process “Exec”, which is probably associated a Web Service, is activated.
Otherwise, this Activity should be extended. In this case, a request related to sub
process template requestPTi and a new mobile channel returnPTi is created and
another inner transaction process “Exec1” is executed. Then, both requestPTi and
returnPTi are sent to PTIE through the common channel chlPT. Finally, no matter
what type the current activity is, the results of the activity execution are returned back
through the channel returnAct.

PIE (i)::= (v resultAct) chlPAE(activityInfo, type, inputAct, returnAct).
 (([activityType= EA] (v requestPTi ,returnPTi, inputPTi) Exec1.
 chlPT<PTi, returnPTi, inputPTi>.
 returnPTi (resultPTi).Exec2.returnAct<resultAct>
 +[activityType =NEA] Exec.returnAct<resultAct>)
 | PIE(i+1))

(9)

5 Static Process Model

There are two necessary conditions to dynamically compose Web Processes. The first
is the supporting mechanism to guarantee that various transaction processes in Web
Process lifecycle can communicate effectively and work collaboratively. The second
is the extension units used to extend the Web Process step by step. In this section, we
will discuss the extension units of the WPDSE: Static Process Model (SPM).

5.1 The Basic Elements

We have defined 12 basic elements which are used to construct the diversity of the
SPMs, including Activity, Entry, Exit, Connector, ParallelSplit, Synchronization,
ExclusiveChoice, SimpleMerge, MultiChoice, SynchronizingMerge, MultiMerge,
NoutofMjoin etc. All the basic elements have been modeled based on pi-calculus.
Each basic element will be run as an independent process. The relationships between
them are established by their common channels. Because of the limitation in length,
we can not explain all the basic element’s models. The models of the first three basic
elements have been introduced in the previous section. In this section, we will
illustrate the additional two basic elements: ParallelSplit and Synchronization. The
detailed descriptions of the remainder element can be found in technical report [6].

ParallelSplit has one input channel “receive” and several output channels “send1

,…, sendn”. ParallelSplit first gets the “input” on the channel “receive” and then
outputs the “input” on all the channels “send1,…, sendn” simultaneously.

 Web Process Dynamic Stepped Extension 209

ParallelSplit (receive, {send1,…,sendn}) ::=
 receive (input).(send1< input1>| send2< input2> | … |sendn<inputn>)

(10)

Synchronization has several input channels “receive1,…,receiven” and only one
output channel “send”. Synchronization can get different messages “input1,…,inputn”
from different input channels “receive1 ,…,receiven” simultaneously. After all input
messages are received and integrated by inner process Integration, the “result” is
created and outputted to the channel “send”.

Synchronization ({ receive1,…,receiven}, send) ::=
 (v result)(receive1(input1) | receive2(input 2)| … | receiven (input n)).
 Integration. send<result>

(11)

5.2 The Example of SPM

We still take the electronic product order process described in section 2 as an example
to explain how to construct the SPM. According to Fig. 1-a, the electronic product
order process should consist of three SPMs: SP1, SP2 and SP3. The pi-calculus
models of three SPMs and the extension process diagram are shown in the Fig. 3.

Fig. 3. The SPM of the electronic product order process

SP1 is top process which is sequence process and includes four activities: receive
order (A), find suppliers (B), Check Compatible (C), deliver order & monitor status
(D). We suppose that the activities B and D are extensible activity.

SP2 is the sub process which is extended by activity B. It contains four activities:
Split Order Items (E) and three parallel activities (F1, F2 and F3).

SP1 Entry

Entry

Exit

Exit

A

B

C

D

E

F1 F2 F3

AND

Entry

Exit

H1 H2 H3

G1 G2 G3

AND

AND

AND

SP2

SP3

SP1::= | EntrySP1 (chlSP1, receiveA)
 | ActivityA(receiveA, receiveB)
 | ActivityB(receiveB, receiveC) //type=EA, SP2
 | ActivityC(receiveC, receiveD)
 | ActivityD(receiveD, receiveExit1) //type=EA, SP3
 | ExitSP1 (receiveExit1, receiveSP1)

SP2::= EntrySP2 (extensionC, receiveE)
 | ActivityE(receiveE, receiveParaS)
 | ParallelSplit(receiveParaS, {receiveF1, receiveF2, receiveF3})
 | ActivityF1(receiveF1, synF1)
 | ActivityF2(receiveF2, synF2)
 | ActivityF3(receiveF3, synF3)
 | Synchronization ({synF1, synF2, synF3}, receiveExit2)
 | ExitSP2 (receiveExit2, returnC)

SP3::= EntrySP3 (extensionD, paraS)
 | ParallelSplit(paraS, {receiveG1, receiveG2, receiveG3})

 | ActivityG1(receiveG1, receiveH1)
 | ActivityH1(receiveH1, synH1)
 | ActivityG2(receiveG2, sendH2)
 | ActivityH2(receiveH2, synH2)
 | ActivityG3(receiveG3, sendH3)
 | ActivityH3(receiveH3, synH3)
 |Synchronization({synH1, synH2, synH3}, receiveExit3)
 | ExitSP3(receiveExit3, returnD)

210 L. Zhang and Z. Yu

SP3 is the sub process which is extended by activity D. It also contains three
parallel sequence processes which respectively include six activities: Place
Order&Monitor Status for Item1 (G1 and H1), for Item1 (G2 and H2), and for Item1
(G3 and H3).

6 A Graphic Representation of the WSDSE Model

Pi-calculus is a block-structured formal modeling language. Although it is very
convenient to express the operation semantics for concurrence processes with
evolving capabilities and is easy to be interpreted by machines, this kind of block-
structured modeling language is very difficult to be understood by human being,
especially for the complex models like the WSDSE Model. Unfortunately, there are
few investigations on this problem. As much as we know, Joachim Parrow designed
an Interaction Diagram to graphically represent concurrent process. In [22], he
explained how to mapping the primitive construct of pi calculus into the graphic
counterparts and how to build pi calculus model from top to down in the graphic way.
Although Joachim Parrow’s Interaction Diagram can efficiently describe interaction
behavior among multiple mobile agents, it is not convenient to express the evolutions
of multiple lifecycle processes.

We have designed a new graphic representation method which can visualize both
the mobility and evolution of the WSDSE Model. We call it as Swimming Lane
Interaction Diagram (SLID). The conception of SLID comes from UML Activity
Diagram. In SLID, the evolution of process lifecycle can be clearly spread along with
swimming lanes. The interaction behaviors among multiple processes can be shown
by the directed connecting lines between the swimming lanes. We draw a SLID by
mapping the algebraic symbols of pi calculus model into graphic symbols in SLID.
Table 1 provides these mapping relations and rules.

Table 1. The mapping relations between the algebraic and graphic symbols

No. Pi calculus SLID No. Pi calculus SLID
1 Agent or Engine Swimming Lane 6

2 Transaction Process Activity Diagram 7
3 Inner Process 8
4 x< a > 9 (vx)

5 x (a) 10 0

We still take the electronic product order process as an example how to use the
SLID to illustrate the mobile and extension characteristics of the WSDSE Model.
Because the SLID of the electronic product order process is too complex to express
the whole extension process in one picture, we only give the part of them in Fig. 4.

The whole SLID of the electronic product order process contains seven swimming
lanes. The first lane is for the process CA, which has only one transaction process.

 Web Process Dynamic Stepped Extension 211

The second lane is for the process PTIE, which should creates three transaction
processes, PTIE(1), PTIE(2) and PTIE(3). They are respectively used to deal with
SP1, SP2 and SP1. Next lane is for the process PEE, which also invokes three
transaction processes, PEE(1), PEE(2) and PEE(3). The fourth lane is for all the static
processes, including SP1, SP1 and SP2. The fifth lane is for “Elements” which are
contained in the static processes. For example, the top process SP1 consists of six
elements, including EntrySP1, ActivityA, ActivityB, ActivityC ActivityD and ExitSP1.
The last lane is for process PIE. Because each Activity must be independently
associated with a process PIE, there are totally 14 process PIEs in the Fig. 4, but we
only draw two of them: PIE(1) and PIE(2), which respectively deal with ActivityA
and ActivityB.

y

CA PTIE PEE SPs Elements（ Activities） PIE

PTE

|

SP(returnPT1)

|

Entry

A

B

Exit(r eturnTP 1)

＋

Exec

＋

Exec1

Exec2

|

SP2(retur nPT 2)

|

Entry

chlTP(r et urnPT1)

add(SP1)

ch lSP1
sendA

sendB

sendC

chlPAE

ch lPAE

returnAct

returnTP1

returnTP2

ch lT P

returnAct

EA

NEA

SP1::=Entry | A |B |C | D | Exit

SP2::=Entry| . ..|Exit

En CA B

En Ex

chlTP(returnPT2)

Exit(returnTP2)

PDS

PTE

PINS

ch lSP2

add(SP2)

PTIE(1)

PTIE(2)

PEE(1)

PEE(2)

SP1

SP2

PIE(1)

PIE(2)

D
C

D Ex

En Ex

SP3::=Entry| . ..|Exit

Fig. 4. The SLID of the electronic product order process model

From the Fig. 4, a lot of the mobile and extension characteristics of the WSDSE
Model are exhibited clearly. For example:

• The process CA is both the start and end points of the whole electronic product
order process.

• The channel returnPT1 is transmitted in the whole process, firstly from CA to
PTIE(1), again to PEE(1), then to SP1, next to Exit.

• The top process SP1 is firstly created in the PTIE(1) and then transmitted as a
parameter from PTIE(1) to PEE(1) and invoked in there.

212 L. Zhang and Z. Yu

• Activity B in the SP1 communicates with the process PIE(2) through the channel
chlPAE. Because it is an extensible activity, the PIE(2) must send a process
template request returnTP2 to the process PTIE(2) by the channel chlTP. Then,
PTIE(2) creates sub process template SP2, which is invoked in process PEE(2).

7 Inference Experiments Based on Pi Calculus

There have been a few tools [10] which have been used to infer the pi-calculus model,
but these tools are unsuitable to infer the WPDSE model because they are generally
designed for deterministic pi-calculus models. The WPDSE model is undetermined
before starting inference because the SPMs in the WPDSE model must be selected
during inferring. In order to simulate and analyze the WPDSE model, we have
developed a prototype of Interaction Inferring Tool (InferTool) which can provide the
interaction portal for supporting to dynamically select the different sorts of SPMs.

7.1 The Architecture and Principle of the InferTool

The InferTool architecture is shown in Fig. 5. It contains five essential components:
InferringEngine, ModelEditor, InteractionPortal, Analyzer and ModelBase.

Fig. 5. The architecture of the InferTool

The heart of the InferTool is InferringEngine which is used to simulate the process
evolution by pi-calculus inference. The basic principle of the InferTool is to
automatically perform a series of Reaction Operations according to the rigorous
Prefix Reductions rules which include two steps: finding a pair of matched Prefix and
executing Reduction. For example, suppose a process P:: = { x<y>| x(u).u<v>}.
Because x<y> and x (u) are a pair of matched prefixes, the channel x is reducible. The
result of the reduction operation is that the channel x is removed from process P and
name u is replaced with name y. Finally, process P will evolve into a new process
P’::= { y<v> }. The Reaction Operation can be represented as following:

P :: = { x<y>| x(u).u<v>} ⎯→⎯τ P’::= { y<v> } (12)

The InferTool provides an interaction environment to select the different sorts of
SPMs. Before performing the inference experiments, we first need to input the
DSEFM and SPM model files through ModelEditor and store them into the

Model Base

Reaction

Parser

InferringEngine

ModelEditor

Analzer
Interaction

Portal

 Web Process Dynamic Stepped Extension 213

ModelBase. Then, we must design typical test cases which consist of the different sort
of SPMs. We have performed the following three kinds of inference experiments:
simulation experiments and faults-discovering experiments.

7.2 Simulation Experiments

The simulation experiments can help us understand WPDSE framework and verify
the correctness of the WPDSE model by observing the whole extension processes of
the WPDSE and recording the performance values created during executing. We have
performed a great deal of experiments which proved that the WPDSE model can
correctly and effectively represent the extension characteristics of dynamic Web
process. On the following, we still take the electronic product order process as test
case to illustrate inferring process based on the InferTool. The pi-calculus model of
the electronic product order process has given in the Fig. 3.

The Table 2 shows the part of the records of inferring process. In the table 2, the
column “No” represents the sequence number of the reduction. The column
“reduction location” represents the location of the channel which links two current
parallel processes. The column “reduction type” represents the type of the reductions.
There are three type reductions, including channel, condition and inner transaction
process. If the type of reduction is channel, an alpha conversion will be executed. In
that case, the columns “Sent Name” and “Received Name” respectively record the
parameters to be sent or received by the reductions. The last two columns in the table
record the status of the system related to the reduction. The column “CCPN” means
the number of the current parallel processes which shows the instantaneous load of
the inferring system. Column “EPN” represents total number of executed processes.

For example, the reduction in the first row of the table 2 is involved into two
processes: CA and PTIE(1). The parameters PT1, returnP1 and inputP1 are sent by
channel the chlPT from process CA. At same time, process PTIE receives respectively
those t parameters as input parameters: PT, returnP and inputP. After first reduction
has finished, CCPN is 5 and EPN is 0.

For the electronic product order process, there are total 149 reductions. Table 2
only lists three key parts of the reductions, including initial reduction, activity B
extension reductions, end reductions.

The reductions from the row 1 to the row 6 are the initial reductions which include
four channel reductions and two operation reductions. Firstly, the process CA sends
initial parameters to the process PTIE by channel the chlPT; Secondly, the process
PTIE sends the top process SP1 to the process PEE by the channel the add; Then, the
process PEE invokes the top process SP1. After that, process PTIE sends the
parameter inputP1 to the process EntrySP1 by channel chlSP. Finally, the activity
ActivityA is invoked by receiving a message inputP1 through the channel recieveA.

The reductions between row 14 and row 21 describe that the Activity B extension
reductions. The activity ActivityB is invoked by the activity ActivityA by channel the
sendB. The activity ActivityB sends the massage activityInfoB, APT, output and
returnActB to the process PIE through channel chPAE. Because the type of the
Activity ActivityB is EA, the PIE invokes an inner operation Exec1 and communicates
with the process PTIE through the channel chlPT. Finally, the new static process SP2
is send to the PIE from the process PTIE through channel add and is invoked in PIE.

214 L. Zhang and Z. Yu

Table 2. The part of the reduction records of an inferring experiment

N
o.

Reduction
Location

Reduction
Type

Reduction
Name

Sent
Name

Received
Name

CCPN EPN

initial reduction,

1

CA, PTIE Channel chlPT

PT1,
returnP1,
inputP1

PT,
returnP,
inputP

5

0

2 PTIE Operation PTM, PDS - - 5 0
3 PTIE, PEE Channel add SP1 SP 7 0
4 PEE Operation SP1 - - 7 1

5
PTIE,
EntrySP1

Channel chlSP1 inputP1 input 7
1

6
EntrySP1,
ActivityA

Channel sendA inputP1 inputActA 14
2

activity B extension reductions

14
ActivityA
ActivityB

Channel sendB resultActA inputActA 14
5

15 ActivityB Operation *Analysis - - 14 6

16

ActivityB,
PIE Channel chlPAE

activityInfoB,
APT,
output,
returnActB

activityInfo
,
type,
inputActD,
returnActD

14

6

17 PIE Condition [type = EA] - - 15 6
18 PIE Operation *Exec1 - - 15 6

19
PIE,
PTIE

Channel chlPT
PT2,returnP2,
inputP2

PT,returnP,
inputP

15
6

20 PTIE, PEE Channel add SP2 SP 17 6
21 PEE Channel chlSP2 inputP2 input 17 7

end reductions
14
7

PIE,
ActivityD

Channel returnActD resultActD resultActD 30
57

14
8

ActivityD
ExitSP1,

Channel sendExit1 resultActD result 29
58

14
9

ExitSP1,
CA

Channel returnTP1 result result 28
59

The reductions between row 147 and row 149 show the ending process of the
electronic product order process. After the reduction 147 is executed through the
channel returnAct between PIE and ActivityD, the sub process SP3 ends and return to
the activity ActivityD . The result of the reduction 148 is that the top process is
evolved from ActivityD to ExitSP1. Finally, after the reduction 149 is executed, the
whole top process SP1 is finished and the result is return to the process CA.

7.3 Fault-Exposing Experiments

The purpose of the fault-exposing experiments is to prove that the unreasonable
structure fault in the SPMs can be discovered through pi-calculus inference. Two
typical structure faults, the deadlock and livelock, will be discussed below. Through
these experiments, the basic method to discovery faults can be explained.

 Web Process Dynamic Stepped Extension 215

Deadlock
In WPDSE model, deadlock is caused due to the lack of the matched prefix. For a
reasonable structure SPM, all the prefixes are finally matched with their
complementary prefixes. So, when an inferring process ends, all the prefixes are
reduced and all the processes are executed. Contrarily, if there are the deadlocks in
the SPM, some prefixes will not be reduced. As a result, the inferring process will be
terminated and some unreduced prefixes and unexecuted processes will be left. So,
the methods to judge the deadlock is to see if there are the unmatched prefixes or
unexecuted processes left after the inferring process is stopped. Let us take a simple
example, shown in Fig. 6, to explain the deadlock.

Fig. 6. The test case for deadlock

When the experiment is stopped, the following prefixes and processes are left:

Activity(receiveB,sendB) | Exit(send,sendSP) | {sendB(input2).send<output>} (13)

We can find that the reason of terminating the inferring process is that the
InferTool can not discovery the pair of the complementary prefixes of the channel
sendB. So we conclude that there certainly is a deadlock in the test case.

Livelock
The reason of creating livelock is that there exist cycle loop in the process control
flow. So, if there are livelock in SPM, some reduction operation will be executed
repeatedly and the inferring process will never be stopped. We also take a simple
example, shown in the Fig. 7, to illustrate how to judge the livelock.

Fig. 7. The test case for livelock

In this experiment, we found that three reduction operations, receive2, receiveA
and sendA, are executed repeatedly, as shown in Table 3. Apparently, there is a
livelock in this SPM and the cycle loop of the livelock contains the channel receive2,
receiveA and sendA.

216 L. Zhang and Z. Yu

Table 3. The part of the records of the test case for livelock

No. Reduction Name Sent Name Received Name
10 sendA resultAc Input
11 receive2 output1 Input
12 receiveA Output inputAc
14 sendA resultAc Input
15 receive2 output1 Input
16 receiveA Output inputAc
18 sendA resultAc Input

8 Related Works

The main focus of our paper is to study the dynamic composition method of Web
Process and pi calculus based modeling and analysis. To the best of our knowledge,
there is no research effect of this problem before. However, there have been many
research literatures and commercial tools which are closely related to our works. We
can conclude these researches as following three aspects:

8.1 The Composition of Dynamic Business Processes

There have been a lot of researches on systems for supporting to dynamic workflow
processes. For example, the literature [11] proposes a dynamic workflow system that
is capable of supporting non-deterministic processes such as those found in
collaborative product design scenarios. In the paper [12], Fakas GJ presents the
architecture of a novel Peer to Peer (P2P) workflow management system, which
employs P2P principle to simplify the workflow process and provide a more open,
scalable process model that is shared by all workflow participants.

However, the dynamic process discussed in our paper is Web Process. The most of
researches on the dynamic composition of Web Process is mainly emphasize
particularly on the utility of Web Service. The representative research works are
introduced in the literature [13, 4]. The paper [13] investigates how to efficiently
discover Web services-based on functional and operational requirements, and how to
facilitate the interoperability of heterogeneous Web services. The paper [4] focuses on
automatically discovering web services and binding them with the activities in
process template. Our research works are built on the basis of these research
achievements. We are mainly concentrated on another important aspect of the Web
Process: the dynamic composition of the whole processes.

8.2 The Modeling and Analyzing of Dynamic Business Processes

The kernel problem discussed in our paper is modeling and analyzing of dynamic
business processes. A lot of research has been done on formal modeling for workflow
process definitions. Petri nets is a widely interested and applied formal modeling
language [7,8]. Apart from Petri nets, other researchers have proposed alternatives,
for example, Eshuis[14] proposes to use the Unified Modeling Language; Only a few

 Web Process Dynamic Stepped Extension 217

papers in the literature focus on the verification of workflow process definitions. In
the paper [15], Yamaguchi discussed the formal modeling and performance
evaluation for the dynamic change of workflow and proposed a measure, to evaluate
dynamic change of workflows.

A remarkable investigation is reported in paper [16] which proposes the
inheritance-preserving transformation rules to avoid some problems which occur
during transforming a process instance from an old process definition to a new one.
Four inheritance relations are defined and a tool to support for the inheritance notions
is developed. The distinct differences between our research and those researches
above are that our dynamic changes is the lifecycle extension of the whole process
from one lifecycle to another, not the changes of process definitions or structures
from one process definition to another.

8.3 The Pi-Calculus Based Modeling and Inferring

Today the pi calculus and related theories make up a large and divers field with
hundreds of published papers. Most papers about the pi calculus focus on variants of
the language and proofs of their correctness. In recent years, the theory and method
related to pi calculus have been obviously focused on the various area of applications
[17, 18]. We also found some research reports related to Web services. Bhargavan K,
in the paper [19], introduces a language-based model for WS-Security protocols and
this model is embedded with the applied pi calculus for verifying authentication
properties. The literature [20] introduces a peer-to-peer model based on pi calculus for
reasoning about the dynamic behaviors of web data.

There are only a few academic reports on pi calculus based model of business
process, especially for the Web Process. In the paper [1], Howard Smith expatiate his
opinions about the pi calculus’s application in the business process management. He
considers that pi calculus can provides a way of modeling for a wide variety of
process management systems. The paper [21] is one of early literatures which studied
to model dynamic business process really based on pi calculus. This paper provides
an educational exercise in using the pi calculus to model a dynamic business process
which includes multiple agents of an electronic fish marketplace. Although the pi
calculus based model provided in this paper is aimed at a special business process in
fish marketplace, the results of the investigation has made it clear that the pi calculus
might provide a suitable basis for defining the interaction behavior of dynamic
business processes.

9 Conclusions and Future Works

We propose a dynamic extension pattern: WPDSE. The basic conception of the
WPDSE is that a whole process is divided into multiple sub processes, and each sub
process is defined and deployed in different time according the requirements created
during process execution. From the perspective of the control theory, WPDSE is a
close loop control system where there is a feedback channel from the interaction stage
to the design stage. We select a pi calculus, as modeling language to formally express
the whole WPDSE model. The basic dynamic characteristic of the WPDSE is

218 L. Zhang and Z. Yu

mobility which is exhibited in two aspects: process mobility and channel mobility.
Our investigation has proven that pi calculus is an ideal model language to describe
this kind of mobile features in the WPDSE model. As shown by our results, pi-
calculus based modeling can be used not just for fault detection like deadlocks and
livelocks, but also for studying the dynamism of Web processes. Future research
directions that we are beginning to explore include the following:

• At present, there have been a few industrial specifications which are widely used to
model Web Process, such as WSCDL, WSCI, BPML and BPEL4WS. It is
certainly valuable to investigate the relationship between pi calculus and current
main industrial specifications to analyze the performance of the process.

• We will continue to study other dynamic composition patterns or methods to meet
different application requirements, such as more complex dependency relations.

• The evaluation method for dynamic business process should be different from
traditional static business process, especially for Web Process. We will study the
metric methods for estimating the dynamic performance of the Web Process.

• Continue to research and improve InferTool so that it can support the full pi
calculus syntax and provide the stronger functions for analyzing dynamic
performances of pi calculus models.

Acknowledgement

The work described in this paper was partially supported by The National Basic
Research Program of China (Grant No. 2002CB312006) and the National High-Tech
R&D Program of China (Grant No.2003AA411022).

References

1. Howard Smith, Business process management—the third wave: business process modeling
language (BPEL) and its pi calculus foundations, Information and Software Technology
45(2003), 1065-1069.

2. Abhijit Patil, Swapna Oundhakar, Amit Sheth, Kunal Verma, METEOR-S Web service
Annotation Framework, Proceeding of the World Wide Web Conference, July 2004.

3. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J., Adding Semantics to Web Services
Standards , Proceedings of the 1st International Conference on Web Services (ICWS'03),
Las Vegas, Nevada (June 2003) pp. 395 – 401.

4. Sivashanmugam, K., Miller, J., Sheth, A., Verma, K., Framework for Semantic Web
Process Composition, Special Issue of the International Journal of Electronic Commerce
(IJEC), Eds: Christoph Bussler, Dieter Fensel, Norman Sadeh, Feb 2004.

5. Verma, K., Akkiraju R., Goodwin R., Doshi P., Lee J., On Accommodating Inter Service
Dependencies in Web Process Flow Composition, AAAI Spring Symposium 2004.

6. Li Zhang, Zhiwei Yu, Kunal Verma, Amit P. Sheth, Dynamic Business Process Modeling
based on Pi Calculus, Technical Report, LSDIS Lab. Computer Science Department, The
University of Georgia, 2004.

7. W.M.P. van der Aalst. Three good reasons for using a Petri-net-based workflow
management system. In S. Navathe and T. Wakayama, editors, International Working
Conference on Information and Process Integration in Enterprises (IPIC’96), pages 179–
201, Cambridge, Massachusetts, USA, November 1996.

 Web Process Dynamic Stepped Extension 219

8. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and
Systems, MIT Press, Cambridge, MA, 2002.

9. R. Milner. Communicating and Mobile Systems: the Pi calculus. Cambridge University
Press, 1999.

10. Jérôme Feret, p.s.a.: A p-Calculus Static Analyzer, http://move.to/mobility.
11. Zeng LZ, Flaxer D, et al. PLMflow-dynamic business process composition and execution

by rule inference, LECTURE NOTES IN COMPUTER SCIENCE 2444: 141-150 2002.
12. Fakas GJ, Karakostas B, A peer to peer (P2P) architecture for dynamic workflow

management, information and software technology 46 (6): 423-431 MAY 1 2004.
13. Cardoso, J. and A. Sheth, "Semantic e-Workflow Composition," Journal of Intelligent

Information Systems (JIIS), 21(3): 191-225, 2003.
14. H. Eshuis, Semantics and Verification of UML Activity Diagrams for Workflow

Modelling, PhD thesis, University of Twente, Enschede, The Netherlands, October 2002.
15. M. Schroeder. Verification of business processes for a correspondence handling center

using CCS. In EUROVAV, pages 253–264, 1999.
16. W.M.P. van der Aalst, Inheritance of Dynamic Behaviour in UML. In D. Moldt, editor,

Proceedings of the Second Workshop on Modelling of Objects, Components and Agents
(MOCA 2002), volume 561 of DAIMI, pages 105-120, Aarhus, Denmark, August 2002.

17. B. C. Pierce and D.N. Turner. Pict: A programming language based on the pi calculus,
Technical Report 476, Indiana University, March 1997.

18. Curti M, Degano P, Priami C, et al. Modelling biochemical pathways through enhanced pi
calculus, THEORETICAL COMPUTER SCIENCE 325 (1): 111-140 SEP 28 2004.

19. Feret J,Confidentiality analysis of mobile systems , LECTURE NOTES IN COMPUTER
SCIENCE 1824: 135-154 2000.

20. Gardner P, Maffeis S, Modelling dynamic web data , LECTURE NOTES IN COMPUTER
SCIENCE 2921: 130-146 2004.

21. Julian Padget and Russell Bradford, A Pi Calculus Model of a Spanish Fish Market--
Preliminary Report�http://www.iiia.csic.es/amet98/abstract14.html.

22. Joachim Parrow, Interaction Diagrams, Nordic Journal of computing 2(1995), 407-443.

Petri Net + Nested Relational Calculus =
Dataflow

Jan Hidders1, Natalia Kwasnikowska2, Jacek Sroka3, Jerzy Tyszkiewicz3,
and Jan Van den Bussche2

1 University of Antwerp, Belgium
2 Hasselt University, Belgium
3 Warsaw University, Poland

Abstract. In this paper we propose a formal, graphical workflow lan-
guage for dataflows, i.e., workflows where large amounts of complex data
are manipulated and the structure of the manipulated data is reflected
in the structure of the workflow. It is a common extension of

– Petri nets, which are responsible for the organization of the process-
ing tasks, and

– Nested relational calculus, which is a database query language over
complex objects, and is responsible for handling collections of data
items (in particular, for iteration) and for the typing system.

We demonstrate that dataflows constructed in hierarchical manner, ac-
cording to a set of refinement rules we propose, are sound : initiated with a
single token (which may represent a complex scientific data collection) in
the input node, terminate with a single token in the output node (which
represents the output data collection). In particular they always process
all of the input data, leave no ”debris data” behind and the output is
always eventually computed.

1 Introduction

In this paper we are concerned with the creation of a formal language to define
dataflows. Dataflows are often met in practice, examples are: in silico experi-
ments of bioinformatics, systems processing data collected in physics, astron-
omy or other sciences. Their common feature is that large amounts of struc-
tured data are analyzed by a software system organized into a kind of network
through which the data flows and is processed. The network consists of many
servers, connected by communication protocols, i.e., HTTP or SOAP. In some
cases advanced synchronization of the processing tasks is needed.

There are well-developed formalisms for workflows that are based on Petri
nets [1]. However, we claim that for dataflows these should be extended with data
manipulation aspects to describe workflows that manipulate structured complex
values and where the structure of this data is reflected in the structure of the
workflow. For this purpose we adopt the data model from the nested relational
calculus which is a well-known and well-understood formalism in the domain of
database theory.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 220–237, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Petri Net + Nested Relational Calculus = Dataflow 221

Consequently, in a dataflow, tokens (which are generally assumed to be
atomic in workflows) are typed and transport complex data values. Therefore,
apart from classical places and transitions, we need transitions which perform
operations on such data values. Of course, the operations are those of the nested
relational calculus.

This way, the title equation emerges:

Petri net + nested relational calculus = dataflow.

The resulting language can be given a graphical syntax, thus allowing one to
draw rather than write programs in it. This seems very important for a language
whose programmers would not be professional computer scientists.

Next, we can give a formal semantics for dataflows. On the one hand, it
is crucial, since we believe that formal, and yet executable, descriptions of all
computational processes in the sciences should be published along with their
domain-specific conclusions. Used for that purpose, dataflows can be precisely
analyzed and understood, which is crucial for: (i) debugging by the authors, (ii)
effective and objective assessment of their merit by the publication reviewers,
and (iii) easy understanding by the readers, once published.

Next, the formal semantics makes it possible to perform formal analysis of
the behavior of programs, including (automated) optimization and proving cor-
rectness.

We demonstrate the potential of the formal methods by proving the following
(presented in an informal manner here).

Theorem. Dataflows constructed hierarchically, i.e., according to a certain set
of refinement rules we propose, are sound: initiated with a single token (which
may represent a complex data value) in the input node, terminate with a single
token in the output node (which represents the output value). In particular they
always process all of the input data, leave no ”debris data” behind and always
terminate without a deadlock.

We would like to point out that the above theorem is quite general—it applies
uniformly to a very wide class of dataflows. Yet not every meaningful dataflow
can be constructed hierarchically. However, we believe that the prevailing ma-
jority of those met in practice are indeed hierarchical.

Our idea of extending classical Petri nets is not new in general. Colored Petri
nets permit tokens to be colored (with finitely many colors), and thus tokens
carry some information. In the nets-within-nets paradigm [2] individual tokens
have Petri net structure themselves. This way they can represent objects with
their own, proper dynamics. Finally, self-modifying nets [3] assume standard
tokens, but permit the transitions to consume and produce them in quantities
functionally dependent on the occupancies of the places.

To compare, our approach assumes tokens to represent complex data values,
which are however static. Only transitions are allowed to perform operations over
the tokens’ contents. Among them, the unnest/nest pairs act in such a way that
the unnest transforms a single token with a set value into a set of tokens, and then
the nest transforms the set of tokens back into a single “composite”token.

222 J. Hidders et al.

Also the introduction of complex value manipulation into Petri nets was
already proposed in earlier work such as [4]. In this paper a formalism called
NR/T-nets is proposed where places represent nested relations in a database
schema and transitions represent operations that can be applied on the database.
Although somewhat similar, the purpose of this formalism, i.e., representing the
database schema and possible operations on it, is very different from the one
presented here. For example, the structure of the Petri net in NR/T-nets does not
reflect the workflow but only which relations are involved in which operations.
Another example is the fact that in Dataflow nets we can easily integrate external
functions and tools as special transitions and use them at arbitrary levels of the
data structures. The latter is an important feature for describing and managing
dataflows as found in scientific settings. Therefore, we claim that, together with
other differences, this makes Dataflow nets a better formalism for representing
dataflows.

1.1 What Is the Nested Relational Calculus?

The nested relational calculus (NRC) is a query language allowing one to describe
functional programs using collection types, e.g. lists, bags, sets, etc. The most
important feature of the language is the possibility to iterate over a collection.
The only collections used in the following are sets, hence in the description
below we ignore other collection types of NRC. NRC contains a set of base
types. Moreover, it is allowed to combine these types to form records and sets.

Besides standard constructs enabling manipulation of records and set, NRC
contains three constructs sng, map and flatten. For a value v of a certain type,
sng(v) yields a singleton list containing v. Operation map, applied to a function
from type τ to σ, yields a function from sets of type τ to sets of type σ.

Finally, the operation flatten, given a set of sets of type τ , yields a flattened
set of type τ , by taking the union. These three basic operations are powerful
enough for specifying functions by structural recursion over collections, cf. [5].

The inspiration for these constructs comes from the category-theoretical no-
tion of a monad and the monadic approach to uniformly describe different notions
of computation [6].

Under its usual semantics the NRC can already be seen as a dataflow descrip-
tion language but it only describes which computations have to be performed
and not in what order, i.e., it is rather weak in expressing control flow. For some
dataflows this order can be important because a dataflow can include calls to
external functions and services which may have side-effects or are restricted by
a certain protocol.

1.2 What are Petri Nets?

A classical Petri net is a bipartite graph with two types of nodes called the places
and the transitions. The nodes are connected by directed edges. Only nodes of
different kinds can be connected. Places are represented by circles and transitions
by rectangles.

Petri Net + Nested Relational Calculus = Dataflow 223

Definition 1 (Petri net). A Petri net is a triple 〈P, T, E〉 where:

– P is a finite set of places,
– T is a finite set of transitions (P ∩ T = ∅),
– E ⊆ (P × T) ∪ (T × P) is a set of edges

A place p is called an input place of a transition t, if there exists an edge
from p to t. Place p is called an output place of transition t, if there exists an
edge from t to p. Given a Petri net 〈P, T, E〉 we will use the following notations:

•p = {t | 〈t, p〉 ∈ E} p• = {t | 〈p, t〉 ∈ E}
•t = {p | 〈p, t〉 ∈ E} t• = {p | 〈t, p〉 ∈ E}
◦p = {〈t, p〉 | 〈t, p〉 ∈ E} p◦ = {〈p, t〉 | 〈p, t〉 ∈ E}
◦t = {〈p, t〉 | 〈p, t〉 ∈ E} t◦ = {〈t, p〉 | 〈t, p〉 ∈ E}

and their generalizations for sets:

•A =
⋃

x∈A

•x A• =
⋃

x∈A

x•

◦A =
⋃

x∈A

◦x A◦ =
⋃

x∈A

x◦

where A ⊆ P ∪ T . Places are stores for tokens, which are depicted as black dots
inside the places when describing the run a Petri net. Edges define the possible
token flow. The semantics of a Petri net is defined as a transition system. A
state is a distribution of tokens over places. It is often referred to as a marking
M ∈ P → N. The state of a net changes when a transitions fires. For a transition
t to fire it has to be enabled, that is, each of its input places has to contain at
least one token. If transition t fires, it consumes one token from each of the
places in •t and produces one token in each of the places in t•.

Petri nets are a well-founded process modeling technique. The interest in
them is constantly growing for the last fifteen years. Many theoretical results are
available. One of the better studied classes are workflow nets used in business
process workflow management[1].

Definition 2 (strongly connected). A Petri net is strongly connected if and
only if for every two nodes n1 and n2 there is a directed path leading from n1
to n2.

Definition 3 (workflow net). A Petri net PN = 〈P, T, E〉 is a workflow net
if and only if:

(i) PN has two special places: source and sink. The source has no input edges,
i.e., •source = ∅, and the sink has no output edges, i.e., sink• = ∅.

(ii) If we add to PN a transition t∗ and two edges 〈sink, t∗〉, 〈t∗, source〉, then
the resulting Petri net is strongly connected.

224 J. Hidders et al.

1.3 How We Combine NRC and Petri Nets

In this paper we propose a formal, graphical workflow language for data-centric
scientific workflows. Since we call the type of workflows that we consider data-
flows, we call the proposed language a Dataflow language. From NRC we inherit
the set of basic operators and the type system. This should make reusing of
existing database theory results easy. Dataflows could for example undergo opti-
mization process as database queries do. To deal with the synchronization issues
arising from processing of the data by distributed services we will use a Petri-
net based formalism which is a clear and simple graphical notation and has an
abundance of correctness analysis results. We believe that these techniques can
be reused and combined with known results from database theory for verifying
the correctness of dataflows which can be described in the proposed language.

2 Dataflow Language

The language we propose is a combination of NRC and Petri nets. We label
transitions with labels determining functions or NRC operators, and associate
NRC values with the tokens. As is usual with workflows that are described by
Petri net we mandate one special input place and one special output place. If
there is external communication this is modeled by transitions that correspond to
calls to external functions. We use edge labeling to define how values of consumed
tokens map onto the parameters of operations represented by transitions. To
express conditional behavior we propose edge annotations indicating a condition
that the value associated with the token must satisfy, so it can be transferred
through the annotated edge. We also introduce two special transitions, unnest
and nest, to enable explicit iteration over values of a collection.

A dataflow will be defined by an acyclic workflow net, transition and edge
labeling, and edge annotation. The underlying Petri net will be called a dataflow
net.

Definition 4 (dataflow net). A workflow net WFN = 〈P, T, E〉 is a dataflow
net if and only if it has no cycles.

With the presence of the NRC map operation acyclicity seems not to be a strong
limitation in real life applications. It has also an advantage as termination is
always guaranteed.

2.1 The Type System

The dataflows are strongly typed, which means here that each transition con-
sumes and produces tokens with values of a well determined type. The type of
the value of a token is called the token type. The type system is similar to that
of NRC. We assume a finite but user-extensible set of basic types which might
for example be given by:

b ::= boolean | integer | string | XML | ...

Petri Net + Nested Relational Calculus = Dataflow 225

where boolean contains the boolean values true and false, integer contains all
integer numbers, string contains all strings and XML contains all well-formed
XML documents. Although this set can be arbitrarily chosen we will require
that it at least contains the boolean type. From these basic types we can build
complex types as defined by:

τ ::= b | 〈l1 : τ1, ..., ln : τn〉 | {τ}

The type 〈l1 : τ1, ..., ln : τn〉, where li are distinct labels, is the type of all records
having exactly fields l1, ..., ln of types τ1, ..., τn respectively (records with no fields
are also included). Finally {τ} is the type of all finite sets of elements of type τ .
For later use we define CT to be the set of all complex types and CV the set
of all possible complex values (note that the set of basic types is a subset of the
set of complex types).

NRC can be defined on other collection types such as lists or bags. They are
also included in existing scientific workflow systems such as in Taverna [7] where
for example lists are supported. However, after careful analysis of various use
cases in bioinformatics and examples distributed with existing scientific work-
flow systems we have concluded that sets are sufficient. Moreover, if lists are
needed they can be simulated with sets in which the position is indicated by a
number, but sets cannot be simulated with lists without introducing some arbi-
trary order on the elements. This order unnecessarily complicates the definition
of the semantics and, as is known from database research, may limit optimization
possibilities.

2.2 Edge Labels

Dataflows are not only models used to reason about data-processing experiments
but are meant to be executed and produce computation results. Distinguishing
transition input edges has to be possible to know how the tokens map onto
the operation arguments. This is solved by edge labeling. Only edges leading
from places to transitions are labeled. This labeling is determined by the edge
naming function EN : ◦T → EL (note that ◦T = P◦), where EL is some
countably infinite set of edge label names, e.g., all strings over a certain non-
empty alphabet.

2.3 Transition Labels

To specify desired operations and functions we label Petri net transitions. The
transition labeling is defined by a transition naming function TN : T → TL,
where TL is a set of transition labels. Each transition label determines the num-
ber and labeling of input edges as well as the types of tokens that the transition
consumes and produces when it fires. For this purpose the input typing and out-
put typing functions are used: IT : TL→ CT maps each transition label to the
input type which must be a tuple type and OT : TL→ CT maps each transition
label to the output type.

226 J. Hidders et al.

2.4 Edge Annotation

To introduce conditional behavior we annotate edges with conditions. If an edge
is annotated, then it can only transport tokens satisfying the condition. Condi-
tions are visualized on diagrams in an UML [8] way, i.e., in square brackets. Only
edges leading from places to transitions are annotated. There are four possible
annotations defined by the edge annotation function:

EA : ◦T → {“=true”, “=false”, “=∅”, “ =∅”, ε}

The ε represents annotation absence. The meaning of the rest of the labels is
self explanatory. For detailed specification see section 4.

2.5 Place Types

With each place in the dataflow net we associate a specific type that restricts
the values that tokens in this place may have. This is represented by a function
PT : P → CT .

2.6 Dataflow

The dataflow net with edge naming, transition naming, edge annotation and
place typing functions specifies a dataflow.

Definition 5 (dataflow). Dataflow is a five-tuple 〈DFN, EN, TN, EA, PT 〉
where:

– DFN = 〈P, T, E〉 is a dataflow net,
– EN : ◦T → EL is an edge naming function,
– TN : T → TL is a transition naming function,
– EA : ◦T → {“=true”, “=false”, “=∅”, “ =∅”, ε} is an edge annotation

function,
– PT : P → CT is a place type function.

Since it is not true that in all the dataflows the types of the places are
those that are required by the transitions we introduce the notion of well-typed
dataflows. Informally, a dataflow is well-typed if for each transition (1) the names
and types of its input places define a tuple type and it is the input tuple type of
the transition, (2) the types of the output places are equal to the output type of
the transition and (3) if any of the transitions input edges are annotated then
the annotations match the types of the associated input places.

Definition 6 (well typed). A dataflow 〈DFN, EN, TN, EA, PT 〉 is well-typed
if and only if for each transition t ∈ T it holds that:

1. If ◦t = {(p1, t), ..., (pn, t)} and for all 1 ≤ i ≤ n it holds that li = EN((pi, t))
and τi = PT (pi) then IT (TN(t)) = 〈l1 : τ1, ..., ln : τn〉.

2. For each (t, p) ∈ t◦ it holds that PT (p) = OT (TN(t)).
3. For each (p, t) ∈ ◦t it holds that:

Petri Net + Nested Relational Calculus = Dataflow 227

Fig. 1. If-then-else example

– if EA((p, t)) ∈ {“=true”,“=false”} then PT (p) = boolean, and
– if EA((p, t)) ∈ {“=∅”,“ =∅”} then PT (p) is a set type.

An example dataflow evaluating an if u = v then f(x) else g(x) expression is
shown on Fig. 1. Although the transition labels and a precise execution semantics
are defined in the subsequent two sections, the example is self explanatory. First
three copies of the input tuple of type 〈u : b, v : b, x : τ〉 are made. Then each
copy is projected to another field, a and b are compared, and a choice of upper
or lower dataflow branch is made on the base of the boolean comparison result.
The boolean value is disposed in a projection and depending on the branch that
was chosen either f(x) or g(x) is computed.

3 Components

Since it is hard to keep track of new scientific analysis tools and data repositories,
the language defines only a core label subset. Similarly to NRC the dataflow lan-
guage can be extended with new extension transition functions. Such extension
functions will usually represent computations done by external services. Exam-
ples from the domain of bioinformatics include: sequence similarity searches with
BLAST [9], queries run on the Swiss-Prot [10] protein knowledgebase, or local
enactments of the tools from the EMBOSS [11] package.

3.1 Core Transition Labels

The core transition labels are based on the NRC operator set plus two special
unnest and nest labels, as shown in Table 1. A transition label is defined as
a combination of the basic symbol (the first column) and a list of parameters
which consists of types and edge labels (the second column). The values of the
input type function IT and the output type function OT are given by the last
two columns. For example, a concrete instance (i.e., with concrete parameter
values) of the tuple constructor label would be tl′ = 〈··〉a,bool,b,int where the
parameters are indicated in subscript and for which the functions IT and OT
are defined such that IT (tl′) = OT (tl′) = 〈a : bool, b : int〉. Another example
would bet tl′′ = π[a]a,bool,b,int where IT (tl′′) = 〈a : bool, b : int〉 and OT (tl′′) =
bool. The remaining core transition labels are defined in Table 1 in a similar
fashion.

228 J. Hidders et al.

Table 1. Core transition labels

Sym. Parameters Operation name Input type Output type

∅ l, τ1, τ2 empty-set constr. 〈l : τ1〉 {τ2}
{·} l, τ singleton-set constr. 〈l : τ 〉 {τ}
∪ l1, l2, τ set union 〈l1 : {τ}, l2 : {τ}〉 {τ}
ϕ l, τ flatten 〈l : {{τ}}〉 {τ}
× l1, τ1, l2, τ2 Cartesian product 〈l1 : {τ1}, l2 : {τ2}〉 {〈l1 : τ1, l2 : τ2〉}
= l1, l2, b atomic-value equal. 〈l1 : b, l2 : b〉 boolean

〈〉 l, τ empty tuple constr. 〈l : τ 〉 〈〉
〈··〉 l1, τ1, ..., ln, τn tuple constr. 〈l1 : τ1, ..., ln : τn〉 〈l1 : τ1, ..., ln : τn〉
π[li] l, 〈l1 : τ1, ..., ln : τn〉 field projection 〈l : 〈l1 : τ1, ..., ln : τn〉〉 τi

id l, τ identity 〈l : τ 〉 τ

∗ l, τ unnest 〈l : {τ}〉 τ

∗−1
l, τ nest 〈l : τ 〉 {τ}

3.2 Extension Transition Labels

Next to the set of core transition labels the set of transition labels TL also
consists of user-defined transition labels. As for all transition labels the functions
IT and OT must be defined for each of them. Moreover, for every user-defined
transition label tl we will assume that there exists an associated function Φtl :
IT (tl) → OT (tl) which represents a possibly non-deterministic computational
function that is performed when the transition fires.

To give a concrete example a bioinformatician may define a getSWPrByAC,
for which IT (getSWPrByAC) = 〈ac : string〉 and OT (getSWPrByAC) =
XML. The ΦgetSWPrByAC function would represent a call to a Swiss-Prot
knowledgebase and return a XML formated entry for a given primary accession
number.

4 Transition System Semantics

Let the 〈DFN, EN, TN, EA, PT 〉 be a well-typed dataflow (if not stated other-
wise this will be assumed in the rest of the paper). Its semantics is given as a
transition system (see subsection 4.2). Each place contains zero or more tokens,
which represent data values. Formally a token is a pair k = 〈v, h〉, where v ∈
CV is the transported value and h ∈ H is this value’s unnesting history. This
unnesting history is defined in the next subsection (see 4.1). The set of all possible
tokens is then K = CV × H . By the type of a token we mean the type of its
value, i.e., 〈v, h〉 : τ if and only if v : τ .

The state of a dataflow, also called marking, is the distribution of tokens over
places M ∈ (P ×K)→ N∪{0} where M(p, k) = n means that place p contains n
times the token k. We only consider as states distributions for which token types
match types of places they are in, i.e., for all places p ∈ P and tokens k ∈ K such
that M(p, k) > 0 it holds that k : PT (p). Transitions are the active components

Petri Net + Nested Relational Calculus = Dataflow 229

in a dataflow: they can change the state by firing, that is consuming tokens from
each of their input places and producing tokens in each of their output places.
In distinction to workflow nets, for some transitions (nests and unnests) more
than one token per input place can be consumed and an arbitrary number of
tokens per output place can be produced. A transition that can fire in a given
state is called enabled. The types, numbers and unnesting history conditions of
tokens in input places for a given transition to be enabled are determined by its
transition label.

We adopt the following Petri net notations:

– M1
t−→M2: the transition t is enabled in state M1 and firing t in M1 results

in state M2

– M1 −→M2: there is a transition t such that M1
t−→M2

– M1
θ−→ Mn: the firing sequence θ = t1t2...tn−1 leads from state M1 to state

Mn, i.e., ∃M2,M3,...,Mn−1M1
t1−→M2

t2−→M3
t3−→ ...

tn−1−−−→Mn

– M1
∗−→ Mn: M1 = Mn or there is a firing sequence θ = t1t2...tn−1 such that

M1
θ−→Mn

A state Mn is called reachable from M1 if and only if M1
∗−→Mn.

Although the semantics of a dataflow is presented as a transition system, as
in classical Petri nets, two enabled transitions may fire concurrently, if there is
enough input tokens.

4.1 Token Unnesting History

Every time it fires, an unnest transition (see 4.2) consumes one token with a
set value and produces a token for each element in this set. The information
about the unnested set and the particular element of that set for which a given
token was created is stored in that token’s unnesting history. This is illustrated
in Fig. 2 where in (a) we see in the first place a single token with value {1, 2, 3}
and an empty history (). When the unnest transition fires it produces a token
for each element as shown in (b). The history is then extended with a pair
that contains (1) the set that was unnested and (2) the element for which this
particular token was produced. As shown in (c) normal transitions will produce
tokens with histories identical to that of the consumed input tokens. Once all
the tokens that belong to the same unnesting group have arrived in the input
place of the nest transition as is shown in (d), which can be verified by looking at
their histories, then the nest transition can fire and combine them into a single
token as is shown in (e). Note that where the unnest transition adds a pair to
the history, the nest transition removes a pair from the history. Since sets can
be unnested and nested several times, the history is a sequence of pairs where
each pair contains the unnesting information of one unnesting step. Therefore
we formally define the set of all histories H as the set of all sequences of pairs
〈s, x〉, where s ∈ CV is a set and x ∈ s.

230 J. Hidders et al.

Fig. 2. An illustration of the unnesting history of tokens

4.2 Semantics of Transitions

The following shortcut will be used, since tokens can only flow along a condition-
annotated edge if the value of the token satisfies the condition:

〈v, h〉 � e
def= (EA(e) = ε ⇒ true) ∧

(EA(e) =“=true”⇒ v = true) ∧
(EA(e) =“=false”⇒ v = false) ∧
(EA(e) =“=∅”⇒ v =∅) ∧
(EA(e) =“ =∅”⇒ v = ∅)

A formal definition for unnest, nest and extension transition labels will be
given. The nest and unnest are special since only transitions labeled in this way
change the token’s unnesting history. Moreover nest transitions can consume
more than one token per input place and unnest transitions can produce more
than one token per output place. Transitions labeled by other labels behave as
in classical Petri nets except that each time they fire all consumed tokens must
have identical histories. The semantics of the rest of the core transition labels
fully agrees with the intuitions given by their names. In particular, they consume
and produce exactly one token when firing, do not change the unnesting history
and the formulas are analogous to those given for extension transition labels.

Unnest. For an unnest transition t ∈ T it holds that M1
t−→ M2 if and only if

there exists a token 〈v, h〉 ∈ K such that:

Petri Net + Nested Relational Calculus = Dataflow 231

1. for all places p ∈ •t it holds that:
(a) 〈v, h〉 � 〈p, t〉,
(b) M2(p, 〈v, h〉) = M1(p, 〈v, h〉)− 1 and
(c) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for all tokens 〈v′, h′〉 = 〈v, h〉

2. for all places p ∈ t• it holds that:
(a) M2(p, 〈x, h⊕ 〈v, x〉〉) = M1(x, 〈v, h⊕ 〈v, x〉〉) + 1 for every x ∈ v and
(b) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) if 〈v′, h′〉 = 〈x, h⊕ 〈v, x〉〉 for all x ∈ v

3. for all places p ∈ •t ∪ t• it holds that M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for all
tokens 〈v′, h′〉 ∈ K

where (a1, a2, ..., an)⊕ an+1 := (a1, a2, ..., an, an+1).

Nest. For a nest transition t ∈ T it holds that M1
t−→ M2 if and only if there

exists a history hS, a set s = {x1, ..., xn} ∈ CV and a set of tokens S = {〈v1, hS⊕
〈s, x1〉〉, ..., 〈vn, hS ⊕ 〈s, xn〉〉} ⊆ K such that

1. for all places p ∈ •t it holds that:
(a) 〈vi, hi〉 � 〈p, t〉 for each 〈vi, hi〉 ∈ S,
(b) M2(p, 〈vi, hi〉) = M1(p, 〈vi, hi〉)− 1 for each 〈vi, hi〉 ∈ S,
(c) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for each 〈v′, h′〉 ∈ S

2. for all places p ∈ t• and assuming that vS = {v1, ..., vn} it holds that:
(a) M2(p, 〈vS , hS〉) = M1(p, 〈vS , hS〉) + 1 and
(b) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for all tokens 〈v′, h′〉 = 〈vS , hS〉

3. for all places p ∈ •t ∪ t• it holds that M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for all
tokens 〈v′, h′〉 ∈ K

where (a1, a2, ..., an)⊕ an+1 := (a1, a2, ..., an, an+1).

Extensions. For an extension transition t ∈ T that is labeled with an extension
transition label it holds that M1

t−→ M2 if and only if there exists a history h
such that with each place p ∈ •t we can associate a value vp ∈ CV such that

1. for all places p ∈ •t it holds that
(a) 〈vp, h〉 � 〈p, t〉,
(b) M2(p, 〈vp, h〉) = M1(p, 〈vp, h〉)− 1 and
(c) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for all 〈v′, h′〉 = 〈vp, h〉

2. for all places p ∈ t• it holds that if v = ΦTL(t)(〈l1 : v1, ..., ln : vn〉) where
{〈l1, v1〉, ..., 〈ln, vn〉} = {〈EN(p, t), vp〉 | p ∈ •t} then
(a) M2(p, 〈v, h〉) = M1(p, 〈v, h〉) + 1 and
(b) M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) if 〈v′, h′〉 = 〈v, h〉

3. for all places p ∈ •t ∪ t• it holds that M2(p, 〈v′, h′〉) = M1(p, 〈v′, h′〉) for all
tokens 〈v′, h′〉 ∈ K

232 J. Hidders et al.

5 Hierarchical Dataflows

In spite of the fact that we extend workflow Petri nets, existing technical and
theoretical results can be easily reused. This is what we intend to demonstrate
here.

The dataflow language is developed to model data-centric workflows and
in particular scientific data processing experiments. The data to be processed
should be placed in the dataflow’s source and after the processing ends the result
should appear in its sink. A special notation is introduced that distinguishes two
state families. The state inputk is an input state with a single token k in the
source place and all other places empty, that is inputk(〈source, k〉) = 1 and
inputk(〈p, k′〉) = 0 if k = k′ or p = source. Similarly outputk is an output state
with single token in the sink place. Starting with one token in the source place
and executing the dataflow may not always produce a computation result in the
form of a token in the sink place. For some dataflows the computation may halt
in a state in which none of the transitions is enabled yet the sink is empty. Even
reaching a state in which there are no tokens at all is possible. Examples of such
incorrect dataflows are shown on Fig. 3.

Fig. 3. Incorrect dataflows

For the dataflow (a) the token from the source can be consumed by a transi-
tion t1 or t2, but not by both of them at the same time. Transition t3 will not
become enabled then, because one of its input places will stay empty. In the (b)
case, if t1 gets the source token, the ∗−1 does not become enabled, because only
∗ can produce a token with the required unnesting history. But it may even be
not enough when the ∗ transition consumes the source token. If the source token
carried an empty set, then in the resulting state all places would be empty.

Similar incorrectness was also studied in context of procedures modeled by
classical workflow nets. The correct procedures are called sound [1]. The notion
of soundness can in a natural way be adapted to dataflows:

Definition 7 (soundness). A dataflow 〈DFN, EN, TN, EA, PT 〉, with sink :
τ and source : θ, is sound if and only if for each token k′ : τ there exists token
k′′ : θ that:

Petri Net + Nested Relational Calculus = Dataflow 233

(i) ∀M (inputk′
∗−→M)⇒ (M ∗−→ outputk′′)

(ii) ∀M (inputk′
∗−→M ∧M(out, k′′) > 0)⇒ (M = outputk′′)

(iii) ∀t∈T∃M,M ′ inputk′
∗−→M

t−→M ′

5.1 Refinement Rules

To avoid designing of unsound dataflows we propose a structured approach. In a
blank dataflow generation step a pattern dataflow is constructed in a top-down
manner, starting from a single place and performing refinements using a given
set of rules. Each refinement replaces a place or transition with larger subnet.
In the generated blank dataflow all transitions are unlabeled, but for each we
indicate if it will or will not be labeled with a nest and unnest.

The seven basic refinement rules are shown shown on Fig. 4. Each rule,
except the third one, can be applied only if the transformed node has both
input and output edges. All the input edges of the transformed node are copied
to all the resulting entry nodes, and an analogous rule applies to the output
edges. The rules and the aim to make dataflows structured as in structured
programming languages were motivated by the work done on workflow nets by
Piotr Chrz ↪astowski [12].

Definition 8 (blank dataflow). A blank dataflow is a tuple 〈DFN, NP, EA〉
where:

– DFN = 〈P, T, E〉 is a dataflow net,
– NP : T → {∗, ∗−1, blank} is a nesting plan function,
– EA : E → {“=true”, “=false”, “=∅”, “ =∅”, ε} is an edge annotation func-

tion.

Fig. 4. Refinement rules

234 J. Hidders et al.

Definition 9 (blank dataflow generations step). We start with a blank
dataflow 〈DFN, NP, EA〉 consisting of a single place with no transitions and
perform the transformations presented on Fig. 4 with the constraint that, except
for the sequential place split all the transformations may be applied only if a node
has at least one input and at least one output.

Definition 10 (hierarchical dataflow). Let DF = 〈DFN, EN, TN, EA, PT 〉
be a well-typed dataflow obtained by labeling of all transitions in a blank dataflow
net BDF = 〈DFN, NP, EA〉 under following conditions:

(i) a transition is labeled as nesting if and only if it was planned to, that is:
∃c∈CT TN(t) = nestc if and only if ∀t∈T NP (t) = ∗

(ii) a transition is labeled as unnesting if and only if it was planned to, that is:
∃c∈CT TN(t) = nestc if and only if ∀t∈T NP (t) = ∗−1

The dataflow DF is hierarchical if and only if the blank dataflow net BDF can
be constructed in a blank dataflow generation step.

Theorem 1. All hierarchical dataflows are sound.

Proof. (sketch) The proof follows the one given in [12]. It can easily be checked
that making any of the refinement rules doesn’t jeopardize the possibility of
obtaining a sound dataflow by labeling of a blank dataflow. The rest of the proof
proceeds by the induction on the number of refinements performed. ��

6 A Bioinformatics Dataflow Example

In [13] it was illustrated that NRC is expressive enough to describe real life
dataflows in bioinformatics. In this work we combine NRC with Petri nets, us-
ing the more convenient Petri net notation for explicitly defining the control flow.
In this section we also present a dataflow based on a real bioinformatics example
[14]. The corresponding dataflow net is given in Fig. 5. The goal of this dataflow
is to find differences in peptide content of two samples of cerebrospinal fluid (a
peptide is an amino acid polymer). One sample belongs to a diseased person and
the other to a healthy one. A mass spectrometry wet-lab experiment has provided
data about observed polymers in each sample. A peptide-identification algorithm
was invoked to identify the sequences of those polymers, providing an amino-acid
sequence and a confidence score for each identified polymer. The dataflow starts
with a tuple containing two sets of data from the identification algorithm one ob-
tained from the “healthy”sample and the other from the “diseased”sample: com-
plex input type 〈 healthy : PepList , diseased : PepList 〉 with complex type
PepList = { 〈 peptide : String, score : Number 〉 }. Each data set contains
tuples consisting of an identified peptide, represented by base type String, and
the associated confidence score, represented by base type Number. The dataflow
transforms this input into a set of tuples containing the identified peptide, a sin-
gleton containing the confidence score from the“healthy”data set or empty set if
the identified peptide was absent in the“healthy”data set, and similarly, the confi-
dence score from the“diseased”data set. The complex output type is the following:
{ 〈 peptide : String, healthy : {Number }, diseased : {Number } 〉 }.

Petri Net + Nested Relational Calculus = Dataflow 235

Fig. 5. Finding differences in peptide content of two samples

236 J. Hidders et al.

7 Conclusions and Further Research

In this paper we have presented a graphical language for describing dataflows,
i.e., workflows where large amounts of complex data are manipulated and the
structure of the manipulated data is reflected in the structure of the workflow.
In order to be able to describe both the control flow and the data flow the
language is based on Petri nets and the nested relational calculus (NRC) and has
a formal semantics that is based upon these two formalisms. This ensures that
from the large body of existing research on these we can reuse or adapt certain
results. This is illustrated by taking a well-known technique for generating sound
workflow nets and using it to generate sound dataflow nets. We have shown that
the technique that restricts itself to hierarchical dataflows and the technique that
goes beyond, can both be readily applied to our formalism.

In future research we intend to compare, investigate and extend this for-
malism in several ways. Since the dataflow nets tend to become quite large for
relatively simple dataflows, we intend to introduce more syntactic sugar. We also
want to investigate whether a similar control-flow semantics can be given for the
textual NRC and see how the two formalisms compare under these semantics.
Since existing systems for data-intensive workflows often lack formal semantics,
we will investigate if our formalism can be used to provide these. It is also our
intention to add the notions of provenance and history to the semantics such that
these can be queried with a suitable query language such as the NRC. This can be
achieved in a straightforward and intuitive way by remembering all tokens that
passed through a certain place and defining the provenance as a special binary
relation over these tokens. Storing all these tokens makes it not only possible
to query the history of a net but also to reuse intermediate results of previous
versions of a dataflow. Another subject is querying dataflows where a special
language is defined to query dataflow repositories to, for example, find similar
dataflows or dataflows that can be reused for the current research problem. Since
dataflow nets are essentially labeled graphs it seems likely that a suitable existing
graph-based query formalism could be found for this. Finally we will investigate
the possibilities of workflow optimization by applying known techniques from
NRC research. Since optimization often depends on the changing of the order
of certain operations it will then be important to extend the formalism with a
notion of “color” for extension transitions that indicates whether their relative
order may be changed by the optimizer.

References

1. van der Aalst W.: The application of petri nets to workflow management. The
Journal of Circuits, Systems and Computers (1998) 21–66

2. Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In: Lectures on
Concurrency and Petri Nets. (2003) 819–848

3. Valk, R.: Self-modifying nets, a natural extension of Petri nets. In: ICALP. (1978)
464–476

Petri Net + Nested Relational Calculus = Dataflow 237

4. Oberweis, A., Sander, P.: Information system behavior specification by high level
petri nets. ACM Trans. Inf. Syst. 14 (1996) 380–420

5. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with
complex objects and collection types. Theoretical Computer Science (1995) 3–48

6. Moggi, E.: Notions of computation and monads. Information and Computation
(1991) 55–92

7. Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwood, M., Carver, T., Wipat,
A., Li, P.: Taverna: A tool for the composition and enactment of bioinformatics
workflows. Bioinformatics (2004)

8. Object Management Group: Unified modeling language resource page. http://
www.uml.org/

9. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment
search tool. J. Mol. Biol. (1990) 403–410

10. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M., Estreicher, A., et al.: The
swiss-prot protein knowledgebase and its supplement trembl in 2003. Nucleic Acids
Research 31 (2003) 365–370

11. Rice, P., Longden, I., Bleasby, A.: Emboss: The european molecular biology open
software suite (2000). Trends in Genetics 16 (2000) 276–277

12. Chrz ↪astowski-Wachtel, P., Benatallah, B., Hamadi, R., O’Dell, M., Susanto, A.: A
top-down petri net-based approach for dynamic workflow modeling. In: Proceedings
of Business Process Management: International Conference, BPM 2003. Volume
2678 of Lecture Notes in Computer Science., Springer (2003) 336–353

13. Gambin, A., Hidders, J., Kwasnikowska, N., Lasota, S., Sroka, J., Tyszkiewicz,
J., Van den Bussche, J.: NRC as a formal model for expressing bioinformatics
workflows. Poster at ISMB 2005 (2005)

14. Dumont, D., Noben, J., Raus, J., Stinissen, P., Robben, J.: Proteomic analysis of
cerebrospinal fluid from multiple sclerosis patients. Proteomics 4 (2004)

On the Controlled Evolution of Access Rules in
Cooperative Information Systems

Stefanie Rinderle1,� and Manfred Reichert2

1 Department Databases and Information Systems, University of Ulm, Germany
rinderle@informatik.uni-ulm.de

2 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

Abstract. For several reasons enterprises are frequently subject to or-
ganizational change. Respective adaptations may concern business pro-
cesses, but also other components of an enterprise architecture. In par-
ticular, changes of organizational structures often become necessary.

The information about organizational entities and their relationships
is maintained in organizational models. Therefore the quick and cor-
rect adaptation of these models is fundamental to adequately cope with
changes. However, model changes alone are not sufficient to guarantee
consistency. Since organizational models also provide the basis for defin-
ing access rules (e.g., actor assignments in workflow management systems
or access rules in document–centered applications) this information has
to be adapted accordingly (e.g., to avoid non-resolvable actor assign-
ments). Current approaches do not adequately address this problem,
which often leads to security gaps and delayed change adaptations.

In this paper we present a comprehensive approach for the controlled
evolution of organizational models in cooperative information systems.
First, we introduce a set of operators with well-defined semantics for
defining and changing organizational models. Second, we present an ad-
vanced approach for the semi-automated adaptation of access rules when
the underlying organizational model is changed. This includes a formal
part concerning both the evolution of organizational models and the
adaptation of related access rules.

1 Introduction

Enterprise-wide, cooperative information systems (IS) comprise a variety of ap-
plication and system components. Important tasks to be accomplished include
the support of business processes, the management of enterprise documents and
the integration of enterprise applications. For the implementation of such ser-
vices different middleware components exists, like workflow systems, document
management systems, and tools for enterprise application integration [1, 2, 3].

The controlled access to its application services as well as to the applica-
tion objects managed by them (e.g., business processes, business documents,

� This research work was conducted during a postdoc stay at the University of Twente

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 238–255, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Controlled Evolution of Access Rules 239

Organizational Model OM’: Organizational Model OM:

OU = medical clinic

OU = administrationOU = treatment area

A = Dr. Smith A = Black A = Hunter

R = internist R = secretary

is subordinated is subordinated

belongs tobelongs to

R = assistant

belongs to

has

R = medical staff

has

specializesspecializes

has

OU: OrgUnit
A: Agent
R: Role

OU = medical clinic

OU = patient services

A = Dr. Smith A = Black

R = internist R = secretary

is subordinated

belongs to

R = assistant

belongs to

hashas hashas

=
(JoinEntities(OM, (treatment area, OrgUnit), (administration, OrgUnit), (patient, services, OrgUnit),
 DeleteRelation(OM, ((patient services, OrgUnit), (Hunter, Agent), belongs to)),
 DeleteRelation(OM, ((Hunter, Agent), (secretary, Role), belongs to)),

DeleteEntity(OM, (Hunter, Agent)), CreateRelation(OM, (Black, Agent), (secretary, Role), has)))

R = medical staff

specializesspecializes

join two

org. units

delete

org. unit

insert new

relation

Fig. 1. Example of an Organizational Model and a Model Change (simplified)

resources, application systems, etc.) constitutes an important task for any co-
operative IS. Usually, this results in a large number of access rules covering
different system aspects and user privileges. Furthermore, these rules have to
be frequently adapted due to changes of organizational structures [4, 5, 6]. Such
organizational changes become necessary, for instance, when an organizational
unit is split into two sub-units, two existing units are joined, a group of users is
reassigned to a new unit, or simply an employee leaves the organization.1 As a
consequence, the access rules whose definition is based on organizational entities
may have to be adapted as well. So far, the controlled evolution of access rules
in cooperative IS has not been addressed in sufficient detail, which has led to
severe security gaps when organizational changes are introduced.

Typically, information about organizational entities (e.g., organizational
units, roles, and users) and the relations between them (e.g., assignment of a
user to a role or an organizational unit) is kept in an organizational model.
Based on such a model, access rights and user privileges can be defined (e.g.,
actor assignments in a workflow management system or access rules in document-
centered applications). Consequently, when organizational changes occur, both
the organizational model and the related access rules have to be adapted in a
consistent manner.

Another (practical) problem arises from the fact that the (middleware) com-
ponents used to build the application services of cooperative IS often maintain
their own organizational model and security component; i.e., the information
about organizational entities (and their relations) as well as the access rules

1 For respective results from one of our case studies in the clinical domain see [4].

240 S. Rinderle and M. Reichert

based on them may be scattered over different system components. On the
one hand this has led to functional redundancy, on the other hand (hetero-
geneous)information about organizational structures is kept redundantly in dif-
ferent security components. The latter very often results in inconsistencies, high
costs for system maintainability, and inflexibility when dealing with organiza-
tional change.

But even if the organizational model is kept in a central repository, the prob-
lem of maintainability remains. The correct and consistent adaptation of the
organizational model is only one side of the coin when dealing with organiza-
tional changes; the other is to correctly and efficiently adapt the access rules
defined on basis of this model. Note that in large environments hundreds up to
thousands of access rules may exist, each of them capturing different privileges
of the cooperative IS. This, in turn, makes it a hard job for the system adminis-
trator to quickly and correctly adapt these rules to changes of the organizational
model(s).

Current approaches do not sufficiently deal with this issue. They neither make
use of the semantics of the applied model changes nor do they provide any auto-
mated support for rule adaptation. In practice, this often leads to problems like
non-resolvable actor assignments, unauthorized access to business documents, or
inconsistent user worklists. Assume, for example, that two organizational units
are joined in order to make the enterprise more efficient (cf. Fig. 1). If this
change is performed in an uncontrolled manner, it may result in non-resolvable
access rules referring to one of these two units (no longer present in the new
organizational model).

Facing these challenges we need a logically centralized component which man-
ages the organizational model and its changes in a consistent and efficient man-
ner. Furthermore, model changes have to be propagated to access rules (used
within different system components) in a correct and efficient manner. Finally,
we have to consider both, access rules which are checked when a certain privilege
is applied (e.g., when a user wants to access a document) and rules which are
used to determine a set of authorized users (e.g., the set of actors who may work
on a certain workflow activity).

In this paper we present a comprehensive approach for the controlled evo-
lution of organizational models in cooperative IS. This approach complements
our previous work on the controlled evolution of process models and process
instances in adaptive process management systems [7, 8, 9, 10, 11]. First, we in-
troduce a set of operations with well-defined semantics for defining and changing
organizational models. Second, we present an advanced approach for the semi-
automated adaptation of access rules when the referred organizational model
is modified. For selected organizational changes we show how they can be re-
alized in our formal framework and how their effects on access rules look like.
We then try to derive migration strategies for affected access rules. Thereby
we make use of the semantics of the applied model changes and we introduce
formally sound migration concepts. For this purpose, we introduce a formal
meta model for defining and changing organizational models and related ac-

On the Controlled Evolution of Access Rules 241

cess rules. Altogether this paper includes a formal part concerning the evolu-
tion of organizational models and related access rules as well as a discussion of
practical issues.

Section 2 discusses related work. In Section 3 we present a sample meta
model for defining organizational models and access rules. Section 4 deals with
the evolution of organizational models and the (semi-automated) adaptation of
related access rules. Use cases and practical issues are sketched in Section 5. We
conclude with a short summary and an outlook on future work.

2 Related Work

The provision of adequate access control mechanism is indispensable for any co-
operative IS. In the literature many approaches exist dealing with corresponding
issues (e.g., [6, 12, 13, 14]). Most of them use Role–Based Access Control (RBAC)
models for defining and managing user privileges [15, 16, 12, 17], e.g., for ensuring
the controlled access to business documents when using document management
technology [18] or for resolving the set of actors that qualify for a certain task
in a workflow management system [19, 20, 21, 13, 14]. Regarding workflow–based
applications, in addition, dynamic constraints (e.g., separation of duties) have
been considered [20, 21]. So far, however, only few approaches [22, 23] have ad-
dressed the problem of organizational change (see below).

Issues related to the modeling of organizational structures have been consid-
ered by different groups [5, 13, 24]. Most of them suggest a particular meta model
for capturing organizational entities and their relations. Model changes and the
adaptation of access rules, however, have not been studied by these approaches
in sufficient detail.

In [25] several issues related to changes of process and organizational struc-
tures have been discussed. In this work the authors also motivate the need for
the controlled change of organizational models. In particular, they discuss dif-
ferent kinds of adaptations that have to be supported (e.g., to extend, reduce,
replace, and re-link model elements). However, no concrete solution approach is
provided (like, for example, formal change operators with well–defined semantics
or mechanisms for adapting access rules after model changes).

In [6, 26] the author identifies eight different categories for structural changes of
organizational models. Examples of such change categories include the splitting of
organizational units, the creation of new organizational entities, and the re-linkage
of a user to a new unit. In principle, all these cases can be captured by our change
framework as well. As opposed to [6], however, we have followed a rigorous formal
approach in order to be able to derive the effects of organizational changes on re-
lated access rules as well. This issue has not been addressed in [6].

Other approaches have introduced role–based access control model for adap-
tive workflows [14, 23]. In [23] the authors additionally address issues related to
the evolution of access rights in workflow management systems. However, no for-
mal considerations are made and only simple cases are managed when compared
to our approach.

242 S. Rinderle and M. Reichert

Organizational
Unit Actor Role

is subordinated

has

specializes

belongs to

(0,1)(0,n)

(0,n) (0,1) (0,n) (0,n)

(0,n)(0,1)

Fig. 2. Organizational Meta Model

3 Organizational Models and Access Rules

In order to be able to reason about organizational changes and their concrete
impact on access rules we need a formalization of organizational structures.
For this purpose, first of all, we introduce an (organizational) meta model,
which is comparable to existing RBAC models (e.g., [15]) and which can be
used for describing organizational entities and the relations between them (cf.
Fig. 2). Due to lack of space, in this paper we restrict our considerations to
the basic entity types organizational unit, role and actor, and to the particu-
lar relation types existing between them (e.g., actor A1 belongs to organiza-
tional unit O1, role R1 specializes role R0, etc.). In our complete framework
currently implemented in the ADEPT2 project, we also consider entity types
like position, group or capability when defining and changing organizational
models [24].

Regarding the meta model OMM assumed in this paper (cf. Fig. 2) we
specify the set of valid entity types and the set of valid relation types as follows:

– EntityTypes := {OrgUnit, Actor, Role}
– RelationTypes := {(OrgUnit, OrgUnit, is subordinated), (Role,

Role, specializes), (Actor, OrgUnit, belongs to), (Actor, Role,
has)}

We further denote

– E := EId:= {(entId, entType) | entId ∈ Id, entType ∈ EntityTypes)} as the
set of all entities definable over a set of identifiers Id and

– RE := {(e1, e2, relType) | e1 = (eId1, eType1), e2 = (eId2, eType2) ∈ E ,
(eType1, eType2, relType) ∈ RelationTypes} as the set of all relations de-
finable over E

Actors are users (or resources) who need privileges to work on certain tasks
(e.g., workflow activities) or to access certain data objects (e.g., documents).
Generally, access rules are not directly linked to actors, but to the more abstract
concept of a role. Roles group privileges and are assigned to actors based on
their capabilities and competences. Generally, an actor can play different roles:
A physician in a hospital, for example, may play the two roles ward doctor and
radiologist. Actors possessing the same role are considered as being interchange-
able. Furthermore, roles can be hierarchically organized, i.e., a role may have

On the Controlled Evolution of Access Rules 243

one or more specialized sub–roles. Thereby a sub–role inherits all privileges of
its super–role and may extend this set by additional privileges. Finally, each
actor can be assigned to an organizational unit. Like roles, organizational units
can be hierarchically structured; i.e., a particular unit may have one or more
subordinated units (e.g., a medical hospital may have an intensive care unit and
an emergency laboratory).

Based on the introduced meta model we can now define the notion of or-
ganizational model. For the sake of simplicity, in this paper we do not con-
sider the cardinalities associated with the relation types of our meta model
(cf. Fig. 2).

Definition 1 (Organizational Model). For the organizational meta model
OMM let E be the set of all entities over a given set of identifiers and let RE be
the set of all relations over E (see above). Then: An organizational model OM is
defined as a tuple (Entities, Relations) with Entities ⊆ E and Relations ⊆ RE .

The set of all org. models definable on basis of OMM is denoted as OM.

Let OM = (Entities, Relations) be an organizational model. Based on the
organizational entities and relations described by OM we can define rules in
order to control the access to tasks, services, documents, or other objects. Since
the structuring and semantics of the access rules is fundamental for the (semi-)
automated derivation of rule adaptations, we consider this issue in more detail.
We distinguish between elementary and complex access rules.

An elementary access rule consists of a simple expression that qualifies a set
of entities from OM (i.e., a subset of Entities) for this rule. The elementary
access rule Actor = ’Hunter’, for example, expresses that exactly one entity,
namely the actor with name ’Hunter’, qualifies for this rule and therefore owns
the privileges associated with it. As a second example consider the elementary
access rule OrgUnit = clinic. For this access rule we denote the organizational
unit clinic as the qualifying entity. Furthermore, all actors belonging to this
unit own the privileges associated with this rule (e.g., getting access to a cer-
tain business document). For entities that can be hierarchically organized (i.e.,
for organizational units and roles in our meta model) we further allow for the
definition of transitive elementary access rules. As an example consider the el-
ementary access rule OrgUnit = clinic(+). For this rule the set of qualifying
entities comprises the organizational unit clinic itself and all of its directly
or indirectly subordinated units (i.e., the transitive closure with respect to the
’is-subordinated’ relation). All actors belonging to one of these qualifying units
own the privileges associated with this rule. Similar considerations can be made
regarding the ’specializes’ relation between entities of type Role.

Definition 2 (Elementary Access Rule).
Let OM = (Entities, Relations) be an organizational model based on OMM. Then
an elementary access rule EAR on OM is defined as follows:

EAR ≡ (EAR1←−(EntityType = el)) | (EAR2←−(OrgUnit = el(+))) | (EAR3 ←− (Role = el(+)))

The set of entities qualifiying for one of the elementary access rules EAR1, EAR2
or EAR3 can be determined as follows:

244 S. Rinderle and M. Reichert

– EAR1 ←− (EntityType = el)

QualEntities(OM, EAR1) =
{ {(el, EntityType)} : (el, EntityType) ∈ Entities

∅ : otherwise

– EAR2 ←− (OrgUnit = el(+))

QualEntities(OM, EAR2) =
{ {(el, OrgUnit)} ∪ Sub(OM, el) : (el, OrgUnit) ∈ Entities

∅ : otherwise
with
Sub(OM, el):=

⋃
el′:(el′,el,issubordinated)∈Relations

({(el′, OrgUnit)} ∪ Sub(OM, el′)
)

– EAR3 ←− (Role = el(+))

QualEntities(OM, EAR3) =
{ {(el, Role)} ∪ Spec(OM, el) : (el, Role) ∈ Entities

∅ : otherwise
with

Spec(OM, el):=
⋃

el′:(el′,el,specializes)∈Relations

({(el′, Role)} ∪ Spec(OM, el′)
)

In order to enable the definition of more complex access rules we allow for
the composition of existing rules (cf. Definition 3). For this purpose the following
operators can be used: negation, conjunction, and disjunction.

Definition 3 (Access Rule).
Let OM = (Entities, Relations) be an organizational model based on OMM. Then
an access rule AR on OM is defined as follows:

AR ≡ EAR | NEAR | CAR | DAR with

– NEAR ←− (NOT (EAR)) where EAR is an elementary access rule
– CAR ←− (AR1 AND AR2) with AR1 and AR2 are access rules

– DAR ←− (AR1 OR AR2) with AR1 and AR2 are access rules

Consider the organizational model OM depicted in Fig. 1. An example for a
composed access rule on OM is AR ←− (OrgUnit = medical clinic(+) AND
Role = assistant). Regarding the first part of this rule (i.e., the elementary
access rule EAR1 ←− (OrgUnit = medical clinic(+)) we obtain QualEnti-
ties(OM, EAR1) = {medical clinic, treatment area} as the set of qualifying
entities. For the second elementary rule EAR2 ←− (Role = assistant) the set
of qualifying entities is QualEntities(OM, EAR2) = {assistant}.

We can use Definition 2 and Definition 3 in order to determine the set of
actors qualifying for access rule AR (cf. Definition 4). Corresponding actors then
own the privileges associated with this rule.

Definition 4 (Valid Actor Set). Let OM = (Entities, Relations) be an or-
ganizational model. Let Act(OM) := {(a, Actor)| (a, Actor) ∈ Entities} be the
set of all actors defined by OM, and let AR be an access rule on OM. Then:
VAS(OM, AR) denotes the set of all actors (from OM) who qualify for AR (i.e.,
who own the privileges associated with rule AR). Formally:

– AR ←− (EntityType = el) =⇒

V AS(OM, AR) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(el, Actor)|(el, Actor) ∈ Act(OM)} ifEntityType = Actor
{(a, Actor)|(a, Actor) ∈ Act(OM)∧

∃(a, el, belongsto) ∈ Relations)} ifEntityType = OrgUnit
{(a, Actor)|(a, Actor) ∈ Act(OM)∧

∃(a, el, has) ∈ Relations)} ifEntityType = Role

– AR ←− (EntityType = el(+)) =⇒

On the Controlled Evolution of Access Rules 245

V AS(OM, AR) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{(a, Actor)|(a, Actor) ∈ Act(OM)∧
∃el′ ∈ QualEntities(OM, AR) :

∃(a, el′, belongsto) ∈ Relations)} ifEntityType = OrgUnit
{(a, Actor)|(a, Actor) ∈ Act(OM)∧

∃el′ ∈ QualEntities(OM, AR) :
∃(a, el′, has) ∈ Relations)} ifEntityType = Role

– AR ←− (NOT (AR1)) with AR1 is EAR =⇒
VAS(OM, AR) = Act(OM) \ VAS(OM, AR1)

– AR ←− (AR1 AND AR2) with AR1 and AR2 are access rules =⇒
VAS(OM, AR) = VAS(AR1) ∩ VAS(AR2)

– AR ←− (AR1 OR AR2) with AR1 and AR2 are access rules =⇒
VAS(OM, AR) = VAS(AR1) ∪ VAS(AR2)

Finally, we provide a criterion which allows us to decide when an access rule
AR is valid with respect to a given organizational model OM. We call an access
rule valid if the following two conditions hold:
(1) AR does not contain dangling references, i.e., it does not refer to entities
which are not present in OM. Formally:

DanglingRef(OM, AR) =
{
False if∀ EAR in AR : QualEntities(OM, EAR) = ∅
True otherwise

(2) AR is resolvable, i.e., the set of valid actors VAS(OM, AR) does not become
empty. Formally:

Resolv(OM, AR) =
{
True ifV AS(OM, AR) = ∅
False otherwise

Note that dangling references and/or non-resolvable access rules might occur
when changing organizational models in an uncontrolled manner.

Criterion 1 (Valid Access Rule) Let OM = (Entities, Relations) be an or-
ganizational model and let AR be an access rule on OM. Then AR is valid regarding
OM if and only if there are no dangling references within the elementary access
rules contained in AR and AR is resolvable over the set Entities, formally:
Valid(OM, AR) = True ⇐⇒ (DanglingRef(OM, AR) = False ∧ Resolv(OM, AR) = True)

4 Organizational Evolution and Effects on Access Rules

How do changes of an organizational model OM affect the access rules based
on it? In order to find a precise and satisfactory answer to this question, first
of all, we must be able to formally define a model change Δ and its semantics
(i.e., its effects on OM). Based on this information it should be possible to
determine which access rules (on OM) are affected by the model change, how
the effects of Δ on these rules look like, and which rule adaptations become
necessary.

In the following we assume the scenario depicted in Fig. 3: A (correct) or-
ganizational model OM is transformed into another (correct) model OM ′ by
applying change Δ = op1, ..., opn to it. The challenge then is to adapt valid

246 S. Rinderle and M. Reichert

AR1
AR2
AR3
.

?

OM: OM’:

Fig. 3. Changing Organizational Models and Migrating Access Rules

OU1

OrgUnit

SubOU2

OrgUnit

subordinated

SubOU1

OrgUnit

subordinated

OU2

OrgUnit

A1

Actor

belongsto

A2

Actor

belongsto

A3

Actor

belongsto

OUNew

OrgUnit

SubOU2

OrgUnit

SubOU1

OrgUnit

A1

Actor

A2

Actor

A3

Actor

belongsto belongsto

subordinated belongsto

JoinEntities(OM, OU1, OU2, OUNew)
OM OM’

Fig. 4. Joining Organizational Units

access rules on OM in a way that they remain valid on OM ′ as well; i.e., to
migrate these access rules from OM to OM ′, but without causing errors or
inconsistencies (e.g., dangling references).

In order to be able to express all kind of changes on an organizational model
OM , we provide a complete set of basic change operations to the user (e.g., for
creating / deleting entities and relations). For each change operation we define
formal pre– and post–conditions, which preserve the correctness of OM when
applying the operation(s) to it (assuming that OM has been a correct model
before). In addition to these basic change operations we provide frequently used,
high–level operations in order to facilitate change definition and to capture more
semantics about changes. Examples include operations for joining two entities
(e.g., organizational units; cf. Fig. 4) to a new one or for splitting an existing
entity (e.g., a role) into two new entities. Formally:

Definition 5 (Change Framework for Organizational Models). Let E be
the set of all entities over a set of identifiers and let RE be the set of all relations
over E. Let further OM = (Entities, Relations) be a (correct) organizational
model. Table 1 defines basic change operations Δ, which transform OM into
another (correct) organizational model OM’:=(Entities’, Relations’). In Table 2,
in addition, two high–level change operations are given, whose definition is based
on the basic change operations from Table 1.

On the Controlled Evolution of Access Rules 247

Table 1. Basic Change Operations on Organizational Models

CreateEntity:OM× Identifier × EntityType �→ OM with CreateEntitiy(OM, eId, entType) = OM’
Preconditions: • (eId, entType) �∈ Entities
Postconditions: • Entities’ = Entities ∪ {(eId, entType)}

• Relations’ = Relations
DeleteEntity: OM × E �→ OM with DeleteEntity(OM, e) = OM’

Preconditions: • e ∈ Entities
• � ∃ rel = (e1, e2, relType) ∈ Relations with e1 = e ∨ e2 = e

Postconditions: • Entities’ = Entities \ {e}
• Relations’ = Relations

CreateRelation: OM× E × E × RelType �→ OM with CreateRelation(OM, e1, e2, relType) = OM’)
Preconditions: • e1 := (eId1, eType1), e2 := (eId2, eType2) ∈ Entities

• (e1, e2, relType) ∈ R
• (e1, e2, relType) �∈ Relations

Postconditions: • Entities’ = Entities
• Relations’ = Relations ∪ {(e1, e2, relType)}

DeleteRelation: OM× RE �→ OM with DeleteRelation(OM, relation) = OM’
Preconditions: • relation ∈ Relations
Postconditions: • Entities’ = Entities

• Relations’ = Relations \ {relation}
ReAssignRelaton: OM× RE × E × E �→ OM with ReAssignRelation(OM, r, e, eNew) = OM’

Preconditions: • r = (e1, e2, relType) ∈ Relations
• e = e1 ∨ e = e2
• eNew := (eIdNew, eTypeNew) ∈ Entities
• e = e1:=(eId1, eType1) =⇒ eTypeNew = eType1
• e = e2:=(eId2, eType2) =⇒ eTypeNew = eType2
• e = e1:=(eId1, eType1) =⇒ (eNew, e2, relType) �∈ Relations
• e = e2:=(eId2, eType2) =⇒ (e1, eNEw, relType) �∈ Relations

Postconditions: • e = e1 =⇒ Relations’ = Relations ∪ {(eNew, e2, relType} \
{(e1, e2, relType}
• e = e2 =⇒ Relations’ = Relations ∪ {(e1, eNew, relType} \
{(e1, e2, relType}

A new relation (of type relT ype) between two entities e1 and e2 of an organi-
zational model to OM = (Entities, Relations), for example, can be created by
applying the basic operation CreateRelation(OM, e1, e2, relType) to OM .
The pre–conditions associated with this operation then ensure that both entities
e1 and e2 are actually present in OM and that the relation (e1, e2, relT ype) is
a valid relation not yet present in OM . The post–condition of this operation,
in turn, describes the effects resulting from the application of the operation to
OM (in our example, relation (e1, e2, relT ype) is added to the set Relations,
whereas the set Entities remains unchanged).

When transforming an organizational model OM into another model OM ′

one must be able to decide which access rules defined on OM can be directly
migrated to OM ′, i.e., which rules can be immediately re–linked to the new
model version without need for adaptation. Intuitively, this is the case for access
rules which are also valid on OM ′ (cf. Theorem 1).

Theorem 1 (Direct Migration of Access Rules). Let OM = (Entities, Re-
lations) be a (correct) organizational model. Let further AR be a valid access rule
based on OM (i.e., Valid(OM, AR) = True) and let Δ be a (basic or high–level)
change operation which transforms OM into another (correct) organizational
model OM’. Then AR can be directly migrated to OM’ if Valid(OM’, AR) = True.

248 S. Rinderle and M. Reichert

Table 2. High–Level Change Operations on Organizational Models

JoinEntities: OM × E × E × Identifiers �→ OM with JoinEntities(OM, e1, e2, nId) = OM’
Preconditions: • e1= (eId1, eType), e2 = (eId2, eType) ∈ Entities

• (nId, eType) �∈ Entities
• eType �= Actor

Basic Change Operations: • CreateEntity(OM, (nId, eType)), eNew := (nId, eType)
• ∀ (e, e1, relType) ∈ Relations: ReassignRelation(OM, (e, e1,
relType), e1, eNew)
• ∀ (e, e2, relType) ∈ Relations: ReassignRelation(OM, (e, e2,
relType), e2, eNew)
• ∀ (e1, e, relType) ∈ Relations: ReassignRelation(OM, (e1, e,
relType), e1, eNew)
• ∀ (e, e2, relType) ∈ Relations: ReassignRelation(OM, (e, e1,
relType), e2, eNew)
• DeleteEntity(OM, e1)
• DeleteEntity(OM, e2)

SplitEntity: OM × E × E × E �→ OM with SplitEntity(OM, eOld, e1, e2) = OM’
Preconditions: • (eIdOld, eType) := eOld ∈ Entities

• (e1Id, eType) := e1, (e2Id, eType) := e2 �∈ Entities
• eType �= Actor

Basic Change Operations: • CreateEntity(OM, e1)
• CreateEntity(OM, e2)
• Reassigment of Relations −→ manually done by users
• DeleteEntity(OM, eOld)

The post conditions of the high–level changes result from the aggregation of the
post conditions of the applied basic change operations.

Table 3. Preliminary Considerations – Adaptation of Access Rules

Let Δ be a change operation (cf. Def. 5) which transforms a (correct) org. model OM
into another (correct) org. model OM’.
Δ Necessary Adaptations

CreateEntity(OM, e, eType) I, none
CreateRelation(OM, e1, e2, relType) II, VAS may become bigger for EAR or

smaller for NEAR (= ∅); no dangling ref-
erences within AR

DeleteRelation(OM, rel) II, VAS may become smaller for EAR (=
∅) or smaller for NEAR ; no dangling ref-
erences within AR

ReassignRelation(OM, rel, e, eNew) II, VAS may become smaller (= ∅) or big-
ger; no dangling references within AR

DeleteEntity(OM, e) IV, VAS may become smaller (= ∅) for
EAR or bigger for NEAR; dangling refer-
ences within AR possible

joinEntities(OM, e1, e2, eNew) IV, actor set changes, dangling references
possible

splitEntity(OM, e, e1, e2) IV, distribution of actor set is user depen-
dent, dangling references possible

Regarding basic change operations the direct migration of access rules from
OM to OM ′ is only possible in connection with the operation CreateEntity(OM,
...), i.e., when adding new entities to OM (cf. Lemma 1).

On the Controlled Evolution of Access Rules 249

Lemma 1 (Direct Migration of Access Rules). Let OM be a (correct) or-
ganizational model and let AR be a valid access rule on OM (i.e., Valid(OM, AR)
= True). Let further Δ be a change operation which transforms OM into another
(correct) organizational model OM’. Then AR can be directly migrated (re-linked)
to OM’, i.e., Valid(OM’, AR) = True if Δ = CreateEntity(OM, ...).

When creating a new entity, we can always guarantee that there will be no dan-
gling references within existing access rules and that this change is invariant
regarding the set of valid actors (cf. Table 3). If an access rule AR cannot be di-
rectly transferred to the changed organizational model there may be two reasons
for that. Either there are dangling references (e.g., due to the fact that an entity
to which AR refers has been deleted from OM) or the set of valid actors becomes
empty for AR on OM. The following lemma states for which basic change opera-
tions we can guarantee that there will be no dangling references within existing
rules after a change (cf. Table 3).

Lemma 2 (No Dangling References). Let OM be a (correct) organizational
model and let AR be a valid access rule on OM (i.e., Valid(OM, AR) = True).
Let further Δ be a change operation which transforms OM into another (correct)
organizational model OM’. Then:
DanglingRef(OM’, AR) = False if
Δ ∈ {CreateEntity(OM,...), CreateRelation(OM,...), DeleteRelation(OM,...),

ReAssignRelation(OM,...)}.

For all other basic and high–level change operations, i.e., for changes Δ ∈
{DeleteEntity(OM,...), JoinEntities(OM,...), SplitEntity(OM,...)},
their application to an organizational model OM may result in dangling refer-
ences within the set of existing access rules (cf. Table 3).

In order to keep the total set of access rules consistent and the respective
security component correctly running after applying model changes, we have to
adapt those access rules that are no longer valid. Due to the potentially high
number of rules that may exist in the system we want to assist the user as
much as possible in accomplishing this task. In particular, we aim at the (semi–)
automated migration and transformation of access rules in order to adapt them
to model changes (if possible and meaningful). With ’semi-automated’ we mean
that the system shall assist the user in an adequate way, e.g., by exploiting the
semantics of the applied change operation(s) and by making suggestions about
potential rule transformations.

Theorem 2 indicates which rule adaptations can be automatically derived and
suggested to the user in connection with the two high–level change operations
presented before (cf. Table 2). In particular, Theorem 2 summarizes adaptation
policies that can be applied to access rules containing dangling references. Doing
so, our approach makes use of the semantics of the applied changes operations.
Note that the derived policies only constitute suggestions, i.e., users may apply
another strategy if more favorable.

250 S. Rinderle and M. Reichert

Theorem 2 (Adaptation of Access Rules).
Let OM = (Entities, Relations) be a (correct) organizational model and let AR
be a valid access rule on OM. Let further Δ be a change operation which trans-
forms OM into another (correct) model OM’. Then: AR can be transformed into
a valid access rule AR’ on OM ′ by applying adaptation rule δAR (see below)
if Δ ∈ {JoinEntities(OM, ...), SplitEntity(OM, ...)}. For respective Δ
adaptation rule δAR turns out as follows:

– Δ = JoinEntities(OM, e1, e2, newE) =⇒ δAR:
∀ EAR in AR with EAR:= (EntityType = e1) ∨ EAR:= (EntityType = e2)

replace EAR by EAR’:= (EntityType = newE)) ∧
∀ EAR in AR with EAR:= (EntityType = e1(+)) ∨ EAR:= (EntityType = e2(+))

replace EAR by EAR’:= (EntityType = newE(+)))
– Δ = SplitEntity(OM, e, e1, e2) =⇒ δAR:

∀ EAR in AR with EAR:= (EntityType = e)
replace EAR by EAR:= ((EntityType = e1) OR (EntityType = e2))) ∧

∀ EAR in AR with EAR:= (EntityType = e(+))
replace EAR by EAR:= ((EntityType = e1(+)) OR (EntityType = e2(+))))

As an example consider the change scenario depicted in Fig. 1. Take access
rule AROM:= ((OrgUnit = treatment area) AND (Role = assistant)) and
change Δ. For the first change operation joinEntities(PM, (treatment area,
OrgUnit), (administration, OrgUnit), (patient services, OrgUnit))
the transformation described by Theorem 2 is applied and the access rule is trans-
formed into AR’OM ′ = ((OrgUnit = patient services) AND (Role =
assistant)). According to Theorem 2 deleting the two relations does not have
any effect on the access rule. The deletion of entity (Hunter, Actor) is uncrit-
ical since the set of valid actors for AR’ on OM ′ is non-empty.

Note that for join, split, and delete operations access rule transformations
do not always become necessary. If an access rule does not refer to any entity
joined, deleted, or splitted, the rule can stay unaltered after the respective model
transformation. Finally, in addition to the described rule transformations in our
current implementation we apply a number of other rule optimizations when
migrating rules to a new version of the organizational model. The treatment of
these optimizations, however, is outside the scope of this paper.

Our approach also deals with the challenging question of how to adapt access
rules when entities are deleted from OM . As already mentioned this might lead
to dangling references depending on the nature of the respective access rules. In
certain cases no automatic strategy for adapting a particular access rule can be
provided; the system then only reports the problem to the user and asks him
for an adequate solution strategy. However, there are also many cases where
automatic adaptations become possible, and thus users can be assisted in trans-
forming rules in a way such that they become valid on the new model version
OM ′ as well. In particular, this possibility exists in connection with the migra-
tion of composed access rules. As an example take access rule (AR ←− Role =
R1 ∨ Role = R2). If role R2 is deleted from the underlying organizational model
this causes a dangling reference in AR. However, a suggestion for an automatic

On the Controlled Evolution of Access Rules 251

adaptation would be to delete EAR ←− Role = R2 from AR which results in the
following rule: AR ←− Role = R1. This access rule does note contain dangling
references and it remains resolvable on OM’.

5 Practical Issues

To illustrate our results we apply them to an important use case of cooperative
information systems – the adaptation of actor assignments in workflow manage-
ment systems. More precisely we sketch how organizational changes are handled
in the ADEPT2 process management system (PMS) [27] and how the different
system components interact with each other to cope with model changes. Besides
dynamic adaptations of organizational models ADEPT2 provides sophisticated
support for process schema evolution [28] and process instance changes [7]. These
kinds of process changes have been subject of previous publications on ADEPT
and are outside the scope of this paper.

In the ADEPT2 buildtime environment, organizational models can be cre-
ated and modified by the use of a graphical editor. This tool, whose visualiza-
tion component is based on SVG (Scalable Vector Graphics), supports users in
graphically defining organizational models. Model changes can be accomplished
with the same tool and are based on the operations presented in this paper. All
changes are logged by a respective system component. Besides this organization
modeling component another tool exists, which allows users to define elemen-
tary and complex access rules based on the current version of the organizational
model. Only such rules can be expressed which are syntactically and semanti-
cally correct. Furthermore, this rule editor is realized as plug-in which can be
used within different client applications (in our case, for example, the workflow
editor makes use of this component for defining actor assignments).

Consider the scenario depicted in Fig. 5. When an organizational change oc-
curs authorized users can adapt the organizational model accordingly. In this
case a new version of the organizational model is created which, in turn, trig-
gers the migration and adaptation of related access rules. Rules which can be
directly accessed by the change manager are immediately checked and migrated
to the new model version. Rules which are kept outside the ADEPT2 system
(e.g., access rules within a document management systems), however, require
lazy migration techniques and more advanced mechanisms as well. In ADEPT2,
any change of the organizational model immediately triggers the migration and
adaptation of the access rules maintained within the ADEPT2 system. These
rules include, for example, actor assignments for process activities (i.e., execu-
tion rights for working on these activities [24]) as well as privileges for changing
process models and/or process instances [14].

In our scenario from Fig. 5, for example, a change of the depicted organiza-
tional model may require the adaptation of actor assignments within a process
model. ADEPT2 indicates necessary adaptations to the process engineer who
then can perform the respective changes at the process model level. Thereby we
make use of the conceptual framework presented in this paper.

252 S. Rinderle and M. Reichert

Organizational Model OM:

OU = medical practice

OU = treatment

A = Dr. Smith A = jon

R = internist R = secretary

is subordinated

belongs to

R = assistant

hashas has

A = Adam A = Black

OU = adminitration

is subordinated

belongs to belongs to belongs to

has has

Process Models:

P1

P2

I1

I2

I3

Process Instances

Actor assignment Rule:

SAR := (Org.Unit = treatment
 AND Role = assistant)

work lists

M3

Fig. 5. Change Scenario in Process Management Systems

The needed rule adaptations (i.e., adaptations of actor assignments) are
first carried out at the process model level. For long-running processes it might
also become necessary to propagate these model changes (i.e., the adaptations
of activity actor assignments) to already running process instances. This is
only possible for process instances that are compliant with the current pro-
cess model change. For example, when activities with modified actor assignment
have not yet been activated such a change propagation is possible in ADEPT2.
Finally, the described model and instance changes may also require the update
of user worklists. This is one of the biggest challenges when thinking of realistic
scenarios with ten thousands up to millions of work items. Worklist adapta-
tions, however, are outside the scope of this paper. An overview of the scenar-
ios supported in connection with changes of organizational models is given in
Table 4.

Fig. 6 gives an overview of the different system components of ADEPT2
and also indicates the complexity arising from the design and implementation of
adaptive process management technology. In the scenario described above the
following components are involved: Editor, ChangeMgr, WorklistMgr, OrgMod-
elMgr, AccessControlMgr, and LogMgr. Due to lack of space we omit a descrip-
tion of the architecture of this system and refer the interested reader to [27].

Table 4. Possible Scenarios when Changing the Organizational Model

Valid Actor Set
Access Rule unchanged changed
not directly affected I II (adapt worklists)
directly affected III IV

On the Controlled Evolution of Access Rules 253

Fig. 6. ADEPT2 system architecture (abstract view)

6 Summary and Outlook

Both the controlled evolution of organizational models and the correct adapta-
tion of access rules will be key ingredients of next generation enterprise security
systems, ultimately resulting in highly adaptive access control models. Together
with our complementary work on process evolution and dynamic process changes
[7, 9, 29, 28] the presented concepts contribute to a platform enabling the real-
ization of highly flexible and adaptive, cooperative information systems.

In this paper we have focussed on the common support of changes on or-
ganizational models and on the necessary adaptations of related access rules.
We have discussed important challenges and requirements for the evolution of
organizational models as well as the limitations of current approaches. The very
important aspect of our work is its formal foundation. We have given precise def-
initions and formal theorems which are fundamental for the correct handling of
model changes and adaptations of corresponding access rules. The treatment of
both elementary and composed access rules adds to the overall completeness of
our approach. Finally, in our ADEPT2 project a powerful proof-of-concept pro-
totype has been implemented, which demonstrates the feasibility of the presented
concepts. This prototype even uses a more expressive meta model to describe
organizational structures in a compact and user-friendly way. Furthermore it
considers the dynamic adaptation of actor assignments in process management
systems and necessary worklist updates as well.

There are many other challenging issues related to changes of organizational
models and of related access rules. First, we believe that respective changes must
be closely linked with other components of cooperative information systems.
For example, actor assignments in workflow–based applications may have to be
adapted on–the–fly in order to cope with organizational changes. This, in turn,
may require change propagation to hundreds up to thousands of in-progress

254 S. Rinderle and M. Reichert

process instances as well as to related user worklists. Doing this in a correct and
efficient manner is a non-trivial problem that will be investigated by us in more
detail in future. Finally, changes may not only concern the process model or
the organizational model but other components of the cooperative information
systems as well. As an example take resource models or data models, which may
be also subject of change.

References

1. v.d. Aalst, W., van Hee, K.: Workflow Management. MIT Press (2002)
2. Sutton, M.: Document Management for the Enterprise: Principles, Techniques and

Applications. John Wiley (1996)
3. Linthicum, D.: Enterpise Application Integration. Addison-Wesley (1999)
4. Konyen, I.: Organizational structures and business processes in hospitals. Master’s

thesis, University of Ulm, Computer Science Faculty (1996) (in German).
5. Jablonski, S., Schlundt, M., Wedekind, H.: A generic component for the computer–

based use of organizational models (in german). Informatik Forschung und En-
twicklung 16 (2001) 23–34

6. Klarmann, J.: A comprehensive support for changes in organizational models of
workflow management systems. In: Proc. 4th Int’l Conf. on Inf Systems Modeling
(ISM’01). (2001) 375–387

7. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. JIIS 10 (1998) 93–129

8. Rinderle, S., Reichert, M., Dadam, P.: On dealing with structural conflicts between
process type and instance changes. In Desel, J., Pernici, B., Weske, M., eds.: Proc.
2nd Int’l Conf. on Business Process Management (BPM’04). LNCS 3080, Potsdam,
Germany (2004) 274–289

9. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and overlapping process changes:
Challenges, solutions, applications. In: Proc. Int’l Conf. on Cooperative Informa-
tion Systems (CoopIS’04). LNCS 3290, Agia Napa, Cyprus (2004) 101–120

10. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering, Special Issue on
Advances in Business Process Management 50 (2004) 9–34

11. Reichert, M., Rinderle, S., Dadam, P.: On the common support of workflow type
and instance changes under correctness constraints. In: Proc. Int’l Conf. on Co-
operative Information Systems (CoopIS’03). LNCS 2888, Catania, Italy (2003)
407–425

12. Bertino, E.: Data security. DKE 25 (1998) 199–216
13. zur Muehlen, M.: Resource modeling in workflow applications. In: Proc. of the

1999 Workflow Management Conference (Muenster). (1999) 137–153
14. Weber, B., Reichert, M., Wild, W., Rinderle, S.: Balancing flexibility and security

in adaptive process management systems. In: Proc. Int’l Conf. on Cooperative
Information Systems (CoopIS’05), Agia Napa, Cyprus (2005)

15. Ferraiolo, D., Kuhn, D., Chandramouli, R.: Role–Based Access Control. Artech
House (2003)

16. NIST: Proposed Standard for Role-Based Access Control.
http://csrc.nist.gov/rbac/rbacSTDACM.pdf (2004)

17. Ferraiolo, D., Kuhn, D.: Role based access control. In: 15th National Computer
Security Conference. (1992)

On the Controlled Evolution of Access Rules 255

18. Sutton, M.: Document Management for the Enterprise – Principles, Techniques,
and Applications. Wiley Computer Publ., New York (1996)

19. Botha, R., Eloff, J.: A framework for access control in workflow systems. Informa-
tion Management and Computer Security. 9 (2001) 126–133

20. Bertino, E., Ferrari, E., Alturi, V.: The specification and enforcement of autho-
rization constraints in wfms. ACM Trans. on Inf. and Sys. Sec. 2 (1999) 65–104

21. Wainer, J., Barthelmess, P., Kumar, A.: W–RBAC – a workflow security model
incorporating controlled overriding of constraints. International Journal of Collab-
orative Information Systems 12 (2003) 455–485

22. Klarmann, J.: A comprehensive support for changes in organizational models of
workflow management systems. In: Proc. Int’l Conf. on Information Systems Mod-
eling (ISM’01), Hradec nad Moravici, Czech Republic (2001)

23. Domingos, D., Rito-Silva, A., Veiga, P.: Authorization and access control in adap-
tive workflows. In: Proc. Europ. Symposium on Research in Computer Science
(ESORICS’03), Gjovik, Norway (2003) 23–28

24. Berroth, M.: Design of a component for organizational models. Master’s thesis,
University of Ulm, Computer Science Faculty (2005) (in German).

25. v.d. Aalst, W., Jablonski, S.: Dealing with workflow change: Identification of issues
an solutions. Int’l Journal of Comp. Systems, Science and Engineering 15 (2000)
267–276

26. Klarmann, J.: Using conceptual graphs for organization modeling in workflow man-
agement systems. In: Proc. Conf. Professionelles Wissensmanagement (WM’01).
(2001) 19–23

27. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management
with adept2. In: Proc. 21st Int’l Conf. on Data Engineering (ICDE’05), Tokyo
(2005) 1113–1114

28. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by
adaptive workflow systems. Distributed and Parallel Databases 16 (2004) 91–116

29. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and
process evolution - a semantics based approach. In: 3rd Int’l Conf. on Business
Process Management (BPM’05), Nancy, France (2005)

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 256 – 273, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards a Tolerance-Based Technique for Cooperative
Answering of Fuzzy Queries Against Regular Database

Patrick Bosc, Allel Hadjali, and Olivier Pivert

IRISA/ENSSAT, 6 rue de kérampont - BP 80518
22305 Lannion Cedex, France

{bosc, hadjali, pivert}@enssat.fr

Abstract. In this paper, we present a cooperative approach for avoiding empty
answers to fuzzy relational queries. We propose a relaxation mechanism
generating more tolerant queries. This mechanism rests on a transformation that
consists in applying a tolerance relation to fuzzy predicates contained in the
query. A particular tolerance relation, which can be conveniently modeled in
terms of a parameterized proximity relation, is discussed. The modified fuzzy
predicate is obtained by a simple arithmetic operation on fuzzy numbers. We
show that this proximity relation can be defined in a relative or in an absolute
way. In each case, the main features of the resulting weakening mechanism are
investigated. We also show that the limits of the transformation, that guarantee
that the weakened query is not semantically too far from the original one, can
be handled in a non-empirical rigorous way without requiring any additional
information from the user. Lastly, to illustrate our proposal an example is
considered.

1 Introduction

There has been an increasing interest for intelligent information systems endowed
with cooperative behavior since the early' 90s. Such systems mainly intend to produce
correct, non-misleading and useful answers, rather than literal answers to the users'
queries [13]. These returned responses to queries allow to better serve the user's
needs, expectations and interests. They contain the information that the user actually
seeks. The most well-known problem approached in this field is the "empty answer
problem", that is, the problem of providing the user with some alternative data when
there is no data fitting his query. Several approaches have been proposed to deal with
this issue. Some of them are based on a relaxation mechanism that expands the scope
of the query [12][8][3]. This allows the database to return answers related to the
original user's query which are more convenient than an empty answer. Other
approaches propose knowledge discovery based solutions to this problem, see [16].

On the other hand, relying on fuzzy queries has the main advantage of diminishing
the risk of empty answers. Indeed, fuzzy queries are based on preferences and retrieve
elements that are more or less satisfactory rather than necessarily ideal. However, it
still may happen that the database does not have any element that satisfies, even
partially, the criterion formulated by the user. Then, an additional relaxation level

s

 Towards a Tolerance-Based Technique for Cooperative Answering of Fuzzy Queries 257

must be performed on the fuzzy query to avoid such empty answers. This can be
accomplished by replacing fuzzy predicates involved in the query with weakened
ones. The resulting query is then less restrictive.

In the fuzzy framework, query weakening consists in modifying the constraints
contained in the query in order to obtain a less restrictive variant. Such a modification
can be achieved by applying a basic transformation to each predicate of the query.
Note that research on query weakening has not received much attention in the fuzzy
literature. Very few works are concerned with this problem. The study done by
Andreasen and Pivert [1] is considered as pioneering in this area. This approach is
based on a transformation that uses a particular linguistic modifier. In [17], the
authors consider queries addressed to data summaries and propose a method based on
a specified distance to repair failing queries. Let us also mention the experimental
platform [7], called PRETI, in information processing which includes a flexible
querying module that is endowed with an empirical method to avoiding empty
answers to user's request expressing a search for a house to let. At the end of the
paper, we will give more details about these works.

Starting with the idea that allowing for a possible weakening of a query is
connected with the intuitive idea of introducing some tolerance into it, one way to
perform query weakening is to apply a tolerance relation to the fuzzy terms involved
in the query. A particular tolerance relation which is of interest in the context of query
weakening is considered. This relation can be conveniently modeled by a
parameterized proximity relation. This notion of proximity, which originates from
qualitative reasoning about fuzzy orders of magnitude [9][14], has been applied to
define a fuzzy set of values that are close to some real-valued x. Let us recall that
there are two points of view which can be considered to compare numbers and thus
orders of magnitude x and y on the real line. We can evaluate to what extent the
difference x − y is large, small or close to 0; this is the absolute comparative
approach. Or, we may use relative orders of magnitude, i.e., evaluate to what extent
the ratio x/y is close to 1 or not. This leads to two possible ways for defining a
proximity relation: in a relative or in an absolute way.

 In this paper, we propose an alternative method to transform a fuzzy predicate P
into an enlarged one, with the objective to keep it semantically close to the initial one,
and where the notion of proximity plays a central role. This proximity is intended for
defining a set of predicates that are close, semantically speaking, to a given predicate
P. This is why this notion appears appropriate in the perspective of relaxing queries.
Nevertheless, the way to address the problem using this notion can be viewed as an
original philosophy in query weakening, since known approaches proceed differently
and are based on other concepts.

The main features of the weakening mechanism resulting from the use of each kind
of proximity as a basis for the predicate transformation, are investigated in depth. We
show that in some cases our approach provides semantic limits to the iterative
weakening process in order to ensure that the modified query is as close as possible to
the original user's query. Moreover, the approach satisfies the properties required for
any weakening process as well, as we will see later.

The paper is structured as follows. The next section recalls the problem of fuzzy
query weakening on the one hand, and introduces the definition of the notion of
proximity by means of fuzzy relations on the other hand. Section 3 shows how the

258 P. Bosc, A. Hadjali, and O. Pivert

proposed proximity relation can be used for generating more fuzzy permissive
predicates and for achieving query relaxation in the case of single-predicate query.
Section 4 describes the possible weakening strategies for multiple-predicate queries
and presents an example to illustrate our proposal. In section 5, we provide a
summary about the available works in fuzzy query weakening. Last, we conclude and
attempt to outline some future works.

2 Background

In this section, we first introduce the problem of query weakening in the fuzzy setting.
Then, we present the modeling of the proximity relation of interest for expressing the
notion of tolerance.

2.1 Fuzzy Query Relaxation Problem

Fuzzy (or flexible) queries [5] are requests in which user's preferences can be
expressed. The user does not specify crisp conditions, but soft ones whose satisfaction
may be regarded as a matter of a degree. Then, (s)he can distinguish between
acceptable and non-acceptable answers in a more refined way than with a strictly
Boolean filter. Towards this end, vague predicates are allowed in the requests; such
predicates are represented by means of fuzzy sets1 and model gradual properties. A
typical example of a fuzzy query is: "retrieve the employees in a Department which
are young and well-paid", where the fuzzy predicates "young" and "well-paid" are
defined by the user (examples are given in figure 1). As a consequence, the result of a
query is no longer a set of selected elements but a set of discriminated elements
according to their global satisfaction.

Fig. 1. Fuzzy predicates young and well-paid (μyoung(31) = μwell-paid(4.2) = 0.6)

Introducing fuzziness in queries addressed to regular databases can be viewed as a
primary level of relaxation and contributes to avoiding empty answers when classical

1 A fuzzy set F in the referential U is characterized by a membership function μF: U → [0, 1],

where μF(u) represents the grade of membership of u in F. Two crisp sets are of particular
interest when defining a fuzzy set F: the core (i.e., Core(F) = {u∈U μF (u) = 1}) and the
support (i.e., S(F) = {u∈U μF (u) > 0}).

1

50 Salary (k€)

Satisfaction
degree

3 4.2

0.6

1

40250 Age

Satisfaction
degree

31

0.6

 Towards a Tolerance-Based Technique for Cooperative Answering of Fuzzy Queries 259

crisp queries are too restrictive. Although, it still may happen that there is no elements
in the database that satisfy, even partially, the vague criteria involved in a query. An
additional weakening level is then necessary to return non-empty answers to the user's
queries.

Weakening a "failing" fuzzy query consists in modifying the constraints involved in
the query in order to obtain a less restrictive variant. Let Q be a fuzzy query of the form
P1 and P2 and … and Pk (where Pi is a fuzzy predicate), and assume that the set of
answers to Q is empty. A natural way to relax Q, in order to obtain a non-empty set of
answers, is to apply a basic uniform transformation to each predicate Pi. This
transformation process can be accomplished iteratively if necessary. Nevertheless, some
desirable properties are required for any transformation T when applied to a predicate P:

(C1): It does not decrease the membership degree for any element of the domain, i.e.
∀ u ∈ domain(A), μT(P) (u) ≥ μP (u) where A denotes the attribute concerned by P;

(C2): It extends the support of the fuzzy term P, i.e. S(P) ⊂ S(T(P));
(C3): It preserves the specificity of the predicate P, i.e. Core(P) = Core(T(P)).

Then, if P is a fuzzy predicate represented by the Trapezoidal Membership Function
(TMF) (A, B, a, b), the desired transformation T is such that

P' = T(P) = (A, B, T(A, a), T(B, b)), (1)

where [A, B] and [A − T(A, a), B + T(B, b)] denote the core and the support of the
modified predicate P' respectively. See figure 2.

Fig. 2. Basic transformation

To be more efficient, a transformation T must still remain valid in the case of crisp
predicates, i.e., predicates expressed in terms of traditional intervals. In other terms,
the fuzzy inclusion P ⊂ T(P) must still hold.

Besides, it is worthwhile that a transformation T allows for providing semantic
limits. Namely, what is the maximum number of weakening steps that is acceptable
according to the user, i.e., such that the final modified query is not too far,
semantically speaking, from the original one. Such limits can offer a rational tool for
controlling the relaxation process.

1

 P' = T(P)

 T(B, b)

A
a b

 P

B U

 T(A, a)

260 P. Bosc, A. Hadjali, and O. Pivert

2.2 Modeling Tolerance

Let us first recall the formal definition of the concept of a tolerance relation [10]:

Definition. A tolerance relation (or proximity relation) is a fuzzy relation R on a
domain U, such that for u, v ∈ U,

(i) μR(u, u) = 1 (reflexivity),

(ii) μR(u, v) = μR(v, u) (symmetry).

The properties of reflexivity and symmetry are very appropriate for expressing the
degree of "closeness" or "proximity" between elements of a scalar domain. The
quantity μR(u, v) evaluates the proximity, or similarity, between elements u and v. In
the following we propose two ways for defining the notion of proximity on a scalar
domain. We can evaluate to what extent u – v is close to 0; this is the absolute
comparative approach. Or, we may use relative orders of magnitude, i.e., we evaluate
to what extent the ration u/v is close to 1 or not.

2.2.1 Relative Closeness
A relative closeness relation (Cl) is a reflexive and symmetric fuzzy relation such
that [14]:

μCl (x, y) = μM (x/y), (2)

where the characteristic function μM is that of a fuzzy number "close to 1", such that:

i) μM (1) = 1 (since x is close to x);

ii) μM (t) = 0 if t ≤ 0 (assuming that two numbers which are close should
have the same sign);

iii) μM (t) = μM (1/t) (since closeness is naturally symmetric). Then, M is a
symmetric fuzzy number which means that S(M) = [1 − ε, 1/(1 − ε)] with
ε is a real number.

M is called a tolerance parameter. Strict equality is recovered for M = 1 defined as
μ1(x/y) = 1 if x = y and μ1(x/y) = 0 otherwise. According to this point of view, we
evaluate the extent to which the ratio x/y is close to 1. The closer x and y are, the
closer to 1 x/y must be according to M. In the following x Cl[M] y expresses that x
and y satisfy the closeness relation in the sense of the fuzzy set M.

Semantic Properties of M. It has been demonstrated in [14] that the fuzzy number M
which parameterizes closeness (and negligibility relation) should be chosen such that
its support S(M) lies in the validity interval V = [(√5 − 1)/2, (√5 + 1)/2] in order to
ensure that the closeness relation be more restrictive than the relation "not
negligible"2. This means that if the support of a tolerance parameter associated with a
closeness relation Cl is not included in V, then the relation Cl is not in agreement with
the intuitive semantics underlying this notion.

2 The negligibility relation (Ne) is defined such that μNe[M](x, y) = μCl[M](x+y, y). The following

assumption holds as well: if x is close to y then neither is x negligible w.r.t. y, nor is y
negligible w.r.t. x. The interval V is such that μCl[M](x, y) 1–max(μNe[M](x, y), μNe[M](y, x)).

 Towards a Tolerance-Based Technique for Cooperative Answering of Fuzzy Queries 261

Interestingly enough, the validity interval V will play a key role in the proposed
query weakening process. As it will be shown later, it constitutes the basis for
defining a stopping criterion of an iterative weakening process.

2.2.2 Absolute Proximity
An absolute proximity is an approximate equality relation which can be modeled by a
fuzzy relation of the form [9]:

μE(x, y) = μZ(x − y), (3)

which only depends on the value of the difference x − y, and where Z is a fuzzy set
centered in 0, such that:

i) μZ(r) = μZ(− r);

ii) μZ(0) = 1;

iii) its support S(Z) = {r μZ(r) > 0} is bounded and is denoted by [− δ, δ]
where δ is a real number.

Property (i) ensures the symmetry of the approximate equality relation (μE(x, y) =
μE(y, x)); (ii) expresses that x is approximately equal to itself with a degree 1. Here we
evaluate to what extent the amount x − y is close to 0. The closer x is to y, the closer x
− y and 0 are. Classical equality is recovered for Z = 0 defined as μ0(x − y) = 1 if x =
y and μ0(x − y) = 0 otherwise. See [9] for other interesting properties of this relation.
In the following x E[Z] y expresses that x and y satisfy E in the sense of Z.

3 Tolerance-Based Approach for Fuzzy Query Relaxation

3.1 Principle of the Approach

Starting with the idea that allowing for a possible weakening of a query is
connected with the intuitive idea of introducing some tolerance into it, one way of
performing a query weakening is to apply a tolerance relation to the fuzzy terms
involved in the query. Let us consider a query which only involves one fuzzy
predicate P, and a tolerance relation R. As stressed in section 2.1, relaxing Q
consists in replacing the predicate P by an enlarged fuzzy predicate P' which can be
defined as follows:

∀ u ∈U, μP' (u) = supv∈U min (μP (v), μR(u, v)). (4)

Then, the basic transformation T is such that

P' = T(P) = P ° R, (5)

where ° stands for the fuzzy composition operation3 [11]. Clearly, the tolerance-based
transformation results in a modified predicate P' which gathers the elements of P and
the elements outside P which are somewhat close to an element in P.

3 If R and S are two fuzzy relations on UxV and VxW respectively, R°S is such that μR°S(u, w)

= sup v∈V min(μR(u, v), μS(v, w)).

262 P. Bosc, A. Hadjali, and O. Pivert

3.2 Non-symmetrical Relaxation

Let us first consider the case where the tolerance R is modeled in terms of the relative
closeness relation, Cl[M]. Then, the following proposition holds (using (4)):

Proposition 1. Using the extension principle, the modified predicate P' is such that

P' = T(P) = P ⊗ M,

where ⊗ is the product operation extended to fuzzy numbers.

Proof. From (4), we have

∀ u ∈ U, μP' (u) = supv∈U min (μP (v), μCl[M] (u, v))
 μP' (u) = supv∈U min (μP (v), μM (u/v)), since μCl[M] (u, v) = μM (u/v)

μP' (u) = μP⊗M(u), observing that v ⋅ (u/v) = u.

Then, P' = P ⊗ M. For more details about fuzzy arithmetic operations, see [11].
In terms of TMFs (Trapezoidal Membership Functions), if P = (A, B, a, b) and

M = (1, 1, ε, ε/(1 − ε)) with ε ∈ [0, (3 − √5)/2], then P' = (A, B, a + A⋅ε, b + B⋅ε/
(1 − ε)) by applying the above proposition. This leads to the following equalities T(A,
a) = a + A⋅ε and T(B, b) = b + B⋅ε/(1 − ε) (see figure 1). It is easy to check that the
desired properties (C1) to (C3), required for any basic transformation, are satisfied in
this case.

Now, by exploiting the above equalities, one can also easily perceive the meaning
of the scalar A⋅ε (respectively B⋅ε/(1 − ε)) which quantifies the left (respectively the
right) weakening rate. Moreover, and since ε < ε/(1 − ε) (for 0 < ε ≤ (3 − √5)/2] ≅
0.38), the equality between A⋅ε and B⋅ε/(1 − ε) never holds, even when A = B, the
resulting weakening is of a non-symmetrical nature.

In practice, if Q is a fuzzy query containing one predicate P (i.e., Q = P) and if the
set of answers to Q is empty, then Q is relaxed by transforming it into Q1 = T(P) =
P ⊗ M. This transformation can be repeated n times until the answer to the revised
question Qn = T(T(…T(P)…)) = Tn(P) = P ⊗ M n is not empty.

Controlling Relaxation. In order to ensure that the revised query Qn is semantically
close enough to the original one, the support of Mn should be included in the interval

let Q = P
let ε be a tolerance value (* ε ∈ [0, (3 − √5)/2] *)
i := 0 (* i denotes the number of weakening steps *)
Qi := Q
compute ΣQ

i
 (* Σ

Q
i
 represents the set of answers to Q

i
 *)

while (ΣQ
i
 = ∅ and S(Mi+1) ⊆ V) do

 begin
 i := i+1
 Qi := P ⊗ Mi
 compute ΣQ

i

 end
if ΣQ

i
 ≠ ∅ then return ΣQ

i
 endif.

Algorithm 1.

 Towards a Tolerance-Based Technique for Cooperative Answering of Fuzzy Queries 263

of validity V. In effect, the relation Cl[Mn] is no longer a closeness relation
semantically speaking when S(Mn) does not lie in V, despite its appearance at the
syntactic level. Then, the above iterative procedure will stop either when the answer is
non-empty or when S(Mn) ⊄ V.

This weakening process can be formalized by algorithm 1 (the choice of ε will be
discussed in section 4).

Fig. 3. Impact of the slopes and the relative position of the membership functions on the
weakening mechanism when applying the closeness-based approach (a = b, a'1 = a+A1ε, b'1 =
b+B1ε/(1-ε), a'2 = a+A2ε, b'2 = b+B2ε/(1-ε) a'1 < a'2, b'1 < b'2, a'i < b'i for i = 1,2)

Basic Properties. Let us now investigate the main features of this approach to single-
predicate query weakening. As illustrated in figure 3, we can easily check that:

i) The relative position of the membership function in the referential is a
major factor that affects the weakening effect, rather than its left and right
spreads. On the other hand, modifying the domain unit does not lead to
any change in the weakening effect;

ii) as already mentioned, this approach is basically non-symmetric. In figure
3, for instance, if P1 = (A1, B1, a, b) = (100, 180, 10, 10) then the
weakened predicate P'1 = (A'1, B'1, a'1, b'1) = (100, 180, 10+10, 10+20)
for ε = 0.1;

iii) the Maximal Left Relaxation (MLR) is reached for the higher value of ε,
namely ε = εmax = (3 − √5)/2 (≅ 0.38). Then, MLR is equal to εmax⋅A for
any predicate P = (A, B, a, b). As in the modified predicate P ' = (A, B, a',
b'), b' = b + B⋅η with η = ε/(1 − ε), then the Maximal Right Relaxation
(MRR) can be estimated by the following expression B⋅ηmax with ηmax =
εmax/(1 − εmax) = (√5 − 1)/2 (≅ 0.61). This means that this approach
provides semantic limits that may serve to control and restrict the
weakening process.

3.3 Symmetrical Relaxation

This section is mainly concerned with the use of the absolute proximity relation, E(Z),
as a basis for modeling the tolerance relation R. Let us first state the following
proposition which is straightforwardly obtained from (4):

 A1 A2 B2 B1 A1-a B1+b B2+b A2-a

 A1-a'1 B1+b'1 A2-a'2 B2+b'2

P1 P'2 P'1 P2

264 P. Bosc, A. Hadjali, and O. Pivert

Proposition 2. Using the extension principle, the modified predicate P' is such that

P' = T(P) = P ⊕ Z,

where ⊕ is the addition operation extended to fuzzy numbers.

Proof. Also from (4), we have

∀ u ∈ U, μP' (u) = supv∈U min (μP (v), μE(Z) (u, v))

 μP' (u) = supv∈U min (μP (v), μZ (u − v)), since μE(Z) (u, v) = μZ (u − v)

μP' (u) = μP⊕Z (u), observing that v + (u − v) = u.

Then, P' = P ⊕ Z.
As can be seen, the revised predicate P' contains P and the elements outside P

which are in the neighborhood of an element of P. The basic transformation T writes
T(P) = P ° E[Z] = P ⊕ Ζ. In terms of TMFs, if P = (A, B, a, b) and Z = (0, 0, δ, δ),

then P' = (A, B, a + δ, b + δ) using the above arithmetic formula. Clearly, this
transformation is in agreement with the requirements (C1) to (C3) as well. Now
according to figure 1, we have T(A, a) = a + δ and T(B, b) = b + δ). This means that
the weakening effect in the left and right sides is the same and is quantified by the
scalar δ. Due to this equality, the resulting weakening is then of a symmetrical nature.

Now relaxing a query Q containing one predicate P (Q = P) can be achieved as
follows. If the set of answers to Q is empty, then Q is transformed into Q1 = P ⊕ Z.
This progressive relaxation mechanism can be applied iteratively until the answer to
the revised query Qn = P ⊕ n⋅Z is not empty. From a practical point of view, this
mechanism is very simple to implement, however, no information is provided about
the semantic limits. Indeed, no intrinsic criterion is produced by this transformation
enabling the stopping of the iterative process when the answer still remains empty.

Controlling Relaxation. To enable some controlling of the relaxation process, one
solution consists in asking the user to specify, along with his query, the fuzzy set Fp of
non-authorized values in the related domain. Then, the satisfaction degree of
an element u becomes min(μQi

(u), 1 − μFP
(u)) with respect to the modified query Qi

let Q := P
let δ be a tolerance value (* Z = (0, 0, δ, δ) *)
i := 0
Qi := Q
compute ΣQ

i

while (ΣQ
i
 = ∅ and Core()Q(S i) Core(Fp)) do

 begin
 i := i+1
 Qi := P ⊕ i⋅Z
 compute ΣQ

i

 end
if ΣQ

i
 ≠ ∅ then return ΣQ

i
 endif.

Algorithm 2.

 Towards a Tolerance-Based Technique for Cooperative Answering of Fuzzy Queries 265

resulting from i weakening steps. The weakening process will now stop when the
answer to Qi is not empty (ΣQi

 ≠ ∅) or when the core of the complementary of the

support of Qi is included in the core of FP (i.e., min(μQi
(u), 1 − μFP

(u)) = 0).

This weakening technique can be sketched by the algorithm 2 (where)Q(S i

denotes the complementary of the support of Qi).

Fig. 4. Impact of the slopes and the relative position of the membership functions (a1=a2=a <
b1=b2=b a'1=a'2=a+δ < b1=b2=b+δ)

Basic Properties. Let us now take a look at the behavior of this query weakening
method. From the above survey and as shown in figure 4, we point out that:

i) the slopes and the relative position of the membership function have no
impact on the weakening effect when using this approach; However, the
attribute domain is identified as a major factor affecting the weakening
because δ is an absolute value which is added and subtracted (δ will be
different for the attributes "age" and "salary", for instance).

ii) The nature of the resulting weakening is symmetrical. Indeed, the
intensity of the weakening both in the left and right sides is given by the
same quantity δ.

iii) No means are provided for estimating in terms of the tolerance value δ,
even roughly, the ratios MLR and MRR when using this weakening
technique. However, we have MLR = MRR in this case.

3.4 A Comparison

From a practical point of view, it is of great interest to compare the two proposed
weakening methods in order to know in which case each may be the most suitable. To
do this, we have listed five criteria that seem of major importance for the user:

(i) Preservation/modification of the specificity of the attribute.
(ii) Symmetric/non-symmetric relaxation.
(iii) Semantic control of the relaxation.

A1 A2 B2 B1 A1-a B1+b B2+b A2-a

 A1-a+δ B1+b+δ A2-a+δ B2+b+δ

P1 P'2 P'1 P2

266 P. Bosc, A. Hadjali, and O. Pivert

(iv) Factors related to the domain and the predicate: it consists in checking
whether the attribute domain and the shape (or relative position) of the
predicate membership function can have some impact on the weakening
effect.

(v) Applicability in the crisp case: is the transformation still valid for
predicates expressed as traditional intervals?

In table 1, we summarize the behavior of each query weakening technique with
respect to the above five criteria. As it is shown in the table, the most interesting
features of the relative closeness-based approach is the rigorous semantic limits for
controlling the query relaxation level that it provides. On the other hand, the benefit
of the absolute proximity-based approach with respect to relative closeness-based one
lies in the symmetrical nature of the weakening that it yields.

Table 1. A Comparison

Criteria
Relative closeness-based

approach
Absolute proximity-based

approach

(i) Attribute specificity preserved Attribute specificity preserved

(ii) Non-symmetrical weakening
Symmetrical weakening by

nature

(iii) Semantic limits provided No intrinsic semantic limits

(iv)

Attribute domain-independent
and

 predicate membership
function-dependent

Attribute domain-dependent
and

 predicate membership
function-independent

(v) Still effective in the crisp case Still effective in the crisp case

4 Relaxation of Complex Fuzzy Queries

A complex fuzzy query Q is of the form P1 op P2 op … op Pk, where Pi is a fuzzy
predicate and op stands for a connector which can express a conjunction (usually
interpreted as a 'min' in a fuzzy framework), a disjunction (usually interpreted as a
'max'), etc.. An empty answer for a disjunctive query means that each predicate Pi has
an empty support (relatively to the state of the database). The situation is similar when
the connector, rather to be a disjunction, is a non-absorbing operator for zero (for
instance the mean). On the other hand, for a conjunctive query, it suffices that one
fuzzy term has an empty support so that the global answer is empty. In practice, this is
the kind of queries that is problematic. This is why, and also for the sake of simplicity
and brevity, we only consider conjunctive queries.

Let us first emphasis that the fuzzy set framework provides two types of
approaches to weaken a complex fuzzy query: the term modification-based approach
(that is the concern of this paper) and the connector modification-based approach. The
latter is based on the replacement of one or more connectors by less restrictive

 Towards a Tolerance-Based Technique for Cooperative Answering of Fuzzy Queries 267

variants along the scale with disjunction as the least and conjunction as the most
restrictive connector. For instance, if Q is a conjunctive query of the form P1 and P2

and … and Pk (where Pi is a fuzzy predicate), the idea is to replace one or several
'and' operators by a less strict one. We will not consider this approach here. For more
details, see [2].

4.1 Relaxation Strategies

In the case of the term modification-based approach, two options can be envisaged for
the weakening procedure: i) a global query modification which consists in applying
uniformly the basic transformation to all the terms in the query; ii) a local query
modification which affects only some terms (or sub-queries). Most of the time, only a
part of the query is responsible for the empty answers. As a consequence, it is not
necessary to modify all the predicates in the query to avoid this problem. In such
cases, local strategy seems more suitable and results in modified queries that are
closer to the original one than the modified ones provided by the global strategy.
Another argument in a favor of the local strategy is its ability for explaining the cause
of the initial empty answer (indeed, only the modified predicates involved in the final
revised query are responsible for the initial empty answer).

Global Strategy. As mentioned above, it consists in applying the basic transformation
to the entire query. Given a transformation T and a conjunctive query Q = P1 and P2

and … and Pk, the set of revised queries related to Q resulting from applying T is

{Ti(P1) and Ti(P2) and … Ti(Pk)},

where i ≥ 0 and Ti means that the transformation T is applied i times. This strategy is
simple but conflicts somewhat with our aim, that is, to find the closest revised queries.

Local Strategy. In this case, the basic transformation applies only to subqueries.
Given a transformation T and a conjunctive query Q = P1 and P2 and … and Pk, the set
of modifications of Q by T is

{Ti
1(P1) and Ti

2(P2) and … Ti
k(Pk)},

where ih ≥ 0 and Ti
h means that the transformation T is applied ih times. Assume that

all conditions involved in Q are of the same importance for the user, a total ordering
(p) between the revised queries related to Q can be defined on the basis of the number
of the applications of the transformation T. Then, we have

Q' p Q" if count(T in Q') < count(T in Q").

This ordering allows to introduce a semantic distance between queries.
For that semantic distance to make sense, it is desirable that T fulfills the property

of equal relaxation effect on all terms. Several ways can be used for defining this
property. A possible definition is to consider the ratio of the areas of the trapezes
representing the membership functions associated to the original and the modified
predicates. This ratio must be of the same magnitude when a certain transformation T
is applied. Let us denote Δ(P, T(P)) this ratio when T is applied to P. We have

Δ(P, T(P)) = S(T(P))/S(P),

268 P. Bosc, A. Hadjali, and O. Pivert

where S(P) and S(T(P)) represent the areas of P and T(P) respectively. A simple
calculus enables to obtain (where η = ε/(1 − ε) and Ω = B − A + (B + b) − (A − a)):

Δ(P, T(P)) = 1 + (A⋅ε + B⋅η)/Ω if T(P) = P ° Cl[M]

Δ(P, T(P)) = 1 + 2δ/Ω if T(P) = P ° E[Z].

Now, given k predicates P1, …, Pk, the equal weakening effect property for a set of
transformation (T1, …, Tk) can be expressed as follows:

Δ(P1, T1(P1)) = Δ(P2, T2(P2)) = … = Δ(Pk, Tk(Pk)).

The total ordering induced by the transformation defines a lattice of modified queries.
For instance, the lattice associated with the weakening of the query "P1 ∧ P2 ∧ P3"
(with the symbol ∧ stands for the operator 'and') is given by figure 5:

Fig. 5. Lattice of relaxed queries (reduced to two levels)

The above lattice can be explored as follows. We start by computing the
satisfaction degrees of each predicate Pk (k = 1, 3). If at least one support is empty,
we generate the weakened query by relaxing all the predicates with empty supports.
Otherwise, we evaluate each weakened query belonging to the second level and we
test the emptiness of its support. If all the answers are empty, we generate the
weakened queries of the third level and the same method is applied and so on. To
improve this strategy, one can use a measure of selectivity [15] as heuristic to guide
through the lattice and to determine the terms which must be modified first. This
notion gives an indication of the size of the answers to each weakened query without
evaluating it against the database.

4.2 An Illustrative Example

A cooperative technique such as relaxation aims at finding a revised query
semantically close to the user's query with a non-empty answer that has been obtained
in the strict semantic limits of the relaxation process. As the relative closeness-based
method allows for satisfying this goal by providing rigorous semantic limits that are a
direct by-product of the fuzzy semantics underlying the closeness relation, we will
illustrate our proposal using this method. Let us first make clear how some initial

P1∧P2∧P3

T(P1)∧P2∧P3 P1∧T(P2)∧P3 P1∧P2∧T(P3)

T(P1)∧T(P2)∧P3 T(T(P1))∧P2∧P3 T(P1)∧P2∧T(P3) P1∧T(T(P2))∧P3 P1∧T(P2)∧T(P3) P1∧P2∧T(T(P3))

 Towards a Tolerance-Based Technique for Cooperative Answering of Fuzzy Queries 269

conditions of this method could be set. Let us stress that some choices have been
made only for the sake of illustration.

When using this query weakening method the first stage is to initialize the tolerant
parameter ε. One way consists in asking the user to estimate the maximal number of
weakening steps that he authorizes. Denoting by ω this number, the initial value of ε
that we propose can be εmax/ω (with εmax = (3 − √5)/2] ≅ 0.38). We believe that this
way of initializing ε could be acceptable by the user for two reasons. First, it takes his
desires and requirements into account. Secondly, it ensures that the provided value
lies in the authorized interval.

The proposed example concerns a user who wants to find the employees in a
department who satisfy the condition: young and well-paid. The relation describing
the considered employees is given in table 2.

Table 2. Relation of the employees

Name Age
Salary

(k€)
μP1

(u) μP2
(v)

Dupont 46 3 0 0

Martin 44 2.5 0 0

Durant 28 1.5 0.8 0

Dubois 30 1.8 0.67 0

Lorant 35 2 0.34 0

Then, the query of interest writes Q = "find employees who are young and well-
paid" where young and well-paid are labels of fuzzy sets represented respectively by
the TMFs P1 = (0, 25, 0, 15) and P2 = (5, +∞, 2, +∞) as drawn in figure 1. In the
following, we will simply write Q = P1 and P2.

As can be seen, each item of the database gets zero as satisfaction degree for the
user's query Q with the content of table 2. This means that none of the items satisfies
Q. Now, in order to return alternative answers to the user, we try to cooperate with
him by relaxing his question. We first achieve this relaxation using the global
strategy. Then, we consider the local strategy relaxation.

Table 3. First results based on global strategy

Name Age
Salary

(k€)
μT(P1)(u) μT(P2)(v) Satisfaction degrees to

the relaxed query Q1

Dupont 46 3 0 0.23 0

Martin 44 2.5 0 0.03 0

Durant 28 1.5 0.83 0 0

Dubois 30 1.8 0.72 0 0

Lorant 35 2 0.45 0 0

270 P. Bosc, A. Hadjali, and O. Pivert

Global Strategy Relaxation. Assume that the user sets ω = 3, then ε = 0.12 and the
TMF of M is (1, 1, 0.12, 0.13). By applying one weakening step, we transform Q into
Q1 = T(P1) and T(P2) where T(P1) = P1 ⊗ M = (0, 25, 0, 18.40) and T(P2) = P2 ⊗ M =
(5, +∞, 2.6, +∞). Table 3 summarizes the returned results when querying the database
using Q1. Unfortunately, the set of answers is still empty.

Then, a second weakening step is necessary to answer the initial user query. Since
S(M2) = [0.77, 1.29] is included in V, this step is acceptable from a semantic point of
view. Now, the revised query is Q2 = T2(P1) and T2(P2) where T2(P1) = (0, 25, 0,
21.80) and T2(P2) = (5, +∞, 3.2, +∞). This modification leads to the results reported in
table 4.

As indicated in table 4, some employees of the database somewhat satisfy the
weakened query Q2. Thus, the weakening process ends successfully and returns the
set of answers to the user, i.e., the employees Dupont, Martin and Lorant with the
satisfaction degrees 0.036, 0.12 and 0.06 respectively.

Table 4. Final results based on global strategy

Name Age
Salary

(k€)
μT2(P1)(v) μT2(P2)(v) Satisfaction degrees to

the relaxed query Q2

Dupont 46 3 0.036 0.37 0.036

Martin 44 2.5 0.12 0.21 0.12

Durant 28 1.5 0.86 0 0

Dubois 30 1.8 0.77 0 0

Lorant 35 2 0.54 0.06 0.06

Local Strategy Relaxation. As shown in table 2, the support of the predicate P2 is
empty. Hence, P2 is the responsible for the empty answer to the user's query Q.
According to the way of building the lattice (see figure 5), the modification will firstly
be applied to P2. The resulting query is then of the form Q'1 = P1 and T(P2) where T(P2)
= (5, +∞, 2.6, +∞). As mentioned in the beginning of this section, this example only
aims at illustrating our proposal. This why we have kept the same value for ε as above.

Table 5. First results based on local strategy

Name Age
Salary

(k€)
μP1

(u) μT(P2)(v) Satisfaction degrees to
the relaxed query Q'1

Dupont 46 3 0 0.23 0

Martin 44 2.5 0 0.03 0

Durant 28 1.5 0.8 0 0

Dubois 30 1.8 0.67 0 0

Lorant 35 2 0.34 0 0

 Towards a Tolerance-Based Technique for Cooperative Answering of Fuzzy Queries 271

The summary of the returned answers to Q'1 is given in table 5. As we can see, the
set of answers still remains empty. An additional weakening step is then necessary to
avoid such empty answers. By exploiting the lattice built on the basis of the revised
queries related to Q, we have the choice between the modified queries Q'2 = P1 and
T2(P2) and Q"2 = T(P1) and T(P2).

Let us consider for this weakening step the variant Q'2 = P1 and T2(P2) where
T2(P2) = (5, +∞, 3.2, +∞). Table 6 gives the satisfaction degrees to Q'2 of all the items
contained in the database. As can be seen, the employee Lorant somewhat fulfils the
vague requirements formulated in Q'2, then the relaxation process stops and Lorant is
returned as an answer to the user.

Table 6. Final results based on local strategy

Name Age
Salary

(k€)
μP1

(u) μT2(P2)(v) Satisfaction degrees to
the relaxed query Q'2

Dupont 46 3 0 0.37 0

Martin 44 2.5 0 0.21 0

Durant 28 1.5 0.8 0 0

Dubois 30 1.8 0.67 0 0

Lorant 35 2 0.34 0.06 0.06

5 Related Work

To the best of our knowledge, not much work has been performed about fuzzy query
relaxation. Andreasen and Pivert [1] have proposed an approach where the basic
transformation is based on a particular linguistic modifier, called ν-rather. To
illustrate this approach, let us first consider a fuzzy predicate P represented by (A, B,
a, b). Enlarging P can be accomplished by applying a linguistic modifier to it. For
example, the predicate "young" can be transformed into "more-or-less young" where
more-or-less is an expansive modifier. Thus, in the case of the ν-rather modifier, P
can be replaced by the enlarged fuzzy predicate P' = ν-rather(P) = (A, B, a/ν, b/ν),
with ν ∈ [1/2, 1].

Then, the basic transformation T is such that T(A, a) = a/ν and T(B, b) = b/ν, see
figure 1. We can also write T(A, a) = a + θ⋅a and T(B, b) = b + θ⋅b, with θ = (1 −
ν)/ν ∈]0, 1]. As can be seen, the resulting weakening effects in the left and right
sides are obtained using the same parameter θ. This is why the approach is said to be
quasi-symmetric (it is symmetric, if a = b). Furthermore, the requirements (C1)-(C3),
mentioned in section 2.1, are preserved by this modifier-based transformation.

In practice, assume that the user's query Q is such that Q = P. If there is no data
that fit Q, it is transformed into Q1 = rather (P) and the process can be repeated n
times until the answer to the question Qn = rather(rather(…rather (P)…)) is not
empty. The difficulty when applying this technique concerns its semantic limits.
Indeed, no intrinsic information is provided about the criterion for stopping the

272 P. Bosc, A. Hadjali, and O. Pivert

iterative process. To remedy this shortcoming, the authors advocate the use of the
solution based on the fuzzy set Fp of forbidden values (introduced in section 3.3).
Besides, it is worthwhile to emphasize that this technique totally fails when relaxing
classical crisp queries since ν-rather(P) = P if P is a crisp predicate.

In [17], the authors consider flexible queries addressed to data summaries and
propose a method based on a specified distance to repair failing queries. If no
summary fits a query Q, alternative queries are generated by modifying one or several
fuzzy labels involved in Q. This requires a pre-established order over the considered
attributes domains since a label is replaced by the closest one. The resulting queries
are ordered according to their closeness to the original one taking into account the
closeness of the modified labels. This distance-based measure of closeness is
debatable since it does not consider the relative closeness between two labels.
Moreover, this method does not provide any criterion for stopping the modification
process if the answer is still empty.

Let us also mention the work done in the platform PRETI [7] which includes a
flexible querying module. The user's request Q which expresses a search for a house
to let, involves a set of preference profiles. Each profile Pi is modeled by means of
fuzzy sets. If no answers are returned to the user, it is possible to avoid such empty
answers by providing the closest answers to him. The idea is that each elementary
requirement pertaining to an ordered domain is equipped with a default preference
profile P'i such that P'i coincides with Pi on the values where μPi(t) = 1, and is non
zero elsewhere on the whole attribute domain.

6 Conclusion

An alternative fuzzy set-based approach for handling query failure is proposed. It
contributes to enrich cooperative answering techniques in the context of usual
database fuzzy querying. The proposed method is based on the notion of proximity to
define a basic predicate transformation. This transformation aims at finding a set of
the closest predicates in the sense of the considered proximity. We have investigated
the behavior of the weakening mechanism according to whether the transformation is
based on a relative or an absolute proximity. We have shown that the former
transformation allows providing rigorous semantic limits for controlling the relaxation
process. This guarantees that the modified predicate is semantically close to the
original one.

In case of a multi-predicate query, it would be desirable to extend that notion of
semantic closeness to the overall query in order to asses the extent to which the final
revised query (Q') is semantically close to the original query (Q). Of course, this
measure of semantic closeness between Q' and Q could be established on the basis of
the closeness measure of each original predicate and its weakened variant involved in
Q'. One can evaluate the extent to which a predicate P is close to the modified
predicate P' using the closeness measure of two imprecise values x and y (represented
by two possibility distributions) related to the same attribute A, proposed in [6]. This
constitutes one direction of our current work.

 Towards a Tolerance-Based Technique for Cooperative Answering of Fuzzy Queries 273

References

[1] Andreasen T., Pivert O.: On the weakening of fuzzy relational queries. In Proc. of the 8th
Int. Symp. on Meth. For intell. Syst., Charlotte, USA, pp. 144-51, 1994.

[2] Andreasen T., Pivert O.: Improving answers to failing fuzzy relational queries. In Proc. of
the 6th Int. Fuzzy Syst. Assoc. World Congress, IFSA, São Paulo, Brazil, pp. 345-348, 1995.

[3] Benamara, F., Saint Dizier, P.: Advanced relaxation for cooperative question answering.
In New Directions in Question Answering, M. T. Maybury Ed., AAAI/MIT Press, 2004.

[4] Bosc, P., HadjAli, A., Pivert, O.: Fuzzy closeness relation as a basis for weakening fuzzy
relational queries. In Proc. of 6th Inter. Conf. FQAS, Lyon, France, 2004, pp. 41-53.

[5] Bosc, P., Pivert O.: Some approaches for relational databases flexible querying. Journal
of Intelligent Information Systems, 1, 1992, pp. 323-354.

[6] Bosc, P., Pivert O.: On the comparison of imprecise values in fuzzy databases. In Proc. of
6th IEEE Inter. Conf. on Fuzzy Systems, Barcelona, Spain, July 1-5, 1997, pp. 707-712.

[7] de Calmès, M., Dubois, D., Hullermeier, E., Prade, H., Sedes, F.: Flexibility and fuzzy
case-based evaluation in querying: An illustration in an experimental setting. Int. J. of
Uncertainty, Fuzziness and Knowledge-based Systems, 11(1), 2003, pp. 43-66.

[8] Chu, W.W., Yang, H., Chiang, K., Minock, M., Chow, G., Larson, C.: CoBase: A
scalable and extensible cooperative information system. Journal of Intelligent
Information Systems, 6, No 1, 1996, pp. 223-259.

[9] Dubois, D., HadjAli, A., Prade, H.: Fuzzy qualitative reasoning with words. In:
Computing with Words (P.P. Wang, Ed.), John wiley & Son, 2001, pp. 347-366.

[10] Dubois D., Prade H.: Tolerant Fuzzy Pattern Matching: An Introduction. In: Fuzziness in
Database Management Systems (Bosc P. and Kacprzyk J., Eds), Physica-Verlag, 1995.

[11] Dubois D., Prade H.: Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets Series
(Dubois D., Prade H., Eds), Vol. 3, Kluwer Academic Publishers, Netherlands, 2000.

[12] Gaasterland, T.: Cooperative answering through controlled query relaxation. IEEE
Expert, 12(5), Sep/Oct 1997, pp. 48-59.

[13] Gaasterland, T., Godfrey, P., Minker, J.: An overview of cooperative answering. Journal
of Intelligent Information Systems, 1(2), 1992, pp. 123-157.

[14] HadjAli A., Dubois D., Prade H.: Qualitative reasoning based on fuzzy relative orders of
magnitude. IEEE Transactions on Fuzzy Systems, Vol. 11, No 1, 2003, pp. 9-23.

[15] Piatetsky-Shapiro, G., Connell, C.: Accurate estimation of the number of tuples
satisfying a condition. In Proc. of ACM-SIGMOD, 1984, pp. 256-276.

[16] Ras, Z.W., Dardzinska, D.: Failing queries in distributed autonomous information
systems. In Proc. of ISMIS, LNAI No. 3488, 2005, pp. 152-160.

[17] Voglozin, W.A., Rashia, G., Ughetto, L., Mouaddib, N.: Querying the SaintEtiq
summaries: Dealing with null answers. In Proc. of 14th IEEE Inter. Conf. on Fuzzy
Systems, Reno (Nevada), USA, May 22-25, 2005, pp. 585-590.

Filter Merging for Efficient Information
Dissemination

Sasu Tarkoma and Jaakko Kangasharju

Helsinki Institute for Information Technology,
P.O. Box 9800, FIN-02015 HUT, Finland

{sasu.tarkoma, jkangash}@hiit.fi

Abstract. In this paper we present a generic formal framework for filter
merging in content-based routers. The proposed mechanism is indepen-
dent of the used filtering language and routing data structure. We assume
that the routing structure computes the minimal cover set. It supports
merging of filters from local clients, hierarchical routing, and peer-to-
peer routing. The mechanism is also transparent and does not require
modifications in other routers in the distributed system to achieve ben-
efits. In addition to content-based routers, the system may also be used
in firewalls and auditing gateways. We present and analyze experimental
results for the system.

Keywords: Distributed event-based computing, publish/subscribe.

1 Introduction

Future applications and services are anticipated to require mechanisms for in-
formation processing, gathering, and distribution in dynamic environments. The
popularity of information services that use content delivery and content match-
ing using interest profiles or filters motivates the development of algorithms
and protocols for efficient content dissemination, publish/subscribe, and profile
processing. Example applications are news, stock market [1] and weather no-
tification services, Internet games [2], group discussions and collaboration, and
monitoring and controlling sensors and actuators.

Filtering is a central core functionality for realizing event-based systems and
accurate content delivery. The main motivation for filtering is to improve ac-
curacy in information delivery by delivering only those messages that are in-
teresting for a client of the system — the delivered messages must match a
priori filters defined by the client. Filters and their properties are useful for
many different operations, such as matching, optimizing routing, load balanc-
ing, and access control. For example: a firewall is an example of a filtering router
and an auditing gateway is a router that records traffic that matches the given
set of filters. In content delivery, filters are continuous queries that are used to
target content.

Filter merging is a technique to find the minimum number of filters and con-
straints that have maximal selectivity in representing a set of filters by modifying

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 274–291, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Filter Merging for Efficient Information Dissemination 275

constraints in the filters. Merging and covering are needed to reduce processing
power and memory requirements both on client devices and on message or event
routers. These techniques are typically general and may be applied to subscrip-
tions, advertisements, and other information represented using filters. One of the
mainapplicationsoffiltermerging is content-basedrouting inpeer-to-peer systems.

In this paper, we present filter merging techniques for distributed information
routers. A router is characterized using a routing data structure such as the
Siena filters poset [3] or the poset-derived forest [4]. A content-based router
accepts incoming messages and routes them to neighboring routers based on
their interests. Interests are represented using filters or profiles defined in a multi-
dimensional content space. A notification is typically a set of discrete values in
this space and a filter is a set of discrete values or intervals.

The new contributions of this paper are as follows: 1. we present a formal
framework for filter merging that is based on covering relations and is indepen-
dent of the used filtering language and routing data structure, 2. the framework
integrates with existing systems, such as the Siena event router, and 3. we present
performance results on filter merging and discuss its feasibility.

The paper is structured as follows: In Section 2we present the preliminaries and
background. Section 3 presents the formal filter merging framework, and Section 4
examines the experimental results. Finally, in Section 5 we present the conclusions.

2 Background

The main functions of an information or event router are to match notifications
for local clients and to route notifications to neighboring routers that have previ-
ously expressed interest in the notifications. The interest propagation mechanism
is an important part of the distributed system and heart of the routing algorithm.
The desirable properties for an interest propagation mechanism are small rout-
ing table sizes and forwarding overhead [5], support for frequent updates, and
high performance.

2.1 Interest Propagation

In subscription semantics, the routers propagate subscriptions to other routers,
and notifications are sent on the reverse path of subscriptions. This model may
be optimized by constraining the propagation of subscriptions using advertise-
ments. In advertisement semantics subscriptions are sent on the reverse path
of overlapping advertisements. Many different interest propagation mechanisms
have been proposed for both subscriptions and advertisements, including simple,
covering, and merging based routing.

In simple routing each router knows all active subscriptions in the distributed
system, which is realized by flooding subscriptions. In identity-based routing a
subscription message is not forwarded if an identical message was previously for-
warded. This requires an identity test for subscriptions. Identity-based routing
removes duplicate entries from routing tables and reduces unnecessary forward-
ing of subscriptions.

276 S. Tarkoma and J. Kangasharju

In covering-based routing a covering test is used instead of an identity test.
This results in the propagation of the most general filters that cover more spe-
cific filters. On the other hand, unsubscription becomes more complicated be-
cause previously covered subscriptions may become uncovered due to an un-
subscription. Merging-based routing allows routers to merge exiting routing en-
tries. Merging-based routing may be implemented in many ways and combined
with covering-based routing [5]. Also, merging-based routing has more complex
unsubscription processing when a part of a previously merged routing entry
is removed.

2.2 Filter Model

We follow the basic concepts defined in the Siena system [3] and later refined
and extended in Rebeca [6]. A filter F is a stateless Boolean function that takes
a notification as an argument. Many event systems use the operators of Boolean
logic, AND, OR, and NOT, to construct filters. A filtering language specifies
how filters are constructed and defines the various predicates that may be used.
A predicate is a language specific constraint on the input notification. Typically,
filtering languages are compositional in the sense that, for example, a filter is
composed from subfilters, which are defined using predicates. Predicates are
called atomic when they are the smallest possible unit of composition.

A filter is said to match a notification n if and only if F (n) = true. The set
of all notifications matched by a filter F is denoted by N(F). A filter F1 is said
to cover a filter F2, denoted by F1 � F2, if and only if all notifications that are
matched by F2 are also matched by F1, i.e., N(F1) ⊇ N(F2). The � relation is
reflexive and transitive and defines a partial order. The filter F1 is equivalent to
F2, written F1 ≡ F2, if F1 � F2 and F2 � F1. A set of n filters SF = {F1, . . . , Fn}
covers a filter F if and only if N(SF) ⊇ N(F), i.e.,

⋃n
i N(Fi) ⊇ N(F). A set of

filters is covered if each filter in the set is covered.
The covering test may be performed efficiently for simple filters; however, it

becomes complicated for more complex filters. There are several solutions for
processing complex filters, for example, they may be partitioned into several
simple filters. Covering relations can also be computed offline and they may
be approximated.

2.3 Data Structures

One of the first content-based routing data structures was presented in the Siena
project [3]. The filters poset (partially ordered set) structure was used by event
routers to manage subscriptions and advertisements from other routers. The
structure stores filters by their covering relation and computes the most general
set of filters that should be sent to neighboring routers. In Siena terminology,
each filter has a set of subscribers and a set that contains the neighbors to which
the filter has been sent (the forwards set). Filters poset computes the immediate
predecessor and successor sets for each filter by walking through the structure.
The predecessor set is used to determine if a covering filter has been forwarded

Filter Merging for Efficient Information Dissemination 277

to a neighboring router. In this case, there is no need to forward the current
filter. An unsubscription forwards the filter that needs to be removed using the
forwards set and may result in a number of uncovered filters that must also be
forwarded as subscriptions with the unsubscription.

In event literature filters that represent subscriptions and advertisements are
typically manipulated as sets. The Siena filters poset was found to be limited
in terms of scalability, which led to the development of the combined broad-
cast and content-based (CBCB) routing scheme [7]. We have previously pro-
posed the poset-derived forest that addresses the scalability limitations of the
filters poset by only storing subset of the covering relations [4]. We are not
aware of other efficient data structures for processing frequent filter set addi-
tions and removals. The filter-based routing structures differ from database in-
dexing algorithms, because they are organized using the covering relation and
do not assume metric spaces. Indexing techniques, such as R-trees and interval
trees [8], may also be used, but they introduce new assumptions on the nature of
the filters.

We have developed a graphical tool, called the PosetBrowser1, for experi-
menting with various content-based routing data structures. The PosetBrowser
demonstrates four different data structures: the filters poset, the colored forest,
the balanced colored forest, and the non-redundant balanced colored forest. A
balanced forest uses the subscriber interfaces, called colors, to optimize inser-
tions and matching. Redundancy means that there may be a filter associated
with an interface that is covered by some other filter set associated with the
same interface. In order to prevent false positives, non-redundancy is needed for
hierarchical and peer-to-peer routing. The PosetBrowser also demonstrates the
filter merging mechanism presented in Appendix A.

2.4 Filter Merging

A filter merging-based routing mechanism was presented in the Rebeca distributed
event system [6]. The mechanism merges conjunctive filters using perfect merging
rules that are predicate-specific.Routing with merging was evaluated mainly using
the routing table size and forwarding overhead as the key metrics in a distributed
environment. Merging was used only for simple predicates in the context of a stock
application [5, 6]. The integration of the merging mechanism with a routing data
structure was not elaborated and we are not aware of any results on this topic.

A mergeability rule was sketched in [6] by observing that a merged set of
filters M created from a set of filters can be forwarded to all neighbors if any
notification n that is matched by M is matched by at least one filter of a local
client and by two distinct filters Fi and Fj with differing output interfaces. The
forwards set-based formulation presented in this paper allows a more flexible
and elegant way to determine mergeability.

The optimal merging of filters and queries with constraints has been shown
to be NP-complete [9]. Subscription partitioning and routing in content-based

1 Available at www.hiit.fi/fuego/fc/demos

278 S. Tarkoma and J. Kangasharju

systems have been investigated in [10, 11] using Bloom filters [12] and R-trees
for efficiently summarizing subscriptions.

Bloom filters are an efficient mechanism for probabilistic representation of
sets. They support membership queries, but lack the precision of more com-
plex methods of representing subscriptions. To take an example, Bloom filters
and additional predicate indices were used in a mechanism to summarize sub-
scriptions [13, 14]. An Arithmetic Attribute Constraint Summary (AACS) and
a String Attribute Constraint Summary (SACS) structures were used to sum-
marize constraints, because Bloom filters cannot capture the meaning of op-
erators other than equality. The subscription summarization is similar to fil-
ter merging, but it is not transparent. The event routers need to be aware of
the summarization mechanism. In addition, the set of attributes needs to be
known a priori by all brokers and new operators require new summarization in-
dices. The benefit of the summarization mechanism is improved efficiency since
a custom matching algorithm is used that is based on Bloom filters and the
additional indices.

3 Merging Mechanisms

In this section we present techniques for incorporating filter merging into content-
based routers in a transparent fashion. The techniques are independent of the
used filtering language and routing data structure, and do not depend on the
mechanism that is used to merge two input filters. We present two distinct ways
to merge filters: local merging and remote merging. In the former, merged filters
are placed into the data structure. In the latter, merged filters are stored sepa-
rately from the data structure and only for exiting (outgoing) routing
table entries.

3.1 Merging and Routing Tables

We propose a merging extension to the generic content-based routing table. The
desired characteristics for this merging mechanism are simplicity in implementa-
tion, efficiency, and minimal requirements for the underlying routing table. We
assume that a merge(F1,F2) procedure exists that merges input filters F1 and
F2 and returns a single merged filter FM for which FM � F1 and FM � F2. A
merge of two or more filters is called a merger. Filter merging is useful, because it
allows to further remove redundancy and keep the number of elements minimal.

A merger is either perfect or imperfect. A perfect merger does not result
in false positives or negatives, whereas an imperfect merger may result in false
positives. In addition to accuracy, we have additional requirements with filter
merging:

– Merging must be transparent for applications and routers.
– Merging must maintain the set of inserted nodes. An insert of x may result

in a new merged node merge(x,y), but after the delete of x the resulting
node must cover y.

Filter Merging for Efficient Information Dissemination 279

Filter merging may be applied in different places in the event router. We dis-
tinguish between three different merging scenarios and techniques: local merg-
ing, root merging, and aggregate merging. In the first scenario, filter merging
is performed within a data structure. In the second scenario, filter merging is
performed on the root sets of local filters, edge/border routers, and hierarchical
routers. In the third scenario, filter merging is performed on the two first levels
of a peer-to-peer data structure, such as the filters poset.

Figure 1 presents two router configurations with filter merging and high-
lights the modular structure of content-based routers. Subfigure I illustrates
filter merging in peer-to-peer routing. The filters poset is an example data struc-
ture for peer-to-peer routing. Local clients are stored by the redundant colored
forest data stucture, which is the preferred structure for storing filters from local
clients [4].

Filters Poset

k neighbours +

local clients

Redundant

Colored Forest

n local clients

I. Peer-to-peer

Root Merger

Aggregate Merger

Non-redundant

Colored Forest

1 master router

k slave routers

Redundant

Colored Forest

n local clients

II. Hierarchical

Root Merger

Root Merger

Slave Slave

master

Fig. 1. Merging extension for routing tables

Two different merging techniques are used in the figure: root merging for
local clients and aggregate merging for remote operation. The merging of the
local filters is easy and efficient, because it is performed only on the root-set and
re-merging is needed only when this set changes.

Subfigure II shows the use of filter merging in the hierarchical environment
using the forest data structure. The figure illustrates the use of root merging for
both local clients and the master router. Filter merging is easy for both local
clients and the master router. Only the root sets of the local routing table and
external routing table, a non-redundant colored forest, are merged. The forest is
superior to the filters poset in hierarchical operation, because the computation
of the forwards sets is not needed.

280 S. Tarkoma and J. Kangasharju

3.2 Rules for Merging

Two rule sets are needed in order to ensure that data structures that have
been extended with merging are equivalent to the same data structures without
merging. First, a set of mergeability rules are defined that specify when two
filters may be merged. Then, we define a set of merging rules for preserving
equivalence for insertions and deletions between routing data structures and
their counterparts that have been extended with filter merging.

Mergeability Rules. Filters may be merged in two ways: local merging that
is performed within the data structure and aggregate merging that is performed
for exiting (outgoing) routing table entries only. The former is given by the lo-
cal merging rule presented in Definition 1. This rule says that only those filters
that are mergeable and share an element in the subscribers set may be merged.
This requires that the subscribers sets of the input filters are updated accord-
ingly. Local merging means that mergeable filters from the same interface are
merged. This allows merged filters to be stored within the data structure. This
approach puts more complexity into the data structure, but benefits also the
local router.

Definition 1. Local merging rule: The operation merge(F1, F2) may be per-
formed if F1 and F2 are mergeable and the intersection of their subscribers sets
has at least one element, subscribers(F1) ∩ subscribers(F2) = ∅. The subscribers
set of the resulting merger must contain only a single element.

The latter option is given by Definition 2. Aggregate merging merges any filters
that have the same or overlapping forwards sets. This may be applied only to
exiting entries and the mergers should not be placed into the data structure.
Aggregate merging allows the aggregation of multicast traffic, since the forwards
sets of root nodes are essentially sent to most neighbors. Only the first two levels
of nodes need to be considered and in most cases it is enough to inspect only
root nodes. On the other hand, this approach does not benefit the local router
in matching operations, but the benefit is gained in distributed operation if all
neighbors employ this approach as well.

Definition 2. Aggregate merging rule: Given that the forwards sets of the filters
are non-empty, the filters are mergeable only when forwards(F1) ∩ forwards(F2)
= ∅. The forwards set of the resulting merger is the intersection of the two
forwards sets.

The rule of Definition 1 corresponds to interface specific merging of filters. The
rule of Definition 2 takes into account the forwards sets and aggregates multicast
traffic. These rules may be applied simultaneously.

Local Merging Rules. Let MR denote the set of merged nodes/filters. Each
element x ∈ MR is a result of a sequence of merge operations and has a
corresponding set, denoted by CO(x), which contains the components of the

Filter Merging for Efficient Information Dissemination 281

merger x. Further, let CV (x) denote nodes that were removed due to covering
by x if the merger is placed in the data structure. The sets CO and CV are
needed in order to maintain transparent operation.

We present six rules for maintaining equivalence. These rules do not spec-
ify the semantics or performance of the merging mechanism. They specify the
requirements for equivalence. A merging algorithm needs to follow these rules.
For example, rule number five does not imply that re-merging of the removed
merger should not be done. We assume that the routing data structure provides
two operations: add and del. The add inserts a filter to the structure, and del
removes a filter. Note that the del in rule four is applied to a merger, and the del
in rule five is applied to a component of a merger. The del operation for a merger
is only invoked internally; the client of the system that sent the components of
the merger has no knowledge of its existence. When a del is performed to a
node that is part of a merger’s CV set, the deleted node is removed also from
that set.

We also define two auxiliary operations addComponent and addComponents.
The addComponent(S, F) operation takes a set S and a filter F as arguments
and adds F to S if there does not exist a filter in S that covers F . Similarly,
any filters in S covered by F are removed from S. The addComponents(S, P)
operation is similar to addComponent, but the second argument, P , is a set.

The following rules assume that subscribers(F1) ⊇ subscribers(F2) and that
identical filters, F1 ≡ F2, are detected and processed before any merging rules
are applied. The rules pertain to two arbitrary input filters F1 and F2. The rules
are presented as tautologies, they have to be always true, and we assume that
each operation on the right side returns true. We assume that elements in a
conjunction are evaluated from left to right.

1. F1 � F2 ∧ F1 ∈ MR ∧ F2 ∈ MR ⇒ del(F2). This rule says that when
a non-merged node covers another non-merged node, the covered node is
removed.

2. F1 � F2 ∧ F1 ∈ MR ∧ F2 ∈ MR ⇒ del(F2). This rule states that when
a merger is covered by a non-merger, the merger is removed and all of its
components are also removed (Rule 6).

3. F1 � F2 ∧ F1 ∈ MR ∧ F2 ∈ MR ⇒ del(F2) ∧ addComponent(CV (F1), F2).
This rules states that when a merger covers a non-merger, the covered node
is removed and added to the merger’s set of covered nodes.

4. F1 � F2 ∧ F1 ∈ MR ∧ F2 ∈ MR ⇒ addComponents(CO(F1), CO(F2)) ∧
addComponents(CV (F1), CV (F2)) ∧ del(F2). Specifies that when a merger
covers another merger, the covered merger is removed (Rule 6) and all com-
ponents of the merger and nodes covered by the merger are added to the
respective sets of the covering merger.

5. del(F1) ∧ (∃x ∈ MR : F1 ∈ CO(x))(∀x ∈ CO(F1) \ {F1} : add(x)) ∧ (∀x ∈
CV (F1) : add(x)). This rule says that when a component of a merger is
removed, all the components and covered nodes should be returned to the
data structure. After this, the merger should be removed.

282 S. Tarkoma and J. Kangasharju

6. del(F1)∧F1 ∈MR ⇒ (MR′ = MR\{F1})∧(∀x ∈ CO(F1) : del(x))∧(∀x ∈
CV (F1) : del(x)). This rule states that when a merger is removed, all its
components must also be removed.

Aggregate Merging Rules. Aggregate filter merging rules are similar to the
local merging rules with the exception that they do not need to address covered
nodes, because merged filters are not inserted into the data structure. On the
other hand, it is useful to keep track of the nodes covered by a merger, the direct
successor set. This may be done by placing covered nodes in CO or by using the
CV set. In the former case, the third rule is not needed, and for the latter case
the del in the third rule is not performed. For aggregate merging, instead of
the subscribers set condition, we have the forwards set condition presented in
Definition 2. Implementations need to update the forwards sets of any mergers
covered by other mergers.

3.3 A Generic Aggregate Mechanism

We present a simple generic remote merging mechanism based on the remote
merging rules. The data structure must provide two information sets: the root
set, and the forwards sets of root nodes. Both are easy to compute and the com-
putation of the forwards set may be performed based on the root set alone. We
propose that all mergeable root filters with the same forwards sets are merged.
The root set is the natural candidate set for merging, because it covers other
filters. By merging filters with the same forwards sets we simplify the finding
of the mergeable set. Also, there is no need to keep track of separate forwards
set entries.

The proposed technique may be applied to both hierarchical routing and
peer-to-peer routing. For hierarchical routing, the forwards set of root nodes
contains only a single entry, the master router. In peer-to-peer routing, merged
sets are always multicast to at least |neighbors |−1 external interfaces. This merg-
ing technique may be called weakly merging for peer-to-peer routing, because it
does not merge all mergeable candidates and unicast updates are not considered.
It is more efficient to operate on aggregates than on separate entries.

The proposed aggregate merging mechanism is:

Generic. It makes minimal assumptions on the underlying data structure. It
may be used with both peer-to-peer and hierarchical routing, and also for
local clients. Merging a filter in the hierarchical scenario is equivalent to
merging filters from local clients, because in both cases there is only one
direction where the messages are forwarded.

Efficient. It is activated only when the root set changes, and it uses the for-
wards. sets to aggregate merger updates. This kind of approach may be used
to leverage any multicast mechanisms.

Relatively simple. Tracks changes in the root set and merges filters with the
same forwards sets. This requires management of the merged sets.

Filter Merging for Efficient Information Dissemination 283

The merging mechanism requires that an additional data structure is used to
keep track of merged nodes. The sets MR, CO, and optionally CV are needed
for aggregate merging.

Inserting Filters. The insertion of a new filter f is only interesting when it is
placed in the root set. If f is not mergeable, the add operation is performed.
If f is covered by an existing filter or a merger, the corresponding forwards set
is empty. For the add operation each new element f in the root set must be
checked for covering by mergers. The new forwards set for f is

forwards’(f) = forwards(f) −
⋃

f ′∈MR∧f ′�f

forwards(f ’). (1)

If f has a non-empty forwards set and is mergeable with an existing filter or
filters, aggregate merging needs to be performed. Merging can be performed only
for those filters that have the same forwards sets. Any mergers covered by a new
root filter f are discarded if they have the same forwards sets. This approach
may results in unnecessary updates if a merger covers another merger and they
have differing forwards sets. On the other hand, this simplified approach does
not require the complex tracking of the forwards sets.

Deleting Filters. Deletion of an existing filter f is only interesting if f is part of
a merger or in the root set. When a filter that is part of a merger is removed,
the merger is either re-evaluated if the size is greater than one, or removed if
there is only one remaining filter in the merger. In either case the merger is
unsubscribed. The corresponding uncovered set must be computed using the
root set and forwarded with the unsubscription. The forwards sets of any direct
successors to a removed merger must be re-evaluated. The forwards set is empty
for any element in the successor set that is covered by other mergers.

4 Experimentation

A custom workload generator was used for the experimental results. The gener-
ator creates sets of filters and notifications using the given parameters. The key
parameters of the workload generator are, the number of filters, the number of
attribute filters in filters, the number of schemas, the number of unique names
that are used in generating attribute filter constraints, the range of values for
number tests, the number of notifications to match, and the number of interfaces.
Interfaces are assigned to filters in a round-robin fashion.

Appendix A presents the perfect filter merging mechanism that we use in
experimentation, but the techniques we presented in Section 3 are not restricted
to this mechanism. The filters were generated using the structure enforced by a
schema. Each attribute filter has a random type and a name with the restriction
that the <name,type> pairs must be unique. Each attribute filter has a single
predicate randomly selected from the set {<, >,≤ ,≥ , =, =, [a, b]}.

284 S. Tarkoma and J. Kangasharju

Random and unique field names, schema names, and constraint names were
generated using a uniform distribution over the set of lower-case alphabets with
a uniformly distributed length of U(3, 10). The range for integer values was 100.
Notifications are generated as follows: each notification has the structure of the
schema, integer tuples have a random value from the range [0, 100] and strings
are drawn from the constraint name pool.

We used the following equipment: an HP laptop with a 2 GHz Pentium III
and 512MB of main memory, Windows XP, and Java JDK 1.4.2. We used two
different data structures, the filters poset and the balanced forest. The filters
poset algorithm is based on the Siena Java implementation [15] and extended
with hashtable-based duplicate filter detection.

Figure 2 presents an overview of experimentation with filter merging. The
workload generator is used to generate filters and notifications. First the filter set
is merged and then the resulting set is added to the underlying data structure.
We record both merging time and insertion time.

Each interface-specific filter set is merged using the merging algorithm and
the merging time is recorded. The merging time includes only the time spent in
the merging of the root set for all interfaces and thus it represents the overhead
of all neighboring routers and not the overhead of a single router. The average
merging time for a single router can be obtained by dividing the merging time
by the number of interfaces. The insertion time (add scenario) represents the
time spent by a single router in processing the filter sets it has received.

The filters are also merged as a one-shot operation in the benchmark and the
removal of a merged filter is not considered. The benchmark scenario corresponds
to a situation in which a router receives already merged filter sets.

I1

I2

IN

Filters

Filters

Filters

Workload

generator

Notifications

Poset or Forest

Merged

Merged

Merged

Merging time

1. Add scenario

2. Match test

Correctness

testing

Fig. 2. Add scenario with merging

The two important cases in experimentation were a variable number of filters
with unique interfaces and a variable number of interfaces with a static number
of filters. We used a variable number of attribute filters (2-4) and 1 schema for
the results. The motivation for using a variable number of attribute filters is that

Filter Merging for Efficient Information Dissemination 285

it seems to be more realistic for multi-router environments than a static number
of attribute filters, because user interests vary. Hence, we are using one attribute
filter for the type and then 1-3 attribute filters for additional constraints. The
single schema situation is the most difficult scenario for matching and merging,
because two schemas are by definition independent and a notification may match
only one schema (event type) at a time, but filters of the same schema have to
be analyzed.

We measured matching time using a matching algorithm that walks only those
sub-posets or sub-trees of the structure that match the notification. We compare
this algorithm with a naive matcher that tests the notification against each filter.

4.1 Merging Results

Figure 3 presents the impact of interface specific merging for forest and poset
performance with a static number of interfaces (3) and a variable number of fil-
ters. The merging benchmark compares the insertion and matching performance
of interface-specific minimal cover sets with merged sets. 60 replications were
used for these results. The merging time represents the worst case, because the
input sets were merged using a one-shot procedure and normally this would be
performed incrementally.

As the number of filters grows the merging algorithm is able to remove redun-
dancy. The root size of the merged forest and the poset are the same and root

 0

 10

 20

 30

 40

 50

 60

 50 100 150 200 250 300 350 400 450 500

T
im

e
(m

s)

Filters

Add scenario time

Balanced forest
Merged balanced forest

Filters poset
Merged filters poset

Merging time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50 100 150 200 250 300 350 400 450 500

F
ilt

er
s

Filters

Root size

Balanced Forest root-size
Merged balanced forest root-size

Poset root-size
Merged poset root-size

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 50 100 150 200 250 300 350 400 450 500

T
im

e
(m

s)

Filters

Matching time

Balanced forest
Merged balanced forest

Poset
Merged Poset

Naive

 0

 100

 200

 300

 400

 500

 50 100 150 200 250 300 350 400 450 500

F
ilt

er
s

Filters

Merge set size

Input set
Merged set

Minimal cover set

Fig. 3. Impact of merging on the forest and poset performance. Results for 3 interfaces

286 S. Tarkoma and J. Kangasharju

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

Interfaces

Add scenario time

Balanced forest
Merged balanced forest

Filters poset
Merged filters poset

Merging time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10

F
ilt

er
s

Interfaces

Root size

Balanced forest root-size
Merged balanced forest root-size

Poset root-size
Merged poset root-size

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8 9 10

T
im

e
(m

s)

Interfaces

Matching time

Balanced forest
Merged balanced forest

Poset
Merged Poset

Naive

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8 9 10

F
ilt

er
s

Interfaces

Merge set size

Input set
Merged set

Minimal cover set

Fig. 4. Impact of merging on the forest and poset performance. Results for 500 filters.

set sizes in merging scenarios are considerably smaller than in normal operation.
The root set sizes are shown for the merged and non-merged sets, respectively.
The size of the non-merged set grows with the number of filters, whereas the size
of the merged set is constant in the figure. Based on these results the merging
time is reasonable and the merged forest or poset is created quickly. Matching
time for the merged set is considerably shorter than for the non-merged set.

Figure 4 presents merging results for a variable interfaces and a static num-
ber of filters (500). The insertion and matching times for the merged sets are
significantly lower also in this scenario. The processing performance decreases
as the number of interfaces grows, because there are fewer filters per interface.
The root sizes are very small for the merged sets whereas the non-merged sets
are large. This is due to saturation, where the merged roots become very general
when there are many filters.

4.2 Discussion

The results show that covering and merging are very useful and give significant
reduction of the filter set, especially with variable number of attribute filters,
because those filters with fewer attribute filters may cover other filters with
more attribute filters. We have also experimented with a static scenario, where
the number of attribute filters per filter is fixed. The static scenario gives also
good results for covering, but perfect merging does not perform well when the
number of attribute filters grows.

Filter Merging for Efficient Information Dissemination 287

When the number of filters per schema grows the whole subscription space
becomes covered, which we call subscription saturation. This motivates high
precision filters for a small amount of filters, and more general filters when the
subscription space becomes saturated.

The results indicate that filter merging is feasible and beneficial when used in
conjunction with a data structure that returns the minimal covering set, and the
filter set contains elements with a few attribute filters that cover more complex
filters. The cost of unsubscription, or removing filters from the system, can be
minimized by merging only elements in the minimal cover or root set. When a
part of a merger is removed, the merger needs to be re-evaluated. Any delete or
add operation outside the minimal cover does not require merging. For complex
filter merging algorithms it is also possible to use a lazy strategy for deletions.
In lazy operation, the system delays re-merging and counts the number of false
positives. When a threshold is reached the minimal cover set or parts of it are
merged and sent to relevant neighbors.

5 Conclusions

In this paper we presented a formal filter merging framework for content-based
routers and other information processing applications, such as firewalls and au-
diting gateways. Filter merging is a technique to remove redundancy from filter
sets. The proposed framework supports the merging of filters from local clients,
slave routers in hierarchical operation, and neighboring routers in peer-to-peer
operation. The compositionality of routing and filtering blocks is important for
scalability and extensibility. Filter merging may be separately applied to various
components of a router, namely the part that manages local clients and the part
that handles external traffic between neighboring routers.

We discussed two ways to implement the formal framework, within the rout-
ing data structure and outside the data structure. We focused on the latter
and the proposed aggregate merging mechanism is simple, independent of the
used filtering language and routing data structure, and efficient. The system is
efficient, because only the most general filters are considered to be candidates
for merging. The system assumes that covering relations are known or can be
computed for filters. We presented performance results for merging using cur-
rent routing data structures for set-based merging. The results indicate that
filter merging may be used to considerably reduce the processing overhead of
neighboring routers in a distributed environment.

References

1. Betz, K.: A scalable stock web service. In: Proceedings of the 2000 International
Conference on Parallel Processing, Workshop on Scalable Web Services, Toronto,
Canada, IEEE Computer Society (2000) 145–150

2. Bharambe, A.R., Rao, S., Seshan, S.: Mercury: A scalable publish-subscribe system
for Internet games. In: Proceedings of the 1st Workshop on Network and System
Support for Games, Braunschweig, Germany, ACM Press (2002) 3–9

288 S. Tarkoma and J. Kangasharju

3. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems 19 (2001)
332–383

4. Tarkoma, S., Kangasharju, J.: A data structure for content-based routing. In
Hamza, M.H., ed.: Ninth IASTED International Conference on Internet and Mul-
timedia Systems and Applications, ACTA Press (2005) 95–100

5. Mühl, G., Fiege, L., Gärtner, F.C., Buchmann, A.P.: Evaluating advanced routing
algorithms for content-based publish/subscribe systems. In Boukerche, A., Das,
S.K., Majumdar, S., eds.: The Tenth IEEE/ACM International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS 2002), Fort Worth, TX, USA, IEEE Press (2002) 167–176

6. Mühl, G.: Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis,
Darmstadt University of Technology (2002)

7. Carzaniga, A., Rutherford, M.J., Wolf, A.L.: A routing scheme for content-based
networking. In: Proceedings of IEEE INFOCOM 2004, Hong Kong, China, IEEE
(2004)

8. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Comput.
Surv. 33 (2001) 322–373

9. Crespo, A., Buyukkokten, O., Garcia-Molina, H.: Query merging: Improving query
subscription processing in a multicast environment. IEEE Trans. on Knowledge
and Data Engineering (2003) 174–191

10. Wang, Y.M., Qiu, L., Achlioptas, D., Das, G., Larson, P., Wang, H.J.: Subscrip-
tion partitioning and routing in content-based publish/subscribe networks. In
D.Malkhi(Ed.), ed.: Distributed algorithms. Volume 2508/2002 of Lecture Notes
in Computer Science. (2002)

11. Wang, Y.M., Qiu, L., Verbowski, C., Achlioptas, D., Das, G., Larson, P.: Summary-
based routing for content-based event distribution networks. SIGCOMM Comput.
Commun. Rev. 34 (2004) 59–74

12. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13 (1970) 422–426

13. Triantafillou, P., Economides, A.: Subscription summaries for scalability and ef-
ficiency in publish/subscribe systems. In Bacon, J., Fiege, L., Guerraoui, R., Ja-
cobsen, A., Mühl, G., eds.: In Proceedings of the 1st International Workshop on
Distributed Event-Based Systems (DEBS’02). (2002)

14. Triantafillou, P., Economides, A.A.: Subscription summarization: A new paradigm
for efficient publish/subscribe systems. In: ICDCS, IEEE Computer Society (2004)
562–571

15. Department of Computer Science, University of Colorado: Siena Java language
API and server code (2005)

16. Antollini, J., Antollini, M., Guerrero, P., Cilia, M.: Extending Rebeca to support
concept-based addressing. In: First Argentine Symposium on Information Systems
(ASIS 2004). (2004)

17. Mühl, G.: Generic constraints for content-based publish/subscribe systems. In
Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M., eds.: Proceedings of the 6th
International Conference on Cooperative Information Systems (CoopIS’01). Vol-
ume 2172 of LNCS., Trento, Italy, Springer-Verlag (2001) 211–225

Filter Merging for Efficient Information Dissemination 289

A Filter Merging Mechanism

This appendix presents the filter model and merging mechanism used in the
experimentation.

A.1 Filter Model

A filter is represented with a set of attribute filters, which are 3-tuples defined by
<name, type, filter clause>. Name is an identifier and type is an element of the
set of types. To simplify structural comparison of filters only conjunction may be
used in defining the set of attribute filters. While disjunctions would give more
power over the structure of the notification, they complicate the algorithms and,
in any case, a disjunctive attribute filter set may be represented using a set of
conjunctive attribute filter sets. The filter clause defines the constraints imposed
by the attribute filter to a corresponding tuple in a notification identified by the
name and type.

The attribute filter consists of atomic predicates and it may have various
semantics. The simplest attribute filter contains only a single predicate. This
kind of format is being used in many event systems, such as Siena and Rebeca.
A more complex format supports conjuncts and disjuncts, but they complicate
filter operations such as covering, overlapping, and merging.

We define the filter clause to support atomic predicates and disjunctions. In
general, covering and overlapping of arbitrary filters in the disjunctive normal
form may be determined using expression satisfiability. Expressions written in
the disjunctive normal form are satisfiable if and only if at least one of those
disjunctive terms is satisfiable. A term is satisfiable if there are no contradic-
tions [16].

A.2 Covering

Covering relations exist between four different components: predicates, disjuncts,
attribute filters, and filters. Filter covering is an important part of the frame-
work and it is used by the poset-derived forest data structure to determine the
relationship between filters and the merging algorithm to remove redundancy
from attribute filters.

The covering test for an attribute filter is similar to the covering test for
filters and conjunctive formulas presented in [6]. Theorem 1 presents covering for
disjunctive attribute filters. A pre-requirement is that filter A has the same name
and type than B. The other direction requires a more complicated mechanism
and proof. It is envisaged that this implication is still useful for simple and
efficient operation. By using Theorem 1 it is possible that not all relations are
captured, but if used in a consistent manner it does not alter routing semantics
and provides an efficient way to compute covering relations.

Theorem 1. Let A =
∨m

j=1 Aj and B =
∨n

i=1 Bi, where the Aj ’s and Bi’s are
predicates. If ∀i∃jAj � Bi then A � B.

290 S. Tarkoma and J. Kangasharju

Proof. Assume ∀i∃jAj � Bi. Then, when B is true, some Bi is true. But by
assumption there then exists some true Aj , which means that A is true. By
definition of the covering relation we then have A � B.

A.3 Attribute Filter Merging

Attribute filter merging is based on two mechanisms: covering relations between
disjuncts and perfect merging rules for atomic predicates. Covering relations are
used to remove any covered disjuncts. Perfect merging rules are divided into two
categories: existence tests and predicate modification. The former combines two
input predicates into an existence test when the merging condition is satisfied.
The latter combines two predicates into a single predicate when the condition is
satisfied. A merged disjunct may cover other disjuncts, which requires that the
other disjuncts are checked for covering after a merge.

We assume that the length of a disjunct is not important — if a cost func-
tion is associated with the selection of the disjuncts to be merged and cov-
ered, the computational complexity of merging may not necessarily be
polynomial.

The merging rules for the number existence test are presented in Table 1. The
existence test conditions are given for two input filters, F1 and F2. The condition
must be satisfied in order for the two input filters to merge to an existence test.
Each filter has a predicate and an associated constant denoted by a1 and a2,
respectively. Ranges are denoted by two constants a and b. For example, given
x < a1 and x = a2 where a1 = 10 and a2 = 7 the condition a1 > a2 is satisfied
and results in an existence test. If a2 is greater or equal to a1 the condition is
no longer satisfied.

Table 1. The rules for number existence test

F1 F2 Condition F1 F2 Condition

x = a1 x �= a2 a1 = a2 x �= a1 x = a2 a1 = a2

x < a1 x > a2 a1 > a2 x < a1 x ≥ a2 a1 ≥ a2

x ≤ a1 x > a2 a1 ≥ a2 x ≤ a1 x ≥ a2 a1 ≥ a2

x > a1 x < a2 a1 < a2 x > a1 x ≤ a2 a1 ≤ a2

x ≥ a1 x < a2 a1 ≤ a2 x ≥ a1 x ≤ a2 a1 ≤ a2

x �= a1 x �= a2 a1 �= a2 x �= a1 x > a2 a1 > a2

x �= a1 x ≥ a2 a1 ≥ a2 x �= a1 x ≤ a2 a1 ≤ a2

x �= a1 x < a2 a1 < a2 x > a1 x �= a2 a1 < a2

x ≥ a1 x �= a2 a1 ≤ a2 x < a1 x �= a2 a1 > a2

x ≤ a1 x �= a2 a1 ≥ a2 x �= a1 x ∈ [a, b] a1 ∈ [a, b]
x ∈ [a, b] x �= a1 a1 ∈ [a, b]

A.4 Filter Merging

The perfect merging algorithm merges two filters that have identical attribute fil-
ters except for one pair of distinctive attribute filters. These distinctive attribute

Filter Merging for Efficient Information Dissemination 291

filters are then merged. For disjunctive attribute filters the distinctive attribute
filters are always mergeable. Conjunctive attribute filters are not necessarily
mergeable. For any two mergeable filters F1 and F2 the operation merge(F1, F2)
either merges the distinctive attribute filters or the filters are identical.

This type of merging is called perfect, because covering and perfect merg-
ing rules do not lose or add information. More formally, a merger M of filters
{F1, . . . , Fn} is perfect if and only if N(M) =

⋃
i N(Fi). Otherwise, the merger

is called imperfect [6, 16].
The selection of the best merging candidate is an important part of the

merging algorithm. First, the best filter must be located for merging. Second,
the best attribute filter or filters within that filter must be selected for merging.
Our current implementation selects the first mergeable candidate; however, a
more optimal merging algorithm would select the candidate that has the most
general merging result, because in some cases merging may add complexity to
a filter in the form of a disjunct. This latter behaviour reduces a filter’s proba-
bility to merge with other filters in the future. Therefore a good candidate filter
for merging is one that either has less predicates or disjuncts after the merge
operation or the predicates and disjuncts are more general. In the best case, the
merged filter will cover many previously uncovered filters.

A.5 Discussion

The single predicate and set-based perfect merging approach presented in [6, 17]
requires that all attribute filters are identical except for one pair of distinctive
attribute filters. It is not always possible to merge simple constraints: for exam-
ple the perfect merging of two ranges [0, 20] and [30, 40] is not possible using
conjunctive or single predicate attribute filters. The presented approach is more
expressive, because it supports disjunctions.

Don’t Mind Your Vocabulary:
Data Sharing Across Heterogeneous Peers

Md. Mehedi Masud1, Iluju Kiringa1, and Anastasios Kementsietsidis2

1 SITE,University of Ottawa
{mmasud, kiringa}@site.uottawa.ca

2 School of Informatics, University of Edinburgh
akements@inf.ed.ac.uk

Abstract. The strong dynamics of peer-to-peer networks, coupled with
the diversity of peer vocabularies, makes query processing in peer
database systems a very challenging task. In this paper, we propose a
framework for translating expressive relational queries across heteroge-
neous peer databases. Our framework avoids an integrated global schema
or centralized structures common to the involved peers. The cornerstone
of our approach is the use of both syntax and instance level schema map-
pings that each peer constructs and shares with other peers. Based on
this user provided mapping information, our algorithm applies generic
translation rules to translate SQL queries. Our approach supports both
query translation and propagation among the peers preserving the au-
tonomy of individual peers. The proposal combines both syntax and
instance level mappings into a more general framework for query trans-
lation across heterogeneous boundaries. We have developed a prototype
as a query service layer wrapped around a basic service providing het-
erogeneity management. The prototype has been evaluated on a small
peer-to-peer network to demonstrate the viability of the approach.

1 Introduction

In the past few years, Peer-to-Peer (P2P) applications have emerged as a popular
way of sharing data in decentralized and distributed environments. In such envi-
ronments, involved data sources, called peers, act autonomously in their sharing
of data and services. A peer database system (PDBS) consists of a peer or node
of a P2P network which has been augmented both with a conventional data
base management system and an interoperability layer that enables data shar-
ing across (usually) heterogeneous boundaries. The local databases on each peers
are called peer databases. Each PDBS is independent of others and maintains
its own peer databases. In addition to the latter, each PDBS needs to establish
value correspondences between its local data and data on remote PDBSs for
the purpose of data sharing. Such value correspondences constitute logical links
that we call acquaintances. For example, we may consider a network of peer
database systems of family doctors, hospitals, medical laboratories, and phar-
macists that are willing to share information about treatments, medications and

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 292–309, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Don’t Mind Your Vocabulary 293

test results of their patients. Consider a situation where a patient has an acci-
dent in a city where he is currently visiting. He then visits a walk-in clinic. The
doctor in the clinic needs to know the patient’s previous medications and treat-
ments from the patient’s family physician. The associated doctor in the walk-in
clinic establishes acquaintances with the patient’s family doctor and pharmacist
for sharing information about the patient. The doctor in the walk-in clinic then
retrieves information from the acquainted peers, for instance family physicians
and medical laboratories. In this perspective, we need particularly fine-grained
data coordination, sharing and query processing strategies. Coordination rules
need to be dynamic because peers join and leave the system freely. In such a
dynamic environment, the existence of a global schema for the entire databases
is not feasible [4].

Query processing techniques in peer database networks can be compared to
similar techniques used in the traditional distributed and multi database systems
which use global or mediated schema to allow viewing of all involved databases
as one single database.

On the contrary, in general, peer database systems have no such global
schemas and permit true autonomy to peers. In addition, queries are posed
on local database and results are retrieved from the local database as well
as from the peer database network. In this paper, we make the following
contributions.

– First, we present a query translation mechanism that does not use a restric-
tive global/mediated schema and that considers the heterogeneity and au-
tonomy of peer databases. The algorithm translates arbitrary Select-Project-
Join SQL queries, where the selection formula may contain both conjunctive
and disjunctive normal form with negation.

– Second, the algorithm translates queries according to a collection of user-
generated rules that combine a restricted form of syntactic schema mappings
with the data instance level mappings. We also present a mapping stack
consisting of four layers of mappings that each peer uses partially or fully in
order to create semantic relationships with other peers.

– Finally, we implemented our query translation algorithm on top of the in-
creasingly reliable P2P JXTA framework [1]. We ran the implementation
on six JXTA-based peers. We show measurements that indicate that the
algorithm is efficient.

The remainder of the paper is organized as follows. Section 2 describes a usage
scenario. In Section 3, we discuss peer-to-peer mapping semantics, followed by
Section 4 that discusses the peer-to-peer query semantics. Section 5 presents
the query translation rules and framework and Section 6 describes the query
translation algorithm. In Section 7, we show experimental setup and results.
Section 8 treats related work.

Finally, we address the scope for future work and conclude in Section 9.

294 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

2 Motivating Example

We use a motivating example from the Health Care domain where hospitals,
family doctors and pharmacies, all share information about patients. This infor-
mation includes health histories, medications, and exams. Figure 1 depicts the
schemas used for this domain. The Family Doctor peer has a unique Ontario
Health Insurance Patient (OHIP) number assigned to each patient and record
is kept of name, illness, date of visit and medication of patients. The relation
MedicalExam stores the information about the patients’ medical examinations.
The Hospital peer has relations Patients and Labtest. Table 2 shows partial
instances of both peer databases. Assume that a patient has been admitted
to a hospital. The doctor in the hospital needs the medical examination that
the patient has gone through on admission as well as the patient’s recent test
reports from the patient’s family doctor. To get the medical examination, the
doctor in the hospital may pose the following query against the local Hospital
peer database:

Q1: select * from LabTest where PATID=“243” AND Test=“C0518015”

To get the test reports, the very same doctor needs to have the following query
posed against the remote peer database of the patient’s family doctor:

Q2: select * from MedicalExam where OHIP=“501NE” AND TestName=“homoglobin”

Normally, due to the autonomy of peer databases, the doctor in the hospital
should be able to pose the later query in terms of the schema and instance
data values of his local peer database. However, Figure 2 shows that there are
differences in the way patients’ information is represented both at the schema
and at the data instance level in the two peer databases. This representational
discrepancy raises the need for some way of mapping one representation to the
other, both at the schema and at the data instance levels. Such a mapping will
permit interpretability between these heterogeneous scenarios for query transla-
tion. We will use mapping tables [15] to resolve heterogeneity at the data level
and syntactic mappings of schema element for schema level heterogeneity during

Patient (OHIP, Lname, Fname, Illness, Date)
MedicalExam(OHIP, TestName, Result)

(a) Family doctor database

Patients (PATID, Primary Desc, Name)
Labtest (TestID, Test, Result, PATID)

(b) Hospital database

Fig. 1. Database schemas

Don’t Mind Your Vocabulary 295

OHIP Lname Fname Illness Date
233GA Lucas Andrew Headache Jan/04
501NE Davidson Ley Allergy Jan/04

(a) Patient table instance

OHIP TestName Result
233GA whitebloodcount 9755 c/mcL
501NE homoglobin 14.6 g/dL

(b) MedicalExam table instance

PATID Name Primary Desc
243 Davidson,ley StomachPain
359 Lucas, Andrew Heart Problem

(c) Patients

TestId Test Result PATID
4520 C0427512 633 c/mcL 359
4521 C0518015 12.5 g/dL 243

(d) LabTest table instances of hos-
pital database

Fig. 2. Database instances

query translation. Based on these mappings, we develop several generic query
translation rules that translate a query q posed on a peer P to a set of queries
Q′ = {q1, · · · , qn}, where each one of the qi’s is the original query q translated
to the vocabulary of a given acquainted peer Pi.

3 Peer-to-Peer Mappings

In what follows, we assume that sources are fully autonomous and may partially
or fully share information at different levels. We consider pairwise mappings
between peers with their shared schema elements. A mapping consists of four
layers. Figure 3 shows the four layers of mappings. The top layer is the peer-
to-peer mapping, which defines the acquaintance between two peers. Schema
elements are exchanged between peers as part of the acquaintance protocol.
The second layer is the schema level mapping which helps to overcome schema
level heterogeneity. The next layer is the attribute level mapping that is used to
overcome heterogeneity at the attribute level. The last one is called instance/data
level mapping. We use this layer if there are any differences in data vocabularies
between attributes of two peer relations. We use the concept of mapping tables
to create the data layer mapping.

Peer Peer
Schema Schema

Attribute Attribute
Data Data

Peer Peer

Top Layer

Bottom Layer

Fig. 3. Peer to Peer mapping stack

296 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

There may be four different types of mappings between schema elements. They
are as follows: one to one, one to many, many to one, and many to many. To take
on one these, in a one to many mapping, a schema element such as an attribute/
relation of one peer is mapped to more than one attribute/relation of another peer.
For example the attribute Name of relation Patients is mapped to attributes
Lname and Fname of relation Patient. Moreover, a set of attributes of one re-
lation in one peer may be mapped to more than one relation in another peer.

3.1 Mapping Tables

Mapping tables [15] are used to represent the data value correspondences be-
tween attributes of two different relations to account for differences in data
vocabulary. Intuitively, a mapping table is a relation over the attributes X ∪ Y ,
where X and Y are non-empty sets of attributes from two peers. For example,
Figure 4 shows a mapping table representing a mapping from the set of attributes
X={OHIP} to the set of attributes Y={PAITID}. The same table shows another
mapping table that relates MedicalExam.TestName and LabTest.T est.

Mapping tables represent expert knowledge and are typically created by do-
main specialists. Currently the creation of mapping tables is a time-consuming
and manual process performed by a set of expert curators. Still there is no com-
plete automated tool to facilitate the creation, maintenance and management
of these tables [15]. However, the paper [15] introduces two mechanisms: i. In-
fer new mapping tables to find a set of all mapping tables that are valid and
available over a network of peers and ii. Determine consistency of mapping table
to ensure consistency when update occurs in mapping tables. However, both of
these mechanisms play an important role in helping a curator understand and
correctly specify the semantics of a set of mapping tables.

OHIP PATID
501NE 243
233GA 388

(a) Mapping table
OHIP2PATID

TestName Test
homoglobin C0518015

whitebloodcount C0427512

(b) Mapping table Test-
Name2Test

Fig. 4. Example of mapping tables

We can treat mapping tables as constraints in exchanging information be-
tween peer databases [15]. In the present paper, we use mapping table in this
sense. We assume a closed world semantics for mapping tables.

3.2 Data and P2P Network Model

This section introduces some basic notions that will be used throughout the pa-
per. A database schema is any nonempty, finite set DB[W]={R1[U1],. . ., Rn[Un]}

Don’t Mind Your Vocabulary 297

of relations, where Ui is a subset W , the set all available attributes, and Ri is a
relation name; Ri[Ui] denotes a relation Ri over a set Ui of attributes. Given a
relation R, and a query q, we will use the notation att(R) and att(q) to denote
the set of attributes mentioned in R and q respectively. Instances of a relation
schema Ri[Ui] and a relational database DB[W] are defined in the usual way.

Now we formally introduce the notion of a network of PDBSs.

Definition 1. A network of PDBSs is a pair (N ,M). Here, N = {(P ,L}) is an
undirected graph, where P={P1,· · ·, Pn} is a set of peers, L={(Pi, Pj)|Pi, Pj ∈
P} is a set of acquaintances. Each peer Pi is associated with an instantiated rela-
tional database – a peer database – with schema DBi[Wi], and each acquaintance
(i, j) is associated with a set Mij ∈ M of mapping tables.

We will interchangeably call networks of PDBSs “P2P networks”. that peers
make only a subset of its schema visible to its peers. That is, we assume that
each peer Pi exports a (possibly empty) subset Vi ⊆ DBi[Wi] of schema elements
(i.e. attributes or relations) called export schema of Pi. For simplicity, we assume
that Vi ∩ Vj = ∅, for all i = j.

4 Peer-to-Peer Query Semantics

We assume that each query in PDBSs is defined in terms of the schema of a
single peer. Each user is only aware of the local database schema. We also assume
unrestricted select-project-join SQL queries. There are two types of queries in
PDBs, namely local and global queries [8]. A local query is defined in terms
of a local peer database schema, while a global query is defined over the peer
database schema of the P2P network that are directly or indirectly acquainted
with the peer where the global query is initiated. Semantically, a global query
is a set of queries translated from the local query, all destined to acquainted
peers. A global query is generated when a user wants results from all reachable
(directly or indirectly) acquainted peers in the P2P network.

This informal semantics of queries can be formalized as follows (slightly mod-
ifying the semantics given in [14]). Suppose a network N = (N ,M) of PDBSs,
where N = (P ,L) and P = {P1, · · · , Pn}. A local query q in a peer Pi ∈ P
is defined over (a subset of) the schema DBi[Wi] of P . The answer to q is a
relation over the instance dbi of DBi[Wi]. A global query qN over the P2P net-
work N is a set {q1, · · · , qk} (1 ≤ k ≤ n), where each query qi (1 ≤ i ≤ k)
is a component query defined over the schema of a reachable peer. The intu-
ition behind this definition is the following: each component query qi is a user
defined query that has been forwarded to all reachable peers via translation
through the given mapping tables. The answer to the global query qN is the
set {q1(dbi1), · · · , qk(dbik

)}, where qj(dbij) (1 ≤ j ≤ k) is a relation over the
instance dbij of peer Pj .

For query propagation we use a translation − and − forward mechanism.
When a user poses a query on a peer then the peer first translates the query for
all acquainted peers and sends the translated queries to its acquaintances. Before

298 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

sending the translated query the peer first adds a tag, we say global identification
(GID) of the query as well as the peer identification (PID). When a remote peer
receives the query, the peer either translates and/or forwards the query adding its
PID with the query. This translation−and−forward process continues until no
further propagation is possible. The global identification (GID) is used to avoid
duplicate translation of a query in a peer because a peer may receive queries in
different form but with same GID from multiple acquaintances. Therefore, if a
peer receives a query with the same GID as a query already seen, then the new
query is rejected. The path tag makes this possible and thus helps avoid cycles.
So the path tag is used to trace from which peer the query has been originated
and the list of peers the query has been visited. Therefore, looking at the path
tag, a peer knows whom to forward the query.

5 Query Translation

Query translation is the problem of transforming the query vocabulary of q over
the schema of a local peer P to a query q′ over the schema of an acquainted
peer P ′. The query vocabulary refers to three types of information, namely the
set of attributes that represent the answer or result of the query, the data val-
ues mentioned in query search conditions, and the relation names mentioned in
the query.

Example 1. Consider the following query which retrieves OHIP number and
test result of a patient with Lname = “Lucas”, Fname = “Andrew ” and
TestName = “whitebloodcount”.
Q3: select OHIP, Result, Date from Patient, MedicalExam

where Patients.OHIP=MedicalExam.OHIP AND (Lname=“Lucas”
AND Fname=“Andrew”) AND Test=“whitebloodcount”

From the above query we find the following query vocabularies: i. the set of
attributes represent the answer or result of the query:(OHIP, Result, Date) ii.
the set of query search conditions (Lname=“Lucas”, Fname=“Andrew”, and
Test=“whitebloodcount”) and iii. the set of relations (Patient, MedicalExam).

In order to pose the query in terms of vocabularies of acquainted peers for
example the peer Hospital, the translated query should be as follows.
Q4: select PATID, Result from Patients, LabTest

where Patients.PATID=LabTest.PATID AND Name=“Lucas, Andrew”
AND Test=“C0427512”

In order to translate the query vocabularies that means query attributes, rela-
tions and data vocabularies in search conditions we use the notion of correspon-
dence assertions and introduce translation rules. We simply translate the query
attributes and relations from correspondence assertions and search conditions
from translation rules. The semantics of correspondence assertion and transla-
tion rules are defined in the following two sections. We later show how these two
things are used to translate queries.

Don’t Mind Your Vocabulary 299

5.1 Correspondence Assertion (CA)

In our peer to peer system we assume that each peer exports part of their schema
as a shared schema that are made available to the system to create acquaintances
with other peers. Mapping tables are also placed in peers to resolve difference in
data vocabulary with acquainted peers. Therefore, we need to formally charac-
terize the relationship between exported elements (attributes/relations) between
acquainted peer schemas. We capture this relationship in the notion correspon-
dence assertion (CA) between peers’ shared schemas. We can also create cor-
respondence assertions between two attributes that form a mapping table. In
general, a mapping table m[X ∪ Y] encodes, in addition to the set of data as-
sociations, an attribute correspondence between the set of attributes X and Y .
This generation of CAs occurs at acquaintance time.

Example 2. Consider the instances in Figure 2 and the mapping tables in Fig-
ure 4. Suppose the Family Doctor peer has the following export schema:

V = {OHIP, Lname, Fnane, T estName, Result}
Also suppose the Hospital peer has the following export schema:

V = {patid, name, test, result}
Therefore we create the following correspondence assertions.
CA1: OHIP−→PATID, CA2: Name, Fname−→Name, CA3: TestName−→Test

5.2 Translation Rule

In this section we introduce some query translation rules that are used to trans-
late query search conditions and their data vocabularies. For example consider
the query Q3 and Q4. In the query Q3, the search condition for patient name
is given using (Lname=“Lucas”, Fname=“Andrew”) and test name is given
using (Test=“whitebloodcount”). But the patient name is represented in peer
Hospital is represented in different format and the condition should be trans-
lated as name=’Lucas, Andrew’ to be recognized in peer Hospital. Also the test
name “whitebloodcount” is represented in peer Hospital with different data
vocabulary “C0427512”. For this purpose we need some kind of translation
rules to resolve these heterogeneity. In this paper we address four translation
rules are named as Merge (M), Separation (S), Data Association (DA), and
Data Conversion (DC). Each one of the following sections describes each one of
these query translation rules and shows how these rules translate query search
conditions.

Merge Rules (M). This rule resolves differences in format. Therefore, we need
a mechanism to translate the data format in the selection formula of the source
query to the format of the formula that represents the target selection formula.
We represent a merge rule as follows:

σ∧ Ai=xi
: σB=y : y = ΠB(R′ �� T∧ Ai=xi

), (1)

300 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

where R′ = fM (R(A1, · · · , An), B); σ∧Ai=xi is a pattern of a selection formula
in the source query and σBi=y is the translated selection formula for the target
query. The value of y for attribute B is determined by the formula defined in the
translation expression of the rule. The semantics of formula above is as follows:

• fM (R(A1, · · · , An), B) is a function that creates a temporary relation R′ from
relation R with attributes A1, · · · , An, and B; A1, · · · , An are mentioned in
σ∧Ai=xi and B is the target attribute. Values of attribute B are generated with
a user-provided function f that is applied on attributes A1, A2, · · · , An.
• T∧ Ai = xi

is a tabular representation of the term
∧

Ai = xi.

Separation Rule (S). The separation rule is the reverse of the merge rule.
The formal representation of the separation rule is:

σA=x : σ∧ Bi=yi
: yi = ΠBi(R

′ �� TA=x), (2)

where R′ = fS(R(A), (B1, · · · , Bn)); σA=x is a pattern of a selection formula and
σ∧ Bi=yi

is the translated selection formula. The value of y′
is for attribute B′

is
are determined by the formula defined in the translation expression of the rule.
The semantics of formula above is as follows:

• fS(R(A), (B1, · · · , Bn)) is a function that creates a temporary relation R′

from relation R with attributes A and B1, · · · , Bn; A is mentioned in σ∧A = x

and B′
is are the target attributes for the translated query. Values of attribute

B′
is are generated with a user-provided function f that is applied on attributes

A.
• TA = x is a tabular representation of the term A = x.

Data Association Rule (DA). Our third translation rule translates queries
based on mapping tables. This rule deals with data level heterogeneity. When a
query mentions a data value that differs from data values used in an acquainted
peer, then we need to translate the predicate term in such a way that other peers
are able to decipher it. We use mapping tables to translate this type of predicate
term. The formal representation of the rule is:

σ∧ Ai=xi
:σ∧ ∨ Bj=yj

: yj = ΠB(m(A, B) �� T∧Ai=xi), (3)

where σ∧Ai=xi is a pattern of a selection formula in a local query q and σ∨Bj=yj

is the translated selection formula for target queries, and A and B are sets
of attributes. The value of yj for attribute Bj is determined by the formula
ΠB(m(A, B) �� T∧Ai=xi). Here, attributes Ai are those mentioned in σ∧ Ai=xi

.

Data Conversion (DC). This rule is used for translating data from one
domain to another. For example, consider an attribute height − in − inches
from one database and an attribute height − in − centimeters from another.

Don’t Mind Your Vocabulary 301

The value correspondence of these two attributes can be constructed by defining
a conversion function f. Formally we represent this rule as follows:

σA op x : σ∨B op y : y = ΠB(R′ �� TA op x), (4)

where R′ = fDC(R(A), B); σA op x is a pattern of a selection formula in a local
query q and σB op y is the translated selection formula for the target query; fDC

is a user-defined function for data conversion; and TA op x is the tabular form
of A op x. If the domain of attribute A and B are same, then function fDC is
called an identity function.

6 Query Translation Process

We start our query translation process defining the relationship between corre-
spondence assertions and translation rules. We define the relationship between
a correspondence assertion and a translation rule as a pair (CA, R). We use
the following syntax to represent the relationship between CA and translation
rule R.

A−→B : r

Where A ⊂ V and B ⊂ V ′. V and V’ are the exported schemas from peer P and
P’. Each rule r ∈ R defined in section 5.2 describes the relationship between
attributes of correspondence assertions and how the vocabularies are translated
in terms of structural, format, and data values. The translation process starts
when a user poses a query on its local database and wants a global execution of
the query. query to its acquaintances. The algorithm to translate queries is shown
in Figure 5. The algorithm mainly translates the selection part of a query. There
are two steps for translating a selection of a query. Firstly, the query is analyzed
syntactically and the query condition is transformed into a query condition tree
which is defined as follows.

Definition 2. Suppose q is a query. The Query Condition Tree(QCT) of q is
a tree representing the selection formula of q, where the inner nodes are boolean
operators AND, OR, or NOT, and leaves are atomic conditions of the form
A op x, where A is an attribute, op is a comparison operator <, >, =,≤,≥, or
=, and x is a constant value.

Secondly, the query condition part is decomposed in terms of the correspon-
dence assertions. The function F indPartition performs this task. The func-
tion F indPartition is shown in Figure 6. The algorithm takes as input a query
tree and predefined set of correspondence assertions. Its output is a set P =
{P1, ...Pn}, where each Pi is a triple (T, CA, R); T is a set of predicate terms
that are resulted from partitioning the original query predicate terms; CA is
the corresponding correspondence assertion that maps the terms in T , and R
is the corresponding translation rule that will be used to translate the predi-
cate terms in T . The function F indPartition finds the potential partitions that

302 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

QueryTranslation (Q)
Input: A query Q from user.
Output: Translated query Q′

begin QCT = Create AND-OR-NOT tree from the
query conditions;

CM = FindPartition(QCT);
/*CM: Set of matchings for query conditions */

for each cmi ∈ CM do
Apply rule ri associated with cmi;
Translate the constraint using translation rules;
Translate (cmi);

end for
end

Fig. 5. Query translation main procedure

can be translated independently. That means partitions are disjoint and there
is no dependency between the terms in the partitions. Consider the following
complex query:

Q5: select lname, fname, result from Patient,MedicalExam
where Patient.OHIP=MedicalExam.OHIP AND
(((lname=“Hall” OR lname=“Hull”) AND (fname=“Andrew”)) OR
(OHIP=“233GA”)) AND (TestName=“whitebloodcount” AND Date=“Jan/04”)

where the predicate P is as follows:

((((lname=“Hall” OR lname=“Hull”)AND(fname=“Andrew”))OR(OHIP=“233GA”))
AND (TestName=“whitebloodcount” AND Date=“Jan/04”))

Consider that we have following associations between correspondence assertions
and rules:

ca1: lname −→ name : 4, ca2: lname, fname −→ name : 1
ca3: OHIP −→ PAITD : 3, ca4: TestName −→ Test : 3
ca5: Date −→ Dt : 4

We assume that correspondence assertions ca1, ca5 are bound to rule 4(Data
Conversion), ca2 is bound to rule 1(Merge Rule) and ca3, ca4 are bound to
rule 3(Data Association). Finding potential partitions is important, because
the composition of two terms in a query predicate may map to a particular
correspondence assertion. Also sometimes, it is possible that a term can not
be translated independently but only in combination with another term can
the composed term be mapped with a correspondence assertion. The lines 2-9
of the algorithm F indPartition first find the mappings based on correspon-
dence assertions. At this point we find the following initial mappings for our
example:

Don’t Mind Your Vocabulary 303

FindPartition(CTree, CA)
Input: A query condition tree CTree and set of Correspondence Assertions CA.
Output: Potential partitions P = {P1, ...Pn} of constraints begin
1. CM = /* CM is a set of pair (t, cai) where t is a atomic term

and cai is corresponding correspondence assertion that covers attribute of t
2. for each term t at leaf, t ∈ T /* T is a set of predicate terms in CTree*/
3. M = {} /* M is a set of matches found in CA for term t */
4. for each correspondence assertion cai ∈ CA
5. if attribute(c) ∈ attribute(cai) then
6. M = M ∪ cai

7. CM = CM ∪ (t,M)
8. end for
9. end for
10. for each mi ∈ CM
11. mk = ∅

12. for each mj ∈ CM and mi �= mj

13. if (mj(ca) ∩ mi(ca)) �= � then
14. mk(t, ca) = {{mi(t) ∪ mj(t)}, {mi(ca) ∩ mj(ca)}}
15. P = P ∪ mk(t, ca) /*Forming partition*/
16. CM = CM − mj

17. end for
18. if (mk = ∅)
19. P = P ∪ mi(t, ca)
20. CM = CM − mi(t, ca)
21. end for
22. end for
23. return P
end

Fig. 6. Finding partition

lname = “Hall”, M = [lname −→ name, lname, fname −→ name]
CM1 = [lname = “Hall”, [lname −→ name, lname, fname −→ name], 4]
lname = “Hull”, M = [lname −→ name, lname, fname−→ name]
CM2 = [lname = “Hull”, [lname−→ name, lname, fname −→ name], 4]
fname = “Andrew”, M = [lname, fname −→ name]
CM3 = [fname = “Andrew”, [lname −→ name, lname, fname −→ name], 1]
OHIP=“233GA”, M = [OHIP −→ PATID]
CM4 = [OHIP = “233GA”, [OHIP −→ PATID], 3]
TestName=“whitebllodcount”, M = [TestName −→ Test]
CM5 = [TestName = “whitebloodcount”, [TestName−→ Test], 3]
Date=“Jan/04”, M = [Date −→ Dt]
CM6 = [Date = “Jan/04”, [Date −→ Dt], 4]

The lines 10-22 perform the task of finding potential partitions from the above
mappings. Therefore we get the following partitions.

P1 = [lname = “Hall”, fname = “Andrew”, [lname, fname −→ name], 1]
P2 = [lname = “Hull”, fname = “Andrew”, [lname, fname −→ name], 1]

304 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

P4 = [OHIP = “233GA”, [OHIP −→ PATID], 3]
P5 = [TestName = “whitebloodcount”, [TestName−→ Test], 3]
P6 = [Date = “Jan/04”, [Date −→ Dt], 4]

Notice that, we can not simply translate the predicate terms independently with-
out looking for the potential dependency from other terms. In the example,
the term fname =“Andrew” does not have any correspondence assertion but
by combining it with the term lname=“Hall”, we can translate the subquery
(lname=“Hall”, fname=“Andrew”). Because the terms can be mapped with the
correspondence assertion lname, fname −→ name. After rewriting the selection
formula we apply, the corresponding translation rule to each newly generated
leaves of the query condition tree.

The query translation algorithm depends on mapping tables and correspon-
dence assertions. The algorithm translates SPJ queries, where selection formula
may contain both conjunctive and disjunctive normal form with negation. Some-
times a situation may arise where a query is not translatable. There are three
reasons for this case. First, no mapping exists in the mapping table to trans-
late a predicate term. Second, there is no correspondence assertion that maps a
predicate term. Third, there is no rule to support the translation of a predicate
atom. In all such cases the query is rejected.

6.1 Sound Translation of Queries

In peer database systems, the translation of a given query is not unique [14].
There could be many possible global queries for a particular query, because
there is no certain control of query propagation in peer database networks. Also
peers are free to join and leave the system at will. Therefore, in most cases, we
do not get complete answer (meaning all the matching tuples in the network),
but at least we get some answer (sound answer) which can be recognized as
complete enough with respect to the set of active peers.

In this section we describe the soundness (correctness) of query translation.
Soundness ensures that the translated query retrieves correct data from ac-
quainted peers which are relevant to the result of the original query. Consider two
peers P1 and P2 with export schemas V1[U1] ⊆ DB1[W1] and V2 ⊆ DB2[W2],
respectively. Assume that a query translation rule r and a mapping table m
exist along with correspondence assertions between the peers. Suppose that a
query q1 is posed over V1 and that q2 is the translation of q1 over V2. We use
the notation q1 !−→ q2 to state that q2 results from the translation of query q1.
Intuitively, ensuring a correct translation means that the translation should be
such that q2 retrieves from P2 only the data that are related to those that could
be retrieved from query q1 in peer P1. It is important to establish such a notion
of correctness. Here, we extend the definition of correctness of query translation
with respect to mapping tables given in [14].

Definition 3. [Soundness w.r.t to Mapping Tables] Let q1, q2 be queries over
peer P1 and P2, respectively; Let q1 = σE(R1 �� �� Rk), where E is a selection

Don’t Mind Your Vocabulary 305

formula and R1, . . .,Rk are relations in P1. Then q2 is a sound translation of q1
with respect to a set M = {m1(X1, Y1), · · · , mk(Xk, Yk)} of mapping tables,
denoted by q1

M
�−→q2, where Xi, i = 1..k, and att(q1) are subsets of

⋃k
i=1 Xi, if

for every relation instance r2 of P2 and t2 ∈ q2(r2), there exists a valuation ρ of
M, and a tuple t ∈ σE(ρ(M)), i = 1 . . . k such that πatt(q2)(t) = t2.

In this paper the translation algorithm incorporates the mapping tables into
data association rules. Formally we must extend the definition of soundness to
incorporate the translation rules seen in Section 5.

Definition 4 (Soundness w.r.t Translation Rules). Let q1, q2 be queries
over peer P1 and P2, respectively; Let q1 = σE(R1 �� �� Rk), where E is a
selection formula and R1, . . .,Rk are relations in P1. Then query q2 is a sound
translation of query q1 with respect to a set of translation rules R and correspon-
dence assertions CA = {ca1, · · · , can} between P1 and P2, denoted by q1

R,CA
�−→ q2,

if att(q1) ⊆ att(CA), att(q2) ⊆ att(CA), and for every relation instance I2 of
P2 and t2 ∈ q2(I2), there exists a tuple t ∈ q1(I1), where I1 is an instance of P1,
such that for all r ∈ R,

1. if r is a merge rule (See rule (5.2)), then, for all selection terms σB=y

mentioned in q2 there is a complex selection term σ∧ Ai=xi
, 1 ≤ i ≤ n,

mentioned in q1, such that

y = ΠB(fM (R(A1, · · · , An), B) �� T∧ Ai=xi
).

2. if r is a data association rule, then use Definition 3.

The cases of the separation and data conversion rules are treated similarly to the
merge rule.

7 Implementation

We implemented the query translation algorithm described in this paper. The
architecture of the query translation framework is depicted in Figure 7. The
translation process starts when a user poses a query through the graphical user
interface and selects the global execution of the query. If the query is local then
the query is processed locally. The main component of the architecture is the
Query Translation Component which is the implementation of the algorithm in
Figure 5.

The monitor component looks for incoming queries in the network. It receives
and forwards queries to the acquainted peers.

The prototype P2P setting is shown in Figure 8. We use MySQL as our DBMS
for the Local DB. Data have been collected from United Airline, Air Canada,
KLM, Luftansa, Air France and Alitalia flight information. There are around 50
mapping tables to map flight numbers, destinations, etc between partner airlines.
Each mapping table contains an average of 150 records. We choose JXTA for
implementation platform because it provides all resources and functionalities

306 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

Local
Database
InterfaceScope

Query
Translation
Component

Check Query

Query Parser

Monitor

Jxta
Network

Pipes

Local DB
Mapping
Tables

CA

Rules

User Interface

Local

Global

Fig. 7. Architecture

UA

AC

AF

AZ

LH

KLM

Fig. 8. The P2P Network

for developing P2P application. For example, it provides basic protocols and
communication links (called pipes) between peers. It also provides basic peer
functionalities such as creation a peer on a network; creation of messages and
messages communication onto pipes, discover peers, creation of peer groups and
join a peer group, etc. JXTA is an open network computing platform for P2P
computing. It provides IP independent naming space to address peers and other
resources. Java is used for the programming language. The P2P platform is
simulated on IBM computers with windows XP operating system. The CPU is
Pentium 4 3.0 GHz and RAM is 760MB.

7.1 Experimental Results

To evaluate our algorithm, we measure various run times. We first find map-
ping times of query predicates because query translation mainly depends on the
size of predicate in the query. shows a query and a resulting translated query.
Figure 10 shows the mapping times and predicate translation times of queries.

Fig. 9. An output of a translated query

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 1 2 3 4 5 6 7 8

T
im

e
(I

n
se

cs
)

Number of disjuncts

Predicate Mapping
Predicate Translation

Fig. 10. Predicate mapping and trans-
lation

We run this experiment with 8 queries where the number of search condi-
tions gradually ranges from 1 to 8. That is, the first query has one condition,

Don’t Mind Your Vocabulary 307

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
(I

n
se

cs
)

Number of Output Disjuncts

Fig. 11. Query translation time with size
of output queries

Fig. 12. Query translation for different
peers

the second two condition, and so on. We see from the figure that the mapping
times increase gradually. The queries are chosen in such a way that there are
interdependency between predicate terms in the query. Nicks on the curves are
points where there is a change in the amount of interdependency among pred-
icate terms. between the time required to perform a query translation and the
size, in terms of predicate terms, of the translated (or output) query. Figure 11
shows the translation times for queries which gradually produce a number of
terms ranging from 1 to 20. The interesting point to notice from Figure 11 is
that it is not the number of terms in the output query which a relevant fac-
tor for the running times to generate these terms. These times mainly depend
on the number of terms in the input query and on the dependency between
predicate terms.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12

T
im

e
(I

n
se

cs
)

Number of Acquianted Peers

4 Queries/Sec
8 Queries/Sec

12 Queries/Sec

Fig. 13. Query translation time with num-
ber of peers

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

T
im

e
(I

n
se

cs
)

Global Query Execution Time

UA
AC

 KLM
LH
AF
AZ

Fig. 14. Global query execution time

We also investigate the algorithm performance for query translation with the
number of acquaintances. We experimented with 12 peers. We investigated the
times required to translate one query (in a peer) for all the acquainted peers.
Figure 12 gives a screenshot showing such a translation. We investigate with
different input query frequencies. We notice that the translation times increase
gradually with the number of peers and number of input queries per second. The
Figure 13 shows the result.

308 Md. M. Masud, I. Kiringa, and A. Kementsietsidis

We also investigate the execution of global queries generated from different
peers in our P2P settings. We flooded the network generating 4 queries/sec from
each peer with total 20 queries per peer. The total number of queries in the
network was 624. The result is shown in Figure 14. The figure shows that the
global queries of the KLM and LH peers finish first because they have more
acquaintances than other peers in the settings. The global queries of the UA
peer take the highest times because this peer is linked to the P2P network over
one single acquaintance (with peer AC).

8 Related Work

Ooi et al. [16] present a peer-to-peer (P2P) distributed data sharing system called
PeerDB. Query processing in PeerDB is performed through keyword matching
and ranking using agents. The keyword-matching strategy in PeerDB may give
irrelevant query reformulations because a keyword of a relation may match syn-
tactically with keywords of attributes or relations of other peers without being
a semantical match. The user must decide which queries are to be executed.
In PeerDB, continuous user involvements are required before the user fetches
required data from peers. In our approach, on the contrary, once acquaintances
are in place, the user need not worry about them at query time.

The paper [9] introduces a data model called Local Relational Model (LRM)
designed for P2P data management systems to describe relationships between
two peer databases. The acquaintances between two peers are based upon the
definition of coordination formulas and domain relations with in the system. The
main goals of the data model to support semantic interoperability in the absence
of global schema.

The Piazza system [17] provides a solution for query answering in a peer-to-
peer environment, where the associations between peers are expressed as either
global-as-view (GAV) or local-as-view (LAV) mapping. All these are schema (as
opposed to our instance) level mappings.

An approach for data coordination avoiding the assumptions of global schema
is introduced in [21]. The authors of [21] introduce the notion of group and define
it as a set of nodes, which are able to answer queries about a certain topic.
Each group has a node called Group Manager (GM), which in charge of the
management of the metadata in order to run the group [21]. According to their
proposal, each query must pass through the group manager. The paper does not
mention how to choose a node as a group manager.

9 Conclusion

In this paper we investigated a data sharing strategy through query translation
based on syntactic and instance level mappings. We addressed some translation
rules based on these mappings. Our strategy can translate a query if there is ap-
propriate correspondence assertions between the schema elements of acquainted
peers. A future work, we plan to investigate the approach as a query service

Don’t Mind Your Vocabulary 309

built on top of a large scale peer data management system. We also plan to in-
vestigate the dynamic inference of new correspondence assertions from existing
ones. Such a dynamic inference mechanism seems necessary to avoid doing so
manually when peers join/leave the system.

References

1. The JXTA Project. http://www.jxta.org
2. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P. McBrien, N. Rizopoulos. AutoMed:

A BAV Data Integration System for Heterogeneous Data Sources. In CAiSE, 2004
3. R. Domenig, K.R. Dittrich. Query Explorativeness for Integrated Search in Het-

erogeneous Data Sources. In CAiSE, 2002
4. L. Serafini, F. Giunchiglia, J. Molopoulos, and P. Bernstei. Local Relational

Model:a logocal formalization of database coordination. Technical Report, In-
formatica e Telecomunicazioni, University of Trento, 2003.

5. M. Lenzerini. Data Integration: A Theoretical Prespective. In PODS, 2001.
6. R. J. Miller, L. M. Haas and M. Hernndez. Schema Mapping as Query Discovery.

In VLDB, 2000.
7. Z. Ives A. Halevy, M. Rodrig, and D. Suciu. What can databases do for peer-to

peer? in webdb. In WebDB, 2001.
8. M. Arenas, V. Kantere, A. Kementsietsidis, and I. Kiringa. The hyperion project:

From data integration to data coordination. In ACM SIGMOD RECORD, 2003.
9. P. Bernstein, F. Giunchiglia, A. Kementsietsidis, and J. Mylopulos. Data manage-

ment for peer-to-peer computing: A vision. In WebDB, 2002.
10. C.-C. K. Chang and H. Garcia-Molina. Mind your vocabulary: Query mapping

across heterogeneous information source. In SIGMOD, 1999.
11. F. Giunchiglia and I. Zaihrayeu. Making peer databases interact-a vision. In CIA,

2002.
12. A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation in peer data

management system. In ICDE, 2003.
13. V. Kantere, I. Kiringa, and J. Mylopoulos. Coordinating peer databases using

ECA rules. In P2P DBIS, 2003.
14. A. Kementsietsidis and M. Arenas. Data sharing through query translation in

autonomous systems. In VLDB, 2004.
15. A. Kementsietsidis, M. Arenas, and R.J. Miller. Mapping data in peer-to-peer

systems: Semantics and algorithmic issues. In SIGMOD, 2003.
16. W. S. Ng, B. C. Ooi, K. L. Tan, and A. Y. Zhou. PeerDB:A p2p-based system for

distributed data sharing. In Data Engineering, 2003.
17. I. Tatarinov, Z. Ives, J. Madhavan, A. Halevy, D. Suciu, N. Dalvi, and X. Dong.

The piazza peer data management project. In ICDE, 2003.
18. P. reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. In Middle-

ware, 2003.
19. E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. The coDB Robust Peer-

to-Peer Database System. In SEDB, pages 382-393, 2004.
20. E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. Queries and Updates in

the coDB Peer to Peer Database System. In VLDB, pages 1277-1280, 2004.
21. F. Giunchiglia and I. Zaihrayeu. Making Peer Databases Interact-A vision for an

Architecture Supporting Data Coordination. In CIA, pages 18-35, 2002.

On the Usage of Global Document Occurrences
in Peer-to-Peer Information Systems

Odysseas Papapetrou, Sebastian Michel, Matthias Bender,
and Gerhard Weikum

Max-Planck Institut für Informatik, 66123 Saarbrücken, Germany
{odysseas, smichel, mbender, weikum}@mpi-inf.mpg.de

Abstract. There exist a number of approaches for query processing
in Peer-to-Peer information systems that efficiently retrieve relevant in-
formation from distributed peers. However, very few of them take into
consideration the overlap between peers: as the most popular resources
(e.g., documents or files) are often present at most of the peers, a large
fraction of the documents eventually received by the query initiator are
duplicates. We develop a technique based on the notion of global docu-
ment occurrences (GDO) that, when processing a query, penalizes fre-
quent documents increasingly as more and more peers contribute their
local results. We argue that the additional effort to create and maintain
the GDO information is reasonably low, as the necessary information
can be piggybacked onto the existing communication. Early experiments
indicate that our approach significantly decreases the number of peers
that have to be involved in a query to reach a certain level of recall
and, thus, decreases user-perceived latency and the wastage of network
resources.

1 Introduction

1.1 Motivation

The peer-to-peer (P2P) approach, which has become popular in the context of
file-sharing systems such as Gnutella or KaZaA, allows handling huge amounts of
data in a distributed and self-organizing way. In such a system, all peers are equal
and all of the functionality is shared among all peers so that there is no single
point of failure and the load is evenly balanced across a large number of peers.
These characteristics offer enormous potential benefits for search capabilities
powerful in terms of scalability, efficiency, and resilience to failures and dynamics.
Additionally, such a search engine can potentially benefit from the intellectual
input (e.g., bookmarks, query logs, etc.) of a large user community.

One of the key difficulties, however, is to efficiently select promising peers
for a particular information need. While there exist a number of strategies to
tackle this problem, most of them ignore the fact that popular documents are
typically present at a reasonable fraction of peers. In fact, experiments show that
often promising peers are selected because they share the same high-quality doc-
uments. Consider a query for all songs by a famous artist like Madonna. If, as in

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 310–328, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Usage of Global Document Occurrences 311

many of today’s systems, every selected peer contributes its best matches only,
you will most likely end up with many duplicates of popular and recent songs,
when instead you would have been interested in a bigger variety of songs. The
same scenario holds true in an information retrieval context where returning
only the k best matches for a query is even more common. Popular documents
then are uselessly contributed as query results by each selected peer, wasting
precious local resources and disqualifying other relevant documents that even-
tually might not be returned at all. The size of the combined result eventually
presented to the query initiator (after eliminating those duplicates), thus, is
unnecessarily small.

1.2 Contribution

We propose a technique based on the notion of global document occurrences
(GDO) that, when processing a query, penalizes frequent documents increas-
ingly as more and more peers contribute their local results. The same approach
can also be used prior to the query execution when selecting promising peers for
a query. We discuss the additional effort to create and maintain the GDO infor-
mation and present early experiments indicating that our approach significantly
decreases the number of peers that have to be involved in a query to reach a
certain level of recall. Thus, taking overlap into account when performing query
routing is a great step towards the feasibility of distributed P2P search.

Section 2 gives an overview of related research in the different fields that we
touch with our work. Section 3 gives a short introduction on Information Re-
trieval basics necessary for the remainder of this paper. Section 4 presents the
architecture of MINERVA, our distributed P2P search engine that was used for
our experiments. Section 5 introduces the notion of GDO and discusses its ap-
plication at several stages of the querying process. Section 6 illustrates a number
of experiments to show the potential of our approach. Section 7 concludes and
briefly discusses future research directions.

2 Related Work

Recent research on P2P systems, such as Chord [1], CAN [2], Pastry [3], P2P-Net
[4], or P-Grid [5] is based on various forms of distributed hash tables (DHTs)
and supports mappings from keys, e.g., titles or authors, to locations in a de-
centralized manner such that routing scales well with the number of peers in
the system. Typically, in a network of n nodes, an exact-match key lookup can
be routed to the proper peer(s) in at most O(log n) hops, and no peer needs to
maintain more than O(log n) routing information. These architectures can also
cope well with failures and the high dynamics of a P2P system as peers join or
leave the system at a high rate and in an unpredictable manner. However, the
approaches are limited to exact-match, single keyword queries on keys. This is
insufficient when queries should return a ranked result list of the most relevant
approximate matches [6].

312 O. Papapetrou et al.

In recent years, many approaches have been proposed for collection selection
in distributed IR, among the most prominent the decision-theoretic framework
by [7], the GlOSS method presented in [8], and approaches based on statistical
language models [9,10]. [11] gives an overview of algorithms for distributed IR
style result merging and database content discovery. [7] presents a formal decision
model for database selection in networked IR. [12] investigates different quality
measures for database selection. [13,14] study scalability issues for a distributed
term index. None of the presented techniques incorporates overlap detection into
the selection process.

[15] describes a permutation-based technique for efficiently estimating set
similarities for informed content delivery. [16] proposes a hash-based synopsis
data structure and algorithms to support low-error and high-confident estimates
for general set expressions. Bloom [17] describes a data structure for succinctly
representing a set in order to support membership queries. [18] proposes com-
pressed Bloom filters that improve performance in a distributed environment
where network bandwidth is an issue.

[19] describes the use of statistics in ranking data sources with respect to
a query. They use probabilistic measures to model overlap and coverage of the
mediated data sources, but do not mention how to acquire these statistics. In
contrast, we assume these statistics being generated by the participating peers
(based on their local collections) and present a DHT based infrastructure to
make these statistics globally available.

[20] considers novelty and redundancy detection in a centralized, document-
stream based information filtering system. Although the technique presented
seems to be applicable in a distributed environment for filtering the documents
at the querying peer, it is not obvious where to get these documents from. In
a large-scale system, it seems impossible to query all peers and to process the
documents.

[21,22] have also worked on overlap statistics in the context of collection
selection. They present a technique to estimate coverage and overlap statistics
by query classification and data mining and use a probing technique to extract
features from the collections. Expecting that data mining techniques will be very
heavy for the envisioned, highly-dynamic application environment, we adopt a
different philosophy.

In a prior work [23] we propose a Bloom filter based technique to estimate
the mutual collection overlap. While in this earlier work, we use Bloom filters
to estimate the mutual overlap between peers, we now use the number of global
document occurrences of the documents in a collection to estimate the contri-
bution of this collection to a particular query. These approaches can be seen as
orthogonal and can eventually be combined to form even more powerful systems.

3 Information Retrieval Basics

Information Retrieval (IR) systems keep large amounts of unstructured or weakly
structured data, such as text documents or HTML pages, and offer search

On the Usage of Global Document Occurrences 313

functionalities for delivering documents relevant to a query. Typical examples
of IR systems include web search engines or digital libraries; in the recent past,
relational database systems are integrating IR functionality as well.

The search functionality is typically accomplished by introducing measures
of similarity between the query and the documents. For text-based IR with
keyword queries, the similarity function typically takes into account the number
of occurrences and relative positions of each query term in a document. Section
3.1 explains the concept of inverted index lists that support an efficient query
execution and section 3.2 introduces one of the most popular similarity measures,
the so-called TF*IDF measure. For further reading, we refer the reader to [6,24].

3.1 Inverted Index Lists

The concept of inverted index lists has been developed in order to efficiently iden-
tify those documents in the dataset that contain a specific query term. For this
purpose, all terms that appear in the collection form a tree-like index structure
(often a b+-tree or a trie) where the leafes contain a list of unique document iden-
tifiers for all documents that contain this term (Figure 1). Conceptually, these
lists are combined by intersection or union for all query terms to find candidate
documents for a specific query. Depending on the exact query execution strat-
egy, the lists of document identifiers may be ordered according to the document
identifiers or according to a score value to allow efficient pruning.

database

B+ tree on terms

17: 0.3
44: 0.4

..
.

selection... ...

52: 0.1
53: 0.8
55: 0.6

12: 0.5
14: 0.4

..
.

28: 0.1
44: 0.2
51: 0.6
52: 0.3

17: 0.1
28: 0.7

..
.

17: 0.3
17: 0.144: 0.4

44: 0.2

11: 0.6

index lists with
(DocId: tf*idf)
sorted by DocId

algorithm

Fig. 1. B+ Tree of Inverted Index Lists

3.2 TF ∗ IDF Measure

The number of occurrences of a term t in a document d is called term fre-
quency and typically denoted as tf t,d. Intuitively, the significance of a document
increases with the number of occurrences of a query term. The number of docu-
ments in a collection that contain a term t is called document frequency (dft); the
inverse document frequency (idf t) is defined as the inverse of df t. Intuitively, the
relative importance of a query term decreases as the number of documents that
contain this term increases, i.e., the term offers less differentiation between the
documents. In practice, these two measures may be normalized (e.g., to values

314 O. Papapetrou et al.

between 0 and 1) and dampened using logarithms. A typical representative of
this family of tf ∗ idf formulae that calculates the weight wi,f of the i-th term
in the j-th document is

wi,j :=
tfi,j

maxt{tft,j}
∗ log(

N

dfi
)

where N is the total number of documents in the collection.
In recent years, other relevance measures based on statistical language mod-

els and probabilistic IR have received wide attention [7,25]. For simplicity and
because our focus is on P2P distributed search, we use the still most popular
tf ∗ idf scoring family in this paper.

4 MINERVA

We briefly introduce MINERVA1, a fully operational distributed search en-
gine that we have implemented and that serves as a valuable testbed for our
work[26,27]. We assume a P2P collaboration in which every peer is autonomous
and has a local index that can be built from the peer’s own crawls or imported
from external sources and tailored to the user’s thematic interest profile. The
index contains inverted lists with URLs for Web pages that contain specific
keywords.

Distributed Index
Term List of Peers

P1

P5

P6 P4

P2

P3

Step 0:

Post per-term
summaries of local indexes

Distributed Index
Term List of Peers

P1

P5

P6

P2

P3

Step 1:

Retrieve list of peers
for each query term

P4 P4

Step 2:

Retrieve and combine local
query results from peers

P5

P1

P2

P3

P6

Fig. 2. MINERVA System Architecture

A conceptually global but physically distributed directory, which is layered
on top of a Chord-style Dynamic Hash Table (DHT), holds compact, aggre-
gated information about the peers’ local indexes and only to the extent that
the individual peers are willing to disclose. We only use the most basic DHT
functionality, lookup(key), that returns the peer currently responsible for key.
Doing so, we partition the term space, such that every peer is responsible for
1 Project homepage available at http://www.minerva-project.org

On the Usage of Global Document Occurrences 315

a randomized subset of terms within the global directory. For failure resilience
and availability, the entry for a term may be replicated across multiple peers.

Directory maintenance, query routing, and query processing work as follows
(cf. Figure 2). In a preliminary step (step 0), every peer publishes a summary
(Post) about every term in its local index to the directory. A hash function
is applied to the term in order to determine the peer currently responsible for
this term. This peer maintains a PeerList of all postings for this term from
peers across the network. Posts contain contact information about the peer who
posted this summary together with statistics to calculate IR-style measures for
a term (e.g., the size of the inverted list for the term, the maximum average
score among the term’s inverted list entries, or some other statistical measure).
These statistics are used to support the query routing process, i.e., determining
the most promising peers for a particular query.

The querying process for a multi-term query proceeds as follows: a query is
executed locally using the peer’s local index. If the result is considered unsatis-
factory by the user, the querying peer retrieves a list of potentially useful peers
by issuing a PeerList request for each query term to the underlying overlay-
network directory (step 1). Using database selection methods from distributed
IR and metasearch [11], a number of promising peers for the complete query is
computed from these PeerLists. This step is referred to as query routing. Subse-
quently, the query is forwarded to these peers and executed based on their local
indexes (query execution; step 2). Note that this communication is done in a
pairwise point-to-point manner between the peers, allowing for efficient commu-
nication and limiting the load on the global directory. Finally, the results from
the various peers are combined at the querying peer into a single result list.

The goal of finding high-quality search results with respect to precision and
recall cannot be easily reconciled with the design goal of unlimited scalability,
as the best information retrieval techniques for query execution rely on large
amounts of document metadata. Posting only compact, aggregated information
about local indexes and using appropriate query routing methods to limit the
number of peers involved in a query keeps the size of the global directory man-
ageable and reduces network traffic, while at the same time allowing the query
execution itself to rely on comprehensive local index data. We expect this ap-
proach to scale very well as more and more peers jointly maintain the moderately
growing global directory.

The approach can easily be extended in a way that multiple distributed
directories are created to store information beyond local index summaries, such
as information about local bookmarks, information about relevance assessments
(e.g., derived from peer-specific query logs or click streams), or explicit user
feedback. This information could be leveraged when executing a query to further
enhance result quality.

4.1 Query Routing

Database selection has been a research topic for many years, e.g. in distributed
IR and metasearch [11]. Typically, the expected result quality of a collection is

316 O. Papapetrou et al.

estimated using precomputed statistics, and the collections are ranked accord-
ingly. Most of these approaches, however, are not directly applicable in a true
P2P environment, as

• the number of peers in the system is substantially higher (10x peers as op-
posed to 10-20 databases)

• the system evolves dynamically, i.e. peers enter or leave the system au-
tonomously at their own discretion at a potentially high rate

• the results from remote peers should not only be of high quality, but also
complementary to the results previously obtained from one’s local search
engine or other remote peers

In [26,28], we have adopted a number of popular existing approaches to fit
the requirements of such an environment and conducted extensive experiments
in order to evaluate the performance of these naive approaches.

As a second step, we have extended these strategies using estimators of mu-
tual overlap among collections [23] using bloom filters [17]. Preliminary experi-
ments show that such a combination can outperform popular approaches based
on quality estimation only, such as CORI [11].

We also want to incorporate the fact that every peer has its own local index,
e.g., by using implicit-feedback techniques for automated query expansion (e.g.,
using the well-known IR technique of pseudo relevance feedback [29] or other
techniques based on query logs [30] and click streams [31]). For this purpose, we
can benefit from the fact that each peer executes the query locally first, and also
the fact that each peer represents an actual user with personal preferences and
interests. For example, we want to incorporate local user bookmarks into our
query routing [28], as bookmarks represent strong recommendations for specific
documents. Queries could be exclusively forwarded to thematically related peers
with similarly interested users, to improve the chances of finding subjectively
relevant pages.

Ultimatively, we want to introduce a sophisticated benefit/cost ratio when
selecting remote peers for query forwarding. For the benefit estimation, it is intu-
itive to consider such measures as described in this section. Defining a meaningful
cost measure, however, is an even more challenging issue. While there are tech-
niques for observing and inferring network bandwidth or other infrastructural
information, expected response times (depending on the current system load) are
changing over time. One approach is to create a distributed Quality-of-Service
directory that, for example, holds moving averages of recent peer response times.

4.2 Query Execution

Query execution based on local index lists has been an intensive field of research
for many years in information retrieval. A good algorithm should avoid reading
inverted index lists completely, but limit the effort to O(k) where k is the number
of desired results. In the IR and multimedia-search literature, various algorithms
have been proposed to accomplish this. The best known general-purpose method

On the Usage of Global Document Occurrences 317

for top-k queries is Fagin’s threshold algorithm (TA) [32], which has been in-
dependently proposed also by Nepal et al. [33] and Güntzer et al. [34]. It uses
index lists that are sorted in descending order of term scores under the additional
assumption that the final score for a document is calculated using a monotone
aggregation function (such as a simple sum function). TA traverses all inverted
index lists in a round-robin manner, i.e., lists are mainly traversed using sorted
accesses. For every new document d encountered, TA uses random accesses to
calculate the final score for d and keeps this information a in document candi-
date set. Since TA additionally keeps track of a higher bound for documents not
yet encountered, the algorithm terminates as soon as this bound assures that no
unseen document can enter the candidate set. Probabilistic methods have been
studied in [35] that can further improve the efficiency of index processing.

As our focus is on the distributed aspect of query processing, we will not
focus on query execution in this paper. Our approaches to be introduced in the
upcoming sections are orthogonal to this issue and can be applied to virtually
any query execution strategy.

5 Global Document Occurrences (GDO)

We define the global document occurrence of a document d (GDOd) as the num-
ber of peers that contain d, i.e., as the number of occurrences of d within the
network. This is substantially different from the notion of global document fre-
quency of a term t (which is the number of documents that contain t) and from
the notion of collection frequency (which is typically defined as the number of
collections that contain documents that contain t).

The intuition behind using GDO when processing a query is the fact that
GDO can be used to efficiently estimate the probability that a peer contains a
certain document and, thus, the probability that a document is contained in at
least one of a set of peers. Please note the obvious similarity to the TF ∗ IDF
measure, that weights the relative importance of a query term t using the number
of documents that contain t as an estimation of the popularity of t, favoring
rare terms over popular (and, thus, less distinctive and discriminative) terms.
Similarly, the GDO approach weights the relative popularity of a document
within the union of all collections. If a document is highly popular (i.e., occurs in
most of the peers), it is considered less important both when selecting promising
peers (query routing) and when locally executing the query (query execution).
In contrast, rare documents receive a higher relative importance.

5.1 Mathematical Reasoning

The proposed approach will get clearer if we describe the reasoning behind
it. Suppose that we are running a single-keyword query, and that each docu-
ment d in our collection has a precomputed relevance to a term t (noted as
DocumentScore(d, t)). When searching for the top-k documents, a P2P system
would ask some of its peers for documents, which determine the relevant docu-
ments locally, and merge the results.

318 O. Papapetrou et al.

This independent document selection has the disadvantage that it does not
consider overlapping results. For example, one relevant document might be so
common, that every peer returns it as result. This reduces the recall for a query,
as the document is redundant for all but the first peer. In fact, massive document
replication is common in real P2P systems, so duplicate results frequently occur.
This effect can be described with a mathematical model, which can be used to
improve document retrieval.

Assuming a uniform distribution of documents among the peers, the proba-
bility that a given peer has a certain document d can be estimated by

PH(d) =
GDO(d)
#peers

.

Now consider a sequence of peers < p1, . . . , pλ >. The probability that a given
document d held by pλ is fresh, i.e. not already occurs in one of the previous
peers, can be estimated by

Pλ
F (d) = (1− PH(d))λ−1.

This probability can now be used to re-evaluate the relevance of documents: If
it is likely that a previously queried peer has already returned a document, the
document is no longer relevant. Note that we introduce a slight inaccuracy here:
We only used the probability that one of the previously asked peers has a docu-
ment, not the probability that it has also returned the document. Thus we would
be interested in the probability that a document has not been returned before
Pλ

NR(d). However the error introduced is reasonably small: for all documents
P λ

NR(d) ≥ Pλ
F (d). For the relevant documents Pλ

NR(d) ≈ Pλ
F (d), as the relevant

documents will be returned by the peers. Therefore we only underestimate (and,
thus, punish) the probability for irrelevant documents, which is not too bad, as
the they were irrelevant anyway.

Now this probability can be used to adjust the scores according to the GDO.
The most direct usage would be to discard a document d during retrieval with a
probability of (1 − Pλ

F (d)), but this would produce non-deterministic behavior.
Instead we adjust the DocumentScores of a document d with regard to a term t
by aggregating the scores and the probability; for simplicity, we multiply them
in our current experiments.

DocumentScore′(d, t) = DocumentScore(d, t) ∗ Pλ
F (d)

This formula reduces the scores for frequent documents, which avoids duplicate
results. Note that Pλ

F (document) decreases with λ, thus frequent documents are
still returned by peers asked early, but discarded by the following peers.

5.2 Apply GDO to Query Routing

In most of the existing approaches to query routing, the quality of a peer is
estimated using per-term statistics about the documents that are contained in its

On the Usage of Global Document Occurrences 319

collection. Popular approaches include counting the number of documents that
contain this term (document frequency), or summing up the document scores
for all these documents (score mass). These term-specific scores are combined
to form an aggregated PeerScore with regard to a specific query. The peers are
ordered according to their PeerScore to form a peer ranking that determines an
order in which the peers will be queried.

The key insight of our approach to tackle the problem of retrieving duplicate
documents seems obvious: the probability of a certain document being contained
in at least one of the involved peers increases with the number of involved peers.
Additionally, the more popular the document, the higher the probability that it
is contained in one of the first peers to contribute to a query. Thus, the impact
of such documents to the PeerScore should decrease as the number of involved
peers increases.

If a candidate peer in the ranking contains a large fraction of popular docu-
ments, it would be increasingly unwise to query this peer at later stages of the
ranking, as the peer might not have any fresh (i.e., previously unseen) documents
to offer. In contrast, if no peers have been queried yet, then a peer should not be
punished for containing popular documents, as we certainly do want to retrieve
those documents. We suggest an extension that is applicable to almost all pop-
ular query routing strategies and calculates the PeerScore of a peer depending
on its position in the peer ranking.

For this purpose, we modify the score of each document in a collection with
different biases, one for each position in a peer ranking2. In other words, there is
no longer only one DocumentScore for each document, but rather several Doc-
umentScores corresponding to the potential ranks in a peer ranking. Remember
from the previous section, that the DocumentScore of a document d with regard
to term t is calculated using the following formula:

DocumentScore′(d, t, λ) = DocumentScore(d, t) ∗ Pλ
F (d)

where λ is the position in the peer ranking (i.e., the number of peers that have
already contributed to the query before), and Pλ

F (d) is the probability that this
document is not contained in any of the previously contributing collections.

From this set of DocumentScores, each peer now calculates separate term-
specific scores (i.e., the scores that serve as subscores when calculating PeerScores
in the process of Query Routing) corresponding to the different positions in
a peer ranking by combining the respectively biased document scores. In the
simplest case where the PeerScore was previously calculated by summing up
the scores for all relevant documents, this means that now one of these sums is
calculated for every rank λ:

score(p, t, λ) =
∑

d∈Dp

DocumentScore′(d, t, λ)

2 Please note that, for techniques that simply count the number of documents, all
scores are initially set to 1.

320 O. Papapetrou et al.

where Dp denotes the document collection of p. Instead of including only one
score in each term-specific post, now a list of the term-specific peer scores
score(p, t, λ) is included in the statistics that is published to the distributed
directory. Figure 3 shows some extended statistics for a particular term. The
numbers shown in the boxes left to the scores represent the respective ranks in a
peer ranking. Please note that the term-specific score of a peer decreases as the
document scores for its popular documents decrease with the ranking position.
Prior experiments have shown that typically involving only 2-3 peers in a query
already yields a reasonable recall; we only calculate score(p, t, λ) for λ ≤ 10
[26] as we consider asking more than 10 peers very rare and not compatible
with our goal of system scalability. The calculation itself of this magnitude of
DocumentScores is negligible.

Peer X

0.89161.

0.65462.

0.45333.

Peer Y

0.79241.

0.68142.

0.55133.

.

Published Metadata for Term a

0.097410. 0.104510.

Fig. 3. Extended Term-specific scores for different ranking positions

Please also note that this process does not require the selected peers to locally
execute the queries sequentially, but it allows for the parallel query execution of
all peers involved: after identifying the desired number of peers and their ranks in
the peer ranking, the query initiator can contact all other peers simultaneously
and include their respective ranks in the communication. Thus, the modification
of the standard approach using GDOs does not cause additional latencies or
bandwidth consumption.

The additional network resource consumption needed for our proposed ap-
proach is relatively small if conducted in a clever manner. Instead of distributing
the GDO counters across the peers using random hashing on unique document
identifiers, we propose to maintain the counters at peers that are responsible
for a representative term within the document, (e.g., the first term or the most
frequent term). Doing so, we can easily piggyback the GDO-related communica-
tion when publishing the Posts and, in turn, can immediately receive the current
GDO values for the same documents. The GDO values are then cached locally
and used to update the local DocumentScores, that will eventually be used when
publishing our Posts again. The Posts itself become slightly larger as more than
one score value is now included in a Post; this will typically fit within the existing
network message avoiding extra communication.

On the Usage of Global Document Occurrences 321

5.3 Apply GDO to Query Execution

The peers that have been selected during query routing can additionally use
GDO-dependent biases to penalize popular documents during their local query
execution. The later a peer is involved in the processing of a query, the higher
punishing impact this GDO-dependent bias should have as popular documents
are likely to be considered at prior peers. For this purpose, each peer re-weights
the DocumentScores obtained by its local query execution with the GDO-values
for the documents.

1st Peer

top- documents

top documents but too high GDO

new “top” documents

2nd Pee r 3rd Peer

Fig. 4. The impact of GDO-enhanced query execution

Figure 4 shows the impact of the GDO-based local query execution3.
The additional cost caused by our approach within the query execution step

is negligible. As the GDO values are cached locally as described in a previous
section, the DocumentScores can easily be adjusted on-line using a small number
of basic arithmetic operations.

5.4 Building and Maintaining GDO

All the approaches introduced above build on top of a directory that globally
counts the number of occurrences or each document. When a new peer joins the
network, it updates GDO for all its documents (i.e., increment the respective
counters) and retrieves the GDO values for the computation of its biased scores
at low extra cost.

We propose the usage of the existing distributed DHT-based directory to
maintain the GDO values in a scalable way. In a naive approach, the document
space is partitioned across all peers using globally unique document identifiers,
e.g., by applying a hash function to their URLs and maintaining the counter at
3 In case you see a 79 in the right figure, please contact your local ophthalmologist

immediately.

322 O. Papapetrou et al.

the DHT peer that is responsible for this identifier (analogously to the term-
specific statistics that are maintained independently in parallel). This naive ap-
proach would require two messages for each document per peer (one when the
peer enters and one when the peer leaves the network), which results to O(n)
messages for the whole system, where n is the number of document instances.

However, the advanced approach of piggybacking this information onto exist-
ing messages almost avoids additional messages completely. In fact, when a peer
enters the network, no additional messages are required for the GDO mainte-
nance, as all messages are piggybacked in the process of publishing Post objects
to the directory.

To cope with the dynamics of a Peer-to-Peer system, in which peers join
and leave the system autonomously and without prior notice, we propose the
following technique. Each object in the global directory is assigned a TTL (time-
to-live) value, after which it is discarded by the maintaining peer. In turn, each
peer is required to re-send its information periodically. This fits perfectly with
our local caching of GDO values, as these values can be used when updating the
Post objects. This update process, in turn, again updates the local GDO values.

6 Experiments

6.1 Benchmarks

We have generated two synthetic benchmarks. The first benchmark includes
50 peers and 1000 unique documents, while the second benchmark consists of
100 peers and 1000 unique documents. We assign term-specific scores to the
documents following a Zipf[36] distribution (skewness α = 0.8), as in real world
we often find documents that were highly relevant with regard to one term, but
practically irrelevant (with a very low score) with regard to the remaining terms.
The assumption that the document scores follow Zipf’s law is widely accepted
in information retrieval literature.

The document replication follows a Zipf distribution, too. This means that
most documents are assigned to a very small number of peers (i.e., have a low
GDO value) and only very few documents are assigned to a large number of
peers (i.e., have a high GDO value). Please note that, although the GDOs and
the document scores of the documents were following a Zipf distribution, the two
distributions were not connected. This means that we do not expect a document
with a very high importance for one term to be also highly replicated. We do
not believe that this would create real-world document collections as we know
from personal experiences that the most popular documents are not necessarily
the most relevant documents.

6.2 Evaluated Strategies

In our experimental evaluation, we compare six different strategies. All strategies
consist of the query routing part and the query execution part. For query routing,
our baseline algorithm for calculating the PeerScore of a peer p works as follows:

On the Usage of Global Document Occurrences 323

• score(p, t) =
∑

d∈Dp
DocumentScore(d, t), i.e., the (unbiased) score mass of

all relevant documents in p’s collection Dp

• PeerScore(p, q) =
∑

t∈q score(p, t), i.e., the sum over all term-specific scores
for all terms t contained in the query q

For the query execution part, the synthetically created DocumentScores
where derived by summing up the (synthetically assigned) term-specific scores
described above. At both stages, query routing and query processing, we can ei-
ther choose a standard (non-GDO) approach our our GDO-enhanced approach,
yielding a total of four strategies. The GDO values were provided to each strat-
egy using global knowledge of our data.

In addition, we employ two other strategies that use a mod-k sampling-based
query execution technique to return fresh documents: In the query execution
process, the peers will return only documents with (DocumentId mod κ) = λ
where κ is the total number of peers that are going to be queried (i.e. top-10),
and λ is the number of peers that have already been queried.

6.3 Evaluation Methodology

We run several three-term queries using the six strategies introduced above. In
each case, we send the query to the top-10 peers suggested by each approach,
and collect the local top-20 documents from each peer. Additionally, we run
the queries on a combined collection of all peers to retrieve the global top-100
documents that serves as a baseline for our strategies.

We use four metrics to assess the quality of each strategy:

• the number of distinct retrieved documents, i.e., after eliminating duplicates
• the score mass of all distinct retrieved document4

• the number of distinct retrieved top-100 documents
• the score mass of distinct retrieved top-100 documents

6.4 Results

The experiments are conducted on both benchmark collections. Due to space
limitations, we only present the results for the 50-peer setup; the results of the
100-peer setup are very similar.

The GDO-enhanced strategies show significant performance gains. Figure 5
shows the number of distinct retrieved documents, while Figure 6 shows the
aggregated score masses for these documents. Figure 7 shows the number of
distinct retrieved top-100 documents; Figure 8 shows the corresponding score
masses. While all other strategies outperform the baseline strategy, it is inter-
esting to notice that query execution can obviously draw more benefit from the
GDO-enhancement than query routing can; if applied to query routing only,
our GDO-approach does not show significant performance improvements. This
4 Note that, by design, the same document is assigned the same score at different

peers.

324 O. Papapetrou et al.

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10
Queried Peers

#
 D

is
ti

n
c
t

 D
o

c
u

m
e
n

ts

1. Current Query Execution Technique 2. Query Routing: Normal, Query Processing: GDO-based

3. Query Routing: GDO-based, Query Processing: Normal 4. Query Routing:GDO-based, Query Processing:GDO-based

5. Distillation-based approach (Mod 5) 6. Distillation-based approach (Mod 10)

Fig. 5. Distinct documents retrieved with regard to the number of queried peers

0

10

20

30

40

50

60

0 2 4 6 8 10
Queried Peers

S
c

o
re

M
a

s
s

s
(D

is
ti

n
c

t
D

o
c

u
m

e
n

ts
)

1. Current Query Execution Technique 2. Query Routing: Normal, Query Processing: GDO-based

3. Query Routing: GDO-based, Query Processing: Normal 4. Query Routing:GDO-based, Query Processing:GDO-based

5. Distillation-based approach (Mod 5) 6. Distillation-based approach (Mod 10)

Fig. 6. Score mass of the retrieved documents with regard to the number of queried
peers

On the Usage of Global Document Occurrences 325

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10
Queried Peers

#
 T

o
p

-1
0
0
-D

o
c
u

m
e
n

ts

1. Current Query Execution Technique 2. Query Routing: Normal, Query Processing: GDO-based

3. Query Routing: GDO-based, Query Processing: Normal 4. Query Routing:GDO-based, Query Processing:GDO-based

5. Distillation-based approach (Mod 5) 6. Distillation-based approach (Mod 10)

Fig. 7. Distinct documents from global top-100 with regard to the number of queried
peers

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10
Queried Peers

S
c
o

re
M

a
s
s
(T

o
p

-1
0
0
-

D
o

c
u

m
e
n

ts
)

1. Current Query Execution Technique 2. Query Routing: Normal, Query Processing: GDO-based

3. Query Routing: GDO-based, Query Processing: Normal 4. Query Routing:GDO-based, Query Processing:GDO-based

5. Distillation-based approach (Mod 5) 6. Distillation-based approach (Mod 10)

Fig. 8. Score mass of distinct retrieved documents from global top-100 with regard to
the number of queried peers

326 O. Papapetrou et al.

does not come as a surprise and is partly due to the nature of our benchmark.
For larger peer populations showing significant mutual overlap, we expect the
GDO-enhanced query routing to outperform the baseline strategy in a more
impressive way. On the other hand, the query execution technique has a great
impact on the number of distinct documents. Using GDO-enhancement, popu-
lar documents are discarded from the local query results, giving place to other
(otherwise not considered) documents.

The naive mod-κ approaches are quite successful in retrieving distinct doc-
uments; however, they perform bad if we evaluate the quality of the returned
documents by calculating score masses. On the other hand, using the two-way
GDO-enhanced strategy (both GDO-routing and GDO-query processing) com-
bines many fresh documents with high scores for our query, resulting in a signif-
icant recall improvement.

7 Conclusion and Future Work

This work presents an approach toward improving the query processing in Peer-
to-Peer Information Systems. The approach is based on the notion of Global
Document Occurrences (GDO) and aims at increasing the number of uniquely
retrieved high-quality documents without imposing significant additional net-
work load or latency. Our approach can be applied both at the stage of query
routing (i.e., when selecting promising peers for a particular query) and when
locally executing the query at these selected peers. The addition cost caused to
build and maintain the required statistical information is small and our approach
is expected to scale very well with a growing network. Early experiments show
the potential of our approach, significantly increasing the recall experienced in
our settings.

We are currently working on experiments on real data obtained from focused
web crawls, which exactly fits our environment of peers being users with individ-
ual interest profiles. Also, a more thorough study of the resource consumption
of our approach in under way. One central point of interest is the directory
maintenance cost; in this context, we evaluate strategies that do not rely on pe-
riodically resending all information, but on explicit GDO increment/decrement
messages. Using a time-sliding window approach, this might allow us to even
more efficiently estimate the GDO values.

References

1. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the ACM SIGCOMM 2001, ACM Press (2001) 149–160

2. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Proceedings of ACM SIGCOMM 2001, ACM Press (2001)
161–172

On the Usage of Global Document Occurrences 327

3. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware). (2001) 329–350

4. Buchmann, E., Böhm, K.: How to Run Experiments with Large Peer-to-Peer Data
Structures. In: Proceedings of the 18th International Parallel and Distributed
Processing Symposium, Santa Fe, USA. (2004)

5. Aberer, K., Punceva, M., Hauswirth, M., Schmidt, R.: Improving data access in
p2p systems. IEEE Internet Computing 6 (2002) 58–67

6. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data.
Morgan Kaufmann, San Francisco (2002)

7. Fuhr, N.: A decision-theoretic approach to database selection in networked IR.
ACM Transactions on Information Systems 17 (1999) 229–249

8. Gravano, L., Garcia-Molina, H., Tomasic, A.: Gloss: text-source discovery over the
internet. ACM Trans. Database Syst. 24 (1999) 229–264

9. Si, L., Jin, R., Callan, J., Ogilvie, P.: A language modeling framework for resource
selection and results merging. In: Proceedings of CIKM02, ACM Press (2002)
391–397

10. Xu, J., Croft, W.B.: Cluster-based language models for distributed retrieval. In:
Research and Development in Information Retrieval. (1999) 254–261

11. Callan, J.: Distributed information retrieval. Advances in information retrieval,
Kluwer Academic Publishers. (2000) 127–150

12. Nottelmann, H., Fuhr, N.: Evaluating different methods of estimating retrieval
quality for resource selection. In: Proceedings of the 26th annual international
ACM SIGIR conference on Research and development in informaion retrieval, ACM
Press (2003) 290–297

13. Grabs, T., Böhm, K., Schek, H.J.: Powerdb-ir: information retrieval on top of a
database cluster. In: Proceedings of CIKM01, ACM Press (2001) 411–418

14. Melnik, S., Raghavan, S., Yang, B., Garcia-Molina, H.: Building a distributed
full-text index for the web. ACM Trans. Inf. Syst. 19 (2001) 217–241

15. Byers, J., Considine, J., Mitzenmacher, M., Rost, S.: (Informed content delivery
across adaptive overlay networks. In Proceedings of ACM SIGCOMM, 2002.)

16. Ganguly, S., Garofalakis, M., Rastogi, R.: Processing set expressions over contin-
uous update streams. In: SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, ACM Press (2003) 265–276

17. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13 (1970) 422–426

18. Mitzenmacher, M.: Compressed bloom filters. IEEE/ACM Trans. Netw. 10 (2002)
604–612

19. Florescu, D., Koller, D., Levy, A.Y.: Using probabilistic information in data inte-
gration. In: The VLDB Journal. (1997) 216–225

20. Zhang, Y., Callan, J., Minka, T.: Novelty and redundancy detection in adaptive
filtering. In: SIGIR ’02: Proceedings of the 25th annual international ACM SI-
GIR conference on Research and development in information retrieval, ACM Press
(2002) 81–88

21. Nie, Z., Kambhampati, S., Hernandez, T.: Bibfinder/statminer: Effectively mining
and using coverage and overlap statistics in data integration. In: VLDB. (2003)
1097–1100

22. Hernandez, T., Kambhampati, S.: (Improving text collection selection with cov-
erage and overlap statistics. pc-recommended poster. WWW 2005. Full version
available at http://rakaposhi.eas.asu.edu/thomas-www05-long.pdf)

328 O. Papapetrou et al.

23. Bender, M., Michel, S., Triantafillou, P., Weikum, G., Zimmer, C.: Improving
collection selection with overlap awareness in p2p systems. In: Proceedings of the
SIGIR Conference. (2005)

24. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. The MIT Press, Cambridge, Massachusetts (1999)

25. Croft, W.B., Lafferty, J.: Language Modeling for Information Retrieval. Volume 13.
Kluwer International Series on Information Retrieval (2003)

26. Bender, M., Michel, S., Weikum, G., Zimmer, C.: The MINERVA project: Database
selection in the context of P2P search. (In: BTW 2005)

27. Bender, M., Michel, S., Weikum, G., Zimmer, C.: Minerva: Collaborative p2p
search. In: Proceedings of the VLDB Conference (Demonstration). (2005)

28. Bender, M., Michel, S., Weikum, G., Zimmer, C.: Bookmark-driven query routing
in peer-to-peer web search. In Callan, J., Fuhr, N., Nejdl, W., eds.: Proceedings of
the SIGIR Workshop on Peer-to-Peer Information Retrieval. (2004) 46–57

29. Buckley, C., Salton, G., Allan, J.: The effect of adding relevance information in a
relevance feedback environment. In: SIGIR, Springer-Verlag (1994)

30. Luxenburger, J., Weikum, G.: Query-log based authority analysis for web infor-
mation search. In: WISE04. (2004)

31. Srivastava et al., J.: Web usage mining: Discovery and applications of usage pat-
terns from web data. SIGKDD Explorations 1 (2000) 12–23

32. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
In: Symposium on Principles of Database Systems. (2001)

33. Nepal, S., Ramakrishna, M.V.: Query processing issues in image (multimedia)
databases. In: ICDE. (1999) 22–29

34. Guntzer, U., Balke, W.T., Kiesling, W.: Optimizing multi-feature queries for image
databases. In: The VLDB Journal. (2000) 419–428

35. Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation with probabilistic
guarantees. VLDB (2004)

36. Zipf, G.K.: Human behavior and the principle of least effort. addison-wesley press.
(1949)

An Approach for Clustering Semantically
Heterogeneous XML Schemas

Pasquale De Meo1, Giovanni Quattrone1,
Giorgio Terracina2, and Domenico Ursino1

1 DIMET, Università “Mediterranea” di Reggio Calabria, Via Graziella,
Località Feo di Vito, 89060 Reggio Calabria, Italy

2 Dipartimento di Matematica, Università della Calabria, Via Pietro Bucci,
87036 Rende (CS), Italy

{demeo, quattrone, ursino}@unirc.it,
terracina@mat.unical.it

Abstract. In this paper we illustrate an approach for clustering seman-
tically heterogeneous XML Schemas. The proposed approach is driven
mainly by the semantics of the involved Schemas that is defined by
means of the interschema properties existing among concepts represented
therein. An important feature of our approach consists of its capability to
be integrated with almost all the clustering algorithms already proposed
in the literature.

1 Introduction

Clustering is the process of grouping a set of physical or abstract objects into
classes of similar objects called clusters [11], in such a way that those objects
belonging to the same cluster are as similar as possible, whereas those ones
belonging to different clusters are as dissimilar as possible.

Clustering has its roots in many areas, including Data Mining, Statistics,
Biology, and Machine Learning. Its applications are extremely various and range
from Economy to Finance, from Biology to Sociology, and so on. Clustering can
play a key role also in the Web; in fact, in this scenario, numerous applications
that largely benefit of clustering, ranging from the definition of user classes to
the construction of multi-thematic portals, have been proposed [3].

In the Web context, a specific activity in which clustering can play a key role
consists of grouping semantically heterogeneous information sources. In fact,
currently, the number of information sources available on the Web is exponen-
tially increasing, along with their semantic heterogeneity. As a consequence, it
appears extremely important the definition of approaches for clustering them
into homogeneous classes.

On the contrary, as for data representation format and data exchange, the
World Wide Web Consortium foretells, for the future, a certain uniformity and,
to this purpose, proposes the usage of the XML language.

The growing importance of both clustering and XML stimulated, in the past,
various researchers to study clustering techniques for XML sources [6,14,16,19].

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 329–346, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

330 P. De Meo et al.

However, many of these techniques were “structural”, i.e., they aimed at defin-
ing groups of structurally similar XML sources [6,16]. Clearly, the structural
similarity of two information sources is an indicator of their semantic similarity;
however, often, it could be not sufficient [4,10,17].

In the literature various methods for defining the information sources seman-
tics have been proposed; one of the most commonly adopted methods consists of
the exploitation of the so-called interschema properties, [2,4,17,21], i.e., termi-
nological and structural relationships existing among concepts belonging to dif-
ferent information sources. The most important interschema properties are syn-
onymies, homonymies, hyponymies/hypernymies, overlappings, and subschema
similarities.

In the literature also some approaches for clustering XML sources, taking
into account their semantic similarities, have been proposed [14,19]. However,
in these approaches, source similarity is determined by considering only concept
similarities (that, in the context of interschema properties, correspond to syn-
onymies). In our opinion these approaches are extremely interesting; however,
they could be further refined if, in addition to synonymies, also other interschema
properties, such as hyponymies and overlappings, would be considered.

This paper aims at providing a contribution in this setting; in fact, it presents
an approach for clustering semantically heterogeneous information sources; the
proposed approach takes into account not only synonymies but also hyponymies
and overlappings.

We point out that the present paper has not been conceived for defining
a new clustering algorithm; on the contrary, it aims at allowing the applica-
tion of most of the existing algorithms to our reference context. As a matter
of fact, in the literature, a great number of clustering algorithms, character-
ized by extremely various features already exists, and other ones will be pre-
sumably proposed in the future. As a consequence, allowing the application
of all these algorithms to our reference context would provide the user with
the availability of a large variety of clustering tools, characterized by different
peculiarities.

The key for reaching such a result is the exploitation of the so called dis-
similarity matrix [11]; this is, in fact, the data structure which almost all the
clustering algorithms already proposed in the literature operate on. The rows
and the columns of this matrix represent the objects to cluster; its generic ele-
ment M [i, j] denotes the distance, i.e., the dissimilarity, between the objects i
and j. Generally, M [i, j] is a non-negative number that is as closer to 0 as i and
j are similar.

The proposed approach exploits interschema properties for finding the dis-
similarity degree between two XML Schemas and, consequently, for constructing
the dissimilarity matrix. Since some clustering algorithms require the involved
objects to be represented as points in a metric space (see Section 2), in order
to allow the applicability of the maximum possible number of clustering algo-
rithms to our reference context, we define the dissimilarity among XML Schemas
by exploiting a suitable euclidean space.

An Approach for Clustering Semantically Heterogeneous XML Schemas 331

2 Description of the Proposed Approach

2.1 Introduction

As pointed out in the Introduction, the main focus of the proposed approach is
the clustering of semantically heterogeneous XML Schemas.

Our approach receives: (i) a set SchemaSet = {S1, S2, . . . , Sn} of XML
Schemas to cluster; (ii) a dictionary IPD storing the interschema properties
(synonymies, hyponymies/hypernymies, and overlappings) involving concepts
belonging to Schemas of SchemaSet. These properties can be computed by
exploiting any approach proposed in the literature for this purpose; specifi-
cally, in our experiments, we have adopted the approach described in [7], for
the computation of synonymies, and that described in [8], for the computation
of hyponymies and overlappings. These two approaches are not only structural
but also semantic; the semantics of a concept is determined by considering its
neighborhoods, i.e., the other concepts related to it and the corresponding kinds
of relationships. For instance, two concepts are considered synonymous if their
neighborhoods are similar. Both the two approaches require the support of a
thesaurus, e.g., WordNet.

In the following we shall assume that IPD is ordered on the basis of the
names of the involved elements and attributes; if this is not the case, our ap-
proach preliminarily applies a suitable sorting algorithm on it.

Before providing a detailed description of the behaviour of our approach, it
is necessary to introduce some definitions that will be largely exploited in the
following.

Let Si be an XML Schema. An x-component of Si is an element or an attribute
of Si; it is characterized by its name, its typology (stating if it is a simple
element, a complex element or an attribute), and its data type. The set of x-
components of Si is called XCompSet(Si). In the following we shall denote with
P =
∑n

i=1 |XCompSet(Si)| the total number of x-components belonging to the
Schemas of SchemaSet.

We define now some functions that will be extremely useful in the following;
they receive two x-components xν and xμ and return a boolean value; these
functions are:

– identical(xν, xμ), that returns true if and only if xν and xμ are two syn-
onymous x-components having the same name, the same typology, and the
same data type;

– strong(xν , xμ), that returns true if and only if xν and xμ are two synonymous
x-components and, at the same time, identical(xν, xμ) = false;

– weak(xν , xμ), that returns true if and only if xν and xμ are two x-components
related by either an hyponymy/hypernymy or an overlapping property.

Proposition 1. Let SchemaSet = {S1, S2, . . . , Sn} be a set of XML Schemas;
let P be the total number of x-components relative to the Schemas of SchemaSet;
finally, let xν and xμ be two x-components belonging to two distinct Schemas of

332 P. De Meo et al.

SchemaSet. The computation of identical(xν, xμ), strong(xν , xμ), and weak(xν ,
xμ) costs O(log P).

Proof. At most one kind of interschema properties can exist between two x-
components of different Schemas. As a consequence, the maximum cardinality
of IPD is O(P 2). The computation of each function mentioned above implies
the search of the corresponding pair in IPD. Since this dictionary is ordered,
it is possible to apply the binary search. This costs O(log(P 2)) = O(2 log P) =
O(log P). �

Starting from the functions defined previously, it is possible to construct the
following support dictionaries:

– Identity Dictionary ID, defined as:

ID = {〈xν , xμ〉 | xν , xμ ∈
⋃n

i=1 XCompSet(Si), identical(xν, xμ) = true};

– Strong Similarity Dictionary SSD, defined as:

SSD = {〈xν , xμ〉 | xν , xμ ∈
⋃n

i=1 XCompSet(Si), strong(xν , xμ) = true};

– Weak Similarity Dictionary WSD, defined as:

WSD = {〈xν , xμ〉 | xν , xμ ∈
⋃n

i=1 XCompSet(Si), weak(xν , xμ) = true}.

The construction of these dictionaries is carried out in such a way that they
are always ordered w.r.t. the names of the involved x-components.

Proposition 2. Let SchemaSet = {S1, S2, . . . , Sn} be a set of XML Schemas;
let P be the total number of x-components relative to Schemas of SchemaSet.
The construction of ID, SSD, and WSD costs O(P 2 × log P).

Proof. The construction of each dictionary is carried out by verifying the cor-
responding function for each of the O(P 2) pairs of x-components. Proposition 1
states that this verification costs O(log P); as a consequence, the total cost of
the construction of each dictionary is O(P 2 × log P). �

2.2 Construction of the Dissimilarity Matrix

As specified in the Introduction, the main focus of our approach is the construc-
tion of the dissimilarity matrix. In fact, once this structure has been constructed,
it is possible to apply on it a large variety of clustering algorithms already pro-
posed in the literature. In order to allow the application of the maximum possible
number of clustering algorithms, we have decided to exploit a metrics for mea-
suring the dissimilarity between two XML Schemas.

Since involved XML Schemas could be semantically heterogeneous and since
we want to group them on the basis of their relative semantics, our definition of
metrics must necessarily be very different from the classical ones; specifically, in
our case, it must be strictly dependent on the interschema properties that are
the way we exploit for defining the inter-source semantics.

An Approach for Clustering Semantically Heterogeneous XML Schemas 333

In order to introduce our notion of metrics we have exploited a suitable, multi-
dimensional euclidean space. It has P dimensions, one for each x-component of
the involved XML Schemas; in the following it will be denoted by the symbol
"P .

An XML Schema Si can be represented in "P by means of a point Qi ≡
[qi

1, q
i
2, . . . , q

i
ν , . . . , qi

P]. The value of the generic coordinate qi
ν is obtained by

means of the following formula:

qi
ν = ξ(xν)× ψ(xν , Si, ID, SSD, WSD)

ξ(xν) discriminates the complex elements w.r.t. the simple ones and the at-
tributes. This is necessary because a complex element is much more character-
izing than either a simple element or an attribute in defining the semantics of a
concept. ξ is defined in the following way:

ξ(xν) =
{

1 if xν is a complex element
γ if xν is either a simple element or an attribute

Here, γ belongs to the real interval [0, 1].
ψ(xν , Si, ID, SSD, WSD) indicates how much Si is capable of representing

the semantics expressed by the concept associated with xν . Clearly, its capability
is maximum if it contains xν or an x-component identical to xν ; its capability de-
creases if there exists only a synonym of xν in it; its capability further decreases if
it contains an x-component related to xν only by either an hyponymy/hypernymy
or an overlapping property. ψ is defined in the following way:

ψ(xν , Si, ID, SSD, WSD) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if xν ∈ XCompSet(Si) or

if ∃ xμ ∈ XCompSet(Si) | 〈xν , xμ〉 ∈ ID
α if ∃ xμ ∈ XCompSet(Si) | 〈xν , xμ〉 ∈ SSD
β if ∃ xμ ∈ XCompSet(Si) | 〈xν , xμ〉 ∈WSD
0 otherwise

Here, α and β belong to the real interval [0..1]; moreover, we have that,
generally, β < α < 1. An experimental study on the values of α, β and γ is
illustrated in Section 3.3.

Proposition 3. Let SchemaSet = {S1, S2, . . . , Sn} be a set of XML Schemas;
let P be the total number of x-components relative to the Schemas of SchemaSet.
Let Si be a Schema of SchemaSet. The worst case time complexity for determin-
ing the point Qi associated with Si in "P is O(|XCompSet(Si)| × P × log P).

Proof. In order to determine Qi the functions ξ and ψ must be evaluated for each
dimension of "P . Let us consider the νth dimension. The cost of ξ is constant. ψ
requires to perform a search in ID, SSD and WSD for each x-component of Si.
Since these dictionaries are ordered, this search can be performed in O(log P).
As a consequence, the total cost of the function ψ is O(|XCompSet(Si)|×log P).

This evaluation must be repeated for each of the P dimensions; as a conse-
quence, the total cost for determining Qi is O(|XCompSet(Si)| × P × log P).

�

334 P. De Meo et al.

Corollary 1. Let SchemaSet = {S1, S2, . . . , Sn} be a set of XML Schemas; let
P be the total number of x-components relative to the Schemas of SchemaSet.
The worst case time complexity for determining in "P the points associated
with all Schemas of SchemaSet is O ((

∑n
i=1 |XCompSet(Si)|)× P × log P) =

O(P 2 × log P). �

We are now able to introduce our notion of distance between two XML Schemas
and, consequently, to construct the dissimilarity matrix. Specifically, the distance
between two XML Schemas Si and Sj , belonging to SchemaSet, is computed by
determining the euclidean distance between the corresponding points in "P and
by normalizing this distance in such a way to obtain a value in the real interval
[0..1], as required by the clustering algorithms. This is obtained by means of the
following formula:

d(Qi, Qj) =

√∑P
ν=1

(
qi
ν − qj

ν

)2
√∑P

ν=1 (ξ (xν))2

Here, the numerator represents the classical euclidean distance between two
points; the denominator represents the maximum distance possibly existing be-
tween two points in the considered space and it is exploited for performing the
normalization1.

Proposition 4. Let SchemaSet = {S1, S2, . . . , Sn} be a set of XML Schemas;
let P be the total number of x-components relative to the Schemas of SchemaSet.
The worst case time complexity for constructing the dissimilarity matrix is O(n2×
P).

Proof. Let QSet = {Q1, Q2, . . . , Qn} be the set of points in "P associated
with S1, . . . , Sn; in order to construct the dissimilarity matrix, it is necessary to
compute the distance for each of the O(n2) pairs of points in QSet.

The computation of this distance requires the computation of the sums at the
numerator (whose cost is O(P)) and at the denominator (whose cost is, again,
O(P)) of d(Qi, Qj).

Therefore, the total cost of the matrix construction is O(n2) × O(2P) =
O(n2 × P). �

The previous reasonings show that, for constructing the dissimilarity matrix,
two phases are necessary. The former aims at determining the points in the
metric space corresponding to the involved XML Schemas; this activity costs
O(P 2 × log P) (see Corollary 1). The latter aims at computing the distances
among the previously defined points and costs O(n2 × P) (see Proposition 4).

1 Recall that qi
ν = ξ(xν) × ψ(xν , Si, ID, SSD, WSD) and that the maximum (resp.,

minimum) value of ψ is equal to 1 (resp., 0).

An Approach for Clustering Semantically Heterogeneous XML Schemas 335

2.3 Application of the Pre-existing Clustering Algorithms on the
Constructed Dissimilarity Matrix

Once the dissimilarity matrix has been defined, it is possible to apply on it
a large variety of clustering algorithms previously proposed in the literature.
These differ for their time complexity, for their result accuracy, as well as for
their behaviour. Therefore, it is clear that the choice of the clustering algorithm
to be adopted in a certain domain strictly depends on its main features. In order
to evaluate this fact we have applied three clustering algorithms, characterized
by different features, on our dissimilarity matrix. For implementation purposes,
we have chosen to apply three algorithms available in WEKA [23], one of the
most popular Data Mining tools; specifically, we have chosen to apply K-Means,
Expectation Maximization, and Farthest First Traversal,.

In this section we provide a brief overview of the behaviour of these algorithms
when applied to our reference context.

K-Means [15]. When applied to our reference context, K-Means receives a
parameter k and partitions the set of points of "P in k clusters.

The worst case time complexity of K-Means is O(n × k × t), where n is the
cardinality of SchemaSet, k is the number of clusters, and t is the number of
iterations necessary for the algorithm to converge. Typically, k and t are much
smaller than n; therefore, the worst case time complexity of K-Means can be
considered linear against the cardinality of SchemaSet; for this reason K-Means
is relatively scalable in clustering large sets of XML Schemas.

A difficulty in the application of K-Means to our context regards its sensi-
tivity to noise and outliers: this implies that, if there exist some Schemas se-
mantically very different from the others, K-Means could return not particularly
satisfactory results. Another drawback of K-Means consists of its necessity to
preventively know the best value for k; if this information is not available, a try-
and-check approach should be exploited for determining it. Clearly, this would
increase the time necessary to the algorithm for providing the final results.

Expectation Maximization [9,24]. Expectation Maximization (hereafter,
EM) models involved objects as a collection of k Gaussians2, where k is the
number of clusters to be derived. For each involved object, EM computes a
degree of membership to each cluster.

The implementation of EM is very similar to that of K-Means. As with
K-Means, EM begins with an initial guess of the cluster centers (Expectation
step), and iteratively refines them (Maximization step). It terminates when a
parameter, measuring the quality of obtained clusters, no longer shows significant
increases. EM is guaranteed to converge to a local maximum, that often coincides
with the global one.

An important feature of this algorithm is its capability of modelling quite a
rich set of cluster shapes. Moreover, it can be instructed to determine by itself
2 Although the Gaussian models are those generally used, other distributions are pos-

sible.

336 P. De Meo et al.

the best number of clusters to be derived, even if the user can directly specify
such an information, if he wants.

The quite refined statistical model underlying EM allows it to often obtain
optimal results; for this reason EM is frequently adopted in a large variety of
application contexts. Moreover, its capability of automatically determining the
best number of clusters makes it particularly suited for our reference context.

Farthest First Traversal [13]. The basic idea of this algorithm is to get k
points out of n, that are mutually “far” from each other; in our reference context,
the points to cluster are the points of "P associated with XML Schemas.

The algorithm operates as follows: first it randomly selects a point Q1 and
puts it into the so-called “Traversed Set” TS. After this, it performs k − 1
iterations for constructing TS; during each iteration it inserts into TS the point
Qi having the maximum distance from TS; the distance of Qi from TS is defined
as d(Qi, TS) = minQj∈TS d(Qi, Qj), where d(Qi, Qj) could be any dissimilarity
measure between two points (in our approach it is the dissimilarity measure
between two points associated with two XML Schemas defined in Section 2.2).

After TS has been constructed, each point Qi ∈ TS is chosen as the centroid
of a cluster; then, for each point Qk ∈ TS, the algorithm computes its distance
from the various centroids and puts Qk in the cluster whose centroid has the
minimum distance from it.

Farthest First Traversal requires in input the number k of clusters to be con-
structed; moreover, the quality of its results might be influenced by the choice
of the initial point Q1 of TS. However, the worst case time complexity of this
algorithm is O(n×k), where n is the cardinality of SchemaSet and k is the num-
ber of clusters to be obtained. As a consequence, it is scalable and particularly
suited in application contexts, like ours, where objects to be clustered could be
very numerous.

3 Experiments

3.1 Description of the Exploited Information Sources

In order to verify the validity of our approach we have performed various exper-
iments. Specifically, we have considered 97 XML Schemas belonging to various
application contexts, such as Biomedical Data, Project Management, Property
Register, Industrial Companies, Universities, Airlines, Scientific Publications,
and Biological Data.

These Schemas have been derived from specific Web sites or public sources.
As an example, some XML Schemas relative to Biomedical Data have been de-
rived from http://www.biomediator.org. Some of the Schemas relative to Project
Management, Property Register, and Industrial Companies have been derived
from Italian Central Government Office information sources and are shown at the
address http://www.mat.unical.it/terracina/tests.html. Some of the Schemas
relative to Universities have been downloaded from the address http://anhai.cs.
uiuc.edu/archive/domains/courses.html. Schemas relative to Airlines have been

An Approach for Clustering Semantically Heterogeneous XML Schemas 337

Table 1. Main features of the XML Schemas adopted in our experiments

Application context Number Maximum Minimum, Average and Minimum, Average and
of Schemas depth of Maximum Number of Maximum Number of

Schemas x-components complex elements

Biomedical Data 33 9 12 - 25 - 44 3 - 9 - 18
Project Management 9 6 35 - 40 - 46 5 - 6 - 9
Property Register 6 6 61 - 72 - 77 13 - 15 - 17
Industrial Companies 15 5 20 - 26 - 48 5 - 7 - 10
Universities 15 7 12 - 16 - 20 3 - 5 - 9
Airlines 2 4 12 - 13 - 13 4 - 4 - 4
Scientific Publications 2 6 17 - 18 - 18 8 - 9 - 9
Biological Data 15 9 230 - 322 - 658 33 - 55 - 221

found in [18]. Schemas relative to Scientific Publications have been supplied by
the authors of [14]. Finally, Schemas relative to Biological Data have been down-
loaded from specialized sites; among them we cite http://smi-web.stanford.edu/

projects/helix/pubs/ismb02/schemas/. The main features of the XML Schemas
we have adopted in our experiments are described in Table 1.

3.2 Description of the Adopted Measures

The accuracy measures of a clustering approach can be subdivided into: (i)
external measures, that compare the results obtained by the clustering approach
into examination with the clusters defined by a domain expert and considered
correct; (ii) internal measures, that evaluate the capability of the tested approach
to produce homogeneous clusters.

External measures. In the following we introduce (and tailor to our refer-
ence context) some of the most popular external measures for the evaluation of
clustering approaches [1,22].

Let SchemaSet be the set of XML Schemas which the clustering task must be
performed on; we indicate with ClSet∗ = {Cl∗1, Cl∗2 , . . . , Cl∗l } the set of correct
classes defined by a domain expert, and with ClSet = {Cl1, Cl2, . . . , Clk} the
set of clusters produced by the algorithm to evaluate. The accuracy measures
we have considered are:

– Precision (hereafter, Pre). The Precision of a cluster Clj w.r.t. a class Cl∗i
is defined as Pre(Cl∗i , Clj) = |Clj∩Cl∗i |

|Clj| . The total Precision of a clustering
approach, when applied on SchemaSet, is defined as:

Pre = |ClSet∗|
i=1

|Cl∗i |
|SchemaSet| × max1≤j≤|ClSet| Pre(Cl∗i , Clj)

– Recall (hereafter, Rec). The Recall of a cluster Clj w.r.t. a class Cl∗i is defined
as Rec(Cl∗i , Clj) = |Clj∩Cl∗i |

|Cl∗i | . The total Recall of a clustering approach, when
applied on SchemaSet, is defined as:

Rec = |ClSet∗|
i=1

|Cl∗i |
|SchemaSet| × max1≤j≤|ClSet| Rec(Cl∗i , Clj)

– F-Measure. F-Measure represents the harmonic mean between Precision and
Recall; it is defined as F -Measure(Cl∗i , Clj) = 2 · Pre(Cl∗i ,Clj)·Rec(Cl∗i ,Clj)

Pre(Cl∗i ,Clj)+Rec(Cl∗i ,Clj)
.

The total F-Measure of a clustering approach, when applied on SchemaSet,
is defined as:

338 P. De Meo et al.

F -Measure = |ClSet∗|
i=1

|Cl∗i |
|SchemaSet| × max1≤j≤|ClSet| F -Measure(Cl∗i , Clj)

– Overall. Overall measures the post-match effort needed for adding false neg-
atives and removing false positives from the set of similarities returned by
the system to evaluate. It is defined as: Overall(Cl∗i , Clj) = Rec(Cl∗i , Clj)×(
2− 1

Pre(Cl∗i ,Clj)

)
. The total Overall of a clustering approach, when applied

on SchemaSet, is defined as:

Overall = |ClSet∗|
i=1

|Cl∗i |
|SchemaSet| × max1≤j≤|ClSet| Overall(Cl∗i , Clj)

– Entropy. Entropy provides a measure of the purity of clusters w.r.t. classes;
it is defined as:

Entropy = |ClSet|
j=1

|Clj |
|SchemaSet| × |ClSet∗|

i=1 [−pij ln (pij)]

where pij is the probability that an XML Schema of a cluster Clj belongs
to the class Cl∗i .

Values of Precision, Recall, and F-Measure fall in the real interval [0, 1],
whereas values of Overall vary between −∞ and 1. The higher the value of these
measures is, the better the accuracy of the approach into examination will be.
Finally, values of Entropy belong to the real value [0.. ln (|ClSet∗|)]; the lower
the Entropy is, the purer the produced clusters will be.

Internal measures. Two interesting internal measures for evaluating clustering
techniques are:

– Uncoupling Degree. This measure has been derived from the coupling bound
measure introduced in [20]. Specifically, let Cli and Clj be two clusters and
let τ be a number in the real interval [0, 1]; we define the set CU τ

ij of the
τ -uncoupled pairs between Cli and Clj as: CU τ

ij = {〈Sa, Sb〉 | Sa ∈ Cli, Sb ∈
Clj , d(Sa, Sb) ≥ τ}, where d(Sa, Sb) represents the distance (i.e., the dissim-
ilarity) between Sa and Sb; in our approach it is computed by means of the
formula introduced in Section 2.2.

The τ -Uncoupling Degree Uncτ
ij between two clusters Cli and Clj is

defined as the ratio between the τ -uncoupled pairs relative to Cli and Clj
and the total number of possible pairs relative to Cli and Clj ; in other words,
Uncτ

ij =
|CUτ

ij|
|Cli|×|Clj| .

Finally, theUncouplingDegreeUτ is defined asUτ = min 1≤i,j≤|ClSet|
i�=j

Uncτ
ij .

Uτ belongs to the real interval [0, 1] and measures the capability of a clustering
algorithm to produce sufficiently separated clusters; given a value of τ , the
higher Uτ is, the higher the separation between clusters will be.

– Cohesiveness Degree. This measure has been derived from the cohesiveness
parameter introduced in [20]. Specifically, given a cluster Cli and a real
number τ ∈ [0, 1], we define the set of τ -cohesive pairs as CCτ

i = {〈Sa, Sb〉 |
Sa, Sb ∈ Cli, Sa = Sb, d(Sa, Sb) ≤ τ}.

An Approach for Clustering Semantically Heterogeneous XML Schemas 339

Table 2. Precision, Recall, and Entropy of our approach for various values of α, β

and γ

K-Means EM Farthest First Traversal

α β γ Precision Recall Entropy Precision Recall Entropy Precision Recall Entropy

0.9 0.8 0.8 0.80 0.91 0.37 0.88 0.92 0.32 0.88 0.87 0.35
0.9 0.8 0.2 0.81 0.93 0.34 0.90 0.93 0.30 0.90 0.88 0.33
0.8 0.6 0.6 0.83 0.94 0.32 0.91 0.95 0.26 0.91 0.90 0.30
0.8 0.6 0.4 0.85 0.96 0.30 0.94 0.96 0.24 0.93 0.92 0.28
0.8 0.4 0.5 0.82 0.91 0.35 0.91 0.92 0.27 0.89 0.87 0.34
0.8 0.4 0.3 0.83 0.93 0.33 0.92 0.94 0.25 0.91 0.90 0.31
0.6 0.4 0.7 0.81 0.90 0.37 0.88 0.90 0.28 0.88 0.89 0.36
0.6 0.2 0.6 0.80 0.88 0.40 0.86 0.89 0.31 0.86 0.85 0.38

The τ -Cohesiveness Degree of a cluster Cli is defined as the ratio be-
tween the number of τ -cohesive pairs and the total number of pairs of XML
Schemas in Cli; specifically, Cohesτ

i = |CCτ
i |

|Cli|×(|Cli|−1) .
Finally, the Cohesiveness Degree Cτ is defined as Cτ = min1≤i≤|ClSet|

Cohesτ
i . Cτ belongs to the real interval [0, 1] and measures the capability of

an algorithm to produce cohesive clusters, i.e., clusters composed by very
“similar” XML Schemas.

As pointed out in [20], a clustering algorithm should produce very cohesive
and sufficiently uncoupled clusters; therefore, the higher the values of internal
measures are, the better the performance of the algorithm will be.

3.3 Tuning of the Parameters Exploited by Our Approach

Our approach exploits some parameters (see Section 2.2); therefore, before car-
rying out any test, we had to experimentally find the values to be associated
with them for guaranteeing the best accuracy. In order to carry out such an
evaluation, we have applied K-Means, EM, and Farthest First Traversal on the
dissimilarity matrixes constructed by our approach and we have considered var-
ious values of the parameters to tune; after this, we have computed Precision,
Recall, and Entropy on returned clusters.

Table 2 shows the values of these measures for some of the combinations
we have considered. At the end of these tests we have found that our approach
shows the best results for α = 0.8, β = 0.6 and γ = 0.4.

The results we have obtained for α and β confirm our reasoning expressed
in Section 2.2, when we say that synonymies are more important than overlap-
pings and hyponymies/hypernymies; however, the quite high value of β shows
that also these last kinds of properties play a sufficiently important role in char-
acterizing the semantics of a concept. Analogously, the results we have obtained
for γ confirm our reasoning expressed in Section 2.2, when we say that com-
plex elements are more characterizing than simple elements and attributes in
determining the semantics of a concept, even if, in any case, these last play an
important role.

340 P. De Meo et al.

3.4 Evaluation of the Impact of Our Dissimilarity Matrix
Computation Approach on the Clustering Quality

The quality of results produced by any clustering algorithm strongly depends on
the dissimilarity matrix received in input, since it summarizes the relationships
existing among the objects into examination. Clearly, a sophisticated approach
for the calculation of the dissimilarity matrix causes an increase of the com-
putational cost, on one hand, but it allows an improvement of the accuracy of
obtained results, on the other hand.

Since our approach for the computation of the dissimilarity matrix is quite
complex, we have planned to quantify the improvement it produces on the result
accuracy w.r.t. an approach that takes into account the semantics of the involved
Schemas in a simpler way. The “simplified” definition of the XML Schema dis-
tance exploited in this test (called dS in the following) considers only the fraction
of the dissimilarity properties existing between them. Specifically, dS is defined
as:

dS(Si, Sj) = 1− |sim(Si)|+|sim(Sj)|
|XCompSet(Si)|+|XCompSet(Sj)|

where sim(Si), (resp., sim(Sj)) indicates the set of x-components of Si (resp.,
Sj) involved in at least one synonymy with an x-component of Sj (resp., Si).

It is worth pointing out that this dissimilarity measure is really used in the
literature; moreover, we observe that it is not a metrics; for this reason, in this
test, we have adopted Farthest First Traversal as clustering algorithm, since it
does not necessarily need a metric space.

In this test we have performed two analyses, devoted to consider external
and internal measures, respectively.

Analysis of the external measures. In a first series of experiments we have
compared the values of the external measures obtained by applying our ap-
proach and the “simplified” one. Table 3 shows the obtained results; from its
examination we deduce that our approach allows a substantial improvement on
the quality of results; specifically, if compared with the “simplified” one, Pre-
cision increases of 19%, Recall improves of 12%, F-Measures increases of 14%,
Overall improves of 42% and Entropy decreases of 18%.

Analysis of the internal measures. The computation of the internal mea-
sures depends on the parameter τ specifying when two XML Schemas can be

Table 3. Comparison of the accuracy of our approach w.r.t. the accuracy of the “sim-
plified” one

Measure Precision Recall F-Measure Overall Entropy

Our Approach 0.93 0.92 0.91 0.84 0.28
“Simplified” Approach 0.78 0.82 0.80 0.59 0.34

An Approach for Clustering Semantically Heterogeneous XML Schemas 341

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

U
n

co
u

p
lin

g
 D

eg
re

es

Our approach
"Simplified" approach

Fig. 1. Variation of the Uncoupling De-
gree against τ , obtained by exploiting our
approach and the “simplified” one

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

C
o

h
es

iv
en

es
s

D
eg

re
e

Our approach
"Simplified" approach

Fig. 2. Variation of the Cohesiveness De-
gree against τ , obtained by exploiting our
approach and the “simplified” one

considered uncoupled or cohesive (see Section 3.2). In our analysis we have con-
sidered various values of τ and, for each of them, we have computed the Uncou-
pling and the Cohesiveness Degrees, obtained by exploiting our approach and
the “simplified” one. Figures 1 and 2 show the corresponding results. Also in
this case the improvement we have obtained is significant; in fact, the maximum
increase of the Uncoupling Degree (resp., the Cohesiveness Degree) determined
by exploiting our approach is obtained for τ = 0.40 (resp., τ = 0.50) and is equal
to 0.33 (resp., 0.27).

3.5 Analysis of the Robustness of Our Approach

As pointed out in Section 2.2, our approach is based on the interschema prop-
erties stored in IPD. In order to measure its robustness against errors in IPD,
we have carried out some variations in the correct dictionary and, for each of
them, we have computed the values of the external measures returned by it. This
analysis is important because, if the number of involved XML Schemas is high, it
is compulsory to compute IPD (semi-)automatically; clearly, (semi-)automatic
techniques are more error-prone than manual ones.

The variations we have performed in the correct dictionary are: (a) the re-
moval of 10% of correct properties; (b) the removal of 20% of correct properties;
(c) the removal of 30% of correct properties; (d) the removal of 50% of correct
properties; (e) the insertion of 10% of wrong properties; (f) the insertion of 20%
of wrong properties; (g) the insertion of 30% of wrong properties; (h) the in-
sertion of 50% of wrong properties. The clustering algorithm we have used in
this experiment was EM because it showed the highest accuracy in the previous
tests.

Table 4 illustrates obtained results. From its analysis we can observe that
our approach is quite robust against errors present in IPD; however, at the
same time, it shows a good sensitivity against these errors since, if the correct

342 P. De Meo et al.

Table 4. Variations of the external measures in presence of errors in IPD

Case Precision Recall F-Measure Overall Entropy

No error 0.94 0.96 0.94 0.86 0.24
(a) 0.94 0.87 0.89 0.80 0.25
(b) 0.93 0.78 0.84 0.71 0.26
(c) 0.92 0.69 0.78 0.61 0.28
(d) 0.92 0.62 0.73 0.55 0.30
(e) 0.85 0.94 0.88 0.75 0.28
(f) 0.78 0.90 0.83 0.63 0.33
(g) 0.70 0.87 0.77 0.50 0.37
(h) 0.63 0.84 0.71 0.38 0.43

properties that are removed or the wrong properties that are added are excessive,
the accuracy of results significantly decreases.

4 Related Work

In this section we compare our approach with other related ones already pre-
sented in the literature.

Approach of [19]. In [19] an approach for performing the clustering of DTDs
is proposed. It operates as follows: first it applies any clustering algorithm for
grouping elements of the involved DTDs in a set of clusters. After this, it creates
an array for each DTD, having a component for each cluster; the ith component of
the array indicates how many elements of the corresponding DTD belong to the
ith cluster. Finally, it applies any clustering algorithm on the set of constructed
arrays.

There are some similarities between our approach and that described in [19].
Specifically: (i) both of them construct an array-based representation of the
involved Schemas that, next, is provided in input to a clustering algorithm; (ii)
both of them have been specifically conceived for XML.

The main differences between the two approaches are the following: (i) in [19]
the computation of the similarity between two DTDs privileges their structural
properties (i.e., the hierarchical organization of the corresponding elements);
on the contrary, our approach considers interschema properties, that define a
semantic information; (ii) the clustering activity performed during the first phase
allows the approach described in [19] to carry out a preliminary reduction of the
involved elements; this feature is not present in our approach; however, errors
possibly occurring during this initial clustering activity can negatively influence
the final results.

XClust. In [14] the system XClust, defining a DTD clustering technique as a
part of a more complex DTD integration approach, is proposed. In XClust each
DTD is modelled by means of a tree; this representation allows the definition
of a similarity measure for each pair of elements belonging to different DTDs;
these measures are, then, exploited for computing the similarity degree of two
DTDs. Once the similarity degree associated with each pair of available DTDs
has been computed, a hierarchical clustering algorithm is applied.

An Approach for Clustering Semantically Heterogeneous XML Schemas 343

The main similarities between our approach and XClust are the following:
(i) both of them have been specifically conceived for XML; (ii) both of them
operate on the intensional component of the available information sources.

As for differences between the two approaches we observe that: (i) XClust
considers only synonymies and does not take into account hyponymies and over-
lappings; (ii) XClust exploits various thresholds and weights for computing the
similarity of two DTDs; as a consequence, it produces accurate results but re-
quires quite a complex tuning activity.

Approach of [12]. In [12] an approach for clustering structured information
sources present in the Web is proposed. It assumes the existence, for each ap-
plication domain, of a hidden model containing a finite vocabulary of attributes;
this assumption allows schemas to be clustered by means of a specific algorithm
called MD (Model Differentiation).

The main similarities between our approach and that described in [12] are
the following: (i) both of them define a suitable mechanism for representing
involved sources; (ii) both of them exploit semantic information; specifically,
our approach uses interschema properties whereas the approach of [12] considers
the hidden model.

The main differences between the two approaches are the following: (i) the
approach presented in [12] requires a deep analysis of the extensional component
of the involved information sources; this analysis produces very satisfactory re-
sults but requires a significant pre-processing phase for constructing, among
others, the hidden model; (ii) the approach proposed in [12] has been specifi-
cally conceived for analyzing structured information sources present in the Web
whereas our approach is specialized for XML Schemas.

Approach of [16]. In [16] an approach for clustering XML documents is de-
scribed. It models the available documents by means of ordered trees and exploits
a dynamic programming algorithm for defining a similarity measure for them.
Finally, it uses a hierarchical clustering algorithm to group documents into ho-
mogeneous classes.

There exist some similarities between our approach and that described in [16].
Specifically: (i) both of them propose a suitable model for representing involved
information sources; in our case this model has a “vectorial” nature whereas, in
the approach of [16], it is based on trees; (ii) both of them are flexible, in the
sense that they allow the exploitation of any clustering algorithm.

As for the main differences between the two approaches, we observe that: (i)
for computing the similarity degree among the involved sources, the approach
described in [16] considers the structural information whereas our approach ex-
ploits the semantic one; (ii) our approach focuses on XML Schemas whereas the
approach of [16] has been conceived to operate on XML documents.

Approach of [6]. In [6] an approach for clustering XML documents is proposed.
It represents available documents by means of ordered trees and measures their
similarity by means of a dynamic programming algorithm; after this, it con-

344 P. De Meo et al.

structs a labelled graph G, whose nodes represent XML documents and whose
arcs denote the corresponding similarity degrees; finally, it applies the Prim al-
gorithm for partitioning the set of nodes of G and associates a cluster with each
partition.

There are some similarities between our approach and that presented in
[6]; specifically, (i) both of them have been conceived for XML; (ii) both of
them define a suitable mechanism for representing information sources; this is
“vectorial”-based in our approach and tree-based in the approach of [6].

The main differences existing between the two approaches are the following:
(i) in order to compute the document similarity, the approach described in [6]
exploits the structural information of involved sources, whereas our approach
considers the semantic one; (ii) the approach illustrated in [6] operates on the
extensional component of the information sources into consideration, whereas
our approach works on the intensional one.

Approach of [5]. [5] presents an approach for clustering XML documents on
the basis of their structural similarities. This approach represents each document
by means of a tree; then, it applies tree matching algorithms for identifying the
structural similarities existing among the available trees. In this way, it is possible
to partition available documents into homogeneous classes and, then, to define,
for each class, a tree (called XML cluster representative) summarizing the main
characteristics of the trees belonging to it. This partitioning is, finally, refined
by applying a suitable hierarchical clustering algorithm called XRep.

There exist some similarities between our approach and that described in
[5]. Specifically: (i) both of them propose a suitable formalism for representing
involved information sources; in our approach it has a “vectorial” nature whereas,
in the approach of [5], it is tree-based; (ii) both of them operate on XML sources.

The main differences between the two approaches are the following: (i) the
approach of [5] exploits structural information for computing similarities exist-
ing between two XML documents whereas, for the same purpose, our approach
exploits semantic information; (ii) the approach of [5] is quite sophisticated; as
a consequence, it produces very refined results but requires quite a complex pre-
processing phase; on the contrary, our approach is lighter, even if the results it
obtains are satisfactory.

5 Conclusions

In this paper we have presented an approach that exploits interschema properties
for clustering semantically heterogeneous XML Schemas. We have seen that
our approach takes the semantics of involved Schemas into account and can be
easily integrated with most of the clustering algorithms already proposed in the
literature.

After a technical description of our approach, we have shown various experi-
mental results that we have obtained by applying it to a large number of seman-
tically heterogeneous XML Schemas. Finally, we have presented a comparison
between it and other related approaches previously proposed in the literature.

An Approach for Clustering Semantically Heterogeneous XML Schemas 345

In our opinion the approach presented here could be improved in several di-
rections. Specifically, we plan to further refine the technique for the computation
of the dissimilarity matrix by taking other interschema properties into account.
In addition, we would like to exploit our approach as the core of new methodolo-
gies for constructing multi-thematic portals, for guiding users in their navigation
on the Web and, finally, for grouping the users of a service on the basis of both
their profile and their past behaviour.

Acknowledgments

The authors thank Giuseppe Meduri for his contribution to the implementation
of the proposed approach.

References

1. F. Beil, M. Ester, and X. Xu. Frequent term-based text clustering. In Proc. of
the International Conference on Knowledge Discovery and Data Mining (KDD’02),
pages 436–442, Edmonton, Alberta, Canada, 2002. ACM Press.

2. S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistruc-
tured and structured data sources. SIGMOD Record, 28(1):54–59, 1999.

3. F. Buccafurri, D. Rosaci, G.M.L. Sarnè, and D. Ursino. An agent-based hier-
archical clustering approach for e-commerce environments. In Proc. of Interna-
tional Conference on Electronic Commerce and Web Technologies (EC-Web 2002),
pages 109–118, Aix-en-Provence, France, 2002. Lecture Notes in Computer Science,
Springer-Verlag.

4. S. Castano, V. De Antonellis, and S. De Capitani di Vimercati. Global viewing
of heterogeneous data sources. IEEE Transactions on Data and Knowledge Engi-
neering, 13(2):277–297, 2001.

5. G. Costa, G. Manco, R. Ortale, and A. Tagarelli. A tree-based approach to clus-
tering XML documents by structure. In Proc. of the European Conference on
Principles of Knowledge Discovery in Databases (PKDD 2004), pages 137–148,
Pisa, Italy, 2004. Springer.

6. T. Dalamagas, T. Cheng, K. Winkel, and T.K. Sellis. Clustering XML documents
using structural summaries. In Proc. of the International Workshop on Cluster-
ing Information Over the Web (ClustWeb 2004), pages 547–556, Heraklion, Crete,
Greece, 2004. Lecture Notes in Computer Science, Springer.

7. P. De Meo, G. Quattrone, G. Terracina, and D. Ursino. “Almost automatic” and
semantic integration of XML Schemas at various “severity levels”. In Proc. of
the International Conference on Cooperative Information Systems (CoopIS 2003),
pages 4–21, Taormina, Italy, 2003. Lecture Notes in Computer Science, Springer.

8. P. De Meo, G. Quattrone, G. Terracina, and D. Ursino. Extraction of synonymies,
hyponymies, overlappings and homonymies from XML Schemas at various “sever-
ity” levels. In Proc. of the International Database Engineering and Applications
Symposium (IDEAS 2004), pages 389–394, Coimbra, Portugal, 2004. IEEE Com-
puter Society.

346 P. De Meo et al.

9. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society Series B, 30(1):1–38,
1977.

10. P. Fankhauser, M. Kracker, and E.J. Neuhold. Semantic vs. structural resemblance
of classes. ACM SIGMOD RECORD, 20(4):59–63, 1991.

11. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann Publishers, 2001.

12. B. He, T. Tao, and K. Chen-Chuan Chang. Organizing structured Web sources
by query schemas: a clustering approach. In Proc. of the ACM International Con-
ference on Information and Knowledge Management (CIKM 2004), pages 22–31,
Washington, Columbia, USA, 2004. ACM Press.

13. D.S. Hochbaum and D.B. Shmoys. A best possible heuristic for the k-center prob-
lem. International Journal on Digital Libraries, 10(2):180–184, 1985.

14. M.L. Lee, L.H. Yang, W. Hsu, and X. Yang. XClust: clustering XML schemas for
effective integration. In Proc. of the ACM International Conference on Informa-
tion and Knowledge Management (CIKM 2002), pages 292–299, McLean, Virginia,
USA, 2002. ACM Press.

15. J.B. MacQueen. Some methods for classification and analysis of multivariate ob-
servations. In Proc. of the International Symposium on Mathematics, Statistics
and Probability, pages 281–297, Berkeley, California, USA, 1967. University of Cal-
ifornia Press.

16. A. Nierman and H.V. Jagadish. Evaluating structural similarity in XML docu-
ments. In Proc. of the International Workshop on the Web and Databases (WebDB
2002), pages 61–66, Madison, Wisconsin, USA, 2002.

17. L. Palopoli, D. Saccà, G. Terracina, and D. Ursino. Uniform techniques for de-
riving similarities of objects and subschemes in heterogeneous databases. IEEE
Transactions on Knowledge and Data Engineering, 15(2):271–294, 2003.

18. K. Passi, L. Lane, S.K. Madria, B.C. Sakamuri, M.K. Mohania, and S.S. Bhowmick.
A model for XML Schema integration. In Proc. of the International Conference
on E-Commerce and Web Technologies (EC-Web 2002), pages 193–202, Aix-en-
Provence, France, 2002. Lecture Notes in Computer Science, Springer.

19. W. Qian, L. Zhang, Y. Liang, H. Qian, and W. Jin. A two-level method for
clustering DTDs. In Proc. of the International Conference on Web-Age Information
Management (WAIM’00), pages 41–52, Shanghai, China, 2000. Lecture Notes in
Computer Science, Springer.

20. Y. Qian and K. Zhang. A customizable hybrid approach to data clustering. In Proc.
of the International Symposium on Applied Computing (SAC’03), pages 485–489,
Melbourne, Florida, USA, 2003. ACM Press.

21. E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB Journal, 10(4):334–350, 2001.

22. C.J. Van Rijsbergen. Information Retrieval. Butterworth, 1979.
23. I.H. Witten and E. Frank. Data Mining: Practical machine learning tools with Java

implementations. Morgan Kaufmann, San Francisco, California, USA, 2000.
24. L. Xu and M. I. Jordan. On convergence properties of the em algorithm for gaussian

mixtures. Neural Computation, 8(1):129–151, 1996.

Semantic Schema Matching�

Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich

University of Trento, Povo, Trento, Italy
{fausto, pavel, yatskevi}@dit.unitn.it

Abstract. We view match as an operator that takes two graph-like
structures (e.g., XML schemas) and produces a mapping between the
nodes of these graphs that correspond semantically to each other. Se-
mantic schema matching is based on the two ideas: (i) we discover map-
pings by computing semantic relations (e.g., equivalence, more general);
(ii) we determine semantic relations by analyzing the meaning (con-
cepts, not labels) which is codified in the elements and the structures
of schemas. In this paper we present basic and optimized algorithms for
semantic schema matching, and we discuss their implementation within
the S-Match system. We also validate the approach and evaluate S-Match
against three state of the art matching systems. The results look promis-
ing, in particular for what concerns quality and performance.

1 Introduction

Match is a critical operator in many well-known metadata intensive applica-
tions, such as schema/classification/ontology integration, data warehouses, e-
commerce, semantic web, etc. The match operator takes two graph-like struc-
tures and produces a mapping between the nodes of the graphs that correspond
semantically to each other.

Many diverse solutions of match have been proposed so far, for example
[2, 5, 7, 8, 10, 16, 17, 19]. We focus on a schema-based solution, namely a matching
system exploiting only the schema information, thus not considering instances.
We follow a novel approach called semantic matching [11]. This approach is
based on the two key ideas. The first is that we calculate mappings between
schema elements by computing semantic relations (e.g., equivalence, more gen-
erality, disjointness), instead of computing coefficients rating match quality in
the [0,1] range, as it is the case in the most previous approaches, see, for ex-
ample, [8, 17, 19]. The second idea is that we determine semantic relations by
analyzing the meaning (concepts, not labels) which is codified in the elements
and the structures of schemas. In particular, labels at nodes, written in natural
language, are translated into propositional formulas which explicitly codify the
label’s intended meaning. This allows us to translate the matching problem into
a propositional unsatisfiability problem, which can then be efficiently resolved
using (sound and complete) state of the art propositional satisfiability (SAT)
deciders, e.g., [4].
� We are grateful to John Mylopoulos and anonymous reviewers for their insightful

comments on the semifinal version of the paper.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 347–365, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

348 F. Giunchiglia, P. Shvaiko, and M. Yatskevich

A vision for semantic matching approach and its implementation were re-
ported in [11–13]. In contrast to that work which have been focused only on
matching classifications or light-weight ontologies, this paper also considers
matching XML schemas. It elaborates in more detail the element level and the
structure level matching algorithms, providing a complete account of the ap-
proach. In particular, the main contributions are: (i) a new schema matching
algorithm, which builds on the advances of the previous solutions at the element
level by providing a library of element level matchers, and guarantees correct-
ness and completeness of its results at the structure level; (ii) an extension of
the semantic matching approach for handling attributes; (iii) the quality and
performance evaluation of the implemented system called S-Match against other
state of the art systems, which proves empirically the benefits of our approach.

The rest of the paper is organized as follows. Section 2 provides the re-
lated work. A basic version of the matching algorithm is articulated in its
four macro steps in Section 3, while its optimizations are reported in Section
4. Section 5 discusses semantic matching with attributes. Section 6 presents a
comparative evaluation. Finally, Section 7 reports conclusions and discusses the
future work.

2 Related Work

At present, there exists a line of semi-automated schema matching systems, see,
for instance [2, 7, 8, 10, 16, 17, 19]. A good survey and a classification of matching
approaches up to 2001 is provided in [24], while an extension of its schema-based
part and a user-centric classification of matching systems is provided in [25].

In particular, for individual matchers, [25] introduces the following criteria
which allow for detailing further (with respect to [24]), the element and structure
level of matching: syntactic techniques (these interpret their input as a function
of their sole structures following some clearly stated algorithms, e.g., iterative
fix point computation for matching graphs), external techniques (these exploit
external resources of a domain and common knowledge, e.g., WordNet[21]), and
semantic techniques (these use formal semantics, e.g., model-theoretic semantics,
in order to interpret the input and justify their results).

The distinction between the hybrid and composite matching algorithms of
[24] is useful from an architectural perspective. [25] extends this work by taking
into account how the systems can be distinguished in the matter of considering
the mappings and the matching task, thus representing the end-user perspective.
In this respect, the following criteria are proposed: mappings as solutions (these
systems consider the matching problem as an optimization problem and the
mapping is a solution to it, e.g., [9, 19]); mappings as theorems (these systems rely
on semantics and require the mapping to satisfy it, e.g., the approach proposed in
this paper); mappings as likeness clues (these systems produce only reasonable
indications to a user for selecting the mappings, e.g., [8, 17]).

Let us consider some recent schema-based state of the art systems in light of
the above criteria.

Semantic Schema Matching 349

Rondo. The Similarity Flooding (SF) [19] approach, as implemented in Rondo
[20], utilizes a hybrid matching algorithm based on the ideas of similarity propa-
gation. Schemas are presented as directed labeled graphs. The algorithm exploits
only syntactic techniques at the element and structure level. It starts from the
string-based comparison (common prefixes, suffixes tests) of the node’s labels to
obtain an initial mapping which is further refined within the fix-point compu-
tation. SF considers the mappings as a solution to a clearly stated optimization
problem.

Cupid. Cupid [17] implements a hybrid matching algorithm comprising syntac-
tic techniques at the element (e.g., common prefixes, suffixes tests) and structure
level (e.g., tree matching weighted by leaves). It also exploits external resources,
in particular, a precompiled thesaurus. Cupid falls into the mappings as likeness
clues category.

COMA. COMA [8] is a composite schema matching system which exploits syn-
tactic and external techniques. It provides a library of matching algorithms; a
framework for combining obtained results, and a platform for the evaluation of
the effectiveness of the different matchers. The matching library is extensible,
it contains 6 elementary matchers, 5 hybrid matchers, and one reuse-oriented
matcher. Most of them implement string-based techniques (affix, n-gram, edit
distance, etc.); others share techniques with Cupid (tree matching weighted by
leaves, thesauri look-up, etc.); reuse-oriented is a completely novel matcher,
which tries to reuse previously obtained results for entire new schemas or for
its fragments. Distinct features of COMA with respect to Cupid, are a more
flexible architecture and a possibility of performing iterations in the matching
process. COMA falls into the mappings as likeness clues category.

3 Semantic Matching

We focus on tree-like structures, e.g., XML schemas. Real-world schemas are
seldom trees, however, there are (optimized) techniques, transforming a graph
representation of a schema into a tree representation, e.g., the graph-to-tree
operator of Protoplasm [3].

We call concept of a label the propositional formula which stands for the set
of data instances that one would classify under a label it encodes. We call concept
at a node the propositional formula which represents the set of data instances
which one would classify under a node, given that it has a certain label and that
it is in a certain position in a tree.

The semantic matching approach can discover the following semantic rela-
tions between the concepts of nodes of the two schemas: equivalence (=); more
general (�); less general ($); disjointness (⊥). When none of the relations holds,
the special idk (I don’t know) relation is returned. The relations are ordered ac-
cording to decreasing binding strength, i.e., from the strongest (=) to the weakest
(idk), with more general and less general relations having equal binding power.
The semantics of the above relations are the obvious set-theoretic semantics.

350 F. Giunchiglia, P. Shvaiko, and M. Yatskevich

A mapping element is a 4-tuple 〈IDij , n1i, n2j, R〉, i=1,...,N1; j=1,...,N2;
where IDij is a unique identifier of the given mapping element; n1i is the i-th
node of the first tree, N1 is the number of nodes in the first tree; n2j is the j-th
node of the second tree, N2 is the number of nodes in the second tree; and R
specifies a semantic relation which may hold between the concepts of nodes n1i

and n2j. Semantic matching can then be defined as the following problem: given
two trees T1, T2 compute the N1 × N2 mapping elements 〈IDi,j , n1i, n2j, R′〉,
with n1i ∈ T1, i=1,...,N1, n2j ∈ T2, j=1,...,N2 and R′ the strongest semantic
relation holding between the concepts of nodes n1i, n2j .

3.1 The Tree Matching Algorithm

We summarize the algorithm for semantic schema matching via a running ex-
ample. We consider the two simple XML schemas shown in Figure 1.

Let us introduce some notation (see also Figure 1). Numbers are the unique
identifiers of nodes. We use ”C” for concepts of labels and concepts at nodes. Also
we use ”C1” and ”C2” to distinguish between concepts of labels and concepts
at nodes in tree 1 and tree 2 respectively. Thus, in A1, C1Photo and Cameras

and C13 are, respectively, the concept of the label Photo and Cameras and the
concept at node 3.

The algorithm takes as input two schemas and computes as output a set of
mapping elements in four macro steps. The first two steps represent the pre-
processing phase, while the third and the fourth steps are the element level and
structure level matching respectively.

Step 1. For all labels L in the two trees, compute concepts of labels. We
think of labels at nodes as concise descriptions of the data that is stored under the
nodes. We compute the meaning of a label at a node by taking as input a label,
by analyzing its real-world semantics, and by returning as output a concept

Fig. 1. Two XML schemas and some of the mappings

Semantic Schema Matching 351

of the label, CL. Thus, for example, by writing CCameras and Photo we move
from the natural language ambiguous label Cameras and Photo to the concept
CCameras and Photo, which codifies explicitly its intended meaning, namely the
data which is about cameras and photo.

Technically, we codify concepts of labels as propositional logical formulas.
First, we chunk labels into tokens,e.g.,Photo and Cameras→〈photo,and, cameras〉;
and then, we extract lemmas from the tokens, e.g., cameras → camera. Atomic
formulas are WordNet [21] senses of lemmas obtained from single words (e.g.,
cameras) or multiwords (e.g., digital cameras). Complex formulas are built by
combining atomic formulas using the connectives of set theory. For example,
C2Cameras and Photo = 〈Cameras, sensesWN#2〉�〈Photo, sensesWN#1〉, where sen−
sesWN#2 is taken to be disjunction of the two senses that WordNet attaches to
Cameras, and similarly for Photo. Notice that the natural language conjunction
”and” has been translated into the logical disjunction ”�”.

From now on, to simplify the presentation, we assume that the propositional
formula encoding the concept of label is the label itself. We use numbers ”1”
and ”2” as subscripts to distinguish between trees in which the given concept of
label occurs. Thus, for example, Cameras and Photo2 is a notational equivalent
of C2Cameras and Photo.

Step 2. For all nodes N in the two trees, compute concepts of nodes.
In this step we analyze the meaning of the positions that the labels at nodes
have in a tree. By doing this we extend concepts of labels to concepts of nodes,
CN . This is required to capture the knowledge residing in the structure of a tree,
namely the context in which the given concept at label occurs. For example, in
A2, when we write C6 we mean the concept describing all the data instances of
the electronic photography products which are digital cameras.

Technically, concepts of nodes are written in the same propositional logical
language as concepts of labels. XML schemas are hierarchical structures where
the path from the root to a node uniquely identifies that node (and also its
meaning). Thus, following an access criterion semantics [14], the logical formula
for a concept at node is defined as a conjunction of concepts of labels located
in the path from the given node to the root. For example, C26 = Electronics2 �
Cameras and Photo2 � Digital Cameras2.

Step 3. For all pairs of labels in the two trees, compute relations
among concepts of labels. Relations between concepts of labels are computed
with the help of a library of element level semantic matchers. These matchers
take as input two atomic concepts of labels and produce as output a semantic
relation between them. Some of the them are re-implementations of the well-
known matchers used in Cupid and COMA. The most important difference is
that our matchers return a semantic relation (e.g., =, �, $), rather an affinity
level in the [0,1] range, although sometimes using customizable thresholds.

The element level semantic matchers are briefly summarized in Table 1. The
first column contains the names of the matchers. The second column lists the
order in which they are executed. The third column introduces the matcher’s

352 F. Giunchiglia, P. Shvaiko, and M. Yatskevich

Table 1. Element level semantic matchers

Matcher name Execution Approximation Matcher Schema info
order level type

Prefix 2 2 String-based Labels
Suffix 3 2 String-based Labels
Edit distance 4 2 String-based Labels
Ngram 5 2 String-based Labels
Text corpus 12 3 String-based Labels + corpus
WordNet 1 1 Sense-based WordNet senses
Hierarchy distance 6 3 Sense-based WordNet senses
WordNet gloss 7 3 Gloss-based WordNet senses
Extended WordNet gloss 8 3 Gloss-based WordNet senses
Gloss comparison 9 3 Gloss-based WordNet senses
Extended gloss comparison 10 3 Gloss-based WordNet senses
Extended semantic gloss comparison 11 3 Gloss-based WordNet senses

approximation level. The relations produced by a matcher with the first ap-
proximation level are always correct. For example, name � brand returned by
WordNet. In fact, according to WordNet name is a hypernym (superordinate
word) to brand. Notice that in WordNet name has 15 senses and brand has 9
senses. We use some sense filtering techniques to discard the irrelevant senses
for the given context, see [18] for details. The relations produced by a matcher
with the second approximation level are likely to be correct (e.g., net = network,
but hot = hotel by Suffix). The relations produced by a matcher with the third
approximation level depend heavily on the context of the matching task (e.g., cat
= dog by Extended gloss comparison in the sense that they are both pets). Notice
that matchers are executed following the order of increasing approximation. The
fourth column reports the matcher’s type, while the fifth column describes the
matcher’s input.

As from Table 1, we have three main categories of matchers. String-based
matchers have two labels as input (with exception of Text corpus which takes in
input also a text corpus). These compute only equivalence relations (e.g., equiv-
alence holds if the weighted distance between the input strings is lower than a
threshold). Sense-based matchers have two WordNet senses in input. The Word-
Net matcher computes equivalence, more/less general, and disjointness relations;
while Hierarchy distance computes only the equivalence relation. Gloss-based
matchers also have two WordNet senses as input, however they exploit tech-
niques based on comparison of textual definitions (glosses) of the words whose
senses are taken in input. These compute, depending on a particular matcher,
the equivalence, more/less general relations. The result of step 3 is a matrix of
the relations holding between concepts of labels. A part of this matrix for the
example of Figure 1 is shown in Table 2.

Table 2. The matrix of semantic relations holding between concepts of labels

Cameras2 Photo2 Digital Cameras2

Photo1 idk = idk

Cameras1 = idk �

Semantic Schema Matching 353

Step 4. For all pairs of nodes in the two trees, compute relations
among concepts of nodes. During this step, we initially reformulate the tree
matching problem into a set of node matching problems (one problem for each
pair of nodes). Finally, we translate each node matching problem into a propo-
sitional validity problem. Let us discuss in detail the tree matching algorithm,
see Algorithm 1 for the pseudo-code.

Algorithm 1. The tree matching algorithm
1: Node: struct of
2: int nodeId;
3: String label;
4: String cLabel;
5: String cNode;
6: String[][] treeMatch(Tree of Nodes source, target)
7: Node sourceNode, targetNode;
8: String[][] cLabsMatrix, cNodesMatrix, relMatrix;
9: String axioms, context1, context2;
10: int i,j;
11: cLabsMatrix = fillCLabMatrix(source, target);
12: for each sourceNode ∈ source do
13: i = getNodeId(sourceNode);
14: context1 = getCnodeFormula(sourceNode);
15: for each targetNode ∈ target do
16: j = getNodeId(targetNode);
17: context2 = getCnodeFormula(targetNode);
18: relMatrix = extractRelMatrix(cLabMatrix, sourceNode, targetNode);
19: axioms = mkAxioms(relMatrix);
20: cNodesMatrix[i][j] = nodeMatch(axioms, context1, context2);
21: end for
22: end for
23: return cNodesMatrix;

In line 6, the treeMatch function takes two trees of Nodes (source and target)
in input. It starts from the element level matching. Thus, in line 11, the matrix
of relations holding between concepts of labels (cLabsMatrix) is populated by
the fillCLabsMatrix function which uses the library of element level matchers.
We run two loops over all the nodes of source and target trees in lines 12-22
and 15-21 in order to formulate all our node matching problems. Then, for each
node matching problem we take a pair of propositional formulas encoding con-
cepts of nodes and relevant relations holding between concepts of labels using
the getCnodeFormula and extractRelMatrix functions respectively. The former are
memorized as context1 and context2 in lines 14 and 17. The latter are memorized
in relMatrix in line 18. In order to reason about relations between concepts of
nodes, we build the premises (axioms) in line 19. These are a conjunction of the
concepts of labels which are related in relMatrix. For example, the task of match-
ing C13 and C26, requires the following axioms: (Electronics1 = Electronics2) �
(Cameras1 = Cameras2) � (Photo1 = Photo2) � (Cameras1 � Digital Cameras2).
Finally, in line 20, the relations holding between the concepts of nodes are cal-
culated by nodeMatch and are reported in line 23 as a bidimensional array
(cNodesMatrix). A part of this matrix for the example of Figure 1 is shown
in Table 3.

354 F. Giunchiglia, P. Shvaiko, and M. Yatskevich

Table 3. The matrix of semantic relations holding between concepts of nodes (the
matching result)

C21 C22 C23 C24 C25 C26

C13 � idk = idk � �

3.2 The Node Matching Algorithm

We translate the node matching problem into a propositional validity problem.
Semantic relations are translated into propositional connectives using the rules
described in Table 4 (second column). The criterion for determining whether a
relation holds between concepts of nodes is the fact that it is entailed by the
premises. Thus, we have to prove that the following formula:

axioms −→ rel(context1, context2) (1)

is valid, namely that it is true for all the truth assignments of all the propositional
variables occurring in it. axioms, context1, and context2 are as defined in the tree
matching algorithm. rel is the semantic relation that we want to prove holding
between context1 and context2. The algorithm checks for the validity of formula
(1) by proving that its negation, i.e., formula (2), is unsatisfiable.

axioms ∧ ¬rel(context1, context2) (2)
Table 4 (third column) describes how formula (2) is translated before testing

each semantic relation. Notice that (2) is in Conjunctive Normal Form (CNF),
namely it is a conjunction of disjunctions of atomic formulas. In this case we
assume that atomic formulas never occur negated, following what is common
practice in building labels of, e.g., XML schemas. Also, notice that a = b iff
both a $ b and b $ a hold, therefore we do not need to test the equivalence
relation separately.

Table 4. The relationship between semantic relations and propositional formulas

rel(a, b) Translation of rel(a, b) into Translation of formula (2)
propositional logic into Conjunctive Normal Form

a = b a ↔ b N/A
a � b a → b axioms ∧ context1 ∧ ¬context2

a � b b → a axioms ∧ context2 ∧ ¬context1

a⊥b ¬(a ∧ b) axioms ∧ context1 ∧ context2

The pseudo-code of a basic solution for the node matching algorithm is pro-
vided in Algorithm 2. Let us analyze it in detail. In lines 110 and 140, the node-
Match function constructs the formulas for testing the less general and more
general relations. In lines 120 and 150, it converts them into CNF, while in lines
130 and 160, it checks formulas in CNF for unsatisfiability. If both relations hold,
then the equivalence relation is returned (line 180). Finally, the same procedure

Semantic Schema Matching 355

Algorithm 2. The node matching algorithm
100. String nodeMatch(String axioms, context1, context2)
110. String formula = And(axioms, context1, Not(context2));
120. String formulaInCNF = convertToCNF(formula);
130. boolean isLG = isUnsatisfiable(formulaInCNF);
140. formula = And(axioms, Not(context1), context2);
150. formulaInCNF = convertToCNF(formula);
160. boolean isMG = isUnsatisfiable(formulaInCNF);
170. if(isMG && isLG) then
180. return ”=”;
190. endif
200. if (isLG) then
210. return ”�”;
220. endif
230. if (isMG) then
240. return ”�”;
250. endif
260. formula = And(axioms, context1, context2);
270. formulaInCNF = convertToCNF(formula);
280. boolean isOpposite = isUnsatisfiable(formulaInCNF);
290. if (isOpposite) then
300. return ”⊥”;
310. else
320. return ”idk”;
330. endif

is repeated for the disjointness relation. If all the tests fail, the idk relation is
returned (line 320).

In order to check the unsatisfiability of a propositional formula in a basic
version of our NodeMatch algorithm we use the standard DPLL-based SAT solver
[4, 6]. From the example in Figure 1, trying to prove that C26 is less general than
C13, requires constructing formula (3), which turns out to be unsatisfiable, and
therefore, the less generality holds.

((Electronics1↔Electronics2)∧(Photo1↔Photo2)∧
(Cameras1↔Cameras2)∧(Digital Cameras2→Cameras1))∧
(Electronics2∧(Cameras2∨Photo2)∧Digital Cameras2)∧¬
(Electronics1∧(Photo1∨Cameras1))

(3)

4 Efficient Semantic Matching

In this section we present a set of optimizations for the node matching al-
gorithm. In particular, we show, that when dealing with conjunctive concepts
at nodes, i.e., the concept of node is a conjunction (e.g., C12 = Electronics1 ∧
Personal Computers1), these node matching tasks can be solved in linear time.
When we have disjunctive concepts at nodes, i.e., the concept of node contains
both conjunctions and disjunctions in any order (e.g., C26 = Electronics2 ∧
(Cameras2 ∨ Photos2) ∧ Digital Cameras2), we use techniques avoiding the expo-
nential space explosion which arises due to the conversion of disjunctive formulas
into CNF. This modification is required since all state of the art SAT deciders
take CNF formulas in input.

356 F. Giunchiglia, P. Shvaiko, and M. Yatskevich

4.1 Conjunctive Concepts at Nodes

Let us make some observations with respect to Table 4. The first observation is
that axioms remains the same for all the tests, and it contains only clauses with
two variables. In the worst case, it contains 2 · n1 · n2 clauses, where n1 and n2
are the number of atomic concepts of labels occurred in context1 and context2
respectively. The second observation is that the formulas for less and more gen-
erality tests are very similar and they differ only in the negated context formula
(e.g., in the less generality test context2 is negated). This means that formula
(1) contains one clause with n2 variables plus n1 clauses with one variable. In
the case of disjointness test context1 and context2 are not negated. Therefore,
formula (1) contains n1 + n2 clauses with one variable. For lack of space, let us
only consider tests for more/less general relations.

Less and more generality tests. Using the above observations, formula (1),
with respect to the less/more generality tests, can be represented as follows:

axioms︷ ︸︸ ︷
n∗m

0
(¬As∨Bt)∧

n∗m

0
(Ak∨¬Bl)∧

n∗m

0
(¬Ap∨¬Br)∧

context1︷ ︸︸ ︷
n

i=1
Ai ∧

¬context2︷ ︸︸ ︷
m

j=1
¬Bj (4)

where n is the number of variables in context1, m is the number of variables
in context2. The Ai’s belong to context1, and the Bj’s belong to context2. s,
k, p are in the [0..n] range, while t, l, r are in the [0..m] range. Axioms can be
empty. Formula (4) is composed of clauses with one or two variables plus one
clause with possibly more variables (the clause corresponding to the negated
context). Notice that formula (4) is Horn, i.e., each clause contains at most one
positive literal. Therefore, its satisfiability can be decided in linear time by the
unit resolution rule. DPLL-based SAT solvers in this case require quadratic time.
In order to understand how the linear time algorithm works, let us suppose that
we want to check if C14 is less general than C24. Formula (4) in this case is as
follows:

((¬Electronics1∨Electronics2)∧(Electronics1∨¬Electronics2)∧
(¬Personal Computers1∨PC2)∧(Personal Computers1∨¬PC2)∧
(¬Microprocessors1∨¬PC board2))∧
Electronics1∧Personal Computers1∧Microprocessors1∧
(¬Electronics2∨¬PC2∨¬PC board2)

(5)

where the variables from context1 are written in bold. First, we assign true
to all the unit clauses occurring in (5) positively. Notice that these are all
and only the clauses in context1, namely, Electronics1, Personal Computers1,
and Microprocessors1. This allows us to discard the clauses where variables
from context1 occur positively, namely, (Electronics1 ∨¬Electronics2) and (Per-
sonal Computers1 ∨¬PC2). Thus, the resulting formula is as follows:

(Electronics2∧PC2∧¬PC board2)∧
(¬Electronics2∨¬PC2∨¬PC board2)

(6)

Semantic Schema Matching 357

Formula (6) does not contain any variable from context1. By assigning true
to Electronics2 and false to PC board2 we do not determine a contradiction, and
therefore, (6) is satisfiable.

For formula (6) to be unsatisfiable, all the variables occurring in the negation
of context2, namely, (¬Electronics2∨¬PC2 ∨¬PC board2) should occur positively
in the unit clauses obtained after resolving axioms with the unit clauses in
context1, namely, Electronics2 and PC2. For this to happen, for any Bj there
must be a clause of the form ¬Ai∨Bj in axioms. Formulas of the form ¬Ai∨Bj
occur in (4) iff we have the axioms of type Ai = Bj and Ai $ Bj. These
considerations suggest the following algorithm for testing satisfiability:

– Step 1. Create an array of size m. Each entry in the array stands for one Bj
in (4).

– Step 2. For each axiom of type Ai = Bj and Ai $ Bj mark the corresponding
Bj.

– Step 3. If all the Bj’s are marked, then the formula is unsatisfiable.

Thus, nodeMatch can be optimized by using Algorithm 3. The numbers on the
left indicate where the new code must be positioned in Algorithm 2. fastHor-
nUnsatCheck implements the three steps above. Step 1 is performed in lines 402
and 403. In lines 404-409, a loop on axioms implements Step 2. The final loop in
lines 410-416 implements Step 3.

Algorithm 3. Optimizations: less/more generality tests
101. if (context1 and context2 are conjunctive) then
102. isLG = fastHornUnsatCheck(context1, axioms, ”�”);
103. isMG = fastHornUnsatCheck(context2, axioms, ”�”);
104. endif

401. boolean fastHornUnsatCheck(String context, axioms, rel)
402. int m = getNumOfVar(String context);
403. boolean array[m];
404. for each axiom ∈ axioms do
405. if (getAType(axiom) = {”=” ‖ rel}) then
406. int j = getNumberOfSecondVariable(axiom);
407. array[j] = true;
408. endif
409. endfor
410. for (i=0; i<m; i++) do
411. if (!array[i]) then
412. return false;
413. else
414. return true;
415. endif
416. endfor

4.2 Disjunctive Concepts at Nodes

Now, we allow for the concepts of nodes to contain conjunctions and disjunc-
tions in any order. As from Table 4, axioms is the same for all the tests. How-
ever, context1 and context2 may contain any number of disjunctions. Some of

358 F. Giunchiglia, P. Shvaiko, and M. Yatskevich

them are coming from the concepts of labels, while others may appear from the
negated context1 or context2 (e.g., see less/more generality tests). With disjunc-
tive concepts at nodes, formula (1) is a full propositional formula, and hence, no
hypothesis can be made on its structure. Thus, its satisfiability must be tested
by using a standard SAT decider.

In order to avoid the exponential space explosion, which may arise when
converting formula (1) into CNF, we apply a set of structure preserving trans-
formations [23]. The main idea is to replace disjunctions occurring in the original
formula with newly introduced variables and to explicitly state that these vari-
ables imply the subformulas they substitute. Therefore, the size of the proposi-
tional formula in CNF grows linearly with respect to the number of disjunctions
in the original formula. Thus, nodeMatch should be optimized by replacing all
the calls to convertToCNF with calls to optimizedConvertToCNF.

5 Semantic Matching with Attributes

XML elements may have attributes. Attributes are 〈attribute − name, type〉 pairs
associated with elements. Names for the attributes are usually chosen such that
they describe the roles played by the domains in order to ease distinguishing
between their different uses. For example, in A1, the attributes P ID and Name

are defined on the same domain string, but their intended uses are the internal
(unique) product identification and representation of the official product’s names
respectively. There are no strict rules telling us when data should be represented
as elements, or as attributes, and obviously there is always more than one way
to encode the same data. For example, in A1, P IDs are encoded as strings,
while in A2, IDs are encoded as ints. However, both attributes serve for the
same purpose of the unique product’s identification. These observations suggest
two possible ways to perform semantic matching with attributes: (i) taking into
account datatypes, and (ii) ignoring datatypes.

The semantic matching approach is based on the idea of matching concepts,
not their direct physical implementations, such as elements or attributes. If
names of attributes and elements are abstract entities, therefore, they allow
for building arbitrary concepts out of them. Instead, datatypes, being concrete
entities, are limited in this sense. Thus, a plausible way to match attributes using
the semantic matching approach is to discard the information about datatypes.
In order to support this claim, let us consider both cases in turn.

5.1 Exploiting Datatypes

In order to reason with datatypes we have created a datatype ontology, OD ,
specified in OWL [26]. It describes the most often used XML schema built-in
datatypes and relations between them. The backbone taxonomy of OD is based
on the following rule: the is-a relationship holds between two datatypes iff their
value spaces are related by set inclusion. Some examples of axioms of OD are:
float $ double, int ⊥ string, anyURI $ string, and so on. Let us discuss how
datatypes are plugged within the four macro steps of the algorithm.

Semantic Schema Matching 359

Steps 1,2. Compute concepts of labels and nodes. In order to handle attributes,
we extend propositional logics with the quantification construct and datatypes.
Thus, we compute concepts of labels and concepts of nodes as formulas in
description logics (DL), in particular, using ALC(D) [22]. For example, C17,
namely, the concept of node describing all the string data instances which are the
names of electronic photography products is encoded as Electronics1 � (Photo1 �
Cameras1) � ∃Name1.string.

Step 3. Compute relations among concepts of labels. In this step we extend our
library of element level matchers by adding a Datatype matcher. It takes as input
two datatypes, it queries OD and retrieves a semantic relation between them.
For example, from axioms of OD, the Datatype matcher can learn that float $
double, and so on.

Step 4. Compute relations among concepts of nodes. In the case of attributes, the
node matching problem is translated into a DL formula, which is further checked
for its unsatisfiability using sound and complete procedures. Notice that in this
case we have to test for modal satisfiability, not propositional satisfiability. The
system we use is Racer [15]. From the example in Figure 1, trying to prove that
C210 is less general than C19, requires constructing the following formula:

((Electronics1=Electronics2)�(Photo1=Photo2)�
(Cameras1=Cameras2)�(Price1=Price2)�(f loat�double))�
(Electronics2�(Cameras2�Photo2)�∃Price2.f loat)�¬
(Electronics1�(Photo1�Cameras1)�∃Price1.double)

(7)

It turns out that formula (7) is unsatisfiable. Therefore, C210 is less general
than C19. However, this result is not what the user expects. In fact, both C19

and C210 describe prices of electronic products, which are photo cameras. The
storage format of prices in A1 and A2 (i.e., double and float respectively) is not
an issue at this level of detail.

Thus, another semantic solution of taking into account datatypes would be
to build abstractions out of the datatypes, e.g., float, double, decimal should
be abstracted to type numeric, while token, name, normalizedString should be
abstracted to type string, and so on. However, even such abstractions do not
improve the situation, since we may have, for example, an ID of type numeric
in the first schema, and a conceptually equivalent ID, but of type string, in the
second schema. If we continue building such abstractions, we result in having
that numeric is equivalent to string in the sense that they are both datatypes.

The last observation suggests that for the semantic matching approach to be
correct, we should assume, that all the datatypes are equivalent between each
other. Technically, in order to implement this assumption, we should add corre-
sponding axioms (e.g., float = double) to the premises of formula (1). On the one
hand, with respect to the case of not considering datatypes (see, Section 5.2),
such axioms do not affect the matching result from the quality viewpoint. On

360 F. Giunchiglia, P. Shvaiko, and M. Yatskevich

the other hand, datatypes make the matching problem computationally more
expensive by requiring to handle the quantification construct.

5.2 Ignoring Datatypes

In this case, information about datatypes is discarded. For example, 〈Name,

string〉 becomes Name. Then, the semantic matching algorithm builds concepts
of labels out of attribute’s names in the same way as it does in the case of
element’s names, and so on. Finally, it computes mappings using the optimized
algorithm of Section 4. A part of the cNodesMatrix with relations holding between
attributes for the example of Figure 1 is presented in Table 5. Notice that this
solution allows us for a mapping’s computation not only between the attributes,
but also between attributes and elements.

Table 5. Attributes: the matrix of semantic relations holding between concepts of
nodes (the matching result)

C27 C28 C29 C210

C16 = idk idk idk

C17 idk � idk idk

C18 idk idk = idk

C19 idk idk idk =

The task of determining mappings typically represents a first step towards the
ultimate goal of, for example, data translation, query mediation, data integra-
tion, agent communication, and so on. Although information about datatypes
will be necessary for accomplishing an ultimate goal, we do not discuss this
issue any further since in this paper we concentrate only on the mappings
discovery task.

6 Comparative Evaluation
In this section, we present the quality and performance evaluation of the match-
ing system we have implemented, called S-Match. In particular, we validate basic
and optimized versions of our system, called (S-Matchb) and (S-Matcho) respec-
tively, and evaluate them against three state of the art matchers, namely Cupid
[17], COMA [8]1, and SF [19] as implemented in Rondo [20]. All the systems un-
der consideration are fairly comparable because they are all schema-based. They
differ in the specific matching techniques they use and in how they compute
mappings.

In our evaluation we have used five pairs of schemas: two artificial examples,
a pair of product schemas (our running example, i.e., A1 vs. A2), a pair of
1 We thank Phil Bernstein, Hong Hai Do, and Erhard Rahm for providing us with

Cupid and COMA. In the evaluation we use the version of COMA described in [8].
A newer version of the system COMA++ exists but we do not have it.

Semantic Schema Matching 361

Table 6. Some indicators of the complexity of the test cases

#nodes max depth #labels per tree concepts of nodes
Artificial Example #1 250/500 16/15 250/500 conjunctive
Artificial Example #2 10/10 10/10 30/30 disjunctive

A1 vs. A2 13/14 4/4 14/15 conjunctive & disjunctive
CIDX vs. Excel 34/39 3/3 56/58 conjunctive & disjunctive

Google vs. Looksmart 706/1081 11/16 1048/1715 conjunctive & disjunctive

purchase order schemas (CIDX vs. Excel), and a pair of parts of web directories
(Google vs. Looksmart). Table 6 provides some indicators of the complexity of
the test cases2. As match quality measures we have used the following indicators:
precision, recall, overall, F-measure (see, [8]). Precision varies in the [0,1] range;
the higher the value, the smaller is the set of wrong mappings (false positives)
which have been computed. Precision is a correctness measure. Recall varies in
the [0,1] range; the higher the value, the smaller is the set of correct mappings
(true positives) which have not been found. Recall is a completeness measure.
F-measure varies in the [0,1] range. The version computed here is the harmonic
mean of precision and recall. It is a global measure of the matching quality,
growing with it. Overall is an estimate of the post-match efforts needed for
adding false negatives and removing false positives. Overall varies in the [-1,1]
range; the higher it is, the less post-match efforts are needed. As a performance
measure we have used time. It estimates how fast systems are when producing
mappings fully automatically.

To provide a ground for evaluating the quality of match results, initially, the
schemas have been manually matched to produce expert mappings. Then, the
results computed by systems have been compared with expert mappings. There
are three further observations that ensure a fair comparative study. The first
observation is that Cupid, COMA, and Rondo can discover only the mappings
which express similarity between schema elements. Instead, S-Match, among the
others, discovers the disjointness relation which can be interpreted as strong
dissimilarity in terms of the other systems under consideration. Therefore, we
did not take into account the disjointness relations (e.g., 〈ID4,4, C14, C24, ⊥〉)
when specifying the expert mappings. The second observation is that, since S-
Match returns a matrix of relations, while all the other systems return a list
of the best mappings, we used some filtering rules. More precisely we have the
following two rules: (i) discard all the mappings where the relation is idk; (ii)
return always the core relations, and discard relations whose existence is implied
by the core relations. For example, 〈ID3,3, C13, C23, =〉 should be returned, while
〈ID3,5, C13, C25, �〉 should be discarded. Finally, whether S-Match returns the
equivalence or subsumption relations does not affect the quality indicators. What
only matters is the presence of the mappings standing for those relations.

In our experiments each test has two degrees of freedom: directionality and
use of oracles. By directionality we mean here the direction in which mappings

2 Source files, description of the test cases, and expert mappings can be found at
http://www.dit.unitn.it/∼accord/, experiments section.

362 F. Giunchiglia, P. Shvaiko, and M. Yatskevich

have been computed: from the first schema to the second one (forward direction),
or vice versa (backward direction). For lack of space we report only the best re-
sults obtained with respect to directionality, and use of oracles allowed. We were
not able to plug a thesaurus in Rondo, since the version we have is standalone,
and it does not support the use of external thesauri. Thesauri of S-Match, Cu-
pid, and COMA were expanded with terms necessary for a fair competition (e.g.,
expanding uom into unitOfMeasure, a complete list is available at the URL in
footnote 2).

All the tests have been performed on a P4-1700, 512 MB of RAM, Windows
XP, with no applications running but a single matching system. Notice, that the
systems were limited to allocate no more than 512 MB of main memory. Also,
all the tuning parameters (e.g., thresholds, strategies) of the systems were taken
by default (e.g., for COMA we used NamePath and Leaves matchers combined
in the Average strategy) for all the tests.

6.1 Test Cases

Let us discuss artificially designed problems in order to evaluate the performance
of S-Matcho in ideal conditions, namely when we have only conjunctive or dis-
junctive concepts of nodes. Since examples are artificial and our optimizations
address only efficiency, not quality, we analyze here only the performance time
of the systems, see, Figure 2 (Artificial Examples).

On the example with conjunctive concepts at nodes (Artificial Example #1),
COMA performs 4 times slower and 15 times slower than S-Matchb and S-Matcho

respectively. S-Matcho runs around 29% faster than Rondo. Instead, Cupid runs
out of memory.

On the example with disjunctive concepts at nodes (Artificial Example #2),
S-Matcho works around 4 orders of magnitude faster than S-Matchb, around 5
times faster than COMA, 1.6 times faster than Cupid, and as fast as Rondo.
The significant improvement of our optimized algorithm can be explained by
considering that S-Matchb does not control the exponential space explosion on
such matching problems. In fact, the biggest formula in this case consists of
about 118000 clauses. The optimization introduced in the Section 4.2 reduces
this number to approximately 20-30 clauses.

We have then considered 3 matching problems, also involving real-world ex-
amples. Let us first discuss matching results from our running example, see,
Figure 2 (Product schemas: A1 vs. A2). There, S-Match outperforms the other
systems in terms of quality indicators. Since all the labels at nodes in the given
test case were correctly encoded into propositional formulas, all the quality
measures of S-Match reach their highest values. In fact, as discussed before,
the propositional SAT solver is correct and complete. This means that once
the element level matchers have found all and only the mappings, S-Match
will return all of them and only the correct ones. Also, S-Matcho works more
than 5 times faster than COMA, 1.5 times faster than Cupid, and as fast
as Rondo.

Semantic Schema Matching 363

Fig. 2. Evaluation Results

For a pair of BizTalk schemas: CIDX vs. Excel, S-Match performs as good as
COMA and outperforms the other systems in terms of quality indicators. Also,
S-Matcho works more than 4 times faster than COMA, more than 2 times faster
than Cupid, and as fast as Rondo.

For the biggest matching problem (Web Directories: Google vs. Looksmart),
which contains hundreds and thousands of nodes, unfortunately, we did not have
enough human resources to create expert mappings for this test case (we are still
working on establishing them), and thus, for the moment we have evaluated only
the performance time. S-Matcho performs about 9 times faster than COMA,
and about 7 times faster than S-Matchb. Rondo and Cupid run out of memory,
therefore we do not report any results for them.

6.2 Evaluation Summary

Quality measures. Since most matching systems return similarity coefficients,
rather than semantic relations, our qualitative analysis was based on the mea-
sures developed for those systems. Therefore, we had to omit information about
the type of relations S-Match returns, and focus only on the number of present/
absent mappings. We totally discarded from our considerations the disjointness
relation, however, its value should not be underestimated, because this relation
reduces the search space. For the example of Figure 1, if Cupid would support
the analysis of dissimilarity between schema elements, it could possibly recognize
that C14 is disjoint (dissimilar) with C24, and then avoid false positives such as
determining that C110 is similar to C211, and so on.

Pre-match efforts. Typically, these efforts include creating a precompiled the-
saurus with relations among common and domain specific terms. On the one
side, such a thesaurus can be further reused, since many schemas to be matched
are similar to already matched schemas, especially if they are describing the
same application domain. On the other side, for the first schemas to be matched

364 F. Giunchiglia, P. Shvaiko, and M. Yatskevich

from a novel domain, creation of such a thesaurus requires time. With this re-
spect, exploiting an external resource of common and domain knowledge (e.g.,
WordNet) can significantly reduce the pre-match efforts. In the example of Fig-
ure 1, in order for Cupid to determine C17 as an appropriate match for C28,
we have to add an entry <Hyp key=”brand:name”> 0.7</Hyp> to its thesaurus,
while S-Match obtains the knowledge of the hyponymy relation in the above case
automatically from WordNet.

Performance measures. Time is a very important indicator, because when
matching industrial-size schemas (e.g., with hundreds and thousands of nodes,
which is quite typical for e-business applications), it shows scalability proper-
ties of the matchers and their potential to become an industrial-strength sys-
tems. It is also important in web applications, where some weak form of real
time performance is required (to avoid having a user waiting too long for the
system respond).

7 Conclusions

We have presented a new semantic schema matching algorithm and its optimiza-
tions. Our solution builds on the top of the past approaches at the element level
and introduces a novel (with respect to schema matching) techniques, namely
model-based techniques, at the structure level. We conducted a comparative eval-
uation of our approach implemented in the S-Match system against three state
of the art systems. The results empirically prove the strengths of our approach.

Future work includes development of the iterative and interactive semantic
matching system. It will improve the quality of the mappings by iterating and by
focusing user’s attention on the critical points where his/her input is maximally
useful. S-Match works in a top-down manner, and hence, mismatches among
the top level elements of schemas can imply further mismatches between their
descendants. Therefore, next steps include development of a robust semantic
matching algorithm. Finally, we are going to develop a testing methodology which
is able to estimate quality of the mappings between schemas with hundreds and
thousands of nodes. Initial steps have already been done, see for details [1].
Here, the key issue is that in these cases, specifying expert mappings manually
is (often) neither desirable nor feasible task. Comparison of matching algorithms
on real-world schemas from different application domains will also be performed
more extensively.

References

1. P. Avesani, F. Giunchiglia, and M. Yatskevich. A large scale taxonomy mapping
evaluation. In Proceedings of ISWC, 2005.

2. S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistruc-
tured and structured data sources. SIGMOD Record, pages 54–59, 1999.

3. P. Bernstein, S. Melnik, M. Petropoulos, and C. Quix. Industrial-strength schema
matching. SIGMOD Record, 33(4):38 – 43, 2004.

Semantic Schema Matching 365

4. D. Le Berre. A satisfiability library for Java. http://www.sat4j.org/.
5. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: A new approach

and an application. In Proceedings of ISWC, pages 130–145, 2003.
6. M. Davis, G. Longemann, and D. Loveland. A machine program for theorem

proving. Journal of the ACM, (5(7)):394–397, 1962.
7. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering

complex semantic matches between database schemas. In Proceedings of SIGMOD,
pages 383–394, 2004.

8. H. H. Do and E. Rahm. COMA - a system for flexible combination of schema
matching approaches. In Proceedings of VLDB, pages 610–621, 2002.

9. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-lite. In
Proceedings of ECAI, pages 333–337, 2004.

10. A. Gal, A. Anaby-Tavor, A. Trombetta, and D. Montesi. A framework for modeling
and evaluating automatic semantic reconciliation. VLDB Journal, (14(1)), 2005.

11. F. Giunchiglia and P. Shvaiko. Semantic matching. KER Journal, (18(3)), 2003.
12. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: an algorithm and an

implementation of semantic matching. In Proceedings of ESWS, pages 61–75, 2004.
13. F. Giunchiglia, M. Yatskevich, and E. Giunchiglia. Efficient semantic matching.

In Proceedings of ESWC, pages 272–289, 2005.
14. N. Guarino. The role of ontologies for the Semantic Web (and beyond). Technical

report, Laboratory for Applied Ontology, ISTC-CNR, 2004.
15. V. Haarslev, R. Moller, and M. Wessel. RACER: Semantic middle-

ware for industrial projects based on RDF/OWL, a W3C Standard.
http://www.sts.tu-harburg.de/~r.f.moeller/racer/.

16. J. Kang and J. F. Naughton. On schema matching with opaque column names and
data values. In Proceedings of SIGMOD, pages 205–216, 2003.

17. J. Madhavan, P. Bernstein, and E. Rahm. Generic schema matching with Cupid.
In Proceedings of VLDB, pages 49–58, 2001.

18. B. Magnini, L. Serafini, and M. Speranza. Making explicit the semantics hidden
in schema models. In Proceedings of workshop on HLTSWWS at ISWC, 2003.

19. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm. In Proceedings of ICDE, pages 117–128, 2002.

20. S. Melnik, E. Rahm, and P. Bernstein. Rondo: A programming platform for generic
model management. In Proceedings of SIGMOD, pages 193–204, 2003.

21. A. G. Miller. WordNet: A lexical database for English. Communications of the
ACM, (38(11)):39–41, 1995.

22. J. Z. Pan. Description Logics: reasoning support for the Semantic Web. PhD thesis,
School of Computer Science, The University of Manchester, 2004.

23. D. Plaisted and S. Greenbaum. A structure-preserving clause form translation.
Journal of Symbolic Computation, (2):293–304, 1986.

24. E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching.
VLDB Journal, (10(4)):334–350, 2001.

25. P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal
on Data Semantics, IV, 2005.

26. M. K. Smith, C. Welty, and D. L. McGuinness. OWL web ontology
language guide. Technical report, World Wide Web Consortium (W3C),
http://www.w3.org/TR/2004/REC-owl-guide-20040210/, February 10 2004.

Unified Semantics for Event Correlation over Time and
Space in Hybrid Network Environments

Eiko Yoneki and Jean Bacon

University of Cambridge Computer Laboratory
Cambridge CB3 0FD, United Kingdom

{Eiko.Yoneki, Jean.Bacon}@cl.cam.ac.uk

Abstract. The recent evolution of ubiquitous computing has brought with it a
dramatic increase of event monitoring capabilities by wireless devices and sen-
sors. Such systems require new, more sophisticated, event correlation over time
and space. This new paradigm implies composition of events in heterogeneous
network environments, where network and resource conditions vary. Event Cor-
relation will be a multi-step operation from event sources to final subscribers,
combining information collected by wireless devices into higher level informa-
tion or knowledge. Most extant approaches to define event correlation lack a
formal mechanism for establishing complex temporal and spatial relationships
among correlated events. Here, we will focus on two subjects. First, we define
generic composite event semantics, which extend traditional event composition
with data aggregation in wireless sensor networks (WSNs). This work bridges
data aggregation in WSNs with event correlation services over distributed sys-
tems. Secondly, we introduce interval-based semantics for event detection, defin-
ing precisely complex timing constraints among correlated event instances.

1 Introduction

An event correlation service is important for constructing reactive distributed appli-
cations. It occurs as a part of applications, event notification services and workflow
coordinators. In event-based middleware systems, an event correlation service allows
consumers to subscribe to patterns of events (composite events). This provides an addi-
tional dimension of data management, and improvement of scalability and performance
in distributed systems. Particularly in wireless networks, providing event correlation as
a middleware service helps to simplify the application logic and reduce its complexity.

The recent evolution of ubiquitous computing has brought with it a significant in-
crease of event monitoring capabilities by wireless devices and sensors. Such systems
require new, more sophisticated, event correlation over time and space. Typical Wire-
less Sensor Networks (WSNs) communicate directly with a centralized controller or a
satellite. Thus, communication between a sensor and a controller is based on a single-
hop model. On the other hand, a collection of autonomous nodes or terminals may
communicate with each other by forming a multi-hop radio network and maintaining
connectivity in a decentralized manner, thus creating an ad hoc network. Moreover, the
integration of a smart WSN with a large network such as the Internet, increases its cov-
erage and potential application domain. In WSNs, a sink node is a sensor node with

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 366–384, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Unified Semantics for Event Correlation over Time and Space 367

Sink/

Base Station

(Gateway)

Subscriber Sensing Area

Internet

Fig. 1. Bridging WSNs to the Internet

gateway functions to link to external networks such as the Internet. Sensed information
is normally distributed via a sink node. A sink node may also be an Internet backbone
node, or the gateway node to an intermediate ad hoc network, which may deliver the
sensor data to the Internet. Fig.1 depicts WSNs connecting to the Internet, where an ad
hoc network (the MANET Mesh in Fig.1) could form an opportunistic network such
as [3].

This new platform enables the seamless use of the various resources in physically
interacting environments. A consensus is emerging that the most appropriate system ar-
chitecture to support such platforms is service management, with communication based
on the publish/subscribe paradigm. For example, a publisher broker node can act as a
gateway from a WSN, performing data aggregation and distributing filtered data to other
networks based on contents. Event broker nodes that offer data aggregation services can
coordinate data flow efficiently. Especially when event-based communication is imple-
mented via a peer-to-peer (P2P) overlay network, the construction of event broker grids
will extend the seamless messaging capability over scalable heterogeneous network en-
vironments. Event Correlation will be a multi-step operation from event sources to the
final subscribers, combining information collected by wireless devices into higher level
information or knowledge. Mobile devices can be deployed in remote locations without
a network infrastructure. They will have an important role in collecting sensor data over
ad hoc networks and conveying it to Internet backbone nodes, These mobile devices are
resource constrained, and an implementable event detection mechanism is required. The
semantics of operators for composite events is not defined in a uniform manner in exist-
ing middleware and applications leading to a number of problems. Event consumption
rules are mostly done as part of an implementation, without a clear semantic definition.
Most extant approaches to define event correlation lack a formal mechanism to define
complex temporal and spatial relationships among correlated events. Thus, a unified
semantics has to be defined to resolve this ambiguity for heterogeneous network envi-
ronments.

Temporal ordering in real-time is a critical aspect of event correlation in wireless ad
hoc network environments. The context of real-time in this paper relates to real-world
event occurrences. Neither logical time nor classical physical clock synchronization al-
gorithms may be applicable. Temporal ordering is required for motion detection. In or-
der to determine the direction of movement of a real-world entity, temporal ordering of
events originating from different devices has to be established. Events can be triggered
by physical phenomena, such as glaciers and earthquakes, and the order of occurrence
of sensed data is again important. In general, recent developments in Internet business

368 E. Yoneki and J. Bacon

Aggregation

Correlation

Filtering

Time, S
pace

Data Contents

Event Instances

Ev
en

ts Event X

Event Y

Fig. 2. Aggregation, Filtering and Correlation

demand precision time for processing data. For example, orders to buy and sell on the
stock market and in an auction must be timed on a global scale, and a trigger event may
be initiated by a wireless devices.

Event Aggregation, Filtering and Correlation: Some event-based middlewares offer
content-based filtering and provide flexible query languages. These allow subscribers
to select events of interest, based on the values of their contents. A query can apply to
different event types but the aim is to select individual events. On the other hand, event
correlation addresses the relationship among, or pattern of, instances of different event
types. WSNs have led to new issues to be addressed in event correlation. Traditional
networking research approached data aggregation as an application-specific technique
that can be used to reduce network traffic. In WSNs the requirement is to summarize
current sensor values in some or all of a sensor network.

TinyDB [19] is an inquiry processing system for sensor networks and takes a data
centric approach. Each node keeps the data and executes retrieval and aggregation (in-
network aggregation), with on-demand based operation to deliver the data to external
applications. TinyLIME [5] enhances LIME (Linda In Mobile Environments) to oper-
ate on TinyOS. In TinyLIME, LIME is maintained on each sensor node together with
a partition of a tuple space. A coordinated tuple space is created across the nodes, con-
necting with the base station in one hop. TinyLIME works as middleware by offering
this abstracted interface to the application. It does not currently provide any data aggre-
gation function, only a data filtering function based on Linda/LIME at the base station
node. On the other hand, TinyDB supports data aggregation via SQL query, but re-
dundancy/duplication handling is not clear from available documents. Fig.2 shows the
relationships between aggregation, filtering and correlation. Middleware research for
WSNs has been active recently, but most research focuses on in-network operation for
specific applications. In this paper, we take a global view of event correlation over en-
tire distributed systems, focusing on correlation semantics.

Unified Semantics for Event Correlation: We define a unified semantics, combin-
ing traditional event composition and data aggregation in wireless sensor networks.
In-network aggregation in WSNs is not a concern of this paper. For the event detection
semantics, we introduce a parameterized algebra. Parameters include time, selection,
consumption, and subset rules. This approach defines unambiguous semantics of event

Unified Semantics for Event Correlation over Time and Space 369

detection and supports resource constrained environments. We introduce interval-based
semantics for event detection defining precisely complex timing constraints among cor-
related event instances. In resource constrained network environments, the event al-
gebra must be restricted so that only a subset of all possible occurrences of complex
events will be detected, and this can be achieved by applying appropriate parameters.
This paper continues as follows: Section 2 describes key aspects of event composition
semantics with existing systems as examples. Section 3 describes the event model, Sec-
tion 4 defines composite event semantics and section 5 discusses temporal ordering.
The formal definition and proof of the event algebra is out of the scope of this paper. In
Section 6 we describe related work, and Section 7 contains conclusions and directions
for future research.

2 Event Correlation in Middleware

In this section, we show a comparative study of existing event correlation mechanisms
in middleware. Event correlation may be deployed as a part of applications, as event
notification services, or as part of a middleware framework. Definition and detection of
composite events vary, especially over distributed environments. Equally, named event
composition operators do not necessarily have the same semantics, while similar se-
mantics might be expressed using different operators. Moreover, the exact semantic de-
scription of these operators is rarely explained. Thus, we define the following schema to
classify existing operators: conjunction, disjunction, sequence, concurrency, negation,
iteration, and selection. Considering the analyzed systems, it becomes clear that to sim-
ply consider the operators is not sufficient in order to convey the full semantic meaning.
Each system offers parameters, which further define/change the operators’ semantics.
The problem is that the majority of the systems reflect parameters within the implemen-
tations. Parameters for consumption mode and duplicate handling are rarely explicitly
described. Table 1 and 2 shows a comparative study of event composition semantics
in ten existing systems and our proposal ECCO. The tables give an overview of event-
based composition languages typically supported in event-based systems, and provide
an analysis of the languages from a unified viewpoint. Note that the list of analyzed
systems cannot be exhaustive, but considers a representative set of selected compo-
sition semantics. None of the listed systems includes wireless network environments
except ECCO. Most event notification systems still only support primitive events, and
their focus is on efficient filter algorithms. Brief explanations of the characteristics of
each system are given below (see also Section 6, related work).

Table 1 shows composition operators, while Table 2 emphasizes temporal order re-
lated parameters including consumption modes. Concepts of conjunction, disjunction,
sequence, concurrency, negation, and iteration operators are based on an event algebra.
Selection defines the event instance selection, by which events qualify for a composite
event, and how duplicate events are handled. Conjunction and disjunction are supported
in most systems, some of which implement the sequence operators (requiring ordering),
fewer support negation. Selection and concurrency are rarely supported. Concurrency
is difficult to determine for distributed systems. Time operators are not always sup-
ported, requiring a time handling strategy for distributed systems. Consumption mode

370 E. Yoneki and J. Bacon

Table 1. Event Composition Semantics - Composition Operators

Operators
Conjunction Disjunction Sequence Conc. Negation Iteration Selection

ECCO A + B A|B A;B A‖B −A A∗ AN

Opera A‖B A|B A; BorAB - ¬A A∗ -
CEA A&B A|B A;B - −A - -
Schwiderski A,B A|B A;B A‖B NOTA A∗orA+ -
A-mediAS A&B A‖B A;B - −A - A[i]

Ready A&&B A‖B A;B - notA - -
Eve CON(A, B) DEX(A, B) SEQ(A,B) CCR(A,B) NEG(A, B) REP (A,n) -
GEM A&B A‖B A;B - !A - -
Snoop A,B A ∨ B A;B - - A∗ -
Rebeca A ∧ B A ∨ B ¬A A∗ -
SAMOS A,B A|B A;B - NOTA T IMES(n,A) A∗/last(A)

and temporal conditions are rarely made explicit. If they are explicit, several options
are supported, otherwise they are hard-coded in the system and difficult to determine.
The listed systems are notification services, event composition languages, and work-
flow coordinators in which common characteristics are fairly complete semantics of
event composition.

ECCO: is our ongoing project to create an event brokering architecture for a distributed
adaptive mobile environment [27]. Event correlation is part of event brokers, and grids
of brokers are deployed over mixed network environments. The ECCO prototype is im-
plemented with a MANET protocol as content-based publish/subscribe. This paper fo-
cuses on event correlation over event broker grids, which requires correlation of events
from various network environments.
Opera: a framework for event composition in a large scale distributed system [23] aim-
ing at reduction of event traffic by distributed composite event detectors. The language
of composite events is based on FSA.
CEA: our early work on the Cambridge Event Architecture (CEA) extended the then-
predominant, object-oriented middleware (CORBA and Java) with a publish, register
and notify paradigm [11]. COBEA [21] is an event-based architecture used for the man-
agement of networks using CEA based composite event operators.
Schwiderski: enhanced the distributed event ordering and composite event detection
by introducing 2g-precedence-based sequence and concurrency operators [26].
A-mediAS: an integrating event notification service that is adaptable to different appli-
cations specifically on handling composite events and event filtering methods [12].
Ready: an event notification service from AT&T Research similar to Siena. Ready sup-
ports composite events and its grouping functionality can be shared among clients [10].
EVE: combines characteristics of active databases and event-based architectures to ex-
ecute event driven workflows [8].
GEM: GEM [20] is an interpreted generalized event monitoring rule based language.
Snoop: a model-independent event specification language [4], supporting parameter
contexts. It supports temporal, explicit and composite events for active databases.

Unified Semantics for Event Correlation over Time and Space 371

Rebeca: an event-based electronic commerce architecture focusing on event filtering
in a distributed environment [22]. Temporal delays in event composition have been ad-
dressed in [16].
SAMOS: The SAMOS (Swiss Active Mechanism-based Object-oriented database sys-
tem) [7] project addresses the specification of active behavior and its internal processing
supporting Event-Condition-Action (ECA) rules. The detection of composite events is
implemented based on colored Petri-Nets.

Table 2. Event Composition Semantics - Time-related Parameters

Time Operator Timestamp Composition Temp. Cond. Consumption Subset Detection

Period Life Unrest. Recent Chron.

ECCO (A; B)T , (A + B)T (A)T P, PI, I I × × × × × Algorithm
Opera (A, B)T - PI P - - - - - T-FSA
CEA - - P P - × - - × FSA
Schwiderski - - P P - - - - - Rule
A-mediAS (A, B)T , (A; B)T ,−AT - P P - × × × × T-FSA
Ready - - P P - - - - × -
Eve - - P P - - - × × Graph
GEM (A+timeperiod) - P P × - × - × Rule
Snoop (A, [tiestring] : param, B) - P P - - × × × Graph
Rebeca slide window - PI P - - × × - Rule
SAMOS - - - - - - - × × Petri net

Time Operator: Period (between event A and B) Life (valid time for event A)

Timestamp: P (Point-based), PI (Point represented in Interval-based format), and I (Interval-based).

Composition: Event composition semantics. P (Point-based), and I (Interval-based).

Temporal Condition: Temporal conditions such as A before B, A meets B, etc. for event composition.

Consumption: Event consumption (Unrestricted, Recent, and Chronicle).

Subset: Parameters for selection or subset on duplication handling.

Detection: Implementation methods.

3 Event Model

In this section, we define our event model including timestamps for composite events.
A primitive event is the occurrence of a state transition at a certain point in time.
Each occurrence of an event is called an event instance. The primitive event set con-
tains all primitive events within the system. The event set consists of the set of prim-
itive events and the set of composite events. Each event has a timestamp associated
with the occurrence time. There is uncertainty associated with the values of times-
tamps in implemented systems. Composite events are defined by composing primitive
or composite events with a set of operators. Only composite events are defined to have
duration.

Timestamps: A timestamp is a mandatory attribute of an event defined within a time
system, while the event occurrence time is a real-time defined by the occurrence of
the event. Thus, the timestamp is an approximation of the event occurrence time. Most

372 E. Yoneki and J. Bacon

point-based timestamps consist of a single value indicating the occurrence time. In [16],
the time when an event is detected is given as an interval-based timestamp, which cap-
tures clock uncertainty and network delay with two values: the low and high end of
the interval. Although an interval format is used, it represents a single point (point-
interval-based timestamp). In addition, we define a (composite) event with duration and
give a new interval-based timestamp to a composite event based on interval semantics
(see Section 4.3). For a primitive event, either a point-based or point-interval-based
timestamp is used in our system. A point-interval-based timestamp is an accurate rep-
resentation, and it is distinct from interval-based timestamps representing the duration
of events. Fig.3 depicts an interval-based timestamp for composite events.

A before B
A

B

A + B

A | B

A ; B

A
B

Interval-Based Point-Based

lh BtAt)()(<)()(BtAt <

Fig. 3. Timestamp of Composite Event (A before B)

Spacestamp: We introduce spacestamp, as an optional attribute of an event, indicat-
ing certain location, relative location, grouping and so forth (e.g., position informa-
tion (x,y,z), global node id). The Global Positioning System (GPS) [13] provides each
node with its location information (latitude, longitude and elevation) with a high de-
gree of accuracy. This information can be used for ordering events within the given
space.

3.1 Duration

Reference [1] argues that all events have duration and considers intervals to be the basic
timing concept. A set of 13 relations between intervals is defined, and rules govern-
ing the composition of such relations controls temporal reasoning. On the other hand,
most event systems listed in Section 2 consider events as instantaneous, that is, the time
associated with the event is an instant rather than an interval. A durative event can be
seen as capturing the uncertainty over the time of occurrence and the time of detec-
tion of an event rather than modelling an event that persists over time. In this sense,
durative events are akin to the point-interval-based-timestamps described above. The
durative event model considers that instantaneous events are durative events with min-
imum duration, thus reconciling the models. Our model is based on primitive events
that represent instantaneous changes of system state, with uncertainty over their mea-
surement. We would regard an “event” that persists over time as akin to a state, with an
event at the start and one at the end of the time period. This could also be defined as a
composite event. Composite events are built up from events occurring at different times,
therefore the associated real-time is usually that of the last of its contributory primitive

Unified Semantics for Event Correlation over Time and Space 373

events. This is natural in a context where the prime focus is on event detection, since
typically a composite event will be detected at the time that its last contributory event
is detected. However, this does lead to logical difficulties in the case of some compos-
ite events. Determination of the duration of composite events requires the semantics of
composition and time system information such as a point-based or an interval-based
time model. Fig.4 shows an example of a sequence operation on the interval-based and
point-based timestamps. Complex timing constraints among correlated event instances
are precisely defined (see Appendix).

A before B
A

B

A

B

Interval-Based Point-Based

lh BtAt)()(<)()(BtAt <

A meets B

A overlaps B

A finishes B

A includes B

A starts B

A equals B
A

B

Fig. 4. Interval and Point based Timestamps

3.2 Duplication

It is important to distinguish between multiple instances of a given event type, which
may be primitive or composite, and duplicates of a given event instance. The expres-
siveness of some event specification languages has been limited by not distinguishing
between event types and instances of those types. [17] attempts to define conditions
and constraints on attributes of events in correlation rules rather than defining opera-
tors on event instances. Especially in sensor networks, in order to avoid loss of events
by communication instability, duplicates of events may be produced to increase reli-
ability. Duplicates have to be handled differently depending on the application, and
contexts within applications. For example, in object tracking, the most recent reading
from a sensor is valid, and events prior to that will be obsolete, except for the historical
record. On the other hand, in a transaction event in which a customer cancels an or-
der, a duplicate event should be ignored because a transaction is being repeated. Thus,
the semantics of event composition have to address handling of duplicates. [18] take
the approach of defining constraints on attributes of events and detect occurrences of
events, before correlation conditions are evaluated. We propose duplicate handling in
two ways: adding a selection operator as an event composition operator and adding sub-
set rules as parameters (obtaining this efficiently without loss of meaningful data) (see
Section 4.4).

4 Event Correlation Semantics
We define composite events by expressions built from primitive and composite events
and algebraic operators. The operators of the event algebra are defined informally in

374 E. Yoneki and J. Bacon

this section. We also support parameters, which help to define unambiguous semantics
of event detection and support resource constrained environments. In wireless ad hoc
networks, the event algebra must be restricted so that only a subset of all possible oc-
currences of complex events will be detected. We provide basic operators that have the
potential of expressing the required semantics and are capable of restricting expressions.
Also, an interval-semantics supports more sensitive interval relations among events in
environments where real-time concerns are more critical, such as wireless networks or
multi-media systems. Our recent work [23] defined composite event operators that are
tightly based on FSA without considering time-related issues in depth. The temporal
operators introduced in [1] are not uniformly defined in many applications, and we de-
fine precise timing constraints (see Appendix and [28]). The temporal operators help
resource constrained mobile devices to have unambiguous semantics.

4.1 Composite Event Operators

The event operators are defined informally as follows:

• Conjunction A + B: Event A and B occur in any order. (A + B)T with a temporal
parameter T indicating the maximal length of the interval between the occurrences of A and
B. Note that (A + B)∞ or (A + B) refers without restrictions.

• Disjunction A | B: Event A or B occurs.

• Concatenation A B: Event A occurs before event B where timestamp constraints are A
meets B, A overlaps B, A finishes B, A includes B, and A starts B.

• Sequence A ; B: Event A occurs before B where timestamp constraints are A before B,
and A meets B. (A;B)0 is a special case belonging to A meets B.
- E.g. (A;NULL;B): denotes there is no occurrence of any event between event A and B.
- E.g. (A ; B)T : means that an interval T between event A and B.
- E.g. (A;B0): denotes that there is event A and event B occur contiguously.

• Concurrency A||B: Event A and B occur in parallel.

• Iteration A∗: Any number of event A occurrences.

• Negation−AT : No event A occurs for an interval T.
- E.g. (A − B): denotes no B occurs during A’s occurrence.
- E.g. (A − B)T : denotes no B occurs after starting A’s occurrence within an interval T.
- E.g. (A;B) − C: denotes that event A is followed by B and there is no C in the duration
of (A;B).

• Selection AN : The selection AN defines the occurrence defined by N.
- E.g. AAV G

T : denotes taking the average during an interval T.
- E.g. ALAST

T : denotes taking the most recent instance during an interval T.

• Spatial Restriction AS: Event A occurs if it is a spatial restriction defined in S, that can
be defined as a specific location or a group identifier etc.
- E.g. ACB03F D : The area code CB03FD identifies the zone around Computer Laboratory
in Cambridge. Event A is valid only when spatial condition is satisfied.

• Temporal Restriction AT : Event A occurs within T.
- E.g. (A;B)T or (A; BT): B occurs within an interval T after A.
- E.g. BT : B is valid for an interval T.

Unified Semantics for Event Correlation over Time and Space 375

The following examples illustrate the use of the operators to describe composite events.

Example 1: The temperature of rooms with windows facing south is measured every
minute and transmitted to a computer placed on the corridor. T denotes a temperature
event and T AV G

30 denotes a composite event of an average of the temperature during 30
minutes. (Troom1 + Troom7)AV G

30 denotes to take an average of room 1 and 7.

Example 2: Two sensing receivers are placed before and after the stop sign on the
street. When a car passes, they generate events to the local computer. Suppose the event
received before the stop sign is B and after the stop sign is A for a given car. (B; A)2
denotes A occurs 2 seconds after B and it indicates a car did not make a full stop at
the stop sign. On the other hand, ((B; A)60)∗ indicates cars may not be flowing on the
street, which indicates potential traffic congestion.

Example 3: At a highway entrance, a sensor detects movement of a passing car as event
E. The number of cars entering the highway (ESUM

10)HWY 1Ent7 can be calculated at a
computer locally, which can be used to detect traffic congestion on the highway (e.g., a
congestion event C = ((ESUM

10)HWY 1Ent7)LESS12).

4.2 Temporal Conditions

Defining temporal conditions for the semantics of composite events could be tricky,
especially when timing constraints are important such as for processing transactions.
This may cause an incorrect interpretation according to the intuition of the user. Fig.5

A before B

A

B

A overlaps B

A

B

T

E: Detected

Missed

E(T during ((A before B) or (A overlaps B)))

� E(T+((A;B)|(AB)))

Composite Event E (snow storm alert) during the period

when event A (humidity raises 60%) occurs followed by

event B (wind blow from north), if event T (temperature

goes down below zero degree) occurs.

By

Gomez

E: Missed

Fig. 5. Semantic Ambiguity

depicts a composite event E (snow storm alert): during the period when primitive event
A (humidity raises 60%) occurs followed by primitive event B (wind blows from north),
if primitive event T (temperature goes down below zero degree) occurs. Two situations
are shown. If we follow the interpretation of temporal conditions described by Gomez
et al. in [9], in the first situation, event E is detected and in the second situation, event
E is missed. In [9], overlaps and during only comprises the period when two events are
simultaneously occurring, while every other operator takes the period over both event

376 E. Yoneki and J. Bacon

occurrences. This inconsistency may cause a problem. In both occasions, the natural
interpretation of event E is the same. With our definition, both examples will yield
consistent results.

4.3 Interval Semantics

In most event algebras, each event occurrence, including composite events, is associated
with a single time point. This may result in unintended semantics for some operator
combinations, for example nested sequence operators. In Fig.6, time flows from left
to right, and each row shows the occurrence of a primitive event. When single point
detection is used, an instance of event B;(A;C) is detected if A occurs first, followed
by B and C. The reason is that these occurrences cause a detection of A;C, which
is associated with the occurrence of B;(A;C). With interval semantics, the sequence
A;B can be defined to occur only if the intervals of A and B are non-overlapping. No
occurrence of B;(A;C) would be detected.

A

B

C

A;C

B;(A;C)

B;C

A;(B;C)

A: move into the area above 1000m, B: temperature goes down to -4°C
C: move into the area above 2000m

Single Point Interval Semantics

Fig. 6. Point and Interval

4.4 Event Context

Adding the policy defining the constraints provides a way to modify the operator seman-
tics. This parameter-dependent algebra can accommodate different policies on event
consumption. First, each operator is given a principle definition of the constraints on
the participating occurrences of events that characterize the operator. Then a number of
event contexts are defined that act as modifiers to the simple operator semantics. These
contexts specify constraints on how occurrences may be selected. As a result, each com-
bination of an operator and a context can be seen as a separate operator with a specific
meaning. This helps to deal with resource constrained environments, e.g., keeping the
most recent instance for future use.

Consumption Policy: For event consumption policy, three contexts unrestricted, re-
cent and chronicle, can be defined. Snoop [4] uses these contexts, but it is not capable
of applying an individual context to different event operators. The parameter-dependent
algebra clarifies the situations. The following gives an informal definition for detecting
A;B. Fig.7 shows the effect of these contexts on the sequence operator.

Unified Semantics for Event Correlation over Time and Space 377

A

B

A;(unrestricted)B

A;(recent)B

A;(chronicle)B

Fig. 7. Event Consumption Policy

• Unrestricted: All instances of A and B are valid.
• Recent: If an instance of B can be combined with several instances of A to form

instances of A;B, the only recent instance of A is valid.
• Chronicle: If an instance of B can be combined with several instances of A to form

instances of A;B, only the oldest instance of A is valid. Also, this instance is never
valid in the future.

Subset Policy: defines the subset of events to detect. Ideally the Subset Policy should in-
terfere as little as possible with unrestricted semantics. None of the removed instances
should have a crucial impact on the detection of an enclosing detection. At the same
time, operations such as conjunction and sequence must be able to identify non-valid
instances early, before the end time of the instance is reached. The main task of the Sub-
set Policy is to make an effective algebra, feasible to implement in resource-constrained
environments.

A=

A1=

A2=

1

2
3 4
5

6

Fig. 8. Subset Policy

The basis of the Subset Policy is that the restricted event stream should be a subset
that does not contain multiple instances with the same end time. Informally, from the
instances with the same end time, the Subset Policy keeps exactly one, that with the
maximal start time. Fig. 8 shows the result of applying the Subset Policy to an event

378 E. Yoneki and J. Bacon

stream A. From the three instances of A (2,3,6) with the same end time, 2 must be re-
moved, together with either 3 or 6. For the two instances (1,4) that share the same end
time, the one with the earlier time must be removed. 5 does not share the end time with
others. The choice of which of (3,6) to remove results in two valid restrictions of the
event stream A, named A1 and A2.

Precision Policy: defines the required precision of the events to be detected. The dy-
namic spatial-temporal data from sensor networks is generated at a rapid rate and all
the generated data may not arrive at the event correlation node over the networks due to
the lossy/faulty nature of the sensor network. Various techniques, including compres-
sion and model adaptation have provided certain levels of guarantees [15]. On the other
hand, if some imprecision of the collected data could be tolerated by the application,
defining the precision available is important.

For example, High, Default, Low can map to:

• the ratio of sensor nodes that are awake: 80%, 20%, 5%
• the delivered time-series data: 100%, 70%, 50%
• the interval of data collection: 1 second, 10 seconds, 60 seconds
• the frequency of data report: Urgent, Periodical, Available.

4.5 Event Detection

The current detection mechanism is based on an imperative algorithm, which is exe-
cuted once every time instant (Fig.9). The main loop selects subexpressions dynami-
cally and computes the current instance of a target composite event from the current
primitive event and stored past information. For example, E denotes the event expres-
sion to be detected, and subexpressions of E are indexed 1 to k in bottom-up order. The
operation result is Ek(= E). Each operation in the expression needs its own indexed
state variables (e.g., past events, time instant, and spatial information). For example,
Negation E = (A; B)−CT , an instance of (A; B) is an instance of (A; B)−C unless
invalidated by some instance of C. Thus, if the current instance of (A; B) is valid, the
instance of C with maximum start time can be the only one to invalidate. Conjunction
requires storage of the instance with maximum start time from each subexpression. If
the event expressions are known before the execution, a canned detection component
can be created for common use. The formal proof of the algorithm is out of scope of
this paper. We implemented a prototype based on a simple automata with support of
parameterized values and time constraints.

Event Stream Detector

Conjunction

Sequence

. . .

Fig. 9. Event Detection

Unified Semantics for Event Correlation over Time and Space 379

5 Temporal Ordering

Sensor networks are used to monitor real world phenomena and for such monitoring ap-
plications, physical time is crucial. In global computing environments, such sensor data
flow over heterogeneous networks and ordering events is difficult. We cannot assume
a global clock, or globally synchronized physical clocks, to correlate events. Moreover
when the store-and-forward paradigm is used for communication, message propagation
delay is unavoidable. Traditional message ordering based on a transport layer protocol is
not applicable.

Ts = Tx + (Px0+…Px4) + (Nx1+…Nx5)

Fig. 10. Lightweight Local Clock Propagation

Thus, we use timestamps embedded in events for correlation, which provide a real-
time mechanism. Temporal ordering of events is highly influenced by the event detec-
tion method, timestamping methods and the underlying time systems. In this section,
we describe our time system for timestamping primitive events. Temporal ordering is
based on interval semantics and is described precisely in the Appendix.

In many real world scenarios, wireless networks may be deployed with relay nodes
to the Internet and it is possible that relay nodes can connect to GPS. This makes us con-
sider the use of GPS in distributed systems, including wireless network environments.
However, GPS is not suitable for use in a large class of smart devices due to its high power
consumption and the required line of sight to satellites. But GPS may be the key for pro-
viding accurate time adjustment at certain nodes that are less resource constrained within
wireless ad hoc networks. We define two categories of network environment; where NTP
is deployed with GPS, such as the Internet domain, and where networks are isolated in
ad hoc mode without GPS or any other deterministic time synchronization mechanism.
For the first category, we use interval-based point timestamps for primitive events (see
section 3), where the interval low and high end values are computed as described in [16]
to allow for clock uncertainty and network delay. For timestamping composite events we
use interval-based semantics, unlike[16] where a new timestamp is taken on the detection
of a composite event. For the second category, several time synchronization mechanisms
have been proposed (see section 6). Among those, we investigated the one described in
[25]. The idea of the algorithm is not to synchronize the local computer clocks of the
devices but instead to generate timestamps from a local clock. When such locally gen-
erated timestamps are passed between devices, they are transformed to the local time
of the receiving device. As a result of the experiments in [29], we propose a simplified
protocol Lightweight Local Clock Propagation explained below.

380 E. Yoneki and J. Bacon

Thus our proposal is a coordinated approach with and without the use of GPS. We use
interval-based timestamps throughout,with interval-based point timestamps for primitive
events and interval-based semantics for composite events. Sensor events could be aggre-
gated at gateway nodes with transformed timestamps and passed towards a subscriber
node in the Internet environment, where GPS-based time synchronization is deployed.

Lightweight Local Clock Propagation: is on-demand based timestamp synchroniza-
tion. Fig.1 shows the operation from source nodes X and Y to the sink node S. The
basic idea is that each node calculates its processing time using a local clock, and at
the sink node, the sum of the processing times is subtracted from the event arrival time
to estimate the occurrence time. Comparable timestamps are therefore created at sink
nodes instead of network-wide. This requires the following two assumptions:

• Network delay is negligible, where the node is close to the radio or network deploy-
ment is dense. Thus, O(nanoseconds) over a path to the sink of O(100s) meters..

• Clock drift is negligible, where the node carries an oscilloscope that guarantees less
than 10 ppm drift. One part per million (ppm) corresponds to 1 second in 11.5 days.

The detail of algorithms and experiments are out of the scope of this paper.

6 Related Work

Much composite event detection work has been done in active database research.
SAMOS [7] uses Petri nets, in which event occurrences are associated with a number
of parameter-value pairs. An early language for composite events follows the Event-
Condition-Action (ECA) model and resembles database query algebras with an expres-
sive syntax. Snoop [4] is an event specification language for active databases, which
informally defines event contexts. The transition from centralized to distributed sys-
tems led to the need to deal with time. [4] presents an event-based model for specifying
timing constraints to be monitored, and to process both asynchronous and synchronous
monitoring of real-time constraints. [18] proposes an approach that uses the occurrence
time of various event instances for time constraint specification. GEM [20] allows ad-
ditional conditions, including timing constraints, to combine with event operators for
composite event specification. In event-base middleware, publish/subscribe can provide
subscription to composite events instead of leaving it to the client to subscribe to and
correlate multiple primitive events. This reduces the communication within the system
and potentially gives a higher overall efficiency, which is addressed in [23]. Hayton et al.
[11], on composite events in the Cambridge Event Architecture [2], describe an object-
oriented system with an event algebra that is implemented by nested push-down FSA
to handle parameterized events. [12] provides time-restricted sequence and conjunction
and a construct to detect the ith occurrence of a given event.

Temporal message ordering has been an issue in traditional networks such as for
system monitoring and in distributed event systems. In existing systems, the semantics
of event order often depends on the application logic. Even the established Java Mes-
sage Service (JMS) only guarantees the event order within a session where a session is
a single-threaded context that handles message passing.

Unified Semantics for Event Correlation over Time and Space 381

For real-time support, a common solution in wired networks provides a virtual global
clock that bounds the value of the sum of precision and granularity within a few mil-
liseconds. The following approaches aim to support a real-time mechanism. The 2g-
Precedence model is enhanced for distributed event ordering and composite event de-
tection using 2g-precedence-based sequence and concurrency operators [26]. Events from
different sitescan only beordered if theyareat least two clock ticksapart.The2g-precedence
model is applicable for closed networks with interconnected servers. Network Time Pro-
tocol (NTP) is an Internet standard that supports the assignment of real-time timestamps
with given maximal errors. However, in open distributed environments, not all servers
are interconnected and event ordering based on NTP may lead to false event detection.
Interval-based time systems define event order based on intervals. In [16], timestamps of
events can be related to UTC (Universal Coordinated Time) with bounded accuracy, and
event timestamps are modeled using accuracy intervals. They use NTP that provides ref-
erence time injected by a GPS time server and, in addition, returns reliable error bounds.
In [23], the interval timestamp model introduced in [16] is adopted.

For wireless network environments, [24] presents a GPS based virtual global clock,
which is used for timestamping events, and deploys a similar concept to 2g-precedence.
Without the existence of GPS, there is no means of synchronizing the clocks of all
the nodes in a deterministic fashion with an upper bound independent of the message
propagation delay and system size. Logical time cannot be used to determine tempo-
ral ordering, because causal ordering of events in the real world must be maintained.
Thus, physical time has to be used, requiring clock synchronization. However, most of
the synchronization algorithms rely on partitioned networks. Post-facto synchronization
[6] is based on unsynchronized local clocks but limits synchronization to the transmit
range of the mobile nodes. In [25], they take a similar approach of unsynchronized
clocks.

7 Conclusions and Future Work

In this paper, we introduce a generic composite event semantics, which combines tradi-
tional event composition and the generic concept of data aggregation in wireless sensor
networks. The main focus is on supporting time and space-related issues such as tempo-
ral ordering, duplicate handling, and interval-based semantics, especially for wireless
network environments. Our approach includes definition of precise and complex tem-
poral relationships among correlated events using interval-based semantics. Our event
correlation semantics supports a new paradigm coming from the recent evolution of
ubiquitous computing with a rapid increase of event monitoring capability by wireless
devices, requiring more sophisticated event correlation over time and space. Work is
ongoing on high level language definition and the transformation of event algebra, so
that complex expressions can be more efficiently implemented in resource constrained
devices over mobile ad hoc networks. We are working on a complete implementation,
including various timestamping environments and parallel/hierarchical composition. In-
tegration with WSN middleware such as TinyLIME is in progress.

382 E. Yoneki and J. Bacon

Acknowledgment. This research is funded by EPSRC (Engineering and Physical Sci-
ences Research Council) under grant GR/557303.

References

1. Allen, J. et al. Maintaining Knowledge about Temporal Intervals. CACM, 26(11), 1983.
2. Bacon, J. et al. Generic Support for Distributed Applications. IEEE Computer, 68-77, 2000.
3. Chaintresu, A. et al. Pocket Switched Networks: Real-world mobility and its consequences

for opportunistic forwarding. Technical Report, University of Cambridge, 617, 2005.
4. Chakravarthy, S. et al. Snoop: An expressive event specification language for active

databases. Data Knowledge Engineering, 14(1), 1996.
5. Curino, C. et al. TinyLIME: Bridging Mobile and Sensor Networks through Middleware.

Proc. PerCom, 2005.
6. Elson, J. et al. Wireless Sensor Networks: A New Regime for Time Synchronization. Work-

shop on Hot Topics in Networks (Hotnets-I), 2002.
7. Gatziu, S. et al. Detecting Composite Events in Active Database Systems Using Petri Nets.

Proc. RIDE-AIDS, 1994.
8. Geppert, A. et al. Event-based distributed workflow execution with EVE. Technical Report

Univ. Zurich, 1996.
9. Gomez, R. et al. Durative Events in Active Databases. Proc. ICEIS, 2004.

10. Gruber, B. et al. The architecture of the READY event notification service. Proc. ICDCS,
1999.

11. Hayton, R. et al. OASIS: An Open architecture for Secure Inter-working Services. PhD
thesis, Univ.of Cambridge, 1996.

12. Hinze, A. et al. A flexible parameter-dependent algebra for event notification services. Tech.
Report, FU Berlin, 2002.

13. Hoffmann-Wellenhof, B.H. et al. GPS: Theory and Practice. Springer, 1994.
14. Kopetz, H. et al. Real-time systems development: The programming model of MARS. Proc.

ISADS, 1993.
15. Lazaridis, I. et al. Capturing Sensor-Generated Time Series with Quality Guarantees. Proc.

ICDE., 2003.
16. Liebig, C. et al. Event Composition in Time-dependent Distributed Systems. Proc. 4th

CoopIS, 1999.
17. Liu, G. et al. Composite Events for Network Event Correlation. Proc. IFIP/IEEE Interna-

tional Symposium on Integrated Network Management, 1999.
18. Liu, G. et al. A Unified Approach for Specifying Timing Constraints and Composite Events

in Active Real-Time Database Systems. Proc. IReal-Time Technology and Applications Sym-
posium, 1998.

19. Madden, S. et al. TAG: A tiny aggregation service for ad-hoc sensor networks. Proc. of
Operating Systems Design and Implementation, 2002.

20. Mansouri-Samani, M. et al. GEM: A Generalized Event Monitoring Language for Dis-
tributed systems. IEE/IOP/BCS Distributed systems Engineering Journal, 4(2), 1997.

21. Ma, C. et al. COBEA: A CORBA-based event architecture. Proc. COOTS, 1998.
22. Muehl, G. et al. Filter similarities in content-based publish/subscribe systems. Proc. ARCD,

2002.
23. Pietzuch, P. Shand, B. and Bacon, J. Composite Event Detection as a Generic Middleware

Extension. IEEE Network Magazine, Special Issue on Middleware Technologies for Future
Communication Networks, 2004.

Unified Semantics for Event Correlation over Time and Space 383

24. Prakash, R. et al. Causality and the Spatial-Temporal Ordering in Mobile Systems. Mobile
Networks and Applications, 9(5):507-516, 2004.

25. Roemer, K. Time Synchronization in Ad Hoc Networks. ACM Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc01), 2001.

26. Schwiderski, S. Monitoring the Behavior of Distributed Systems. PhD thesis, University of
Cambridge, 1996.

27. Yoneki, E. and Bacon, J. Distributed Multicast Grouping for Publish/Subscribe over Mobile
Ad Hoc Networks. Proc. IEEE WCNC, 2005.

28. Yoneki, E. and Bacon, J. Determination of Time and Order for Event-Based Middleware.
Proc. PerCom-MP2P, 2005.

29. Yoneki, E. and Bacon, J. Event Order with Interval Timestamp in Event Correlation Service
over Wireless Ad Hoc Networks. Companion Proc. Middleware, 2004.

Appendix: Interval Semantics - Timestamp for Composite Events

Table 3. Interval Semantics - Timestamp for Composite Events

Relation Timestamps of Primitive Events Point Interval Interval/Point Point/Interval

1 A before B P-P: tp(A) < tp(B) � A �–A–� �–A–� � A
I-I: ti(A)h < ti(B)l � B �–B–� � B �—B–�

(A + B) I-P: ti(A)h < tp(B) �–� �——————� �————-� �————-�
(A | B) P-I: tp(A) < ti(B)l � �——� �——� �——�

(A ; B) �–� �——————� �————-� �————-�
2 A meets B * P-P: NA �—A–� �—–A—–� � A

I-I: ti(A)h = ti(B)l �—B—� � B �—–B—–�

(A + B) I-P: ti(A)h = tp(B) �——————� �————-� �————-�
(A | B) P-I: tp(A) = ti(B)l �——-� �———–� �

(A B) �——————� �————-� �————-�
(A ; B)0 �——————� �————-� �————-�

3 A overlaps B P-P: NA �—-A—-�
I-I: (ti(A)l < ti(B)l) ∧ (ti(A)h > ti(B)l) �—-B—�

(A + B) I-P: NA �——————�

(A | B) P-I: NA �———–�

(A B) �——————�

4 A finishes B P-P: NA �———A——–� �—–A——� � A
I-I: (ti(A)l < ti(B)l) ∧ (ti(A)h = ti(B)h) �—B—� � B �——B—–�

(A + B) I-P: ti(A)h = tp(B) �——————� �————-� �————-�
(A | B) P-I: tp(A) = ti(B)h) �——————� �————-� �

(A B) �——————� �————-�
5 A includes B P-P: NA �——–A——–� �——A—–�

I-I: (ti(A)l < ti(B)l) ∧ (ti(A)h > ti(B)h) �–B–� � B
(A + B) I-P: (ti(A)l < tp(B)) ∧ (ti(A)h > tp(B)) �——————� �————-�
(A | B) P-I: NA �——————� �————-�
(A B) �——————� �————-�

6 A starts B P-P: NA �—A—� �—–A—–� � A
I-I: (ti(A)l = ti(B)l) ∧ (ti(A)h < ti(B)h) �———B——–� � B �—–B——�

(A + B) I-P: ti(A)l = tp(B) �——————� �————-� �————-�
(A | B) P-I: tp(A) = ti(B)l �———� �————-� �

(A B) �——————� �————-�
7 A equals B P-P: tp(A) = tp(B) � A �———A——-�

I-I: (ti(A)l = ti(B)l) ∧ (ti(A)h = ti(B)h) � B �———B——-�
(A + B) I-P: NA � �——————�

(A | B) P-I: NA � �——————�

(A || B) � �——————�

384 E. Yoneki and J. Bacon

�—� depicts the timestamp for the composite events
* A meets B where t(A)h and t(B)l share the same time unit

t(A): timestamp of an event instance A
tp(A): Point-based timestamp
ti(A)h

l : Interval-based timestamp from event composition
tpi(A)h

l : Point-interval-based timestamp
(compared same as point-based timestamp but using interval

comparison)

P-P: Between Point-based and Point-based timestamps
I-I: Between Interval-based and Interval-based timestamps
I-P: Between Interval-based and Point-based timestamps
P-I: Between Point-based and Interval-based timestamps

Real-time Period T :

[t(A)l, t(A)h]−[t(B)l, t(B)h] < T=

⎧⎨⎩
Y ES : max(t(B)h, t(A)h) − min(t(B)l, t(A)l) ≤ T (1 − ρ

NO : max(t(B)l, t(A)l) − min(t(B)h, t(A)h) < T (1 + ρ
MAY BE : otherwise

where ρ is maximum clock skew.

Semantic-Based Matching and Personalization in
FWEB, a Publish/Subscribe-Based

Web Infrastructure

Simon Courtenage and Steven Williams

University of Westminster,
115 New Cavendish Street, London, United Kingdom

{courtes, williast}@wmin.ac.uk

Abstract. The web is a vast graph built of hundreds of millions of web
pages and over a billion links. Directly or indirectly, each of these links
has been written by hand, and, despite the amount of duplication among
links, is the result of an enormous effort by web authors.
One has to ask if it is possible that some of this labour can be automated.
That is, can we automate some of the effort required to create and main-
tain links between pages? In recent work, we described FWEB, a system
capable of automating link creation using publish/subscribe communi-
cation among a peer-to-peer network of web servers. This allowed web
servers to match information about link requirements and page content
in circumstances where we specify an anchor in terms of what content
we want to link to, rather than a specific URL. When such a match is
successful, a link between the pages is automatically created.
However, this system relied on simple keyword-based descriptions, and
has several drawbacks, verified by experiment. In this paper, we show
how the use of shared ontologies can improve the process of matching
the content requirements for links and the descriptions of web pages. We
report on our experience of using FWEB and, in addition, show how the
capabilities of the FWEB architecture can be extended to include link
personalization and explicit backlinks.

1 Introduction

The web is a vast repository of hypertext documents and other resources, con-
nected by hyperlinks. Pages on the web number in hundreds of millions, while the
number of hyperlinks is estimated at more than a billion [11]. While the content
of some web pages may be generated automatically, each hyperlink is essentially
hand-written (either directly into the page or stored in a database from which a
page is generated). The structure of the web, therefore, is testament to a truly
enormous effort by web page authors.

Creating and maintaining relevant and appropriate hyperlinks requires some
effort on the part of the page author, particularly if the hyperlink is to add
some value to the page being written. When web page authors are writing or

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 385–401, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

386 S. Courtenage and S. Williams

editing web documents, they insert links to other web pages that are known to
them and which appear to offer content that is relevant to part of the page they
are writing/editing. The part of this process that is problematic is how these
other pages become known to the web page author. It may be that the author
is also the author of these other pages, or that they are part of the same web
site (for example, as in intra-website navigation bars). There is also the case
where the author wishes to clarify some point in their web document and wishes
to locate information elsewhere on the web that will provide that clarification.
How, in this case, does the author locate a relevant page? There seem to be two
possibilities: (i) they already know of its existence from their own web surfing
experience, or (ii) they find it through a search engine. What is common to both
of these possibilities is that

– the page to link to must already exist, in order for the URL to be written
into the referring page,

– if there is a choice of pages to link to, only one can be chosen (although
there is the possibility of repeating the anchor with a different URL, this
effectively replicates the problem)

In [3], we examined whether the process of building the web can be auto-
mated under certain conditions. In other words, can the creation of links be-
tween pages be performed automatically? One of the benefits of being able to
automate this process is that in fast-moving and incomplete spheres of knowl-
edge, manually maintaining an up-to-date set of hyperlinks to new and con-
stantly changing information is time-consuming and costly. We showed that
this can be done provided that, in place of actual URLs, we specify a hy-
perlink in terms of what kind of content we want to link to and then use
a publish/subscribe form of communication to match up what we are inter-
ested in with what kind of content a page offers. To demonstrate this concept,
we described an experimental web architecture, called FWEB, in which web
servers were linked in a peer-to-peer network with publish/subscribe communi-
cation to exchange and match subscriptions for links and publications of page
summaries.

However, the FWEB architecture in [3] has been found to have certain limi-
tations. While the basic infrastructure allowed hyperlinks to be established auto-
matically using the publish/subscribe mode of communication, it relied on simple
free-form keywords, which, we have found in practice, produce few meaningful
matches between pages.

In this paper, we report on how this problem has been addressed in the latest
version of FWEB. We show how the use of the taxonomic elements of user-selected
ontologies can improve the matching process. This allows the page author to de-
scribe the content of a link or the summary of a page using terms from a relevant
ontology, and includes simple matching against the hierarchy of terms in the ontol-
ogy to resolve undefined references. The benefit of this work is to resolve many of
the problems in the matching of subscriptions for links and publications of page
data, whilst introducing a more powerful and expressive means of doing so. In
addition, we describe extensions to the basic publish/subscribe protocol used to

Semantic-Based Matching and Personalization in FWEB 387

automatically find hyperlinks, to allow users to personalize their view of the web
and to create explicit bi-directional links between pages that allow users to navi-
gate forwards and backwards across hyperlinks.

The structure of the rest of this paper is as follows: in Sections 2 and 3, we re-
view publish/subscribe communication and the FWEB infrastructure presented
in [3]; in Section 4, we explain the problem of matching subscriptions and pub-
lications in FWEB and present a solution based on ontologies; in Section 5, we
describe how FWEB has been extended to allow users to personalize their view
of the web graph and to allow bi-directional navigation of hyperlinks. Finally,
Section 6 presents related work and Section 7 presents conclusions and areas of
further work.

2 Publish/Subscribe Communication

Publish/Subscribe systems [7] form an important communications paradigm in
distributed systems, one in which servers (or producers of messages) are decou-
pled from clients (or consumers) by the network. Instead of clients contacting
servers directly to request services or information, clients register a subscription
with the network to receive messages satisfying certain criteria. Servers publish
information onto the network, without knowing who will receive it, and the net-
work undertakes to route messages to the appropriate clients based on the set
of subscriptions currently in effect.

Within the publish/subscribe paradigm, there are many different types of
systems based on how a subscriber makes a subscription. Traditional publish/
subscribe systems create channels, groups or topics, sometimes hierarchial, un-
der which messages may be classified. In this case, a subscription is simply
the identity of the channel, group, or topic that a user wants to receive mes-
sages from. Once subscribed, the user or subscribe receives all messages that
are published under that channel, group or topic. Recently, another approach
to publish/subscribe has been developed that allows subscriber to specify their
interests in terms of the kind of message content they want to receive: this is
known as content-based routing.

The advantage of combining content-based routing and publish/subscribe,
to create content-based publish/subscribe [2] [1] [13], over more conventional sys-
tems is the far greater flexibility that is permitted in creating subscriptions.
Subscribers are in effect allowed to create their own message groupings rather
than simply sign up to predefined ones. A subscriber can, for example, request
to receive all messages of a certain type, such as StockQuote messages (per-
haps from a particular publisher), where the company name in the StockQuote
message is ”IBM”. When the subscription has been registered with the network
(typically a network of servers overlaying a TCP/IP-based network), the network
undertakes to route to the subscriber all messages of that type whose content
satisfies the subscriber’s criteria, typically using an overlay network of brokers,
servers whose role is to match up subscriptions with publications.

388 S. Courtenage and S. Williams

3 FWEB Infrastructure

In [3], we proposed a new web infrastructure, called FWEB, that allows page
authors to specify hyperlinks, not in terms of specific URLs, but in terms of the
content of the pages to be linked to. The aim of FWEB is to allow automatic
creation of hyperlinks as and when matching content becomes available. In areas
where knowledge may be incomplete and expanding, the process of manually
locating new or updated pages that are relevant to be the target of hyperlinks
is an expensive and time-consuming process. The benefit of FWEB is to reduce
the cost of this process by automating it.

In FWEB, therefore, we indicate what content we want to link to, rather than
what URL. Through the use of new tags for FWEB, a web document author can
indicate where new links should be inserted into a document as and when new
and relevant content is found by using a <LINKTO KEY="..."> ... </LINKTO>
tag, rather than an HTML anchor tag. The <LINKTO> tag is used around text
which the author would like to act as a hyperlink to other documents (that
may or may not exist in the web graph when the document is created). The
KEY attribute of the tag contains those keywords to be used in finding matching
content on other pages. For example

<HTML> <HEAD>
<TITLE>Web Servers</TITLE>
<SUMMARY> Web servers </SUMMARY>
</HEAD>
<BODY>
<H1> The role of web servers </H1>
The role of an
<LINKTO KEY="web servers"> HTTP-enabled web server </LINKTO>
is to respond to
<LINKTO KEY="HTTP">HTTP (Hypertext Transfer Protocol) </LINKTO>
requests.
<!-- rest of page -->
</BODY> </HTML>

We also include a new SUMMARY tag, to be included in the header of a
page and which acts as an aid to matching page content to link requirements.
The SUMMARY tag is similar to the use of the existing HTML <META> tag,
which has been used in the past to advertise a page’s content to search engines.
We have defined a separate tag, rather than reuse <META>, in order to avoid
confusion and also to allow future extension of use.

The syntax of the SUMMARY tag is:

<SUMMARY> keyword-list </SUMMARY>

and is placed between the <HEAD> and </HEAD> tags in an HTML document.

Semantic-Based Matching and Personalization in FWEB 389

For example,

<HTML> <HEAD>
<TITLE>CGI Programming Notes</TITLE>
<SUMMARY> CGI, Web Server, Protocol, HTTP
</SUMMARY>
</HEAD>
<BODY>
<!-- body of web page -->
</BODY> </HTML>

The problem faced by FWEB is how to connect a web page with a <LINKTO>
tag with a page with a <SUMMARY> tag when the keywords in the <LINKTO>
tag and the content of the <SUMMARY> tag agree. We solve this problem by
arranging FWEB servers as a broker network and employing the content-based
publish/subscribe paradigm.

The infrastructure for FWEB is a P2P network of brokers, for which is cur-
rently based on CHORD [5] [16]. CHORD is a popular distributed P2P service
with a single operation: node lookup based on Distributed Hash Tables (DHTs).
Given a particular hash key, the CHORD architecture allows fast and efficient
lookup of the P2P node associated with that particular key. Each FWEB server
participates in the P2P system, acting not only as a web server, therefore, but
also as a broker node in a content-based publish/subscribe system in order to
link pages together.

Placing a new web page in the document root of an FWEB server triggers
the server to parse the document and extract the content of any <SUMMARY> or
<LINKTO> tags (currently, the parsing of new or updated pages is implemented in
our prototype FWEB server using directory polling). If a <LINKTO> tag is found,
then its keywords are used to create subscriptions. Each keyword is hashed using
a hash function to locate the FWEB server in the CHORD-based P2P network
which will act as broker for the subscription. The located server is then contacted
with the details of the subscription (unhashed keyword and URL of the document

1

3

8

15

18

23

24

31
Subscription for
'cerebrovascular
disorders'

Fig. 1. Distributing subscriptions

390 S. Courtenage and S. Williams

1

3

8

15

18

23

24

31

Publication of
"cerebrovascular
disorders"

Publication of
"Hypoxia"

Fig. 2. Distributing subscriptions

1

3

8

15

18

23

24

31

Publication of
"cerebrovascular
disorders"

Forward matched
publication to subscriber

Fig. 3. Forwarding matched publication

containing the <LINKTO> tag). Similarly, the keywords in the page summary are
used to create publications, by hashing the keywords to locate the nodes in the
FWEB P2P network that the publications should be sent to.

For example, given a new web page containing the following <LINKTO> tag

<LINKTO KEY="cerebrovascular disorders"></LINKTO>

the keyword phrase is hashed to locate the node that should receive the sub-
scription for content that match this description. If a page is published with the
<SUMMARY> tag

<SUMMARY>cerebrovascular disorders, Hypoxia </SUMMARY>

then publications are created for the keyword content.

Semantic-Based Matching and Personalization in FWEB 391

1

3

8

15

18

23

24

31

Hyperlink

Fig. 4. Establishing hyperlink

When an FWEB server receives a subscription, it attempts to match the sub-
scription against the web pages that it knows have already published
summaries1.

Since both the page and the subscription are sent to a node on the basis of
hashing a keyword, then if they contain the same keyword, they will be sent to
the same node. If the match is successful, then details of the publication are sent
back to the FWEB server that made the subscription.

Using the example <LINKTO> and <SUMMARY> tags above, we show how sub-
scriptions and publications are matched to create hyperlinks. In Figure 1, the
placement of a new page under the FWEB server that is node 3 in the P2P
network creates a subscription for ”cerebrovascular disorders”. Hashing the key-
word phrase produces 31 as the id of the node acting as broker for the sub-
scription. Figure 2 shows a similar process on the FWEB server at node 18,
where a new page creates a publication based on the content of the <SUMMARY>
tag in the page. The FWEB server at node 31, when it receives the publica-
tion, matches against the subscription received earlier. Hence the publication is
forwarded to node 8, as in Figure 3. Finally, Figure 4 shows the establishment
of a hyperlink between the page with the <LINKTO> tag and the page with the
SUMMARY tag, once the publication is received by the node that originated the
subscription.

In the current FWEB, a hyperlink is only accepted if its summary contains
all the keyword phrases in a <LINKTO> tag (by collecting and collating the pub-
lications received). Effectively, therefore, the keywords in a <LINKTO> tag form
a conjunction which must be satisfied for a link to be created. This mimics the
basic structure of a query in a conventional search engine, and is intended to
help restrict the number of returned search results.

1 Because of this, FWEB is related to work on continuous querying in P2P systems,
for example, [10].

392 S. Courtenage and S. Williams

In the current development of FWEB, the hyperlink is established by cre-
ating a file (with a .url file extension) associated with the original HTML file
that stores the hyperlinks received for <LINKTO> tags. When the file is requested
by a browser, the web server parses the HTML document and the file of re-
ceived hyperlinks, replacing the <LINKTO> tags with hyperlink anchors. To do
this, the current web server implementation redirects on every request to a Java
Servlet that performs the parsing and replacement process, using a DHTML
drop-down menu to display the multi-valued hyperlinks. This ensures compat-
ibility with current web browsers. Figure 5 show a screenshot of a web page
sent by an FWEB server with multi-valued hyperlinks displayed using a drop-
down menu.

Fig. 5. Displaying a page with multi-valued hyperlinks

4 Semantic-Based Matching of Subscriptions and
Publications

In this section, we describe the use of ontologies in the descriptions of anchors
and page content and the implementation of semantic-based matching of sub-
scriptions and publications for related terms in an ontology.

4.1 Problems of Keyword-Based Matching

In the version of FWEB described in [3], subscriptions for, and publications
of, page content are made using free-form keywords, with no restriction on the
keywords that can be used. This is similar to the way in which queries are posed
to search engines, and suffers from many of the same problems.

For example, synonyms mean that the same content can be described using
different keywords. FWEB, however, uses syntactic equivalence (based on the
DHT-based implementation of the underlying P2P network), and coping with
synonyms is therefore difficult. One possible solution would be a dictionary of
available synonyms to be distributed among peers in the network to expand
subscriptions to include all possible synonyms of a keyword in the subscription.
However, maintaining the dictionary across a large number of peers would be
complex, requiring a central source for the dictionary updates. In addition, dif-
ferent knowledge domains may impose different meanings on the same term,
resulting in ambiguity if the knowledge domain is not specified.

Semantic-Based Matching and Personalization in FWEB 393

Another problem is the semantics of the keywords used. Consider, for ex-
ample, the term ”Heart Disease”. In the Unified Medical Language System
(UMLS) [9], for example, the UMLS considers that ”Myocardial Infarction”
’is-a’ ”Heart Disease” (where ”is-a” represents the parent-child containment re-
lationship in the UMLS ontology). If a page author wants to link from an anchor
on ”Heart Disease”, then a page with content on myocardial infarction is a suit-
able candidate according to the UMLS. In the current FWEB prototype, this
would require that the author of the page on myocardial infarction describe the
page using the phrase ”Heart Disease”, as well as ”Myocardial Infarction”, so
that FWEB can match the subscription for ”Heart Disease” against the same
publication. This is quite possible, but has its limitations, since it relies on the
author of the page on myocardial infarction describing the page in a way that
allows the match to succeed.

The free-form keyword approach works when it is clear which specific key-
words should be used, so that exact matching can be performed using the hashing
functions in the underlying P2P network. Unfortunately, this is unlikely to be
often the case, especially in such a distributed environment, where page authors
are essentially unknown to each other.

Relying on the keyword-only approach also does not allow the full expressive-
ness power of an ontology to be used. For example, ”coronary artery disease”
and ”heart value disease” are also forms of heart disease, related via the is-a
relationship, according to the UMLS. We might want to create a link from an
anchor on forms of heart disease, rather than heart disease in general. Using the
keyword approach, we would have to create subscriptions for each of the terms
that are related via the ”is-a” relationship to heart disease, in order to represent
the relationship.

4.2 Specifying Ontology-Based Subscriptions

To solve these problems with keyword-based matching, therefore, we introduce
the use of ontologies into the creation and matching of subscriptions and publica-
tions in FWEB. Not only will this remove any semantic ambiguities or confusion
about which term to use to describe a link or page, but will also allow us to
represent relations between terms, based on the hierarchial taxonomy between
terms in an ontology.

Consequently, we have extended the syntax of the <LINKTO> tag to include
ontological features. This allows the page author to describe the required content
of pages to be linked using terms from an ontology selected for that purpose by
the page author. The <LINKTO> tag also allows the author to identify the ontology
being used. This, in turn, has meant extending the communications infrastruc-
ture of FWEB to take advantage of these features in matching subscriptions
with publications. The new <LINKTO> syntax is

<LINKTO NS=".." KEY=".."> anchor text </LINKTO>

where the KEY attribute is a comma-separated list of subscription values in the
following format (where { ... } indicates an optional element):

394 S. Courtenage and S. Williams

{ {CHILD-TERM } : RELATIONSHIP : } PARENT-TERM }

where CHILD-TERM, PARENT-TERM and RELATIONSHIP are defined spe-
cific to an ontology. The only mandatory component of a subscription value is
PARENT-TERM; the specification of RELATIONSHIP and CHILD-TERM are
optional. An example of a subscription value is

Myocardial Infarction :is-a :Heart Disease

This example subscription is effectively the same as a subscription value for
”Myocardial Infarction” alone. However, we also allow the use of the special
placeholder term ’ ’ (underscore), which can match any term or relationship.
For example

:is-a :Heart Disease

will match against any term which is in an ”is-a” relationship with ”Heart Dis-
ease”, such that the term matching ’ ’ is the child term of the ”is-a” relationship.
This example subscription value will match all of ”coronary heart disease”, ”my-
ocardial infarction” and ”heart value diseases”. If we generalize the subscription
further to

: :Heart Disease

so that the relationship between the child and parent terms is also unspecified,
then we add the term ”Heart” to the list of child terms, since ”Heart” is the
child term in a ”location-of” relationship with ”Heart Diseases”.

The remaining attribute of <LINKTO>is the NS, or namespace, attribute, which
identifies the ontology to which the terms used in the KEY attribute belong. At
present, we assign unique identifiers to distinct ontologies and use these as the
values of the namespace attribute to allow us to specify which ontology is being
used in the definition of the subscription values.

The syntax of the <SUMMARY>tag is also amended, albeit only to include
the namespace attribute to identify the ontology to which the terms in the tag
belong. The new syntax is:

<SUMMARY NS=".."> keyword-list </SUMMARY>

Keywords included between the opening and closing tags should be terms in the
identified ontology.

One of the consequences of this approach is that subscriptions and publica-
tions will only match if both contain matching terms from the same ontology.
Use of the same ontology by a particular community should lead, therefore, to
the creation of a particular web subgraph for that community based on links
created through FWEB.

4.3 Implementing Semantic-Based Matching

Implementing semantic-based matching of subscriptions and publications relies
on the FWEB servers having access to the ontology in order to resolve the

Semantic-Based Matching and Personalization in FWEB 395

subscriptions. Given the example subscription : is-a : Heart Disease, an
FWEB server must expand the operator to all matching terms.

To implement semantic-based matching of subscriptions and publications,
little change needs to be made to the current FWEB architecture. When a page
containing a <LINKTO>tag is placed in the document repository of an FWEB
server, the server extracts the values of the NS (namespace) and KEY attributes.
It identifies the ontology, using the value of the namespace attribute, and matches
the subscription values from the KEY attribute against the ontology to resolve in-
stances of the operator. Each child term found by matching against the ontology
is then made a separate subscription request.

In our current development, we have used a set of web services to provide on-
tology support, rather than build the ontology and ontological support into each
FWEB server. As a general infrastructure, FWEB is meant to be ontology-
independent and to allow <LINKTO> tags to be defined using any available ontol-
ogy. Hence the use of web services to separate out and provide ontological support.
We do require, though, that FWEB servers are able to identify which web service
to contact using the value of namespace identifiers. In our current design, this takes
the form of a central registry web service. Although this does introduce a degree of
centralization into FWEB, it should be pointed out that the use of such centralized
web services only occurs at the point when new pages are added or existing pages
are updated under an FWEB server. Also, since the ontological support provided
by web services is not stateful, these services can be replicated in much the same
way that DNS services are replicated, thus relieving some of the load.

Figure 6 illustrates the process involved in creating subscriptions when a
new page is added to an FWEB server. This shows that adding semantic-based
matching inevitably increases network traffic overhead. Since there is no real-
time requirement in FWEB, we do not envisage that the extra network traffic
will affect the overall performance of an FWEB server, particularly if the rate of
addition of new pages and updates to existing pages is low. On the other hand,
we do not know how the accumulative overhead of network traffic will affect the
network as a whole. (This would require an extensive simulation study.)

In the current version of FWEB, we have used conjunction to match the free-
form keyword-based subscription values of a <LINKTO>tag with received publi-
cations. In other words, a page only becomes a link for a <LINKTO>tag, if the
keywords in its summary include all the keywords in the <LINKTO>tag. This is
necessary because of the multiple ways in which a particular topic of information
may be described. Using ontologies as a source for subscription values, however,
removes this source of ambiguity. Hence, for the semantic-based FWEB, we cur-
rently use disjunction when creating links. The content of a page’s summary tag
needs to contain only one of the subscription values of a <LINKTO>tag in order
for the link to be created. Hence if the <LINKTO>tag is

<LINKTO NS=".." KEY=" :is-a :Heart Disease"> Heart Diseases
</LINKTO>

and the summary tag of another web page is

<SUMMARY NS="..">Myocardial Infarction </SUMMARY>

396 S. Courtenage and S. Williams

FWEB Server

1. New page added
with <LINKTO> tag

Ontology
Registry

Ontology Web
Service

2. Search for
ontology
web service

3. URL of web
service

4. Resolve terms

5. Resolved
 terms

6. Dispatch
subscriptions

Fig. 6. Creating semantic-based subscriptions

a link will be created from the <LINKTO> tag to the page on myocardial infarction.
This is, however, based on the rather restrictive assumption that each page can
be described by just one ontological term.

5 Personalization and Backtracking in FWEB

In the current web, and in the current implementation of FWEB, there is only
one globally-shared view of the web graph. A hyperlink from one page to another
can be created without the permission of the author of the referred-to page, and
is visible to all. Any visitor to a page can see and follow the links to other pages
put in place by the page author.

FWEB, however, offers possibilities for personalization at group and indi-
vidual level, as well as possibilities for permission-based link creation. These
possibilities arise from the physical separation of the link values from the page
they are used in and from the subscription/publication matching process neces-
sary to create links.

5.1 Browser-Based Personalization

FWEB currently uses the HTTP protocol to send requested documents, includ-
ing documents containing <LINKTO> tags. As mentioned earlier, before these doc-
uments are sent, the FWEB server replaces occurrences of <LINKTO> tags with
matched URLs from a publications file associated with the document. When a
web browser receives the document, therefore, the URLs matching the content
of a <LINKTO> tag have been embedded in the HTML and the <LINKTO> tag
is removed.

In the latest design for FWEB, however, we are experimenting with browser
extensions that allow FWEB servers to send matched URLs separately from the
documents whose <LINKTO> tags they have matched. The browser extensions

Semantic-Based Matching and Personalization in FWEB 397

then perform the task of replacing the <LINKTO> tags with the URLs. The pub-
lications file of URLs is associated with the HTML document in the same way
that external Cascading Stylesheet files are associated with an HTML document,
using a header-located <LINK> tag referring to a URL for the relevant file. We
use a custom-defined value for the REL attribute of the <LINK> tag to designate
the file referred to as being a file of matched URLs. For example, the following
link tag

<LINK REL="URL-Publication" HREF="index.url">

is used to load URLs to replace <LINKTO>tags in the HTML document.
When the page is loaded and displayed, along with the data from the asso-

ciated publications file, the browser allows the user to right-click and mark a
link in an FWEB-produced multi-valued hyperlink as not needed. This results
in the addition of the URL to a list of ’excluded’ URLs (which are stored in a
local file). When the page is requested again, at some later time, the browser
remembers that the link has been marked not for redisplay and consequently it
is omitted from the rendered page.

5.2 Setting and Following Explicit Backlinks

A hyperlink is effectively created when a subscription successfully matches a
publication, particularly since, in the redesigned FWEB, we consider the dis-
junction of subscriptions. Therefore, as well as notifying the subscribing FWEB
server of the match by forwarding the publication data, we can also notify the
publishing FWEB server. This allows a document to keep track of pages that link
to it. We have designed a scheme that allows web pages under FWEB servers to
maintain a list of URLs of pages with <LINKTO> tags that include its own URL
in their associated URL files, and then to display the backlinks when loaded into
a standard browser.

6 Related Work

There has been a great deal of work in designing and developing content-based
publish/subscribe systems, for example, [2] [4] [8] [13] [15] [17], which have suc-
cessfully tackled many of the problems involved in routing a message from its
source to a client based solely on its content. Our work makes use of this re-
search in its use of a broker-style network to mediate between subscriptions and
publications, in a manner similar to Hermes [13]. However, content-based pub-
lish/subscribe systems, including Hermes, have mostly been used to implement
distributed event notification systems, which aim to detect events and send no-
tifications concerning events to interested parties as and when they arise. Event
notification systems do not typically maintain event histories or state. However,
FWEB requires that broker nodes keep track of past publications in order to cre-
ate hyperlinks to documents that already exist. Moreover, we do not currently
require filters in subscriptions more complex than simple equality.

398 S. Courtenage and S. Williams

Lewis et al [12] describe the use of a content-based publish/subscribe system
as part of a complete semantic-based information dissemination system, allow-
ing client browsers to make subscriptions to create information spaces, and then
receive notifications when new information becomes available. Our system dif-
fers from this work in that the role of publish/subscribe in our case is simply
to create ordinary hyperlinks between HTML-compliant web pages based on
matching content on the basis of communication between web servers, which is
a much simpler proposition. Moreover, our system is currently fully compatible
with the current web. FWEB servers are ordinary web servers with additional
functionality, and ordinary web browsers can (with a little added functionality)
view web pages from FWEB servers. The system described in [12], however, de-
pends heavily on Semantic Web markup and associated technologies, and would
require custom-written browser support.

In terms of P2P systems, Chord has been used before to implement pub-
lish/subscribe systems: for example, content-based publish/subscribe systems
using Chord is described in Triantafillou et al [19] and Terpstra et al [18]. The
primary goals of [18] are the robustness of the routing strategy for content-
based publish/subscribe and the implementation of a filtering strategy on top
of a DHT-based P2P system, neither of which are currently handled by FWEB
(FWEB’s current concept of filters is limited to simple keyword equality which
does not pose a problem in DHT-based P2P systems). In [19], the concern is
with how range predicates (more complex filters on content, such as less-than or
greater-than) can be implemented in DHT-based P2P systems such as CHORD
where the use of hashing to locate nodes makes support of filters other than
equality difficult.

P2P systems have also been used for semantic-based knowledge management.
For example, Ehrig et al [6] describe SWAP, a project to query distributed RDF
collections in a P2P network. In Schlosser et al [14], a CHORD-like P2P topology
is used to deploy a network of Semantic Web service providers and implement
an efficient search mechanism without the need for centralized registries such
as UDDI. The search mechanism in these works is a conventional P2P-based
message broadcast mechanism: a peer wishing to search for a resource broadcasts
a message to other peers and receives back responses from peers with matching
resources. FWEB has a different concept of search. The use of a content-based
publish/susbcribe mechanism means that there is no need to broadcast queries
among peers. Also, the results of a search are inherently shareable in FWEB,
since they lead to the creation of hyperlinks in a global hyperlinked document
repository that is separate from the P2P network. In [6] and [14], the search
results are for the client only.

7 Conclusion and Further Work

This paper has described the use of a P2P-based content-based publish/subscribe
system to augment the current web, automating the process of hyperlink cre-
ation. It allows web authors to specify what kind of pages they want to link

Semantic-Based Matching and Personalization in FWEB 399

to, rather than explicit URLs. The advantage of this approach is that links to
matching pages are automatically added, maintained and updated without in-
tervention from the web page author. This may suit knowledge domains where
information is incomplete and expanding.

We have experimented with a prototype FWEB system, using 4-5 FWEB
servers. The FWEB servers are written in Java and use JXTA to create the
CHORD P2P ring, while documents in the system use free-form keywords to
create subscriptions and publications. Standard browsers, such as IE, are used
to request documents and display the results. We have found, in this small set-
ting, that FWEB performs as we expected, and that hyperlinks are created for
<LINKTO> tags as and when documents are added to FWEB servers whose publi-
cations of summary content matches their subscriptions. However, we have not as
yet been able to test or simulate the behaviour of FWEB in a large-scale setting.
The impact of the role of FWEB servers as brokers in a P2P publish/subscribe
system on their performance as web servers needs to be investigated. If there is
any detrimental affect, then the two roles may need to be separated, as in, for
example, web servers and servlet engines.

There are a number of other areas of further work, which we describe briefly
below.

Subscription languages. The current subscription language used to create
subscription values for the KEY attribute of <LINKTO>tags is very basic. It doesn’t,
for example, allow a mix of complex conjunctive and disjunctive terms. As such,
it is less expressive than the conventional boolean terms used by standard search
engines. We plan to revisit this area of work to investigate how the expressiveness
of subscription values can be enhanced.

Page Authoring. The design of FWEB, as presented in this paper, means
that page authoring is more demanding. Adding <LINKTO>tags with correct and
correctly-formatted KEY attributes is more time-consuming, and requires web
page editors with built-in ontological support. Authors will need some guidance
concerning the meaning of subscription values, which should be provided by the
editing package.

Navigation. is more powerful than the current web, with the result, perhaps,
that it is easier to get lost. Consequently, more support is required to allow users
to make use of this expressiveness. For example, browser extensions to correctly
display multi-valued hyperlinks, rather than the current Java servlet/DHTML-
based ad-hoc solution currently employed. This would also make the display of
explicit backlinks possible.

Access-based URL permissioning. We plan to experiment with adding
access-based permissioning to the matching of subscriptions and publications
in FWEB. At present, a hyperlink is effectively created if a publication matches
a subscription, but it would be possible to make the notification of the success-
ful match contingent on the permission of the author of the page that made the

400 S. Courtenage and S. Williams

publication. We plan to experiment with different permissioning frameworks,
such as tokens, to see if this is feasible.

Link verification FWEB provides a means to deal with dead links (links to
pages that no longer exist), just as it provides a means of implementing hyperlink
permissioning. This would depend on an FWEB server being notified when a
page in its collection is deleted and publishing a delete notification onto the P2P
network. In general, there is a requirement for automatic link maintenance in
FWEB that is derived from the implementation of automatic link creation.

Acknowledgements

We gratefully acknowledge the support of the UK Engineering and Physical
Sciences Research Council (under EPSRC Grant GR/S01573/01) for this work.

References

1. A. Carzaniga, D. Rosenblum, and A. Wolf. Content-based addressing and routing:
A general model and its application, 2000.

2. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, Aug. 2001.

3. S. Courtenage and S. Williams. Automatic hyperlink creation using p2p and pub-
lish/subscribe. In Workshop on Peer-to-Peer and Agent Infrastructures for Knowl-
edge Management (PAIKM), Kaiserlautern, Germany, April 2005.

4. S. A. Courtenage. Specifying and detecting composite events in content-based
publish/subscribe systems. In 1st International Workshop on Discrete Event-Based
Systems, jun 2002.

5. F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica, and
H. Balakrishnan. Building peer-to-peer systems with Chord, a distributed lookup
service. In IEEE, editor, Eighth IEEE Workshop on Hot Topics in Operating
Systems (HotOS-VIII). May 20–23, 2001, Schloss Elmau, Germany, pages 81–
86, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 2001. IEEE
Computer Society Press.

6. M. Ehrig, P. Haase, F. van Harmelen, R. Siebes, S. Staab, H. Stuckenschmidt,
R. Studer, and C. Tempich. The swap data and metadata model for semantics-
based peer-to-peer systems. In First German Conference on Multiagent Technolo-
gies (MATES-2003), Sept. 2003.

7. P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of
publish/subscribe, 2001.

8. F. Fabret, F. Llirbat, J. Pereira, and D. Shasha. Efficient matching for
content-based publish/subscribe systems. Technical report, INRIA, 2000.
http://wwwcaravel.inria.fr/pereira/matching.ps.

9. B. Humphreys and D. Lindberg. The umls project: making the conceptual connec-
tion between users and the information they need. Bulletin of the Medical Library
Association, 81(2):170–177, 1993.

Semantic-Based Matching and Personalization in FWEB 401

10. S. Idreos, M. Koubarakis, and T. Tryfonopoulos. P2P-DIET: an extensible P2P
service that unifies ad-hoc and continuous querying in super-peer networks. In
G. Weikum, A. C. König, and S. Dessloch, editors, Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data (SIGMOD-04), pages
933–934, New York, June 13–18 2004. ACM Press.

11. J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. The
Web as a graph: Measurements, models and methods. Lecture Notes in Computer
Science, 1627:1–??, 1999.

12. D. Lewis, K. Feeney, K., T. Tiropanis, and S. Courtenage. An active, ontology-
driven network service for internet collaboration. In Workshop on Application
of Semantic Web Technologies to Web Communities (SWWC) at ECAI’04, Aug.
2004.

13. P. R. Pietzuch and J. M. Bacon. Hermes: A Distributed Event-Based Middleware
Architecture. In Proc. of the 1st Int. Workshop on Distributed Event-Based Systems
(DEBS’02), pages 611–618, Vienna, Austria, July 2002.

14. M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. A scalable and ontology-based
p2p infrastructure for semantic web services. In Second IEEE International Con-
ference on Peer-to-Peer Computing (P2P2002), 2002.

15. B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notifica-
tion service with quenching. In Proceedings of AUUUG’97, 1997.

16. I. Stoica, R. Morris, D. Karger, M. Kaashock, and H. Balakrishman. Chord: A
scalable peer-to-peer lookup protocol for internet applications. In Proceedings of
the ACM SIGCOMM, pages 149–160, Aug. 2001.

17. R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee, D. Stur-
man, and M. Ward. Gryphon: An information flow based approach to message
brokering, 1998.

18. W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann. A peer-
to-peer approach to content-based publish/subscribe. In Proceedings of the 2nd
international workshop on Distributed event-based systems, pages 1–8. ACM Press,
2003.

19. P. Triantafillou and I. Aekaterinidis. Content-based publish/subscribe over struc-
tured p2p networks. In 1st International Workshop on Discrete Event-Based Sys-
tems, May 2004.

A Cooperative Model for Wide Area Content
Delivery Applications

Rami Rashkovits and Avigdor Gal

Technion Israel Institute of Technology,
Technion City, Haifa 32000, Israel

ierami@tx.technion.ac.il, avigal@ie.technion.ac.il

Abstract. Content delivery is a major task in wide area environments,
such as the Web. Latency, the time elapses since the user sends the
request until the server’s response is accepted is a major concern in
many applications. Therefore, minimizing latency is an obvious target
of wide area environments and one of the more common solutions in
practice is the use of client-side caching. Collaborative caching is used
to further enhance content delivery, but unfortunately, it often fails to
provide significant improvements. In this work, we explore the limitations
of collaborative caching, analyze the existing literature and suggest a
cooperative model for which cache content sharing show more promise.
We propose a novel approach, based on the observation that clients can
specify their tolerance towards content obsolescence using a simple-to-
use method, and servers can supply content update patterns. The cache
use a cost model to determine which of the following three alternatives
is most promising: delivery of a local copy, delivery of a copy from a
cooperating cache, or delivery of a fresh copy from the origin server. Our
experiments reveal that using the proposed model, it becomes possible to
meet client needs with reduced latency. We also show the benefit of cache
cooperation in increasing hit ratios and thus reducing latency further.
Specifically, we show that cache collaboration is in particular useful to
users with high demands regarding both latency and consistency.

1 Introduction

Content delivery is one of the major tasks in wide area environments, such as
the Web. In such environments, clients request access to data located at remote
servers. These requests are being processed at the server side and content is then
delivered to the client. Latency, the time elapses since the user sends the request
until the server’s response is accepted, is a major concern in many applications.
The latency problem is exasperated whenever network behavior is unpredictable
or server processing time is considerable.

Minimizing latency is an obvious target of wide area environments and one
of the more common solutions in practice is the use of client-side caching. A
cache keeps copies of previously requested content and can respond to repeated
client requests by using a local copy rather than requesting it from the origin

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 402–419, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Cooperative Model for Wide Area Content Delivery Applications 403

server, thus minimizing latency. Clearly, cached copies can only serve a client
if the client deems them useful. In particular, stale copies are refreshed at the
origin server.

The use of collaborative caching to enhance content delivery is based on
the assumption that latency can be reduced if caches cooperate by exchanging
content. Typically, the latency involved in accessing ”near-by” caches is lower
than accessing the origin server, and therefore a cache should join a coalition
of caches, from which content can be downloaded. Although cache cooperation
seems promising, analysis of Web proxy traces reveals that in many cases, it fails
to provide significant improvements of hit ratio [19].

In this work, we aim at exploring the limitations of collaborative caching. We
suggest a cooperative model for which cache content sharing show more promise.
We explore recent developments in the research of replication management [3, 8],
where a model of client tolerance towards stale data has been proposed. We
propose a novel approach, based on this observation, in which clients can specify
their tolerance using a simple-to-use method. The cache use this model and an
update model at the server side to determine which of the following alternatives
is most promising: a local copy, a copy from a cooperating cache, or a fresh copy
from the origin server.

Throughout this work, we demonstrate the usefulness of our method for
reusing dynamic content in a Web environment, generated from databases using
templates. Dynamic content is created dynamically upon request, and may take
orders of magnitude longer than retrieving static objects due to heavy database
processing, and complex XML/HTML translations. For example, while high-
performance Web servers can typically deliver thousands of static files per sec-
ond, it is not uncommon for a script to consume over a second of CPU time
when generating a single dynamic page [5], and when the server is loaded,
users may experience very high latencies. While servers could greatly benefit
from client-side caching for dynamically generated content, caches do not store
dynamic content, and therefore cannot use it to respond efficiently to subse-
quent requests. We analyze this phenomenon and show that for a certain class
of dynamic content, caching is beneficial. Such a model can be also useful for
Content-Delivery-Networks (CDNs), in which cache cooperation can further re-
duce end-user latency [16].

We have built a simulation environment and tested our hypotheses. Our ex-
periments reveal that using the proposed model makes it possible to meet user
needs with reduced latency. We also show the benefit of cache cooperation reduc-
ing latency further. Specifically, we show that cache cooperation is particularly
useful to users with high demands towards latency and consistency.

The specific contributions of this paper are as followed:

1. We analyze the failure of current cache cooperation and propose the terms
under which such cooperation can become useful.

2. We present a decision making model for cooperative caching, in which a
cache determines the appropriate method of processing a request, given user
tolerance and content update models.

404 R. Rashkovits and A. Gal

3. We show by detailed simulation the usefulness of cooperation in reduc-
ing latency, while maintaining a reasonable level of freshness under various
settings.

The remainder of this paper is organized as follows. Section 2 provides back-
ground information and the formalism of our optimization problem. We next
present an analysis of cache collaboration and qualitative criterions for success-
ful cooperation (Section 3). Section 4 is devoted to presenting the user tolerance
model. The decision making model is presented in Section 5, followed by empiri-
cal analysis in Section 6. We conclude with a review of related work (Section 7),
and discussion of future work (Section 8).

2 Background

In this section we present a cache manager model, network characteristics, and
the cost of latency and obsolescence that serve as a basis to our model, de-
scribed in Section 4. We also introduce the formalism of our optimization prob-
lem. Throughout this section, we provide examples using the Web architecture
and the HTTP protocol, and illustrate the complexity of contemporary content
delivery using dynamic objects.

Web
Server

DB

Application
Server

client

Cache Manager url+post data url+post data

query data

objectobject

DB

DB
Cooperative

Cache Manager

query object / error

update

data

url+post data

objectupdate

data

storage

storage

url+post data

Web
Server

DB

Application
Server

client

Cache ManagerCache Manager url+post data url+post data

query data

objectobject

DB

DB
Cooperative

Cache Manager
Cooperative

Cache Manager

query object / error

update

data

url+post data

objectupdate

data

storage

storage

url+post data

Fig. 1. Cache Manager Model

2.1 Cache Manager Model

When a user submits a request for an object, the browser forwards the request
to a shared cache cache manager (see Fig. 1 for an illustration; the bottom left
part of the figure illustrates the use of collaborative caches, to be discussed in
Section 3). The cache manager searches for a valid object in its storage and
returns it if found. Otherwise, the request is forwarded to the Web server. Upon

A Cooperative Model for Wide Area Content Delivery Applications 405

request, the Web server directs an application server to generate the content
from one or more databases, and returns the constructed content to the cache
manager. The cache manager then forwards the received content to the client’s
browser, occasionally leaving a copy at its storage for future use. Cached objects
are stored with attributes like Last Modification and Time-To-Live (TTL), set
by the server, allowing the cache to decide upon copies validity.

2.2 Network Characteristics

When a cache handles a request, it dedicates a few tens of milliseconds to search for
the object in its storage, loads it to memory, and transmits it back to the requestor.
We refer to this time as Internal Processing Delay, and the latency involved with
it is inevitable. The precise amount of time required to download a complete ob-
ject from one cache to another depends on several factors including remote cache
load, object size, network bandwidth, round-trip-time, and network configuration
(e.g., congestion control in the TCP protocol). Caches typically preserve the con-
nection to the browser once opened, and response’s packets are immediately sent
through this connection, without waiting for the object to be completely down-
loaded. Therefore, the latency metric of interest is the download latency, which
refers to the time from the moment the cache receives a request from a client until
the first byte of the response returns. The download latency is the time needed to
either generate a new object or locate an existing one, added to the Round-Trip-
Time (RTT) between the two hosts involved. The download latency is not fixed
over time, and might be affected by server loads, and network congestion. It is also
worth noting that RTT between two hosts may change over time.

2.3 Latency, Obsolescence, and the Cache Optimization Problem

Web servers can attach a TTL value to Web objects, via HTTP directives such
as ’expires’, and ’max-age’. These directives provide the time up to which the
object is considered valid. When Web servers do not set TTL value, caches use
heuristics to decide when the next validation is required [14].

object staleness is defined as a binary term, where an object can either be
fresh or stale. In [8], it was replaced with the term object obsolescence, where the
object is gradually transformed from fresh to stale. During this process, objects
may serve clients although they are obsolescent. Following [8], we propose a novel
method for evaluating user tolerance towards object obsolescence in Section 4.

Updates of underlying data in many cases follow a systematic pattern [8, 15].
Discovering this pattern based on past behavior makes it possible to predict
future updates. In [8], for example, a model for update estimation was proposed
based on nonhomogeneous time-varying behavior (e.g., more intensive activity
during work hours, and less intensive activity after work). In our model we
assume that update pattern of underlying data is known, and we make use of this
knowledge to estimate object obsolescence. Based on [8], we define a combined
cost of latency and obsolescence of an object objecti as:

Ci = αikLi + (1− αik)Oi (1)

406 R. Rashkovits and A. Gal

where Li is the download latency of objecti, and Oi is its obsolescence. Ci is
the combined cost of latency and obsolescence, as evaluated by the cache for
userk. αik, 0 ≤ αik ≤ 1, stands for the ratio of importance userk relates to the
latency involved with downloading objecti. At the one extreme, userk may spec-
ify αik = 0, which is translated into a willingness to accept high latency. At the
other extreme, αik = 1 is translated into a preference for the smallest latency
possible. Other values of αik allow the cache to utilize different copies of objecti
according to the latency associated with them. More advanced models, such as
the one in WebPT [9] – where servers are categorized based on how noisy is the
download data is – can be adopted as well.

Given userk request for objecti and the availability of multiple copies of
objecti with varying obsolescence levels, the cache aims at minimizing Ci. We
term this problem the cache optimization problem. We assume that object re-
quests are independent, and therefore a global optimization problem (optimizing
a set of user requests over a period of time) is separable in object requests. This
assumption is reasonable, given existing cache architecture. We defer the discus-
sion of more complex settings, such as cache prefetching [17] to a future research.

In order to enable the cache to estimate Li and Oi, the server should coop-
erate by providing information regarding the state of the object, e.g., creation
timestamp of objecti (ti) and update rate of objecti (λi). Update pattern can
follow many distribution functions. Based on [6] we assume that Web objects
are modified according to a Poisson process.

Based on these parameters, a cache can estimate the likelihood of an update
to the underlying data as will be explained in Section 5.1. We also present in
Section 5 an explicit representation of Ci that lends itself well towards cache
cooperation and provides a model for solving the cache optimization prob-
lem using cache cooperation. First, however, we discuss cache cooperation in
more detail.

3 Cache Cooperation

A cache may request content from other caches rather than from the origin
server. There are two main conditions for such a cooperation to be useful. First,
downloading from a cache should results in significantly lower latency. For exam-
ple, dynamic content is stored at a cache as static information, which retrieval
is much faster than its generation at the server. The second condition is that
cooperating caches hold the necessary content to be delivered. Otherwise, such
cooperation is no longer a valid alternative. Somewhat surprisingly, there are
two extremes in which the second condition does not hold. The first, and more
obvious extreme, is where the cache clients do not share the same interests and
then the content in the caches will never overlap and cooperation becomes impos-
sible. At the other extreme, whenever clients share extremely similar interests,
caches tend to have similar content. In this scenario, a cache will not request
for anything it can find in its own cache. If it so happens that a specific con-
tent cannot be found in one cache, it is likely that other caches will not have it

A Cooperative Model for Wide Area Content Delivery Applications 407

either. Experimenting with collaborative caching has yielded little benefit due to
this extreme. As it turns out, the Zipf distribution of requests over the Web, in
which some pages are extremely popular, resulted in very similar content across
cooperating caches, rendering the cooperation useless [12].

To summarize, for cache cooperation to be productive, it should provide
a significant reduction in latency and the overlap in client interest should be
sufficiently large to allow exchange of content among caches, while still avoiding
the extreme in which the overlap among caches makes cooperation useless.

In this work we present a setting, in which cache cooperation is beneficial.
This setting involves rapid updates to content, which means that content, stored
at a cache, becomes stale rather rapidly. Dynamic content is a typical example
of rapidly changing content. Dynamic content is also costly to generate, and
therefore latency is increased when accessing the origin server.

Another component that affects our model is user tolerance towards content
obsolescence. The main observation here is that different users, while sharing
interests regarding content, may exhibit dissimilar interests regarding object
freshness. Therefore, while some prefer fresh objects even if latency is high,
others favor low latency even at the cost of retrieving obsolescent objects.

In the next sections we present a user tolerance model and a decision process
model for cache cooperation. We then provide empirical analysis to support our
hypothesis.

4 User Tolerance Model

We now present our model of user tolerance. According to this model, users
can quantify the importance they attach to reducing the latency inherent in the
retrieval of content, and their willingness to risk the use of an obsolescent object.
The first is modelled with αik, as discussed in Section 2.3. The second is modelled
with pik, 0 ≤ pik ≤ 1, which sets the threshold beyond which userk no longer
considers objecti sufficiently fresh as a function of the probability that it has
been modified. pik fine-tunes the level of content obsolescence userk is willing
to accept for objecti. The metaphor we use for pik is the risk one takes when
choosing to leave home without an umbrella. This decision balances the chance
of getting caught in the rain against the inconvenience of carrying an umbrella.
One may choose to avoid any risk of getting wet, while another may choose to
take an umbrella only if the odds of getting wet are pretty high. According to
this ”umbrella rule”, a user is likely to risk using a possibly stale object, and
enjoy the convenience of reduced latency, if the probability that an update has
already occurred at the origin site is less then a pre-defined threshold (pik) set
by the user. In other words, at the time the cache receives a request for objecti
from userk, if the probability that the object has been modified exceeds pik then
objecti is considered obsolescent by userk; otherwise, it is considered to be fresh.
The probability of modification depends on the time the object was generated,
and its update pattern, information that must be supplied by the server. The
”umbrella rule” is illustrated in Fig. 2.

408 R. Rashkovits and A. Gal

Generation of
objecti

Time

1.0

PIk

Freshness
Limit

objecti is considered stale by userk

distribution curve for expiration of objecti
F

Generation of
objecti

Time

1.0

PIk

Freshness
Limit

objecti is considered stale by userk

distribution curve for expiration of objecti
F

Fig. 2. User tolerance towards an object

Clearly, not all combinations of 〈α, p〉 make sense. For example, 〈0.0, 1.0〉
constitutes an odd decision, since α = 0.0 implies that the user will accept high
latency, while p = 1.0 implies that the user will always consider the cached object
to be fresh, a preference that would allow use of a cached copy to reduce latency.
〈1.0, 0.0〉 is equally unlikely. Still, our model permits any combination of 〈α, p〉.

The ability to predict the likelihood that an object has been modified is
needed to evaluate p. One such model was proposed in [8], in which updates in
an origin server can be modelled as nonhomogeneous Poisson model. The model
we propose in this work is independent of the specific update model. However,
having such a model is a prerequisite for specifying user tolerance. It is worth
noting that the update model is given in stochastic terms. Therefore, even if
the update model is accurate, its probabilistic nature means that individual
predictions can err. Therefore, whenever content consistency is critical, the level
of tolerance towards stale content is expected to drop substantially, entailing
frequent refreshes of the (possibly fresh) cached content. The decision made by
the cache takes into account the 〈αik, pik〉 values set by userk, the update rate
set by the server for objecti, as well as its estimated downloads latency and its
creation timestamp. The exact formula is detailed in Section 5.1.

5 The Decision Making Process

In our model we use many factors, including user preferences, object character-
istics, cache characteristics and environment. The symbols of these factors are
described in Table 1. We next present the decision making process of a cache,
when receiving a request for an object. Section 5.1 provides an explicit repre-
sentation of the cost function. The model is discussed in Section 5.2.

5.1 Cost of Latency and Obsolescence

We aim at minimizing the combined cost of latency and obsolescence. When-
ever a content request arrives at a cache, the cache has three alternatives it can

A Cooperative Model for Wide Area Content Delivery Applications 409

Table 1. Summary of symbols and their descriptions

Factor Description
λi update rate of objecti

ti generation timestamp of objecti

gi generation latency of objecti

ui popularity of objecti

αik latency tolerance of userk towards objecti

pik probability threshold of userk towards objecti obsolescence
RTT Round-Trip-Time between hosts
IPD Internal-Processing-Delay of a cache
r request inter-arrival-times
w the weight of the last download latency

follow; It can retrieve the content from its local cache, request the content from
a remote cache, or ask for a fresh copy from the origin server. The alternative
that minimizes the total cost is then chosen. The validity of the first two alter-
natives depends on the availability of the content in the caches. We assume that
accessing the remote server is always a valid alternative, ignoring possible down-
time of servers. Extending the analysis to handle failures is beyond the scope of
this paper.

The decision making process should compute the cost of each valid alterna-
tive. To do so, we now provide explicit instantiations of Eq. 1 for local cache,
remote cache, and origin server content delivery. Eq. 1, based on [8], provides a
generic form of a cost function, balancing latency and obsolescence. It does not
take into account the difference in scaling of Li and Oi. We therefore, modify it
to the form of Eq. 2, adding Fn as a normalizing factor. For example, if Li is
measured in seconds and Oi is measured in minutes, we set Fn to be 1/60.

Ci = αikLi + Fn(1 − αik)Oi (2)

Each time a request for objecti is sent by userk to a cache, the cache calculates
the cost of valid alternatives and makes use of the alternative that minimizes the
cost. In order to calculate the cost of each alternative, the cache must estimates
Li and Oi values. It is worth noting that both Li and Oi cannot be determined
deterministically. Li stochastic nature stems from the noisy network environment
and changing database loads, while Oi can only be accurately determined when ac-
cessing the server, something the cache attempts to avoid. Li can be estimated by
averaging the latency of previous downloads within a shifting window. Oi is much
harder to estimate, since it must consider both the time elapsed since the genera-
tion of the object and its update rate. High update rate leads to a high estimation
of Oi. It is important to note at this time that Oi is calculated as the time elapsed
from the moment the user believes the object is no longer fresh until the moment of
the request.The probability that objecti had alreadybeen modified when a request
arrives is calculated as P{x < tnow − ti}, where ti refers to the generation times-
tamp of objecti. As an example, assume that update inter-arrival times of objecti

410 R. Rashkovits and A. Gal

are distributed exponentially with average λi. Then, given pik, the estimated pe-
riod in which objecti is considered sufficiently fresh for userk is calculated as:

P{x < Δt} = 1− e−λi(Δt) = pik ⇒ Δt = − ln(1− pik)
λi

(3)

userk considers objecti to be consistent if the request reaches the cache within
[ti, ti + Δt]. During this interval, Oi is set to zero. After ti + Δt userk assumes
that an update has occurred, and Oi is calculated as the time that has elapsed
since ti + Δt. For example, if λi = 1/30, and objecti was generated five min-
utes before a request from userk arrives at the cache, then the odds that the
object has been modified are P{x < 5} ≈ 0.15. According to the umbrella rule
described earlier, if pik > 0.15, then Oi is considered zero; otherwise it is consid-
ered obsolescent.

Cost of the locally cached alternative. For a locally cached copy, denoted
objectli, Ll

i is taken to be zero as no latency is involved. Ol
i is calculated as the

time elapsed since tli + Δt as follows:

Ol
i = Max

(
0, (now − tli −

ln(1 − pik)
λi

)
)

(4)

Therefore, the cost of using the local object is given by:

Cl
i = (1− αik)Max

(
0, (now − tli −

ln(1− pik)
λi

)
)

(5)

For completeness sake, we assume that the Cl
i is set to infinity whenever this

alternative is not valid.

Cost of the origin server alternative. For the origin copy, denoted objectoi ,
Oo

i is taken to be zero, since a fresh object is evidently consistent. Lo
i is re-

calculated upon each download of objectoi , based on a shifting window of past
downloads, calculated as follows:

Lo
i = wLo

i + (1− w)go
i (6)

go
i is the download time of objecti origin copy, while w is used to tune the weights

the cache puts on the past downloads versus the last one. The cost of using the
origin object is given by:

Co
i = αikLo

i (7)

For completeness sake, we assume that the cost is set to infinity whenever this
alternative is not valid. Such case can happen if the origin server is down or the
object does not exist anymore.

Cost of the remote cache alternative. For the remote copy (located at some
collaborative cache), denoted objectri , both Lr

i and Or
i should be evaluated. Lr

i

is calculated as follows:
Lr

i = RTT + IPD (8)

A Cooperative Model for Wide Area Content Delivery Applications 411

RTT refers to the Round-Trip-Time between the caches, and IPD refers to
Internal-Processing-Delay inside a cache whenever a request is processed. As
RTT and IPD can change over time, each cache should measure and update
these values from time to time. Or

i is calculated as follows:

Or
i = Max

(
0, (now − tri −

ln(1− pik)
λi

)
)

(9)

Therefore, the cost of using the remote object is given by:

Cr
i = αik(IPD + RTT) + (1− αik)Max

(
0, (now − tri −

ln(1− pik)
λi

)
)

(10)

For completeness sake, we assume that the cost is set to infinity whenever this
alternative is not valid. Clearly, if multiple remote copies are available, the cost
should be evaluated for each copy separately.

After calculating the cost of all available copies, the cache then chooses the
copy with the lowest cost to fulfil the request at hand.

5.2 Discussion

Equipped with the user tolerance model presented in Section 5.1, a cache can
choose among various copies of a requested object, according to user preferences
and cost estimations. Assuming each cached object has an update pattern, it is
easy to estimate the probability of its updates, and estimate its validity against
user preferences. The cache considers user preferences regarding latency (αik),
and user tolerance towards obsolescence (pik), when choosing among the avail-
able alternatives. High values of pik indicate high tolerance towards obsolescence,
thus encouraging use of a cached copy.

Existing decision making processes treat all users equally, not allowing them
to express any preferences, and use a cached object as long as its TTL has not
expired. Only when the object has expired the cache may request an object from
a collaborative cache, or from the origin server. Thus, users may suffer from stale
content although they expect fresh information (since TTL has not expired yet),
and they cannot benefit from fresher content that resides at a neighboring cache
as long as TTL is valid. On the other hand, users may suffer from high latency
if TTL is short. With the proposed decision making process, the cache has more
flexibility and it can fine-tune the decision for each user according to her needs.

We believe that cache cooperation in the Web environment did not yet fulfill
its potential. With frequent updates of objects and diverse preferences of users
towards obsolescence and latency the cooperation can be more effective, and the
cache performances will be significantly improved.

A final comment regarding the cost of cooperation is warranted at this time.
When using a cooperation schema, one must be aware of the overhead involved,
and consider it while estimating its benefits. For example, in the directory-based
implementations, caches share information regarding their storage content. A
notification about changes occurring at each cache is sent to all collaborators,

412 R. Rashkovits and A. Gal

and might burden the cache with many such notifications, not to mention the
overhead of managing a huge directory. However, in the directory-based cooper-
ation case the cost of directory management can be amortized over all requests,
and in this work we assume that the cost of the cooperation mechanism is ac-
ceptable by the cooperating caches. For the sake of simplicity we ignore these
overhead costs, and concentrate on the potential benefits of cache cooperation
regardless of specific implementation. Overhead considerations are left open for
future work.

6 Empirical Analysis

We have built a simulation environment and produced synthetic data to examine
the impact of different caching strategies on the usefulness of cache cooperation
and its impact on cache performance (latency) and content obsolescence. We
have examined the effect of numerous parameters on cache performance, includ-
ing number of cooperating caches, user preferences, and object update rate.

Caching strategies are detailed in Section 6.1. The simulation environment
and its parameters are described in Section 6.2. Finally, we present the evaluation
metrics (Section 6.3), the experimental results (Section 6.4) and an empirical
analysis of our results (Section 6.5).

6.1 Caching Strategies

We examined two strategy categories, namely TTL-based and Profile-based. As
for the TTL-based strategy we implemented two variations:

Flat TTL: Servers set a flat TTL for all objects, within which the object is
considered fresh, and is used to serve requests. We examined various TTL
values ranging from 0− 60 minutes.

MT-TTL: Server sets individual TTL for each object based on the mean-time
(MT) between successive updates. We examined various TTL values ranging
from 25− 100% of the mean-time between successive updates. It is worth
noting that MT-TTL is an example of a strategy that uses history (unlike
TTL that uses only recent modification time), yet does not consider user
preferences.

The Profile-based strategy is based on the decision making process of Section 5.
We have used the following three preference profiles (to all objects):

High-Recency: 〈α = 0.05, p = 0.05〉. This profile sets 5% importance to low
latency, and a 0.5 threshold probability for freshness.

Low-Latency: 〈α = 0.95, p = 0.95〉. This profile sets 95% importance to low
latency, and a 0.95 threshold probability for freshness.

Random: This profile sets random α and p values, set independently
between 0− 1.

A Cooperative Model for Wide Area Content Delivery Applications 413

6.2 Simulation Settings

Update rates of the objects (λi), and request load on the caches (r) were modelled
using exponential distribution. While r was set to 125 ms for all the caches, λi

was randomly chosen from the range 1− 30 minutes, for each object. Object
download time was also randomly chosen from the range 0.5− 5 seconds, and
used as fixed download time. Object popularity (ui), was modelled with Zipf-like
distribution, where the popularity of the i-th most popular object is proportional
to 1/iβ, for some constant β between 0 and 1. Analysis performed on a few
cache traces reported β between 0.64− 0.83 [2], Therefore, we set β = 0.75. We
also examined our model with objects that exhibit identical popularity across
all caches, and with dissimilar popularity as well. It is important to note that
the values assigned to ui, λi, and gi were set independently. As for the weight
of the last download we used w = 0.3 to emphasize the relevance of near-past
downloads.

RTT between the caches, and between cache and server were set to fixed values
of 50ms and 250ms, respectively. We also set IPD to be fixed 20ms for all caches.

6.3 Metrics

We demonstrate our model on a collaboration schema assuming all caches share
information about their objects. To perform the experiments, we implemented
a simulation environment in Java. The code mimics the behavior of a cache,
extending its capability to handle dynamic objects. We report on the following
cache metrics:

Average latency. The average duration between receipt of a request by the
local cache and the time it receives the first byte of the response.

Hit ratio. The ratio of requests served by the local cache from its storage, or
from a remote collaborative cache.

Stale delivery ratio. The ratio of requests that were served stale from the
cache. Note that this parameter measures the actual staleness of an object,
and is independent of user tolerance towards obsolescence.

6.4 Experimental Results

Out of the 10 hours of the simulation, the first two hours were dedicated to warm
up the caches. The server offers 10,000 objects, and each cache handles approx-
imately 230,000 requests during the simulation. To avoid biases, we assumed
unlimited cache capacity.

We first examine how a single cache performs, depending on the strategy
chosen. The simulation results are summarized in Table 2.

Clearly, the use of the Flat-TTL strategy with zero TTL led to the worst
latency, since caching is not possible, and all requests are served by the origin
server. With this strategy, users get fresh content, but the latency is high. Users
which prefer small low latency, and willing to accept potential content obsoles-
cence, have no choice but to wait for the origin server response. As we amplify

414 R. Rashkovits and A. Gal

Table 2. Cache performances with a single cache

Strategy Value Average Latency Hit Ratio Stale Ratio
Flat TTL 1 minutes 2.37 0.21 0.02

10 minutes 1.49 0.51 0.18
60 minutes 0.65 0.79 0.61

MT TTL 0.25MT 1.98 0.34 0.04
0.5 MT 1.69 0.44 0.1
1 MT 1.38 0.54 0.2

Profile High-Recency 2.41 0.19 0.01
Random 1.28 0.56 0.22

Low-Latency 0.46 0.84 0.71

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

Group Size

La
te

nc
y

(s
ec

on
ds

)

Flat TTL MT TTL High-recency

Random Low -latency

(a) Latency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

Group Size

 S
ta

le
 D

el
iv

er
y

R
at

io

Flat TTL MT TTL High-recency

Random Low -latency

(b) Staleness

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10

Group Size

 R
em

o
te

 H
it

 R
at

io

Flat TTL MT TTL High-recency

Random Low -latency

(c) Remote hit-ratio

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Group Size

 H
it

 R
at

io
 (

co
m

b
in

ed
)

Flat TTL MT TTL High-recency

Random Low -latency

(d) Total hit-ratio

Fig. 3. Cooperation and its impact on cache performances

the TTL value, the hit ratio grows and the latency is reduced accordingly, as
shown in Table 2. Yet, the ratio of stale services increases proportionally.

When MT-TTL is used, TTL is set to individual objects, based on their
update rate, thus results are expected to exhibit better performances than flat

A Cooperative Model for Wide Area Content Delivery Applications 415

TTL, which treats all objects uniformly, regardless of their update rate. As shown
in Table 2, the MT-TTL with 100% mean-time exhibits higher hit ratio then
flat TTL with 10 or even 30 minutes and accordingly reduced latency. Yet, since
the mean-time is merely an estimation, the ratio of stale services is high. When
we tune the TTL to be 50% or 25% of the mean-time, we indeed achieve lower
rates of stale content ratio, but the hit ratio drops, and the latency increases.

The Profile strategy with High-Recency preferences achieved better latency
then those achieved in Flat-TTL with zero value and similar to Flat-TTL with
1 minute. Although users preferred up-to-date content, the cache served almost
fifth of the requests from its local storage, of which only 1% were stale. With
the Low-Latency preferences we achieved the most dramatic improvement in the
latency metric, with 84% hit ratio. As expected, the stale ratio increased in the
Low-Latency case to 71%. The increased proportion of stale delivery as the profile
become more tolerant to obsolescence stems from the increasing importance users
place on low latency. Results in the Random case fell in between the other profile
strategies, and resembled the MT-TTL strategy results achieved for 1MT. Yet,
in the random case, as opposed to MT-TTL, users can optimize their choice.

After exploring the behavior of a single cache, we repeated the simulation
with identical settings, except that now we configured varying number of coop-
erating caches and measured how cooperation assists caches with increased hit
ratios, and reduced latency. The load on each cache remains the same. For the
sake of brevity we present in Fig. 3 only the results attained for Flat-TTL with
1 minute, MT-TTL with 1MT, and the profiles strategies.

Figure 3(a) presents average latency, as affected by the number of cooper-
ating caches. It reveals that all strategies benefit from cooperation significantly.
Figure 3(b) presents the rate of stale deliveries and it shows that all the Profile-
based strategies keep the stale delivery rate stabilized while TTL strategies suffer
from higher rates of stale deliveries as the group size increases.

Figure 3(b) also shows that communities that prefer High-Recency cuts ap-
proximately one third of the latency due to cooperation almost without loosing
freshness, while the common strategy of zero TTL does not benefit from coop-
eration at all. Communities preferring low latency also benefit from cooperation
while ratio of stale deliveries remains steady. With TTL-based strategies co-
operation increases the ratio of stale deliveries, probably because a rise in the
number of cooperative caches makes available more dissimilar copies of each
object that become stale but are considered fresh enough for users. With more
requests served by these cashes, fewer are forwarded to the server, and so fewer
fresh objects are served.

Figure 3(c) reveals that cooperation contributes a higher proportion of re-
mote hits as group size increases. Figure 3(d) presents the combined local and
remote hits. It can be observed that cooperation contributes to higher hit ratios,
thus smaller latency. It can also evident that the marginal degree of improvement
falls as the group grows in size.

Another set of tests were designed to explore how different update rates affect
the remote hits and the benefit of cooperation. We tested all strategies, but for

416 R. Rashkovits and A. Gal

0

0.1

0.2

0.3

0.4

5 10 15 20 25 30
Modification-rate (Minutes)

R
em

o
te

 H
it

 R
at

io

2 caches 4 caches 6 caches
8 caches 10 caches

(a) High-Recency

0

0.1

0.2

0.3

0.4

5 10 15 20 25 30
Modification-rate (Minutes)

R
em

o
te

 H
it

 R
at

io

2 caches 4 caches 6 caches
8 caches 10 caches

(b) Low-Recency

Fig. 4. Cooperation and update rates

the sake of clarity we present here only the results attained for low latency and
high recency. We run the simulation with varying number of cooperating caches
and with varying update rates.

Figure 4 presents the remote hit ratios attained for High-Recency and Low-
Latency profiles. Figure 4(a) reveals that cooperation become more useful as the
mean time between successive updates grows. Somewhat surprisingly, Fig. 4(b)
reveals that with low-recency profile, as the mean-time between updates grows,
cooperation decreases. This may be attributed to the use of a locally cached
object. In the High-Recency case an object becomes costly rather quickly, and
cooperating cache copies assist in reducing latency. As the average time between
updates grows, the chances to find a fresher object in the cooperating caches
grows, and thus cooperation increases. With Low-Latency profile, a cache can use
the local copy many times, but when it becomes too obsolescent, most chances
are that neighboring copies are identical to the costly copy, since all caches serve
communities with low latency, which also used their local copy many times, thus
cooperation become less useful. As for the other strategies, the Flat-TTL is not
affected by the update pattern, since its TTL value is set arbitrarily, but the MT-
TTL and the Random profile tend to behave like Low-Latency, with usefulness
of cooperation dropping much faster than that of High-Recency.

6.5 Discussion

The profile strategy is empirically proven to be advantageous over the TTL-based
strategies in all respects. Caches can adapt their performance to the needs of
their users; and with a user preference and object evolution model, decisions
about which copy of the object to serve are more flexible than with other strate-
gies. Clients requiring fresh content will get a copy from the origin server, re-
gardless of the latency involved. Clients requiring a fast response may get a
locally cached copy, however obsolescent it may be. Adapting cache decisions to
user preferences and object update rates makes it possible to increase the num-
ber of objects served by local cached copy or a neighboring copy, and thereby

A Cooperative Model for Wide Area Content Delivery Applications 417

reduce average latency, while still satisfying users’ obsolescence specifications.
Another outcome of the simulation is that the Profile strategy with homogenous
preferences benefits collaboration with other caches while keeping ratio of stale
deliveries stabilized, and when high recency is required the cache can provide it
fresh and faster then TTL-based strategies.

When objects gets updated often at the server, cooperation is even more
useful for communities with low latency preferences, while less frequent updates
increase cooperation usefulness for communities with high recency preferences.

To conclude, strategies that ignore user preferences and consider only TTL
set by the server leads to lower performance, in comparison with profiles that
consider user preferences, especially when cooperation with other caches is pos-
sible. TTL-based strategies do not cater to specific user needs, and so cannot
adapt to different preferences. Profile strategies are thus best suited to adapting
to user varying needs while taking into account object update rates, and they
therefore provide the best performance, and cooperation attain better results
under such strategies.

7 Related Work

In [3] it was suggested that users supply their preferences regarding target-
latency and target-recency of Web objects, along with a weight, setting their
relative importance. The cache would then score its local copy against the origin
server’s copy and serve the most appropriate version. The cache would estimate
recency and latency based on log information of past downloads. Our model
suggests a simpler and more intuitive method to model user preferences, and
examines how Profile-based cache strategy benefits cache cooperation. In [10], a
generic cost function introduced, to consider costs of latency and recency, and
in our work we extended it to assist cache with decision making as discussed in
this paper.

The performances of cache cooperation and its characteristics have been stud-
ied intensively in recent years. Cooperation schema in the Web environment was
introduced in [18, 1] where upon a miss, a query is sent to all collaborators before
querying the server. But cache cooperation benefits were shown to be limited,
and many studies explored these limitations. For example, [2, 4, 19] have found
that hit ratio for proxy caches grows rapidly when clients are added, but flattens
after a certain point. In general, hit ratio grows in a log-like fashion with the
number of clients and requests. In [12] the effectiveness of cooperative caching
was reported to decrease as the skew in object popularity increases. Higher skew
means that only a small number of objects are most frequently accessed reduc-
ing the benefit of larger caches, and therefore of cooperation. Other aspects of
cache cooperation were also explored including coordinated placement and re-
placement policies [10], and the overhead of cooperation mechanisms and their
affect on cooperation [7]. In [10], coordinated placement and replacement was
shown to significantly improve performances in cache hierarchies. In [7], it was
reported that cooperation is viable for distributed cooperation mechanisms, and

418 R. Rashkovits and A. Gal

not viable in hierarchies. These observations led to the conclusion that coopera-
tion effectiveness depends on the size of the working set and the cache capacity,
and therefore it is not always beneficial. Web traces of cooperative caches were
analyzed in [11], concluding that hit ratios were improved via cooperation, but
the improvements rate varies widely between 0.7% and 28.9%. In [13] a distance
sensitive model was developed to use cooperation only when it is beneficial, and
turn it on and off dynamically.

Our work differs from other works in that we have taken a different angle
on cooperation, under varying user preferences regarding latency and recency
affects, and further explore how update rates affect cooperation usefulness.

8 Conclusions and Future Work

In this paper we examine the usefulness of cache cooperation, given user profiles
regarding latency and data obsolescence. Users provide their tolerance towards
obsolescent content and the emphasis they put on rapid response time. We then
proposed the use of cached content at either local or remote caches, even in
cases where content may no longer be fresh yet still within a user tolerance
boundaries. Our empirical analysis shows that by employing user preferences,
caches can share content and tune their performance to suit user needs. We
further show empirically that cooperation with other caches is beneficial, in
particular to High-Recency profiles, in which users demand low obsolescence as
well as low latency. While we have proven our model to be useful on syntectic
data, we plan to validate our model on real data set, consisting of requests made
to 1998 World Cup Web site1.

Several topics are left open for future research. While cache cooperation
carries a promise of big benefit to users, it also has to consider the overhead of
cooperation. We plan on investigating the various methods of cache cooperation,
analyze the cooperation overhead and develop a model for balancing user benefit
with cache resource utilization. As another topic, we intend to investigate the
impact of cache size and various replacement policies on cooperation. Finally,
we plan to explore how caches can choose collaborators wisely and efficiently.

References

1. C. M. Bowman, P.B. Danzig, D.R. Hardy, U. Manber, and M.F. Schwartz. The
Harvest information discovery and access system. Computer Networks and ISDN
Systems, 28(1–2):119–125, 1995.

2. L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and zipf-like
distributions: Evidence and implications. In Proceedings of IEEE Infocom, pages
126–134, 1999.

3. L. Bright and L. Raschid. Using latency-recency profiles for data delivery on the
Web. In Proceedings of the International conference on very Large Data Bases
(VLDB), pages 550–561, Hong Kong, China, August 2002.

1 The data was taken from http://ita.ee.lbl.gov/html/contrib/worldcup.html

A Cooperative Model for Wide Area Content Delivery Applications 419

4. P. Cao and S. Irani. Cost-aware www proxy caching algorithms. Proc. USENIX
Symposium on Internet Technologies and Systems, 1997.

5. J. Challenger, A. Iyengar, P. Dantzig, D. Dias, and N. Mills. Engineering highly
accessed Web sites for performance. Lecture Notes in Computer Science, 2016:247–
265, 2001.

6. J. Cho and H. Garcia-Molina. Estimating frequency of change. ACM Transactions
on Internet Technology (TOIT), 3(3):256–290, 2003.

7. S.G. Dykes and K.A. Robbins. A viability analysis of cooperative proxy caching.
In Proceedings of IEEE Infocom, pages 1205–1214, 2001.

8. A. Gal and J. Eckstein. Managing periodically updated data in relational
databases: a stochastic modeling approach. Journal of the ACM, 48(6):1141–1183,
2001.

9. J.R. Gruser, L. Raschid, V. Zadorozhny, and T. Zhan. Learning response time for
WebSources using query feedback and application in query optimization. VLDB
Journal, 9(1):18–37, 2000.

10. M.R. Korupolu and M. Dahlin. Coordinated placement and replacement for large-
scale distributed caches. Technical Report CS-TR-98-30, 1, 1999.

11. P. Krishnan and B. Sugla. Utility of co-operating Web proxy caches. Computer
Networks and ISDN Systems, 30(1–7):195–203, 1998.

12. K.W. Lee, K. Amiri, S. Sahu, and C. Venkatramani. On the sensitivity of cooper-
ative caching performance to workload and network characteristics. In SIGMET-
RICS ’02: Proceedings of the 2002 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, pages 268–269, New York,
NY, USA, 2002. ACM Press.

13. M. Rabinovich, J. Chase, and S. Gadde. Not all hits are created equal: cooperative
proxy caching over a wide-area network. Computer Networks and ISDN Systems,
30(22–23):2253–2259, 1998.

14. M. Rabinovich and O. Spatschek. Web caching and replication. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

15. A.I.T. Rowstron, N. Lawrence, and C.M. Bishop. Probabilistic modelling of replica
divergence. pages 55–60, 2001.

16. A. Vakali and G. Pallis. Content delivery networks: Status and trends. IEEE
Internet Computing, 7(6):68–74, 2003.

17. Z. Wang and J. Crowcroft. Prefetching in world wide web, 1996.
18. D. Wessels and K. Claffy. ICP and the Squid Web cache. IEEE Journal on Selected

Areas in Communication, 16(3):345–357, 1998.
19. A. Wolman, G.M. Voelker, N.S., N. Cardwell, A.R. Karlin, and H.M. Levy. On

the scale and performance of cooperative web proxy caching. In Symposium on
Operating Systems Principles, pages 16–31, 1999.

A Data Stream Publish/Subscribe Architecture
with Self-adapting Queries

Alasdair J.G. Gray and Werner Nutt

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, EH14 4AS, UK

Abstract. In data stream applications, streams typically arise from a
geographically distributed collection of producers and may be queried by
consumers, which may be distributed as well. In such a setting, a query
can be seen as a subscription asking to be informed of all tuples that
satisfy a specific condition. We propose to support the publishing and
querying of distributed data streams by a publish/subscribe architecture.

To enable such a system to scale to a large number of producers
and consumers requires the introduction of republishers which collect to-
gether data streams and make the merged stream available. If republish-
ers consume from other republishers, a hierarchy of republishers results.

We present a formalism that allows distributed data streams, pub-
lished by independent stream producers, to be integrated as views on a
mediated schema. We use the formalism to develop methods to adapt
query plans to changes in the set of available data streams and allow
consumers to dynamically change which streams they subscribe to.

1 Introduction

Data streams usually record measurements that originate from sensors which
are installed at multiple locations, or which may even be moving, e.g. in road
traffic monitoring. Similarly, users interested in the streams are often distributed
as well. We propose to understand the management of such streams as a data
integration task [9].

As opposed to the one-time queries posed over a database, which are inter-
ested in receiving a set of answers against the current set of data, queries over
data streams are continuous. One can distinguish three main ways in which such
queries are used. The first is to direct data to a database where it is archived to
be queried later on. Another is to feed monitoring data produced by sensors into
databases that maintain a cache of current data and reflect the current state of
the entities being monitored. Finally, continuous queries may be set up to detect
classes of events. Such queries scan a stream for data values that exceed some
threshold or that form specific patterns. Often, considerable leverage can already
be gained if such tasks are realised for relatively weak query languages [4,12].

In the present paper, we build upon a data integration approach to publishing
and querying data streams which has been partially implemented in the R-GMA
Grid information and monitoring system [3,4] which is now being deployed in

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 420–438, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Data Stream Publish/Subscribe Architecture 421

major production Grids, e.g. LCG. The approach follows the proposal for a Grid
Monitoring Architecture (GMA) [13] made by the Global Grid Forum. Although
these ideas have been developed first in the context of Grid monitoring, they are
far more general and can be applied to other scenarios where queries are posed
over distributed streams.

In this approach, sources of stream data are called producers while entities
posing queries are called consumers. Producers and consumers interact with
each other according to a publish/subscribe protocol. A registry service allows
producers to advertise what kind of data they can supply, and consumers to
register what kind of data they request. Both advertisements and requests take
the form of queries over a set of relations which together make up a global schema.
The rôle of the mediator [14] is shared by the registry service, which finds suitable
producers for a query, and the consumer, which constructs a collection of queries
over these producers and executes them.

Since components can only maintain a limited number of connections, we
introducer republishers to enable such a system to scale to a large number of
producers and consumers, as necessary for a Grid. A republisher poses a query
over the global schema, and makes the answer stream available for other queries.
As such, these republishers can be used to create a hierarchy. At the bottom of
such a hierarchy would be the producers. These would feed into the republishers
with the most specific queries. In turn, these republishers would be used by
more general republishers. The need for something like a republisher hierarchy
has been identified in other Grid monitoring systems. For example, the widely
used MDS2 system [5] has an information collection service called a GIIS which
can be formed into a hierarchy. In such a hierarchy, the bottom level GIISs
collect information directly from the data sources. These then feed information
into GIISs at the higher levels of the structure.

The formation of a hierarchy is useful as it (i) collects the “trickles” of in-
formation produced by sensors and merges them into data streams, (ii) reduces
the number of connections that any one component needs to maintain, e.g. a
consumer need not contact every producer of relevant information if there exists
a republisher which already merges this data together, and (iii) can be used as
a cache of either latest-state information or historical data by storing the data
streams into a suitable database.

Whilst the presence of republishers allows for more efficient ways to an-
swer a consumer query, they also introduce complications. First, with republish-
ers, redundancy arises amongst data, since a piece of data that has been pub-
lished by a producer may also be made available by one or more republishers.
Thus, when answering a query, a choice has to be made as to where to retrieve
which data.

Secondly, continuous queries are issued at some point in time and continue
to return answers until explicitly ended. This means that producers or repub-
lishers may be added to, or removed from, the hierarchy during the lifetime
of a query and techniques are needed to adjust consumer query plans to such
changes. Related to this is the issue of maintaining the hierarchy. The formation

422 A.J.G. Gray and W. Nutt

of hierarchies in the MDS2 system, for instance, is a manual process. Thus, if
a GIIS should become unavailable there is no mechanism by which the system
can adapt to overcome this.

Building upon previous techniques for planning consumer queries in the pres-
ence of stream republishers [3,8], the main contributions of this paper are to
(i) formalise the techniques for adapting queries when the set of data sources
changes, and (ii) develop suitable mechanisms to enable consumers to switch
between data sources.

The rest of this paper is structured as follows. In Section 2 we present the
approach developed for publishing and querying distributed data streams. Sec-
tion 3 then considers how to maintain these query plans. In Section 4 we identify
desirable properties for a hierarchy of republishers and in Section 5 we develop
methods for switching between data sources. We present related work in Sec-
tion 6 and our conclusions in Section 7.

2 Publishing and Querying Relational Data Streams

A stream publish/subscribe network consists of three kinds of components: pro-
ducers, consumers, and republishers. A stream producer generates and publishes
a stream of tuples; a consumer poses a query, by which it requests a stream con-
sisting of all tuples that satisfy the query; a republisher, similar to a consumer,
poses a query but also publishes the answers to that query. In order for the
components to communicate with each other, there is a registry service, which
knows about all components existing at any given point in time.

This section summarises the approach for publishing and querying data
streams developed in [3]. In this paper, we consider only continuous queries that
are selections on a relation. This is similar to the class of continuous queries
currently supported by the R-GMA system, where continuous queries are used
to control the flow of data and more complex queries are posed over the caches
held by the republishers.

2.1 Publishing Relational Data Streams

We assume that there is a global relational schema against which consumers
and republishers pose their queries. The attributes of a relation in the global
schema are split into three parts: key attributes, measurement attributes, and a
timestamp attribute. As an example, taken from a grid monitoring application,
consider the relation ntp (“network throughput”) with the schema

ntp(from, to, tool, psize, latency, timestamp),

which records the time it took, according to some particular tool, to transport
packets of a specific size from one node to another. The underlined attributes
make up the primary key of ntp, while latency is the measurement attribute.

Producers inform the registry about the data they publish by registering a
selection query σD(r) or view with the registry service. This view is built up

A Data Stream Publish/Subscribe Architecture 423

using the usual operators in such queries, such as equalities and comparisons,
and combining them by boolean connectives. If the relation r does not yet exist
in the global schema, it is added to it. For example, a producer S1 that pub-
lishes a data stream consisting of network latency measurements, originating
at Heriot-Watt University, made with the UDPmon tool would register the view
σfrom=’hw’∧tool=’udpmon’(ntp).

The meaning of such a registration is that the producer promises to publish
only tuples that satisfy the view. We say that such a producer publishes for
r. Thus, the producer S1 promises to publish tuples which record the latency
of packets being sent from Heriot-Watt University measured with the UDPmon
tool. The view registered by a producer is only a sound, but not a complete
description of its data. It is possible, therefore, that different producers register
identical or overlapping views.

For our discussion, we adopt a sequence-based model of streams. A stream
may be infinite or end after a finite time. We capture this by defining a stream
s for relation r as a partial function from the natural numbers N to the set Tr

of all tuples satisfying the schema of r,

s : N ↪→ Tr,

such that, if s(n) is defined for some n ∈ N, the tuple s(m) is defined for all
m < n. Thus, s(n) denotes the nth tuple of s. We assume that each producer
publishes a stream of tuples satisfying its descriptive view.

To specify further assumptions, we need two shorthands for the subtuples
of s(n). We write sκ(n) for the values of the key attributes and sτ (n) for the
timestamp. We say that a stream s1 is a substream of s2 if s1 can be obtained
from s2 by deleting zero or more tuples from s2. A channel of s is a maximal
substream whose tuples agree on the key attributes of s. For a tuple t occurring
in s, where tκ is the subtuple of t that contains the values of the key attributes,
the substream of s consisting of the tuples with sκ(n) = tκ is the channel of t.

We require that the conditions D in producer views only restrict the key
attributes. Thus, the view restricts the channels of a producer, but not the
possible measurements.

We say a stream s is duplicate free if for all m, n with m = n we have that
s(m) = s(n). A stream s is weakly ordered if for all m, n with sκ(m) = sκ(n)
and m < n we have that sτ (m) < sτ (n). This means that in every channel
of s, tuples appear in the order of their timestamps. Two streams s1 and s2 are
channel disjoint if for all m, n we have that sκ

1 (m) = sκ
2 (n), that is, if s1 and s2

have no channels in common.
In addition to satisfying the descriptive views, we require that the streams

published by producers in a network are duplicate free and weakly ordered. Many
complex queries over streams, e.g. aggregate queries, are defined for streams with
some degree of order. Since it is impractical in a distributed setting to achieve
that streams are completely ordered w.r.t. their timestamps, we only guarantee
that each channel is ordered. Distinct producers must publish streams that are
channel disjoint, although their views may overlap.

424 A.J.G. Gray and W. Nutt

2.2 Queries and Query Plans

Consumers and republishers pose arbitrary selection queries over the global
schema, which have the form σC(r). For example, a consumer inter-
ested in all latency measurements for packets of size at least 1024bytes
that have been sent from Heriot-Watt University would pose the query
q1:= σfrom=’hw’∧psize≥1024(ntp). Similarly, a consumer interested in links with
a low latency measured by the ping tool would pose the query q2:=
σtool=’ping’∧latency≤10.0(ntp). The only assumption we make is that satisfiability
and entailment of such conditions is decidable. Both consumers and republishers
register their queries with the registry service. The query of a republisher also
serves as a complete description of the data stream that it publishes, i.e. its view.

We will now consider how to answer a consumer selection query q = σC(r).
Since there is no well-defined stream r, we have to define what an answer to such a
query should be. An answer stream for q is any duplicate free and weakly ordered
stream that consists of those tuples satisfying C that occur in streams of producers
that publish for r. Note that, according to this definition, there can be infinitely
many different answer streams for a query q. Any two answer streams consist of
the same tuples, but differ regarding the order in which they appear.

A query referring to a relation r in the global schema is called a global query.
A global query cannot be answered by accessing r directly, since r stands only for
a virtual stream. Instead, a global query has to be translated into a local query,
which accesses producers and republishers, which publish physical streams. We
refer jointly to producers and republishers as publishers, denoted as P , and to
the set of all publishers as a publisher configuration, denoted as P .

To answer global selection queries it is sufficient to consider local queries Q
that are multiset unions of selections over publishers P1, . . . , Pm, written

Q = σC1(P1) % · · · % σCm(Pm).

An answer to Q is any stream that is obtained by selecting, for each i = 1, . . . , m,
the tuples satisfying Ci from the stream published by Pi, and then merging the
resulting streams.

A local query Q is a plan for a global query q if every answer stream for Q
is also an answer stream for q. Thus, Q is a plan for q if and only if all possible
answer streams for Q have four properties. They have to be sound and complete
w.r.t. q, that is, they have to contain only tuples satisfying q and they have
to contain all such tuples. Moreover, they have to be duplicate free and weakly
ordered. We say that a local query has any of these four properties if its answer
stream always has this property.

Let us consider a publisher configuration P1 consisting of five producers
measuring the network latency from three sites, Heriot-Watt University (hw),
Rutherford Appleton Laboratory (ral), and Agia Napa (an), using two distinct
tools. The views registered by these producers are

S1:= σfrom=’hw’∧tool=’udpmon’(ntp), S2:= σfrom=’hw’∧tool=’ping’(ntp),
S3:= σfrom=’ral’∧tool=’ping’(ntp), S4:= σfrom=’ral’∧tool=’udpmon’(ntp),
S5:= σfrom=’an’∧tool=’ping’(ntp).

A Data Stream Publish/Subscribe Architecture 425

psize >= 1024
from = ’hw’

q1:
latency <= 10.0
tool = ’ping’

q2:

Data Flow

Potential answer stream

from = ’hw’
R1:

from = ’ral’
R2:

from = ’hw’ /\
tool = ’udpmon’

S1:
from = ’ral’ /\
tool = ’ping’

S3:
from = ’ral’ /\
tool = ’UDPmon’

S4:
from = ’an’ /\
tool = ’ping’

S5:S2:
from = ’hw’ /\
tool = ’ping’

R3:
from = ’hw’ /\
tool = ’ping’

Fig. 1. The consumer query q1 being posed at the publisher configuration P1

The publisher configuration also contains three republishers. The hw and ral
sites each have a republisher which collects together all the latencies measured
at that site. These would register the views R1:= σfrom=’hw’(ntp), and R2:=
σfrom=’ral’(ntp) respectively. There is also a republisher which republishes all
ping measurements made from hw. This republisher would register the view
R3:= σfrom=’hw’∧tool=’ping’(ntp).

Now consider the consumer query q1 being posed at P1. A suitable query
plan for q1 would be

Q1 = σfrom=’hw’∧psize>=1024(R1). (1)

Fig. 1 illustrates the flow of data between the publishers in P1. We will discuss
the possible query plans for q2 in the next section.

2.3 Computing Consumer Query Plans

We assume from now on that in global queries and descriptive views the condi-
tions on key and measurement attributes are decoupled, that is, every condition
C can be equivalently written as Cκ∧Cμ, where Cκ involves only key attributes
and Cμ involves only non-key attributes. In practice, this assumption will usually
be satisfied. The general case requires quantifier elimination techniques.

We first consider consumer queries. To begin with, we single out the publish-
ers that can contribute to a query plan. We say that a publisher P with view
σD(r), where D = Dκ∧Dμ, is relevant for a query q = σC(r) with C = Cκ∧Cμ

if it has the following two properties:

1. C ∧D is satisfiable (Consistency);
2. Cμ |= Dμ (Measurement Entailment).

The first property states that P can potentially contribute values for some chan-
nels requested by q. The second one states that for those channels all measure-
ments requested by q are offered by P . This ensures that all the plans computed
generate answer streams which are weakly ordered. Note that if P is a pro-
ducer, measurement entailment always holds because the conditions in the view
describing P do not involve measurement attributes.

426 A.J.G. Gray and W. Nutt

Next, we rank the relevant publishers for q according to the channels they
can contribute to q. Let P be a relevant publisher and R a relevant republisher,
where P has the view σDκ∧Dμ(r) and R has the view σEκ∧Eμ(r). We say that
P is subsumed by R w.r.t. q, and write P &q R, if

Dκ ∧ Cκ |= Eκ.

We say that P is strictly subsumed by R w.r.t. q, and write P ≺q R, if P &q R,
but not R &q P . Note that a producer can never subsume another publisher.
The reason is that producer views provide only a sound description of a stream,
not a complete one.

We present a method for constructing query plans that consist of publishers
that are maximal with regard to the subsumption relation “&q”. We suppose
that the publisher configuration and the query q = σC(r) are fixed.

A relevant publisher is maximal if it is not strictly subsumed by another
relevant publisher. Let Mq be the set of maximal relevant publishers for q. We
partition Mq into the subsets MS

q and MR
q , consisting of producers and repub-

lishers, respectively.
We write P1 ∼q P2 if P1 &q P2 and P2 &q P1. Clearly, if P1 and P2 are two

distinct maximal relevant publishers, and P1 &q P2, then P1 ∼q P2. Note that a
producer is never equivalent to another publisher because it cannot subsume the
other publisher. Thus, the relation “∼q” is an equivalence relation on the set of
republishers MR

q and we say that R1 is equivalent to R2 w.r.t. q if R1 ∼q R2.
We denote the equivalence class of a republisher R w.r.t. q as [R]q. Any

two equivalent republishers will contribute the same answer tuples satisfying q.
Therefore we need only choose one element of any class [R]q when constructing
a plan for q. The set of all equivalence classes of maximal relevant republishers
is denoted as

MR
q =
{

[R]q
∣∣ R ∈MR

q

}
.

We call the pair Mq = (MR
q , MS

q) the meta query plan for q. We show next how
one can construct actual query plans from Mq.

A sequence 〈R1, . . . , Rk〉 of republishers that is obtained by choosing one
representative from each class of republishers inMR

q is called a supplier sequence
for q. Let 〈R1, . . . , Rk〉 be a supplier sequence for q and S1, . . . , Sl be the stream
producers in MS

q . Suppose the descriptive views of the Ri have the conditions Di.
We define the canonical republisher query for the sequence as

QR = σC1(R1) % · · · % σCk
(Rk),

where C1 = C and Ci = C ∧¬(D1 ∨ · · · ∨Di−1) for i ∈ 2..k. Moreover, we define
the canonical stream producer query as

QS = σC′(S1) % · · · % σC′(Sl),

where C′ = C ∧ ¬(D1 ∨ . . . ∨Dk).

A Data Stream Publish/Subscribe Architecture 427

The selection conditions on the disjuncts in QR ensure that Ri only con-
tributes channels that no Ri′ with i′ < i can deliver, and the condition C′ in QS

guarantees that producers only contribute channels that cannot be delivered by
the republishers.

Note that the conditions Ci depend on the order of republishers in the se-
quence, but once the order is fixed, they do not depend on which republisher
is chosen from an equivalence class. Moreover, although syntactically the condi-
tions C′ in QS may differ for different supplier sequences, they are all equivalent.

Let us again consider q2 being posed over P1. The set of relevant pub-
lishers is {S2, S3, S5, R1, R2, R3 }, and the set of maximal relevant publishers
is {S5, R1, R2, R3 }. For q2, we have that R1 ∼q2 R3. Thus, we have Mq2 =({
{R1, R3 }, {R2 }

}
, {S5 }

)
. In Fig. 1, the equivalence class {R1, R3 } is shown

by the dotted lines. A cost model may be applied to select between the repub-
lishers in an equivalence class, e.g. based on response time. From Mq2 we derive

Q = σtool=’ping’∧latency≤10.0(R1) % σtool=’ping’∧latency≤10.0∧¬(from=’hw’)(R2)
% σtool=’ping’∧latency≤10.0∧¬(from=’hw’∨from=’ral’)(S5),

as a valid query plan. The meta query plan for q1 is Mq1 =
({
{R1 }

}
, ∅
)
.

The following theorem, taken from [3], identifies the local queries Q that are
plans for a global query q.

Theorem 1. Let q be a global query, QR be the canonical republisher query,
and QS be the canonical stream producer query for some supplier sequence for
q. Then, a plan for q is

Q = QR %QS.

3 Plan Maintenance

When a new publisher is introduced or an existing publisher drops off, the query
plans of consumers have to be adapted to the new situation. A meta query
plan Mq depends on two parameters: a global query q, which is explicit in
our notation, and a publisher configuration P , which so far was taken to be
fixed. However, during the execution period of a global query, which is usually
long lived, it is possible that P changes to a new configuration P ′ because new
publishers arise or existing ones vanish. As a consequence, the meta query plan
for q in the new configuration P ′ may differ from the one in P and the query
plan may have to change as well. To make the dependency on the publisher
configuration explicit, in this section we will write meta query plans for q w.r.t.
P and P ′ as Mq(P) and Mq(P ′), respectively.

One possibility to move from Mq(P) to Mq(P ′) would be to compute the
new meta query plan from scratch. However, as we outlined in [8], it is likely to
be more efficient to (i) identify when at all Mq(P) is affected by a change of P ,
and (ii) to amend Mq(P), whenever this is possible, based on the information
contained in Mq(P) and the publisher involved in the change. In the following

428 A.J.G. Gray and W. Nutt

we shall investigate formally how adding a publisher to P or deleting one affects
meta query plans. Without loss of generality, we assume that all publishers added
to or deleted from P are relevant for q, since other changes do not have an effect
on the meta query plan.

3.1 Adding a Producer

If a relevant producer S0 is added then we consider two cases. If S0 is subsumed
w.r.t. q by an existing maximal republisher, say R, then all the data coming
from S0 will be republished by R and, similarly, by every republisher in [R]q, the
equivalence class of R. Since the current meta query plan contains the class [R]q,
no change is needed. However, if S0 is not subsumed by a maximal republisher,
then it has to be added to the set of maximal relevant producers.

Proposition 1. Suppose P ′ = P ∪ {S0 }. Then:

1. if there is a class [R]q ∈MR
q such that S0 &q R, then Mq(P ′) =Mq(P);

2. if there is no such class, then Mq(P ′) = (MR
q , MS

q ∪ {S0 }).

3.2 Deleting a Producer

If a relevant producer S0 is dropped, then the situation is similar to the previous
one. If S0 is not a maximal relevant producer, that is, if it is subsumed by some
republisher, then the meta query plan is not affected by the change, otherwise
it has to be removed from the set of maximal relevant producers.

Proposition 2. Suppose P ′ = P \ {S0 }. Then:

1. if S0 /∈MS
q , then Mq(P ′) = Mq(P);

2. if S0 ∈MS
q , then Mq(P ′) = (MR

q , MS
q \ {S0 }).

3.3 Adding a Republisher

The situation becomes more complex when a relevant republisher R0 is added.
There are three possible cases to be considered:

1. R0 is strictly subsumed by some maximal republisher R, that is, R0 ≺q R;
2. R0 is equivalent to some maximal republisher R, that is, R0 ∼q R; or
3. R0 is not subsumed by any existing maximal republisher.

In case 1, R0 is not needed in the meta query plan, while in case 2, R0 needs
to be added to the class [R]q. In case 3, R0 will form a new equivalence class of
its own. Moreover, it may be the case that R0 subsumes some existing maximal
producers and republishers. If it does, then the subsumption is strict and the
publishers concerned have to be removed from the meta query plan.

A Data Stream Publish/Subscribe Architecture 429

psize >= 1024
from = ’hw’

q1:
latency <= 10.0
tool = ’ping’

q2:

R4:

Data Flow

Potential answer stream

from = ’hw’
R1:

from = ’ral’
R2:

R3:
from = ’hw’ /\
tool = ’ping’

from = ’hw’ /\
tool = ’udpmon’

S1:
from = ’ral’ /\
tool = ’ping’

S3:
from = ’ral’ /\
tool = ’UDPmon’

S4:
from = ’an’ /\
tool = ’ping’

S5:S2:
from = ’hw’ /\
tool = ’ping’

Fig. 2. Consumer query q1 being posed at the publisher configuration P2

Proposition 3. Suppose P ′ = P ∪ {R0 }. Then:

1. if there is a class [R]q ∈MR
q such that R0 ≺q R, then Mq(P ′) = Mq(P);

2. if there is a class [R]q ∈ MR
q such that R0 ∼q R, then Mq(P ′) is obtained

from Mq = (MR
q , MS

q) by replacing the class [R]q in MR
q with [R]q ∪ {R0};

3. if there is no class [R]q ∈ MR
q with R0 &q R, then Mq(P ′) = (MR

q
′
, MS

q
′)

where
– MR

q
′ is obtained from MR

q by adding the class {R0 } and removing all
classes [R′]q with R′ &q R0

– MS
q
′ is obtained from MS

q by only keeping the producers that are not
subsumed by R0, i.e.

MS
q

′
= {S ∈ MS

q | S &q R0 }.

Let us illustrate this by adding a republisher R4:= σtrue(ntp), which gathers
all tuples published for the ntp relation, to the publisher configuration P1. With
regard to consumer query q1, we are in case 2 since R4 ∼q1 R1. So R4 would be
added to the equivalence class of R1 inMq1 . There is no change to the query plan
of q1 as the old plan is consistent with the new meta query plan. However, for
q2 we are in case 3 as R4 subsumes w.r.t. q2 all the maximal relevant publishers.
The situation in the new configuration P2 is illustrated in Fig. 2.

3.4 Deleting a Republisher

Similar to the previous situation, we distinguish three cases when a republisher
R0 is dropped:

1. R0 is strictly subsumed by some maximal relevant republisher;
2. R0 is equivalent to some other maximal relevant republishers; or
3. R0 is not subsumed by any existing maximal republisher.

In case 1, the meta query plan is not affected, while in case 2, the republisher R0
needs to be deleted from its equivalence class. Case 3, by contrast, requires more

430 A.J.G. Gray and W. Nutt

action. The reason is that, intuitively, the deletion of R0 leaves a hole in the set of
data that can be delivered by the remaining republishers in the meta query plan.

To “patch” the hole, those relevant republishers need to be identified that
were not maximal in the presence of R0, but are promoted to maximal ones after
the demise of R0. We define the patch of MR

q for R0 as the set M ′ consisting
of those republishers R′ relevant for q where (i) R′ ≺q R0 and (ii) there is no
R ∈ MR

q \ {R0 } such that R′ ≺q R. Then the new set MR
q

′ is obtained by
removing the class [R0]q from MR

q and adding the classes obtained from the
elements of M ′. Moreover, some producers that were subsumed by R0 may not
be subsumed by the newly promoted maximal republishers and have to be added
to the set MS

q to yield MS
q
′.

Proposition 4. Suppose P ′ = P \ {R0 }. Then:

1. if R0 /∈MR
q , then Mq(P ′) =Mq(P);

2. if R0 ∈ MR
q and there is another R ∈ MR

q with R0 ∼q R, then Mq(P ′)
is obtained from Mq = (MR

q , MS
q) by replacing the class [R]q in MR

q with
[R]q \ {R0};

3. if R0 ∈ MR
q and the class [R0]q ∈ MR

q is a singleton, then Mq(P ′) =
(MR

q
′
, MS

q
′) where

– MR
q

′ is obtained from MR
q by removing the class {R0 } and adding all

classes [R′]q such that R′ ∈M ′ is in the patch M ′ of MR
q for R0

– MS
q
′ is obtained from MS

q by adding those producers relevant for q that
were subsumed by R0, but are not subsumed by any republisher in MR

q
′.

We now consider removing republisher R1 from the publisher configuration
P2 to create P3. Republisher R1 is a maximal relevant publisher for q1 which is
equivalent w.r.t. q1 to R4. This means that we are in case 2 above. Hence, we
replace the equivalence class {R1, R4 } in Mq1(P2) with the equivalence class
{R4 } to give the meta query plan Mq1(P3) =

({
{R4 }

}
, ∅
)
.

psize >= 1024
from = ’hw’

q1:
latency <= 10.0
tool = ’ping’

q2:

R4:

from = ’ral’
R2:

Data Flow

Potential answer stream

R3:
from = ’hw’ /\
tool = ’ping’

from = ’hw’ /\
tool = ’udpmon’

S1:
from = ’ral’ /\
tool = ’ping’

S3:
from = ’ral’ /\
tool = ’UDPmon’

S4:
from = ’an’ /\
tool = ’ping’

S5:S2:
from = ’hw’ /\
tool = ’ping’

Fig. 3. Consumer query q1 being posed at the publisher configuration P3

A Data Stream Publish/Subscribe Architecture 431

The situation in configuration P3 is shown in Fig. 3. We note that in P3
the consumer query q1 no longer has a choice in the publisher to contact to
retrieve its answer stream in the most efficient manner. It must contact repub-
lisher R3, hence the line showing the data flow from R3 to q1 is now solid in
Fig. 3.

We also note that since the consumer had been using R1 in its query plan
it will need to “switch” to a new query plan using R3. Mechanisms on how to
switch between query plans are discussed in Section 5.

3.5 Discussion

The propositions above show that plan maintenance is straightforward if pro-
ducers come or go and is more complicated when the set of relevant republishers
changes. The reason is that the streams of producers are only sound w.r.t. their
descriptive views, but republisher streams are both sound and complete. As a
consequence, a republisher can replace other publishers, which is impossible for
a producer. In Section 5 we discuss the implications of maintaining query plans
during the execution of a query.

The cost of performing the plan maintenance operations is polynomial in
the number of publishers involved, providing that subsumption can be checked
in polynomial time. From the cases encountered with the R-GMA system this
is often the case since conditions can only contain conjunctions. Of course, if
conditions can contain disjunctions then the problem is NP-hard.

4 Maintaining a Hierarchy of Republishers

Similar to consumers, republishers should include other republishers in their
query plans. This leads to a hierarchy of republishers through which data streams
can flow. A straightforward approach would be to construct and maintain plans
and meta plans for republishers in the same way as for consumers. However, a
simple example shows that this does not work.

Consider the publisher configuration P0 consisting of the publishers S1, R1,
and R4, as defined above. Applying the planning and maintenance techniques
developed for consumers would result in the republishers having the meta query
plansMR1 =

({
{R4 }

}
, ∅
)
, andMR4 =

({
{R1 }

}
, ∅
)
. The only corresponding

query plans are QR1 = σfrom=’hw’(R4), and QR4 = σtrue(R1).
The resulting hierarchy is unsatisfying for two reasons: (i) the republishers

are not connected to the producer, and (ii) there is a cycle in the dependency
relation of the republishers in that R1 consumes from R4 and vice versa. Obvi-
ously, the first fact prevents the republishers from obtaining any data. Moreover,
if there are cyclic dependencies between republishers, tuples could travel an
infinite number of times along the cycle. The volume of the resulting stream
could grow indefinitely, and the stream would be neither duplicate free nor
weakly ordered.

432 A.J.G. Gray and W. Nutt

4.1 Requirements for a Publisher Hierarchy

To come up with a mechanism for constructing and maintaining query plans for
republishers, we identify properties that such a mechanism should have.

We expect that, similar to the one for consumer queries, query plans for
republishers are unions of selections over publishers and that, in addition, each
republisher has a meta query plan, from which actual plans can be formed.
Moreover, we expect that the mechanism produces some kind of meta query
plan that contains a set of candidate publishers on which actual plans are based.

The query plans executed by the republishers define a dependency relation
among the publishers which we call the physical hierarchy, that is, one through
which the data flows. The meta query plans of the republishers define a more
general dependency relation which we call the logical hierarchy.

We argue that the following four requirements are essential for any planning
and maintenance mechanism for republishers:

Correctness: The plan for each republisher should be sound and complete for
the defining query as well as duplicate free and weakly ordered.

Cycle Freeness: Neither the physical nor the logical hierarchy should contain
any cycles.

Uniqueness of the Logical Hierarchy: The logical hierarchy should only
depend on the publisher configuration P . The way in which it has been
created, that is, the order in which publishers have been added and deleted
should have no influence on it.

Local Query Planning: To create its query plan and meta query plan, a re-
publisher should not need any information about the plans and meta plans
of other republishers.

Clearly, a plan that is not correct would fail to implement the republisher and
can lead to the republishers being disconnected from the producers, as in the
example above. The physical hierarchy of the example contains a cycle. We
discussed the negative effects of that cycle. Since cycles in the logical hierar-
chy may give rise to cycles in the physical hierarchy, they need to be ruled
out, too. A logical hierarchy will be much easier to understand if it depends
only on the structure of a configuration and not on its history. For the the
physical hierarchy, which is a subrelation of the logical hierarchy, a republisher
should be allowed to form it as it sees fit. If query planning is local, repub-
lishers only need to communicate with the registry service and not with other
republishers.

4.2 Generating and Maintaining Query Plans for Republishers

A general analysis shows that cycles and missing links to producers as in the ex-
ample above are a consequence of the definition of relevant publishers in Subsec-
tion 2.3. To avoid cycles, for two republishers R1 and R2 it should be impossible
that R1 is relevant for R2 and at the same time R2 is relevant for R1.

A Data Stream Publish/Subscribe Architecture 433

To refine the concept of relevance, we introduce a new, general, subsumption
relation. Let P be a publisher with the view σDκ∧Dμ(r) and R be a republisher
with the view σEκ∧Eμ(r). We say that P is subsumed by R, and write P & R, if

Dκ |= Eκ and Eμ |= Dμ.

Intuitively, this means that R delivers tuples for a channel if P does so, and
that for its channels, P delivers all the values that R delivers. We say that P is
strictly subsumed by R, and write P ≺ R, if P & R, but not R & P . Clearly, if
both R1 is subsumed by R2 and R2 by R1, then the view conditions of R1 and
R2 are logically equivalent.

We now use this notion of general subsumption to modify the definition of
relevance. We say that a producer is strongly relevant if it is relevant for the
query of R0 and that a republisher R is strongly relevant for R0 if R ≺ R0. One
readily verifies that strong relevance implies relevance.

Let us reconsider the example from the beginning of the section. It is imme-
diate to see that in P0, both S1 and R1 are strongly relevant for R4 while only
S1 is strongly relevant for R1. If instead of relevant publishers, we only admit
strongly relevant ones to query planning, the meta query plan for R1 in P0 is
MR1(P0) =

(
∅, {S1 }

)
, while the one for R3 is MR4(P0) =

({
{R1 }

}
, ∅
)
. The

corresponding query plans are QR1 = σfrom=’hw’(S1) and QR4 = σtrue(R1). Nei-
ther the physical nor the logical hierarchy contain a cycle. The next proposition
shows that this is not accidental.

Proposition 5. If meta query plans for republishers are only based on strongly
relevant publishers, then all plans derived from them are correct. Moreover, for
any publisher configuration, there is a unique logical hierarchy, which is cycle
free, and meta query plans and plans can be computed locally by each republisher.

Intuitively, the result holds for the following reasons. Plans are still correct, as
they were for consumer queries, because the relevance criterion for producers
has not been changed. A plan using only strongly relevant republishers may
have to access more producers than one relying on relevant republishers, because
fewer producers are made redundant by republishers. By definition, the logical
hierarchy depends only on the publishers and their conditions, which uniquely
determine it. Since any strongly relevant publisher for R is strictly subsumed by
R, there cannot be any cycles in the logical hierarchy. A plan can be computed
by an individual republisher based on information about its strongly relevant
publishers, without coordinating the planning with other republishers.

The meta query plan for a consumer or republisher query q is defined in terms
of relevant or strongly relevant publishers, respectively, that are maximal w.r.t.
the quasiorder “&q”. A closer inspection of the results in Section 3 reveals that
all four propositions hold, independently of how relevant publishers are defined.
Therefore, the maintenance techniques of that section can be applied directly
for republisher queries.

434 A.J.G. Gray and W. Nutt

5 Implementing the Query Plans

The theory developed for generating and maintaining query plans does not pre-
scribe how it should be implemented, i.e. which components are responsible for
the various stages of the planning process. We motivated the work with the de-
velopment of R-GMA [3,4], a Grid information and monitoring system, which
partially implements a stream integration system. However, the current R-GMA
system only allows a republisher to collect together data streams and store them.
They cannot be used to publish a data stream and so cannot be used to form a
publisher hierarchy.

The final stage of developing the query planning mechanisms is to decide the
responsibilities of the components and develop communication protocols between
the components to enable them to (i) plan for a global query, (ii) detect when
the publisher configuration is altered and maintain the plans, and (iii) switch
between query plans. We do this in the context of an experimental implementa-
tion based on the approach followed by the R-GMA system. We anticipate that
the results will be used to further enhance the capabilities of R-GMA.

5.1 Computing Query Plans

The registry uses a database to store details of every publisher and consumer
registered in the system. These details include a structured representation of the
conditions of the queries, so they need only be parsed once. This is possible as R-
GMA has a limited continuous query language: continuous queries are selections
with conditions that are conjunctions of the form attr op value, where op may
be <, ≤, =, ≥, >.

When a consumer is constructed, it contacts the registry with details of its
global query. The registry encodes the satisfiability and entailment tests needed
to find the set of relevant publishers as a single SQL query over its database.
The registry then returns to the consumer a list of all relevant publishers. From
this list of relevant publishers, the consumer first constructs a meta query plan
and then derives a query plan, as described in Section 2.3.

5.2 Maintaining Query Plans

The task of maintaining query plans can be broken down into two stages. The
first stage is to detect when the publisher configuration has changed. Once a
change has been detected, the maintenance mechanisms of Section 3 can be
applied.

When a publisher is created, it will contact the registry to make itself known
to the system. Thus, the registry will know when a new publisher is created.
However, due to the distributed nature of the system, there must be some mech-
anism that can detect when a publisher is no longer contactable, e.g. due to a
network failure.

A simple timeout mechanism based on tuples being delivered from a publisher
to a consumer is not adequate. For example, it is possible that a consumer should

A Data Stream Publish/Subscribe Architecture 435

consume from a republisher but the republisher does not have any sources. To
avoid unnecessary plan maintenance, we require that every component period-
ically sends the registry a heartbeat message. Failure of this message to arrive
means that the component is no longer available for queries.

Once the registry has detected that there is a change in the publisher configu-
ration, it can construct an SQL query over its database to find all the consumers
and republishers which are affected, and inform them of the change. The con-
sumers and republishers first check whether the publisher is maximal relevant
for its query and if it is they apply the results of Section 3 to test whether they
need to (i) amend their meta query plans, and (ii) if they have altered their meta
query plan, to check whether their current query plan is consistent with the new
meta query plan.

Since consuming components are (i) initially informed of all relevant publish-
ers, and (ii) informed of any changes in the set of relevant publishers, they can
maintain their meta query plans in all the cases presented in Section 3 without
further interaction with the registry. To patch their plan as required by Propo-
sition 4 case 3 the component need only refer to the list of relevant publishers.

5.3 Switching Between Query Plans

In developing protocols for switching between query plans we have focused on
the properties of the query plan. That is, the protocols must ensure, as far as
possible in a distributed setting, that answer streams are sound and complete
w.r.t. their defining query, weakly ordered, and duplicate free.

There are five scenarios when a query plan is not consistent with the new
meta query plan.

1. A producer is added to the meta query plan.
2. A producer is removed from the meta query plan.
3. A republisher is removed from the meta query plan which (i) appears in an

equivalence class with other republishers, and (ii) is in the query plan.
4. A republisher is added to the meta query plan which has created a new

equivalence class.
5. A republisher is removed from the meta query plan which was in an equiv-

alence class on its own.

The situations in cases 1 and 2 have already been implemented in R-GMA.
For case 1, each publisher caches a published tuple for a duration defined by
the publisher’s retention period. This provides the registry with the time needed
to contact the consumers and republishers for which the producer is relevant
and for them to then contact the producer and start streaming. For case 2, the
producer is simply removed from the query plan.

The situation in case 3 is the one presented in the example of Section 3.4
when republisher R1 is removed from publisher configuration P2. Since q1 had
been using R1 in its query plan, then it must switch to using republisher R4.

We require that a consumer maintains a latest-state buffer where it stores
the most recent tuple received on each channel. When switching from R1 to R4,

436 A.J.G. Gray and W. Nutt

the consumer searches in its latest-state buffer for the oldest tuple to received
from R1. The consumer then requests that R4 starts streaming from tτo , the
timestamp of to. We must use the timestamp of to rather than the tuple itself
as our streams are only weakly ordered.

Upon receiving this message, R4 consults the tuples in its publishing buffer
and, providing that tτo is still within its retention period, starts streaming all
tuples with a timestamp equal to, or newer than tτo . Otherwise it will start
streaming from the oldest tuple in its buffer. On receiving the stream from
R4, the consumer must filter, on a per channel basis, the first part of the stream
against its latest-state buffer. Only once it starts receiving tuples newer than the
ones in its latest-state buffer does its answer stream start getting new tuples.

This mechanism ensures that the answers received by the consumers are
sound w.r.t. the query. Providing that the tuples are still within the retention
periods of the publishers involved, the answer stream will be complete. In the
cases where the stream is not complete, a bound in time can be provided on
the incompleteness in the answer stream, i.e. the time between tτo and the re-
publisher’s retention period. Due to the filtering based on the latest-state buffer
the answer stream will be duplicate free, and weak order is guaranteed by con-
struction. We decided to search for the oldest tuple since the retention period
is defined by the publisher, and in R-GMA it is desirable to set these to large
periods.

The same mechanism can be applied in cases 4 and 5 except on a per publisher
basis. Some additional care needs to be taken with the changing of conditions
to existing publishers in the query plan.

6 Related Work

Publish/subscribe systems provide middleware for managing the communication
of events asynchronously [6]. A subscription is a simple filter on the events pub-
lished to the system. The publish/subscribe system must process every event as
it arrives and forward it on to the relevant subscriptions. Several systems have
been developed, including Rebecca [7] and siena [2]. Our approach differs as
(i) events are streamed from the publisher directly to the consumer, and (ii) we
allow more expressive subscriptions.

Work on processing and querying data streams has resulted in centralised
data stream management systems, e.g. STREAM [1], and Telegraph [10]. The
StreamGlobe system [12] looks at processing data streams in a P2P environment.
However, it is unclear as to the guarantees of the correctness of the answer
streams. Another approach to the distributed filtering of data streams is dQUOB
[11]. However, each data source must then publish for a different relation.

7 Conclusions

In this paper, we have built upon earlier techniques for integrating data streams
in a publish/subscribe network [3,8] which allowed consumers to generate a query

A Data Stream Publish/Subscribe Architecture 437

plan and identified that such plans need to be updated when the set of publishers
changes. We have now formalised the techniques for maintaining these query
plans when a publisher is added to or removed from the network.

We have also discussed, and presented an approach to, the problem of switch-
ing between query plans whilst ensuring that the answer stream remains sound
and complete w.r.t. the query, duplicate free, and weakly ordered.

Other interesting areas of research would be to increase the complexity of
allowable queries, e.g. selection queries that join tables together using sliding
windows, and to allow more expressive view conditions, e.g. containing joins.

References

1. A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani,
U. Srivastava, and J. Widom. Data-Stream Management: Processing High-Speed
Data Streams, chapter STREAM: The Stanford Data Stream Management System.
Springer-Verlag, 2005. To appear.

2. A. Carzaniga and A.L. Wolf. Forwarding in a content-based network. In Proceedings
of ACM SIGCOMM, pages 163–174, Karlsruhe (Germany), August 2003.

3. A. Cooke, A.J.G. Gray, and W. Nutt. Stream integration techniques for grid
monitoring. Journal on Data Semantics, 2:136–175, 2005.

4. A.W. Cooke, A.J.G. Gray, W. Nutt, J. Magowan, M. Oevers, P. Taylor, R. Cor-
denonsi, R. Byrom, L. Cornwall, A. Djaoui, L. Field, S.M. Fisher, S. Hicks,
J. Leake, R. Middleton, A. Wilson, X. Zhu, N. Podhorszki, B. Coghlan, S. Kenny,
D. O’Callaghan, and J. Ryan. The relational grid monitoring architecture: Me-
diating information about the grid. Journal of Grid Computing, 2(4):323–339,
December 2004.

5. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information ser-
vices for distributed resource sharing. In 10th International Symposium on High
Performance Distributed Computing, pages 181–194, IEEE Computer Society, June
2001. IEEE Computer Society.

6. P.T. Eugster, P.A. Felber, R. Guerraoui, and A. Kermarrec. The many faces of
publish/subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

7. L. Fiege, G. Mühl, and F.C. Gärtner. A modular approach to build structured
event-based systems. In Proc. 2002 ACM Symposium on Applied Computing, pages
385–392, Madrid (Spain), March 2002. ACM Press.

8. A.J.G. Gray and W. Nutt. Republishers in a publish/subscribe architecture for
data streams. In Proc. 22nd British National Conference on Databases, volume
3567 of LNCS, pages 179–184, Sunderland (UK), July 2005. Springer-Verlag.

9. A. Halevy. Answering queries using views: A survey. The VLDB Journal,
10(4):270–294, 2001.

10. S.R. Madden and M.J. Franklin. Fjording the stream: An architecture for queries
over streaming sensor data. In Proc. 18th International Conference on Data En-
gineering, pages 555–566, San Jose (CA, USA), February 2002. IEEE Computer
Society.

11. B. Plale and K. Schwan. Dynamic querying of streaming data with the dQUOB
system. IEEE Transactions on Parallel and Distributed Systems, 14(3):422–432,
April 2003.

438 A.J.G. Gray and W. Nutt

12. B. Stegmaier, R. Kuntschke, and A. Kemper. StreamGlobe: Adaptive query
processing and optimization in streaming P2P environments. In Proc. of the 1st
International Workshop on Data Management for Sensor Networks, pages 88–97,
Toronto (Canada), August 2004. VLDB.

13. B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and R. Wolski.
A Grid monitoring architecture. Global Grid Forum Performance Working Group,
March 2000. Revised January 2002.

14. G. Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, 25(3):38–49, March 1992.

Containment of Conjunctive Queries with
Arithmetic Expressions

Ali Kiani and Nematollaah Shiri

Dept. of Computer Science & Software Engineering,
Concordia University, Montreal, Quebec, Canada

{ali kian, shiri}@cse.concordia.ca

Abstract. We study the problem of query containment for conjunctive
queries with arithmetic constraints (QWAE). Such queries arise natu-
rally in conventional database applications, information integration, and
cooperative information systems. Given two such queries Q1 and Q2, we
propose an algorithm that decides the containment Q2 � Q1. The pro-
posed algorithm returns a QWAE Q′

2 obtained by rewriting Q′
2 such that

Q′
2 � Q2. This provides partial answers to the QWAE Q1, which would

otherwise be discarded by existing standard or extended techniques for
query containment.

1 Introduction

Query containment (QC) is a fundamental problem in a large number of database
applications including answering queries using views [9, 1, 7], query rewriting
[12, 13, 7], data integration [15], and query optimization [5].

A query Q2 is said to be contained in a query Q1 (denoted by Q2 $ Q1),
if there is a containment mapping (CM) μ from Q1 to Q2. When Q2 $ Q1, it
means that the answer to Q2 on any database D is contained in the answer to
Q1 on D, i.e., Q2(D) ⊆ Q1(D).

Query containment has been studied extensively in database research in-
vestigating different aspects and applications [4, 8, 6, 2]. Most of these work con-
sider conjunctive queries (CQ), also known as Select-Project-Join (SPJ) queries;
Cartesian product is a special case of join, where there is no common attributes.
More recently, there have been some interesting proposals for containment of
conjunctive queries extended with constraints, in the form of built-in predicates
[2, 8]. To set the stage and motivate this work, in what follows we consider three
examples of common SQL queries and their corresponding conjunctive queries.

Example 1. Let r(A, B) and s(C, D, E) be relation schemas. Consider the fol-
lowing SQL queries:

q1: SELECT A, B q2: SELECT A, B
FROM r; FROM r, s

WHERE r.B = s.C;

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 439–452, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

440 A. Kiani and N. Shiri

These SQL queries q1 and q2 can be expressed as the following conjunctive
queries Q1 and Q2, respectively.

Q1(A, B) :- r(A, B).
Q2(A, B) :- r(A, B), s(B, D, E).

Taking as the containment mapping μ, the identity function which maps each
variable to itself, we can see that Q2 $ Q1.

Klug [8] and Afrati et. al. [2], extended the problem of query containment
to support conjunctive queries with constraints. The constraints they consider
compare a single variable with a variable or a constant. Example 2 includes
examples of such queries in SQL.

Example 2. For relations r and s defined in Example 1, consider the following
SQL queries.

q1: SELECT A, B q2: SELECT A, B
FROM r FROM r, s
WHERE B > 10; WHERE r.B = s.C AND B > 15;

These SQL queries can be expressed as the following conjunctive queries with
attribute comparisons.

Q1(A, B) :- r(A, B), B > 10.
Q2(A, B) :- r(A, B), s(B, D, E), B > 15.

These are examples of the conjunctive queries with attribute comparisons, stud-
ied in [8, 2]. According to their results, we can find a containment mapping from
Q1 to Q2, based on which the predicate part of the body of Q1 becomes a
subset of the body of Q2 and constraint in Q2 implies constraint in Q1, i.e.,
(B > 15)⇒ (B > 10). In this case, therefore, we can conclude that Q2 $ Q1.

Example 3. Let us now consider again the same relations but the SQL queries:

q1: SELECT A q2: SELECT A
FROM r, s FROM r, s
WHERE r.B = s.C AND WHERE r.B = s.C AND

r.B = s.D + s.E; r.B = s.D AND s.E = 0;

These queries can be expressed as the following conjunctive queries with arith-
metic expressions.

Q1(A) :- r(A, B), s(B, D, E), B = D + E.
Q2(A) :- r(A, B), s(B, D, 0), B = D.

It is not hard to convince ourselves that Q2 $ Q1. However, to the best of our
knowledge such cases were not studied in earlier research. Example 3 motivates
our work in this paper in which we extend the problem of query containment to
support conjunctive queries with arithmetic expression, or QWAE for short.

Below is another example of QWAEs which shows the containment for con-
junctive queries with constraints in the form of arithmetic expressions.

Containment of Conjunctive Queries with Arithmetic Expressions 441

Example 4. Consider relations r1(X, M) and r2(X, N), and conjunctive queries
with arithmetic expressions below.

Q1(X, M) :- r1(X, M), r2(X, N), M + N > 0.
Q2(X, 10) :- r1(X, 10), r2(X, 0).

Using the CM μ from Q1 to Q2 which maps X to itself and M to 10, we can see
that it is in fact the case that Q2 $ Q1. In this paper, we generalize earlier work
on query containment with attribute comparisons and present an algorithm for
deciding containment in the presence of arithmetic expressions. Moreover, given
such queries Q1 and Q2, if Q2 $ Q1, our proposed algorithm finds a rewriting
Q′

2, based on Q2 such that Q′
2 $ Q1.

The organization of the rest of this paper is as follows. Next, we review
related work. In section 3, we discuss the concept of containment of conjunctive
queries and query containment in the presence of constraints in the form of
arithmetic expressions. In section 4, we present a decision algorithm to test
containment of such queries. The proposed algorithm also finds a contained
rewriting. Concluding remarks and future work are discussed in section 5.

2 Related Work

Chandra and Merlin studied query containment (QC) for standard conjunctive
queries [4]. They showed that for two conjunctive queries Q1 and Q2, Q2 $ Q1 if
and only if there is a containment mapping from Q1 to Q2. Such a mapping, maps a
constant to itself, and a variable to either a variable or a constant. Under this map-
ping, the head of the queries will become identical, and each subgoal ofQ1 becomes
a subgoal in Q2 [2]. Millstein et al. [11] consider query containment in the context
of information integration and introduced the concept of relative containment for
cases where sources become unavailable. Gupta et al. [6], and Benedikt et al. [3]
studied constraint queries and the problem of constraint satisfaction without per-
forming a complete constraint evaluation. Klug [8] and Afrati et al. [2] consider the
problemofQC in the presence of arithmetic comparisons andpropose an algorithm
for finding and testing containment. Furthermore, [2] studied cases in which query
normalization is not required, which is the first step in containment checking algo-
rithm. Hence, their algorithm reduces the size of the query and provides efficiency.
They also take advantage of an inequality graph to find the homomorphism for the
subject queries. The following categorization from [6] classifies different languages
using which we can represent constraints in the queries.

1. Conjunctive queries (CQs)([4]).
2. Unions of conjunctive queries ([14]).
3. Conjunctive queries with arithmetic comparisons ([8, 2]).
4. Conjunctive queries with negated subgoals ([10]).
5. Other combinations of the above, that is,CQs orunions ofCQs,with orwithout

arithmetic comparisons and with or without negated subgoals.
6. Recursive datalog, including caseswith orwithout arithmetic comparisons and

with or without negated subgoals.

442 A. Kiani and N. Shiri

Although [8] and [2] both considered the containment problem for queries with
constraints, their work focused more on comparing single attributes, that is con-
straints of the form AθEr , in which A is an attribute, θ is a comparison opera-
tor, and Er is either a an attribute or a constant. In this work, we consider con-
junctive queries with constraints of the form ElθEr , in which El and Er are arith-
metic expressions and θ ∈ {<, >, =}. Next, we define some concepts and
notations.

3 Query Containment and Conjunctive Queries with
Arithmetic Expressions

In this section, we study the problem of containment of conjunctive queries with
arithmetic expressions.

Queries with arithmetic constraints can be divided into the four categories, as
follows. For each category we also provide an example.

1. Constraints with equality of atomic operands:

Q(X, Y) :- r1(X, Y, Z), r2(X, M), Y = 1999, M = Z.

2. Constraints with inequality of atomic operands:

Q(X, Y) :- r1(X, Y, Z), r2(X, M), Y > 1999, M ≤ Z.

3. Constraints with equality on expressions:

Q(X, Y) :- r1(X, Y, Z), r2(X, M), Z = 2×M, X + M = Y + Z.
4. Constraints with inequality on expressions:

Q(X, Y) :- r1(X, Y, Z), r2(X, M), Y + Z < M.

Note that such queries are common in SQL. Also note that while cases 1 and
2 deal with comparison of single attributes, which in a sense are special case of
arithmetic expressions, cases 3 and 4 involve more general case of arithmetic
expressions.

3.1 Conjunctive Queries with Arithmetic Expressions

Now, we formally define the conjunctive queries with arithmetic expression
(QWAE), and their normal form.

A conjunctive query with arithmetic expression is a statement of the form:

h(X̄) : − g1(X̄1), . . . , gk(X̄k), α1, . . . , αn,

where gi(X̄i) are subgoals and αj are constraints. Let A be the set of attributes
and constants in the query. Each predicate gi in the rule body is a base relation,
and every argument in gi is an expression over A. Every constraint αj is of the form
El θ Er, where El (left) and Er (right) are arithmetic expressions over A and θ is a
comparison operator. Examples of such queries are as follows.

Containment of Conjunctive Queries with Arithmetic Expressions 443

1. p1(X, T) :- r1(X, H), r2(X, N, R), T = H ×R + N × 100.

Note that in this query, the head attribute T is defined as an expression over
attributes in the body. This is equivalent to the SQL query below, indicating
how such queries may arise in applications.

SELECT r1.X , H ×R + N × 100 AS T
FROM r1, r2
WHERE r1.X = r2.X ;

2. p2(X) :- s1(X, V1, C1, Y), s1(X, V2, C2, Y11), V1×C1 = V2−C2, Y1 = Y +1.

In this query, the constraint part filters out the tuples for which the constraint
V1 ×C1 = V2 −C2 is not satisfied. The SQL version of this query would be as
follows:

SELECT s1.X
FROM s1, s2
WHERE s1.X = s2.X AND s1.V1 × s1.C1 = s2.V2 − s2.C2;

To sum up, we can see that arithmetic expressions play two roles in QWAEs.
One is to define an attribute in the head and the other is to express a condition/
constraint in the rule body. Later, we will show that deciding containment of Q2
in Q1 could be done easier if the constraints in Q2 do not include “disjunction”,
that is, the comparison operators θs used in Q2 are restricted to {<, >, =}. Note
that when θ ∈ {≤,≥, =}, it implies the presence of disjunction, e.g., a ≤ b can be
represented as (a < b) ∨ (a = b), or a = b can be represented as (a < b) ∨ (a > b).

3.2 Normalized Queries

Normalization of the queries is the first step in the algorithms proposed for decid-
ing query containment [4, 2]. This is because a containment mapping is a function
that associates with each variable, a variable or a constant. However, after normal-
izing the two queries, their ordinary subgoals will have distinct variables, making
it possible to map variables in Q1 to variables in Q2. Therefore, normalization is
required in general, however, it might result in higher cost as the number of con-
tainment mappings increases in general for normalized queries.

Definition 1. [Normalized QWAE]
A QWAE is said to be normalized if every argument in every normal predicate in
the head or body of the query is a unique variable not repeated in any other normal
predicates.

The following algorithm, adapted from [2], can be used to normalize QWAEs.

1. For all occurrences of an expression exp (which is not a single attribute) in the
head or subgoals, replace the occurrence of exp by a new distinct variable Xi,
and add Xi = exp to the body as a new constraint β.

2. For every argument X (atomic expression) in the subgoals in the rule body,
replace all but the first occurrence of X by a new distinct variable Xi, and add
Xi = X to the body as a new constraint β.

444 A. Kiani and N. Shiri

3. For every argument X (atomic expression) in the head, replace all but the first
occurrence of X by a new distinct variable Xi, and add Xi = X to the body as
a new β.

To illustrate how this algorithm works, consider the following conjunctive
query, provided earlier as an example in category 3. It should be clear that nor-
malization generates an equivalent query.

Q1(X, X) :- r1(X, Y, Z), r2(X, Y + Z), X = Y − Z
Step 1:

Q1(X, X) :- r1(X, Y, Z), r2(X, X1), X = Y − Z,
X1 = Y + Z.

Step 2:

Q1(X, X) :- r1(X, Y, Z), r2(X2, X1), X = Y − Z,
X1 = Y + Z, X2 = X .

Step 3:

Q1(X, X3) :- r1(X, Y, Z), r2(X2, X1), X = Y − Z,
X1 = Y + Z, X2 = X, X3 = X .

3.3 Containment of Conjunctive Queries

Next, we recall the notion of containment of conjunctive queries.

Definition 2. [Containment of Conjunctive Queries] A conjunctive query Q2 is
contained in a conjunctive query Q1, denoted Q2 $ Q1, if and only if there is a
containment mapping μ from Q1 to Q2, such that μ maps the attributes of Q1 to the
attributes of Q2, and after applying μ, the heads are unified and the predicates in the
body of Q1 form a subset of the predicates in the body of Q2.

3.4 Containment in the Presence of Constraints

The following result from [8, 6, 2], characterizes the containment of conjunctive
queries with constraints. Let Q1 and Q2 be conjunctive queries defined as follows:

Q1(X̄) :- g1(X̄1), . . . , gk(X̄k), α1, . . . , αn.
Q2(Ȳ) :- g1(Ȳ1), . . . , gl(Ȳl), β1, . . . , βm.

Let C = {αi|i ∈ [1..n]} and D = {βj|j ∈ [1..m]} be the set of constraints in Q1
and Q2, respectively. Then, Q2 $ Q1 iff D ⇒ μ1(C) ∨ . . . ∨ μq(C), where μps are
containment mappings from Q1 to Q2 making the head unified and the predicates
in the body of Q1 a subset of the predicates in the body of Q2.

Example 5. [Contained query] Consider the following pair of QWAE queries:1

Q1(X, Y) :- r1(X, Y), r2(X, Z), X = 20− 2× Z.

1 We will revisit these queries in Example 9 to illustrate the steps of our algorithm.

Containment of Conjunctive Queries with Arithmetic Expressions 445

Q2(M, N) :- r1(M, N), r2(M, P), M + N = 20, N = 2× P .

Let μ = {X → M, Y → N, Z → P} be a containment mapping. It is straightfor-
ward to see that (M + N = 20, N = 2 × P) ⇒ (M = 20 − 2 × P), and hence
Q2 $ Q1.

As illustrated in [2], it is possible that Q2 $ Q1, while every component μi(C) in
the implication D ⇒ μ1(C)∨ . . .∨μq(C) is false. To see this, consider the following
implications:

I1 : (X < a ∨X > a)⇒ X < a.
I2 : (X < a ∨X > a)⇒ X > a.
I3 : (X < a ∨X > a)⇒ (X < a ∨X > a).

Here, implications I1 and I2 are not always true, whereas I3 is. Regarding the con-
straint in queries, this happens when D “includes” disjunction. Assume that D =
D1∨ . . .∨Dk. Then we have the following equivalences in which C′ = μ1(C)∨ . . .∨
μq(C).

D ⇒ μ1(C) ∨ . . . ∨ μq(C) ≡
D1 ∨ . . . ∨Dk ⇒ μ1(C) ∨ . . . ∨ μq(C) ≡
D1 ∨ . . . ∨Dk ⇒ C′ ≡
¬(D1 ∨ . . . ∨Dk) ∨C′ ≡
(¬D1 ∧ . . .¬ ∧Dk) ∨ C′ ≡
(¬D1 ∨ C′) ∧ . . . ∧ (¬Dk ∨ C′) ≡
(D1 ⇒ C′) ∧ . . . ∧ (Dk ⇒ C′) ≡
(D1 ⇒ μ1(C) ∨ . . . ∨ μq(C)) ∧ . . . ∧ (Dk ⇒ μ1(C) ∨ . . . ∨ μq(C)).

Let us refer to implication Di ⇒ μ1(C) ∨ . . . ∨ μq(C) as ηi. Note that here the
original implication would be true if and only if ηi is true, for all i. Assume that
for every ηi, there exists a μj(C) such that Di ⇒ μj(C). Note that even though we
cannot conclude the implication (Di∨D1∨. . .)⇒ μj(C), the following implication
holds: (D1 ∨ . . .∨Dk)⇒ (μ1(C)∨ . . .∨μq(C)) This shows while there is no single
μi(C) in the original implication for which the implication D ⇒ μi(C) is satisfied,
the implication as a whole might be satisfied.

Definition 3. [Containment of conjunctive queries with arithmetic expression]
Let Q1(X̄) and Q2(Ȳ) be two normalized QWAEs defined as follows.

Q1(X̄) :- g1(X̄1), . . . , gk(X̄k), α1, . . . , αn.
Q2(Ȳ) :- g1(Ȳ1), . . . , gl(Ȳl), β1, . . . , βm.

Let C = {αi|i ∈ [1..n]} and D = {βj |j ∈ [1..m]}. Then, Q2 is contained in Q1
denoted as Q2 $ Q1 iff D ⇒ μ1(C) ∨ . . . ∨ μq(C), where μis are containment
mappings from Q1 to Q2 making the predicates in the body of Q1 a subset of the
predicates in the body of Q2, and the heads identical.

Proposition 1. Let Q1 and Q2 be QWAEs, and suppose C = {αi|i ∈ [1..n]} and
D = {βj |j ∈ [1..m]} are constraints in the bodies, respectively. Also suppose μps

446 A. Kiani and N. Shiri

are containment mappings from Q1 to Q2, and D includes only conjunctions. That
is, each βj is of the form El θ Er, where θ ∈ {<, >, =}. Then, Q2 $ Q1 if and only
if D ⇒ μi(C) for some i ∈ [1..q].

Proof. Suppose D consists of conjunctions only, i.e., D = D1 ∧ . . . ∧Dk. Thus,

D ⇒ μ1(C) ∨ . . . ∨ μq(C) ≡
D1 ∧ . . . ∧Dk ⇒ μ1(C) ∨ . . . ∨ μq(C)

Suppose for some i and j, Di ⇒ μj(C). Then we have, D1 ∧ . . . ∧ Dk ⇒ μj(C),
where i ∈ [1..k], and hence D1 ∧ . . .∧Dk ⇒ μ1(C)∨ . . .∨μq(C). This means that
from Di ⇒ μj(C), we may conclude that D ⇒ μj(C).

In definition 3, if assume that D does not include disjunction, then according to
proposition 1, conditionD ⇒ μ1(C)∨. . .∨μq(C) reduces to D ⇒ μi(C), for some
i ∈ [1..q]. Therefore, we only need to test D ⇒ μ(C), for a containment mapping
μ found. This explains why in this work, comparison operators considered are re-
stricted to >, <, and =. This is further discussed when we present our algorithm
TC, for testing containment.

3.5 Categories of Containment w.r.t Arithmetic Expressions

Let Q1 and Q2 be any pair of QWAEs, and C and D be their sets of constraints,
respectively, where D includes only conjunction. Suppose T is the set of tuples (in
any given database) satisfying predicates in the body of Q2. If there exists a con-
tainment mapping μ from Q1 to Q2, there are three possible cases we distinguish
for containment of Q2 in Q1, described as follows.

1. TD ⊆ Tμ(C).
That is, tuples TD satisfying constraintD also satisfy constraintμ(C), denoted
as Tμ(C). In other words, D implies μ(C), and hence Q2 $ Q1. Example 5 falls
into this category.

2. TD ∩ Tμ(C) = ∅.
In this case, we should simply discard Q2, since it is not contained in Q1 nor it
can be used to find a query that is contained in Q1.

3. TD ∩ Tμ(C) = ∅.
That is, some tuples satisfying constraintD also satisfy constraintμ(C). In this
case, Q2 $ Q1. However, since there are still some common tuples in TD and
Tμ(C), we can define a query V ′ such that V ′ $ Q1. For this, we look for the
set of constraints that are not implied by D. We call this set as not implied con-
straints (NIC, for short).AssumeC1 ⊆ {μ(α1), . . . , μ(αn)}. LetC2 = {γi|γi ∈
C1, D ⇒ γi}. That is, C2 contains all the constraints in C1 that are not implied
by D. We refer to C2 as NICQ2 of Q1.
Let C3 be the subset of C2 that contains the constraints γ which are not defined
over X̄. That is, C3 contains those constraints in γ in which there is at least one
attribute that does not appear in X̄. We then try to reformulate the constraints
in C3, using a constraint solver, such that the attributes in C3 are among those

Containment of Conjunctive Queries with Arithmetic Expressions 447

mentioned in X̄. Each constraint obtained in this reformulation is added intoC4
togetherwith theotherNIC constraints. IfC3 is emptyorwe could reformulate
all its elements, then V ′ could be defined as:

V ′(Ȳ) :- V (Ȳ), γ1, . . . , γu.

in which γi ∈ C4. Otherwise, there is no containment to consider, and hence
V ′ $ Q1.

Example 6. [Partially contained query] Consider the QWAEs defined as follows:

Q(X, Y, Z) :- r1(X, Y), r2(X, Z), X + Y = Z.
V (M, N, P) :- r1(M, N), r2(M, P), 2×N = 3× P.

Let μ = {X → M, Y → N, Z → P}. It is easy to verify that D � μ(C), where
D = {2×N = 3×P} and μ(C) = {M +N = P}. Therefore, V $ Q. However, in
this case, we test if we can restrict V to get a contained query. If this is the case, we
can produce some partial answer by defining V ′ such that V ′ $ Q. The test result
is positive in this case and we define V ′ as follows, using which we can conclude that
V ′ $ Q.

V ′(M, N, P) :- V (M, N, P), M + N = P .

3.6 Unifiable and Non-unifiable Head Predicates

In standard query containment, for Q2 to be contained in Q1, it is required that the
head of queriesQ1 and Q2 be unifiable. However, in this work, even when the heads
are not unifiable, we still check if Q2 can be used in finding a contained query for
Q1. For this, we define the concept of head transformation as follows.

Definition 4. [Head Transformation]
Given two conjunctive queries Q1(X̄) and Q2(Ȳ), if there exists a function λ from
Ȳ to X̄ such that ∀Xi in X̄, Xi = λ(Ȳ), then λ is a transformation from the head of
Q2 to the head of Q1. Intuitively, when λ exists, it means that X̄ is computable on
the basis of Ȳ .

Note that such λ is directional, and the transformation is not based on the identity
of attribute names but based on a containment mapping between the attributes in
the the two queries.

Example 7. [Unifiable Heads] Consider the following queries:

Q(A) :- r(X, Y), A = X + Y.
V (M, N) :- r(M, N).

Furthermore, let us consider the containment mapping μ = {X → M, Y → N}
from Q to V . Here, A can be expressed as an expression over M ,N . Accordingly,
there is a transformation fromthe arguments ofV (M, N) to that ofQ(A), attribute
A in this case. That is, A = M + N . In this case, even though V is not contained
in Q, we can define the following query V ′ which is contained in Q.

V ′(A) :- V (M, N), A = M + N.

448 A. Kiani and N. Shiri

Note that now the structure of the answer tuples through V ′ matches that of
query Q.

Example 8. [Non-unifiable Heads] Let us next consider the following QWAEs.

Q(X, Y) :- r(X, Y).
V (A) :- r(X, Y), A = X + Y.

Note that even though the body of V is contained in the body of Q, V is not con-
tained in Q, in any sense, standard or extended. The reason is that, because of the
particular structure of the heads, there is no transformation from variables in V (A)
to those in Q(X, Y). In fact, X and Y come from r which we do not have access to,
considering V as a view/source.

Proposition 2. Let Q1 and Q2 be two normalized QWAE queries such that there
is at least one attribute in the head of Q1 for which we cannot find a one to many
mapping to attributes of Q2. Then Q2 is not contained in Q1 nor can be used to find
a contained query (which includes only Q2 as a predicate).

Note that 1-1 mapping is a special case of one to many mapping. Also having a 1-
1 and onto mapping from the attributes of Q1 to those in Q2 corresponds to the
standard case of containment. So, according to proposition 2, we may discard con-
tainment mappings based on which there is no transformation from Q2 to Q1.

4 Testing Containment

In this section,we introduce analgorithmfor testing containmentofQWAEqueries.
We will refer to this algorithm as testing containment, or TC, for short.

Algorithm TC(Q1, Q2, R):
Input: Q1 and Q2 conjunctive queries with arithmetic expressions.
Output: R, a rewriting of query Q2 which is contained in Q1.
Method:

S1. Normalize Q1 and Q2. Now the two queries have the following form:

Q1(X̄) :- g1(X̄1), . . . , gk(X̄k), α1, . . . , αn.
Q2(Ȳ) :- g1(Ȳ1), . . . , gl(Ȳl), β1, . . . , βm.

Let X̄ = {A1, . . . , Ai} and Ȳ = {B1, . . . , Bj}.
S2. Find a new containment mapping μ from Q1 to Q2. In this step, we do not

consider the heads when finding μ. If no containment mapping exists, re-
turn ∅ and halt.

S3. Check condition below for Proposition 2.

For all Ai ∈ X̄ , there exists expi such that A′
i = μ(Ai) = expi, where expi

is an expressiondefinedover Ȳ . If this conditiondoesnothold, go to stepS2.

Containment of Conjunctive Queries with Arithmetic Expressions 449

S4. For constraints C = {α1, . . . , αn} in Q1 and D = {β1, . . . , βm} in Q2,
determine the category of containment as described in section 3.5.
(a) If it falls in category 2, then D � C, and hence Q2 $ Q1. Go to S2.
(b) If it falls in category 1, then Q2 $ Q1. Return the following query:

R(X̄) :- Q2(Ȳ), A1 = exp1, . . . , Af = expf ,

where Ai’s are attributes in X̄ and expis are as found in step S3.
Note that in this case, if Ȳ = μ(X̄), then Q2 is contained in Q1. That is
by applying the containment mapping, the head of Q1 unifies the head
of Q2.

(c) If it falls in category 3, then Q2 $ Q1, however based on Q2, we define
a query V ′ which is contained in Q1.

V ′(Ȳ) :- Q2(Ȳ), γ1, . . . , γu,

where γi’s are those constraints in Q1 that can not be implied by con-
straints in Q2. Note that as explained in category 3 of containment,
some constraint γ might have attributes that are not in the head of Q2
or Q1. We then try to reformulate them based other constraints as de-
scribed in category 3 of containment. If this could be done such that no
such γ remain, then every constraint is well defined, and we return the
following query. Otherwise go to step S2.

R(X̄) :- V ′(Ȳ), A1 = exp1, . . . , Af = expf ,

where Ai’s are attributes in X̄ and expis are as defined in step S3.

End TC.

The following examples introduced earlier illustrate the steps of this algorithm.

Example 9. Assume Q and V are QWAE queries, defined as follows:

Q(X, Y) :- r1(X, Y), r2(X, Z), X = 20− 2× Z.
V (M, N) :- r1(M, N), r2(M, P), M + N = 20, N = 2× P.

S1. [Normalizing Q and V]

Q(X, Y) :- r1(X, Y), r2(X1, Z), X = 20− 2× Z, X1 = X.
V (M, N) :- r1(M, N), r2(M1, P), M +N = 20, N = 2×P, M1 = M.

S2. [Finding a containment mapping] Consider a CM μ = {X → M, Y →
N, Z → P, X1 →M1}. Using a constraint solver, we can see that,
(M + N = 20, N = 2×P, M1 = M)⇒ (M = 20− 2×N, M1 = M).

S3. [Checking the heads] Using the containment mapping μ, we can derive
that X = M and Y = N , so the heads unify.

S4. [Determining the containment category] Since we could find for both X
and Y , mapping expressions over M and N that map the head of Q to
the head of V , then Q and V fall in the first category of containment

450 A. Kiani and N. Shiri

(V $ Q), and as the result the proposed algorithm returns the follow-
ing query, in which V (M, N) is the view defined above.

R(X, Y) :- V (M, N).

Below is an example of a query V which is not contained in Q in the usual sense,
however, the algorithm determines a query R, such that R $ Q

Example 10. Let Q and V be QWAE queries defined as follows:

Q(A) :- r1(X, Y), r2(X, Z), 3×X = Y, A = X + Y.
V (M, N) :- r1(M, N), r2(M, P), 2×N = 3× P.

S1. We first normalize Q and V , which gives:

Q(A) :- r1(X, Y), r2(X1, Z), 3×X = Y, A = X + Y, X1 = X.
V (M, N) :- r1(M, N), r2(M1, P), 2×N = 3× P, M1 = M.

S2. Consider μ = {X →M, Y → N, Z → P, X1 →M1}.
S3. Since we can find the following mapping betweenA, M , andN , we may

continue with μ, which yields A = M + N .
S4. Since D = {2 × N = 3 × P, M1 = M} does not imply C1 = {3 ×

M = N, M1 = M, A = M + N}, that is, D � (3 × M = N), we
should consider category 3 of containment. That is, V $ Q. In this
case, however, we can define V ′ which is contained in Q. Here, C1 =
{3×M = N, M1 = M, A = M + N} and C2 = {3×M = N}.
Thus, C3 = C4 = {3×M = N}. Hence, we obtain V ′ and R as follows:

V ′(M, N) :- V (M, N), 3×M = N ,
R(A) :- V ′(M, N), A = M + N .

4.1 Complexity Analysis

The complexity of our TC algorithm above can be analyzed noting the two steps
involved, i.e., (1) finding containment mappings and (2) solving the constraints in
order to decide their implication.

It is known that finding containment mapping is NP [2], On the other hand, the
complexity of the constraint solver depends on the constraint type. As shown in
[7], in case of linear equality constraints, the complexity of deciding implication of
constraints is O(n3), where n is the number of variables in the constraints. For non-
linear constraints, the complexity would be higher. However, since dealing with
constraints is the second step in the algorithmafter a containmentmapping is being
found, the type of constraints cannot be used to restrict the complexity of TC as a
whole, and hence it is at least NP.

5 Conclusions and Future Work

Containment of conjunctive queries has been studied extensively and is the core
concept indatabase research including answeringqueries usingviews, query rewrit-

Containment of Conjunctive Queries with Arithmetic Expressions 451

ing, data integration, query optimization, etc. Recently, standard query contain-
ment has been extended to conjunctive queries with constraints in the form of at-
tribute comparisons. In this work, we considered the containment problem for
queries with arithmetic expressions, which we called QWAE, which extends earlier
proposals for conjunctive queries with constraints. A main motivation of this work
was to support applications such as information integration, answering queries us-
ing views, cooperative query answering, to name a few.

We identified three cases of containment of QWAEs and discussed details of
query containment in the presence of constraints and also cases in which arguments
of the predicates, in the head and/or the body, are not necessarily single attributes.
We also extended the concept of normalized queries and proposed an algorithm for
normalizing queries with arithmetic expressions, adapted from [2].

Finally we proposed an algorithmTC that given twoQWAE queriesQ1 and Q2,
it returns a query, that is a rewriting of Q2 which is contained in Q1.

An implementation of this work is underway. Moreover, based on this work,
we have developed an algorithm for answering queries using views in the context
of conjunctive queries with linear equality constraints which is a special case of
QWAEs [7]. We are currently investigatingways to extend our algorithm deveoped
in [7] for answeringqueries usingviews to supportmore generalQWAEs.Asanother
future work, we are working on a generic model for information integration, which
would be a platform for the result of the aforementioned works. In a more broad
view, the algorithm TC together with our view-based query answering algorithm
would best suit in our generic model for information integration to support query
processing.

Acknowledgements

This work was in part supported by grants from Natural Sciences and Engineering
ResearchCouncil (NSERC) ofCanada, and from ENCS, ConcordiaUniversity.We
also thank anonymous reviewers for their useful comments.

References

1. Afrati, Foto; Li,Chen; andMitraPrasenjit. Answering queries using viewswith arith-
metic comparisons. In PODS ’02: Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 209–220.
ACM Press, 2002.

2. Afrati, Foto; Li, Chen; and Mitra Prasenjit. On containment of conjunctive queries
with arithmetic comparisons. In EDBT, pages 459–476, 2004.

3. Benedikt Michael and Libkin Leonid . Safe constraint queries. In In Proc. ACM
Symp. on Principles of Database Systems, pages 99–108, 1998.

4. Chandra A.K. and Merlin P.M. Optimal implementation of conjunctive queries in
relational databases. In Proc. 9th Annual ACM Symp. on the Theory of Computing,
pages 77–90, 1977.

5. Chaudhuri, Surajit; Krishnamurthy, Ravi; Potamianos, Spyros; and Shim, Kyuseok.
Optimizing queries with materialized views. In Proc. IEEE Int. Conf. on Data Eng.,
pages 190–200, 1995.

452 A. Kiani and N. Shiri

6. Gupta, Ashish; Sagiv, Yehoshua; Ullman, Jeffrey D.; and Widom, Jennifer. Con-
straint checking with partial information. In Proc. of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS), pages 45–55, Min-
neapolis, Minnesota, 1994.

7. Kiani, Ali and Shiri, Nematollaah. Answering queries in heterogenuous information
systems. InProc. ofACMWorkshop on Interoperability ofHeterogeneous Information
Systems, Bremen, Germany, Nov. 4, 2005.

8. Klug A. On conjunctive queries containing inequalities. Journal of the ACM, pages
35(1): 146–160, 1988.

9. Levy, Alon Y. Answering queries using views: A survey. The VLDB Journal,
10(4):270–294, 2001.

10. Levy, Alon Y. and Sagiv, Yehoshua. Queries independent of updates. In Proc. Int’l
Conf. on Very Large Data Bases (VLDB), pages 171–181, Dublin, Ireland, 1993.

11. Millstein, Todd; Levy, Alon; and Friedman, Marc. Query containment for data inte-
gration systems. J. Comput. Syst. Sci., 66(1):20–39, 2003.

12. Pottinger, Rachel and Levy,Alon Y. A scalable algorithm for answering queries using
views. In The VLDB Journal, pages 484–495, 2000.

13. Qian, Xiaolei. Query folding. In Proc. IEEE Int’l Conf. on Data Eng., New Orleans,
LA, February 1996.

14. Sagiv, Y. and Yannakakis, M. Equivalence among relational expressions with the
union and difference operators. Journal of the ACM, 27(4):633–655, 1981.

15. Ullman, Jeffrey D. Information integration using logical views. Theoretical Computer
Science, 239(2):189–210, 2000.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 453 – 465, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Multiagent Negotiation for Fair and Unbiased Resource
Allocation

Karthik Iyer and Michael Huhns

Department of Computer Science and Engineering, University of South Carolina,
Columbia SC 29208, USA

{iyerk, huhns}@engr.sc.edu

Abstract. This paper proposes a novel solution for the n agent cake cutting (re-
source allocation) problem. We propose a negotiation protocol for dividing a
resource among n agents and then provide an algorithm for allotting portions of
the resource. We prove that this protocol can enable distribution of the resource
among n agents in a fair manner. The protocol enables agents to choose por-
tions based on their internal utility function, which they do not have to reveal.
In addition to being fair, the protocol has desirable features such as being unbi-
ased and verifiable while allocating resources. In the case where the resource is
two-dimensional (a circular cake) and uniform, it is shown that each agent can
get close to 1/n of the whole resource.

1 Introduction

Autonomous agents are currently being given responsibilities in numerous applications
from the economic, industrial, commercial, social, and entertainment sectors of the
world. Autonomy means that the agents have a high degree of freedom and choice in
initiating actions on their own, planning goals for themselves, and taking actions to
achieve them. In order to achieve their goals agents must have sufficient resources and
capabilities. But what if the resources are insufficient for all agents to achieve their
goals? This typically is the case where an agent lives in a multiagent system and has to
share resources with other agents, coordinate its own tasks to resolve conflicts, and
sometimes persuade other agents to do things for it. All this could be done centrally by
one designer, who could chalk out every detail of the entire system. The central agency
would then be able to resolve conflicts, divide resources, plan schedules, etc. But this is
not applicable in open systems where individual agents are designed by different de-
signers and there is no concept of a central agency. Multiagent systems are inherently
distributed, heterogeneous, and open. So what could be done in situations like this?

In the real world, people from different backgrounds come together and resolve
conflicts or form alliances for mutual benefits. This sort of interaction between people
is based on negotiation. Negotiation [1] is “when two parties strike a deal through ar-
gumentation or arbitration for the mutual good of both.”

Negotiation as per Davis and Smith [2] is “A discussion in which interested parties
exchange information and come to an agreement.” This work revolves around a re-
source allocation problem and the main concern of agents participating in the negotia-
tion scheme described is to ensure a fair and unbiased allocation of a resource.

454 K. Iyer and M. Huhns

In open multiagent systems there is generally no global control, no globally consis-
tent knowledge, and no globally shared goals or success criteria. So there exists a real
competition among agents, which act to maximize their own utilities. We assume all
the utility functions are private to the agents. The negotiation protocol should be im-
mune to information hiding and lying by agents. This has to be ensured as there is no
control on the design of agents that interact in open environments and the only check
that could be made is by cleverly designing their interaction mechanism. We describe
our negotiation protocol that tries to incorporate the desirable characteristics men-
tioned above. We use the problem domain of cake cutting in order to better visualize
and formalize our solution for an n-agent resource allocation protocol.

2 Background

The cake-cutting problem is a well known example of resource sharing among ra-
tional agents. The classical solution for the two-person case, divide and choose, was
first proposed by Steinhaus [3]. This solution, where one person divides the cake into
two pieces and the other gets first choice of a piece, is both fair and envy free. How-
ever, it has been difficult to scale up the solution to n agents. One of the solutions [4]
for dividing the cake among n agents fairly has been to use a moving knife parallel to
one of the edges of the cake. The knife cuts when one of the agents yells “Cut!” and
the portion traversed by the knife so far is allotted to the agent. This is an elegant and
clean n agent solution for creating n portions fairly in n-1 cuts. But the moving knife
solution has its own set of drawbacks. First, it is not envy-free. Second, it requires the
presence of an unbiased mediator who holds the knife and moves it along the cake at
a constant rate. Despite this safeguard, it is difficult to verify the cutting of the cake.
For example, if one of the agents alleges that the mediator cut the cake an inch shorter
than he had expected, it would be difficult to find out who is telling the truth. In a dis-
tributed system, synchronization problems may also occur. An agent with a slower
connection to the mediating authority will find its bid to cut may reach later than an
agent with a faster connection and may consequently lose the bid. Third, the moving
knife protocol is also not pareto optimal. A scheme [5] to improve efficiency in the
pareto optimal sense has been proposed with the use of two moving knives. However,
the solution works only for division of the resource between two agents, and the agent
that moves the knives must be able to estimate the utility function of the other agent
well.

Other solutions to n-person division attempt to create a protocol that does not re-
quire assistance from an outsider. One way is to scale up from the two-person solution
and iteratively add new agents until all have allocations. For n=2, the classic divide
and choose is used. When agent 3 is added, agents 1 and 2 each divide their portions
into 3 parts. Agent 3 then picks one part from each of the other agents. This continues
as each agent is added. The drawback for this protocol is that the earlier agents will be
faced with the chore of repeatedly dividing their portion into many pieces. The agent
that is added last will get its share by doing the least amount of work.

Another solution [6] converts the n agent division problem into many n-1 agent
problems and then recurses. The recursive calls return when the many two-agent
problems are resolved and the answers back up to the top-level call. The drawback is
that an agent whose shares remain unallocated till the end has to continuously re-bid
for scattered pieces until the iterations end.

 Multiagent Negotiation for Fair and Unbiased Resource Allocation 455

A divide-and-conquer procedure [7] instructs the agents to cut the cake into half
according to their measure. Then the cuts are ordered and the first n/2 cuts are allotted
the left half of the cake. The rest are allotted the right half. This procedure continues
until 2 agents have to cut the cake where the well known divide-and-choose algorithm
can be implemented. An obvious drawback of this procedure is that the number of
agents needs to be a power of two, which is an unrealistic requirement.

In the next section we present an improved protocol for n-agent resource division.
First we discuss the case of dividing a linear resource, such as a rectangular piece of
cake or property along a coastline. Then we show that we can use this protocol for al-
locating a two-dimensional resource, such as a circular cake, time slots in a 24 hour
cycle, or any resource that does not have a well defined starting point. Finally we de-
scribe an improved version of the protocol specifically for a circular resource, which
removes some of the drawbacks of the linear case.

3 Dividing a Linear Resource Among n Agents

3.1 Protocol

The problem of dividing a linear resource among n agents can be solved by following
the protocol below. An example of how a strip of property along a coastline is distrib-
uted among three agents is discussed in [8] and [9]. The protocol for the agents is
simple: They are required to make n-1 marks of the property that delimit n intervals.
To the agent making these marks, each of these intervals should be worth 1/n of the
whole piece and is equally desirable. The procedure guarantees that given such a set
of marks, each agent will be guaranteed one of the intervals it has marked. The proto-
col is fair because each agent will be given one of the intervals it marked.

Refer to figure 1 to see the functioning of the protocol. Given n agents who need to
divide a resource among themselves, they approach a mediator (which could be one
of the bidding agent themselves) to get their portions of the resources allocated. They
register with the mediator, informing it of their interest in participating. After the me-
diator confirms their participation, the agents submit their bids as a set of marks de-
noting equal-value portions in their estimation. The mediator waits for all the agents
to submit their bids. Then it calculates portions to be allocated to each agent and fi-
nally informs each agent of the portion allocated to it.

Theorem 1. If there are n agents and each agent makes n-1 marks, creating n portions
of a linear cake, then our protocol guarantees that each agent will be allotted a piece
of the cake, such that the piece was one of the n portions created by the agent itself.

Proof: This proof assumes that the left and right portions of the cake have been allot-
ted to the agents whose marks came first on the left side and right side respectively.
We concentrate on allotting pieces of the cake to the agents still remaining after this
procedure. Note that after the first 2 agents have received their share, the marks of the
remaining agents need not start at the same point. Now we will have n-2 agents with
each agent having at least n-1 marks creating at least n-2 pieces of the cake. Without
losing generality, we can add 2 to the above numbers and re-state the problem as:

456 K. Iyer and M. Huhns

Fig. 1. Linear cake cutting protocol

There are n agents with each agent having at least n+1 marks creating at least n pieces
or intervals of the cake. It is proved that each agent will be guaranteed a piece of the
cake such that the piece was marked by the agent himself.

When agents create marks (that represent their cuts), the following possibilities ex-
ist for a particular chosen interval.

1. Pure interval, i.e., no other agent’s interval intersects this interval
2. Mixed interval

2.1. The current interval intersects another interval. It does not completely contain
any other interval.

2.2. The current interval contains at least one interval made by at least one agent.
In addition, there will definitely be an interval that partially intersects the cur-
rent interval.

 Multiagent Negotiation for Fair and Unbiased Resource Allocation 457

Base Case (n=2). Each agent will create 2 intervals, each using 3 marks. Find the
first mark. Say this mark belongs to agent A. The next mark may or may not be made
by A.
1. If the next mark is made by A, this is a pure interval, so allocate the current interval

to A. Remove all marks to the left of this interval. Remove all marks made by agent
A. We will be left with marks made by agent B to the right of the current interval.
Repeat the above procedure. None of B’s marks have been deleted yet. Hence the
procedure is guaranteed to find an interval to allocate to B, as no other agents are
left.

2. If the next mark is made by B, A’s interval is mixed. Either case 2.1 or 2.2 will oc-
cur.
2.1. A’s interval intersects partially with B. In this case allocate the interval to A.

Remove all marks to the left of interval. Remove all of A’s marks. Since A’s
interval intersected with B’s interval, the previous step will reduce B’s marks
to 2. Since B has two marks left demarcating an interval and no other agent is
remaining, the procedure is guaranteed to find an interval for B.

2.2. A contains at least one interval of B. Since there are no more agents, such an
interval of B is guaranteed to be a pure interval and is allocated to B. Remove
all marks to the left of the interval. Remove all of B’s marks. Since A con-
tained B, the previous step will reduce A’s marks to 2. Since A has two marks
left demarcating an interval and no other agent is remaining, the procedure is
guaranteed to find an interval for A.

This proves that A and B can be allocated fair shares, no matter how the marks are
arranged.

For any n (n>2). Let us assume that the allocation procedure works for up to k
agents. We will show that the procedure works for k+1 agents. Each agent will create
k+1 intervals, each, using k+2 marks. Find the first mark. Say this mark belongs to
agent i. The next mark might or might not be made by i.

1. If the next mark is made by i, this is a pure interval, allocate current interval to i.
Remove all marks to the left of this interval. Remove all marks made by agent i.
None of the marks made by other agents will be removed as this was a pure interval
for agent i. Hence we will be left with the k+2 marks and k+1 intervals made by
each of the k agents to the right of the current interval. Delete the leftmost mark of
each of the k agents. Thus each agent is left with k+1 marks and k intervals. This
transforms into the allocation procedure for k agents, which we know works. Hence
proved.

2. If the next mark is not made by i, suppose the mark belongs to agent j. Add i to the
list of agents whose mark has already been seen. Repeat the allocation procedure
with j’s mark as the first mark. At some point we will encounter a mark made by
one of the agents already in the list. Say the first such agent is l. The interval de-
marcated by l will not contain any other agent’s interval. It may or may not par-
tially intersect with other agent’s intervals.
2.1. If l’s interval does not intersect with any other interval, then allocate interval

to l. Remove all marks to the left of this interval. Remove all marks made by
agent l. The previous step will remove at most one mark of the agents. Other
agents will have k+2 marks and k+1 intervals. Start from the beginning of the

458 K. Iyer and M. Huhns

list and as each mark is encountered, check if the mark belongs to an agent al-
ready in the agent list. If so, ignore the mark; otherwise add the agent to the
list and delete the mark. This step guarantees that we will have k agents, each
with k intervals and k+1 marks. This transforms into the allocation procedure
for k agents, which we know works. Hence proved.

2.2. If l’s interval partially intersects with some other interval, then allocate the in-
terval to l. Remove all marks to the left of this interval. Remove all marks
made by agent l. The previous step will remove at most one mark of the
agents. Other agents will have k+2 marks and k+1 intervals. Start from the be-
ginning of the list and as each mark is encountered, check if the mark belongs
to an agent already in the agent list. If so, ignore the mark; otherwise, add the
agent to the list and delete the mark. This step guarantees that we will have k
agents each with k intervals and k+1 marks. This transforms into the allocation
procedure for k agents, which we know works. Hence proved.

This proves that the allocation procedure works for n agents, for any n 2.

3.2 Features

If, rather, the resource is circular in shape (e.g., time slots in a 24 hour cycle or a cir-
cular cake), can we use the above procedure to get a solution? Henceforth we use the
example of a circular cake to explain the division of a circular resource. A quick way
to apply the linear protocol to a circular cake is the following.

The protocol begins with a mediator making a mark on the cake denoting it as a
starting point. Now take a strip of length equal to the circumference of the cake. Wrap
the strip around the cake such that the start and end points of the strip meet at the
point marked on the cake. This will show agents the relative locations of their favored
pieces. Lay out the strip on a flat surface and let n agents make n-1 marks on it de-
marcating n intervals.

Next, use the allocation procedure for the linear problem to allocate intervals to
agents. Take the strip that now shows the intervals allocated to the agents and wrap it
around the cake with the start and end of the strip meeting at the point marked on the
cake. Make radial portions of the cake according to the intervals marked on paper and
allot them to the agents based on their markings. This protocol divides a circular cake
among n agents in a fair manner. It has the following features:

1) The protocol is fair because each agent gets one of the pieces it demarcated for itself.
2) It might not be envy-free, because the initial mark made by the mediator might

break up a region of interest for some agents into start and end parts. Such agents
will end up at a disadvantage over the others and might envy that the allocation
procedure tilted in favor of other agents.

3) The linearization makes it difficult for the agents to visualize which portion of the
cake they really wanted to have. The portions of the circular cake have to be con-
verted to linear lengths on the strip, which can be non-trivial.

Attempting to apply the linear protocol on a circular cake will end up creating a
bias, because it requires a starting point to be declared, which might favor one of the
agents. Is there an unbiased way to allocate portions of a circular cake? That is the
topic of the next section.

 Multiagent Negotiation for Fair and Unbiased Resource Allocation 459

4 A Fair and Unbiased Protocol to Partition a Circular Resource
Among n Agents

4.1 Protocol

The protocol that needs to be followed by the agents is fairly simple. Given a circular
cake, an agent can make radial marks at any point. If there are n agents then every
agent needs to make n+1 radial marks on the cake creating n+1 pieces of the cake.
The allocation procedure will allot one of these pieces to the agent. Thus there will be
a total of (n+1)2 marks of the cake. Once agents submit their bid on how the cake will
be cut, each agent will be allotted one piece of the cake demarcated by its own marks
that will have a worth of 1/(n+1) in its opinion. If every agent follows the protocol,
then fair allotments are guaranteed for every agent.

Figure 2 shows the interaction diagram for the protocol. As will be shown later,
due to inefficiency in the allocation process, there will be leftovers which may not be
negligible in the valuation of the agents. In such a case the agents may ask to bid for
the leftovers using the same bidding protocol.

Theorem 2. If there are n agents and each agent makes n+1 radial marks, creating
n+1 portions of the circular cake, then our protocol guarantees that each agent will be
allotted a piece of the cake, such that the piece was one of the n+1 pieces created by
the agent itself.

Proof: This proof assumes that the marks are strictly in increasing order, viz. no two
points are in exactly the same position. We define two terms: A k-circle and a k-
sector.

k-circle. A k-circle consists of a circle that has k+1 marks made by each of the k
agents demarcating k+1 intervals.

k-sector. A k-sector is formed when one or more intervals have been removed from a
circle. A k-sector contains at least k+1 marks demarcating at least k portions for each
of the k agents. By this definition, a k-sector is also a (k-1)-sector, which is also a (k-
2)-sector, etc. A k-sector may or may not be a (k+1)-sector however.

When agents mark their intervals, the following possibilities exist for a particular
chosen interval.

1. Pure interval, i.e., no other agent’s interval intersects this interval
2. Mixed interval

2.1. The current interval partially intersects another interval. It does not com-
pletely contain any other interval.

2.2. The current interval contains at least one interval made by at least one
agent. In addition, there will definitely be an interval that partially intersects
the current interval.

In the case of a k-circle, the following events may occur:

1. If the interval allotted was pure, then the other agent’s intervals were outside this
interval, i.e., the portions demarcated by other agents included the current interval
and some extra portions ahead and behind the current interval. Since the current in-
terval was allocated, the corresponding portions of the other agents are destroyed
because they can no longer include the currently allocated portion.

460 K. Iyer and M. Huhns

Fig. 2. Circular cake cutting protocol

Mediator Bidding agents

Register for bid

Confirm

Submit bid as a set of marks

Allocate portions to each agent

Inform agent of it's allocated portion

Confirm

Ask for markings of leftovers

Send markings

Are leftovers negligible?

Yes

No, Bid for leftover

 Multiagent Negotiation for Fair and Unbiased Resource Allocation 461

2. If the interval allotted was mixed, then there was some overlap with other agents’
portions. When this interval is allocated, then it destroys the two intervals of the
other agents and they can no longer be allocated to the respective agents.

The above cases show that for a k-circle, allotting an interval will destroy at least
one and at most 2 intervals of other agents.

In the case of a k-sector, the following events may occur.

1. If the interval allotted was pure then at most 1 interval of other agents is destroyed.
2. If the interval allotted was mixed then it means other agents interval started after

the current interval. Allocating the current interval would destroy at most one inter-
val of the other agents.

The above cases show that in case of a k-sector, allotting an interval will destroy at
most one interval of the other agents. We will now show an inductive proof for the al-
location procedure.

Fig. 3. Conventions used in the proof

Base Case (n=2). For 2 agents we will have a 2-circle with each agent making 3
marks and demarcating 3 intervals respectively. Let the agents be A and B. Arbitrarily
mark a position on the circumference as a “start” mark. Without losing generality, we
choose to move in the counterclockwise direction. In this proof, “moving back”
means moving clockwise till one has reached the start mark. Similarly “moving for-
ward” means moving counterclockwise till one has reached the start mark. Find the
first mark and assume this mark belongs to agent A. The next mark may or may not
be made by A.

1. If the next mark is made by A, this is a pure interval, so allocate this interval to A.
Remove all marks to the back of this interval. Remove all marks made by agent A.
Thus we will be left with a 1-sector having marks from agent B only. Since none
of B’s marks have been erased, the 1-sector will have 3 marks demarcating 2 inter-
vals. Allot any of these intervals to B.

Direction
of movement

forward

behind
Start

462 K. Iyer and M. Huhns

2. If the next mark is made by B, A’s interval is mixed. Either case 2.1 or 2.2 will oc-
cur.
2.1. A’s interval intersects partially with B. In this case allocate the interval to A.

Remove all marks behind the interval. Remove all of A’s marks. We will be
left with a 1-sector. Since A’s interval intersected with B’s interval, the previ-
ous step will reduce B’s marks to 2. Thus the 1-sector will have 2 marks de-
marcating 1 interval. Allot this interval to B.

2.2. A contains at least one interval of B. Since there are no more agents, such an
interval of B is guaranteed to be a pure interval and is allocated to B. Remove
all marks behind the interval. Remove all of B’s marks. We will be left with a
1-sector. Since A contained B, the 1-sector will have 2 marks demarcating 1
interval. Allot this interval to A.

This proves that A and B can be allocated fair shares, no matter how the marks are
arranged. Now let us turn our attention to the general case of n agents.

Fig. 4. Allocations for n=2 for a circular resource

For any n (n>2). Let us assume that the allocation procedure works for up to k
agents. In order for the allocation procedure to work, one of the k agents would have

 Multiagent Negotiation for Fair and Unbiased Resource Allocation 463

been allotted an interval from a k-circle. After this a (k-1)-sector would have formed,
which was used to allot intervals for the rest of the k-1 agents. Hence we can conclude
that the allocation procedure works for up to (k-1)-sector. We will show that the pro-
cedure works for k+1 agents.

For k+1 agents we create a (k+1)-circle which will have k+2 marks demarcating
k+2 portions for each of the agents. Find the first mark. Say this mark belongs to
agent i. The next mark may or may not be made by i.

1. If next mark is made by i, this is a pure interval, allocate current interval to i. Re-
move all marks behind this interval. Remove all marks made by agent i. None of
the marks made by other agents will be removed as this was a pure interval for
agent i. We will be left with a k-sector that has k+2 marks demarcating k+1 inter-
vals. Read in the next mark. Say it belongs to agent j.
1.1. If the mark after this belongs to j then this is a pure interval which can be allo-

cated to j. Remove all marks made by j. We will be left with a (k-1)-sector that
has k+2 portions demarcating k+1 intervals for each of the k-1 agents. Since k-
1 sector problem has been solved, Hence proved.

1.2. If the mark belongs to some other agent l, then add agent j to list of agents
whose mark has already been seen and repeat allocation procedure for the k-
sector with agent l’s mark as the first mark. Once an interval has been allo-
cated to an agent, remove all marks of the agent. Remove all marks behind this
interval. Other agents may lose at most one mark. Thus we now have a (k-1)-
sector problem where k-1 agents have at least k+1 marks and demarcating k in-
tervals. Hence proved.

2. If the next mark is not made by i, suppose the mark belongs to agent j. Add i to the
list of agents whose mark has already been seen. Repeat the allocation procedure
with j’s mark as the first mark. At some point we will encounter a mark made by
one of the agents already in the list. Say the first such agent is l. The interval de-
marcated by l will not contain any other agent’s interval. It may or may not par-
tially intersect with other agent’s intervals.
2.1. If l’s interval does not intersect with any other interval, then allocate the inter-

val to l. Remove all marks made by agent l. We will be left with a k-sector that
has k+2 marks demarcating k+1 intervals for each of the k agents. This k-
sector is the same as the one discussed in case 1.1 whose solution has been de-
scribed. Hence proved.

2.2. If l’s interval partially intersects some other interval, then allocate the interval
to l. Remove all marks made by agent l. The previous step will remove at
most one mark of an agent. Other agents will have k+2 marks and k+1 inter-
vals. We will be left with a k-sector having at least k+1 marks demarcating k
intervals. Read in the next mark. Say it belongs to agent j.
2.2.1. If the mark after this belongs to j then this is a pure interval, which can

be allocated to j. Remove all marks made by j. We will be left with a (k-
1)-sector having at least k+1 marks demarcating k intervals for each of
the k-1 agents. Since k-1 sector problem has been solved, hence proved.

2.2.2. If the mark belongs to some other agent l, then add agent j to the list of
agents whose mark has already been seen and repeat allocation proce-
dure for the k-sector with agent l’s mark as the first mark. Once an in-
terval has been allocated to an agent, remove all marks of the agent.
Remove all marks behind this interval. Other agents may lose at most

464 K. Iyer and M. Huhns

one mark. Thus we now have a (k-1)-sector problem where k-1 agents
have at least k marks and demarcating k-1 intervals, hence proved.

This proves that the allocation procedure works for n agents, for any n 2. Next we
discuss the important features of this protocol.

4.2 Features

The protocol above has the following features:

1) The protocol is fair because each agent gets one of the pieces he demarcated for
himself and that piece is worth at least 1/(n+1) of the whole cake.

2) It is unbiased because there is no mediator bias as seen in the linear version of the
algorithm. Each agent can have its own start mark, rather than the mediator choos-
ing the start mark.

3) Since each agent makes n+1 marks, the space complexity is O(n2). The protocol
may make n comparisons in the first iteration, n-1 comparisons in the next, and so
on in the worst case scenario. Thus the time complexity is O(n(n+1)/2).

4) One feature of this algorithm is that agents need not be ordered. Most other proto-
cols assume that agents agree to order themselves in a certain way, but such an is-
sue can be contentious in itself. For example, in the successive pairs algorithm
agents might prefer to come later rather than earlier to avoid the labor of redividing
their portions into ever smaller pieces in each iteration.

The algorithm is inefficient, because for n agents, each agent is expected to create
n+1 intervals. When one of the intervals is allotted to the agent, it is actually getting
1/(n+1) of the whole cake. This inefficiency can however be reduced by joining to-
gether the wasted pieces and forming a sector. All the agents can then make n+1
marks demarcating n intervals in this sector. The sector algorithm can then be applied
to allocate portions to each. This can be repeated until the wasted portion is negligible
in every agent’s opinion. The algorithm is therefore applicable only when resources
are infinitely divisible into combinable portions.

Thus by reapplying the sector algorithm a finite number of times, this allocation pro-
cedure can get arbitrarily close to the 1/nth allocation for each agent. This protocol as-
sumes that the problem domain is infinitely divisible and combinable. In order to give
an idea of the various types of problem domains that exist, refer to the following table.

Table 1. Various problem domain types

Problem domain properties Infinitely divisible Combinable
A single row of seats in a theatre -- --

Time scheduling X --
Circular cake X X

5 Conclusion and Discussion

We have presented a new protocol for allocating linear and circular resources, extend-
ing the classic cake cutting problem. This algorithm is applicable for n agents in gen-
eral. It has been modified specially for the case of a circular resource. The proof

 Multiagent Negotiation for Fair and Unbiased Resource Allocation 465

shows that an allotment chosen by the agent itself is guaranteed for each of the n
agents. In addition to this, the protocol is fair and unbiased, features that are highly
desirable but generally difficult to achieve. However, the first allotment of n pieces is
inefficient, because in each agent’s opinion only 1/(n+1)th portion of the resource is
received. To improve efficiency, we reapply the allotment procedure to the wasted
portions of the resource. Agents can run the procedure a fixed number of times or un-
til they all agree that the wasted portion is negligible and further division is unneces-
sary. The current procedure neither demands nor exposes the utility functions of indi-
vidual agents. Although a mediator may be used to allot the various portions of the
resource, the solution of the mediator can be verified, unlike the case of the moving
knife solution. Hence disputes can be resolved easily. Also to be noted is that the me-
diator need not have any features, such as being unbiased. In fact the mediator can be
one of the bidding agents. This is possible because the allocation procedure is com-
pletely algorithmic and does not depend on the subjectivity of the mediator. If any
agent thinks the allocation was unfair, it can re-run the procedure to confirm the valid-
ity of the allocation. Unlike many other protocols, such as successive pairs or divide-
and-conquer, our protocol does not require an implicit ordering of agents. This avoids
any disputes as to which will be the first one to divide the resource. However, the
space and time complexity of this procedure is relatively poor. Hence users will have
to study the cost versus quality trade-offs to determine which protocol they find most
suitable for their resource allocation needs. Among the issues that need to be looked
into further are:

1. Improving the space- time complexity of the allocation procedure
2. Since the procedure requires a centralized mediator to run the allocation

procedure, a distributed version of the allocation procedure could ease the
load of the computation on the mediator.

References

[1] Rosenchein, J.S., and Zlotkin, G. 1994. Rules of Encounter. London, England.: MIT Press.
[2] Davis, R. and Smith, R. January 1983. Negotiation as a Metaphor for Distributed Problem

Solving. Artificial Intelligence 20(1): 63-109
[3] Steinhaus, H. 1948. The problem of fair division. Econometrica 16:101-104
[4] Brams, S. J., and Taylor, A. D. 1996. Fair Division: From cake-cutting to dispute resolu-

tion. Cambridge,UK.: Cambridge University Press.
[5] Biswas, A. and Sen, S. More than envy-free. In the Working Papers of the AAAI-99

Workshop on Negotiation: Settling Conflicts and Identifying Opportunities, 44-49. Menlo
Park, CA: AAAI Press.

[6] Tasnadi, A. November 2003. A new proportional procedure for the n-person cake-cutting
problem. Economics Bulletin 4:1-3.

[7] Robertson, J., and Webb, W. 1998. Cake-Cutting Algorithms: Be Fair if You Can. Nattick,
MA: A.K.Peters.

[8] Huhns, M.N. and Malhotra, A.K. July 1999. Negotiating for Goods and Services. IEEE
Internet Computing, 3(4): 97-99.

[9] Stewart, I. December 1998. Mathematical Recreations: Your Half ’s Bigger Than
My Half!. Scientific American 112-114.

QoS-Based Service Selection and Ranking with
Trust and Reputation Management�

Le-Hung Vu, Manfred Hauswirth, and Karl Aberer

School of Computer and Communication Sciences,
Ecole Polytechnique Fédérale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland
{lehung.vu, manfred.hauswirth, karl.aberer}@epfl.ch

Abstract. QoS-based service selection mechanisms will play an essen-
tial role in service-oriented architectures, as e-Business applications want
to use services that most accurately meet their requirements. Standard
approaches in this field typically are based on the prediction of services’
performance from the quality advertised by providers as well as from
feedback of users on the actual levels of QoS delivered to them. The
key issue in this setting is to detect and deal with false ratings by dis-
honest providers and users, which has only received limited attention
so far. In this paper, we present a new QoS-based semantic web ser-
vice selection and ranking solution with the application of a trust and
reputation management method to address this problem. We will give
a formal description of our approach and validate it with experiments
which demonstrate that our solution yields high-quality results under
various realistic cheating behaviors.

1 Introduction

One key issue in the Semantic Web Service area is to discover the most rele-
vant services meeting the functional requirements of users. Equally important,
e-Business applications also would like to discover services which best meet their
requirements in terms of QoS, i.e., performance, throughput, reliability, avail-
ability, trust, etc. Thus QoS-based web service selection and ranking mechanisms
will play an essential role in service-oriented architectures, especially when the
semantic matchmaking process returns lots of services with comparable func-
tionalities.

In this paper we present a QoS-based web service selection and ranking ap-
proach which uses trust and reputation evaluation techniques to predict the
� The work presented in this paper was (partly) carried out in the framework of

the EPFL Center for Global Computing and was supported by the Swiss National
Funding Agency OFES as part of the European project DIP (Data, Information,
and Process Integration with Semantic Web Services) No 507483. Le-Hung Vu is
supported by a scholarship of the Swiss federal government for foreign students. We
also thank Zoran Despotovic, Amit Lakhani and the anonymous reviewers for their
carefully reading and commenting this paper.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 466–483, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

QoS-Based Service Selection and Ranking 467

future quality of a service. Our work is based on requirements from a real-world
case study on virtual Internet service providers (VISP) from an industrial partner
in one of our projects 1. In a nutshell, the idea behind the VISP business model
is that Internet Service Providers (ISPs) describe their services as semantic web
services, including QoS such as availability, acceptable response time, through-
put, etc., and a company interested in providing Internet access, i.e., becoming
a VISP, can look for its desired combination of services taking into account its
QoS and budgeting requirements, and combine them into a new (virtual) prod-
uct which can then be sold on the market. This business model already exists,
but is supported completely manually. Since many ISPs can provide the basic
services at different levels and with various pricing models, dishonest providers
could claim arbitrary QoS properties to attract interested parties. The standard
way to prevent this is to allow users to evaluate a service and provide feedbacks.
However, the feedback mechanism has to ensure that false ratings, for example,
badmouthing about a competitor’s service or pushing one’s own rating level by
fake reports or collusion with other malicious parties, can be detected and dealt
with. Consequently, a good service discovery engine would have to take into ac-
count not only the functional suitability of services but also their prospective
quality offered to end-users by assessing the trustworthiness of both providers
and consumer reports. According to several empirical studies [1, 2], the issue of
evaluating the credibility of user reports is one of the essential problems to be
solved in the e-Business application area.

We develop the QoS-based service selection algorithm under two basic as-
sumptions which are very reasonable and realistic in e-Business settings: First,
we assume probabilistic behavior of services and users. This implies that the
differences between the real quality conformance which users obtained and the
QoS values they report follow certain probability distributions. These differences
vary depending on whether users are honest or cheating as well as on the level of
changes in their behaviors. Secondly, we presume that there exist a few trusted
third parties. These well-known trusted agents always produce credible QoS re-
ports and are used as trustworthy information sources to evaluate the behaviors
of the other users. In reality, companies managing the service searching engines
can deploy special applications themselves to obtain their own experience on
QoS of some specific web services. Alternatively, they can also hire third party
companies to do these QoS monitoring tasks for them. In contrast to other mod-
els [3, 4, 5, 6, 7] we do not deploy these agents to collect performance data of all
available services in the registry. Instead, we only use a small number of them
to monitor QoS of some selected services because such special agents are usually
costly to setup and maintain.

The QoS-based service selection and ranking algorithm we describe in this
paper is a part of our overall distributed service discovery approach [8]. During
the service discovery phase, after the functional matchmaking at a specific reg-
istry, we would obtain a list of web services with similar functionalities from the
matchmaking of our framework, i.e., the services fulfilling all user’s functional

1 DIP Integrated Project, http://dip.semanticweb.org/

468 L.-H. Vu, M. Hauswirth, and K. Aberer

requirements. We need to select and rank these services based on their predicted
QoS values, taking into consideration the explicit quality requirements of users in
the queries. The output of the selection and ranking algorithm is the list of web
services fulfilling all quality requirements of a user, ordered by their prospective
levels of satisfaction of the given QoS criteria. So as to perform this selection and
ranking accurately, we collect user reports on QoS of all services over time to
predict their future quality. This prediction is also based on the quality promised
by the service providers as well as takes into consideration trust and reputation
issues.

The major contribution of our work is a new QoS-based web service selection
and ranking approach which is expected to be accurate, efficient and reliable.
First, we have taken into account the issue of trust and reputation manage-
ment adequately when predicting service performance and ranking web services
based on their past QoS data. Experimental results have shown that the newly
proposed service selection and ranking algorithm yields very good results under
various cheating behaviors of users, which is mainly due to the fact that our
use of trusted third parties observing a relatively small fraction of services can
greatly improve the detection of dishonest behavior even in extremely hostile en-
vironments. This is particularly important as without cheating detection, service
providers will be likely to generate lots of false reports in order to obtain higher
ranks in the searching results, thereby having higher probability to be selected
by clients and gain more profits. Second, our algorithm is semantic-enabled by
offering support for the semantic similarity among QoS concepts advertised by
providers and the ones required by users. This allows the QoS-based service se-
lection process to work more flexibly and produce more accurate results. Third,
we adapt the idea of Srinivasan et al [9] to pre-compute all matching information
between QoS capabilities of published services and possible QoS requirements of
users to avoid time-consuming reasoning and to minimize the searching costs.

The rest of this paper is organized as follows. First, we briefly mention the re-
lated work in section 2. Section 3 presents our trust and reputation management
model in a Web Service Discovery scenario. Our QoS-based service selection and
ranking approach is described in detail in section 4. We discuss various experi-
mental results in section 5 and conclude the paper in section 6.

2 Related Work

Although the traditional UDDI standard 2 does not refer to QoS for web services,
many proposals have been devised to extend the original model and describe web
services’ quality capabilities, e.g., QML, WSLA and WSOL [10]. The issue of
trust and reputation management in Internet-based applications has also been
a well-studied problem [1, 2].

The UX architecture [11] suggests using dedicated servers to collect feedback
of consumers and then predict the future performance of published services.
[12] proposes an extended implementation of the UDDI standard to store QoS
2 Latest UDDI Version (3.0.2), http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

QoS-Based Service Selection and Ranking 469

data submitted by either service providers or consumers and suggests a special
query language (SWSQL) to manipulate, publish, rate and select these data from
repository. Kalepu et al [13] evaluate the reputation of a service as a function of
three factors: ratings made by users, service quality compliance, and its verity,
i.e., the changes of service quality conformance over time. However, these solu-
tions do not take into account the trustworthiness of QoS reports produced by
users, which is important to assure the accuracy of the QoS-based web service
selection and ranking results. [14] rates services computationally in terms of their
quality performance from QoS information provided by monitoring services and
users. The authors also employ a simple approach of reputation management by
identifying every requester to avoid report flooding. In [15], services are allowed
to vote for quality and trustworthiness of each other and the service discovery
engine utilizes the concept of distinct sum count in sketch theory to compute the
QoS reputation for every service. However, these reputation management tech-
niques are still simple and not robust against various cheating behaviors, e.g.,
collusion among providers and reporters with varying actions over time. Conse-
quently, the quality of the searching results of those discovery systems will not be
assured if there are lots of colluding, dishonest users trying to boost the quality of
their own services and badmouth about the other ones. [16] suggests augmenting
service clients with QoS monitoring, analysis, and selection capabilities, which
is a bit unrealistic as each service consumer would have to take the heavy pro-
cessing role of a discovery and reputation system. Other solutions [3, 4, 5, 6, 7]
use third-party service brokers or specialized monitoring agents to collect perfor-
mance of all available services in registries, which would be expensive in reality.
Though [7] also raises the issue of accountability of Web Service Agent Proxies
in their system, the evaluation of trust and reputation for these agents is still an
open problem.

Our QoS provisioning model is grounded on previous work of [3, 4, 11, 13,
14]. The trust and reputation management of our work is most similar to that
of [17, 18] but we employ the idea of distrust propagation more accurately by
observing that trust information from a user report can also be used to reveal
dishonesty of other reporters and by allowing this distrust to be propagated to
similar ones. Other ideas of the trust and reputation management method are
based on [19, 20, 21].

3 A Trust and Reputation Management Model for
QoS-Based Service Discovery

The interaction among agents in our system is represented in Fig. 1 where
S0,..,Sn are web services, U0,...,Um are service users, RP 0,...,RP k are service
registries in a P2P-based repository network, based on our P-Grid structured
overlay [22]. T0,...,Tr are the trusted QoS monitoring agents from which we will
collect trustworthy QoS data to use in our algorithm.

After Uj’s perception of a normalized QoS conformance value xij (a real
number from Definition 1 in the following section) from a service Si, it may report

470 L.-H. Vu, M. Hauswirth, and K. Aberer

tir

xir

yij
xij

 P-Grid registry network

S0

S1

Si

Sn

U0

U1

Uj

Um

RPk RP0

T0

Tr

Fig. 1. Interaction among agents in a QoS-based service discovery scenario

the value yij to the registry RP k, which manages the description information of
Si. This registry peer will collect users’ quality feedbacks on all of its managed
web services to predict their future performance and support the QoS-enabled
service discovery based on these data. Note that a user generally reports a vector
of values representing its perception of various quality parameters from a service.
Also, xijs and yijs are QoS conformance values, which already take into account
the quality values advertised by providers (see Definition 1 in the next section).
Since the prediction of QoS in our work mostly depends on reports of users
to evaluate service performance, the cheating behaviors of providers are not
explicitly mentioned henceforth. In this paper, we only consider the selection
and ranking of services with reputation management in one registry peer. The
study of interaction among different registries is subject to future work.

Given the above interaction model, we can make a number of observations.
An honest user will report yij = xij in most cases (in reality, they may not
report if not willing to do so). On the other hand, a dishonest reporter who
wants to boost the performance of Si will submit a value yij > xij . Similarly,
cheating reports generated by Si’s competitors will report yij < xij to lower
its QoS reputation. In addition, (colluding) liars may sometimes provide honest
reports and behave dishonestly in other cases [2]. Accordingly, we presume that
the differences between yijs and xijs follow certain distribution types which
expected values depend on the behavior of the user, i.e., are equal to 0.0 for honest
users and different from 0.0 in the case of liars. We use this assumption since
in general dishonest users are likely to change their actions over time in order
to hide their cheating behaviors with occasionally credible reports. Moreover, as
the quality parameter values of a service really depend on many environmental
factors, even trusted agents and honest users may obtain and report those values
a little different to each other when talking about the same service. However,
the expected value of trustworthy reports on QoS of Si, e.g., the average of
corresponding credible yij values, will reflect its real quality capability. In our
opinion, the expected values of these distributions, e.g., means, normally reveal

QoS-Based Service Selection and Ranking 471

the behaviors of users, whereas other parameters, e.g., standard deviations, will
represent the uncertainty in actions of users, either accidentally or by purpose.
Our goal is not only to evaluate whether a user is honest but also to compute the
expected conformance values from the reports of the most honest users, e.g., the
average of values yijs by the most credible reporters, from which we will predict
the future quality of Sis.

4 QoS-Based Service Selection and Ranking

Our QoS-enabled distributed service discovery framework is presented in de-
tail in [8]. Quality properties of web services are described by concepts from a
QoS ontology and then embedded into service description files using techniques
suggested by WS-QoS [3] and Ran [4]. The value of a quality parameter of a
web service is supposed to be normalized to a non-negative real-valued number
regarding service-specific and call-specific context information where higher nor-
malized values represent higher levels of service performance. We are aware that
the issue of normalizing the values of various quality attributes is complicated,
but this is out of the scope of our current study. However, with most frequently
used QoS concepts, e.g., reliability, execution-time, response-time, availability,
etc., the answer is well-defined and straight-forward. For instance, a web service
with a normalized QoS parameter value for reliability of 0.90 will be considered
as more reliable to another one with a normalized reliability value of 0.50. In
this case the normalized reliability is measured as its degree of being capable of
maintaining the service and service quality over a time period T . The ontology
language we use to describe service semantics and to define the QoS ontology is
WSMO 3, but other models, e.g., OWL-S 4, would also be applicable. For ex-
perimental evaluations, we have developed a simple QoS ontology for the VISP
use case including the most relevant quality parameters for many applications,
i.e., availability, reliability, execution time, etc. We currently assume that users
and providers share a common ontology to describe various QoS concepts. How-
ever, this could be relaxed with the help of many existing ontology mapping
frameworks.

4.1 Predicting Service Performance

In order to predict the quality of a web service Si, we collect all QoS feed-
backs on its performance over a time period W and use a real-valued time series
forecasting technique to predict its future quality conformance from past data.
To understand the concepts in our algorithms we start with two fundamental
definitions.

Definition 1. The quality conformance value ck
ij of a service Si in providing

a quality attribute qij at time k is defined as ck
ij = dk

ij−pk
ij

pk
ij

where dk
ij is the

3 http://www.wmso.org/
4 http://www.daml.org/services/owl-s/

472 L.-H. Vu, M. Hauswirth, and K. Aberer

normalized value of qij that Si actually delivered to a specific user at time k and
pk

ij is the corresponding normalized QoS value promised by Si’s provider at that
time.

Definition 2. A user QoS report R, either by a normal service consumer or by
a trusted monitoring agent, is a vector {u, Si, t, L}, where u is the identifier of
the user that produced this report, Si is the corresponding web service, t is the
timestamp of the report and L is a quality conformance vector of {qij , c

t
ij} pair

values, with qij being a QoS attribute offered by Si and ct
ij being qij ’s quality

conformance that Si provides to this user at time t.

In order to filter out as much dishonest reports as possible and to take only the
most credible ones in the QoS predicting process, we apply our trust and reputa-
tion management techniques comprising of two steps: a report preprocessing and
a report clustering phase. The first phase evaluates the credibility of collected
user reports by applying a trust-and-distrust propagation approach, which re-
lies on some initial trusted reports produced by special monitoring agents. We
consider two QoS reports as comparable if they are related to the same service
during a specific time interval δt and as incomparable otherwise. Generally, we
can set this δt as big as the length of the period during which the corresponding
service provider does not change the promised quality values of this service. Two
comparable QoS reports are considered to be similar if the squared Euclidean
distance between their conformance vectors is less than a specific threshold. On
the contrary, they are regarded as dissimilar if this distance is greater than
another threshold value.

The report preprocessing step is done according to Algorithm 1. nch and
nh1, nh2 (nh1 < nh2) are threshold values to estimate a user as cheating or
honest regarding to the similarity of its reports to other cheating/honest ones
(line 9, 17 and 18). N and T represent for how long and how frequent a user stay
in and submit QoS reports to the system. The values of nh1, nh2, nch, N and
T are design parameters to be chosen depending on properties of the collected
reports after running the algorithm several times. Generally, higher values of
these parameters stand for higher level of caution when estimating behaviors of
users regarding current evidences against them.

After finishing the preprocessing phase, we can identify a certain number of
cheaters and honest users. However, this trust-distrust propagation phase may
not be able to evaluate the credibility of all reports in case the user communities
of certain services are isolated from other communities as well as if we set the
values of nh1, nh2 and nch too high in Algorithm 1.

Therefore, in the next step we have to estimate the trustworthiness of the
remaining reports of which credibility has not been evaluated. To achieve this,
we reason that colluding cheating users will cooperate with each other in order
to influence the system with their dishonest feedbacks. As a result, users within
each group will produce similar values and naturally form different clusters of
reports. Thus it is possible to apply data-mining techniques in this situation
to discover various existing clusters of reports related to those user groups. In
our work, we apply the convex k-mean clustering algorithm on each set of QoS

QoS-Based Service Selection and Ranking 473

Algorithm 1. QosReportsPreprocessing()
1: all trusted agents are marked as honest users;
2: all reports of trusted agents are marked honest ;
3: repeat
4: all unmarked reports of each cheating user are marked cheating ;
5: for each unmarked report do
6: if this report is dissimilar from an honest report then mark it cheating ;
7: if this report is similar with a cheating report then mark it cheating ;
8: end for
9: users with at least nch reports similar with cheating ones are marked cheating ;

10: users with at least N reports in at least T different time are marked stable;
11: until there is no new cheating user discovered;
12: repeat
13: all unmarked reports of each honest user are marked as honest ;
14: for each unmarked report and each report marked cheating do
15: if this report is similar with an honest report then mark it honest ;
16: end for
17: unmarked users with at least nh1 reports similar with honest ones are marked

honest ;
18: users marked as cheating and having at least nh2 reports similar with honest

ones are re-marked honest ;
19: until there is no new honest user discovered;

reports related to a service during the time interval δt with the following met-
rics: The distance between two comparable reports is defined as the Euclidean
squared distance between two corresponding quality conformance vectors and
the distance between two incomparable ones is assigned a large enough value so
that these reports will belong to different clusters.

After the trust and reputation evaluation in the two above phases, for each
service Si, we will have a list Gi of groups of reports on QoS of Si over time.
Generally, Gi includes the groups containing those reports that were previously
marked as honest/cheating during the trust-distrust propagation phase, as well
as other clusters of reports obtained after the clustering step. We will assign
the credibility wg

i of a report group gi ∈ Gi as follows. Firstly, we filter out all
dishonest ratings by assign wg

i = 0.0 for all groups of reports marked as cheating
during the trust-distrust propagation. If there exists the group g0

i of reports
previously marked honest during that step, we assign wg0

i = 1.0 whereas letting
wg

i = 0.0 for the remaining groups. Otherwise, we try to compute wg
i so that this

value would be proportional to the probability that the group gi is trustworthy
among all of the others. Our heuristic is to assign higher weight to clusters which
are populated more densely, having bigger size and with more stable users. This
assumption is reasonable, as the reports of independent cheaters are likely to be
scattered, and in the case liars cooperate with each other to cheat the system,
the size of their corresponding clusters will not exceed those consisting only of
honest reports as it would be too costly to dominate the system with numerous
and clustered dishonest ratings. Even if dishonest providers try to produce lots of

474 L.-H. Vu, M. Hauswirth, and K. Aberer

more condense reports so that they could get high influences to the final ranking
results at any cost, these values will be separated from honestly reported values
and therefore are likely to be discovered during the distrust-propagation phase
(line 3 to line 11 in Algorithm 1), provided we have enough trustworthy reports
to use. Specifically, wg

i could be estimated based on the following information:
the number of users in the cluster gi (sizeg

i), the number of all users producing
reports in all clusters of Gi (allusersi), the number of stable users in this cluster
(stableg

i), the total number of stable users in all clusters of Gi (allstablei), as
well as the average distance dg

i from the member reports of cluster gi to its
centroid values. Based on our model in section 3, the credibility of one report
would depend on the distance between its conformance vector and that of an
honest report. Therefore, the similarity among credibility of different reports
in one cluster gi would be inversely proportional to its dg

i value. Furthermore,
a report in gi would be honest in two cases: (1) it is submitted by a stable
and honest user; (2) it is produced by an unstable and honest user. Let Pstbl

and Punstbl be the probability that this report is of a stable user and of an
unstable user, respectively, and let Pstblcr and Punstblcr be the probability that
stable and unstable users report credibly, then we have wg

i = C
dg

i
.(Pstbl.Pstblcr +

Punstbl.Punstblcr), where Pstbl = stableg
i

sizeg
i

and Punstbl = 1 − Pstbl. Pstblcr and
Punstblcr could be estimated by comparing reports of trusted agents with those
of sample stable/unstable users to derive an appropriate value at the whole
network level. The value of C represents our belief in the relation between the
density of a report cluster and the credibility of its members, which is considered
as parameters of the reputation system and to be set by experience.

The future quality conformance Ĉij of a service Si in providing a QoS at-
tribute qij is predicted using a linear regression method, thus we have: Ĉij =
LinearRegression(C

t

ij), t ∈ {0, δt, . . . , (W − 1).δt}, where C
t

ij is the evaluated

QoS conformance value of the quality parameter qij at time t. We compute C
t

ij

as the average of conformance values reported by various user groups in the sys-
tem at that specific time point, using the evaluated credibility wg

i s as weights in

the computation. In other word, C
t

ij =
∑

gi∈Gi
wg

i Ct
ij∑

gi∈Gi
wg

i
where Ct

ij is the mean of

conformances of a report group gi on Si’s quality attribute qij at time t, i.e., a
centroid value of a cluster/group of reports produced after the trust and reputa-
tion evaluation phase. Regarding the probabilistic behavior of users and services
as in section 3, we consider Ĉij as an approximate estimate of the expected value
of Si’s QoS conformance in providing quality attribute qij to users.

4.2 QoS-Based Service Selection and Ranking

We define QoS requirements in a user query as a vector Q of triples {qj, nj , vj}
where qj represents for the required QoS attribute, nj is the level of importance
of this quality attribute to the user and vj is the minimal delivered QoS value
that this user requires. To rank services according to its prospective level of
satisfying user’s QoS requirements, we utilize the Simple Additive Weighting

QoS-Based Service Selection and Ranking 475

Algorithm 2. QosSelectionRanking(ServiceList L, ServiceQuery Q)
1: Derive the list of QoS requirements in Q: Lq = {[q1, n1, v1], ..., [qs, ns, vs]}
2: Initialize Score[Sij] = 0.0 for all services Sij ∈ L;
3: for each quality concept qj ∈ Lq do
4: for each service Sij ∈ L do
5: Search the list Lqos of qj for Sij ;
6: if Sij is found then

7: Score[Sij] = Score[Sij] +
nj .wij∑

nj
(d̂ij−vj

vj
);

8: else
9: Remove Sij from L;

10: end if
11: end for
12: end for
13: Return the list L sorted in descending order by Score[Sij] s;

method, which produces ranking results very close to those of more sophisticated
Decision Making techniques [5]. Thus, the QoS rank of a service Si in fulfilling

all quality criteria depends on the weighted sum Ti =
∑

qj∈Q nj .Pij∑
qj∈Q nj

in which

Pij = wij .n̂dij represents the capability of Si in providing the QoS concept qij

for users at the query time. The value n̂dij = d̂ij−vj

vj
evaluates the difference

between the QoS value d̂ij of the quality attribute qij that Si is be able to
offer to its users according to the prediction and the corresponding value vj

of qj required by the service query. In combination with Definition 1, we can

compute n̂dij = (1+pij).Ĉij−vj

vj
, where Ĉij is the predicted QoS conformance

value of quality attribute qij and pij is the corresponding QoS value promised
by provider of Si at current time. wij is a weight proportional to the semantic
similarity mij between qij and the QoS ontology concept qj required by the
user, i.e., the degree of match as in [23]. In other word, we will give higher
ranks for services which offer the most accurate QoS concepts at the higher
levels compared to the ones required by users. In our program we simple use the
following definition to evaluate wij :

wij =

⎧⎨⎩1.0 if mij=exact; (i.e., qij is equivalent to qj)
0.5 if mij=pluggin; (i.e., qij is more general than qj)
0.0 if mij ∈ {subsume, failed}; (i.e., otherwise)

(1)

In order to accelerate the selection of only services fulfilling all required QoS
parameters, we use the idea of Srinivasan et al [9] to avoid the time-consuming
semantic reasoning step. Specifically, we use a QoS matching table to store the
matching information for all frequently accessed QoS attributes. With each QoS
attribute qj in this table, we have a list Lqosj of records {Sij , wij , d̂ij} where wij ,
d̂ij are computed as above and Sij identifies a service having certain support for
qj . Given the list L of services with similar functionalities, the discovery engine
performs the QoS-based service selection and ranking process as in Algorithm 2.

476 L.-H. Vu, M. Hauswirth, and K. Aberer

5 Experimental Results and Discussions

To evaluate the selection and ranking algorithm, we have implemented it as a
QoS support module in a registry peer of our distributed discovery framework [8]
and studied its effectiveness under various settings. The service selection and
ranking is performed on three representative quality parameters, namely avail-
ability, reliability and execution-time taken from the VISP case study.

We observed the dependency between the quality of selection and ranking
results and other factors, such as the percentage of trusted users and reports,
the rate of cheating users in the user society and the various behaviors of users.
Specifically, we evaluated the effectiveness of the service discovery by studying
the differences in the quality of results when running evaluations in four different
settings: In the ideal case the discovery engine has complete knowledge, such
that it knows all correct QoS conformance values of all published services in the
system over a time window W and performs the selection and ranking of services
from this ideal data set. In the realistic case, we ran our algorithm with the
application of trust and management techniques to filter out incredible reports
and to evaluate the credibility for the others. The optimistic case corresponds to
the QoS-based discovery of services without regarding to trust and reputation
issues, i.e., the system simply uses the average of all reported conformance values
to predict services’ performance and to perform the QoS ranking. The naive case
corresponds to the selection of services based only on their QoS values promised
by the providers, i.e., the system trusts all providers completely. Our goal was
to show that the obtained results of the QoS-based service discovery process are
more accurate and reliable in the realistic case with various cheating behaviors
of users, they would be much worse in the optimistic case, and the worst with
the naive method thus clearly showing the contribution of our approach.

The quality of selection results produced by our algorithm can be measured
by four parameters, namely recall, precision, R-precision and Top-K precision, of
which the R-precision is the most important quality parameter as recognized by
the Information Retrieval community. In our settings, these parameters generally
represent the fraction of services that are most relevant to a user among all
returned services in terms of their real QoS capabilities. Apparently, the results
would be the best in the ideal case, i.e., its recall, precision, R-precision and
Top-K precision parameters are all equal to 1.0. Therefore, we use the results
of the ideal case as a reference to compare with the quality parameters in the
other three situations. Due to space limitations we only show the R-precision
values as the most representative experimental results in this section. We also
measured the other parameters as well as computed the absolute QoS ranks of
returned services using weighting Spearman’s footnote method and had similar
results.

We prepared our experiments with the probabilistic assumption on the be-
havior of service providers and consumers. In this paper we only present the
experiments with Gaussian (normal) distributions. The extension to other prob-
abilistic distributions is subject to future work. The society of service con-
sumers was modeled as a collection of different types of users. As mentioned

QoS-Based Service Selection and Ranking 477

in section 3, honest users and trusted agents would report values with the
difference Dh ∼ Normal(0.0, σh

2) to the real QoS conformance capabilities
of services. On the contrary, cheaters would report values with the difference
Dc ∼ Normal(Mc, σc

2) to the real quality conformances that they had obtained.
The values of the mean Mc varied according to the purpose of the cheaters, i.e.,
advertise or badmouth a service. The values of σc represented the variation in
reported values of users among different quality attributes of different services.
Users with higher values of σc had higher levels of inconsistency in their behav-
iors and therefore were harder to be detected. We further divided these liars into
three sub-types: badmouthing users who mostly reported badly about services
of their competitors, advertising users who usually exaggerated performance of
their own services and uncertain users with indeterministic actions and who
might act as advertising, badmouthing or even as honest users. We set the val-
ues of Mc for each type of cheaters in the most pessimistic situation, making
our testing environment be very hostile. Specifically, cheaters had their corre-
sponding Mcs set to high/low enough values such that badmouthing users would
succeed in pushing services of their competitors out of the selection results and
advertising users would be able to raise the QoS ranks of their own services,
provided that their reports had been taken into the predicting process of the
QoS-based service discovery engine. This setting is realistic because in business,
companies generally have knowledge of the base requirements of their users as
wells as owning certain statistics of their competitors’ capabilities. More com-
plicatedly, uncertain users had their Mcs values belonging to Nc specific values
each of which was a randomized real value, with Nc was the number of groups
of cheaters with varied behaviors. These types of liars would be harder to be
detected since their Mc values were uniformly distributed around 0.0. Though
they did not contribute directly to the boosting and lowering the reputation
of certain services, their reports were not so dissimilar from honest reports in
most cases and therefore they would act as good recommenders for other bad-
mouthing/advertising guys. To assure the scalability of the approach, we also
tested it with an increasing number of services, users and QoS reports while
keeping the percentage of user types and other parameters the same. The re-
maining experiments were run in a society of 1000 users which produced a total
of 50000 QoS reports on 200 services during a time window of length W = 5 and
δt = 1. The results of each experiment were averaged over 10 runs.

As a first question, we wanted to study the effects of the trusted reports on
the quality of results in the realistic case. Specifically, we wanted to observe the
effects of the percentage of the services monitored by trusted agents Fspecial to
the results of our QoS-based service selection and ranking algorithm expressed by
R-Precision values. We increased Fspecial from 1.0% to 10.0%. The percentage of
trusted users/reports was also increased from 0.1% to 1.0% with the increment
of 0.1% each step as well. The results of this experiment are shown in Fig. 2.

Correspondingly, Fig. 3 shows the percentage of cheating and honest reports
correctly identified during the report preprocessing phase with our trust-distrust
propagation method.

478 L.-H. Vu, M. Hauswirth, and K. Aberer

Quality of searching results in term of
R-Precision parameter values

0

0.2

0.4

0.6

0.8

1

1.2

1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0% 9.0% 10.0%

Percentage of services
to be monitored by trusted agents

R
-P

re
ci

si
o

n
 p

ar
am

et
er

R_precision_realistic

R_precision_naive

R_precision_opstimistic

Fig. 2. Fspecial vs. R-Precision

The effectinevess of the report preprocessing phase

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1.
0%

2.
0%

3.
0%

4.
0%

5.
0%

6.
0%

7.
0%

8.
0%

9.
0%

10
.0

%

Percentage of services to be trustedly monitored

P
er

ce
n

ta
g

e
o

f
re

p
o

rt
s

w
it

h

d
is

co
ve

re
d

 c
re

d
ib

ili
ty

Cheating reports discovered

Honest reports->cheating

Honest reports discovered

Cheating reports->honest

Fig. 3. Fspecial vs. Correctness of the report preprocessing phase

In this experiment, we assumed a very high number of cheaters (74.0% of the
total users) consisting of badmouthing users, advertisers and five different groups
of uncertain users. We also did various experiments to study the effects of σc’s
and σh’s values and found that our algorithm performed very well with different
settings of σc provided the quality of the honest user population was good, i.e., σh

was low. Given the fact that the QoS conformance values in our simulation are in
the interval [−1.0, 1.0], we kept the standard deviations of cheating reports very
high (σc = 0.5) and those of trusted and honest users at an acceptably low level
(σh = 0.01). With the increase of Fspecial, we could correctly discover almost
all cheating reports and an increasing percentage of honest reports. Accordingly,
the quality of the results was significantly increased as well. The clustering phase
was actually not performed with Fspecial > 1.0% because above this threshold,
using only the trust-distrust propagation was enough to evaluate the credibility
of all reports. Although a lot of honest reports were wrongly identified as cheat-
ing, which was due to our cautious approach in estimating report credibility,
the quality of the results was always very good if Fspecial was kept high enough

QoS-Based Service Selection and Ranking 479

Quality of searching results in term of
R-Precision parameter values

0

0.2

0.4

0.6

0.8

1

1.2

4.
0%

14
.0

%
24

.0
%

34
.0

%
44

.0
%

54
.0

%
64

.0
%

74
.0

%
84

.0
%

94
.0

%

Percentage of all cheaters

R
-P

re
ci

si
o

n
 p

ar
am

et
er

R_precision_realistic

R_precision_naive

R_precision_opstimistic

Fig. 4. Fcheating vs. R-Precision

(about 5.0%). The results were the worst with Fspecial around 2.0% and 3.0%.
In these cases, as the trust-propagation was not effective and did not identify
enough honest reports, we had to (partly) use the quality value advertised by
providers instead. When Fspecial was very small (1.0%), the result was still ac-
ceptable (R-Precision = 0.8), since in this situation we could actually combine
the trust-propagation and the report clustering phase together. i.e., there were
enough reports with unknown credibility after the preprocessing of reports such
that the clustering step had enough input data to process. As a whole, the result
of our algorithm with the trust and reputation management scheme in place is
much better than that of the optimistic and the naive cases, as we expected.

Next, we studied the effects of the fraction of cheaters to the quality of re-
sults. We increased the total percentage of all types of cheating users (Fcheating),
which consists of badmouthing, advertising and uncertain users, from 4.0% to
94.0% in increment of 10% each step. More specifically, we raised the percentage
of badmouthing and advertising users/reports, from 3.33% to 78.33% while gen-
erating five different groups of uncertain users with corresponding percentage of
dishonest reports increased from 0.67% to 15.67%. This setting represents the
realistic situation when there are various types of dishonest providers colluding
with the generated cheating users to boost the reputation of certain services and
badmouth other ones, which could be considered as the most important case
where there are various types of users with changing behaviors. The results for
this experiment are shown in Fig. 4. We kept the percentage of trusted reports
at 0.5% and let Fspecial = 5.0%, as an acceptable fraction collected from ob-
servations in the first experiment. The standard deviations of of cheating and
honest reports were kept at σc = 0.5 and σh = 0.01 respectively.

With the reduction of honest users and the corresponding increase of
Fcheating , the values of the R-Precision parameter were also reduced. However,
the quality of the results in the realistic case was always much better than that
of the optimistic case and the naive case. Even when the fraction of cheaters
Fcheating was very high (0.84), the R-Precision parameter value in the realistic
case was still acceptable (higher than 0.8). On the other hand, the quality of
results without taking into account trust and reputation management issues,
i.e., the optimistic and the naive case, dropped dramatically in hostile settings.

480 L.-H. Vu, M. Hauswirth, and K. Aberer

The effectinevess of the report preprocessing phase

0.00

20.00

40.00

60.00

80.00

100.00

120.00

4.
0%

14
.0

%
24

.0
%

34
.0

%
44

.0
%

54
.0

%
64

.0
%

74
.0

%
84

.0
%

94
.0

%

Percentage of all cheaters

P
er

ce
n

ta
g

e
o

f
 r

ep
o

rt
s

w
it

h

d
is

co
ve

re
d

 c
re

d
ib

ili
ty

Cheating reports discovered

Honest reports->cheating

Honest reports discovered

Cheating reports->honest

Fig. 5. Fcheating vs. Correctness of the report preprocessing phase

This phenomenon was due to the fact that in a society with a very high cheating
rate, our trust and reputation evaluation mechanism could discover and filter
out almost all incredible reports, as shown in Fig. 5.

From these experiments we can draw a number of conclusions. Regarding effi-
ciency and effectiveness, our selection and ranking approach exhibits the follow-
ing properties: As the trust and reputation evaluation phase uses social network-
based analysis (trust-distrust propagation) and data-mining (report clustering)
methods, it requires high-computational cost. Fortunately, in our case, the com-
putation involves mainly local processing in one registry and thus does not re-
quire much communication overheads. Additionally, it could be done off-line on
a periodical basis and therefore will not affect much to the system performance.
Another important observation is that almost no cheating report was wrongly
evaluated as honest even in very hostile settings due to our cautious reputa-
tion evaluation mechanism. Therefore, in reality one can observe the results
of the trust-distrust propagation step and incrementally adjust the parameters
of the system, e.g., increase Fspecial, in order to collect enough honest reports
for the performance prediction phase. The service selection and ranking can be
performed fast and efficiently thanks to the pre-computation of the matching
information between QoS of existing services with possible quality requirements
of users. Similar to [17], we conclude that the use of trusted third parties moni-
toring a relatively small fraction of services can greatly improve the detection of
dishonest behavior even in extremely hostile environments. However, this effec-
tiveness mainly depends on the following properties of the set of service users
and their corresponding reports:

1. The overlaps among the set of users of each service, i.e., whether the services
monitored by trusted agents have many users who are also consumers of other
services.

2. The inconsistency in the behavior of users, i.e., whether a user is honest
while reporting on a service but behaves dishonestly on other cases.

QoS-Based Service Selection and Ranking 481

These factors suggest that we should deploy trusted agents to monitor the
QoS of the most important and most widely-used services in order to get a “high
impact” effect when estimating behaviors of users. Currently as the user reports
are distributed uniformly for services in our experiments, we have not yet taken
into account this factor. However, we have employed another technique to fight
back the inconsistency behaviors of users by detecting cheaters first and evalu-
ating honest users later in the preprocessing phase. This helps us to collect all
possible evidences against cheaters by making use of the distrust propagation
among reports at the first place. The philosophy behind is that it would be better
to filter out a certain number of honest users rather than accept some dishonest
reports. However, lots of credible users will be accidentally detected as cheating
because of the similarity between their reports with other ones produced by well-
disguised liars in the system. Thus, in the honest detecting (trust-propagation)
phase, we also give these users a second chance to prove their honesty provided
they have produced lots of credible reports which could be certified by trusted re-
ports and other honest users. Additionally, other techniques can also be utilized
to make this method more robust. For example, we can pre-select the important
services to monitor and increase the number of them as well as keep the identi-
ties of those specially chosen services secret and change them periodically. Thus,
cheaters will not know on which services they should report honestly in order to
become high-reputation recommenders and have to pay a very high cost to have
great influences in the system. In reality, this also help us to reduce the cost
of setting-up and maintaining trusted agents as we only need to deploy them
to monitor changing sets of services at certain time periods. Moreover, we can
extend our algorithm so that neighboring registries are allowed to exchange with
each other the evaluated credibility of users to further find out other possibly
well-disguised cheaters who frequently change their behaviors. Note that the ad-
jacent registry peers in our system are assigned to manage services with similar
functional characteristics and therefore they are likely to attract comparable sets
of users in the system [8].

6 Conclusion

In this paper, we have introduced a new QoS-based web service selection and
ranking algorithm with trust and reputation management support. We have
shown that our selection and ranking solution yields very good results in most
cases. As the proposed reputation management mechanism is robust against
various cheating behaviors, the results are generally of good quality even in
hostile situations in which many different types of cheaters make up a high
percentage of the overall users and report values with remarkable variances. By
combining a trust-distrust propagation approach with a data-mining method,
we could filter out almost all cheaters and find out honest reports to be used
in the quality prediction process with very high probability. However, there are
a lots of open issues and improvements we can apply to the current model.
First of all, the selection of services to be monitored by trusted agents is an

482 L.-H. Vu, M. Hauswirth, and K. Aberer

interesting point not yet to be mentioned. Another open problem is how to
accurately predict the performance of newly published services with only few
QoS reports and how to motivate users to evaluate services’ performance and
submit their feedback to the service search engine. The selection of an optimal
configuration for many design parameters of our proposed solutions is also an
important question to be studied in further. Additionally, in each iteration of the
trust-distrust propagation, the comparison should be done between an unmarked
report with the average of current honest/cheating ones to make the credibility
evaluation more accurate since the reports are generally different from each
other. Also, after this propagation step, there maybe a number of users whose
real behaviors are not revealed due to insufficient evidences while their marked
reports include both cheating and honest ones. It is possible to take this factor
into account while clustering and evaluating the credibility of various report
groups. As part of future work, we will also use QoS properties as ranking criteria
for service queries without explicit QoS requirements. Another plan is to develop
a so-called meta-behavior model of users, which is more general to describe user
behaviors with various possible probabilistic responses and to obtain analytical
results of the proposed solution. Last but not least, we are going to deploy our
algorithm in a decentralized setting to observe the effectiveness of our trust and
reputation techniques where there are many registry peers exchanging among
each other the information of users and services’ quality data.

References

1. A. Jøsang, R. Ismail and C. Boyd: A Survey of Trust and Reputation Systems for
Online Service Provision, Decision Support Systems, 2005 (to appear).

2. Z. Despotovic and K. Aberer: Possibilities for Managing Trust in P2P Networks,
EPFL Technical Report No. IC200484, Switzerland, November, 2004.

3. M. Tian, A. Gramm, T. Naumowicz, H. Ritter, J. Schi: A Concept for QoS Inte-
gration in Web Services, Proceeding of WISEW’03.

4. S. Ran: A Model for Web Services Discovery with QoS, ACM SIGecom Exchanges,
Vol. 4, Issue 1 Spring, pp. 1-10, 2003.

5. M. Ouzzani, A. Bouguettaya: Efficient Access to Web Services, IEEE Internet
Computing, Mar./Apr., pp. 34-44, 2004.

6. C. Patel, K. Supekar, Y. Lee: A QoS Oriented Framework for Adaptive Manage-
ment of Web Service-based Workflows, Database and Expert Systems 2003 Conf.

7. E. M. Maximilien and M. P. Singh: Reputation and Endorsement for Web Services,
SIGEcom Exch., 3(1):24-31, ACM Special Interest Group on e-Commerce, 2002.

8. L.- H. Vu, M. Hauswirth and K. Aberer: Towards P2P-based Semantic Web Service
Discovery with QoS Support, Proceeding of Workshop on Business Processes and
Services (BPS), Nancy, France, 2005 (to appear).

9. N. Srinivasan, M. Paolucci, K. Sycara: Adding OWL-S to UDDI, Implementation
and Throughput, Proceedings of the First International Workshop on Semantic
Web Services and Web Process Composition, USA, 2004.

10. G. Dobson: Quality of Service in Service-Oriented Architectures, 2004,
http://digs.sourceforge.net/papers/qos.html.

11. Z. Chen, C. Liang-Tien, B. Silverajan, L. Bu-Sung: UX - An Architecture Providing
QoS-Aware and Federated Support for UDDI, Proceedings of ICWS’03.

QoS-Based Service Selection and Ranking 483

12. A. S. Bilgin and M. P. Singh: A DAML-Based Repository for QoS-Aware Semantic
Web Service Selection, Proceedings of ICWS’04.

13. S. Kalepu, S. Krishnaswamy and S. W. Loke: Reputation = f(User Ranking,
Compliance, Verity), Proceedings of ICWS’04.

14. Y. Liu, A. Ngu, and L. Zheng: QoS Computation and Policing in Dynamic Web
Service Selection, Proceedings of WWW 2004 Conf.

15. F. Emekci, O. D. Sahin, D. Agrawal, A. E. Abbadi: A Peer-to-Peer Framework for
Web Service Discovery with Ranking, Proceedings of ICWS’04.

16. J. Day and R. Deters: Selecting the Best Web Service, the 14th Annual IBM
Centers for Advanced Studies Conf., 2004.

17. R. Guha and R. Kumar: Propagation of Trust and Distrust, Proceedings of WWW
2004 Conf.

18. M. Richardson, R. Agrawal, P. Domingos, Trust Management for the Semantic
Web, Proceedings of ISWC’03, LNCS 2870, p.p. 351-368, 2003.

19. K. Aberer and Z. Despotovic: Managing Trust in a Peer-2-Peer Information Sys-
tem, Proceedings of ACM CIKM’01.

20. A. Whitby, A. Jøsang and J. Indulska: Filtering Out Unfair Ratings in Bayesian
Reputation Systems, Icfain Journal of Management Research, Vol. IV, No. 2,
p.p. 48-64, Feb. 2005.

21. F. Cornelli, E. Damiani, S. C. Vimercati, S. Paraboschi and P. Samarati: Choosing
Reputable Servents in a P2P Network, Proceeding of WWW 2002 Conf., USA.

22. K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt: P-Grid: a Self-Organizing Structured P2P System.
ACM SIGMOD Record, 32(3), 2003.

23. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, Semantic Matching of Web
Services Capabilities, Proceedings of ISWC’02.

An Integrated Alerting Service for Open Digital
Libraries: Design and Implementation

Annika Hinze1, Andrea Schweer2, and George Buchanan3

1 University of Waikato, New Zealand
a.hinze@cs.waikato.ac.nz

2 University of Dortmund, Germany
andrea.schweer@uni-dortmund.de

3 University College London, United Kingdom
g.buchanan@ucl.ac.uk

Abstract. Alerting services can provide a valuable support for informa-
tion seeking in Digital Libraries (DL). Several systems have been pro-
posed. Most of them have serious drawbacks, such as limited expressive-
ness, limited coverage, and poor support of federated and distributed
collections.

In this paper, we present the detailed design and implementation for
a comprehensive alerting service for digital libraries. We demonstrate
typical user interactions with the system. Our alerting service is open to
other event sources, supports a rich variety of event types, and works on
distributed as well as on federated DL collections.

1 Introduction

For several years now, there has been increasing demand for a comprehensive
alerting services for Digital Libraries [7, 9]. The alerting services supported by
proprietary digital libraries, such as Springer Link alert or the ACM digital li-
brary TOC alert, are widely known; unfortunately, they have restricted coverage
and very limited expressiveness for the subscriptions (e.g., Table-of-Contents
(TOC) of a specified journal). These proprietary digital library systems can
be contrasted against open digital library systems that provide extendible and
flexible tools – supporting varied file formats, custom services and connection
between separate libraries.

Recently, existing open digital library systems have started to incorporate
alerting functionality. Most of them offer only a restricted focus (e.g., stored
search on metadata). Alerting services in Digital Libraries (DL) could inform
users about new collections or changes in the classification scheme of a library
as well as about new or changed documents. Users express their interest in these
events through subscriptions. The service filters all events and notifies users
accordingly. An ‘open’ alerting service should be accessible to a wide variety of
digital library systems and extend the flexible principles of open digital libraries
briefly introduced above – e.g., by supporting a flexible model of which events
may occur, consistently handle distributed and federated libraries and provide

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 484–501, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Integrated Alerting Service for Open Digital Libraries 485

event feeds to differing alerting services. However, to provide a full range of
the events that may occur in a specific digital library, the system must also be
integrated with the DL – as explained in [5].

This paper introduces the first distributed alerting service that offers sophis-
ticated user subscriptions over a wide range of sources without the limitations of
its predecessors: The service supports a wide range of event types using content-
based filtering; it is open to external event sources, and notifies users via email,
web page or an RSS feed. We present a detailed requirements analysis, our alert-
ing system in use, details of the service design and results of an evaluation. A
companion paper [5] describes some of the librarianship difficulties highlighted
by the work reported in this paper, omitting the technical content presented here.

The body of this paper commences with the results of our requirements analy-
sis. This section is followed by a demonstration of our Greenstone alerting service
in use (Section 3). We subsequently discuss in turn its architecture (Section 4)
and detailed design (Section 5). In Section 6, we outline the user-centered and
technical requirements that influenced the design of our service. Related work is
discussed in Section 7. Our paper concludes with an outlook to future research.

2 Requirements

In the course of designing the Greenstone alerting service, we conducted a num-
ber of studies to identify the requirements for the system. One of the key chal-
lenges was identifying the different types of events and notifications that a com-
prehensive service should supply. This part of the design was driven by the results
of two studies: a user survey and a claims analysis of the intended design. The
latter was based on use cases identified in collaboration with the developers of
Greenstone. From these sources, we also developed the user-centered functional
requirements for the alerting service. The technical requirements were drawn
from an analysis of existing digital libraries. Table 1 summaries the require-
ments we have identified. We now discuss the requirements in detail, ordered
according to their sources.

Table 1. Requirements for the Greenstone alerting service

Functional Requirements Technical Requirements
F1. find items T1. provide content-based notifications
F2. add, edit, delete subscriptions T2. provide customizable notifications
F3. publish event descriptions T3. support all Greenstone event types
F4. publish event messages T4. use familiar metaphors for user interface
F5. view notifications T5. support different kinds of event sources

T6. event sources on several abstraction levels
T7. support flexibility of Greenstone set-ups
T8. support distributed/federated collections

486 A. Hinze, A. Schweer, and G. Buchanan

General considerations: A number of general requirements can be drawn from
experience with previous alerting services: Users must be able to find items
of interest (F1). They must be able to create new and edit or delete existing
subscriptions (F2). The providers must be able to publish descriptions of the
events they offer (F3), and they must be able to send event messages to the
alerting service (F4). Finally, users must be able to view their notifications (F5).

User studies: The requirements that were identified based on the results of the
user studies are: A major concern was that the service could notify users about
too many irrelevant events (false positives). It is especially remarkable because
no option in the questionnaire corresponded to this problem. The users concerns
are taken into account as the requirements that subscriptions should be as fine-
grained and as similar to conventional Greenstone usage as possible. In addition
to that, notifications have to be as unobtrusive as possible. Both goals can be
reached by providing customizable, content-based notifications (T1 & T2).

DL Scholarship: Based on our experiences with digital libraries, we believe that
the alerting service should have the following characteristics to be fully integrated
into a digital library: It should provide notifications about a wide selection of
events occurring in the digital library (T2 & T3). It should stay consistent with
the users conceptual model of the digital library (i.e., creating a subscription
and receiving a notification should be similar to using the other services of the
digital library) (T4). It should integrate with the infrastructure of the digital
library (i.e., seamlessly support distribution and federation of the DL) (T8).

Greenstone specific: A number of requirements were developed to address the
special features of the Greenstone digital library system: Greenstone allows for
the combination of different internal and external sources for a DL collection.
The alerting service should be similarly open and support other event sources
in addition to Greenstone DLs (T5). Greenstone is very flexible as to which
document formats can be stored and retrieved, the metadata formats that can be
used, the collection structure and the service configuration. The alerting service
should therefore place as few constraints as possible on the configuration of the
collections it can be used for (T6 & T7).

The requirement T8 creates particular challenges for the alerting service in
the Greenstone context: To support Greenstone’s distributed nature, the alerting
service itself has to be distributed to a much higher degree than present in
current alerting services in the context of digital libraries. Ideally, users should
be able to create one single profile and then transparently add subscriptions
for different Greenstone installations to it. In addition to that, it should be
possible to subscribe to events from different collections or hosts using one single
subscription (for example, notify me about all new collections).

To address requirements T2 and T3, we analyzed Greenstone 3 to identify
useful event types. In the context of DLs, events refer to state changes in all
objects in the DL software: such as collections, documents, and the software
itself. We identify all objects in this context and list the creation and destruction
of each kind of object (where applicable), as well as all ways these objects can
change. Table 2 lists all 24 types of events we identified for Greenstone 3.

An Integrated Alerting Service for Open Digital Libraries 487

Table 2. Event Types Identified for Greenstone 3

Event Type Details

software ew release, new bug, bug resolved, new patch
host new host, host deleted
interface new interface, interface deleted
site new site, site deleted
collection new collection, collection deleted, collection rebuilt
document new document, document deleted, content of document changed,

metadata of document changed
part of document new part of document, part of document deleted, content of part

of document changed, metadata of part of document changed
service new service, service deleted, service-specific event

3 The Alerting Service in Use

In this section, we demonstrate the user side in two typical interactions with
the alerting service: first, the initial creation of a subscription (i.e. registering an
interest) and, second, the receipt of notifications that match the subscription.
For clarity, we will primarily focus on the familiar events of new or changed
documents; our full range of events will be introduced in Section 5.

3.1 User Side: Creating Subscriptions

Simple subscriptions: Our user is browsing a digital library collection that fre-
quently has changes and updates made to its content (this often occurs with, e.g.,
WHO collections). The user has found a document that is of interest to them
and that may contain additional information in the future (see Figure 1, left).
In order to monitor the evolution of this document, they click on the “Watch

Fig. 1. “Watch this” buttons to create subscriptions shown on an individual document
page (left) and a classifier display (right)

488 A. Hinze, A. Schweer, and G. Buchanan

Fig. 2. A user’s subscription displayed for editing; Steps 1 (left) and 4 (right) of four

This” button circled on the left-hand side of the interface in the figure. This
simple gesture registers a subscription for the user that will now send them a
notification when a change is made to the document.

To find new documents, our user may turn to classifications in Greenstone:
They might find a classification that is interesting and relevant to them (see
Figure 1, right). Again, they click on the “Watch This” button, and they will be
subsequently notified when a change is made to the content of this classification,
e.g., when a new document appears in it, a new sub-classification is added or a
member document is removed.

In both these cases, the alerting service simply uses this user’s default pref-
erence for how to notify about the updated information. Simple subscriptions
are set up in a browsing interaction style. Obviously, this kind of subscription
only works for existing classifications or documents.

Complex subscriptions: Users can also create subscriptions about documents
where no classification exists yet, or define sophisticated subscriptions. Here, we
use a technique similar to a search query. A subscription is created in four steps.
In Figure 2, we can see the first and the fourth step in the process. Firstly, users
define the event type and a query that helps identify the involved documents
(Step 1, see Figure 2, left). Next, the involved Greenstone hosts (Step 2) and col-
lections (Step 3) have to be defined (by selecting from a list or specifying part of
the name). Finally, the means of notification are defined as shown in the screen-
shot in Figure 2, right. After defining a subscription, notifications about the
events may be received by the user; this is described in the following subsection.
Users can always edit or delete their subscriptions with immediate effect.

3.2 User Side: Receiving Notifications

Greenstone (GS), being a full-text digital library system, works with periodic
explicit rebuilds (re-indexation) initiated by the collection administrator. Thus,

An Integrated Alerting Service for Open Digital Libraries 489

Fig. 3. A Greenstone RSS feed shown in a feed reader

the typical pattern of updates to the library are occasional and large-scale re-
builds, rather than frequent changes to individual documents where updates are
performed immediately on the receipt of a changed document. Our Greenstone
alerting service is triggered by each rebuild; changes might have occurred in the
rebuild that subscribed users may be interested in. Any user who has at least one
subscription involving the rebuilt collection may be due to receive notifications
about changes to the library.

As discussed before, users can configure the delivery method for notifications
in their subscription configuration. At present, we support email and RSS feed
notification for personal delivery. An example RSS feed is shown in Figure 3,
accessed using the Liferea feed reader (http://liferea.sourceforge.net).

Alerts may also be displayed in the Greenstone library interface in a general
or personalized way. The general interface may provide a ‘new accession page’
and ‘new/changed’ highlight for particular documents. The personal page may
display a user’s recent notifications after the user has logged in to Greenstone.

4 Architecture of the Alerting Service

We now discuss the server side of the alerting service, providing an overview of
our alerting architecture and its distribution. Detailed descriptions of the compo-
nents and their design will be given in the following section. We chose the latest
generation of the Greenstone DL software as the basis for building our system.
Greenstone is a well-established software system for delivering digital library
services; the alerting service builds upon Greenstone’s modular architecture [2].

General Architecture: The general architecture for the alerting service is shown
in Figure 4. Existing DL components in Greenstone are identified in white, whilst
the new elements are highlighted in gray. The alerting sequence [8] comprises

490 A. Hinze, A. Schweer, and G. Buchanan

detection plug−in

Build

Classifier
Indexes

NotifierFiltering

HTTP
SOAPSOAP

Observer

Index
Query

Create

Filter
Query

Filter
Browse

Indexes

Subscription

Search

Engine
Search

Service
Browse

SOAP

HTTP

local access

Alerting Service

GS Collection Data

Identifier
Index

Subscrip−
tions

Collection
Data

Greenstone Receptionist Interface

Fig. 4. General architecture of a local Greenstone installation (left) with build process
(bottom left) and alerting service (right)

four steps that can be seen at the bottom of the figure: (1) rebuild and trigger of
alerting service, (2) observation of event messages, (3) filtering of event messages
according to user subscriptions, and (4) notification.

Note that the Observer component in itself is distributed: It consists of a
generic observer (within the alerting service in Figure 4) and an event detection
plug-in for each event type (shown in Figure 4 as last phase in the built process).
The alerting sequence is initiated when a collection in the library is (re-)built and
changes in the library’s indexes and content are identified. Each event is reported
to the Observer process, which prepares them for processing. The Filtering phase
then takes each event in turn, and matches it against the filter’s own index
of subscriptions. If a match is found between a subscription and an event, a
notification should be sent to the user who owns the subscription. A match
is sent to the Notifier, which creates a notification about the event message
and sends it to the user according to the user’s preferences. The heart of this
apparently simple sequence is the Filtering phase, which will be discussed in
detail in Section 5.

Distributed Architecture: The Greenstone alerting service can be distributed. A
distributed architecture for the alerting service is required in three cases: (a) a
number of different digital libraries use a common alerting service; (b) a library’s
content is distributed; or (c) the alerting service is on a separate computer to the
DL server. Greenstone itself is designed to be distributed if required [1]. There-
fore, Case (c) is simple since any connection in our architecture (see Figure 4)
may be between processes on separate machines. Beyond this basic separation,

An Integrated Alerting Service for Open Digital Libraries 491

1

2 NotifyFilterObserve

4

Observe NotifyFilter

5

763

Independent SystemIndependent System

A B

broadcast on GS Directory Service

Fig. 5. Federated collections on distributed Greenstone installations. Two independent
systems shown (simplified).

we make a distinction between federated collections, Case (a), and distributed
collections, Case (b). For the forwarding of event messages to distributed or
federated Greenstone servers, we have created the Greenstone Directory Ser-
vice (GDS). The GDS provides a common message-forwarding–infrastructure
for all alerting distribution scenarios. Here, we give a brief resume of GDS – for
complete details see [4]. The GDS is constructed as an independent network of
Directory nodes that together form a tree structure. Each tree of GDS nodes
provides a separate community, which can send and receive messages to and
from any digital library registered with a node of the GDS tree. GDS messages
are transmitted in an XML formwat across TCP/IP connections. Each node re-
ceives messages from its children, and distributes received messages forwards to
all its other children, and upwards through the tree for propagation across the
whole GDS network of which the node is a member. Messages are transmitted
through the GDS network when a collection is rebuilt – being sent into the GDS
server with which the host digital library server is registered. Note that a GDS
transmission node does not itself match or filter events against subscriptions – it
purely acts as a transmitter in a communication network. The new build process
we implemented in Greenstone supports notification of changes made during
a collection rebuild through the GDS service, and we have also implemented
the receipt and processing of remote collection changes against locally stored
subscriptions in a discrete subscription filtering client application. Other digital
library systems can readily be extended to support the transmission of change
messages into the GDS network – it is not specific to the Greenstone software.
Support for EPrints and D-Space – both popular digital library systems which
we will meet later in this paper – is anticipated in the near future.

The case of federated collections is shown in Figure 5. Two Greenstone hosts
are shown with their Greenstone software and alerting services. The left-hand
Greenstone server hosts a collection that the two subscriptions A (left) and B
(right) are interested in. When a change occurs in the collection (by rebuild-
ing the collection – see Step)1), the last phase of the build process (i.e., the
detection plug-in) triggers the observer (Step)2), which, in turn, forwards the
event message to the local filter component and broadcasts it also on the Green-

492 A. Hinze, A. Schweer, and G. Buchanan

2

1

4

3

sub aux

System with Sub−collecion System with Super−collection

Filter Notify Filter NotifyObserve Observe

unicast on GS network (SOAP) boadcast on GDS

Fig. 6. Distributed collections on distributed Greenstone installations. System with
sub-collection (left) and system with super-collection (right).

stone Directory Service (Step)5). Locally, the event is filtered according to
subscription A (Step)3) and the respective user is notified (Step)4). For the
distributed case, every alerting process on a Greenstone host connected to the
Greenstone Directory Service receives the broadcast event message. We now
follow the alerting process through the system shown the right hand side of Fig-
ure 5: The observer receives the event message and forwards it to the filter. The
event is filtered according to subscription B (Step)6) and its user is notified
(Step)7). We can see that the subscriptions are kept locally at the alerting
server that initially receives them.

The case of distributed sub-collections on a separate server is handled dif-
ferently (see Figure 6): The super-collection (right) holds a reference to its sub-
collection (left), indicated by a dashed line between the GS collection databases.
Sub-collections have no knowledge of their super-collections. Consequently, they
cannot send out messages referring to the changed collection (the sub-collection
might have a different local name); what is needed is an event message that
refers to the super-collection. The alerting system creates an auxiliary subscrip-
tion for the sub-collection (left), which refers to the super-collection, represented
by a dashed line. On rebuild of the sub-collection (Step ①), the local observer
is triggered (Step ②). The matching auxiliary subscription is identified (Step ③)
and a notification is sent to the super-collection’s server (Step ④) via the SOAP-
based Greenstone network. The Greenstone network only connects servers with
sub/super-collections. The observer on the super-collection side receives the mes-
sage and identifies the respective super-collection. It then sends out an event
message for the super-collection over the GS Directory Service. The further pro-
cess is identical to the event handling in the distributed case as described before
(starting at Step)5). For sub/super-collections, subscriptions are forwarded, in
opposition to event forwarding in the distributed case.

5 Design Details

This section describes in detail the components of the Greenstone alerting service
introduced in the previous section. The design of our alerting service supports 30

An Integrated Alerting Service for Open Digital Libraries 493

different event types, for instance: document events, metadata events, collection
events, index events, category events, classifier events, system events, and soft-
ware events. The event types observe different actions (such as new, changed,
deleted items) supporting different ways of identifying the affected items. For
conceptual clarity of description, here we focus on new and changed documents.
For comprehensive coverage of the service’s design, refer to [10].

5.1 Design: Creating Subscriptions

The Greenstone alerting service provides a web interface to create subscriptions.
All subscriptions are conjunctions of predicates. Predicates have a type, a field
name, and a value. There are four different kinds of predicates: Equality pred-
icates, metadata predicates, substring predicates, and query predicates. Each
predicate refers to a single field name. If more than one predicate in a subscrip-
tion refers to the same field, these are evaluated as disjunctions.

Equality predicates are currently used for identification of hosts, collections,
and documents. Substring predicates are currently only used for hosts and col-
lections. Metadata predicates refer to metadata fields and vales. Metadata pred-
icates are satisfied if the document has the specified metadata field and the
specified value is equal to that of the metadata field. The field name may be
freely defined by the user. Query predicates can be defined for title and full-text
of documents; they have free-defined Greenstone queries as values.

5.2 Design: Observing Events

Each collection in Greenstone consists of the documents’ full-texts and accompa-
nying metadata. During a rebuild, this information is processed into the standard
METS format and stored in a relational database. Classification and content
indexes are also generated for the collection. Each collection and each docu-
ment has three time-stamps. For alerting, the following time-stamps are rele-
vant: accession date and last (re)build for a collection, and time-stamps for
accession, modification and (re)indexed for documents.

When a collection is rebuilt, the collection, new, and changed documents re-
ceive the same (re)built/(re)indexed time-stamp. New documents are iden-
tified by their accession time-stamp being identical to their (re)indexed time-
stamp. To detect changed documents, the modification and (re)indexed time-
stamps are compared. On each rebuild, an alerting sequence is initiated. Green-
stone 3 uses incremental rebuilds; the detection plug-in at the end of the build
process detects the events of changed or new documents. It then creates event
messages containing attribute-value–pairs. The event message holds information
about the type of event, the affected document’s ID, and the collection ID. The
message is sent via HTTP to the observer component of the alerting service.

The generic observer component provides an interface for internal and ex-
ternal event messages: messages from local builds are received through HTTP,
whilst events from builds on other hosts are received through SOAP. The event
messages are passed on to the filtering component of the alerting service.

494 A. Hinze, A. Schweer, and G. Buchanan

5.3 Design: Filtering Event Messages

The filter component tests incoming event messages against the subscriptions
stored in the database. We use a hybrid implementation of the equality-preferred-
algorithm, which is in turn an extension of the counting algorithm [6]: The count-
ing algorithm tests each predicate in a set of subscriptions only once, counting the
number of successful predicate matches for each subscription. A given subscrip-
tion is matched by the incoming event message if its number of matched predi-
cates equals the total number of its predicates. The equality-preferred–algorithm
tests all equality predicates first and then proceeds to further predicates for the
subscriptions using the counting algorithm.

We use a hybrid equality-preferred–algorithm in three phases. The filtering
component holds a special index of subscriptions, clustering them according to
their equality predicates, i.e., all subscriptions with equality predicates regard-
ing the same set of field names are clustered together (see identifier index in
Figure 4). In Phase 1, the corresponding clusters for the incoming event are
identified. Corresponding clusters are those which refer to fields that are con-
tained in the event message. Then, the equality predicates in these clusters of
subscriptions are evaluated (using the clusters’ hash indexes on the values). The
result is a list of partially matched subscriptions.

In Phases 2 and 3, all other predicates are tested using the counting al-
gorithm. In Phase 2, all non-equality predicates are filtered and a counter is
maintained for each affected subscription. Non-equality predicates are metadata
predicates, substring predicates, and query predicates. For query predicates, we
use collection-inherent DL searches for the stored queries (see query index with
access to GS search engine in Figure 4, left). Similarly, for metadata predicates
we use Greenstone’s metadata retrieve service. The Greenstone alerting service
determines the appropriate query service offered by a collection by applying
heuristics for typical queries on a field, e.g., a predicate regarding the title field
uses a title search in a collection. If no appropriate service is found, the predicate
is not satisfied.

In Phase 3, the number of matching non-equality predicates are compared to
the total number of non-equality predicates in each partially matched subscrip-
tion. In addition, all subscriptions without equality predicates are considered.
Information about matching subscriptions is written to the database to be used
for notifications.

Our design constitutes a novel approach to combine filter and search func-
tionalities; this is necessary because possible search methodologies for future
collections may not be known at the time when the subscription is defined.

5.4 Design: Creating Notifications

Notifications can be delivered to the user in a general or personalized way. Gen-
eral delivery uses, e.g., a ‘new accessions’ page in the Greenstone interface, and
‘new’ highlights for collections or documents in the interface. We maintain a
Greenstone 3 alerting module for presentation of general notifications; the GS3

An Integrated Alerting Service for Open Digital Libraries 495

user interface is created from such modules dynamically at runtime [2]. Each in-
terface module (including the alerting module) communicates with the core DL
interface code through SOAP. These general notifications require that recent
notifications are recorded in Greenstone’s relational database for future use.

Alternatively, the users may receive notifications through a message (email)
or RSS feed. Implementation of these notification is straightforward, and require
no further explanation. An example has been shown in Figure 3.

6 Evaluation

In this section, we present the results of our evaluation of the alerting service.
This section consists of two principal parts: first, the discussion of the compliance
of our design with the original requirements introduced earlier in this paper;
second, an analysis of the performance of the system in use.

6.1 Evaluation: Design

The requirements for our alerting service were introduced in Section 2. We will
first discuss the functional requirements F1 to F5: The service supports the
finding of items through a simple addition to the standard DL build process [5].
We have demonstrated the editing of subscriptions (F2), publication and viewing
of events (F3–F5) in Section 3.

Research in event-based systems has indicated that users frequently have
problems defining effective subscriptions to represent their interests (reflected
in requirements F2 & T4, see Table 1). To overcome the syntactic problem of
defining even basic queries, we introduced simple interface features such as the
“Watch This” button. For sophisticated subscriptions, we provide an advanced
query subscription interface. The learning demand on the user is reduced by pro-
viding an analog of Greenstone’s interactions, mirroring browsing and querying.
Further user testing needs to be conducted to refine this approach.

The technical requirements T1 to T8 are also addressed by our design. We use
the digital library itself to determine content-based events (T1), and as seen in
Section 3 customizable notifications (T2). Our close relationship to the existing
DL system readily supports a user interface similar to the familiar DL controls
(T4) and a range of events consistent with the capacities of the underlying DL
systems (T3). The alerting service’s open format for events readily provides open
access to a variety of event sources (T5) and levels of abstraction (T6). Our
use of subscription forwarding (in the case of distributed libraries) and event
forwarding (for federated libraries) ensures consistency where such collections
exist (T8) and a variety of DL configurations (T7) – in the latter case supported
further by our open event format.

6.2 Evaluation: Performance

We wished to study the performance of the distributed alerting service in prac-
tice. There were three separate areas that we wished to evaluate in terms of

496 A. Hinze, A. Schweer, and G. Buchanan

performance: event detection, filtering of incoming events against locally stored
subscriptions, and finally the distribution of events across the Greenstone Direc-
tory Service network.

Before reporting our results in detail, it is worth clarifying the rate of change
that may be expected in a digital library. The Humanity Development Library
(or HDL) is produced by the United Nations and distributed on CD-ROM. The
current public distribution contains over 160,000 separate pages, each indexed
as a separate document. Of this material, some 50% has been updated or added
since the first version seven years ago. In other words, the number of items
changed per day is somewhat under 50. This rate of change is typical for the
various United Nations collections that are supported by Greenstone, and the
HDL is of median size. These UN collections have a higher change rate for
existing documents than is typical for most digital libraries. It follows from
this sort of volume of change that the challenge for the distributed alerting
service comes less from the frequency of changes in each library collection, but
rather from the potentially vast distribution/federation, the number of libraries
involved, and the number of profiles.

Event Detection: For the first tests of the alerting service, we wished to verify
our expectations of the time costs for detecting changes in the digital library –
an area where existing data gave little indication of what order of performance
one ought to expect.

Detecting a change in a document, or in a classification requires a series of
simple database lookups that we expected to be in the order of O(p), where p is
the number of document properties (e.g., metadata such as document title – see
Table 2). Running a sample build over a collection comprised of a mixture of large
plain text, HTML and XML documents (of book size) resulted in an underlying
build time of c. 15 seconds per document (mean=15.2s) of which c. 0.2 seconds
(mean=0.16s) was spent identifying which, if any, change messages should be
forwarded for this document. Clearly, event detection adds only a small cost to
the indexation of a document in the library. We believe that this performance
can be slightly improved with further optimisation of the build code.

Local filtering: Secondly, the issue of profile matching required study – identi-
fying the process load of processing incoming events against the user profiles
stored on a local Greenstone server.

The performance of the counting and equality-preferred algorithms is well
known. However, in our implementation we extended the original algorithm,
which compared only numbers. We had to support full-text search and string
comparison to satisfy the full range of events for Greenstone and other digital
libraries. Neither of these forms of comparison have any relationship with the
number of subscriptions to be matched, so we should still anticipate overall
performance characteristics of the local filtering to be similar to the original
algoriths [6]. The primary expectation from the earlier implementation should be
for performance to be in the region of O(s) where s is the number of subscriptions
(or, more precisely, unique subscription predicates). Fabret et al’s algorithm
evaluates any predicate (e.g., “title includes Shakespeare”) only once, even if

An Integrated Alerting Service for Open Digital Libraries 497

Table 3. Results of local filtering tests for Greenstone Alerting Service

Unique predicates (subscriptions) Time Taken (in sec)
1000 (256) 0.142
2500 (640) 0.182
5000 (1280) 0.243
7500 (1920) 0.338
10000 (2560) 0.437
25000 (6400) 0.783
50000 (12800) 1.465
75000 (19200) 1.981
100000 (25600) 2.479

the predicate is included in a number of different subscriptions. In our tests, we
followed their model of considering the performance of their algorithm on the
number of unique predicates, rather than (more complex) subscriptions.

We conducted a small experiment to evaluate the local filtering performance –
varying the number of predicates in the profile database from 1, 000 to 100, 000
unique predicates. Predicates were of equal portions of the different available
types, created using simulated subscription data. A digital library subscription
will typically include three or more predicates (in our simulated test data, an
average of four) – e.g., a subscription may list an event type, collection, author
name and subject field. At a worst case, 100, 000 predicates would typically repre-
sent 25, 000 subscriptions, if every predicate of every subscription were unique.
Real life data would certainly include some predicates that appeared in more
than one subscription, increasing the number of subscriptions that this would
represent.

The time taken to match all predicates against a single event varied linearly
from 0.14s (with 1000 predicates) to 0.44s (10,000 predicates). Approximately
0.10s was fixed overhead. These findings are consistent with those of Fabret et
al. However, this test does not represent the whole picture – full-text retrieval
predicates are much more costly to evaluate than simple string matching, and
we wish to undertake further study to distinguish the costs of different styles of
predicate. Unfortunately, we have little data at present to identify the relative
frequency of particular types of predicate (tests of document metadata, full-text,
etc.) under actual use.

However, the results above demonstrate that the matching of events against
user subscriptions is scaleable and consistent with known state-of-the-art algo-
rithms.

Event Distribution: Given the tree structure of the Greenstone Directory Service,
one critical limitation could be the throughput capacity of the single node at the
root of the tree, through which every event would have to pass. Therefore, our
first point of concern was the nominal capacity in practice for a single node
within the GDS to receive and forward messages. Using event forwarding over
the GDS network (as described in Section 4), each change in a collection is

498 A. Hinze, A. Schweer, and G. Buchanan

received only once by a network node, and forwarded once to each immediate
child node, and once to its parent node (excepting the case of the root node).
Note that GDS nodes do not filter events, but transmit them onwards through
the network without further processing. Thus, the primary limitation is in fact
the rate of output to other nodes.

For testing purposes, the GDS network was run on a small cluster of servers
at University College London, consisting of two Apple Mac OS-X computers,
two Linux servers and two machines running Windows XP. Three computers
ran as GDS servers only, three as Greenstone servers producing Greenstone
Alerting messages. Two GDS servers were registered with the third, which acted
as the root server. The GDS root server machine was an Apple Mac-OS X G5
computer with 1Gb of main memory. The computers were connected locally
through a 10Mbit network, with two (Linux) machines running at a remote site
at Middlesex University (UK).

As shown in [3], even such a small network topography can be used to sucess-
fully test distributed alerting services, as it has the advantage of a real-world
test over a simulation.

We expected the time cost of the distribution of events to be small, but
limited by the available network bandwidth and the overhead of establishing
connections between GDS nodes. We achieved average point-of-origin to remote
(off site) recipient transmission times of 2.3 seconds per event, but further testing
indicates that the current implementaton could be significantly improved – e.g.,
at present each message is transmitted as a new, separate connection, and this
is clearly wasteful.

7 Related Work

In this section, we review previous work for alerting in digital libraries in pro-
prietary systems, in open DL systems, and in mediator approaches.

Alerting in Proprietary DL Services: Individual alerting services are offered
by publishing houses, such as Springer Link Alert (via http://springerlink.
metapress.com),ACM Table-of-Contents Alerts (via http://portal.acm.org),
and Elsevier Contents Direct (http://www.contentsdirect.elsevier.com).
These are solitary, centralized services that neither cooperate with other services
nor openly support independent digital libraries. These services provide simple
email notifications about new volumes published by the company, rudimenta-
rily tailored to the user’s interests. Only coarse-grained selectivity is offered,
which may result in readers obtaining a high proportion of notifications of low
relevance. Advanced subscriptions, e.g., regarding library organization or classi-
fication of documents are not supported. Unlike our Greenstone alerting service,
the systems are not open to additional event sources.

Alerting in Generic DL Systems: So far, only two of the popular generic DL sys-
tems provide alerting features – D-Space and EPrints. D-Space (http://www.
\dspace.org) is being developed as a reference model for document manage-
ment systems, and supports the storage and retrieval of electronic documents.

An Integrated Alerting Service for Open Digital Libraries 499

Readers using a D-Space server can place a subscription on a specific collection,
which then waits for any documents to be added to the collection. No additional
constraints can be added to a subscription – the subscriber is simply emailed
a notification each day listing all new documents added to the collection. This
can be compared to a simple ‘watch-this collection’ subscription without further
filtering in our alerting service.

EPrints (http://www.eprints.org) is a simple open source system for pro-
viding an internet-accessible document repository. EPrints supports simple sub-
scriptions that alert a reader when a matching document is inserted into the
EPrints repository; matches are made against the metadata fields of a document.
In the Greenstone alerting service, this can be compared to a basic metadata
subscription using a query that is restricted to new documents.

The engineering of the incorporation of the alerting services in EPrints and
D-Space has been reported only briefly in the available literature. In contrast to
the GS alerting service, their subscription systems are deeply embedded in the
DL implementation.

Mediating Alerting Services: Only a few systems have been developed to support
open heterogeneous document collections for publish/subscribe features. Here we
focus on the two systems that target at DLs: Hermes and Dias.

Hermes [7] is an integrative system that covers heterogeneous services and
event sources. Subscription definition focuses on typical queries regarding sci-
entific publications, such as authors, title, or keywords. The service operates
independently of any library implementation, using (active) email or (passive)
web pages for information access. Typically, such an alerting service would be
operated by a scientific library (secondary provider) as a service for its users, no-
tifying about documents provided by primary providers. Unlike our Greenstone
alerting service, Hermes only aggregates notifications from different sources and
is limited by the underlying types of alerts that it receives. It was this restriction
that motivated the work presented in this paper.

Dias [9] adopts the basic ideas of Hermes. Dias is a distributed system based
on peer-to-peer communication. The data model of Dias is based on simple free-
text documents. Dias’s subscriptions support Boolean queries with proximity
operators. We see this text-focussed approach as too limited for an open digital
library supporting collections of arbitrary document types (e.g., music, pictures,
text documents).

Tools such as Hermes and Dias suffer significantly from not being integrated
with the digital library. For example, observation of events and access to docu-
ments is problematic. In addition, identifying different versions of the same work
is particularly difficult without explicit knowledge of the underlying structure
of collections or a set of valid document identifiers. Similarly, approaches that
rely on poor sources such as the active support from publishers and DLs or on
monitoring publishers’ web-pages to extract event information cannot hope to
lead to sophisticated event notifications.

Summarizing the related work, most existing systems only support the de-
tection of new documents. EPrints additionally supports changed documents.

500 A. Hinze, A. Schweer, and G. Buchanan

Advanced subscriptions, e.g., regarding indexes or classifications, are not avail-
able. Often systems are implemented in a centralized manner. Support for fed-
erated or distributed collections could not be found. Only mediating systems
support open event sources; unfortunately they receive only poor support and
are extremely limited in their access to pertinent and detailed data.

8 Conclusions

This paper proposed the design and implementation of a comprehensive alerting
service for digital libraries. We have shown that existing alerting services for
DLs have considerable shortcomings: limited types of supported events; limited
range of subscription model and notification options; no support for distributed
collections; restricted support for federated collections.

To address these limitations, we presented the detailed design of the Green-
stone alerting service, describing both stand-alone and networked implementa-
tions. The Greenstone alerting service supports a much wider range of event
types than previous systems, and supports events in federated and distributed
collections. Our alerting service is open to other event sources and providers.

Our design for a comprehensive alerting service can readily be applied to a
wide range of DL systems, as it reuses existing DL components, and requires only
protocol-level access to theDL towhich it is attached. In addition, by using existing
DL system functionality, it minimizes both programming and run-time demands
of the alerting service. Using well understood principles from event-based systems,
efficiency can be achieved without building extensive specific indexes for alerting.
We demonstrated the scalability of our approach through a series of test of both
the distributed event forwarding system and the subscription filtering component.

We plan to evaluate further performance optimization strategies of the filter
algorithm. We also plan to further analyse the scalability of the distributed
service under a high load of subscribers, particularly when matching a high
proportion of content-text subscriptions. Initial results are promising, but we
wish to scrutinise this particular issue further to ensure scalability. Another
extension involves a modification of the Greenstone protocol: We plan to develop
a structured methodology to determine the appropriate query service to be used
for evaluating a given filter predicate.

Acknowledgements. This work was supported by the University of Waikato and
EPSRC grant (GR/S84798).

References

1. D. Bainbridge, G. Buchanan, J. R. McPherson, S. Jones, A. Mahoui, and I. H.
Witten. Greenstone: A platform for distributed digital library applications. In
Proceedings of the ECDL, Sept. 2001.

2. D. Bainbridge, K. J. Don, G. R. Buchanan, I. H. Witten, S. Jones, M. Jones, and
M. I. Barr. Dynamic digital library construction and configuration. In Proceedings
of the ECDL, Sept. 2004.

An Integrated Alerting Service for Open Digital Libraries 501

3. S. Bittner and A. Hinze. Classification and analysis of distributed event filtering
algorithms. In Proceedings of COOPIS, October 2004.

4. G. Buchanan and A. Hinze. A distributed directory service for Greenstone. Techni-
cal Report 1/2005, Department of Computer Science, University of Waikato, New
Zealand, Jan. 2005.

5. G. Buchanan and A. Hinze. A generic alerting service for digital libraries. In
Proceedings of the JCDL, June 2005.

6. F. Fabret, F. Llirbat, J. Pereira, and D. Shasha. Efficient matching for content-
based publish/subscribe systems. Technical report, INRIA, France, 2000.

7. D. Faensen, L. Faulstich, H. Schweppe, A. Hinze, and A. Steidinger. Hermes – a
notification service for digital libraries. In Proceedings of the JCDL, June 2001.

8. A. Hinze and D. Faensen. A Unified Model of Internet Scale Alerting Services. In
Proceedings of the ICSC (Internet Applications.), Dec. 1999.

9. M. Koubarakis, T. Koutris, C. Tryfonopoulos, and P. Raftopoulou. Information
alert in distributed digital libraries: The models, languages, and architecture of
Dias. In Proceedings of the ECDL, Sept. 2002.

10. A. Schweer. Alerting in Greenstone 3. Master’s thesis, University of Dortmund,
Germany, May 2005.

Workflow Data Guards

Johann Eder and Marek Lehmann

University of Klagenfurt,
Dep. of Informatics-Systems

{eder, marek}@isys.uni-klu.ac.at

Abstract. Workflow management systems (WfMSs) frequently use data
to coordinate the execution of workflow instances. A WfMS evaluates
conditions defined on data to make the control flow decisions i.e. select-
ing the next activity or deciding on an actor. However, data - within
and outside of a running workflow instance - may change dynamically.
Modifications of data needed for past control flow decisions may inval-
idate these decisions. We analyze the desired synchronization policies,
and propose a mechanism called data guard to selectively guarantee that
significant changes in data are recognized and handled by the data man-
agement system to ensure correctness of workflow execution in face of
asynchronous updates.

1 Introduction

Workflow systems frequently integrate autonomous information systems, using
and manipulating data from various heterogenous sources. These data are crucial
for the correctness of a workflow execution, because control decisions depend on
them. These data can be dynamically modified within and outside of an active
workflow instance. Unfortunately, this is frequently ignored and replaced by an
assumption that only workflows are accessing data and that the data modified
by one workflow are not accessed by another one [1].

The modifications of data can have different impacts on a running workflow
instance. We can classify the effects of changes as follow:

– The changes have no effect (e.g. modifications concern data already used in
the workflow and not needed anymore)

– The running instance uses the new values (e.g. contact a customer using his
or her new phone number).

– The running instance needs the old values (e.g. when the cancellation policy
at the time of contracting is relevant, not the latest version.)

– The change invalidates parts of the workflow and leads to an exception han-
dling (e.g. a control flow decision based on a data value made during the
workflow execution can be invalidated if this data value changes after mak-
ing the decision.)

To illustrate the last case we use a simplified car insurance claim handling
workflow definition as modelled in Fig. 1. A possible instance of this workflow is

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 502–519, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Workflow Data Guards 503

Make

assesment

Check police

report

claim<500

else

Refuse

claim

Agree to

car repair
accepted

else

Start End

?
CS1

?
CJ1

?
CS2

?
CJ2

Attach

photo

Fig. 1. Simplified example of a car insurance claim handling workflow

claim:=9999

Check police

report

claim<500
Agree to

car repairStart End

?
CS1

?
CJ1

?
CS2

?
CJ2

Attach

photo

accepted

Fig. 2. Sample instance of the workflow definition in Fig. 1

presented in Fig. 2. A control flow decision was made in the cond-split node CS1
based on a claim value less than 500. All the following activities were performed
with such an assumption. If the claim value has changed (perhaps outside of a
running workflow) after the node CS1, then the agreement to the car repair is
possibly invalid, and thus the whole workflow is invalid.

In most cases the existing WfMSs do not offer simple means for checking
such errors. The workflow designers usually have to find some workarounds and
manually program all the checks. The possible methods may include:

– Guarantee, in all activities within a workflow, that data values will not be
changed in a way that may invalidate the workflow. This method does not
prevent data changes made externally to the workflow.

– Implement condition checks in activities: makes activities process specific,
reduces reusability and makes maintenance more difficult.

– Pre- and postconditions: frequently it is possible to define pre- and postcon-
ditions to activities, but not to their particular occurrences (steps) in the
workflow definition. This again reduces the reusability of activities.

– Control flow approach: a workflow designer can use conditional nodes to
recheck the data in the workflow definition before the critical activities and
take an appropriate action if an error has been detected. This approach can
lead to the explosion of the workflow complexity and does not solve the
problem, because data can change at any time outside of a workflow.

– Lock the data used to make the control flow decision for the execution time
of the rest of the workflow instance. But workflow instances can take very
long (e.g. months) and locks held for such a long time are unacceptable.

The methods outlined above do not solve the general problem and introduce
many new ones. From the analysis above, it is also clear that there is not one
simple solution to care for all cases. We propose workflow data guards as a tech-
nique for monitoring changes and for giving the possibility to react to changes
in the right way. The rationale for our mechanism is that in a dynamic workflow

504 J. Eder and M. Lehmann

environment we cannot prevent all data changes, but we would like to be able
to detect and to react to some of them in selected parts of a workflow.

The work we present here is a continuation of our work on data aspects in
workflow systems. In [5] we proposed a uniform treatment of all kinds of business
data in workflows and offered the transparency of data location and logical and
physical data independence of workflow systems by using specialized wrappers
around external data sources called data access plug-ins. In [6] we presented a
policy based mechanism for synchronizing copies of external data made in the
workflow repository.

The remainder of this paper is as follows: Sec. 2 describes the concept of
workflow data guards. In Sec. 3 we discuss different methods of activating and
deactivating the guards. We show how to check conditions of active guards in
Sec. 4, discuss related work in Sec. 5 and finally draw some conclusions in Sec. 6.

2 Workflow Data Guards

We represent both workflow definitions and workflow instances as full-blocked
workflow graphs and explore the concept of data guards in detail for this work-
flow model. The concept of workflow guards and the principal definitions, nev-
ertheless, should be applicable to most workflow models we are aware of.

Full-blocked workflow graphs are directed acyclic graphs with two kinds of
nodes: activities and control nodes. The edges determine the execution sequence
of nodes. Control nodes describe basic workflow control structures: conditional
(cond-split and cond-join nodes symbolized by a circle with a question mark)
and parallel execution (par-split and par-join nodes symbolized by a circle with
two parallel lines). In a full-blocked workflow graph, with each split node is
associated exactly one join node of the same type and each join node has exactly
one corresponding split node of the same type. A workflow instance type graph
is a subgraph of a workflow definition graph, where each cond-split node has
only one adjacent successor.

A workflow data guard is a constraint defined over specified parts of a work-
flow. It is specified in a workflow definition and consists of a condition, a set of
activities which activate the guard for the first time (activation set) and a set
of activities guarded (guarded set). Its condition is a boolean expression defined
on data used within this workflow.

A workflow data guard instance can be in one of three states at runtime:
inactive, active and deactivated. Inactive is the initial state when a workflow
instance is started. The guard instance stays in this state until an activity from
its activation set is started. Later it can be deactivated and activated again, etc.
according to the activation policy detailed below. Only when the data guard
instance is active its condition is checked and a guard violation can be detected.

The activation policy of data guards is as follows:

– Guards are inactive, when a workflow instance starts.
– Launching activities of the activation set make an inactive guard active.
– All guarded activities activate deactivated guards.

Workflow Data Guards 505

– When an activity instance is guarded the guard is on watch from launching
such an activity instance till its termination.

– A guard stays active between immediately succeeding guarded activity in-
stances.

– When there is no reason to stay active, a guard is deactivated.

In the sample workflow in Fig. 3 nodes corresponding to guarded activities
are colored. An activity A belongs to the activation set of a guard G. The
workflow engine will activate a guard instance G before the actual start of an
instance of the activity A. A has a guarded successor B. When the instance of
A completes, the guard instance will be kept active for the execution time of B
and deactivated, when the instance of B completes.

This policy is quite straightforward for activating a data guard, but a bit
more difficult for deactivation. According to the policy, a guard instance is deac-
tivated, when a guarded activity instance is completed and none of its immediate
successors is guarded and there are no parallel branches with launched and un-
finished guarded activities, or finished guarded activities with guarded successors
forthcoming (par-join).

The deactivation of an active guard instance is a twofold problem. First, when
completing a guarded activity instance, the workflow engine has to check with
the workflow definition whether there is (possibly) a guarded successor. Second,
the workflow engine has to keep track of parallel guarded activity instances. We
analyze the problem of deactivation of an active data guard instance in detail in
Sec. 3.3.

An example workflow definition is presented in Fig. 4. Only an activity ’At-
tach photo’ belongs to the activation set of a guard G1 and can activate a guard
instance for the first time. ’Attach photo’ is the first guarded activity follow-
ing the CS1 node in a path where a claim value is less than 500. Therefore,
an instance of G1 can be activated only if the claim value was less than 500.
Two sample instance types of this definition are presented in Fig. 5 In the first
instance type (a), the workflow engine activates an instance of the guard G1,
before the actual start of an instance of the activity ’Attach photo’. In the other
instance type (b), the activity ’Check police report’ is guarded in the definition,
but it does not belong to the activation set of the guard G1 and the guard in-
stance was not activated earlier, i.e. it is still inactive. Therefore, the workflow
engine does not activate the guard instance. Observe that in this case the claim
value is not less than 500 and a guard instance would be violated immediately
after activation.

A B

guard G : ratio<150

C
Start End

activates G

Fig. 3. Workflow graph with a workflow data guard

506 J. Eder and M. Lehmann

guard G1: claim<500

Make

assesment

Check police

report

claim<500

else

Refuse

claim

Agree to

car repair
accepted

else

Start End

?
CS1

?
CJ1

?
CS2

?
CJ2

activates G1

Attach

photo

Fig. 4. Workflow data guard with a non empty activation set

Check police

report

claim<500
Agree to

car repairStart End

?
CS1

?
CJ1

?
CS2

?
CJ2

activates G1

Attach

photo

accepted

(a)

Make

assesment
Check police

report
else Agree to

car repair

accepted

Start End

?
CS1

?
CJ1

?
CS2

?
CJ2

(b)

Fig. 5. Sample instance types of a workflow definition in Fig. 4

A condition violation of an active workflow data guard instance raises an
exception. The system may react to an exception by passing the exception to an
external system or authority (e.g. inform the workflow administrator), starting a
complex recovery procedure, finding a way to overcome the problem and continue
processing, etc. Different methods of handling exceptions in workflows can be
found in the literature, e.g. [2, 8, 11]. These are not part of this paper.

The workflow data guards can guarantee that, during the execution of guarded
activities, the guard conditions defined on data used within a workflow will not
be violated unnoticed. This enables data guards to be used to:

– describe additional business data constraints in a workflow definition, e.g. a
data guard can check whether the stock price stays within a given limit.

– ensure the correctness of data in selected parts of a workflow.
– react to changes of data relevant to the correctness of a workflow.

In particular, workflow data guards can be used to resolve problems with data
modifications invalidating past control flow decisions.

3 Activation and Deactivation of Workflow Data Guards

Based on a workflow definition, the workflow engine dynamically activates and
deactivates workflow data guards in a running workflow instance. Before we
can describe the activation and deactivation mechanism in detail, we need to
introduce some basic properties of guards.

Workflow Data Guards 507

3.1 Definitions and Basic Properties

We define the following operations and predicates on the nodes of a workflow
graph wg. The graph wg can be either a definition graph or an instance type
graph. N.type yields the type of the node N (i.e. one of the following: activ-
ity, cond-split, cond-join, par-split, par-join). A predicate succ(N, M)wg is true
if M is an adjacent successor of the node N in the graph wg. By analogy,
pred(N, M)wg is true if M is an adjacent predecessor of N in wg.

For the activity nodes N we define the predicate guarded(N, G)wg which is
true if in a workflow graph wg the activity N is guarded by the guard G:

guarded(N, G)wg ⇔ N.type = activity ∧ N is guarded by the guard G

We define for a guarded activity N and a workflow data guard G a predicate
firstActivates(N, G)def which is true if a start of an instance of the activity N
can activate an inactive instance of the guard G for the first time. A workflow
designer marks in a workflow definition def for which activities this predicate is
true. We define in a workflow definition graph def an activation set of a workflow
data guard G as:

activationSet(G)def = {N : guarded(N, G)def ∧ firstActivates(N, G)def}

Direct activity successor: The predicate succ′(N, M)wg is true in a workflow
graph wg if M is an activity which follows the node N, and M is an adjacent
successor of N, or in at least one path between N and M there are only control
nodes, i.e. in one path M is the first activity after the node N. We say that M is
a direct activity successor of N:

succ′(N, M)wg ⇔ M.type = activity ∧
(
succ(N, M)wg

∨ (∃V : succ(N, V)wg ∧ V.type = activity ∧ succ′(V, M)wg)
)

The predicate guardedSucc(N, G)wg is true in a workflow graph wg, if N has a
direct activity successor, which is guarded by G:

guardedSucc(N, G)wg ⇔ ∃M : succ′(N, M)wg ∧ guarded(M, G)wg

For each node N in a workflow graph wg we define a set of its direct activity
successors, which are guarded by G:

guardedSuccSet(N, G)wg = {M : succ′(N, M)wg ∧ guarded(M, G)wg}

For each node N in a workflow graph wg we define a number of outgoing paths
which contain guarded direct activity successors of N:

�guardedSucc(N, G)wg =
∣∣∣{M : succ(N, M)wg

∧
(
(M.type = activity ∧ guarded(M, G)wg)

∨ (M.type = activity ∧ guardedSucc(M, G)wg)
)}∣∣∣

508 J. Eder and M. Lehmann

By analogy we describe direct activity predecessors of a node N in a workflow
graph wg:

pred′(N, M)wg ⇔ M.type = activity ∧
(
pred(N, M)wg

∨ (∃V : pred(N, V)wg ∧ V.type = activity ∧ pred′(V, M)wg)
)

guardedPred(N, G)wg ⇔ ∃M : pred′(N, M)wg ∧ guarded(M, G)wg

guardedPredSet(N, G)wg = {M : pred′(N, M)wg ∧ guarded(M, G)wg}

It is easy to see that a set of guarded direct activity successors of a node N in a
workflow instance type graph inst is a subset of guarded direct activity successors
of the node N in a corresponding workflow definition graph def , because each
workflow instance type graph inst is a subgraph of its workflow definition graph
def . The following two properties are a consequence of this fact.

Proposition 1. If a node N does not have any guarded direct activity successors
in the workflow definition graph, then it does not have any such successor in any
instance type graph of this definition.

Proposition 2. If a node N has a guarded direct activity successor in the work-
flow definition graph, then it possibly may not have any guarded direct activity
successor in a particular instance type graph of this definition.

Guarded Path: A guarded path is a path in a workflow instance type graph,
which contains only instances of the activities guarded by the same guard and
possibly some control nodes. A path in a workflow graph is a sequence of nodes
N0, N1, . . . , Nm such that for j = 1, . . . , m, the nodes Nj−1 and Nj are adjacent.
Two guarded paths are parallel, if at least one activity instance from one path
can be executed in parallel with any activity instance from the other guarded
path.

An instance of the activity N is the last in a path guarded by G, if it is
guarded itself and does not have in an instance type graph inst any direct
guarded activity successors, i.e. guarded(N, G)inst ∧ ¬guardedSucc(N, G)inst.

By analogy the first activity instance in a guarded path is described as fol-
lows: guarded(N, G)inst ∧ ¬guardedPred(N, G)inst.

For example, ’Attach photo’ in Fig. 5(a) is the first guarded activity instance
in a guarded path, ’Agree to car repair’ is the last guarded activity instance in
a guarded path, and the guarded path consists of (’Attach photo’, CJ1, ’Check
police report’, CS2, ’Agree to car repair’).

3.2 Activation of a Workflow Data Guard

The workflow engine activates instances of workflow data guards according to
the workflow definition and the current state of processing. Instances of activities

Workflow Data Guards 509

marked as guarded by a guard G in the workflow definition will be guarded at
runtime only when an instance of G is active. The instance of G can be activated
by a start of an instance of an activity N marked as guarded by G in the workflow
definition only if one of the following holds:

– the activity N belongs to the activation set of G, i.e. firstActivates(N, G)def

is true,
– the instance of G is deactivated, i.e. it has already been activated at least

once.

This simple and powerful activation mechanism allows the designer to choose
very selectively activities and paths where constraints are checked to achieve both
the desired correctness guaranties and minimize the performance implications.

3.3 Deactivation of a Workflow Data Guard

To deactivate active instances of workflow data guards, we have to solve the
following problems at runtime:

– Keeping track of several guarded paths running in parallel and providing
communication between them.

– Detecting that a given guarded path has completed.

Parallel Guarded Paths: An active instance of a workflow data guard can only
be deactivated if at a given point of time there are no running parallel paths
guarded by this instance. Parallel guarded paths are generated by par-splits:

– A guarded path may begin before a par-split node PS and may continue
after the node PS (as in Fig. 6).

– A guarded path may begin after a par-split node PS and may continue after
the corresponding par-join node PJ (as in Fig. 7).

In the former case, a guarded path started before a par-split node PS may split
in this node into several parallel guarded paths. The maximal number of guarded
paths possibly outgoing from the par-split node PS at runtime is described in
the workflow definition graph by �guardedSucc(PS, G)def . In the latter case,
parallel guarded paths are started independently of each other.

For example, in the graph in Fig. 6 there are two parallel guarded paths: (A,
PS, B) and (A, PS, E, F). When an instance of the guarded activity A starts, the
corresponding instance of guard G1 is activated. In the par-split node PS one
guarded path splits into two guarded paths. The guard instance must stay active
till both guarded paths are completed. In the graph in Fig. 7 there are also two
parallel guarded paths: (A, B) and (F, PJ, G). The par-join node PJ synchronizes
its parallel predecessors. An activity instance G cannot be started before both
activity instances C and F have completed. If an activity instance F completes
before an activity instance C completes, then the guard instance will be kept
active for the processing time of C and deactivated when G completes. If B

510 J. Eder and M. Lehmann

A

B C

FE

H

guard G1: ratio<150

D

G

Start End

||
PS

||
PJ

Fig. 6. Workflow graph with parallel guarded paths

A B

ED

guard G2: ratio<150

C

F

Start End

||
PS

||
PJ

G

Fig. 7. Workflow graph with parallel guarded paths

completes before F starts, then the instance of the guard G2 can be deactivated,
and will be activated again when the instance of F starts.

Completion of a Guarded Path: Guarded paths are defined in workflow in-
stance type graphs which are constructed dynamically at runtime by the work-
flow engine according to the workflow definition and control flow decisions. At
a given point of workflow processing the workflow engine does not have the
complete instance type graph. When a guarded activity instance completes, it is
sometimes impossible to decide using only a workflow definition, which (possibly
guarded) successor of this activity will be actually started. To detect the last
guarded activity instance in a guarded path we have to analyze the following
cases:

– A guarded instance of an activity N does not have any guarded direct ac-
tivity successor in any instance type of a given workflow definition, i.e. each
instance of N is always the last activity instance in a guarded path.

– A guarded instance of an activity N may have a guarded direct activity
successor in one instance type of a given workflow definition, or may not
have any guarded direct activity successor in the other instance type of this
definition. This is implied by Proposition 2. When N completes, the workflow
engine cannot decide at runtime, whether the instance of N is the last in the
guarded path, unless a successor of N is started.

In the first case, we use Proposition 1. If an activity N guarded by G does not
have any guarded direct activity successors in the workflow definition graph,
i.e. ¬guardedSucc(N, G)def , then its instances do not have any guarded direct
activity successors in any of the instance types. Each guarded instance of activity
N is therefore the last activity instance in a guarded path.

Workflow Data Guards 511

A

D

EndStart

||
PS

||
PJ

guard G: ratio<150

B

C

cond1

else

?
CJ

?
CS

E

cond2

Fig. 8. Workflow definition, where it is unknown if an instance of A will have a guarded
direct activity successor at runtime

The other case is much more interesting. A guarded activity instance N may
have a guarded direct activity successor in one instance type graph or may not
have such a successor in the other instance type graph, if all of the following
hold in a workflow definition graph def :

– For the guarded activity N it holds guardedSucc(N, G)def , i.e. N has guarded
direct activity successors. For example, an activity A in a workflow definition
in Fig. 8 has a guarded direct activity successor B.

– There exists a path in the workflow definition, where between the guarded
activity N and one of its guarded direct activity successors is a cond-split
node. In our example in Fig. 8 there is a cond-split CS between A and B.

– At least one of the adjacent successors of this cond-split node is neither
a guarded activity nor a control node which has guarded direct activity
successors. In the example in Fig. 8 we have both cases. The activity C is
not guarded and the par-split node PS does not have any guarded direct
activity successors.

The workflow definition in Fig. 8 can have instances in one of three workflow
instance types presented in Fig. 9. In each of theses instance types, the work-
flow engine cannot deactivate a guard instance G when an activity instance A
completes. This operation must be postponed, until a control flow decision is
made in the node CS and one of its adjacent successors is going to be started. If
a selected successor of CS is the activity C or the par-split PS, then the guard
instance must be deactivated before the actual start of this successor.

We can identify nodes similar to the activity C and par-split PS in Fig. 8. Such
a node N is an adjacent successor of a cond-split node CS in a workflow definition.
The node CS has both a guarded direct activity successor and a guarded direct
activity predecessor, i.e. a guarded path starts before CS and may be continued
after CS in one of the possible workflow instance types. But the node N itself
is neither a guarded activity nor a control node with guarded direct activity
successors. When the node N is going to be instantiated at runtime, the guarded
path has finished just before N. We define the following predicate to describe
such a node N in a workflow definition graph def :

512 J. Eder and M. Lehmann

A
EndStart

guard G: ratio<150

B ?
CJ

?
CS

cond1

A
EndStart

guard G: ratio<150

C ?
CJ

?
CS

cond2

guard G: ratio<150

A
EndStart

else

?
CJ

?
CS

D

||
PS

||
PJ

E

Fig. 9. Instance types of a workflow definition if Fig. 8

endsGuardedPath(N, G)def ⇔

guardedPred(N, G)def ∧
(
(N.type = activity ∧ ¬guarded(N, G)def)

∨ (N.type = activity ∧ ¬guardedSucc(N, G)def)
)

∧ ∃CS :
(
pred(N, CS)def ∧CS.type = cond-split

∧ guardedSucc(CS, G)def ∧ guardedPred(CS, G)def

)

3.4 Tracking the Guarded Paths

We use tokens to detect a completion of a guarded path and provide commu-
nication between guarded paths running in parallel. With each instance of the
workflow data guard G we associate at runtime a multi-set of colored tokens:
tokens(G). A color is given to a token by a unique identifier of a guarded activ-
ity. Each token in tokens(G) corresponds to one path guarded by G and being

Table 1. Operations on a multi-set tokens(G)

Operation Operation semantics
isEmpty() Returns true, if the multi-set does not contain any element
contains(element)Returns true, if the specified element is in the multi-set
add(set) Adds one copy of each element of the input set
add(set, number) Adds the specified number of copies of each element of the input

set
remove(set) Removes one copy of each element of the input set

Workflow Data Guards 513

currently processed at runtime. A guard instance is initiated at runtime as in-
active and without any tokens. The guard instance is active, when it contains a
token and can be deactivated only when there are no more tokens.

A multi-set is an unordered collection of elements that may have duplicates,
i.e. tokens(G) can contain multiple identifiers of the same guarded activity. The
allowed operations on tokens(G) are defined in Table 1.

The workflow engine adds a token corresponding to N into the multi-set
tokens(G) before the actual start of a guarded activity instance N. Before the
actual completion of the activity instance N, the workflow engine checks in the
workflow definition, whether this activity instance may have a guarded direct
activity successor, i.e. if guardedSucc(N, G)def is true. If this is the case, the to-
ken N is left in tokens(G) to indicate a guarded path being processed. Otherwise
the engine removes the token N from tokens(G).

If a guarded path has started before a par-split node PS and splits in this
node into several guarded paths, then the workflow engine adds into tokens(G)
(�guardedSucc(PS, G)def − 1) copies of each token actually left in tokens(G)
after the direct guarded predecessors of PS. Each copy of a token added into
tokens(G) indicates one parallel guarded path being currently processed.

While processing a guarded path, the workflow engine replaces tokens left af-
ter actual guarded direct activity predecessors of a guarded activity M with a to-
ken corresponding to M itself. The workflow engine removes from tokens(G) one
copy of each token corresponding to instances in a set guardedPredSet(M, G)inst

and adds only one copy of a token corresponding to M.
The workflow engine has to ensure that, after the completion of the last

guarded activity instance in a guarded path, no token corresponding to this
path is left in tokens(G). A token corresponding to N is left in tokens(G) if
guardedSucc(N, G)def is true. If after a guarded instance of the activity N,
the workflow engine is going to instantiate a node M, for which the predicate
endsGuardedPath(M, G)def is true, then a given guarded path has finished
before the node M. In this case, the workflow engine removes from tokens(G)
one copy of each token corresponding to activities in guardedPredSet(M, G)inst.

3.5 Workflow Metamodel and Algorithms

We use a workflow metamodel to describe workflow definitions, workflow in-
stances, workflow data and workflow data guards. The complete metamodel can
be found in [10]. Because of lack of space we present in this paper a simplified
view on our metamodel. In this view both workflow definitions and workflow
instances are seen as graphs as presented in Fig. 10.

A workflow definition graph consists of nodes. Each node has a unique iden-
tifier and a type (activity, cond-split, par-split etc.). A node can have adjacent
successors and predecessors. The workflow definition may also contain workflow
data guards. A guard is put on one or more activity nodes. Some of the guarded
activities can activate at runtime an inactive instance of a given guard for the
first time. A set of such activities is returned by a method activationSet() of the
guard. The methods of a node in a workflow definition are described in Table 2.

514 J. Eder and M. Lehmann

+activationSet()

-gid[1]

-condition[1]

Guard

+guarded()

+firstActivates()

+guardedSucc()

+#guardedSucc()

+endsGuardedPath()

-id[1]

-type[1]

Node

-pred

0..*

-succ

0..*

1..*

*

� guards

-activates

guards

+guarded()

+guardedPred()

+guardedPredSet()

+guardedDef()

+firstActivatesDef()

+guardedSuccDef()

+#guardedSuccDef()

+endsGuardedPathDef()

-id[1]

-type[1]

NodeInst

-pred

0..*

-succ

0..*

1

0..*

� instanceOf

+isEmptyTokens()

+addTokens()

+addTokensN()

+removeTokens()

+getState()

+activate()

+deactivate()

-gid[1]

-condition[1]

-state[1]

-tokens[1]

GuardInst

*

*

� guards

1

0..*

� instanceOf

-wfid[1]

-name[1]

Workflow

-wfid[1]

WorkflowInst

1

0..*

� instanceOf

1

0..*

1

0..*

1 0..*

1

0..*

Fig. 10. View on a general workflow metamodel incorporating workflow data guards
concept

Table 2. Guard related methods of a node N

Method Description

N.guarded(G) Returns true, if the predicate guarded(N,G)def is true
N.firstActivates(G) Returns true, if the predicate firstActivates(N,G)def is

true
N.guardedSucc(G) Returns true, if the predicate guardedSucc(N, G)def is true
N.�guardedSucc(G) Returns a number given by �guardedSucc(N, G)def

N.endsGuardedPath(G) Returns true, if the predicate endsGuardedPath(N,G)def

is true

A workflow instance graph is a subgraph of a workflow definition graph. The
instance graph consists of node instances, which can have predecessors and suc-
cessors. The type of a node instance is the same as the type of the corresponding
node in the workflow definition. Node instances may be guarded by guard in-
stances. The methods of a node instance are described in Table 3. The methods
of a guard instance are described in Table 4.

The workflow engine has methods which interpret the workflow definition,
start and complete activity instances, and make the control flow decisions [4].
The additional logic needed for activating and deactivating the workflow data
guard instances is presented in Algorithms 1 and 2.

The method checkGuardsByStart in Algorithm 1 is used by the workflow
engine before the actual start of each node instance. If a started node is an
instance of an activity guarded by a guard G in the workflow definition (line 4),

Workflow Data Guards 515

Table 3. Guard related methods of a node instance N

Method Description
N.guarded(G) Returns true, if a predicate guarded(N,G)inst is true
N.guardedPred(G) Returns true, if a predicate guardedPred(N,G)inst is true
N.guardedPredSet(G) Returns a set of unique identifiers of node instances from

the set guardedPredSet(N,G)inst

N.guardedDef(G) Returns the same result as a method of the corresponding
N.firstActivatesDef(G) node in the workflow definition
N.�guardedSuccDef(G)
N.endsGuardedPathDef(G)
N.guardedSuccDef(G)

Table 4. Methods of a workflow data guard instance G

Method Description
G.getState() Returns the actual state of the instance G. Possible state

values: inactive, active, deactivated
G.activate() Activates the guard instance. Changes the state of G into

active
G.deactivate() Deactivates the guard instance. Changes the state of G

into deactivated
G.isEmptyTokens() Same as a corresponding operation on a multi-set

tokens(G) described in Table 1
G.addTokens(set)
G.addTokensN(set,number)
G.removeTokens(set)

the workflow engine checks if a token corresponding to this activity instance can
be added into tokens of the guard instance (line 5). If this is the case, the token is
added (line 6) and the guard instance is activated (line 8). If this guarded activity
instance has guarded direct activity predecessors in the workflow instance graph,
then the workflow engine removes from the guard instance the tokens left after
those predecessors (line 11).

If a started node is an instance of a par-split node in which one guarded
path splits into several guarded paths in the workflow definition (line 14), then
the workflow engine adds into the guard instance copies of each token left by
the guarded direct activity predecessors. The number of added copies depends
on a number of guarded paths possibly outgoing from this par-split node in the
workflow definition (lines 15-16).

If a started node instance is an instance of a node, which starts a non guarded
path in the workflow definition graph (line 17), the workflow engine removes
tokens left after the guarded direct activity predecessors of this node instance.
The guard can be deactivated, if afterwards there are no more tokens (line 20).

The method checkGuardsByCompletion in Algorithm 2 is used by the work-
flow engine before the actual completion of each guarded activity instance.

516 J. Eder and M. Lehmann

Algorithm 1. Check guards before the actual start of a node instance in a
workflow instance
1: Procedure checkGuardsByStart(nodeInst N)
2: workflowInstance := N.getW orkflowInstance()
3: for all guard instances G in workflowInstance do
4: if N.type = activity ∧ N.guardedDef(G) then
5: if N.firstActivatesDef(G) ∨ G.getState() �= inactive then
6: G.addTokens({N.id})
7: if G.getState() �= active then
8: G.activate()
9: end if

10: if N.guardedPred(G) then
11: G.removeTokens(N.guardedPredSet(G))
12: end if
13: end if
14: else if N.type = par-split ∧ N.guardedPred(G)

∧N.�guardedSuccDef(G) > 1 then
15: number := N.�guardedSuccDef(G) − 1
16: G.addTokensN(N.guardedPredSet(G),number)
17: else if N.endsGuardedPathDef(G) then
18: G.removeTokens(N.guardedPredSet(G))
19: if G.isEmptyTokens() then
20: G.deactivate()
21: end if
22: end if
23: end for

Algorithm 2. Checks guards before the actual completion of an activity in-
stance in a workflow instance
1: Procedure checkGuardsByCompletion(nodeInst N)
2: if N.type = activity then
3: workflowInstance:= N.getWorkflowInstance()
4: for all guard instances G in workflowInstance do
5: if N.guarded(G) ∧ ¬N.guardedSuccDef(G) then
6: G.removeTokens({N.id})
7: if G.isEmptyTokens() then
8: G.deactivate()
9: end if

10: end if
11: end for
12: end if

If this guarded activity instance does not have any guarded direct activity suc-
cessors in the workflow definition, then it is definitely the last activity instance
in a given guarded path. The engine removes from the guard instance a token
corresponding to this activity instance (line 6). The engine deactivates the guard
instance, if afterwards there are no more tokens (line 8).

Workflow Data Guards 517

The presented algorithms were implemented in Java and integrated with a
mini workflow engine developed at the University of Klagenfurt. A number of
simulations showed that guard instances were correctly activated and deactivated
at runtime according to a given workflow definition.

4 Checking the Condition of an Active Workflow Data
Guard Instance

The condition of a workflow data guard is defined on data used within a given
workflow definition. At runtime the workflow engine checks this condition on
data instances. The condition of a data guard instance is checked only when
the guard instance is active. This condition cannot be violated during the whole
activation time of this guard instance. The workflow engine can use one of two
ways of checking the condition. First, it can use the active capabilities (e.g.
triggers) of a data source, where the workflow data are stored. Alternatively, the
workflow engine can actively check the condition itself.

A database trigger, used by the workflow engine to check the conditions of
active guard instances, signals a violation of these conditions. The trigger is
defined per a workflow data guard, not per a workflow data guard instance. If
there is no instance of a given workflow data guard being active, then the corre-
sponding trigger can be deactivated. The condition of the guard is used to define
the condition of the trigger. The trigger uses additional information about each
guard instance created. This is a collection of triples, which contain: an identifier
of a workflow data guard instance, a state of this instance and the identification
of data guarded by this instance (e.g. primary key or document identification).
When data used to define the condition of an active guard instance are changed
in a way that violates this condition, the trigger signals it to the workflow engine.
The engine receives the identification of the violated guard instance.

In an alternative approach, the workflow engine actively checks the conditions
of active guard instances in a given workflow instance. The condition of an active
guard instance is checked at each state transition of each activity instance in
the workflow. The condition is checked even if a given activity instance is not
guarded. This method can be used when it is not possible to define the triggers.

5 Related Work

The influence of data aspects on correctness of workflows has not yet received
much interest in the literature. In most cases the authors analyzed the correctness
of data flows in workflow specifications, e.g. in [13] are listed possible problems
with data flow in workflow models.

Many WfMSs allow pre- and postconditions to activities (e.g. [4, 12]). In most
cases these pre- and postconditions are specified in an activity definition and ap-
ply to all instances of a given activity. This may reduce the reusability of such
activities. Our workflow data guards do not reduce the reusability of predefined
activities. The same activity can be used many times, once guarded and once not.

518 J. Eder and M. Lehmann

Active databases and production rules (triggers) [3] were used for workflow
enactment, as a promising operational model for workflows. Because an exten-
sive use of many triggers could lead to a degeneration in system performance,
triggers are mainly used for detecting and signaling events generated by database
modifications (e.g. in WIDE [9]).

The importance of incorporating exception handling into WfMSs has been
identified by researchers (e.g. WAMO [7], WIDE [2]). WAMO and its exten-
sions [8] offered advanced mechanisms for handling exceptions in workflows.

In ConTracts [14] invariants were used to protect data needed for compensa-
tion of successfully finished steps. They ensured that the execution of compen-
sation actions would be always allowed.

6 Conclusions

Workflow data guards contribute to an improved treatment of data aspects in
workflows considering that workflows work on data which are shared between
several applications and are frequently maintained outside of the workflow man-
agement system. They provide a powerful mechanism for workflow designers
for recognizing changes to data relevant for a workflow and to react to these
changes to ensure the correct execution of a workflow. In particular, it is possi-
ble to monitor data that was influential in making flow decisions and thus allows
the workflow designer to achieve some transactional qualities of workflow execu-
tion without the need to hand-code activities which have pure technical purpose
of checking stability of relevant data. Moreover, data guards can also be used
to specify additional constraints (e.g expected invariants of activities) and have
them automatically checked by the workflow management system.

The data guard mechanism we presented is designed to be generally enough
to be easily applicable to any full-blocked workflow model, as demonstrated in
our prototypical implementation. The elaborated activation and deactivation
mechanism gives the designer the possibility to achieve the desired properties of
the workflow execution without unnecessarily decreasing the performance with
unnecessary checks. More details on our data guard implementation, like a full
metamodel, guard notations in our workflow language WDL-X, etc. can be found
in [10].

References

1. Christoph Bussler. Has Workflow Lost Sight of Dataflow?, 1999. High Performance
Transaction System Workshop 1999.

2. Fabio Casati, Stefano Ceri, Stefano Paraboschi, and Guiseppe Pozzi. Specification
and Implementation of Exceptions in Workflow Management Systems. ACM Trans.
Database Syst., 24(3):405–451, 1999.

3. Umeshwar Dayal, Eric Hanson, and Jennifer Widom. Active database systems. In
Won Kim, editor, Modern database systems: the object model, interoperability, and
beyond, pages 434–456. ACM Press/Addison-Wesley Publishing Co., 1995.

Workflow Data Guards 519

4. Johann Eder, Herbert Groiss, and Walter Liebhart. The Workflow Management
System Panta Rhei. In A. Dogac, L. Kalinichenko, T. Öszu, and A.Sheth, editors,
Workflow Management Systems and Interoperability. Springer-Verlag, 1998.

5. Johann Eder and Marek Lehmann. Uniform Access to Data in Workflows. In
Kurt Bauknecht, Martin Bichler, and Birgit Pröll, editors, Proceedings of the 5th
International Conference on E-Commerce and Web Technologies, EC-Web 2004,
volume 3182 of LNCS, pages 66–75, Zaragoza, Spain, August/September 2004.
Springer-Verlag.

6. Johann Eder and Marek Lehmann. Synchronizing Copies of External Data in
Workflow Management Systems. In Oscar Pastor and João Falcão e Cunha, editors,
Advanced Information Systems Engineering: 17th International Conference, CAiSE
2005, Porto, Portugal, June 13-17, 2005. Proceedings, volume 3520 of LNCS, pages
248–261. Springer Varlag, 2005.

7. Johann Eder and Walter Liebhart. The Workflow Activity Model WAMO. In Proc.
of the 3rd Int. Conf. on Cooperative Information Systems (CoopIS), 1995.

8. Johann Eder and Walter Liebhart. Workflow Recovery. In First IFCIS Intl. Conf.
on Cooperative Information Systems (CoopIS’96), pages 124–134. IEEE Computer
Society Press, June 1996.

9. Paul Grefen, Barbara Pernici, and Gabriel Sánchez, editors. Database Support for
Workflow Management. The WIDE Project. Kluwer Academic Publishers, 1999.

10. Marek Lehmann. Data Acess in Workflow Management Systems. PhD thesis,
University of Klagenfurt, 2005.

11. Zongwei Luo, Amit Sheth, Krys Kochut, and John Miller. Exception Handling in
Workflow Systems. Applied Intelligence, 13(2):125–147, 2000.

12. Nick Russell, Arthur H. M. ter Hofstede, David Edmond, and W.M.P. van der
Aalst. Workflow Data Patterns. Technical Report FIT-TR-2004-01, Queensland
University of Technology, Brisbane, Australia, April 2004.

13. Shazia Sadiq, Maria Orlowska, Wasim Sadiq, and Cameron Foulger. Data Flow
and Validation in Workflow Modelling. In CRPIT ’27: Proceedings of the fifteenth
conference on Australasian database, pages 207–214. Australian Computer Society,
Inc., 2004.

14. Helmut Wächter and Andreas Reuter. The ConTract Model. In Ahmed K. El-
magarmid, editor, Database Transaction Models for Advanced Applications, pages
219–263. Morgan Kaufmann Publishers Inc., 1992.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 520 – 538, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Consistency Between e3-value Models and Activity
Diagrams in a Multi-perspective Development Method

Zlatko Zlatev and Andreas Wombacher

University of Twente, Department of Computer Science, Information System Group,
P.O. Box 217, 7500 AE Enschede, The Netherlands

Z.V.Zlatev@ewi.utwente.nl
A.Wombacher@utwente.nl

Abstract. Multi-perspective approaches to analysis and design of businesses
information systems are used to manage the complexity of the development
process. A perspective contains a partial specification of the system from a
particular stakeholder’s standpoint. This separation of concerns leads to
potential inconsistencies between specifications from different perspectives,
resulting in non-implementable systems. In this paper, a consistency
relationship between the economic value and business processes perspectives of
a design framework for networked businesses is proposed based on an
equivalence of a common semantic model.

1 Introduction

The development of an information system to support a business is a complex
process. Many stakeholders with distinctive interests are involved in the alignment of
information system capabilities and business objectives. A standard approach to
manage the complexity of such a process is the adoption of a multi-perspective
development method, where responsibilities for design and analysis of distinctive
aspects of the system are localized in separate perspectives. We use a framework with
three perspectives, including: (i) economic value, in which we model the creation of
value among networked businesses and analyze the incentives for them to take part in
such a network; (ii) business processes, in which we model the coordination of
activities realizing the exchanges of economic values; and (iii) application
communication, in which we model the data exchange among the components of the
information system that supports the business.

A multi-perspective approach presupposes a decentralized development process,
the benefits of which come at a price of potential inconsistencies between models
from different perspectives. In particular, specifications are inconsistent if it is not
possible to build a single system that correctly implements the specification of each
perspective. As a consequence, specifications are consistent, if an implementation of
the specifications exists. Therefore, specifications need to be checked for consistency
to identify required changes in the final design.

The inconsistencies occur due to different design methodologies, opposing
stakeholders’ goals, conflicting knowledge and incompatible modeling notations. In
particular, inconsistencies emerge from the redundant information in different

 Consistency Between e3-value Models and Activity Diagrams 521

models; i.e., perspectives overlap in their responsibilities for modeling certain aspects
of the system. Therefore, we base our consistency check on the common concepts and
relations of two modeling notations. We call such a limited modeling notation a
reduced model as it contains only constructs present in both models. We define
consistency between pairs of models, which is a necessary condition for global
consistency. The common concepts and relations of the three models are too limited,
with regard to the precision of a consistency check involving all three perspectives,
resulting in unusable consistency decisions.

We operationalize our consistency definition by transforming the specifications
from different perspectives to reduced models and by defining an equivalence
relationship between reduced models. Hence, a specification may represent different
scenarios and because the concepts of separating these scenarios are incomparable in
the different perspectives, a single reduced model represents a single alternative
scenario of the original specification. (An example of an alternative in a process
model is an execution sequence without decision point.) Thus, a single specification
may produce more than one reduced model and the equivalence relationship is
defined between sets of reduced models.

To illustrate the proposed approach, we use exemplary modeling notations,
although, other notations could have been used. We represent the value perspective
with the e3-value modeling notation [7], the business process perspective with UML
Activity diagram [10 pages 3-155—3-169], and the application communication
perspective with, e.g., communication diagram [14 pages 201—211] or UML
Component diagram [10 pages 3-169—3-171]. This selection of modeling notations
impacts the particular common concepts but is invariant to the proposed approach
based on reduced models.

The contribution of this paper is the definition of consistency between e3-value
models and activity diagrams. Further, we discuss applying the presented approach to
the remaining two consistency relationships: e3-value model and communication
diagram, and activity diagram and communication diagram.

The paper is structured as follows: In Section 2, we present an example business
case and its models from value and process perspectives. Additionally, we provide an
intuitive consistency definition which we use later as a validation criterion. In
Section 3, we define the reduced model between the e3-value notation and UML
Activity diagram and introduce our consistency definition. Further in Section 4, we
discuss the impact of model granularity on our consistency definition. Section 5
validates the proposed consistency definition by a comparison with the intuitive
consistency definition. The last three sections discuss implications for the application
communication perspective, related work, and conclusion and future work.

2 Example

We consider a business case with the following businesses taking part: a buyer, a
seller, and a shipping company. The seller has a shop and a warehouse at two
different locations. It can directly sell products to customers only from the shop. If a
product is purchased that is not present in the shop then a delivery from the
warehouse must be made. A shipping company is paid to arrange the logistics to the

522 Z. Zlatev and A. Wombacher

buyer’s home. The seller processes two payment methods: (1) in a case of an off-the-
shelf product, the seller requires immediate payment in cash; (2) in a case of a
purchase from the warehouse, the seller allows late payment by, e.g., a bank transfer.

2.1 Economic Value Perspective

We use the e3-value modeling notation [7] to represent the value aspect of a business
model. Below, we explain the semantics of the concepts we use. We refer to Fig. 1 for
the graphical representation on the concepts. An actor is an economically independent
entity modeled as a rectangle. A value interface indicates which value object is
available, in return for another value object. It is shown by a rounded box, connected
to an actor. A value exchange represents that two actors are willing to exchange value
objects with each other. It is a prototype for actual trades between actors and is shown
by a line. A value object represents a value for one or more actors: e.g., services,
goods, money, or consumer experiences. Value objects are shown as text.

A dependency path represents the internal coordination within actors. It shows via
which value interfaces an actor must exchange value objects, given the exchange of
objects via another interface of that same actor. A dependency path is a set of
dependency nodes and connections. A dependency node is a stimulus (represented by
a bullet), an OR-fork (represented by a triangle), or an end node (represented by a
bull’s eye). A stimulus represents a consumer need that triggers the chain of
exchanges; an OR-fork represents alternative paths; and an end node represents the
model boundary. A dependency connection connects dependency nodes and value
interfaces, represented by a broken line.

Fig. 1. Value model of the example business case, using e3-value modeling notation

Fig. 1 shows a value model of the example business case described above. It
contains the three businesses connected by value exchanges. The buyer is willing to
give money in return for a product. The two potential exchanges are with the seller, in
the middle of the figure, who has an interest in the same value objects. The
dependency path, which starts in the buyer, is split at the seller. This is an OR-fork
which exemplifies that some products are handed to the buyer immediately while
others must be transported by a shipping company. The seller and shipper exchange
the value objects Fee and Transport which are paired together reciprocally.

2.2 Business Processes Perspective

The e3-value model focuses on the pairing of objects that have economic value for
businesses. We now discuss the coordination of activities performed by each business

 Consistency Between e3-value Models and Activity Diagrams 523

to achieve the exchange of value objects. We use an UML Activity diagram [10 pages
3-155—3-169] to represent the business processes perspective of our example.

Fig. 2 shows the sequence of actions performed during a purchase of a product. The
process starts with the buyer requesting a product. Her order is processed and two
outcomes are possible: either the desired product is present in the shop; or the product
must be reserved and shipped from the warehouse. These options are represented in
Fig. 2 as a choice in the seller’s swimlane. In case the path to the left (marked with 1
in the figure) is followed then the product is handed directly and payment in cash is
received in return. In the second case (marked with 2 in the figure), a reservation is
made. This is followed by two parallel branches which represent the payment of an
invoice and the transportation of the product. The latter requires coordination with the
logistics provider, which is shown as message exchanges between the seller and
shipper swimlanes. The actual delivery of the product is represented in the bottom of
Fig. 2 as a message from the shipper swimlane to the buyer.

ShipperSellerBuyer

Request Product P.O. Process order

Fee

BillInvoice

Pay

Money

Ship

ProductReceive Product

Request Tr. Service

Send Truck

Truck

Load Good

Product

off-the-shelf reservation
Hand ProductOff-the-shelf Product

Cash

Pay

Receive Payment

Reserve

Receive Payment

1 2

Fig. 2. Process model of the example business case, using UML Activity diagram

2.3 Intuitive Consistency

We consider the presented activity diagram and e3-value model to be consistent
because there is at least one system implementing both specifications. An activity
diagram and an e3-value model are consistent if (1) for every alternative dependency
path in the value model, an execution sequences exists in the process model such that
exactly the product value exchanges described by the path are executed and (2) for
every execution sequence in the process model, there exist a dependency path in the
value model such that it is possible to bind all exchanged products to all product value
exchanges.

524 Z. Zlatev and A. Wombacher

The following terms need further clarification:

• an alternative dependency path represents a distinctive scenario of value
exchanges in an e3-value model. A dependency path can include several
scenarios, respectively, several alternative dependency paths;

• an execution sequence is a sequence of activities (possibly executed in
parallel) in an activity diagram that (1) begins with the start stimulus and
ends with termination points and (2) does not contain choices. An activity
diagram can include several execution sequences;

• a product value exchange refers to an exchange of good or a service in the e3-
value model.

3 Consistency

The e3-value model and the activity diagram are not directly comparable. The e3-value
model is based on value exchanges disregarding the order in which they are
performed. The activity diagram is based on sequences of object flows disregarding
relationships of reciprocal economic value among objects. Thus, we construct a
reduced model containing the common concepts and relations of the e3-value model
and the activity diagram to make the two models comparable.

3.1 Reduced Model

The reduced model is used to compare abstractions of the e3-value model and the
activity diagram. To avoid confusion of terminology as both notations use the concept
object, we refer to objects and object flows in the activity diagram as messages and
message exchanges, respectively.

In particular, the reduced model used for consistency checking consists of business
units, common value objects, and common value exchanges, where:

• a business unit (called unit for short) corresponds to an actor from the e3-
value model and a swimlane from the activity diagram. It represents
organizational units (grouping of responsibilities) within a business, which
are profit and loss responsible but not necessarily legal entities;

• a common value object (called common object for short) corresponds to a
value object from the e3-value model and a message from the activity
diagram. It represents an object of economic value in the e3-value-model
sense which is used for coordination of business activities;

• a common value exchange (called common exchange for short) corresponds
to a value exchange in the e3-value model and a message exchange in the
activity diagram. It represents a bilateral exchange of coordination value
objects between profit and loss responsible entities disregarding order,
reciprocity and bundling.

Fig. 3 shows the visual notation of the reduced model concepts, where (a) represents a
business unit, (b) represents a common value object, and (c) represents a common
value exchange.

 Consistency Between e3-value Models and Activity Diagrams 525

Common
value object

Business
unit

Business
unit

Business
unit

(a) (c)(b)

Common
value object

Fig. 3. Visual notation of the reduced model

A reduced model is an explicit representation of a single alternative dependency
path in an e3-value model and of a single execution sequence in an activity diagram. It
contains the value exchanges executed in one possible scenario in a business case.

Common value exchanges are closely related to value exchanges because they are
more generic than message exchanges which explicitly represent message ordering.
Reciprocity, as contained in the value model, is not considered in the reduced model
because there is no corresponding concept in activity diagrams. Alternatives are
represented explicitly because OR-forks in e3-value models and choices in activity
diagrams are not always comparable. This approach of comparing alternatives
independently of each other is well known, e.g., from deciding properties of workflow
models, which is often based on occurrence graphs derived from Petri nets.

Value objects can be divided into three sub-types, namely goods, services and
experiences. The term product refers to both goods and services. We require that
products are represented in the reduced model with common objects; whereas, we
omit experiences from the reduced model as it is unlikely that these are modeled as
message exchanges in an activity diagram.

An exchange of a value object in the e3-value-model sense corresponds to a
sequence of messages exchanged between two swimlanes in an activity diagram. We
will call such a sequence a transaction. Since a sequence of message exchanges does
not provide a direction as a value exchange does, we select a single message exchange
as a representative of the sequence. The direction of the selected message exchange
reflects the direction of the value object exchange. Correspondingly, we map the
message of the selected message exchange to a common object.

3.2 Semantic Relationships Between Instances

Besides the conceptual transformation from a value and process model to a reduced
model, the instances of the concepts also have to be semantically correlated. The
semantic relationship between instances can be one-to-one, one-to-many, and many-
to-many. The first two relationship types can be observed in the example described in
Section 2 and are covered in this section, while the many-to-many relationship is
discussed in Section 4.

The transformation of an e3-value model or an activity diagram results in reduced
models. In particular, the reduced models must be based on the same set of semantic
instances of units and common objects. The existing semantic relationship between
instances of actors and swimlanes is represented by two relationships: between an
actor and a unit, and between the same unit and a swimlane. Respectively, the
semantic relationship between instances of value objects and messages is represented
by two relationships: between a value object and a common object, and between the
same common object and a message. To restrict the relationships between actors (and

526 Z. Zlatev and A. Wombacher

value objects) and swimlanes (and messages) to one-to-one and one-to-many, we
allow a unit (and a common object) to take part in at most a single one-to-many
relationship.

The instances of a business unit and a common value object in the reduced model
are determined by an expert who has knowledge about the instances of the
corresponding concepts in the e3-value model and the activity diagram. The expert
also determines the mapping between the instances, which is captured in
transformation tables.

For the business case in our example (Section 2), the mappings of actors from the
e3-value model and activity diagram to reduced models are listed in Table 1 (a) and
Table 1 (b), respectively. Due to the construction of the example, the rows in Table 1
contain the same actor names representing one-to-one relationships. Table 2 (a) lists
the mapping between value objects in the e3-value model and the common objects in
the reduced model. Again, due to the construction of the example this mapping
represents a one-to-one relationship. Table 2 (b) lists the mapping between selected
messages in the activity diagram and common objects of the reduced model. The
mapping in Table 2 (b) contains two one-to-many relationships; i.e., the Money and
Cash messages of the activity diagram map to the Money common object of the
reduced model, and the Product and Off-the-self product messages of the
activity diagram map to the Product common object of the reduced model.

In the following, we describe the transformation of an arbitrary e3-value model and
activity diagram to their underlying reduced models by means of the example above.

Table 1. Mapping of: (a) actors of the e3-value model of Fig. 1 to business units of the reduced
model (b) business units of the reduced model to swimlanes of the activity diagram of Fig. 2

(a) (b)
e3-value model Reduced model Reduced model Activity diagram
Buyer Buyer Buyer Buyer
Seller Seller Seller Seller
Shipper Shipper Shipper Shipper

Table 2. Mapping of: (a) value objects of the e3-value model of Fig. 1 to common value objects
of the reduced model (b) common value objects of the reduced model to messages of the
activity diagram of Fig. 2

(a) (b)
e3-value
model

Reduced
model

Reduced
model

Activity diagram

Money Money Money Money
Cash
Product Product Product Product
Off-the-shelf product

Fee Fee Fee Fee
Transport Transport

 Consistency Between e3-value Models and Activity Diagrams 527

Further, a notion of consistency based on equivalence of reduced models will be
introduced.

3.3 Transformation from an e3-value Model to Reduced Models

This section describes a transformation from an e3-value model to reduced models.
The transformation has three steps. The first step separates possible alternatives in a
scenario. The second step selects the actors and value objects to be represented in the
reduced model as units and common objects, and builds the transformation tables.
The third step transforms actors and value objects to units and common objects.

Step 1: Separate alternatives. This step deals with OR-forks in the dependency path
in e3-value models. When we encounter an OR-fork, we duplicate the e3-value model
in accordance to the number of alternatives in the OR-fork. In each copy of the
original model, we substitute the OR-fork with a dependency connection to form a
single alternative. The other alternatives remain disconnected. This transformation
step generates from a single e3-value model potentially many e3-value models.

The OR-forks are treated, beginning from the start stimuli, consequently in the
order of their occurrence along the dependency path. This guarantees that all possible
scenarios of value exchanges are captured in individual reduced models. At the end of
the step, the exchanges that are not connected in a dependency path are removed from
the models. Then, the dependency paths are also removed. The final result of step 1 of
the transformation is shown in Fig. 4.

Fig. 4. Final result of transformation step 1

Step 2: Transformation tables. This step classifies the value objects into product
and experience types. Product type value objects are entitled for transformation,
where the experience type value objects are removed from the e3-value model. As a
result, actors that exchange only experience type of value objects are isolated and are,
therefore, also removed from the model. In the e3-value model of our example, all
value objects are eligible for translation.

Remaining actors and product type value objects are mapped to business units and
common value objects, respectively. With regard to our example, the mappings are
represented in the transformation tables Table 1 (a) and Table 2 (a).

Step 3: Generate reduced models. This step transforms each e3-value model
representing an alternative into a reduced model. In particular, actors and value

528 Z. Zlatev and A. Wombacher

objects are transformed into business units and common value objects as specified in
the mapping tables (see Table 1 (a) and Table 2 (a)). As a result of this transformation
the specific information on reciprocity of value exchanges and on bundling of value
objects is omitted. The reduced models, derived form the e3-value model (see Fig. 1),
are depicted in Fig. 5.

Buyer Seller

Buyer Seller Shipper

Money

Product

FeeMoney

Transport

Product

(a)

(b)

Fig. 5. Reduced models corresponding to the e3-value model

3.4 Transformation from an Activity Diagram to Reduced Models

The transformation of an activity diagram to reduced models is performed in three
steps. The first step resolves choices in the control flow. The second step identifies
sequences of messages, marks single messages as corresponding to value exchanges
in the e3-value-model sense, and builds transformation tables. The third step
transforms swimlanes to units and messages to common objects.

Step 1: Remove choices. This step transforms the activity diagram to a number of
models which do not contain choices; i.e. the resulting models do not have conditional
branches of execution flow. The transformation works in a similar way as the
transformation of OR-forks in the e3-value model. We begin from the start stimuli and

SellerBuyer

Request Product P.O. Process order

Hand ProductOff-the-shelf Product

Cash

Pay

Receive Payment

ShipperSellerBuyer

Request Product P.O. Process order

FeeBillInvoice

Pay

Money

Ship

ProductReceive Product

Request Tr. Service

Send TruckTruck

Load Good

Product

Reserve

Receive Payment

(b)

(a)

Fig. 6. Result of transformation step 1

 Consistency Between e3-value Models and Activity Diagrams 529

we follow the execution flow. Each time we encounter a choice, we duplicate the
model and substitute the choice with a direct transition to one of the alternatives. We
cut the disconnected branches from the execution tree. This transformation step
generates potentially many activity diagrams from a single activity diagram. Fig. 6
shows the result of transformation step 1 applied on the activity diagram from Fig. 2.

Step 2: Transformation tables. This step identifies the flow of messages between
two swimlanes that result in an exchange of a value object in the e3-value-model
sense. Additionally in each sequence, a single message is selected to be further
transformed to a common object.

The selected messages and their sending and receiving swimlanes are mapped to
common value objects and business units, respectively. The mappings are represented
in transformation tables which for our example are Table 1 (b) and Table 2 (b).

Step 3: Generate reduced models. This step transforms each activity diagram
representing an alternative into a reduced model. In particular, swimlanes and
messages are transformed into business units and common value objects as specified
in the mapping tables Table 1 (b) and Table 2 (b). As a result of this transformation the
specific information on sequence of message exchanges is omitted. The final reduced
models, derived form the activity diagram (see Fig. 2), are depicted in Fig. 7.

Buyer Seller Shipper
Product

Product

Money Fee

Buyer Seller
Money

Product (b)

(a)

Fig. 7. Reduced models corresponding to the activity diagram

For clarity of presentation, we refer further to a reduced model derived from an
activity diagram as a reduced process model. Respectively, a reduced model derived
from a value model is referred to as a reduced value model. The origin of a reduced
model is undistinguishable from the model itself; we name them differently for
explanation purposes only.

3.5 Equivalent Reduced Models

Two reduced models are equivalent if each contains the same common value
exchanges. This means that:

• each reduced model contains the same business units;

• each reduced model contains the same common value objects;

• in each reduced model, the sending and receiving business units of a
particular common value object are the same.

530 Z. Zlatev and A. Wombacher

In our example, we can determine that the reduced models of Fig. 5(b) and Fig. 7(b)
are equivalent. In contrast, the models of Fig. 5(a) and Fig. 7(a) are not because (i) the
Transport common object is not present in the reduced process model and (ii) the
Product common object is exchanged between different units in the two models.

3.6 Transitivity

The reduced models in Fig. 5(a) and Fig. 7(a) can be made equivalent by applying
transitivity on the Product common object in the reduced process model (see
Fig. 7(a)). Transitivity removes intermediary units from a chain of common exchanges
by directly representing the common exchange between the units in the beginning and
the end of the chain. The reason for the unit in the beginning of the chain to involve
additional units must be beneficial to the unit itself. Thus, the benefit must be
provided by the intermediary unit because otherwise it would not have been involved.

As a consequence, the Product common exchanges between Seller and
Shipper, and between Shipper and Buyer (see Fig. 7(a)) is represented as a
direct Product common exchange between Seller and Buyer. The benefit
introduced by the intermediary unit, i.e. Shipper, to Seller is represented by an
unspecified common exchange. The unspecified common exchange can be
instantiated by any reduced model common object. This introduces several additional
options to be checked by the equivalence testing. With regard to the example, the
instantiation with the Transport common object, as depicted in Fig. 8, results in
equivalent reduced models.

Buyer Seller Shipper
Product

FeeMoney

Transport

Fig. 8. Reduced model after transitivity transformation

Due to the equivalence of the reduced models, we consider the e3-value model and
the activity diagram to be consistent, as we intuitively do in Section 2.3.

3.7 Consistency

An e3-value model and an activity diagram are consistent if there exists at least one
non-trivial mapping under which the corresponding sets of reduced models are
equivalent.

A non-trivial mapping is one for which holds that:

(1) every product value exchange in the e3-value model is mapped to one common
value exchange. This includes that (i) every product value object is represented in the
reduced model and (ii) sending and receiving actors of a product value object are not
mapped to a single business unit in the reduced model;

(2) every transaction in the activity diagram is mapped to one common value
exchange. This includes that (i) every transaction is represented in the reduced model

 Consistency Between e3-value Models and Activity Diagrams 531

and (ii) sending and receiving swimlane of the message representing the transaction
are not mapped to a single business unit in the reduced model.

The restrictions listed above preserve the product value exchanges in the e3-value
model and the transactions in the activity diagram during the transformation; i.e.,
these are all represented in the reduced model. In case the granularity of the e3-value
model and the activity diagram is similar, the relationships between actors and
swimlanes, and between value objects and messages are usually one-to-one or one-to-
many. Nevertheless, the relationships are many-to-many in the general case. The
consequences of which, we discuss in the next section.

4 Granularity of Models: Many-to-Many Relationships Between
Instances

In the previous section, we show how our consistency check works between models
with comparable granularity. In particular, the relationships between actors and
swimlanes, and value objects and messages are only one-to-one and one-to-many;
where, the latter one breaks down to one-to-one relationships when the alternatives
are taken separately. However, there is no guarantee that the granularity of e3-value
models and activity diagrams is not the same. Therefore, the relationships between
actors and swimlanes, and value objects and messages are in the general case many-
to-many. In this section, we discuss when and, if so, how consistency of models with
different granularity can be checked.

Our consistency definition is based on equivalence of reduced models, which
requires equivalence of units and common objects. From (i) the equivalence of units,
respectively common objects, and (ii) the way the mapping tables are constructed (see
Section 3.2) follows that the semantic relationships between instances in the e3-value
model and the activity diagram are one-to-one. To guarantee a proper result of our
consistency check, we have to ensure that the checked models have similar granularity.

There are two strategies for adapting granularity: either aggregation is performed
on the more fine-grained model or division of the more coarse-grained model. We
have explored both approaches and discovered the following drawbacks.

The aggregation approach may lead to a single actor and a single swimlane. This
is because, a many-to-many relationship between actors and swimlanes can result in
an aggregation of two swimlanes which may trigger an aggregation of two actors and
so forth. Due to the aggregation, the exchanges of product value objects between
aggregated actors in the e3-value model are lost; the same holds for messages between
swimlanes in the activity diagram. This loss of information makes the consistency
decision less precise.

The division approach, on the other hand, may lead to the finest-grained
granularity in both models, where a single actor exchanges a single value object or a
single swimlane sends a single message. This is again a loss of information
comparable to the aggregation case. In particular, the relation information between
different value objects, respectively messages, is lost. Thus to limit the loss of
information, we can constrain ourselves to division of only value objects and
swimlanes or only actors and messages. From the two, we select the second because

532 Z. Zlatev and A. Wombacher

actors are intuitively more coarse-grained than swimlanes and a single message may
represent more than a single economic value. From a preliminary evaluation, this
option is the most promising one, although, a more detailed evaluation has to be done.

Below, we illustrate how granularity of models is equalized by division of actors
and messages. On behalf of an example, we show how we resolve one-to-many
relationships.

4.1 Example

We consider a business case where a client is interested in the mortgage and insurance
products of a bank. Fig. 9 represents the e3-value model of the example. The client (to
the left in the figure) is interested in exchanging monthly fees for a period of time in
case it gets a loan in a form of a mortgage. Additionally to that for some economic
reasons, the client is interested in insurance from the same bank. The dependency path
includes an AND-fork, shown within the Client actor, which denotes that the client
wants both products.

Fig. 9. Value model of the example

MortgageInsuranceClient

Apply for a mortgage Appl. form Process appl.

ApproveMortgageConsume

Apply for insurance Appl. form Process appl.

ApproveInsuranceConsume

Pay monthly dues

Pay monthly dues

Monthly fee

Premium Process

Process

Fig. 10. Process model of the example with two swimlanes representing the bank

Fig. 10 represents an activity diagram for the above example case, where the bank
is modeled as two swimlanes representing its Mortgage and Insurance departments
separately. The client (the first swimlane from left to right) requests simultaneously a
mortgage and insurance. The handling of the requests is performed in a similar way:
e.g., the mortgage request (in the top of the figure) is processed by the Mortgage

 Consistency Between e3-value Models and Activity Diagrams 533

swimlane which after processing the request grants mortgage to the client. Once
given, the insurance and the mortgage are utilized by the client, which is shown in the
client swimlane as a Consume activity. The bottom of Fig. 10 shows the monthly
payments performed by the client: two separate payments to the Mortgage and
Insurance departments are represented by the Monthly fee and Premium
messages.

4.2 Splitting of Actors

The models in Fig. 9 and Fig. 10 differ in granularity: the bank from the e3-value model
is represented as two individual swimlanes in the activity diagram. To resolve the
one-to-two relationship between actor and swimlanes, we split the bank actor in the
e3-value model. The newly appeared actors, named BankM and BankI, need to
distribute the value exchanges of the original actor Bank. In our example case, there
are four exchanges and we generate all possible combination with the new actors. We
check consistency with all combinations.

The choice of splitting the Bank actor is derived from the mapping tables, where
we observe the one-to-many relationship. We split an actor by splitting the
corresponding unit in the reduced model.

Based on the splitting of the units in the value reduced model it turns out that the
reduced models are equivalent, which fits to the intuitive consistency.

4.3 Splitting of Messages

Fig. 11 shows a second activity diagram for the example case. The diagram differs in
two points from Fig. 10. First, the bank is represented as one swimlane and
correspondingly the activities and messages belonging to the Mortgage and
Insurance swimlane are in the Bank swimlane. The second difference is in the
way payment of monthly dues is modeled. In the bottom of Fig. 11, payment by the
client is represented as a single message.

BankClient

Apply for a mortgage Appl. form Process appl.

ApproveMortgageConsume

Apply for insurance Appl. form Process appl.

ApproveInsuranceConsume

Pay monthly dues Monthly dues Process

Fig. 11. Process model of the example with one message representing the monthly dues

534 Z. Zlatev and A. Wombacher

The models in Fig. 9 and Fig. 11 differ in granularity: the monthly payments are
represented as two distinctive value objects in the e3-value model while in the activity
diagram they are modeled as one message. To resolve the two-to-one relationship
between value objects and a message, we split the Monthly dues message into
IMonthly dues and MMonthly dues. The new messages share the same sender
and receiver as the original message.

The choice of splitting the Monthly dues message is derived from the mapping
tables, where we observe the one-to-many relationship. We split a message by
splitting the corresponding common object in the reduced model.

Based on the splitting of the common objects in the process reduced model it turns
out that the reduced models are equivalent, which fits to the intuitive consistency.

4.4 Implications

We have analyzed a number of examples to justify our approach of splitting actors
and messages. We classify them based on:

• Cardinality of the relationship, where we consider one-to-many and many-to-
many relationships;

• Direction of the relationship, where we consider one instance in the e3-value
model related to many instances in the activity diagram and vice versa;

• Type of the relationship, where we specialize relationships into individual
and aggregation. An individual one-to-many relationship means that one
entity is mapped to several independent entities each of which represents the
entity as a whole. (This is the type of relationship we have in our first
example in Section 3.) An aggregation one-to-many relationship means that
one entity is mapped to several independent entities which together represent
the entity as a whole. (This is type of relationship we have in our second
example in Section 4);

• Arguments of the relationship, where we considered relationships between
actors and swimlanes, and value objects and messages.

Our analysis of all combinations of the classifications criteria above shows that it is
possible to adapt the granularity of models applying the approach of splitting actors
and messages. It is possible to reduce the one-to-many and many-to-many
relationships to one-to-one relationships in all cases except one where we have one-
to-many aggregation type relationship between a swimlane and actors. Although such
a relationship is possible, we think it is rarely used; intuitively, an e3-value model is at
a higher level of granularity than an activity diagram.

5 Validation

The proposed consistency check is valid with respect to the intuitive consistency
definition if all model pairs considered to be intuitively consistent are consistent with
regard to our consistency definition and vice versa. To argue that this is the case, we
will decompose the intuitive consistency definition from Section 2.3 and compare it
with the building blocks of our consistency definition.

 Consistency Between e3-value Models and Activity Diagrams 535

For the intuitive consistency, we make the following observations:

1. It is based on relations between separate alternative dependency paths and
separate execution sequences;

2. The relation between an alternative dependency path and an execution sequence
is based on a single set of product value exchanges happening in both models.

Our transformation procedures represent the original model as several reduced
models, one per alternative, which is based on alternative dependency paths and
execution sequences. That is, one alternative dependency path (execution sequence)
results in a single reduced model. Thus, the granularity of the performed consistency
check is the same as in the intuitive one.

The second observation says that an alternative dependency path and an execution
sequence result in the same product value exchanges. Our definition of equivalent
reduced models requires identical common value exchanges in the two models. This
shows that both consistency definitions require a relationship between models based
on the same set of product value exchanges and on the same set of common value
exchanges.

As we describe in Section 3 the relationship between value exchanges and common
exchanges is one where every product value exchange is represented in the reduced
model. Similarly, transactions in the activity diagram are identified as such if they
result in a product value exchange. Thus in case of a non-trivial mapping, every
product exchange is transformed to a common exchange.

We conclude that the proposed consistency definition is valid with respect to the
intuitive consistency definition.

6 Consistency with the Application Communication Perspective

Throughout this paper, we discuss the economic value and business processes
perspectives and their consistency relationship (see Section 1). The two perspectives
focus on the value and control flow aspects among businesses. Our third perspective,
i.e. the application communication perspective, models the data flow without
explicating alternatives in a similar sense to alternatives in the value and process
models. The differentiation between data-flow alternatives is based on knowledge
gained from the development process of the communication model. Thus, each
alternative in the application communication perspective is modeled separately,
represented as a partial communication model.

From a preliminary investigation, we can state that the consistency check approach
based on alternatives can be applied on the remaining two consistency relationships
between a value model and a communication model, and between a process model
and a communication model. However, a more detailed analysis will be performed in
future work.

We select the consistency relationship between the e3-value model and the activity
diagram as we consider it the most difficult one. An e3-value model includes several
alternatives, which represent several possible scenarios of value exchanges.
Respectively, an activity diagram includes choices which result in several possible
execution sequences. In comparison with the application communication perspective,

536 Z. Zlatev and A. Wombacher

the additional steps to separate the alternatives in an e3-value model and an activity
diagram make the consistency checking more complex.

7 Related Work

Consistency can be checked in various ways. The approach with syntactic translation
(also called direct translation) [2] is based on directly relating terms of two notations.
Then, one specification is translated to the modeling language of the other. The
common semantic model (also called canonical representation) approach [3] selects a
single modeling notation (not necessarily one already in use) and transform all models
to that notation. The meta-representation approach [11, 12] does not require
transformation between models. It specifies relations between meta-modeling and
modeling concepts from each modeling notation. These relations must hold between
the concepts and their instances in each model.

Our approach is based on the common semantic model approach. We define a
common semantic model, which we call reduced model, in a pair-wise fashion. This
gives us richer reduced models compared to a single reduced model for all
perspectives. Additionally, our approach introduces a consistency check based on
alternatives; i.e. models are decomposed into smaller models and checked
individually for consistency. This provides a consistency check that matches with the
intuitive consistency definition.

Our work is an extension of Gordijn’s [8] requirement engineering approach to
innovative e-commerce ideas. He specifies a method for exploration of business
opportunities based on the distribution of value in business networks. Additionally to
the value viewpoint (viewpoint is a synonym for perspective), the approach includes
two more: a business process and an information systems viewpoints. The three
viewpoints match closely with our perspectives. However, we explicitly check for
consistency as we assume independent development of models; whereas Gordijn’s
approach is based on a common set of scenarios represented in each model.

Our approach requires a semantic mapping between concepts in the value and
process models. The work of Gordijn, Akkermans and Vliet [6] elaborates on the
differences between business and process modeling by showing semantic differences
between concepts. We use this information to define our transformation tables. While
Gordijn, Akkermans, and Vliet specify differences between concepts of the different
models. The proposed approach specifies semantic relationships between instances.

Wieringa and Gordijn [13] define a correctness relationship between an e3-value
model and a process model. We use this to define our intuitive consistency. In
addition, we provide an operationalization of this intuitive consistency definition
based on transformations to reduced models.

The work of Dijkman et al. [4] is also based on the common semantic model
approach. It relates viewpoints (viewpoint is a synonym for perspective) by means of
a basic viewpoint which contains pre-defined concepts and relations. Every viewpoint
from a design framework need to be mapped to basic concepts and relations from the
basic viewpoint. Our approach differs in the way how the reduced model (the basic
viewpoint in Dijkman et al.’s terms) is defined. We do not require a pre-defined
reduced model with abstract basic constructs, but we determine the reduced model

 Consistency Between e3-value Models and Activity Diagrams 537

after the modeling notations are selected. As we pointed in Section 0, this allows
defining richer reduced models in terms of common concepts and relations.

Consistency of a workflow model can usually be defined based on the set of
potential execution sequences, a straight forward approach to check consistency is on
a single workflow model. This approach has been applied to several workflow
models, like for example by v.d.Aalst and Weske [1] to Workflow Nets (WF-Nets),
by Fu et.al. to guarded Finite State Automata [5], by Yi and Kochut [17] to Coloured
Place/Transition Nets, or by Wodtke and Weikum [15] to statecharts. In either case it
is checked whether the execution of the workflow results in a deadlock, that is, no
further action is possible although a final state has not been reached yet. However,
there exists also approaches on checking consistency between several workflows
represented in the same modeling approach, like e.g. [1, 16, 9]. In our paper,
consistency between different modeling approaches is defined.

8 Conclusions and Future Work

The contribution of this paper is a definition of consistency between an e3-value
model and an activity diagram. We operationalize the consistency check by defining a
reduced model that contains the common concepts from two models. Further with the
help of mapping tables, we transform the e3-value model and the activity diagram to
reduced models. Finally, we check equivalence of reduced models. We argue that the
consistency definition is valid with respect to the intuitive consistency definition.

The e3-value model and the activity diagram represent two of the three perspectives
of a development framework used to align information system capabilities and
business objectives [18]. The third perspective represents the communication among
components of the business information systems. Future work includes the definition
and operationalization of the remaining two consistency relationships: between the e3-
value model and the communication perspective model, and between the activity
diagram and the communication perspective model. Further, we aim to investigate the
usefulness of the three binary consistency definitions as necessary conditions for a
global consistency. Finally, an implementation has to be provided to automate the
consistency check of the different perspectives as more realistic and complex
examples are likely to contain high numbers of reduced models.

Acknowledgements

We thank Roel Wieringa and Maya Daneva for their valuable comments on the draft
versions of this paper.

References

1. Aalst van der, W.M.P., Weske, M.: The P2P approach to Interorganizational Workflows.
Proceedings of 13th International Conference on Advanced Information Systems
Engeneering (CAISE). Interlaken, Switzerland (2001)

2. Bowman, H., Steen, M.W.A., Boiten, E.A., Derrick, J.: A formal framework for viewpoint
consistency. Formal Methods in System Design, 21, September (2002) 111—166

538 Z. Zlatev and A. Wombacher

3. Braatz, B., Klein, M., Schröter, G.: Semantical Integration of Object-Oriented Viewpoint
Specification Techniques. In Integration of Software Specification Techniques for
Applications in Engineering, Lecture Notes in Computer Science, Springer. (2004)

4. Dijkman, R.M., Quartel, D.A.C., Pires, L.F., Sinderen van M.J.: An Approach to Relate
Viewpoints and Modeling Languages. In: Proceedings of the 7th IEEE Enterprise
Distributed Object Computing (EDOC) Conference, Brisbane, Australia (2003) 14—27

5. Fu, X., Bultan, T., Su, J.: Realizability of Conversation Protocols with Message Contents.
Proceedings IEEE International Conference on Web Services (ICWS) (2004) 96—103

6. Gordijn, J., Akkermans, J.M., Vliet van, J.C.: Business Modelling is not Process
Modelling. In: Conceptual Modeling for E-Business and the Web, LNCS 1921. Salt Lake
City, USA, October 9-12 (2000) 40—51

7. Gordijn, J., Akkermans, J.M.: Value based requirements engineering: exploring innovative
e-commerce idea. Requirements Engineering Journal, 8, 2 (2003) 114—134.

8. Gordijn, J.: Value based requirements engineering: Exploring innovative e-commerce
ideas. PhD. thesis, Vrije Universiteit Amsterdam (2002)

9. Kindler, E., Martens, A., Reisig, W.: Inter-operability of Workflow Applications: Local
Criteria for Global Soundness. Business Process Management, Models, Techniques, and
Empirical Studies (2000) 235—253

10. OMG: OMG UML Specification (2003) http://www.omg.org/cgi-bin/doc?formal/03-03-01
11. Sunetnanta, T., Finkelsteing, A.: Automated Consistency Checking for Multiperspective

Software Specifications. Workshop on Advanced Separation of Concerns. Toronto (2001)
12. Sunetnanta, T.: Multiperspective Development Environment for Configurable Distributed

Applications. Ph.D. Thesis. Department of Computing, Imperial College. February (1999)
13. Wieringa, R.J., Gordijn, J.: Value-Oriented Design of Service Coordination Processes:

Correctness and Trust. ACM Symposium on Applied Computing (2005)
14. Wieringa, R.J.: Design Methods for Reactive Systems. Morgan Kaufmann (2002)
15. Wodtke, D., Weikum, G.: A Formal Foundation for Distributed Workflow Execution

Based on State Charts. In: Afrati, F.N., Kolaitis, P. (eds.): Proceedings of the 6th
International Conference on Database Theory (ICDT) (1997) 230—246

16. Wombacher, A., Fankhauser, P., Aberer, K.: Overview on Decentralized Establishment of
Consistent Multi-Lateral Collaborations Based on Asynchronous Communication.
Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce
and e-Service (EEE) (2005) 164—170

17. Yi, X., Kochut, K.J.: Process Composition of Web Services with Complex Conversation
Protocols: a Colored Petri Nets Based Approach. Proceedings of the Design, Analysis, and
Simulation of Distributed Systems (2004) 141—148

18. Zlatev, Z., Daneva, M., Wieringa, R.J.: Multi-Perspective Requirements Engineering for
Networked Business Systems: A Framework for Pattern Composition. 8th Workshop on
Requirements Engineering. Porto, 13-14 June (2005)

Maintaining Global Integrity in
Federated Relational Databases Using

Interactive Component Systems

Christopher Popfinger and Stefan Conrad

Institute of Computer Science,
University of Düsseldorf,

D-40225 Düsseldorf, Germany
{popfinger, conrad}@cs.uni-duesseldorf.de

Abstract. The maintenance of global integrity constraints in database
federations is still a challenge since traditional integrity constraint man-
agement techniques cannot be applied to such a distributed manage-
ment of data. In this paper we present a concept of global integrity
maintenance by migrating the concepts of active database systems to
a collection of interoperable relational databases. We introduce Active
Component Systems which are able to interact with each other using
direct connections established from within their database management
systems. Global integrity constraints are decomposed into sets of partial
integrity constraints, which are enforced directly by the affected Active
Component Systems without the need of a global component.

1 Introduction

Many organizations or companies own a multitude of data sources, which gener-
ally emerged autonomously to fit the needs of a department or a certain group
of users at a local site. Local applications produce or modify data that is often
semantically related to data stored on a different autonomous source. One of the
main challenges in the integration of data in such environments is the auton-
omy of the data sources. This autonomy implies the ability to choose its own
database design and operational behavior. Local autonomy is tightly attached
to the data ownership, i.e. who is responsible for the correctness, availability,
and consistency of the shared data. Centralizing data means to limit local au-
tonomy and revoke the responsibility from the local administrator, which is not
reasonable in many cases. A federated architecture for decentralizing data has
to balance both, the highest possible local autonomy and a reasonable degree of
information sharing [1]. Hence, the architecture of a company wide information
system has to be applicable to the data policy of the company and vice versa.
To be more precise, the question of data ownership determines the composition
of the company wide information platform, while it has to ensure a high level of
consistency and fail-safety.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 539–556, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

540 C. Popfinger and S. Conrad

In many scenarios, local data is, and should be, exclusively manipulated by
local applications, whereas global applications are used to display and analyze
this data without the need for global write transactions. For example, a com-
pany could store employee data in a database of the management department,
whereas the research department maintains information about ongoing projects
and researchers in its own database. Each department is responsible for the
up-to-dateness and correctness of its data. Information about employees and
research projects shall be integrated and displayed on the company’s website.
Obviously the data in both autonomous databases is interrelated, since all the
researchers are employees of the company. Thus, we need to ensure that every
entry in the research database has a corresponding entry in the management
database. Interdependencies of data stored on multiple databases can be con-
sidered as integrity constraints expressed over a global schema that is derived
from relevant schemata of the local databases. The maintenance of these global
integrity constraints is still a problem since traditional integrity constraint man-
agement techniques cannot be applied to such a distributed management of data.
Our work is developed in the context of relational databases, since this type of
data source is widely used for data storage in practice. We assume an information
system which comprises a collection of autonomous relational sources of various
vendors running on different platforms. The databases store interdependent data
that is accessed by local and global applications.

In this paper we present a concept for global integrity maintenance in such
a federated relational database systems by extending the concepts of active
database systems to a collection of interoperable relational databases. We intro-
duce Active Component Database Systems (ACDBS), which are able to interact
with each other using direct database connections established from within their
database management systems. Interdependencies between the data sources are
expressed as global integrity constraints and enforced using constraint checks
that are entirely implemented on the ACDBSs without the need of a global com-
ponent or federation layer. At the same time, we allow the component database
systems to retain the greatest possible extent of local autonomy.

The remainder of the paper is organized as follows. We start with an in-
troduction to Active Component Database Systems as the main components of
our architecture in section 2. Section 3 defines partial integrity constraints as a
new type of constraints suitable for ACDBS, followed by a detailed explanation
of global integrity checking based on partial integrity constraints in section 4.
Section 5 discusses properties of our concepts, while related work is presented in
section 6. Section 7 concludes and draws up future work.

2 Active Component Database Systems

We start with an introduction to Active Component Database Systems (ACDBS)
as the main concepts of our approach. An ACDBS is an autonomous component
database system or component system (CDBS or CS) of a federated database
system as described in [2]. The active functionality of this kind of component

Maintaining Global Integrity in Federated Relational Databases 541

systems, which we are going to describe in the following, can be used to ensure
consistency and to enforce business rules in both, tightly coupled and loosely
coupled federations. Within the classical notion of federated databases, the com-
ponent systems do only have passive functionality regarding the federation. Like
repositories, they provide access to their data and respond to data requests ini-
tiated by the clients. Such passive component database systems, with respect to
the federation, operate isolated and do not have any knowledge of other CDBSs
within the federation to which their data is related.

Active database systems, which are not automatically ACDBSs when partic-
ipating in a federation, assist applications by migrating reactive behavior from
the application to the DBMS. They are able to observe special requirements of
applications and react in a convenient way if necessary to preserve data con-
sistency and integrity. The integration of active behavior in relational database
systems is not particularly new and most commercial database systems support
ECA rules, whereas the execution of triggers is mainly activated by operations
on the structure of the database (e.g. insert or update a tuple) than by user-
defined operations [3]. Unfortunately, the ability to check constraints in active
databases, especially the scope of trigger conditions and actions, has until re-
cently been limited to the isolated databases they were defined at. Subsequent
developments integrated special purpose programming languages (e.g. PL/SQL
[4]) into the database management system to overcome some limitations of the
query language and to provide a more complex programming solution for critical
applications. But again, the scope of these extensions was strictly limited to the
system borders of the database system, so an interaction with its environment
was impossible. Thus, the support of ECA rules and triggers is necessary, but
not sufficient for the concept we propose here.

Latest developments, especially in commercial database systems, take the
functionality of active databases beyond former limits. The significant improve-
ment, on which this work is based on, is the ability of modern active database
systems to execute programs written in a standalone programming language
from within triggers, user defined functions, or stored procedures.

Definition 1. The ability of a database system to execute programs or methods
from within its DBMS to interact with software or hardware components beyond
its system border shall be called enhanced activity. A database with enhanced
activity is an Enhanced Active Database System (EADBS). The execution of
a program or method in this context shall be called an External Program Call
(EPC).

The execution of external programs (EPs) from inside the DBMS offers new
perspectives to data management and processing in an information sharing en-
vironment. Besides the maintenance of global integrity constraints as presented
here, it can be used to improve communication with other external components
like database wrappers [5]. In this paper, we use the database connectivity of
the programming language to add the following functionalities to a component
database system of a federation:

542 C. Popfinger and S. Conrad

Query the state of a remote database: The main functionality which is el-
ementary for our approach is the ability of an CDBS to query a remote data
source directly during the execution of a database trigger. After a connection
has been established by the EP, we can perform any read operation on the
remote schema items we are allowed to access. Depending on the query lan-
guage we can formulate complex queries with group and aggregate functions
(e.g. like in SQL). The query result of the remote database is used locally to
evaluate conditions of ECA rules. We call this kind of query a remote state
query.

Manipulating a remote database: After a connection is set up by the pro-
gram, a CDBS is basically able to modify the data stock of the remote
database directly during the execution of a database trigger. Assuming the
appropriate permissions, any operation supported by the query language can
be executed including data insertions, updates, and deletions. Depending on
the query language, a CDBS is thus basically able to modify even the schema
of a remote database using for example ALTER TABLE statements in SQL. In
the following, a manipulation of remote data or schema items from within
a database trigger shall be called an injected transaction, since its execution
depends on a triggering transaction on a local relation.

The programming language used for EPs has to provide the functionality to
open and close a connection to a remote data source and execute queries upon
that data stock. Furthermore, we must be able to pass parameters to the EP
and to access the corresponding program output from inside the trigger. This
output can be used to evaluate trigger conditions or to determine subsequent
trigger actions. Since the EPCs are embedded straight inside the DBMS of the
local system, we are able to delay or abort transactions depending on the state
of another data source or the result of an injected transaction. Just like common
triggers that exclusively use local data to evaluate their trigger conditions, the
DBMS autonomously schedules the execution of the trigger that encapsulates
the EP. In particular, we do not force a component system to provide an atomic
commitment protocol like 2PC. From the point of view of the remote database,
a query of another DBMS via the database server is handled like a request of an
ordinary application.

Within recent commercial database systems a commonly supported program-
ming language which meets the requirements just mentioned is Java (e.g. Java
Stored Procedures or Java UDFs [6, 4]). It contains JDBC, a common database
connectivity framework, to provide a standardized interface for a multitude of
different data sources like relational databases or even flat files. During the exe-
cution of an EP based on Java, we use JDBC to connect to remote data sources
from within triggers. After a connection has been established, we execute queries
using SQL as a standardized query language. Our concept can be adapted to
other relational database systems supporting different programming languages
that fulfill the requirements listed above.

Definition 2. An Active Component Database System (ACDBS) is an
EADBS, which actively participates in maintaining global integrity constraints in

Maintaining Global Integrity in Federated Relational Databases 543

a federation. It is able to directly communicate with other component systems,
to which its data is semantically related, and implements constraint checks to
maintain consistency among this interdependent data.

Constraint checks performed by ACDBSs are entirely implemented and executed
on local CDBSs, but require access to remote data. Since these checks cannot
be expressed by either local or global constraints, we introduce partial integrity
constraints as a new type of integrity constraints for ACDBS.

3 Partial Integrity Constraints

In this section, we discuss partial integrity constraints as the basic concept of our
approach. As already mentioned, we assume a federation of relational databases.
Each ACDBS in this federation has to meet two requirements concerning the pro-
gramming language for encoding EPs: (1) It must be able to connect to other
component systems of the federation using the database connectivity of the pro-
gramming language and (2) it must support a query language understood by
the other component systems to execute at least read operations on the remote
data stock. In practice, two widely used standard database connectivity inter-
faces are JDBC and ODBC, which support a multitude of relational databases.
An established query language for relational databases certainly is SQL. This
enhanced functionality is used to implement constraint checking algorithms for
partial integrity constraints, which are defined next.

3.1 Definition of Partial Integrity Constraints

We start with the following definitions similar to [7]:

Definition 3. A federation F of relational component systems is a set of n
interconnected database systems {S1, ..Sn}. The database systems do not nec-
essarily have to be located on physically different nodes of the network. Each
system Si ∈ F manages a local database Di. A local schema Di of a database
Di comprises the schemata Ri

1, ...Ri
ni

of the relations Ri
1, ..., R

i
ni

stored in the
database. The global database schema G of F is the set of all relational schemata
Ri

j in F .

We assume that a real-world object, that is modeled in a component database
of F , is globally identified by a set of key attributes, i.e. a real-world object will
have the same key attribute values when stored in different CDBSs. Otherwise
we assume mapping functions to match real-world objects in different sources.

Definition 4. A local integrity constraint IDi

L is a boolean function over a local
database schema Di, i.e. IDi

L : Di → {true, false}. A global integrity constraint
IG is a boolean function over the global schema G, i.e. IG : G → {true, false}.
It cannot be expressed over a local database schema Di ∈ G. Constraint checks
for IDi

L and IG are algorithms for evaluating IDi

L and IG respectively.

544 C. Popfinger and S. Conrad

After a global constraint IG has been defined over G, we identify a non-empty
set C ⊆ F of component databases c ∈ C whose local schemata Rc are affected
by IG, i.e. data stored in the relations Rc on the component databases is se-
mantically related. Thus, from the point of view of each component database c,
IG affects a relation managed locally and at least one remote relation managed
by another component system. For example, if a key constraint is defined on a
global attribute that is derived from multiple sources, each of the sources has to
ensure the global uniqueness of the key attribute, when a new tuple is inserted
locally. This means that IG consists of a set of partial integrity constraints, which
we define as follows:

Definition 5. A partial integrity constraint IRc on an ACDBS c ∈ C is
a boolean function, which is expressed over the local schema Rc and related
schemata Rku for ku ∈ C \ {c}, i.e. IRc : Rc ×Rk1 × · · · ×Rkv → {true, false}
for v ≤ |C| − 1. A constraint check for IRc is an algorithm for evaluating IRc ,
which is entirely implemented on c using external program calls to access the
remote schemata Rku .

A partial integrity constraint consists of a local constraint check and one or
more remote constraint checks on interrelated remote data, depending on the
type of global constraint and the number of affected databases. It is used to
express a global constraint from the local view of a single component database.
An ACDBS, which implements a partial integrity constraint, has to ensure con-
sistency of its local data depending on related data stored in other component
databases. This means that it is responsible for checking a specific part of the cor-
responding global integrity constraint concerning local write operations on the
interrelated data. Thus, a global integrity constraint is assured, iff all affected
component systems enforce their corresponding partial integrity constraints, ex-
pressed as

IG :
∧
c∈C

IRc

The global constraint IG consists of a conjunction of partial integrity constraints
IRc , which are formulated as

IRc : localRc ∧
∧

j∈C′
remoteRc,Rj

Depending on the type of global integrity constraint, each affected ACDBS c has
to check an optional local condition localRc and one or more remote conditions.
remoteRc,Rj defines a pairwise dependency between the affected local relation
Rc and one interrelated relation Rj on component j. Remote conditions do
not necessarily have to be defined for each pair of local and remote databases
in C. Thus, C′ ⊆ C \ {c} denotes a subset of ACDBSs, which are required to
check for a specific integrity constraint. A constraint check for IRc implements
tests for the local condition localRc and each remote condition remoteRc,Rj .
For aggregate constraints, a test for a local or remote condition results in the
successful computation of a local or remote aggregate. Detailed examples for
partial constraint checks are provided in section 4.

Maintaining Global Integrity in Federated Relational Databases 545

3.2 Specification of Partial Integrity Constraints as ECA Rules

Since our concept of global integrity maintenance is based on ACDBS with
enhanced activity, we use database rules following the event-condition-action
(ECA) paradigm to specify a partial integrity constraint IRc on a component
database c as follows:

define rule PartialIntegrityRule IRc

on event which modifies Rc

if a test for localRc yields false or
a test for remoteRc,Rj yields false

do local and/or remote action(s) to ensure or
restore a consistent global state

Such integrity rules can precisely define both: events that potentially violate the
integrity of local and remote data, and corresponding reactions on these events to
ensure or restore consistency in the entire system. The relevant events concerning
data consistency are modifications of the data stock, i.e. insertions, updates, and
deletions. According to the definition of partial constraints, each rule condition and
rule action of a partial integrity rule can consist of a local and one or more remote
checks. The local check localRc exclusively uses and accesses local data, while the
remote checks remoteRc,Rj exclusively process data stored on remote systems. The
remote checks of a partial integrity rule are implemented using remote state queries
(or injected transactions) provided by the ACDBS. Thus, we have the following
options to call an external program during an integrity check:

During the evaluation of a trigger condition: An external program call dur-
ing the evaluation of a trigger condition allows a DBMS to determine subse-
quent actions depending on the result of a remote state query or the result of
an injected transaction. Thus, a locally executed constraint check can be con-
ditioned by the state and behavior of a remote data source. In our concept,
most of the constraint checks are implemented using remote state queries from
within trigger conditions. The part of the trigger condition, which evaluates a
condition using remote data shall be called remote condition.

During the execution of (a) trigger action(s): Besides the remote con-
dition, an external program can be executed as a trigger action. A local
transaction can thus trigger an injected transaction to manipulate a remote
data source. This can be used to execute consistency restoration actions or to
implement special constraints like cascading referential integrity. This part of
the trigger action, which manipulates remote data using injected transaction
shall be called remote action.

The specific combination of the time the corresponding EP is executed (i.e. during
remote condition or remote action) and the time a partial integrity rule is evalu-
ated (i.e.before orafter a local transaction is committed) is significantly affecting
the behavior of the entire system. Please note, that we are certainly not limited to
exclusively one of these combinations. During the evaluation of a partial integrity

546 C. Popfinger and S. Conrad

Fig. 1. Basic Architecture

rule, external programs can be called from both, the remote condition and the re-
mote action, before or after a local transaction is committed.

Putting it all together, we present the architecture for global integrity checking
in heterogeneous information systems using active component systems depicted
in Fig. 1. The partial integrity checks are defined and implemented directly in the
ACDBSs, building up an application independent communication layer to jointly
ensure global consistency of interdependent data. The ACDBSs call EPs to check
remote conditions or to execute remote actions of locally defined partial integrity
constraints. Each transaction is checked according to local and partial integrity
constraints, no matter if submitted by local or global applications. The mainte-
nance of global integrity is thus migrated from a global application or federation
layer to the underlaying active component systems.

3.3 System Interaction

We now give a schematic description of the interaction process between two
ACDBSs during the execution of a partial integrity check. Consider two relations
R and S on active component systems ACDBS1 and ACDBS2, which store inter-
dependent data. To enforce a global constraint, we have to define and implement
partial constraint checks on both component systems. Therefore we create the fol-
lowing objects on each ACDBS (see Fig. 2):

– An external program (EP) (here a Java method) to execute queries upon
the remote data stock,

– a user defined function (UDF), which is mapped to the external Java
method, and

– a triggerwhich executes the UDF when relevantwrite operations occur on the
relation.

Maintaining Global Integrity in Federated Relational Databases 547

Fig. 2. Interaction between two Active Component Systems

We assume a global key constraint to be enforced on R and S, i.e. whenever a tu-
ple is inserted or modified in R or S, we have to check the global uniqueness of
the key attributes of the newly inserted or modified tuple in both relations. Our
description focuses on data modifications in R, since modifications in S would be
processed analogously. When an application inserts or updates data items ΔR in
R, the corresponding trigger is executed by the database system before the trans-
action is completed. The trigger has access to ΔR via temporary tables provided
by the DBMS. For each new tuple r in ΔR, the trigger first performs a check on the
local data and afterwards, if necessary, on the remote data. If the local test fails,
the key constraint is already violated and the remote test is omitted. If the local
test succeeds, the trigger calls a UDF to check for conflicts in the remote data. The
UDF is mapped to a Java function and receives r as a parameter from the trigger.

The Java function now bridges the gap between the two component systems.
Using JDBC it connects to the remote database and executes an SQL query to
check for the existence of r in S. The function returns true or false depending on
the query result. The trigger receives this result and is now able to determine sub-
sequent actions. Please keep in mind that, for the scope of this paper, we execute
local and remote checks during the evaluation of the trigger condition before the
transaction is completed. Thus, the transaction is blocked as long as the trigger is
executed. If a corresponding tuple already exists in S, then we reject the data mod-
ifications on R. An SQL error is raised to signal the global key constraint violation.

4 Checking Global Integrity Constraints

We now concretize our concept of global integritymaintenance explaining howpar-
tial integrity constraints are expressed and implemented for different constraint
types. Therefore we use a simplified scenario with two relational data sources. A
generalization to more than two sites is discussed in section 5.

Consider a company with two research departments A and B, which both
manage their own autonomous relational database DBA and DBB. The company
wants to integrate these standalone sources into an information system and define

548 C. Popfinger and S. Conrad

Table 1. Example relations in the research departments A and B

Department Database Relations
A DBA resA(RA, NA, SA)

projA(PA, TA, BA)
proresA(RA, PA)

B DBB resB(RB, NB , SB)
projB(PB, TB , BB)
proresB(RB, PB)

integrity constraints to ensure global data consistency within the entire company.
We assume that the sources are relational databases with enhanced activity, which
host the relations shown in Table 1. Each department stores information about
researchers in relation res (researcher number R, name N , salary S) and their cor-
responding projects in relation proj (project number P , title T , budget B). Re-
searchers are related to projects using the prores relation (m:n).

According to the classification presented in [8, 9], we consider four commonly
used classes of global integrity constraints which can be defined on the global
schema: attribute constraints, key constraints, referential integrity constraints,
and aggregate constraints. In the following, we provide an example for each non-
trivial class of global integrity constraints, followed by a rule definition for corre-
sponding partial integrity constraint on the affected ACDBSs.

4.1 Attribute Constraints

The company could define a constraint saying that the budget of each project
may not exceed a certain value. Since this global attribute constraint is ex-
pressed over a single attribute, it can be translated into a local attribute con-
straint and thus be enforced by local integrity mechanisms on DBA and DBB,
e.g. by an additional check clause in both project relations. The global constraint
can be enforced by a local constraint check on each ACDBS, so no EPCs are re-
quired.

4.2 Key Constraints

Thecompanymaywant to ensure that eachproject is globally identifiedbyaunique
identifier, i.e. the values stored in PA and PB are globally unique. Thus, each time
a project is added in one of the research departments, we have to ensure that the
new project number does not already exist locally and in the project database of
the other research department.

Since partial constraint checks are entirely implemented on a participating
ACDBS using EPCs to access remote data, we decompose KeyG into a set of
partial integrity constraints KeyprojA and KeyprojB for DBA and DBB respec-
tively:

KeyG : KeyprojA ∧KeyprojB

Maintaining Global Integrity in Federated Relational Databases 549

The partial constraints are in turn formulated as

KeyprojA : localprojA ∧ remoteprojA,projB

KeyprojB : localprojB ∧ remoteprojA,projB

A partial constraint consist of a local condition and a remote condition, which are
defined for KeyprojA as follows (KeyprojB is defined analogously):

localprojA : ∀P, T, B, P ′, T ′, B′ :
[projA(P, T, B) ∧ projA(P ′, T ′, B′) ⇒ ¬(P = P ′)]

remoteprojA,projB : ∀P, T, B, P ′, T ′, B′ :
[projA(P, T, B) ∧ projB(P ′, T ′, B′)⇒ ¬(P = P ′)]

Suppose the tupleprojA(p, t, b) is inserted.According toKeyprojA wehave to check
the existence of the key locally and in projB, stored on DBB, with the following
tests for localprojA and remoteprojA,projB :

localtestKeyprojA : ∃P, T, B : [projA(P, T, B) ∧ (P = p)]
remotetestKeyprojA : ∃P, T, B : [projB(P, T, B) ∧ (P = p)]

Both tests are evaluated by performing queries on the relevant relations for a
tuple that has p as its project number. Therefore, we need two boolean func-
tions: checklocalkey : schema(projA) → {true, false} for localtestKeyprojA

and checkremotekey : schema(projB) → {true, false} for remotetestKeyprojA .
checklocalkey should always be evaluated first to avoid cost-intensive remote data
access where possible. Please note that although the uniqueness of key attributes
may already be enforced by an additional local key constraint, we need the local
check in the partial constraint since in general it is not possible to access the result
from a local constraint check from within an active component like a trigger.

The checkremotekey function is implementedusing a remote state query,which
queries database DBB to find tuples with the values to be inserted. If the query re-
sult is not emptyor the remote source is not reachableby the external program, then
the function is evaluated to false, i.e. the corresponding transaction in database
DBA is rejected. The condition is evaluated before the triggering operation is com-
mitted at DBA. The corresponding partial rule for KeyprojA is expressed as:

define rule PartialKeyConstraint
on creation of a new object in projA
if checklocalkey yields false or checkremotekey yields false
do reject transaction

A partial constraint is herewith realized on an ACDBS with an implementation
of the ECA rule using two functions checklocalkey and checkremotekey with one
remote state query. Having implemented both partial constraints KeyprojA and
KeyprojB on both systems, we are able to verify KeyG each time a modifying trans-
action is committed locally on DBA and DBB.

550 C. Popfinger and S. Conrad

4.3 Referential Integrity Constraints

A widely spread constraint is the definition of referential integrity on relations to
specify existence dependencies between two database objects. Referring to our sce-
nario, the company could allow researchers of departmentA to cooperate on shared
projects of department B. Thus, we have to ensure that a researcher in DBA is
related to an existing project in DBB and vice versa. As already mentioned, re-
searchers are related to projects via the prores relation referencing the relevant
primary keys of the local project and researcher relations.Now, to reflect the global
referential integrity constraint in our exemplary relational model, we allow RB in
proresB to reference both, local researchers using RB in resB and cooperating re-
searchers in resA using RA. In the scope of this paper we only consider referential
integrity without cascading, although our concept of ACDBSs basically supports
cascading. An outlook on cascading referential integrity can be found later in this
section.

Referential Integrity Without Cascading. In the following, we focus on the
referential integrity concerning the researcher number RB in proresB. Referen-
tial integrity for PB in proresB is handled analogously. Similar to global key con-
straints, a global referential constraint is first decomposed into a set of partial con-
straints:

RefIntG : RefIntresA ∧RefIntproresB

The existence dependency between the local parent relation resA and the local
dependent relation proresA can be expressed as follows:

localproresA : ∀R, P∃R′, N, S :
[proresA(R, P) ∧ (R = R′) ⇒ resA(R′, N, S)]

Furthermore we formulate a remote constraint remoteproresB,resA as

remoteproresB,resA : ∀R, P∃R′, N, S :
[proresB(R, P) ∧ (R = R′) ⇒ resA(R′, N, S) ∨ resB(R′, N, S)]

Using these definitions, we express the partial constraints for RefIntG as

RefIntresA : localproresA ∧ remoteproresB,resA

RefIntproresB : remoteproresB,resA

A project can only be inserted into proresB, if a corresponding researcher exists
in either resB (locally) or resA (remote). Contrary, a researcher in the parent re-
lations resA and resB may not be deleted, as long as depending projects exist in
the dependent relation proresB. Thus, we have to distinguish between constraint
checks for insertions and deletions on the dependent and parent relations respec-
tively.

Maintaining Global Integrity in Federated Relational Databases 551

Insertion check: Suppose the tuple proresB(r, p) is inserted, whereas p refers
to an existing project in projB. According to RefIntproresB we have to
check the existence of r locally and remote using the following tests for
remoteproresB,resA:

localtestRefIntproresB : ∃R, N, S : [resB(R, N, S) ∧ (R = r)]
remotetestRefIntproresB : ∃R, N, S : [resA(R, N, S) ∧ (R = r)]

If one of the tests yields true, then there exists a corresponding entry in either
the local or remote parent relation and the tuple proresB(r, p) can be inserted.
Otherwise the insertion has to be rejected. For the implementation of these
tests,we use the functions checklocalkey and checkremotekey as introduced in
section 4.2. The remote test is evaluated using a remote state query on DBA. A
corresponding ECA rule for this partial constraint can be expressed as follows:

define rule PartialReferentialConstraint
on creation of a new object in proresB
if checklocalkey yields false and checkremotekey yields false
do reject transaction

Deletion check: Suppose the tuple resA(r,n,s) shall be deleted from DBA. Ac-
cording to RefIntresA we have to ensure that there are no depending objects
in the prores relations on DBA and DBB before we delete this item. Thus, we
formulate the following tests for localproresA and remoteresA,proresB :

localtestRefIntresA : ∃R, P : [proresA(R, P) ∧ (R = r)]
remotetestRefIntresA : ∃R, P : [proresB(R, P) ∧ (R = r)]

The deletion check succeeds, i.e. resA(r, n, s) can be deleted, if there are no de-
pendent objects in proresA and proresB. This partial constraint is represented
by the following ECA rule:

define rule PartialReferentialConstraint
on deletion of an object in resA
if checklocalkey yields true or checkremotekey yields true
do reject transaction

Of course, we have to ensure that an entry in the parent table exists either in resA
or resB. This is realized using a key constraint on the researcher id as presented in
section 4.2.

Cascading Referential Integrity Constraints. With the extended function-
ality of Active Component Systems, we are basically able to realize cascading refer-
ential integrity on updates or deletions of tuples. Injected transactions can be exe-
cuted during the evaluation of a partial integrity constraint to modify remote data
stocks including even deletions, before or after the modifying operation is commit-
ted locally. If a tuple is deleted in the parent relation, we execute an injected trans-
action to delete all corresponding tuples in the dependent relation. Analogously, if

552 C. Popfinger and S. Conrad

a key value is updated in the parent relation, we cascade this update to the depen-
dent relation by modifying the relevant entries in the remote database via injected
transactions.

The corresponding partial integrity constraint for the parent relation is ex-
pressed similar to the partial rule without cascading presented in 4.3. We extend
the rule to delete dependent objects from within the rule condition or action de-
pending on the intended system behavior. Thus, we are able to delete entries in
the dependent relation from within a remote condition or a remote action, before
or after the local entry is deleted. Of course, since we modify data on more than
one autonomous database system, we face the problem of atomic commitment in
a multidatabase environment [10]. A distributed update may lead the federation
into a (temporary) inconsistent state in case of a failure. We therefore need a recov-
ery mechanismbased on the concept proposed to detect inconsistencies and restore
global integrity automatically after a transaction has violated global constraints.
Following the line of argumentation in [11] we consider weakened notions of con-
sistency, using guarantees for the level of consistency a system can provide. The
integration of weakened consistency into our architecture is part of future work.

4.4 Aggregated Constraints

As a representative for this type of constraint let us assume that the company
has a budget limit for all research projects. Thus, it must be checked whenever a
project is created or updated in DBA and DBB that the sum of all project bud-
gets BA and BB does not exceed a certain value ε. We restrict our further con-
siderations on the standard aggregate functions min, max, sum, and count. The
average function avg must be calculated during a partial constraint check using
sum and count. Furthermore, we assume that agg(T, w) is an aggregate func-
tion that calculates the aggregate of an attribute w of a relation T . The func-
tion totalagg(agg(Rm1, wm1), ..., agg(Rms , wms)) computes the overall aggregate
of partial aggregates for mu ∈ C and s = |C|. Please note that count is a semi ad-
ditive aggregate function and the overall aggregate must be calculated as the sum
of partial count aggregates.

These preliminaries provided, we can now formulate a global aggregated con-
straint for our example as

SumG : SumprojA ∧ SumprojB

with the partial constraints defined as

SumprojA : totalsum(localsumprojA, remotesumprojB) ≤ ε

SumprojB : totalsum(localsumprojB, remotesumprojA) ≤ ε

Both databases have to check the total sum whenever an insertion or update oc-
curs on BA or BB. Therefore, DBA calculates its corresponding local and remote
aggregate as

localsumprojA = sum(projA, BA) and remotesumprojB = sum(projB, BB)

Maintaining Global Integrity in Federated Relational Databases 553

using two functions agglocal : schema(projA) → R and aggremote :
schema(projB) → R. The calculation of the remote aggregate is realized using a
remote state query on DBB . The aggregates for DBB are calculated analogously.

Now suppose the tuple projA(p, t, b) is inserted.According toSumprojAwefirst
compute localsumprojA including the new value b and remotesumprojB on DBB.
After we receive the result from the remote aggregation,we calculate totalsum and
compare the overall aggregate to ε. If the comparison yields false then the insertion
of projA(p, t, b) is rejected. A corresponding ECA rule for this partial constraint
can be expressed as:

define rule PartialAggregatedConstraint
on update of BA in projA or insertion of a new object in projA

if totalsum(localsumprojA, remotesumprojB) > ε
do reject transaction

5 Discussion

The checking mechanism presented in this paper is basically an implementation of
the Local Test Transaction Protocol (LTT) presented by Grefen and Widom in [7].
The LTT exploits transaction capabilities provided by the local database system
to perform a notification and wait for acknowledgment within a single transaction.
Using the LTT we try to avoid remote checks by evaluating local tests first. If a local
test has already failed, then we do not have to evaluate the cost intensive remote
check using remote state queries. The implementation of a transaction-based pro-
tocol like LTT has to evaluate a constraint check before the triggering operation
is committed. The external program is executed as part of the remote condition
of a partial integrity rule. Our implementation certainly adopts all advantages and
drawbacks of the applied LTT protocol. Thus, the implementation proposed is safe
and accurate, which means that it detects all constraint violations and that, when-
ever an alarm is raised, there is a state in which the constraint is violated. On the
other hand, since the relation is locked until the external program returns a result,
the local ACDBS looses autonomy and the risk of deadlocks is relatively high, if
relations in DBR and DBS are updated concurrently.

Due to the flexibility of our architecture, we are basically able to implement the
entire set of protocols described by Grefen et al.Ṫhus, to overcome the drawbacks
of the LTT, we can modify the partial integrity constraints to implement the Ma-
terialized Delta Set Protocol (MDS), which increases autonomy and reduces the
risk of deadlocks. Therefore, we maintain an additional relation ΔR, which stores
an accumulated set of updates of the original relation R. The constraint checking
mechanism is then evaluated using ΔR instead, so the original relation is not locked
during the check. This enables at least concurrent read access to R while updates
must still be delayeduntil the lock is released. In our architectureΔR is maintained
using the active capabilities of the DBMS. We define a local rule on R to copy all
updated items to ΔR. The partial integrity rule including the remote checks as
presented above is then expressed over the Materialized Delta Set ΔR.

554 C. Popfinger and S. Conrad

A generalization of the constraint checking mechanism to more than two sites
is tightly corresponding to the implemented integrity checking protocols. As al-
ready described in [7], most of the constraints that involve more than one site can
be decomposed into a couple of constraints, which are expressed over exactly two
databases. If there is the need for multi-site constraints, the authors propose to
use non-transaction-based protocols like Direct Remote Query (DRQ) or Times-
tamped Remote Query Protocol (TRQ), which can both be implemented using our
architecture.Toavoid locking of theupdated relationweadjust thepartial integrity
rule to be evaluated after the modifying operation is committed.

The protocols could be optimized according to the Demarcation Protocol pre-
sented in [12]. This protocol is particularly suitable for arithmetic constraints like
aggregated constraints, but can also be used for key or referential integrity con-
straints. The Demarcation Protocol can be seen as an extension to the LTT and
thus be implemented using our architecture.

6 Related Work

In the last years, research on integrity constraints in heterogeneous environments
mainly considered the simplification, evolution, or reformulation of constraints
rather then mechanisms or protocols for integrity checking. A closely related con-
cept in terms of the rule structure and constraint types is presented in [9]. The au-
thors use private andpublic global constraints to define dependencies betweendata
indifferentdatabases, similar to thepartial constraints presented in this paper.One
of the main differences is the use of a layered approach to support the active func-
tionality required for event detection and rule processing. A reactive middleware
based on CORBA encapsulates active and passive sources and processes rules us-
ing an external remote rule processing mechanism. Furthermore every component
is assumed to have an Update Processor to execute local update requests, but the
local relation cannot be locked during the evaluation of remote conditions.

The metadatabase approach [13] uses a rule-oriented programming environ-
ment to implement knowledge of information interactions among several subsys-
tems. Each subsystem is encapsulated by a software shell, which is responsible for
monitoring significant events, executing corresponding rules, and interacting with
other shells. Although conditions can be evaluated in a distributed way, the rule
processing itself is still centralized.

A distributed rule mechanism for multidatabases is presented in [14] as part
of the Hyperion project. A distributed ECA rule language is introduced, which is
mainly used to replicate relevant data among data peers in a push-based fashion.
Rules are processed by a rule management system that resides in the P2P layer
on top of a peer database. The X2TS prototype [15] integrates a notification and
transaction service into CORBA using a flexible event-action model. The architec-
ture presented resembles a publish/subscribe system, whereas publishing of events
is non-blocking. Another middleware approach for distributed events in a hetero-
geneous environment is presented in [16]. CORBA-based, distributed, and hetero-
geneous systems are enhanced by Active DBMS-style active functionality. The ar-

Maintaining Global Integrity in Federated Relational Databases 555

chitecture uses wrappers with event monitors to detect data modifications in the
data source.

A common characteristic of the architectures just mentioned is the use of a lay-
ered approach with event monitoring to somehow notify a mediating component
(e.g. a constraintmanager, rule processor, ormiddleware component) about events
occurring in the local database. If the source is not monitored, the notification
mechanism is generally based on active capabilities of the underlaying database
management system, but there is so far no detailed description of this interaction
published.

The most distinctive characteristic of our concept is the direct usage of existing
active capabilities of modern database management systems without the need for
wrappers or monitoring components. Since a remote condition is evaluated during
the execution of a trigger, it is irrelevant if the triggering transaction was a global
or local update. We benefit from the active functionality of the DBMS in terms of
transaction scheduling, locking, and atomicity, resulting in a synchronous integrity
checking mechanism. Especially the ability to rollback updates depending on a re-
mote state query makes corrective or compensative actions basically superfluous.

7 Conclusion and Future Work

We have presented an architecture for global integrity maintenance in a federated
relational database using component database systems with enhanced active func-
tionality. We introduced Active Component Database Systems which are able to
communicate with other component databases to which their data is semantically
related to. They are no longer just passive data providers but actively participat-
ing in global integrity maintenance. Global integrity constraints are composed of
sets of partial integrity constraints for each component system that is affected by
the constraint. The partial constraints are evaluated using local and remote checks
which are implemented entirely on a local site. We have described the requirements
and basic functionality of our architecture and provided examples for partial con-
straints for commonly used classes of global constraints.

In the next steps we address the problem of distributed updates using injected
transactions as needed for cascading referential integrity or data replication. Fur-
thermore, we plan to deal with the detection, resolution, and prevention of dead-
locks and examine the system behavior depending on the time a rule is evaluated
and an external program is called. The architecture shall be elaborated in a true
loosely coupled environment to evaluate execution costs and scalability.

References

1. Heimbigner, D., McLeod, D.: A Federated Architecture for Information Manage-
ment. ACM Transactions on Information Systems (TOIS) 3 (1985) 253–278

2. Sheth, A.P., Larson, J.A.: Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys 22 (1990)
183–236

556 C. Popfinger and S. Conrad

3. Paton, N.W., Dı́az, O.: Active Database Systems. ACMComputing Surveys (CSUR)
31 (1999) 63–103

4. Loney, K., Koch, G.: Oracle8i: The Complete Reference. Osborne/McGraw-Hill
(2000)

5. Popfinger, C., Conrad, S.: Tightly-coupled Wrappers with Event Detection Sub-
system for Heterogeneous Information Systems. In: DEXA Workshop Proceedings,
IEEE Computer Society Press (2005)

6. Chamberlin, D.: A Complete Guide to DB2 Universal Database. Morgan Kaufmann
(1998)

7. Grefen, P.W.P.J., Widom, J.: Integrity Constraint Checking in Federated Databases.
In: Conference on Cooperative Information Systems, IEEE Computer Society Press
(1996) 38–47

8. Türker, C., Conrad, S.: Towards Maintaining Integrity of Federated Databases. In:
Data Management Systems, Proc. of the 3rd Int. Workshop on Information Technol-
ogy, IEEE Computer Society Press (1997) 93–100

9. Gomez, L.G.: An Active Approach to Constraint Maintenance In A Multidatabase
Environment. PhD thesis, Arizona State University (2002)

10. Mullen, J.G., Elmagarmid, A.K., Kim, W., Sharif-Askary, J.: On the Impossibility
of Atomic Commitment in Multidatabase Systems. In: Proc. of the 2nd Int. Conf.
on System Integration, IEEE Computer Society Press (1992) 625–634

11. Chawathe, S., Garcia-Molina, H., Widom, J.: A Toolkit For Constraint Management
In Heterogeneous Information Systems. In: Proc. of the Int. Conf. on Data Engineer-
ing. (1996) 56–65

12. Barbará-Millá, D., Garcia-Molina, H.: The Demarcation Protocol: A Technique for
Maintaining Constraints in Distributed Database Systems. The VLDB Journal 3
(1994) 325–353

13. Hsu, C., Rattner, L.: Metadatabase Solutions for Enterprise Information Integration
Problems. DATA BASE 24 (1993) 23–35

14. Kantere, V., Mylopoulos, J., Kiringa, I.: A Distributed Rule Mechanism for Multi-
database Systems. In: CoopIS/DOA/ODBASE. (2003) 56–73

15. Liebig, C., Malva, M., Buchmann, A.P.: Integrating Notifications and Transactions:
Concepts and X2TS Prototype. In: EDO. (2000) 194–214

16. Koschel, A., , Kramer, R.: Configurable Event Triggered Services for CORBA-based
Systems. In: EDOC. (1998) 306–318

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 557 – 575, 2005.
© Springer-Verlag Berlin Heidelberg 2005

RFID Data Management and RFID Information Value
Chain Support with RFID Middleware Platform

Implementation

Taesu Cheong and Youngil Kim

Electronics and Telecommunications Research Institute, 161 Gajeong-dong,
Yuseong-gu, Daejeon, 305-700, Republic of Korea

{qlink, embroca}@etri.re.kr
http://www.etri.re.kr

Abstract. Radio Frequency Identification (RFID) middleware is a new breed of
software system which facilitates data communication between automatic iden-
tification equipments like RFID readers and enterprise applications. It provides
a distributed environment to process the data coming from tags, filter and then
deliver it to a variety of backend applications via various communication proto-
cols including web services. In this paper, we focus on the information flow
converting raw RFID data to useful information which may even be used to
lead to automated business process execution and further to knowledge to sup-
port decision making, and we define the information flow as so-called ‘RFID
Information Value Chain (RFID IVC)’. We examine the elements and associ-
ated activities of RFID IVC and also introduce the RFID middleware ecosystem
not only to provide the seamless environment spanning from the edge of the en-
terprise network to the enterprise systems, but also to support the activities
arisen on RFID IVC. RFID middleware ecosystem consists of RFID middle-
ware, rule engine to generate business semantic events and orchestration engine
to coordinate sort of business process invoked by RFID tag data capture event.
Moreover, the implementations of each system residing in RFID middleware
ecosystem are introduced and the relationship between RFID middleware eco-
system and RFID IVC is demonstrated.

1 Introduction

Along with the rapid evolution of Internet and system integration technologies, re-
search direction of ubiquitous computing introduced by Mark Weiser in 1988 has
moved from an imaginary phase into a realizable research phase. To accomplish the
ubiquitous computing environment, many research activities have been going on
within many forms of technology domains including home networking, wireless sen-
sor networking, telematics and so on. Especially, RFID technology that uses radio
waves to automatically identify people or objects by attaching RFID tags storing
serial numbers to them has recently gained a lot of attention and the RFID market
have made substantial progress from standards development to expanded pilots to real
deployments. Currently, the most well-known technology to identify physical objects
is barcode, but it needs human intervention. Compared with the barcode system,
RFID system has many benefits – such as no human intervention, the identification of

558 T. Cheong and Y. Kim

multiple objects simultaneously and so on – which in turn may make a breakthrough
in business for automation. For example, business benefits will include better inven-
tory management across the supply chain, labor efficiency and enhanced product
integrity.

So far, the areas related to RFID hardware devices like tags and readers have
mainly dominated the RFID market and research themes. However, the trend has
gradually shifted to the RFID software system as the necessity for processing huge
amount of the data streams delivered by RFID hardware devices gets larger. The
focus on hardware is important, but RFID hardware is of minimal value without ef-
fective software that can aggregate data from RFID readers and pass it to enterprise
applications. The basic functions of RFID software start with device monitoring and
management. It extracts data from readers, filters and aggregates the information, and
then sends it to enterprise system. Moreover, the market requires a kind of middle-
ware software platform that provides the environment that information about the iden-
tified tag is shared with internal or external applications.

In this paper, we propose the concept of ‘RFID Information Value Chain (RFID
IVC)’ which describes the data transformation process converting raw RFID data to
useful information and further knowledge that are significant to decision making in
the business context under the RFID-based environment. For this, the associated ac-
tivities for each stage of RFID IVC and the specific data processing methods are dis-
cussed. Moreover, we present RFID middleware platform to support the RFID IVC
and introduce the prototype systems which are based on the proposed platform.

The remainder of this paper is organized as follows. In the section 2, we briefly
provide a literature survey on RFID system itself and a reference model for an RFID
software system. Section 3 introduces the concept of ‘RFID Information Value Chain
(RFID IVC)’ and discusses the details of the data transformation process from data to
information and knowledge. In section 4, we present the RFID middleware platform
in order to support the RFID Information Value Chain and introduce the system im-
plementation of RFID middleware platform called ‘ETRI RFID Ecosystem’. The final
section summarizes and presents the future works.

2 Radio Frequency Identification (RFID) System and EPC
(Electronic Product Code) Network

RFID is the combination of radio technology and radar that detects the given object
through the reflection of radio waves. Generally, a basic RFID system consists of
three components as follows: a RFID tag which is attached to the object to be identi-
fied and serves as data carrier, a RFID reader which is used to read and/or write data
to RFID tags, and software systems including RFID middleware. Figure 1 shows
RFID system components according to the report by Accenture [1].

Here it should be noticed that, we assume, any detailed or historical information of
the given object to which a RFID tag is attached should be stored and managed in an
external data storage connected to the network, because the memory size of a RFID
tag, particularly for the passive tag, is often limited (mostly due to its cost or the
whole tag size). And RFID middleware software should provide functionalities for an

 RFID Data Management and RFID Information Value Chain 559

Fig. 1. RFID Solution Components. The RFID solutions consist of three major parts: a tag
associated with the object to be identified, hardware including a reader and antennas, and soft-
ware integration.

efficient distribution of information through the network infrastructure. Thus, for that
reason, middleware software in the RFID system is considered as a kind of ‘broker’
for integrating RFID reader devices with the back-end applications.

In regards to a middleware in the RFID system, however, there are few ongoing ac-
tivities except those by EPCglobal, Inc. (also named shortly EPCglobal) [2], which is
a standards management and development body chartered with defining the de-facto
standards related to RFID system. EPCglobal mainly works on RFID applications in
domain of supply chain and logistics industry from all angles including businesses,
technologies, and policies. Moreover, EPCglobal proposed two interesting concepts;
one is electronic product code (EPC) which is a numbering scheme for uniquely iden-
tifying object, and the other is EPC Network, as shown in Figure 2, which comprises
several functional roles and interfaces based on RFID system and information.

Fig. 2. The figure shows how EPC Network presented by EPCglobal is organized [3]

Particularly, the researches about middleware in EPCglobal have been continued
with somewhat gradual progresses. In the initial specifications from Auto-ID Center
[4], the middleware, called ‘Savant’, was to perform data routing operations for data
capturing, monitoring, and transmission, and it consisted of three major internal com-
ponents in a hierarchical tree structure; event management service (EMS) that collects
and processes tag-read events, real-time in-memory data structure (RIED) that is a
temporary data storage of tag-reads and task management service (TMS) that per-
forms customizable tasks to maintain “Savant” itself.

560 T. Cheong and Y. Kim

In the later version of the specification about savant from EPCglobal [5], a matter
of concern moved from the specific processing features into a flexible container with
the generalized external interfaces for outer service applications. Savant is a container
of processing modules for specific features and may be customized to meet the needs
for applications. Each processing module including EMS, RIED and TMS may inter-
act with outer services via two predefined interfaces – that is, Reader Interface for
communicating with RFID readers and Application Interface for providing interaction
with external applications. Most of commercial RFID middleware software systems
which are currently available in the market - such as Oracle [6], Sun Microsystems [7]
and so on - follow the ‘Savant’ structure mentioned so far.

In the latest version about the middleware, now called ‘Application Level Events
(ALE)’ [8], its purpose is to process the reduction of the data volume directly coming
from various sources such as RFID readers and to route the events of interest to appli-
cations. ALE provides interfaces for defining the control and delivery of the filtered
and collected tag read data, and then outer applications have access to ALE in order to
obtain the tag read data of interest.

So far, it is presented how the middleware concept developed by EPCglobal has
been evolved. As mentioned before, most of currently market-available middleware
software systems follow EPC network architecture spanning not only middleware
itself but also so-called EPC Information Service (EPCIS), sort of distributed net-
worked database managing EPC-related data including product-specific data and their
trace over supply chain. However, EPC network architecture is mainly focused on
SCM (Supply Chain Management) – oriented mechanism and associated information
traceability. In this paper, we view the RFID-based system architecture from a differ-
ent standpoint – that is, the data transformation process converting from raw data into
valuable information – and propose RFID system framework supporting such the data
transformation process as well as RFID-based automated business process execution
in the end.

3 RFID Information Value Chain and Multi-stage RFID Data
Processing

In this section, we discuss how to manage the information flow from the recognition
of RFID tag to the delivery to the applications that consume RFID information over
the RFID solution components introduced in Section 2. As already mentioned in the
previous section, the RFID system generally focuses on the automatic identification
of individual objects without human intervention. Moreover, the structure of EPC
Network proposed by EPCglobal is designed to support the information exchange
among trading partners over the supply chain. However, in order to create big value-
add by utilizing RFID infrastructure, the following process must go through: The
information that is filtered and summarized after RFID readers capture raw RFID data
is well-used for the enterprise applications as valuable resources, and later significant
knowledge is derived from the accumulated information. Low-value raw RFID data is
transformed into useful information and further guidance for actions. This means that
the flow of information is a value-added process. In this paper, we define this value-
added data transformation process as ‘RFID Information Value Chain (RFID IVC)’

 RFID Data Management and RFID Information Value Chain 561

and it pursues the maximization of the benefits from the RFID deployment. Figure 3
shows RFID IVC along with the RFID solution components shown in Figure 1 and
the correspondent activities for each step are described. In general, the information
value chain can be defined as the flow from raw data to information and further to
knowledge, and the same rule can be applied to the RFID IVC.

Fig. 3. RFID Information Value Chain (RFID IVC). This figure shows how the raw RFID data
is transformed into information and further to valuable knowledge.

In this paper, we specify the associated activities occurred in each stage of trans-
formation process and the details are shown in the lower most part of Figure 3. Here
after, the derived stages and activities for each stage are demonstrated as follows.

3.1 Data Acquisition

This stage is to collect the RFID reads from various kinds of RFID readers and other
types of object identification devices like barcode system. At the present, there exist
different kinds of RFID tag-reader protocols including EPCglobal Class 0, Class 1,
and Class 1 Generation 2 tag-reader protocols [9], and ISO/IEC 18000-x series [10].
Moreover, the market-available reader systems use the different I/O protocols such as
RS232C, TCP/IP and USB for the communication between the RFID reader and the
host systems. At this stage, the situation that the heterogeneity among RFID reader
systems exists must be dealt with in order to support the seamless data in-flow.

3.2 Data Transformation

Usually, RFID data in the form it is acquired has little direct value to the enterprise
applications. To have value, it must be transformed into a more useful form. This
stage, data transformation, primarily involves either filtering or aggregation of raw
RFID data. Here, the meaning of ‘filtering’ is that not all data may be necessary to the
applications, so signification data items are identified and the remainder discarded.

562 T. Cheong and Y. Kim

With the consideration of the characteristics of RFID, the tag data sensed by RFID
readers have the technical limits as follows:

First, RFID readers cannot guarantee 100% accuracy of tag reading at the present
because of interference and high sensitivity by the surrounding environment. There-
fore, it is necessary to resolve the physical limits and the smoothing process can be
considered as one method [11].

Second, RFID reader is physically non-contact to communicate with tags and the
number of RFID tag data flowed from a RFID reader ranges from 10s of tag data per
second up to more than 100s a second. This leads to bring the big burden to the host
system which is responsible to process all the data, so the appropriate scheme for data
volume reduction is required.

Third, as pointed out at the second, an RFID reader can read multiple RFID tags
simultaneously and, sometimes, tags are unintentionally sensed from an area beyond
the area intended to be monitored by the reader due to many reasons including the
reflection of radio wave. Among the sensed tag reads, not all the data are required to
the applications that consume RFID data, so the tag data in which the applications are
not interested should be filtered out.

This stage is responsible to handle the problems mentioned above and, here, two

levels of RFID event processing are considered: primitive and compound event proc-
essing.

Primitive Event Processing
The data emerging directly from RFID readers may be regarded as a stream of records
of the form (r, n, g, t), denoting the antenna n of the reader r reads tag g at time t. In
this stage, it is responsible for mapping the low-level data stream having the limited
information to more manageable form that is suitable for application-level interac-
tions.

As the first step to support the data transformation, one of the main objectives on
this sub-stage is to reduce the volume of data stream by discarding the redundant tag
data. In general, when a tag appears present to a particular RFID reader for many read
cycles, this generates a lot of data. Moreover, the tag might not appear every read
cycle although the tag stays in the read range. As the methods to help overcome these
problems, the event smoothing process can be introduced.

The meaning of ‘smoothing’ here is to pass the tag read only when something of
interest happens such as when a tag is first sensed by the reader or when the tag is no
longer present. The state diagram in Figure 4 shows how the smoothing process
works.

As seen in Figure 4, three states per each tag – Unknown, Sensed, Captured – and
four different events – eventSensed, eventDisappered, eventCaptured, eventExpired –
are introduced and the tag read is passed to next stage only if the state transition be-
tween two adjacent states occurs. Initial state of a tag is ‘Unknown’ and, when a tag
appears for the first time in the read range, the event ‘eventSensed’ is generated and
the current tag state is moved onto the state ‘Sensed’. The event ‘eventCaptured’ is
generated when the tag is seen for a certain period and the event ‘eventExpired’ oc-
curs if current state of the tag is ‘Captured’ and has not seen for a while. The event
‘eventDisappered’ is generated when the tag hasn’t seen for a time without subse-

 RFID Data Management and RFID Information Value Chain 563

quently generating ‘eventCaptured’ event. If a tag generates ‘eventSensed’ and then
‘eventDisappered’, it means that the tag enters the read range briefly and it can be
regarded as a candidate for an inadvertent tag read.

Fig. 4. Primitive RFID Event Generation. We simplify the event state transition scheme pro-
posed by Auto-ID Center [11].

What we can gain from this primitive event processing sub-stage is as follows: (a)
reduction of data volume by reporting only if the state transition occurs, (b) estab-
lishment of the decision basis which is used to distinguish tags that remains for time
interval enough to be regarded as tags that the reader should monitor, as compared to
tags that enter the read range only briefly or are reported unwillingly.

Compound Event Processing
As mentioned before, the primitive event processing sub-stage is mainly focused on
the duplicated data volume reduction. On the other hand, this stage, compound event
processing, concentrates on the selection of tag data that are meaningful to the busi-
ness domain while having the limited information delivered by RFID reader.

Data from readers follow the feature of record (r, n, g, t) and, as passing through
the primitive event generation process, the event type e - which itself can be regarded
as significant event information - is added as an additional field in the record as like
the record (r, n, g, t, e) in return for the elimination of redundant data. At this stage,
the useful information has to be derived from the restricted information.

Basically, the event filtering can be applied to each field of the record or the combi-
nation of fields. For example, an application may want to select the tag reads which are
captured by specific readers and another application may be interested in the tag reads
that their IDs start with the specific pattern. Here, we have five categories to apply the
filtering operation – reader ID, antenna number, tag ID, timestamp and event type – and
those are the basic filtering schemes. The basic filtering schemes based on the following
fields – ‘reader ID’, ‘antenna number’, ‘tag ID’ and ‘event type’ – are applied like this:
the filtering operations applied to the associated field on the event record (r, n, g, t, e)
forward the records that only fit within specific range or pattern; on the other hand, the
basic filtering scheme based on the field ‘timestamp’ can be utilized as duration-based
filtering. The timestamp-based filtering scheme usually combines with other basic filter-
ing schemes to support more intelligent filtering.

In addition to the basic filtering schemes, many other filtering schemes are consid-
ered as follows:

564 T. Cheong and Y. Kim

Association. In the case that several readers are associated with the same tag reads, it
needs to allow a group of readers to be filtered for duplicate RFID tags so that the
application which consumes the tag read seems as if the tag read is originated from
the single reader. To provide the association, it needs to combine the event record (r,
n, g, t, e) with the relationship (r, l) providing the logical location l of reader r.

Batch. In some cases, a number of tags is sensed by readers at the same time, then the
group of sensed tags itself seems significant event to the applications. For example,
suppose that readers located in the entrance of warehouse capture a number of cases
and one pallet containing them within a short time interval. In order to derive the
meaningful information to the applications, the sensed tag list including both cases
and a pallet should be processed as a batch. That is, this batch filtering scheme clus-
ters tag reads into groups of distinct tags based on when they have been observed
during the given interval.

Read-Range In/Out. For the situation of warehousing of goods or taking them out of
the warehouse, reporting in-field and out-of-field events when tags move in and out of
the read range is more significant to the associated applications that are responsible to
process business based on the tag reads. This filtering scheme can be solved by mak-
ing use of the ‘event type’-based basic filtering scheme; that is, use the event type
‘eventCaptured’ and ‘event Expired’ respectively among the fields of the record (r, n,
g, t, e).

In general, the filtering schemes which applications want to apply vary from applica-
tion to application and, we believe that the schemes discussed above are considered as
the commonly used filtering schemes.

3.3 Data Dissemination

A critical task of any information system is to deliver the right information to the right
people or applications at the right time. The dissemination activity involves moving
the filtered and aggregated information from RFID readers to enterprise applications
or other business integration applications. The purpose of data dissemination activities
is to determine who needs what information and to deliver it to them on time.

In order to meet this requirement, we provide two types of data dissemination
models; the push model that RFID data captured by RFID readers keep flowing up-
ward to the back-end applications over pre-defined event pipeline, and the pull model
(in other words, publish/subscribe model) that applications which are interested in
handling RFID data subscribe to the middleware system with additional information
such as notification cycle, reader set which they are interested in listening to and so
on, and the middleware plays a role of dispatching messages to the subscribers asyn-
chronously.

3.4 Semantic Event Generation

At the stage 2 of ‘data transformation’, filtering and aggregation methods of raw
RFID data are demonstrated. However, it may not be sufficient for the filtered data to
become the beneficial information to enterprise applications. At this stage, the filtered

 RFID Data Management and RFID Information Value Chain 565

data are combined with different sources residing in the legacy system or external
sources such as purchased data services so that semantic events which are significant
in the business domain are generated. Here, the term “semantic event” means that, as
it says, RFID data capturing events merely indicate raw observation and taking busi-
ness actions based only on the event reports are somewhat limited; therefore, the raw
observation events need to be combined with additional business context information
in order to construct business events (here, we call ‘semantic event’) upon which
legacy applications can act. Furthermore, the reason why this stage is required is to
enable sophisticated RFID-based data processing. As domain-specific information is
integrated with RFID tag data, content-based filtering and routing become possible.

As the basic approach, we can get the tagged object information whose ID is
matched with the tag ID passed from the previous stage. From them, so-called con-
tent-based filtering can be applied. For example, we can filter out the product infor-
mation that its price is lower than $5.

In other way, Event-Condition-Action (or ECA) rules can be used to generate the
semantic events to trigger the relevant business processes. When a primitive tag list is
delivered from the previous stage as an event, the rule set associated with the event is
evaluated and then appropriated actions are taken and executed. We can take advan-
tage of the ECA rule mechanism when predefined action is taken by the comparison
of the sensed tag list with the scheduled information. If the sensed tag list mismatches
the schedule information, another action to detect the problem will be taken. We can
say that the inference process is regarded as the semantic event generation making use
of RFID tag data and additional information stored in backend systems and supports
the conversion from raw RFID data to actionable information.

3.5 Business Process Coordination

At this stage, its main objective is to enable business processes and solutions to lever-
age the real-time data captured by RFID infrastructure. The key benefit of RFID tech-
nologies is automatic identification of individual objects coupled with automatic data
capture. From the employment of low-levels of process automation to the process
automation and efficiency improvement ultimately lead to the high return in terms of
efficiency and cost reduction.

3.6 Decision / Actions

One of the expected benefits from RFID deployment is real-time information gather-
ing and real-time item visibility. It means that real-time decision making would be
realizable. For example, real-time inventory monitoring suggests optimum reorder
points based on usage and improves inventory accuracy. Another purpose of this stage
is to provide guidance for action to decision maker based on the accumulated infor-
mation and ultimately produce the knowledge. As a lot of RFID data and related pro-
duction information are accumulated, it is possible to elicit the valuable knowledge
from them. There are many methods to produce guidance for decision maker and
further knowledge as following:

Views of current or historical information. This is the simple approach and the
modeling usually consists of aggregation, summarization and filtering.

566 T. Cheong and Y. Kim

Forecast. This requires using a methodology like statistical regression based on the
current and historical information.

Recommendation of the best and alternative decisions. To find the best recom-
mendation, an optimization model searches among various alternatives and decides
the best. Finding a reorder point in inventory problem through various optimization
techniques is an example.

Inference through data mining. This is the process to elicit knowledge by searching
for the pattern hidden within accumulated information.

4 RFID Middleware Platform for the Support of RFID
Information Value Chain and Its Implementation

So far, the concept of RFID IVC is introduced and the detail activities for each stage
of RFID IVC are demonstrated. In this section, we introduce the RFID middleware
platform which meets the general RFID middleware requirements and supports the
RFID IVC discussed in Section 3. Moreover, the platform implementation we have
worked on will be presented.

4.1 RFID Middleware Platform: Introduction

RFID middleware is a software system that facilitates data communication between
automatic identification equipment such as RFID readers and enterprise applications.
There are many capabilities in order to build up RFID software system and, espe-
cially, RFID middleware platform capabilities include:

Reader Management. RFID middleware should support means to deploy, monitor
and issue commands to readers via a general interface.

Data Management. As tag reads are flowed into the middleware, there are a lot of
noises and duplicate reads, so filtering operation is required to eliminate such infor-
mation that is either redundant or unnecessary.

Application Integration. RFID middleware delivers the tag reads to back-end system
- for example, SCM, ERP or WMS, etc - for the better business decision.

Rule and exception processing. RFID middleware platform provides the environ-
ment that users set the rules in order to generate the business dependant semantic
events based on the tag reads.

Process Management. To be an intelligent and sophisticated RFID middleware plat-
form, it not just routes RFID data to enterprise applications but also actually orches-
trates RFID-related end-to-end processes that touch multiple applications or legacy
systems.

Share of data with partners and other applications. One of the ultimate goals by
adopting RFID technology is to provide the ways to share the information about indi-
vidual tagged object and related business descriptions with the trading partners and
other applications

 RFID Data Management and RFID Information Value Chain 567

Among the six capabilities, first three capabilities – reader management, data man-
agement and application integration – are the MUST-DO features to be an RFID mid-
dleware [4][5]. On the other hand, the last three capabilities are essential to build up
concrete RFID-based software platform.

We propose ‘ETRI RFID Ecosystem’ to support not only the presented capabilities
that RFID middleware platform must provide but also the activities occurred on RFID
IVC, and ultimately provide the seamless environment spanning from the edge of the
enterprise network to the enterprise systems. ETRI RFID Ecosystem is a multi-
layered middleware platform in Java environment. The first layer – RFID Event Man-
agement System (REMS) – deals with raw-level data filtering and aggregation. The
second layer – Real-time Business Process Triggering System (RBPTS) – has the
responsibility to generate the semantic business event by utilizing filtered RFID data.
The next layer above – Orchestration Engine (OE) – is to support the autonomous
business process execution. The top layer deals with the generation of invaluable
knowledge. Additionally, Tagged Object Information Repository manages the tagged
object information and makes them available to whatever the information are re-
quired. The following section discusses the system architecture and implementation
issues per each system shown in Figure 5.

Fig. 5. ETRI RFID Ecosystem and RFID IVC. This figure introduces RFID middleware plat-
form we propose – so-called ‘ETRI RFID Ecosystem’ – and presents the relationship between
RFID IVC and ETRI RFID Ecosystem.

4.2 ETRI RFID Ecosystem: RFID Middleware Platform Implementation

ETRI RFID Ecosystem is an RFID middleware platform we propose and it contains
three primary components; that is, RFID Event Management System (REMS), Real-

568 T. Cheong and Y. Kim

time Business Process Triggering System (RBPTS) and Orchestration Engine (OE). It
is designed to offer the seamless environment extending from RFID hardware infra-
structure to back-end software system and support the RFID IVC. In this section, the
functional features and the architecture of each system that constitutes ETRI RFID
Ecosystem will be described in the following.

RFID Event Management System: RFID Middleware
Basically, the proposed RFID Event Management System (REMS) is layered into
several levels spanning from the device layer up to the legacy application layer as
shown in Figure 6 and, at each layer, a number of components need to be defined.
These components are discussed in the following:

RFID Device Abstraction Layer. This layer abstracts the tag-read protocols, supports
various types of reader devices and allows users to configure, monitor and control all
these devices. This layer consists of four modules – reader profiler, protocol proces-
sor, command processor and reader monitor. Reader Profiler manages and maintains
the data about the devices which are deployed to the middleware system. In the mid-
dleware, two commercial reader systems including Alien[12] and Symbol[13], a pas-
sive RFID reader that ETRI developed and is compatible with EPCglobal, and an
active reader that ETRI developed and is compatible with ISO 15961 standard are
supported. Protocol processor helps ensure the middleware has access to the RFID
readers via various I/O communication options including TCP/IP and RS232C, and
support low-level integration with the hardware devices. Its purpose enables readers
from many different manufactures to interact with the middleware application with
the seamless way. Command Processor converts the commands issued by users to
reader-aware commands and then passes them to Protocol Processor. Reader Monitor
is used to monitor the healthy of the deployed RFID readers and manage the readers
through Graphical User Interface (refer to Figure 7).

Fig. 6. Architecture of RFID Event Management System (REMS). REMS is a core of RFID
middleware platform. It sits between RFID readers and the applications in RFID system and
provides the following stages of RFID IVC – data acquisition, data transformation and data
dissemination.

 RFID Data Management and RFID Information Value Chain 569

RFID Event Processing Layer. This layer is correspondent with data transformation
stage of RFID IVC. It performs filtering, aggregation, and routing the RFID event
data coming from the lower layer. The number of RFID event data coming from the
device abstraction layer ranges from 10s of event per second up to more than 100s a
second, so it is important to apply appropriate filtering processing discussed in section
3.2 on them. Filtering of that data can eliminate such information that is either redun-
dant or that the client applications are not interested in. The filtering requirements
mainly depend on the application domain. Some of filtering examples that might be
required of almost all applications are following. Basically, a reader reports redundant
tag reads to applications as long as a tag stays in the region. A primitive event proc-
essing is to eliminate the redundant tag read events. In some cases, a tag cannot be
seen for every read cycle of a reader because the RFID reader cannot report the tag
reads with 100% accuracy. Besides, unwilling tag read is sometimes reported in case
that an unexpected tagged object bypasses near the region. Coping with all the situa-
tions, so-called event smoothing process is applied and it plays a role of event pre-
processing at the primitive event processing stage. After passing through the primitive
event processing stage, it is moved onto the compound event processing stage. The
purpose of this stage is to discard uninterested tag reads. One example is the ID-based
filtering. Every tag has its own unique ID and, if ID matches the predefined bit pat-
tern, then the filter passes it to applications while remains are thrown away. Also,
filtering based on reader identity is one of significant filtering techniques. Lastly,
multiple readers can report the same tag read if they are placed close to each other and
they are related to the same semantic operation like readers to capture the entering of
products in a warehouse. For that case, association filter is used to select a tag reads
among multiple tag reads from readers. All the filters discussed so far are supported
by our middleware software as built-on filters. Moreover, to meet the application
requirements, REMS provides user interface to build up a chain of filters as shown in
the right of Figure 7. We call the chain of filters ‘Event Pipeline’. Event Pipeline
Designer in Figure 7 displays the registered filters and allows users to model the pipe-
line which describes how the event message can be filtered, buffered and delivered to
applications. All the event filters are connected in directed acyclic graph fashion to

Fig. 7. Implementation of REMS: (a) GUI window of Reader Management (b) GUI window
for managing customizable event filters and building ‘Event Pipeline’

570 T. Cheong and Y. Kim

meet the needs for the domain. The designer component saves the flow diagram
which is the result of the modelling as a XML format file. Compound Event Process-
ing module instantiates and executes the event pipeline by interpreting the XML con-
figuration file.

Application Interface Layer. This is the layer for applications to get the filtered and
aggregated RFID data and we provide (a) synchronous message dispatching (push
model) and (b) asynchronous message dispatching (pull model). The former means
that it sends the filtered RFID data to the applications whenever the data is delivered
after filtering. We prepare a set of ready-to-use message dispatchers including: File
message dispatcher that writes tag list into specified file, Database message dispatcher
that inserts a tag data into designated database, HTTP message dispatcher that sends
XML-encoded tag list via HTTP/POST, and SOAP message dispatcher that sends
XML document typed tag list over SOAP protocol. Here, XML document follows
PML-core Specification [14]. We also provide user interface to register custom mes-
sage dispatchers which follow the application-specific protocols. On the other hand,
asynchronous message dispatching is realized by providing the SOAP APIs following
publish/subscribe manner. First, the application which is interested in receiving tag
list registers URL with access information representing the receiver. When registering
URL, the application specifies the notification cycle. The middleware then accumu-
lates the tag received according to the notification cycle and notifies the tag list to
URL that the application specified.

Real-time Business Process Triggering System: Rule-based RFID Event Processor
Real-time Business Process Triggering System (RBPTS) is built on a rule engine and
its use is to generate the domain specific semantic event using a set of rules defined
by domain experts. The semantic events – as discussed in section 3.4 – are produced
by associating the RFID primitive events with the domain-specific information
residing in legacy system. This system receives a continuous stream of filtered and
unfiltered RFID data from RFID middleware or RFID readers and produces the

Fig. 8. Architecture of Real-time Business Process Triggering System and Sample Event XML
Message over SOAP/HTTP delivered from REMS

 RFID Data Management and RFID Information Value Chain 571

RFID-related significant business event by using set of rules modeled by business
experts. The produced semantic event is used as the query to execute collection of
rules to perform various predefined actions ranging from one-time actions such as DB
operation, the notification, alerts, actuator operations, or actions that involve the long
term business process actions which require interoperation with workflow systems
such as ebXML engine and BPEL-based workflow engine.

The development of RBPTS is driven by the requirement of flexible way of incor-
porating RFID data with business applications; that is, to convert the data from lower
RFID middleware layers to actionable semantic information for the upper layers; that
is based on the business or process semantics as perceived by the user of the informa-
tion.

Fig. 9. XML Schema of Rule Definition and Web-based GUI window of Rule Designer. The
GUI Window shows a sample rule definition with header, prerequisite and actions. This rule
definition instance is presented and stored in the format of XML schema above.

In order to achieve the goal and be suitable for RFID environment, the rule engine
of RBPTS adopts the backward chaining inference mechanism. As the physical RFID
readers involve the specific business goals – for example, gate open/close, inventory

572 T. Cheong and Y. Kim

check and so on – and the business actions triggered by the collected data fall into
small number of categories, it is expected that possible conclusions can be chosen at
the time that a set of tag data is collected by specified readers. The domain experts
define a set of rules which are described as the ‘If condition(s) Then action’ pattern.
The event message delivered by REMS includes the ‘action’ indicator called ‘query’
(‘UnloadAction’ of Gate In/Out application in Figure 8) to be proved, so the inference
process starts with a conclusion with the help of ‘query’. The rule engine searches for
the rule set which have the action clause that matches the action which the event mes-
sage includes and then evaluate the associated condition clauses. The condition is
described as not just a simple form like value matching but also complicated form like
a predefined java class or access to database located in the legacy system.

The system architecture of RBPTS and the internal message flow are shown in Fig-
ure 8. For the implementation, we revised the open source java class library,
MANDARAX [15], in order to implement ECA-based rule engine, and XML Schema
for ECA rule definition is newly defined as in Figure 9.

The interaction between the inner components within RBPTS is as follows: REMS
accumulates RFID tag data over intervals of time, filters to eliminate duplicate tag
data and the tag data that are not of interest, and then reports in the XML/SOAP mes-
sage form which follows the input format of RBPTS (see Figure 8). The RBPTS-
specific event XML messages are generated by custom message dispatcher registered
in REMS. Message Receiver accepts the SOAP message and than passes it to upper
layer, Event Manager. Event Manager unmarshals the event message, checks whether
the message is valid. Afterward, Event Manager reorganize the valid event message
into sort of event query message that is used for the next step - inference process - and
delivers it to Rule Manager. Rule Manager inquires for the rule set associated with the
event query and constitutes all the matters that are essential for the reasoning: data-
base drivers that have access to the legacy database, repository information and so on.
Rule Manager feeds all the prepared materials into the Inference Engine and then this
evaluates the conditions for each rule and generates the result set. Based on the result
set, Rule Manager organizes the action execution list and passes the list to Action
Manager. Action Manager searches for the web service for each action execution
information and configures the information for the web service call. Action Manager
asks for Web Service Agent to call the dynamic web service and records the execu-
tion result on the log database. RBPTS supports the application triggering via web
service only.

In addition, RBPTS provides web-based user interface for rule design (see Figure
9) to model RFID event, related business rules and the detailed actions which in result
provide more flexible way to adapt to the rapidly changing business environment.

Orchestration Engine: Business Process Integration
To construct the simple RFID-based software system, the functionalities provided by
RFID Event Management System may be enough; that is, the system collects, filters
RFID data coming from tags and simply routes them to enterprise applications. How-
ever, we see that the concrete RFID middleware platform must orchestrate RFID-
based end-to-end processes that associate with multiple applications or legacy sys-
tems and ultimately provide the RFID-related process automation environment.

 RFID Data Management and RFID Information Value Chain 573

To be compatible with the idea, we develop the business process engine called ‘Or-
chestration Engine’ and the system architecture is shown in Figure 10. Currently, the
most recent answer to the integration challenge is the Service Oriented Architecture
(SOA) and the web service technologies. We suppose that we can access different func-
tionalities of different legacy and other developed applications in a standard way
through web services. Under the environment that all applications expose the function-
alities via web services, we develop a business process definition and execution engine
that provides a way to compose the web service-exposed functionalities in J2EE frame-
work. Mostly, the business processes defined by Orchestration Engine are triggered by
RFID-related events including not only the primitive event as the output of data trans-
formation on the RFID IVC but also the semantic event generated by RBPTS.

Fig. 10. Architecture of Orchestration Engine (OE) and GUI Window of OE Administrator

In this implementation, we adopt BPEL (Business Process Execution Language
for Web Services) [16], an XML-based industry standard for business process

574 T. Cheong and Y. Kim

management, as the definition language of business processes. BPEL builds on top of
XML and web services, and BPEL process specifies the exact order in which partici-
pating web services should be invoked. As the typical scenario we develop under the
ETRI RFID Ecosystem, a BPEL business process receives a SOAP request from
RBPTS when the raw observation by REMS are dispatched to RBPTS with XML
event message and the rule instance, which is invoked by the message and contains
the action clause of calling the BPEL process, is evaluated as true. Then, new instance
is started and managed by Process Manager. It calls the external web services speci-
fied in the BPEL definition – for example, invoking EPCIS web service in order to
get the prices of products and then invoking calculator web service to sum up the
prices of items which are checked out – and return the results when the process in-
stance is done.

5 Conclusion

RFID technology is known to be well-suited to linking the physical and virtual world
and is considered as a key technology to lead us to the ubiquitous computing world.

In this paper, the concept of RFID IVC is introduced and the corresponding activi-
ties over the value chain are presented. Furthermore, we demonstrate ETRI RFID
Ecosystem that is a RFID middleware platform that materializes the RFID IVC.

The major role of RFID middleware is to collect huge amount of real-time tag read
events coming from multiple readers, perform filtering operation on the data stream in
order to reduce the data volume, and then share the information about the tagged
objects to trading partners and other existing client applications. It is important for the
middleware to provide the uniform interface to client applications regardless of het-
erogeneity among readers from multiple vendors, having their own way of operation
and communication.

In order to offer the autonomous system environment starting from the automatic
data capture and satisfy the overall RFID IVC, the issue how the more meaningful
information or knowledge can be produced through gluing the events captured by
RFID readers with legacy systems must be dealt with. In ETRI RFID Ecosystem, we
tackle the issue by rule-based semantic event generation and BPEL-applied business
process execution triggered by the semantic event.

The prototype system of the introduced middleware software suite is ready to be
applied to the field test in order to apply to many business domains such as the gate-
in/out management system.

In the next step, our research direction is focused on the fusion of RFID with wire-
less sensor network. The artifacts we developed mainly deal with ID-based RFID data
processing; however, we believe that RFID in conjunction with sensor networks will
provide big opportunity and eventually, the RFID middleware platform must be
evolved into the ubiquitous middleware platform that can accept all types of AIDC
input technologies and handle various types of data. In reality, a lot of activities for
combination between RFID and sensors – for example, Smart Active Labels (SAL)
[17] – are in progress. As tremendous amount of events which is not only RFID tag
data but also sensor data will be generated, the sensor data management will arise as
the big problems to be solved. Moreover, context-awareness is distinctive feature for

 RFID Data Management and RFID Information Value Chain 575

the case of the integration between RFID and sensors. As an intermediate stage mov-
ing toward ubiquitous middleware platform, researches on the integration of the RFID
middleware platform with SAL sensor tags and context-awareness are under way.

References

1. Accenture: RFID Execute Overview (2004)
2. EPCglobal Inc.: "http://www.epcglobalinc.org"
3. Mealling, M.: EPCglobal Object Name Service (ONS) 1.0 Working Draft, April 15 (2004)
4. Oat Systems and MIT Auto-ID Center: The Savant Version 0.1 Alpha, Febuary (2002)
5. Clark, S., Traub, K., Anarkat, D., Osinski, T.: Auto-ID Savant Specification 1.0 Working

Draft, September (2003)
6. Oracle: Oracle RFID and Sensor-Based Services, http://www.oracle.com/technologies/

rfid/index.html
7. Sun Microsystems: Sun Java System RFID Software, http://www.sun.com/aboutsun/

media/presskits/javaone2004/J12004_JavaSystemRFID_Datasheet.pdf
8. Traub, K., Bent, S., Osinski, T., Peretz, S. N., Rehling, S., Rosenthal, S., Tracey, B.: The

Application Level Events Specification Version 1.0 Candidate Specification, October
(2004)

9. EPCglobal Inc.: EPC™ Radio-Frequency Identity Protocols Class-1 Generation-2
UHF RFID Protocol for Communications at 860 MHz – 960 MHz Version 1.0.9,
January (2005). available from : http://www.epcglobalinc.org/standards_technology/
EPCglobalClass-1Generation-2UHFRFIDProtocolV109.pdf

10. ISO/IEC JT1/SC31/WG4: http://usnet03.uc-council.org/sc31/sc31_wg4.cfm
11. Price, J., Jones, E., Kapustein, H., Pappu, R., Pinson, D., Swan, R., Traub, K.: Auto-ID

Reader Protocol 1.0 Working Draft, Sep. 5 (2003) 16 ~ 18
12. Alien Technology: http://www.alientechnology.com/
13. RFID Solutions from Symbol: http://www.symbol.com/products/rfid/rfid.html
14. Floerkemeier, C., Anarkat, D., Osinski, T., Harrison, M.: PML Core Specification 1.0,

September (2003). available from : http://www.epcglobalinc.org/standards_technology/
Secure/v1.0/PML_Core_Specification_v1.0.pdf

15. The Mandarax Project: http://mandarax.sourceforge.net/
16. Business Process Execution Language for Web Services version 1.1: http://www-128.ibm.

com/developerworks/library/specification/ws-bpel/
17. Smart Active Labels Consortium: http://www.sal-c.org/

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 576 – 592, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Collaborative Table Editing Technique Based on
Transparent Adaptation

Steven Xia1, David Sun2, Chengzheng Sun3, and David Chen1

1 School of Information and Communication Technology,
Griffith University,

Brisbane, Qld 4111, Australia
{Q.Xia, D.Chen}@griffith.edu.au

2 Department of Electrical Engineering and Computer Science,
University of California at Berkeley,

Berkeley, CA, USA
DavidSun@berkeley.edu

3 School of Computer Engineering,
Nanyang Technological University,

Singapore 639798
CZSun@ntu.edu.sg

Abstract. Tables are an efficient means to organize information. Collaboration
is important for table editing. In this paper, we report an innovative technique,
called CoTable, for supporting collaborative table editing in both table-centric
and word-centric complex documents. This collaborative table editing
technique is based on the Transparent Adaptation approach and hence
applicable to commercial off-the-shelf single-user editing applications. Key
technical elements of the CoTable technique include: (1) techniques for
adapting a variety of table-related data address models, accessible from the
single-user Application Programming Interface (API), to that of the underlying
Operational Transformation (OT) technique; and (2) techniques for translating
user-level table editing operations into the primitive operations supported by
OT. The CoTable technique has been implemented in the CoWord system, and
CoWord-specific table processing issues and techniques are discussed in detail
as well.

1 Introduction

Complex information that includes multiple interrelated items is difficult for human
beings to comprehend without a proper organization. Tables are an efficient way to
organize such information. A table is usually defined from two perspectives [10].
From the presentation-oriented perspective, a table is a two-dimensional structure
consisting of rows, columns and cells. From the structure- or content-oriented
perspective, a table is a collection of interrelated information items. Each item is
semantically associated with multiple categories. Due to these characters, tables
provide a powerful means for facilitating information organization, comprehension,
and comparison [16]. In tables, complex information is decomposed into simpler
items that are easy to understand. Relationships between items are explicitly labeled
so that logical structures of items are presented in a clear form, which facilitates

 A Collaborative Table Editing Technique Based on Transparent Adaptation 577

searching and comparison. Because of the usefulness and convenience, tables are
widely used in document processing and generally supported in computer document
processing applications such as word processors (e.g. MS Word, OpenOffice Writer),
web design systems (e.g. MS FrontPage, Dreamweaver), and spreadsheet systems
(e.g. MS Excel, OpenOffice Calc).

In their ethnographic interviews with users of spreadsheets, which are a special
form of tables, Nardi and Miller [7] noted that most spreadsheets are developed from
collaborative work of users with different expertise. In other words, collaboration is
essential for spreadsheet development. Generally, collaboration is also an essential
part in table editing.

First of all, the design of tables often involves multiple users. Table authors are
aware of what information to present, how the information to be categorized, and
what relationships to reveal, but they are not necessarily familiar with techniques for
designing table presentational forms that help convey information effectively. Even
fewer authors have expertise in using advanced computer table editing features such
as formulas and macros. Therefore, table authors often need assistance from table
presentation designers with aesthetic, psychological, or computer software
knowledge. Although it is the table presentation designer’s responsibility to design
presentation forms, table authors may also participate in fine tuning table formats (e.g.
colors, text fonts, etc.) for better expressing their thoughts. Therefore, collaboration is
important in table structure design.

Secondly, filling data into tables also demands multiple users’ collaboration.
Nowadays, tables are becoming larger and larger in size and more and more complex
in structure [10]. As an example, typical spreadsheets for financial or scientific
analysis may have thousands of cells. Large tables often include information from
different sources. People in charge of these sources are needed to contribute
corresponding information to fill the tables. For instance, a financial report table of a
bank includes deposit, investment, profit and other information that can only come
from different branches and departments. Supporting multiple users to fill tables
collaboratively is not only beneficial, but also indispensable in many circumstances.

Collaborative editing techniques and applications have been an active area of
research in the field of CSCW, and major progress has been made in the past years
[14][17]. However, no adequate attention has been paid to collaborative table editing
techniques in previous work. Prior work on collaborative table editing techniques
were restricted to table-centric applications like spreadsheets (e.g. Super Spreadsheet
[4], and Distributed Spreadsheet [8], but the design of these techniques had not
considered their applicability to collaborative table editing in the context of complex
documents (e.g. word processor document, HTML document, etc.). Furthermore,
these collaborative spreadsheet applications are specially designed for supporting
multi-user collaboration (i.e. they are collaboration-aware applications [10], which
lack adequate conventional editing functionalities available in their commercial off-
the-shelf single-user counterparts (e.g. MS Excel and OpenOffice Calc). In this paper,
we contribute a novel collaborative table editing technique which can be applied to
both table-centric and word-centric complex document editing applications. More
importantly, this technique is based on a novel Transparent Adaptation approach [17],
which takes advantage of an advanced collaborative technique – Operational
Transformation [13], and is capable of converting commercial off-the-shelf single-

578 S. Xia et al.

user editing applications into collaborative ones without changing the source code of
the original application.

The rest of this paper is organized as follows. First, the transparent adaptation
approach and the operational transformation technique are briefly described to provide
the basis for presenting the new work. Next, a novel collaborative table editing
technique suitable for both table-centric and word-centric document editing is discussed.
Then, this technique is applied to the CoWord system and specific issues in this
application are discussed. Afterwards, this work is compared to prior work. Finally,
major contributions of this work and some ongoing and future work are summarized.

2 Transparent Adaptation and Operational Transformation

2.1 Basics of the Transparent Adaptation Approach

TA is an innovative approach to converting single-user applications for multi-user
real-time collaboration, without changing the source code of the original application
[17]. The TA approach is based on a replicated system architecture where the shared
single-user application is replicated at all collaborating sites, the use of the single-user
application’s API (Application Programming Interface) to intercept and replay the
user’s interactions with the shared application, and the use of the OT technique to
manipulate the intercepted user operations for supporting responsive and
unconstrained (i.e. concurrent and free) multi-user interactions with the shared
application. The central idea of the TA approach is to adapt the data address and
operation models of the shared application’s API to that of the OT technique.

More precisely, the TA approach can be described by a reference model, as shown
in Fig. 1. This reference model consists of three components: Single-User Application
(SA), Collaboration Adaptor (CA), and Generic Collaboration Engine (GCE). The
main functionalities of these components are sketched below.

The SA component provides conventional single-user interface features and
functionalities. This component can be either an existing commercial off-the-shelf
single-user application, or a new single-user functionality component in a multi-user
collaborative system, but this component itself has no knowledge about multi-user
collaboration.

The CA component provides application-specific collaboration capabilities and plays
a central role in adapting the SA for collaboration. This component has the knowledge
of the SA API but not its internals. At the center of this component is the module of
Adapted Operation (AO), which represents the SA functionalities exposed by the API.
The AO can be generated by the Local Operation Handler (LOH) module by
intercepting local user’s interactions, or received by the Remote Operation Handler
(ROH) module from remote users. With the AO residing between the API and OT, the
task of adaptation between the API and OT is decomposed into two modules:

1. The API-AO Adaptation module is responsible for bridging the semantic gap
between the API and the AO so that the AO can be correctly replayed on the SA.

2. The AO-PO Adaptation module is responsible for mapping between the AO and OT-
supported Primitive Operations (PO) so that the underlying OT technique can be
used to ensure the correctness of the AO parameters in the presence of concurrency.

 A Collaborative Table Editing Technique Based on Transparent Adaptation 579

The GCE component provides application-independent collaboration capabilities.
This component has no knowledge of the single-user application functionality and
therefore can be used in adapting different applications. This component encapsulates
a package of collaboration supporting techniques, including Consistency Maintenance
(CM), Group Undo (GU), Workspace Awareness (WA), and Session Management
(SM), etc. OT is at the core of this component for supporting consistency
maintenance, user-initiated undo, and workspace awareness in a collaborative
environment.

API

A OCA

GCE
Session ManagementSM

Remote Operation HandlerROH

Workspace AwarenessWA

Singe-User ApplicationSA

Primitive OperationPO

Operational TransformationOT

Local Operation HandlerLOH

Generic Collaboration EngineGCE

Consistency MaintenanceCM

Collaboration AdaptorCA

Application Programming InterfaceAPI

Adapted OperationAO

Group UndoGU

Session ManagementSM

Remote Operation HandlerROH

Workspace AwarenessWA

Singe-User ApplicationSA

Primitive OperationPO

Operational TransformationOT

Local Operation HandlerLOH

Generic Collaboration EngineGCE

Consistency MaintenanceCM

Collaboration AdaptorCA

Application Programming InterfaceAPI

Adapted OperationAO

Group UndoGU

API-AO Adaptation

AO-PO Adaptation

L
O
H

R
O
H

SA

OT
CM GU

…
SMSM

WA

Fig. 1. The TA reference model

2.2 Basics of the Operational Transformation Technique

OT was originally designed to support multiple users to insert and delete characters in
replicated text documents concurrently [3][13]. Due to its unique capability in
achieving system consistency without imposing any restrictions on users, OT has
become the choice of consistency maintenance and group undo technique for many
collaborative editing systems [1][5][6][9][14].

The basic idea of OT can be illustrated by using a simple text editing scenario as
follows. Given a text document with a string "abc" replicated at two collaborating
sites; and two concurrent operations: O1 = Insert [0, "x"] (to insert character "x" at
position "0"), and O2 = Delete [3,"c"] (to delete the character "c" at position "3")
generated by two users at collaborating sites 1 and 2, respectively. Suppose the two
operations are executed in the order of O1 and O2 (at site 1). After executing O1, the
document becomes "xabc". To execute O2 after O1, O2 must be transformed against

580 S. Xia et al.

O1 to become: O2’ = Delete [4, "c"], whose positional parameter is incremented by
one due to the insertion of one character "x" by O1. Executing O2’ on "1abc" shall
delete the correct character "c" and the document becomes "xab". However, if O2 is
executed without transformation, then it shall incorrectly delete character "b", rather
than "c".

In summary, the basic idea of OT is to transform (or adjust) the parameters of an
editing operation (e.g. O1) according to the effects of previously executed concurrent
operations (e.g. O2) so that the transformed operation (e.g. O2’) can achieve the
correct effect in the face of concurrency.

There are two underlying models in every OT technique: one is the data address
model that defines the way data objects in a document are addressed by operations;
the other is the operation model that defines the set of operations that can be
directly transformed by OT functions. Different OT techniques may have different
data and operation models. For example, the basic OT technique for plain text
editing has an operation model consisting of two POs: Insert and Delete, and a data
address model of a single linear addressing space. Addresses in this linear
addressing space ranges from 0 to N - 1, where N is the total number of characters
in the document.

Despite its text editing origine, OT is independent of text documents and text
editing. Particularly, OT does not require the data objects in the document to be of the
same type or the same size (though there is only one character type of the same size in
plain text documents); OT does not require objects in the document to be presented at
the user interface in sequence (though characters in a text document are presented in
sequence at the user interface); OT is not restricted to supporting only Insert and
Delete operations (though these two primitive operations are sufficient to support
plain text editing); and OT is not restricted to a single linear address model (though
this model is adequate for plain text documents) As discovered in prior work [17], OT
is applicable to documents consisting of data objects of arbitrary types and sizes, and
being presented at the user interface in non-sequential views. Moreover, OT has been
extended to support the generic Update operation, in addition to Insert and Delete, for
collaborative word processing and to support documents with data objects accessible
from a tree of multiple linear addressing domains [2][15].

2.3 Collaborative Table Editing Based on TA and OT

Based on the TA reference model in Fig. 1, a Collaborative Table editing technique,
named as CoTable, is devised and presented in this paper. In this context, the SA
component in the reference model can be either a table-centric application like MS
Excel or a word-centric application like MS Word. We assume the SA component has
provided the suitable table-related API that meets the basic requirements of the TA
approach. The discussion of the CoTable technique shall focus on table-related data
address and operation adaptation between the API and the underlying OT technique.
Without loosing generality, the discussion of CoTable shall assume the OT technique
is based on a data address model with a tree of multiple linear address domains, and
an operation model with three POs – Insert, Delete, and Update [2][15].

 A Collaborative Table Editing Technique Based on Transparent Adaptation 581

3 Table Data Address Adaptation

The task of table data address adaptation is to bridge the gap between table-related
object data address models exposed by the API and the underlying OT technique. A
clear understanding of both ends is an important foundation for designing a proper
adaptation strategy.

3.1 Table Data Address Models

When viewed from the user interface, a table is a two-dimensional rectangular data
structure, consisting of a collection of rows and columns. Each row or column
consists of a sequence of cells. A cell may be associated with a row and a column at
the same time. A cell may contain some text or graphic objects, which are in a linear
sequence. In this conceptual model of tables, objects in a table may have various
relationships. First, hierarchical relationships exist in the following object pairs:
table–column or table-row; column-cell or row–cell; and cell–cell content. Second,
objects in the same collection form a separate linear sequence. For example, each cell
has an ordinal index in a row, with which the cell can be accessed from the cell
sequence in the row. The ordinal indices range from 0 to N-1 where N is the number
of cells in the row. Removing or inserting cells affects indices of other cells that have
higher indices in the same row, but does not affect indices of cells in other rows.

When viewed from the API of an application, the table data address model may or
may not correspond to the conceptual model. Typically, there are three categories of
API table address models, as shown in Fig. 2.

1. Single linear address model. In this data address model, table data objects can be
accessed from a global linear addressing space of the whole document. Inserting or
removing objects contained in cells of a table also affects positions of objects
outside the table, and vice versa. Moreover, row/column and cell objects may have
marks in the global linear addressing space occupying positions. Taking the global
linear addressing space into consideration, this data address model can be
represented as a single linear sequence shown in Fig. 2-(a). This data address
model can be found in APIs of some word-processing applications including MS
Word1.

2. Row-based tree address model. The most significant feature of this model is the
absence of columns, and table data objects can be accessed from the row-
dimension only. Hierarchical relationships between table-row, row-cell and cell-
cell content still exist, and the linear relationships between objects in the same
collection remain. This data address model can be represented as a row-based tree
shown in Fig. 2-(b). This data address model can be found in APIs of some HTML
editors, such as MS FrontPage.

3. Two-dimensional address model. In this address model, table data objects can be
accessed from both the row-dimension and the column-dimension. This address

1 API documents for MS Word, MS Excel and MS FrontPage can be found at

http://msdn.microsoft.com. API documents for OpenOffice Writer and OpenOffice Calc can
be found at http://api.openoffice.org.

582 S. Xia et al.

Fig. 2. Table-related data address models in APIs of different single-user applications. In this
figure, “t” stands for table; “r” stands for row; “o” stands for column; and “c” stands for cell.
The numbers at the lower right corners of each cell stand for object positions in corresponding
linear sequences.

model directly matches the conceptual model of tables and can be represented as a
hierarchical graph shown in Fig. 2-(c). This data address model can be found in
APIs of a variety of single-user applications, including MS Excel, MS PowerPoint,
OpenOffice Writer, and OpenOffice Calc.

3.2 The OT Address Model

The OT address model defines the way data objects in a document are addressed by
operations. In this paper, we assume the OT data address model is a tree of multiple
linear address domains [2], as shown in Fig. 3.

 A Collaborative Table Editing Technique Based on Transparent Adaptation 583

In the OT address model, a data object is mapped to a position in a linear
addressing domain only if it has the position number as its address in this domain. A
data object is a terminal object if it has no internal data structure or its internal data
structure is not addressable. A data object is an intermediate object if it has an
addressable internal data structure. A terminal object has no link out of it, but an
intermediate object has a link leading to a lower level addressing domain, which
represents this object’s internal addressing space.

An object in this data address model can be uniquely addressed by a vector of
integers:

],...,,...,,[10 ki ppppvp =

where kipivp i ≤≤= 0,][, represents one addressing point at level i.

3 4 5 6 …210 3 4 5 6 …210

3 4 …210 3 4 …210 …210 …210 3 4 5 …210 3 4 5 …210 3 …210 3 …210

…210 …210 3 …210 3 …2103 4 …210 3 4 …210 …210 …210

3 …210 3 …210 3 4 …210 3 4 …210

Fig. 3. The OT address model used in this paper

3.3 Table Data Address Adaptation Schemes

With the variations of API table data address models, different adaptation schemes are
needed. Here we discuss the adaptation schemes for the three API data address
models in Fig. 2, respectively.

First of all, the single linear address model is a special form of the OT address
model, in which only the root level domain exists. In the single linear address model,
an object is uniquely addressed with an integer as the position in the linear sequence.
This address is also a special form of the vector address of the OT vector address
where k = 0.

Moreover, the row-based tree address model is also a special form of the OT
address model, in which (1) the total number of levels is 4, and (2) terminal objects
only exist at level 3. In the row-based tree address model, an object is uniquely
addressed with a vector of integer. This address is also a special form of the OT
vector address where k 3.

Finally, the two-dimensional address model is not directly compatible with the OT
address model due to the dual hierarchical relationships between cells and
rows/columns. However, a comparison of the two-dimensional address model and the
row-based tree address model reveals that removal of column objects from the two-
dimensional address model reduces the dual hierarchical relationships to a single one

584 S. Xia et al.

and hence converts the two-dimensional address model to the row-based tree address
model.

In summary, the three API data address models are all adaptable to the OT address
model. The single linear address model and the row-based tree address model are
adapted directly; and the two-dimensional address model is adapted after a conversion
to the row-based tree address model.

3.4 Discussions

There are three issues worth discussing in the data address adaptation schemes. First,
it is theoretically equivalent to remove either columns or rows in the adaptation of the
two-dimensional address model, because both a row-based and a column-based tree
can be adapted to the OT address model. Without loosing generality, the following
discussions shall be based on the assumption of a row-based tree.

Fig. 4. Integrating the table into the global addressing space of the complex document

Second, the row-based tree converted from the two-dimensional address model
does not need to be semantically equivalent to its original two-dimensional form. The
conversion process selectively preserves some information about the table structure
but discards some others, including the hierarchical relationships between cells and
columns. This is acceptable because the OT address model only needs to maintain
information relevant to OT. For example, OT only needs to know the vector position
of a cell in the OT address model, regardless which column the cell is subordinate to,
so information about columns can be ignored. However, it is important for OT to

 A Collaborative Table Editing Technique Based on Transparent Adaptation 585

know that one cell is located before another in the same collection, so such
information is retained.

Third, the adaptation schemes not only provide a solution to mapping the API table
data address model into that of OT, but also is the key technique to integrate tables
into the global addressing space of the complex document, as shown in Fig. 4. The
complex document in Fig. 4-(a) includes three parts. The first line contains an inline
graphic object “Hello”, followed by a Return character. Afterwards there is a table
containing two columns and two rows. The last line contains some text. According to
the data address adaptation technique in [17], the graphic object and the text segment
can be mapped into two linear sequences separated by the table. Based on different
data address models exposed by the API, the table can be adapted to a single linear
sequence or a row-based tree. Both adapted models can be merged with the linear
sequence of objects outside the table. The merged data models of both cases are
shown in Fig. 4-(b) and (c), respectively. It is clear that both merged models are
compatible with the OT address model.

4 Table Operation Adaptation

Table-related AOs could target on objects contained in table cells (e.g. text or
graphics) or table structure objects (e.g. cell or row). The data address adaptation
schemes have integrated objects in a table into the global OT addressing space for the
whole document, so AOs used to manipulate objects (e.g. text or graphics) outside a
table can also be used for objects inside a table, and the operation adaptation
techniques for existing AOs can be directly inherited. However, table structure
operations are table-specific and cannot be supported by existing AOs designed for
graphics or text [17]. They require specific adaptation techniques. Therefore, our
discussion on CoTable operation adaptation shall focus on the issues and techniques
related to table editing operations only.

4.1 Operation Models of the API and OT

Table operation adaptation is responsible for the translation between the table-editing
API and POs supported by OT. Before designing adaptation approaches, operation
models of the API and OT are discussed in this subsection.

The API table operation model defines the set of operations that could be
performed to and have effects on table structure objects. There are three factors
contributing to the determination of these operations’ effects, i.e. the API operation
type, the target object type, and the underlying data address model.

First, generally the table-editing API have three operation types, including (1)
inserting new objects, (2) deleting existing objects, and (3) updating attributes of
existing objects. The first two determine the existence of objects and the last one
changes object states. Second, the target object type determines the effect scope. For
example, creating a cell causes one object to be inserted into the data address model,
but creating a row involves multiple objects. Third, the target object type and the data
address model have combined effects on the topology of the effect ranges. For
example, the effect range of creating a row is a sub-tree in a row-based tree address

586 S. Xia et al.

model, but is a continuous sequence in a single linear address model. Moreover, the
effect range of inserting a column includes dispersed objects in both data address
models.

In the OT operation model, three generic POs are defined on its data address
model:

1. Insert PO inserts a sequence of new objects into the OT address model.
2. Delete PO removes a sequence of existing objects from the OT address model.
3. Update PO changes attributes of a sequence of existing objects in the OT address

model.

These POs are generic in the sense that they are independent of object types. With
these POs, OT does not need any application-specific knowledge to do its work.

4.2 AOt Definition

The solution to bridging the gap between these two operation models is to define a set
of table structure AOs, denoted as AOt. As a vehicle for the translation between the
API and POs, the AOt should (1) correctly reflect API’s effects by covering all
affecting factors, and (2) facilitate translation between the API and PO.

Consequently, AOt are organized in two dimensions. One dimension is based on
the types of table structure object that the AOt targets. There exist three table structure
object types: row, column and cell. Therefore, we have three AOt categories in this
dimension, which are Row-AOt, Column-AOt and Cell-AOt. This dimension not only
facilitates the translation between the API and the AOt, but also indicates the object
type’s influence on API effects.

Another dimension is based on the API operation types. Because the three API
operation types exactly correspond to the three PO types, this dimension facilitates the
translation between the AOt and POs. The three AOt categories in this dimension
include Insert-AOt, Delete-AOt, and Update-AOt.

Based on this two-dimensional classification, any AOt can be placed in a suitable
cell in Table 1. In fact, there are many more AOt in real applications than what are
listed in Table 1. For example, additional Cell-Update-AOt may include
Change_CellFillColor, Change_CellBorderStyle, Change_CellBorderColor, etc.
Nevertheless, for the purpose of investigating issues of operation translation, the AOt
listed in Table 1 are representative and adequate.

Table 1. AOt classification

 Row Column Cell

Insert Ins_Row(vp, len, row) Ins_Col(listof<vp, len>, col) Ins_Cell(vp, len, cell)

Delete Del_Row(vp, len, row) Del_Col(listof<vp, len>, col) Del_Cell(vp, len, cell)

Update
Change_rowHeight

 (vp, len, o_val, n_val)

Change_ColWidth

 (listof<vp, len>, o_val, n_val)

Change_cellColor

 (vp, len, o_val, n_val)

Obj
PO

 A Collaborative Table Editing Technique Based on Transparent Adaptation 587

Parameters of the AOt show that they are defined directly on the OT address
model. The parameter vp is a vector of integer. It indicates the starting position of an
AOt effect range in the OT address model. The parameter len indicates the length of
an AOt effect range. Apart from positional references, we also keep other parameters
that are needed in OT. For Insert- and Delete-AOt, we keep the objects affected by
the AOt as the last parameter: row, col or cell. For Update-AOt, we record the old
value o_val and new value n_val of the target attributes. These parameters are needed
in OT for consistency maintenance and group undo [11][15].

The effect range parameters (vp and len) are able to locate any continuous range in
the OT address model, which is able to accommodate both the based tree and the
single linear address models. Therefore, for an AOt that has a single continuous effect
range (Row- or Cell-AOt), the effect range parameters are sufficient in any API data
address models. Nonetheless, a Column-AOt has dispersed effect ranges in both API
data address models because of the dispersed distribution of cells in a column, so a
list of range parameters is needed.

With the AOt definition in Table 1, the translation from the AOt to both PO and
the API are straightforward. On the one hand, in AOt-PO translation, the PO type is
just the PO category of the AOt; the PO effect range parameters are the same as that
of the AOt. On the other hand, in API-AOt translation, the effect range parameters are
used to locate the target object in the API addressing space; the target object type
encoded in the AOt type provides information about the target object’s API interface
(e.g. method definitions); the PO type encoded in the AOt type is used to choose the
method to invoke; other AOt parameters are used as method invocation parameters.

5 Supporting Collaborative Table Editing in CoWord

CoWord is a TA-based application which converts MS Word into an unconstrained
collaborative word processor without changing the source code of Word. To support
collaborative table editing in CoWord, we have implemented the CoTable technique
in the CoWord system. Application-specific issues emerged in adapting Word API
address and operation models are discussed in this section.

5.1 Special Issues in Word Table Data Address Adaptation

The Word API exposes a single linear address model. Objects inside table cells and
outside ones can be accessed with their positional references that are defined in a
global linear addressing space. Moreover, there are end-of-cell and end-of-row marks
for each cell and row in this global linear addressing space with unique positions.
Therefore, all objects in a Word document can be mapped to proper positions in the
OT address model as shown in Fig. 4-(b).

However, some objects in a Word document are hidden in both the user interface
and the API. To ensure the correctness of the data address adaptation, it is important
that these objects also be located and mapped to the OT address model. One
example of such hidden objects is the invisible cells generated while handling
irregular tables.

588 S. Xia et al.

Some Word tables are irregular, in the sense that some cells cannot be definitely
subordinated to certain rows or columns. Fig. 5-(a) and (c) show tables that are
irregular in two different dimensions.

Padding

(b) The padding effect on
the data address model

User Interface
Views

Single Linear
Addressing Models

c

c

rc

rc

c

c

rc

rc 0 1 2

3 4 5

c

r

r

c

c c

r

r

c

c 0 1 2

3 4

(c) A column-irregular table(a) A row-irregular table

Fig. 5. Handling irregular tables and its effects on the data address model. To match the user
interface views of tables better, single linear address models are shown in rectangular forms.

In the row-irregular table in Fig. 5-(a), an ambiguity exists in determining which
row the right cell belongs to, because it spans two rows. In the Word API data address
model, this cell is associated with the upper row. At the same time, an invisible cell is
padded beneath the spanning cell in the lower row to eliminate the ambiguity (shown
in Fig. 5-(b)). In contrast, in the column-irregular table in Fig. 5-(c), no padding is
performed.

Such invisible cells must not be ignored in the data address adaptation. Although
these cells are invisible in the user interface and inaccessible from the Word API, they
are also assigned with positions in the global linear addressing space. Ignoring these
cells would have the consequence of ruining the correctness of the data address
adaptation.

5.2 Special Issues in Word Table Operation Adaptation

Understanding effects of Word table-editing functionalities for the AOt
generation. As a TA-based system, CoWord generates AOt by intercepting the user’s
interaction with the Word user interface; the user’s interactions may trigger Word
table-editing functionalities to change the document state. Therefore, an important
basis for the AOt generation is a precise understanding of these functionalities’
effects.

Word table-editing functionalities have visible effects on the user interface and
invisible effects on the API data address model. In most cases, these effects are
consistent, but sometimes may be inconsistent. Under any circumstances, the
generation of AOt should always be based on the API data address model effects.

One example where this inconsistency occurs is the vertical cell merge, whose
effects on the user interface and the data address model are shown in Fig. 6. When
two cells are merged vertically, the effects on the user interface is that the lower cell
is removed and the upper cell spans two rows. This vertical merge causes irregularity,
so the padding scheme is applied (by Word) in the data address model. As shown in
Fig. 6, there is no positional difference between the data address model states before

 A Collaborative Table Editing Technique Based on Transparent Adaptation 589

the merge and after the padding. The only difference is that the lower cell becomes
invisible. According to this data address model effect, a Cell-Update-AOt needs to be
generated to set the visibility attribute of the lower cell to false.

Vertical Merge
Padding

c

c

rc

rc

c

c

rc

rc 0 1 2

3 4 5 c

c

rc

rc

c

c

rc

rc 0 1 2

3 4 5

Fig. 6. Effects of vertical cell merge on the user interface and data address model

Preserving regularity effects of the AOt in the face of concurrency. TA-based
systems allow users to use the single-user functionalities and interface features in the
same way as in the single-user environment. So, it is natural for users to expect the
same effect of these conventional functionalities in the collaborative environment,
thus it is desirable to require the underlying system to preserve the effect of single-
user functionalities in the collaborative environment.

In the single-user environment, only Ins_Cell and Del_Cell AOt could irregularize
a regular table; the application of a Row/Column-AOt to a regular table preserves the
regularity of the table. This regularity effect of the AOt should be preserved in the
collaborative environment. However, in the single linear address model of the Word
API and in the face of concurrency, the regularity effect may be lost without a special
treatment.

Fig. 7. Preserving the regularity effects of Ins_Row and Ins_Col AOt. In this figure,

O1=Ins_Col (<1, 1>, <5, 1>, col); O2=Ins_Row (3, 3, row); O3=Ins_Cell (6, 1, cell); O1' and

O2' are OT-processed forms of O1 and O2.

As shown in Fig. 7, from the initial table state (shown in Fig. 7-(a)), site 1
generates an AOt O1 that inserts a new column. Concurrently site 2 generates an AOt
O2 that inserts a new row. Both Insert-AOt contain two cells. After executed locally

590 S. Xia et al.

(shown in Fig. 7-(b)), they are propagated to remote sites. When O1 arrives at site 2,
it is translated to POs, processed by OT and executed, which results in the insertion of
two cells and leads to the table state shown in Fig. 7-(c). Site 1 goes through a similar
process after the arrival of O2 and reaches the same table state.

The table in Fig. 7-(c) is an irregular one, whose irregularity comes from the
combined effect of two concurrent Row- and Column-AOt. In other words, the
regularity effect of these two AOt is lost in the face of concurrency.

The correct combined result of these two AOt should be that shown in Fig. 7-(d),
where the regularity is still preserved after the insertion of a row and column. The
difference between the tables in Fig. 7-(c) and (d) is that the one in Fig. 7-(d) has an
additional cell, which helps preserve the table’s regularity. To convert the table state
from that shown in Fig. 7-(c) to (d), an additional Ins_Cell operation O3 is needed to
insert that additional cell.

A thorough investigation shows that this problem occurs only when column AOt
(i.e. Ins_Col, Del_Col and Upd_Col) are concurrent with the Ins_Row AOt and their
target ranges are in the same table. An additional AOt needs to be generated in these
cases to preserve the table’s regularity.

6 Comparison to Prior Work

Prior work on collaborative table editing has been restricted to collaboration-aware
table-centric (spreadsheet) applications. The CoTable technique is unique in
providing a collaborative table editing solution to both table-centric and word-centric
applications and in its applicability to commercial off-the-shelf single-user editing
applications without changing the source code of the original application.

Super Spreadsheet [4] is a collaborative spreadsheet system for face-to-face users.
Management of concurrency, spreadsheet version and history is performed in an
object-oriented way. For concurrency control, a transaction-based approach was
adopted. The user’s interactions with the system are organized into transactions.
During the execution of a transaction, implicit locks are used to lock the data objects
before updating (i.e. pessimistic locking), and locks are released at the transaction
commitment time, which is chosen by the user explicitly. Locks of multiple objects
can be acquired in arbitrary orders (i.e. non-strict 2-phase locking), so deadlock is
possible. There exist automatic deadlock detection mechanisms in the system but
users must be involved in deadlock resolution by negotiation. This solution works
well in the local-area network environment (for face-to-face users). However, if this
approach were applied in the Internet environment, the system responsiveness may
suffer due to the use of pessimistic locks.

Similarly, the Shared Spreadsheet in WARP project2 also takes a transaction- based
approach as its concurrency control mechanism. Users need to explicitly start a
transaction before editing and end the transaction afterwards. Transactions failing in
conflicts have to be rolled back, which may result to the loss of collaborative work.
Besides, a series of auxiliary features are implemented to increase performance and
reduce the possibility of rolling back.

2 WARP: Wide Area Resource Programme. http://distsyst.dcs.st-and.ac.uk/warp/warp.html.

 A Collaborative Table Editing Technique Based on Transparent Adaptation 591

Transaction/lock-based concurrency control solutions are able to protect data
integrity by prohibiting conflicting updates on shared data objects, which is important
in achieving semantic consistency in collaborative applications. On the other hand,
OT-based solutions can ensure syntactic consistency (characterized by convergence,
intention-preservation, and causality-preservation [14]), and provide high
responsiveness, fine-grain concurrency, and high degree of freedom to the users in
their interactions with the shared application in the Internet environment. In our view,
OT and transaction/locking are complementary techniques and could be integrated for
achieving both syntactic and semantic consistency. In [12], an optional and responsive
fine-grain locking scheme has been devised for Internet-based collaborative systems.
We are in the process of integrating the locking scheme in [12] into the GCE
component of the TA approach.

An OT-based distributed collaborative spreadsheet system was proposed by Palmer
and Cormack [8]. Their OT technique is specially designed for supporting the two-
dimensional address model, and spreadsheet-specific operations, which are insert and
delete rows or columns in a table, and set, format, and copy the cell value of a table.
These spreadsheet-specific operations are at the same level as the AOt in our
approach. In contrast, our approach is based on an OT technique which directly
support only three generic primitive operations (Insert, Delete, and Update), and an
adaptation technique to map application-level table operations (i.e. the AOt) into these
primitive operations. The benefit of our approach is the reduced complexity in
designing transformation functions and the reusability of transformation functions.
Moreover, our approach has the unique advantages in providing a collaborative table
editing solution to both table-centric and word-centric applications and in its
applicability to commercial off-the-shelf editing applications.

7 Conclusion and Future Work

In this paper, we have contributed an innovative technique CoTable to supporting
collaborative table editing in both table-centric and word-centric complex documents.
The CoTable technique is based on the Transparent Adaptation (TA) approach, and
therefore applicable to a range of existing commercial off-the-shelf single-user editing
applications. The key elements of the CoTable technique include the techniques to
adapt the table-related data address and operation models to that of the underlying
Operational Transformation (OT) technique. Because of the OT support, the CoTable
technique is able to support unconstrained (i.e. concurrent and free) editing of any
table structure and content elements. Moreover, the proposed CoTable technique is
compatible to existing data address and operation adaptation techniques for other data
types (e.g. text and graphics) in complex documents.

The CoTable technique has been applied to the CoWord system to test its
correctness and feasibility. This work has also enriched our knowledge and
experience in designing TA-based collaborative techniques and applications, and
provided new evidence on the power and generality of the TA approach.

We are in the process of applying the CoTable technique to other single-user
editing applications, including Excel and FrontPage. Moreover, we plan to investigate
issues in applying the TA approach to CAD/CASE tools.

592 S. Xia et al.

References

1. Begole, J., Rosson, M., and Shaffer, C.: "Flexible collaboration transparence: supporting
worker independence in replicated application-sharing systems", ACM Transactions on
Computer Human Interaction, vol. 6, no. 2, 1999, pp. 95 – 132.

2. Davis, A., Sun, C., and J. Lu.: "Generalizing operational transformation to the standard
general markup language", In Proceedings of the ACM Conference on Computer-
Supported Cooperative Work, November 2002, pp. 58 – 67.

3. Ellis, C. A., and Gibbs, S. J.: "Concurrency control in groupware systems", In Proceedings
of ACM Conference on Management of Data, May 1989, pp. 399 – 407.

4. Fuller, D. A., Mujica, S. T., and Pino, J. A.: "The design of an object-oriented
collaborative spreadsheet with version control and history management", In Proceedings of
the ACM/SIGAPP symposium on Applied computing: states of the art and practice, 1993,
pp. 416 – 423.

5. Ignat, C., and Norriei, M.C.: "Customizable collaborative editor relying on treeOPT
algorithm", In Proceedings of the European Conference of Computer-supported
Cooperative Work, September 2003, pp. 315 – 324.

6. Li, D. and Li, R.: "Transparent sharing and interoperation of heterogeneous single-user
applications", In Proceedings of ACM Conference on Computer Supported Cooperative
Work, November 2002, pp. 246 – 255.

7. Nardi, B. A. and Miller, J. R.: "An ethnographic study of distributed problem solving in
spreadsheet development", In Proceedings of the ACM conference on Computer-supported
cooperative work, 1990, pp. 197 – 208.

8. Palmer, C. R. and Cormack, G. V.: "Operation transforms for a distributed shared spread-
sheet", In Proceedings of ACM Conference on Computer Supported Cooperative Work,
November 1998, pp. 69 – 78.

9. Ressel, M., Nitshe-Ruhland, D and Gunzenbauser, R.: "An integrating, transformation-
oriented approach to concurrency control and undo in group editors", In Proceedings of ACM
Conference on Computer Supported Cooperative Work, November 1996, pp. 288 – 297.

10. Silberhorn, H.: "TabulaMagica – an integrated approach to manage complex tables", In
Proceedings of the ACM Symposium on Document engineering, 2001, pp. 68 – 75.

11. Sun, C.: "Undo as concurrent inverse in group editors", ACM Transactions on Computer-
Human Interaction, vol. 9, no. 4, December 2002, pp. 309 – 361.

12. Sun, C.: "Optional and responsive fine-grain locking in Internet-based collaborative
systems", IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 9,
September 2002, pp. 994 – 1008.

13. Sun, C. and Ellis, C. A.: "Operational transformation in real-time group editors: issues,
algorithms, and achievements", In Proceedings of the ACM Conference on Computer Sup-
ported Cooperative Work, 1998, pp. 59 – 68.

14. Sun, C., Jia, X., Zhang, Y., Yang, Y., and Chen, D.: "Achieving convergence, causality-
preservation, and intention-preservation in real-time cooperative editing systems", ACM
Transactions on Computer-Human Interaction, vol. 5, no. 1, March 1998, pp. 63 – 108.

15. Sun, D., Xia, S., Sun, C., and Chen, D.: "Operational transformation for collaborative word
processing", In Proceedings of ACM Conference on Computer Supported Cooperative
Work, November 2004, pp. 437 – 446.

16. Wang, X.: "Tabular abstraction, editing, and formatting", PhD thesis, University of
Waterloo, Ontario, Canada.

17. Xia, S., Sun, C., Sun, D., Shen, H., and Chen, D.: "Leveraging single-user applications for
multi-user collaboration: the coword approach", In Proceedings of ACM Conference on
Computer Supported Cooperative Work, November 2004, pp. 162 – 171.

Inter-enterprise Collaboration Management
in Dynamic Business Networks

Lea Kutvonen, Janne Metso, and Toni Ruokolainen

Department of Computer Science, University of Helsinki, Finland
{Lea.Kutvonen, Janne.Metso, Toni.Ruokolainen}@cs.Helsinki.FI

Abstract. The agility to collaborate in several business networks has
become essential for the success of enterprises. The dynamic nature of
collaborations and the autonomy of enterprises creates new challenges
for the operational computing environment. This paper describes the
web-Pilarcos B2B middleware solutions for managing the life-cycle of
dynamic business networks in an inter-enterprise environment. The use
of B2B middleware moves the management challenges away from the
individual enterprise applications to more global infrastructure services,
and provides a level of automation into the establishment and mainte-
nance. The middleware services aim for a rigorous level of transparent
interoperability support, including awareness of collaboration processes,
and collaboration level adaptation to breaches in operation.

Keywords: E-services architectures and technologi; Inter-enterprise
eCommunity management, interoperability; Corss-organisational process
support, contracts.

1 Introduction

The present, rapid globalization of business makes enterprises increasingly de-
pendent on their cooperation partners; competition takes place between supply
chains and networks of enterprises. The level of dynamic integration capabili-
ties between independent enterprise ICT systems is critical for the success of
such business networks. Enterprise ICT systems are expected to participate into
several, potentially heterogeneous networks simultaneously. They should also be
able to react fast to changing partnerships, and use technology-independent tools
for managing technical and semantical interoperability.

Traditional inter-enterprise integration solutions are typically based on tightly
coupled application level integration (EAI) or they rely on some common meta-
model to generate interoperable business applications. The use of these inte-
grated or unified collaboration models usually guarantees the correct operation
of inter-enterprise communities as all the needed interoperability information is
implicitly contained in the resulting inter-enterprise applications. However, in-
teroperability is achieved at the expense of autonomy, reusability and flexibility
of business services and networks.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 593–611, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

594 L. Kutvonen, J. Metso, and T. Ruokolainen

Possibilities for service reuse and evolution, as well as business network adap-
tivity, can be enhanced by the use of a federated collaboration model. The feder-
ated model builds collaboration relationships between already existing services,
based on their interoperable functionalities.

The federated approach needs a platform with facilities for inter-enterprise
network management and for making the interoperability information explicitly
available during community operation. A strategic breeding environment for new
business networks is needed with facilities for deciding on the shared business
process, and roles of partners within it; selection of component services from
the partners’ IT systems; ensuring and enforcing interoperability between the
component services; and establishing the business network. An operational en-
vironment for maintaining and controlling the business network is needed with
facilities for joining and leaving the network; automated monitoring of the be-
haviour of the network and intelligent methods for adapting to technological
changes and heterogeneity in the processing environment; and adapting to col-
laboration changes in terms of network membership and breach management.

The web-Pilarcos project aims for a decrease in the cost of establishing
and operating electronic business networks, especially in the cost involved into
changes of the business processes, partnerships, application services, and plat-
form technologies. The main investment must be placed on the right kind of
middleware that is able to use metainformation on the changeable elements for
governing the overall collaborations. As the web-Pilarcos middleware is directed
for enterprises participating in multiple, heterogeneous business networks where
gradual evolution is to be expected, we call it B2B middleware. It forms a loosely-
coupled collaboration layer on top of distributed, service oriented middleware.

The web-Pilarcos architecture uses meta-level information – such as business
process model and service descriptions of the participants – that via reflection
mechanisms governs the business network operation. The meta-level informa-
tion can be renegotiated and changed, and these contractual changes are auto-
matically reflected to the underlying computing system configuration. Likewise,
automated mechanisms are build to observe the underlying system status, and
reflecting that back to the status of the meta-information.

The web-Pilarcos architecture represents an approaches where meta-level
contracts are used for inter-enterprise collaboration management. In contrast
to most other architectures, web-Pilarcos does not use the metamodels for ex-
ecuting the collaborative workflow, but to check the potential for process-level
and pragmatic interoperability and to monitor conformance to the agreed col-
laboration model. When interoperability is achievable, the collaboration estab-
lishment phase is able to automatically configure some adaptors to the runtime
environment; when operational-time breaches are detected, resolution processes
can be automatically initiated across the collaboration. This approach is more
cost-effective in terms of tolerating changes in local and collaborative business
processes, provided services, and platforms.

This paper describes the web-Pilarcos B2B middleware solutions for man-
aging the life-cycle of dynamic business networks in an inter-enterprise envi-

Inter-enterprise Collaboration Management in Dynamic Business Networks 595

ronment. Section 2 introduces the B2B middleware services and eCommunity
contracts. While Section 3 briefly addresses the role of breeding environment,
Section 4 elaborates on the operational time services. Section 5 discusses the pro-
totype implementation. Related work and future development issues conclude.

2 The B2B Middleware Services

To facilitate joint management of collaborations in the web-Pilarcos architec-
ture, inter-enterprise collaborations are modelled as eCommunities that comprise
of independently developed business services. The inter-enterprise collaboration
management is supported by concepts of

– an eCommunity that represents a specific collaboration, its operation, agree-
ments and state; the eCommunities carry identities and are managed accord-
ing to their eCommunity contract information; and

– services that are provided by enterprises, used as members in eCommunities,
and are made publicly available by exporting service offers.

These concepts are used by a set of B2B middleware services for establish-
ing, modifying, monitoring, and terminating eCommunities. Looking from the
application service point of view, operations are made available for joining and
leaving an eCommunity either voluntarily or by community decision.

For the eCommunity management, interoperability is a fundamental issue.
Interoperability, or capability to collaborate, means effective capability of mu-
tual communication of information, proposals and commitments, requests and
results. Interoperability covers technical, semantic, and pragmatic interoperabil-
ity. Technical interoperability means that messages can be transported from one
participant to another. Semantic interoperability means that the message content
becomes understood in the same way by the senders and the receivers. This may
require transformations of information representation or messaging sequences.
Finally, pragmatic interoperability captures the willingness of partners for the
actions necessary for the collaboration. The willingness to participate involves
both capability of performing a requested action, and policies dictating whether
the potential action is preferable for the enterprise to be involved in. In the prag-
matic view, process-awareness in terms of collaborative business process model
is needed, augmented with nonfunctional aspects, some of which are related to
business policies.

The interoperability challenges are addressed both by the breeding facilities
and operational environment. The breeding environment supports establishment
of eCommunities in such a way that the open markets of business services is ex-
ploited, but at the same time the strategic and pragmatic restrictions of involved
enterprises are taken into consideration. The operational environment is respon-
sible of observing the behaviour of the participants in the eCommunity, react to
breaches of the eCommunity contract, and to respond to eCommunity admin-
istrator or participant requests (human intervention) on renegotiation of some
contract aspect. The breeding and operational environments are not isolated

596 L. Kutvonen, J. Metso, and T. Ruokolainen

from each other, as for example joining new members to an existing eCommu-
nity involves services of the breeding environment. The metainformation services
and their use for interoperability ensurance is briefly summarized in Section 3
(a more thorough discussion is given in [1, 2]).

– reference to the business network model;
– information about the epoch in which the network is;
– process for changing epoch;
– for each role

• assignment rules that specify the requirements on
∗ service type;
∗ nonfunctional aspects;
∗ restrictions on identity, participation on other business networks, etc;

• conformance rules that are used for determining conformance to the role which
the assigned component is in the role; similar as above;

– for each interaction relationship between roles
• channel requirements
• locations of the channel endpoints
• QoS agreement; security agreement
• information presentation formats

– for each policy that governs the choices between alternative behaviour patterns in
the business network model

• acceptable values or value ranges;
– references to alternative breach recovery processes;
– objective of the business network as business rules

Fig. 1. Information contents of the eContract

The operational environment supports the metalevel model of eCommunity
by maintaining (distributed) eContracts. The semantical contents of the eCon-
tracts is summarized in Fig. 1. The eContract captures information about the
agreed business network model, the participants with their locations and service
access points, rules for accepting partners into the network, rules for monitoring
whether existing partners can be accepted to continue in the network, and agreed
collaborative process models for breach recovery situations. For each communi-
cation relationship, the eContract also captures the requirements for the abstract
communication channel needed; this channel is then further mapped to suitable
distribution platform services. The eContracts can be changed by negotiation
between agents representing partners (enterprise) of the eCommunity. These
agents do not themselves provide the involved services, but reside at the B2B
middleware level, and act based on business-rules and process-models defined for
the application service in question and notifications reporting the progress and
the failures of the collaboration in question. The agents can control the local
operating environment through the local service management facilities. For in-
teroperability, the shared metalevel notations in the eContract are transformed
to the locally understood management data and methods.

Inter-enterprise Collaboration Management in Dynamic Business Networks 597

Contract
Repository

Contract
Repository

~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~

Contract

~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~

Contract

Management
Application

Management
Application

Populator

Organisaational border

Policy Repository Policy Repository

Type Repository

Monitors Monitors

N
etw

orkM
anagem

entA
gentti

N
et

w
or

kM
an

ag
em

en
tA

ge
nt

Service ApplicationService Application

Organisation A

Public Domain Services

Organisation B

Fig. 2. Service agents of the operational environment

Fig. 2 illustrates the B2B middleware service agents of the operational envi-
ronment. Each site or administrative domain, representing an autonomous ICT
system, is expected to run a business process management agent. By autonomy
we mean the potential for control over the private computing systems, and more-
over on strategic business processes and policies. Breeding environment services
like populators and type repositories are not required from all sites, but can be
provided as infrastructure services as a business on its own right.

3 Breeding Environment

Establishment and maintenance of eCommunities relies on the interoperability
knowledge on business network models (BNM), service types and associated
information, and service offers.

The business network models are defined in terms of roles and interactions
between the roles. For each role, assignment rules define additional requirements
for the service offer that can be accepted to fulfill it, and conformance rules
determine limits for acceptable behaviour during the eCommunity operation.
Thus the business network model defines the structure and behaviour of the
collaborating community. A verified business network model acts as a template
for the eCommunity.

598 L. Kutvonen, J. Metso, and T. Ruokolainen

The model to be used as a contract template is first negotiated between the
potential partners, involving comparison and matching of strategical, pragmat-
ical goals of members in the network. The matching of network models is too
hard a problem to solve by an automated process in general cases for a hetero-
geneous modeling environment. Therefore, we have focused on practical goals:
What is needed is a grouping of similar models, where there is suitable trans-
formers or adapters available for configuring a communication channel between
peers so that the information exchange becomes understood correctly and there
is no known deadlock in the sequence of message exchanges. The adapters can
address modifications at multiple levels of interoperability, such as data repre-
sentation modifications, and changing the communication pattern (for example,
splitting a request of a task to a set of requests for subtasks from the peer). The
service type repository is used for holding such relationships between models and
the transformation information associated. The actual adapters are produced in
a separate process starting from the service type descriptions [3].

Potential participants for the defined roles are retrieved from the service offer
repository based on their service type and published properties that are associ-
ated for that type. Service type information captures syntactic and procedural
interoperability; semantics over behaviour is considered too hard yet [4]. On one
hand, the business network models associate roles with required service types;
on the other hand, the service offer repository associates the service with the
service types. The quality of these assertions is essential for the correctness of
the created communities. Furthermore, the density of the created relationship
network of alternative but interoperable service types determines the usefulness
of the middleware service [5].

The resulting eCommunity contract object is an active agent itself, and pro-
vides a service interface with operations for initiating re-negotiations, and receiv-
ing progress reports by participants. It also takes initiative in message exchanges
with local service management agents at each site involved.

The repositories that maintain a growing and increasingly interrelated set of
interoperability knowledge are feed by independent processes: publication of a)
service types and b) business network models, c) service offers, and d) eCommu-
nity population and negotiation processes. These processes are inter-related but
not tightly dependent; for example new service types can be published without
a business network model using them. Fig. 3 illustrates these processes. The
service publication functionality is similar to the UDDI [6] or the ODP trad-
ing mechanisms [7]; while the type management system resembles the ODP type
repository function [8] and enforces a typing discipline to follow over service offer
repositories. The BNM repository is a shared storage of business collaboration
information that enable enterprises to share business transaction models, such as
the ebXML-repository [9], although with more automated and repeatable breed-
ing process. The used notations are not discussed here, but they resemble ODP
enterprise language and use XML-style notations (see [10] and [2]).

In the service publication process (step 1), service providers send service offers
to the service offer repository, to state claims about the type and properties of the

Inter-enterprise Collaboration Management in Dynamic Business Networks 599

services. A service offer describes functional and non-functional properties of the
service to be published: the actual service interface signature, service behaviour,
requirements for technical bindings (e.g. transport protocol), and attributes such
as service quality and trust related commitments. The service offer repository
then initiates a conformance validation process. For this purpose, a service type
corresponding the claimed service type is retrieved from the type repository
(step 2). The service type defines syntactical structures for service interface
signature and messages, externally visible service behaviour and semantics for
exchanged messages [2]. Conformance validation is executed by the service type
repository holding the corresponding service type (step 3). Only after a successful
validation, the service offer is published (step 4a), otherwise a service typing
mismatch is reported between the service offer and its claimed type (step 4b).

Agreement

Service Provider

Service Designer

service
type

service
offer

A) provide a business
network model

service types
B) provide matching

E) eCommunity
contract

4a) store service
offer

1) provide
a service offer

4b) service type mismatch

2) provide a service type

BNM repository

Type repository

BNM designer
C) provide service offers

validation process
3) Conformance D) Population and

negotiation processes

Service offer repository

Publish service types

Publish BNMs

Fig. 3. Repository usage during eCommunity life-cycle

When an eCommunity establishment process is initiated by a willing part-
ner, the corresponding business network model is first fetched from the BNM
repository (step A). The population process (step D) provides a set of interop-
erable eCommunity proposals where roles of the BNM are filled with potential
partners. For this purpose, the type repository is consulted for providing service
types matching the requirements of the business network model (step B), after
which the service offer repository can be used to provide the corresponding ser-
vice providers (step C). After population, and the subsequent negotiation, the
eCommunity contract is received (step E) and distributed to every participant.

600 L. Kutvonen, J. Metso, and T. Ruokolainen

The service interoperability and correct operation of the community assumes
that the metalevel information on BNMs, service types, and service offers is cor-
rect. Therefore, we find it necessary to collect the metainformation into reposito-
ries, where the trustworthiness of the information source can be controlled, and
the quality of the information can be validated by the repository management
actions. These aspects must be weaved into the tasks involved with eCommunity
establishment, such as service publication or discovery [11, 5].

4 Operational-Time Environment

The operational-time environment comprises of the business process manage-
ment agents maintaining the metalevel agreement of the collaboration, the local
service management facilities at each enterprise, the monitoring embedded to
each communication channel in each business network, and the business mod-
els used for resolving collaboration-level exception states. Section 5 follows with
implementation detail.

4.1 eCommunity Management by Collaborative Agents

The community life-cycle includes steps for establishment (population and nego-
tiation at the conceptual level, establishment of the community at the technical
level), termination, reacting to change requests, and resolution of breaches. The
eCommunity life-cycle is presented in Fig. 4.

The state transitions are performed by middleware agents. The eCommu-
nity is placed into the initial state (populated) by the populator agent in the
breeding environment. For other state transitions the responsibility is on the
agents in the operational environment, Business Network Management Agents
(BNMA, agent) and the eCommunity contract object, in collaboration. At each
administrative domain, there is a BNMA agent responsible for managing the
inter-organizational coordination and management protocols, global state infor-
mation management, community participant management and contract breach
management. The contract object is responsible for making decisions for the
community it represents (currently, most decisions are referred to humans).

In the populated state, the BNMAs see a set of potential eCommunity con-
tracts where the partners have a matching view of the business network model,
a non-empty set of options for policy values representing communication and
information representation aspects of the collaboration, and a matching set of
requirements for platform services. The first contract draft is available to the
initiating partner only, while in the in-negotiation state the suggested eCon-
tract is under the consideration of all participants. During the negotiations, the
eContract can gain further decisions on joint policies and technologies in use,
as described below. The technical establishment phase involves the local service
management facilities. When unwanted situations are detected by the monitor-
ing system and BNMAs agree that the case is a major fault, a reorganization
process is started, potentially causing changes in the partnership. In addition, the

Inter-enterprise Collaboration Management in Dynamic Business Networks 601

business network model involved may include epochs; an epoch change captures
a major reorganization of the collaboration structure.

The negotiations are implemented as a coordinator-driven n-to-n negotia-
tion. The coordinator is elected during the first negotiation round among the
participant candidates. At each negotiation round the whole contract is sent to
all candidates for consideration of the terms of the contract, with responses of
agreement, disagreement, and possibly counter-offers. The coordinator merges
the requested changes and proceeds to another negotiation round until all par-
ticipant candidates agree on the contract terms or terminates the negotiation in
lack of agreement. When any of the candidates refuse to participate the negoti-
ations, the suggested eCommunity is moved back to population state.

Contract
refuse

Populated

Negotiation start

Negotiation finish

Negotiated

Established Unusable

New participant required
and found

In−Negotiation

Not Populated

Usage start/ continue

Reorganisation

Major fault detected

Major fault solved

Participant remove

Population

New participant required but not found
Terminated

Contract termination

Fig. 4. Life cycle model of the community

The negotiations involve two categories of decisions. First, the business net-
work models can describe alternatives for joint behaviour, and a policy decision
needs to be made which alternative is used (for example, whether services must
be prepaid or not). Second, some technical details such as information represen-
tation formats need to be agreed on. However, all business rules directing the
local behaviour at each enterprise are not negotiated, only those defined in the
business network model. To illustrate a common negotiation process, we assume
there are three possible technology solutions for communication channels in a
proposed eCommunity. The partner in the coordinator role sends the three-way
proposal of the eCommunity contract to other participants. The participants
responds with counter-offers containing the acceptable choices of technology to

602 L. Kutvonen, J. Metso, and T. Ruokolainen

them. As the counter-offers give different sets, it is the coordinator’s task to find
a cut of the sets and make the final decision within that set.

After a successful negotiation cycle, the contract is established by sending an
establish request to all participants of the eCommunity. At this signal the pro-
vided services are prepared and monitors are configured with contextual meta-
data derived from the contract. The participants respond to the coordinator
when their eCommunity elements are set up.

The eCommunity contract is a distributed object. Only the metainformation
contents of the contract is distributed (because of heterogeneous technologies),
and the distribution is embedded to the negotiation protocol of eCommunity
contract. The local contract copies are kept in loose synchrony through BNMAs.

The messages for state management and breach notifications form a basis for
a reflective mechanism that keeps the meta-level information in the eCommunity
contract and the actual service provision at the involved sites in synchrony. These
messages cause changes in the contract contents, assuming that the change re-
quest are not contradictory. Changes in meta-data trigger activities for checking
whether community participants need to be notified or requested a local act.

Each site has a local service management agent that holds and uses knowl-
edge about locally deployed services and their various management methods [1].
The local management interfaces are homogenized by a protocol for requesting
the system to prepare for running a service (resourcing), querying about commu-
nication points, and releasing the service. For local service-management services
we propose to use generic service factories so that the actual service platform is
irrelevant to the agent. Service factory can then be called with simple operations
like startService to start a service or stopService to stop a service when it is not
needed. Error reports allow the local management services to determine local
and remote failures and to adhere to the agreed behaviour. This information
can be used to improve performance of the observing domain and to file error
reports to other domains in the community.

The local service management interface allows BNMAs o collaboratively man-
age the community consistency. For example, initiative to replace or move a par-
ticipant of the eCommunity causes requests to change the service point to the
new participant’s location, and recreate the bindings between new locations.

Besides indirect management by BNMAs, the local services are controlled
by local enterprise policies (i.e., business rules). Each enterprise is expected to
have a private policy repository that captures rules for accessing services and
distributing documents. These resource guards can be implemented in a similar
style as has been presented in other policy-based management work consider-
ing also deontic policies [12, 13]. Each resource (processing unit, document) is
governed by a monitor that consults the local policy repository for permission
to proceed with a requested interaction. The local policies may change during
the operational time of an eCommunity, and the local policies may override all
community commitments. This may lead to policy conflicts during the eCom-
munity operation. Although the conflict styles identified are similar to static
analysis approaches (see for example [14]), we start dynamic conflict resolution

Inter-enterprise Collaboration Management in Dynamic Business Networks 603

by situations triggered by the monitoring system. A prototype implementation
addresses problems of mismatch between organizations on access permissions,
prohibitions, and obligations [15].

Communities can be terminated in a natural or forced way. A natural termi-
nation takes place if the contract is expired or the specified amount of sessions in
the contract is exceeded. Contract session is specified as a one execution of the
community functionality as described in the contract. The contract termination
is forced if it is a consequence of a resolution process.

At any time, a participant may request that another participant in the com-
munity is removed, or inform others that it withdraws itself. The community
contract defines the compensation process for such an event. The request natu-
rally causes a negotiation cycle amongst participants. After the participant has
left the eCommunity, the remaining participants will hold an election, lead by
the coordinator, to decide if they will find a new participant to fill the now vacant
role or terminate the community.

4.2 Context-Aware Monitoring

Monitoring is performed locally by each participant of a community, at the
communication channel end-points. The monitors continuously evaluate whether
observed behaviour is conformant to the expected behaviour explicated in the
eContract. For example internal policies of organizations, service evolution and
technical failures are causes for dynamic errors only detectable by active run-
time monitoring. The monitors report progress of local business processes and
detected breaches to local BNMAs; if needed, the BNMAs negotiate about re-
quired corrective actions.

Monitors are configured by BNMAs with context information and related
rules retrieved from the eContract. The eContract carries information on cur-
rent progress state of the collaborative business process, and requirements for
the correct progress of collaboration (service choreography), as well as process
models for exceptional situations. The context relevant for the monitor repre-
sents an active part of the progression: the expected choreography, and freely
designable monitoring criteria.

A monitor follows the behaviour of a service against the service choreogra-
phy (external business process) represented by a two level state-machine, where
the upper level represents task groups, and the lower level represents interre-
lated messages within that group. The upper-level machine is used to provide a
coarser view to the progress through the choreography [16]. The task model is
quite close to the work unit model in WS-CDL [17]; however, the model is not
used for execution but for observing conformance. The state machine notifies
completion of a task once all expected messages in the task are exchanged in an
acceptable order. Problem notifications can be raised for order breaches, missing
messages, and information contents. The monitoring facilities use the lower level
only internally and reports to local BNMA using the task level. Reports from
the monitors include meta-events when a specific task is completed and when
behaviour of the services are not correct.

604 L. Kutvonen, J. Metso, and T. Ruokolainen

The steps taken when a message is sent between two service applications are
shown in Fig. 5. The illustration also indicates the intercepting location of the
monitors in the communication channel architecture. In the figure, the box WS-
Tr. represents additional services in the channel, such as aspects of distribution
transparency and transaction support (for more details, see [5]).

SOAP

HTTP

TCP/IP

SOAP

HTTP

TCP/IP

WS−Tr. WS−Tr.

Service Application Service ApplicationMonitorMonitor

6.3.

BusinessNetworkManagementAgent BusinessNetworkManagementAgent

1.

C o m m u n i c a t i o n C h a n n e l

8.

O
rganizational B

order2. 7.a

Context information and rules7.b

5.

Context information and rules
4.b

4.a

1. Application sends a message
2. Monitor intercepts the message

4.a IF message was ok: let the message go out of org.
4.b ELSE report fault to BNMA

5. Monitor intercepts the message

7.a IF message was ok: let message go to application
7.b ELSE report fault to BNMA
8. Application receives message

3. Monitor checks compliance to context and rules
6. Monitor checks compliance to context and rules

Fig. 5. Monitor as a part of the communication channel during a message send

The task level state information is not aggressively distributed to all partic-
ipants, but relayed to the contract object to be retrieved through it by those
participants needing it, when needed. Still, the level of traffic generated may
cause undue overhead unless business network structure is reasonably designed.
The task boundaries are annotated on the choreographies by the designers, and
the analysis of the models should therefore include also the cost of the model.

In the monitoring criteria, it is possible to use rules that consider the business
network status as well, for catching behaviour rules such as "payment must be
received by the bank before the warehouse can ship the delivery". The monitors
can also control aspects of information representation, trustworthyness of the
service requests, and other nonfunctional aspects of the collaboration.

4.3 Breach Management and Epochs

Breach management is triggered by the monitors by notifying their local BN-
MAs both of minor and major discrepancies. The BNMA decides whether the
discrepancy is to be considered a breach, or can be passed with local recovery
actions or by ignoring the occurrence. When a breach is detected, the detecting
BMNA notifies the eCommunity coordinator with information on the event and
the participant considered responsible of the failure. For the resolution of a seri-
ous breach, the eCommunity enters an intermediate state during which decisions
are taken (potentially negotiated) on the corrective actions.

Inter-enterprise Collaboration Management in Dynamic Business Networks 605

Architecturally, the recovery scenarios should not be fixed into the agents,
but need to be derived from the business network model repository and become
part of the eContracts in the eCommunity establishment phase. The recovery
processes are one of the elements to be either matched in population or negoti-
ated thereafter. However, in the current prototype, the offender can either admit
or deny the breach. For admitted breaches, the compensation processes agreed
in the eCommunity contract are used, and the activities of the eCommunity
can be continued normally. For denied breaches, human intervention is used,
and potentially leads to change of the faulty participant. The agent provides a
method changeParticipant that invokes a negotiation on whether the offender
needs to be excluded from the eCommunity, and subsequently involves the pop-
ulator to assist in selection and interoperability assurance for a new participant.
Alternatively, the breach can lead to total termination of the eCommunity after
negotiations.

The transition to the separate resolution process requires that the involved
service providers are prepared to run additional, infrastructure-level processes
in addition to the original business process. The enterprises are expected to
provide business facilities able to respond to for example sanction negotiations,
thus conforming to a best-practices expectation. In addition, at the middleware
level, facilities for epoch management are required.

An epoch is defined as a period during which roles and services of the net-
work participants are stable. Two subsequent epochs can have different sets of
roles and services involved, and between epochs transition rules can be defined.
Participants in certain roles are required to reappear in a specific role in the next
epoch, while some others leave the community. Transition between two epochs
require synchronization between partners.

5 Prototypes and Lessons Learned

The web-Pilarcos middleware prototype is implemented in Java, with a mix of
J2EE technology and standard Java objects. The prototype is built using JBoss
and services are distributed as Web Services. The organization-oriented mid-
dleware services (Contract object, Contract Repository, NetworkManagement-
Agent, and Monitors) are implemented with J2EE; the public domain services
(Type Repository, Populator, Service Offer Repository, and BPM Repository)
are implemented as standard Java objects. All components, except the eCon-
tracts residing in the Contract repository, are accessible through Web Services
interfaces, either within an enterprise, or across enterprise boundaries. The most
important components of the implementation include the eContract, the BN-
MAs, and the monitors. The set of prototype services also includes an appli-
cation for visualizing the inter-enterprise business process and its progress [18].
This application provides human access to the partner change and eContract
renegotiation methods through BNMAs.

The NetworkManagementAgent component implements BNMA interfaces for
eContract life-cycle management, negotiation, establishment, global state man-

606 L. Kutvonen, J. Metso, and T. Ruokolainen

Lifecycle management interface:
String[] populateArchitecture(String architectureName, String myRoleName,

int maxOffers, int maxTime,
String usedPolicies)

int[] negotiateContract(String contractID)
int[] instantiateContract(String contractID)
void terminateContract(String contractID)
String createNewSession(String contractID)

Negotiation and establishment interfaces:
acceptContract(ContractContent contract, String participant)
acceptContractResponse(String contract_id, String participant,

NegotiationResponse negotiation_response)
establishContract(String contractID, String participant)
establishContractResponse(String contractID, String participant,

boolean success)
renegotiateContract(String contractID)
renegotiateContractResponse(String contractID, String participant,

boolean renegotiate)
announceResult(String contractID, boolean renegotiate)
cancelContract(String contractID, String participant)

Global state management interface:
updateTaskState(String contractID, String sessionID, String taskID,

String newState, String participant)
epochChanged(String contractID, String sessionID, String newEpoch,

String participant)

Monitor input interface:
updateEpochState(String sessionID, String roleID,

String epochID, String stateID)
sessionEpochFinished(String sessionID, String epochID)

Monitor configuration interface:
addSession(String sessionID, String[] epochIDs, String[] policyIDs,

String[] myRoleIDs, String[] otherRoleIDs)
addRole(String sessionID, String roleID, String[] roleEpochIDs,

String[] policyIDs)
addEpochAutomata(String sessionID, String roleID, String epochID,

StateAutomata epochAutomata)
addChoreographyAutomata(String sessionID, String roleID, String epochID,

setActiveSessionEpoch(String sessionID, String epochID)
deactivateSession(String sessionID)
isSessionActive(String sessionID)

deactivateRole(String sessionID, String roleID)
isRoleActive(String sessionID, String roleID)

updateEpochState(String sessionID, String roleID,
String epochID, String stateID)

Fig. 6. Interfaces of middleware services

agement, and monitor input. The first three interfaces are used between enter-
prises, the rest by local services. The BNMA interfaces are described in Fig. 6.

The BNMAs form an agent-style discussion amongst themselves: the initia-
tor suggests a collaboration using a named model for a group of named part-
ners, and the group members make counter-offers to the suggested details. The
propositions are taken as believable facts (we have trust-management extensions
planned, which change this). As an extension to the traditional agent discussions,
the BNMAs are able to detect breaches to the agreed behaviour, and start nego-
tiations on the caused situation. The BNMAs are not self-contained as agents,

Inter-enterprise Collaboration Management in Dynamic Business Networks 607

as initiatives to actions are received by users, applications, and changes in the
local computing services.

The monitors are hooked into the communication channel architecture, as
proxies into the JBoss environment to intercept messages. In addition, monitors
implement a service interface for metadata configuration. The monitor interfaces
are described in Fig. 6.

The scalability of the architecture has been carefully analyzed, mainly re-
sulting to aspects that need to be verified in the business network models used.
As a consequence, the analysis gives us guidelines for providing new software
engineering tools in the area of model verification and model property analysis.

Across enterprises, communication is restricted to global business network
state updates, error resolving, and contract life cycle management. State updates
are done only when epochs are changed and tasks completed, so the communica-
tion volume depends on the business network design. In the overall service and
model production methodology behind our work, it is essential that the business
network models are carefully verified and analyzed before publication. One of
the essential features to analyze is the cost of the operation of the model. We
expect that the task/epoch ratio is kept relatively low.

Within enterprises, the cost of communication is somewhat lower, especially if
critical components are appropriately deployed. Monitoring cost is a scalability
challenge, but can be partially overcome by suitable selection of monitoring
modes: only proactive monitoring that prevents further steps in the business
process interferes severely with the overall performance, and should be restricted
to carefully selected features. Loose feedback loops from monitors to BNMAs can
also be used and still acquire an operational-time detection of frauds and failures
in collaborations.

As the population process is essential for the feasibility of the presented archi-
tecture, the first phase prototype included only the population process [19, 20],
and performance evaluation on that. Having restricted the complex constraint
satisfaction problem appropriately, we found the performance mainly dependent
on the number of roles in the network and policies per role [21].

6 Conclusion

The B2B middleware developed in web-Pilarcos provides support for autono-
mously administered peer services that collaborate in a loosely coupled eCommu-
nity. The eCommunity management by design excludes the need for distributed
enactment services, but in contrast provides facilities for ensuring interoperabil-
ity at semantic and pragmatic level. In this respect the federated approach has
a different focus from those in most other P2P community management sys-
tems, such as ADEPT [22] or METEOR [23], and contract-driven integration
approaches, such as ebXML [9]. Even most virtual enterprise support environ-
ments, such as CrossFlow [24] and WISE (workflow-based internet services) [25],
rely on models for distributed business process enactment. However, the web-
Pilarcos approach leaves enactment as a local business processing task, concen-
trating on interoperability monitoring.

608 L. Kutvonen, J. Metso, and T. Ruokolainen

The web-Pilarcos concept of eContracts ties together ICT related viewpoints
of ODP (Open Distributed Processing reference model [26]), also ranging to some
features of business aspects. The ODP-RM introduces information, computa-
tional, engineering and technical viewpoints. Each of these present interrelated
but somewhat independent aspects of the collaboration features and its com-
position using more basic computing services. The web-Pilarcos contract struc-
ture captures these aspects in its BNMs, binding requirements, and behavioural
and non-functional monitoring rules [10]. In other projects, like BCA [27], con-
tracts have legal and business level focus and detect contract breaches post-
operatively [28]. The web-Pilarcos aims for more real-time intervention.

In the web-Pilarcos middleware, the eCommunity life cycle is built to be
collaboration-process-aware. The architecture model acts on two abstraction
layers, the upper layer involved with abstract, external business process describ-
ing the collaboration requirements; the lower layer comprised of actual services
bound to the eCommunity dynamically. In this kind of environment, static verifi-
cation of models and interoperability cannot be complete. In the B2B middleware
provided by the web-Pilarcos project, we find it necessary to develop control envi-
ronments for monitoring and reflectively restructuring the operational eCommu-
nities, besides a breeding environment. The goals are similar to other projects,
but the solution methods differ. While ADEPT supports direct modification
of the workflow control structures, web-Pilarcos uses negotiated policy-values
to choose between predefined behaviour alternatives. The web-Pilarcos solution
even requires that well-formed contracts include suitable recovery processes that
involve whole communities. In contrast to METEOR-S, the web-Pilarcos plat-
form has no central tool for making the whole of interoperability analysis, but
partial static verification is done at the meta-data repositories, and monitoring
is used to detect further problems.

The B2B middleware is in some extent comparable to agent-based approaches,
such as MASSYVE [29]. The main difference seems to be the separation of
business-application services and B2B middleware services from each other. The
web-Pilarcos middleware agents do not provide workflow execution, but expect
local application management to play that part. In contrast to [30], the middle-
ware agents are responsible of semantic verification and failure resolution, and
use separate monitors to help and report.

The web-Pilarcos middleware increases the ability of an enterprise to adapt
to changes at strategical business processes, platform technologies, and partners
and partners’ services within the business networks. The presented middleware
services indicate the essential B2B services on which to invest, in order to de-
crease the cost and reimplementation effort caused by changes in the operational
environment. The operational environment of web-Pilarcos described in this pa-
per enhances our earlier work on collaboration partner matching in the Pilarcos
project [19] by introducing the monitoring of business processes and local enter-
prise policies, and by providing a set of eCommunity management protocols at
the meta-information level.

Inter-enterprise Collaboration Management in Dynamic Business Networks 609

The provision of the web-Pilarcos architecture requires further development
of business process modeling techniques. The collaboration of business processes
or workflows should be modeled without unnecessary revealing of local process-
ing steps. Instead, only the collaborative part (external view) should be agreed
on and monitored. Work is already started by the component-driven approach on
splitting workflows into Web Services. The structural needs of business process
models are also widened by the requirements of incorporating reusable sanc-
tioning, recovery, and compensation processes into eCommunity contracts. Fur-
thermore, shared ontologies and repositories for business process models should
be made available. Such facilities would improve the potential for reaching in-
teroperability in an environment where service components are truly developed
independently from each other. More fundamentally, ontologies and reposito-
ries would create a facility for checking semantical similarity of business process
model as part of the interoperability tests during eCommunity establishment.

Acknowledgment

This article is based on work performed in the Pilarcos and web-Pilarcos projects
at the Department of Computer Science at the University of Helsinki. The Pilar-
cos project was funded by the National Technology Agency TEKES in Finland,
Nokia, SysOpen and Tellabs. In web-Pilarcos, active partners have been VTT,
Elisa and SysOpen. The work much integrates with RM-ODP standards work,
and recently has found an interesting context in the INTEROP NoE collabora-
tion.

References

1. Kutvonen, L.: Automated management of inter-organisational applications. In:
Proc. 6th International Enterprise Distributed Object Computing Conference
(EDOC2002). (2002)

2. Kutvonen, L., Ruokolainen, T., Metso, J., Haataja, J.: Interoperability middleware
for federated enterprise applications in web-Pilarcos. In: Int. Conference on Inter-
operability of Enteprise Software and Applications (INTEROP-ESA’05), Springer
Verlag (2005)

3. Kutvonen, L.: Relating MDA and inter-enterprise collaboration management.
In Akehurst, D., ed.: Second European Workshop on Model Driven Architecture
(MDA), University of Kent (2004) 84–88

4. Ruokolainen, T.: Component interoperability. Master’s thesis, Department of
Computer Science, University of Helsinki (2004) In Finnish.

5. Kutvonen, L.: Trading services in open distributed environments. PhD thesis,
Department of Computer Science, University of Helsinki (1998)

6. OASIS Consortium: Universal Description, Discovery and Integration of Web Ser-
vices (UDDI) 3. (2002) http://uddi.org/pubs/uddi_v3.htm.

7. ISO/IEC JTC1: Information Technology – Open Systems Interconnection, Data
Management and Open Distributed Processing. ODP Trading Function. (1997)
IS13235.

610 L. Kutvonen, J. Metso, and T. Ruokolainen

8. ISO/IEC JTC1: Information Technology – Open Systems Interconnection, Data
Management and Open Distributed Processing. ODP Type Repository Function.
(1999) IS14746.

9. Kotok, A., Webber, D.R.R.: ebXML: The New Global Standard for Doing Business
Over the Internet. New Riders, Boston (2001)

10. Kutvonen, L.: Challenges for ODP-based infrastructure for managing dynamic
B2B networks. In Vallecillo, A., Linington, P., Wood, B., eds.: Workshop on ODP
for Enterprise Computing (WODPEC 2004). (2004) 57–64

11. Viljanen, L., Ruohomaa, S., Kutvonen, L.: The TuBE approach to trust manage-
ment. In: Proceedings of the 3rd iTrust internal workshop. (2004)

12. Kollingbaum, M.J., Norman, T.J.: Supervised interaction: creating a web of trust
for contracting agents in electronic environments. In: Proceedings of the first in-
ternational joint conference on Autonomous agents and multiagent systems, ACM
Press (2002) 272–279

13. Lymberopoulos, L., Lupu, E., Sloman, M.: An adaptive policy based framework
for network services management. Journal of Network and systems Management
11 (2003) 277–303 Special issue on Policy based management.

14. Dunlop, N., Indulska, J., Raymond, K.: Dynamic conflict detection in policy-
based management systems. In: 6th International Enterprise Distributed Object
Computing Conference (EDOC2002). (2002)

15. Karppinen, M.: Distributed policy enforcement. Master’s thesis, Department of
Computer Science, University of Helsinki (2003) In Finnish.

16. Haataja, J.: Monitoring of inter-enterprise collaboration networks in Web-Services
environments. Master’s thesis, Department of Computer Science, University of
Helsinki (2005) In Finnish.

17. W3C: Web Services Choreography Description language. (2004) http://www.w3.
org/TR/2004/WD-ws-cdl-10-20041217/, Working draft.

18. Henriksson, R., Kare, A., Lähde, M., Mäki, A.J., Stenberg, M., Virtanen, T.:
Business network management GUI. http://www.cs.helsinki.fi/group/ohtu/s-
2004/ltv.html (2004) Software engineering project.

19. Vähäaaho, M., Haataja, J.P., Metso, J., Suoranta, T., Silfver, E., Kutvonen, L.: Pi-
larcos prototype II. Technical Report C-2003-12, Department of Computer Science,
University of Helsinki (2003)

20. Vähäaho, M.: Trading with architecture models. Master’s thesis, University of
Helsinki (2003) In Finnish.

21. Kutvonen, L., Metso, J.: Services, contracts, policies and eCommunities – Rela-
tionship to ODP framework. In: Workshop on ODP for Enterprise Computing
(WODPEC 2005), IEEE Digital Library (2005)

22. Reichert, M., Dadam, P.: Adeptflex – supporting dynamic changes of workflow
without losing control. Journal of Intelligent Information Systems 10 (1998) 93–
129 Special Issue on Workflow Management.

23. Aggarwal, R., Verma, K., Miller, J., Milnor, W.: Contstraing Driven Web Service
Composition in METEOR-S. In: Proceedings of the IEEE SCC. (2004)

24. Grefen, P., Aberer, K., Hoffner, Y., Ludwig, H.: CrossFlow: Cross-Organizational
Workflow Management in Dynamic Virtual Enterprises. International Journal of
Computer Systmes Sciences and Engineering 15 (2000) 277–290

25. Lazcano, A., Alonso, G., Schuldt, H., Schuler, C.: The WISE approach to Electronic
Commerce. Int. Journal of Computer Systems Science and Engineering (2000)

26. ISO/IEC JTC1: Information Technology – Open Systems Interconnection, Data
Management and Open Distributed Processing. Reference Model of Open Dis-
tributed Processing. (1996) IS10746.

Inter-enterprise Collaboration Management in Dynamic Business Networks 611

27. Milosevic, Z., Linington, P.F., S.Gibson, Kulkarni, S., J.Cole: Inter-organisational
collaborations supported by e-contracts. In: The fourth IFIP conference on E-
commerce, E-Business, E-Government, Toulouse, France (2004)

28. Quirchmayr, G., Milosevic, Z., Tagg, R., Cole, J., Kulkarni, S.: Establishment of
virtual enterprise contracts. In: Database and Expert Systems Applications : 13th
International Conference. Volume LNCS 2453., Springer-Verlag (2002) 236–

29. Rabelo, R., Camarinha-Matos, L.M., Vallejos, R.V.: Agent-based brokerage for
virtual enterprise creation in the moulds industry. In: E-business and Virtual
Enterprises. (2000) http://gsigma-grucon.ufsc.br/massyve.

30. Daskalopulu, A., Dimitrakos, T., Maibaum, T.: Evidence-based electronic contract
performance monitoring. The INFORMS Journal of Group Decision and Negotia-
tion (2002) Special Issue on Formal Modelling in E-Commerce.

DOA 2005 PC Co-chairs’ Message

Welcome to the Proceedings of the 2005 International Conference on Distrib-
uted Objects and Applications (DOA). Some of the world’s most important and
critical software systems are based on distribution technologies. For example,
distributed objects run critical systems in industries such as telecommunication,
manufacturing, finance, insurance, and government. When a phone call is made
or a financial transaction performed, chances are that distributed objects are
acting in the background. Although existing distribution technologies, such as
CORBA, DCOM and Java-based technologies have been widely successful, they
are still evolving and serving as the basis for emerging technologies and stan-
dards, such as CORBA Components, J2EE, .NET, and Web Services. Regardless
of the specifics of each approach, they all aim to provide openness, reliability,
scalability, distribution transparency, security, ease of development, and support
for heterogeneity between applications and platforms. Also, of utmost impor-
tance today is the ability to integrate distributed object systems with other
technologies such as the web, multimedia systems, databases, message-oriented
middleware, the Global Information Grid, and peer-to-peer systems. However,
significant research and development continues to be required in all of these ar-
eas in order to continue to advance the state of the art and broaden the scope
of the applicability of distribution technologies.

The paper selection process was highly competitive with an acceptance rage
of 29.5.

The final program spans the following DOA-related topics: Web services
and service-oriented architectures, multicast and fault tolerance, aspect-oriented
middleware, component middleware, Java environments, mobility support, tech-
niques for application hosting, data persistency, security and privacy, messaging
and publish/subscribe, and communication services. We would like to thank the
authors of the submitted papers for their time and effort in making for a very
competitive selection process, the program committee members for their dili-
gence in reviewing the submissions, the General Chairs and other members of
the organizing committee, and the attendees for making DOA 2005 a success.

August 2005 Ozalp Babaoglu, University of Bologna
Arno Jacobsen, University of Toronto

Joe Loyall, BBN Technologies
(DOA 2005 Program Committee Co-chairs)

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, p. 612, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Developing a Web Service for Distributed Persistent
Objects in the Context of an XML Database

Programming Language

Henrike Schuhart, Dominik Pietzsch, and Volker Linnemann

Institut für Informationssysteme,
Universität zu Lübeck,

Ratzeburger Allee 160, D-23538 Lübeck, Germany
{schuhart, pietzsch, linnemann}@ifis.uni-luebeck.de

Abstract. The development of data centric applications should be performed in
a high-level and transparent way. In particular, aspects concerning the persistency
and distribution of business objects should not influence or restrict the application
design. Furthermore applications should be platform independent and should be
able to exchange data independently of their programming language origin.

There are several approaches for an architecture for distributed objects. One
example is CORBA. JDO and EJB allow specifications for distributed persistent
objects offering transparent persistency up to a certain degree. Nevertheless, the
programmer is still forced to write explicit code for making objects persistent or
for connecting to distributed objects.

In contrast to existing approaches, the XOBEDBPL project develops a database
programming language with transparency with respect to types, and persistency
and distribution with respect to objects. Application development is performed
on a high-level business object level only. A web service for realizing distrib-
uted persistency and data exchange is internal and completely integrated in the
XOBEDBPL runtime environment. Although the XOBEDBPL language is an ex-
tension of the Java programming language, the introduced concepts could be eas-
ily transferred to other object-oriented programming languages.

1 Introduction

Today’s programming languages and tools generally do not allow transparent devel-
opment of data centric applications. This means that, though it should not, it indeed
makes a difference for the programmer whether application objects are kept persistently
or have transient lifetime and whether they are local or shared. Due to insufficient ab-
straction levels, the same solution is often redeveloped. It would be preferable to be
able to develop applications on the business object level without having to think about
persistency all over the program. Furthermore, business object models should not be
restricted due to potential persistency or distribution. Instead, these aspects should be
solved automatically, meaning that code for persistency and distribution should be sys-
tem generated. Another important aspect is the exchange of objects between different
applications implying a transparent, platform-, language- and type-independent process
as well.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 613–630, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

614 H. Schuhart, D. Pietzsch, and V. Linnemann

Besides CORBA [1], which does not support persistency explicitly, JDO [2] and
EJB [3] provide persistent, slightly restricted objects for the Java programming lan-
guage. In JDO and EJB the programmer has to connect to the persistency instance
explicitly and has to take care by method invocation, for example, that certain objects
become persistent. JDO persistent objects are not language independent, while in EJB
every persistent object can be accessed via an integrated web service interface. For
every type there is a different WSDL definition and an object interface for this web
service must be generated each time. Hibernate [4] offers an O/R mapping framework
for Java environments, meant to shield most common object-relational-data-persistency
problems from the developer. Nevertheless, the programmer is forced to explicitly de-
fine how to load and store objects of a persistent class. This is done by the Hibernate
mapping file telling Hibernate what table in the database it has to access, and what
columns in that table it should use. In Java Spaces [5] objects must be made persistent
explicitly. Java Spaces systems do not provide a nearly transparent persistent/transient
layer, and work only on copies of entries.

The XML OBjEcts DataBase Programming Language (XOBEDBPL) is designed
as a high-level programming language offering static type checking, transparent object
states and distribution. The XOBEDBPL programmer writes applications on a business-
object-level only. The predecessor project XOBE introduces statically type checked
XML objects, XPath queries and update expressions. A first version of XOBEDBPL

overcomes transient only states for objects in XOBE and integrates type independent
and transparent persistency.

Previous Work. In [6] and [7] we present an extension of Java by XML objects, XML
language descriptions and XPath expressions for read-only queries. Moreover, the static
type checking mechanism with an efficient algorithm is introduced. Recent papers of the
authors about XOBEDBPL [8],[9] overcome, among others, readonly queries for XML
objects by introducing update expressions. Updates are also statically type checked.
In [10] the transparent type independent persistency concept for objects is introduced.
The persistency concept is transparent in the sense that a programmer does not have to
know whether the objects he is working with are persistent or transient. Moreover, the
persistency concept is type independent in the sense that any object regardless of type
can become persistent.

Contribution of this paper. The main contribution of this paper is the realization of
a transparent distribution concept of persistent objects in XOBEDBPL. The concept is
transparent in the sense that implementational or technical details are hidden from the
programmer. In XOBEDBPL we use a web service which is completely encapsulated in
the XOBEDBPL runtime environment and can be seen as a server for distributed and
persistent data. XOBEDBPL web service instances may exchange data and information.
Besides presenting the concept, we present the web service and implementation of the
XOBEDBPL runtime system in detail. An application example shows the feasibility of
our approach.

The paper is organized as follows. Section 2 gives an overview over the XOBEDBPL

project. Section 3 introduces the architecture used in XOBEDBPL. In section 4 we
present our new realization of the distributed persistency concept by the XOBEDBPL

Developing a Web Service for Distributed Persistent Objects 615

web service. Section 5 gives an application example showing a distributed paper archive
for a research environment. Finally in section 6 we present related work and finish with
conclusions in section 7.

2 XOBEDBPL

In this section we review the main aspects concerning XOBEDBPL in an informal
manner.

XML Integration. XOBEDBPL extends the object oriented programming language Java
by language constructs for processing XML fragments and in particular XML docu-
ments. XPath [11] is used for traversing XML objects and update expressions allow to
manipulate existing XML objects. In XOBEDBPL we represent XML fragments, e.g.
trees corresponding to a given schema, by XML objects. Therefore XML objects are
first-class data values that may be used like any other data value in Java. The declared
schema, which can be either a DTD [12] or an XML Schema [13], is used to type
different XML objects.

Throughout this paper we use an application example modeling a bibliography.
A bibliography manages a collection of articles, inproceedings, books etc.. Listing 1
shows the corresponding XOBEDBPL class definition. To demonstrate how XML is in-
tegrated in XOBEDBPL, we declare the member variable bib in line 4 to be of the XML
type dblp. This type is defined in the imported DTD called dblp.dtd in line 1. The
ximport statement in XOBEDBPL works analogously to Java’s import declaration.
The DTD is related to the DBLP project [14]. The DBLP server provides bibliographic
information on major computer science journals and proceedings.DBLP stands for Dig-
ital Bibliography & Library Project.

1 ximport db lp . d t d ;

3 p u b l i c c l a s s B i b l i o g r a p h y{
4 db lp b i b ;
5 S t r i n g d e s c r i p t i o n ;

7 p u b l i c vo id addWWW(S t r i n g key , S t r i n g da te , S t r i n g t i t l e , S t r i n g u r l){
8 xml<www> i n t e r n e t = <www key={key} d a t e ={ d a t e}>
9 < t i t l e >{ t i t l e }</ t i t l e >

10 <u r l >{u r l }</ u r l>
11 </www>;
12 add (i n t e r n e t) ;
13 }

15 p u b l i c vo id add (xml<(a r t i c l e | i n p r o c e e d i n g s | p r o c e e d i n g s |
16 book | i n c o l l e c t i o n | p h d t h e s i s |
17 m a s t e r t h e s i s |www)> p u b l i c a t i o n){
18 $UPDATE b i b INSERT p u b l i c a t i o n $;
19 }

21 p u b l i c xml<(a r t i c l e)∗> s e a r c h A r t i c l e s (S t r i n g a u t h o r){
22 xml<(a r t i c l e)∗> a r t i c l e s = $ b i b / a r t i c l e s [a u t h o r ={ a u t h o r }] $;
23 re turn a r t i c l e s ;
24 }
25 }

Listing 1. Class version of the bibliography

616 H. Schuhart, D. Pietzsch, and V. Linnemann

The method addWWW in lines 7-13 uses an XML object constructor to construct an
XML object of type www with the given parameters, e.g. title, url. Lines 15-19 exem-
plify XOBEDBPL’s update expressions by showing an insert operation. In addition to
inserts XOBEDBPL offers deletions, replacements, renaming and combinations of them.
The update in line 18 inserts a new publication into the content of the bibliography
member variable bib. Finally queries can be performed upon XML objects by XPath
expressions. In line 22 all articles published by a given author are searched and returned.
An XPath result in XOBEDBPL is always a list of XML objects. If XML types are unam-
biguous, neither a list nor a choice of several types, the keyword xml may be omitted,
as it is done in line 4, otherwise the keyword xml is followed by brackets containing
a list or choice of XML types. Static type checking for XML objects and operations
in XOBEDBPL consists of three main parts, namely XML formalization, type inference
and subtype checking. A more detailed description of the syntax and semantics of XML
objects in XOBEDBPL and of static type checking can be found in [6] and respectively
in [8].

Persistency. Up to now XML objects as well as Java objects are transient meaning that
these objects have only application lifetime, i.e. data gets lost each time an application
finishes. In contrast to tools offering type dependent persistency where objects of some
types can become persistent while others not, XOBEDBPL offers transparent and type
independent persistency by introducing a persistent environment called database. In
case of persistency frameworks class declarations often have to fullfill certain condi-
tions, e.g. descriptor files are needed listing persistent capable types as it is done in the
object oriented database system Fast Objects [15].

1 ximport db lp . d t d ;

3 p u b l i c databas e B i b l i o g r a p h y{
4 db lp b i b ;
5 S t r i n g d e s c r i p t i o n ;

7 / / e v e r y t h i n g e l s e r emains unchanged
8 / / . . .
9 }

Listing 2. Persistent version of the bibliography

1 p u b l i c c l a s s MainSearch{
2 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s){
3 . . .
4 / / Sear ch f o r t h e s p e c i f i c b i b l i o g r a p y (s)
5 S t r i n g d e s c r i p t i o n = ” Computer S c i e n c e B i b l i o g r a p h y ” ;
6 L i s t b i b l i o g r a p h y s = $ B i b l i o g r a p h y [d e s c r i p t i o n ={ d e s c r i p t i o n }] $;
7 B i b l i o g r a p h y t h e B i b l i o g r a p h y = n u l l ;
8 / / i f t h e r e i s a t l e a s t one , g e t t h e f i r s t
9 i f (b i b l i o g r a p h y s . s i z e () >0)

10 t h e B i b l i o g r a p h y = (B i b l i o g r a p h y) b i b l i o g r a p h y s . g e t (0) ;
11 / / do a n y t h i n g w i t h t h e b i b l i o g r a p h y
12 . . .
13 }
14 }

Listing 3. Searching and accessing an already existing (persistent) bibliography object.

Developing a Web Service for Distributed Persistent Objects 617

automatic conversion, if required

DBPL type

interface type

persistent type transient type

to instantiate objects in persistent context to instantiate objects in transient context

written by programmer

automatic transformation

at compile time

for type declarations

XOBE

Fig. 1. The concept to realize type independent persistency in XOBEDBPL

A database declaration in XOBEDBPL is used analogously to class declarations
well known from Java. The most important difference is that the keyword database
implies that generated objects of this database implicitly become persistent.

Member variables of such database declarations become persistent by reacha-
bility regardless of type and without modifying former defined class declarations. By
defining the bibliography objects within a persistent environment, its objects will be
kept persistent. From the programmer’s point of view it is sufficient to declare the bib-
liography declaration in listing 1 as database, everything else is done automatically.
Constructors generate new persistent objects and method invocations upon these ob-
jects persistently modify them. In listing 2 the persistent version of the bibliography is
shown. To retrieve an already existing persistent object XOBEDBPL provides an XPath
expression searching for all objects of a given class with given member variable values.
An example for retrieving a bibliography object with description Computer Science
Bibliography is given in listing 3 in lines 5 and 6.

The basic concept to realize the type independent and transparent persistency con-
cept in XOBEDBPL is that every class declaration is automatically transformed into a
transient and a persistent type variant, both implementing a common interface.

As illustrated in figure 1, the interface type is used throughout the transformed code,
while the transient type is instantiated in transient environments and the persistent type
is instantiated in persistent environments. In case an instantiated transient object is as-
signed later on to a variable within a persistent environment, it is transformed into an
equivalent persistent object. Detection and transformation into a persistent object are
performed automatically. The generation process of interface, transient and persistent
types is done at compile time. Some implementation details are given in section 3.

Transactions. To guarantee consistent access to persistent objects, a transaction con-
cept is needed. Basically any method invocation upon a persistent object implicitly
modifies its state in a single transaction. If several method invocations should be sum-
marized to one transaction, a XOBEDBPL transaction statement can be used. It is
defined analogously to Java’s already existing synchronized statement. The trans-
action statement requires a list of variable names. These variables must reference per-
sistent objects. The transaction statement block is than executed as one transaction for
all persistent objects being listed as parameters. At compile time these transactions are

618 H. Schuhart, D. Pietzsch, and V. Linnemann

automatically transformed into code which, among others, communicates with a local
XOBEDBPL server. This server is responsible for locking. Deadlocks are excluded, since
affected persistent objects are predetermined by the required parameter list. Listing 4
gives an impression of complex transactions.

1 . . .
2 t r a n s a c t i o n (b i b l i o g r a p h y){
3 i f (b i b l i o g r a p h y . s e a r c h A r t i c l e s (a u t h o r) . s i z e () >0){
4 / / o n l y i f a r t i c l e s o f t h e g i v e n a u t h o r e x i s t
5 / / a p p l y m o d i f y i n g o p e r a t i o n on t h e b i b l i o g r a p h y
6 }
7 }

Listing 4. A complex transaction upon a (persistent) bibliography object

Up to now persistent objects are stored automatically by the generated code into a
local database and loaded equivalently. The distribution aspect enabling to share data
among applications on different clients is discussed in the next sections. While section 3
describes general realization concepts, section 4 explains details about the XOBEDBPL

web service.

3 Architecture

In this section we give some details about the architecture and implementation of the
XOBEDBPL web service in general and about XOBEDBPL clients in particular. Figure
2 presents the structure of the XOBEDBPL web service and clients. A client connects
to a single XOBEDBPL web service called XOBEDBPL Service Node (XSN), which is
part of a network consisting of one or more XOBEDBPL Web Services (XWS) and one
or more BackGround Persistency Services (BGPS). Such a network is called shard.
A BGPS can be used directly by one ore more XOBEDBPL web services of the same
shard for storing data. Several shards build up a kind of local persistency
grid. Consequently communication and organization aspects can be taken from grids
as described in [16] and [17]. A XOBEDBPL client is connected via a XOBE local server
and described in the following paragraph. Besides XOBEDBPL clients there can be any
other web service client using the web service as a transparent, type independent, high-
level distributed persistency service.

The XOBEDBPL web service communication is completely integrated into the
XOBEDBPL runtime environment, which is hidden from the programmer as a whole.

Important aspects of a XOBEDBPL client are shown in figure 3. The left hand side
consists of the preprocessor which translates XOBEDBPL programs into pure Java code.
The resulting code includes, among other things, communication with the XOBE local
server and therefore with the web service. The program parser is built with the help of
the Java Compiler Compiler (JavaCC) [18]. The Xerces parser [19] is used for parsing
DTDs and XML Schemas. Internally programs are represented using the Java Tree
Builder (JTB) [20]. Within the preprocessor and respectively at compile time XML type
checking occurs. The transformation process consists of two steps, first transformation
of XML specific syntax parts and second transformation of type structure in general.

Developing a Web Service for Distributed Persistent Objects 619

Fig. 2. Structure of the XOBEDBPL web service environment

Transformation of type structure realizes transparent and type independent persistency
and is done according to the concepts shown in figure 1. After the whole transformation
process XOBEDBPL programs can be executed by any Java Virtual Machine (JVM).

The left hand side of figure 3 illustrates a XOBEDBPL client at runtime. Transformed
XOBEDBPL programs communicate with XOBE local servers. For local data they use
local persistency mechanisms like databases. For shared data they can connect to one
instance of the XOBEDBPL web service. Communication with the web service is auto-
matically achieved with the help of the WSDL2Java tool from the Apache Axis project
[21].

At the moment we use Postgres [22] as relational database for performance reasons,
but this is transparent to the programmer. Object-relational mapping is done automat-
ically and independently of type. Principles from [23] are realized for this task. In the
future we will test and use different databases including native XML systems and rela-
tional databases. Approaches which combine native XML and relational databases like
the newly proposed hybrid system in [24] are very promising.

4 Web Service for Distributed Persistent Objects

In this section we introduce the XOBEDBPL web service which realizes distributed
persistent objects for the XOBEDBPL database programming language. Entries for the
DBLP project are desired to be read and inserted by different users working on different
clients. More precisely, DBLP entries are supposed to be shared. In XOBEDBPL writing
a DBLP program is independent of this aspect, e.g. the program in listing 2 can remain

620 H. Schuhart, D. Pietzsch, and V. Linnemann

XOBE Local Server

DBPL program

database

Type Checking

DBPL

XOBE DBPLtransformed program

XOBE DBPL

precompiler

program XML Schema or DTD

Java

XML Transformation

Structure Transformation

Transformation

Program Parser Schema Parser

XOBE

Client

Java objects

Object Cache local data

transformed XOBE

Fig. 3. Important constituents of a XOBEDBPL client. The left hand side shows the precompiler,
the right hand side illustrates the runtime architecture of the client.

unchanged independently of entries being shared or being local and private. Neverthe-
less, somehow the runtime environment needs to know, if and where data should be
shared and stored. So, if the program of listing 2 is compiled without any further in-
formation, the runtime environment and the generated code will assume by default that
all data is kept locally. Otherwise the programmer or an administrator has to write a
small XML configuration file containing boolean information about distribution and
one XOBEDBPL web service address. The referenced XOBEDBPL web service instance
may be e.g. part of a local network in a business or part of a trusted network. Any per-
sistent data of this client’s runtime environment is interchanged directly with this web
service instance.

The XOBEDBPL web service interface offers methods for all essential tasks includ-
ing retrieving persistent objects, storing or respectively updating an object and dele-
tions. Moreover, there are a few more methods solving tasks arising in the context of the
former operations. The interface is kept thin and generic. Since the web service is com-
pletely integrated into the XOBEDBPL runtime environment and requests are formulated
as well as responses are processed automatically, the interface must provide methods
being capable to deal with objects of any possible type. Furthermore object references
are represented with the help of ids. The web service’s clients in the XOBEDBPL run-
time environment are so called XOBE local servers encapsulating communication with
running XOBEDBPL programs. The latter are written by the programmer, although com-
munication code is generated and added at compile time. The web service is completely
hidden from the programmer. To understand this section, it is important to mention
some further aspects concerning the XOBEDBPL runtime architecture. At first we use
a limited number of web service instances, which are organized in a so called shard.
Such a shard can be seen as a kind of local grid, where all web service hosts are con-

Developing a Web Service for Distributed Persistent Objects 621

+ returnSessionId(SessionId) : Response

XobeWebService

+ load(LoadRequest) : Response
+ store(StoreRequest) : Response
+ delete(DeleteRequest) : Response

+ registerType(TypeRegistrationRequest) : Response

+ executeTransaction(TransactionId) : Response
+ extendTransactionId(TransactionId) : Response
+ requestTransactionId(SessionId) : Response

+ requestSessionId(Credentials) : Response
+ extendSessionId(SessionId) : Response

Fig. 4. Interface of the XOBEDBPL web service

nected with each other, like in a business company. Every XOBEDBPL web service client
is directly connected with one specific host, usually the closest one. Objects are kept
without redundancy. Besides the actual object data, the web service keeps meta infor-
mation about its stored objects and types. Further details concerning the architecture
can be found in section 3.

Figure 4 lists the available web service methods, which are predominantly load
to retrieve persistent objects, store to store or respectively update a persistent object
and delete to delete a persistent object. If a store request for an object of an unknown
type occurs, the web service needs to know its structure. With the help of the method
registerType the client can register this new type. A second important group of
methods is provided for transactional support, e.g. requestTransactionId,
extendTransactionId and executeTransactionId. Finally the last group
consists of the methods requestSessionId, extendSessionId and
returnSessionId providing the functionality to register (XOBEDBPL) clients to
the web service.

The XOBEDBPL web service deals with five most important complex types, namely
DataObject types to represent any object, TypeDescriptor to represent any
object type, id types to represent object references and a hierarchy of result and re-
sponse types. A DataObject can either be of an atomic kind, e.g. String and inte-
ger, or of a complex type. A TypedObject contains information about its type in
the form of an id referencing a TypeDescriptor. DataSets are used to pass
lists or arrays of objects. Finally an AggregatedObject contains additional in-
formation about its object id. Since objects can be exchanged without passing the
whole referenced object tree, DataReferences are provided. ComplexObjects
add object information about attributes. Any XOBEDBPL object is transformed into a
DataObject automatically. The upper part of figure 5 gives an overview of the data
object hierarchy. A TypeDescriptor represents the type description of an object and
consists of the corresponding type name and an id for this type descriptor. Further-
more a ComplexTypeDescriptor offers a list of the corresponding member vari-
able declarations. If a complex type is derived from a super type, the corresponding

622 H. Schuhart, D. Pietzsch, and V. Linnemann

<<a>>AtomicObject

AttributeDeclaration

−name : String
−tdId : TypeDescriptorId
−multiplicity : Multiplicity

<<a>>TypeDescriptor

−typeName : String
−tdId : TypeDescriptorId

ComplexTypeDescriptor

−attributeDeclarations : AttributeDeclarations[]
−parentTdId : TypeDescriptorId
−issued : Calendar
−lifetime : long

AtomicTypeDescriptor

TypeRegistrationRequest

−ctd : Complex

StampedRequest

−timestamp : Calendar

<<a>>IdentifiedRequest

−iid : IdentificationId

<<a>>Request

LoadRequest

−selection : SelectionStatement

StoreRequest

−dataObject : ComplexObject

StringObject

−atomic:String

IntegerObject

−atomic:int

<<a>>AggregatedObect

−oid : ObjectId

DataSet

−elements : DataObject[]

<<a>>TypedObject

−tdId : TypedDescriptorId

<<a>>DataObject

DataReference ComplexObject

−attributes : DataObject[]

Fig. 5. Complex types for object data, type description and requests used by the XOBEDBPL web
service

reference is given in form of a type descriptor id as well. In XOBEDBPL such type de-
scriptions are generated for every type at compile time. The lower left part of figure
5 presents the type description hierarchy. Communication between XOBEDBPL clients
and the web service enables to define a suitable request and response structure. The
lower right part of figure 5 gives an overview of some important request types. Accord-
ing to the different operations offered by the web service, we have got a LoadRequest
containing a selection statement used as parameter type for the load method. Similarly
a StoreRequest contains an attribute holding the data object, which is going to be
stored. StoreRequest is used as parameter type by the store operation. Other request
types are defined accordingly. The response type hierarchy is designed according to the
kind of response, e.g. a positive result, an error or a negative result. E.g. an expected an-
swer in the context of a store request is the information that the objects have been stored
successfully. In this case the response is of the concrete type StoreDoneResponse.
Analogously the expected answer in the context of a load request contains the selected
objects, which are then contained in the LoadDoneResponse. Other response types
are used correspondingly. Communication with the web service starts with the client’s
registration. Received session ids enable to read object data. Moreover the session id

Developing a Web Service for Distributed Persistent Objects 623

Fig. 6. Loading objects

allows to manipulate object data. Corresponding operations are executed as a sequence
of independent transactions automatically. In case that a specific sequence of operations
should be performed as one single transaction, the client is supposed to send a transaction
id along with each single update instead. Transaction blocks in XOBEDBPL are converted
at compile time to this kind of communication. Transactions are discussed later.

Loading. The XOBEDBPL web service receives a load request for either a single object
or a set of objects. A load request consists of the client’s session id and a selection ex-
pression. The web service checks the validity of the session id and continues to evaluate
the selection expression. Selection expressions consist of object or type ids. With the
help of the corresponding metadata, the web service tests, if the requested objects are
available locally, otherwise the request is broadcast to web services located in the corre-
sponding shard. If an id is registered to the web services metadata, a shallow copy of the
corresponding object is loaded from the database servers. Finally the XOBEDBPL web
service sends those shallow objects via SOAP as response to the client, which can either
be a XOBEDBPL local server or another web service. The loading process is illustrated
in figure 6.

Storing. The XOBEDBPL web service client sends the data object having to be kept per-
sistently in connection with an identification id. An identification id can either be a ses-
sion id, which is sufficient for simple transactions, or a transaction id, which is needed
to perform complex transactions. After checking the identification id, the web service
has to decide where to store or respectively update the object data. In case the data ob-
ject is stored for the first time, our current heuristic is that the web service contacts its
background database and stores the data locally. Otherwise the object data is stored on
the corresponding original web service’s host. Future strategies will move object data
from one host to another, if it turns out that this host is more suitable, e.g. its directly

624 H. Schuhart, D. Pietzsch, and V. Linnemann

Fig. 7. Storing a data object with known type in single transaction mode

connected XOBEDBPL local hosts work more frequently with this object data. So far we
have assumed that the web service, which is going to store a new object, already knows
how to do this, e.g. that he knows the structure or more precisely the type. Hence, if an
object of a new type is stored, the web service’s response asks for the corresponding
type descriptors. In this case the web service’s method called registerType can be
used by the client to answer. Once again the client can either be another XOBEDBPL

web service or a XOBE local server instance. The storing process described so far can
be seen in figure 7 in case of a known type and in figure 8 in case of a new type.

Deleting. The XOBEDBPL web service client requests an object deletion by sending
an identification id and a selection expression. After checking the identification id the
web service evaluates the selected set of object ids analogously to the load case. With
this information the web service forwards the delete request to its background database
or respectively broadcasts it to the corresponding XOBEDBPL web services being part
of the shard. At the moment objects are deleted in a shallow manner, since referenced
objects are supposed to be part of an aggregation. Additionally, objects, which are re-
quested to be deleted are marked and physically deleted after a specific time intervall.
This mechanism can be compared with a garbage collector in the Java programming
language. The delete process is shown in figure 9.

Besides selection expressions, data objects and class descriptors, successful com-
munication with the XOBEDBPL web service enables session ids to identify clients and
transaction ids to guarantee consistent access of distributed objects. Session ids as well
as transaction ids can be requested from the XOBEDBPL web service.

Ids in the whole XOBEDBPL runtime environment are generated in a decentralized
manner by using the SHA-256 hashing algorithm. I.e. the input value to calculate an
object id consists of its creation time, its type and client information. Accordingly, the

Developing a Web Service for Distributed Persistent Objects 625

Fig. 8. Storing a new data object with unknown type in single transaction mode

input value for a session id consists of the client’s IP address and a time stamp. The
probability of a collision in case of object ids in XOBEDBPL is 1:256, hence generated
ids are statistically unambiguous. Another concept to generate unambiguous ids is that
every host and client administrates its own counter. Ids are generated with the help
of this counter and additional information, e.g. the unambiguous IP address. Further
concepts to generate ids can be found e.g. in [23].

Lifecycle of a session id. A client requests a session id by passing client specific data.
After checking this data the server sends a session id with an initial lifetime, which
is rather short. Besides the web service generates its own customer id to identify the
client. Further requests from the same client extend the lifetime of the corresponding
session id. A client can finish any session by sending the id back to the XOBEDBPL web
service.

Lifecycle of a transaction id. After receiving a valid session id, the client can perform
load operations and store and delete operations in simple transaction mode. To perform
modifying operations like store and delete in complex transaction mode, a transaction id
is needed in addition. Transaction ids are given to a client on the basis of a session id.

Transactions. As mentioned before every single modifying operation which is re-
quested with a session id is handled and executed as a single short transaction inter-
nally. Only the corresponding object is locked for a short time. Complex transactions,
initialized in case of XOBEDBPL transaction blocks, which consist of more than one
modifying operation, are requested along with a transaction id. These operations are
queued by the corresponding directly connected web service. Finally, at the moment
the client sends its request to execute the transaction, all involved objects are locked on
request of the directly connected web service instance. The locking request can occur on

626 H. Schuhart, D. Pietzsch, and V. Linnemann

Fig. 9. Deleting a data object

different hosts by different web service instances. Finally and only if the original web
service instance receives a positive result all operations are executed. At the moment
XOBEDBPL supports a standard flat transaction model based on a two phase commit
protocol. Nested transactions are not supported yet.

Local and Shared Data Management Optimization. The XOBEDBPL web service is
completelyintegratedintheXOBEDBPL runtimeenvironment.Duetoperformancereasons
and if persistent data is not going to be shared it can be kept locally as well. A running
XOBEDBPL programinteractswiththeXOBElocalserverasmentionedbefore.Itsinterface
is designed analogously to the web service’s interface. An instance can either connect to
the web service or use a local persistency mechanism, e.g. a local database.

5 Application Example

This section describes an application scenario using XOBEDBPL. We assume that a sci-
entific institute wants to manage bibliography entries persistently. Bibliography entries
are modeled according to the DBLP description as defined earlier in this paper. Each
employee of the institute may create new bibliography entries. A new bibliography en-
try is supposed to be shared among all institute employees. Consequently an employee
may work with all existing bibliography entries of the institute. A realization based on
XOBEDBPL is illustrated in figure 10. The institute contains a server network including
three hosts (Host 1, Host 2, Host 3) and nine clients. Here, clients are the em-
ployees personal computers and hosts are servers on which the bibliography entries are
stored. Furthermore each client possesses a XOBEDBPL runtime environment execut-
ing the bibliography program of listing 2. A XOBE web service instance is deployed
on each host. As explained previously a XOBE web service manages its own meta
data and some persistent entries. The meta data contains the addresses of all XOBE

Developing a Web Service for Distributed Persistent Objects 627

Client22

runtime environment
DBPL

Client21

BE211

title = {"Java Data Objects"}

isbn = {...}
...

author = {"Jordan","Russell"}

Client12

Client11

Client31Client32

Client33

BE211

BE341BE111

Client34

XOBE
runtime environment

DBPL

XOBE
runtime environment

DBPL

XOBE web service

inactive connection

active connection

XOBE web service

XOBE web service

Client22

Client23

Institute’s server network

BE212BE211

Meta data

Host 2
Host 1

BE341

Host 3

BE341
Client34
...

employee 1
employee 2

employee 4

employee 3

employee 5employee 6

employee 7

employee 8

employee 9

Institute

...

BE211

BE212

Host 2

BE111

BE112

Meta data

Host 3
Host 2
BE111
BE112
...

Host 1

Meta data

Host 1
Host 3
BE212
BE211
Client21

XOBE

Fig. 10. Institute working with bibliography entries

web service hosts being part of the same network, ids of locally available bibliography
entries and finally information about the currently connected XOBEDBPL clients. E.g.
the meta data of Host 2 indicates that its directly connected web service instances
are located on Host 1 and Host 3, the bibliography entries BE212 and BE211
are stored locally and Client21 and Client22 are registered at the moment. As
one can see from figure 10, all three web service instances are connected with each
other. A client’s XOBEDBPL runtime environment is directly connected to a specific
host’s XOBE web service. In the institute a client is connected directly to its closest
host’s, e.g. Client21 is connected to Host2. Clients which are currently inactive
because the bibliography program and its runtime environment are not executed, are
drawn without inner details, e.g. Client12. Bibliography entries are abbreviated by
BE followed by a number indicating the client which originally created the entry and
an index number. I.e. the entry BE211 was created by Client21 and has 1 as in-
dex number. Figure 10 shows that entries are located on the host which is closest to
the corresponding client, e.g. BE341 was created by the program running on client
Client34 and is now stored on the host Host 3. Due to the realization of the web

628 H. Schuhart, D. Pietzsch, and V. Linnemann

service network in XOBEDBPL (see section 4), clients can work with all bibliography
entries regardless of location and origin, e.g. client Client34 is working with en-
tries BE211, BE111 and BE341. Realizing this application example with XOBEDBPL

means profiting of distribution concepts and location transparency. Although entries
are geographically distributed, the programmer can act as if all entries are in one cen-
tral host. Another interesting aspect is the fact that most often each employee creates
and works with topic specific entries. Since his own entries are stored on the closest
host, the current XOBEDBPL configuration runs at optimal cost. First experimental tests
in which 1000 entries were stored and worked with gained constant and respectively
less than linearly increasing times in the size of 10 ms.

6 Related Work

Distributed Objects. CORBA [1] is an OMG specification and a basis to develop dis-
tributed applications which can exchange messages independent of hardware, operating
systems and programming languages. Besides incompatibility, it lacks of an own object
oriented programming language interface. In contrast to CORBA, Java Remote Method
Invocation (Java RMI) [25] was developed for a heterogenous Java environment. It does
not need a new interface description language like CORBA since Java already includes
interfaces. CORBA as well as Java RMI do not support persistency aspects explicitly,
they both realize distributed object architectures.

Persistent Objects. The Java Data Objects specification (JDO) [2] reached final sta-
tus in the year 2002. JDO consists of an interface specification between the application
layer including the persistent capable entity objects and the persistency framework.
Details about the persistency framework are not given or defined. Statements about
used technologies, e.g. XML or relational databases, or realization details, e.g. map-
ping details are not made. Persistent cabable classes must be defined and described in
a separate XML file. The programmer has to connect to a central instance dealing with
persistent objects. This persistent manager must be called explicitly each time a spe-
cific object should become persistent. JDO’s persistent objects are not language inde-
pendent. Hibernate [4] is an open-source object relational mapping framework for Java
environments, meant to shield developers from most common data-persistency-related
programming tasks. It also has a specific query language. Hibernate offers facilities
for data retrieval and update, connection pooling, transaction management, declarative
entity relationship management, and declarative and programmatic queries. In contrast
to XOBEDBPL the data model for storing data is not transparent and fixed to relations.
Moreover the specific O/R mapping for persistent classes has to be defined by the pro-
grammer explicitely. In contrast to Java Spaces [5], a persistence technology loosely
based on Tuple Spaces [26], XOBEDBPL emphasizes full automation of persistence
for objects. Java Spaces uses read, write and take commands to manipulate persistent
data. These commands must be executed explicitly in order to make an entry persistent.
XOBEDBPL overcomes this necessity.

Distributed and Persistent Objects. Like JDO, Enterprise Java Beans (EJB) [3] and
their client side counterparts Java Beans provide a framework for distributed persis-
tent objects in Java. More recent versions include web service capabitities. They try to

Developing a Web Service for Distributed Persistent Objects 629

reduce programming difficulties and exception overhead. Nevertheless EJB are not de-
veloped as a database programming language. Therefore, the EJB programmer is forced
to make objects persistent and to connect to a central persistency instance explicitly by
writing specific code for this task.

Database Programming Languages. To the best of our knowledge there is no database
programming language which integrates the XML data model into an object oriented
language like Java. The concept of a database programming language includes espe-
cially transparent and type independent persistency as well as a transaction concept.
Among the approaches which integrate the relational model is DBPL [27] and its suc-
cessor project Tycoon [28]. In the DBPL project Modula-2 is extended by parametric
bulk types for relations. Its successor project Tycoon is based on an object-oriented
programming language.

7 Concluding Remarks

In contrast to existing approaches XOBEDBPL is a database programming language with
transparency regarding type, persistency and distribution aspects of objects. Application
development can be done exclusively on a high business object level. In this paper we
introduced the concepts for realizing distributed persistent objects in XOBEDBPL. A
web service for distributed persistency and data exchange is used internally. Most im-
portantly this web service is totally hidden from the XOBEDBPL programmer and fully
integrated in the XOBEDBPL runtime environment. Furthermore we have described an
application scenario managing scientific bibliography entries proving the feasibility of
our approach. Future work will concentrate on transactions and communication times
within the XOBEDBPL runtime environment. Several starting points have been men-
tioned in the paper. In this context we will start to perform further tests comparing the
XOBEDBPL approach with other approaches introduced in the related work.

References

1. Object Management Group (OMG): Common Object Request Broker Architecture
(CORBA). OMG CORBA, http://www.corba.org/ (2005)

2. Sun Developer Network: Java Data Objects (JDO) . Sun Developer Network, http://
java.sun.com/products/jdo/ (2005)

3. Sun Developer Network: Enterprise JavaBeans Technology. Sun Developer Network,
http://java.sun.com/products/ejb/ (2005)

4. Hibernate: Hibernate. URL: http://www.hibernate.org/4.html (2005)
5. Sun Developer Network: Jini Network Technology - Specifications. Sun Developer Network,

http://java.sun.com/software/jini/specs/ (2005)
6. Kempa, M., Linnemann, V.: Type Checking in XOBE. In Weikum, G., Schöning, H., Rahm,

E., eds.: Proceedings of Datenbanksysteme für Business, Technologie und Web (BTW), 10.
GI-Fachtagung,. Volume P-26 of Lecture Notes in Informatics., Gesellschaft für Informatik
(2003) 227–246

7. Kempa, M.: Programmierung von XML-basierten Anwendungen unter Berücksichtigung
der Sprachbeschreibung. PhD thesis, Institut für Informationssysteme, Universität zu Lübeck
(2003) Aka Verlag, Berlin, (in German).

630 H. Schuhart, D. Pietzsch, and V. Linnemann

8. Schuhart, H., Linnemann, V.: Updates for Persistent XML Objects. In Vossen, G., Leymann,
F., Lockemann, P., Stucky, W., eds.: Proceedings of Datenbanksysteme für Business, Tech-
nologie und Web (BTW), 11. GI-Fachtagung,. Volume P-65 of Lecture Notes in Informatics.,
Gesellschaft für Informatik (2005) 245–264

9. Schuhart, H., Linnemann, V.: Implementing A Database Programming Language For XML
Applications. In Guimaraes, N., Isaias, P., eds.: International Conference Applied Com-
puting(IADIS). Volume 1., International Association for Development of the Information
society (2005) 153–161

10. Schuhart, H., Pietzsch, D., Linnemann, V.: Framework of the XOBE Database Programming
Language. In: International Conference Applied Computing(IADIS). (2005) 193–200

11. W3Consortium: XML Path Language (XPath), Version 2.0. W3C Working Draft, http:
//www.w3.org/TR/xpath20 (2004)

12. W3Consortium: Extensible Markup Language (XML) 1.0 (Third Edition). Recommenda-
tion, http://www.w3.org/TR/2004/REC-xml-20040204/ (2004)

13. W3Consortium: XML Schema Part 0: Primer Second Edition. Recommendation, http://
www.w3.org/TR/xmlschema-0/ (2004)

14. Ley, M.: Digital Bibliography and Library Project. http://dblp.uni-trier.de/
(2005)

15. Poet Software GmbH: FastObjects. URL: http://www.fastobjects.com (2004)
16. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable virtual

organizations. Lecture Notes in Computer Science 2150 (2001) 1–25
17. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration (2002) Foster,
I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. Globus Project, 2002,
www.globus.org/research/papers/ogsa.pdf.

18. java.net: Java Compiler Compiler (JavaCC) – The Java Parser Generator. http://
javacc.dev.java.net/ (2004) Version 4.0.

19. Apache XML Project, T.: Xerces Java Parser. http://xml.apache.org/
xerces2-j/ (2005) Version 2.7.1.

20. Group, U.C.: Java Tree Builder JTB. http://compilers.cs.ucla.edu/jtb/
(2004) Version 1.3.2.

21. Apache Axis Project, T.: axis. http://ws.apache.org/axis/index.html (2004)
Version 1.2.

22. PostgreSQL Global Development Group: PostgreSQL.
http://www.postgresql.org/ (2005)

23. Ambler, S.W.: Mapping Objects To Relational Databases.
http://www.AmbySoft.com/mappingObjects.pdf (2000)

24. Beyer, K., Cochrane, R.J., Josifovski, V., Kleewein, J., Lapis, G., Lohman, G., Lyle, B.,
Özcan, F., Pirahesh, H., Seemann, N., Truong, T., der Linden, B.V., Vickery, B., Zhang, C.:
System rx: one part relational, one part xml. In: SIGMOD ’05: Proceedings of the 2005
ACM SIGMOD international conference on Management of data, New York, NY, USA,
ACM Press (2005) 347–358

25. Sun Developer Network: Java Remote Method Invocation (Java RMI) . Sun Developer
Network, http://java.sun.com/products/jdk/rmi/ (2005)

26. Gelernter, D.: Multiple tuple spaces in linda. In: PARLE (2). (1989) 20–27
27. Schmidt, J., Matthes, F.: The DBPL Project: Advances in Modular Database Programming.

Volume 19 of Information Systems. (1994) 121–140
28. Matthes, F., Schröder, G., Schmidt, J.: Tycoon: A Scalable and Interoperable Persistent En-

vironment. Fully Integrated Data Environments, ESPRIT Basic Research Series, Heidelberg,
Springer-Verlag (2000) 365–381

Comparing Service-Oriented and Distributed
Object Architectures

Seán Baker1 and Simon Dobson2

1 IONA Technologies plc, Dublin IE
sean.baker@iona.com

2 School of Computer Science and Informatics, UCD Dublin IE
simon.dobson@ucd.ie

Abstract. Service-Oriented Architectures have been proposed as a re-
placement for the more established Distributed Object Architectures as
a way of developing loosely-coupled distributed systems. While super-
ficially similar, we argue that the two approaches exhibit a number of
subtle differences that, taken together, lead to significant differences in
terms of their large-scale software engineering properties such as the
granularity of service, ease of composition and differentiation – properties
that have a significant impact on the design and evolution of enterprise-
scale systems. We further argue that some features of distributed objects
are actually crucial to the integration tasks targeted by service-oriented
architectures.

1 Introduction

Distributed Object Architectures (DOA) provide a stable computing platform
on which to co-ordinate information systems within enterprises. The increasing
desire to integrate very large, very loosely-coupled systems, and to automate
business-to-business interactions, has led to an appreciation of the complexities
of extending DOA technologies across enterprise boundaries. Service-Oriented
Architectures (SOA) have been introduced with the goal of providing both intra-
and inter-business services, and so potentially acts both as a complement to, and
replacement for, DOA as an enterprise platform.

SOA and DOA are aimed at different problems, however. The origins of
DOA lie with systems such as the CORBA standard, which was defined as a
general-purpose integration technology. Because there was little support for im-
plementing servers when CORBA was introduced in the early 1990s, CORBA
implementations (and indeed the standard), concentrated on helping program-
mers to implement clients and servers. CORBA’s commercial success made it a
rival for other middleware: CORBA and the various other middlewares formed
middleware islands, each with good internal integration, but poor inter-island
integration. J2EE was introduced, among many other reasons, to provide a dis-
tributed object facility for Java.

SOA has been introduced to tackle the highest-level integration task, one im-
portant aspect of which is the integration of these middleware islands.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 631–645, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

632 S. Baker and S. Dobson

DOA can be very specific to one specification or standard; SOA has to be more
technology neutral. SOA has to work at a wider scale across an enterprise, across
middleware islands in an enterprise, and across enterprises themselves.

One may debate, therefore, whether SOA is a minor re-adaptation of DOA
ideas to a more XML-based world, a new departure in middleware that differs in
fundamental ways from what came before it, or a business-driven replacement
for old-style technology-driven middleware designs that better reflects modern
concerns. This paper contributes to the debate by analysing the features that
make SOA and DOA similar and identifies a number of subtle features that make
them different. We take a more architectural perspective than that of Vogels[1],
while reaching many similar conclusions. In particular, we argue that some of the
features that some SOA advocates deprecate – especially standardised interface
types and fine-grained object decomposition – might actually be key features
in the integration task that SOA is targeting, while other features that are
sometimes cited as being core differences – such as the use of messages rather
than method calls – are of little deep significance. We argue that, despite being
small individually, the sum of these differences leads to a radically different set
of properties for enterprise-level system modeling and design.

Section 2 highlights the superficial similarities between the two approaches
and argues that these mask the deeper differences which are explored in more de-
tail in section 3. Section 4 concludes with some observations on how the features
sets of DOA and SOA point towards an more complete approach to enterprise
integration.

2 Similarities

For most of this paper we use Web Services and CORBA as prototypical exam-
ples of SOA and DOA respectively. This is simply to provide a concrete context
for discussion, and should not be taken as suggesting that either system is a pure
exemplar of the architectural style. The choice of Web Services carries some par-
ticular worries: it is very new technology and therefore not yet mature, and as it
matures it may begin to concentrate too strongly on its own specifications and
lose sight of the broader, technology-neutral requirements of SOA. We believe
that, because SOA is used at such a high level within enterprises, it cannot be
based solely on any one middleware.

Perhaps unsurprisingly there is no universally agreed definition of either SOA
or DOA: however, there is a certain convergence on the general thrust of the two
architectures:

Service Oriented Architecture. “A service is a set of functionality provided
by one entity for the use of others. It is invoked through a software interface
but with no constraints on how the functionality is implemented by the
providing entity . . . A service is opaque in that its implementation is hidden
from the service consumer except for (1) the data model exposed through
the published service interface and (2) any information included as metadata

Comparing Service-Oriented and Distributed Object Architectures 633

to describe aspects of the service which are needed by service consumers to
determine whether a given service is appropriate for the consumer’s needs.”
(OASIS)

Distributed Objects Architecture. “[Distributed object] applications are
composed of objects, individual units of running software that combine func-
tionality and data, and that frequently (but not always) represent something
in the real world. Typically, there are many instances of an object of a single
type . . . For each object type you define an interface. The interface is the
syntax part of the contract that the server object offers to the clients that
invoke it. Any client that wants to invoke an operation on the object must
use this interface to specify the operation it wants to perform, and to marshal
the arguments that it sends. When the invocation reaches the target object,
the same interface definition is used there to unmarshal the arguments so
that the object can perform the requested operation with them.” (OMG)

These bare definitions obviously share many similarities, and one might ar-
gue (as indeed several commentators have) that SOA is simply a marketing re-
invention of DOA. However, the similarities are actually rather deceptive, and
we believe that some of the differences, although subtle, are vitally important in
understanding the true relationship between the two approaches.

First the similarities. Both SOA and DOA are structured around remote enti-
ties (services or objects) which perform actions on behalf of clients. The remote
entities typically export a strongly-typed interface defined using a language-
neutral interface definition language (WSDL[2] or IDL[3]), transported using a
language-neutral wire protocol (SOAP[4] or IIOP[3]). Not all implementations
function in exactly this way: Java’s J2EE architecture is based on distributed ob-
jects but has a language-specific interface language and wire protocol, although
J2EE objects can also act as part of CORBA systems.

Perhaps the most common comparison between SOA and DOA contrasts
SOA’s technological neutrality against DOA’s lack of flexibility. Web services are
presented as being able to use lightweight HTTP interactions, but without being
tied to HTTP or WSDL, and this is contrasted against CORBA’s dependence on
heavyweight IIOP and IDL. This comparison is largely specious, in principle if not
always in practice. CORBA’s interoperable object references (IORs) encapsulate
multiple “profiles” for accessing the same object via different protocols, allowing an
ORB that supports a number of protocols to access the object using whichever pro-
tocol is most appropriate. It would be perfectly possible for an ORB to use HTTP
as an optimised lightweight transport while transparently interoperating with ev-
ery other CORBA installation. Equally the dynamic stub and skeleton interfaces
provide independence from IDLwhen required. (See [5] formore details.)The point
here is not to praise CORBAunnecessarily but rather to focus the debate on actual
rather than superficial differences between systems.

Both SOA and DOA provide invocation by clients of operations at remote
sites. DOA “prefers” two-way interactions both because this matches the needs
of a typical application and because CORBA poorly defines the semantics of one-
way calls; and by default a method call invokes a remote operation and waits

634 S. Baker and S. Dobson

for it to complete. SOA is more neutral, in that it supports interactions being
constructed explicitly from messages. This makes one-way interactions simpler
to construct.

Some authors have contended that this difference in invocation forms the
essence of the difference between DOA and SOA. However, experience shows
that this is deceptive. CORBA, for example, supports both synchronous and
asynchronous communication. The former predominate, and normal use of IDL
interfaces implies synchronous communication: however, one-way calls can be
defined and more advanced RPC structures such as “promises” can be used to
make two ways calls non-blocking[6]. By contrast, a large fraction of SOA sys-
tems make almost exclusive use of two-way synchronous calls constructed from
messages. While DOA and SOA may have different “preferences”, the similar-
ities dominate1. While there is a difference between methods and messages it
actually occurs elsewhere, not in the basic calling conventions – a point we return
to in section 3.7.

SOA and DOA place similar emphasis on the signatures of operations, but
place different emphases on interfaces types for the services themselves. DOA
systems emphasise the use of interface compilers to construct client-side stubs
for invoking methods. While some commentators have stressed that SOA oper-
ations can be called individually, without interface compilation, our experience
in practice is that large-scale SOA systems are using interface compilers too.

Both SOA and DOA are essentially families of systems sharing common archi-
tectural principles, and it is instructive to see the extent to which these sets of prin-
ciples also overlap. SOA advocates stress the separation of systems into services
with well-defined interfaces accessed using a common communications framework,
allowing composition of services and removing the boundaries between applica-
tions and middleware islands. DOA advocates would provide a remarkably similar
list: indeed, CORBA’s initial raison d’être was to provide such a bridge between
different applications, later extended to operate between middlewares. The point
of both architectures is to provide interoperability rather than homogeneity.

3 Differences

What, then, are the differences between SOA and DOA? The (alleged) novelty
and dynamism of the former are often set against the (alleged) rigidity of the
latter: it is hard to see how this can be true given their clear technical simi-
larities. The source of these comparisons may actually reflect the differences in
maturity between the two approaches: DOA has a small number of dominant
implementatations, and the features and restrictions of these are used to define
the overall approach. Even though SOA is too new now for such definition and
restriction, the two have always have strong similarities.

However, perhaps the defining characteristic of enterprise-scale software ar-
chitecture is its sensitivity to small differences, and we believe that SOA and
1 It is certainly the case, however, that synchronous CORBA interactions are signifi-

cantly more optimised that asynchronous calls in most ORBs.

Comparing Service-Oriented and Distributed Object Architectures 635

DOA place this in high relief. Despite the similarities described above there are
differences, and moreover these differences count in aggregate. A system engi-
neered with SOA will be significantly different from one engineered with DOA,
especially in terms of its long-term evolution. Moreover each approach has fea-
tures that could be used beneficially by the other. It is these effects that we
explore in this section.

3.1 Granularity

Granularity refers to the size of entities that are independently addressable within
a system. In DOA systems these entities are individual objects; in SOA they are
services. While this is a distinction that is, it must be admitted, impossibly sub-
jective, we believe that some useful general observations may be made.

DOA inherits from standard (single-host) object-oriented programming a
preference for fine-grained interfaces, although needing a somewhat coarser gran-
ularity to perform well over a network. Interface designers and programmers
are encouraged to divide systems using interfaces providing a single abstraction
(strong cohesion) and exhibit minimal dependence on the implementations of
other interfaces (weak coupling). In designing a system for a travel agent, for
example, a DOA designer might define interfaces for individual travel itineraries
with methods for costing, booking and querying, and then make these accessible
through an interface to a travel agent that collects together the itineraries and
provides additional aggregate operations (figure 1(a)).

(a) DOA

(a) DOA

(b) SOA

(b) SOA

Fig. 1. Different granularities of visible objects

A SOA designer, by contrast, would probably take a more coarse-grained
approach, for example designing a travel agent service providing operations on
itineraries, with the itineraries themselves being specified by a reference number.
The travel agent interface would provide itinerary creation, querying and so on,
without exposing itineraries as an abstraction in their own right – although
they would probably exist within the implementation (figure 1(b)). Indeed, the
internal object model in the SOA case may be identical to that in the DOA case,
differently exposed.

636 S. Baker and S. Dobson

The difference is more than superficial. At a modeling level, DOA encourages
an approach that is more purely object-oriented in the sense of identifying each
abstraction and making it available in its own right as a first-class object. SOA
encourages a decomposition in terms of real-world entities that have a concrete ex-
istence at the business level, and which captures the relationships and interactions
between business entities without introducing other, extraneous abstractions.

As a SOA system evolves, new service interfaces will be introduced only when
a new business entity is used. Continuing the example, a travel agent’s interaction
with a travel-insurance company will result in an insurance service interface be-
ing defined, again encapsulating the insurance business’ business-level facilities. A
DOA system evolves similarly, except that introducing an insurance service would
also involve introducing a collection of smaller abstractions and interfaces (for poli-
cies, claims etc) that would typically be elided in public in the SOA case.

The coarse-grained, SOA view is that, from a business perspective, a travel
agent is an entity “worthy” of an interface whilst itineraries are not: business inter-
operability should occur at the level of businesses, not with those businesses’ inter-
nal abstractions. The finer-grained, DOA view is that itineraries, policies, claims
etc are domain objects in their own right and should be modeled as such. This ob-
viously reflects more that a simple difference in technology,. and cuts to the heart
of the differences in approaches promoted by the different architectural styles.

There are significant advantages to the SOA view. It reduces the “surface
area” of interfaces, and hence the learning curve for client programmers. It also
tends to produce interfaces that perform operations in fewer interactions. The
DOA view may lead to interactions that are too “chatty”, in the sense of requir-
ing a number of interactions to accomplish the same effect. In many systems this
will increase the number of network operations to accomplish a single business-
level task, reducing system throughput.

This may also explain why concurrency control and transactions are a sig-
nificantly more visible issue in DOA than in SOA. A fine-grained system will
inevitably involve multiple object interactions in a single business task, and so
will need to make transactions visible to clients. SOA by contrast exposes the
business tasks explicitly, and so is better able to abstract concurrency control
behind the service interface. However the SOA approach needs concurrency con-
trol in order to scale, and these issues are re-appearing at the services level to
support the emerging activity on web services transactions.

A significant literature has grown up around design patterns for object-
oriented systems, some part of which now targets distributed object systems.
(Good examples are [7, 8]). One immediate observation is that these design pat-
terns almost always result in finer-grained decompositions of objects. This sug-
gests that the usual object-oriented approaches translate well to DOA (with the
caveat that they must be balanced against the need to avoid over-chatty inter-
actions in the interests of performance and robustness), but not necessarily so
readily into SOA.

Comparing Service-Oriented and Distributed Object Architectures 637

3.2 Interface Types

DOA systems typically place significant emphasis on the definition of interface
types. Interface types appear for applications (for example, standardised objects
models for different vertical domains), for common services (for example the
CORBA services and facilities definitions), and in the standards for DOA mid-
dleware themselves. The use of interfaces is pervasive and can be used to great
effect: the CORBA trading service provides an interface for choosing between
instances of an interface, with the interface repository providing a machine-
readable description of the interface types.

SOA places less emphasis on common interface types: some commentators ac-
tually go further, asserting that SOA services should not have interface types that
can have multiple instances[9]. However it seems inconceivable that a widely-
deployed SOA infrastructure would not converge, at least to some extent, at
least ad hoc, within specific vertical markets, on a set of commonly-agreed in-
terface types. For example, a travel agency consortium could specify a shared
definition and insist that all of its members adopt it. It is not sensible to prevent
the consortium defining such an interface type – as indeed many are already –
and the notion of SOA would be weakened if it does not actively support this.

Standardising interface types requires that there is an authority able to man-
age the standard. This authority may be defined in system-centric terms (all
users of this system agree to these interfaces), or may be defined per-vertical (a
set of common interfaces for the travel industry) or globally (a common interface
to discovery services). In DOA there is typically strong agreement throughout a
given system – although the system may be very large and most programmers
may only be familiar with the interfaces of the sub-systems with which they
work. In SOA by contrast – which targets even larger systems that DOA, and
which specifically deals with systems spanning enterprises – there is no global
attempt to control interface types.

Standardised interfaces within industry verticals can provide leverage at the
modeling level as well. If we again consider the example from above, a travel
agent using a travel insurance company will often be able to re-use the exist-
ing, agreed object model for insurance companies, reducing both the costs of
extension and the degree of coupling between parties.

SOA advocates argue that the lack of standardised interface types increases
flexibility and dynamism. However, interface standardisation evolved for a rea-
son: without such interfaces, system developers must explicitly write adapters
for each component. As system size and complexity increase, creating and (much
more importantly) maintaining this “glue” code becomes the dominant cost. It
is impossible to avoid the concern that large-scale SOA deployment may be
better able than DOA to encompass a wider range of disparate systems, but
only at the cost of hugely increasing the amount of interface adaptation and
maintenance required.

In many large systems each interaction will typically only use a small fraction
of each interface. This is perhaps more true for SOA than DOA, as the interfaces
involved tend to be larger (section 3.1). One might argue that SOA adapters can

638 S. Baker and S. Dobson

therefore focus on providing only the part of the interface required, which may
simplify their development. Experience suggests that this argument is specious
over the long term, as increasing complexity will tend to “fill out” the use of
interfaces over time.

The reduced emphasis on interface type standards therefore does not remove
the pain of standardisation for enterprises, but instead simply defers it to inte-
gration time and replicates it for each integration.

3.3 Composition

The usual response to an overly fine-grained decomposition (typically mani-
fested as poor performance) is to re-engineer the system to coalesce several
interfaces.

In many cases the internal design of a system will follow its external decom-
position, with objects for itineraries etc. Coalescing interfaces will typically take
the form of providing a façade that hides the individual objects.

Composition of services is an integral part of SOA, often referred to as or-
chestration and supported by a number of emerging standards (for example
BPEL4WS[10]). Individual “partners” in a composite service are specified by
providing the service port, optionally including a port type (interface type).
Many programming languages have similar constructions, notably the structure
and signature system in Standard ML[11].

One can provide orchestration without interface types. However, the absence
of standardised interfaces make it difficult to see how a single process descrip-
tion can be re-used on different instances of services. The point is that interfaces
provide more than individual operation signatures. An interface combines a set
of operations with an implicit (or, increasingly, an explicit) contract on the way
in which these operations will work together. Adherence to an agreed, reviewed
and documented standard provides developers with confidence – albeit some-
times misplaced – that the operations will function together as intended and
will respect the interface’s contract. Allowing orchestration on the basis of indi-
vidual operations, without this level of confidence in their consistent underlying
assumptions, seems unlikely to succeed on a large scale.

3.4 Identifying Instances

Both SOA and DOA provide names for instances of interfaces: SOA typically
identifies services by URLs for their service endpoints where queries should
be directed, providing direct integration with the web, while DOA systems
typically use more opaque identifiers such as CORBA IORs or J2EE object
references.

A fine-grained DOA decomposition means that individual entities will typi-
cally have a distinct identity. We can identify an itinerary using an object refer-
ence, and both interact with it directly and pass it to other objects for them to
use (figure 1(a)). By contrast a SOA decomposition focuses on service endpoints

Comparing Service-Oriented and Distributed Object Architectures 639

which will not typically identify such a small object with a (SOA-level) identi-
fier, and so will use an ad hoc reference such as itinerary number, reflecting the
submerging of the object model behind the business interface.

Fig. 2. Standardised documents replace standardised interfaces for data exchange

The coarse-grained approach has an immediate impact on systems architec-
ture. Since data objects cannot be referred to directly by reference, the designer
has two options. The first alternative is to identify internal data by some form of
reference number, forcing the service implementor to manage an ad hoc names-
pace of objects. These namespaces are private, in the sense that an identifier
generated by one instance cannot be used by another instance. To use the travel
agent example again, a client must keep track of which travel agent service is
managing which itinerary, so that queries are directed to the right interface.
A service that used multiple services, for example when booking hotels through
multiple providers, would be faced with quite a complex task. In SOA these issues
must be managed outside the framework; in DOA they are typically managed by
the middleware. This weakens SOA’s claim to provide location transparency[12]:
while technically true, the added complexity of namespace management reduces
its impact in practice.

The second alternative (figure 2) is to manage data using a more document-
centric approach, with a service creating documents that describe the data be-
ing manipulated: the travel agent provides an itinerary document in XML to
the client, which may then store it or pass it back to the service at a later
point. Such documents can be passed between services if they have an agreed
format, so some level of standardisation across enterprises is again needed to fa-
cilitate integration. Services still need to convert documents to and from an
internal representation and must take steps against alteration or forgery of
date held externally, both of which complicate data management and interface
coding.

640 S. Baker and S. Dobson

If SOA is widely deployed, private namespaces and/or document formats will
inevitably proliferate and complicate interactions. It seems possible to us that
the DOA model therefore has significant advantages in terms of orchestration,
service composition and re-purposing, as the single notion of object provides a
significant simplification at the level of composition even though it may compli-
cate individual interactions.

Some more structured approaches to endpoint description are emerging.
BPEL4WS encourages the instanciation of business processes to handle state-
ful interactions, using correlation sets to identify specific instances[10–section
10]. WS-Addressing also provides more structure for addressing into individual
services[13]. Neither approach provides support for the service implementor in
managing their internal namespaces or entity lifecycles.

3.5 Modeling

Is the SOA or DOA modeling approach better? The answer essentially depends
on the view we take as to what is happening when an analyst or modeler pro-
duces an object model. Both views may be derived depending on our initial
assumptions:

If we take the view that the set of interface types identified are fundamentally
tied to the system being modeled, capturing its essence, then it follows that these
are unlikely to change unless there is a fundamental change made to the system.
If such a fundamental change is made, any model – wherever it lies on the
spectrum of granularity – will have to change. It also follows that such a set
of interfaces will be easy to use because they model the real world so well. It
also follow that making each object visible will allow improved re-use and reduce
complexity, since the designer can focus on providing only the different functions
in the system at each interface. We would therefore conclude that exposing the
detailed object model will improve and simplify the long-term evolution of the
system.

On the other hand, if we take the view that the object model is a detail
in the day-to-day internal running of a business, it follows that the model will
be subject to frequent change as the business evolves. It thus follows that such
change should be masked from clients as it has no real significance to business-
to-business interactions; would lead to undue coupling between businesses; and
would anyway be too complicated for an external client to understand as under-
standing the decomposition (and hence the functions available) would involve
too much understanding of the business. (This is essentially a model-level ver-
sion of the well-known “yoyo problem”[14] at the code level.) We would therefore
conclude that exposing only business-level functions, preferably in one interface
and with no visible dependencies on other services, will improve the robustness
of business-to-business interactions in the face of evolution.

Both positions are perfectly defensible. Our own view is that SOA cannot be
dogmatic on the approach used. The guidance from practice would be that main-
stream object-oriented decomposition can lead to over-fine interfaces for DOA.
Interfaces cannot be so fine-grained that they will perform well only over very

Comparing Service-Oriented and Distributed Object Architectures 641

fast networks: this would lead to too tight a coupling between a service and its
clients. However, the SOA principles themselves – and certainly the technology
used to implement them – should not restrict the modeling approach that an
enterprise believes in. In particular, it is too fine a point for an architecture to
regulate on how granular a set of interfaces should be.

Objects can be business level or system level. Viewed simplistically, services
must be business level: however, it is difficult to draw the dividing line between
business- and system-level entities, and this raises much the same issues around
modeling as above. In addition, the principles behind SOA (such as well-defined
contracts and separating implementation and interface) are just as valid at the
system level as they are at the business level. (Some commentators even use
the term SOA for the system level, and the term B-SOA for the business level;
we prefer to define SOA as the uppermost level of integration and use the term
Enterprise Service Bus to refer to the technology that facilitates communication
between SOA entities).

In both SOA and DOA, it is common for programmers to generate ser-
vice/object interfaces from some form of interface on existing systems (perhaps
a description of the data that is exchanged, or interfaces defined in program-
ming languages). These lead to low-level – and often inappropriate – interfaces.
The only excuse for doing this in DOA is as a stepping stone to offering a
proper high level interface to clients; there is probably no excuse for doing it
in SOA.

The rise in interest in model-driven architecture[15] provides a possible bridge
between the modeling views. MDA defines a system architecture as a set of trans-
formations between models to reflect the different levels of concern in systems
development. Coarse-grained SOA interfaces fit well into this scheme, although
this still leaves the problems (exemplified in section 3.4) that arise from the
inability to share model objects across enterprises.

3.6 Inheritance and Implementation

Inheritance is often regarded as a core characteristic of object-oriented systems
[16]. Many DOA systems support inheritance at two distinct but related levels.
At the interface level, an interface may specialise another by adding new oper-
ations. At the implementation level, it is often possible (although not required)
to re-use the implementation of one interface in defining the specialisations of
that interface.

Not all DOA systems have this feature, however. J2EE is particularly re-
stricted in this regard, in that there is exactly one implementation of each inter-
face within a single application instance, and that implementation is (somewhat
perversely) not a valid Java-level instance of its own external interface type. The
lack of polymorphism means that many approaches used in other DOA systems
do not translate well into J2EE. It also complicates some simple but highly
effective optimisations, most notably using language-level references instead of
external network references when exchanging references to objects within the
same server.

642 S. Baker and S. Dobson

WSDL does not provide the notion of interface specialisation, perhaps in
keeping with SOA’s reduced emphasis on interface types altogether2. However,
sub-interfaces provide a vital mechanism for differentiating providers without
compromising interoperability: a client may use additional features provided by
a particular provider if it understands them, but may rely on a core of operations
being available uniformly regardless of provider. Run-time interface manipula-
tions and sub-interface checks make this process reasonably straightforward. We
persist with our view that interface types are actually more important for SOA
than for DOA, given the focus on cross-enterprise integration.

Inheritance is not the only form of extension, however. Delegation-based mod-
els are also extremely powerful, and neither SOA nor DOA typically support the
notion intrinsically. While such mechanisms are useful linguistically, they can be
approximately provided using events (see below).

3.7 Operations, Messages and Events

Returning to the use of messages versus operations, one may ask the question
why this difference is so insignificant, given the widespread belief that messages
(in one form or another) are an essential feature of loosely-coupled systems.

Both SOA and DOA allow clients to invoke operations on individual inter-
faces. While messages (or one-way methods) may decouple the request from its
completion, they do not change this model.

By contrast, event-based systems allow information to be transferred to zero,
one or more consumers according to several possible models. In the CORBA
event service’s “push” model, receipt of an event automatically triggers the ex-
ecution of handler code, so a single event can cause code to be invoked on the
different objects that are subscribed to the same event channel.

The key difference is not (as is sometimes stated) between messages and
method calls as invocation mechanisms, but rather between first-class events
which may be manipulated programmatically and second-class invocation mech-
anisms that operate beneath the language level. To use the terminology of
aspect-oriented programming[17], events reify the calling mechanism into the
language and allow it to be modified to (for example) queue invocations or dis-
tribute them more widely. The XML nature of SOAP messages makes them
easier to manipulate programmatically. Such manipulations are also common
in CORBA systems however, albeit with considerably more effort being
required.

Both SOA and DOA infrastructures have external event services (often with
a standardised interface type in the case of DOA). Clients may interact with such
event services using either messages or method calls, which are then converted
into events and operated on using filters, publish/subscribe etc. While events
provide powerful support for loose coupling, SOA’s explicitly message-based in-
vocation mechanism provides little or no such advantage over DOA.

2 Although sub-interfaces may be added to later versions.

Comparing Service-Oriented and Distributed Object Architectures 643

4 Conclusion

We have explored the similarities and differences between the service-oriented
and distributed object approaches to enterprise system modeling, design and im-
plementation. While the approaches (and their underlying technologies) share
significant features in common, their differences – while subtle – lead to sig-
nificantly different views of enterprise system structuring and evolution. This
strongly suggests that SOA in particular represents more than simply a market-
ing phenomenon, and conversely that DOA has both a significant on-going niche
and a number of important lessons to impart.

Of all the issues examined, four stand out. Firstly, SOA requires a sig-
nificantly coarser granularity of exposed object model than DOA. The focus
on coarse-grained, aggregated interfaces may simplify interactions across enter-
prises (or business divisions) by reducing the number of interface interactions
needing to be understood. This is an important simplification in a world in
which businesses interact more dynamically and without necessarily establishing
long-term relationships between their information systems: programmers need
to understand less of the target businesses’ infrastructure in order to avail of its
services.

Secondly, the ability to exchange references to objects within the framework
seems to be a positive step for orchestration, allowing different providers to work
with each others’ data directly rather than via private references or descriptive
documents – which require standardisation anyway. Forcing designers to deal
with these additional complexities seems to serve no useful purpose.

Thirdly, SOA’s de-emphasising of interface types will not lead to simpler in-
tegration over the long term. While simpler to establish, such ad hoc approaches
push complexity out into each integration, the costs of which will spiral as SOA
increases in market penetration. It would seem prudent to repeat the OMG’s
experience in defining standardised object models and interfaces within vertical
market segments, allowing providers to differentiate themselves in other ways or
by providing extensions to the basic structures.

Finally, business integration did not start with SOA. There is a existing
volume of work in modeling the issues, objects, operations and relationships of
specific industries. The significance of this work lies in the understanding it gives
of industries and the degree of commonality that exists between providers, rather
than in the object models per se. Perhaps, then, a more appropriate, business-
level question is: how can this understanding be re-used in the slightly differ-
ent context of SOA? It may be that the underlying modeling assumptions are
too different to allow simple translations, although providing a service-oriented
façade might allow SOA to use the existing DOA infrastructures with little ad-
ditional cost.

These are extremely subtle issues, but taken together the different solutions
that SOA and DOA take to them aggregate to deliver distinctively different sys-
tem architectures. SOA systems are likely to use more asynchronous invocations
and to involve less up-front cost to establish, although the complexities of adap-
tation may over time may make this a rather Pyrrhic victory. DOA systems may

644 S. Baker and S. Dobson

more closely reflect a conceptual object model of the application domain and
make information sharing and exchange simpler, but only in situations where
standard object models and interface definitions can be agreed upon and when
the value of the expected interactions justifies the standardisation costs.

The messages versus remote method calls debate misses the point. The
distinction is rather between first- and second-class invocation mechanisms,
and flexible event systems are equally definable in – and complementary to –
both SOA and DOA, and so do not provide a reason to choose one over the
other. Indeed, Gartner Group have suggested that any system architecture re-
quires both invocation-based and event-based interactions to maximise loose
coupling.

SOA’s goals of a more “business-friendly” distributed platform are laudable,
economically significant and technologically challenging. It is however important
to remember and re-use the features from more traditional DOA approaches that
can usefully be included into the top-level integration of enterprise systems.

References

1. Vogels, W.: Web services are not distributed objects. IEEE Internet Computing
7 (2003) 59–66

2. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language 1.1. Technical report, World Wide Web Consortium (2001)

3. Henning, M., Vinoski, S.: Advanced CORBA programming with C++. Addison
Wesley (1999)

4. Winer, D.: XML-RPC specification. http://www.xmlrpc.com/spec (1999)
5. : Common Object Request Broker Architecture (CORBA/IIOP), v.3.0.3. Technical

Report formal/2004-03-12, Object Management Group (2004)
6. Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous pro-

cedure calls in distributed systems. In: Proceedings of the ACM SIGPLAN con-
ference on Programming Language Design and Implementation, PLDI’88, ACM
Press (1988) 260–267

7. Mowbray, T., Malveau, R.: CORBA design patterns. Wiley (1997)
8. Fowler, M.: Patterns of enterprise application architecture. Addison Wesley (2003)
9. Webber, J.: Horses for courses: services, object and loose coupling. Web Services

Journal 4 (2004)
10. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,

K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerewarana, S.: Business
Process Execution Language for Web Services, version 1.1. Technical report, IBM
(2003)

11. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The definition of Standard ML
(revised). MIT Press (1997)

12. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A note on distributed computing.
In Vitek, J., Tschudin, C., eds.: Mobile object systems: towards the programmable
Internet. Springer-Verlag (1997) 49–64

13. Box, D., Christensen, E., Curbera, F., Ferguson, D., Frey, J., Hadley, M., Kaler,
C., Langworthy, D., Leymann, F., Lovering, B., Lucco, S., Millet, S., Mukhi, N.,
Nottingham, M., Orchard, D., Shewchuk, J., Sindambiwe, E., Storey, T., Weer-
awarana, S., Winkler, S.: Web services addressing (WS-Addressing). W3C member
submission (2004)

Comparing Service-Oriented and Distributed Object Architectures 645

14. Taenzer, D., Ganti, M., , Podar, S.: Object-oriented software reuse: the yoyo
problem. Journal of Object-Oriented Programming 2 (1989) 30–35

15. Frankel, D.: Model driven architecture: applying MDA to enterprise computing.
Wiley (2003)

16. Cardelli, L., Wegner, P.: On understanding types, data abstraction and polymor-
phism. ACM Computing Surveys (1985) 471–522

17. Kiczales, G., des Rivières, J., Bobrow, D.: The art of the metaobject protocol.
MIT Press (1991)

QoS-Aware Composition of Web Services:
An Evaluation of Selection Algorithms

Michael C. Jaeger, Gero Mühl, and Sebastian Golze

Techn. Universität Berlin, Institute of Telecommunication Systems,
Sek. FR6-10, Franklinstrasse 28/29, D-10587 Berlin, Germany

{golze, gmuehl}@ivs.tu-berlin.de, mcj@cs.tu-berlin.de

Abstract. A composition arranges available services resulting in a defined flow
of executions. Before the composition is carried out, a discovery service identi-
fies candidate services. Then, a selection process chooses the optimal candidates.
This paper discusses how the selection can consider different Quality-of-Service
(QoS) categories as selection criteria to select the most suitable candidates for
the composition. If more than one category is used for optimisation, a multi-
dimensional optimisation problem arises which results in an exponential com-
putation effort for computing an optimal solution. We explain the problem and
point out similarities to other combinatorial problems – the knapsack problem
and the resource constraint project scheduling problem (RCPSP). Based on this
discussion, we describe possible heuristics for these problems and evaluate their
efficiency when used for web service candidate selection.

1 Introduction

A Web service composition is a collection of single Web services that form a new,
more complex service. The creation process of a composition can be divided into sev-
eral phases. In the first phase, the control flow – the execution arrangement of individual
tasks – is defined. The idea is that available Web services realise individual tasks needed
for the composition. Different so called flow languages (e.g. BPEL4WS) are already
available to describe such a flow. Based on the flow description, a discovery service
identifies suitable task candidates. Then, a selection process chooses the optimal candi-
date for each task. After the assignment of available Web services to the tasks has been
fixed and saved in a flow description, an execution engine uses the flow description to
execute the composition. An execution engine can also provide the composition as a
new composed Web service that is ready for invocation by third parties.

In the Web service domain, an open initiative hosted by the OASIS group pro-
poses a specification for the service discovery called Universal Description, Discovery
and Integration, in short UDDI [13]. The UDDI approach is part of the Web Services
Architecture promoted by the W3C [2]. Another, more technology independent view
on a service architecture is given by the ISO Reference Model for Open Distributed
Processing (RM-ODP). In the RM-ODP, a so called trader facilitates the discovery
and the selection process [7]. A trader matches requirements of service requesters to

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 646–661, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

QoS-Aware Composition of Web Services 647

services that are offered by service providers. First, functional requirements are the rel-
evant criteria for a matchmaking process in the service discovery which results in a set
of candidates. In addition, non functional requirements represent preference criteria. A
selection process can involve such criteria to identify the optimal service.

According to this separation proposed by the RM-ODP, this paper will explain how
a trader selects Web services by different optimisation criteria for compositions com-
prised by more than one Web services. Thus, it is presumed that a preceding discovery
process has identified a set of candidates that matches the functional requirements for
the referring tasks. If a trader has to select an individual Web service from the set of
candidates, a trading function identifies the most suitable service by comparing the
discovered candidates. However, in a composition a trader should identify the optimal
set of Web services which are about to be combined. Selecting for each tasks the best
candidate in isolation will in most cases not lead to an optimal solution. This paper
explains why this problem can be regarded as a combinatorial problem and discusses
possible solutions. For our discussion, we consider different QoS criteria that represent
non-functional characteristics that we can quantify using different metrics. First, we
give an overview about QoS for Web services and explain how the QoS of individual
services can be aggregated in compositions. After the problem description and the in-
troduction of possible solutions, the related work is discussed. The paper ends with our
conclusions and future plans in this field of research.

2 QoS in Web Service Compositions

In this paper, we use different QoS categories to define requirements, which serve as
selection criteria for available services. Each QoS category has an increasing or a de-
creasing direction. An increasing direction means that a higher value indicates a better
quality, for decreasing categories vice versa. A set of QoS categories has been already
introduced by various authors for the use in workflows by Cardoso [3] or in the Web
service domain by Zeng et al. [17], or Menasce [10]. From these categories we have
chosen the following four to give a more concrete discussion and examples in the re-
mainder of this paper. Please note that our methods and algorithms will work also for
other QoS categories:

Maximal Execution Time (Decreasing). The execution time defines the amount of
time to execute the service. Different definitions are possible, which may include
different phases of the invocation of the Web service. In this paper it is presumed,
that covering the values of individual services will result in the overall execution
time of the composition. In other words, delays or interrupts of the control flow are
ignored.

Cost (Decreasing). The cost defines generally the amount of resources needed to use a
service. Like execution time this measure is decreasing meaning that a lower value
is preferred.

Reputation (Increasing). The concept of a reputation is basically about a ranking
given by users of the service. For example, the auction platform eBay allows clients
to rank the behaviour of other clients [17]. The reputation is defined as the average
of the individual ranks of users.

648 M.C. Jaeger, G. Mühl, and S. Golze

Availability (Increasing). The availability denotes the probability that the execution
of the node performs successfully and is regarded as an increasing dimension.

For the description the QoS of Web services different proposals already exist. Tosic
et al. have proposed the Web Service Offerings Language (WSOL) [12] which cov-
ers among other issues also the definition of QoS statements covering a Web service.
WSOL represents an XML-based language and has the focus on specifying the non-
functional aspects of Web service. WSOL directly builds upon a WSDL description.
Considering the WSOL as well as other languages, we need to point out that the defi-
nition of the used QoS concepts must be given individually. For example, WSOL cov-
ers this issue with an external reference to a common definition of the particular QoS
category.

2.1 QoS Aggregation

In order to select candidates for tasks of a composition that is based QoS of the indi-
vidual services, a method is needed to calculate the resulting QoS of the whole com-
position. In a preceding paper we have introduced an aggregation method to calculate
the QoS of the composition based on the QoS of the individual services [8]. The model
identifies seven basic structural elements called composition patterns. These structural
elements were derived from a set of workflow patterns by van der Aalst et al. [15].
Workflow patterns form a set of functional and structural requirements for workflow
management systems.

Among different reasons, we have chosen to use the workflow patterns because van
der Aalst has shown that the structural part of the workflow patterns also applies to
commonly known flow languages for compositions [14]. Thus, we can assume that our
elements cover these flow languages as well. Since the scope of this paper does not
allow to explain which of the workflow patterns we have considered as a composition
element, we would like to refer the reader to the according analysis in our preceding
paper [8]. From this analysis, we identified the following composition patterns:

Sequence of service executions. A sequence can either prescribe a specific order in
which the services have to be executed or the services can be executed in an arbi-
trary order. For the aggregation model, the order of the executions is not relevant.

Loop. The execution of a service or a composition of services is repeated for a certain
amount of times.

XOR split followed by an XOR join. From a parallel arrangement only one task is
started and the synchronising operation waits for this started task.

AND split followed by an AND join. From a parallel arrangement all tasks are started,
and all tasks are required to finish for synchronisation.

AND split followed by a m-out-of-n join. From a parallel arrangement all n tasks are
started, but m < n tasks are required to finish for synchronisation.

OR split followed by OR join. From a parallel arrangement a subset of the available
tasks are started, and all of the started tasks are required to finish for
synchronisation.

QoS-Aware Composition of Web Services 649

OR split followed by a m-out-of-n join. From a parallel arrangement a subset of n
tasks from the available are started, and m < n tasks are required to finish for
synchronisation.

Using these elements, we aggregate the QoS for each category and for each pattern
element. Figure 1 shows the pattern-wise aggregation of a simple composition example.
To aggregate the maximum execution time, an algorithm would start to determine the
largest value in the parallel sub-arrangement. Then, the sum of the sequential arrange-
ment including the aggregated value of the parallel arrangement is calculated. This ap-
proach enables us to view the aggregation in a pattern-perspective, i.e. not the whole
composition is relevant at once, but rather the local pattern elements. Following this
approach, we have defined aggregation rules for each QoS category and for each com-
position element. Of course, further, more specific patterns are possible. The intention
of the patterns is to deliver a model that allows to define a QoS statement that covers the
composition. Such a statement will always represent an approximation of the delivered
QoS during run time. Our model represents also an approximation and is subject to the
trade-off between complexity and feasibility. We have described the patterns and the
rules for different QoS categories in detail and compared them to other approaches in
our preceding papers [8] [9].

Task A

Task B

Task C

Task F

Task A

Task B

Task C

Aggregated
Tasks D & E

Task F

Aggregated
Tasks A - FSplit: Parallel

AND-AND

Join: Parallel

AND-AND

Task ETask D

Fig. 1. Collapsing the Graph for Aggregation Example

2.2 The Selection of Services

The goal of the selection is to identify the best assignment of service candidates to
the tasks of the composition. The selection can be performed by either considering or
ignoring the arrangement of the tasks. When the structure is ignored, the selection can
be formulated based on the following model:

Let the composition be a set of n tasks T = {t1, t2, . . . , tn}. The output of the
previously performed discovery process is a set of m candidates S = {s1, s2, . . . , sm}.

650 M.C. Jaeger, G. Mühl, and S. Golze

Each of the p QoS categories is assigned a unique number 1, . . . , p. Then, each can-
didate can be expressed by a vector – a QoS-vector – with values sy, y ∈ {1, . . . , p}
that represent the QoS categories that have been taken into account:

sx =

⎛⎜⎜⎝
s1
s2

.

.

.
sp

⎞⎟⎟⎠
with x ∈ {1, . . . , m} denoting the number of the according candidate. The selec-
tion process assigns one candidate to each of the tasks. Optionally, a selection could
also identify two or more candidates for each task to increase the dependability of the
tasks by executing all these candidates. However, we ignore this specific aspect for our
discussion.

To find the optimal assignment, an algorithm must evaluate different combinations
from a global perspective, i.e. the assignment cannot take place by considering each
task and its candidates separately. A simple example clarifies the problem: consider the
parallel arrangement of the two tasks D and E shown in Figure 1. Let the optimisation
goal be to identify the composition which results in the fastest execution while trying to
keep the lowest price. Also, a faster service is usually more costly – in other words, cost
and execution time form a trade-off couple. In the case that even the fastest candidate
for task D executes longer than any of the candidates for task E, the optimal assignment
for the task E is the cheapest candidate, regardless how long its execution would take.

Thus for parallel arrangements, all combinations of assignments must be tested to
find the optimal assignment. If a composition contains a parallel arrangement at the top
level, all combinations for assigning candidates to the included tasks must be tested.
The resulting effort increases exponentially with the number of tasks if for each tasks
more than one candidate could be chosen: if the number of candidates increases by one,
then the number of combinations to evaluate is doubled. If the number of tasks increases
by one, the number of combinations increases multiplied by the number of candidates
found for this task. Thus, for large numbers of tasks and candidates a global approach
for the selection is not feasible and efficient heuristics are desired.

2.3 The Selection Criteria

The selection of candidates must be performed by applying some criteria. For the se-
lection of candidates, particular QoS categories can be the basis for defining an optimi-
sation function or optimisation constraints:

– One or more QoS categories are relevant for optimisation. Thus, for each consid-
ered QoS category the referring value of the QoS vector is subject to an optimisation
function. This function depends on the direction of the dimension. For categories
with a decreasing dimension (such as execution time or cost) the function is about
to minimise the aggregated value, for categories with an increasing dimension it is
about to maximise the value. The optimisation criterion is about to find the optimal
– minimal or maximal – resulting QoS value aggregated by function f :

QoS-Aware Composition of Web Services 651

{min|max}
(
f(Sy)

)
Sy = {s1yp1, . . . , sby pb}

with px =
{

1 if selected, and
0 otherwise.

The index y ∈ {1, . . . , q} refers to the considered QoS category.
– One or more QoS categories are relevant for expressing a constraint on the com-

position. Depending on the direction of the considered QoS category with index y,
the constraint denotes an upper or lower bound for the resulting aggregated value:

{cy > |cy <}
(
f(Sy)

)
Sy = {s1yq1, . . . , smyqm}

with qx =
{

1 if selected, and
0 otherwise.

3 Analogies to Knapsack and RCPSP

If exactly one QoS category is relevant for the optimisation, a selection algorithm must
choose the candidate that offers the optimal referring value for each task. The effort
for this operation is linear to the number of candidates and thus this specialisation of
the selection problem can be regarded trivial. If more than one QoS category is rele-
vant for optimisation or for expressing a constraint, the selection can be regarded as a
combinatorial problem. This problem has similarities with the 0/1-Knapsack problem
and to a specific kind of project scheduling problem (PSP). Our goal is to explain their
differences to the selection problem and evaluate efficient (heuristic) solutions.

3.1 The 0/1-Knapsack Problem

The knapsack problem is about selecting a subset of available items for putting them
into a knapsack. Each item has a specific weight, a specific value, and the knapsack has
a limited weight capability. The problem is that the weight capability of the knapsack
does not allow to take all items. Thus, a selection must be performed with the goal
to identify the optimal subset which maximises the value while keeping the weight
constraint. Transferred to the composition scenario, the knapsack problem could be
formulated as follows:

• The composition represents the knapsack.
• Each candidate represents one item that can be put into the knapsack.
• A QoS constraint represents the limited weight capability of the knapsack.
• A QoS category which is subject to the optimisation represents the value of the

item.
• The algorithm tries to find the optimal selection according to the optimisation func-

tion while keeping the constraint.
• Only ”complete” candidates can be selected, a candidate cannot be split to meet

the constraint. The knapsack problem, which does not allow to split items, is also
known as 0/1-knapsack problem.

652 M.C. Jaeger, G. Mühl, and S. Golze

However, some characteristics of the selection differ from the known knapsack problem.
The selection algorithm must also find a solution that (1) optimises the value of a given
QoS category, (2) keeps the constraint and (3) selects a candidate for each task. For
a normal knapsack, the solution might result in as few items as possible to keep the
constraint.

If more than one QoS category is relevant for optimisation, the relevant values of
the QoS vector of a candidate could be aggregated to form a new measure representing
the value of the candidate. Then, the Simple Additive Weighting (SAW) can be applied,
which was introduced in the context of Multiple Criteria Decision Making (MCDM) [6].
By applying this procedure, we can normalise the individual values and assign a score
to each QoS vector. As first step, each value syx, with y ∈ {1, . . . , p} indicating the
QoS category and x ∈ {1, . . . , m} indicating a particular candidate is replaced by the
normalised value nyx:

nyx =

⎧⎨⎩
maxy(syx)−syx

maxy(syx)−miny(syx) for decreasing categories

syx−miny(syx)
maxy(syx)−miny(syx) for increasing categories

The result of this replacement is that the value representing the best quality results
in a value of 1 and the worst results in a value of 0. Other values will range between 0
and 1. Then, a score cx can be applied to each candidate [6]:

cx =
1
p

p∑
y=1

wynyx

The weight wy is applied to the QoS categories by the user’s preference. The sum
of all weights must be equal to 1. The result of this procedure is a score for each QoS
vector representing a Web service candidate of an aggregated statement. Considering
the knapsack problem, the overall score represents the quotient of value and weight of
an item, because the score combines increasing and decreasing categories.

3.2 The Project Scheduling Problem

If multiple QoS categories are subject to the optimisation or if they form a constraint,
the selection problem is similar to a so called Resource Constrained Project Scheduling
Problem (RCPSP). A project scheduling problem occurs when resources (usually hu-
mans) must be distributed to jobs of a project. The most common optimisation goal of
the basic RCPSP is to reduce the duration of the project while spending as few resources
as possible. Two types of RCPSPs are distinguished: one is called Single Mode RCPSP
and the other is known as Multi-Mode RCPSP (MRCPSP). The single mode RCPSP
only deals with fixed values for the duration and the cost of a task. In a MRCPSP, a
job can be done by using different modes which vary in cost and duration. Thus, a MR-
CPSP is considered for our selection problem. In addition to its mode, a RCPSP can be
classified by a couple of other characteristics. Based on an overview about RCPSPs by
Yang et al. the selection problem seen as RCPSP has the following characteristics [16]:

QoS-Aware Composition of Web Services 653

Objective. Objectives are distinguished by being regular or irregular. Regular objec-
tives do not interfere with the goal to minimise the duration of the project, while
irregular objectives allow to follow another objective – for example to equalise the
consumed resources among involved parties [16]. Applied to the selection prob-
lem, the RCPSP has a non-regular objective because depending on the considered
QoS categories and the applied weight, a worse duration can be considered as a
better solution if, for example, the cost is reduced accordingly. The objective can
be defined as an optimisation function as given in section 2.3.

Precedence Relation. Two types of precedence relations are discussed in the literature.
Either tasks can be started with a specified time window after a preceding task has
finished or a succeeding task can start any time after the preceding task has finished.
Regarding a composition of Web services, the common case is that a task is started
immediately after the preceding task finished.

The constraint for the precedence in Web service compositions can be defined as
follows: let αx+1 be the start time of a candidates sx+1 ∈ Si of task i, i = 1, . . . , n,
and ωx the finish time of a candidate sx ∈ Si−1 for the preceding task i− 1. Then,
the precedence constraint is:

αx+1qx+1 ≥ ωxqx with qx+1, qx

{
1 if selected
0 otherwise

Between two tasks a time delay might occur, because an execution environment
cannot execute a task at exactly the same moment another task has finished. How-
ever, for defining the constraint this interval is irrelevant and thus ignored.

Preemption. If preemption is allowed, the execution of a task can be suspended in
order to execute another task. This is useful if some resources are only available
within a specific period of time and other tasks can be suspended then. Since the
invocation of Web services in the context of a composition is usually an atomic
operation, preemption is not considered to be possible.

Resource requirements per period. In the domain of project scheduling, using re-
sources at different time periods can result in different costs. For example, per-
forming a task at night results in higher payments for night shifts. For computer
systems a similar idea might be applied: the execution of a service gets more ex-
pensive at peak hours. Since we are not aware of any example that applies this idea
we ignore this aspect in the following.

Trade-offs. In the context of RCPSPs, the trade-off is characterised by two criteria,
where an optimisation of the one means a change to the worse for the other. An
algorithm must find an counterbalanced solution. A usual trade-off pair is formed
by time and cost in which case the cost and the execution time should be kept
as low as possible. For the selection problem possible trade-off couples can be
formed by cost vs. one of the other three mentioned categories in the sense that a
higher quality results in a higher cost. However, a trade-off couple could be also
time vs. availability thinking about a provider, where services usually execute very
quickly but may fail quite often.

654 M.C. Jaeger, G. Mühl, and S. Golze

4 Approaches for the Selection Problem

Building onto the analogies among the two combinatorial problems explained in the
previous section, our approach is to apply heuristics for these problems that are known
to be efficient to the selection problem. In this section, four approaches are explained
and compared:

Greedy Selection. For a greedy selection, the score cx represents the selection cri-
teria. The algorithm starts with calculating the score for each candidate. Then,
to each task the candidate with the highest value density is assigned. It should
be noted that if this approach is used, it is not possible to consider a global
constraint.

Discarding Subsets. This algorithm represents a backtracking approach. It starts by
parsing a search tree which consists of nodes each representing a possible pair of
candidate and task. Each level of the tree holds pairs of a particular task only, re-
sulting in the tree having the same number of levels as tasks. Each possible combi-
nation of candidate assignments is represented by a particular path of the tree from
the root to a leaf.

To lower efforts, the algorithm cut subregions, if (a) it can be determined that
the constraint cannot be met anymore by following this particular subregion or if
(b) we can guess that combinations represented by a particular subregion do not
result in a better overall QoS than already found. If the algorithm finds an ap-
propriate combination, it aggregates the overall QoS. The combination is stored
if no combination has been identified so far resulting in a better QoS. The algo-
rithm stops when all possible combinations have been evaluated. This approach
will find a solution meeting the constraint, if it exists. However, it does not save
any efforts in the worst case when worse branches cannot be identified at an early
stage.

Since this approach normally identifies the optimal solution, it cannot be regarded
a heuristic. We establish a cutting rule based on an estimation. Considering the ex-
ecution time, the cutting rule is clear: if a complete combination has already been
determined that shows a lower execution time as the partial combination processed
at some moment, the algorithm cuts the subtree. Each additional candidate would
worsen execution time. However, for categories where the aggregation calculates
the arithmetic mean, a rule cannot determine whether the QoS gets worse or better.
In our discussion, we consider the reputation as a QoS category which represents
this case. Applied to the selection problem in our configuration, the discarding sub-
sets algorithm guesses that the QoS gets worse and thus might ignore the optimal
solution.

Bottom-Up Approximation. A large number of heuristics are already available for
RCPSPs [16]. However, not every approach can be applied to the selection prob-
lem: RCPSPs and Web service compositions cover the execution order of tasks
differently: for compositions the order is in most cases pre-defined in a flow de-
scription, while the tasks of a project are subject to precedence relations, which
may allow to push a particular task for- or backwards in order to optimise the utili-
sation of resources. It turned out that several approaches for solving RCPSPs work

QoS-Aware Composition of Web Services 655

on a precedence model which does not allow the application to the selection prob-
lem. The resulting problem is that a solution space is created which considers the
rearrangement of activities. The resulting bounding rules cannot be applied effi-
ciently for the selection problem.

However, we have identified one heuristic covering a RCPSP introduced by Yang
et al. which can be used for the selection [16]: The approach presumes that constraint
and optimisation criteria form a trade-off couple, i.e. the quicker a task is performed
the more it will cost. The heuristic applied to the selection would perform as fol-
lows:

1. The candidates are sorted by the QoS value sxy , with x ∈ {1, . . . , m} and
y ∈ {1, . . . , p} denoting the QoS category for the constraint.

2. For each task, the candidate sx with the best sxy is assigned. If a solution exists,
it is found with this step.

3. As the next step, the algorithm replaces the firstly assigned candidates by the
candidate with the next worse value sxy .

4. The new combination is tested for whether the constraint is still kept. If the
constraint is still kept, the algorithm continues by looping back to step 3. The
algorithm stops, if at one time for each task no additional candidate is found
that lets the composition meeting the constraint and increases the overall QoS.

Pattern-wise Selection. In a preceding paper we have introduced another heuristic [4],
which directly covers the example of tasks A and B explained in section 2.2. We
apologise that we cannot go into much detail about the pattern-wise selection due
to spatial limitations. Thus, we refer to the mentioned publication for more infor-
mation about its motivation and how it works. In very brief words, the algorithm
determines the best assignment considering each composition pattern in isolation.
The algorithm takes advantage of already identified elements of composition pat-
terns (cf. Section 2.1). It performs four steps:

1. The algorithm walks recursively into the structure and identifies pattern ele-
ments that do not contain any sub-patterns.

2. For all tasks within this element, all sets of candidate assignments are evalu-
ated. The QoS is aggregated for each combination by using the pattern-based
aggregation. The combination that delivers the best score using the SAW pro-
cedure is chosen.

3. If the optimal solution for a particular pattern is determined, the algorithm
walks one level upwards to evaluate the assignment within the new pattern.
The aggregated QoS of contained sub-patterns is taken as a fixed value.

4. The pattern wise optimisation and aggregation is performed until the whole
composition is covered and one aggregated QoS is returned.

Since this algorithm operates on each pattern element, this approach cannot meet
global constraints. Thus, the pattern-wise selection is only suitable for optimising the
overall QoS.

656 M.C. Jaeger, G. Mühl, and S. Golze

4.1 Comparison

We have compared the four proposed and two additional selection methods using a
simulation environment: the additional methods are a) the global selection and the b)
constraint optimised selection. The global selection evaluates all possible combinations
and determines the best QoS possible for the composition. In addition to the result-
ing best possible QoS, the algorithm shows the worst case computation effort. By the
second method, the candidates are sorted by the QoS category relevant for the con-
straint. Then, for each task the candidate offering the best QoS constraint category is
assigned. Thus, if a combination which respects the constraint exists, it is found using
this approach. However, this algorithm does not optimise other QoS categories and thus
results in a poor QoS for the overall composition. The software simulation performs the
following steps:

1. Generation of an arbitrary test composition structure by randomly arranging the
composition pattern elements which are introduced in Section 2.1.

2. Generation of candidate Web services each with random QoS values for execution
time, cost, reputation, and availability.

3. Performing each of the selection methods on the same composition structure with
the same set of candidates.

We have tested the algorithms with arbitrary compositions with an increasing num-
ber of tasks (from 4 to 12) but a fixed number of candidates for each task (5). The
implementation of the software and the random generation of candidates and their QoS
values involve a large number of issues, which cannot be discussed completely in this
paper due to limited space. Some issues among them are:

– Each test case with a particular number of tasks has been repeated 50 times with
each time a new random composition structures, new optimal QoS values for each
task and new resulting QoS values of the candidates. The results shown are the
arithmetic mean values of the 50 repetitions for one test case. For each task the
same number of candidates is generated.

– The simulator generates random composition structures by choosing one of the
seven elements with equal probability.

– For each task an optimal QoS is randomly set and the randomly generated QoS
values of the candidates are within 0 and 100 percent worse compared to the optimal
value. This ensures a realistic distribution of the QoS values among the candidates
referring to one task.

– To form a trade-off couple between execution time and cost, the two are set as
follows: the percentage a added to the optimal execution time is taken to calculate
the percentage b added to the optimal cost with a+b = 100. Thus, the more optimal
the execution time is, the worse will be the cost and vice versa.

– The constraint is determined to perform the constraint selection on the cost first.
The aggregated cost for the composition is increased by 20% and then taken as the
constraint that has to be met by the other selection methods.

The results of this simulation are shown in Figure 2 and 3. Please note that in both
figures the discrete results are connected with interpolated lines for better visualisa-
tion only. Figure 2 shows the average resulting QoS for the composition performing

QoS-Aware Composition of Web Services 657

the selection methods for the generated test compositions relative to the global selec-
tion, which always finds the optimal solution. For example, a QoS ratio of 0, 80 means
that this selection method has only gained 80% of the best QoS possible. The different
aggregated QoS values resulting for a composition can be compared by applying the
SAW approach to compute a normalised score (cf. section 3.1). As expected, the result-
ing QoS by using all other selection methods is worse than the global selection. The
worst resulting QoS is delivered by the constraint selection, which does not optimise
regarding the overall QoS.

The bottom-up method shows the next worse results. It results in a worse QoS than
the greedy selection. However, the bottom-up method has met the given constraints
while the greedy selection did not. Compared to the greedy selection, the pattern ap-
proach shows even better results. Among the methods which optimise the QoS while
meeting a constraint, the discarding subsets methods shows the best resulting QoS. The
results show that the average values seem to oscillate between a corridor. In fact, this
corridor is quite small: for example for the difference between the highest and lowest
average value of resulting QoS for the bottom-up method is lower than 0.02022 or less
than 3% of the overall values. However, we need to admit that considering the wave-
similar shape gives us the impression that future measurements should be repeated
more often.

The discarding subsets method seems to increase its resulting QoS with a raising
number of tasks whereas the greedy algorithms seem to get worse. This leads to the
assumption that the discarding subsets algorithm copes better with larger/more complex
structures. Vice versa, the declining performance of the greedy algorithm leads to the
idea that this methods performs worse with more complex compositions.

Figure 3 shows the average execution times of the different selection methods for
compositions with increasing number of tasks. Please note that the figure uses a loga-
rithmic scale on its y-axis. The greedy selection and the bottom-up approximation show
an almost linear increase of efforts with a larger number of tasks. Along with the sim-
ple constraint oriented selection, all three methods form a group of similar execution
time behaviour: all calculations took about 1 millisecond or less covering compositions
of from three to ten tasks. The bottom-up approach shows a break-out when testing
for compositions with 4 and 6 tasks. Although the test computer has had a clean sys-
tem installation, no connection to a network and the simulation application ran as the
only user application at that time. Clearly, further activities must investigate this ef-
fect which might indicate an inefficiency of this algorithm depending on the number of
tasks. But, since the measurements show that all results are still less than 1 millisecond,
we regard the overall impact of this unexpected result as non-critical. The selection
methods to determine the best QoS, discarding subsets and the pattern-wise selection
form another group of similar execution time behaviour. All three methods scale ex-
ponentially, while the pattern-wise selection climbs slower with increasing number of
tasks.

As explained in the previous section, it must be noted that the results from selecting
the best QoS, the pattern-wise and the greedy selection do not necessarily meet the given
constraint. The constraint limit for the cost is set to 20% worse than the optimal cost
determined by the constraint-oriented selection. The three selection methods showed

658 M.C. Jaeger, G. Mühl, and S. Golze

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10 12

qo
s

ra
tio

number of tasks

Constraint
Global

Greedy
Bottomup

Discarding
Pattern

Fig. 2. Average Delivered QoS of Different Selection Methods Relative to Best QoS

together that the cost constraint is met incidentally by one third of the test cases with no
noticeable relation to an increasing number of tasks. However, due to space limitations
the results cannot be discussed in this paper.

5 Related Work

The work of Puschner and Schedel about calculating the execution time for software
architectures represents our foundation for the aggregation of QoS in Web service com-
positions [11]. They have defined calculation rules for structural patterns as found in
software executions. Since our composition model plays in the field of Web service
compositions, we have adopted this principle and build our patterns onto the workflow
patterns by van der Aalst et al. [15]. Cardoso has applied a similar approach in his work
to calculate the QoS for workflows [3]. In his work he has identified different QoS
criteria and defined calculation rules for these criteria in workflows based on the flow
structures as found in the meteor workflow management system. Since our composi-
tion patterns are based on workflow patterns, we can also support structures like the
two OR-split patterns along with the m-out-of-n-join constructs. As a consequence the
composition patterns can be applied to more specific applications more easily.

Different authors have also discussed which QoS categories might be considered in
Web service compositions [10] [17]. Their contribution has been taken up to determine
the relevant categories for our work. If needed, the chosen categories can be extended
without affecting the discussed approaches itself.

QoS-Aware Composition of Web Services 659

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 2 4 6 8 10 12

tim
e

ra
tio

number of tasks

Constraint
Global

Greedy
Bottomup

Discarding
Pattern

Fig. 3. Average Execution Times of Selection Methods

Using QoS statements as the main criteria for the selection of Web services is an
already known idea, which has been introduced in fundamental papers at the time, when
the Web services were emerging and the concept of Web service composition was pre-
sented [1] [5].

For the selection of candidates, Zeng et al. have identified two basic approaches:
a local and a global selection [17]. To address the problem that a global selection has
exponential effort, Zeng et al. have introduced an Integer Programming (IP) solution
to compute the optimal assignment of services. Using the IP-approach reduces signifi-
cantly the number of combinations by identifying constraints. According to their tests,
the IP-based algorithm scales better with a growing number of candidates and tasks. We
plan to test the IP-approach with our simulation tool to deliver a statement on how well
it compares to pattern selection. Apart from the selection, Zeng et al. propose different
aggregation mechanisms for their selection of QoS categories. We think that because
of its uniform structure, the pattern-wise aggregation results in lower efforts for their
implementation and the computation of the aggregation.

6 Conclusions

We have discussed different algorithms for performing the selection of candidates to
optimise the overall QoS of a composition. Considering a computation algorithm, the
used set of QoS categories can be extended or reduced depending on what is considered
to be relevant for a specific application case. The intention of our work is to focus on the
selection algorithms independent from the characteristics of different QoS categories.

660 M.C. Jaeger, G. Mühl, and S. Golze

For the optimisation without the need to meet a constraint, the results have shown,
that a pattern-wise selection results in unfeasible efforts with a growing number of
tasks. However, the pattern-wise selection performs still significantly quicker than the
approach by discarding subsets. The pattern-wise selection also reaches almost the level
of the best possible QoS. If a slight decrease of the overall QoS is tolerable (about
5% according to our results), the greedy selection delivers acceptable results with ne-
glectable efforts. For the optimisation with the need to meet a global constraint our
results have shown that the bottom-up approximation results in an overall QoS about
10% worse that for example the discarding subsets approach. However the computa-
tional effort of the bottom-up approximation remains feasible also with a growing num-
ber of candidates. The results show that for a selection in a time-critical scenario with
a larger number of tasks, heuristics can be successfully applied with the penalty of a
decrease on the overall QoS. Such an application scenario could be a reconfiguration of
the composition during run-time when a Web service has become unavailable.

For future research in this direction possible test cases could operate on a fixed
composition structure with an increasing number of candidates to evaluate the differ-
ent algorithms with specific arrangements. Also the generation of the candidates and
their QoS values could be improved in order to deliver more realistic example compo-
sitions. We also plan to evaluate other approaches such as genetic algorithms to solve
the selection problem.

Acknowledgement

The authors would like to thank specifically the reviewer who did an excellent job
by pointing out very good improvements and provided to us a very detailed list of
suggestions.

References

1. Boualem Benatallah, Marlon Dumas, Marie-Christine Fauvet, and Fethi A. Rabhi. Towards
Patterns of Web Services Composition. Technical Report UNSW-CSE-TR-0111, University
of New South Wales, 2001.

2. David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris Fer-
ris, and David Orchard. Web Services Architecture. http://www.w3c.org/TR/ws-arch/, Feb-
ruary 2004.

3. Jorge Cardoso. Quality of Service and Semantic Composition of Workflows. PhD thesis,
Department of Computer Science, University of Georgia, Athens, GA (USA), 2002.

4. Roy Gronmo and Michael C. Jaeger. Model-Driven Methodology for Building QoS-
Optimised Web Service Compositions. In Proceedings of the 5th IFIP International Con-
ference on Distributed Applications and Interoperable Systems (DAIS’05), pages 68–82,
Athens, Greece, May 2005. Springer Press.

5. Richard Hull, Michael Benedikt, Vassilis Christophides, and Jianwan Su. E-Services: A
Look Behind the Curtain. In Proceedings of the 22nd ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’03), San Diego, USA, June 2003.
ACM Press.

QoS-Aware Composition of Web Services 661

6. Ching-Lai Hwang and K. Paul Yoon, editors. Multiple Attribute Decision Making: Methods
and Applications, volume 186 of Lecture Notes in Economics and Mathematical Systems.
Springer-Verlag, March 1981.

7. ISO/IEC. ITU.TS Recommendation X.950 — ISO/IEC 13235-1: Trading Function: Specifi-
cation, August 1997.

8. Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero Mühl. QoS Aggregation for Service
Composition using Workflow Patterns. In Proceedings of the 8th International Enterprise
Distributed Object Computing Conference (EDOC’04), pages 149–159, Monterey, Califor-
nia, September 2004. IEEE Press.

9. Michael C. Jaeger, Gregor Rojec-Goldmann, and Gero Mühl. QoS Aggregation in Web
Service Compositions. In The 2005 IEEE International Conference on e-Technology, e-
Commerce and e-Service (EEE’05), pages 181–185, Hong Kong, China, March 2005. IEEE
Press.

10. Daniel A. Menasce. QoS Issues in Web Services. In IEEE Internet Computing, pages 72–75.
IEEE Press, November-December 2002.

11. Peter Puschner and Anton Schedl. Computing Maximum Task Execution Times - A Graph-
Based Approach. Journal of Real-Time Systems, 13(1):67–91, July 1997.

12. Vladimir Tosic, Kruti Patel, and Bernard Pagurek. WSOL – Web Service Offerings Lan-
guage. In Proceedings of the Workshop on Web Services, e-Business, and the Semantic Web
- WES (at CAiSE’02), volume 2512 of Lecture Notes in Computer Science, pages 57–67,
Toronto, Canada, May 2002. Springer-Verlag.

13. UDDI Spec Technical Committee. UDDI Version 3.0.1. http://uddi.org/pubs/uddi-v3.0.1-
20031014.pdf, 2003.

14. Wil M.P. van der Aalst. Don’t go with the flow: Web services composition standards exposed.
Jan/Feb 2003 Issue of IEEE Intelligent Systems, pages 72–76, January 2003.

15. Wil M.P. van der Aalst and Arthur H.M. ter Hofstede and B. Kiepuszewski and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases 14(3), pages 5–51, 2003.

16. Bibo Yang, Joseph Geunes, and William J. O’Brien. Resource Constrained Project Schedul-
ing; Past Work and New Directions. Technical Report Research Report 2001-6, Department
of Industrial and Systems Engineering, University of Florida, 2001.

17. Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant Kalagnanam,
and Henry Chang. QoS-Aware Middleware for Web Services Composition. IEEE Transac-
tions on Software Transactions, 30(5):311–327, May 2004.

Extending the UMIOP Specification for Reliable
Multicast in CORBA�

Alysson Neves Bessani1, Joni da Silva Fraga1, and Lau Cheuk Lung2

1 DAS - Departamento de Automação e Sistemas,
UFSC - Universidade Federal de Santa Catarina,

Florianópolis - Santa Catarina - Brazil
{neves, fraga}@das.ufsc.br

2 Graduate Program in Applied Computer Science,
Pontifical Catholic University of Paraná, Curitiba - Paraná - Brazil

lau@ppgia.pucpr.br

Abstract. OMG has published an unreliable multicast specification for
distributed applications developed in CORBA (UMIOP). This mecha-
nism can be implemented based on IP Multicast, a best-effort proto-
col, which provides no guarantees about the message delivery. However,
many fault-tolerant or groupware applications demand more restrictive
agreement and ordering guarantees (for instance, reliable multicast with
FIFO, causal or total ordering) from the available support for group
communication. OMG has not yet provided any specification for sup-
porting those requirements. This paper presents an important contribu-
tion towards this direction. We proposed the ReMIOP, an extension to
the UMIOP/OMG protocol, for the conception of a reliable multicast
mechanism in CORBA middleware. Performance measures comparing
ReMIOP, UMIOP and UDP sockets for IP multicast communication are
presented in order to evidence the costs for adding reliable and unreliable
multicast in middleware level.

1 Introduction

When CORBA architecture (Common Object Request Broker) [20] was intro-
duced by OMG (Object Management Group), only point-to-point communica-
tions (using static or dynamic invocation) was available through the ORB (Ob-
ject Request Broker). The messages that pass through this channel obey a proper
transference syntax defined by the GIOP (General Inter-ORB Protocol). This
syntax makes the messages involved in the communications independent from
ORBs implementations and the consequences of an heterogeneous environment.
The mapping of GIOP over TCP/IP transport layer is made by IIOP (Internet
Inter-ORB Protocol) protocol. The IIOP and TCP/IP combination is a good so-
lution for distributed objects communications in the client/server model, since
it considers aspects like error control, FIFO ordering, etc.
� This work is supported by CNPq (Brazilian National Research Council) through

processes 401802/2003-5 and 481523/2004-9.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 662–679, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Extending the UMIOP Specification for Reliable Multicast in CORBA 663

Point-to-point communications have shown, in general, effective in
distributed applications supported by CORBA. However, many of these appli-
cations would have a better performance, concerning time, memory and message
complexity, if they could use multi-point communication mechanisms. Usually,
these applications depend on abstractions like groups of objects or the need
to disseminate data over several hosts of a network. Therefore, group oriented
applications could have greater benefits from the network low-level services.

In an attempt to supply the need of multi-point communications in CORBA
middleware-level, OMG published the UMIOP (Unreliable multicast Inter-ORB
Protocol) specifications [19] in 2001. The UMIOP is a set of specification for an
unreliable multicast service to be included as part of the ORB. The protocol
defined in these specifications, the MIOP (Multicast Inter-ORB Protocol), is re-
sponsible by GIOP mapping over UDP/IP multicast stack. IP multicast is a set
of IP protocol extensions that enables it to establish multi-point communications
[7,6]. This protocol is characterized by absence of guarantees and high perfor-
mance, mainly in local networks. Many applications use IP multicast, especially
those for distributed multimedia systems.

The unreliable multicast service defined by UMIOP, the less restrictive group
communication model, can be used for some distributed applications, for exam-
ple, video conference, in which the loss of some frames do not represent the
degradation of transmitted information. However, fault-tolerant applications,
groupware applications, among others, usually demand more restrictive guar-
antees concerning group communication supports reliability and ordering (for
example FIFO, causal, total, etc). OMG has not yet provided any specifica-
tion concerning these requirements. This problem is being treated by OMG in
stages. The first step, therefore, was the publication of UMIOP specifications.
We believe that initiative motivates OMG to publish another RFP (Request for
Proposal), towards a Reliable and Ordered Multicast Inter-ORB Protocol. Initial
submissions to this RFP has been already done [21].

The integration and implementation of UMIOP in an ORB were presented
in [1,3]. As a step forward, this paper presents our contributions in the concep-
tion of a “best-effort” reliable multicast support in the ORB, based on UMIOP
specifications. The proposed model, called ReMIOP, is CORBA and UMIOP
specifications compliant - the proposed extension does not change any interfaces
of the current specification. Actually, we indicate how to integrate reliable mul-
ticast protocols into ORB without any change of the CORBA specifications.
The inclusion of a reliable multicast protocol on top of the MIOP layer is im-
plemented as a plugin mechanism. Some performance measures of the ReMIOP
(the ReMIOP/MIOP/UDP/IP multicast stack), UMIOP (MIOP/UDP/IP mul-
ticast stack) and UDP sockets (UDP/IP multicast stack) are presented to show
the costs of including reliable and unreliable multicast in middleware level.

This work is part of the GroupPac project [16,2], which is a set of ob-
ject services based on FT-CORBA specification (chapter 23 of [20]) and de-
veloped to make easier the implementation of fault-tolerant distributed
applications.

664 A.N. Bessani, J. da Silva Fraga, and L.C. Lung

This paper is organized as follow: section 2 presents the OMG initiatives
for group communication introduction in CORBA. The MJaco is presented in
section 3. In section 4, the ReMIOP protocol is presented as a MIOP extension
for reliable multicast. Some implementation issues are described in section 5.
In section 6, some experiments with our multicast ORB are presented. Finally,
section 7 cites some related works, and in section 8 presents some final remarks
of this research.

2 Group Communication in CORBA

Two significant initiatives were taken into account by OMG concerning the in-
troduction of group communication mechanisms in CORBA. The first of them
use the group abstraction to support fault-tolerant applications in object level
(FT-CORBA [20,9]), and the other considers to use the ORB as a high perfor-
mance group communication mechanism without reliability (UMIOP [19]). So,
these two specifications can be considered complementary and indicate a trend in
OMG, the attempt to specify a standardized group communication mechanism
with differentiated guarantee levels for different applications.

The FT-CORBA standard, which introduced the concept of objects group
in CORBA architecture, defines a set of object services that offer functionalities
such as group management (membership), state transfer, fault detection and
notification. One kind of support assumed by FT-CORBA, but not standardized
by OMG, is the group communication service [25]. That specification defines that
this service must support some communication properties in order to provide
the underlying mechanisms for implementing active replication technique [27];
however, these specifications do not define the service semantics and protocols
that must be implemented.

The UMIOP specifications, on the other hand, define an unreliable multicast
service based on IP multicast. It can be considered as a basis for creating of a in-
teroperable group communication mechanism standardized by OMG. Extensions
for these specifications to define stronger properties for ordering and reliability
would be appropriate for FT-CORBA standard.

2.1 UMIOP

In 1999, the OMG started a specification process for an unreliable multicast pro-
tocol based on IP multicast and objects group model to support this protocol in
CORBA ORBs. This process culminated in UMIOP specifications release. This
standard aims to support a multi-point communication mechanism in CORBA
architecture, without any delivery guarantee. The protocol used by UMIOP is
the MIOP. This protocol maps GIOP messages into UDP/IP multicast. The ba-
sic function of MIOP protocol is to segment and encapsulate GIOP messages,
sent to the group, into packets. These packets contain a header (defined in the
specifications) with a set of fields that allows the original message to be reassem-
bled in the receiver side. Once the packets are properly arranged, the multicast

Extending the UMIOP Specification for Reliable Multicast in CORBA 665

of message is made through UDP protocol, which provides an almost direct in-
terface for IP services or in this case, for IP multicast. IP multicast defines a set
of extensions to IP protocol enabling one-to-many communication (multicast).
The main characteristics of this protocol are open groups (it is not necessary to
be a member of the group to multicast a message to it), no membership (list
of members), no reliability (such as IP) and accessibility through class D IP
addresses (from 224.0.0.0 to 239.255.255.255).

The use of MIOP, and IP multicast in a subjacent level, make it possible to
transmit the GIOP messages between two different ORBs. However, the conven-
tional CORBA object model, which specifies that one object reference must cor-
respond to only one object implementation, is not appropriate for object group.
In despite of that, the semantics of CORBA point-to-point invocation is reliable
concerning messages delivery, and the order is defined by sender, which can be con-
figured with or without reply, unlike the MIOP definition. Therefore, a new object
model representing groups had to be defined in UMIOP. This model does not de-
fine an object identifier, but a group identifier that can be associated with multiple
object ids used by the POA (Portable Object Adapter) to activate the correspond-
ing servants [19]. The semantics of messages delivery and ordering in UMIOP has
no guarantees, and the MIOP supports only messages with no replies.

An objects group in UMIOP is composed by group identifier, and information
abouthow to reach it in the communicationnetwork (classDIP address andaport).
These information are contained into UMIOP group references detailed bellow.

2.2 UMIOP Group Reference

A reference or IOR (Interoperable Object Reference) is used to identify a single
object in CORBA. Each IOR contains one or more profiles which allow the
ORB to locate a servant object through any network transport mechanism. For
example, IIOP profiles contain in its fields the server ORB address (usually, an
IP address and a port) and an object identifier in the server ORB (object key),
used to access implementations through TCP/IP.

In order to support groups, the UMIOP specifications define a group IOR
that addresses a set of zero or more objects. A group IOR uses a different type of
profile to send messages through UDP/IP multicast. This UIPMC profile, defined
in the specification, contains all necessary information to access a multicast group
(a class D IP address and a port) in transport level. Another structure, with the
logical group identifier, is used for identifying members at ORB level. The group
IOR can also hold two IIOP profiles: one for requests that demand reply and
another that specifies a gateway to multicast requests when the client is unable
to do that.

The figure 1 presents the complete group IOR format defined by OMG as part
of UMIOP specifications. The composing of a group IOR must be made through
the specification of information about the group and the IORs for group IIOP
object and gateway. This creation is made with these information specification
in a “corbaloc” URL, or through MGM (Multicast Group Manager) methods,
an optional object service that provides operations for groups management.

666 A.N. Bessani, J. da Silva Fraga, and L.C. Lung

Version

Type_id Number of
profiles IIOP_Profile UIPMC_Profile

ProfileBodyTAG_UIPMC

ComponentsPortMulticast
Address

MIOP
Version

components
Number of Tag Group

Component
Tag Group IIOP

Component Components
Other

TAG_INTERNET_IOP ProfileBody

Componentscomponents
Number of

Component
Version

Group
Domain
Id

Object
Reference
ersion

Object
Group
Id

IIOP
Version Host Port Object

Key Components

Componentscomponents
Number of

IOR

Gateway
IIOP Profile

UIPMC Profile

Group Information Group IIOP Profile

IIOP Host Port Object
Key Components

Fig. 1. Representation of the Group IOR

3 MJaco

From the UMIOP specification study we developed an ORB to fulfill these spec-
ification. This ORB was called MJaco [1,3], which is an extension of JacORB,
a high-performance and open source CORBA ORB that implements CORBA
2.3 specifications (http://www.jacorb.org). The MJaco architecture was de-
fined to allow the compatibility of two protocol stacks (IIOP/TCP/IP and
MIOP/UDP/IP multicast) in the same ORB, contributing for better interop-
erability and portability.

Figure 2 illustrates the UMIOP and MJaco ORB integration architecture.
In this figure the ORB is presented with the two protocol stacks: one for point-
to-point communication based on IIOP using TCP/IP services, and other for
multi-point communication based on MIOP, using UDP/IP multicast as trans-
port mechanism. Our integration model presents some elements defined in the
specification that compose the support for theses two models of communication.
Other components and extensions, not defined in that specification, has also
been added. Their purpose is to facilitate the integration of the different stacks
and to improve its efficiency.

The Multicast Adapter is a fundamental part of our integration model. It
is responsible for managing the multicast sockets used in the reception of the
MIOP packets and for the delivery of group messages to the POAs in the ORB.

Extending the UMIOP Specification for Reliable Multicast in CORBA 667

TCP

IP

UDP

MIOPIIOP

create_object

delete_object

MGM

Skeleton

POA
Stub

Delegate

Aplication
Implementation

Basic
Adapter Adapter

Multicast

Network

multicastIP

ORB

Fig. 2. MJaco Architecture

The POA and the Delegate are the main components of the ORB to be modi-
fied to add the UMIOP. The modifications on Delegate are made in some points
to support multicast GIOP message to groups, since it is the first ORB internal
component to be activated when a stub method call is executed. Four new meth-
ods for handling objects group, described in the OMG specifications, are added
to the POA. In addition, the POA has to be modified in order to process requests
addressed to groups. For every group upcoming request, a search in the active
groups table is made in order to obtain the group member implementations to
which the request is addressed in each POA.

4 ReMIOP – Reliable MIOP

As mentioned before, the MIOP is unreliable, thus inadequate for many kinds of
applications, like fault-tolerant or groupware systems, which do not allow mes-
sage losses. We propose a set of extensions in the MIOP, called ReMIOP (Reliable
Multicast Inter-ORB Protocol), which provides high probability in the message
delivery guarantee. Basically, the ReMIOP protocol is a receiver-initiated “best-
effort” reliable multicast protocol (it uses NACKs to ask for lost message [14,24])
such as SRM [10], LRMP [15] and TRM [26]. The ReMIOP may be seen as a
minimal reliable multicast protocol in the sense that it uses only two very weak
mechanisms - lost message recovery and flow control - in order to implement
“best-effort” reliability.

The premise of ReMIOP reliability properties assume a communication sup-
port with asynchronous systems characteristics, therefore, with no time limits
guarantees for message transmission and remote operations execution. The fault

668 A.N. Bessani, J. da Silva Fraga, and L.C. Lung

model considers only crash faults for hosts, and omission faults in the communi-
cation system. Another fundamental assumption concerning the consistency of
the ReMIOP is the statement: after Od+1 multicast of the same message, there
is no correct host which did not receive this message (see section 4.1).

The ReMIOP operates as the following: messages (MIOP packets) are multi-
cast by the sender to all receivers. The sender has no knowledge about the group
members identity. The receivers detect lost packets by gaps in the sequence of
received messages1. When a member detects a missing packet, it multicast a
control message (NACK) to the group, asking for the lost packets. Any member
that receives this message, either the sender or any other receiver that owns
the required packet, can multicast it to the group. This protocol also includes
session messages that are multicast by the receivers to report to the senders its
buffers state, allowing a dynamic adjustment of transmission rate through the
flow control algorithm. The algorithm presented in the figure 3 describes the
executed procedures to multicast and to receive messages through ReMIOP.

Before describing the algorithm of the figure 3 we shall explain some primi-
tives used in it:

– calculate delay(): This primitive is used to calculate the schedule time to
the next multicast according to the flow control algorithm;

– schedule multicast(time, message): It is used to schedule the multicast of
a message at a specified local clock time;

– cancel scheduled(message id): Cancels the multicast of a message with spec-
ified id;

– cancel scheduled nack for(message ids): Cancels the multicast of a NACK
for specified messages. The message ids is a set of message ids;

– missing messages(buffer): This function searches in the specified buffer
for gaps in messages sequence and return a set with all the ids for these
missing messages;

– random(limit): This primitive chooses a random integer value between 0
and a specified limit;

– nack(message ids): Builds and returns a NACK requesting the messages
with the specified ids;

– update send rate(states): Applies the flow control rule to define the new
send rate.

Besides these primitives, the algorithm for messages reception executes se-
quentially, and uses a scheduler that obeys the specified time schedule with
minor deviations from this. The R-multicast(m) procedure, defined in figure 3,
implements message transmission in two steps: the computation of the wait time
to multicast the message (this calculation follows the flow control algorithm);
and the unreliable multicast scheduling. The reception and delivery of messages
is also illustrated in the figure 3. For reliable message delivery, we first receive it

1 For the first message of each sender, the receiver creates a buffer for controlling
sender messages.

Extending the UMIOP Specification for Reliable Multicast in CORBA 669

procedure R-multicast(m):
Td ← calculate delay() // Sender flow control
schedule multicast(Td, m) // Message multicast scheduled

To R-deliver (m) do:
U-receive(m)
if m.type = DATA then // m.type: type of the message m

cancel scheduled(m.id) // Cancels m multicast, if scheduled
if m /∈ bufferm.sender then // m.sender: sender of m

bufferm.sender ← buffer ∪ {m}
R-deliver (m)
missing ← missing messages(buffer)
if missing = ∅ then

schedule multicast(random(Tnack), nack(missing))
end if

end if
else if m.type = NACK then

cancel scheduled nack for(m.nacked)
for all buffers do // m.nacked: required messages list

for all mr ∈ buffers : mr.id ∈ m.nacked
if nacksmr ≤ Od then

schedule multicast(random(Trepair), mr) // Repair
nacksmr ← nacksmr + 1

end if
end for

end for
else if m.type = STATE then

update send rate(m.states)
end if

Fig. 3. Simplified ReMIOP algorithm

in an unreliable way using the U-receive(m) primitive. Only after that, the al-
gorithm treats each of the three types of messages defined by ReMIOP protocol
in a differentiated manner:

– If the incoming message is a data message (a GIOP message fragment) it is
verified if this message was already received before (m /∈ bufferm.sender); if
it is true, no action is taken. If the message was received for the first time,
it is added in the reception buffer of this sender and then delivered to the
application. After that, receivers verify if there are missing messages and
multicast NACKs on the group for error recovering;

– If the received message is a NACK, then the NACK suppression mechanism is
activated (cancelling NACKs that was already received). For each requested
message id in the NACK a repair message is prepared (when the receiver
is capable to repair it). The retransmission of this message is scheduled

670 A.N. Bessani, J. da Silva Fraga, and L.C. Lung

for a posterior time randomly defined, which avoids an explosion of repair
messages. Note that a repair message multicast is conditioned to the Od
limitations (see next subsection);

– Finally, if the message is a state notification from a group receiver (buffers
state), the system takes this state into account to update the transmission
rate of the protocol.

The mechanisms used to add reliability to ReMIOP are detailed in the next
subsections.

A Note on Garbage Collection: As already mentioned, the ReMIOP implements
probabilistic reliability mainly because, in real systems, it can not maintains the
received messages into the buffer indefinitely. The buffers used in the algorithm
of figure 3 (represented as a set) are not infinite. They have a predefined fixed
size and when this limit is reached, the older messages are thrown away. The
subsection 4.2 discuss some more issues related to the buffers of the ReMIOP.

4.1 Lost Message Recoveries

As the possibility of message loss exists and may be substantial, specially in
large scale systems, the ReMIOP includes a kind of control message to al-
low requests for retransmitting lost messages: NACK messages. This message
contains the identifiers of lost MIOP packets, so that host, which receives the
message, is able to multicast the asked packets. Despite this mechanism, char-
acterized for being initiated by receiver, some improvements had been added
to the protocol in order to prevent, as possible, flooding of NACKs and repair
messages. Among these modifications it can be mentioned the use of a RINA
(Receiver Initiated Nack Avoidance) mechanism [24] and repair delay. These
two improvements cause a delay on the diffusion of NACKs and repairs for ran-
dom periods of time in the expectation that another group member does the
retransmission.

Moreover, the omission degree parameter (Od) was introduced as an optional
improvement. In this case, the sender and the receivers involved in the group
interactions can retransmit the same message again until the limit defined by
Od+1 is reached. In communication supports with omission faults it is acceptable
to consider that no more than Od retransmissions of one single packet is lost in
a reference period of time. Tests can be executed in real networks to determine
Od in any degree of probability [28]. If a receiver does not receive a packet after
Od+1 transmissions from a sender, then it is possible to assume that the receiver
is faulty (crash). Note that Od is only one parameter that can be used in the
protocol, even when the system assumed to be asynchronous. If Od is a too
high value, then the protocol will execute like those ones which assume reliable
channels [12]. For this environment (since it is asynchronous, bursts of messages
may be over-delayed, instead of lost) this artificial hypothesis (omission degree)
can make a too slow process (or slowly connected) be treated as a crashed one.
This hypothesis can be considered acceptable because it allows progress of the
protocol, however this method is subject to inconsistencies if failures are not

Extending the UMIOP Specification for Reliable Multicast in CORBA 671

correctly detected. Therefore, this parameter is useful only for practical ends.
As mentioned earlier, the omission degree is an optional improvement, so, if it
is not used, then, in our algorithm, the Od variable is set to ∞.

4.2 Flow Control

Flow control is a fundamental mechanism for any reliable multicast service. The
absence of membership information in ReMIOP environment makes impossible
the use of more refined flow control algorithms like those defined in [5]. Therefore,
we use a simple mechanism, inspired in LRMP flow control [15], that provides
packets loss prevention in hosts, and the consequent NACKs explosion.

The mechanism applied to implement the flow control in the ReMIOP proto-
col uses information provided by NACKs (that contain lost messages indication)
and state messages (that contain the reception buffers state of the members)
received2. Through these information the sender can estimate the speed of its
receivers and can apply a rate update function according to the receivers capac-
ity. This mechanism uses two types of buffers: one for senders and another for
receivers.

jj−1...

... i−1 i

sender buffer

receiver buffer

gap
messagelast stable

message
last sent

message

Fig. 4. ReMIOP flow control

In figure 4, the sender buffer is used to store sent messages as well as messages
to be sent. The size of this buffer determines how many old messages can be re-
sent by this host in case of a NACK reception. In the receiver, the buffer stores
the received messages. The difference between the sequence number of the last
message sent by the sender (i in sender buffer) and the last received stable
message (j in receiver buffer) is the parameter used to adjust the sending rate.

Let the difference δ = i− j be such that: the bigger is δ, the lower must be
the sending rate so that slow receivers (whose j is much lesser that i) are able to
consume the sender messages. The main objective of this algorithm is to provide
transmissions adjusting the sending rate in a manner that all group members,
including the ones that are in congested areas of the network, can receive the
messages.

The transmission rate of the senders always varies between the interval
[Rmin, Rmax]. Where Rmin and Rmax are defined by the application. The ini-
tial rate is defined as R0 = (Rmin + Rmax)/2. We consider the adjustment
2 Each receiver has a reception buffer for each sender.

672 A.N. Bessani, J. da Silva Fraga, and L.C. Lung

band as Rmax − Rmin = L in which, with a discretization we assume ten
levels of transmission rate: Rmax − Rmin = 10(0.1L). For each size/10 pack-
ets sent, the sender adjusts the transmission rate R according to the follow-
ing rule (where size is the fixed size of the sender buffer, i.e. its maximum
capacity):

Ri =

{
Rmin if δ > size

2

Ri−1 + (−1)

δ− size

5
size �0.1L otherwise

(1)

In the equation 1, Ri defines a new sending rate based: (i) on the current
rate (Ri−1), (ii) on the greater δ collected in the period and (iii) on the size of
the sender buffer (size). This adjustment rule states that the sending rate will
always be determined by slowest receiver.

Through this flow control algorithm and the (informal) assumption that the
system operates most of the time in normal conditions (without congestions and
omission faults), it is possible to guarantee that all the messages sent will be
delivered to the group members.

5 ReMIOP Implementation

In order to implement ReMIOP as a communication service of MJaco, we have
to consider three important issues: control messages definition, ReMIOP/MIOP
interoperability and where in the protocol stack we will implement the ReMIOP
algorithm (presented in figure 3). This section considers these and others
issues.

5.1 Control Messages Definition

As mentioned before, the ReMIOP reliability is supported by two important
mechanisms: message recovery and flow control. Each of these mechanisms re-
quires some type control messages, that are defined in the figure 5.

In this IDL two types of messages are defined: NACK and STATE. These
two kinds of messages are defined by the MessageType enumeration. The
ReMIOPControl structure defines the fields of the control messages used by pro-
tocol. The first field of this structure defines the type of message, following this,
the senderId field contains the IP address of the control message sender. The
last field of the structure, the messages field, have different purposes depending
the type of the message: if it is NACK, then this field contains an array of ids
of messages (represented by the MessageId structure) identifying the required
messages that this host has lost. Otherwise, if it is a session message, then this
field contains the maximum stable message for each sender of the group.

Independently of what type of the control message defined in the
ReMIOPControl structure, it will be serialized such as any other IDL definition
and encapsulated in MIOP packets as stated in the next subsection.

Extending the UMIOP Specification for Reliable Multicast in CORBA 673

module ReMIOP {
enum MessageType {

NACK, STATE;
};
struct MessageId {

string senderId;
unsigned long long sequenceNumber;

};
typedef sequence<MessageIds> MessageIds;
struct ReMIOPControl {

MessageType type;
string senderId;
MessageIds messages;

};
};

Fig. 5. Extension on UMIOP: ReMIOP Messages

5.2 ReMIOP/MIOP Integration

To ensure the interoperability requirement, the data packets sent by ReMIOP
are exactly the same as the ones sent by MIOP. So the data sent by ReMIOP
can be received by MIOP receivers as well.

Each ReMIOP control message is encapsulated in one MIOP packet and
transmitted to the IP multicast group just like a data packet. However, MIOP
receivers do not process these control packets, they are ignored. That means that
basic issues must be considered when fulfilling the MIOP packets header fields
to ensure they are discarded.

The filling of MIOP packets header containing ReMIOP control messages
obeys some basic rules:

1. the packet id must have the same value, and this value cannot be used by
data messages;

2. the packet number field of the header is always set to 0 value;
3. the field defining the number of packets that are part of this message is

always set to 2 value;
4. a bit is marked in the field flags indicating that the packet is a ReMIOP

control message.

The rest of the fields of the MIOP packet are filled in conventional way
according to the MIOP protocol specification.

If the MIOP header fields are set as indicated above, the receivers of ReMIOP
packets capable to process it will detect flag pointed in the flags field and will
treat them adequately (as a ReMIOP control packet). The receivers that do
not implement ReMIOP will process the packet as the first element of a size 2
collection of packets. As the second packet of this collection do never arrives, it
is never released to the ORB upper layers, and will be discarded after a timeout,
just as defined by UMIOP specifications [19].

674 A.N. Bessani, J. da Silva Fraga, and L.C. Lung

5.3 Plugable Strategies for MJaco

In order to make available a reliable multicast service provided by ReMIOP
in MJaco, a plugin mechanism was implemented. This mechanism allows the
integration of reliability strategies capable to extend the ORB multicast stack.
So, many other protocols, with distinct features, could be implemented over
this unreliable multicast service. The figure 6 illustrates the architecture of this
mechanism.

1: Object

2: Object

3: Object

ORB Core

TCP

IP

UDP

Multicast IP

Network

Multicast Stack

Unreliable

RootPOA

Reliability Strategies

Object Adapters

Used Strategy

MIOP Layers

ReMIOP

MJaco

GIOP

IIOP

MIOP

Segmentation

Fig. 6. MJaco architecture with plugable strategies

In figure 6, we have the reliability strategy loaded as a multicast stack layer.
This layer, which can be plugged, is in between two other layers (segmentation
and MIOP) which characterizes the MIOP implementation. In a lower level layer
we have the MIOP encapsulating data blocks in MIOP packets and transmitting
them using UDP/IP multicast. The layer above the plugin is a segmentation
layer, responsible for disassembling (marshalling) long messages in collections of
MIOP packets and reassembling (unmarshalling) them on the receivers.

6 Results

In order to verify the performance of our reliable multicast service in a CORBA
ORB, we executed a set of simple comparative tests concerning the use of MJaco
with the ReMIOP strategy, pure MIOP, and using multicast sockets. These tests
had been accomplished in four equally configured machines3 in a LAN with
3 Pentium IV 1.6GHz, 256 Mbytes of RAM memory, Mandrake Linux 9 Operating

System (kernel 2,4) and 100Mbps Ethernet network card.

Extending the UMIOP Specification for Reliable Multicast in CORBA 675

minimal external network load. The test objective was to validate our implemen-
tation measuring the MJaco+ReMIOP performance, so more complex network
architectures were not considered. The test program measured the time needed
by a group member to multicast a variable size message and receive the reply
message from all group members (including itself). It is called round trip time4.

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

Message size (Kbytes)

R
ou

d
tr

ip
 ti

m
e(

m
s)

multicast sockets

MIOP

1000Kbps 500Kbps

100Kbps 50Kbps

10Kbps

ReMIOP

Fig. 7. MJaco performance

Several experiments were executed with different values for Rmax (see section
4.2). Rmax defines the maximum transmission rate (in bits per second) of the
ORB to multicast messages to a group. The larger Rmax is, the faster is the
transmission, and greater is the possibility of message losses. Experiments with
MJaco using pure MIOP and with multicast sockets were also run to find out
the costs of reliable multicast in middleware level. The graph of figure 7 presents
these experiments results in a logarithmic scale.

Figure 7 shows that the higher the value of Rmax the closer is the behavior of
ReMIOP to the original MIOP. The behavior described by the curves with lower
Rmax values (10Kbps, 50Kbps and 100Kbps) is extremely reliable, so, in our
experiments, no packet was lost, and therefore, no NACK was multicast to the
group. However, the round-trip times obtained are much larger than when using
MIOP since each sender waits much longer to transmit each packet. In fact,
the perceived round-trip overhead is a direct consequence of the value of Rmax

4 All communication (message and replies) are done via the tested multicast protocol:
ReMIOP, MIOP and UDP/IP multicast.

676 A.N. Bessani, J. da Silva Fraga, and L.C. Lung

and the number of data packets5 (message size). The ReMIOP layer overhead
(compared with MIOP) is about 5ms per round-trip for small messages (one
data packet) and large values of Rmax, as can be seen in figure 7.

In curves with bigger values of Rmax, the round trip time is lower, and the
amount of lost packets, NACKs and transmissions is higher. In the curve with
Rmax = 1000Kbps, the round trip time is equal or higher than that of the curve
Rmax = 500Kbps for long messages (≥ 75K). This result is caused by the great
amount of lost packets (NACKs also) and repairs.

The graph of figure 7 also describes curves with the behavior of the MIOP
and multicast sockets to round trip time. These curves describes messages of at
most 50 Kbytes, because for longer messages the packet losses disable the use of
our test program since the round-trip cannot be completed.

7 Related Work

There are some works aiming to incorporate group communication in CORBA
architecture [17,8,18]. These works, in general, focuses in integrating existing
group communication systems and protocols in CORBA middleware without
concerning interoperability issues6. However, only recently, with the publication
of UMIOP specifications, the possibility of implementing interoperable group
communication mechanisms based on IP multicast had been opened. A sim-
ilar study of ours is the RMIOP protocol [23] that proposes an extension of
MIOP for reliability purposes. This protocol uses a NACK-based approach and
ACKs messages to signal the acknowledgement of each received GIOP message
(each receiver sends an ACK to the sender after receiving all the packets from
a collection). This type of policy needs membership information, so the sender
has to know who are the members of the group in order to collect the ACKs.
The use of membership protocols increases the complexity of the RMIOP and
degrades the performance in highly dynamic groups (where processes join and
leave groups all the time). The approach presented in this work does not need
membership, and in our conception, this type of service must be implemented
at object level, using the FT-CORBA facilities (like ObjectGroupManager in-
terface) [20]. Moreover, in [23] mechanisms of flow control are not used (or not
reported). The RMIOP implementation was made in C++ on ORBacus 3.1, a
proprietary ORB that provides sufficiently generic plugin mechanism for inte-
grating new transport protocols. We used an open-source ORB because of the
possibility of unrestricted extensions implementation.

In [11] it is described another approach integrating reliable multicast in a
CORBA ORB that was developed by the same group that idealized the RMIOP.
In that work the reliable multicast is provided through a LRMP library inte-
grated to the ORBacus as a plugin. Therefore, it is not a standardized and
5 According to the flow control algorithm, some packets must wait some time before

being sent.
6 An excellent review of some of these efforts for fault-tolerance is the paper by Felber

and Narasimhan [9].

Extending the UMIOP Specification for Reliable Multicast in CORBA 677

interoperable solution. It is important to remember that although it represents
a simple solution, this work precedes the publication of UMIOP specifications
and it brought some ideas that were included later in that specification.

The literature for “best effort” reliable multicast protocols is broad [14]. These
protocols are characterized by the absence of acknowledgements message and scal-
ability. As some of the protocols of this typewe can mention the SRM [10] and TRM
[26] and LRMP [15], this last one has great influence on the ReMIOP conception.
Despite the mentioned successful protocols, the IETF (Internet Engineering Task
Force) did not adopt any of them as the standard multi-point reliable transport
protocol for the Internet. Instead, they defined a series of mechanisms that com-
pose a reliable protocol so that different applications, with distinct requirements,
can build a variety of protocols from standardized mechanisms [13,29].

Two OMG specifications are related with our work in different aspects. The
already mentioned ROMIOP (Reliable and Ordered Multicast Inter-ORB Proto-
col) upcoming specifications [21] may have an important role as it evolves, since
it defines formats for various types of control messages used in multicast proto-
cols (e.g. ACKs, NACKs and order enforcement). Another OMG specification of
great interest is the ETF (Extensible Transport Framework) [22]. These spec-
ifications define a framework to integrate new transport protocols in CORBA
ORBs. Unfortunately this framework assumes that the protocol to be integrated
is reliable, point-to-point and connection-oriented. These assumptions make it
difficult to implement group communication protocols as ETF plugins. The work
presented in [4] is an initial attempt to integrate these two specifications devising
an interoperable total order multicast protocol. This kind of protocol satisfies
more restrictive properties and consequently is much heavier than ReMIOP.

8 Conclusions

The main objective of this paper was to propose extensions to standardized
MIOP specification to obtain a reliable multicast support. The resulting protocol
is better suited to implement more restrictive ordering and agreement guarantees
and is developed as part of a CORBA ORB. The integration model, which
uses the plugins mechanisms, is very flexible and do not compromise the ORB
interoperability and portability aspects. The ORB is capable to make invocations
using ReMIOP, MIOP or IIOP.

The ReMIOP implementation makes possible the development of other
CORBA architecture group communication solutions (such as [2,4]). These solu-
tions are being used in GroupPac project [16,2], which implements the Fault-
Tolerant CORBA specification.

Despite of that, it was also presented some ReMIOP implementation perfor-
mance measures, comparing it to MIOP and IP sockets multicast to verify the
costs related to this service quality available on middleware level. These devel-
opments, which were based on the proposed integration model, were built on
JacORB. These implementations can be obtained on the web in the following
address: http://grouppac.sourceforge.net/.

678 A.N. Bessani, J. da Silva Fraga, and L.C. Lung

References

1. Alysson Neves Bessani, Joni da Silva Fraga, and Lau Cheuk Lung. Implementing
the multicast inter-ORB protocol. In Proceedings of the 6th IEEE International
Symposium on Object-oriented Real-time distributed Computing - ISORC’03, Hako-
date - Hokkaido - Japan, 2003.

2. Alysson Neves Bessani, Joni da Silva Fraga, Lau Cheuk Lung, and Eduardo Ad́ılio
Alchieri. Active replication in CORBA: Standards, protocols and implementa-
tion framework. In Proceedings of International Symposium on Distributed Objects
and Applications (DOA’04), volume 3291 of Lecture Notes in Computer Science,
Larnaca, Cyprus, October 2004. Springer-Verlag.

3. Alysson Neves Bessani, Lau Cheuk Lung, and Joni da Silva Fraga. Integrating the
unreliable multicast inter-ORB protocol in MJaco. In Proceedings of the 4th IFIP
WG 6.1 International Conference on Distributed Applications and Interoperable
Systems - IFIP DAIS’03, volume 2893 of Lecture Notes in Computer Science, pages
200–211, Paris - France, 2003. Springer-Verlag.

4. Daniel Borusch, Lau Cheuk Lung, Alysson Neves Bessani, and Joni da Silva Fraga.
Integrating the ROMIOP and ETF specifications for atomic multicast in CORBA.
In Proceedings of International Symposium on Distributed Objects and Applications
(DOA’05), Lecture Notes in Computer Science, Larnaca, Cyprus, October 2005.
Springer-Verlag.

5. Raimundo José de Araujo Macêdo, Paul D. Ezhilchelvan, and Santosh K. Shrivas-
tava. Flow control schemes for a fault-tolerant multicast protocol. In Proceedings
of Pacific Rim International Symposium on Fault-Tolerant Systems (PRFTS’95),
Newport Beach, California, USA, December 1995. IEEE Computer Society.

6. S. E. Deering. Host extensions for IP multicasting (rfc 988). IETF Request For
Comments, July 1986.

7. S. E. Deering and D. R. Cheriton. Host groups: A multicast extension to the
internet protocol (rfc 966). IETF Request For Comments, December 1985.

8. Pascal Felber, Benôıt Garbinato, and Rachid Guerraoui. The design of a CORBA
group communication service. In Proceedings of the 15th Symposium on Reli-
able Distributed Systems (SRDS’96), pages 150–159, Niagara-on-the-Lake, Canada,
1996.

9. Pascal Felber and Priya Narasimhan. Experiences, strategies, and challenges
in building fault-tolerant CORBA systems. IEEE Transactions on Computers,
53(5):497–511, 2004.

10. S. Floyd, V. Jacobson, C.-Gung Liu, S. McCane, and L. Zhang. A reliable multi-
cast framework for light-weight session and application level framing. IEEE/ACM
Transactions on Networking, December 1997.

11. C. Gransart and J.-M. Geib. Using an ORB with multicast IP. In Proceedings of
PCS99: Parallel Computing Systems Conference, Ensenada - Mexico, 1999.

12. V. Hadzilacos and S. Toueg. A modular approach to the specification and imple-
mentation of fault-tolerant broadcasts. Technical report, Department of Computer
Science, Cornell University, New York - USA, May 1994.

13. M. Handley, S. Floyd, B. Whetten, R. Kermode, L. Vicisano, and M. Luby. The
reliable multicast design for bulk data transfer (rfc 2887). IETF Request For
Comments, August 2000.

14. B. N. Levine and J. J. G.-L.-Aceves. A comparison of reliable multicast protocols.
Multimedia Systems, 6(5):334–348, 1998.

Extending the UMIOP Specification for Reliable Multicast in CORBA 679

15. T. Liao. Light-weight reliable multicast protocol. Avaliable at
http://webcanal.inria.fr/lrmp/, 1998.

16. Lau Cheuk Lung, Joni da Silva Fraga, Jean-Marie Farines, Michael Ogg, and Aletta
Ricciardi. CosNamingFT - a fault-tolerant CORBA naming service. In Proceeding
of the 18th International Symposium on Reliable Distributed Systems - SRDS’99,
Lausanne - Suice, 1999.

17. Silvano Maffeis. Constructing reliable distributed communication systems with
CORBA. IEEE Communications Magazine, 14(2), 1997.

18. L.E. Moser, P.M. Melliar-Smith, P. Narasimhan, R.R. Koch, and K. Berke. Multi-
cast group communication for CORBA. In Proceedings of International Symposium
on Distributed Objects and Applications, pages 98–107, Edinburgh, United King-
dom, September 1999.

19. Object Management Group. Unreliable multicast inter-ORB protocol specification
v1.0. OMG Standart ptc/03-01-11, October 2001.

20. Object Management Group. The common object request broker architecture: Core
specification v3.0. OMG Standart formal/02-12-06, December 2002.

21. Object Management Group. Reliable, ordered, multicast inter-ORB protocol (re-
vised submission). OMG TC Document realtime/2003-10-04, October 2003.

22. Object Management Group. Extensible transport framework v1.0. OMG TC
Document ptc/2004-01-04, January 2004.

23. S. L. Dit Picard, S. Degrande, and C. Gransart. A CORBA based platform as
communication support for synchronous collaborative virtual environments. In 9th
ACM Multimedia Conference, Ottawa - Canada, 2001.

24. S. Pingali, D. Towsley, and J. F. Kurose. A comparison of sender-initiated and
receiver-initiated reliable multicast protocols. In Proceedings of the Sigmetrics
Conference on Measurement and Modeling of Computer Systems, pages 221–230,
New York, NY, USA, 1994. ACM Press.

25. David Powel. Group communication. Communications of the ACM, 39(4):50–53,
April 1996.

26. B. Sabata, M. Brown, B. Denny, and C. H. Heo. Transport protocol for reliable
multicast: TRM. In Proceedings of the International Conference on Networks,
Orlando - Flórida - USA, 1996.

27. F. B. Schneider. Implementing fault-tolerant service using the state machine
aproach: A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

28. P. Veŕıssimo, L. Rodrigues, and A. Casimiro. Cesiumspray: a precise and accu-
rate global clock service for large-scale systems. Journal of Real-Time Systems,
12(3):243–294, 1997.

29. B. Whetten, L. Vicisano, R. Kermode, M. Handley, S. Floyd, and M. Luby. Reliable
multicast transport building blocks for one-to-many bulk-data transfer (rfc 3048).
IETF Request For Comments, January 2001.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 680 – 697, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Integrating the ROMIOP and ETF Specifications for
Atomic Multicast in CORBA*

Daniel Borusch1, Lau Cheuk Lung1, Alysson Neves Bessani2,
 and Joni da Silva Fraga2

1 Graduate Program in Applied Computer Science,
Pontifical Catholic University of Paraná,

Curitiba - PR - Brazil
{dborusch, lau}@ppgia.pucpr.br

2 DAS – Departamento de Automação e Sistemas,
UFSC – Universidade Federal de Santa Catarina,

Florianópolis - SC - Brazil
{neves, fraga}@das.ufsc.br

Abstract. OMG published a draft specification for a reliable ordered multicast
inter-ORB protocol to be used by distributed applications developed in CORBA
(ROMIOP). This specification was made to attend the demand of applications
that needed more restrictive guarantees on reliability and ordering, since there
already has a specification without these resources (UMIOP). This paper
presents how ROMIOP was implemented, as well as modifications that were
made on the specification to make possible to implement it according to the
ETF (Extensible Transport Framework) specification. Performance measures
were made comparing ROMIOP with others protocols, like UMIOP, to show its
characteristics and its cost.

1 Introduction

The CORBA (Common Object Request Broker Architecture) [15] architecture,
standardized by OMG (Object Management Group), has the ORB (Object Request
Broker) as its main component. It makes possible that objects receive and make
invocations in a transparent way in distributed systems, being considered the base for
the interoperability between applications on heterogeneous environments. To
accomplish the exchange of messages between ORBs, there is an element that specifies
a default transfer syntax besides a set of messages formats known as GIOP (General
Inter-ORB Protocol). The implementation of GIOP to the TCP/IP protocol is known as
IIOP (Internet Inter-ORB Protocol), which uses point-to-point communication as base,
ideal for client/server applications. However, several different application areas need to
disseminate the same message to an infinity of hosts. One of the ways to do this is using
multicast IP, which contains a set of extensions to the IP protocol that make possible to
realize multipoint communications [4].

Since there was not a specification that described a way to use multipoint
communication in CORBA architecture, in 2001 OMG published the UMIOP

* This work is supported by CNPq (Brazilian National Research Council) and FA (Fundação
Araucária) through processes 481523/2004-9, 506639/2004-5, 401802/2003-5 and FA-6651/04.

 Integrating the ROMIOP and ETF Specifications for Atomic Multicast in CORBA 681

(Unreliable Multicast Inter-ORB Protocol) [18, 1] specification. UMIOP was
proposed to provide a common mechanism to deliver requisitions by multicast,
without offering deliver guarantees (reliable multicast) and even less total ordering.
The standard transport protocol defined for UMIOP was multicast IP over UDP/IP,
that differently than TCP/IP, is not connection guided. With UMIOP only one-way
(without answer) invocations can be accomplished. Not having any kind of guarantee,
UMIOP can be characterized as being of high performance, making it ideal for
applications like audio and video streaming, where the loss of some packets can be
tolerated. However, several applications cannot tolerate packet losses, needing more
restrictive guarantees like agreement and ordering. Because of that, and since OMG
had not published until that moment a specification that came with a solution, our
research group proposed the ReMIOP (Reliable Multicast Inter-ORB Protocol) [3]
protocol to supply that demand.

However, at the end of 2002, OMG published a draft specification, planned to be
standardized on 2005. The specification introduced a solution using a multipoint
communication protocol with deliver guarantee and total order (in other words,
atomic multicast [5]). This specification was named ROMIOP (Reliable, Ordered,
Multicast Inter-ORB Protocol) [17, 14]. ROMIOP, just like UMIOP, also uses
multicast IP over UDP/IP, however invocations with return of answer (two-way) are
supported. Making a detailed study of ROMIOP it is possible to verify that the
specification only provides a series of IDL interfaces some of them still confused,
giving a large space for interpretations. In other words, the specification does not
supply details about how the interfaces must be implemented or which ordering
algorithm should be used [5].

Besides this specifications, OMG recently published the ETF (Extensible Transport
Framework) [16] specification, which defines a framework that allows anyone to
project and implement additional transport protocol plug-ins of GIOP messages on
ORB. This specification, which is already implemented in the majority of available
ORBs, makes possible the extension of an ORB/CORBA with the addition of new
transport protocols without having to make any significant modification in its
structure. However, ETF was conceived aiming only point-to-point transport
protocols. For multipoint transport, extensions in the specification are necessary.

This paper proposes, as its main contribution, a set of extensions to effectively
integrate the ROMIOP and ETF specifications, including architectural and conceptual
aspects besides some project decisions. The proposed solution is completely
interoperable, without the use of proprietary interfaces, and totally in accordance with
the OMG specifications. With this, we can consider it close enough to what could be a
definite solution in terms of group communication with total order in CORBA. We
also defined an atomic multicast algorithm to be implemented inside ROMIOP as a
way to validate the proposed architecture, and finally we did some measures showing
the cost of total ordering inside ORB.

This paper is organized in the following way: on section 2 some related works are
shown. On section 3, the MJaco architecture and a set of extensions to the ROMIOP
and ETF specifications are presented. On section 4, the used algorithm of total order
is introduced. The section 5 presents some considerations regarding the
implementation. Some results obtained with ROMIOP can be seen on section 6.
Finally, section 7 presents the conclusions of this work.

682 D. Borusch et al.

2 Related Works

Group communication in CORBA was and still is a very interesting subject. The first
works regarding this issue used proprietary tools of group communication. These
works can be classified in the literature into three basic solutions: the approach on
integration [10], on service [6, 7] and on interception [11, 12].

The integration approach consists in the construction or modification of an existent
ORB, adding ways to make group processing. The main idea in this approach is that
the group processing should be supported by a group communication underneath the
ORB core. On the other hand, the approach that uses service objects is to provide the
support for objects groups as a set of services on top of the ORB, and not as a part of
the ORB. Finally, the interception approach forecasts that messages sent to the
servers' objects must be captured and mapped into a group communication system, in
a transparent way to the application.

In [2] it is proposed an implementation of atomic multicast over MJaco. This
implementation uses the MIOP and IIOP protocols in the development of a state
machine replication system [19] optimal in several aspects. A negative point about
this work, in comparison with ROMIOP, is that it depends on the FT-CORBA
infrastructure [13, 8], implemented through the GroupPac system.

This proposal has the virtue of having available the last OMG specifications related
with multicast in CORBA. The use of these allowed us to achieve a complete
interoperability and portability on ORB, fundamental requirements of any OMG
specification.

3 MJaco Architecture

MJaco [1] is a CORBA middleware with group communication support based on the
UMIOP [18] specifications, standardized by OMG. This middleware allows the
multicast of messages in a non-reliable way, in accordance with the UMIOP standard,
or reliable, implemented by the ReMIOP [3] and ROMIOP protocols, all three being
based on the UDP/multicast IP stack. The integration model allows all protocols to be
added to the ORB without changing the properties of portability and interoperability.

In figure 1, we have the ORB with two protocol stacks: one for point-to-point
communication, based on IIOP, utilizing the TCP/IP services, and the other for
multipoint communication, made by MIOP, ReMIOP and ROMIOP, utilizing
UDP/multicast IP. The integration model presents several elements defined in the
specification that composes the support for the two communication models.

The first stage of the MJaco project was the integration and implementation of
UMIOP in the ORB. The next step on this project was the implementation of the
ReMIOP protocol, which extends the UMIOP specifications with the property of
reliable multicast, providing a "best effort" guarantee that all sent messages will be
delivered by all correct processes of a group. Finally, ROMIOP was added to the set
of protocols, being the only one that, besides having reliable multicast, provides total
order message delivery, in other words, all correct members deliver all messages in
the same order.

 Integrating the ROMIOP and ETF Specifications for Atomic Multicast in CORBA 683

Fig. 1. MJaco architecture

It is important to note the way ROMIOP was introduced in MJaco. Instead of
putting it on top of ReMIOP, or even in the same level as ReMIOP using MIOP as
base, it was developed from the bottom. This, as will be shown later on, was made
due to considerable differences on the format of the specifications of these protocols,
being preferable to start its implementation without using almost anything from
MIOP. It is also important to clarify that the ETF specification does not easily allows
stacking protocols.

3.1 ETF Specification

ETF [16] is a specification of a platform that enables third parties to project and
implement messages transports plug-ins. With it, several middleware that implement
CORBA become much more flexible. This happens because there is in the
specification all interfaces and methods that must (or may, on the optional ones) be
implemented and which functionality each one must have, making unnecessary to
modify the ORB code. This ensures the proprieties of portability and interoperability
of the ORB.

The biggest problem of this specification is that it only defines how to add point-
to-point transport plug-ins, which makes it deficient to multipoint protocols, like
ROMIOP. Due to this fact, the chosen middleware had to be slightly modified, adding
the functionality of sending messages to groups.

Basically, the specification defines four mandatory interfaces: connection, profile,
listener and factories. The first one splits the message layer (GIOP) of the ETF layer,
creating an interaction channel between messages and connections (both from clients
and servers). The second one stores all the information related to the protocol,
including methods to send (marshalling) and receive information through the IOR.
The third one provides the initiative to “be connected” to a requisition made by a
client, directing this requisition to a server. The forth and last interface is responsible
to create instances of clients, making the connection of the ORB with the plug-in (the
figure 5, on section 5, presents the ROMIOP implementation as an ETF plug-in).

684 D. Borusch et al.

A sequence of steps showing the interaction of a plug-in and an ORB can be seen
in the figure 2 bellow:

Fig. 2. Interaction steps between the ORB with the plug-in

At first there must be an instance of the server running that stays waiting the
creation of client connections (line 1). All these steps are made by the ORB, starting
with the invocation of the method create_listener provided by the
factories interface (line 2). It creates an object that implements the listener
interface and it is returned to the ORB. In the next two lines (3 and 4) the ORB uses
the return of line 2 to invoke the methods set_handle and listen. The first one
simply allows the plug-in to callback the ORB whenever it is necessary while the last
effectively allows this instance to receive requests. Lines 5 and 16 indicate that at any
time the profile of this transport can be marshaled (be serialized).

The next stage to make a communication is the creation of a connection requested
by the client (line 6). All these steps are made by the ORB, starting with the
invocation of the method unmarshal provided by the object that implements the
factories interface (line 7). This happens just after the protocol being used is
identified by the information contained in the received IOR. This invocation returns
an object that implements the profile interface, that is used by the next line of
code (line 8) to verify if it does not already exists an equal profile created before,
meaning that the connection has already been opened before. If the connection does
not exist, then both following instructions (lines 9 and 10) will be called. The first
one, provided by factories interface, creates a connection, while the second uses
the return of the first one to effectively enable the connection.

The third stage is the creation of the server side of the connection, which always
happens when a client requests a new connection (line 11). There are two distinct
possibilities to accomplish this function: by “callback” and by “polling”. The first

 Integrating the ROMIOP and ETF Specifications for Atomic Multicast in CORBA 685

option (line 12) is initiated by the plug-in that calls the method add_input of the
handle interface that was received as parameter on line 3. On the other hand, the
second option (line 13) is initiated by the ORB invoking the method accept, which
stops the thread until there is a connection.

The last stage shows the receipt of a request message by the server side (line 14).
After the establishment of the connection in the last stage, the listener instance
can signal to the ORB that there are new data available, calling the method
data_available of the handle interface (line 15). Next, the ORB can read
these data through a read method (line 16) of the connection interface.

3.2 ROMIOP Specification

ROMIOP (actually a draft [17, 14]) defines a set of interfaces to provide a multi-point
communication with deliver guarantee and total order for every non-faulty members
of a group of objects. It supports both requests that need replies (two-way
requests/replies) and the ones that do not need (one-way requests). This specification
was projected so that the protocols that implement it could coexist with IIOP, MIOP
and any other multicast communication protocol, not being able to interfere in the
functioning of them.

The specification defines an interface that configures the several available methods
to consolidate replies and the quality of the ordering service. Regarding the first
factor, there are two distinct ways to accomplish the consolidation: simple voting,
where there are three possibilities to determine the reply (first received, last received
and the first that satisfy the parameter of data consistency); quorum voting, where
there are two possibilities to determine the reply (number of members that send the
same reply and percentage of members that send the same reply), both dependent of
the consistency parameter.

The data consistency parameter settle three possibilities: all the replies must be the
same; all the replies must be different (apparently without any utility); and the
standard, in which the majority of the same replies prevail. It is interesting to note that
with this last option it is possible to provide a limited support to fault tolerance, using
the idea of state machine replication [19]. Beside that, there is an additional parameter
related to the reply consolidation that ends up overcoming all the others. It is possible
to configure a timeout to the receipt of the replies. With this enabled, even if the
chosen option has not yet being accomplished, the consolidation process is forced
with the already obtained results.

The specification also defines how the consolidation and notification of replies
must work: to each request message sent to the objects group there must be created an
instance of a class responsible for the receipt of its replies. This instance is
responsible for determining if the reply is a success, if a timeout happened, if there is
no sufficient quorum, if the voting was inconsistent or if a key member was missing.

Another foreseen interface in the specification is the group service that provides
basic operations like add and removal of members, besides the creation of groups.

To finish, speaking about the communication protocol, ROMIOP defines only
formats for several types of messages. These formats consist in a header that has a
fixed size and brings information related with the data contained in the packet (like it
is type, number of identification, position of the packet inside a set of messages, etc.)

686 D. Borusch et al.

and an area of data. The defined types of packets are Request, Reply, ACK, NAK,
KeepAlive, Cancel and MemberChange. Each type has a different structure in
the data area, following the semantic of the packet. Between several fields we can
quote: to which member the packet is directed, address of ACK/NAK, ID of the
already received packet, status of a member, etc.

Each one of the packets described above always come after a standard packet
header (structure PacketHeader) that inform, besides the type of the following
packet, complementary information, like if there is the need to send an ACK after the
receipt of the same, the size of the packet unique identifier, version of the protocol,
etc. Figure 3 shows the definition described above.

module ROMIOP {
typedef octet PacketType;
const PacketType Request = 0;
const PacketType Reply = 1;
const PacketType ACK = 2;
const PacketType NAK = 3;
const PacketType KeepAlive = 4;
const PacketType Cancel = 5;
const PacketType MemberChange = 6;
const PacketType MsgOrder = 7;
struct PacketHeader_1_0 {

char magic[4];
octet version;
octet flags;
short packet_type;
unsigned long packet_size;

}; };

Fig. 3. ROMIOP packet definition

3.3 Proposed Extensions for Integrating ROMIOP and ETF

Since, until the moment, the ROMIOP specification is still not finished, several
considerations had to be taken and added so that the implementation of this
specification became achievable. The most important one was the creation of a new
type of message, the one who carries the messages orders sent by the leader server
(MsgOrder). Its definition is very simple: there is an identification of who sent the
message and a list with a structure, which was also created, that contains the
identification of the message and the identification of the member who sent the
message.

The message order to be delivered is exactly the same of the list. It is necessary to
send both the message identification and the member who sent it, because in the cases
were there are messages with the same identification, the member who has the lesser
identification will have its message delivered first.

Another crucial point is related to the reply consolidation. It is only said which
models must be implemented (simple or quorum voting), however it is not informed
where the consolidation must occur (in the sender or receivers). In this
implementation, the consolidation algorithm is processed in the client who has made

 Integrating the ROMIOP and ETF Specifications for Atomic Multicast in CORBA 687

the request, taking out of the servers this extra load of processing. This issue could be
considered the most laborious to be developed.

Since the fact that there is not any module related with the reply consolidation in
the ETF specification, as well as a lack of related work, the entire model had to be
developed to solve the problem. Several approaches where analyzed, implemented
and tested before reaching the definitive method that attended the incomplete
ROMIOP specification. Because of this fact that the protocol did not use as base any
other existent protocol (see figure 1 at section 3). The control of the received replies is
not of the protocol. The middleware is the only one who defines which process
(client) owns the reply. This approach had to be detoured, since with this, only the
first reply would always be used, getting rid of all the others (this fact would always
occur in the existence of more than one server). The chosen solution was to created a
“deviation” of this information to the ROMIOP protocol, after the one being sent to
the middleware, attending this way both specifications (ETF and ROMIOP).

Although it may look a slow method (the same information passes through the
protocol twice) the tests that were made (see section 6) prove that the performance
loss was insignificant. Beside that, this method has the advantage of modularizing the
functions: messages that have to be consolidated go through this process, while the
ones that do not need, follow a direct path. With this, each client process the
consolidation of its requests while the servers stay with the task of replying the
requests and defining the order of the messages to be delivered.

Exactly because of the need to consolidate the replies that were implemented a
member service (membership) with more functionality than the one already existent
in MJaco. The protocol needed to know exactly the quantity of functional members so
that the client knows how many replies it must wait for. This entire module was
projected without any kind of specification. Since the protocol needs to keep an
updated list with the members, and it must also be capable of handling omission
faults, crash faults and problems with the physical network (like a cut network cable
or a badly configured router), it was implemented an algorithm that is executed by the
leader server. With it, at each pre-determined time interval, a message is sent to every
member of the group asking if they are still alive. All the members that do not send an
ACK to this message will be removed from the group, in other words, it is assumed
the perfect detector abstraction.

Finally, the specification in its current state does not define the total ordering
algorithm to be used. With this, it was defined an algorithm based on the fixed
sequencer [5], presented in section 4, so that it became possible to verify the
potentialities of the proposed architecture.

4 Atomic Multicast Algorithm

A total order algorithm with reliable multicast is the one that guarantee that all non-
faulty members of a group will deliver the same set of messages in the same order [5].
This type of algorithm is also called of atomic multicast, because the deliver of a
message happens as an indivisible primitive: the message is either delivered to
everyone or to no one, and if delivered, all the other messages will be ordered either
before or after this one.

688 D. Borusch et al.

This type of ordering makes easy the maintenance of a consistent global state
between several processes, being used as a base to the implementation of fault
tolerant through the active replication (the current state is replicated) [19].

It is important to note the way that the packet unique identifier that each member
puts in every message sent to the group is used. This ID is nothing more than a local
counter that is started with the number zero. Every sent packet increments this
counter. Also, every packet that any member receives, even if is not directed to him,
the ID is analyzed. If it is bigger than its local counter, than this value becomes its
local counter number. If it is the same or less, nothing is done. With this it is possible
to use the classic algorithm of events ordering of [9], which allows the identification
of the order in local messages (the message with the lesser identifier will always be
delivered before the message with the bigger identifier).

4.1 Assumptions and System Model

Regarding the process failures, we assume a crash fault model. The group service
module tolerates processes faults since it keeps an updated list of members.

We assume reliable channel, this semantic is implemented by the periodic
retransmission of messages until every receiver processes acknowledge the receipt of
the message (through an ACK message). Duplicated messages are detected by its
identification and are discarded, however ACKs to these messages are sent before the
discard occurs, since its receiver may lose the ACK.

Assumptions regarding time had to be made to implement the ROMIOP protocol.
To determine the re-send of the messages because of the non-receipt of enough ACKs
was adopted that the sum of the times of computing and communication are
synchronous, in other words, there is an upper limit known so that both occur.
Another presumption taken regarding time was of a perfect failure detector. If the
time taken to the reply of the message asking if it is alive (KeepAlive) arrives after
a certain value (or never arrives), that process will be considered as being with
problem and will be excluded from the group.

If any process locks and do not return (crash) there will be no problem, since the
membership module keeps a list of the quantity of members updated. Another
possibility is the lock of a process and its return after a period of time. In this case,
depending of the time it stays without answering it may be removed from the group,
however it will be re-included in the group members when it returns. The only
problem related to this last possibility is that the receivers will discard any reply,
from the excluded member, originated from a requisition delivered before the lock
happened.

Finally, it was implemented a leader election algorithm in which the first process
that enters the group is considered the leader. This functionality was implemented by
simply sending a message to the group and waiting for an answer by a determined
period of time. If no one replies, it considers itself as the leader and starts to warn
every other process that enters the group of the existence of a leader. Notice that
every timeout parameter, related to these times, are configurable so that the protocol
can work in the best possible way in each network environment.

 Integrating the ROMIOP and ETF Specifications for Atomic Multicast in CORBA 689

4.2 Algorithm

The ROMIOP adopted protocol for atomic multicast is based on the fixed sequencer
paradigm [5]. Basically, the protocol works in the following manner: the emitter casts
a message requesting the members of the group to enter this group. Next, it can send

Fig. 4. ROMIOP simplified algorithm

690 D. Borusch et al.

message requests to the group address and it stays waiting for a quantity of ACKs
equal to the quantity of receivers in the group. If the quantity of ACKs is lesser than
the expected, the request is re-send to the group. The ROMIOP simplified algorithm
is shown in figure 4.

Initially, all buffers are initialized with empty values (line 1 to 5). To multicast a
message to the group (line 6) they need first to be stored (line 8) in a local buffer
(excluding the ACK type of message). After the message is stored, a timer is created
(line 9). Just after both these steps that the message is sent (line 10). This is needed
because the messages have to receive confirmations (ACKs) that it effectively
reached its destination. If an enough number of confirmations do not come, the
message is re-send after the finish of the timer. Upon the receipt of ACKs (line 41), if
they are sufficient (line 42), the timer to that message is stopped (line 43) and the
buffer that stored the message is deleted (line 44).

Every received message has a different type of processing (line 15). The requests
(line 16), only received by servers, are stored in a local temporary buffer (line 17).
These requests are only delivered upon the reach of the message with the order of the
messages (line 33). After the receipt of the order, the servers compare its
identifications with the ones that they have stored in its local buffer of already
received messages (line 35). All messages that it has, starting from the first one and
going sequentially to the last, will be delivered (line 36). If, by any reason, the server
does not have one of the messages contained in the order, all the subsequent messages
will not be delivered until the missing one is received.

The leader server sends the message with the order of the messages (MsgOrder
type). Always after receiving a request message, a configurable timer is started. After
the end of this timer, it is sent to the other servers belonging to the group the order
message, containing the identification of all received requests messages during that
time.

Just after the processing of the request message by the server, if it needs a reply, a
reply message type will be sent to the group address (line 6). The emitter client who
sends the request message stays waiting for a certain number of reply messages,
depending on how the consolidation was configured (line 19 and 20).

Finally, every time an object wants to enter the group, it sends a message of type
MemberChange with the status added. All participants of the group that receive
this kind of message (line 23) add the member who sent the message to its local list.
After the member receives the confirmation that he entered the group, it sends another
MemberChange type of message, but with the online status. When the members
receive this message (line 29) they reply sending its local list of members.

5 Implementing ROMIOP Below ETF

To better present the protocol and the way it was adopted to be implemented, in order
to satisfy the requirements of the ETF specification, follows the figure 5. It is a class
diagram showing only the extremely essential methods and attributes, besides
representing only the most important relationships between classes.

The section 3.1 already describes the steps to create the
ClientROMIOPConnection and ServerROMIOPConnection classes. Both

 Integrating the ROMIOP and ETF Specifications for Atomic Multicast in CORBA 691

are derived from the ROMIOPConnection class, being the first one created by the
ROMIOPFactories while the second one by ROMIOPListener.

Basically, at the reception of any packet message, through the
ROMIOPConnection class, the fragment, after several verifications, is added to an
object of the FragmentedMessage class. When a message is considered complete
it is then delivered to the ROMIOP algorithm, where it will be ordered.

For messages that need reply, the ReplyConsolidatorImpl and
NotificationImpl classes are used, being the second controlled by the first, and
this controlled by the ROMIOPStrategy class. The ReplyConsolidatorImpl
effectively consolidates the reply and it is activated in the creation of the request
message that needs the reply or in the receipt of any of its replies. The
NotificationImpl class is only used to notify the ORB of the chosen reply.

Finally, the ROMIOPStrategy class keeps all the remaining necessary processes
for the correct functioning of the protocol, being for this considered the most complex
class and the one with more functionality. Between some of its functions are the send
of ACKs, the membership control and the send of the message order.

Almost every protocol class use both MulticastUtil and ROMIOPProfile
classes. Each one of them is responsible for storing specific information. The first one
is related with the whole protocol, storing protocol configurations, like the
consolidation method and the time limits. The second one is connected uniquely with
a connection, being responsible for storing information of it, like the group address.

+connect() : void

ClientROMIOPConnection

+connect() : void

ServerROMIOPConnection

+read() : void
+write() : void

ROMIOPConnection

+marshal() : void
+is_match() : bool

ROMIOPProfile

+addLast() : void
+deliverMessage() : void
+removeFirst() : object
+groupSize() : int
+sendACK() : void
+sendMsgOrder() : void
+sendMemberChange() : void
+sendCancel() : void
+sendKeepAlive() : void

-consolidator : ReplyConsolidatorImpl
-leader : bool

ROMIOPStrategy

+getMemberId() : object

-DataConsistency : int
-member_id : object
-ReplyQuorumVoting : int
-ReplyQuorumVotingNumber : int
-RequestTimeout : int
-SimpleVoting : int

MulticastUtil

+process_new_reply() : void
+consolidate() : void

-SimpleVotingMode : bool
-transport_reply_callback : NotificationImpl

ReplyConsolidatorImpl

+addFragment() : void
+buildMessage() : byte
+isComplete() : bool

FragmentedMessage

+addGroupConnection() : void
+accept() : ROMIOPConnection
+set_handle() : void

ROMIOPListener

+reply_consolidated() : int

-client : object
-connection : object

NotificationImpl

+create_connection() : ClientROMIOPConnection
+create_listener() : ROMIOPListener
+demarshal_profile() : ROMIOPProfile

-listener : ROMIOPListener
ROMIOPFactories

Fig. 5. ROMIOP plug-in simplified class diagram

692 D. Borusch et al.

6 Performance Evaluation

With the purpose of analyze the MJaco performance with the ROMIOP, as well as the
choices made in the implementation of it, there were made several tests. The
environment in which the tests were done was a set of machines running Windows
XP as operational system. The client was executed in an Athlon 2600+ machine, with
512MB of RAM memory. The leader server was executed in a Pentium 4 at 2.6GHz
with 1,5GB of RAM memory. The other two servers were executed in Athlon
machines at 1.47GHz with 248MB RAM memory each.

The first test had the objective to analyze the scalability as well as the velocity of
the algorithm. The principle is simple: a message with a variable size is sent and it
stays waiting for a reply (an integer of 4 bytes). The final reply (the one that the client
will actually use) is only consolidated after the receipt of all replies of each server
(atomic type of consolidation). In figure 6 the result can be seen.

The result was exactly like the expected one. As much as the number of servers
grown, the time that the client takes to consolidate the replies becomes bigger.
Another point of interest is the low increase of cost with the insertion of more servers,
proving that the adopted protocol is relatively scalable. It is important to say that the
time the leader server takes to send the message order was configured to 10ms.
Finally, it can be easily seen a risen in the time taken to accomplish the consolidation
from 1 to 2 or 3 servers. This happens because the message order is not send with
only one server.

0

100

200

300

400

500

0 20000 40000 60000

Size of Message (Bytes)

T
im

e
(m

s) 1 Server

2 Servers

3 Servers

Fig. 6. Test result of the atomic consolidation

The following test was made to analyze the consolidation algorithm, where the
atomic option was compared with the first reply option. The figure 7 shows the results
for 2 and for 3 servers.

The analysis of the graphics brings, besides the expected that the time taken to
consolidate only the first reply is smaller than the one with all (atomic), the fact that
for small messages (approximately until 3000 bytes) there is practically no

 Integrating the ROMIOP and ETF Specifications for Atomic Multicast in CORBA 693

performance improvement, being for this cases considered more advantageous to use
the atomic consolidation, since it brings more security. With this result, it can be seen
that for large types of messages it is crucial the choice of the consolidation method. If
the application needs to support Byzantine faults or if you only desire to be sure of the
obtained reply (like life support systems or military applications) there will be a
considerable cost. Notice that even with the increase of the number of servers (from 2
to 3), the time to obtain the reply from the first reply consolidation method practically
does not increase.

0

100

200

300

400

500

0 20000 40000 60000

Size of Message (Bytes)

T
im

e
(m

s)

Atomic First Reply

0
100
200
300
400
500

0 20000 40000 60000

Size of Message (Bytes)

T
im

e
(m

s)

Atomic First Reply

Fig. 7. Comparative with two types of consolidation methods with 2 and 3 servers

Next it was made a test to analyze one more consolidation option that ROMIOP
implement. It was tested the percentage of members quorum system. The chosen
value configured to make the consolidation was of 51% of members (figure 8).

0

100

200

300

400

500

0 20000 40000 60000

Size of Message (Bytes)

T
im

e
(m

s) 1 Server

2 Servers

3 Servers

Fig. 8. Result of the consolidation by quorum test

The analysis of the obtained graphic shows that for this type of consolidation the
cost for 2 servers is bigger than for 3, since with only 2 servers, all 2 have to give a

694 D. Borusch et al.

reply so that the consensus can be done. With 3 servers, only 2 of them (66%) have to
give the answer so that the consensus can be done (if the answers given by both are
the same). A very important thing to be noted is that the time to consolidate the reply
with 1 and 3 servers is practically the same, proving that the chosen algorithm is fast
and efficient.

The next test shows the time that the protocol took to only send a message of variable
size without waiting for a reply (one-way). Figure 9 shows the obtained results.

With this result it can be analyzed the cost of not having been used any kind of
flow control in the algorithm. Messages with a considerable size (approximately
bigger than 40000 bytes) start to bring a loss of packets (UDP does not have any kind
of flow control like TCP), being necessary to re-send some of the messages. The
solution to this type of problem is relatively easy, since the ReMIOP protocol already
addresses this issue. It is interesting to note that the quantity of serves practically does
not influence in the time taken to send the message, which is perfectly correct, since
the message is sent only once to all of them, via broadcast.

0

20

40

60

80

100

0 20000 40000 60000

Size of Message (Bytes)

T
im

e
(m

s) 1 Server

2 Servers

3 Servers

Fig. 9. Result of test without reply

0

500

1000

1500

2000

0 20000 40000 60000

Size of Message (Bytes)

T
im

e
(m

s) ROMIOP (1ms)

ROMIOP (10ms)

ROMIOP (50ms)

IIOP

Fig. 10. Comparative of the total ordering cost

 Integrating the ROMIOP and ETF Specifications for Atomic Multicast in CORBA 695

The following tests were done to compare the ROMIOP with the UMIOP,
demonstrating the cost of implementing reliable multicast and total ordering. The first
of these tests show the most important reason to the loss of performance, which is the
total ordering. It was done by comparing the costs of invocation of a method with
reply in a ROMIOP group with the same invocation being done in a normal object
(without replication) accessed via IIOP. Figure 10 presents the results.

All servers must execute the request in the same order and the messages originated
form older ones must be executed only after the one who generated it. To accomplish
this, the servers must wait a time before sending the order of the messages to be sure
that no older message will reach the servers, creating an erroneous order. This time is
configurable in ROMIOP and it basically defines the protocol performance in requests
where a reply is needed (two-way).

The result graph above compares the time taken to a system with only one server
using a protocol that only provides point-to-point reliability and FIFO ordering
(IIOP, which is the protocol that UMIOP [18, 1] uses for request that need reply)
and the ROMIOP, with different times to send the message order. It is clear that any
value above 10ms will slow down considerably the time taken to send the reply
(look at the result with 100ms in the graph). Values bellow 10ms (look at the result
with 1ms in the graph) brings very little benefits in terms of speed. This happens
because the limiting factor starts to be not more the sent of the order message but
the cost to accomplish the reliable multicast, creating the considerable difference to
the IIOP.

Finally, the last test compares the performance of ROMIOP with MIOP [1] in
requests without reply. Figure 11 shows the results obtained with 1 and 3 servers.

0

10

20

30

40

50

0 5000 10000 15000 20000

Size of Message (Bytes)

T
im

e
(m

s)

MIOP ROMIOP

0
10
20
30
40
50

0 10000 20000

Size of Message (Bytes)

T
im

e
(m

s)

MIOP ROMIOP

Fig. 11. Comparative of protocols with request without reply with 1 and 3 servers

The result obtained with this test revealed that for messages with small size
(bellow approximately 5000 bytes) the performance of ROMIOP is really close to the
MIOP [1]. Larger messages requires re-sending of some packets, making the
difference grows (it is easier to visualize it with 3 servers).

696 D. Borusch et al.

7 Conclusion

This paper presented a study about the implementation of the ROMIOP draft
specification using the principles of the ETF specification. The first specification aim
to standardize interfaces and message formats for message multicast with total
ordering and reliable multicast guarantees, while the second one defines methods for
integrating new protocols into already existent systems.

One of the biggest problems we faced was the fact that the ETF specification does
not support multicast communication and that it also does not easily allows to stack
protocols, making the implementation of ROMIOP much more difficult and with the
need to create several small extensions.

With the conclusion of this specification, we finally will have interoperable
mechanisms for group communication in open (standardized) middleware. With
ROMIOP now finished, it is possible to analyze each module in a detailed way,
searching for a better performance, making the implementation more efficient and
with more functionality.

More information related with the performance tests, the developed algorithm, as
well as the source code can be found in the Internet, inside the web page of the
developers group (http://grouppac.sourceforge.net).

References

1. Alysson Neves Bessani, Lau Cheuk Lung, Joni da Silva Fraga, and Alcides Calsavara.
Integrating the Unreliable Multicast Inter-ORB Protocol in MJaco. Proc. of the 4th IFIP
WG 6.1 International Conference on Distributed Applications and Interoperable Systems -
IFIP DAIS'03, Lecture Notes in Computer Science vol 2893. Paris, France, 2003.

2. Alysson Neves Bessani, Joni da Silva Fraga, Lau Cheuk Lung, and Eduardo Adílio Pelison
Alchieri. Active Replication in CORBA: Standards, Protocols and Implementation
Framework. Proc. of 6th International Symposium on Distributed Objects and Applications
– DOA’04, Lecture Notes in Computer Science vol 3291. Larnaca, Cyprus. October, 2004.

3. Alysson Neves Bessani, Joni da Silva Fraga, and Lau Cheuk Lung. Extending the UMIOP
Specification for Reliable Multicast in CORBA. Proc. of 7th International Symposium on
Distributed Objects and Applications – DOA’05. Lecture Notes in Computer Science
(same volume). Larnaca, Cyprus. October, 2005.

4. S. E. Deering. Host extensions for IP multicasting. IETF RFC number 988. 1986.
5. Xavier Défago, André Schiper, and Peter Urbán. Total order broadcast and multicast

algorithms: Taxonomy and survey. ACM Comp. Surveys, 36(4):372-421, December,
2004.

6. Pascal Felber, The CORBA Object Group Service – A Service Approach to Object Groups
in CORBA, PhD. Thesis, École Polytechnique Fédérale de Lausanne. 1998.

7. Pascal Felber, Benoit Garbinato, and Rachid Guerraoui. The Design of a CORBA Group
Communication Service. In Proceedings of the 15th Symposium on Reliable Distributed
Systems (SRDS'96), pages 150{159, Niagara-on-the-Lake, Canada, 1996.

8. Pascal Felber, and Priya Narasimhan. Experiences, Strategies, and Challenges in Building
Fault-Tolerant CORBA Systems. IEEE Transactions on Computers, 53(5):497-511. 2004.

9. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565. July, 1978.

 Integrating the ROMIOP and ETF Specifications for Atomic Multicast in CORBA 697

10. Silvano Maffeis. Run-Time Support for Object-Oriented Distributed Programming, Ph.D.
Thesis University of Zurich. 1995.

11. L. E. Moser, P. M. P. Melliar-Smith, and Priya Narasimhan. Consistent Object Replication
in the Eternal System, Theory and Practice of Object Systems, 4(2): 81-92. 1998.

12. L. E. Moser, P. M. P. Melliar-Smith, Priya Narasimhan, R. R. Koch, and K. Berke.
Multicast Group Communication for CORBA. In Proc. of International Symp. on
Distributed Objects and Applications, pages 98{107, Edinburgh, United Kingdom.
September, 1999.

13. Object Management Group. Object Management Group, Fault-Tolerant CORBA
Specification v1.0. OMG Doc. ptc/2000-04-04. April, 2000.

14. Object Management Group. Reliable, Ordered, Multicast Inter-ORB Protocol. Initial
Submission OMG Doc. realtime/2002-11-28. November, 2002.

15. Object Management Group. The Common Object Request Broker Architecture v3.0. OMG
Standard formal/02-12-03. December, 2002.

16. Object Management Group. Extensible Transport Framework Specification v1.0. OMG TC
Document ptc/2004-01-04. January, 2004.

17. Object Management Group. Reliable, Ordered, Multicast Inter-ORB Protocol. Revised
Submission OMG Doc. realtime/2003-10-04. October, 2003.

18. Object Management Group. Unreliable Multicast Inter-ORB Protocol v1.0. OMG Doc.
ptc/03-01-11. October, 2001.

19. Schneider, F. B. (1990) Implementing Fault-Tolerant Services Using the State Machine
Approach: A Tutorial. ACM Computing Surveys, 22(4): 299-314. December, 1990.

The Design of Real-Time Fault Detectors

Serge Midonnet1,2

1 Ecole Supérieure d’Ingénieurs en Informatique et Génie des Télécommunications,
1 Rue du port de Valvins 77210 Avon, France

2 Institut Gaspard Monge - Université de Marne la Vallée, 5, boulevard Descartes,
Champs sur Marne, 77454 Marne-la-Valle Cedex 2, France

Abstract. This paper presents the design and implementation of real-
time fault detectors. We describe their design, implementation, and
scheduling under a Fixed Priority/ High Priority First policy. Two types
of real-time detectors are described; primary detectors and secondary
(meta) detectors. A Primary Detector is designed for the detection of
simple faults and failures (Worst Case Execution Time, Worst Case Re-
sponse Time, Latest Response Time and Activation Overrun events).
These events occur when a task uses more resources than have been
catered for. The secondary type of detector, called meta Detector, is
used to detect more complicated events called meta-events. Meta-events
are based on a set of primary detectors and their interrelations. The
Real-Time Specification Language (RTSL) is used for the description of
Meta-events, including the primary events relations such as precedence;
(THEN) and other logical relations; (AND, OR, TIMES). Primary and
meta fault detectors must be admitted to the system as periodic or spo-
radic real-time threads. We present a method for the feasibility analysis
of each detector type. These principles are integrated within a Minimum
Real-Time CORBA prototype called RT-SORBET.

1 Introduction

Fault detection is used in order to prevent the tasks from missing their deadlines.
We say that a task is faulty when it has been unable to complete within a
specific time (i.e. the Latest Response Time, the Worst Case Response Time). A
task is also faulty when it overuses the provisionned resource. A fault detector
is attached to each Fault-Tolerant Real-Time thread for fault notification. A
temporal failure occurs when a deadline has not been respected, a temporal fault
occurs when another temporal characteristic (other than the deadline) has not
been respected. For example, a fault may be said to occur when the worst case
execution time of a task has overrun; when the fixed interval of a periodic event
has overrun; or when the minimal inter-arrival delay of a sporadic event has
overrun. Lack of monitoring of the above may result in a temporal failure, the
consequences of which will affect both the faulty task and, more seriously, the
other tasks.

In section 2 we describe briefly the requirements of both specifications (Real-
Time CORBA and Fault-Tolerant CORBA).

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 698–714, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Design of Real-Time Fault Detectors 699

In section 3 we introduce the RT-SORBET architecture for Fault Detection and
the real-time application event model. In section 4 we describe the different types
of real-time monitors supported. In this section, we also presents, the Real-Time
Specification Language used for the specification of meta level real-time Fault
Detectors.

In section 5 we decribe the real-time scheduling model and the feasibil-
ity analysis method used for both, primary and meta real-time fault detectors
admission. We conclude after a brief description of related works in section 6.

2 Fault-Tolerance and Real-Time Requirements

2.1 Real-Time CORBA Specification Requirements

The Real-time CORBA (RT-CORBA) standard [1],[2] describes different in-
terfaces for application development, and mandatory properties, which an RT-
CORBA system must respect. The most important property of an RT-CORBA
system is the scheduling of execution entities (threads). The scheduling of threads
is based on fixed priorities. The specifications detail how these priorities are
set; either on the client side (Client propagated) or on the server side (Server-
declared). Subsequently they will be translated into native priorities for the
host operating system. End-to-end scheduling respects both thread priorities
and thread deadlines. End-to-end predictability is achieved by setting and as-
suming bounds on message transmission latency across the network; and also by
setting and assuming bounds on message processing time within the ORB.

2.2 Fault Tolerant CORBA Specification Requirements

The Fault-tolerant CORBA (FT-CORBA) standard [3] describes the architec-
ture for the replication of CORBA objects. The essential operations an FT-
CORBA system must carry out for both active and passive replication are; log-
ging, checkpointing and message recovery; replicas management and distribution.

Strong replica consistency requires a deterministic behavior of objects.
An FT-CORBA system must guarantee on message transmission and deliv-

ery i.e. the same sequence of messages in the same order. There must be no
loss of messages over the communication medium and no delivery of duplicate
invocations or responses.

The system must also provide a state transfer mechanism for new and recov-
ering replicas.

2.3 Fault-Tolerant and Real-Time Requirements

A real-time and fault-tolerant application requires one of the following in order
to function:

– A special RT-FT scheduler. Real-time resource-aware scheduling function
to detect faults and failures. Fault-aware function which decides when to
initiate recovery after fault and failures notification.

700 S. Midonnet

– The ability to predict new resource allocations (cpu load, memory, network
bandwidth), to control resource usage parameters (resource limits, current
resource usage) and to perform proactive actions such as the migration of
replicas to idle machines before the former execute. This situation occurs in
the context of dynamic systems where new activities are scheduled online.

– The ability to predict faults and failures, the ability to trigger reactive action
in response to overload conditions. The presented work focuses on this point.

3 Architecture for Fault Detection

With RT-SORBET [18] Real-time Servants are hosted as real-time threads (in a
thread per servant operation policy [4]). These –time threads are triggered when
a request is received. They process the Servant Operation instructions.

Primary FaultDetector

ORB EndSystem

Realtime Servants

Meta Fault Detctor
Fault Handler

Fault Notifier & Analyser

Primary Fault Detector

Fig. 1. Architecture for Fault Detection and Handling

An RT-SORBET architecture is composed of different types of objects; the
real-time servant threads which must be monitored; the real-time detectors de-
signed for monitoring specific events during the execution of their associated
real-time Servant; the real-time fault handler which is activated when a fault oc-
curs. A Fault Notifier and Analyser object may be used as a global or distributed
oracle. What is more, in a distributed environment, interpretation may be quite
different. For example, missing a deadline is considered as a local thread failure,
but in the context of a distributed activity composed of multiple segments, a seg-
ment’s missing a deadline does not necessarily lead to the end-to-end deadline
being missed. In this paper we focus on the design, implementation and feasibil-
ity analysis of local fault detectors. These different elements of architecture are
recalled in figure 1.

The Design of Real-Time Fault Detectors 701

For a description of Fault handling especially in the case of overloaded sys-
tems, see [5] [6] [7].

The event model we are considering is the sporadic model.We define a spo-
radic task as follows:

A sporadic task τi consists of an infinite number of occurrences, whose request
times are separated by a minimum time Ti termed period. Each occurrence of
τi requires Ci computation time provided by the server and must be completed
within a deadline Di called the relative deadline of τi. If task τi is requested at
time t, then t+Di is designated the Absolute deadline.

The sporadic model is well adapted to forseeable activities (activities with a
long duration of interactivity such as video conferences or telephone calls)

4 The Design of Real-Time Fault Detectors

A Fault Detector is made of two parts:

– a piece of code (the detector code) generally included in the standard real-
time Java API or included in an extended package (javax.extended),

– a Fault Handler which is a sporadic real-time thread.

RT-SORBET proposes two levels of fault detectors:

– A primary level detector is devoted to monitoring a single event. Examples
of primary fault detectors will be discussed later.

– A secondary or meta level of fault detector is associated generally to more
than one primary detector and triggers its handler when one or more tem-
poral or logical conditions occur.

4.1 Description of Primary Fault Events

In figure 2: a ↑ indicates task activation; a ↓ indicates task deadline; a↗ indicates
task response time; a ↖ indicates task latest response time. The overrunning of
any of these timing constraints is a fault and there detection is required in order
to prevent the failure of a non-faulty task. Detectors we take into account are:

Activation Overrun Detector. An Activation Overrun event occurs when
a task is activated more frequently than expected. Its interarrival duration is
shorter than the minimum period allowed for a sporadic thread (shorter than
the period for a periodic thread).

Deadline Miss Detector. A Deadline Miss event occurs when a task deadline
has been missed.

Response Time Overrun Detector. A ResponseTime Overrun event occurs
when a task response time exceeds its expected value. The response time value
of the task is processed at task admission using the feasibility analysis. The
feasibility analysis is provided by the task scheduler. The worst case response
time value of a real-time thread is processed using the method described in the
section 5.2.

702 S. Midonnet

Latest Response Time Overrun Detector. A LatestResponseTime Overrun
event occurs when a task response time exceeds the response time plus an ex-
tended value which we call the allowance value. The algorithm for the allowance
value calculation is described in what follows.

20

t2

t3

2

7 13

t1

25

15

Fig. 2. Task execution with critical events

Figure 2 represents the execution of three periodic threads (τ1,τ2,τ3) located
on the same node. We observe their execution and critical events. For each
thread the real-time parameters are; the thread Execution Cost (Ci); the thread
Period(Ti); the thread Deadline (Di); and the thread Priority (Pi). Other relative
time values are processed during the thread admission phase, these values are;
the thread Response Time (Ri); the thread Allowance (Ai); and the thread
Lastest Response Time (LRi). Non-faulty threads are represented by the grey
boxes. The black boxes represents faulty threads executions. In this case each
thread completes without missing its deadline.

Table 1 presents the critical events values for each thread.

Table 1. Critical Events Values

thread Execution Cost Deadline/Period/Priority ResponseTime Allowance LatestResponseTime

τ1 2 15/15/50 2 5 7

τ2 3 20/20/40 5 8 13

τ3 5 25/25/30 10 10 25

4.2 Design of Primary Fault Detectors

In this work, the monitored real-time tasks have been designed with both Spo-
radic and Periodic Java real-time threads. Some of the following Fault Detectors
use direct detection by delegating detection directly to the JVM (Deadline Miss
and ActivationOverrun detectors), others are indirect and need a specific thread
monitor (ResponseTime and LatestResponseTime detectors). The implementa-
tion of real-time fault events is carried out using an AsyncEvent object. The spo-
radic thread (fault handler) associated with the event is an AsyncEventHandler

The Design of Real-Time Fault Detectors 703

object. In order to trigger the event and then activate the fault handler (the
sporadic thread) we use fire(), as the specific event object method is called.
Each dectector has its own priority, inherited from the monitored thread, or set
by the SchedulingParameters value. See [8] for a description of the Real-Time
Specification for Java.

Design of a Deadline-Miss Detector. A thread deadline missed event can
be detected directly by the real-time thread object. When this event occurs
a Deadline Miss Handler is called (see the AsyncEventHandler missHandler
parameter of the SporadicParameters Class constructor).

Design of an Activation Overrun Detector. When the minimum inter-
activation duration (mit) is not respected the policy for dealing with minimum
arrival time violations must be one of the following:

1. The activation is ignored (mitViolationIgnore value)
2. An exception is called (mitViolationException value)
3. The new release replaces a previous release (mitViolationReplace value).
4. There will be no checks for correct minimum interarrival times for incoming

releases (mitViolationSave value).

We use the setMitViolationBehavior method of the SporadicParameter ob-
ject to setup the detection of the Activation Overrun event. The mitViolationEx-
ception object triggers the AsyncEvent(Fault)Handler.

Design of ResponseTime Overrun Detector. In order to implement the
detection of that type of event the standard RealTime Thread Class has been
extended. The detector is a OneshotTimer set with a value which is made up
of the current time plus the worst case reponse time of the monitored thread.
The OneShotTimer is setoff by each activation thread. The OneShotTimer when
executed tests the completion of the monitored thread. If the monitored thread
is not completed then the OneShotTimer triggers the Fault Event.

1. For each t in TaskSet Do
2. If (k ≥ 1)
4. allow ← 0
5. Do
6. allow ← allow + 1
7. t.Ci ← t.Ci + 1
8. For each j in FaultTolerantTaskSet(t)
9. j.Ci ← j.Ci + 1
10. While(ifFeasible)
11. t.Ai ← −1
12. ResetCi(t,allow)

Fig. 3. ResponseTime Allowance algorithm

704 S. Midonnet

Design of LatestResponseTime Overrun Detector. The calculation of the
Allowance value for each task is carried out incrementally by adding a time unit
to each task cost as long as the hole remains feasible. In this way the avail-
able resources are distributed fairly, see figure 3 for algorithm description. This
value is calculated by the addToFeasibility method of the extended RealTime
Thread class. The detector design is the same as in the preceeding case (using a
OneShotTimer).

4.3 The Meta Fault Detectors and Their Specification Language,
RTSL

A meta Fault Detector (see figure 4) is used to detect more complicated events
called meta-events. Meta-events are based on a set of primary detectors and their
interrelations. Thus meta Fault Detector detects compound faults and triggers
a related meta Fault Handler.

Suppliers

detector

sequence

logic

fire()

fire()

fire()

fire()

fire()

AsyncEvent

AsyncEventHandler

legend:

Meta−Event

Consumers

Fig. 4. Meta Fault Detector Architecture

10

T8

X5

T6 T7

12 T1 T5

T4

T2

T3

9

5

6

7

8

mFDcmFDa

mFDb 13

Fig. 5. Event Relations in a Secondary Fault Detector

We have designed a language (RTSL) and a compiler RTSLcomp to facilitate
the implementation of the meta Detectors. The generated code is based on the
Real-Time Specification for Java.

Using RTSL Suppliers are defined as primary fault detectors and Consumers
as meta fault handlers. In order to specify a meta Fault Detector : Firstly we

The Design of Real-Time Fault Detectors 705

define the types of Suppliers and Consumers we use. Then we define each meta
Fault Detector using the keyword MetaEvent. A MetaEvent contains an Event-
Condition keyword used to describe the relations between primary events. The
current version (1.0) of RTSL supports only three logical relations (AND, OR,
TIMES) and the precedence relation (THEN). In the following exemple (see
figure 5) we have to monitor three applications. Application 1 is made of a sin-
gle thread (T8), application 2 is made of 2 threads (T6 T7), application 3 is
made of five threads (T1, T2, T3, T4, T5). We define three meta Fault Detectors
(mFDa,mFDb,mFDc) in order to monitor the preceeding applications.

Events {mFDa,mFDb,mFDc};

Suppliers {LatestResponseTimeOver,ActivationOver};
Consumers {Finalize,Stop};

MetaEvent mFDa{
Supplier LatestResponseTimeOver:T8;
Consumer Finalize:F1;
EventCondition T8 TIMES 4;

};

MetaEvent mFDb{
Supplier LatestResponseTimeOver:T6,T7;
Consumer Stop:C2, Finalize:F2;
EventCondition T6 THEN T7;

};

MetaEvent mFDc{
Supplier LatestResponseTimeOver:T1, T2, T3, T4, T5;
Consumer Finalize:F3;
EventCondition (T1 AND T2) THEN (T3 AND T4) THEN T5 ;

};

5 Scheduling and Feasibility Analysis of Real-Time
Detectors

5.1 The Scheduling of Real-Time Detectors

Scheduling theory applied to hard real-time systems has been widely studied in
the last twenty years. A lot of results have been achieved much progress have
been made in th field of non-idling scheduling over a single processor. The most
effective real-time schedulers make use of the HPF (Highest Priority First) on-
line policy, two approaches are identified: fixed priority driven schedulers and
dynamic priority driven schedulers. For fixed priority driven schedulers, refer to
[9], [10] and [11]. Different scheduling is investigated for periodic or sporadic

706 S. Midonnet

tasks, depending on the relation of the period and the relative deadline of a
task. We can identify three scheduling policies: Rate Monotonic, Inverse Deadline
Monotonic (IDM) or arbitrary. Fixed priority driven schedulers were chosen for
easy implementation. Most of the RealTime Java Environment offers only an
FP/HPF scheduler. For dynamic priority driven schedulers, we can identify (not
exhaustive) Shortest Slack Time (SST), Earliest Deadline First (EDF) and First
In First Out (FIFO). Dynamic priority driven schedulers are considered better
theoretically than fixed priority schedulers [12]. An EDF scheduler has been
developped for the Esmertec/Jbed real-time Java Environment and another has
been developped for the MIT/Flex real-time Java Environment.

In this work and in the current implementation of the RT-SORBET frame-
work we have chosen to focus on FP/HPF. FP/HPF is the pre-emptive version
of Fixed Priority/Highest Priority First non-idling scheduling. Bearing in mind
that FP/HPF schedules the tasks according to their priority: the task with the
highest priority first.

5.2 Feasibility Analysis for Primary Fault Detectors

Primay Fault Detectors are independent tasks. Their feasibility analysis depends
on their priority. We use two priority classes, one for application real-time threads
and one for fault detectors. Fault Detectors threads have higher priorities than
application real-time threads. The priority of a Fault dectector is determined by
φi = Pi + Offset, where Pi is the priority of the monitored application thread.
The smaller detector priority is greater than the higher application thread pri-
ority.

Definitions.

– An idle time t is defined on a processor as a time where there are no tasks
released before time t pending at time t. An interval of successive idle times
is called an idle period.

– A busy period is defined as a time interval [a,b) where there is no idle time
in [a,b) (the processor is fully busy) and such that both a and b are idle
times.

– The processor utilization factor (U) is defined as the fraction of processor
time spent in the execution of the task set (see [9]). An obvious necessary
condition for the feasibility of any task set is U ≤ 1 (this is assumed in the
sequel).

U =
n∑

t=1

Ct

Tt
≤ 1 (1)

The following condition 2 is a necessary and sufficient condition for the the-
oretical feasibility analysis of a realtime thread system. In the general case the
deadline of a task can be greater than its period. For simplification of the
metaDetector analysis, we don’t authorize the reentrance of the primary de-
tectors, i.e. a new fault handler can’t start before the previous fault handler
completes.

The Design of Real-Time Fault Detectors 707

In the following; the worst case response time is found in the first period (in
the synchronous task activation scenario).

ri = max
q=0...Q

(ri,q − qTi) (2)

where Q is the number of periods within the Busy Period. where ri,q is the
response time of period q.

Lehoczky and al. [11] have shown that the preceeding equation ends when:

ri,q ≤ (q + 1)× Ti

rn+1
i,q = (q + 1)Ci +

∑
j∈HP (i)

⌈
rn
j,q

Tj

⌉
× Cj (3)

5.3 Feasibility Analysis for Meta Fault Detectors

In this section we analyse the feasibility of the admission of a meta Fault Detec-
tor. Bearing in mind that a meta FD is made up of a set of realTime threads.
The admission of a meta FD, requires the analysis of its influence on the re-
sponse time of other tasks in the system and the analysis of the influence of the
other meta FD on its own response time. We characterize the meta FD with
the determination of its worst case response time (the response time of the last
thread in the graph). precendence constraints. The worst case situation we must
analyse is the situation where the load due to the detector activity is the highest.

This situation occurs when the sporadic event model becomes periodic. In
this case the inter-event notified is the minimum period of the monitored real-
time thread.

In this situation we can calculate the response time of the meta FD. In other
cases the load is lower and the system remains feasible. The response time has no
highest limit in the case of a sporadicmodel, as some eventswouldnever be notified.

The lowest response time of the sporadic event traffic model is the worst
case response time of the periodic event traffic model. To find the lowest spo-
radic response time of the Meta detector we must process its worst case periodic
response time. In this section we analyse the minimum response time of a Meta
Fault Detector. The minimum response time corresponds to the shortest delay
between the notification of the first event in the graph and the trigerring of the
real-time fault handler. The minimum value we can get is found when all the
events are fired at their highest frequency. In this case the event model becomes
a strict periodic model where events are fired at each detector activation.

The logical relations (AND, OR, TIMES).

– AND:
All the events must be notified but no precedence constraint has been de-
fined. The Response Time of the metaFD i (RmetaFD

i) is the sum of the
independent threads response times.

708 S. Midonnet

RmetaFD
i =

∑
j∈FDThreadSet

rj (4)

Where rj is processed using equation (2).
– OR:

One of the events must be notified.

RmetaFD
i = max

j∈FDThreadSet
rj (5)

– TIMES
RmetaFD

i = ri × p (6)

Where p is the number of occurences of the fault.

The precedence relation (THEN). We use the theoretical results from Har-
bour and al. [13] to determine the influence of the precedence constraints for the
feasibility analysis of meta Fault Detectors. We assume that:

– Threads in a meta FD graph have the same period (the same period as the
monitored real-time thread).

– A thread is not reentrant i.e. thread instances are scheduled in a FIFO order,
the instance (k+1) of a thread could not be influenced by the preceeding
instance k.

– Fault Dectectors are not reentrant i.e. a new instance of a graph cannot start
before the current instance completes (any thread in a graph could not be
influenced by any other preceeding thread in the same graph).

mFD graph (b)

T1 T5

T4

T2

T3

9

5

6

7

8

mFD graph (a)

T9

T7

T6

T8

2

4

7

6

Fig. 6. Event Relations in Secondary Fault Detectors

We study the worst case response time of the thread τ5 of the meta FD graph
(a) (see figure 6). The number under each graph node is the task priority.

Each graph will be modified through several steps [13]: We describe the
transformation of the graph (a).

The Design of Real-Time Fault Detectors 709

1. The graph is transformed into a chain.

We look for the threads without any predecessor or with any predecessor not
already placed (τ1,τ2), we place in first position in the chain the thread with
the highest priority (τ2).

τ2(5) (a)

Then we continue with the thread with any predecessor not already placed.
The only solution is (τ1).

τ2(5) ≺ τ1(9) (a)

Then (τ3, τ4).
τ2(5) ≺ τ1(9) ≺ τ4(6) (a)

We end with (τ3 and τ5).

τ2(5) ≺ τ1(9) ≺ τ4(6) ≺ τ3(7) ≺ τ5(8) (chain a)

The result for the transformation of the graph (b) is:

τ6(2) ≺ τ7(4) ≺ τ8(7) ≺ τ9(6) (chain b)

2. The chain is transformed into a canonical form.

This transformation consists in the modification of the thread priorities.
For each thread in the chain we look for the priority of its predecessor. If
the priority of its predecessor is higher, it is changed to the current thread
priority. And this recursively until the beginning of the chain.
The preceeding chain transformation:

τ2(7) ≺ τ1(9)→ τ2(9) ≺ τ1(9)

τ2(9) ≺ τ1(9) ≺ τ4(6)→ τ2(9) ≺ τ1(9) ≺ τ4(6)

τ2(9) ≺ τ1(9) ≺ τ4(6) ≺ τ3(7)→ τ2(9) ≺ τ1(9) ≺ τ4(7) ≺ τ3(7)

τ2(9) ≺ τ1(9) ≺ τ4(7) ≺ τ3(7) ≺ τ5(8)→ τ2(9) ≺ τ1(9) ≺ τ4(8) ≺ τ3(8) ≺ τ5(8)

and the canonical form of the chain mFD (a) becomes:

τ2(9) ≺ τ1(9) ≺ τ4(8) ≺ τ3(8) ≺ τ5(8) (canonical chain a)

the canonical form of the chain mFD (b) becomes:

τ6(7) ≺ τ7(7) ≺ τ8(7) ≺ τ9(6) (canonical chain b)

3. The thread sequence identification.

In the preceeding exemple, we obtain one ore more sequences of threads with
the same priority. We found the sequences:

710 S. Midonnet

– for the chain mFD(b) we found: The sequence σ1,1 of priority 9 is com-
posed of threads τ2 and τ1 and the sequence σ1,2 of priority 8 is composed
of threads τ4, τ3 and τ5.

σ1,1(9)(τ2, τ1); σ1,2(8)(τ4, τ3, τ5) (chain sequence a)

– for the chain mFD(b):

σ2,1(7)(τ6, τ7, τ8); σ2,2(6)(τ9) (chain sequence b)

We can now represent a meta FD as a simplified system S(σi) composed of
meta threads (thread sequences). The execution time Cσk

of a sequence σk

becomes:
Cσk

=
∑
j∈σi

Cj (7)

4. The determination of the Worst Case Response Time a threadτi

In the current exemple we determine the worst case response time of the meta
FD (a) i.e. the worst case response time of the thread τ5 in the same graph.

(a) Classification of thread sequences (HMP/HSB).

We must take into account the influence of other FD thread sequences on
the thread in question. The other thread sequences are typed (H and L
types). An H sequence is made of threads with priority equal or greater
than τi and an L sequence is made of threads with priority lower than τi.

Several effects may influence the response time of τi. The effect of
other graphs sequences may be a Blocking Effect or a Preemptive Effect.

A Blocking Effect occurs when an H sequence is preceeded by an
L sequence, the H sequence cannot be executed unless the L sequence
finishes. Harbour in [5] shows that in this case the H sequence can be
postponed once. We call this type of sequence an HSB sequence i.e. High
Simple Blocking sequence.

A Preemptive Effect occurs when an H sequence has no L sequence
as predecessor. This H sequence may be activated several times in the
present thread’s σ2 Busy Period. We call this type of sequence an HMP
sequence i.e. High Multi Preemptive sequence.
In the exemple of figure 6 there is, in regard of task τ5 a HMP sequence
(thus a Preemptive Effect) and no HSB sequence (no Blocking Effect).

τ6(7), τ7(7), τ8(7), τ9(6) (theHMPsequence)

(b) Determination of the φτi-level Busy Period.

The concept of a Busy Period was first introduced in real-time schedul-
ing by Lehoczky [11] and modified by Harbour and al [13] to accommo-
date the fact that a single task may have subtasks with different priori-
ties. The worst case response time of a task τi with a priority φi is found
in a φi-level busy period. We must first determine the length of the φi

level Busy Period.

The Design of Real-Time Fault Detectors 711

The length of the φi busy period is determined by considering:
– the multiple preemptive tasks relative to the first subtask of the

canonical chain (a)(MPi1),
– the single preemptive tasks relative to the first subtask of the canon-

ical chain (a)(SBi1),
– and the complete instance of τi.

Li = min(t > 0 |
∑

τp∈MPi1

⌈
t

Tp

⌉
× Cp +

∑
τp∈SBi1

Ch
p +
⌈

t

Ti

⌉
× Ci = t)

The number Ni of instances in the Busy Period is found thus:

Ni =
⌈

Li

Ti

⌉
(c) Step 3: Check the completion time of each of the N instances in the φi

level busy period.
The procedure then determines the completion time of the first subtask of
the transformed canonical form. It then determines the completion time
of the (j+1) subtask as a function of the j subtask until the completion
time of the final subtask has been determined. This is performed for
every job in the busy period.
i. The completion time of the first thread(subtask) τi,1 of the instance

k of the graph τi (in its canonical form) is represented by Ei,1(k).

Ei,1(k)=min(t > 0 |
∑

τp∈MPi1

⌈
t

Tp

⌉
Cp+

∑
τp∈SBi1

Ch
p +(k−1)Ci+Ci,1= t)

The completion of this subtask is influenced by; the blocking term,
all higher priority processing initiated at the same instant and the
execution time of the subtask itself.

ii. Given the completion time of the first thread of the instance k, it is
possible to calculate the completion time of the second thread of the
instance k of τi.

Ei,2(k) = min(t > 0 | Ei,1(k)+MPi2Effect + SBi2Effect + Ci,2 = t)
(8)

where

MPi2Effect =
∑

τp∈MPi2

[⌈
t

Tp

⌉
−
⌈

Ei,1(k)
Tp

⌉]
Cp

SBi2Effect =
∑

τp∈SBi2

min(1,

[⌈
t

Tp

⌉
−
⌈

Ei,1(k)
Tp

⌉]
)Ch

p

712 S. Midonnet

iii. In general, given the completion time of the j thread of the instance
k, it is possible to calculate the completion of the (j+1) thread of
the instance k of τi.

Ei,j+1(k) = min(t > 0 | Ei,j(k) + MPi,j+1Effect +

SBi,j+1Effect + Ci,j+1 = t) (9)

MPi,j+1Effect =
∑

τp∈MPij+1

[⌈
t

Tp

⌉
−
⌈

Ei,j(k)
Tp

⌉]
Cp

SBi,j+1Effect =
∑

τp∈SBij+1

min(1,

[⌈
t

Tp

⌉
−
⌈

Ei,j(k)
Tp

⌉]
)Ch

p

The Worst Case Response Time of τi becomes:

Rτi = max((k − 1)× Ti − Eim(i)(k)) ≥ 0 with k ≤ Ni (10)

6 Related Works

The MEAD (Middleware for Embedded Adaptive Dependability) system [14] at-
tempts to reconcile the conflicts between real-time and fault-tolerance properties
in a resource-aware manner. One novel aspect of MEAD is its use of a proac-
tive dependability framework that lowers the impact of faults on a distributed
application’s real-time schedule. The aim here is to design and implement mech-
anisms that can predict, with some confidence, when a failure might occur, and
that can compensate for the failure even before it occurs.

The ROAFTS project [15] (Real-time Object-oriented Adaptive Fault Toler-
ance Support) is a middleware architecture designed to support adaptive fault-
tolerant execution. While ROAFTS contains fault tolerance schemes devised for
quantitatively guaranteed real-time fault tolerance, it is also designed to relax
those characteristics while the application is in a soft real-time phase in order
to reduce resource use.

The Time-Triggered Architecture (TTA) [16] and [17] is a distributed com-
puter architecture for the implementation of highly dependable real-time sys-
tems. A TTA system has fault tolerance implemented in both hardware and
software. In a TTA system, the membership and the clique avoidance algo-
rithms detect state inconsistencies and force the nodes to restart, if their state
is different from that of the other nodes.

The NEXT TTA project (High-Confidence Architecture for Distributed Con-
trol Applications) enhances the structure, functionality and dependability of the
time-triggered architecture (TTA). Event-triggered communication services are
integrated into the TTA to increase the required flexibility. The synchronous
programming environment LUSTRE and its tool set are extended for the TTA
and automated worst-case-execution-time analysis is explored. CORBA compli-
ant interfaces are provided in order to make TTA systems interoperable with an
open information infrastructure.

The Design of Real-Time Fault Detectors 713

7 Conclusion

This paper offers both a theoretical and a practical approach of the real-time
fault detection problem. The practical approach is centred on the design of pri-
mary and meta real-time fault detectors using the RealTime Specification for
Java. The theoretical approach using classical real-time scheduling results is
centred on the feasibility analysis of fault detectors. We offer a formalization of
more complex real-time detectors with the RTSL language. An important high-
light of the RTSL framework is that it provides a code generation in order to
facilitate meta FD implementations. The Meta-Fault Detector framework have
already been integrated into the RT-SORBET Environment in order to monitor
local threads. The next step in this work will be the design of distributed Meta
Fault Detectors and Global Notifiers.

References

[1] Object Management Group Real-time CORBA Specification - Dynamic Schedul-
ing, OMG Document formal/03-11-01 version 2.0, November 2003

[2] Object Management Group Real-time CORBA Specification - Static Scheduling,
OMG Document formal/05-01-04 version 1.2, January 2005

[3] Object Management Group CORBA Fault Tolerant formal/04-03-21 chapter,
v3.03

[4] D.C. Schmidt, ”Evaluating Architectures for Multi-threaded CORBA Object Re-
quest Brokers,” Communications of the ACM Special Issue on CORBA, vol. 41,
no. 10, Oct. 1998.

[5] G.C. Buzzato, J.A. Stankovi ”RED: A Robust Earliest Deadline Scheduling”, 3rd
International Workshop on responsive Comuting System, Sept 1993

[6] C.D. Locke ”Best Effort Decision Making for real time scheduling”, Ph.D Thesis,
Computer Science Departement, Carnegie Mellon University 1986.

[7] G. Koren, D. Shasha ”D over: an optimal On-Line Scheduling Algorithm for Over
loaded Real Time System” rapport technique 138, INRIA Fev 92

[8] Realtime Specification for Java www.rtj.org
[9] C. L. Liu, J. W. Layland, Scheduling algorithms for multiprogramming in a hard

real time environment, Journal of the Association for Computing Machinery,
20(1), Jan. 1973.

[10] K. W. Tindell, A. Burns, A.J. Wellings, ”An extendible Approach For Analysing
Fixed Priority Hard Real-Time Tasks”, Real-Time Systems 6(2), 1994

[11] J.P. Lehoczky. ”Fixed Priority Scheduling of Periodic Task Sets with Arbitrary
Deadline” in IEEE Real-Time System Symposium (1990).

[12] D. I. Katcher, J. P. Lehoczky, J. K. Strosnider, Scheduling models of dynamic
priority schedulers, RR CMUCDS-93-4, Carnegie Mellon University, Pittsburgh,
April 1993.

[13] M.G. Harbour, M.H. Klein, J.P. Lehoczky. ”Timing analysis for Fixed Priority
scheduling of hard real-time systems Harbour” in IEEE Transaction on Software
Enginieering, 20(1): 13-28, 1994.

[14] S. Pertet and P. Narasimhan Proactive Recovery in Distributed CORBA Applica-
tions. in IEEE Conference on Dependable Systems and Networks (DSN), Florence,
Italy, June 2004.

714 S. Midonnet

[15] K. H. Kim. ROAFTS: A middleware architecture for real-time object oriented
adaptive fault tolerance support. In Proceedings of IEEE High Assurance Systems
Engineering (HASE) Symposium, pages 5057, 1998.

[16] H. Kopetz and G. Bauer. ”The time-triggered architecture”.In proceedings of the
IEEE, vol. 91, pp. 112-126, 2003.

[17] G. Bauer and H. Kopetz. Transparent Redundancy in the Time-Triggered Archi-
tecture. In Proceedings of the International Conference on Dependable Systems
and Networks (DSN 2000), pages 513, New York, USA, June 2000.

[18] The RT-SORBET Home Page.
"http://igm.univ-mlv.fr/~midonnet/SORBET.html"

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 715 – 731, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A CORBA Bidirectional-Event Service for Video
and Multimedia Applications

Felipe Garcia-Sanchez, Antonio-Javier Garcia-Sanchez, P. Pavon-Mariño,
and J. Garcia-Haro

Department of Information Technologies and Communications,
Polytechnic University of Cartagena, Campus Muralla de Mar s/n,

30202 Cartagena, Spain
{felipe.garcia, antoniojavier.garcia,

pablo.pavon, joang.haro}@upct.es

Abstract. The development of multimedia applications using the CORBA A/V
Streaming architecture, suffers from a complex software design. This is not a
minor drawback in a middleware architecture, intended to simplify the software
development process. One source of complexity is the absence of a flexible sig-
naling mechanism to communicate application-dependent control information.
As a consequence, developed applications must design parallel communication
processes between end points, which obscures the design. Another shortcoming
identified, is the rigid flow establishment process, which does not allow the se-
lection of an asynchronous connection setup. In this paper we present an exten-
sion of the A/V Streaming service, which addresses these issues. The service
proposed provides access to the applications through an integrated bidirectional
event-based signaling mechanism. The A/V Streaming extension offers this
functionality by means of a CORBA Bidirectional Event Service, also presented
in this paper. The A/V Streaming extension under consideration is implemented
and comparatively evaluated with the original service, in the CORBA
ACE/TAO distribution. Benchmark results validate our proposal, and encour-
age its practical utilization.

1 Introduction

The design of distributed multimedia applications in the CORBA middleware, adds
specific requirements, with respect to conventional distributed applications. This is
motived to achieve an efficient mechanism to combine transmission of multimedia
flows between remote objects with the associated control information and signaling.
To address this particular scenario, the OMG (Object Management Group), proposed
in 2000 the CORBA Audio/Video (A/V) Streaming service specification [1]. The
description of the main components that form CORBA’s A/V Streaming Service is as
follows (Fig. 1):

 A Stream Interface Control Object, providing an IDL (Interface Description Lan-
guage) for controlling and managing streams. This type of information will be
handled by the CORBA’s ORB (Object Request Broker) using IIOP heading on
transport level.

716 F. Garcia-Sanchez et al.

stream
control

operations

Flow Data
End-point
(Source)

Stream
Adaptor

Portable
Object
Adaptor

ORB

Steam
Adaptor

Stream
Interface
Control
Object

Control and
Management

Objects

Data Stream

Stream EndPoint

Portable
Object
Adaptor

Stream EndPoint

Flow Data
End-point

(Sink)

Stream
Interface
Control
Object

stream
control

operations

Data
stream

Data
stream

stream
control

operations

Flow Data
End-point
(Source)

Stream
Adaptor

Portable
Object
Adaptor

ORB

Steam
Adaptor

Stream
Interface
Control
Object

Control and
Management

Objects

Data Stream

Stream EndPoint

Portable
Object
Adaptor

Stream EndPoint

Flow Data
End-point

(Sink)

Stream
Interface
Control
Object

stream
control

operations

Data
stream

Data
stream

Fig. 1. CORBA’s A/V Streaming Service

 Flow Data Endpoints, which are either data sources or data sinks [2].
 A Stream Adaptor that receives or transmits data frames over a network. The pro-

tocols commonly used are UDP, TCP or RTP [2].

The CORBA A/V Streaming Service manages in a different manner two types of
communications between distributed objects:

 Control information (i.e. establishment signaling flow). This control informa-
tion is managed by means of conventional CORBA interactions between the flow
end points. Therefore, it involves IIOP (Internet Inter-ORB Protocol) messages
processed by the CORBA middleware.

 Data flow. Once video and/or audio flow parameters are defined, the data flow is
established between the signaled end points, by means of the conventional mul-
timedia transport protocol selected (i.e. RTP). Therefore, data flow packets are
directly processed by specific (and efficient) multimedia transport protocols. In
other words, they are not transported on top of IIOP messages, and are not proc-
essed by the CORBA middleware.

Separation of control and flow information in the A/V Streaming architecture al-
lows for a high processing efficiency. Previous evaluation results situate CORBA
A/V Streaming as a high-efficiency framework to develop multimedia applications
[3] [4][5], offering similar or better performance results than other middleware
platforms like .Net Remoting and Java RMI. Unfortunately, often the development
of large multimedia applications in a CORBA A/V Streaming framework becomes
too complex. This is not a minor drawback for a middleware architecture, since its
major design objective should be to ease the application development process. We
have identified two sources for this implementation complexity increase:

 A CORBA Bidirectional-Event Service for Video and Multimedia Applications 717

(1) The signaling mechanism included in the A/V Streaming specification is de-
signed to manage the A/V flow for the establishment, maintenance and termina-
tion processes. A fixed set of flow parameters can be configured by means of
this signaling procedure. Nevertheless, it does not allow the end-points to com-
municate any generic application-dependent control information that conven-
tional multimedia applications normally share. For instance, video flow parame-
ters not contemplated in the normal signaling (i.e. frames-per-second or quality
thresholds in audio/video reception), speaker identification or textual informa-
tion (i.e. in a videoconferencing application), etc. Clearly, the objectives, format
and type of this control information are heterogeneous. The strict A/V Streaming
signaling mechanism is not designed to allow the interchange of this type of in-
formation. Consequently, multimedia applications developed must design paral-
lel communication processes between end points, which involves a more com-
plicated and inefficient software design.

(2) The flow establishment process between a flow source and a flow sink strictly
requires the flow source to be active before flow sink is initialized. General mul-
timedia applications would benefit from a connection/disconnection mechanism
more open and flexible, which allows the selection of an asynchronous estab-
lishment where sink and source end points could initiate and wait for the com-
pletion of the connection setup.

In many cases, the complexity associated to the development of multimedia applica-
tions on top of the CORBA A/V Stream specification, has motivated the software
developers to use other type of middleware or application-level tools. In other situa-
tions, CORBA multimedia applications have been implemented, employing external
signaling systems and protocols to communicate separated control information. This
is the case of [6] and [7], where the Session Initialization Protocol (SIP) is used in
combination with the CORBA signaling mechanism for the development of a VoIP
platform. It can be argued that these examples of use of an Application Level Service
instead of a Middleware Layer Component, raise a concern on current CORBA and
A/V Streaming service middleware. In author’s opinion, the use of CORBA must be
rationalized and simplified to give the software designers the maximum of services
with low cost of development.

In this paper, we propose an extension of the CORBA A/V Streaming specifica-
tion, to achieve this make-it-simple philosophy. The objective of our work is to pro-
vide an easier platform for the development of multimedia applications. This implies
the integration inside the A/V Streaming service of a flexible and powerful mecha-
nism for the interchange of flow-related application-dependent data, which also helps
us to redesign the flow establishment process. We base our proposal on the Event
Service (ES). The introduction of the Event Service in multimedia applications has
been already presented in [9], where it is employed to implement an external commu-
nication mechanism that allows for synchronous message passing, and simple direc-
tion events. However, the work we present extends and modifies previous work in the
following terms:

1- The A/V Streaming service is extended, and integrates the implemented applica-
tion-dependent communication mechanism inside the service. This is performed
maintaining backward compatibility with existing multimedia applications.

718 F. Garcia-Sanchez et al.

2- The flow establishment process is complemented, allowing for the definition of
asynchronous establishments, where source or sink end-points can wait for the
other end-point to become active.

3- The A/V Streaming Service designed, becomes a client of the CORBA Event
Service to achieve the aforementioned functionality. This is illustrated in figure
1. However, the current CORBA ES involves an undesired drawback, as the
events can only be propagated in one direction. Implementation of a bidirectional
transmission of events by means of two unidirectional event connections, implies
one more programming burden (for instance, to control the consistent establish-
ment and disconnection of both connections). A relevant contribution of this pa-
per is the proposal, implementation and testing of a modification of the conven-
tional Event Service, which allows a bidirectional propagation of events between
end-points. We denote this modified event service as Bidirectional Event Service
(B-ES). Of course, the B-ES service could be also accessed by external applica-
tions or other software components, as shown in figure 2.

Middleware

Events
Application

Multimedi
a
Applicatio

Generic
App.

Generic
App.

Bidirectional Event
Service

A/V Stream
Service

Events

EventsEvents
Conventional A/V
Streaming service

interactions

Fig. 2. Interaction between A/V Stream Service and B-ES

The rest of the paper is organized as follows. Section 2 briefly introduces the cur-

rent Event Service specification. Sections 3 and 4 detail the extension proposed for
the A/V Streaming. The section 5 includes the evaluation results obtained. Finally,
section 6 concludes.

2 CORBA Event Service Overview

The CORBA Event Service (ES) [6][8] manages the synchronous and asynchronous
propagation of messages (called events) among distributed objects. It is based on the
traditional policy of Publish/Subscribe, where an edge publishes a particular event
and the other end receives it. Therefore, event suppliers and consumers are decoupled:
(1) There can be multiple consumers and multiple suppliers of events. (2) Suppliers
can generate events without knowing the identities of the consumers. (3) Conversely,
consumers can receive events without knowing the identities of the suppliers.

 A CORBA Bidirectional-Event Service for Video and Multimedia Applications 719

The Event Service design is scalable and suitable for distributed environments.
There is no requirement for a centralized server or dependency on any global service.
In addition, the event service does not impose higher level policies (e.g. specific event
types) allowing great flexibility on how it is used in a given application environment.
Furthermore, using the appropriate implementation, reliable event delivery can be
supported.

The Event Service is typically used to provide "change notification". When an ob-
ject is changed (its state is modified), an event can be generated and propagated to all
interested parties. For example, when a spreadsheet cell object is modified, all com-
pound documents which contain a reference (link) to that cell can be notified (so the
document can redisplay the referenced cell, or recalculate values that depend on the
cell). This paradigm is widely applied to different environments, like the automotive
industry, medical, general broker networks, P2P networks, etc. The extension of
CORBA to mobile environments is based on the Event Service functionality [10].

PushConsumer

PullSupplier

EVENT
SERVICE

Supplie
rSupplie

r

Consume
r

Consume
r

PushSupplier

EVENT
SERVICE

PushConsumer PushSupplier

PullSupplier

PullConsumer PullConsumer

Fig. 3. CORBA Event Service models

Efficient implementations of the CORBA event service already exist and are de-

scribed in detail in [8]. The main research effort was directed to the design of an effi-
cient event service designed for a real-time environment [11]. Other interesting
CORBA based event architecture known as COBEA has been implemented at Cam-
bridge University [12]. This system implements efficient server-side event filtering,
the notion of composite events as well as basic access control checks. However, it
does not address issues of reliable delivery, events based on multimedia content and
the integration of multimedia delivery with the CORBA standard event service. Im-
plementations of the related OMG Notification Service [13] must also address related
issues such as filtering, reliable delivery, quality of service and security. This service
is an extension to the event service and will be most useful in application scenarios
where real time ”filterable" events are required.

3 A/V Stream Extension: The Bidirectional-Event Service

The Bidirectional-Event Service (B-ES) is our tool developed to provide the desired
operation. The traditional implementation of the CORBA Event Service offers differ-
ent limitations to complement the A/V Video Streaming:

720 F. Garcia-Sanchez et al.

 The ES is based on a Publish/Subscribe policy, opposite to the A/V Stream sym-
metry of two EndPoints. The B-ES implements the same interface for both edges
(denominated hybrid) inspired in the A/V stream specification.

 It does not support the current connection establishment of A/V flows.
 Excessive complexity for real time operation.

The new interfaces are primarily based on the IDL (Interface Description Language)
interfaces defined in the standard CORBA Event Service [6], with different interest-
ing modifications for the multimedia service. In most cases, we choose to simply
expand the functionality provided by the existing standard event service interfaces,
rather than to extend these interfaces with new methods in derived interfaces.

The components that perform the CORBA B-ES oriented to Audio/Video Stream-
ing follow the next concerns:

 To respect the symmetry of the A/V Streaming Service.
 To facilitate the integration in a network based on the Event Service.
 To preserve the point-to-point communications and propagations of events.
 To provide the framework to operate with events and multimedia systems for

services as videoconferencing, tele-education and tele-medicine systems, etc.

In order to simplify the model, solely Push Events are supported. The Pull model in a
bidirectional service may be considered as a push event in the opposite direction,
requiring an event from the first EndPoint. This chapter defines the interface of the
main components of the service.

3.1 StreamChannel (Channel Manager)

The StreamChannel is the tool to develop the framework that generates and manages
the events produced by the EndPoints. It is based on the ChannelManager created by
the ACE/TAO implementation [14]. According to this implementation, the Stream-
Channel would create a simple channel for the events propagation. This EventChan-
nel is not enough to perform the desired bidirectionality and management of the A/V
streaming events. In the next section, the process implementing the event propagation
in the two ways is explained, based on the creation of two EventChannel, each one for
a direction of the communication.

Interestingly, it should be emphasized that the StreamChannel presented might be
used as a typical EventChannel, when several definitions are unused or set to the
default values. It is possible to facilitate events in just one direction for unspecified
applications where a simple events channel is required. The prototype of the interface
is as follows:

interface StreamChannel
{
typedef sequence<string> stringseq;
EventChannel creates(in string channel_id, in Chan-

nelType type,
in DispatcherType DisType, in Properties) raises (un-

able);
void destroy (in string channel_id);
ChannelType knowchannel(in string channel_id);

 A CORBA Bidirectional-Event Service for Video and Multimedia Applications 721

void handle_events();
void register_handler(in Handler HandlerName);
void remove_handler(in Handler HandleName);
};

Summarizing the basic work, this interface introduces the channel for event propaga-
tion. The method creates implements the creation of the channel for events. Destroy
removes a channel previously created.

The Dispatcher Type variable is an insight difference with the traditional Event
Service. The Dispatcher operation (event resolution and transmission) of the specifi-
cation does not permit the desired StreamChannel job. Therefore, to enhance the
functionality of the traditional ES, a second dispatcher is created, namely the Stream-
Dispatcher. It carries out the event transmission for a StreamChannel, where the two
Endpoints are identical.

Another relevant task is done by the method knowchannel. It is necessary to know
the type of channel that is employed. For instance, it is not the same a StreamChannel
that a common EventChannel. In principle, a StreamChannel allows the propagation
of events of an EventChannel, but normally, a StreamChannel is used for A/V
Streams events, and the EventChannel is for other cases. Therefore, a method to dis-
tinguish both types is necessary.

The methods handle_events, register_handler and remove_handler are the same
that the ones in the definition of the Event Channel. They are used to define events, to
manage them and to remove them.

The interface might be completed for security, multicast, etc. operations of the B-
ES, enhancing its behaviour and increasing the complexity of the Event Service.

3.2 Event Channel

The EventChannel implements the StreamChannel referred in the previous point.
Notice that the EventChannel is just an extension of a traditional EventChannel but
adding the HybridAdmin method. The interface follows the next template:

interface EventChannel
{
attribute ChannelType type;
attribute Properties props;
CosumerAdmin for_cosumers();
SupplierAdmin for_supplier();
HybridAdmin for_hybrid();
void destroy();};

Basically, it is the same EventChannel mentioned above by the current specification,
adding the method to create the HybridAdmin functionality necessary for the A/V
Stream event transmission. Its interface is detailed below. Moreover, the attribute
ChannelType makes the difference between the StreamChannel and the EventChannel.

The name of this “prototype” is not changed from the original specification to fa-
cilitate the integration with previous implementations of the EventChannel. We
should remark that the name StreamChannel is used for the Channel Manager and for
a type of the EventChannel.

722 F. Garcia-Sanchez et al.

3.3 Hybrid Administrator

The Hybrid Administrator is the service administrator of the conventional component
of connection of the StreamEndPoints to the service. In this enhanced component the
function create_flow allows to the Event System to create the flow channel. In this
case, the creation of the flow channel follows the specification of the A/V Stream
Service, using an independent channel where the Event Service has not any action.
Therefore, its task has two main purposes:

 To know the Flow Data StreamEndPoint location. Basically, the addresses and
ports, but we include additional information as the type of communication, image
size, etc.

 To order the connection to both StreamEndPoint, informing which one executes
the active connection (normally the first connected one).

 In the case of systems as videoconferencing, where two flows are created the
information is doubled: two ports, two image sizes, etc.

interface HybridAdmin
{
void create_flow (in string flowName, in string format,

Hybrid peerName1, Hybrid peerName2);
void destroy (in string flowName);
void peer_stream (Hybrid peerName) raises (noAvaliable,

noSupported);
};

The method destroy completes the functionality of the HybridAdmin, where a flow
can be destroyed. Peer_Stream allows to the Event Service to know exactly the loca-
tion and information of the different EndPoints. These methods must be utilized
twice, one for each EndPoint. The noAvailble or noSupported exceptions concern
about the failure of the process when the peer is not present or is not able to support
the flow required.

Notice that create_flow and destroy do not appear in the Event Service specifica-
tion. They do not support the event transmission (included in the EventChannel).
They are methods to create the A/V flow, independently of the events processing.
This idea is based again on the A/V Stream Service specification. Both methods are
included here, generalizing the use of this HybridAdmin not only for the StreamChan-
nel, even they are useful to set the establishment of the A/V Stream Service directly
from two EndPoints. Indeed, a model of events (additional to the classical push and
pull models) is presented. It is no implemented a “Pushpeer_stream” or a “Pull-
peer_stream” as the traditional service. This further helps to simplify the system.

3.4 ProxyHybrid Interface

The ProxyHybrid Interface extends a particular version of the Supplier/Consumer struc-
ture. The interface shows a special prototype where the functions of the conventional
supplier and consumer are mixed. In fact, the hybrid model has the Supplier and Con-
sumer roles, and behaves as one or another depending on the situation:

 A CORBA Bidirectional-Event Service for Video and Multimedia Applications 723

interface ProxyHybrid:Hybrid
{
void connector (in string channel_id);
void acceptor(in string channel_id);
void peer_acceptor();
void accept(in Hybrid peerHybrid, in string flowName);
void connect(in Hybrid peerHybrid, in string flowName);
void get_flow(in string flowName) raises (noAvail-

able);
void complete();
void handle_events();
};

The methods connector and acceptor are inherited from the traditional system of a
ProxyPushConsumer and ProxyPushSupplier respectively. In the ProxyHybrid, they
have a different mission. The connector is a factory of functions in charge of the
events produced by the other StreamEndPoint. The Acceptor creates the interface to
support the events generated by its own StreamEndPoint.

The methods peer_acceptor, accept and connect follow the connection procedure
of the Hybrid EndPoint to the Event Service. Therefore, the method accept allows the
connection from an EndPoint. The method connect consists of the connection from
the ES to an end service, and the peer_acceptor is in charge of the connection from
the remote EndPoint. The method getflow is utilized to add an EndPoint to a channel.
In the case that the StreamChannel is operational, the result is affirmative. Otherwise,
it will receive an error indication or will remain waiting.

Handle_events is the method to transmit the events, and to finish (complete) when
an event is received and finished. It should be noted that the method complete was
also used to accept the A/V flow connection.

4 Implementation Details

The implementation of the enhanced A/V Stream Service through the B-ES is based
on two concepts:

 The symmetry of the A/V Streaming model.
 The traditional Event Service connection calls.

Although both services are asymmetric, their integration makes possible the desired
A/V Stream Service with event propagation. This design simplifies and supports the
bidirectional exchange of A/V flows and event. It is accomplished over a Linux Sys-
tem (Red Hat v. 8.2), and written in C++ language. The CORBA distribution selected
is the ACE/TAO, due to its appropriate documentation, its own A/V Stream Service
and Event Service implementations and because it is a free distribution framework.

The Top Level Design is conditioned by the Hybrid interface that offers the maxi-
mum functionality. Figure 4 shows the component relationship of the Hybrid and the B-
Event Service according to the Unified Modeling Language (UML) format.

724 F. Garcia-Sanchez et al.

Transport
Handle

Transport
Handle

 StreamDispatcher
select()
handle_events()
register_handler()
remove_handler()

Hybrid
Connector()
Acceptor()
peer-acceptor()
accept()
connect()
complete()
handle_events()

Hybrid
Connector()
Acceptor()
peer-acceptor()
accept()
connect()
complete()
handle_events()

Service Handler
peer_stream()
open()
handle_events()
set_handle()

Particular Service
Handler A

Particular Service
Handler B

Transport
handle

Transport
handle

uses

uses

uses

owns

owns

owns

<<creates>>

<<activates>>
<<activates>>

uses

notifies notifies

uses

owns

Fig. 4. Component relationship

Unfortunately, there are several methods (public and private) that do not have an
IDL representation. For this reason, the UML representation does not offer a straight-
forward comprehension of the complete processes of connection and event propaga-
tion. They will be explained and detailed in the next subsections.

The Bidirectional Event Service (B-Event Service) treats to solve the problem of
multiple EventChannels connecting a large number of StreamEndPoints by means of
different threads. An ORBThread [4] is listening to incoming connection request.

Based on the classical Event Service, the StreamChannel (ChannelManager) is a
factory of ChannelEvents of type StreamChannel. Every time, a new channel is re-
quired, the StreamChannel configures the appropriated resources, event types, etc.,
and starts a new thread for each StreamChannel. Simultaneously, a second channel of
StreamChannel might be created for the events in the opposite direction. The decision
of one (unidirectional) or two (bidirectional) channels is taking depending on the type
of application. In subsequent implementations, the user will be able to choose the
number of flows and their directionality.

4.1 A/V StreamEndPoint Connections

The first operation is the connection of the StreamEndpoints. Moreover, it is neces-
sary to consider the connection and initialization of the A/V Flow Channels (not con-
nected throught the B-Event Service).

 A CORBA Bidirectional-Event Service for Video and Multimedia Applications 725

The StreamEndpoints must require the connection to the B-Event Service through
a request message, carrying out the StreamEndPoint (Name) and type of A/V Stream
(Video Type, format, Transport Protocol, etc.) identifiers. All these features conform
a particular connect_packet. This connect_packet is sent by the StreamEndPoint to
the B-Event Service. The StreamEndPoint creates a Hybrid thread that supports the
connection to the Event Service and the subsequent event propagation (Fig. 5).

When the B-Event Service (B-ES) receives the request of a StreamEndPoint (by is-
suing a connect_packet), it registers all the information conforming a database with

open

complete()

: Stream Dispatcher:StreamEndPoint :Hybrid

:Handle2

:Service
handler

accept/complete

Handle_events

Register_han
dle()

request()

Handle_events

Register_han
dle()

service()

Hybrid|Handle1|ACCEPT_EV

Handle2|
Service_Handler |
EVENTS

Handle
2

accept()

Fig. 5. Dynamics of the StreamEndPoint-Event Service

726 F. Garcia-Sanchez et al.

EndPoints and requests. The decision of connection is taken by the StreamDis-
patcher, when a connect_packet of a StreamEndPoint arrives. By default, the current
implementation does not offer the possibility to select between the traditional Dis-
patcher and the StreamDistpacher. It may be added in later implementations.

The information of the connect_packet is saved by the B-Event Service in the da-
tabase and keeps waiting for the connection of the second StreamEndPoint. It is also
possible to establish the connection of the second StreamEndPoint from the B-Event
Service. In this case, the information of the Name of the second StreamEndPoint
might be inscribed in a NameService. The B-Event Service obtains the reference of
that EndPoint and sets up the connection. In this situation the connect_packet does
not offer the same information (no Video Type, format, Transport Protocol, etc. are
provided). Now, it is just a packet informing that an Event Service requires its con-
nection.The StreamEndPoint is able to reject the request or to establish the connec-
tion. In the later case, the connection is established as commented before, but without
information of the StreamEndPoint destination. At the end of this process, both End-
Points are connected.

Next step is to create the A/V flow and the StreamChannel. The first task is done
by StreamChannel (channel for events). The channel for events is programmed as an
EventChannel of type StreamChannel. The StreamChannel is invoked to create these
type of event channels.

Depending on the service request, one or two StreamChannels are created (i. e.
videoconferencing requires two channels). First, a channel for a direction of the
communication is created. Then, the ChannelStream does an accept call to the hybrid
of one EndPoint, and execute complete to the hybrid of the other EndPoint. The way
of the events is from the first StreamEndPoint to the second. For the second direction,
the process is similar but changing the roles.

When both StreamChannels are created, the creation of the A/V flow channels is per-
formed as events inside the channel of events. One requirement is when two directional
flows are requested. It is necessary to previously establish both StreamChannels. If
events are used in just one way, the second StreamChannel might be destroyed.

The create_flows method sends to each end the corresponding call of connection,
as if the B-ES was a StreamEndPoint, but changing its own reference by the reference
of the other StreamEndPoint. This information is encapsulated as an event of “re-
quest” that the StreamEndPoint interprets as a request connection of an A/V Stream.
Therefore, both edges execute the traditional connection according to the obtained
reference. In this process the B-ES does not have any type of participation.

This idea might be extended to diverse A/V flow channels from the same Strea-
mEndPoint origin, when the service requires it (i.e. for video-on-demand one flow for
the sound and other for the image are needed).

An important feature is that connection is completely asynchronous. Each Strea-
mEndPoint connects when it wants to access the service. It is possible thanks to the
additional Hybrid interface that implements the connection, service and events.

4.2 A/V Stream Events Management with the B-ES

In the hybrid interface of the StreamEndPoint, the event management is performed at
the edges. The StreamEndPoints invoke the B-Event Service interface each time they

 A CORBA Bidirectional-Event Service for Video and Multimedia Applications 727

sent an event. The events encapsulate the data associate to a particular event. The
event of stream connection is just the necessary once to create the A/V flows. The
number and complexity of the events depend on the particular application. Two con-
ditions of design are imposed:

 The same thread generated by the hybrid interface takes care of local and remote
events.

 In case of event collisions, the remote event is served previously.

The dynamic work of the B-Event Service is basically the same than the one of a
traditional Event Service when the Supplier and Consumer are connected and an
event occurs. The service of events is asynchronous. Figure 6 illustrates the asynchro-
nous operation. It starts when the event arrives to the ProxyHybrid connected to the
origin EndPoint. It invokes an asynchronous operation to read the event for the input
event queue. Events usually arrive multiplexed with other events. The ProxyHybrid
executes methods to resolve it. When the event is demultiplexed, the ProxyHybrid
gets from the system (StreamDispatcher) the handler (permission) to execute the
method handle_event. This handle_event propagates the events around the Hybrids
connected to the StreamChannel.

Finally, the event arrives to the desired StreamEndPoint. Each ProxyHybrid is able
to deliver directly the events to the Hybrids connected to the StreamChannel. The
reason is that ProxyHybrid has all the methods to send and receive events. The only
requirements are to know the EventChannel and the specification of the events.

:StreamDispatcher:ProxyHybrid :StreamChannel

Handle

get_handle()

Handle_events()

complete()

Event

Hadle|Service_Handl
er| EVENTS

Handle | Hybrid| EVENT

Handle_events()

complete()

demultiplexing()

Response

Fig. 6. Event propagation

728 F. Garcia-Sanchez et al.

The supported events are typed by default in the Event Service of ACE/TAO. The
programmer may implement all the particular events.

Notice that here, the concepts of Supplier and Consumer do not take place. Al-
though, a StreamEndPoint sends the event and a second StreamEndPoint receives it,
they are Hybrids changing appropriately its role.

5 Performance Evaluation

In this section, we present a set of evaluation results for the Bidirectional Event Ser-
vice and the A/V Streaming extension implemented. The results have been obtained
from a benchmark architecture in a commercial computer Pentium IV 2 GHz, 512
Mbytes RAM, 80GB hard-disk. The A/V Streaming and the Event Service have been
implemented using the CORBA ACE/TAO distribution [15] [16].

In a first stage the operation of the B-ES is evaluated in terms of the time required
for the establishment of a large number of bidirectional event connections between
end points. Both the Event Service and the set of end points are initiated in the
benchmark machine. The results are compared to the time required to complete (1)
unidirectional consumer connections, (2) unidirectional supplier connections, and (3)
the sum of consumer and supplier connections. Results displayed in figure 7 show
that the computational cost of the bidirectional connection is closer to the cost of the
consumer unidirectional connection in the original Event Service, and below the sum
of the consumer plus supplier connections.

0
5000

10000
15000
20000
25000
30000
35000

1 10 20 30 40 50 60

Number of EndPoints

T
im

e(
m

se
c)

Consumer

Supplier

Consumer+Supplier

Bidirectional

Fig. 7. StreamEndPoint Connection

In a second evaluation stage, we are interested in the computational efficiency of

the establishment of the A/V flow. Note that, in the new A/V service presented, the
A/V flow establishment also involves the setup of a bidirectional event channel be-
tween end points. To make a fair comparison, we contrast two situations:

(a) The connection setup of an A/V flow with the new service presented, which
includes the establishment of a bidirectional event connection.

 A CORBA Bidirectional-Event Service for Video and Multimedia Applications 729

(b) The connection setup of an A/V flow with the traditional A/V service to-
gether with the establishment of two event connections between end points, a
consumer and a supplier one.

Figure 8 depicts the required time for the establishment of a given amount of A/V
connections, in the two aforementioned situations (a) and (b). Results reveals that the
computational cost of the process is smaller for the new A/V Streaming service
presented.

0
100000
200000
300000
400000
500000
600000
700000

1 5 10 15 20 25 30 35 40 45 50 55 60

Number of connections

T
im

e(
m

se
c) A/V Stream +

Pub/Subs

Bidireccional

Fig. 8. A/V Flow Channel Establishment

Figure 9 comparatively evaluates the event propagation process between end
points, also for the cases (a) and (b). The statistic selected is the event propagation
delay: the elapsed time from the event creation in the supplier EndPoint, to the event
consumption in the sink EndPoint. Not surprisingly, the results show a slight im-
provement for the new bidirectional service. The advantage obtained is due to a sim-
pler and lighter software design, where the Hybrid or ProxyHybrid components di-
rectly propagate events without further processing operations.

0
2000
4000

6000
8000

10000

1 10 20 30 40 50 60

Number of events

T
im

e(
m

se
c)

Publish/Subscribe

Bidirectional

Fig. 9. Event Propagation analysis

730 F. Garcia-Sanchez et al.

In summary, the results obtained validate the new service proposed, and exhibit a
better or similar performance than the combination of the conventional A/V Stream-
ing service and the traditional Event Service.

6 Conclusions

This paper describes an extension of the CORBA A/V Stream Service by modifying
the Event Service. The objectives of our work are the integration in the A/V Stream-
ing service of a set of functionalities, identified as major demands from multimedia
application developers: (1) A more powerful mechanism to communicate control
information between flow EndPoints, (2) a more flexible flow establishment proce-
dure.

To accomplish this task, the A/V Streaming service proposed interacts with a
modified Event Service, also presented in this paper: the Bidirectional Event Service
(B-ES). The B-ES complements the traditional Event Service with the capability of
establishing bidirectional connections of events.

The proposed A/V Streaming and Event Service have been implemented by using
the CORBA ACE/TAO distribution [13]. The model has been tested and evaluated,
showing similar or better performance results than the conventional A/V Streaming
Service and the traditional Event Service.

Acknowledgement

This research has been funded by the Spanish MCyT grant TEC2004-05622-C04-
02/TCM(ARPaq).

References

1. “Audio/Video Stream Specification”, Object Management Group, January 2000.
2. Mungee S, Surendran N, Krishnamurthy Y, Schmidt DC, “The design and performance of

a CORBA Audio/Video Streaming Service”, in IEEE Proceedings of the Hawaiian Interna-
tional Conference is System Science, Hawaii (EEUU), pp. 8043-8059, Jan. 2001.

3. D. L. Levine, S. Flores-Gaitan & D. C. Schmidt “An Empirical Evaluation of OS EndSys-
tem Support for Real-Time CORBA Object Request Broker”. Multimedia Computing and
Networking 2000 (MMCN00). San Jose, California, 25-27 January 2000.

4. F. Garcia-Sanchez, A.J. Garcia Sanchez, J. Garcia-Haro, “Performance Evaluation of
Video Flows Integration over IP Networks using TAO” in Proceedings of the 9th
IFIP/IEEE Symposium of the Integrated Networks Management. Nice (France), May
2005.

5. F. Garcia-Sanchez, A.J. Garcia Sanchez, J. Garcia-Haro, “Performance Evaluation and
Implementation Details for the CORBA A/V Stream Service for Video Communications”,
in Proceedings of the 23rd IASTED Conference on Parallel and Distributed Computing
and Networks, Innsbruck (Austria), pp. 436-443, February 2005.

6. Kundan Singh, Gautam Nair and Henning Schulzrinne “Optimization of Signaling Traffic
in Centralized Conference using SIP”, in Proceeding of the WSEAS ICOMIV 2002, Skia-
tos (Greece), pp 2931- 2936, 2002.

 A CORBA Bidirectional-Event Service for Video and Multimedia Applications 731

7. RV Prasad, R Hurni, HS Jamadagni “A Scalable Distributed VoIP Conferencing using
SIP” in Proceedings of the 8th IEEE Symposium on Computers and Communications,”
Antalya, Turkey, pp. 608-613, Jule 2003.

8. “Event Service Specification”, Object Management Group, March 2001.
9. Edouuard Lamboray, A. Zollinger, O. Staadt, M. Gross, “Interactive multimedia streams in

distributed application”, Computer & Graphics 27, pp. 735-745, 2003.
10. M. Caporuscio, A. Carzaniga, A. L. Wolf, “Design and Evaluation of a Support Service

Publish/Subscribe Applications”, IEEE Transactions on Software Engineering, vol . 29, no
12, December 2003.

11. D. Gill, F. Kuhns, D. Levine, D. C. Schmidt, B. S. Doerr, R.d E. Schantz, and A. K. Atlas,
“Applying Adaptive Real-time Middleware to Address Grand Challenges of COTS-based
Mission-Critical Real-Time Systems”, in Proceedings of the 1st International Workshop on
Real-Time Mission-Critical Systems: Grand Challenge Problems, IEEE, Phoenix, Arizona,
November 30, 1999.

12. C. Ma and J. Bacon, “COBEA: A CORBA Based Event Architecture” in Proceedings Of
the COOTS’98 Conference Santa Fe (New Mexico), pp. 117-131, April 1998.

13. OMG. Notification Service. RFP. OMG Document No. Telecom/96-11-03. Nov. 2003.
14. Desmons Chambers, Gerard Lyons and Jim Duggan, “ Stream Enhancements for the

CORBA Event Service”, in Proceedings Of the 9th ACM Multimedia Conference, Ottawa,
Ontario, Canada, pp. 61-69, October 2001.

15. A. Gokhale and D. Schmidt. “Measuring and Optimizing CORBA Latency and Scalability
over High-Speed Networks”, in Transactions on Computing, vol. 47, no. 4, 1998.

16. Douglas C. Schmidt, Computer and Science Engineering of Washington University:
“http://www.cs.wustl.edu/~schmidt/ TAO.html”.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 732 – 749, 2005.
© Springer-Verlag Berlin Heidelberg 2005

GREEN: A Configurable and Re-configurable
Publish-Subscribe Middleware for Pervasive Computing

Thirunavukkarasu Sivaharan, Gordon Blair, and Geoff Coulson

Computing Department, Lancaster University, Lancaster, LA1 4YR, UK
{t.sivaharan, gordon, geoff}@comp.lancs.ac.uk

Abstract. In this paper we present GREEN a highly configurable and re-
configurable publish-subscribe middleware to support pervasive computing
applications. Such applications must embrace both heterogeneous networks and
heterogeneous devices: from embedded devices in wireless ad-hoc networks to
high-power computers in the Internet. Publish-subscribe is a paradigm well
suited to applications in this domain. However, present-day publish-subscribe
middleware does not adequately address the configurability and re-
configurability requirements of such heterogeneous and changing
environments. As one prime example, current platforms can-not be configured
to operate in diverse network types (e.g. infrastructure based fixed networks and
mobile ad-hoc networks). Hence, we present the design and implementation of
GREEN (Generic & Re-configurable EvEnt Notification service), a next
generation publish-subscribe middleware that addresses this particular
deficiency. We demonstrate the configurability and re-configurability of
GREEN through a worked example: consisting of a vehicular ad-hoc network
for safe driving coupled with a fixed wide area network for vehicular traffic
monitoring. Finally, we evaluate the performance of this highly dynamic
middleware under different environmental conditions.

1 Introduction

Recent advance in wireless network technologies (e.g IEEE 802.11) and
computational devices (e.g. PDA, PC) have created opportunities for the vision of
pervasive computing applications [1], which embrace both fixed infrastructure based
(wired and wireless) networks and wireless ad-hoc networks. Event based
communication based upon the publish-subscribe model is well-suited to pervasive
computing applications, as it presents an asynchronous and decoupled communication
model [2], [3],[4],[44]. Notably, pervasive computing applications operate across
highly heterogeneous environments in terms of network types (e.g. WAN, MANET)
and device types. However, many publish-subscribe middleware have specifically
targeted fixed infrastructure based networks e.g SIENA [5], Gryphon [6], Hermes [7]
and JEDI [8]. At the other extreme STEAM [9] is specifically designed for wireless
ad-hoc networks. We argue that publish-subscribe middleware that operates over a
single homogenous network environment (i.e. WAN or MANET) and offers a single
(or fixed) interaction type (i.e topic based or content based) cannot cope with the
diversity of environmental constraints and requirements presented by pervasive
computing applications. Dealing with such extreme heterogeneity is a fundamental

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 733

challenge for future publish-subscribe middleware and one that is demonstrably not
addressed by existing platforms. To overcome this problem we believe it is necessary
to build highly configurable and dynamically reconfigurable publish-subscribe
middleware which can be deployed in heterogeneous network types and
heterogeneous device types and meet application and environment specific
requirements.

This paper presents GREEN, a deployment and run-time reconfigurable publish-
subscribe middleware. GREEN follows the well established approach to the
development of reflective middleware [10], [11]; it uses the marriage of OpenCOM
components [12],[13], reflection [14] and component frameworks (CFs) [15] to yield
a configurable, reconfigurable and evolvable publish-subscribe middleware
architecture. In particular, GREEN is configurable to operate over heterogeneous
network types (e.g. MANET and WAN) and supports pluggable publish-subscribe
interaction types (i.e. topic based, content based, context, composite events). Further,
the underlying event routing mechanisms are reconfigurable to support selected
interaction type in different network types. The distributed event routing and event
filtering is underpinned by pluggable distributed event broker overlays; we create
overlays of event brokers to suit contrasting network types.

In the remainder of this paper we first, in section 2, describes our approach to
building reconfigurable middleware. Then, in section 3, we present the GREEN
architecture. In section 4, we describe the implementations of GREEN configurations
based upon a case study and then in section 5, provide performance results of our
work to date. Finally we survey related work in section 6, and present our conclusions
in section 7.

2 Building Re-configurable Middleware: Lancaster Approach

It is clear that GREEN middleware must accommodate an increasing diverse range of
requirements arising from the needs of both applications and underlying systems (e.g
device types, network types). Moreover, it is clear that to achieve this accommodation
GREEN must be capable of both deployment-time configurability and run-time re-
configurability. Unfortunately, the current generation of mainstream middleware is, to
a large extent, heavyweight, monolithic and inflexible and, thus, fails to properly
address such requirements. It is important to note, the approach for achieving re-
configurability is important in itself. Therefore, this section describes the approach
taken by GREEN to address these requirements. GREEN follows Lancaster’s well-
founded approach to building re-configurable middleware platforms [10],[11].
GREEN is built using our well founded lightweight component model [12],[13], uses
reflective techniques [10] to facilitate re-configuration, and employs the notion of
component frameworks (CF) to manage and constrain the scope of reconfiguration
operations.

Component technology [15] has emerged as a promising approach to the
construction of configurable software systems. With component technology, one can
configure and reconfigure systems by adding, removing or replacing their constituent
components. Importantly, components are packages in a binary form and can be
dynamically deployed within an address space. Additional benefits of component
technology include increased reusability, dynamic extensibility, improved
understandability and better support for long term system evolution. It should be

734 T. Sivaharan, G. Blair, and G. Coulson

noted, however, that current component models (e.g. Enterprise JavaBeans, Microsoft
COM) provide little or no support for integrity management; system integrity can be
easily compromised if run-time reconfiguration operations are not carried out with
great care. In our previous work we have addressed this problem and presented our
component model known as OpenCOM [12], [13]. OpenCOM is a lightweight, non-
distributed, language independent component model that is independent of any
infrastructures, thereby enabling GREEN middleware itself to be built using
components. Figure 1 shows the basic elements of the component model. Components
interact with other components through interfaces and receptacles. Interfaces are
expressed in terms of sets of operation signatures provided by the component.
Receptacles are required interfaces that are used to make explicit the dependencies of
a component on the other components. Bindings are associations between a single
interface and a single receptacle (within an address space).

Fig. 1. Basic elements of OpenCOM component model

Furthermore, our component model is highly reflective [10]; in other words, the

component configurations that comprise the middleware are associated with causally
connected data structures (called meta-structures) that represent (or, in reflection
terminology, ‘reify’) aspects of the component configurations, and offer meta-
interfaces through which these reified aspects can be inspected, adapted and extended.
The use of reflection facilities the management of run-time reconfiguration of the
middleware, and also helps address the issue of integrity management referred above.

The second key underpinning of GREEN is the adoption of the concept of
component frameworks (CFs) to architect and build GREEN. CF was originally
defined by [15] as ‘collections of rules and interfaces that govern the interaction of a
set of components plugged into them’. Each CF targets a specific domain and
embodies ‘rules, interfaces and components’ that make sense in that domain. The
rules define valid configurations (or graph) of components. Crucially CFs actively
police attempts to plug-in or swap new components according to these rules. It is
important to note, GREEN architecture consists, a set of hierarchically composed
component frameworks (more on this later). Furthermore GREEN applies our notion
of deep middleware [11], [46] in which the middleware platform reaches down into
the (heterogeneous) network to provide flexible communications services with which
to support a range of publish-subscribe interaction types at the application level.

3 The GREEN Architecture

3.1 Overview

This section describes the GREEN architecture, a generic, configurable,
reconfigurable and reflective publish-subscribe middleware to support pervasive
computing application development. GREEN uses OpenCOM as its component

Component Component
Binding

Interface

Receptacle

Single address space

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 735

technology, is built as a set of component frameworks (CFs), and is based upon the
generic middleware framework proposed in [46]. This generic middleware framework
developed at Lancaster offers a two layered architecture, where the higher layer is an
interaction framework that takes plug-in interaction types (e.g publish-subscribe,
RPC, tuple-space); the lower layer is an overlay framework which takes plug-in
overlay implementations (e.g application level multicast overlays).

Fig. 2. The overall architecture

This approach separates middleware interaction types from the underlying overlay

network implementations as seen in figure 2, providing configurability, re-
configurability and re-use. Importantly, GREEN concentrates on ‘publish-subscribe’
based interaction types and ‘event broker overlays’.

Fig. 3. GREEN Architecture

The GREEN architecture consists of two main component frameworks (CFs); 1)

publish-subscribe interaction CF and 2) an event broker overlay CF (see figure 3).
The publish-subscribe interaction CF is configured by plugging in different publish-
subscribe interaction type implementations e.g. topic based, content based etc. The
event broker overlay CF is similarly configured by plugging in different overlay
protocol implementations, e.g. probabilistic multicast overlay for ad-hoc networks
and the Scribe [19] overlay for WAN etc; where overlay networks are virtual
communication structures that are logically laid over an underlying physical network
such as Internet or ad-hoc networks [17].

Finally, the GREEN top level CF (see figure 3) which is itself composed of two
layers of the above mentioned CFs; mandates the appropriate layer composition
between interaction CF and overlay CF and configures the two CFs to provide
distinct implementations of GREEN configuration(s). For example, 1) proximity and
content based publish-subscribe interaction type underpinned by probabilistic

Interaction Framework
Overlay Framework

Event models & Subscription languages plug-ins
Pub/Sub Interaction CF

Interaction Type API plug-ins
Event Filter engine plug-ins

Event Broker Overlay CF
Overlay plug-ins

Multiple dependencies

GREEN Top Level CF Control plug-ins Forward plug-ins State plug-ins

QoS Monitor plug-ins

Plug-ins

CF

736 T. Sivaharan, G. Blair, and G. Coulson

multicast overlay for ad-hoc networks and 2) a content based publish-subscribe
underpinned by Scribe [19] overlay for wide area networks (WAN) etc.

3.2 Publish-Subscribe Interaction Component Framework

The main function of the pub-sub interaction CF is to provide various pub-sub
interaction types such as topic based and content based etc. Therefore, over time the
framework may be configured as a topic based pub-sub personality where subscribers
can make topic based subscriptions, or change to content based pub-sub personality
for highly expressive content based subscriptions, or, context based system (e.g.
location and proximity based as in [9], [22]). Within the pub-sub interaction CF
changes can be made at distinct levels (illustrated in figure 3). Firstly each interaction
type API plug-in can be replaced; e.g. topic based interaction type API is replaced by
content based interaction type API. This re-configuration is performed according to
application requirements. Secondly, different subscription language plug-ins such as
FEL (described later) and XPATH [45], event data models (e.g. strings, sequences of
values (tuples), name-value pairs, XML based, objects) and the associated event filter
engine implementations can be plugged-in. The decision on the subscription language
plug-in and the event data model to configure, can be made in light of device context,
e.g. resource scarce embedded devices can use simple strings as event data model
instead of verbose XML. Furthermore, run-time reconfigurations can be made in
light of changes in the quality of service (e.g. throughput). For example, content based
interaction personality can be replaced by a topic based interaction to help obtain high
event throughput in the system.

In order to test and evaluate the pub-sub interaction CF, we have implemented 1)
interaction type API plug-ins (i.e topic based, content based and proximity based), 2)
an extensible subscription language known as FEL and its associated event filter
engine plug-ins and CLIPS -a composite event specification plug-in and 3) QoS
monitor plug-ins (i.e. TCB – discussed later).

Fig. 4. a) Grammar of FEL b) Grammar of extended FEL for Context

 Example subscriptions FEL Filter Type plug-in

1) //stock/[]
2) //stock/[%name%=IBM&%exchange%=$NYSE$&%price%>50]
3) //RoadTraffic/[%type%=$TrafficLight$]?#DISTANCE#<15

Topic
Topic+Content
Topic+Content+Context

Fig. 5. Example subscription types in FEL

Exp : : = a S b | a S b [T]
 S : : = { Subject names , * }
 T : : = t | t & T
 t : : = % name % operator $ value $
 name = { attributes names }
 operator = { = , > , < }
 value = { string or numeric values }
 a = // , b = / , * = Any subject
 Exp - Filter expression

 Exp : : = a S b ?#CONTEXT#operator$value$ |

 a S b [T]?#CONTEXT#operator$value$
 S : : = { Subject names , * }
 T : : = t | t & T
 t : : = % name % operator $ value $
 name = { attributes names }
operator = { = , > , < }
value = { string or numeric values }
 a = // , b = / , * = all subjects ,
CONTEXT = {DISTANCE , …..}

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 737

FEL (Filter Expression Language) is an ‘extensible’ language that we have defined
and implemented, which enables the definition of topic filters, content filters and
context filters depending on the configured FEL plug-in type. The grammar of the
subscription language is illustrated in figure 4. A few example subscriptions in FEL
are illustrated in figure 5. Notably, example three is a context based subscription,
specifically a location context (i.e. proximity) and enables the subscriber (e.g. vehicle
) to receive ‘traffic light information generated from traffic lights which are located
within 15m distance‘. The context filter plug-in transparently handles adding context
data (e.g. GPS location coordinates) to the original events published by the
application. Importantly, the application programmer need not deal with context data.

The XML based event data model was chosen in the implementations as it’s easily
extensible, interoperable and it is platform and programming language independent,
however it suffers from high processing overhead. The FEL subscription language
plug-in is suited for individual event notifications. However, in some applications
subscribers may require to specify interest in the occurrence of multiple related
events. Specifying interest in composite events on top of a content based publish-
subscribe system is a powerful interaction type for many distributed applications [23].
Therefore, the popular rule-based inference engine CLIPS(C Language Integrated
Production System) [26] is provided as a additional plug-in in the framework for
applications which require rule-based composite events specification support. When
the CLIPS plug-in is configured, a subscriber can submit ‘event-condition-action’
based subscriptions. Some of the benefits of using CLIPS language are its platform
and language independence and the high efficiency of the inference engine. The
internal implementation of CLIPS is based upon RETE nets [27]. Furthermore, it is
feasible for new subscription languages and event data models to be dynamically
integrated into the framework at a later date.

3.3 Event Broker Overlay Component Framework

The primary function of the event broker overlay framework is to provide the
underlying distributed event routing and filtering implementations for the selected
interaction type plug-ins (see figure 3). The framework can be configured to provide
different overlay implementations depending on the network type (e.g. MANET,
WAN) and the interaction type of the personality. The overlay plug-in configured for
a particular pub-sub personality heavily influences 1) the suitability of the personality
to the network environment such as WAN, MANET, 2) scalability and 3) fault
tolerance properties of the system. The overlay CF provides pluggable overlays for
diverse environments (e.g. probabilistic multicast overlay for MANET and Scribe
overlay for WAN etc). The framework is configurable based on environmental
context such as the mobility model of the network, for example MAODV[31] overlay
implementation can be configured for ad-hoc networks with low mobility pattern and
can then be reconfigured to probabilistic multicast overlay if the ad-hoc network
becomes highly mobile.

In terms of design, the overlay CFs per-host overlay plug-ins are implemented in
terms of three standard component plug-ins (i.e. control, forwarding, state, see figure
3). The control component cooperates with its peer brokers on other hosts to build and
maintain the broker network topology. It is in charge of managing the overlay event
broker network. It encapsulates the distributed algorithms used to establish and
maintain the broker overlay structure. The forwarding component routes events over

738 T. Sivaharan, G. Blair, and G. Coulson

the broker network. This component enables pluggable event forwarding strategies.
For example, the simplest approach is to forward the event to all other brokers along
the broker tree overlay. Subscriptions are never propagated beyond the broker
receiving them. An alternative strategy is subscription forwarding: when a broker
receives a subscription from one of its neighbors, it stores the subscription in a
subscription table and forwards the subscription to all its remaining neighboring
brokers. This effectively sets event forwarding routes through the reverse path
followed by subscriptions. Finally, the state component encapsulates key states such
as nearest broker neighbours lists, connected clients lists (i.e. publishers, subscribers).

In order to test and evaluate the event broker overlay CF, we have populated the
framework with three alternative overlay plug-in implementations: probabilistic
multicast overlay for configuring pub-sub personality over mobile ad-hoc network,
Scribe overlay implementations for wide area networks and IP multicast for local area
networks (LAN) and infrastructure based wireless LAN. Furthermore, it is feasible for
new overlays to be dynamically integrated into the framework at a later date, in
addition to currently available overlay plug-ins.

4 Implementations of GREEN: A Case Study

In this section we consider a pervasive computing application case study and describe
how GREEN implementations are configured and reconfigured to meet the
requirements imposed by the application and the underlying heterogeneous
environment.

4.1 Application Scenario

The scenario embraces vehicular ad-hoc networks (VANET) and wide area fixed
network, to facilitate: 1) the autonomous inter-vehicle cooperation over VANET and 2)
the monitoring and control of vehicular traffic over a wide area network. The
experimental test-bed consists of a small number of robot vehicles augmented with
wireless LAN (IEEE 802.11b), GPS, ultrasonic sensors, magnetic compass and on-
board PDA. The laptops with WLAN placed on the roadside act as the bridge between
the VANET and the Internet. The autonomous vehicles travel along a given path,
defined by a set of GPS waypoints (a ‘virtual’ circuit). Every vehicle discovers and
cooperates with other vehicles in its proximity to travel safely and avoid collisions. The
vehicles in close proximity form a VANET. Furthermore, sensor data generated by
vehicles (i.e location, speed, bearings, time stamp) are relayed via WLAN to road-side
base stations placed only at strategic points on the road network. These base stations
connected to the Internet form a large scale wide area sensor network, thus facilitating
traffic monitoring and control. Users in the Internet may query traffic information
derived from vehicular sensor data (e.g. slow speed may imply high road traffic). The
vehicles approaching a base station needs to temporally reconfigure the personality to
operate over from the default WLAN ad-hoc mode to infrastructure mode to relay
sensor data to the base station. This application clearly embraces heterogeneous
networks and heterogeneous devices and presents two main requirements on GREEN 1)
QoS aware event-based middleware suited for mobile ad-hoc networks to enable inter-
vehicle communication 2) event-based middleware suited for fixed wide area network
to enable dissemination of vehicular sensor data to enable traffic monitoring and
control. More details of the VANET test-bed can be found in [28], [29].

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 739

4.2 The GREEN Configuration for Mobile Ad-Hoc Networks

The GREEN configuration for MANET is specifically configured to address the
following requirements and constraints of the VANET environment:

• support inter-vehicle events communication in a mobile ad-hoc network
• end-to-end event channel QoS monitoring in ad-hoc networks
• content , proximity based interaction and composite events specification

Publish-Subscribe Interaction CF plug-ins for MANET
The GREEN configuration for MANET is illustrated in figure 6. It shows the
composition of the component plug-ins within the interaction CF. Similarly it shows
the composition of the component plug-ins in the overlay CF. It can be seen the
interaction CF is layered on top of the overlay CF by the GREEN top level CF, which
is not shown in the figure to simplify the presentation. The publish component (i.e.
the one that exports the IPublish interface) and the subscribe component (featuring the
ISubscribe interface) publish XML based events and subscribe to events of interest
respectively. ISubscribe interface supports a context (i.e proximity) based
subscriptions in addition to topic and content based subscriptions in FEL. The
proximity plug-in encapsulates the FEL context filter engine extended for location
context.

Fig. 6. GREEN configuration for MANET

Furthermore, subscribers can specify rule-based composite events using ICLIPS

interface. Subscribers specify composite events in the CLIPS language [26] as scripts
in a text file and load using the ICLIPS interface. The script files can be (un-)loaded
dynamically. The CLIPS component plug-in encapsulates the implementation of
CLIPS inference engine. Furthermore, clients can specify quality-of-service (QoS)
monitoring requirements using ITCB interface, particularly event delivery deadlines
and assign them to particular event types (i.e. event channels). For example, ‘event

ISubscribe

Interaction CF

IPublis
h

Publish

SOAP Messaging Proximity. Filter

IFilter

Subscribe

Event Dispatcher

TCB

ITCB

CLIPS

ICLIPS

IGroup

IDeliver

State Control Forward

Prob. Multicast Overlay
State Control Forward

IP. Multicast

IGroup
IDelive

Overlay CF

740 T. Sivaharan, G. Blair, and G. Coulson

channel a: event delivery deadline 300ms’ and ‘event channel b: event delivery
deadline 1000ms’. The callback function on the ITCB interface notifies the publisher
or subscriber(s) regarding event delivery deadline failures in a guaranteed time bound.
The event channel QoS monitoring functionality is implemented by University of
Lisboa’s Timely Computing Base (TCB) [30] plug-in. The TCB plug-in is configured
in this personality, as end-to-end event channel QoS monitoring and fail safety is a
crucial requirement in VANET for safe driving. Note though that TCB requires a
predictable MAC protocol for wireless ad-hoc networks such as TBMAC [32] and
also a real-time operating system. Interested readers can refer to [30] for more details
on the design of TCB.

Event Broker Overlay CF Plug-ins for MANET
The event broker overlay plug-in must address the unique challenge of MANET
environment (i.e. the topology of the network is highly dynamic). There are no fixed
infrastructures to place event brokers in MANET. Hence, a fully distributed event
broker overlay is implemented; where all mobile nodes perform partial event
brokering functionality (i.e event routing, filtering). Notably, producer side and
consumer side event filtering is supported. Event producers define the event type and
scope of event propagation. Subscriptions (content filters) are deployed only at the
consumer side unlike the common approach of subscription forwarding [5]. In
subscription forwarding strategy, the subscriptions (content filter) form a reverse path
for content based event forwarding. However forwarding subscriptions is not suitable
in VANET as reverse path(s) quickly become redundant as the network topology is
highly dynamic. Hence, in this overlay plug-in, event forwarding is based on event
type (i.e. topic) and proximity; each event type is hashed to a underlying multicast
group address. Events are forwarded from producers to consumers using the
underlying multicast overlay. Scalability has been identified as a drawback with the
aforementioned approach in WANs [5], [8]. We address this by allowing producers to
define proximity of the event propagation (e.g the proximity radius can be set to
25m), coupled with location aware event forwarding provided top of the underlying
multicast overlay. Furthermore, each consumer has to deal with small number of
content filters (i.e their own) compared to producers or dedicated event brokers
having to match potentially arbitrarily large number of content filters. This helps
distribute the event processing overhead evenly among the resource scarce wireless
mobile devices and avoids having single points of failure. The aforementioned
mechanism adopted by the event broker overlay plug-in is strongly influenced by
STEAM [9].

As mentioned before, a multicast overlay plug-in underpins the aforementioned
event broker overlay plug-in. This leads to the requirement of designing a multi-hop
multicast overlay suited for VANET. There exist numerous multicast algorithms (both
proactive and reactive) for ad-hoc networks. However, most existing algorithms
(MAODV, AMRoute, CAMP, MCEDAR, etc.) perform inadequately when high node
mobility is present in the MANET environment [31] e.g. as in VANETs. Hence we
implemented a probabilistic multicast overlay plug-in (see fig 6); a multi-hop
multicast protocol suited for MANETs with high node mobility. This is an
unstructured overlay that intelligently floods events. Each node intelligently decides
whether or not each message received should be forwarded to its neighbors. The
decision is based on previous messages that the node has received; if a large number
of duplicates of a message have already been received, the probability the message is
forwarded reduces.

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 741

Furthermore, by default, the personality in each PDA (i.e. vehicle) is configured to
operate over the probabilistic multicast overlay plug-in (in WLAN ad-hoc mode). The
overlay CF is dynamically reconfigured to operate over an IP multicast plug-in
(WLAN in infrastructure mode), as shown in fig 6, when the environmental context
changes (i.e. ‘if PDA is within the coverage of a fixed base station’).

4.3 A GREEN Configuration for Wide Area Networks

The GREEN configuration for WAN (see figure 7) is configured to address the
following requirements and constraints of the fixed WAN environment:

• support events communication in wide area fixed infrastructure based
networks to enable distributed vehicular traffic monitoring and control

• support content based interaction type

Publish-Subscribe Interaction plug-ins for WAN
Similar to MANET configuration, the configuration for WAN (see fig 7) shows how
the component plug-ins are composed within the interaction CF and the overlay CF to
meet the requirements and constrains of WANs. Here we focus only on the
differences compared to the MANET configuration. The configuration illustrated in
figure 7 allows a content based subscription (in addition to topic) only. Assuming
content filters would be adequate here, the CLIPS plug-in to specify rule based
composite events is not configured. WAN is used for disseminating non critical traffic
data; hence do not require stringent QoS requirements as in VANET. Therefore, the
TCB plug-in is not configured as well.

Event Broker Overlay plug-ins for WAN
The WAN environment requires large scale publish-subscribe middleware between
elements across the Internet. In the default configuration shown in fig 7; the event

Fig. 7. GREEN configuration for WAN

INotify

Publish

SOAP Messaging Content. Filter
IFilter

Subscribe

ISubscribe

Event Dispatcher

Interaction CF
Notifier

IForward

IPublish

State Control Forward

Content based routing Overlay

State Control Forward

Scribe Overlay

State Control Forward

Chord DHT Overlay

State Control Forward

IP Multicast

Overlay CF

742 T. Sivaharan, G. Blair, and G. Coulson

broker overlay plug-in is underpinned by a Chord DHT (distributed hashtable) [21]
overlay.

Here, the event broker overlay plug-in uses rendezvous nodes in the network,
which are special event brokers that are known to both producers and consumers. For
each event type, a rendezvous node exists in the network. An event type is hashed to a
rendezvous point. When a consumer subscribes, the subscription (i.e. content filter) is
forwarded towards the rendezvous node R. Every broker that forwards a subscription
stores the content filter and event type. Event publications are routed to rendezvous
nodes for the event type and then follow the reverse path taken by the subscriptions.
This event broker overlay plug-in is similar to the basic event routing mechanisms
adopted in Hermes [7]. This overlay plug-in is suited for fixed WANs where the
broker topology is fixed. The advantage is the support for content based routing,
which is more scalable in WANs. The alternative overlay plug-in as illustrated in fig 7
is Scribe over Chord overlay where each event type is hashed to a Scribe multicast
group. This alternative overlay plug-in does not support content based event routing
but supports the content based filtering at consumer side. The configuration handles
situations where the broker network is subject to topology changes triggered by node
and/or link failures. This is made possible as the Scribe overlay [19] manages broker
topology changes [19]. Moreover IP multicast plug-in can be configured instead of
the Scribe overlay in conditions where network supports IP multicast. A node which
is configured to have separate IP multicast and Scribe overlay plug-ins can act as a
bridge between the WAN and the VANET (e.g road side base stations mentioned in
the application scenario), hence, enabling dissemination of vehicular sensor data
generated from VANETs to be distributed over WANs.
 Both the above configurations (i.e for MANET, WAN) have been implemented. In
addition other configurations, not discussed in this paper, have been integrated to
provide publish-subscribe communication infrastructure in our other integrated
middleware platforms e.g. CORTEX Middleware for sentient object based, context
aware applications in mobile ad-hoc networks [33], ReMMoC a service oriented
middleware for mobile clients in infrastructure based wireless networks [34] and
GridKit for GRID applications in large-scale networks [18]. The case study clearly
demonstrates how the single flexible GREEN middleware is adaptable to various
events matching schemes and underlying infrastructure.

5 Evaluation

This section provides concrete performance results of the GREEN family of
configurations. It provides quantitative evaluation results on 1) the cost of personality
configuration and dynamic reconfiguration and 2) memory footprint cost of GREEN
middleware. The experiments utilize a combination of following base device types 1)
PDA: HP iPAQ h5450 pocket PC device with a 206MHz strongARM processor,
64Mbytes of system RAM, windows CE 3.0 operating system and IEEE 802.11b
wireless network at 11Mbytes/s; 2) PC: 1.7GHz processor and 256Mbytes RAM with
windows XP and 100Mbytes/s fast Ethernet.

Experiment 1: Measurements of start-up, configuration, and dynamic fine-grain
reconfiguration operations. This experiment evaluates the performance costs
incurred by three reflective operations provided by OpenCOM run-time (i.e. loading,

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 743

binding, dynamic reconfiguration) on a PDA hosting the GREEN configuration for
MANETs (see fig 6 for the configuration). The experiments measure the timing cost
of loading components and configuring into configuration A (i.e. IP multicast as the
overlay plug-in, see fig 6) and configuration B (i.e probabilistic multicast as overlay
plug-in) and finally, the cost of dynamic fine-grain reconfiguration from configuration
A to configuration B and vice versa by changing the overlay plug-ins . The results of
the experiments are illustrated in fig 8 and demonstrate where the actual overheads
occur.

Personality

Components
Load time
(ms)

Components
binding
time(ms)

Total
start-up
time(ms)

Dynamic
reconfiguratio
n time(ms)

Total
componen
ts

Number
bindings

Config’ A 2580 176 2756 77 (A to B) 10 10
Config’ B 2587 171 2758 76 (B to A) 10 10

Fig. 8. Measurements of base reflective operations

The components load time is the most expensive reflective operation and consumes
a large part of the overhead incurred in personality configuration. This is because
each component is a separate dynamic link library (DLL) that must be first loaded
into program memory from storage memory in Windows CE operating system. The
component configuration time (i.e. binding time) represents the time taken to initiate a
new configuration personality by binding component interfaces to component
receptacles. Configuring the middleware personality costs less compared to loading
the components (i.e configuring takes 6.33% of the time compared to 93.66% time
taken to load components in config’ A personality). Furthermore, the time taken to do
fine-grain reconfiguration is consistently lower compared to the initial startup time of
the personalities (i.e. fine-grain reconfiguration took 2% of the initial startup time).

Impact of dynamic fine grain reconfiguration. Fig 9 illustrates the experiment
investigating the impact of dynamic fine-grain reconfiguration, on a topic-based
publish-subscribe service invocation. For this purpose, the middleware was used to
invoke 1000 publish calls using both configuration A (i.e IP multicast as overlay
plug-in) and configuration B (probabilistic multicast as overlay plug-in) within a host,
and dynamically reconfiguring between the two with varying levels of frequency. The
first test involved no dynamic reconfiguration; this is a simulated base test of the time
taken to perform 500 publish invocations using configuration A and 500 publish
invocations using configuration B. Subsequent tests used the architecture meta-model
interface of the CFs to dynamically reconfigure the underlying overlay plug-in. In test

Test Description Time(ms) Publish calls/second % Time increase from base test 1

1) 500 publish calls using config A
+ 500 publish calls using config B

3185

313.97

0

2) 500 config A then 500 B 3283 304.59 3.07
3) 250 config A then 250 B (x2) 3853 259.53 20.97
4) 100 config A then 100 B (x5) 5198 192.38 63.20
5) 50 config A then 50 B (x10) 6260 159.74 96.54

Fig. 9. Cost of dynamic reconfiguration

744 T. Sivaharan, G. Blair, and G. Coulson

two, 500 publish calls were performed by configuration A, then dynamically
reconfigured to configuration B and then 500 further publish calls were made.
Similarly, test three performed 250 publish calls using configuration A then 250
publish invocations using configuration B and this was repeated again.

The results of the five tests are shown in fig 9. It can be seen, as the frequency of
reconfigurations increases, the time taken to perform 1000 invocations increases.

For behavior where reconfiguration is generally out-of-band, i.e. infrequent
compared to the number of base service calls, the additional overhead is less
significant (a 3.07% increase in time). However, as fine grain reconfiguration
becomes more frequent, e.g. 10 reconfigurations in 1000 base invocations, the
overhead becomes significantly greater (a 96.54% increase in time). An example out-
of-band scenario which requires the above reconfiguration is, where a PDA is
required to reconfigure from configuration A to configuration B when the PDA loses
the coverage of a base station. Then the PDA have to use an ad-hoc multicast protocol
such as probabilistic multicast overlay instead of IP multicast (i.e. as no support in
MANET) to communicate with its peers. Overall the experiment shows dynamic
reconfiguration does not necessarily result in high performance cost.

Experiment 2: Evaluation of the memory footprint cost of GREEN
At present mobile and embedded devices have a limited amount of system memory,
which can quickly be consumed by the applications. Therefore it is important to
minimize the amount of memory needed to store the middleware implementations in a
device.

Config-
No

Descriptions Environment

1 Topic based P/S over IP Multicast WinCE, WLAN
2 Topic based P/S over Prob. Multicast overlay WinCE, WLAN
3 Content based P/S over IP Multicast WinCE, WLAN
4 Content based P/S over Prob. Multicast overlay WinCE, WLAN
5 Proximity based P/S over IP Multicast WinCE, WLAN , GPS
6 Proximity based P/S over Prob. Multicast overlay WinCE, WLAN, GPS
7 Config' 3 + QoS (TCB) WinCE, WLAN
8 Config' 6 + Composite events spec(CLIPS) WinCE, WLAN , GPS

Fig. 10. Test configurations for memory footprint measurements on PDA

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Configuration Number

M
em

o
ry

 F
o
o
tp

ri
n
t
(
K
B
)

CLIPS

TCB(TimelyCo’Base)

EventDispatcher

IPMulticast

Prob.Multicastoverlay

SOAP Messaging

Proximity Filter(+Content)

Content Filter

Topic Filter

Subscribe

Publish

OpenCOM (run time)

Component Name

Fig. 11. Memory footprint of GREEN configurations for PDA (MANET)

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 745

Config- No Descriptions Environment
1 Topic based P/S over IP Multicast WinXP, LAN
2 Topic based P/S over Scribe overlay WinXP, WAN
3 Content based P/S over IP Multicast WinXP, LAN
4 Content based P/S over Scribe overlay WinXP, WAN
5 Config4+ Composite events spec(CLIPS) WinXP, WAN

Fig. 12. Test configurations for memory footprint measurements on PC (WAN)

This section examines the resource costs in terms of the static memory footprint of

diverse GREEN configurations. Fig 10 documents some valid configurations currently
supported for MANETs and fig 11 illustrates the memory costs of the corresponding
configurations. Similarly fig 12 documents some valid configurations currently
supported for WANs and fig 13 illustrate the memory costs of the corresponding
configurations. All the implemented and listed components (in fig 11,13) are OpenCOM
components and are implemented in C/C++, except the Scribe overlay component
which is implemented in Java. Fig 11 and 13 also illustrate the constituent components
of the respective configurations and show how different configurations are composed.
The configurations are suited for mobile devices with limited memory, as most
configurations for PDAs (WinCE) are around 100Kbytes (e.g. configurations 1, 3, 5 in
fig 11). The most expensive configuration in terms of memory for PDAs is
configuration 8 and this is mainly due to the high footprint of the CLIPS component.
Furthermore, GREEN conserves memory in two distinct levels. Firstly, by only storing
the components required by the personality in the storage memory of the device (i.e
savings on the storage memory of the PDA). Secondly, only the components that are
currently used by configuration are loaded (the OpenCOM run-time provides operations
to load and unload components at run-time) into program memory from storage
memory (i.e. savings in program memory usage) and components are unloaded from
program memory if they are no longer required by the new configuration.

Overall, this experiment shows how GREEN family of configurations achieves low
memory footprint despite its generality and flexibility.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5

Configurations

M
em

o
ry

 F
o
o
tp

ri
n
t(
 K

B
) CLIPS

EventDispatcher
Scribe Overlay)
IPMulticast
SOAP Messaging
Content Filter
Topic Filter
Subscribe
Publish
OpenCOM (run time)

Component Name:

Fig. 13. Memory footprint of GREEN configurations for PC (WAN)

6 Related Work

Today there exists many research and commercial publish-subscribe systems such as
SIENA [5], JEDI [8], Gryphon [6], Elvin [36], MSMQ [37], SonicMQ [38]. This

746 T. Sivaharan, G. Blair, and G. Coulson

research has primarily focused on the support of various non-functional properties
such as scalability, reliability, etc, largely on fixed network environments.
Furthermore, some have attempted to address the emergence of mobile computing:
JEDI [8] extends support for client mobility within an infrastructure based wireless
networks where event brokers are fixed; and STEAM [9] is specifically designed for
mobile ad-hoc networks where broker topology constantly changes. From the
functional point of view, existing systems implement a fixed publish-subscribe
interaction type (i.e. topic based or content based etc). In general, less emphasis has
been placed upon publish-subscribe systems which are open, configurable and re-
configurable to support changeable publish-subscribe interactions types which
embraces diverse network types and device types.

The only work we know, of constructing highly configurable publish-subscribe
middleware are DREAM [39], REDS [40] and the work of Filho et.al [41]. DREAM
[39] provides a component framework for configurable and dynamic message-
oriented middleware. However, DREAM does not explicitly support distributed
network of event brokers. A configurable and dynamic notification service is
provided by [41]. However, it does not explicitly support MANETs. REDS [40]
provides a configurable, distributed event dispatching system. However it is
configurable only within the scope of content based systems in WANs and lacks
support for dynamic re-configuration of middleware. Furthermore, these systems do
not explicitly support pluggable interaction types and they do not explicitly embrace
different network types and device types and hence fall short of providing the level of
re-configurability of GREEN.

Finally, there are number of middleware platforms that take a reflective approach
to provide configurable and reconfigurable system. However, their focus has largely
been on synchronous interaction, e.g. DynamicTAO [42] and UIC [43] are CORBA
ORBs offering remote object invocations. Furthermore, there is considerable research
in the narrower field of overlay networks themselves but this work is largely
orthogonal to our focus. In particular, there are numerous multicast and routing
protocols for ad-hoc networks such as MAODV, AMRoute, CAMP, MCEDAR which
can underpin different overlays in MANET [31].

7 Conclusions

In this paper we have described our approach to the provision of open, highly
configurable and re-configurable publish-subscribe middleware that embraces
different network types and interaction types. We have empirically demonstrated
using an evaluation scenario: that our architecture, has considerable generality and
flexibility in supporting pervasive computing applications. The pluggable event
broker overlay structure enables us to embrace different network types such as mobile
ad-hoc networks and large scale networks. The pluggable interaction types provide a
powerful programming model for the application developers. The architecture is
extensible in that new publish-subscribe interaction types and event broker overlays
can be developed and plugged into the middleware, even at run-time. Furthermore,
performance evaluations of the middleware have demonstrated that flexibility is not
necessarily at the expense of performance. Furthermore, the performance figures
provide a clear insight into the relative performance tradeoffs for different

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 747

configurations. Ongoing work is investigating the impact on GREEN in sensor
networks based on motes, tacking the issues of memory size and reconfiguration in
such areas.

Acknowledgments

This work is partly supported by the IST-FET-2000-26031, (CORTEX- CO-operating
Real-time senTient objects: architecture and EXperimental evaluation) project and
FP6-IST-004536 (RUNES-Reconfigurable Ubiquitous Networked Embedded
Systems) project.

References

[1] M. Weiser. Ubiquitous computing. IEEE Hot Topics, 26(10):71--72, 1993.
[2] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spiteri.

Generic support for distributed applications, IEEE Computer, 33(3):68--76, 2000.
[3] Blair, G.S., Campbell, A.J., Schmidt, D.C., "Middleware Technologies for Future

Communication Networks", IEEE Network, Vol. 18, No. 1, January 2004.
[4] C. Mascolo, L. Capra, Emmerich,w. "Middleware for Mobile Computing (A Survey)". In

Advanced Lectures on Networking - Networking 2002 Tutorials, Pisa, Italy. volume 2497
of LNCS, pages 20-58.

[5] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf "Achieving Expressiveness and Scalability
in an Internet-Scale Event Notification Service". Nineteenth ACM Symposium on
Principles of Distributed Computing (PODC2000), Portland OR. July, 2000

[6] G.Banavar et al. An Efficient Multicast Protocol for Content-based Publish-Subscribe
Systems. In Proc. of the 19th Int. Conf. on Distributed Computing Systems, 1999.

[7] P. R. Pietzuch and J. M. Bacon. Hermes: A Distributed Event-Based Middleware
Architecture. In Proc. of the 1st Int. Workshop on Distributed Event-Based Systems, July
2002.

[8] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure and its
application to the development of the OPSS WFMS. IEEE Trans. on Software
Engineering, 27(9):827–850, September 2001.

[9] Rene Meier, V. C. "Steam: Event-based Middleware for Wireless Ad Hoc Networks.". In
Proceeding of the International Workshop on Distributed Event-Based Systems
(DEBS’02), Austria. 2002.

[10] Coulson, G., Blair, G.S., Clark, M., Parlavantzas, N., “The Design of a Highly
Configurable and Reconfigurable Middleware Platform”, ACM Distributed Computing
Journal, Vol 15, No 2, pp 109-126, April 2002.

[11] Blair, G., Coulson, G., Grace, P., "Research Directions in Reflective Middleware: the
Lancaster Experience", Proceedings of the 3rd Workshop on Reflective and Adaptive
Middleware (RM2004) co-located with Middleware 2004, Toronto, Ontario, Canada,
October 2004

[12] Clark, M., Blair, G.S., Coulson, G., Parlavantzas, N., “An Efficient Component Model for
the Construction of Adaptive Middleware”, Proc. IFIP Middleware 2001, Heidelberg,
Germany, Nov. 2001.

[13] Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K., Ueyama, J., "OpenCOM v2: A
Component Model for Building Systems Software", Proceedings of IASTED Software
Engineering and Applications (SEA'04), Cambridge, MA, ESA, Nov 2004.

748 T. Sivaharan, G. Blair, and G. Coulson

[14] Kon, F., Costa, F., Blair, G.S., Campbell, R., "The Case for Reflective Middleware:
Building Middleware that is Flexible, Reconfigurable, and yet simple to Use", CACM,
Vol. 45, No. 6, pp 33-38, 2002.

[15] Szyperski, C.,Component Software: Beyond Object-Oriented Programming. Addison
Wesley, 1998.

[16] Coulson, G., Grace, P., Blair, G.S., Cai, W., Cooper, C., Duce, D., Mathy, L., Yeung,
W.K., Porter, B., Sagar, M., Li, J., “A Component-based Middleware Framework for
Configurable and Reconfigurable Grid Computing” to appear in Concurrency and
Computation: Practice and Experience, 2005.

[17] Doval, D ,O’Mahony, D, “Overlay Networks: A scalable alternative for P2P”, IEEE
Internet computing, jul-aug 2003

[18] Grace, P., Coulson, G., Blair, G., Mathy, L., Duce, D., Cooper, C., Yeung, W., Cai, W.,
"GRIDKIT: Pluggable Overlay Networks for Grid Computing", Proceedings of
International Symposium on Distributed Objects and Applications (DOA), Larnaca,
Cyprus, October 2004

[19] Castro, M., Druschel, P., Kermarrec, A-M., Rowstron, A., “SCRIBE: A Large-Scale and
Decentralised Application-Level Multicast Infrastructure”, IEEE Journal on Selected
Areas in Communications (JSAC) (Special issue on Network Support for Multicast
Communications), 2002.

[20] Rowstron, A., Druschel, P., “Pastry: Scalable, Distributed Object Location and Routing
for Large-scale Peer-to-Peer Systems”, Proc. IFIP Middleware 2001, Heidelberg,
Germany, Nov, 2001.

[21] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., Balakarishnan, H., “Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications”, Proc. ACM SIG-COMM, San
Diego,2001.

[22] X. Chen, Y. Chen, and F. Rao, “An Efficient Spatial Publish Subscribe System for
Intelligent Location-Based Services,” Proceedings of the 2nd International Workshop on
Distributed Event-Based Systems (DEBS '03), June 2003

[23] S. Schwiderski. Monitoring the behaviour of distributed systems. PhD thesis, University
of Cambridge, April 1996.

[24] A. P. Buchmann. Architecture of active database systems. In N. W. Paton, editor, Active
Rules in Database Systems, 2: 29–48. Springer-Verlag, 1999.

[25] S. Chakravarthy and D. Mishra. Snoop: An Expressive Event Specification Language for
Active Databases. Data and Knowledge Engineering, 14(1):1–26, November 1994.

[26] Gary Riley. CLIPS homepage. http://www.ghg.net/clips/CLIPS.html, 2002.
[27] Charles Lanny Forgy. RETE: A Fast Algorithm for the Many Patterns/Many Objects

Pattern Match Problem. Artificial Intelligence, 19(1):17–37, September 1982.
[28] Sivaharan, T., Blair, G.S., Friday, A., Wu, M., Duran-Limon, H., Okanda, P., Sørensen,

C.F., "Cooperating Sentient Vehicles for Next Generation Automobiles", Proc of the
MobiSys, 1st ACM Workshop on Applications of Mobile Embedded Systems (WAMES
2004), Boston, USA, June 6, 2004

[29] Collaborative Robotics Research at Lancaster university http://www.comp.lancs.ac.uk/
computing/users/angie/rendezvous/robotics.html

[30] Antonio Casimiro, Paulo Verissimo. Using the Timely Computing Base for Dependable
QoS Adaptation. In Pro of the 20th IEEE Symposium on Reliable Distributed Systems,
pages 208–217. IEEE Computer Society Press, 2001.

[31] Royer, E. M., Toh, C-K., A Review of Current Routing Protocols for Ad-Hoc Mobile
Wireless Networks, IEEE Personal Communications Magazine, pp 46-55, April 1999.

[32] R.Cunningham and V. Cahill, “Time Bounded Medium Access Control for Ad Hoc
Networks”, in Proceedings of the Second ACM International Workshop on Principles of
Mobile Computing (POMC'02). Toulouse, France: ACM Press, 2002, pp. 1-8.

 GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware 749

[33] Sørensen, C.F., Wu, M., Sivaharan, T., Blair, G. S., Okanda, P., Friday, A., Duran-Limon,
H., "A Context-Aware Middleware for Applications in Mobile Ad Hoc Environments",
Proc’ of the 2nd Workshop on Middleware for Pervasive and Ad-Hoc Computing
(MPAC'2004) at Middleware 2004, Toronto, Canada, October 2004.

[34] Grace, P., Blair, G. S, Samuel, S., "ReMMoC: A Reflective Middleware to Support
Mobile Client Interoperability". In Proceedings of International Symposium on
Distributed Objects and Applications (DOA), Catania, Sicily, Italy, November 2003.

[35] S.Chen, p. Greenfield: QoS evaluation of JMS: an empirical approach, In Proc. of the
37th Hawwaii International Conference on System Sciences, Hawaii, USA, 2004

[36] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelpsothers. Content Based Routing
with Elvin4. In Proc. of the 2000 Australian UNIX and Open Systems Users Group
Annnual Conf., Canberra, Australia, June 2000.

[37] Microsoft Message Queuing (MSMQ),2002. Microsoft, http://www.microsoft.com/msmq/
[38] SonicMQ, 2002. Sonic software, http://www.sonicsoftware.com
[39] M. Leclercq, V. Quema, and J.-B. Stefani. Dream: a component framework for the

construction of resource-aware, reconfigurable moms. In Proc. of the 3rd Workshop on
Adaptive and Reflective Middleware, pages 250–255. ACM Press, 2004.

[40] Gianpaolo Cugola, Gian Pietro Picco. REDS: A Reconfigurable Dispatching System"
technical report , Politecnico di Milano (submitted for publications) ,2005

[41] Silva Filho R. S., De Souza C. R. B., Redmiles D. F. The Design of a Configurable,
programmable and Dynamic Notification Service. in Proc. Second International
Workshop on Distributed Event-Based Systems (DEBS'03), USA, June 8th, 2003.

[42] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T., Magalhaes, L., Campbell,
R.,“Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective
ORB”,Proc. of Middleware 2000, ACM/IFIP, April 2000.

[43] Roman, M., Kon, F., Campbell, R., “Reflective Middleware: From Your Desk to Your
Hand”, IEEE Distributed Systems Online, 2(5), August 2001.)

[44] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, The many faces of
publish/subscribe, ACM Computing Surveys, (2):114--131, 2003.

[45] XML Path Language (http://www.w3.org/TR/xpath20/)
[46] Grace, P., Coulson, G., Blair, G.S., Porter, B., “Deep Middleware for the Divergent

Grid”, Proc. IFIP/ACM/USENIX Middleware 2005, Grenoble, France, November 2005.

Transparency and Asynchronous Method Invocation

Pierre Vignéras

GIK Institute of Engineering Sciences and Technology,
Topi, N.W.F.P, 23460 Pakistan

pierre@giki.edu.pk

Abstract. This article focuses on transparency in the context of asynchronous
method invocation. It describes two solutions available to provide full-transpa-
rency: where asynchronism is entirely masked to the developer. The main con-
tribution of this paper is to clearly present the drawbacks of this approach: ex-
ception handling and developer consciousness are two problems inherent to full-
transparency that makes it at least, hard to use, at worst, useless. This paper de-
fends explicit asynchronous method invocation and proposes semi-transparency:
almost all the complexity of asynchronism is masked to the developer but the
asynchronism itself.

Keywords: transparency, asynchronous method invocation, concurrency.

1 Introduction

Transparency is an abstract notion already used in many contexts. Intuitively, its goal
is to hide the complexity of an aspect – usually a non functional one – to developers.
Java/RMI [16] is a good example of transparency used to hide the complexity of the
remote aspect. The syntax of a remote method invocation is almost identical as a local
one. The only difference is the fact that remote methods may throw a checked excep-
tion (an instance of the class java.rmi.RemoteException or of one of its subclass).
Anyway, the semantic of such a call is rather different than in the local case: since pa-
rameters are marshaled, the remote target of the call gets either copy or references of
each original parameters depending on some of their characteristics (primitive type, se-
rializable, implementing the java.rmi.Remote interface). This behavior is also used
for the result transmission. As seen by the success of the Java/RMI framework, and
despite the existence of many works that try to enhance it [13,15,10,17], this example
clearly shows that transparency of the remote aspect eases the making of distributed
applications. Distributed programming has thus clearly been simplified thanks to trans-
parency. Is it also true in the context of concurrent programming?

Concurrency will probably be one of the major concern for developers in the next
decade. Whereas SMP architectures are quite common today, next-generation proces-
sors (CMP, SMT, VMT) [1] will provide lots of low-level threads to the operating sys-
tem. So, concurrency will be almost anywhere, in low-level architectures, in operating
systems and in high level languages such as Java and C# which already provide a thread
API to express concurrency in object oriented applications.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 750–762, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Transparency and Asynchronous Method Invocation 751

Asynchronous method invocation is another paradigm that allows the expression of
concurrency. It extends very well the standard synchronous method invocation paradigm
and also extends naturally to the remote case as remote method invocation does.

This paper focuses on transparency in the context of asynchronous method invoca-
tion. Note that the Java language has been used in our study, but many issues described
in this paper will also be found in any other object oriented language. Furthermore,
some solutions described in this paper is already available in the Mandala project [18].

This paper is organized as follow: section 2 deals with concurrency in the asyn-
chronous method invocation paradigm. Section 3 presents full-transparency, and two
solutions for its implementation. The reasons why this mechanism should be avoided
are also explained in this section. We propose an alternative in section 4. We finally
conclude in section 5 along with some perspectives.

2 Dealing with Concurrency

Since we are focusing on transparency, we distinguish the mechanism that provides
transparency and the one that provides concurrency. For the latter, many abstractions
may be used such as active objects [11], actors [2,3], separates [14], active contain-
ers [7,6], or asynchronous references [19].

When making an asynchronous call, the specified method may not be executed con-
currently with the caller thread. The underlying abstraction may do many things before
running the method while the caller thread may have reached the end of the caller
method, or may have already died.

Moreover, when performing many asynchronous method invocations successively,
the execution of these methods may also be sequential. This is sometimes necessary
when the object on which asynchronous method invocations are made is not designed
in a concurrent context (thread-safety, re-entrance). In this case, to prevent problems
such as deadlocks and data corruption for example, the underlying abstraction may
forbid the concurrent execution of methods using a non-concurrent asynchronous se-
mantic: a single thread deal with the method invocation requests. This is the approach
of the active object paradigm. On the other extreme, an abstraction may be customized
to use a specific asynchronous policy (FIFO, one thread per call, thread pool) for the
implementation of a given asynchronous semantic (non-concurrent or concurrent). This
is the way taken by the asynchronous reference paradigm.

Nevertheless, the use of any asynchronous semantic is subject to deadlocks [19],
even non-concurrent one. So even if the asynchronous method invocation may seem
simpler to use (compared to thread programming), it does not solve common issues
found in concurrent programming in general. Asynchronous method invocation is just
a way to express concurrency, not a solution to problems it involves. For this purpose,
a careful design of classes is still required using concurrent design principles and pat-
terns [12].

3 Full-Transparency

In the case of concurrent programming, we define full-transparency as below:

752 P. Vignéras

Definition 1 (Full-Transparency).
An asynchronous method invocation is fully-transparent if its syntax is not distinguish-
able from a standard, synchronous method call. Moreover, the object type used to make
an asynchronous method invocation must be compatible with the one used to make a
synchronous method invocation.

Two distinct entities must be provided to ensure full-transparency:

– the asynchronous proxy [8] sends invocation requests to the underlying abstraction1

which makes the call really asynchronous;
– the transparent future [20] used to recover the result.

Transparent futures may use the wait-by-necessity mechanism [4] provided by ProAc-
tive [5] and Mandala [18]: when a client makes an asynchronous call, a future object –
subtype of the original type declared by the method – is immediately returned. When
the client uses this future, it is blocked until the real result becomes truly available. The
figure 1 illustrates the mechanism: a client calls a method p.m() on an asynchronous
proxy (1). This last uses an abstraction to realize the actual asynchronous invocation (2)
which may lead to the concurrent execution of the method m() (4’). The future returned
by the abstraction (3) is then wrapped into a transparent future which is a subtype of
the original result. Client can thus use the result, r, as usual thanks to polymorphism.
When a method, say foo() is called on the result r (4), the transparent future uses
the wrapped future to know the status of the asynchronous method invocation through
the call waitFotResult()2 (5). When the real result is available (5’), the original call
foo() is finally invoked (6).

Note that the property about type compatibility may produce concurrency where it
is not expressed explicitely: by the passing of a type-compatible asynchronous proxy
to a library, the method invocation made by the latter on the former, while expressed
synchronously, may execute concurrently. Hence, allowing the use of legacy classes in a
concurrent context may ease the production of concurrent applications: this is the main
goal of full-transparency.

3.1 Solutions in Java

Two solutions may be provided to implement fully-transparent asynchronous method
invocations in Java. They both use polymorphism in method invocation.

Using inheritance: The ProActive approach. The first solution, used in the ProActive
framework, is based on inheritance. Basically, an asynchronous proxy is an instance of
a class which extends the original object class. A transparent future is an instance of
a class which extends the one returned by the original method. For instance, after an
object, say a, instance of a class A, becomes active, client uses a proxy p which class

1 The abstraction and the asynchronous proxy may be the same object, but in this paper we dis-
tinguished the two, as the asynchronous proxy is the one which actually provides transparency.

2 The java.util.concurrent.Future.get() method has the same functionality, but we keep
waitForResult() in this article which is more explicit.

Transparency and Asynchronous Method Invocation 753

objectAbstraction

(4')
object.m(...)

(2)
abstr.asyncCall(...)

(1)
p.m(...) Proxy(object)

f = abstr.asyncCall(...);
return TransparentFuture(f);

Future

Client

r = p.m(...);

r.foo();

TransparentFuture(r)

(4)
foo()

(5)
waitForResult()

result

(6) foo()

(3)

(5')Business code

Transparency code

Abstraction code

Creation

Method call

Fig. 1. Illustration of a fully-transparent asynchronous method invocation on an asynchronous
proxy

P extends A. Each method of A is redefined in P. So, if A declares: T m(...), then in
the proxy class P, the method m() returns a transparent future which type is a subtype
of T. This subclass implements the wait-by-necessity behavior: each call runs a test to
know the availability of the result. If the test is true, the real method is invoked, else
the client is blocked. When the result becomes available, every blocked threads are
notified.

This solution contains many problems, at least in Java:

– final classes cannot be inherited preventing the use of both asynchronous proxies
and transparent futures (on 3,950 classes of the JDK v1.43, only 57% are declared
public on which 9% are in this case);

– final methods (5% of public methods of public classes) cannot be overridden
preventing the implementation of both asynchronous proxy and transparent futures;

– methods returning a primitive type (27% of public methods of public classes) can-
not be overridden to return a subtype used by the wait-by-necessity mechanism;

– clients accessing to public fields of a transparent future cannot be blocked waiting
the availability of the result of the asynchronous method invocation.

The last problem may seem minor since, as a common good practice, public fields
are usually also declared static final: accessing such fields is not a problem neither
in a concurrency context nor in a distributed context. Anyway, if 99.9% of class fields
in the JDK v1.4 are declared final, only 20% of instance fields are too: 8 non-final
public instance fields are found for any 100 public classes found.

Since those problems are directly related to inheritance, another approach may
avoid them.

3 The Java example program, called ClassPathAnalyser, and released with the Mandala
framework [18] has been used. Only classes with a full class name prefixed by java was
considered.

754 P. Vignéras

Using interfaces: The Mandala approach. Java interfaces do not contain fields (or
they are constant) and their methods are all declared (implicitly) public. Moreover,
they cannot be declared final. Hence, the exclusive use of interfaces for full-
transparency of asynchronous method invocation solves problems found in the inheri-
tance solution.

Java provides dynamic proxy since the JDK v1.3 : the java.lang.reflect.Proxy
is able to produce a class at runtime implementing a given set of interfaces. The business
code of the proxy is an instance of a class which implements java.lang.reflect.In-
vocationHandler.

Using the dynamic proxy feature, it is possible to implement a fully-transparent
asynchronous method invocation mechanism. First, an asynchronous proxy can be de-
fined using the general code design of PROG 3.1.

1 public class AsynchronousProxy implements InvocationHandler {
2 // Creates concurrency
3 private Abstraction abstraction;
4

5 /**** InvocationHandler implementation ****/
6 public Object invoke(Object proxy, Method method, Object[] args)
7 throws Throwable {
8 Class returnType = method.getReturnType();
9 Class[] resultInterfaces;

10 if (returnType.isInterface()) {
11 resultInterfaces = new Class[] {returnType};
12 }else{
13 resultInterfaces = returnType.getInterfaces();
14 }
15 Future future = abstraction.asyncCall(method, args);
16 return Proxy.newProxyInstance(resultInterfaces,
17 new FutureProxy(future));
18 }
19 }

PROG. 3.1. full-transparent implementation of an asynchronous proxy using dynamic proxies

In this code, the concurrency is produced by a supposed abstraction able to in-
voke asynchronously a given method4. This invocation (supposed made by the async-
Call() method) must return a Future instance such as the one found in the ja-
va.util.concurrent of the new JDK v1.5. This object is then encapsulated in a
FutureProxy instance class which is returned. This class is a subtype of the origi-
nal result, thanks to the use of dynamic proxies another time. The business code of this
proxy implements the wait-by-necessity mechanism with a code similar to PROG 3.2.

As seen, each method called on our transparent future waits for the actual return of
the underlying asynchronous method call, and redirects the call to the business object.

4 Reflection is used in this case.

Transparency and Asynchronous Method Invocation 755

1 class FutureProxy implements InvocationHandler {
2 final Future future;
3

4 FutureProxy(final Future future) {
5 this.future = future;
6 }
7 /**** InvocationHandler implementation ****/
8 public Object invoke(Object proxy, Method method, Object[] args)
9 throws Throwable {

10 // Object’s method must not be redefined.
11 if (method.getDeclaringClass().equals(Object.class)) {
12 return method.invoke(this, args);
13 }
14 Object result = future.waitForResult();
15 return method.invoke(result, args);
16 }
17 }

PROG. 3.2. Implementation of the wait-by-necessity mechanism in the business code of a future
dynamic proxy

The major drawback of the approach based on interfaces is the constraints that limit
its use of application:

– the object used must be of a class which implements at least one interface;
– the method invoked asynchronously must be defined in an interface;
– the return type of the method must also be an interface.

Among the 57% declared public classes over the 3,950 found in the JDK v1.45, 20%
are interfaces and 30% implement at least one interface. Only 5% of public methods
are declared in interfaces. Few of them return a type which is either defined by an
interface or a class which implements an interface: over 17,254 public methods of the
JDK v1.4, only 653 (4%) conform to the previous criterion and are thus usable with
a fully-transparent asynchronous proxy based on interfaces. It is then clear that this
solution rarely allows the use of such proxies in applications not designed for it.

3.2 Inherent Problems

One of the goal of full-transparency, is to allow the use of legacy classes which were
not designed in a concurrent context. Polymorphism is the core of the mechanism:
the use of subtypes (either by inheritance or by interface) allows the passing of asyn-
chronous proxy, and transparent futures to some methods which believe they are stan-
dard objects. This may naturally produce concurrency. This section shows that full-
transparency has inherent problems which make it at best, difficult to use, at
worst useless.

5 Only classes with a full class name prefixed by java were considered.

756 P. Vignéras

Exception Handling.When considering legacy code, the instructions given in PROG 3.3
are commonly found in a Java program. If the call out.write(b) is asynchronous (and

1 int b = ...; // byte to write
2 java.io.FileOutputStream out = null;
3 try{
4 out = new java.io.FileOutputStream(...);
5 out.write(b);
6 }catch(java.io.IOException ioe) {
7 // handle any IO exception
8 }catch(java.lang.SecurityException se) {
9 // handle security exception

10 }

PROG. 3.3. full-transparency and exceptions

of course fully-transparent), then the caller thread continues its execution and may reach
a point far beyond the catch() statements when the write() method actually ends.

In the case of checked exceptions, such as the java.io.IOException, one ap-
proach (the ProActive one) is to make these calls synchronous. This trivially prevents
the problem to appear, but does not solve the case of unchecked exceptions such as
the java.lang.SecurityException. A solution, is then to enforce a synchronization
between the caller and the callee thread by using the future such as in the PROG 3.4:

1 java.util.List list = library.getAList();
2 ...
3 try{
4 // Asynchronous call
5 Object o = list.remove(0);
6 // *Must* wait the result (in case of a runtime exception)!
7 o.toString();
8 }catch(UnsupportedOperationException e) {
9 // This exception is a runtime exception

10 ...
11 }

PROG. 3.4. Explicit synchronisation

This may be done by an automatic tool, or at least by a checker. But even in this
case, the method write() of the first example is declared returning void. So there is
no way to enforce clients to use a non-existent result!

This problem is still open. Whereas, some directions are work in progress in our
team, we believe it is a major drawback that makes full-transparency very hard to use
when exceptions are considered.

Transparency and Asynchronous Method Invocation 757

Developer Consciousness. As for us, the main problem of the full-transparent mech-
anism is related to the implicit concurrency it seems to produce. The degree of con-
currency in an application written using the asynchronous method invocation paradigm
can be increased by following the general guidelines:

Definition 2 (Guidelines for efficicency).
A maximum concurrency degree is achieved using an asynchronous method invocation
paradigm when:

– method calls are made as soon as possible;
– result recovery are used as late as possible.

This may seem trivial but it is not the natural way applications are written in the
sequential world. Consider the following code:

1 // Step 1
2 MyClass myObject = new MyClass();
3 // Step 2
4 MyInfos infos = myObject.myMethod(myParameters).getInfos();
5 // Step 3
6 doSomething();

This code scheme is very common in Java. If the myObject variable references a
fully-transparent asynchronous proxy, the resulting code will not be more efficient. It
will even be less efficient since the handling of concurrency has a cost. Hence, to gain
in concurrency, the code must be rewritten:

1 // Step 1
2 MyClass myObject = new MyClass();
3 // Step 2
4 MyResult result = myObject.myMethod(myParameters);
5 // Step 3
6 doingSomething();
7 // Step 4
8 MyInfos infos = result.getInfos();

And this is clearly not a natural sequential code in Java.
Hence, full-transparency does not allow the becoming concurrent of sequential ap-

plication almost automatically. Most of the code must be rewritten – at least reordered
– to gain some efficiency. These modifications may be done by a tool (more or less
automatic), but in this case, why focusing on full-transparency?

We strongly believe asynchronous method invocation should be as simple as its
synchronous version. But it must be explicit in order to ensure the writing of efficient
concurrent applications.

758 P. Vignéras

4 Proposition: Semi-transparency

Following the conclusion of the previous section, we call semi-transparency, the mecha-
nism which masks almost every aspect of the concurrency involved by an asynchronous
method invocation (abstraction, asynchronous semantic and policy) but the asynchro-
nism itself. This mechanism defends explicit expression of concurrency as with the
java.lang.Thread API in opposition to the implicit concurrency provided by a fully-
transparent solution.

Hence we propose the following syntax – promoted in Mandala:

Notation 1 (Semi-transparency syntax).
If a public method has the following signature:

T m(A1 a1,..., An an) throws E1, E2, En

then its semi-transparent asynchronous version has the signature:

Future<T> #m(A1 a1, ..., An an, Meta meta)

In particular, exceptions declared in m() are no more part of the signature of #m().
The object meta may contain some informations used by the underlying abstraction
such as priority, before and after methods, security informations, etc. It must at least
contain an exception handler which will be used by the underlying abstraction when an
exception occurs.

This syntax solves many problems:

– strong typing is ensured (thanks to generics);
– the developer knows the asynchronous nature of the invocation of #m()6 thanks to

its signature which differs from the original;
– exceptions are always handled by a client specific object7 and thus can never be

ignored; anyway, exceptions may be re-thrown on the client side when retrieving
the result through the return future.

The last problem to solve is where these method will be found? Which class defines
them?

4.1 Asynchronous Views

Definition 3 (Asynchronous View).
The asynchronous view of a class C – noted view(C)– defines, for each public method
m() in C, its semi-transparent asynchronous version #m(). If C is an interface, then

6 Even if semi-transparency is provided in Mandala [18], the ’#’ character is reserved in Java
and cannot be the first of an identifier (field or method). This character is replaced by the prefix
rami where RAMI stands for Reflective Asynchronous Method Invocation.

7 Exceptions are always handled though. But the default handler found in the ThreadGroup
class is not a good solution. Consider remote asynchronous method invocation as a case study.

Transparency and Asynchronous Method Invocation 759

for each method m() declared in C, its semi-transparent asynchronous version #m()
is also declared in view(C).

If B is a supertype of C, then view(B) is also a supertype of view(C). Anyway,
view(C) is not a subtype of C.

Furthermore, an instance of an asynchronous view is called a semi-transparent
asynchronous proxy.

As for the naming of asynchronous view, we propose a mirroring of the standard
Java class naming: suppose a full class name is p.s.C, then using a prefix, jaya8, the
full asynchronous view name (a class) is: jaya.p.s.C. This enforce the developer to be
conscious of its use of asynchronous views (since they are really distinct classes) and
so, to follow the guidelines given in definition 2. Note that using a naming convention
which is just based on the class name, such as p.s.Async C or similar, prevents its use
in the standard Java language: some packages may be sealed preventing the addition of
new classes.

The generation of asynchronous views leads naturally to a hierarchy of types which
is symmetric from the original. As an example, consider the asynchronous view gener-
ation of the standard class java.io.FileWriter. The figure 2 presents the UML class
diagram9. The left part are the asynchronous views hierarchy which clearly mirrors the
type hierarchy of their related class on the right. Hence, the java.lang.Object su-
perclass, has its asynchronous view symmetric called jaya.java.lang.Object. This
view plays an identical particular role: it is a supertype of any other asynchronous
view.

An asynchronous view also provides synchronous methods. Consider a method m()
defined in a class p.C. Then, it also exists in jaya.p.C. But the semantic of meth-
ods C.m() and jaya.p.C.m() are really different: the latter must be a shortcut for
jaya.p.C.#m().waitForResult(). The reason is that each call made on an asyn-
chronous proxy – an instance of a view – must have reached the underlying abstraction
used. Consider an abstraction which provides both concurrent and remote aspect as a
case study10. Synchronous version of methods are clearly important to prevent devel-
opers from mixing standard, synchronous classes with asynchronous views. As a side
effect, the class naming convention prevents even more this mixing. The fact that asyn-
chronous views and standard classes short names are homonyms forbid developers to
use both without care. For example, the following instructions are ambiguous and does
not compile:

8 Since the prefix is arbitrary, the name jaya was chosen for its meaning in Sanskrit (“Victory”)
where the Mandala name also comes from. Moreover, the asynchronous views generator of
Mandala is called jayac which sounds like javac.

9 This diagram has been produced from a real code generation thanks to the jayac asynchronous
view generator of the Mandala framework. This is the reason why asynchronous methods are
prefixed by ’rami ’ instead of the character ’#’.

10 As provided by the stored object reference [6], an extension of the asynchronous ref-
erence paradigm [19], that uses the active container concept [7] to provide the remote
aspect.

760 P. Vignéras

<< read−only >>

Object
(from jaya::java::lang)

Writer
(from jaya::java::io)

+ rami_write (stringValue0 :String ,meta :Meta):Future
+ write (stringValue0 :String):void
+ rami_write (stringValue0 :String ,intValue1 :int ,intValue2 :int ,meta :Meta):Future
+ write (stringValue0 :String ,intValue1 :int ,intValue2 :int):void
+ rami_flush (meta :Meta):Future
+ flush ():void
+ rami_close (meta :Meta):Future
+ close ():void

OutputStreamWriter
(from jaya::java::io)

+ rami_write (stringValue0 :String ,intValue1 :int ,intValue2 :int ,meta :Meta):Future
+ write (stringValue0 :String ,intValue1 :int ,intValue2 :int):void
+ rami_flush (meta :Meta):Future
+ flush ():void
+ rami_close (meta :Meta):Future
+ close ():void

FileWriter
(from jaya::java::io)

Object
(from java::lang)

Writer
(from java::io)

+ write (stringValue0 :String):void
+ write (stringValue0 :String ,intValue1 :int ,intValue2 :int):void
+ flush ():void
+ close ():void

OutputStreamWriter
(from java::io)

+ write (stringValue0 :String ,intValue1 :int ,intValue2 :int):void
+ flush ():void
+ close ():void

FileWriter
(from java::io)

Fig. 2. Type hierarchy of the asynchronous view generation of the java.io.FileWriter class

1 import java.io.*;
2 import jaya.java.io.*;
3 ...
4 Writer writer = new FileWriter("foo.txt");
5 writer = new FileWriter("bar.txt");

So the developer is enforced to use a full class name. If most of the code is syn-
chronous, he would write:

1 import java.io.*; // Use shortcuts for synchronous class only
2 ...
3 Writer writer = new FileWriter("foo.txt");
4 jaya.java.io.Writer writerProxy =
5 new jaya.java.io.FileWriter("bar.txt");

On the opposite, when most of the code is asynchronous, he would prefer the fol-
lowing form:

1 import jaya.java.io.*; // Use shortcuts for asynchronous view only
2 ...
3 java.io.Writer writer = new java.io.FileWriter("foo.txt");
4 Writer writerProxy = new FileWriter("bar.txt");

Transparency and Asynchronous Method Invocation 761

This leads to a naturally cleaner code where the developer knows it is using an
asynchronous proxy. Hence, it enforces him to follow the guidelines 2, and allows him
to enhance the overall concurrency degree of the whole application.

5 Conclusion

This article focuses on mechanisms used to hide the complexity of asynchronous
method invocations. We have seen that this paradigm may use many underlying abstrac-
tions to handle concurrency: active objects, actors, separates, active containers, asyn-
chronous references are several options among others. We show that full-transparency
may be provided using two solutions: inheritance or interfaces. The former contains
several problems the latter solves by imposing very high constraints. Finally, while the
main advantage of full-transparency is its possible application with legacy code, it has
two inherent problems that make its use very complex as far as exceptions is concerned
or useless as far as efficiency is concerned. So we defend an explicit expression model
which masks the most of the asynchronism mechanism, and abstractions in particular,
but the asynchronism itself. This model is called semi-transparency. It provides a so-
lution to the exception problem. It also helps the developer to focus on the concurrent
aspect of its application. This enforce the following of guidelines given in definition 2
which seems necessary to gain the most of concurrency.

Transparency, both full and semi is proposed in the Mandala framework [18] which
helps the development of concurrent (and eventually distributed) Java applications. As
such, the framework must be extended to use the new java.util.concurrent package. Fur-
thermore, exceptions handling in the context of both full- and semi-transparent asyn-
chronous method invocation must be further studied.

References

1. TLP and the Return of KISS . Web page, January 2004.
http://www.aceshardware.com/read.jsp?id=60000312.

2. AGHA, G. Actors: A Model Of Concurrent Computation In Distributed Systems. PhD thesis,
University of Michigan, 1986.

3. AGHA, G., AND HEWITT, C. Concurrent programming using actors: Exploiting large-scale
parallelism. In Readings in Distributed Artificial Intelligence, A. H. Bond and L. Gasser,
Eds. Kaufmann, San Mateo, CA, 1988, pp. 398–407.

4. CAROMEL, D. Toward a method of object-oriented concurrent programming. Communica-
tions of the ACM 36, 9 (1993), 90–102.

5. CAROMEL, D., KLAUSER, W., AND VAYSSIÈRE, J. Towards seamless computing and meta-
computing in Java. In Concurrency: practice and experience (Sept.-Nov. 1998), G. C. Fox,
Ed., vol. 10, Wiley and Sons, Ltd., pp. 1043–1061.

6. CHAUMETTE, S., AND VIGNÉRAS, P. A framework for seamlesly making object oriented
applications distributed. In Joubert et al. [9], pp. 305–312.

7. CHAUMETTE, S., AND VIGNÉRAS, P. Behavior model of mobile agent systems. In FCS’05
- The 2005 International Conference on Foundations of Computer Science (Las Vegas, USA,
june, 27–30 2005). H. R. Hamid and R. Joshua, Eds., CSREA Press. ISBN: 1-932415-71-8.

8. GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994. ISBN : 0-201-63361-2.

762 P. Vignéras

9. JOUBERT, G. R., NAGEL, W. E., PETERS, F. J., AND WALTER, W. V., Eds. Parallel
Computing: Software Technology, Algorithms, Architectures and Applications, PARCO 2003,
Dresden, Germany (2004), vol. 13 of Advances in Parallel Computing, Elsevier.

10. KURZYNIEC, D., WRZOSEK, T., SUNDERAM, V., AND SLOMIŃSKI, A. RMIX: A multi-
protocol RMI framework for java. In Proc. of the International Parallel and Distributed Pro-
cessing Symposium (IPDPS’03) (Nice, France, Apr. 2003), IEEE Computer Society, pp. 140–
146.

11. LAVENDER, R. G., AND SCHMIDT, D. C. Active object: an object behavioral pattern for
concurrent programming. Proc.Pattern Languages of Programs, (1995).

12. LEA, D. Concurrent Programming in Java. Second Edition: Design Principles and Patterns.
Addison-Wesley Longman Publishing Co., Inc., 1999.

13. LYON, D. CentiJ: An RMI Code Generator. Journal of Object Technology 1, 5 (November-
December 2002), 117–148.
http://www.jot.fm/issues/issue 2002 11/article2.

14. MEYER, B. Systematic concurrent object-oriented programming. Communications of the
ACM (special issue, Concurrent Object-Oriented Programming, B. Meyer, editor) 36, 9
(1993), 56–80.

15. NESTER, C., PILIPPSEN, M., AND HAUMACHER, B. A more efficient RMI for Java. In Pro-
ceedings of Java Grande Conference (San Francisco, California, june 1999), ACM, pp. 152–
157.

16. SUN MICROSYSTEMS. Java Remote Method Invocation Specification, 1998.
http://java.sun.com/products/jdk/1.1/docs/guide/rmi/.

17. THIRUVATHUKAL, G. K., THOMAS, L. S., AND KORCZYNSKI, A. T. Reflective remote
method invocation. Concurrency: Practice and Experience 10, 11–13 (1998), 911–925.

18. VIGNÉRAS, P. Mandala. Web page, August 2004.
http://mandala.sf.net/.

19. VIGNÉRAS, P. Vers une programmation locale et distribuée unifiée au travers de l’utilisation
de conteneurs actifs et de références asynchrones.
Rapporteurs : Doug Lea, Françoise Baude, Michel Riveill.
Jury : Françoise Baude, Serge Chaumette, Olivier Coulaud, Mohamed Mosbah, Alexis
Moussine-Pouchkine, Michel Riveill. PhD thesis, Université de Bordeaux 1, LaBRI, novem-
ber, 8th 2004.
http://mandala.sf.net/docs/thesis.pdf.

20. WALKER, E., FLOYD, R., AND NEVES, P. Asynchronous Remote Operation Execution In
Distributed Systems. In International Conference on Distributed Computing Systems (Paris,
France, May/June 1990), no. 10, pp. 253–259.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 763 – 779, 2005.
© Springer-Verlag Berlin Heidelberg 2005

COROB: A Controlled Resource Borrowing Framework
for Overload Handling in Cluster-Based Service Hosting

Center*

Yufeng Wang, Huaimin Wang, Dianxi Shi, and Bixin Liu

National University of Defense Technology, ChangSha 410073, China
{yfwang, dxshi, bxliu}@nudt.edu.cn, whm_w@163.com

Abstract. The paper proposes a resource framework COROB for overload
handling in component application hosting center through dynamic resource
borrowing among hosted applications. The main idea is to utilize the fine-
grained idle server resource of other applications to partake of surging
workload, while keeping the resource borrowing under control for not violating
the SLA of the donor application. The contribution of the paper is two-fold: (1)
a queuing analysis-based resource borrowing algorithm is proposed for
overloaded applications to acquire as exact amount of resource as possible; (2)
an adaptive threshold-driven algorithm is presented to drive the overload
handling with threshold values adaptively tuned according to changing
workload. Empirical data is presented to demonstrate the efficacy of COROB
for overload handling and response time guarantee in a prototype service
hosting cluster environment.

1 Introduction

The growing cost of owning and managing computer systems is leading to out-
sourcing of commercial services to hosting centers. These centers usually provision
cluster of servers to multiple applications under certain SLAs. Performance guarantee
has been the primary concern in the design and operation of the cluster-based hosting
center, especially under Internet workload conditions. The uncertainty of clients’
scope and visiting patterns makes burstiness a fundamental property of workload of
Internet computing systems, and be observed across all time scales [1]. Dynamically
surging workload is becoming the main cause of service degradation and server
overload. Unfortunately, most hosting centers have not adequately addressed the
management of extreme load, relying mainly on overprovisioning of resources or load
shedding. On the other hand, statistical observations show that most servers are
underutilized in hosting data center environment. For example, the utilization of
nearly 80% of thousands of servers of HP Data Center is below 30% [2], which
further manifests the inconsistency between the resource provisioning needs for
overload handling and general resource underutilization. To address this

* This research was partially supported by the National Basic Research Program (973) of China

(No.2005CB321804), the National Natural Science Foundation of China (No.90412011), the
National Hi-Tech Research and Development Program (863) of China (No.2004aa112020).

764 Y. Wang et al.

inconsistency, dynamic server allocation techniques have been proposed to better
utilize the resources in flash crowds conditions [3]. These dynamic allocation
schemes react to changing application loads by reallocating resources to overloaded
applications in the granularity of server node. However, server-granularity resource
allocation cannot fully utilize the hosting center resources [4]. This paper describes
our initial work on a fine-grained resource borrowing framework COROB for
component-based application hosting center. The framework can not only help attack
partial application overload problem by utilizing unused server resource among
applications, but also provide service level agreement guarantee for donor
applications who share the under-utilized server nodes. While most of the recent
studies have focused on the overload protections and resource provisioning, there is
little investigation of feasibility and methods of fine-grained resource borrowing for
performance management in the presence of partial overload. Compared with existing
hosting center performance management techniques, our contributions are two-fold.
First, a queuing analysis-based resource borrowing algorithm is proposed for
overloaded applications to acquire as exact amount of resource as possible. Secondly,
we design a dynamic threshold-driven algorithm to drive the overload handling for
hosting center with threshold values adaptively tuned adapting to workload change.

The paper is organized as follows. Section 2 gives background of component
application hosting center and two kinds of hosted application overload. Section 3
describes the COROB resource borrowing framework and presents how to choose
nodes for an overloaded application with the donor’s performance guaranteed. Section
4 presents the threshold-based overload handling algorithm. Then in section 5, some
experimental results from a prototype of service hosting environment are presented
and discussed. After section 6 provides an overview of related work, section 7
concludes the paper.

2 Background

Most hosting centers are organized into server cluster to achieve higher scalability
and availability. Although component application hosting environments are always
presented in multi-tier architecture, this paper mainly focuses on resource borrowing
and overload handling in business logic layer, which is built on the application server
cluster. Throughout the paper, we refer to the component applications hosting
infrastructure simply as cluster center, which is composed of cluster of application
servers and provides the management capability such as deployment, workload
distribution, performance monitoring and overload handling. We refer to a hosted
component application deployed on parts of the servers as cluster application. While
the resource of the cluster center could be multiplexed by more than one application,
each cluster application may behave to its clients as if the whole cluster center were
exclusively occupied by itself. Fig 1 sketches the relations between cluster center and
hosted cluster applications and Fig 1-(c) represents the case that two cluster
application share cluster node N3. We refer to the application who offers the under-
utilized nodes as donor application, and the one who borrows the node as borrower
application. The borrowed node will be shared and process requests from both the
donor and the borrower applications. The cluster center supports server node

 COROB: A Controlled Resource Borrowing Framework
1
 765

donation, borrowing and performance guarantee for donor application through a
resource borrowing framework called COROB, which will be presented in detail in
section 3.

N1

N2

N3

N4

N5

N1

N2

N3

N4

N5

N1

N2

N3

N4

N5

N1

N2

N3

N4

N5

T

T

T

T

T

T

T

T

T

T

T

T

R

R

R

R

R

R

(a) cluster center
without hosted
applications

(b) application T
is assigned three
nodes to

(c) application T
and R share cluster
center resources

N1

N2

N3

N4

N5

N1

N2

N3

N4

N5

T

T

T

T

T

T

R

TT

(d) Application R is
reconfigured

N1

N2

N3

N4

N5

N1

N2

N3

N4

N5

working nodes

Load dispatcher

Fig. 1. Cluster center and hosted cluster applications

Consider a cluster center consisting of N server nodes denoted by P= {ni| 1<i<=N}
and M cluster applications denoted by CA={caj| 1<j<=M }. Formally, we model a
cluster application j as caj =(Componentsj ,Configj, SLAj), where Componentsj denotes
the components set of caj, Configj denotes the configuration structure of caj, and SLAj
denotes the service level agreement of caj. Pj denotes the cluster server nodes set
assigned to caj. For simplicity, we make following assumptions throughout the paper.
Cluster applications use components fully duplicating strategy, i.e. each server node
of an application has the same computing capacity and components configuration
initially. CPU resource is the bottleneck, which is always the case for application
server, and workloads of caj are equally distributed among cluster server nodes in Pj.

Once a cluster application has been deployed, its processing capacity is decided
and indicated by its response time and maximum throughput, expectation of which are
typically specified in SLA to express its quality of service requirements. Queuing
theory shows that with the increasing workload, an application response time will
increase sharply at some points because of longer queuing time. And system
throughput will ultimately reaches its limit as the bottleneck resources of the system
saturate at nearly 100% utilization. After saturation point, system performance begins
to degrade because of severe resource contentions [3]. In session-oriented load
distribution scheme which is representative in most of Web and component cluster
center, a session setup request first arrives at a front-end load dispatcher and then is
redirected to one of back-end working servers according load balancing strategies
such as round robin. All following requests in this session will go directly to this
working node. So we model session-oriented workload of an application as = sessions

× request-per-session, in which sessions denotes the session rates and can be regarded as
workload on load dispatcher and request-per-session denotes the requests arrival rates
within a session. Base on this understanding, we can classify cluster application
overload into two classes: local working node overload and whole application
overload:

766 Y. Wang et al.

 The overload caused by some suddenly increasing request-per-session is referred to as
local working node overload.

 The overload caused by surging sessions sessions of an application is referred to
as whole application overload.

This classification details two scenarios of cluster application overload and can
help adopt differentiated overload handling techniques. In facts, statistical
observations show that most servers are underutilized in today hosting data center.
This paper aims to provide a dynamic resource borrowing framework to handle partial
application overload.

3 COROB: A Controlled Resource Borrowing Framework

A novel fine-grained resource management framework called COntrolled ResOurce
Borrowing framework (or COROB) is presented in this section. With COROB, an
application can share its underutilized server nodes in a controlled way to help relieve
other overloaded applications.

3.1 Controlled Resource Borrowing

This paper assumes SLAs are used to apparently specify whether an application is
willing to share its under-utilized nodes, as well as the conditions of resource
donation such as when to begin sharing nodes and the constraints to be met during
resource sharing. For example, the following SLA segment says that the application
supports server nodes sharing only if the time of day is between 06:00 and 20:00 and
the CPU utilization is less than 20%, and during resource sharing CPU utilization must
be kept below 90% and average response time must be guaranteed less than 150 ms.

As the donor applications may take the risk of performance disturbance because of
resource donation, mechanisms should be designed to compensate the donors and
encourage resource sharing. To address this issue, incentive mechanisms have been
proposed [14]. In this paper, we focus on how to meet the resource donation
constraints and provide SLAs guarantee, which is a challenging issue that must be
well addressed during the resource borrowing framework design. In COROB, we
carry out a queuing theory analysis for cluster applications, based on which a resource
borrowing algorithm is proposed for overloaded applications to acquire as exact
amount of resource as possible. On the borrowed nodes, we periodically calculate the
mean request arrival rate limits for the borrower application, and through controlling
the admission rates of the borrower and the donor one, we can statistically guarantee
the average response time of the donor.

Consider server node k donated by cluster application ca is borrowed by cluster
application ca’. Ts and T’s respectively denote the request service time of ca and ca’.
 and ’ respectively denote the requests arrival rate of ca and ca’ on node k. threshold

denotes the CPU utilization upper limit constraint specified by ca in SLA. rthreshold

SUPPORT SHARING, IF 06:00 <TIME<20:00 and CPU utilization < 20%, with
CONSTRAINS CPU utilization < 90% and response time < 150ms.

 COROB: A Controlled Resource Borrowing Framework
1
 767

denotes the average response time constraint specified by ca. We model a cluster
application with multiple M/G/1 queues to capture the dynamics between request
arrival rates, resource utilization and average response time. The average response
time of ca at each server node before donation can be computed as follows under the
M/G/1 queuing model:

)1(2

)1]([
][][

2

ρ
ρ

−
++= es

s

CTE
TErE (1)

where E[Ts] is the average request service time, Ce is the coefficient of variation of the
request service time. The average request service time of ca at each server node is the
sum of average service time of each component per request at low request rate (when
there is no resource competition or queuing in the system). E[Ts] and can be
obtained from application performance profiling. Consider the average response time
constraint E[r]< rthreshold and formula (1), we have

thresholdes

sthreshold

rCTE

TEr

2)1]([

])[(2
2 +−

−<ρ

(2)

Because of the CPU utilization constraint < threshold, we get the server resource
utilization limit limit of ca.

limit 2

2([])
min(,)

[](1) 2
threshold s

threshold
s e threshold

r E T

E T C r
ρ ρ ρ −< =

− +

(3)

Inequality (3) shows that as long as we keep the node resource utilization (workload
intensity) below limit, both the resource utilization and response time constraints of
ca could be met statistically. Further, from Little’s Law and (3), we have the requests
arrival rate limit limit of application ca.

limit limit / ()sE Tλ λ ρ< = (4)

Inequality (4) means that as long as the workload arrival rate is kept below limit, the
server node resource utilization limit will be met. Although inequality (3) and (4) are
obtained when ca uses the server node exclusively, the results can be further used to
approximate the system behavior when ca and ca’ share the server node, because
most of ca’ workloads will be restrained through admission control when the server
resource utilization and request arrival rates approach their limits. To keep ca’ from
aggressively consuming the borrowed server resources, we must keep its workload
arrival rates under control in a manner flexible enough to be adaptive to the changes
of the donor application ca ‘s workload. We accomplish this as follows. When the
server is borrowed by ca’, we have)()(ss TETE ′⋅′+⋅= λλρ from Little’s Law. With

this formula and inequality (3), we have

lim limitmax[(()),0] / ()it s sE T E Tλ λ ρ λ′ ′ ′< = − (5)

Inequality (5) indicates that with the increasing workloads of ca, requests of ca’ for
the shared node will be restrained so that the SLA of the donor can be guaranteed.

768 Y. Wang et al.

3.2 Optimal Server Selection Algorithm

When the cluster center has more than one candidate donated nodes for an overloaded
application, how to select the most appropriate nodes becomes another issue. In this
section, we design an optimal server selection algorithm called “least nodes matching
algorithm” to address this problem.

We call the set of candidate server nodes of a cluster center resource pool (abbr.
RP), which includes both the donated server nodes and free server nodes. We refer to
the difference between an overloaded application’s current capacity and its expected
capacity as the overloaded application’s needed capacity.

jlimit, caρ denotes the server

resource utilization limit of the application caj .
kcurrent, nodeρ denotes the current resource

utilization of nodek. We define the spare capacity of nodek denoted by Cap(nodek), as
follows.

 If nodek is a donated node and belongs to application caj, Cap(nodek)=

j klimit, ca current, nodeρ ρ− .

 If nodek is a free server node, Cap(nodek) is estimated by
jlimit, ca

1

jca CAM
ρ

∈
.

Cap(nodek) models the remaining capacity of a server node which could be safely
utilized to handle additional workload. Now we describe how to model the needed
capacity for an overloaded application, denoted by Cap(caj ,nodek).

 Suppose application caj suffers from local working node overload (we discuss
single-node overload here and treat multi-nodes simultaneous overload as a
serial of single-node overload in smaller time scale). We can
derive (,)j kCap ca nodeΔ =

jlimit, ca[]knode sE Tλ ρ− from Little’s Law and formula (3).

knodeλ denotes the estimated requests arrival rates when overload happens to

nodek, and E[Ts] denotes average request service time of caj.
 Suppose application caj suffers from the whole application overload, which is

indicated by assigning NULL to nodek. j denotes the number of active sessions
of caj when overload occurs. j denotes the excessive new sessions of caj
imposed upon cluster load dispatcher. We use the term

jlimit, ca| | /j jP ρ ψ to

estimate the average capacity demand per session, where |Pj| denotes the number
of server nodes of caj. Because the precondition of whole application overload is
that all resource capacities are fully-utilized, we can safely calculate

(,)j kCap ca nodeΔ =
jlimit, ca(| | /)j j jPψ ρ ψΔ .

Based on the concept of needed capacity of an overloaded application, we design
“least nodes matching algorithm” for optimal server selection. The main idea is that
the number of selected nodes should be least with respect that the needed capacity of
the overloaded application can be met if possible. Suppose the resource pool RP is
presented with a List structure with server node elements sorted on their capacity in
decreasing order. The resource pool supports the following four operations:

 COROB: A Controlled Resource Borrowing Framework
1
 769

 Add(nodek): insert nodek into RP according to its Cap(nodek)
 Remove(nodek): remove nodek from RP;
 Head(): return the node of the largest spare capacity and remove it from RP
 Before(): find and return the node with spare capacity exactly no less than

 ,otherwise NULL is returned.

The least nodes matching algorithm is described in Algorithm 1.

Algorithm 1. Least nodes matching algorithm

Based RP nodes sorting, least nodes matching algorithm employ greedy strategy to
select the nodes. It’s easy to prove that this algorithm achieve an optimal node
selection in that number of selected nodes would be least with the needed capacity of
the overloaded application exactly met if possible.

4 Threshold-Driven Overload Handling with COROB

With COROB, we have resolved how to optimally selected server nodes for
overloaded applications to borrow and how to guarantee the SLA constraints for
donor applications during resource borrowing. This section makes use of all these
techniques to describe how to conduct cluster application overload handling with
COROB through a threshold-driven overload handling method.

4.1 Threshold Definition

We define a set of performance-related thresholds to indicate whether an application
is overloaded, when overload handling actions such as resource borrowing should be

Input: an overloaded application caj, an overloaded node nodek.
Output : a set of candidate nodes that can be borrowed.
1. SelectNodes(caj,nodek)
2. {
3. Result= ;; C Cap(caj,nodek); K=RP.Before(C);
4. if (K!= NULL) Result={K}; return Result;
5. if (K== NULL)
6. { while(K== NULL && RP!=)) do
7. { head= RP.Head();
8. Result= Result {head};
9. C = C–Cap(head);
10. K= RP.Before(C);
11. }
12. if (K!= NULL) ,Result= Result {K}; return Result ;
13. if (RP==), return Result ;
14. }
15. }

770 Y. Wang et al.

taken, and when the borrowed nodes should be returned. The proposed thresholds are
sensitive and adaptive enough to model the dynamics of the workloads, as well as
resource action time (latency introduced by resource borrowing and application
reconfiguration time). The cluster center will use these thresholds definition to judge
application performance and to drive system overload handling.

 Judging cluster application overload

Most hosted online services use average response time as service quality criterion and
specify response time targets in SLAs. With respect to these kinds of cluster
applications, response time violation is a straightforward signal for application
overload. However, frequently gauging server-side response time will introduce
mutex cost from the requests interception, resulting in concurrency loss. We propose
a resource utilization monitoring approach, which is less costly, plus low frequently
random response time gauging. With the knowledge of request arrival distributions,
we can derive resource utilization threshold for an application, excess of which can be
used to indicate response time violation with high probability. We refer to this
threshold of application caj as crisis utilization threshold, denoted by

jT-crisis, caρ .

Based on results in section 3.2, we have
jT-crisis, caρ =

jlimit, caρ , where
jlimit, caρ is the

resource utilization limit for application caj. When the utilization of a node from caj
exceeds

jT-crisis, caρ , we conclude that local working node overload happens to caj.

When average utilization of all nodes of caj exceeds
jT-crisis, caρ , we conclude the whole

application overload occurs.

 Modeling resource action time

There is always latency between overload occurrence and the moment the borrowed
nodes can partake the excessive workload. We refer to this latency as resource action
time. If not carefully treated, overload will be magnified during resource action time.
We propose an adaptive utilization threshold alarm-Tρ called alarm utilization

threshold by taking resource action time into account.
kT-alarm, nodeρ of application caj

on nodek can been computed as follows. T denotes average resource action time of
caj, which can be obtained from cluster center operation statistics. , kT nodeρΔ denotes

the positive amplitude of resource utilization vibration during interval T. And we have

kT-alarm, nodeρ =
j k jlimit, ca , current, node limit, cakT nodeρ ρ ρ ρ− Δ ⋅ (6)

When the utilization of nodek from caj exceeds
kT-alarm, nodeρ , we conclude that local

working node overload likely happens to nodek and overload handling actions can be
taken to gain time for resource borrowing and reconfiguration. As node resources are
fully utilized (i.e.

k jcurrent, node limit, caρ ρ≈), we have
kT-alarm, nodeρ ≈

j klimit, ca T, nodeρ ρ− Δ ,

which means alarm utilization threshold exactly gains time for resource actions. On
the other extreme, when node resources are mostly idle (i.e.

k jcurrent, node limit, caρ ρ 0),

we have
k jT-alarm, node limit, caρ ρ≈ , which means alarm threshold won’t waste the server

 COROB: A Controlled Resource Borrowing Framework
1
 771

node resource. To define
kT-alarm, nodeρ , cluster center infrastructure needs to monitor

and get statistics about
kT,nodeρΔ for each nodes every T interval.

 Returning borrowed resources

The borrowed nodes should be returned to the cluster center as early as possible. In
COROB, there are two occasions to return the nodes. First, when all the sessions of
the borrowing applications naturally terminate on a borrowed node, the node will be
returned. Secondly, when loads on the borrowed nodes are low and the utilization on
the original servers decrease to a low level so as to have enough resources to take
over the workload partaken by the borrowed node, we migrates these workload and
return the borrowed node. The second situation can only applied for stateless-session
applications. We propose the low utilization threshold for every borrowed node
denoted by

kT-low, nodeρ for nodek from caj. We compute low utilization thresholds as

kT-low, nodeρ = _ _start to donateρ , where _ _start to donateρ is the utilization threshold specified in

donor application caj’s SLA to indicate that the node can be borrowed only if the
utilization goes below _ _start to donateρ . In the SLA example taken in section 3.1,

_ _start to donateρ =20%. We define the low throughput threshold for borrowing

applications, denoted by low-Tλ . This value can be specified by the cluster center

administrator. When (1) request rates of borrowing application cal on borrowed node
nodek is below

low-Tλ , (2) resource utilization of nodek is below _ _start to donateρ , and (3)

the resource utilization of original node nodel from borrowing application cal is
smaller than the utilization migration threshold

lT-migrate, nodeρ =

l llimit, ca T-alarm, nodemin([] ,)s T lowE Tρ λ ρ−− , which indicates the original node has enough

resource to take over the cal workload on nodek, the cluster center will trigger
workload migration and return borrowed node nodek.

All thresholds definitions are summarized in Table 1.

Table 1. Thresholds definition in COROB framework

Threshold Meaning

T-crisisρ crisis utilization threshold, used to indicate whether an
application is overloaded.

T-alarmρ alarm utilization threshold, used to indicate whether an
application is likely to be overloaded, gaining time for resource
borrowing and configuration.

T-lowρ low utilization threshold, used to indicate whether the load of
borrowed node low enough to be returned.

low-Tλ low throughput threshold, used to indicate whether the workload
from borrowing application is weak enough to be migrated.

T-migrateρ utilization migration threshold, used to indicate whether the
original node has enough resources to take over workload on the
borrowed node.

772 Y. Wang et al.

4.2 Threshold-Driven Overload Handling Algorithm

COROB uses a threshold-driven algorithm to conduct cluster application overload
handling. The main idea is that the cluster center adaptively triggers overload-related
events according to above thresholds definitions, and drives the overload handling
procedure (i.e. selecting nodes, borrowing resource, partaking workload and returning
nodes). Let’s recollect some notations before describing the overload handling
algorithm. caj denotes a cluster application, and nodek denotes a server node of the
cluster center. limitρ denotes the server resource utilization limit of an application

computed by formula (3). limitλ denotes the request arrival rate limit of an application

computed by formula (4). All nodes of an application have the same limitρ and

limitλ values. Suppose nodek belongs to caj, then we have
klimit,nodeλ =

jlimit,caλ . T denotes

the average resource action time of an application. currentλ and currentλ′ of nodek

respectively denote the request arrival rates of the donor application and borrowing
application on nodek.

jcaB denotes the borrowed nodes set of caj, and
knodeR denotes

the borrowing applications set on nodek. The algorithm is described in Algorithm 2.

Line 2~26 mainly accomplish local working node overload handling, borrowed
nodes returning and performance guarantee for donor applications during resource
borrowing. The cluster center checks the cluster nodes performance one by one
according to related thresholds, and drive resource borrowing to react to overload
occurrence. Line 4~6 computes the threshold T-alarmρ and admission control rate limitλ′

for each node, if the node is borrowed. Line8~9 update admission control parameter
to reflect the donor application workload change, and perform requests admission
control for each node. Line 10~17 handle the local overload by borrowing nodes from
the cluster center and expand the overloaded application components to the borrowed

Input: limitρ ,
limitλ ,

T-crisisρ , T-lowλ , _ _start to donateρ ,T for every caj (1 Mj≤ ≤);

currentρ , currentλ , currentλ′ , T-lowρ for every
knode (1 Nk≤ ≤).

Output: a set of parameters controlling overload handling.

1. for k=1 to N do
knodeR = ∅ ; for j=1 to M do

jcaB = ∅ ;

2. while(true) do{
3. for k=1 to N do { // handle each node

4. Compute
kT-alarm,,nodeρ according to formula (6) every interval

jcaT ;

5. if(
knodeR ≠ ∅){// assuming

knode belongs to jca and borrowed by lca

6.
klimit,nodeλ′ =

j klimit,ca current,node , ,max[(()),0] / ()
j ls ca s caE T E Tρ λ ′− (see section 3.1);

7. }
8. Assign

klimit,nodeλ ,
klimit,nodeλ′ to cluster center, and perform admission control;

 COROB: A Controlled Resource Borrowing Framework
1
 773

Algorithm 2. Threshold-driven overload handling algorithm

one to actualize resource borrowing. Line 19 helps donate an under-utilized node to
cluster center. Line 20~24 take back an under-utilized borrowed node by migrating

 9 if (
kcurrent, nodeρ >

jT-crisis, caρ){
klimit,nodeλ′ =0;

klimit,nodeλ =2/3
klimit,nodeλ ;}continue;

10. if (
kcurrent, nodeρ >

kT-alarm, nodeρ) { // assuming
knode belongs to jca

11. BorrowedNodes = RP.SelectNodes(jca ,
knode);

12. for n BorrowedNodes∈ and
jn P∉ do{

13. .jca Expand (()j kConfig node ,n);

14. { }n n jR R ca= ∪ ;

15. }

16.
j jca caB B= ∪ BorrowedNodes ;

17. }

18. if (
kcurrent, nodeρ < _ _ , jstart to donate caρ) { // assuming

knode belongs to jca

19. if(
knodeR == ∅) RP.Add(

knode); continue;

20. if (
knode ∈

lcaB and
kcurrent,nodeλ′ < T-low,cal

λ and
current, nodel

ρ <

limit, ca , , T-alarm, nodemin([] ,)

l l l ls ca T low caE Tρ λ ρ−−) {

21. //
knode is borrowed by

lca , and
lnode is the original overloaded node

22. lca .Migrate(()l kConfig node ,
knode , lnode);

23.
l lca caB B= − {

knode }; { }
k knode node lR R ca= − ;

24. }
25. }
26. } // end of handle each node
27. for j=1 to N do { // handle each application

28. if (average resource utilization of jca >
jT-crisis, caρ){

29. BorrowedNodes = RP.SelectNodes(jca ,NULL);

30. for n BorrowedNodes∈ and
jn P∉ do{

31. .jca Expand (
jComponents ,n);

32. { }n n jR R ca= ∪ ;

33. }
34.

j jca caB B= ∪ BorrowedNodes ;

35. }
36. }// end of handle each application
37. } //end of algorithm

774 Y. Wang et al.

the components and request loads back to the original server. Line 27~36 handle the
whole application overload for each application.

With the help of COROB, as well as adaptively computed thresholds, this
algorithm not only can resolve local node and the whole application overload, but
share the underutilized server resources in a controlled manner.

5 Experiments and Results

In this section, some preliminary experiments are presented to demonstrate the
efficacy of COROB for a middleware-based service hosting cluster prototype. The
results validate the threshold-driven overload handling algorithm for performance
guarantee under partial application overload conditions.

5.1 Experimental Setup

Service hosting cluster environment testbed. We construct a prototype service
hosting cluster environment as a testbed for resource borrowing framework
validation, where OMG CORBA 2.5 standard-compliant objects can be hosted as
network services. The cluster environment is built on StarBus+ [5], which is a
comprehensive CORBA-complaint middleware suite with the features such as object
request broker supporting multi-* quality of service, component model, and
integration with Web Service. The hosting cluster environment consists of IIOP
session scheduler, a resource management controller, working node machines and
corresponding node managers, as depicted in Fig 2. The heart of the cluster
environment is the resource management controller, called COROB controller, which
takes charges of initial working nodes allocation, SLA monitoring and dynamic
resource borrowing for overloaded hosted applications. All hosted applications’
contracted SLAs are stored in COROB controller, and variety of performance
statistics, such as CPU utilization, average response time and throughputs, are
periodically pushed to COROB controller from applications’ working node managers.
These raw data are used to compute the set of thresholds values, such as crisis
utilization thresholds, which are further employed by COROB controller to judge
whether the SLA of each application were violated. When overload events are
triggered, the controller responds with selecting and borrowing under-utilized
working node from donor applications. The COROB controller will tell the scheduler
to dispatch excessive workload to newly borrowed resource nodes, after
corresponding node managers are notified to dynamically load overload applications
components onto the borrowed nodes.

In experiments, the service hosting cluster environment is concretely made up of
five machines with 2.0 GHz Pentium processors and 512 MB RAM connected by
100 Mbps Ethernet. All machines run Windows 2000 Server with SP 2 and StarBus+
runtime. One machine is used to host COROB controller process and the cluster
scheduler, while the others serve as hosting working nodes. Each working node run a
hosting container sever, where Windows DLL-based StarBus+ applications can be
dynamically loaded and hosted.

 COROB: A Controlled Resource Borrowing Framework
1
 775

scheduler

Node
manager

request loadCOROB
Controller

Serivice_A Serivice_B

Node 1 2 43

Fig. 2. Prototype service hosting cluster structure used in the experiments

Experiments design and configurations. The cluster environment hosts two
applications, Service_A and Serivce_B, both of which are CPU-intensive applications
and use the method transaction_A and transaction_B respectively as the service
interface entry. Initially, both applications are allocated two machines under some
contract (node 1 and 2 for Service_A, and node 3 and 4 for Service_B, see Fig 2).
Both applications require response time be kept within 150 ms, which is the primary
QoS constraints in their SLAs. And Service_B declares to be a resource donor in its
SLA and has following resource donation constraints: keeping CPU utilization below
90% and average response time less then 150 ms during resource sharing. Note that
for computation simplicity, both transaction_A and transaction_B methods are
designed to fulfill constant computation, which means Service_A and Service_B have
constant service time. LoadRunner 7.8 [6] is employed to generate virtual request
sessions from a separate machine, and is used to collect experiments statistics, such as
end-2-end response time and resource utilization etc. In our experimental scenario, 40
users sessions are gradually activated for Service_A, and Service_B is fed with 2
sessions. Each user iterates calling corresponding service methods, with 500 ms think
time. The scheduler balances workloads among working nodes for each application
by default.

5.2 Resource Borrowing and Overload Handling

To demonstrate the efficacy of resource borrowing framework, we conduct two
experiments with and without COROB support. First, we conduct an experiment
without resource borrowing mechanism supports between applications. Fig 3 and Fig
4 present the experimental statistics obtained by LoadRunner. Fig 3 shows that the
average response time of Service_A’s method transaction_A begins violating average
response time constraint at about 01:53, with severe performance degradation
following. Fig 4 plots the CPU utilization of four working nodes, from which we see
Service_B’s working nodes are mostly under-utilized when Service_A incurs
overload.

In the second experiment, both Service_A and Service_B face the same workload as
prior, while COROB is started to facilitate resource borrowing and overload handling.
Fig 5 shows the resulting performance statistics of both applications through
LoadRunner monitoring facility. We see the average response time of both applications

776 Y. Wang et al.

are well kept under 150 ms most of the time. At the same time, the CPU utilization of
borrowed nodes (node 3 and node 4 in order) is kept under contracted 90%.

Fig. 3. Average transaction response time vs. Running sessions without COROB

Fig. 4. Working node CPU resource utilization without COROB support

Now we detail how COROB helps overload handling through threshold-driven
overload handling algorithm. The basis of the algorithm is the thresholds
computation, and we take T-crisisρ and T-alarmρ computation as example to illuminate

this process.

 Computation of T-crisisρ for Service_A. As T-crisis, Service_A ρ = limit, Service_Aρ , we need

to compute limit, Service_Aρ first. According to Service_A configuration in this

experiment, we have , _threshold Service Aρ =90%, , _threshold Service Ar = 150ms. From Little’s

Law)(sTE⋅= λρ and experimental profiling, we have ()sE T = 35 ms. As

Service_A has constant service time, the coefficient of variation of service time

eC =0. Following formula (3), we have limit, Service_Aρ = 87%, which means

T-crisis, Service_A ρ equals to 87%.

 COROB: A Controlled Resource Borrowing Framework
1
 777

 Computation of T-alarmρ for Service_A. First, through profiling we monitor that

resource action time of Service_A is less than 100 ms, i.e. T=0.1 second. During
the experiment, we gauge that the positive amplitude of resource utilization
vibration of node 1 and node2 is less than 2% during 0.1 second interval (see Fig
4). So we have T-alarm, Service_Aρ =87% − 2%=85%, when these server nodes

utilization approaches limit, Service_Aρ .

Fig. 5. Overload handling and response time guarantee with COROB

With T-crisisρ and T-alarmρ computed for each hosted applications, COROB can use

these thresholds to drive resource borrowing in response to application overload. In
Fig 4, we see node 2 of Serviec_A first reaches 85% CPU utilization at around 02:00,
which triggers an overload event followed by resource borrowing process. The
COROB controller uses the nodes matching algorithm described in section 3.3 to
conduct server selections. As the overload is caused by increasing sessions on the
scheduler, COROB believes this is the whole application overload. From Service_B,
node 3 is borrowed to partake the increasing sessions. At around 02:55, node 3
reaches 85% CPU utilization, which makes Serviec_A continue to borrow node 4 to
relieve overload.

6 Related Work

The importance of providing performance guarantee and resource management for
service hosting centers has been recognized in Grid and utility computing
communities. Previous work on resource management and overload control in
Internet platforms spans several areas. We briefly review prior work that is most
relevant to COROB framework in two aspects.

Resource management in shared cluster. Condor [7] is one of the leading projects
addressing resource management and scheduling for compute-intensive batch jobs in

778 Y. Wang et al.

Grid environment. It pools together resources belonging to multiple domains and
provides mechanisms for job queuing, scheduling, resource monitoring. Océano [13],
as a “computing utility” infrastructure for multi-customer hosting on a server farm,
supports server-granularity dynamically resource allocation between customers to
smoothes out peaks. Océano monitors and reacts to the SLA violation by servers
reconfiguration. However, both Condor and Océano operate at a relatively coarse
granularity, and don’t base resource allocation decisions on theoretical performance
analysis. Chandra [4] quantifies the effects of different resource granularities on
multiplexing benefits in a hosting data center, and shows that fine-grained
multiplexing will achieve better resource utilization. OnCall[8] employs an economic
market-based approach to handle workload spikes by allowing applications to trade
server nodes on a free market. Quartermaster[15], as capacity manager service for
managing resource pools of enterprise computing environment, implements a trace-
based technique that models workload resource demands, their corresponding
resource allocations, and resource access quality of service. However, we employ
queuing-based analysis approach to estimate both the spare capacities of the donated
servers and the capacity requirement of overloaded applications.

Overload management for Internet services. There is a substantial literature
regarding admission control, resource reservation, and scheduling in support of
Internet services. The feedback control method based on control theory gains more
popularity in recent years for web system overload management [9,10,11]. N. Gandhi
[11] presents a connections-and-timeout controller to achieve stable CPU utilization
of Apache web server. Welsh and Culler [3] propose an overload management
solution for Internet services built using the SEDA architecture. Welsh argues that
overload management should be considered in the early stage of system design. E.
Lassettre [12] proposes an overload protection mechanism to guard Websphere
servers cluster by dynamically provisioning servers for an overloaded application
from free server pool.

Compared with previous server-granularity-based resource management, this paper
studies the feasibility and methods of fine-grained resource sharing and shows how to
rationally utilize leftover resources to handle overload in component application
hosting environment. We provide rigorous analysis of the effects of resource
borrowing, based on which SLAs of donor application can be guaranteed during
resource sharing. We advocate an open SLA-based resource donation strategy, and
the proposed threshold-driven overload handling algorithm is sensitive and smart
enough to capture the dynamics of changing workloads. Our work complements
existing admission control techniques by enlarging resource supplies to handle
overload.

7 Conclusions

In this paper, we present COROB, a comprehensive fine-grained resource borrowing
framework for cluster-based hosting center running multiple component applications.
Through COROB, under-utilized server resources can be shared among applications
in a controlled way, with SLAs of donor applications guaranteed. Further work will

 COROB: A Controlled Resource Borrowing Framework
1
 779

look at security and robustness of hosted applications, in particular dealing with rogue
applications with sound mechanism design.

References

1. W. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson. On the Self-Similar Nature of
Ethernet Traffic (extended version). IEEE/ACM Transactions on Network v2, February
1994.

2. A. Andrzejak, M. Arlitt, and J. Rolia. Bounding the Resource Savings of Utility
Computing Models. Technical Report HPL-2002-339, HP Labs, Dec. 2002.

3. Matt Welsh and David Culler, Overload Management as a Fundamental Service Design
Primitive. In Proceedings of the Tenth ACM SIGOPS European Workshop, Saint-Emilion,
France, September, 2002.

4. Abhishek Chandra, Pawan Goyal and Prashant Shenoy Quantifying the Benefits of
Resource Multiplexing in On-Demand Data Centers, Proceedings of the First ACM
Workshop on Algorithms and Architectures for Self-Managing Systems (Self-Manage
2003), San Diego, CA, June 2003.

5. Wang H.M., Wang Y.F. and Tang Y.B., StarBus+: Distributed object middleware practice
for Internet computing, Journal of Computer Science and Technology, Vol.20, No.4, 2005,
pp.542-551.

6. LoadRunner. http://www.mercuryinteractive.com/.
7. M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations. In

Proceedings of the 8th International Conference of Distributed Computing Systems, pages
104–111, June 1988.

8. James Norris, Keith Coleman, Armando Fox, George Candea , OnCall: Defeating Spikes
with a Free-Market Application Cluster ,IEEE International Conference on Autonomic
Computing (ICAC'04) 2004

9. T.F. Abdelzaher, et. al., "Feedback Performance Control in Software Services," IEEE
Control Systems, 23(3), June 2003.

10. T. Abdelzaher, K. G. Shin, and N. Bhatti. Performance Guarantees for Web Server End-
Systems: A Control-Theoretical Approach. IEEE Transactions on Parallel and Distributed
Systems, 13(1), Jan. 2002.

11. Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury, “MIMO control of an
Apache Web server: Modeling and controller design,” in Proc. American Control Conf.,
Anchorage, AK, May 2002, pp. 4922-4927.

12. E. Lassettre, D. W. Coleman, Y. Diao, S. Froehlich, J. L. Hellerstein, L. Hsiung, T.
Mummert, M. Raghavachari, G. Parker, L. Russell, M. Surendra, V. Tseng, N. Wadia, and
P. Ye, "Dynamic Surge Protection: An Approach to Handling Unexpected Workload
Surges With Resource Actions That Have Dead Times," IFIP/IEEE Workshop on
Distributed Systems: Operations and Management, October 2003.

13. K. Appleby, S. Fakhouri, L. Fong, M. K. G. Goldszmidt, S. Krishnakumar, D. Pazel, J.
Pershing, and B. Rochwerger. Océano - SLA-based Management of a Computing Utility.
In Proceedings of the IFIP/IEEE Symposium on Integrated Network Management, May
2001.

14. Yufeng Wang, Huaimin Wang, Yan Jia, Dianxi Shi, Bixin Liu, A SLA-based Resource
Donation Mechanism for Service Hosting Utility Center, in Proceedings of The 4th
International Conference on Grid and Cooperative Computing (GCC 2005), Beijing,
China, November 30-December 3, 2005. (accepted)

15. Jerry Rolia, Ludmila Cherkasova, Martin Arlitt, Artur Andrzejak, A Capacity Management
Service for Resource Pools, In Proceedings of the Fifth International Workshop on
Software and Performance (WOSP 2005), ACM, July 2005.

Accessing X Applications over the
World-Wide Web

Arno Puder and Siddharth Desai

San Francisco State University,
Computer Science Department,

1600 Holloway Avenue,
San Francisco, CA 94132

{arno, sgd1977}@sfsu.edu

Abstract. The X Protocol, an asynchronous network protocol, was de-
veloped at MIT amid the need to provide a network transparent graphical
user interface primarily for the UNIX Operating System. Current exam-
ples of Open Source implementations of the X server, require specific
software to be downloaded and installed on the end-user’s workstation.
To avoid this and other issues involved in the conventional X setup, this
paper proposes a new solution by defining a protocol bridge that trans-
lates the conventional X Protocol to an HTTP-based one. This approach
makes an X application accessible from any web browser. With the goal
of leveraging the enormous browser install base, the web-based X server
supports multiple web browsers and has been tested to support a number
of X clients.

1 Motivation

The staggering rate at which the World-Wide Web has grown over the last decade
is evidenced by the number of websites that are accessible over the Internet
today. Web browsers, the end-user applications that connect to these websites
and display content have also evolved at an impressive rate. Originally based
on a document-centric architecture, where a web browser would only display
static HTML pages, much work has been done to define extensions that allow
for operational interactions. Thus web browsers have generic interfaces for web-
based applications.

Although the most popular browsers are freely available and readily down-
loadable from the Internet, most operating systems today bundle a web browser.
As a result, the install base of web browsers has dramatically increased. This
has been leveraged by companies that do business online and software providers
who have migrated their native client interfaces and made them web-based. The
obvious technical benefit is that with all prerequisite software already installed,
installation and configuration for such web-based applications is dramatically
reduced or even eliminated altogether.

In this paper we introduce a technique that allows to access X applications
– based on MIT’s X Protocol – through a web browser. This will make X appli-
cations that traditionally require an X server to be installed, accessible in a web

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 780–795, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Accessing X Applications over the World-Wide Web 781

browser without having to modify and rebuild those applications. Our proposal
is based on a protocol bridge, that translates the X Protocol to an HTTP-based
one.

This paper is organized as follows: in Section 2 we give a brief introduc-
tion to generic clients. Section 3 will discuss various design alternatives. Section
4 introduces the architecture of our protocol bridge we call XWeb. Section 5
describes our prototype implementation of XWeb as well as some performance
measurements. Section 6 discusses related work, and in Section 7 we provide a
conclusion and outlook.

2 Generic Clients

In this section we introduce the notion of a generic client. A generic client is
controlled by an end-user to access a remote application. We use the term generic
to denote the fact that the client is not specialized for any particular application,
but rather provides access to a priori unknown applications. Two examples of
generic clients that we will discuss here are X servers and web browsers.

By being a network-aware graphical user interface system, X allows the sepa-
ration of an application’s processing and its output (see [8]). In X Windows, the
application is called the X client, whereas the output is rendered at the X server.
The X server is therefore located at the side of the end-user (see Figure 1).

The X client and X server communicate with each other via the X Protocol.
The X Protocol is an asynchronous, binary protocol. The X client sends the
window content to be rendered to the X server, whereas the X server sends user
input (e.g., keystrokes or mouse movement) to the X client. Interestingly, the X
Protocol does not support widgets such as buttons, listboxes, or radio buttons. In
X, everything is rendered as a graphical image. If the user interface of an X client
requires a button, it needs to be manually drawn by the X client. This accounts
for the fact that many different X applications have a different look-and-feel,
since every application can draw its user interface widgets in a different way.

Because the X Protocol is about images and not widgets, another implication
is that there is a fair amount of network traffic between an X client and the X
server. E.g., every keystroke of the user requires a roundtrip communication with

Fig. 1. X Window Protocol

782 A. Puder and S. Desai

Table 1. Comparing X servers and web browsers

X server Web browser

Granularity Images Widgets
Execution platform None Java, JavaScript
Communication Low latency High latency
Protocol X Protocol (asynchronous, binary) HTTP (synchronous)
Platforms WeirdX, Cygwin/X, HummingBird Exceed Mozilla, Firefox, IE

the remote application. The consequence is that the X Protocol works best in
low-latency, high-bandwidth networks.

Another example of a generic client is a web browser. Initially meant to render
static documents only, the World-Wide Web (WWW) has evolved to support
operational interactions. User interfaces are described through HTML (Hyper-
Text Markup Language) that are downloaded via HTTP (Hyper-Text Transport
Protocol) from a remote web server. HTML allows the description of feature-rich
user interfaces supporting widgets such as buttons and listboxes. Since a web
browser supports the most common widgets natively, the look-and-feel of web
applications is more homogeneous than that of X applications.

Table 1 summarizes the main differences between web browsers and X servers.
Whereas an X server effectively only render images, web browsers support com-
plex widgets. Web browsers also feature an execution platform based on Java and
JavaScript that allows application-specific code to run on the client side. The
X Protocol is an asynchronous protocol, by which we mean that both X client
and X server can send Protocol Data Units (PDUs) independent of each other.
On the other hand, HTTP is a synchronous protocol where the web browser
determines when to interact with the remote web server. The web server cannot
send a PDU independently to the web browser.

The goal of this paper is to introduce an architecture that allows access to
X clients from within a web browser. While no one disputes the ubiquity of web
browsers that would give almost universal access to X applications, we need to
motivate one important assumption: that there are sufficiently many X applica-
tions that make this endeavor feasible. Clearly, the well-known X applications
such as xclock, xedit, or xcalc would hardly justify our motivation. Upon closer
inspection, there are many GUI-libraries that support X Windows. There are
several C/C++ based libraries with an X Protocol binding, such as Qt or GTK.
On the Java side, Sun Microsystems offers X-based implementations of their
AWT and Swing toolkits. Effectively, every Java application with a GUI is also
an X application.

3 Design Alternatives

There are several different design alternatives on how to provide universal access
to X applications. Before we discuss the various alternatives, we first want to
explicitly state the design goals we expect of a general solution:

Accessing X Applications over the World-Wide Web 783

1. Provides ubiquitous access to any legacy X application.
2. Runs in all major web browsers.
3. Does not require the installation of additional software.
4. Accessible to non-tech savvy users.

Based on these design goals, we discuss various options in designing a possible
solution along with their advantages and disadvantages. In the following sections,
we discuss the options of installing a local X server, running an X server as an
applet, and a HTTP-based solution in detail.

3.1 Local X Server

The most obvious solution would be to install a local X server. Several prod-
ucts exist – both commercial and as Open Source – that allow to run an X
server on all major platforms including Windows, such as WeirdX, Cygwin/X,
or HummingBird Exceed (see [5], [12], [4]). In the most straightforward config-
uration, the X server is displayed in its own window on the hosting windowing
system. However, there are two problems related to this solution: the end-users
unwillingness to install additional software as well as firewall issues.

Given a choice, end-users either intentionally or unintentionally choose not
to install additional software if they have an already existing solution and the
benefits of the alternative are not immediately apparent. As a specific example
of the reluctance of end-users to explicitly install software can be seen by the
proportion of Windows users who use Internet Explorer, despite security issues
compared to other browsers. Internet Explorer currently owns more than 85% of
the market share (see [13]), primarily because it is bundled along with Windows.
If end-users are reluctant or simply do not bother to use easy-to-install software
such as alternate web browsers, they would not be willing to install an X server.

Another issue is related to firewalls that may prevent the X client and X server
from communicating with each other, if both are on opposite sides of a firewall.
Generally, firewalls block most ports to prevent intruders from accessing and
compromising services being provided inside the corporate environment. A few
ports that provide essential or popular services (such as HTTP) may be left open.
However, the ports over which the X Protocol runs are usually blocked. Also note
that the X Protocol essentially reverses the client and server relationship: the X
client is establishing a connection to the X server. Since end-users also usually
run a firewall on their desktop or DSL-modem, this places an additional burden
on running a local X server.

3.2 Applet Based Solution

Another solution is to implement the X server as a Java applet. This way, the
X server can automatically be downloaded into the browser. Once downloaded,
the applet functions as an X server that uses the browser’s window to render the
output of X clients. WeirdX is an Open Source X server that is based on this
idea (see [5]). While this approach solves the problem of a users unwillingness

784 A. Puder and S. Desai

to install additional software on his or her local machine, it has some issues of
its own.

First of all, firewall issues are not resolved as the applet still acts as a server
and would have to communicate in the same manner as a locally installed X
server would. In addition, the browser’s Virtual Machine (JVM) may prevent
the applet from opening ports to listen for connections from X clients, as the
JVM would deem this to be a security risk. This can be resolved by configuring
some of the JVM parameters but once again, the average end-user would find it
unappealing.

Another problem is that the future of applets is unclear with Microsoft phas-
ing out their support for its built-in (and outdated) JVM in Internet Explorer
in 2007 (see [7]). End-users would either have to download Java Runtime (JRE)
software from Sun Microsystems or use a machine where the JRE is prein-
stalled. Having to deal with JRE installation and patch updates in addition
to the browser’s own updates would be an added responsibility for the end-user.

3.3 HTTP-Based Solution

A solution in which the web browser can view and interact with X clients over
HTTP can solve all of the aforementioned issues. The end-user does not need to
download any software and does not have to deal with installation or configura-
tion hassles. She can use the existing web browser on her machine or any other
machine she uses. Firewalls are usually configured to allow HTTP. Moreover,
unlike X servers which are also TCP servers, web browsers are TCP clients. As
a result, the client-server relationship is inverted and this essentially resolves the
security issues and no additional security configuration is required. Since the
end-user is not installing any software, there are no installation restrictions. The
solution is not applet based and does not have dependencies on the JVM plug-in.
Naturally, this solution introduces some technical challenges, e.g., how to break
the symmetry of HTTP in order to support the asynchronous X Protocol. The
rest of this paper describes this solution in detail.

4 Architecture

Our solution follows the HTTP-based solution as outlined in the previous section.
Figure 2 gives an high-level overview of the architecture. The main component is
a protocol bridge we call the XWeb Broker. Information that is sent between the
X server and X client over the X Protocol is transformed and sent over HTTP
to the web browser by the XWeb broker. Thus, from the X client’s point of
view, the XWeb broker acts like an X server. Since the X client uses the regular
X Protocol to communicate with the XWeb broker, the X client can be used
without requiring any modifications to its implementation.

The XWeb broker as shown in Figure 2 acts as a so-called headless X server.
This means that while the XWeb broker behaves like an X server, it itself does
not render any output and therefore does not require a graphic workstation to

Accessing X Applications over the World-Wide Web 785

Fig. 2. XWeb overview

run. Instead, the incoming X traffic is transformed and forwarded to the web
browser. The web browser is where the visual user interface is rendered. The
web browser uses the XWeb protocol to communicate to the XWeb broker. Of
course it is not obvious how the XWeb broker can forward information to the
web browser, since HTTP only allows the web browser to initiate a request. Our
solution to this problem will be discussed in a subsequent section, but first we
introduce the informational model.

4.1 Informational Model

The purpose of the informational model is to define a data model that is needed
to capture all relevant information for the scope of the XWeb protocol. The
informational model of the XWeb protocol is an abstraction of the informational
model of the X Protocol. At the core of the X Protocol are windows and panels.
Every X application is contained in its own window. A window can contain
multiple panels that form a hierarchy and that are positioned relative to their
parent. In Figure 3 the panel ID 3 is a child of panel ID 2 which is itself a child of
a top-level window. A panel usually represents a widget such as a button where
the X client draws the user interface element in its look-and-feel.

Fig. 3. Window abstraction

The X Protocol offers fine grained drawing operations for lines, rectangles,
circles, and other geometric elements. Each of those drawing operations occurs
in a panel. Since the X Protocol does not support complex widgets, these have
to be drawn manually inside a panel. One option of the XWeb protocol would
have been to map the X Protocol elements to equivalent drawing instructions
for the web browser. This would result in a one-to-one mapping of X-PDUs to
XWeb PDUs. However, this would place a high burden on the client-side protocol

786 A. Puder and S. Desai

engine of the XWeb protocol, since it would need to understand all the different
X-PDUs.

In order to keep the client-side protocol engine as simple as possible (and
therefore increase its portability) we limit the informational model to images
that will be rendered at the position of their respective panels. This means that
the rendering of a panel’s content happens inside the XWeb broker, while the
web browser only has to load and display the final rendered image. E.g., the
X application xlogo draws the X logo using a series of draw instructions. The
result will be an image that is captured by the XWeb broker as a PNG (Portable
Network Graphics) image.

The informational model also has to include the events that are relevant to
the X Protocol. These include mouse events (e.g., mouse move, mouse entered
or left a panel, mouse clicked) and key events (e.g., key pressed or released).
The informational model has to be mapped to HTML because this is what the
web browser is capable of rendering. Windows and panels are mapped to <div>
elements which serve as boxing elements in HTML. The hierarchy of panels sown
in Figure 3 can be translated to the following HTML:

Every <div> element has its own ID as well as further attributes that charac-
terizes it. The image associated with a panel is simply referenced with the
tag from HTML. The web browser will automatically load the appropriate image
and render it inside the <div> box. We use CSS (Cascading Style Sheets) to
position the various <div> elements relative to their parent. Note that despite
its name the “position: absolute” argument of the style-attribute positions
an HTML element relative to its parent. The various events of interests (mouse-
and key-events) can be intercepted by registering event-handlers that will invoke
appropriate JavaScript functions when they occur.

The HTML shown above only serves as an example on how the informational
model is mapped to HTML inside the web browser. Unlike the document-centric
usage of HTML where the web browser downloads a complete page and renders
it, in XWeb we update the content of the page on a fine-grained basis without

1 <!-- HTML -->

2 <div id="ID_0">

3 <div id="ID_1" style="position: absolute; top: 10px;left: 5px"

4 onMouseOver="..." onKeyPressed="...">

5

6 </div>

7 <div id="ID_2" style="...">

8

9 <div id="ID_3" style="...">

10

11 </div>

12 </div>

13 </div>

Accessing X Applications over the World-Wide Web 787

loading a complete HTML-page. This can readily be accomplished manipulating
the DOM (Document Object Model) representation of the HTML-page using
JavaScript. The following JavaScript excerpt shows how a new panel can be
created as a child of panel ID 3. The various attributes such as CSS-style or
event-handlers can be set accordingly using the DOM-API.

1 // JavaScript
2 var new_node = document.createElement("div");
3 var parent_node = document.getElementById("ID_3");
4 parent_node.appendChild(new_node);

4.2 XWeb Protocol Data Units

The XWeb broker acts as a protocol bridge. While it uses the regular X Protocol
to communicate with X applications, we have devised a new protocol for the
communication between the XWeb broker and the web browser. We use HTTP
as a transport mechanism for the XWeb Protocol Data Units (PDU). The next
section will explain how we achieve an asynchronous protocol on top of HTTP,
whereas in this section we focus on the structure of the PDUs.

The web browser needs to be able to marshal and unmarshal a PDU in an
efficient way. For that reason the XWeb PDUs are based on XML, since all the
major web browsers support XML-parsers. Another advantage is that XML-
based PDUs can readily be transmitted via HTTP. The following XML shows
an XWeb PDU for creating the panel hierarchy shown in Figure 3. This PDU
would be sent from the XWeb broker to the web browser:

1 <xweb>
2 <create id="ID_0" type="window" />
3 <create id="ID_1" pid="ID_0" type="panel" />
4 <create id="ID_2" pid="ID_0" type="panel" />
5 <create id="ID_3" pid="ID_2" type="panel" />
6 </xweb>

An XWeb PDU is an XML-document whose root element is <xweb>. This
root element can have one or more children. Each of those child elements could
have been transported in their own PDU; marshalling several elements into one
PDU makes the XWeb protocol more efficient. The client-side protocol engine
processes the child elements from top to bottom. In the example shown above,
the four child-elements create one window and three panels. The relationship
of IDs (marked by the XML-attribute id) to a parent-ID (denoted through
the XML-attribute pid) determines the nesting of the various panels. Note
that up to this point only the hierarchy of the panels has been determined,
but not any of their physical attributes such as size and position. The follow-
ing XWeb PDU demonstrates how these attributes can be defined for panel
ID 1:

788 A. Puder and S. Desai

1 <xweb>
2 <update id="ID_1">
3 <property name="left" value="10" />
4 <property name="top" value="10" />
5 <property name="width" value="50" />
6 <property name="height" value="50" />
7 </update>
8 </xweb>

The XML-tag <update> allows to alter various attributes of a panel. In
the example shown above, the size and position of the panel are set via the
<property> tag. The reason for using the attributes name and value (com-
pared to a more compact form such as <property left="10"/>) is that new
properties can easily be added without requiring to change the schema of an
XWeb-PDU. This effectively makes the protocol as well as the protocol engines
more robust. Properties can be changed individually at any point in time af-
ter the panel has been created. For most applications the size and position
will be only set once and then not changed during the lifetime of the ap-
plication. Defining the geometry of a panel does not say anything about its
content. This is done via another property as shown in the following XWeb
PDU:

1 <xweb>
2 <update id="ID_1">
3 <property name="image" value="5.png" />
4 </update>
5 </xweb>

The property contains a reference to an image with the name 5.png. Upon
receiving the this PDU, the client-side XWeb protocol engine will create the fol-
lowing HTML: . Upon creating this HTML-tag,
the browser will then automatically issue another HTTP request to load the
image /image/5.png. Images are therefore loaded asynchronously which re-
quires the XWeb broker to cache those images. Whenever the content of a
panel changes, a new image is created and sent via an update-PDU to the web
browser.

The PDUs discussed so far are sent from the XWeb broker to the web browser.
Whenever an event arises at the web browser, a PDU has to be sent to the
XWeb broker to notify it of the event. With respect to the X Protocol, events of
interest are keystrokes and mouse movement. The XWeb protocol features the
XML-tag <event> to describe events. The following XWeb PDU is sent by the
web browser to notify the XWeb broker that the mouse has entered the panel
with the ID ID 1 at coordinate (0, 10) and while the mouse was inside this panel,
the user pressed the key “H”:

Accessing X Applications over the World-Wide Web 789

1 <xweb>
2 <event id="ID_1" type="mouseEntered" x="0" y="10"/>
3 <event id="ID_1" type="keyPressed" key="H" />
4 </xweb>

Note that some PDUs of the X Protocol have no corresponding PDU in the
XWeb protocol. One example is the window-expose-event that is sent every time
a part of a window becomes visible. This is necessary in the X Protocol, because
the X server does not cache window content. Since web browsers do cache the
content of a window, this does not pose a problem and therefore does not require
a notification to the XWeb broker — the XWeb protocol has no corresponding
PDU. Table 2 gives a summary of all XWeb protocol elements.

Table 2. XWeb PDUs

PDU Description
<xweb> Toplevel XML-tag for every PDU.
<create> Creates a window or panel.
<update> Updates one or more properties of a panel.
<delete> Deletes a window or panel.
<event> Sends an event to the XWeb broker.
<property> Sets one property of a panel.

4.3 XWeb Protocol

Figure 4 gives an overview of the XWeb protocol. The interaction begins when
the user visits the URL of the XWeb broker (1). Encoded in the URL is also
the X application that the user wishes to launch. Upon receiving the initial
request, the XWeb broker starts the X application as a separate process (2) and
responds to the web browser with the client-side implementation of the XWeb
protocol (3). To achieve browser independence, this implementation is based on
JavaScript.

After the client-side of the XWeb protocol has been downloaded into the
user’s web browser, the protocol engine begins pulling updates (4). Upon receiv-
ing the request, the XWeb broker defers the reply until there is something to
report back to the browser. Meanwhile, the X application will begin to open a
window and render its user interface (5). Upon receiving the X window drawing
requests from the X client, the XWeb broker converts them into images to be
sent back to the web browser. It is only then that the XWeb broker sends a
response (6).

This technique is referred to as a deferred response. The response (6) to a
request (4) is deferred until the XWeb broker has some information to send to the
browser. This technique is necessary to allow asynchronous updates: the X client
can update its user interface at any point in time, but because of the client/server
relationship of HTTP, the XWeb broker itself cannot forward those updates to

790 A. Puder and S. Desai

the browser. Those updates are piggy-backed onto the HTTP responses. Note
that because the HTTP response is deferred until there is a PDU to be sent to
the web browser, this model does not result in busy waiting.

The main event loop of the client-side implementation of the XWeb broker
therefore constantly pulls for updates from the XWeb broker (e.g., (4) and (9)
in Figure 4). Since the response is deferred until there is something to be sent
back, this technique does not revert to busy waiting. In Figure 4, the PDUs 1, 4,
7, and 9 represent HTTP requests, whereas PDUs 3, 6, and 11 represent HTTP
responses.

Fig. 4. XWeb Protocol

Whenever the user creates an event (such as pressing a key), the XWeb broker
is notified of the event (7). In order reduce the number of mouse events, the web
browser can be configured not to send every mouse event. Upon receiving an
event, the XWeb broker simply forwards it via the appropriate X-PDU to the
X client (8). The X client will react to the event by updating the content of a
panel (10). These updates are sent back to the web browser via another deferred
response (11).

5 Prototype Implementation

We have done a prototype implementation of XWeb. By implementing the XWeb
broker, we had to implement the X Window Protocol as well as the XWeb-
specific protocol. In order to leverage Open Source tools as much as possible, we
use several freely available Open Source packages.

Accessing X Applications over the World-Wide Web 791

Fig. 5. Running xcalc inside Internet Explorer

As explained in the previous section, the XWeb-broker acts as an X server
towards the X clients connected to it. We use the aforementioned WeirdX. Al-
though WeirdX implements an X server in Java, we had the problem that WeirdX
is supposed to run on a desktop and it consequently opens a window wherever
it runs. In order to suppress this window and to be able to interface with the
output, we have implemented our own AWT Toolkit. By implementing the ab-
stract base class java.awt.Toolkit, one can intercept the opening of Windows
and the creation of widgets. Setting the property awt.toolkit during startup
of the Java virtual machine, one can override the build-in AWT toolkit. Luckily
WeirdX only makes use of very few AWT classes, so that this solution is both
simple and elegant. This allowed us to use WeirdX without any modifications.

The communication between XWeb and the web browser is based on HTTP,
which means that the XWeb broker acts as a web server towards the browser. We

792 A. Puder and S. Desai

use the Open Source HTTP engine called Simple (see [2]). As the name implies,
Simple is an easy to use, thin web server implementation. The API is modeled
after the Servlet specification. Simple is shipped as one JAR file that can easily
be linked to other applications such as the XWeb broker in our case.

The client-side of the XWeb protocol is completely implemented in portable
JavaScript that runs in all popular browsers. The JavaScript code is loaded into
the browser when first visiting the main page served by XWeb through Simple.
The user can specify the application to be run via parameters encoded in the
URL. E.g., visiting http://xweb-host.com/XWeb?APP=xcalc assumes that the
XWeb broker is installed on host xweb-host.com and it would launch the X
application xcalc (an X calculator). Figure 5 shows a screenshot of xcalc running
inside Internet Explorer after performing the computation 2∗21. The input focus
still shows the mouse on the =-key that was clicked last.

We have conducted some performance measurements to estimate the over-
head introduced by XWeb. We have used xedit, a popular X editor, for our
experiments. The experiments consisted of three phases: starting xedit, typing
“Hello World” once xedit has started, and then exiting xedit. Table 3 shows the
total number of transferred bytes and the number of PDUs exchanged for each of
the three phases. As can be seen, XWeb does incur a significant overhead. This
will become apparent when considering how for example a rectangle is drawn.

The X Protocol has a special instruction for drawing rectangles. This in-
struction contains the geometry of the rectangle and further attributes such as
fill color. The corresponding X-PDU is therefore only a few bytes in size. On
the XWeb side, the rectangle is actually transferred as a PNG image, which
obviously requires more bandwidth. But despite the higher protocol overhead
of XWeb compared to the X Protocol, we found that X applications that run
inside a browser via XWeb are sufficiently interactive to be usable. Because of
the high-bandwidth of most networks one does not notice any significant delays
and we were able to operate a complex IDE this way.

Table 3. Comparison of protocol overhead

Total size (in bytes) Number of PDUs
X XWeb X XWeb

Starting xedit 13.388 90.002 56 168
Typing “Hello World” 7.422 61.935 53 197
Exit xedit 0 16.574 0 35

6 Related Work

We are not aware of any other project that has built a X-to-web protocol bridge.
However, there is a different way how our work can be interpreted, which has
to do with the way we integrated WeirdX. Recall from the previous section that
we leverage the Open Source X server implementation WeirdX by providing

Accessing X Applications over the World-Wide Web 793

our own AWT Toolkit. The benefit of this approach is that we do not need
to make any modifications to WeirdX which certainly has benefits whenever a
new version of WeirdX is released. What facilitated our approach is the fact
that WeirdX only makes use of two AWT container classes to render its output:
java.awt.Window and java.awt.Panel for which our AWT toolkit provides a
replacement implementation.

The consequence is that any Java AWT application that only uses those two
classes could be exposed as a web application via XWeb. WeirdX could just
be seen as one of those applications. Of course, as soon as an application uses
a different AWT class such as java.awt.Button, our current XWeb prototype
would not work. But it is conceivable to extend the XWeb protocol in such a
way that it also supports other widgets such as buttons or listboxes. The web
browser as a generic client could provide native support for these widgets. The
XWeb protocol would thus support different widget types such as the following:

1 <xweb>
2 <create id="ID_2" pid="ID_1" type="button" />
3 <create id="ID_3" pid="ID_1" type="listbox" />
4 </xweb>

This path leads to a general application migration framework where any
AWT or Swing application could be exposed as a web application (see Figure
6). Several projects – commercial and Open Source – exist that aim at provid-
ing an easy migration path for legacy Java applications to web applications.
WebCream is a commercial product by a company called CreamTec (see [1]).
They have specialized in providing AWT and Swing replacements that render
the interface of the Java application inside of a web browser. WebCream makes

Fig. 6. XWeb Generic Web Container

794 A. Puder and S. Desai

use of proprietary features of Microsoft’s Internet Explorer and therefore only
runs inside this browser.

Two Open Source projects, both hosted at SourceForge, follow the same
idea of exposing Java desktop applications as web applications. The first one
is called WebOnSwing (see [9]). Unlike WebCream, this project is not tailored
for a particular browser. One feature offered by WebOnSwing are templates
that allow to change the look-and-feel of the application that is rendered inside
the browser. Another project with similar features, but not quite as mature, is
SwingWeb (see [6]).

Following our earlier argument, it should be possible to run WeirdX as an ap-
plication in those three projects and achieve the same results as with our XWeb.
Our experiments however revealed that this is not possible because none of those
projects supports asynchronous updates. In all cases, updates only happen when
the user interacts with the user interface, e.g., by pressing a button. An appli-
cation, such as xclock, that produces asynchronous updates, do not update the
user interface in any of the three projects mentioned in this section.

7 Conclusions and Outlook

The X Protocol, developed in 1984, has led to a wealth of X applications. E.g.,
through the Motif library, every Java application is effectively also an X appli-
cation. While web browsers are ubiquitous nowadays, the same cannot be said
of X servers. This paper introduces a migration path that allows access to any
X application via any web browser. This can be accomplished without any spe-
cial browser plugins. Our prototype implementation leverages Open Source tools
where possible to implement the protocol bridge efficiently.

XWeb can be considered as a generic web container that could potentially
allow one to host any Java Swing or AWT application. With additional work,
a comprehensive set of implementations for the other Swing and AWT widgets
could be provided. This would make any Java application accessible from any
web browser again without the need for special browser plugins. It might also
be worth-while to consider different end-user devices such as PDAs. A PDA
would thus become the generic client introduced earlier in the paper. The XWeb
protocol would eventually become a client/server protocol decoupling different
technologies in the same way that the X Protocol decouples the X server from
the X client. We have begun this work as outlined in [11].

This framework leads to support for Ajax-applications. Ajax (Asynchronous
JavaScript and XML, see [3]) applications run inside a web browser and achieve
an interactiveness that resembles that of desktop applications. An example of
an Ajax application is Google Maps that is entirely implemented in JavaScript.
Ajax applications execute part of the application inside the web browser. We
are currently investigating to add a code migration framework to the XWeb
protocol that is capable of translating Java-byte code instructions to JavaScript
(see [10]).

Accessing X Applications over the World-Wide Web 795

References

1. CreamTec, LLC. WebCream. http://www.creamtec.com/webcream/.
2. Niall Gallagher. Simple - A Java HTTP engine. http://sourceforge.net/projects/

simpleweb/.
3. Jesse Garrett. Ajax: A New Approach to Web Applications. http://www.

adaptivepath.com/publications/essays/archives/000385.php.
4. Hummingbird Ltd. Exceed - X Server Support for Microsoft Windows. http://www.

hummingbird.com/products/nc/exceed/.
5. JCraft. WeirdX - Pure Java X Window System Server. http://www.jcraft.com/

weirdx/.
6. Tiong Hiang Lee. SwingWeb. http://swingweb.sourceforge.net/swingweb/.
7. Microsoft Corporation. Microsoft Java Virtual Machine Support. http://www.

microsoft.com/mscorp/java/.
8. The Open Group. X Window System (X11R6) Protocol, 1999.
9. Fernando Petrola. WebOnSwing. http://webonswing.sourceforge.net/xoops/.

10. Arno Puder. An XML-based Cross-Language Framework. In DOA, LNCS, Agia
Napa, Cyprus, 2005. Springer.

11. Arno Puder. XML11 - An Abstract Windowing Protocol. PPPJ, 2005.
12. RedHat. Cygwin/X - A Free X Server for Microsoft Windows. http://www.cygwin.

com/xfree/.
13. WebSideStory. U.S. Browser Usage Share. http://www.websidestory.com/.

Exploiting Application Workload Characteristics
to Accurately Estimate Replica Server

Response Time

Corina Ferdean and Mesaac Makpangou

INRIA Rocquencourt, France, BP 105,
78153 Le Chesnay Cedex

Abstract. Our proposition, presented in this paper, consists in the def-
inition of a function estimating the response time and a method for
applying it to different application workloads. The function combines
the application demands for various resources (such as the CPU, the
disk I/O and the network bandwidth) with the resource capabilities and
availabilities on the replica servers. The main benefits of our approach
include: the simplicity and the transparency, from the perspective of the
clients, who don’t have to specify themselves the resource requirements,
the estimation accuracy, by considering the application real needs and
the current degree of resource usage, determined by concurrent appli-
cations and the flexibility, with respect to the precision with which the
resource-concerned parameters are specified.

The experiments we conducted show two positive results. Firstly, our
estimator provides a good approximation of the real response time ob-
tained by measurements. Secondly, the ordering of the servers according
to our estimation function values, matches with high accuracy the order-
ing determined by the real response times.

1 Introduction

We place our work in the context of Replica Hosting Systems, which provide
access to various Internet services, by guaranteeing the Quality of Service level
required by the clients (in terms of responsiveness, availability). Each service is
delivered by a group of replica servers running on hosts of various capacities.
The main issue in such systems is the selection for each client of the suitable
replica server that can best respond to its requests, with respect to the required
QoS. We assume that the requests are heterogenous: some requests make a lot
of computation; some requests do intensive disk I/O access or generate impor-
tant traffic on the network; and others have various demands concerning several
resources (CPU, disk I/O or network bandwidth). The response time is largely
accepted as the ideal metric correlating with the QoS perceived by the clients.

Existing systems estimate response time, based on measurements of the sys-
tem load, the round trip time, and the available bandwidth. Each of these metrics
is good for specific cases. For instance, the round trip time metric works well for
static Web documents of small sizes. Also, the available bandwidth becomes the

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 796–812, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Exploiting Application Workload Characteristics 797

pertinent metric when the replies returned to the clients contain data of large
size. None of the existing solutions could provide estimations that correlate with
the real response time, for heterogenous requests combining (arbitrary) the usage
of several resources. The main drawback of these solutions is that they ignore
the characteristics of the application requests. Within this respect, the estima-
tion metrics lack flexibility, which is needed by the variability of the resource
demands for different requests. Another drawback is that they don’t exploit the
impact of current resource availabilities on the requests response time.

We propose a solution which improves the response time estimation, under the
hypothesis of requests heterogeneity.Our approach relies on an estimation function
that combines the demands for resources required to serve a request, the intrinsic
capacities and the current utilization degree of each candidate replica server host.

We derived this function, by decomposing the response time, resulted from the
application execution, into several components: the CPU service time, the disk I/O
service time, the network transfer time, the CPU waiting time and the disk I/O
waiting time. The service times corresponds to the times during which the CPU,
respective the disk I/O resources were used by the request. The network transfer
time counts for the time needed to transmit the reply through the network. The
waiting times count for the time that the request spends in the ready queue, re-
spective in the disk I/O queue.

The estimation function is the sum of these components, each one being param-
eterized by the requests workload, and the host and the network resources charac-
teristics (capacity and availability).

The main benefit of the proposed solution is its accuracy. We show experimen-
tally that the estimation function orders correctly replica servers compared to real
response timemeasurements.Furthermore, in several cases, the estimated response
time does not diverge too much from the measured response time.

The rest of the paper is structured as follows. Section 2 introduces the system
model, together with some base concepts that we consider. Section 3 presents our
approach for estimating the CPU waiting time. Section 4 defines the others com-
ponents of the response time estimation function. Section 5 brings some details on
our model within a brief discussion. In Section 6, we validate our approach experi-
mentally, by means of several concrete workloads. Section 7 presents some related
work. Finally, Section 8 ends the paper with a conclusion.

2 Background and Base Concepts

2.1 System Model

We associate to a host, noted by host, two metrics: the capacity and the utilization,
noted by c, respectively by u. For a particular host, we denote its capacity by host.c
and its utilization by host.u. We consider that each host is characterized by two re-
sources: the CPU and the disk I/O. When comparing the performance of the host
with respect to a client, noted by cl, we also consider the network bandwidth re-
source and the network latency, estimated by the round-trip time. A particular re-
source capacity is static and characterizes the resource maximal performance. The

798 C. Ferdean and M. Makpangou

resource utilization is dynamic and characterizes the resource contention, when
several applications, running concurrently, compete for that resource.

The host capacity is a vector whose components correspond to the CPU, the
disk I/O and the network bandwidth resources. We characterize the capacity of
a particular resource by the work accomplished by the system within 1 unit of
absolute time (e.g. 1 second). In the case of CPU, the capacity is a 2-dimensional
vector, counting for the number of floating point operations executed within 1
second and the number of integer operations executed within 1 second. In the case
of disk I/O, the capacity counts for the number of MBytes transferred from the
disk within 1 second. In the case of the network bandwidth, the capacity with
respect to the client cl, counts for the number of Mbits transmitted through the
network to cl within one second. For a particular host capacity c, we denote the
components presented above by c.cpu, c.io and ccl.net.
The resource utilization metric is expressed in percents (as the measurement unit).
For a particular host utilization u, we note the CPU utilization by u.cpu, the disk
I/O utilization by u.io, the bandwidth utilization, with respect to the client cl, by
ucl.net and the network latency by ucl.rtt.

2.2 Base Concepts

Application Workload. We define the concept of an application, as the abstrac-
tion for two resource usage scenarios. They correspond to autonomous jobs and to
the client’s requests, executed by the replica to which the client has been bound.

Each application is assimilated to its workload, noted by wk, and which ex-
presses the quantity of resources needed by that application so as to run prop-
erly. We define an application workload on three main dimensions: the volume of
computation, the quantity of the data accessed from the disk and the quantity of
the data transferred through the network. We associate to the former dimension
the application metric called the CPU workload. It counts for the number of the
floating point operations, to be performed by the processor in order to execute the
workload. We associate to the second dimension the application metric, called the
disk I/O workload. It counts for the size of the data read/written from/to the disk,
during the workload execution. Finally, we associate to the latter dimension the
application metric called the network workload. It denotes the size of the data con-
tained within the reply returned to the client. For a particular workload wk, we
denote the three components respectively by wk.cpu, wk.io and wk.net. The mea-
surement unit for the CPU workload is 1MFLOP and for the the disk I/O workload
and for the network workload is 1MByte. In the rest of the paper, a triplet of the
form (cpuWk, ioWk, netWk) will denote a workload with the CPU component
cpuWk, the disk I/O component ioWk and the network component netWk.

Host Class. We define the abstraction host class as a group of hosts which pro-
vide similar response times when executing the same application, under 0 utiliza-
tion (i.e. without contention). A host class may encapsulate the physical char-
acteristics of the processor (e.g. speed, number), of the disk (e.g. storage capac-
ity, I/O bandwidth), the software characteristics concerning the operating system
(e.g. the scheduling policy) and the communication protocol stack.

Exploiting Application Workload Characteristics 799

3 Estimating the CPU Waiting Time

We perform a regression-based analysis of the waiting time, where we study the
dependence between the waiting times and the current utilization of the resources
needed by the workload. Basically, each workload has its waiting time fitting
curve, with the baseline points determined by measurements, or by estimations
obtained from the measurements of other workloads.

Our experiments showed that the contribution of the waiting time within the
global response time becomes significant, especially under the conditions of
medium to high resource utilization, when it increases exponentially. Computing
the CPU waiting time is very challenging. The main difficulty arises from the fact
that the waiting time depends on several parameters (e.g. application workload,
resource utilization, system policies). The big issue is to determine the contribu-
tions of each parameters to the overall CPU waiting time, and how the parameters
interfere with each other. The variability of the parameters values (in time and for
different applications) makes this issue even more difficult. In the following, we will
define a function, noted by cpuWt(wk, u), that estimates the CPU waiting time
for the workload wk, under the host utilization u.

3.1 Empirical Study

In order to gain some insights on the variation of the CPU waiting time, we per-
formed two series of empirical studies, where we measured the real CPU waiting
time. In both studies, we fixed the host capacity. In the former study, we fixed the
workload and we varied successively the CPU and the disk I/O utilization. We
represented graphically the evolution of the CPU waiting time according to the
CPU utilization (and given disk I/O utilization values). In the latter study, we
fixed the host utilization, and we varied successively the CPU workload and then
the disk I/O workload. We represented graphically evolution of the CPU waiting
time, according to the CPU workload, respectively to the disk I/O workload.

The experiments to which we refer in this paper have been performed for the
host class containing the machines with a Pentium 4 processor with 3GHz, 900MB
RAM and running Linux.

Varying Utilization. We began by simply measuring the CPU waiting time for
different workloads, while varying the CPU and the disk I/O utilization on the
replica host.

Figure 1 shows six graphics for concrete workloads, where we neglected the
network workload and we varied the ratio between the CPU and the disk I/O
workload. We fixed the disk I/O utilization value to 0. We plotted on x-axis 20
values of the CPU utilization, and on y-axis the corresponding measured values
for the CPU waiting time. All the six curves, obtained by unifying the points, fol-
lows an exponential evolution, growing more rapidly in the case of superior CPU
workloads.This result remains also valid for different values of the disk I/O utiliza-
tion. Our experiments lead us to the conclusion that, generally, the CPU waiting
time grows exponentially, according to both the CPU utilization and the CPU
workload.

800 C. Ferdean and M. Makpangou

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90 100

cp
u

w
ai

tin
g

tim
e

(s
ec

)

cpu utilization

real waiting time for wk. (400, 200, 0)
real waiting time for wk. (2000, 200, 0)
real waiting time for wk. (2000, 400, 0)
real waiting time for wk. (2000, 800, 0)
real waiting time for wk. (400, 800, 0)

real waiting time for wk. (1200, 800, 0)

Fig. 1. Measured CPU wt

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90 100

cp
u

w
ai

tin
g

tim
e

(s
ec

)

cpu utilization

real waiting time for wk. (400, 200, 0)
estimated waiting time for wk. (400, 200, 0)

real waiting time for wk. (2000, 200, 0)
estimated waiting time for wk. (2000, 200, 0)

real waiting time for wk. (2000, 400, 0)
estimated waiting time for wk. (2000, 400, 0)

real waiting time for wk. (2000, 800, 0)
estimated waiting time for wk. (2000, 800, 0)

real waiting time for wk. (400, 800, 0)
estimated waiting time for wk. (400, 800, 0)

real waiting time for wk. (1200, 800, 0)
estimated waiting time for wk. (1200, 800, 0)

Fig. 2. Estimated vs. measured CPU wt

With these elements, the function cpuWt becomes an exponential function
with the exponent expressed as a linear function. This function is parameterized
by u.cpu and has the form y = a∗u.cpu + b, where the coefficients a and b depend
both on the workload wk and on the utilization value u, under which the waiting
time should be estimated for wk. We obtain the following formula:

cpuWt(wk, u) = exp(a∗u.cpu+b), wherea = f(wk, u)andb = g(wk, u) (1)

In order to compute the coefficients a and b, we need the values of the CPU wait-
ing time under several (at least two) utilization values ui with the same disk I/O
component, i.e. ui.io = uj.io and ui.cpu = uj.cpu, i, j = 1, n, i = j. We note by di

the CPU waiting times measured under ui, i=1, n, for wk, i.e. di = measured(wk,
ui), i=1, n.

At this point, we compute the coefficients a and b by applying the Least
Squares Line Fitting method [12]. Basically, this method determines a and b by
minimizing the square error, which is

∑n
i=1(di−a∗ui.cpu−b)2. We implemented

this method within the function getCoef() in Figure 5. This is parameterized by n
pairs (xi, yi) which serve as the baseline points for the regression-based approxi-
mation. In our case, yi corresponds to the waiting time determined under the CPU
utilization value xi. Precisely, yi = log(di).

We define in Figure 5 the function cpuWt base, which represents the base
building brick of our estimation approach. It contains the core of the regression-
based waiting time approximation. It determines the waiting time for the work-
load wk under the utilization u, by applying the formula (1), where the coefficients
a and b are computed using the function getCoef().

In order to validate our approach, we took the same workloads from Figure 1,
for which we compared the CPU waiting time computed by the function
cpuWt base() with the real CPU waiting time, obtained by executing the work-
loads. Figure 2 shows these results, where the estimation curves are very closed
to the real measurements curves. These experiments shows very good correlation
between the estimated CPU waiting time and the real CPU waiting time.

Exploiting Application Workload Characteristics 801

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000

cp
u

w
ai

tin
g

tim
e

(s
ec

)

cpu workload

 disk I/O wk.=200, cpu ut.=40, disk I/O ut.=0
disk I/O wk.=200, cpu ut.=40, disk I/O ut.=40
disk I/O wk.=400, cpu ut.=40, disk I/O ut.=0

disk I/O wk.=400, cpu ut.=40, disk I/O ut.=40
disk I/O wk.=800, cpu ut.=40, disk I/O ut.=0

disk I/O wk.=800, cpu ut.=40, disk I/O ut.=40

Fig. 3. CPU wt. variation with CPU wk

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 200 400 600 800 1000

cp
u

w
ai

tin
g

tim
e

(s
ec

)

disk I/O workload

cpu wk.=400, cpu ut.=40, disk I/O ut.=0
cpu wk.=400, cpu ut.=40, disk I/O ut.=40
cpu wk.=800, cpu ut.=40, disk I/O ut.=0

cpu wk.=800, cpu ut.=40, disk I/O ut.=40
cpu wk.=2000, cpu ut.=40, disk I/O ut.=0

cpu wk.=2000, cpu ut.=40, disk I/O ut.=40

Fig. 4. CPU wt. variation with disk I/O wk

Varying CPU Workload or Disk I/O Workload. We performed a second
type of measurements, where we studied the evolution of the waiting time when
the CPU workload, respectively, the disk I/O workloadvaries, while the utilization
is fixed.

The graphs in Figure 3 show that the CPU waiting time varies linearly with
the CPU workload.Precisely it increases linearly with constantly increasing values
of the CPU workload. In all the graphs, we fixed the disk I/O workload and the
utilization.

The experiments we performed allow us to conclude that, under a given uti-
lization value, the CPU waiting time varies linearly with the CPU workload, while
the disk I/O workload is fixed. This result also remains true, when varying the disk
I/O workload, with the CPU workload being fixed. Under this scenario, the CPU
waiting time also increases linearly, as shown in Figure 4.

With varying CPU respective disk I/O workload, we obtain the following for-
mulas for the CPU waiting time:

cpuWt(wk, u) = α’∗wk.cpu + β’ (2)

and
cpuWt(wk, u) = α”∗wk.io + β” (3)

In order to compute α’ and β’, we need the CPU waiting times under u, for several
(at least two) workloads with the same disk I/O component as wk. We note them
by wki, such that wki.io = wk.io, wki = wkj and the corresponding waiting times
by di, i, j=1, k, i = j.

We also apply the Least Squares Line Fitting method. Precisely, we compute
α’ and β’ using the function getCoef(), parameterized by x = {wki.cpu} and y =
{di}, i = 1, k.

Similarly, in order to compute α” and β”, we need the CPU waiting times un-
der u, for several (at least two) workloads with the same CPU component as wk.
We note them by wki, such that wki.cpu = wk.cpu, wki = wkj , and the correspond-
ing waiting times by di, i, j=1, k, i = j. We compute α” and β” by applying the
function getCoef(), parameterized by x = {wki.io} and y = {di}, i=1, k.

802 C. Ferdean and M. Makpangou

Conclusion. The formulas (1), (2) and (3) serve as basis for estimating the CPU
waiting time, for any workload, under any utilization value. In order to apply these
formulas (possibly in various combinations), we need the measurements of the
CPU waiting times for some workloads under some utilization values. Basically,
we need to define the couples (wk, n, {ui, di }) which should configure the for-
mula (1), and the couples (u, k, {wki, di }) which should configure the formulas
(2) and (3) so as to perform the estimation of CPU waiting time for any workload,
under any utilization value. The definition of these configuration data represents
the object of the next section.

3.2 Configuration Data

Reference Points. We define the reference points as a set of host utilizations
values, where there are two different utilization values which have the CPU com-
ponent in common, and other two utilization values which have the same disk I/O
component. More formally:
P = {ui}, i = 1, n; n ≥ 4, where ∃ i, j, k and l, 1 ≤ i, j, k, l ≤ n, such that ui.cpu
= uj.cpu, ui.io = uj.io, uk.io = ul.io and uk.cpu = ul.cpu.

Reference Workloads. We define the reference workloads as a set of workloads
for which the CPU waiting time has been measured under any reference point.
This set is defined so as to contain at least two different CPU workload values
and at least two different I/O workload values. Each of these four values is the
component of at least two different (reference) workloads, which are included in
the set.

More formally:
W = {wki}, i = 1, m, m ≥ 4, where ∃ i, j, k and l, 1 ≤ i, j, k, l ≤ m, such that
wki.cpu = wkk.cpu, wkj.cpu = wkl.cpu, wki.cpu = wkj.cpu and ∃ u, v, w and z, 1
≤ u, v, w, z ≤ m, such that wku.io = wkv.io, wkw.io = wkz.io, wku.io = wkw.io

The rationale behind these formulas will be revealed, while describing the es-
timation algorithms in the next section.

We associate to each wk ∈W, the set of the CPU waiting time measures under
each reference point from P. More formally:
Mwk = {(ui, di)}, such that di = measured(wk, ui), i=1, n. We aggregate all the
measurements into the set M, where M = {Mwk}, ∀ wk ∈ W. The sets P, W and
M are defined for every host class.

3.3 Estimating the CPU Waiting Time for Any Workload, Under
Any Utilization

With these elements, we will show how to estimate the CPU waiting time, for any
workload wk, under any utilization value u of the host. We distinguish between the
cases where wk is an element in W or not. In these cases, we name wk a known
workload respectively a not-known workload. In the latter case, if wk has at least
the CPU or the disk I/O component in common with a reference workload, we
name it a semi-known workload, otherwise we name it an unknown workload. The

Exploiting Application Workload Characteristics 803

getCoef(n, x, y) {
sx =
∑n

i=1 xi; sy =
∑n

i=1 yi; ssx =
∑n

i=1 x2
i ; sxy =

∑n

i=1 xi ∗ yi;
c = (n∗ssx - sx2); a= (n∗sxy - sx∗sy)/c; b = (sy∗ssx - sx∗sxy)/c;
return <a, b>

}
cpuWt base(wk, u, n, x, y) {

<a, b> = getCoef(n, x, y)
d = exp(a∗u + b)
return d

}
cpuWt known(wk, u) {

1. if u ∈ P
d = measured(wk, u)

2. else a) get from Mwk n pairs (ui, mi)
such that ui �= uj , ui.io = uj .io and |ui.io - u.io| is minimal, i, j = 1, n, i �= j.
b) let x = {ui.cpu} and y = {mi}; d = cpuWt base(wk, u.cpu, n, x, y)

endif
return d

}
cpuWt semiknown(wk, u) { //when wk has the same I/O wk. as two reference wk.

0. get wki ∈ W, wk.io = wki.io, i = 1, k
1. if u ∈ P,
mi = measured(wki, u),
a) let x = {wi.cpu} and y = {mi}; <α, β> = getCoef(n, x, y)
b) d=α∗wk.cpu+β

2. else
a). get n points ui ∈ P, ui.io = uj.io, |ui.io - u.io| is minimal, i = 1, n
b) mi = cpuWt semiknown(wk, ui)
let x = {ui.cpu} and y = {mi}; d = cpuWt base(wk, u, n x, y)

endif
return d

}
cpuWt unknown(wk, u) {

0. get l sets, each one containing k workloads wki
u ∈ W, wki

u.cpu = wki
v.cpu, i =

1, l ; u, v = 1, k
1. If u ∈ P

let wki.cpu = wki
u.cpu, wk’i = (wki.cpu, wk.io), i = 1, l

a) mi=cpuWt semiknown(wk’i, u)
b) let x = {wki.io} and y = {mi}; <α, β> = getCoef(n, x, y)
d=α∗wk.io+β

2. else
a). get n points ui ∈ P, ui �= uj , ui.io = uj .io, |ui.io - u.io| is minimal, i, j = 1, n,

i �= j
b) mi = cpuWt unknown(wk, ui)
let x = {ui.cpu} and y = {mi}; d = cpuWt base(wk, u, n, x, y), i, j = 1, n

endif
return d

}
cpuWt(wk, u) {

If wk is a known workload
d = cpuWt known(wk, u)
else if wk is a semi-known workload
d = cpuWt semiknown(wk, u)
else d = cpuWt unknown(wk, u)
endif

endif
return d

}

Fig. 5. The functions providing the CPU waiting time estimation

804 C. Ferdean and M. Makpangou

following three sections show how the estimation is proceeded if wk is a known,
semi-known, respectively an unknown workload. In each case we distinguish be-
tween the cases where u is an element of P or not.

The Case of Known Workloads. In the case where wk is a known workload,
if u is a reference point from P, we get from Mwk the corresponding measure d
(obtained under u).

If u is not a reference point, in order to compute the coefficients a and b under
the utilization value u, we choose from the set Mwk, n pairs (ui, mi), satisfying
ui.io = uj.io, with their commmon value ui.io being the closest to u.io, among all
the reference points couples with the same I/O component. With these elements,
we compute cpuWt(wk, u), by applying the function cpuWt base(), parameterized
by the baseline points ({ui.cpu}, {mi}). We sketched the algorithm for a known
workload in Figure 5, within the function cpuWt known(wk, u).

The Case of Semi-known Workloads. We consider k reference workloads wki,
which have the same disk I/O workload as wk. 1) If u is a reference point, we get
from the sets Mwki

the values mi representing the CPU waiting times measured
under u for wki. We compute cpuWt(wk, u) by applying the formula (2).

2) If u isn’t a reference point, we get n reference points ui ∈ P (with the same
disk I/O component) and compute mi = cpuWt(wk, ui), using the previous case
1). Finally, we compute cpuWt(wk, u) by applying the regression formula (1) with
the baseline points ({ui.cpu}, {mi}). We sketched the algorithm for a semi-known
workload in Figure 5, within the function cpuWt semiknown(wk, u).

The Case of Unknown Workloads. We consider l sets, each one containing k
reference workloads wki

u, such that: wki
u.cpu = wki

v.cpu, i=1, l, u, v=1, k. Let
wki.cpu = wki

u.cpu, wk’i = (wki
u.cpu, wk.io)

The estimation algorithm is presented within the function cpuWt unknown(wk,
u) in Figure 5. 1) If u is a reference point, the algorithm proceeds in two steps. In
the first step, we estimate the CPU waiting time mi for the semi-known workload
wk’i, by applying the previous primitive cpuWt semiknown().

In the second step it estimates the CPU waiting time d for the workload wk, by
applying the regression formula (3), with the baseline points ({wk’i.cpu}, {mi}).

1) If u is not a reference point, we get n reference points ui ∈ P, with the same
disk I/O component, i.e. ui = uj, ui.io = uj.io. We compute mi=cpuWt(wk, ui),
i=1, n using the previous case 1). Finally, we estimate the CPU waiting time d for
wk, by applying the function cpuWt base(), parameterized by the baseline points
x = {ui.cpu} and y = {mi}).

4 The Other Response Time Components

4.1 The Disk I/O Waiting Time

We followed a similar strategy for estimating the disk I/O waiting time, as in the
case of the CPU waiting time. Because of the paper space limit, we only sketch

Exploiting Application Workload Characteristics 805

it here, by transposing the formulas (1), (2) and (3) to the case of the disk I/O
waiting time. We note the corresponding function by ioWt(wk, u), estimating the
disk I/O waiting time for the workload wk under u. We use the same configura-
tion data, consisting in the reference points P, the reference workloads W and the
associated measurements M.

We performed the same two series of measurements, Firstly, we measured the
disk I/O waiting time, while varying the value of the disk I/O utilization. The
curves obtained follow this time a linear evolution, that we adopted when deriving
the formula transposing (1) to disk I/O waiting time:
ioWt(wk, u) = a∗u.io + b.
We consider n points ui ∈ P such that ui.cpu = uj.cpu and ui.io = uj.io and di is
the measure of the disk I/O waiting time under ui, i=1, n. The coefficients a and
b are computed using the function getCoef(), parameterized by x = {ui.io} and
y = {di}.

The second type of measurements showed that the disk I/O waiting time varies
linearly with the workload. We obtain the following formulas similar to (2) and (3):
ioWt(wk, u) = α’∗wk.io + β’ and ioWt(wk, u) = α”∗wk.cpu + β”.

We consider k reference workloads wki ∈ W with the same CPU component,
and di is the value of the disk I/O waiting time measured for wki under ui, i=1,
k. The coefficients α’ and β’ are computed by applying the function getCoef(),
parameterized by x = {wki.io} and y = {di}.

The coefficients α” and β” are computed similarly to the coefficients α′ and
β′, using reference workloads with the same disk I/O component.

As in the case of the CPU waiting time, we developed the base function
ioWt base(wk, u) and we distinguished similarly between a known, semi-known
and unknown workload, which we treated within the functions ioWt known(wk,
u), ioWt semiknown(wk, u), respective ioWt unknown(wk, u).

4.2 The Other Components of the Response Time

The CPU service time is estimated by dividing the CPU workload by the CPU
capacity, expressed as the number of floating point operations per second. The
disk I/O service time is estimated by dividing the disk I/O workload by the disk
I/O capacity.

The network transfer time is also estimated by means of a regression based
technique. We distinguish between bandwidth-intensive vs. non-bandwidth inten-
sive network workloads. The former workloads have the transfer time dominated
by the bandwidth, while the latter workloads have the transfer time dominated
by the round-trip-time. We discuss here only the transfer time for the bandwidth-
intensive workloads. A workload is bandwidth intensive if its value is greater than
the maximal bandwidth between a host and a client. In this case, the transfer time
is given by the formula nt(wk, host, cl) = wk.net/(a∗bw + b), where bw is the avail-
able bandwidth between host and cl. We compute a and b, for some known work-
loads, for which there are available some measurements of transfer time, under
some bandwidth utilization values. These measurements are used as the baseline
points within the Least Squares Line Fitting method, which gives a and b. For the

806 C. Ferdean and M. Makpangou

cpuSt(wk, c) = wk.cpu/c.cpu
ioSt(wk, c) = wk.io/c.io
rt(wk, host, cl) = cpuSt(wk, host.c) + ioSt(wk, host.c) + cpuWt(wk, host.u) + ioWt(wk,
host.u) + nt(wk, host, cl)

Fig. 6. Formalizing the estimation function

other unknown workloads, the transfer time is computed using the transfer time of
known workloads under the same utilization value. This computation relies on the
observation that the transfer time increases linearly with the network workload,
under a given bandwidth utilization value.

With these elements, the response time function becomes the sum between the
CPU service time, the disk I/O service time, the CPU waiting time, the disk I/O
waiting time and the network transfer time. Figure 6 translates this definition into
three mathematical formulas.

5 Discussion

The application CPU workload can also be expressed in number of integer opera-
tions. In this case, we convert it to a CPU workload expressed in number of float-
ing point operations, using the CPU capacity of a given (reference) host. Precisely,
we divide the CPU workload by the host capacity in terms of number of integer
operations per second, and multiply the result by the host capacity in terms of
floating-point operations per second.

An important question is how to choose the reference points. We conducted
some experiments in order to answer to this question. We varied the utilization ref-
erence points, both in terms of number and distribution over the range values [0,
100]. For each reference points set, we computed the coefficients a and b, for seven
different workloads. For each workload, we computed the estimation error over a
testing set with 20 points. We showed the results in Table 1. The main conclusion
is that increasing the number of reference points doesn’t improve the accuracy,
unless the points are well chosen, i.e. unformly distributed around “the middle”.

Our approach has two main possible drawbacks. The former is the overhead of
monitoring the resource utilization, while the latter points the difficulty of specify-
ing quantitatively the workload. With respect to the former drawback, we propose
heuristics for estimating the resources utilization, in a given time-interval, based
on the active applications allocated to the concerned host and the host’s capac-
ity. With respect to the latter drawback, we propose a solution based on workload
classes, which aggregateworkloadswith similar demands for a particular resource.
We define classes for each of the three resources quantitatively -by means of inter-
val values- or qualitatively -by means of semantic keywords (e.g. multimedia).

Another issue is related to the variability of the utilization metric, due to con-
current applications which interference with the benchmarked workload. We have
obtained recently some preliminary results, promising that the estimator can tol-
erate a certain degree of staleness in the utilization values used, without degrading
too much the accuracy of estimation.

Exploiting Application Workload Characteristics 807

Table 1. Estimation errors when varying the reference utilization points

Reference Error for wk Error for wk Error for wk Error for wk Error for wk Error for wk Error for wk
utiliz. points (400, 200, 0) (2000, 200, 0) (2000, 400, 0) (2000, 600, 0) (2000, 800, 0) (400, 800) (1200, 800)
10 20 241798.20 9078.83 2882.08 7205.66 12688.70 4694.38 10323.13
20 30 23.51 100.77 195.83 130.55 167.97 363.20 128.94
80 90 19.49 90.46 102.91 123.30 134.59 81.01 99.71
20 60 40.49 116.10 120.43 156.56 174.76 76.57 136.80
10 20 30 3482.33 941.28 854.83 1307.19 1306.20 1323.72 1033.57
30 50 70 36.15 101.70 133.55 144.66 148.14 103.53 118.01
20 40 60 38.13 112.93 114.00 149.02 165.76 73.64 131.06
10 40 80 17.50 71.97 85.61 93.93 105.83 61.38 75.25
10 15 20 25 30 2014.77 824.78 818.11 1097.96 1103.53 977.14 876.76
20 40 60 70 80 36.73 105.52 118.32 138.10 157.01 85.16 117.79
20 20 40 60 80 36.41 104.94 112.33 135.12 155.92 80.15 114.91
10 20 40 60 70 22.55 73.54 90.97 100.95 106.92 61.21 83.10
10 20 40 60 80 18.02 79.16 91.71 104.79 117.22 63.44 85.11

6 Experimental Validation

In order to validate our estimation approach, we performed experiments for var-
ious concrete workloads. We used a simulator, capable to generate application
workloads. Precisely, it instantiates a test application with the same workload as
the real application. This workload is generated by means of basic operations like:
float multiplications, read/write disk accesses, send/receive socket accesses. We
used the reference points set P = {ui}, ui.cpu, ui.io ∈ {0, 20, 40, 80}. We per-
formed the baseline measurements (of CPU waiting time, respective of the disk
I/O waiting time) under 3 CPU respective disk I/O utilization values {20, 40, 80}
(this vector is the argument x of the function getCoef() in Figure 5.

For a given workload wk, the experimentation follows the following scenario.
We vary the values of the CPU, disk I/O and network bandwidth utilization, for
a given host. Under a given utilization value, i.e. the triple (CPU utilization, disk
I/O utilization, network bandwidth utilization), we determine the couple contain-
ing the response time estimated with our approach and the real response time mea-
sured by executing the workload. For n utilization values (i.e. n experiments), we
obtain the set D with n samples. Each sample i is defined as the couple (estimated
response time, real response time), noted by erti, respectively rrti. More formally:
D = {(erti, rrti) }, i=1, n and erti < erti+1, ∀ i i=1, n-1. We draw the graph as-
sociated to D, plotting the values erti on x-axis and the corresponding values rrti
on y-axis.

We define the value estimation error for each sample in D. We note it by valEri,
where i=1, n, valEri = min(100∗|erti - rrti|/rrti, 100)

We define the variation estimation error for each two successive samples in D.
We note it by varEri, where i=2, n, varEri = min(100∗(rrti - rrti−1)/rrti−1, 100),
if rrti > rrti−1, and 0 otherwise.

6.1 Experimenting System Workloads

We begin the validation of our response time estimation approach, by consider-
ing only system workloads, where the network component is 0. Specifically, we

808 C. Ferdean and M. Makpangou

experimented our approach for three workloads (2000, 800, 0), (2000, 400, 0) and
(400, 800, 0), varying the ratio between the computation demands vs. the disk I/O
demands. For each workload, we considered both the cases where it was known,
-in which case the estimation relies directly on its reference points-, respectively
unknown, -in which case the estimation relies on four reference workloads. The
reference workloads used were: (400, 200, 0), (400, 2000, 0), (3000, 200, 0) and
(3000, 2000, 0).

The Figure 7 shows the results in the case of the workload (2000, 800, 0), Fig-
ure 8 for the workload (2000, 400, 0) and Figure 9 for the workload (400, 800, 0).
We represented 44 points on each graph. Each point on a graph, corresponds to a
particular CPU and disk I/O utilization value, and is represented by plotting on
the x-axis the estimated response time and on y-axis the real measured response
time (both of them obtained under that utilization value).

In each case, we compared the response time estimated by our approach with
respect to the ideal estimation (represented by the real response time). One can
see that in each graph, the curves corresponding to the estimated response time vs.
the real response time are close to each other (being closer in the case of the known
workloads).Another importantobservation is that thevariationof the real response
time matches with good accuracy the variation of the estimated response time (i.e.
the estimated vs. real time correlation curve is mostly monotone increasing).

6.2 Experimenting Complete Workloads

In this section we show the results of using our approach for complete workloads.
The experimentation follows a scenario similar to the case of system workloads,
except that in this case we also vary the network bandwidth utilization, when de-
termining the graph points. We represented 64 points on each graph.

The graphs in Figures 10 and 11 show the response time estimation for the
workloads (2000, 800, 20), respective (2000, 800, 80), considered known vs. un-
known. One can see that the monotony of the real response time matches, in most
cases, that of the estimated response time (i.e. in most cases, a bigger estimated re-
sponse time corresponds to a bigger real response time). Comparing the results of
our estimator with an ideal estimator, one can see that there is an over-estimation
of the response time, but this still remains under reasonable limits. We also have
noticed that the bad estimation happens for big values of the utilization. When
the values of utilization are small or even reasonably high, the estimation works
fine.

We adopted two means to validate our model: by performing a regressionbased
analysis of the estimation results and by studying the cumulative distribution of
the estimation errors. In the former evaluation scenario, we studied the linear re-
lationship between the estimated response time and the real response time, using
as the baseline a set of 44 points resulted from measurements. Precisely, we de-
termined the coefficients of the line y=a∗x+b, where x represents the estimated
response time and y is the real response time. We represented the results in Ta-
ble 2. Each row corresponds to a workload, considered known vs. unknown. If the
estimation were perfect, a = 1 and b = 0. One can see that the results are good

Exploiting Application Workload Characteristics 809

 0

 50

 100

 150

 200

 250

 300

 350

 60 90 120 150 180 210 240 270 300 330

re
al

 r
es

po
ns

e
tim

e
(s

ec
)

estimated response time

our estimator, when known workload
our estimator, when unknown workload

ideal estimator

Fig. 7. Estimation for wk. (2000, 800, 0)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 60 90 120 150 180 210

re
al

 r
es

po
ns

e
tim

e
(s

ec
)

estimated response time

our estimator, when known workload
our estimator, when unknown workload

ideal estimator

Fig. 8. Estimation for wk. (2000, 400, 0)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 30 60 90 120 150 180 210 240

re
al

 r
es

po
ns

e
tim

e
(s

ec
)

estimated response time

our estimator, when known workload
our estimator, when unknown workload

ideal estimator

Fig. 9. Estimation for wk. (400, 800, 0)

Table 2. Coefficients a and b for various workloads, known and unknown

Workload coef. a and b, when wk. known coef. a and b, when wk. unknown
(2000, 800, 0) 0.91 12.08 0.99 -8.45
(2000, 400, 0) 1.01 3.94 1.15 -13.77
(400, 800, 0) 0.94 2.46 0.87 -4.71

(2000, 800, 20) 1.00 10.74 1.12 -17.40
(2000, 800, 80) 0.56 55.44 0.61 39.90

enough, except for the last case, when the network workload is equally important
as the system workload. Except this case, the estimation works fine.

With respect to the second evaluation scenario, Figures 12 and 13 shows the
cumulative distribution for the value estimation errors, considering the case of
known workloads, respectively unknown workloads. A point on the graph is de-
fined by plotting on x-axis the value estimation error, and on y-axis the percentage
of points whose error is inferior to the x-axis value. These results show that the
estimation accuracy is satisfactory. Figures 14 and 15 shows the cumulative dis-
tribution for the variation estimation errors. A point on the graph is defined by

810 C. Ferdean and M. Makpangou

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 60 90 120 150 180 210 240

re
al

 r
es

po
ns

e
tim

e
(s

ec
)

estimated response time

our estimator, when known workload
our estimator, when unknown workload

ideal estimator

Fig. 10. Estimation for wk. (2000, 800, 20)

 60

 80

 100

 120

 140

 160

 180

 200

 90 120 150 180 210 240

re
al

 r
es

po
ns

e
tim

e
(s

ec
)

estimated response time

our estimator, when known workload
our estimator, when unknown workload

ideal estimator

Fig. 11. Estimation for wk. (2000, 800, 80)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

value estimation error

workload (2000, 800, 20)
workload (2000, 800, 40)
workload (2000, 800, 60)
workload (2000, 800, 80)

workload (0, 800, 20)
workload (0, 800, 40)
workload (0, 800, 60)
workload (0, 800, 80)

workload (2000, 800, 100)

Fig. 12. Value estimation error for known
workloads

 60

 80

 100

 120

 140

 160

 180

 200

 90 120 150 180 210 240

re
al

 r
es

po
ns

e
tim

e
(s

ec
)

estimated response time

our estimator, when known workload
our estimator, when unknown workload

ideal estimator

Fig. 13. Value estimation error for un-
known workloads

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

value estimation error

workload (2000, 800, 20)
workload (2000, 800, 40)
workload (2000, 800, 60)
workload (2000, 800, 80)

workload (0, 800, 20)
workload (0, 800, 40)
workload (0, 800, 60)
workload (0, 800, 80)

workload (2000, 800, 100)

Fig. 14. Variation estimation error for
known workloads

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

variation estimation error

workload (2000, 800, 20)
workload (2000, 800, 40)
workload (2000, 800, 60)
workload (2000, 800, 80)

workload (0, 800, 20)
workload (0, 800, 40)
workload (0, 800, 60)
workload (0, 800, 80)

workload (2000, 800, 100)

Fig. 15. Variation estimation error for un-
known workloads

plotting on x-axis the variation estimation error, and on y-axis the percentage of
points whose error is inferior to the x-axis value. These results show a good cor-
relation between the estimated response time and the real response time.

Exploiting Application Workload Characteristics 811

7 Related Work

7.1 Survey of Existing Estimation Metrics

We investigated existing work on server selection and load balancing topics, so as
to identify the mechanisms used to estimate the expected response time. These
mechanisms rely basically on metrics approximating response time, with differ-
ent degrees of accuracy. We classify these metrics into static and dynamic. The
static metrics include basically the geographical distance, as used in [10], the num-
ber of router hops, as used in [2, 8, 9, 14, 16], and the number of AS hops, as used
in Globule [11]. We further classify the dynamic metrics into basic and compos-
ite metrics. The former are obtained by direct measurements, while the latter
are computed by formulas which make use of basic metrics. The basic metrics
include the network latency (as given by round trip time, for example), as used
in [2, 6, 9, 14, 16], the available bandwidth, as used in [4], in Web Server Director
[15], in [5, 7, 8], the HTTP request latency [14, 16], the transfer time of a given
(probe) file [17] or server load [3, 7, 17]. Examples of composite metrics include
PredictedTT, used in [6], S-percentile, used in [16], Weighted Total Response Time
used in [5], and the metrics used in Radar [13], in the anycast service [17] and
in [1]. The S-percentile combines the average and the variance of previously ob-
served latencies. The PredictedTT metric sums the round-trip time and the trans-
mission time, which is the document size divided by the available bandwidth).
The Weighted Total Response Time [5] has a formula equal to Predicted Trans-
fer Time multiplied by a weighting factor aimed to prioritize local traffic. The
Radar’s metric combines proximity in terms of number of hops and the replica
load in terms of number of active connections. The anycast service’s metric mul-
tiplies two factors, counting for the server load, respectively for the network path
characteristics.

We conclude the investigation of existing works, by pointing that they limit
the environment conditions considered (e.g. in terms of utilization) and they also
ignore the request characteristics, in terms of resource demands. Our approach
exploits these parameters more deeply, as we showed that they have a significant
impact on the response time.

8 Conclusion

The main results of our work consist in a simple and reliable response time esti-
mation function and a method for applying it to different application workloads.
The function combines the application demands for system and network resources
(CPU, disk I/O and network bandwidth) with the capacities and availabilities of
these resources on the concerned hosts. The main benefit of our approach is the
estimation accuracy, by exploiting quantitatively the resources needed by the ap-
plication vs. the resources provided by the replica servers. Current work contin-
ues in two directions, which consists in exploiting the heuristics for estimating
the resource utilization (instead of monitoring) and defining the workload classes

812 C. Ferdean and M. Makpangou

(instead of a precise workload specification). We also intend to study how the es-
timation is able to deal with the machines heterogeneity (e.g. so as to compare the
response times estimated on Intel vs. Apple machines).

References

1. O. Ardaiz, F. Freitag, L. Navarro, Improving the Service Time of Clients using
Server Redirection, 2001.

2. Cisco Distributed Director, Cisco Content Routing Protocols, white paper, 2000.
3. V. Cardellini, M. Colajanni, P. S. Yu, Geographic Load Balancing for Scalable Dis-

tributed Web Systems, In Proc of 8th MASCOTS, 2000.
4. R. Carter, Performance Measurement and Prediction in Packet-Switched Networks:

Techniques and Applications, Ph.D. thesis 1997.
5. M. Chen, W. Mao, Anycast By DNS Over Pure IPv6 Network, Department of Elec-

trical Engineering and Computer Science, University of California, Berkeley, 2001
6. M. Crovella and R. Carter, Dynamic Server Selection Using Bandwidth Probing in

Wide-Area Networks, In Proceedings of IEEE INFOCOM, 1997.
7. J. Dilley, B. Maggs, Globally Distributed Content Delivery, IEEE Internet Comput-

ing, vol. 6, no. 5, 2002.
8. Z. Fei, M. Ammar, E. Zegura, Multicast Server Selection: Problems, Complexity

and Solutions, IEEE Journal on Selected Areas in Communication, Special Issue on
Internet Proxy Servers, vol. 20, no. 7, pp. 1399-1413, 2002.

9. J. Guyton and M. Schwartz. Locating nearby copies of replicated internet servers.
In Proceeding of ACM SIGCOMM’95, 1995.

10. J. Gwertzman and M. Seltzer. The case for geographical push cashing. In Proceeding
of the 5th Workshop on Hot ZTopic in Operating Systems, 1995.

11. G. Pierre, Maarten van Steen, A.S. Tannenbaum, Dynamically selecting optimal
distribution strategies for Web documents. IEEE Transactions on Computers 6(51),
637 651, 2002.

12. Mathworld, http://mathworld.wolfram.com/LeastSquaresFitting.html.
13. M. Rabinovich, A. Aggarwal, Radar: A Salable Architecture for a Global Web Host-

ing Service, WWW8/Computer Networks, 31(11-16):1545-1561, 1999.
14. M. Sayal, Yuri Breitbart, Peter Scheuermann, Radek Vingralek, Selection algo-

rithms for replicated web servers. In Proceeding of the Workshop on Internet Server
Performance, 1998.

15. Radware, Web Server Director, white paper, 2002.
16. R. Vingralek et al., Web++: A System For Fast and Reliable Web Service, Proceed-

ings of the USENIX Annual Technical Conference, Sydney, Australia, pp. 171-184
(June 1999).

17. E. Zegura, M. Ammar, Z. Fei, and S. Bhattacharjee, Application-layer anycasting: a
server selection architecture and use in a replicated web service, IEEE/ACM Trans-
actions on Networking, vol. 8, no. 4, pp. 455–466, Aug. 2000.

Automatic Introduction of Mobility for
Standard-Based Frameworks

Grégory Häık2, Jean-Pierre Briot1, and Christian Queinnec1

1 Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie,
4, place Jussieu , 75252 Paris Cedex 5 France

{Jean-Pierre.Briot, Christian.Queinnec}@lip6.fr
2 Thalès Communications / SC2, 1–5, avenue Carnot,

91883 Massy Cedex France
Gregory.Haik@fr.thalesgroup.com

Abstract. The computerization of industrial design processes raises
software engineering problems that are addressed by distributed com-
ponent frameworks. But these frameworks are constrained by a set of
antagonistic constraints, between performances and reusability of the
components. In order to take up this challenge, we study how mobile
code technology enables the improvement of performances without harm-
ing the components’ reusability. Our approach relies on a transparent,
totally automatic introduction of mobility into the programs. This trans-
formation is a local optimization which is based on a static analysis. It
is implemented within a compiler. An experimental study shows how
the approach can be helpful for increasing the efficiency of the frame-
work, enabling the usage of standards that – as for today – lack of
efficiency.

1 Introduction

System engineering, industrial design and manufacturing have been totally trans-
formed, since 1950, by the raise of performances of computers and software, es-
pecially Computer-Aided Design (CAD) systems and numerical simulation pro-
grams. But users are still waiting for appropriate integration frameworks [12, 5]
that would link these programs all toghether. Still today, engineers have a lot
of manual and repetitive, work in order to make their software environment
adapted to the particular needs of a specific project.

But industrial design integration frameworks are facing difficult problems :
on the one hand, they need to enable a good level of reusabililty – hence they
need to rely on standardized contracts and interfaces –, and on the other hand,
the applications built upon these frameworks need to be efficient. Unfortunately,
using standards tends to prduce uneffcient resulting applications, especially in a
distributed environment. In order to bridge the gap between performance issues
and conformance to standardized interfaces, we have proposed some compilation
techniques for automatic introduction of mobility into programs interacting with
software components. Mobile code is used as a mean to improve locality, and

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 813–827, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

814 G. Häık, J.-P. Briot, and C. Queinnec

consequently performances [2]. By raising up the performances of such programs,
software architects can rely on standards that are usually considered as unusable
because of the poor performances they imply.

In this paper, we present the results of our research for efficient execution
of distributed, standard-based integration frameworks, applied to industrial de-
sign applications [9]. The next section presents the motivations (section 2), and
leads to the description of our approach (section 3). We will then compare our
approach to related works (section 4). The following section will describe more
deeply the analysis and compilation techniques and present our prototype. We
will finally depict the experimental study that shows the tangible benefits of our
techniques (section 6).

2 Motivations

This section will first present an example of integration framework for industrial
design. Based on this example, we will explain why such frameworks tend to be
distributed, and why they should rely on standards. We will conclude by showing
that the usage of standards raises efficiency problems.

2.1 An Example of Framework for Industrial Design: SALOME

SALOME [16] is a ministry-led consortium (RNTL) aimed at defining a compo-
nent-based framework for integration of software systems involved in industrial
design, such as CAD systems, meshing software, numerical solvers, databases of
physical properties, visualisation and post-treatment software. Figure 1 shows
a snapshot of the user interface of SALOME. In this example, the user has
imported the geometry of a ship and meshed it with the help of a meshing
component. The user would then typically assign materials to the ship geome-
try such as, for instance, carbon composite and aluminium; apply forces to the
structure for folding and/or torsion; load a solver of structural mechanics – em-
bedded in a SALOME component; and then check by computation whether the
ship structure is complying to its requirements. The user could also load a fluid
mechanics solver in order to check the ship’s structure in conditions of naviga-
tion. As we can see, since the usage scenarios of SALOME cannot be predicted,
the framework includes a program interpreter (actually a Python interpreter),
so that the user can customise the components integration according to his/her
specific usage.

2.2 The Need for Distribution

One can wonder why such component-based frameworks are distributed. Indeed,
some companies have developed integration frameworks for industrial design in
a monolithic, mono-process configuration. However, there are several reasons to
make such frameworks distributed. The first reason is the typical size of data and
computation timings needed by these applications. If a single-station implemen-
tation is feasible for small problems, it becomes unrealistic when the user wants

Automatic Introduction of Mobility for Standard-Based Frameworks 815

Fig. 1. Meshing of a ship structure in SALOME

to refine the simulation, which leads to bigger problems. Then, distribution can
help to manage more data (distributed storage), and to speed up computation
(parallelism). The second reason is that the software systems encapsulated in
components may have constraints on the underlying hardware and/or operating
system. For instance, the visualization tool would require a good 3D graphics
processing unit, a numerical solver could be specifically developed for a par-
ticular data parallel architecture, and so on. Then distribution is a mean to
easily satisfy a set of constraints expressed by the different components. Finally,
such component-based industrial design frameworks are aimed, at least in mid-
term, to enable a large scale co-operation between engineers in different, distant
locations.

2.3 The Need for Standardization

We will develop here a short remark about the definition of contracts and in-
terfaces between the components, and between a component and the frame-
work. On the one hand, considering the number of different components to be
integrated, the number of human actors (users, vendors, integrators. . .), the
number of different usage scenarios, it seems necessary to standardize the in-
terfaces upon which the frameworks are built. Indeed, without this effort, the
components are condemned to be incompatible one with the other. On the other
hand, all the actors of this application domain are not necessarily enthusias-

816 G. Häık, J.-P. Briot, and C. Queinnec

tic regarding standards. There is a blatant lack of confidence in major stan-
dardization organizations like OMG. Some people believe that the standards
produced by such organizations are unusable : if they are too exhaustive, then
no software component can implement them completely; if they are too small
then they become useless. Although this description is caricaturized, the ques-
tion raised by the inherent flaws of the standardization processes must be ad-
dressed thoroughly. To illustrate this lack of confidence, let us examine the case of
CAD Services.

2.4 An Example of Standardization Process: OMG CAD Services

In 2001, the OMG has established a working group aimed at creating a set of
standard interfaces for accessing CAD systems encapsulated in a software com-
ponent. The list of contributors proves that this standardization effort meets
a real users’ need (Boeing, Nasa, GE, Ford, . . .). CAD systems vendors, such
as 3DS and OpenCascade, have also participated in this effort. The group has
worked for two years, and frequent meetings were held all around the world,
where harsh discussions and debates took place : there exists a natural an-
tagonism between users and vendors, since users push the standard to be as
exhaustive as possible while vendors want it thinner so they can implement it
more easily. Moreover, there is another natural antagonism between the different
vendors, who try to make the standard ontology as close as possible to their own
products ontology.

As a result of these technical and logistical impediments, the final result
of this effort is disappointing. The working group has only achieved to re-

?

Fig. 2. A Pair of solids hosted by a CAD server

Automatic Introduction of Mobility for Standard-Based Frameworks 817

lease a standard – called CAD Services [14, 3] – for geometric shapes ware-
houses. Shapes are defined in terms of very basic and fine-grained concepts
such as points, vertices, faces, and solids. Moreover, CAD Services hardly in-
cludes any of the most common algorithms usually applied to these data. Con-
sequently, when users want to manipulate geometrical data hosted by such
a CAD server, they need to implement their algorithms on the client side,
while fine-grained data is accessed on the server side. In a distributed envi-
ronment, this is particularly inefficient. For instance, consider a CAD server
hosting the two solids shown in Figure 2. Consider that the solids have an elctri-
cal potential difference, and that the user wants to know whether an electric
arc can occur between the two solids. For this, he has to compute the min-
imal distance from one solid to the other. But unfortunately, the standard
does not include any operation for this algorithm. As we will see in section 6,
we have implemented this example : a client is located in Paris, while the
CAD server is in Nice (1000 km, ping round trip time 20 ms). With a sim-
plified algorithm implemented in the client and a pair of very small shapes
made of 117 vertices hosted in the server, the computation almost takes 40
minutes.

3 Our Approach

Our solution to this problem is to transform in a completely automated manner
the client program so that it sends a piece of mobile code, that we call a mobilet,
to the server. This transformation is made in an optimizing compiler. The input
of the compiler is exactly the same source code than for the example described

Fig. 3. Transformation of client code by the introduction of a mobilet

818 G. Häık, J.-P. Briot, and C. Queinnec

above. The computation of the physical distance decreases from 40 minutes to
just over 2 minutes. The optimized code is about 18 times faster than without
our compiling techniques.

The main challenge addressed by our optimizing compiler is to identify the
interesting pieces of code to be embedded in a mobilet and executed remotely.
The result of the transformation is illustrated on Figure 3. The original code
performs a large number of remote interactions between the client-side and the
server-side components. By executing a mobilet containing part of the client code
– in a dedicated hosting process located on the server side – the remote interac-
tions are transformed into local interactions, resulting in a sensible improvement
of performances.

4 Related Works

Our approach is a variant of automatic partitioning. In a similar way as auto-
matic parallelization transparently analyzes and transforms sequential programs
in order to discover opportunities for introducing parallelism [13, 1, 6], automatic
partitioning (or automatic distribution) tends to analyze and transform central-
ized programs in order to discover opportunities for introducing distribution.
During the past few years, some research has been conducted in this domain, as
reviewed below.

JavaParty [8] is an extension of Java that automatically transforms regular
Java classes into remotely accessible ones. It also provides migration of these
classes’ instances. Users specify which objects are to be made remote/mobile by
tagging their classes with a new modifier (keyword remote). When an object
is migrated, it accesses Java API on the host where it is executed : inputs and
outputs are taken from and sent to the destination host, which can be interpreted
as a problem of correctness of the transformation.

Doorastha [4] is quite similar to JavaParty, but differs from it on the following
issues : Java syntax is not modified, and users insert pragmas in Java com-
ments. Thus, compatibility with genuine Java compilers is preserved. Moreover,
in Doorastha’s object migration model, calls to System.out are forwarded to the
original JVM’s console, which denotes consideration for the problem of correct-
ness. Still, in Doorastha, there is no tracking of every such location-dependent
primitives of the Java API, which leads to inconsistencies.

Pangaea [17] is a distribution system for Java applications that works with both
JavaParty and Doorastha as back-ends. It is based on a static analysis of Java
programs that computes an approximation of the runtime object graph. The
Pangaea user specifies, through a graphical user interface, which objects are tied
to which hosts. From this specification, the system computes a good placement
of every other objects among the anticipated runtime population, by minimizing
the number of repeated remote calls.

Automatic Introduction of Mobility for Standard-Based Frameworks 819

J-Orchestra [19] and Addistant [18] are two automatic partitioning systems
for Java bytecode. J-Orchestra distributes Java classes among the network (with
the help of the user, like in Pangaea), using statistics gathered by a runtime
profiler – in a calibration stage – in order to make placement decisions. The
profiler is applied to the non-transformed program in order to evaluate the com-
putational flows between classes. Moreover, classes that contain platform-specific
code in native format are considered anchored to their host : they can not be
made mobile. A semi-automatic process ensures that no such class will even-
tually be run on the wrong machine. Regarding to our notion of correctness,
J-Orchestra is the only partitioning system that provides a sound mechanism for
distributing code.

Coign [11] is a partitioning system for applications made of COM components.
It combines typical usage scenarios, application and network profilers in order to
make placement decisions, by scrutinizing inter-component communications. As
Coign is designed for client-server distribution, it constrains GUI calls to remain
on client side, while data storage calls remain on the server side.

Compared to the related works reviewed above, one should notice the three
main contributions of our approach. First, our grain of mobility introduction is
atomic : our compiler can make mobile every single statement of the original
program, while systems reviewed above can only distribute COM components
or Java objects. Our fine-grain mobility introduction enables to take advantage
of automatic distribution for slices of code for which previous techniques would
have been constrained by the including component/object.

Second, we provide a formal framework, partially based on first-class envi-
ronments semantics [15], that asserts the conditions of a sound automatic distri-
bution. Other approaches focussed on real-world languages such as Java sources,
Java bytecode or binaries. Thus, the validity of the program transformations
reviewed could not easily be formally proven1, and we even consider that the
majority of them are unsound. We do not present our formal framework in this
paper. Interested readers should refer to [9, 10].

Finally, there is an important difference in the goal of related research and
ours : previous works have focussed on the distribution of a stand-alone, cen-
tralized program that is to be executed on a network of computers. Distribution
is seen as a motivation in itself, coming from the suboptimal usage of com-
puter resources of laboratories and companies or from the fact that a particular
application should be divided between a client side and a server side. On the
contrary, we do not consider stand-alone programs to be candidates for trans-
formation : we study programs that interact with other computers by RPC-like
techniques. Here, distribution is not seen as a goal in itself, but rather as a mean
to minimize the physical distance between a set of distributed resources and their
client code.

1 Because of the technicalities involved in managing real-world languages in a formal
manner.

820 G. Häık, J.-P. Briot, and C. Queinnec

5 A Compiler for Automatic Introduction of Mobility

This section describes the basic techniques of automatic introduction of mobility
into communicating sequential programs.We will first present on a simple example
the static analysis, which is aimed at (i) identifying the pieces of code the compiler
should transform and (ii) gather the information required by the transformation
itself. We will then describe our compiler prototype, and discuss how these tech-
niques should be extended to enable the compilation of higher-order languages.

5.1 Identification of Relevant Pieces of Code

The left part of Figure 4 shows a simple program computing the sum of each
column of a remote matrix m. It is made of two nested loops : the external one
(variable i) ranging over lines, the internal one (variable j) over columns.

When the optimizing compiler is given such a program, if first identifies the
non-movable primitives. In this example, there is only one : printInt. It is not
movable because its effect depends on the host it is executed on : we can not move
it without modifying the semantics of the program. For a given language, there
are many non-movable primitives, and we suppose we statically know all of them.
The next operation performed by the compiler is to propagate the non-movability
property : every piece of code from which a non-movable primitive is accessible, is

program foo {

 declare int i = 0;

 declare int j = 0;

 declare int s = 0;

 declare RemoteMatrix m =..;

 declare length_x, length_y;

 ...

 while (i < length_x) {

 while (j < length_y) {

 s = s + m.get (i,j);

 j++; }

 printInt(s);

 i++; }

}

while (i < length_x) {

 inputs.put("j", j);

 inputs.put("length_y", length_y);

 inputs.put("s", s);

 inputs.put("m", m);

 inputs.put("i", i);

 outputs =

 send_mobilet_to(m, inputs,

 " while (j < length_y) {

 s = s + m.get (i,j);

 j++ ");

 s = outputs.get("s");

 j = outputs.get("j");

 printInt(s);

 i++; }

Fig. 4. Principles of code analysis and transformation

Automatic Introduction of Mobility for Standard-Based Frameworks 821

also marked as non-movable. Thus, the remaining, not marked, pieces of code can
be moved without compromising the global behavior of the program.

Then, the compiler empirically identifies a good candidate for remote execu-
tion. A good candidate is a loop, not marked as non-movable, that performs
method calls to one or more remote objects. In the example of Figure 4, the ex-
ternal loop does not fit this definition, since it is not movable, but the internal loop
– boxed on the figure – does. The compiler will tranform it so it will be embedded
in a mobilet in order to be remotely executed on the server hosting the matrix m.

For this, the compiler needs to compute the set of input and output variables
of the mobilet : the inputs are the variables read by the boxed statement2, and
the outputs are the written variables. In our example, the inputs of the mobilet
are variables j, length_y, s, m, and i. Outputs are variables s, and j.

The compiler has now collected all the relevant data to produce the tran-
formed code, as shown on the right side of Figure 4. The boxed statement on the
left side is transformed into the outer-most box on the right side. The compiler
generates the filling of a variable-value pair list (namely inputs) containing the
input chunk of the environment. It then introduces a remote execution primi-
tive (send_mobilet_to) that will create a mobilet containing the original code
– boxed on the left side –, with the input environment chunk as argument, pro-
ducing an output environment chunk (outputs) that will be restored after the
remote execution. The mobilet will be sent to the computer hosting the remote
object reference m involved in the loop.

5.2 Managing Multiple Remote Calls and References in a Mobilet

When there are more than one remote object reference in the code to be sent,
the following question arises : can the compiler decide what is the appropriate
host to recieve and execute the mobilet ?

Our approach, implemented in the prototype, is to perform a regularity test
at runtime on the references collected in the piece of code : before sending the
mobilet, the runtime support inspects the address of a maximum of 10 references.
If, and only if, all the addresses are the same, the decision is taken to send the
mobilet to that host. This technique has a quite small, bounded overhead. Its
flaw is that the compiler does not necessarily know all the references at the time
when the decision is taken. For instance, in an expression like o.m1().m2(),
there is no possibility to anticipate, before the computation of the expression,
which machine hosts the reciever of m2. There are other cases like this one.

Another approach is to intercept every remote call on one (or more) execu-
tion of the piece of code (without introduction of mobility), and to perform a
statistical breakdown of the addresses of the receiving hosts. An empirical model
can then decide, on the basis of this breakdown, whether it sounds valuable to
send the mobilet for the next executions and where to send it. In comparison to
the previous approach, the advantage of this one is that all the remote calls are
taken into account. Its disadvantages are that it may be more costly because of
the interceptions, and that it needs a calibration stage.
2 Omitting the non-free variables, i.e. those declared in the sub-block of the statement.

822 G. Häık, J.-P. Briot, and C. Queinnec

5.3 A Compiler and Analyser Prototype

Silfa : A Dedicated Toy Language. We have implemented a prototype of
a compiler for automatic introduction of mobility. It compiles a dedicated toy
language called Silfa – a simple imperative sequential language. Silfa users can
define procedures and functions, manipulate data arrays and invoke remote op-
erations on CORBA objects. We have decided to study a toy language since the
size of the analysis code is proportional to the number of grammar rules that
generate the programs : Silfa grammar is made of 45 rules, while Java’s has
more than 200 rules. Notice that Silfa is not object-oriented, that it is not con-
current, and that there are no pointers, and particularly no pointers to function.
We will examine in section 7.1 how to extend the compiler for a higher-order
language.

Compiler Implementation. The Silfa analyser and compiler is illustrated
on Figure 5. When given a program, the compiler generates a set of Java source
code programs, one for the main program, and several mobilets for remote exe-
cution. A regular Java compiler generates afterwards Java executable bytecode.
The Silfa compiler user interface has an option to disable the generation and
connection of the mobilets, so we can benchmark the benefits of introduction
of mobility.

Fig. 5. Prototype of a Mobility Introduction Compiler

Automatic Introduction of Mobility for Standard-Based Frameworks 823

Fig. 6. Experimental network for variation of the latency

6 Experimental Study

The experimental study aims at showing that automatic introduction of mobility
can bridge the gap between efficient and reusable distributed architectures.

6.1 Tested Applications and Experimental Settings

The first experiment we have conducted addresses the following question : there
is a number of iterations performed by the mobilets beyond which the cost
of remote execution is prohibitive, and leads to worst performances; isn’t this
number too big ?

We have designed a small example to answer this question : the example is
made of a server program hosting a remotely accessible two-dimensional matrix
of integers, and a client program writing and reading the entire matrix. We
noticed that for a matrix of 22 × 23, with a round-trip latency3 of 1 ms, the
transformed program is 50% faster than without introduction of mobility. Since
such a matrix is very small compared to the typical data of industrial design
applications, and since this latency is also quite small4, we conclude that the
iteration number threshold above which introduction of mobility is profitable is
small enough for the targeted applications.

The second and most relevant experimentation tends to show how introduc-
tion of mobility can speed up applications that are sensitive to latency. For this,
we have built an experimental network with a configurable latency : it is made
of two different LANs linked by a customized Linux gateway implementing a
packet delaying mechanism. This enables variation of the RTT from 225 μs (a
regular LAN) to 20 ms (a high performance WAN from Paris to Nice).
3 Round-trip time measured by ping.
4 An RTT of 1 ms is a limit timing between the performances of a bad LAN and a

good WAN.

824 G. Häık, J.-P. Briot, and C. Queinnec

Figure 6 shows this experimental network in the settings of a 3D distance
computation through the interfaces of CAD Services, as presented in section 2.4.

We have actually used wireframe shapes only, in order to simplify the 3D
distance algorithm. The sequence executed by client program distance.silfa
is the following :

– Perform a request to the naming service to get a reference to the CAD server
(stesp 1 and 2);

– Ask the CAD server to load the two wireframe shapes (117 vertices each)
from a file repository (steps 3–6);

– Range over the vertices of the first shape and compute its distance with each
of the vertices of the other shape (steps 7–);

– Print the minimum of all computed distances.

This program is very simple and the size of the data (two shapes of 117
vertices) is very small. A real application would certainly generate much more
remote interactions. Thus, if the experimental results are good for this example,
we can expect that they would be even better for a real application.

6.2 Experimental Results

Figure 7 shows the execution timings of the 3D distance computation with and
without introduction of mobility, for a latency varying from 1 to 20 ms. The first

0

500

1000

1500

2000

2500

0 5 10 15 20

RTT (ms)

T
(s

)

Without mobility With mobility

Fig. 7. Execution time vs. round-trip time latency (1 – 20 ms)

Automatic Introduction of Mobility for Standard-Based Frameworks 825

remark is that latency has a very important impact on global execution timings
of the program compiled without introduction of mobility : it varies from 153 s
for an RTT of 1 ms, to 2350 s for 20 ms. With our compiling techniques, the
impact of latency, if not completely null, is dramatically decreased. As a result,
introduction of mobility is very profitable, especially for big values of latency –
and still 20 ms is not such a big latency : from Paris to Tokyo, we have noticed
an average ping of more than 300 ms, between two well connected universities.

Although our compiler is designed for big latencies, it also produces a sen-
sible optimization, for this application, in a LAN setting : with a ping of 225
μs, the optimized program is 25% faster than without introduction of mobility.
Conversely we noticed, as expected, that the possible speed-up depends on the
applications : for the example of the remote matrix presented earlier, a ping of
225 μs leads to higher performances – about 20% faster – without introduction of
mobility. It is also the case for two other applications we have tested, a ranging
over a list and a ranging over a three-dimensional array.

7 Future Works

We consider two directions for continuing our research on introduction of mobil-
ity. The first direction addresses the compilation of higher-order languages. The
second direction addresses the the decision process for sending a mobilet.

7.1 Towards a Compiler for Higher-Order Language

When the analyser computes, for instance, the movability property of expres-
sions and statements throughout a program, it needs to consider the user-
defined subroutines that are called by these expressions and statements. In-
deed, a statement is not movable if it calls a non-movable procedure or func-
tion. Thus, the very first step of the analysis is to associate, for each expres-
sion and statement, the set of called subroutines. This is a context-sensitive
call graph. For Silfa programs, this call graph is easy to compute. But when
the language is provided with pointers to functions, first-class functions, or ob-
jects, the call graph construction is more difficult. For instance, consider an
object-oriented language : for a given method call o.m(), the code that will
be actually executed depends on the dynamic type of o. The knowledge of
the static type of o and the name m of the method is not enough to deter-
mine the associated code. There are techniques to statically build such object-
oriented call graphs [7] : the analyser alternates data flow analysis (to antic-
ipate the dynamic types of the object references) and control flow analysis
(to refine the call graph), until reaching a fixed point. We have not imple-
mented such techniques in our prototype : we have considered that our in-
terprocedural analysis is sufficient for our proof of concept of introduction of
mobility.

Other issues have to be addressed in order to compile a mainstream object-
oriented language like Java, especially concurrency and synchronisation manage-
ment, and exception support.

826 G. Häık, J.-P. Briot, and C. Queinnec

7.2 Improvement of the Dynamic Decision for Remote Execution

We have already presented in section 5.2 a sharper decision process for choosing
the appropriate machine that would recieve and execute a particular mobilet. In
addition, the experimental study shows that the optimizing compiler, for very
small latencies, may produce a slower code. We can decrease this risk by deciding
whether to send the mobilet on the basis of the value of a metrics, that would take
into account some of the different parameters affecting the speed-up : latency
– of course –, by also the number of remote interactions transformed into local
ones, the available computation power of the client and the server, and any other
parameter that a deeper experimental study would show as relevant.

8 Concluding Remarks

We have defined a static analysis method for introducing, in a totally automated
manner, mobility primitives in imperative, sequential, communicating programs.
This method is implemented in an optimizing compiler designed for a simplified
language. Experimental results show that the optimized programs are dramat-
ically more efficient than non-optimized programs, as soon as the latency gets
over a small threshold. Moreover, the correctness of the program transformation
is formally proven [8, 9].

We believe that these kind of compilation techniques can benefit to standard-
ization process. Indeed, we have shown that a CAD Services client can be about
18 times faster when interacting with a server located at 1000 km. One could
argue that if the CAD Services standard would have included a 3D distance
operation, this example would have been meaningless. It is true but it is not the
point. The standard itself is not to blame : we have shown that the designers
cannot anticipate all the usage scenarios of the standard. And algorithms that
are not anticipated must be implemented in the client.

If automatic introduction of mobility reaches a mature status, standard de-
signers could partly rely on the compiler : standards could be more concise, fo-
cussing on data exchange, and would let the compiler move the non-anticipated
algorithms from the client side to the server side for fast execution. It would
renew confidence in standardization organizations like the OMG, since the com-
ponents based on their standards would be both reusable and performant.

References

1. J.R. Allen and K. Kennedy. PFC : A program to convert Fortran to parallel form.
Technical Report MASC TR82-6, Department of Math. Sciences, Rice University,
Houston, 1982.

2. David M. Chess, Colin G. Harrison, and Aaron Kershenbaum. Mobile Agents: Are
they a good idea? In Mobile Object Systems – Toward a Programmable Internet,
LNCS 1222, pages 25–47, Berlin, Germany, 1997. Springer-Verlag.

3. R. Claus and M. Kazakov. CAD Services: An industry standard interface for
mechanical CAD interoperability. In Proceedings of Concurrent Engineering 2003
conference, ISBN 90-5809-622-X, 2003.

Automatic Introduction of Mobility for Standard-Based Frameworks 827

4. M. Dahm. The doorastha system. Technical report B-1-2000, Freie Universität
Berlin, 2000.

5. Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson. Application
Frameworks. In Mohamed E. Fayad, Douglas C. Schmidt, and Ralph E. Johnson,
editors, Building Application Frameworks, pages 29–54, New York, 1999. Wiley
Computer Publishing.

6. Paul Feautrier. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming, 20(1):23–53, 1991.

7. David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph con-
struction in object-oriented languages. In ACM Conference on Object-Oriented
Programming Systems Languages and Applications (OOPSLA), pages 108–124,
1997.

8. Grégory Häık. Introduction of Mobility for Distributed Numerical Simulation
Frameworks : a Formal Study. Technical Report LIP6 2003/008, Université Pierre
et Marie Curie – Laboratoire d’Informatique de Paris 6, Paris, France, 2003.

9. Grégory Häık. Introduction de mobilité dans les applications de conception in-
dustrielle. PhD thesis, Université Pierre et Marie Curie (Paris 6) – Laboratoire
d’Informatique de Paris 6, 2005.

10. B. Haumacher, T. Moschny, and M. Philippsen. http://www.ipd.uka.de/javaparty.
11. Galen C. Hunt and Michael L. Scott. The coign automatic distributed partitioning

system. In Operating Systems Design and Implementation, pages 187–200, 1999.
12. Ralph E. Johnson. Components, frameworks, patterns. In ACM SIGSOFT Sym-

posium on Software Reusability, pages 10–17, 1997.
13. D.J. Kuck, Y. Muraoka, and S.C. Chen. On the number of operations simultane-

ously executable in fortran-like programs and their resulting speed-up. In IEEE
Transactions on Computers C-21, pages 1293–1310, 1972.

14. Object Management Group. Computer Aided Design Services Specification, OMG
document formal/05-01-07, version 1.2, 2005.

15. Christian Queinnec and David De Roure. Sharing code through first-class environ-
ments. In Proceedings of ICFP’96 — ACM SIGPLAN International Conference on
Functional Programming, pages 251–261, Philadelphia (Pennsylvania, USA), 1996.

16. Salome. http://www.salome-platform.org/.
17. André Spiegel. Automatic distribution in pangaea. Proceedings of Workshop on

Communications-Based Systems, CBS 2000, April 2000.
18. Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano. A bytecode

translator for distributed execution of “legacy” Java software. Lecture Notes in
Computer Science, 2072:236–256, 2001.

19. E. Tilevich and Y. Smaragdakis. J-orchestra: Automatic java application partition-
ing. In Proc. of European Conference on Object-Oriented Programming (ECOOP),
Malaga, June 2002.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 828 – 845, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Empirical Evaluation of Dynamic Local Adaptation
for Distributed Mobile Applications

Pablo Rossi and Caspar Ryan

School of Computer Science & IT,
RMIT University Melbourne, Victoria, Australia
{pablo, caspar}@cs.rmit.edu.au

Abstract. Distributed mobile applications operate on devices with diverse
capabilities, in heterogeneous environments, where parameters such as
processor, memory and network utilisation, are constantly changing. In order to
maintain efficiency in terms of performance and resource utilisation, such
applications should be able to adapt to their environment. Therefore, this paper
proposes and empirically evaluates a local adaptation strategy for mobile
applications, with ‘local’ referring to a strategy that operates independently on
each node in the distributed application. The strategy is based upon a series of
formal adaptation models and a suite of mobile application metrics introduced
by the authors in a recent paper. The experiments demonstrate the potential
practical application of the local adaptation strategy using a number of distinct
scenarios involving runtime changes in processor, memory and network
utilisation. In order to maintain application efficiency in response to these
changing operating conditions, the system reacts by rearranging the object
topology of the application by dynamically moving objects between nodes.

1 Rationale

It has been recognised that applications with distributed components differ from their
traditional non-distributed counterparts along a number of important dimensions
including communication type, latency, concurrency, partial versus total failure, and
referencing/parameter-passing strategies [1].

Rapid advances in hardware technology have given current laptop machines the
processing power of servers only a few years old, with smaller mobile devices such as
Intel XScale based PDA’s now having CPU’s running at hundreds of megahertz with
64MB or more of program memory. Phone technology is also rapidly advancing with
current generation phones able to run application code using standardised platforms
such as Java 2 Micro Edition (J2ME) [2], Symbian OS [3], and Microsoft .NET
Compact Framework [4]. As such, an increasingly diverse range of potential devices,
including desktop PCs, laptops, PDAs and smartphones, are capable of running object
oriented application code in a virtual machine environment, and thus actively
participate as part of a distributed mobile application.

With such a diversity of possible devices, previous challenges such as
communication latency, failure mode and concurrency are now complemented by the
issue of maintaining efficiency and quality of service in a significantly more
heterogeneous networking and execution space.

 Empirical Evaluation of Dynamic Local Adaptation 829

Although these challenges appear daunting, Ryan and Perry [5] demonstrated in an
empirical study that there are substantial benefits to be realised by end-users and
application service providers, through better utilisation of the computing power of
client side devices. The primary caveat to such an approach is minimising the
additional developer effort required to produce applications with fatter or adaptive
smart clients that can take advantage of increasing client-side computing resources.

In order to address the challenge of writing distributed applications for
heterogeneous environments whilst minimising the amount of additional developer
effort, a context aware adaptive mobile application framework called MobJeX [6] is
being developed, in conjunction with the work described in this paper, as part of the
Applications Program of the Australian Telecommunications Cooperative Research
Centre (ATcrc). MobJeX is a software development platform with a middleware
component enabling dynamic application adaptation based on object mobility in
response to environmental changes detected by runtime resource monitoring.

In this context, application adaptation refers to the ability of an application, or the
underlying middleware, to modify its behaviour in response to changes in
environmental context, (e.g. available network bandwidth or CPU load). In the case of
MobJeX, adaptation is achieved via object mobility, in which individual system
components, potentially down to the discrete object level, can migrate through the
system whilst maintaining location transparency via remote object references.

Given the challenge of writing applications that can adapt to run more efficiently in
diverse operating environments, and given the existence of a prototypical application
framework that includes fully functional system monitoring and transparent object
mobility, this paper is concerned with deriving, implementing and testing a local
adaptation algorithm using a number of realistic scenarios applied to an actual
distributed application running within the MobJeX framework. The concept of local
adaptation refers to a strategy whereby the algorithm operates independently at each
system node in order to coordinate the adaptation of the distributed application.

The rest of this paper is organised as follows: Section 2 briefly summarises a suite
of metrics and models for mobile applications developed by the authors in recent
work. This serves as a formal basis for the derivation of the local adaptation algorithm
presented in this paper. Section 3 provides a literature review of existing work in
application adaptation of distributed systems, particularly those featuring object
mobility as a means of adaptation. Section 4 details the derivation and operation of
the new adaptation algorithm itself, while section 5 describes a series of empirical
studies using a real application running on the MobJeX framework in order to
demonstrate the potential practical application of the algorithm using a number of
common scenarios. Section 6 finishes with a summary, conclusions and a discussion
of opportunities for future work.

2 Background

In previous work [7], the present authors proposed, and mathematically modelled
using metrics, a number of software and efficiency attributes likely to have an impact
on the execution of mobile applications. This suite of metrics and their representative
models were identified from a critical analysis of the problem domain after a review

830 P. Rossi and C. Ryan

of the metrics literature, and empirically validated through the formulation of concrete
hypotheses expressing the intuitive relationships between the software and efficiency
attributes. Table 6 in the Appendix lists this set of attributes and associated metrics,
and provides a summary of the relationships among them.

The authors also identified a practical application of the metric based models,
involving runtime application adaptation; particularly in terms of runtime object
topology, in which the clustering of application objects and placement of object
clusters to nodes varies in response to changing environmental conditions. Two
decision-making strategies were proposed. Firstly, a global adaptation strategy
whereby the application is analysed as a whole, with optimisation performed in terms
of mapping object clusters to nodes. Secondly, a more dynamic and reactive
technique called local adaptation involves individual nodes moving one object at a
time to other hosts when either a performance or resource utilisation threshold is met.

In this previous study a preliminary adaptation algorithm was presented in order to
illustrate the practical application of the metrics and models within an existing mobile
application framework called MobJeX [6]. This paper extends that work by deriving
and implementing a new local adaptation algorithm that provides a substantial amount
of flexibility in terms of preference and weighting given to individual quality related
attributes. This algorithm, is described in detail in section 4, and evaluated empirically
in section 5 using a number of live scenarios involving different adaptation policies
applied to a real mobile application running on the MobJeX framework.

Before describing the new algorithm it is first appropriate to review existing work on
application adaptation, particularly that involving object mobility. Therefore, the
following section examines a number of previous studies, identifying aspects that have
been incorporated into the work described in this paper, as well as highlighting
limitations and thus providing further rationale for the algorithm presented in section 4.

3 Literature Review – Application Adaptation

Adaptation for distributed applications has received significant research attention in
the last few years. Earlier approaches focused on adaptation for client-server
applications, [8-11], while more recent efforts address adaptation for parallel
applications [12] or generic distributed applications where individual components
reside on peers [13-20].

The common feature of these papers is the monitoring of the execution environment
to detect resource utilisation and capacity changes and trigger an adaptation mechanism
to improve performance. The most commonly monitored resource attributes, which are
measured either in terms of total capacity, utilisation or both, are (in order of
frequency): network, memory, processor and battery. In addition, some of the studies
consider the type of information exchange between [10, 11], or the nature of interaction
among, distributed application components [12, 13, 18].

Note however that none of the existing approaches consider the impact of
adaptation on resource utilisation and performance at the same time, as is done by the
adaptation algorithm described in section 0 and evaluated in section 0 of this paper.
Furthermore, none of these proposals take into account software attributes of
application components nor do they make decisions based on a formal model using
empirically validated metrics, again as is the case of the strategy presented herein.

 Empirical Evaluation of Dynamic Local Adaptation 831

The actual mechanisms employed to achieve adaptation include object migration
[12, 13], the selection of alternative methods [16, 19], the substitution of object
implementations [8, 17, 21], and middleware reconfiguration [9, 14, 15, 20]. In some
cases the information exchanged by components is adapted, rather than the
components themselves [10, 11]. How this is done can depend on factors such as
whether the information is binary or text-based. Another adaptation strategy involves
using location information to place servers close to the clients [18].

The approaches that employ object migration as the adaptation mechanism [12,
13], are the most relevant to the adaptation algorithm presented in this paper.
However, in contrast to this new strategy, neither of the existing approaches is
transparent from the perspective of the application developer, the significance of
which is described in the following paragraph. In fact with the exception of [10, 14],
which are not concerned with adaptation via object migration, none of the existing
adaptation approaches are application transparent.

Jing [22] identifies three broad classes of application adaptation. First is laissez-
faire adaptation, a strategy in which the application is entirely responsible for
triggering and implementing adaptation. Second is application aware adaptation,
wherein applications explicitly interact with middleware services to facilitate
adaptation. Last is application transparent adaptation, which is the most desirable but
most difficult to achieve in practice. In this case, both the decision to trigger
adaptation and the strategy for executing it are controlled independently of the
application via middleware. This type of adaptation, which is the subject of this paper,
is the most appealing from the perspective of the software developer, since the
software can be implemented using conventional techniques while still realising the
potential benefits of adaptation.

Another point of distinction between the reviewed studies is that there is no clear
tendency with regards to the scope of adaptation. Some approaches adapt the
application as a whole [9-11, 14-16], while others include the ability to adapt discrete
application components [8, 12, 13, 17-21]. The latter approach is more flexible since
it offers more adaptation options and finer granularity, but is more complex since it
requires a more sophisticated implementation mechanism.

Finally, none of the previous approaches, with one exception [12], distinguish
between local (or decentralised) and global (or centralised) adaptation as discussed in
the previous section. Moreover, in contrast to this paper, the study by Garti et al. [12]
is concerned with multi-threaded applications and tries to achieve better performance
by distributing application threads to different machines and executing them
concurrently.

4 Local Adaptation Strategy

This section describes the main contribution of this paper, which is a local adaptation
algorithm that optimises runtime object topology, through the clustering of
application objects and placement of object clusters to nodes, in response to changing
environmental conditions.

832 P. Rossi and C. Ryan

do {
maxScore = 0.5
maxObject = null, maxNode = null
for each mobile object o in local node do

for each remote node n do
score = evaluate(o, n)
if (score > maxScore) then

maxScore = score
maxObject = o
maxNode = n

end if
end for

end for
if (maxScore > 0.5) then

 move maxObject to maxNode
end if

while (maxScore > 0.5)

Fig. 1. Local Adaptation Algorithm, Basic Flow of Control

4.1 Basic Algorithm

At the abstract level, the local adaptation algorithm operates according to Fig. 1 in
which individual nodes move objects to other hosts when criteria related to efficiency
(performance versus resource utilisation) [23] are met. Although the basic working
loop is similar to that presented in [7], the scoring function evaluate(), is
significantly more capable in terms of the following: Firstly, this algorithm allows
multiple efficiency sub-attributes and their inter-relationships to be considered in a
single pass. Secondly, the algorithm allows specific sub-attributes to be prioritised
through weighting (e.g. response time and thus performance could be favoured over
network utilisation). Finally, the algorithm allows the specification of the extent to
which a certain attribute should be favoured over others. For example, should
performance be increased by a small amount given a high cost in resource utilisation?

The algorithm evaluates, using metric-based models [7], possible migration options
based on the available local mobile objects and remote nodes. This can be used for
ranking purposes, or for selecting the highest score provided it is greater than a
predetermined threshold, in order to establish which object migration to carry out.
The algorithm stops when the highest score no longer exceeds the threshold or when
there are no more local mobile objects.

An explanation of how the sub-algorithm ‘evaluate’ produces its scores is given in
the following section.

4.2 Using Metrics to Calculate Decision Making Scores

There are a number of possible general approaches to decision making based on
multiple attributes, which differ in terms of how they specify criteria for the decision
making process. These include linear [24] and non-linear [25] approaches which can
be specified for the general case (independent of efficiency) according to equations 1
and 2 respectively.

 Empirical Evaluation of Dynamic Local Adaptation 833

S = (W1 I1 + W2 I2 + ... + Wm Im) (1)

In order to evaluate such functions, and thus produce a decision making score (S)
that can be used to rank and execute actions, the level of satisfaction of the individual
indicators (Ii) must be calculated. This is done by normalising the values to the unitary
interval (0 Ii 1) where: 0.5 means the indicator just equals its satisfaction criterion;
> 0.5 means that as the value of the indicator increases towards 1, the greater it
satisfies the individual criterion up to the maximum level of satisfaction of 1,
corresponding to the maximum measurable value for the metric associated with the
indicator. Conversely, < 0.5 means that as the indicator value decreases towards 0, the
less it satisfies the criterion down to the minimum level of satisfaction of 0,
corresponding to the minimum possible value for the associated metric.

Furthermore, both the linear and non linear variations of the aggregate decision
making function include weights (Wi), to represent the relative importance of the
individual indicators when calculating the decision making score S. A further
requirement of both functions is that (W1+ W2 + ... + Wm) = 1, where Wi 0 for i = 1
... m.

Equation 2 is a non-linear ‘weighted power mean’ [25], which in addition to
allowing the specification of relative importance via weights, also allows the
specification of whether an indicator is mandatory, alternative, or neutral.

rr
mm

rr IWIWIWrS /1
2211)()(+++= (2)

where – r + , S(–) = min (I1 , I2, ... , Im) and S(+) = max (I1 , I2, ... , Im).

The power r is a real number parameter selected to achieve the desired indicator
relationship of the aggregation function. Equation 2 is equivalent to equation 1 when r
= 1, which models the neutrality relationship where all indicators are considered
equally with significance attributed only to their value and weighting. Equation 2 is
supra-additive for r > 1, which models indicator replaceability (or disjunction)
meaning that one or more higher indicators are favoured at the cost of lower
indicators. Alternatively, it is sub-additive for r < 1 (with r 0), thereby modelling
indicator simultaneity (or conjunction), thus favouring the situation where there are
no low indicators.

For example, consider the following situation where S = (0.5 I1
r + 0.5 I2

r)1/r. Table
1 shows the effect of r on S for different values of I1 and I2. Firstly, when r = 1, S is
the average of I1 and I2. Secondly, when r > 1, S is greater than the average (i.e. closer
to the highest indicator I2). Finally, when r < 1, S is less than the average (i.e. closer to
the lowest indicator I1).

The ‘weighted power mean’ approach can be specialised with the efficiency sub-
attributes (indicators) resource utilisation and response time, to model decision

Table 1. Effect of the parameter r on the scoring model S

r I1 I2 S I1 I2 S I1 I2 S
10 0.5 0.5 0.5 0.4 0.6 0.56 0.1 0.9 0.84
1 0.5 0.5 0.5 0.4 0.6 0.50 0.1 0.9 0.50

-10 0.5 0.5 0.5 0.4 0.6 0.43 0.1 0.9 0.11

834 P. Rossi and C. Ryan

making and thus facilitate adaptation based on efficiency (Equations 3 and 4). These
specific equations serve as the computational basis for the sub-algorithm ‘evaluate’ in
Fig. 1 and the empirical studies of the adaptation behaviour of the local adaptation
algorithm, which are presented in the following section. It should be noted that similar
equations could be specified for other quality attributes (and their sub-attributes) as
has been done in the case of web applications [26]. This is however beyond the scope
of this paper and thus quality attributes such as reliability, which could be relevant to
local adaptation, are left as the subject of future work.

rr
RTRT

r
PUPU

r
NUNU

r
MUMUE IWIWIWIWS /1)(+++= (3)

Ii = 0.5 + 0.5 (d – k) / (2 × max) (4)

where d = rud or rtd, k = ruk or rtk (see Equations 5 and 6 in the Appendix), and max =
rumax or rtmax.

5 Empirical Evaluation

A series of empirical studies were conducted by deploying a prototype of a Taxi
Dispatching System (TDS) on the MobJeX framework [6], in order to evaluate the
adaptation algorithm presented in the previous section. The TDS application was
chosen because it is simple enough to be described within this paper, but complex
enough in terms of its design, functionality and object topology, to provide
meaningful evaluation of the metric-based adaptation strategy presented in the
previous section. Furthermore, the TDS application has sufficient scope to suggest
explicit directions for future work. Note that the TDS application design is based on
five main objects (a location manager [lm], client manager [cm], job manager [jm],
taxi manager [tm], and user interface [ui]). A description of TDS in terms of its
functional requirements and main use cases appears in [7].

Software metrics were collected offline via a static analysis of the TDS source
code, whereas resource utilisation and performance metrics were obtained online
during execution via the resource monitor component of MobJeX. Furthermore, the
actual adaptation decisions produced by the local adaptation algorithm of section 0
were carried out using MobJeX to transparently (i.e. without impacting application
state) migrate objects between nodes at runtime. The experimentation was conducted
in a research laboratory with a 100 Mbps Ethernet network, which was isolated from
the rest of the university to eliminate the confounding effect of external traffic.
Furthermore, since the TDS application was relatively small with four main mobile
objects1 (and a non-mobile object: [ui]), we used a small machine cluster with three
identical nodes (1 GHz, 512MB, Windows XP) and used software to cap the network
bandwidth at 11 Mbps to emulate a slower 802.11b wireless network.

Note that it is not the intention of this paper to test the efficiency or accuracy of the
metrics collection process itself but rather the effectiveness of the local adaptation
algorithm when fed appropriate metrics. It is the subject of future work to look at the

1 These main objects were effectively object clusters since they held references to a number of
smaller worker objects that were also moved as part of the migration process of MobJeX.

 Empirical Evaluation of Dynamic Local Adaptation 835

impact of the actual metrics collection process and how this must be factored into the
decision making process when deciding if a given object topology is more efficient
than another. Furthermore, a working implementation of this strategy will require the
existence of some protocol among the nodes to guarantee the execution of the
adaptation at only one node at any given time. This together with careful selection of
parameters will suffice in most cases to prevent undesirable side effects such as
system thrashing and ‘pinball’ migration (i.e. an object keeps migrating between two
or more nodes).

Three separate experiments, each testing a number of variations of the tuning
parameters, were conducted in order to test the main characteristics of the local
adaptation algorithm. These experiments involved adaptation in response to changes
in processor, memory and network utilisation respectively, with varying prioritisation
of performance versus resource utilisation. In addition, different tuning parameters for
the algorithm, in terms of attribute weights and values of ‘r’ (see equation 2 in section
0) were chosen in order test the impact of parameter choices.

For each of the experiments the following efficiency metrics were collected: 1)
Performance in terms of average scenario response time in milliseconds; 2) The
standard deviation of processor utilisation across nodes 3) The standard deviation of
memory utilisation across nodes 4) The standard deviation of network utilisation
across nodes. Note that the standard deviation measurements of 2-4 served as an
indication of resource utilisation in terms of load balance, where a lower standard
deviation represented a more even balance across nodes. Additionally, all the resource
utilisation measurements were presented as percentages, derived from the ratio
usage/capacity of resources, for a single node (see Table 6 in the appendix).

These four measurements serve as dependent variables for the experiments and
were collected at three different stages: 1) Before a change in resource utilisation has
occurred (Initial State); 2) After an event has been triggered to signify a change in the
utilisation of a resource, where no adaptation has been performed (No-Adaptation
Final State); and 3) After the same event, but where the local adaptation algorithm has
been executed to optimise the object topology of the application in response to the
change in resource utilisation (Adaptation Final State). This data allows us to directly
measure the effectiveness of the local adaptation algorithm in terms of maintaining
efficiency in a dynamically changing environment.

5.1 Adapting to Changes in Processor Utilisation

The experiment in this section evaluates the impact of the adaptation strategy on
efficiency when processor utilisation changes. This was done using the following
linear (r = 1) scoring model that applies equal weights to performance and processor
utilisation, whilst ignoring the other indicators:

S = (0 IMU + 0 INU + 0.5 IPU + 0.5 IRT), with r = 1.

Measurements were taken based on the following three states, with thresholds rtk =
1ms and ruk = 1% used to invoke the maximum adaptation outcome.

• Initial State (IS): TDS executing centrally using only node [Z].
• Event: The processor load in node [Z] increases significantly (up to 90%

utilisation).

836 P. Rossi and C. Ryan

• Adaptation Final State (AFS): TDS executing in a distributed manner using nodes
[X], [Y] and [Z].

• No-Adaptation Final State (NFS): the same as IS.

Expected outcome. After the event where processor utilisation of node [Z] increases to
90% utilisation, the adapted application should: 1) Perform better than the non-
adapted state due to the extra processor time available, and 2) Processor usage should
be more balanced, thus resulting in improved overall efficiency.

Fig. 2. Algorithm trace and the corresponding schematic diagram for scoring model S

Algorithm Trace. Fig. 2(a) shows the complete algorithm trace for model S and Fig.
2(b) illustrates the adaptation (migration) process schematically.

In the first decision, [tm] and [lm] get high IRT because their methods are
characterised by a high Number of Executed Instructions (NEI, see Appendix) and a
low Size of Serialised Parameters (SSP). This implies a low invocation time (IT) and
thus the overhead of a remote invocation becomes less significant since the Execution
Time (ET), which does not change significantly upon migration, is the main
contributor to overall Response Time (RT) since RT = ET + IT. However, [tm] gets a
higher IPU than [lm], and hence a higher decision score S, due to the higher Number of
Invocations (NI) of its methods.

At the time of the second decision, following the first migration, node [Z] is less
loaded. Therefore, moving further objects affects performance negatively (IRT).
Consequently, objects such as [cm] with high NEI but low NI score higher than
objects such as [lm] since they do not significantly affect performance but do improve

M. [tm] to [X] => S: 0.6322
M. [tm] to [Y] => S: 0.6322
M. [lm] to [X] => S: 0.5599
M. [lm] to [Y] => S: 0.5599
M. [jm] to [X] => S: 0.4491
M. [jm] to [Y] => S: 0.4491
M. [cm] to [X] => S: 0.5146
M. [cm] to [Y] => S: 0.5146
>> Migrate [tm] to [X]
M. [lm] to [X] => S: 0.5058
M. [lm] to [Y] => S: 0.5016
M. [jm] to [X] => S: 0.4848
M. [jm] to [Y] => S: 0.4770
M. [cm] to [X] => S: 0.4930
M. [cm] to [Y] => S: 0.5061
>> Migrate [cm] to [Y]
M. [lm] to [X] => S: 0.5052
M. [lm] to [Y] => S: 0.4999
M. [jm] to [X] => S: 0.5015
M. [jm] to [Y] => S: 0.4819
>> Migrate [lm] to [X]
M. [jm] to [X] => S: 0.5066
M. [jm] to [Y] => S: 0.4732
>> Migrate [jm] to [X]

(a) (b)

X

Y

Z

c

ui

jm

tm

lm

1

2

4
3

cm

 Empirical Evaluation of Dynamic Local Adaptation 837

processor load balance (IPU). [cm] is not coupled to [tm], so locating [cm] in a
different node ([Y]) does not add remote invocations (which would affect
performance) but does improve load distribution.

In the third decision, moving [lm] to node [X] does not negatively affect
performance due to remote invocations because [lm] is only coupled to [tm], which
resides in node [X], thus slightly improving processor load distribution.

Finally, in the last decision, moving [jm] to node [X] leaves performance at the
same level, since it is mostly coupled to [tm], but slightly improves processor
utilisation, by scoring just above the decision making threshold of 1%.

Results. Table 2 shows the efficiency metrics for the 3 states described in this section.
As expected, after the environmental change and subsequent adaptation, the execution
of the adapted application performs considerably better than the non-adapted
application and the processor usage is more balanced, thus resulting in improved
overall efficiency.

Table 2. Efficiency metrics for scoring model S

IS AFS NFS
Avg. SRT 13.78 ms 24.76 ms 40.09 ms
Std. Dev. PU 37.70 % 43.45 % 51.61 %

5.2 Adapting to Changes in Memory Utilisation

The experiments in this section evaluate the impact of the adaptation strategy on
efficiency attributes, when memory utilisation changes. Therefore, in the scoring
models of this section different weights were assigned to the memory utilisation and
response time indicators, while the weight of network and processor utilisation
remained fixed at zero. The algorithm was tested with various tuning parameters in
terms of indicator weights and values of the parameter r as described by the following
five variations: 1) Neutral model with equal weights; 2) Neutral model with
performance favoured over memory utilisation; 3) Neutral model with memory
utilisation favoured over performance; 4) Disjunctive model; and 5) Conjunctive
model. The following memory utilisation event and three states apply to all five
variations of the scoring function.

• Initial State (IS): TDS executing centrally using only node (Z).
• Event: The amount of free memory in node [Z] decreases significantly (by 256

MB).
• Adaptation Final State (AFS): TDS executing in a distributed manner using nodes

[X] and [Z].
• No-Adaptation Final State (NFS): the same as IS.

In all cases the thresholds rtk = 1 ms and ruk = 1% were used to invoke the maximum
adaptation outcome.

Neutral model with equal weights. S1 = (0.5 IMU + 0 INU + 0 IPU + 0.5 IRT), r = 1. This
scoring model tests how the algorithm reacts when the same weight is assigned to

838 P. Rossi and C. Ryan

performance and memory utilisation, and the other indicators are ignored (value of 0),
for the linear case of r = 1.

Expected outcome. After the event where memory utilisation of node [Z] increases by
256MB, the adapted application should perform better than the non-adapted state due
to less paging activity, and the memory usage should be more balanced, thus resulting
in improved overall efficiency.

Algorithm Trace. Fig. 3 shows a partial algorithm trace for model S1. Note that for
brevity, the final stages of the trace, where no migration decisions occur (S1 < 0.5),
are omitted. The fact that [cm] gets the highest score can be explained in two parts.
Firstly, [cm] is characterised by the highest Object Memory Size (OMS, see
Appendix), therefore, the decision to move this object implies a larger mud, which in
turn implies a larger Imu (see equation 4). Furthermore, the methods of [cm] are
characterised by a low Number of Invocations (NI) and thus moving this object does
not imply a low rtd, thereby avoiding a low Irt. Note that the performance indicator Irt is
considered in the context of overall Scenario Response Times (SRT), following a
chain of method calls, rather than the individual response time of a single method.
Consequently, the low number of invocations has a minimal effect on the overall
performance of the application scenario to which the method calls belong. Finally,
although another object [lm], scores slightly better for Irt, it does not balance the load
as much as [cm], therefore scoring a lower Imu and thus a lower overall score S1.

Move [tm] to [X] => S: 0.4938
Move [tm] to [Y] => S: 0.4938
Move [lm] to [X] => S: 0.5248
Move [lm] to [Y] => S: 0.5248
Move [jm] to [X] => S: 0.3388
Move [jm] to [Y] => S: 0.3388
Move [cm] to [X] => S: 0.5266
Move [cm] to [Y] => S: 0.5266
>> Migrate [cm] to [X]
...
>> No Migration

Fig. 3. Algorithm trace for model S1

Table 3. Efficiency metrics (scoring model S1)

IS AFS NFS
Avg. SRT 19.57

ms
26.97

ms
43.09

ms
Std. Dev.

MU
9.14 % 34.12 % 37.54 %

Results. Table 3 shows the efficiency metrics for the 3 states described above. As
expected, after the environmental change and subsequent adaptation, the execution of
the adapted application performs considerably better than the non-adapted application
and the memory usage is marginally more balanced, hence resulting in improved
overall efficiency.

Neutral model with performance outweighing memory utilisation
S2 = (0.4 IMU + 0 INU + 0 IPU + 0.6 IRT), r = 1. This scoring model tests how the algorithm
reacts when different weights are assigned to the indicators of interest, with
performance considered more important than memory utilisation, again for the neutral
(linear) case where r = 1.

 Empirical Evaluation of Dynamic Local Adaptation 839

Expected outcome. This should be similar to the previous case; however performance
should be higher than S1, possibly at the expense of memory load balance across
nodes.

Algorithm Trace. Fig. 4. shows the partial algorithm trace for model S2. Since
performance is more important (i.e. has a higher weight) than memory usage, objects
with a high performance indicator IRT score higher overall for S2 because of the
additional weighting compared with IMU. In this case, [lm] gets the highest IRT because
although its methods are characterised by a high Number of Executed Instructions
(NEI), the low Size of Serialised Parameters (SSP) implies a lower invocation time
(IT) and thus the overhead of a remote invocation becomes less significant since the
Execution Time (ET), which does not change upon migration, is the main contributor
to overall Response Time (RT) since RT = ET + IT.

Results. Table 4 shows the efficiency metrics for the 3 application states. Again,
overall efficiency is improved in the adapted versus non-adapted state, however as
predicted, the performance gain is greater and the memory load less balanced than
model S1.

M. [tm] to [X] => S: 0.4895
M. [tm] to [Y] => S: 0.4895
M. [lm] to [X] => S: 0.5290
M. [lm] to [Y] => S: 0.5290
M. [jm] to [X] => S: 0.3071
M. [jm] to [Y] => S: 0.3071
M. [cm] to [X] => S: 0.5288
M. [cm] to [Y] => S: 0.5288
>> Migrate [lm] to [X]
...
>> No Migration

Fig. 4. Algorithm trace for scoring model S
2

M. [tm] to [X] => S: 0.5152
M. [tm] to [Y] => S: 0.5152
M. [lm] to [X] => S: 0.5040
M. [lm] to [Y] => S: 0.5040
M. [jm] to [X] => S: 0.4974
M. [jm] to [Y] => S: 0.4974
M. [cm] to [X] => S: 0.5154
M. [cm] to [Y] => S: 0.5154
>> Migrate [cm] to [X]
...
>> No Migration

Fig. 5. Algorithm trace for scoring model S
3

Table 4. Efficiency metrics (scoring model S2)

IS AFS NFS
Avg. SRT 19.57 ms 23.90 ms 43.09 ms
Std. Dev. MU 9.14 % 36.10 % 37.54 %

Neutral model with memory utilisation outweighing performance
S3 = (1 IMU + 0 INU + 0 IPU + 0 IRT), r = 1. This scoring model is similar to S2, however
in this case memory utilisation is completely favoured over performance, with a
weight of one and zero respectively.

Expected Outcome. After the event, the memory utilisation of the adapted execution
should be more balanced than the non-adapted execution, possibly at the expense of
performance.

Algorithm Trace. The algorithm trace for model S3 can be seen in Fig. 5. Since
memory utilisation is more important than performance, objects with a high IMU score

840 P. Rossi and C. Ryan

a greater value for S3 than objects such as [lm] which have a high IRT but lower IMU.
[cm] gets the highest IMU for the same reason as S1. However, although the indicator
values change, the adaptation decision remains the same as S1.

Results. The results are not repeated since the migration decision, and thus the results,
are the same as S1 (Table 3). This occurred because although the different weighting
affected the indicator scores, the size of the objects compared with the memory
capacity (MC) of the nodes, and the size of the memory utilisation event (256MB),
was not significant enough to exceed the threshold of 1% after the initial case of
moving [cm].

Disjunctive Model. S4 = (0.5 IMU

r + 0 INU

r + 0 IPU

r + 0.5 IRT

r)1/r, r = 8.

Expected outcome. Although the indicators of performance and memory usage are
equally important, setting r > 1 means that a big improvement on one attribute, even
at the cost of deterioration of another, is preferred over a small or medium
improvement on both attributes. Therefore, after the event, adapted execution should
perform either significantly better than the non-adapted execution or the memory
usage should be considerably more balanced.

Algorithm Trace. The algorithm trace for model S4 can be seen in Fig. 6. The decision
to move [lm] achieves the highest value for a relevant indicator, and thus its
associated decision score S4 is also higher.

M. [tm] to [X] => S: 0.4970
M. [tm] to [Y] => S: 0.4970
M. [lm] to [X] => S: 0.5276
M. [lm] to [Y] => S: 0.5276
M. [jm] to [X] => S: 0.4562
M. [jm] to [Y] => S: 0.4562
M. [cm] to [X] => S: 0.5274
M. [cm] to [Y] => S: 0.5274
>> Migrate [lm] to [X]
...
>> No Migration

Fig. 6. Algorithm trace for scoring model S
4

M. [tm] to [X] => S: 0.4757
M. [tm] to [Y] => S: 0.4757
M. [lm] to [X] => S: 0.5075
M. [lm] to [Y] => S: 0.5075
M. [jm] to [X] => S: 0.1814
M. [jm] to [Y] => S: 0.1814
M. [cm] to [X] => S: 0.5189
M. [cm] to [Y] => S: 0.5189
>> Migrate [cm] to [X]
...
>> No Migration

Fig. 7. Algorithm trace for scoring model S
5

Results. Again, the results are not repeated since the migration decision, is the same as
S2 (Table 4). This is in line with the expected outcome since the highest score is
produced by the migration option with the highest indicator (IRT).

Conjunctive model. S5 = (0.5 IMU

r + 0 INU

r + 0 IPU

r + 0.5 IRT

r)1/r, r = -100.

Expected outcome. Although the indicators of performance and memory usage are
equally important, setting r < 1 produces a lower score if any of the indicators is low
regardless of whether any of the other attributes have a high value. Hence, a small or
medium improvement on both attributes is preferred over a big improvement on one

 Empirical Evaluation of Dynamic Local Adaptation 841

at the cost of deterioration of another. Therefore, the adapted application should be
more efficient overall than the non-adapted application.

Algorithm Trace. Fig. 7 illustrates the algorithm trace for model S5. The decision to
move [cm] achieves the highest minimum value for a relevant indicator, and thus its
associated decision score S5 is also higher.

Results. Here the value of r = -100 was chosen since it demonstrated that even an
extremely low value of r did not change the result from the default case of r = 1, since
this case had already chosen the migration option that produced the result with the
highest minimum indicator. As such, the scenario results, which were the same as the
linear case for S1 in Table 3, were according to expectation.

5.3 Adapting to Changes in Network Utilisation

This final scenario assigns different weights to the network utilisation and response
time indicators, while fixing the weights of memory and processor utilisation at zero,
in order to test the ability of the local adaptation algorithm to respond to changes in
network utilisation. As in the previous sub-section, the algorithm was tested with
various tuning parameters in terms of indicator weights and values of the parameter r
as follows:

• S'1 = (0.5 IRT
r + 0 IPU

r + 0 IMU
r + 0.5 INU

r)1/r, r = 1
• S'2 = (0.1 IRT

r + 0 IPU
r + 0 IMU

r + 0.9 INU
r)1/r, r = 1

• S'3 = (0.9 IRT
r + 0 IPU

r + 0 IMU
r + 0.1 INU

r)1/r, r = 1
• S'4 = (0.5 IRT

r + 0 IPU
r + 0 IMU

r + 0.5 INU
r)1/r, r = 100

• S'5 = (0.5 IRT
r + 0 IPU

r + 0 IMU
r + 0.5 INU

r)1/r, r = -100

As in the previous cases the thresholds rtk = 1 ms and ruk = 1% were used to invoke
the maximum adaptation outcome. The following three states apply to all five
variations based on a network utilisation event:

• Initial State (IS): TDS executing in a distributed manner using nodes [X] and [Z]
as in AFS of the previous section.

• Event: Increased network utilisation causes the network bandwidth available to
node [X] to decrease significantly to 0.55 Mbps.

• Adaptation Final State (AFS): TDS executing in a distributed manner using nodes
[Y] and [Z].

• No-Adaptation Final State (NFS): the same as IS.

Fig. 8 shows the complete algorithm trace for model S'1, while Table 5 shows the
efficiency metrics for the three states described above. As expected, after the
environmental change and subsequent adaptation, the execution of the adapted
application performs better than the non-adapted application, and in fact even better
than the initial execution, while network usage becomes more balanced, resulting in
improved overall efficiency.

Note that in this scenario it was not possible to change the outcome of the
algorithm by varying either the weights or the parameter r, since the initial state
provides the algorithm with only two migration options, as can be seen in Fig. 9.

842 P. Rossi and C. Ryan

Since the option to move [cm] to [Y] scores better for both of the efficiency indicators
INU and IRT, the decision scores S'1 to S'5 were always higher for the decision to move
[cm] to [Z] and thus tuning the algorithm based on different values did not have an
effect on the outcome in this case. This is not problematic since this scenario has both
demonstrated the ability of the adaptation algorithm to improve efficiency in response
to a change in network utilisation, and shown that where there is a clearly preferential
decision, the weighting and tuning parameters will not necessarily affect the
adaptation outcome.

Table 5. Efficiency metrics for model S'
1

IS AFS NFS
Avg. SRT 39.34 ms 38.09 ms 43.35 ms
Std. Dev.
NU

1.86 % 3.12 % 36.90 %

M. [cm] to [Y] => S: 0.5786
M. [cm] to [Z] => S: 0.5468
>> Migrate [cm] to [Y]

Fig. 8. Algorithm trace for model S'
1

Fig. 9. Schematic diagram for model S'
1

6 Conclusions

This paper has proposed and empirically evaluated a local adaptation strategy for
distributed mobile applications, which is based on a series of formal models and a
suite of metrics for mobile applications introduced by the authors in a recent paper.

The experiments demonstrated a potential practical application of the local
adaptation algorithm using a number of distinct scenarios involving runtime changes
in processor, memory and network utilisation. Improvements in the efficiency of the
adapted distributed application were demonstrated, in comparison with the non
adapted state, in response to these changes in resource utilisation. The adaptation
process itself involved the rearrangement of object topology, achieved by dynamically
moving objects between nodes, based on metrics that characterised: 1) The software
components of the application in terms of attributes such as method invocation
overhead, method intensity, size of serialised parameters, serialised object size etc. 2)
Efficiency in terms of performance (response time), and resource utilisation attributes
representing the percentage utilisation of specific resources such as processor,
network or memory; and 3) Algorithm tuning parameters allowing preference to be
given to specific attributes and their indicators, as well as the decision to favour
higher attribute values over lower ones.

The authors believe that the application of the local adaptation algorithm, as well
as the new set of metrics upon which it is based, are both novel and show significant
potential thus serving as a significant contribution. Nevertheless, there are a number

X Y

Z

 cm 1

2

ui

jm tm lm

 Empirical Evaluation of Dynamic Local Adaptation 843

of limitations of the present study, as well as related topics that are beyond the scope
of this paper, which can serve as the basis for ongoing work.

Firstly, although this paper studies a real application running on an existing
framework for distributed mobile applications, future work could look at a larger
example application using an increased number of nodes and a more diverse range of
adaptation scenarios.

Secondly, the overhead of the metrics collection and evaluation process was not
explicitly considered and thus although it was demonstrated that the adaptation
algorithm could produce favourable results, future work will examine the optimisation
of the collection and evaluation process so as to not offset the gains achieved through
adaptation via object mobility. This will be done by integrating the metrics collection
strategies and the local adaptation algorithm into the MobJeX framework, thus
providing a test bed for further optimisation of this process.

Thirdly, while this paper has considered efficiency in terms of performance, and
memory, network, and processor utilisation; there are other efficiency factors that
could be considered such as physical storage, and financial cost where for example,
contrary to a fixed local area network, a 3G or wireless network could incur a per data
unit charge. Furthermore, power consumption, especially in terms of battery usage in
mobile devices, is another important area for future study since the decision to favour
the utilisation of the previously considered resources can have a direct impact on
power consumption [27].

Finally, it should be noted that similar metrics and indicators could be specified for
other quality attributes (and their sub-attributes) such as reliability [23], in which case
adaptation could be performed based on more than one quality attribute.

Acknowledgements

This work is part of the Applications Program of the Australian Telecommunications
Cooperative Research Centre: http://www.atcrc.com/.

References

1. Emmerich, W., Engineering Distributed Objects: Wiley. (2000).
2. Sun Microsystems. Java 2 Micro Edition. URL: http://java.sun.com/j2me/. [May 2005]
3. Symbian Ltd. Symbian OS. URL: http://www.symbian.com/. [May 2005]
4. Microsoft Corporation.NET Compact Framework. URL: http://msdn.microsoft.com/

mobility/prodtechinfo/devtools/netcf/. [May 2005]
5. Ryan, C. and S. Perry, Client/Server Configuration in a Next Generation Internet

Environment: End-User, Developer, and Service Provider Perspectives. In Proceedings:
2003 Australian Telecommunications, Networks and Applications Conference (ATNAC).
Melbourne, Australia. (2003)

6. Ryan, C. and C. Westhorpe, Application Adaptation through Transparent and Portable
Object Mobility in Java. In Proceedings: CoopIS/DOA/ODBASE (LNCS 3291). Larnaca,
Cyprus: Springer-Verlag. p. 1262-1284 (2004)

7. Ryan, C. and P. Rossi, Software, Performance and Resource Utilisation Metrics for
Context-Aware Mobile Applications. In Proceedings: International Software Metrics
Symposium. Como, Italy: IEEE Computer Society. (2005)

844 P. Rossi and C. Ryan

8. Segarra, M. and F. Andre, A Framework for Dynamic Adaptation in Wireless
Environments. In Proceedings: Technology of Object-Oriented Languages and Systems:
IEEE. p. 336-347 (2000)

9. Aziz, B. and C. Jensen, Adaptability in CORBA: The Mobile Proxy Approach. In
Proceedings: International Symposium on Distributed Objects and Applications: IEEE
Computer Society. p. 295-304 (2000)

10. Fox, A., et al., Adapting to network and client variation using active proxies: Lessons and
perspectives. IEEE Personal Communications. 5(4): p. 10-19 (1998)

11. Noble, B., System Support for Adaptive, Mobile Applications. IEEE Personal
Communications. 7(1): p. 44-49 (2000)

12. Garti, D., et al., Object Mobility for Performance Improvements of Parallel Java
Applications. Parallel and Distributed Computing. 60(10): p. 1311-1324 (2000)

13. Ben-Shaul, I., et al., Dynamic Self Adaptation in Distributed Systems. In Proceedings: Self-
Adaptive Software: First International Workshop. Oxford: Springer. p. 134-142 (2000)

14. Blair, G.S., et al., A principled approach to supporting adaptation in distributed mobile
environments. In Proceedings: Software Engineering for Parallel and Distributed Systems.
International Symposium on: IEEE. p. 3-12 (2000)

15. Capra, L., W. Emmerich, and C. Mascolo, CARISMA: context-aware reflective
middleware system for mobile applications. Software Engineering, IEEE Transactions on.
29(10): p. 929-945 (2003)

16. Chang, F. and V. Karamcheti, Automatic configuration and run-time adaptation of
distributed applications. In Proceedings: Ninth IEEE International Symposium on High
Performance Distributed Computing. Pittsburg, Pennsylvania. p. 11-20 (2000)

17. Moura, A., et al., Dynamic support for distributed auto-adaptive applications. In
Proceedings: Workshop on Aspect Oriented Programming for Distributed Computing
Systems. Vienna, Austria: IEEE. p. 451-456 (2002)

18. Silva, F., M. Endler, and F. Kon, Developing Adaptive Distributed Applications: A
Framework Overview and Experimental Results. In Proceedings: CoopIS/DOA/ODBASE
(LNCS 2888): Springer. p. 1275 - 1291 (2003)

19. Vanegas, R., et al., QuO's runtime support for quality of service in distributed objects. In
Proceedings: International Conference on Distributed Systems Platforms and Open
Distributed Processing. The Lake District, England: Sringer. p. 207-224 (1998)

20. Venkatasubramanian, N., C. Talcott, and G. Agha, A Formal Model for Reasoning About
Adaptive QoS-Enabled Middleware. ACM Transactions on Software Engineering and
Methodology. 13(1): p. 86-147 (2004)

21. Maia, R., R. Cerqueira, and N. Rodriguez, An Infrastructure for Development of
Dynamically Adaptable Distributed Components. In Proceedings: CoopIS, DOA, and
ODBASE (LNCS 3290). Larnaca, Cyprus: Springer-Verlag. p. 1285-1302 (2004)

22. Jing, J., A. Helal, and A. Elmagarmid, Client-Server Computing in Mobile Environments.
ACM Computing Surveys. 31(2): p. 118-157 (1999)

23. ISO/IEC, Information Technology - Software Product Quality - Part 1: Quality Model.
2001, International Standards Organisation: Geneva.

24. Gilb, T., Software Metrics. Massachusetts: Winthrop. (1977).
25. Dujmovic, J., A Method for Evaluation and Selection of Complex Hardware and Software

Systems. In Proceedings: International Conf. on Resource Management and Performance
Evaluation of Enterprise Computer Systems. Turnersville, N.J. p. 368-378 (1996)

26. Olsina, L. and G. Rossi, Measuring Web Applications Quality with WebQEM. IEEE
Multimedia. 9(4): p. 20-29 (2002)

27. Chen, G., et al., Studying energy trade offs in offloading computation/compilation in Java-
enabled mobile devices. Parallel and Distributed Systems, IEEE Transactions on. 15(9): p.
795-809 (2004)

 Empirical Evaluation of Dynamic Local Adaptation 845

Appendix

Table 6. Summary of the Relationships among Metrics

Attribute Metric Unit Related to
Object Compilation Volume Executable Code Size (ECS) byte MCT, NU
Object Serialisation Volume Serialised Object Size (SOS) byte MIT, NU
Object Memory Volume Object Memory Size (OMS) byte MU
Method Execution Volume Execution Memory Size (EMS) byte MU
Method Body Intensity Number of Executed Instructions (NEI) int ET, PU
Method Interface Volume Size of Serialised Parameters (SSP) byte IT, NU

C
od

e

Method Invocation Frequency Number of Invocations (NI) int NU, PU
Method Execution Cost Method Execution Time (ET) ms -
Method Invocation Cost Method Invocation Time (IT) ms -
Object Migration Cost Migrate Instance Time (MIT) ms -
Class Migration Cost Migrate Class Time (MCT) ms -

Network Utilisation Network Usage (NU) byte
IT, MCT,
MIT

Memory Utilisation Memory Usage (MU) byte -

E
ff

ic
ie

nc
y

Processor Utilisation Processor Usage (PU) int/s ET

[] motrtrtrt
mi

D
i

C
iid −−= = ..1

)(*NI , with mot = MCT + MIT and rt = IT + ET (5)

D

OD

C

OC

D

D

C

C

d
rc

ruru

rc

ruru

rc

ru

rc

ru
ru

+−−−−= , with ()
m

ru
ruru mi iFO =+= ..1

* iNI
(6)

where muF = OMS, mui = EMS, nuF = SOS + ECS, nui = SSP, puF = 0, pui = f(NEI),
rcC and rcD = resource capacity of the current and destination nodes of the object
respectively, and m = number of methods [7].

Middleware for Distributed Context-Aware
Systems�

Karen Henricksen1, Jadwiga Indulska2,
Ted McFadden1, and Sasitharan Balasubramaniam2

1 CRC for Enterprise Distributed Systems Technology (DSTC)
karen@itee.uq.edu.au, mcfadden@dstc.edu.au

2 School of Information Technology and Electrical Engineering,
The University of Queensland

jaga@itee.uq.edu.au, sasib@tssg.org

Abstract. Context-aware systems represent extremely complex and
heterogeneous distributed systems, composed of sensors, actuators, appli-
cation components, and a variety of context processing components that
manage the flow of context information between the sensors/actuators
and applications. The need for middleware to seamlessly bind these com-
ponents together is well recognised. Numerous attempts to build middle-
ware or infrastructure for context-aware systems have been made, but
these have provided only partial solutions; for instance, most have not
adequately addressed issues such as mobility, fault tolerance or privacy.
One of the goals of this paper is to provide an analysis of the require-
ments of a middleware for context-aware systems, drawing from both
traditional distributed system goals and our experiences with developing
context-aware applications. The paper also provides a critical review of
several middleware solutions, followed by a comprehensive discussion of
our own PACE middleware. Finally, it provides a comparison of our so-
lution with the previous work, highlighting both the advantages of our
middleware and important topics for future research.

1 Introduction

The proliferation of standalone and embedded computing devices in our work
and home environments, combined with a variety of networking technologies, in-
creases the importance of context-awareness in distributed applications. Context-
aware applications adapt to changes in the environment and user requirements.
This dynamic adaptation provides the degree of autonomy needed to free users
from the current computer-centric model of human-computer interaction. For
example, sensor-based “smart home” applications can unobtrusively support el-
derly people in everyday tasks, such as remembering to take medications or
providing early detection of behavioural changes.
� The work reported in this paper has been funded in part by the Co-operative Re-

search Centre for Enterprise Distributed Systems Technology (DSTC) through the
Australian Federal Government’s CRC Programme (Department of Education, Sci-
ence, and Training).

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 846–863, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Middleware for Distributed Context-Aware Systems 847

The complexity of developing context-aware applications makes middleware
an essential requirement. The middleware solutions proposed so far for context-
aware systems address basic issues traditionally addressed by middleware for
distributed systems, including paradigms for coordination and communication
between distributed components. They also offer support for gathering and man-
aging context information, in order to simplify application development and pro-
mote sharing of context information and context sensing components. However,
many additional requirements are not met. For instance, most solutions do not
adequately support the deployment and configuration of new components, the
dynamic reconfiguration of components, or user privacy.

In this paper, we evaluate the current state-of-the-art in middleware for dis-
tributed context-aware applications, including the middleware developed in our
PACE (Pervasive, Autonomic, Context-aware Environments) project. Based on
the evaluation, we also highlight a set of open research problems in this area.

The structure of the paper is as follows. In Sections 2 and 3, we characterise
context-aware systems and introduce a set of requirements for middleware for
these systems. In Section 4, we review a set of middleware solutions and anal-
yse them with respect to the requirements. In Sections 5 and 6, we introduce
our PACE middleware and demonstrate how the middleware is used to support
the development of a context-aware vertical handover application. Finally, in
Sections 7 and 8, we provide an analysis of our solution, a discussion of open
research challenges, and a summary of the contributions of this paper.

�������	

��������	��	�
	

����������
	

������
	

���������
��		���

��������	

�������	

��������

���	���
��	

�������	

���	����	����
�

����	

������	

�����������

��������	

�
��
��������������	

Fig. 1. Components of a context-aware system

848 K. Henricksen et al.

2 Characteristics of Context-Aware Systems

Context-aware systems consist of a variety of distributed components. Early
systems were relatively simple, and were often constructed simply as distributed
application components communicating directly with local or remote sensors.
Today, it is widely acknowledged that additional infrastructural components are
desirable, in order to reduce the complexity of context-aware applications, im-
prove maintainability, and promote reuse. Figure 1 illustrates the distributed
components that can be found in many current context-aware systems. In ad-
dition to application components, sensors and actuators, shown at the two ex-
tremities in this layered model, these systems include:

– components that (i) assist with processing sensor outputs to produce context
information that can be used by applications and (ii) map update operations
on the higher-order information back down to actions on actuators (layer 1);

– context repositories that provide persistent storage of context information
and advanced query facilities (layer 2); and

– decision support tools that help applications to select appropriate actions
and adaptations based on the available context information (layer 3).

Programming toolkits are often also incorporated at the application layer (layer
4) to support the interactions of the application components with other compo-
nents of the context-aware system.

3 Middleware Requirements

In this paper, we refer to the components that reside between the layer 4 ap-
plication components and the layer 0 sensors and actuators - together with the
communications framework that binds the distributed components together - as
middleware for context-aware systems. This middleware must address many of
the requirements of traditional distributed systems, such as heterogeneity, mo-
bility, scalability, and tolerance for component failures and disconnections. In
addition, it must protect users’ personal information, such as location and pref-
erences, in accordance with their privacy preferences, and ensure that automatic
actions taken by context-aware applications on behalf of users can be adequately
understood and controlled by users. Finally, the large number of distributed com-
ponents that are present in context-aware systems introduces a requirement for
straightforward techniques for deploying, configuring and managing networks of
sensors, actuators, context processing components, context repositories, and so
on. A detailed summary of these requirements is provided in Table 1.

4 A Survey of Middleware for Context-Aware Systems

In this section, we review and analyse some of the proposed middleware solutions
for context-aware systems. We focus on solutions that span multiple layers of

Middleware for Distributed Context-Aware Systems 849

Table 1. Requirements for middleware for context-aware systems

1. Support for Hardware components ranging from resource-poor sensors,
heterogeneity actuators and mobile client devices to high-performance servers

must be supported, as must a variety of networking interfaces and
programming languages. Legacy components may be present.

2. Support for All components (especially sensors and applications) can be mobile,
mobility and the communication protocols that underpin the system must

therefore support appropriately flexible forms of routing. Context
information may need to migrate with context-aware components.
Flexible component discovery mechanisms are required.

3. Scalability Context processing components and communication protocols must
perform adequately in systems ranging from few to many sensors,
actuators and application components. Similarly, they must scale to
many administrative domains.

4. Support for Flows of context information between the distributed components
privacy of a context-aware system must be controlled according to users’

privacy needs and expectations.

5. Traceability The state of the system components and information flows between
and control components should be open to inspection - and, where relevant,

manipulation - in order to provide adequate understanding and
control of the system to users, and to facilitate debugging.

6. Tolerance Sensors and other components are likely to fail in the ordinary
for operation of a context-aware system. Disconnections may also
component occur. The system must continue operation, without requiring
failures excessive resources to detect and handle failures.

7. Ease of The distributed hardware and software components of a context-
deployment aware system must be easily deployed and configured to meet user
and and environmental requirements, potentially by non-experts (for
configuration example, in “smart home” environments).

the system architecture shown in Fig. 1; that is, we exclude single layer solutions
such as context servers (layer 2) and models for context interpretation (layer 1).
We also exclude solutions that are not general, such as those that deal only with
location sensing and management.

4.1 The Context Toolkit

Dey et al.’s Context Toolkit [1] provides a set of abstractions that can be used to
implement reusable software components for context sensing and interpretation.
The context widget abstraction represents a component that is responsible for
acquiring context information directly from a sensor. Widgets can be combined
with interpreters, which transform low-level information into higher-level infor-
mation that is more useful to applications, and aggregators, which group related

850 K. Henricksen et al.

context information together in a single component. Finally, services can be used
by context-aware applications to invoke actions using actuators, and discoverers
can be used by applications to locate suitable widgets, interpreters, aggregators
and services.

The toolkit is implemented as a set of Java objects that represent the abstrac-
tions described above. These provide a basic communication protocol based on
HTTP and XML. The use of these Web standards allows for interoperation with
components implemented in other languages, thereby providing basic support
for heterogeneity. The toolkit’s discoverers address component discovery, which
is one of the requirements for mobility. However, the toolkit does not specif-
ically address scalability, privacy, traceability/control1, component failures, or
deployment/configuration.

4.2 Context Fusion Networks

Chen et al. [3] propose the use of Context Fusion Networks (CFNs) to provide
data fusion services (aggregation and interpretation of sensor data) to context-
aware applications. CFNs are based on an operator graph model, in which con-
text processing is specified by application developers in terms of sources, sinks
and channels. In this model, sensors are represented by sources, and applica-
tions by sinks. Operators, which are responsible for data processing, act as both
sources and sinks.

Chen et al. have implemented the CFN model in the form of Solar, a scalable
peer-to-peer (P2P) platform which instantiates the operator graphs at runtime
on behalf of context-aware applications. The Solar hosts (Planets) support appli-
cation and sensor mobility by buffering events during periods of disconnection;
they also address component failures by providing monitoring and recovery, as
well as preservation of component states. However, Solar does not yet address
heterogeneity, privacy, or monitoring and control of the system by users.

4.3 The Context Fabric

Unlike the previous two solutions, the Context Fabric (Confab) proposed by
Hong and Landay [4] is primarily concerned with privacy rather than with con-
text sensing and processing. Confab provides an architecture for privacy-sensitive
systems, as well as a set of privacy mechanisms that can be used by applica-
tion developers. The architecture structures context information into infospaces,
which store tuples about a given entity. Infospaces are populated by context
sources such as sensors, and queried by context-aware applications.

Hong and Landay have implemented the infospace model using Web tech-
nologies, such that infospaces are identified by URLs and tuples are exchanged in
an XML format. They provide a programming model based on in and out meth-
ods for transferring tuples into and out of infospaces. Privacy can be supported
by adding operators to an infospace to carry out actions when tuples enter or
1 However, Newberger and Dey [2] did later address monitoring and control by pro-

viding an enactor extension to the Context Toolkit.

Middleware for Distributed Context-Aware Systems 851

leave the space; for instance, operators can be used to perform access control,
notify users of information disclosure, and enforce privacy tags that describe how
information can be used after it flows from one infospace to another.

As Confab focuses so heavily on privacy, it does not address traditional dis-
tributed systems requirements such as mobility, scalability, component failures
and deployment/configuration. However, it does partially address heterogene-
ity, as it builds on platform- and language-independent Web standards. It also
provides privacy-related traceability and control via the operator mechanism.

4.4 Gaia

Gaia [5] is designed to facilitate the construction of applications for smart spaces,
such as smart homes and meeting rooms. It consists of a set of core services and
a framework for building distributed context-aware applications. Gaia’s event
manager service enables applications to be developed as loosely coupled compo-
nents, and can provide basic fault tolerance by allowing failed event producers to
be automatically replaced. Gaia’s remaining four services support various forms
of context-awareness, and include: (i) a context service, which allows applications
to find providers for the context information they require, (ii) a presence service,
which monitors the entities entering and leaving a smart space (including people
as well as hardware and software components), (iii) a space repository, which
maintains descriptions of hardware and software components, and (iv) a context
file system, which associates files with relevant context information and dynam-
ically constructs virtual directory hierarchies according to the current context.

As smart spaces are typically small, constrained environments, Gaia does
not address scalability (however, [6] canvasses the issues involved in federating
spaces into large-scale “super spaces”). Similarly, privacy is not addressed by any
of the basic services, but can potentially be provided by additional services [7],
while user monitoring/control is outside Gaia’s scope. Heterogeneity, mobility
and component configuration can all be supported by Gaia in limited forms.

4.5 Reconfigurable Context-Sensitive Middleware

Yau et al. [8] propose a Reconfigurable Context-Sensitive Middleware (RCSM)
for context-aware applications. The RCSM provides application developers with
a novel Interface Definition Language (IDL) that can be used to specify context
requirements, including the types of context/situation that are relevant to the
application, the actions to be triggered, and the timing of these actions. The IDL
interfaces are compiled to produce application skeletons; these interact at run-
time with the RCSM Object Request Broker (R-ORB), which manages context
acquisition, and the Situation-Awareness (SA) processor, which is responsible
for managing triggers.

The R-ORB provides a context manager that uses a context discovery proto-
col to manage registrations of local sensors and discover remote sensors. When
a context-aware application starts up, the discovery protocol is used to look for
local or remote sensors that satisfy the application’s context requirements.

852 K. Henricksen et al.

Table 2. Middleware support for the requirements of context-aware systems
(Key:

√
= comprehensive, √ = partial, × = none)

Requirement
Context
Toolkit

CFN/
Solar

Context
Fabric Gaia RCSM

Support for
heterogeneity

√ × √ √ √

Support for mobility √ √ × √ ×
Scalability × √ × × ×
Support for privacy × × √ × ×
Traceability and control × × √ × ×
Tolerance for failures × √ × √ ×
Ease of deployment/
configuration

× √ × √ √

The prototype described by Yau et al. does not satisfy the heterogene-
ity requirement, as it supports only C++ applications for the Windows CE
platform; however, the IDL compiler could potentially be modified to produce
skeletons for a variety of platforms and communication protocols. In addition,
the context discovery protocol is not flexible enough to support mobility or
component failure, and Yau et al. do not attempt to address scalability, pri-
vacy or traceability/control. The main strength of the approach comes from
the use of an IDL to specify context requirements. This makes it possible to
incorporate new types of context and context-aware behaviour by editing and
recompiling IDL interfaces, and partially addresses ease of deployment and
configuration.

4.6 Analysis

Table 2 summarises the capabilities of the surveyed solutions and shows that
comprehensive solutions do not yet exist. A further shortcoming, which is not
revealed in the table, is that none of the solutions provide decision support
(layer 3 functionality). Our own middleware, which we discuss next, introduces
decision support and addresses a large subset of the requirements listed in
Table 1.

5 The PACE Middleware

Our middleware was developed as part of the PACE project, which investi-
gates a variety of issues related to pervasive computing, including the design of
context-aware applications and solutions for modelling and managing context
information. An early form of the middleware was presented in [9]; however,
further tools and components have been added subsequently as we developed
further context-aware applications and uncovered additional requirements. Our
current version of the middleware consists of:

Middleware for Distributed Context-Aware Systems 853

– a context management system (layer 2);
– a preference management system that provides customisable decision-

support for context-aware applications (layer 3);
– a programming toolkit that facilitates interaction between application com-

ponents and the context and preference management systems (layer 4); and
– tools that assist with generating components that can be used by all layers,

including a flexible messaging framework.

These components and tools have been developed according to the following
design principles:

1. The model(s) of context information used in a context-aware system should
be explicitly represented within the system. This representation should be
separate from the application components (layer 4) and the parts of the
system concerned with sensing and actuation (layers 0 and 1), so that the
context model can evolve independently, without requiring any components
to be re-implemented.

2. The context-aware behaviour of context-aware applications should be deter-
mined, at least in part, by external specifications that can be customised
by users and evolved along with the context model (again, without forcing
re-implementation of any components).

3. The communication between application components, and between the com-
ponents and middleware services, should not be tightly bound to the appli-
cation logic, so that a significant re-implementation effort is required when
the underlying transport protocols or service interfaces change.

The following sections provide an overview of the components and tools that
make up the middleware. In Section 6, we illustrate their use in the development
of a context-aware system that supports vertical handover of media streams.

5.1 Context Management System

In our middleware, the context management system fulfils the requirements of
layer 2 as discussed in Section 2: that is, it provides aggregation and storage of
context information, in addition to performing query evaluation. It uses a two-
layered context modelling approach, in which context can be expressed both in
terms of fine-grained facts and higher-level situations which capture logical con-
ditions that can be true, false or unknown in a certain context. All information is
stored in the fact representation, but can be queried by either retrieving specific
facts based on template matching, or evaluating situation definitions over a set
of facts. Our context modelling approach has been well documented in previous
papers [9,10], and therefore is not described in detail here. However, an example
fact-based context model will be shown later in Section 6.

The context management system consists of a distributed set of context
repositories. Each repository manages a catalog, which is a collection of con-
text models consisting of fact type and situation definitions. Applications may

854 K. Henricksen et al.

define their own context models or share them with other applications. Context-
aware components are not statically linked to a single repository, but can dis-
cover repositories dynamically by catalog name (and potentially also other at-
tributes). Several methods of interacting with a context repository are currently
permitted, in order to support a range of client programming languages and
platforms; likewise, a variety of discovery mechanisms can be used, includ-
ing context-based discovery, which allows for matching based on context at-
tributes.

Each repository is capable of performing access control, although this fea-
ture can be switched off if it is not required. The access control mechanism
allows users to define privacy preferences that dictate the circumstances (i.e.,
situations) in which context information can be queried and updated. The pri-
vacy preferences are stored and evaluated by the preference management system,
which we describe in the following section.

Our current prototype consists of a context management layer running on
top of a relational database management system. This is written in Java using
JDBC2 to query and manipulate a set of context databases3. It provides clients
with the following interfaces:

– query: supports situation evaluation and retrieval of facts matching supplied
templates;

– update: allows insertion, deletion and modification of facts, as well as inser-
tion of new situation definitions;

– transaction: allows clients to create read-only transactions within which a
sequence of queries can be executed against a consistent set of context in-
formation, regardless of concurrent updates;

– subscription: allows monitoring of situations and fact types, using callbacks
to notification interfaces implemented by clients; and

– metadata: allows clients to discover the fact types and situations that are
defined by models in the catalog.

In addition to invoking methods on repositories using Java RMI, clients can
use a Web interface (based on XML and HTTP) or programming language
stubs generated from a context model specification. The latter method can
potentially accommodate arbitrary programming languages and communica-
tion protocols; currently, we generate stubs for Java and Python, using Elvin
[11], a content-based message routing scheme, as the underlying communication
paradigm. One of the benefits of Elvin is that it allows for complex interactions
(including 1:N and N:M communication, not only 1:1 as supported by RMI
and HTTP), which allows (for example) queries and updates to be simultane-
ously routed to multiple context repositories. We discuss the stubs further in
Section 5.5.
2 http://java.sun.com/products/jdbc/
3 Note that this is not the most efficient implementation in terms of query/update

time and throughput, but we have found the performance adequate for all of the
context-aware applications we have developed so far.

Middleware for Distributed Context-Aware Systems 855

Currently, our context repositories behave independently of one another;
however, we are developing a model for replicating context information across
several repositories and allowing clients to cache their own context information
for use during disconnections.

5.2 Preference Management System

A preference management system provides layer 3 functionality that builds on
functionality of the context management system. It assists context-aware appli-
cations with making context-based decisions on behalf of users. Its main roles are
to provide storage of user preference information and evaluation of preferences
- with respect to application state variables and context information stored by
the context management system - to determine which application actions are
preferred by the user in the current context. Applications can connect to, and
store their preference information in, one or more preference repositories.

The preferences are defined in terms of our novel preference model, which
allows the description of context-dependent requirements in a form that en-
ables them to be combined on-the-fly to support decisions about users’ preferred
choice(s) from a set of available candidates. For example, the preference model
can be used to decide which mode of input or output should be employed for
particular users according to their requirements and current contexts. A detailed
description of the preference model is outside the scope of this paper, but further
information can be found in earlier papers [9,10,12].

The benefits of a preference-based approach to decision-making are that
customisation and evolution of context-aware behaviour can be supported in
a straightforward manner; preferences can be shared and exchanged between
applications; and new types of context information can be incorporated into
decision-making processes simply by adding new preferences, without the need
to modify the application components.

The implementation of the preference management system bears strong re-
sembles to that of the context management system, and therefore we discuss it
relatively briefly. It provides the following interfaces:

– update: allows new preferences to be defined and grouped appropriately into
sets (for instance, by owner and purpose);

– query: provides preference evaluation based on the information stored in the
context management system;

– transaction: allows a set of preference evaluations to occur over a consistent
set of context information, regardless of concurrent updates occurring within
the context management layer; and

– metadata: allows retrieval of preference and preference set definitions.

In a similar manner to the context repositories, the preference repositories
respond to requests from clients over a variety of communication protocols. How-
ever, Java clients need not interact directly with repositories; instead, they are
provided with a Java programming toolkit that assists with discovery of, and
interaction with, repositories. We describe the toolkit in the following section.

856 K. Henricksen et al.

5.3 Programming Toolkit

The programming toolkit complements the functionality of the preference man-
agement layer by implementing a simple conceptual model for formulating and
carrying out context-based choices. The model provides a mechanism for link-
ing application actions with candidate choices. It also allows one or more of the
actions to be automatically invoked on the basis of the results of evaluating the
choices with respect to preference and context information, using the services of
the preference and context management systems.

A significant benefit of the toolkit is that it makes the process of discov-
ering and communicating with the preference and context management sys-
tems transparent to applications. It also helps to produce applications that are
cleanly structured and decoupled from their context models, and thus better
able to support changes in the available context information. These changes
can result from evolution of the sensing infrastructure over time, or problems
such as disconnection or migration from a sensor-rich environment to a sensor-
poor one.

The toolkit is currently only implemented in Java, using RMI for communica-
tion with remote components; however, it could be ported to other programming
languages and communication protocols in the future.

5.4 Messaging Framework

To facilitate remote communication between components of context-aware sys-
tems - which may be either application components or middleware services such
as the ones described in Sections 5.1 and 5.2 - we provide a flexible messag-
ing framework. In the tradition of middleware such as CORBA, the framework
aims to provide various forms of transparency, such as location and migra-
tion transparency. It maps interface definitions to communication stubs that
are appropriate for the deployment environment. These stubs are considerably
simpler for the programmer to work with than the APIs of the underlying
transport layers, and can also be automatically re-generated at a later date,
allowing for substitution of transport layers without modifying the
application.

Stubs can be generated for a variety of programming languages and com-
munication protocols (including message-based and RPC-based protocols). To
date, however, we have focused on producing Java and Python stubs for the
Elvin publish/subscribe content-based message routing scheme. Elvin is partic-
ularly appropriate for building context-aware systems because it decouples com-
munication from cooperation. Because it delivers messages based on matches
between message content and the subscriptions of listeners, rather than based
on explicit addressing, it is able to tolerate mobility, support complex inter-
actions (not only 1:1 interactions as in the case of RPC/RMI), and allow for
spontaneous interactions between components without the need for an explicit
discovery/configuration step. The ability to add new listeners into the system
on-the-fly is also useful for debugging and generating traces.

Middleware for Distributed Context-Aware Systems 857

In the future, we plan to extend the messaging framework to other proto-
cols appropriate for context-aware systems (for example, context-based routing
schemes such as GeoCast [13], which performs routing based on location).

5.5 Schema Compiler Toolset

The final piece of our middleware is a set of tools capable of producing cus-
tom components to assist with developing and deploying context-aware systems,
starting from context models specified using the two-layered context modelling
approach that we briefly outlined in Section 5.1. The tools take input in the
form of a textual representation of a context model (a context schema), perform
checks to verify the integrity of the model, and produce the following outputs:

– SQL scripts to load and remove context model definitions from the relational
databases used by our context repositories;

– model-specific helper classes to simplify source code concerned with carrying
out context queries and updates; and

– context model interface definitions compatible with the messaging frame-
work.

The first output simplifies the deployment and evolution of context models. By
automating the mapping of context models into the database structures stored by
the context repositories, errors that might arise during the hand-coding of SQL
scripts or JDBC code to manipulate the repositories can be avoided. Similarly,
updates to context models can be supported simply by re-generating and re-
executing the scripts. In the future, we envision extending the tools to produce
alternative scripts for context repositories that are not SQL-based.

The second output is designed to simplify the programming of components
that query or update a context model, and includes classes that represent basic
value types, fact types and situations defined by the model. By programming
with these classes, rather than the generic APIs provided by the context man-
agement layer, type checking becomes possible at compile time and standard
IDE features such as code completion can better be exploited.

The final output is used to produce stubs for transmitting/receiving con-
text information over communications infrastructure such as Elvin. The context
transmitters can be used by layer 0 and layer 1 components (sensors, actuators
and processing components) to transmit context information to one or more
context repositories. Similarly, the context receivers can be used at layer 2 to
listen for context updates that require mapping to operations on context repos-
itories.

Further information about the context schema toolset can be found in [14].

6 Case Study: Vertical Handover

We now illustrate how our middleware assists with the development of dis-
tributed context-aware systems, using a vertical handover application as a case

858 K. Henricksen et al.

study. This application represents just one of the context-aware applications
we have developed using the middleware; others are described in earlier papers
[9,12]. The application is concerned with adapting the streaming of media to a
mobile user according to the context. The adaptation occurs at the application
layer rather than the network layer (e.g., using Mobile IP) because of strin-
gent Quality of Service (QoS) requirements. The application adapts by handing
over the stream, either between network interfaces on a single computing device
or between interfaces on different devices. A handover can potentially occur in
response to any context change; for example, the user moving into range of a
network that offers higher bandwidth than the current network, or the signal
strength of the current network dropping.

The handover process is managed by adaptation managers and proxies. The
adaptation managers use the context management system to monitor signifi-
cant context changes, in order to determine when a vertical handover should
occur, and to which network interface. The proxies perform the handover pro-
cess. One proxy is co-located with the transmitter, while other proxies are lo-
cated within the same networks as the receivers. The transmitter’s local proxy
(proxy-transmitter) is responsible for redirecting the stream when it receives a
handover instruction from an adaptation manager. During the handover pro-
cess, the proxy-transmitter transmits the stream to both the original and the
new proxy. This is referred to as doublecasting. The proxies within the receivers’
networks are responsible for forwarding the streams to the receiver(s) executing
on the client device(s). When the handover is complete, the proxy-transmitter
stops transmitting to the original receiver proxy.

6.1 Implementation

The architecture of the system, including both application components and
supporting middleware components, is shown in Fig. 2. In the remainder of
this section, we demonstrate how our middleware was used to implement the
system.

Context Model. The context model used by the vertical handover prototype is
shown in Fig. 3. The main objects described by the model are computing devices,
networks, network interfaces, streams and proxies. The model captures associ-
ations between computing devices and network interfaces, proximity between
devices, mappings of streams to proxies and network interfaces, basic QoS infor-
mation related to network interfaces (current signal strength and bandwidth),
and other type and configuration information. Much of the information is user-
or application-supplied (i.e., static or profiled in the terminology of our context
modelling approach); however, proximity between devices is sensed using wire-
less beacons, and current network connectivity, signal strength and bandwidth
are all sensed by monitors running in the network.

The context model, and its instantiation at run-time with concrete facts, is
managed by a set of context repositories as shown in Fig. 2. Each local network
may contain one or more repositories. In the example system architecture shown

Middleware for Distributed Context-Aware Systems 859

Proxy-TransmitterProxy-Transmitter

Network 3Key

Control receiver stub

Control transmitter stub

5 handover()

Elvin events

Migration

Network 2Network 1

Internet

AV Stream

Java RMI

Programming toolkit

3
notify()

4 rate()

2, 7 update()

Context transmitter stub

Context receiver stub

Proxy-Transmitter

Proxy-Receiver2

AV Transmitter

AV Receiver
AV Receiver

Proxy-Receiver1

Context
Repository

Preference
Repository

Adaptation
Manager

QoS
Monitor

Context
Listener

1
hasSignal
Strength()

Context
Repository

Preference
Repository

Adaptation
Manager

QoS
Monitor

Context
Listener

7 update()

6 streamingTo()

4.1
query()

Fig. 2. Vertical handover architecture

in the diagram, two of the local networks possess their own context repositories,
while the other network does not. However, the design of the system is such that
many other configurations are also possible.

The schema compiler toolset described in Section 5.5 was used to map the
context model to appropriate database structures when the context repositories
were deployed. The toolset was also used to generate context transmitter and
receiver stubs, which are used by the wireless beacons (not shown in the dia-
gram), network monitors and adaptation managers (shown for networks 1 and 3)
to report context information to the context repositories over Elvin, via context
listeners that map the Elvin notifications to RMI context repository updates.

Adaptation Managers. The context-aware functionality of the application is
concentrated within the adaptation managers. These are the components that
are responsible for determining when handover is required, according to the
current context and user preferences. Therefore, the adaptation managers are
the components that interact with the context and preference repositories.

860 K. Henricksen et al.

Device
(ID)

Network
Interface

(ID)

Network
Address

(ID)

Network
(name)

Proxy
(ID)

Network Type
(name)

Bandwidth
(nr)+

Signal Strength
(nr)+

has interface

has doublecast
address

has proxy

has direct
address

has address

has address

has type

has type

has signal strength

has bandwidth

connected
to

s

s

streaming...to

Name
(representation)

s

Profiled information

Sensed information

Static information

Uniqueness/key constraint

Object type

textual description

Fact type

Key

located near

Stream
(ID)

Fig. 3. The context model used in the vertical handover application

According to the design principles outlined in Section 5, the adaptation man-
agers are not tightly coupled to the context model. The only direct interaction
that occurs between the adaptation managers and the context repositories is
in the form of subscriptions/notifications, which allow the managers to learn
about significant context changes and report new streaming configurations. The
subscriptions monitor the state of the sensed fact types. When an adaptation
manager is notified of a change (for example, a drop in signal strength, as shown
in Fig. 2), it uses the programming toolkit described in Section 5.3 to connect to a
preference repository, re-evaluate the user’s preferences, and determine whether
the current network interface is still the preferred one (step 4 in the figure). The
bulk of the context evaluation occurs during this step, as a side-effect of the
preference evaluation (step 4.1). New context information can be easily incor-
porated into the evaluation simply by extending the user preferences (i.e., the
implementation of the adaptation manager does not need to change).

When an adaptation manager determines that a handover is required, it com-
municates with the proxies (step 5) and the context listeners (step 6) using Elvin.
The manager first transmits a handover instruction to the proxies using Elvin
stubs produced by the PACE messaging framework described in Section 5.4.
After instructing the proxies to perform the handover, the adaptation manager

Middleware for Distributed Context-Aware Systems 861

updates the stream state information stored in the context repositories (i.e., the
“streaming...to” fact type shown in Fig. 3), using a context transmitter stub to
transmit the information to the context listeners.

7 Analysis

In this section, we briefly analyse the PACE middleware with respect to the
requirements set out in Table 1 and compare it to the earlier solutions surveyed
in Section 4. Based on the analysis, we also highlight some areas for future work.

Heterogeneity. As the PACE messaging framework can generate stubs for a
variety of programming languages (and, in the future, transport layers), it of-
fers strong support for heterogeneity. The PACE middleware is also capable of
accommodating legacy components, such as the transmitters and receivers in
the vertical handover system. Thus, PACE’s support for heterogeneity is more
comprehensive than the solutions surveyed in Section 4. However, Yau et al.’s
solution bears some similarities to our approach, and could be extended to gen-
erate skeletons for a variety of platforms as discussed in Section 4.5.

Mobility. The use of Elvin within the messaging framework facilitates com-
ponent mobility, as demonstrated in the vertical handover system, and often
removes the need for component discovery. Local context and preference reposi-
tories can be dynamically discovered by mobile context-aware components using
a variety of service discovery protocols. PACE therefore provides a level of mo-
bility support that is comparable to the best solutions surveyed in Section 4. In
the future, we plan to extend PACE’s current support for mobility by introduc-
ing caching/hoarding models for context and preference information, to allow
mobile components to store local copies of information that is relevant to users.

Scalability. Our current implementation of the PACE middleware does not
address scalability or performance, and the same can be said of almost all of the
solutions surveyed in Section 4. This is unsurprising, as all have been developed
as research prototypes. As future work, we intend to develop models for feder-
ating context and preference managers across large scale systems and a large
number of administrative domains.

Privacy. We address privacy by providing access control for sensitive context
information. Thus, our middleware provides more privacy support than all of the
surveyed solutions, with the exception of Confab. However, controlling access
to context information addresses only one aspect of privacy. To address other
aspects, we intend to add access control to our preference management system
and combine this access control with context-based authentication [13]. Further
information about our current work on privacy can be found in [15] and [16].

Traceability and Control. We showed in Section 4 that traceability and con-
trol are not addressed at all by previous middleware except in relation to privacy.
The PACE middleware begins to address this problem. The use of Elvin facil-
itates the generation of traces, as event listeners can be added on-the-fly and

862 K. Henricksen et al.

event traces can be tailored by adjusting the Elvin subscriptions. Our preference
model also provides a basic mechanism for user control and customisation. In
the future, we envisage opening up the service layers to clients to allow inspec-
tion (and manipulation) of context and preference evaluations. Traces of these
evaluations can be selectively revealed to users to explain system behaviours.

Tolerance for Failures. Our solution’s failure tolerance ranks behind that of
Solar but ahead of the remaining solutions surveyed in Section 4. Although our
middleware does not yet detect or repair failed components, its use of Elvin
allows a loose coupling of components, minimising the impact of disconnections
and failures. In addition, our context and preference models were both designed
with the assumption that context information will generally be imperfect. This
introduces some tolerance for failed sensors, sensing errors, and so on.

Deployment and Configuration. Finally, the PACE middleware provides
more advanced support for component deployment and configuration than pre-
vious solutions. Specifically, the messaging framework simplifies the deployment
of components on top of a variety of platforms, while the schema compiler toolset
facilitates the deployment of new context models. However, further extensions
to the middleware are needed to facilitate the scalable deployment and configu-
ration of infrastructural components such as sensors.

8 Conclusions

In this paper, we showed that middleware is essential for building context-aware
systems and introduced a list of requirements that this middleware must address.
We also analysed the current state-of-the-art in the area and provided a compre-
hensive discussion and evaluation of our own PACE middleware. Our solution
ranked the best or equal best for the majority of the requirements (heterogeneity,
mobility, traceability/control and deployment/configuration), and above average
for two of the remaining three requirements (privacy and tolerance for failures).
A further advantage of the PACE middleware is that it provides decision sup-
port (i.e., layer 3 functionality), unlike the other solutions we surveyed. However,
many problems have not yet been adequately addressed by our work or that of
the broader research community - for example, scalable deployment, configura-
tion and management of sensors, caching and hoarding of context information
to support mobility, and mechanisms for revealing aspects of the system state
to facilitate user understanding and control.

References

1. Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction 16 (2001) 97–166

2. Newberger, A., Dey, A.: Designer support for context monitoring and control.
Technical Report IRB-TR-03-017, Intel Research Berkeley (2003)

Middleware for Distributed Context-Aware Systems 863

3. Chen, G., Li, M., Kotz, D.: Design and implementation of a large-scale context
fusion network. In: 1st Annual International Conference on Mobile and Ubiquitous
Systems (MobiQuitous), IEEE Computer Society (2004) 246–255

4. Hong, J.I., Landay, J.A.: An architecture for privacy-sensitive ubiquitous com-
puting. In: 2nd International Conference on Mobile Systems, Applications, and
Services (MobiSys), Boston (2004)

5. Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrst-
edt, K.: Gaia: A middleware infrastructure for active spaces. IEEE Pervasive
Computing, Special Issue on Wearable Computing 1 (2002) 74–83

6. Al-Muhtadi, J., Chetan, S., Ranganathan, A., Campbell, R.: Super spaces: A
middleware for large-scale pervasive computing environments. In: Workshop on
Middleware Support for Pervasive Computing (PerWare), PerCom’04 Workshop
Proceedings, Orlando (2004) 198–202

7. Al-Muhtadi, J., Ranganathan, A., Campbell, R., Mickunas, M.D.: Cerberus: A
context-aware security scheme for smart spaces. In: 1st IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom), Fort Worth (2003)
489–496

8. Yau, S.S., Huang, D., Gong, H., Seth, S.: Development and runtime support
for situation-aware application software in ubiquitous computing environments.
In: 28th Annual International Computer Software and Application Conference
(COMPSAC), Hong Kong (2004) 452–457

9. Henricksen, K., Indulska, J.: A software engineering framework for context-aware
pervasive computing. In: 2nd IEEE International Conference on Pervasive Com-
puting and Communications (PerCom), IEEE Computer Society (2004) 77–86

10. Indulska, J., Henricksen, K., McFadden, T., Mascaro, P.: Towards a common con-
text model for virtual community applications. In: 2nd International Conference on
Smart Homes and Health Telematics (ICOST). Volume 14 of Assistive Technology
Research Series., IOS Press (2004) 154–161

11. Segall, B., Arnold, D., Boot, J., Henderson, M., Phelps, T.: Content based routing
with Elvin4. In: AUUG2K Conference, Canberra (2000)

12. McFadden, T., Henricksen, K., Indulska, J., Mascaro, P.: Applying a disciplined
approach to the development of a context-aware communication application. In:
3rd IEEE International Conference on Pervasive Computing and Communications
(PerCom), IEEE Computer Society (2005) 300–306

13. Navas, J.C., Imielinski, T.: Geographic addressing and routing. In: 3rd ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom), Bu-
dapest (1997)

14. McFadden, T., Henricksen, K., Indulska, J.: Automating context-aware applica-
tion development. In: UbiComp 1st International Workshop on Advanced Context
Modelling, Reasoning and Management, Nottingham (2004) 90–95

15. Henricksen, K., Wishart, R., McFadden, T., Indulska, J.: Extending context models
for privacy in pervasive computing environments. In: 2nd International Workshop
on Context Modelling and Reasoning (CoMoRea), PerCom’05 Workshop Proceed-
ings, IEEE Computer Society (2005) 20–24

16. Wishart, R., Henricksen, K., Indulska, J.: Context obfuscation for privacy via
ontological descriptions. In: 1st International Workshop on Location- and Context-
Awareness. Volume 1678 of Lecture Notes in Computer Science., Springer (2005)
276–288

Timely Provisioning of Mobile Services in
Critical Pervasive Environments

Filippos Papadopoulos, Apostolos Zarras, Evaggelia Pitoura,
and Panos Vassiliadis

Computer Science Department, University of Ioannina, Greece
{filip, zarras, pitoura, pvassil}@cs.uoi.gr

Abstract. Timeliness in conventional real-time systems is addressed by
employing well-known scheduling techniques that guarantee the execu-
tion of a number of tasks within certain deadlines. However, these clas-
sical scheduling techniques do not take into account basic features that
characterize today’s critical pervasive computing environments.

In this paper, we revisit the issue of timeliness in the context of per-
vasive computing environments. We propose a middleware service that
addresses the timely provisioning of services, while taking into account
both the mobility of the entities that constitute pervasive computing en-
vironments and the existence of multiple alternative entities, providing
semantically compatible services. Specifically, we model the overall be-
havior of mobile entities in terms of the entities’ lifetime. The lifetime of
an entity is the duration for which the entity is present and available to
other entities. Given a new request coming from a mobile client and a
number of semantically compatible mobile entities that can fulfill the re-
quest, one of them must be selected. The proposed service realizes three
different policies that facilitate the selection. With respect to the first
policy, the selection is realized solely on the basis of the client’s and the
server’s lifetimes. The second policy additionally considers the load of
each server towards selecting the one that guarantees to serve the new
request within the lifetime of both the client and the server. The third
policy further deals with periodic service requests.

1 Introduction

Recently, the rapid emergence of WiFi and Bluetooth networks, along with the
increasing computing and communication capabilities of mobile devices such as
PDAs, Pocket PCs, Smart Phones and wireless-enabled laptops, foster the de-
velopment of a variety of new applications towards the realization of the overall
idea of pervasive computing. Enterprises facilitate their activities for their mo-
bile employees. Airports, railway stations, cafes and shopping centers deploy
wireless networks to serve their customers. The evolution of the aforementioned
technologies further enables the realization of applications that can be employed
to handle certain critical situations like accidents, natural catastrophes, war sit-
uations, etc.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 864–881, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Timely Provisioning of Mobile Services in Critical Pervasive Environments 865

Both daily and critical applications are characterized by the following main
features:

– They consist of a set of mobile entities, providing a number of services that
can be requested by other mobile entities.

– More than one mobile entity may provide semantically equivalent services.

Critical applications are further characterized by the need for timely provi-
sioning of services from mobile entities to other mobile entities. Service requests
come along with specific deadlines that should be met by the mobile entities that
serve those requests. Timeliness in conventional real-time systems is addressed
by employing well-known scheduling techniques such as the earliest deadline first
(EDF) and the rate-monotonic scheduling (RM) [1]. These techniques guaran-
tee that the execution of a number of tasks will take place within the required
deadlines. However, the classical scheduling techniques do not take into account
basic features of pervasive computing environments.

In this paper, we revisit the issue of timeliness in the context of pervasive
computing environments. Specifically, we propose techniques that address the
timely provisioning of services, while taking into account (i) the mobility of the
entities that constitute pervasive computing environments and (ii) the existence
of multiple alternative entities, providing semantically compatible services.

The behavior of mobile entities may be rather complicated and depends on sev-
eral factors [2]. For instance, so far, there has been work towards estimating the
physical motion of mobile entities [3]. An entity may become inaccessible by mov-
ing into areas that do not belong in the transmission range of a particular wireless
network.Another important feature that distinguishes mobile entities from the ba-
sic building blocks of conventional distributed systems is their limited resources.
For example, the limited battery of a mobile entity may render the entity perma-
nently or temporarily inaccessible. Moreover, the entity may explicitly disable its
communication or computation capabilities towards the economization of power,
or because of the reception of orders from some external authority.

To facilitate the timely provisioning of services in pervasive computing en-
vironments we employ a generic notion for modeling the behavior of mobile
entities. This notion shall serve as input to the scheduling techniques that we
propose in this paper. Specifically, we assume that the overall behavior of mobile
entities is modeled in terms of the entities’ lifetime. The lifetime of an entity is
defined as the time interval during which the entity is available to other entities.
The lifetime is generic enough and can be evaluated using a combination of differ-
ent means, reflecting various characteristics such as the entity’s physical motion
and the entity’s available resources. The evaluation of the entities’ lifetimes is
transparent to the proposed scheduling techniques; it is a responsibility of the
entities themselves as it depends on their specificities and could not be part of
a middleware infrastructure that is going to be used in different kinds of critical
situations. It is important to note that the lifetime of the mobile entities is actu-
ally the contract between the entities and the scheduling techniques. As long as
the lifetime is given as input to the scheduling techniques, it should be respected

866 F. Papadopoulos et al.

by the mobile entities (i.e. the entities should not become unavailable earlier).
Such a demand may seem quite restrictive for any arbitrary ad-hoc community
of mobile entities. However, the proposed approach is aimed at communities that
have real-time requirements and it is natural to restrict their arbitrary behavior
in order to satisfy them.

The existence of more than one alternative services also plays an important
role towards the timely service provisioning in pervasive computing environ-
ments. This sort of redundancy must be considered in a systematic way. Before
issuing a service request to a mobile entity that shall serve it, the different al-
ternatives must be evaluated so as to select the mobile entity that may possibly
guarantee correct service provisioning.

Considering the above, in this paper we propose three different policies that
enable the timely execution of mobile services in the context of critical pervasive
computing environments. The proposed policies are realized in the core of a
middleware service that is incorporated within every mobile entity. Specifically,
given a new request coming from a mobile client and a number of semantically
compatible servers that can fulfill the request, one of them must be selected.

The ultimate goal of the selection process is to guarantee that a response will
be sent back to the client within the client’s lifetime.

The first of the proposed policies takes into account solely the lifetimes of
the client and the server entities; it guarantees that a reply will be sent to the
client as long as the server manages to serve the client’s request. The second
policy provides stronger guarantees by additionally examining the load of avail-
able servers towards selecting the one that can serve the new request within the
lifetime of both the client and the server. The third policy further deals with
periodic service requests. To deal with such cases we extend classical real-time
scheduling techniques to the needs of pervasive computing environments. Each
different policy provides different levels of timeliness in the execution of mobile
services and requires different amount of resources. In this particular paper, we
concentrate on the number of messages required in each policy since communi-
cation between mobile devices is amongst the key causes of wasting battery.

The remainder of this paper is structured as follows. Section 2 presents a
motivating example, employed throughout this paper to demonstrate the use of
the proposed service. Section 3 presents the overall architecture of the proposed
middleware service. Section 4 details the three alternative policies we propose.
Section 5 discusses related work and finally Section 6 concludes this paper with
a summary of our contribution and future research issues.

2 Motivating Example

In this section we present a scenario where the timely provision of services is
essential to confront a critical situation. This scenario serves to exemplify the
use of the proposed middleware service. Specifically, we face the case of an acci-
dent in a nuclear plant. The plant consists of a number of different laboratories
shown in Figure 1. The accident caused a rapid increment in the overall level of

Timely Provisioning of Mobile Services in Critical Pervasive Environments 867

radioactivity observed in the plant area. The exact radioactivity measures range
from laboratory to laboratory, depending on the physical location of each one
of them (i.e., the radioactivity measures are higher in labs that are closer to
the area where the accident took place). The accident took place at daytime.
Hence, several employees may be trapped within the different labs. Several rescue
squads enter the plant area towards dealing with this situation. Each squad is in
charge of a different lab and tries to locate trapped employees. Each squad con-
sists of firemen equipped with wireless-enabled radioactivity sensors with limited
processing capabilities. Communication between different squads is feasible only
through the squads leaders who are additionally equipped with small laptops
serving as base stations for the networks formed in each room.

Fig. 1. Overview of the nuclear accident situation

A group of scientists also enters the accident area. The main goal of the the
scientists is to gather radioactivity measures from different labs and use them
for the post-mortem analysis of the situation, which shall result in estimating
the impact of the accident in the plant territory. Each scientist is assigned to a
different lab and carries a PDA, used for contacting the sensor-equipped firemen.
Firemen and scientists can not remain in the accident area for long. Each one of
them has a strict time-to-leave and within this deadline he must accomplish his
assigned tasks. Taking for instance the firemen who accept radioactivity measure
requests by the scientists, it is important to accept these requests only if they
can be served within their time-to-leave and the time-to-leave of the scientists.
Failing to serve these requests on-time shall delay the accurate estimation of the
impact of the accident, which is critical for the identification of the particular
strategy that should be followed to rapidly deal with the accident’s consequences.
Depending on the availability of replacements, the leaving person may be sub-
stituted by new ones. The firemen may also move from lab to lab, depending
on the current situation in each one of them. For instance, a fireman may be

868 F. Papadopoulos et al.

asked by his leader (who is constantly in contact with other leaders) to move to
another lab where there exist injured employees. Locally, the leader may assign
several tasks to his firemen.

In our example, the members of the rescue squads and the scientists are mo-
bile entities. In particular, the firemen are service providers used by the scientists
and the leaders of the rescue groups, which constitute the mobile clients in our
critical situation.

3 Service Architecture

The overall architecture of the proposed middleware service is designed over
WSAMI [4]. WSAMI is a lightweight platform developed at INRIA, which aims
at facilitating the development of ad-hoc communities of mobile entities. WSAMI
entities may execute on either stationary or mobile devices. They may provide
or use a number of WEB services, conforming to the standard WEB services
architecture [5]. Specifically, WSAMI services are specified using a declarative
language that extends the features of the standard WEB Service Description
Language (WSDL), with additional features that prescribe qualitative properties
of the services such as security and transactions. Communication with the ser-
vices is realized through the exchange of messages, whose format conforms with
the Simple Object Access Protocol (SOAP). The WSAMI platform comprises
two main subsystems used for the realization of the proposed middleware ser-
vice: (1) The CSOAP broker, which facilitates the exchange of SOAP messages
between resource constrained mobile entities; and (2) the Naming and Discovery
(ND) service, which allows mobile entities to gather information regarding WEB
services provided by other available entities.

WSAMI is a highly scalable platform since the realization of the ND service
is completely distributed. Every WSAMI entity comprises an instance of the
ND service, which periodically checks the environment for other instances of
ND services hosted by neighboring WSAMI entities. This task is realized using
the standard Service Location Protocol (SLP). The resulted information is kept
locally by the service and is used afterwards for the discovery of WEB services
provided by the neighboring entities.

Fig. 2. Overview of the service architecture

Timely Provisioning of Mobile Services in Critical Pervasive Environments 869

Figure 2 gives an overview of the main components that constitute the archi-
tecture of the proposed service. A pervasive computing environment is a commu-
nity of WSAMI entities. Each entity may play the role of a client to other mobile
entities, playing the role of the server. The entity can be accessed through the
use of the WEB services it provides. The mobile entity further includes a com-
munity directory that contains a local view of the community that corresponds
to the entity. Specifically, the directory contains information regarding the WEB
services that are provided by other community members, which can be accessed
by the mobile entity. This information is divided into different categories de-
pending on the different types of community members (e.g., scientists, firemen,
etc.). The directory is managed by the community manager service. Whenever a
mobile entity joins a pervasive computing environment, the community manager
populates its local directory. This takes place as follows: First, the mobile entity
queries the community manager for available WEB services belonging to the
particular categories that interest the querying entity; the manager forwards the
entity’s request to ND, which subsequently contacts all other neighboring NDs;
the results are collected and stored in the community directory; following, the
entity configures the community manager to periodically refresh the directory
by following the three steps mentioned above; alternatively, the entity may also
explicitly refresh the directory.

The community manager is rather typical and is not further detailed in this
paper. On the other hand, the behavior of the rest of the components showed
in Figure 2 is actually the one that facilitates the timely execution of services
among community members. Briefly, each mobile entity comprises an assessor
and a scheduler service. The assessor service accepts as input requests from
client objects encapsulated in the mobile client. For every request, the category
of community entities that can serve it is further specified. Given this informa-
tion, the assessor takes charge of selecting a particular mobile entity from the
local community directory. Following, the assessor forwards the client request to
the scheduler service of the selected entity. In particular, the scheduler accepts
input messages, which are subsequently stored in a message queue maintained
by the scheduler. The selection process relies on the lifetime of the community
entities, which is actually part of the WSAMI description of the mobile enti-
ties. The selection process may follow three alternative policies, providing differ-
ent timeliness guarantees. The three policies are the focus of the remainder of
this paper.

Regarding our motivating example, each member of the rescue squads con-
tains an instance of the server-side architecture shown in the right part of Fig-
ure 2. On the other hand, the scientists contain an instance of the client-side
architecture given in the left part of the figure.

4 Timeliness Policies for the Provision of Services

Before getting into details regarding the policies of the proposed middleware
service, let us formally define our execution environment. As already discussed,

870 F. Papadopoulos et al.

a critical pervasive computing environment is a community of mobile entities,
E = {m : MobileEntity}. In the most general case, a mobile entity may play
both the client and the server role. Therefore, the mobile entity is a tuple
m = (D, C, S, A, lifetime), where D is the community directory, C is the direc-
tory manager, S is the scheduler, A is the assessor and lifetime is the lifetime of
the entity. Regarding the directory D we have: D = {ct : Category} and ∀ct ∈
D, ct = {epa : EndPointAddressInfo}. Every element within a category con-
tains information regarding the endpoint address of a scheduler service, provided
by a neighboring mobile entity. This information comprises the URI of the service
and the lifetime of the neighboring entity, ∀epa ∈ ct, epa = (uri, lifetime).

The ultimate goal of the three policies is to guarantee that a client will re-
ceive a reply to a request made on a server entity, before leaving the community.
Hereafter, we assume that the worst case communication delay for sending a
SOAP message between two entities can be estimated. This estimation depends
on the length of the message that is to be sent and the characteristics of the un-
derlying network protocol. The length of the requests and responses exchanged
between two entities are known to the assessor and the scheduler services. Re-
garding the underlying network protocol, the proposed service relies on IEEE
802.11 for wireless LANs [6]. This particular protocol provides two fundamen-
tal mechanisms for accessing the medium. The first one is called Distributed
Coordination Function (DCF) and handles the retransmission of collided pack-
ets with respect to binary exponential back-off rules. The handling of packet
collisions with DCF renders the estimation of the medium access delay diffi-
cult (i.e. the time required to obtain access to the medium). Consequently, the
estimation of the overall delay for sending a message to a target endpoint is
also complicated. The second mechanism that is provided by IEEE 802.11 is
called Point Coordination Function (PCF). This mechanism guarantees collision
free and time bounded packet transmissions. However, it requires the existence
of a Point Coordinator (PC) that resides on an access point 1. The PC pe-
riodically gives the right to transmit messages to each of the mobile entities
that constitute a community. During this period, the mobile entities may trans-
mit their messages or part of their messages, depending on the message length.
Based on the above, the PCF mechanism is more suitable for the purpose of the
proposed service.

4.1 Lifetime Policy

The first of the policies of the proposed service is based solely on the lifetimes of
the mobile entities. The schedulers of the mobile servers maintain FIFO queues
of requests scheduled according to the classical Round Robin (RR) algorithm.

According to the Lifetime policy, every request req is issued by a client object
of a mobile entity mclient to the assessor service of this entity, mclient.A. The
assessor must select a mobile server out of a category ct ∈ mclient.D that contains

1 The time-bounded election or substitution of a PC is an interesting issue that is
complementary to our approach and is not further discussed in this paper.

Timely Provisioning of Mobile Services in Critical Pervasive Environments 871

information about all the alternative mobile servers that may possibly serve req,
and forward req to the selected server. Within ct there may exist servers whose
lifetimes are greater than the lifetime of the client and servers whose lifetimes
are smaller or equal to the lifetime of the client. Selecting one of the former
implies that the request may be served after the end of the client’s lifetime. On
the other hand, selecting one of the latter implies that the request may be served
earlier than the end of the client’s lifetime. In both cases, a request may not be
served at all, depending on the load of the server, which is not known to the
assessor. Considering the above, if there exist one or more servers whose lifetimes
are smaller or equal to the client’s lifetime, one of them is selected randomly by
the assessor. In the opposite case, the assessor selects randomly a server with a
longer lifetime. More precisely, let crep be the worst case communication delay
for sending a reply message to req. Let ct′, ct” ⊆ ct|ct′

⋃
ct” = ct be two disjoint

subsets of ct defined as follows:

ct′ = {epamserver ∈ ct|epamserver .lifetime ≤ mclient.lifetime− crep}
ct” = ct− ct′

Then, for the selected server mserver we have:{
if ct′ = ∅ then mserver ∈ ct′

else mserver ∈ ct”

Hence, if mserver ∈ ct′ the Lifetime policy guarantees that the client will receive
a reply on time, as long as the request is served. However, there is absolutely no
guarantee that the request will be served at all. The Lifetime policy is quite simple
since it does not introduce any communication overheadapart from the one needed
to exchange the request and the reply messages. It requires minimal information
regarding the behavior of the different mobile entities of the environment.

After the selection of mserver , the request is forwarded towards the selected
entity. Eventually, req is received by the scheduler service of mserver and it is
placed in the request queue maintained by this service.

Fig. 3. Applying the Lifetime policy

Getting to our case study example, assume that a scientist enters a lab in the
plant area and wants to request from a fireman the current value of radioactivity.
In the same lab there exist 3 possible firemen and the scientist is supposed to

872 F. Papadopoulos et al.

select one of them and issue his request. Suppose that the lifetimes of the scientist
and the firemen are respectively 9, 8, 9 and 11 time units (Figure 3)2. The
communication overhead is at most 1 time unit. According to the Lifetime policy,
the scientist selects Fireman 1. If the fireman manages to serve the request, in
the worst case this will happen at time = 8. Consequently, the scientist will
receive a reply at time = 9. On the other hand, if the scientist selects the second
fireman, in the worst case his request will be completed at time = 9 and the
reply will arrive at time = 10, which is too late for the scientist. Similarly, if
the scientist selects the third fireman, in the worst case his request will finish at
time = 9 and the reply will arrive at time = 11, which is also too late.

4.2 LifetimeLoad Policy

The second policy of the proposed service provides stronger timeliness guaran-
tees. Still, the scheduler services of the mobile servers manage FIFO queues of
requests, which are scheduled according to the classical Round Robin (RR) algo-
rithm. However, with this policy we examine both the lifetimes and the current
load of the mobile entities that may serve a client request.

As with the Lifetime policy, a request req is issued by a client object of
a mobile entity mclient to the assessor service mclient.A. The assessor forwards
directly req to the scheduler service of an accessible mobile entity, mserver , which
is randomly selected. The scheduler service eventually receives req and examines
the feasibility of its execution based on the load and the lifetime of mserver.

Specifically, let Nmserver be the total number of pending requests for mserver ,
including req. Creqi denotes the time units required for serving each pending re-
quest reqi, issued by mclienti . Moreover, crepi denotes the worst-case communica-
tion delay required to send a response back to mclienti . Given that the scheduler
queue is FIFO, req is the Nmserver -th pending request. Every new request added
to the scheduler queue introduces an additional overhead in the execution of all
the other pending requests. This is due to the fact that requests are scheduled in
a RR fashion. Hence, before adding a new request in the scheduler queue we have
to verify that this additional overhead shall not delay the rest of the pending
requests too long, making it impossible to send the corresponding replies back
to the clients that issued the requests. Moreover, we have to verify that the new
request will be served within the server’s lifetime and a reply will be send back
to the client within the client’s lifetime. To achieve the previous, the scheduler
performs the following:

1. For every request reqi, i = 1, . . . , Nmserver (including the new request,
reqNmserver

), the scheduler calculates the overall time Dreqi required for
serving it.

2. Then, to accept the new request the scheduler must verify that the following
constrain holds:
∀reqi, i = 1, . . . , Nmserver |Dreqi ≤ mclienti .lifetime− crepi

2 Note that each one of the Figures 3, 4, 5 examines three different scenarios that
correspond to the selection of Fireman 1, 2 and 3 respectively.

Timely Provisioning of Mobile Services in Critical Pervasive Environments 873

Upon the verification of the above constraint the scheduler service reports
back to the client assessor. If the constraint holds the report is positive and the
scheduler continues serving pending requests including req. On the opposite case,
the report is negative and the scheduler forgets req. Eventually, the assessor of
mclient receives the report from mserver . In case the report is negative, another
mobile entity is selected and the same procedure is followed. If the reports of all
the available mobile entities are negative, req is dropped by mclient.

Calculating Dreqi is realized as follows. Given that reqi is in the i-th position
of the FIFO queue and that serving it relies on RR, it takes i time units for reqi

to be placed at the end of the queue. Let Q = {Areqk
|k = 1, . . . , N ′

mserver
} be

the remaining time units required for the execution of each one of the pending
requests at the time when reqi will be placed at the end of the queue. Note that
the cardinality of Q may be less than Nmserver given that there may be requests
from the original queue that will be completed at the time when reqi will be
placed at the end of the queue. For every Areqk

, we have that Areqk
≤ Creqk

.
Let Q′ = [Bi|i = 0, . . . M] be a sequence whose B0 = 0. The remaining elements
of Q′ result from Q by removing the duplicate values existing in Q and sorting
the remaining values in increasing order. Specifically, for Q′ the following hold:

(1) B0 = 0
(2) ∀Bi, Bj ∈ Q′|i < j ⇒ Bi < Bj

(3) ∀Bi > B0 there exists at least one Areqk
∈ Q|Areqk

= Bi

(4) ∀Areqk
∈ Q|(∃Bi ∈ Q′|Bi = Areqk

)

For all Bi ∈ Q′ we define their multiplicity multi as follows:{
multi = |QBi |, i > 0
mult0 = 0, i = 0

where QBi ⊆ Q ∧ (∀Areqk
∈ QBi |Areqk

= Bi).
Let Bl ∈ Q′ be the specific value that corresponds to the time units required

for completing reqi, i.e., Bl = Areqi , then the first B1 units of Bl will actually
execute in: |Q| ∗ B1 time units. After |Q| ∗ B1 time units, all the requests that
required B1 units to complete will be removed from the queue. Hence, the length
of the scheduler’s queue will become |Q|−mult1. Moreover, all the requests that
required B2 time units to complete will now require B2−B1 units. Consequently,
the next B2−B1 units of Bl will actually execute in (|Q|−mult1)∗(B2−B1). By
induction, we can conclude that the overall service time Dreqi can be calculated
using the following formula:

Dreqi = i +
∑

k=1,...,l((|Q| −
∑

m=0,...,l−1 multm) ∗ (Bk −Bk−1))

In Figure 4, we revisit our case study scenario. Assume the situation discussed
in Section 4.1 where the scientist wants to select out of three firemen the one
that can fulfill his request, req, within the scientist’s lifetime. This time the
lifetimes of the three firemen are 9, 9 and 16 time units, respectively. The worst
case execution time for req is 2 and the worst-case communication delay is 1.
Suppose that the client assessor chooses Fireman 1 first. The scheduler of the

874 F. Papadopoulos et al.

Fig. 4. Applying the LifetimeLoad policy

fireman has two pending requests in his queue. At the time when req arrives,
req11 requires 4 more time units to complete, while req12 requires 2. With the
addition of req in the queue, the overall delay for completing it shall be 6.
Given that req arrives at time = 2, its execution will complete at time = 8.
Consequently, the client will receive a reply at 9, which is legal. However, with
the addition of req, the overall delay for completing req11 shall be 8 time units.
Hence, req11 will finish at time 10, which is greater than the lifetime of the first
fireman. Accepting, thus, req causes a missing deadline for the first fireman. Let
us assume instead that the client assessor selects Fireman 2 first. The queue of
his scheduler contains only one pending request that requires 2 more time units
to complete at the arrival of req. The overall delays for completing req and req21
are 4 and 3, respectively. These values are legal with respect to the lifetimes of
the client and Fireman 2. Consequently, req can be accepted.

4.3 EDFTB Policy

As we already discussed the LifetimeLoad policy provides quite strong guaran-
tees. However, it can only provide them in cases of requests that are served once
during the lifetime of a mobile server. In practice it is often the case that a
mobile client requests a mobile server to perform a particular task more than
once, usually with a certain period. In our example, for instance, the scientists
may request the firemen to measure the level of radioactivity periodically and
produce a certain amount of measures, which should be returned back to them
towards performing more accurate analysis and estimations. Such kind of re-
quests, leading to the execution of periodic activities, can not be guarantied by
the LifetimeLoad policy.

The EDFTB policy detailed here is suitable for both requests leading to
periodic activities and typical requests that are served once. Hereafter, we call
the former periodic requests and the latter aperiodic requests. As implied by the
name of the policy, it relies on the classical EDF (Earliest Deadline First) [1]
and the TB [7](Total Bandwidth) algorithms, which are customized here for the
specific purpose of critical pervasive computing environments.

Timely Provisioning of Mobile Services in Critical Pervasive Environments 875

Briefly, Liu and Layland [1] examine a typical real-time system that executes
only periodic tasks, which arrive dynamically in a queue. The execution of the
tasks is preemptive. Every task ti is characterized by a period Ti. Every instance
of ti must complete within Ti. Hence, Ti is the deadline for the completion of ti.
Moreover, ti is characterized by a worst case execution time Cti . According to
EDF, a task is scheduled if it is the one with the earliest deadline amongst all
the periodic tasks in the queue. Liu and Layland proved that a particular set of
tasks {t1, t2, . . . tN} is scheduleable if and only if the system’s utilization is at
most 1. Formally:

UP =
∑

i=1,...N (Ci/Ti) ≤ 1

In the TB algorithm, Spuri et al. [7] further consider a real-time system with
both periodic and aperiodic tasks. To deal with this combination they propose
dividing the system utilization into UP , used for executing periodic tasks, and
US , used for the execution of aperiodic tasks. Aperiodic tasks tai are given a
deadline dtai , on the basis of US . The given deadline is the shortest possible and
does not jeopardize the execution of periodic tasks. Specifically:

dtai = max(rk, dtai−1) + Ctai/US

In the above formula, rk denotes the time instant that tai arrived and dtai−1

denotes the deadline given to the aperiodic task whose arrival immediately pre-
ceded the arrival of tai. Based on its given deadline, tai is scheduled by EDF as
any periodic task. Given the previous, an overall set of periodic and aperiodic
tasks is scheduleable if and only if UP + US ≤ 1.

In the rest of this section, we describe in detail our specific extension to the
EDF and the TB algorithms to handle the case of critical pervasive computing
environments.

With the EDFTB policy, the scheduler of mobile entities uses the EDF al-
gorithm. However, the scheduleability of periodic and aperiodic requests further
involves additional constraints, which are verified by the scheduler service upon
the arrival of a new request req coming from the assessor of a mobile client. In
particular, if req is periodic it will result in the execution of a periodic activity
on the side of the mobile server. Since the lifetimes of both the client and the
server are limited, the client is obliged to associate req with a period Treq and
a required number of instances nreq of the periodic activity that is going to be
executed. For example, a scientist should request a fireman to measure the level
of radioactivity 3 times with a period of 2 time units. The request req is eventu-
ally received by the scheduler of mserver , which further assumes that the overall
server utilization is divided into UP and US for the execution of periodic and
aperiodic requests, respectively. Given the previous, the goal of the scheduler is
to verify whether the server can preserve the following constraints:

– For periodic requests:
1. req will be served nreq times within the lifetime of the server.
2. The replies to req will be send back to the client within the client’s

lifetime.

876 F. Papadopoulos et al.

– For aperiodic requests:
1. req will be served within the lifetime of the server.
2. The reply to req will be send back to the client within the client’s lifetime.

Based on the outcome of the verification procedure the scheduler sends a
positive or a negative report to the client assessor. Depending on the report, the
assessor behaves as in the case of the LifetimeLoad policy.

Periodic requests: In case req is periodic, the scheduler of mserver performs
the following steps:

First it checks whether the utilization of mserver remains lower than 1 if the
new request is accepted for service. Formally, if there exist Nmserver pending
periodic requests on the server, the scheduler verifies the following:

UP =
∑

i=1,...Nmserver
(Creqi/Treqi) + (Creq/Treq) ≤ 1− US

In the above formula, Creqi and Treqi denote the worst case execution time
and the period of each pending request. If this formula holds it means that the
execution of req shall not jeopardize the execution of the rest of periodic requests
that already exist in the scheduler’s queue. However, the scheduler must further
verify that the server’s lifetime is sufficient to allow executing req nreq times.
This is accomplished in the second step by evaluating the following:

mserver.lifetime/Treq ≥ nreq

Hence, in the first two steps the scheduler of mserver verifies whether the server
can guarantee the first of the two constraints stated for periodic requests. The
third step performed by the scheduler amounts in checking the second constraint.
Given that the execution of the activities that serve periodic requests is preemp-
tive, the only way to assure that the client will get the replies to req within
mclient.lifetime is by checking whether mclient lives longer than mserver . More
precisely, if crep denotes the worst case communication delay for sending a reply
to req, then the following must hold:

mserver.lifetime ≤ mclient.lifetime− crep

If all the above hold, the server reports back to the client with a positive an-
swer. In the opposite case, the answer is negative and the client selects another
candidate mobile entity. If the answers of all the alternative entities are negative
the request is dropped by the client.

In our case study scenario assume the following situation, depicted in
Figure 5. At time 2 a scientist wants to issue a periodic request req with Creq = 1
and Treq = 4 to one of the three firemen shown in the figure. The scientist fur-
ther requires that req is executed 3 times. Suppose that Fireman 1 is selected
first by the scientist. Fireman 1 periodically executes two requests req11 and
req12 with Creq11 = 2, Treq11 = 4 and Creq12 = 2, Treq12 = 4, respectively.
With the inclusion of req in the queue of Fireman 1, the UP utilization shall
become 1.5. Hence, Fireman 1 can not execute req without jeopardizing the ex-
ecution of req11 and req12. Assume instead that Fireman 2 is selected first by

Timely Provisioning of Mobile Services in Critical Pervasive Environments 877

Fig. 5. Applying the EDFTB policy for periodic requests

the scientist. Fireman 2 is already responsible for the execution of one periodic
request, req21, with Creq21 = 1 and Treq21 = 3. Hence, with the inclusion of
req the UP utilization for Fireman 2 shall become 0.59. However, the remaining
lifetime of the fireman at the time when he receives req is 6. Consequently, he
can execute req at most 2 times. Fireman 3 in our example periodically executes
one request with Creq31 = 1 and Treq31 = 2. With req, its utilization UP , shall
become 0.75. Moreover, the remaining lifetime of the fireman when he receives
req is 13. Thus he can execute req 3 times. Finally, the lifetime of Fireman 3 is
less than the lifetime of the scientist. If the communication overhead crep is at
most 1, the fireman will deliver the replies to the scientist, within the scientist’s
lifetime. Summarizing, if the third fireman is the first entity contacted by the
assessor component of the scientist, the report will be positive and req will be
successfully executed.

Aperiodic requests: If req is aperiodic, the scheduler follows the TB approach
[7]. Based on US , the scheduler assigns a deadline to req and checks whether this
deadline is consistent with respect to the lifetimes of the client and the server.
Formally, the deadline is given according to the following formula:

dreq = max(r, dreq′) + Creq/US

In the above, r is the moment when req arrived and dreq′ is the deadline given to
the aperiodic request req′ whose arrival immediately preceded the arrival of req.
Moreover, the following must hold to guarantee that with the given deadline a
reply to req will be delivered back to the client, within the client’s lifetime:

dreq ≤ min(mserver .lifetime, (mclient.lifetime− creq))

In Figure 6 we revisit the situation discussed in Figure 5. In particular, the pe-
riodic request previously issued by the scientist is scheduled in Fireman 3 (req32
in the figure). Suppose now that the scientist further issues an aperiodic request
req to the same fireman. For Fireman 3 we have UP = 0.75 and US = 0.25.
The request arrives at time 5. Since it is the first aperiodic request, it is given
a deadline that is equal to 9 (i.e., 5 + 1/0.25). If the worst case communication

878 F. Papadopoulos et al.

Fig. 6. Applying the EDFTB policy for aperiodic requests

overhead is 1, the scientist will receive a reply at time 10, at the latest. Conse-
quently, req can be scheduled on Fireman 3 and the report sent to the scientist
is positive. Actually, we can observe in the figure that req can be served earlier
than 9 and the scientist may get the reply at time = 8.

4.4 Assessment

In Figure 7 we summarize our first experimental results produced by the ap-
plication of the proposed policies in a simulated environment realized using the
PARASOL simulator [8]. The environment consists of 3 mobile server entities,
providing compatible services. We performed 2 different classes of experiments.
In the first one (Figure 7(a)), we compare the performance of the Lifetime and
the LifetimeLoad policies with 4 different workloads of aperiodic requests (100,
200, 400 and 800 requests, respectively). Similarly, in the second class of ex-
periments (Figure 7(b)) we compare the performance of the Lifetime and the
EDFTB policies with 4 different workloads of periodic requests (100, 200, 400
and 800 requests, respectively). The lifetimes of the mobile entities, the worst-
case execution times for the requests and the periods of the periodic requests
are randomly generated by following a uniform distribution. Our performance
metric is the percentage of accepted requests (i.e., the requests that are actually
stored in the queue of a scheduler) that complete on time, with respect to the
lifetimes of the clients and the mobile servers.

Specifically, in Figure 7(a) we observe that the percentage of aperiodic re-
quests that complete on time in the case of the Lifetime policy, linearly decreases
as we increase the number of requests that constitute the overall workload issued
to the mobile servers. As opposed to that, the LifetimeLoad policy guarantees
that all the accepted requests are executed on time (i.e., we do not have any
missed deadlines). In Figure 7(b) we observe that the behavior of the Lifetime
policy gets even worst, given that the requests are periodic and require more time
to complete. The EDFTB policy behaves perfectly in this case as we observe that
all the accepted requests finish on time. The price to pay for avoiding missed
deadlines is given in Figure 7(c). As mentioned in Section 1, we can estimate
the battery overhead introduced by the three policies by examining the num-
ber of messages exchanged between a mobile client and a mobile server. In the

Timely Provisioning of Mobile Services in Critical Pervasive Environments 879

(a) Lifetime vs. LifetimeLoad (b)Lifetime vs. EDFTB

(c) Number of messages exchanged with respect to the timeliness properties

Fig. 7. Experimental results

figure we can observe that the overall number of messages exchanged between
a mobile client and the alternative mobile servers is constant in the Lifetime
policy, which is the cheapest. For the other two policies the minimum number
of messages exchanged is greater but is still constant. On the other hand, the
maximum number of messages for the LifetimeLoad and the EDFTB policies
linearly increases with the number of alternative mobile servers.

5 Related Work

Up to know, there have been several approaches dealing with various dependabil-
ity attributes in the context of pervasive computing environments [9,10]. These
approaches most frequently concentrate on reliability, performance, availability,
security, reputation, etc. However, to our knowledge the approach proposed in
this paper is the first attempt that focuses on timeliness.

In the past, the middleware community proposed standards for real-time
middleware platforms, which were aimed at conventional distributing comput-
ing environments where both the client and the server entities are deployed on
top of stationary workstations. Among these standard approaches we have the
one proposed by the OMG for Real-Time CORBA and related implementations
like TAO and ZEN [11,12], which proved to be useful in conventional systems.
However, they can not be directly employed in the environments examined in
this paper.

In the remainder of this section we concentrate on work that is comple-
mentary to the approach we propose. In particular, the issue of calculating the

880 F. Papadopoulos et al.

lifetime of mobile entities is central to our approach. Currently, we have useful
techniques that aim at estimating the physical motion of mobile entities [3] and
motion independent techniques that estimate the unavailability of mobile entities
[13]. Several classical algorithms for scheduling real-time tasks have been pro-
posed in the past. Usually their are divided into static and dynamic. Obviously,
static algorithms can not be used in critical pervasive computing environments.
Dynamic scheduling algorithms, schedule tasks on-the-fly. The EDF algorithm
that we employed in this paper is among the most widely known ones. However,
several others like MLF (minimum-laxity-first) and MUF (maximum-urgency-
first) [14,15] may prove useful in the context of critical pervasive computing envi-
ronments. As in the case of EDF, these algorithms should also be appropriately
enhanced before they are introduced in such environments. In our particular
case, we consider using MUF instead of EDF to deal with cases where all of the
alternative mobile servers are incapable of serving a new client request. MUF
associates tasks with an importance factor, which may serve as a criterion for
rejecting pending requests towards serving new ones of greater importance.

6 Conclusion

In this paper, we proposed a middleware service that facilitates the timely execu-
tion of mobile services in critical pervasive computing environments. The overall
service architecture relies on the WSAMI platform and supports three different
timeliness policies for the execution of requests issued by mobile clients to mobile
servers. The first policy takes into account the lifetimes of the client and the server
entities and guarantees that a reply will be sent to the client as long as the server
manages to serve the client’s request. The second policy guarantees both that the
client requestwill be served and that a replywill be sent backwithin the client’s life-
time. This is achieved by examining the servers’ load along with the client and the
servers lifetimes. The third policy extends the classicalEDF and TB algorithms for
the purpose of pervasive computing environments, to deal with periodic requests
in such environments. So far, the proposed service deals with the timely execution
of independent client requests. An interesting extension would be to further incor-
porate support for the timely execution of workflows [16].

Acknowledgments. This work is partially funded by the MobWS GSRT grant for
Cooperation in S&T areas with European countries.

References

1. C. L. Liu and J. W. Layland: Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment. Journal of the ACM 20 (1973) 46–61

2. E. Pitoura and G. Samaras: Data Management for Mobile Computing. Kluwer
Academic Publishers (1998)

3. H. M. O. Mokhtar and J. Su: Universal Trajectory Queries for Moving Object
Databases. In: Proceedings of the IEEE International Conference on Mobile Data
Management (MDM’04). (2004) 133–146

Timely Provisioning of Mobile Services in Critical Pervasive Environments 881

4. V. Issarny, D. Sacchetti, F. Tartanoglou, F. Sailhan, R. Chibout, N. Levy and A.
Talamona: Developing Ambient Intelligence Systems:A Solution Based on Web
Services. Journal of Automated Software Engineering 12 (2005) 101–137

5. W3C: Web Services Architecture. Technical report, (W3C) http://www.w3.org/
TR/ws-arch/.

6. IEEE: IEEE Standard for Wireless LAN Medium Access Control (MAC). Technical
report, IEEE (1997)

7. M. Spuri, G. Buttazzo and F. Sensini: Robust Aperiodic Scheduling under Dynamic
Priority Systems. In: Proceedings of the 16th IEEE Real Time Systems Symposium
(RTSS’95). (1995) 210–221

8. J. Neilson: PARASOL Users’ Manual (v 3.1.). Technical report, (School of Com-
puter Science - Carleton University - Ottawa) K1S5B6.

9. J. Liu and V. Issarny: QoS-Aware Service Location in Mobile Ad-Hoc Networks.
In: Proceedings of the 5th IEEE International Conference on Mobile Data Man-
agement (MDM’04). (2003)

10. L. Zeng, B. Benatallah and M. Dumas: Quality Driven Web Services Composition.
In: Proceedings of the 12th ACM International Conference on the World Wide
Web (WWW’03). (2003) 411–421

11. R. E. Schantz, J. P. Loyall, D. C. Schmidt, C. Rodrigues, Y. Krishnamurthy, and
I. Pyarali: Flexible and Adaptive QoS Control for Distributed Real-time and Em-
bedded Middleware. In: Proceedings of the 4th IFIP/ACM/USENIX International
Conference on Distributed Systems Platforms (Middleware’03). (2003)

12. A. Krishna, D. C. Schmidt, and R. Klefstad: Enhancing Real-Time CORBA via
Real-Time Java. In: Proceedings of the 24th IEEE International Conference on
Distributed Computing Systems (ICDCS’04). (2004)

13. Y. Xiong, X. Lin and J. Rowson: Estimating Device Availability in Pervasive Peer-
to-Peer Environment. In: Proceedings of the 10th IEEE International Workshop
on Future Trends of Distributed Computing Systems (FTDCS’04). (2004)

14. M. L. Dertouzos and A. K. L. Mok: Multiprocessor On-Line Scheduling of Hard
Real-Time Tasks. IEEE Transactions on Software Engineering 15 (1989) 1497–
1506

15. D. B. Stewart and P. K. Khosla: Real-Time Scheduling of Sensor-Based Control
Systems. In: Proceedings of the 8th IEEE International Workshop on Real-Time
Operating Systems and Software (RTOSS’91). (1991)

16. A. Zarras, P. Vassiliadis and V. Issarny: Model-Driven Dependability Analysis of
Web Services. In: Proceedings of the 6th International Conference on Distributed
Objects and Applications (DOA’04). (2004) 1608–1625

Mobility Management and Communication
Support for Nomadic Applications

Marcello Cinque1, Domenico Cotroneo1, and Stefano Russo1,2

1 Dipartimento di Informatica e Sistemistica,
Universita’ degli Studi di Napoli Federico II,

Via Claudio 21, 80125 - Naples, Italy
{macinque, cotroneo, sterusso}@unina.it

2 Laboratorio ITEM,
Consorzio Interuniversitario Nazionale per l’Informatica,

Via Diocleziano 328 - 80124 Naples, Italy

Abstract. There is an increasing demand for realizing communication
services for nomadic environments, capable to provide applications with
mobility management facilities and application-aware adaptation sup-
port. This paper proposes a novel mobility management and communi-
cation architecture specifically suited for nomadic environments, offering
communication facilities and adaptation support by means of an API,
named NCSOCKS. The driving idea is to provide application and mid-
dleware developers of nomadic services with essential mobility-enabled
communication support, while hiding network heterogeneity in terms of
wireless technology and leveraging the availability level of communica-
tion in spite of transient signal degradations. Transient signal degrada-
tions, due to device movements and/or shadowing, have the effect of
increasing the handoff frequency. The proposed architecture integrates
a novel mechanism to improve the connection availability by reducing
the number of unnecessary handover procedures. In order to evaluate
the proposal, an approach based on combined use of simulation and
prototype-based measurements is adopted.

1 Rationale and Contributions

Recent years have been characterized by an explosive growth in the deploy-
ment of wireless data communication technologies. The IEEE 802.11 family [1],
Bluetooth [2], and the infrared wireless technologies [3] are nowadays widely de-
ployed, and backed by a growing number of hardware and software vendors. This
scenario has led to the definition of a new computing paradigm, the Nomadic
Computing.

Nomadic Computing (NC) is a form of mobile computing where communica-
tion takes place over strongly heterogeneous network infrastructure, composed
of several wireless domains or cells, which are glued together by a permanent
network infrastructure (the core network), aiming to provide anytime, anywhere
access to mobile devices [4]. A typical NC infrastructure model is illustrated in

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 882–899, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Mobility Management and Communication Support 883

Cell 1 Cell 2

Cell 3

AP1 AP2

AP3

handoff

Core Network

Fig. 1. Nomadic Computing Model

figure 1. As figure shows, devices can move among different cells, with different
technical characteristics. Each cell is covered by one or more Access Points (APs),
such as Bluetooth, Wi-Fi, and IrDA, each one providing devices with the access
to services deployed over the core network. The wireless network heterogeneity
of nomadic environments is coherent with the Next-Generation Wireless Inter-
net (NGWI) view of mobility [5] which aims to provide Internet access through
a diverse set of wireless architectures or “meshed networks”, e.g., wireless local
area network (Wi-Fi, Bluetooth), 3G cellular, and satellite network.

Nomadic Computing is enabling the creation of a new generation of applica-
tions; examples are applications for guiding tourists as they move among halls, or
locations, of a touristic site (e.g. a museum or an archaeological site), applications
for context-aware medicine containers, or bed in a hospital [6]. Other scenarios
are network-based dependable control [7], and aircraft maintenance systems [8].
In such scenarios, providing high available communication services is a crucial
requirement. Furthermore, the network heterogeneity, along with devices’ ability
to move among different cells, increases the need to keep applications aware of
the current state of the connection and device’s location.

Several research studies have been conducted on various aspects of nomadic
environments. Recently, research efforts have progressed along mobility manage-
ment issues. Mobility management can be decomposed in handoff management,
and location management. Handoff management’s objective is to support users
with mobile terminals to access services through wireless networks when they
move to a new service area. Most research studies focused on efficient mech-
anisms provision, independence of the network technologies, to support both
horizontal and vertical handoffs [9, 10]. Other studies moved toward the defini-
tion of communication protocols, capable of leveraging quality attributes, such
as availability, reliability, and transparency [11, 12, 13]. Location management is
concerned with the provision of the physical or symbolic location of mobile ter-
minals. There are studies proposing new strategies or mechanisms, and most of
them assume the use of special or intelligent sensors, as described in [14], where
a thorough analysis of different location mechanism has been made. Other pro-
posals use Commercial Off The Shelf (COTS) sensors [15, 16], thus they do not

884 M. Cinque, D. Cotroneo, and S. Russo

mandate the use of a dedicated wireless infrastructure for locationing purposes.
By location support, we hereafter refer to the symbolic location support, that
encompasses abstract ideas on where something is located [14]: in the kitchen,
in the lab, next to a picture in a museum.

These research studies represent fundamental milestones for achieving new
solutions and clarifying the open issues to be addressed. Nevertheless, we recog-
nize the lack of mobility management and communication support able to face
the following fundamental NC-related issues in an integrated manner: i) provide
applications with adaptation support to the highly variable network conditions;
ii) leverage communication availability in spite of transient signal degradations
and AP failures; and iii) provide a technology-independent Application Program-
ming Interface (API).

This paper presents the design and the implementation of a mobility man-
agement and communication architecture specifically tailored for nomadic envi-
ronments. Design choices that have been made to cope with the above mentioned
issues are discussed. The paper describes the proposed technology-independent
architecture along with its object-oriented communication API, called Nomadic
Computing Sockets (NCSOCKS1), which provides applications with adaptation
mechanisms to connection status and location changes (connection and location
awareness support). In order to achieve availability of communication, the archi-
tecture integrates a new mechanism to reduce the connection unavailability due
to unnecessary handoff procedures, i.e. handoff procedures triggered by transient
signal degradations. Experimental results to evaluate availability improvement
and performance penalty are provided over a testbed composed of Bluetooth
and Wi-Fi appliances.

The proposed architecture can be thought as a building block for the im-
plementation of middleware solutions for nomadic environments. Furthermore,
design choices can be used as a guideline for software practitioners to solve sim-
ilar problems, thus reducing the development efforts.

2 Mobility Management and Communication Support

2.1 Assumptions and Requirements

Before illustrating in detail the proposed mobility management support, we need
to clarify assumptions we make about the supporting infrastructure and require-
ments we needed to satisfy. As far as network technology is concerned, we as-
sume the presence of heterogeneous wireless networks, consisting of short range
COTS wireless access point. In other words, we do not mandate the adoption
of a particular access point equipped with intelligent or special sensors. Con-
versely, we assume that wireless networks are equipped with COTS (and cheap)
access points. As far as the core network is concerned, we assume that it is wired

1 The NCSOCKS API along with its documentation can be downloaded from
http://www.mobilab.unina.it/Prototypes.htm

Mobility Management and Communication Support 885

and reliable. As for location management, throughout this paper the focus is on
indoor symbolic location management.

The following requirements have been considered designing the solution:

– Provide applications with adaptation support to the highly variable network
conditions in terms of connection status (availability, signal strength, band-
width, delay) and device’s location. The connection and location awareness
support allows applications to promptly adapt to the varying conditions, e.g.
the guide application can stream to the device the audio-video guide for the
current room, while adapting the frame rate to the current delay.

– Leverage communication availability in spite of transient signal degrada-
tions, due to device movements and/or shadowing, and of crash of network
access points. This represents a fundamental requirement for mission critical
nomadic applications.

– Provide a communication Application Programming Interface (API) which
is independent from the heterogeneous wireless network infrastructure. The
need of creating a technology-independent software API for NC environments
is strongly recognized. As stated in [17], such an API will encourage the
creation of long lived applications and of new location-aware application by
helping to amortize development efforts.

2.2 Overall Architecture

The proposed mobility management and communication architecture is depicted
in figure 2. The architecture is composed of a mobile-side platform and core-side
components. The mobile-side platform offers services to nomadic applications,
whereas the core-side components support mobile-side components to perform
their tasks.

With regard to the mobile-side platform, we adopted a cross-layer design
approach. The NCSOCKS transport layer offers services to the applications by
using both the network layer and the data-link layer. The interaction with the
data-link layer is made necessary to gather information about the current state
of the connection and device’s location, enabling connection and location aware-
ness. The NCSOCKS collects data-link related information via the Connection

AP1

Core network
APn

Map Server

handoff

W. Ch nW. Ch 1

IP

Legacy
Apps

CLM

NCSOCKS

Connection/Location
Aware Applications

Device-side
Platform

Fig. 2. Overall Mobility Management Architecture

886 M. Cinque, D. Cotroneo, and S. Russo

and Location Manager (CLM), which manages the multiple, heterogeneous wire-
less interfaces of the device, and performs handoff operations among different
APs during device’s movements. This way, the above layers do not have to be
aware of the particular wireless interface being used, overcoming heterogeneity
issues. The CLM is also aware of the current location of the device, in terms of
the AP that the device is using, and it provides the NCSOCKS with such location
information. As for the network layer, the Internet Protocol (IP) is adopted, for
several reasons. First, using IP masks the heterogeneity of the underlying wire-
less technology. Second, it allows the plenty of legacy IP-based applications to
run on mobile terminals while they move, coherently with the NGWI view. The
handoff is managed by the CLM and it is thus completely transparent to legacy
applications. On the other hand, legacy applications cannot benefit from the
connection and location awareness support, and will suffer the high variability
of network conditions. Third, using IP does not represent a limitation, since it is
supported by the majority of COTS wireless technologies, including Bluetooth
(IP over L2CAP via BNEP encapsulation [2]), Wi-Fi (via a native support), and
IrDa (IP over serial communication [3]).

As will be clarified in section 3, the CLM uses information about the topology
of APs to perform the handoff. For this reason, components are deployed on the
core network in order to provide the CLM with the topology map of the envi-
ronment. In particular, the Map Server provides information about the current
topology, including the description of the communication technology being used
by each AP, and it keeps the map updated in spite of AP unavailabilities due
to AP failures or overload conditions. Map Server’s services can also be used to
implement administrative tools to monitor the status of the network in terms of
AP activity and the devices connected to the wireless network. Due to scalabil-
ity purposes and/or topology constraints, the nomadic computing infrastructure
can be scattered into two or more wireless service areas, each one served by its
own Map Server.

2.3 CLM

As described earlier, the CLM component is in charge of implementing handoff
procedures. These procedures are composed of the following three phases [18]:

– Initiation: the network status is monitored to decide for a migration;
– Decision: once the need for handoff is triggered, a new AP has to be selected;
– Execution: the connection to the selected AP is established and current

location is updated.

The initiation phase is strongly dependent on the technology being used.
For instance, in the case of a Bluetooth cell, in which the slave mobile device
can manage at most one connection per time, the initiation phase can use only
the information about the current connection. In the decision phase, a new AP
is selected. The decision can be taken by monitoring a set parameters of the
wireless link between mobile device and APs (see section 3.3). In order to reduce

Mobility Management and Communication Support 887

In
iti

at
io

n
pa

tte
rn

C
onnection pattern

REAL
CONNECTION A

REAL
CONNECTION B

INIT STRATEGY
A

INIT STRATEGY
B

LOCATION

- name
- techonolgy
- address
- info

+ get()
+ set()

0..n

1

+neighboring location

0..n

confines with

+current location

1

NCSOCKS

SHARED
MEMORY

+ read()
+ write()

INITIATION

+ initiateHandoff()

<<abstract>>

CONNECTION
MANAGER

decideNextCell()
executeHandoff()
getMap()
searchConnection()
+ run()

1 11 1

is in

nn

EXCEPTION

STATE

- availability
- RSSI
- bandwidth
- delay

CONNECTION

+ getState()
+ connect()
+ disconnect()
+ search()

<<abstract>>

1..n1 1..n1

monitors
1..n

1

1..n

1

manages

throws

has a

Fig. 3. CLM Class Diagram

the number of APs to be inquired, a predictive handoff scheme is adopted. This
scheme uses services provided by the Map Server to obtain information about
neighboring APs.

We herein present the design of the CLM layer as a design pattern. This
enable us to propose a general solution which can be adopted by designers fac-
ing similar problems. The class diagram of CLM is depicted in figure 3. The
Connection Manager holds information about the connection status, current
location, and technology being used. The connection status is composed by sev-
eral data: the availability, the signal strength, the bandwidth, and the delay.
The availability can assume three distinct values: i) NOT CONNECTED, i.e.
the device is not connected to any AP; ii) HANDOFF, i.e. the mobile device is
performing a handoff procedure; and iii) CONNECTED, i.e. the device is con-
nected to an AP. Two strategy patterns are adopted, called Initiation and Con-
nection. The former aims to define a family of initiation algorithms, encapsulate
each one, and make them interchangeable in spite of the technology being used.
The latter provides the wireless connection abstraction, in terms of connection
creation, disconnections, AP discovering, and monitoring procedures for signal
strength, bandwidth, and delay. Technology specific wireless APIs are encapsuled
in Real Connection objects. Mismatches may occur between the functionalities
provided by the vendor-specific API and the abstract Connection class meth-
ods. For instance, a technology may offer additional facilities. However, they
can be ignored since they are not needed by the Connection Manager class.
More complex is the case in which a technology offers only a limited support
as related to the Connection class. For example, a technology may not provide

888 M. Cinque, D. Cotroneo, and S. Russo

any API to obtain the signal strength. In this case one can either i) perform a
work-around (e.g. reading and parsing the output of a command line tool which
provides the signal strength), or ii) avoid to implement the functionality. In this
last case, applications should be notified about the absence of the signal strength
information for that particular technology, and also the Connection Manager
should be tailored with respect to the missing information. The topology map is
implemented by means of Location objects and built by invoking the getMap()
method, which has the effect of requesting the overall map to the Map Server
serving the current wireless service area.

As for the CLM’s dynamic behavior, the Connection Manager evolves ac-
cording to the following steps: i) search for an AP and topology map retrieval
(via the getMap() method); ii) handoff initiation; and iii) handoff decision and
execution: if this last step succeeds, the manager jumps back to the step ii),
otherwise it starts again from the step i). Therefore, the step i) is performed
either when the mobile device enters the wireless infrastructure for the first time
or when the handoff procedure fails. A failure during the handoff process may
be due to an AP failure (which requires the map information to be updated),
or may due to the mobile device going beyond the zone covered by the current
wireless service area. In this last case, it is worth to start from step i), since the
device may be moving towards another wireless service area.

The CLM pattern is characterized by: i)Generality, i.e. the structure and be-
havior of the Connection Manager and Location are independent of the tech-
nological details, and abstracted by the Initiation and Connection classes,
and ii) Extensibility, i.e. it is possible to add new Initiation and Connection
classes in charge of managing new wireless communication technologies.

2.4 NCSOCKS

The class diagram of the Nomadic Computing Sockets (NCSOCKS) is depicted
in figure 4. As figure shows, the API is similar to the standard Java sockets
library, except for the following.

First, the NCSOCKS have to provide connection and location awareness.
This is done through two classes, the Location Monitor and the Connection
Monitor. Applications can request the current connection status or location
either via synchronous or asynchronous primitives. For example, an applica-
tion can request the location by simply invoking the getActualLocation()
method or, alternatively, it can subscribe a handler (implementing a Callback
interface) in order to be notified about location changes by means of the
notifyLocChanges() method. The information about the current location and
connection status are gathered by the NCSOCKS from the CLM by means of a
shared memory abstraction. The Shared Memory class encapsulates the mecha-
nisms to deal with the NCSOCKS and CLM reader/writer concurrency problem.

Second, communication methods have to take into account the variability of
the connection status in terms of availability adopting proper synchronization
paradigms. We adopted the following synchronization paradigm. The Send()
primitive tries to send a packet (a segment, in the case of TCP) even if the

Mobility Management and Communication Support 889

DatagramPacket
- Data
- Length
- Address
- Port

Callback

+ handle()

<< interface >>

TCPClient

senseConnection...
do_up()

CLM

SockDatagram

+ Bind()
+ Send(p : DatagramPacket, timeout)
+ Receive(p : DatagramPacket, timeout)
+ GetHostByName()
+ WaitConnection()

<<abstract>>
SockStreamClient

+ Connect()
+ Disconnect()
+ Send(stream : String, timeout)
+ Receive(stream : String, timeout)
+ GetHostByName()
+ WaitConnection()

<<abstract>>

CommException
- message
- code

UDPSocket

senseConnection...
do_up()

Location Monitor

+ getCurrentLocation()
+ notifyLocChanges(c : Callback)

Connection Monitor

+ getCurrentConnStatus()
+ notifyConnStatusChanges(c: Cal lback)

Shared Memory

+ write()
+ read()

throwsthrows

Fig. 4. NCSOCKS Class Diagram

actual state is HANDOFF or NOT CONNECTED, in the sense that it waits
(by blocking the caller) for a time slot, storing the packet (the segment) into a
buffer. Once the connection reaches the CONNECTED state, the stored packet
(segment) is effectively sent. Conversely, when a timeout expires, the application
is notified via an exception with the current connection status, and the packet
(segment) is dropped. From this point on, applications can adapt their behav-
ior accordingly. For instance, a multimedia streaming application may decide
to not re-transmit the lost packets, because the delay due to a re-transmission
might be not acceptable for its quality requirements. Conversely, content-type
applications, such as smart guides, may decide to re-transmit, in order to send
all the contents to the user. The Receive() primitive works differently: it re-
ceives packets only when the state is CONNECTED, otherwise it notifies the
application via an exception that the connection is not available anymore. This
choice is due to the following consideration: if the connection is unavailable, and
the Receive() does not notify the application, the application will waste re-
sources waiting for incoming packets. Instead, during unavailability periods, the
application can perform other tasks (e.g. backup the current status, or start to
elaborate the already received data). In the worst case in which the application
does not have any tasks to perform, it can wait for the connection to become
available through the WaitConnection() method.

2.5 Map Server

The Map Server is a core-side component, which is in charge of providing the
mobile devices, i.e. the Connection Manager object, with the current environ-
mental topology map. Each mobile terminal is identified by an unique identifier.

890 M. Cinque, D. Cotroneo, and S. Russo

User

getMAP()

Central Manager

Notification Service

Event

Access Point Monitors

Update
Update

Update

Prober

<List>Records

Fig. 5. Overall Architecture of the Map Server

The Map Server is designed as a set of distributed objects: one object per
AP (AP monitors), which are in charge of performing the AP monitoring tasks,
and one Central Manager which is in charge of creating and keeping up to date
the topology map. This can be managed by the system administrator via the
Central Manager user interface, whereas the AP monitors notify the manager
about current APs status (see figure 5). More precisely, AP monitors are in
charge of notifying the Central Manager about topolgy changes due to AP
crashes or overloads (i.e. the maximum expected number of devices is connected
to the AP). Thus, topology changes not handled by human administrators are
automatically handled by the Central Manager by means of AP monitors. The
notification takes place via an Event Channel.

The map discovery process takes place via a prober application, as illustrated
in figure 6. It is an application which resides in a mobile terminal, which is in
charge of collecting measurements with the human support. Measures consist
of normalized Receiver Signal Strength Indicator (RSSI) values as received by
the prober. Such measures are gathered by the prober along the path enforced
by the human operator and, at the end of the discovery phase, they are sent to
Central Manager via the Event Channel in order to create the topology map. For
each room of the nomadic environment, the prober discovers its APs (selecting
them among the others on the basis of the RSSI) and, for each neighboring zone
between two rooms, neighboring APs are discovered, building the map. The
measurements gathered in the neighboring zones are useful to tune the location
system precision, as will be explained in section 5.3.

The approach is general enough to deal with different AP topologies. We as-
sume that each room can have one or more APs, which together build a cluster of
APs for the room. This way, overlapping cells are taken into account as clusters.
The neighboring APs cluster for each cluster is discovered by the prober along
the path enforced by the human operator. Therefore, the virtual map is coherent
with the physical environment within which the mobile device roams, regardless
to its shape and/or extension. Finally, if two covered zones are separated by an

Mobility Management and Communication Support 891

AP AB

D

C

Prober

Measure
1

Measure
2,3

Measure
4,5

Measure
6,7,8

Measure
9

Measure
10

Fig. 6. The Topology Discovery process

uncovered area, the two zones can be seen as two different wireless service areas
and can be served by two different Map Servers.

3 Handoff Strategy

This section describes an handoff strategy, implemented by the CLM. The pre-
sented strategy is designed with two objectives in mind: i) to improve the network
availability in terms of wireless connection, and ii) to use of the closest AP, in
order to keep track of device’s location. Nevertheless, other handoff strategies
pursuing different goals can be designed and integrated in the architecture.

3.1 Handoff Assumptions

Handoff procedures can be classified according to the level at which they oper-
ate [10, 19, 13]. We refer to an Ln handoff for a handoff procedure that works
at level n of the ISO-OSI stack. Focus here is on L2 handoff, i.e. vertical (i.e.,
handoff performed between two distinct technologies) and horizontal (i.e., among
the same technology) handoff performed at data link layer. As far as initiation
strategies for vertical handoff are concerned, we assume that they are based on
signal strength measurements in the cell being used. This results in lower power
consumption (one interface at a time is adopted), and in interference reduction
(for instance, using Bluetooth and Wi-Fi simultaneously may produce signifi-
cant interference [20]). As for horizontal handoff, some technologies (e.g. Wi-Fi
and cellular technologies, such as GSM) manage the handoff in a transparent
manner, so we only have to keep track of the AP being connected. There also
are other technologies (such as Bluetooth and IrDA) in which the handoff is not
supported. In these cases, we handle handoff procedures in the same manner as
the vertical ones: as an example, when a device in a Bluetooth cell triggers a
handoff, it can reconnect either to a Bluetooth AP or to a different one.

In order to pursue the portability of legacy IP-based applications, handoff
at network (L3), at transport (L4), or at session layer (L5) should be supported

892 M. Cinque, D. Cotroneo, and S. Russo

as well. To this aim, the proposed L2 handoff can be integrated with existing
solutions: i) L3 handoff protocol, such as Mobile IP [12], which is a general tech-
nique to perform handoff of IP traffic between IP subnets using straightforward
routing techniques and IP-IP encapsulation; ii) L4 handoff, like TCP/DNS based
handoff protocols, that is vertical handoff at the TCP level [10]; and iii) L5 hand-
off, such as SIP-based handoff procedure [13]. However, L2 solutions are enough
to support UDP and stateless TCP applications with a minimal configuration
effort at network level (i.e. using DHCP or configuring the IP address by means
of Zero Conf IP - http://files.zeroconf.org).

3.2 Initiation Strategy

The connection availability is strongly dependent by the number of handoff op-
erations. The more handoffs are performed, the less the connection is available.
Defined Pr(H) as the probability of initiating an handoff, improving the avail-
ability means minimizing the probability Pr(H). Several proposals of initiation
strategies, referred in literature, are characterized by assumptions similar to
those we made, that is, the handoff recognition is performed by using signal in-
formation of the cell currently in use. Reactive approaches, based on broken link
recognition, such as [10], initiate the handoff in spite of AP unavailability detec-
tion. Proactive approaches allow the handoff to be triggered when the AP is still
available. For this reason, this approach should be preferred. In this direction,
some solutions are based on a simple threshold mechanism, that is the handoff
is initiated when the Receiver Signal Strength Indicator (RSSI) falls below a
certain threshold [18], [21]. In this case, the value of Pr(H) is calculated as:

Pr(H) = Pr(RSSI < SRSSI) (1)

where SRSSI , is a fixed threshold on RSSI. We can argue, as experimental results
confirm (see section 5.2), that this kind of initiation leads to a poor availability.
Indeed, noisy environments and shadowing problems can lead to transient RSSI
degradations, which do not strictly require any handoff.

For this reason, it becomes crucial to define a mechanism which is able to
discriminate permanent signal degradations from transient ones. Some strategies
involve averaging the signal received with different window size, to ensure the
accuracy of the handoff initiation procedure using a fuzzy logic controller [9].
Among the heuristics based on the concept of threshold, the α-count mechanism
(already adopted in other research areas, such as intermittent failures detec-
tion [22]), appears to be particularly interesting for our purposes due to the
clear and simple mathematical characterization, the thorough analysis already
conducted, and the minimal computational complexity. We propose an α-count
function which is RSSI-based, in order to keep the device connected to a close AP,
for locationing purposes. The RSSI is strongly related to the distance between
the device and the AP. The proposed α-count function is defined as follows:

α(L) =

⎧⎨⎩
α(L−1) + 1 if RSSI(L) < SRSSI

α(L−1) − dec if RSSI(L) ≥ SRSSI and α(L−1) − dec > 0
0 if RSSI(L) ≥ SRSSI and α(L−1) − dec ≤ 0

Mobility Management and Communication Support 893

During the L-th measurement, if RSSI falls below the threshold, the value
of the α(L) function is incremented, otherwise the value is decremented by a
positive quantity dec. A handoff is triggered when α(L) becomes greater than
a threshold αT . The αT , dec, and SRSSI values have to be carefully tuned in
order to achieve a trade-off between the availability and accuracy of the location
mechanism. Indeed, αT along with values of dec and SRSSI indicates which is
the zone covered by an AP.

Transient degradation of RSSI causes α(L) to be incremented, and succes-
sively decremented. The handoff probability can be calculated as follow:

Pr(H) = Pr(RSSIL < SRSSI , α
(L−1) ≥ αT − 1) =

= Pr(RSSIL < SRSSI) · Pr(α(L−1) ≥ αT − 1|RSSIL < SRSSI) =
= Pr(RSSIL < SRSSI) · Pr(α(L−1) ≥ αT − 1)

(2)

This probability is equal to the Pr(H) as evaluated in (1) in the case of simple
threshold, multiplied by Pr(α(L−1) ≥ αT − 1) ≤ 1. As we expect, Pr(H) is lower
than the simple threshold strategy. Hence, the α-count results in a reduction
of the number NH of unnecessary handoff operations, as experimental results
confirm (see section 5.2).

3.3 Decision Algorithm and Locationing Issues

The decision phase is based on a topology-based schema. The decision algorithm
is in charge of electing the new AP among the neighboring APs. The decision is
taken by using a score criteria: let N = {ng1, ..., ngn} be the set of neighboring
APs, each one belonging to a certain cluster. For each ngi ∈ N a score s(ngi)
is evaluated on the basis of several parameters (RSSI, delay, bandwidth). The
decision algorithm selects the AP ng∗ with the score s∗ = maxngi∈N s(ngi).

As for locationing issues, we assume that a mobile device is in room x when it
is attached to a AP belonging to the cluster x. The initiation phase assures that
when a mobile device leaves a room, a handoff will be triggered. The decision
algorithm assures that when a mobile device enters in a room y, with APs
belonging to the cluster y, one of those APs will be selected. The score parameters
used by the decision algorithm are strongly influenced by the distance between
the device and the AP, as well as by the presence of walls, as several research
studies, such as [20], confirm. For this reason, being the APs of the cluster y
closer than other APs belonging to other clusters, their score should be the best.
However, even if pathological situations can lead to the selection of a wrong AP,
poor values of the signal strength, which are measured on the selected AP, will
eventually result in the initiation of another handoff, thus correcting the error.

It is worth noting that, since it is likely that each AP cluster has only a few
neighbors (typically from 1 up to 4, such as a medium office environment), the
decision time spent is minimized as compared with that needed for scanning
all the APs in the environment, as some solutions suggest [9]. Furthermore, we
point out that location management mechanism do not mandate the adoption of
dedicated sensors, since they use the same sensors forming the communication

894 M. Cinque, D. Cotroneo, and S. Russo

cell infrastructure. Further details about the location support can be found in
our previous work [23]. Finally, due to the technology-independent characteris-
tics of the CLM, this solution does not depend on the wireless technology being
adopted, resolving the heterogeneity problems in location aware computing, of-
ten mentioned in literature, as shown in [14, 17, 16].

4 Implementation Issues

The CLM has been conceived as a daemon process running on mobile de-
vices. Communication between user applications and the CLM has been im-
plemented by using shared memory system calls, which are encapsulated in the
SharedMemory class (see figure 3). The Bluetooth connection is achieved by a
specific PANConnection class, which implements the Connection abstract class.
Such a class is in charge of creating “IP over L2CAP“ channels based on Blue-
tooth Personal Area Network profile (PAN) and Bluetooth Network Encapsu-
lation Protocol (BNEP) [2]. For this purpose, we adopted the BlueZ API (the
standard Bluetooth support for Linux - http://bluez.sourceforge.net) which al-
lowed to implement all the methods required by the Connection class.

As far as Wi-Fi is concerned, the implementation of components (a WiFiCon-
nection class implementing the Connection class) was simplified by the fact
that the IP abstraction is natively provided by Wi-Fi adapters. Nevertheless,
Wi-Fi does not provide any standard API to program the adapter. For this
reason, we used command line tools (e.g. activating the interface to connect)
directly from within the WiFiConnection class methods.

The α-count based initiation strategy explained in section 3.2 has been im-
plemented through a alphaInitiation class which implements the Initiation
interface. In the first release of the architecture, we initiate handoffs with the α-
count initiation strategy irrespective from the technology being used. This may
represent a problem when using wireless data link technologies which automati-
cally manage the horizontal L2 handover (i.e. Wi-Fi). We define three strategies
to overcome the problem: i) L2 technology could be forced to not perform L2 hor-
izontal handoffs, which will be treated by the Connection Manager (the main
weakness is performance losses); ii) it could be assumed that the neighboring
cells of the considered technology forms an unique big cell (the main weakness is
locationing accuracy losses); and iii) it could be forced a topology in which each
AP has neighbors that are all of different technologies (the main weakness is to
introduce hardware constrains in the communication infrastructure topology).
The most suitable strategy can be chosen on the basis of the requirements or
constraints forced by the system administrator.

5 Experimental Results

5.1 Testbed Description

A testbed was established in the laboratories of department building. The layout
of these labs is shown in figure 6. It has dimensions of 30m by 40m with about 6

Mobility Management and Communication Support 895

different rooms, including computer labs, offices, and the storeroom. As shown in
the figure, APs are placed in the middle of four rooms. The APs used were three
ANYCOM Bluetooth dongles (in rooms B, C, and D) and an Orinoco Access
Point 802.11b (in room A). As for mobile device’s platform, we used a Compaq
iPAQ 3970 mobile device equipped with a Bluetooth and 802.11 modules, and
with the Linux Familiar 0.7.0 operating system.

5.2 Availability and Performance Measurements

The proposed α-count scheme is compared with the fixed threshold mecha-
nism (that is, an handoff is triggered when the RSSI value is lower than a
fixed threshold), in order to evaluate the availability improvement. In particular
we show unavailability reduction by evaluating the Pr(H) (i.e. the probability
that an handoff occurs) The initiation strategies are compared as a function
of SRSSI , since this parameter is the only one that affects the fixed thresh-
old scheme. A simulation model is developed using the MATLAB environment
(http://www.mathworks.com). Such a model performs the following two tasks:
i) simulation of the two initiation strategies with an increasing SRSSI in order
to evaluate the following two numbers: NRSSI<SRSSI , that is how many times
the RSSI is lower than SRSSI , and N

α(L)>α
(L)
T

, that is how many times α(L) is

greater than α
(L)
T ; and ii) Pr(H) estimation for each strategy. The probability

is estimated with respect to the frequency approach. It can be thus evaluated
as Pr(H) = NRSSI<SRSSI/Ntot according to equation 1, whereas, for α-count
strategies, it is Pr(H) = N

α(L)>α
(L)
T

/Ntot, according to equation 2, where Ntot

is the total number of measurements.
The simulation is performed by populating the models with realistic values.

Hence, RSSI values were obtained on the experimental field. In particular, we
measured RSSI values with respect to the average case and the worst case. For
the average case, we measured the RSSI of a typical user moving with his iPAQ
around the lab, from room A to room B, from room C to room D, and so on,
for several days. As for the worst case, we place the iPAQ between two rooms
to force continuous handoffs due to lower RSSI values. The worst case scenario
allows us to estimate the minimum guaranteed level of availability. Once these
measurements have been performed, the initiation strategies have been simulated
using RSSI measured values, and values of SRSSI from 1 to 7. Simulation results
are shown in figure 7. As we expected, the Pr(H) is an increasing function of
the SRSSI threshold. The figure points out the benefits of our strategy, both
in the average and in the worst case. In the average case, the α-count scheme
produce respectively a 15% improvement on average, compared with the fixed
threshold on RSSI scheme. This percentage increases to 45% on average in the
worst case.

As far as performance experiments are concerned, we aim to i) measure
the Round Trip Time (RTT) obtained between client and server applications
using NCSOCKS both over Bluetooth and Wi-Fi; and ii) estimate the overhead
of NCSOCKS library compared to standard transport primitives. Results are

896 M. Cinque, D. Cotroneo, and S. Russo

a)

b)
1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

RSSI Threshold

P
r(

H
)

0

0.05

0.1

0.15

0.2

0.25

0.3

P
r(

H
)

Fixed threshold on RSSI
alpha-count

Fig. 7. Unavailability estimation: a) average case, b) worst case

Table 1. RTT and overhead results

7.69 %0.0052 s0.0056 sWi-Fi

6.04 %0.149 s0.158 sBluetooth

Overhead
Standard
SocketsNCSOCKS

depicted in table 1. Measurements have been performed using UDP datagrams
with 1000 bytes of payload and assuming a distance of 2 meters between mobile
device and AP. It is worth noting that the RTT values we measured over the Wi-
Fi channel are comparable with results obtained in [9], [11]. As table 1 shows,
the overhead is quite acceptable, in that it is at most 7.7%.

5.3 Locationing System Tuning

The proposed α-count schema affects the reaction time of the initiation strat-
egy. We define the reaction time Tr as the time within which the handover is
triggered, once the mobile device reaches the cell boundary. Tr is a function of
α-count parameters, that is Tr = f(SRSSI , αT , dec); hence, once the expected
size of a cell is fixed, it is necessary to tune the α-count parameters in order to
achieve a certain Tr when the boundaries are reached. We define an experimental
procedure to tune the α-count parameters, with respect to the expected cell size
and Tr. For each cell, the tuning process encompasses two steps: i) experimental
evaluation of RSSI frequency distribution at the cell boundary, and ii) simula-
tion of the α-count algorithm with the previous evaluated RSSI distribution in
order to estimate Tr as a function of the triple (SRSSI , αT , dec). These steps are
performed by the prober (see section 2.5). Once fixed Tr, it is possible to choose
proper values for α-count parameters, which are sent to the Map Server by the
prober, and stored in the topology map, for each AP.

Mobility Management and Communication Support 897

SRSSI = 2 SRSSI = 3
R

ea
ct

io
n

Ti
m

e

R
ea

ct
io

n
Ti

m
e

αT αT

t1t2

Fig. 8. α-count parameters tuning

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

αT

t1 : SRSSI = 3 , αT = 6, dec = 0.8

Tr

transient RSSI degradations
within the cell

Cell boundary
reached

Handover
beginning

α-
co

u
n

t
R

S
S

I

Time (s)

SRSSI

Fig. 9. Experimentally measured RSSI and related α-count behavior

To exemplify, let us consider the tuning of the Bluetooth cell B (see figure
6). According to the step i), we use the prober to capture RSSI values in several
parts of the cell boundary region. As for step ii), α-count simulation results are
depicted in figure 8, where Tr is reported as a function of αT , dec, and SRSSI

parameters. Hence, once fixed the desired Tr (as an example Tr = 4 in the
figure, which is emphasized by a dashed line), it is possible to determine different
t = (SRSSI , αT , dec) triples that produce the expected Tr (for example both t1 =
(SRSSI = 3, αT = 6, dec = 0.8) and t2 = (SRSSI = 2, αT = 4.5, dec = 0.2) triples
can be used). Figure 9 shows the experimentally measured RSSI and the related
α-count behavior obtained by using the t1 triple for the parameters. As the figure
points out, once reached the cell boundary (after 40s of experimentation), the
experimental Tr is about 4.8 seconds, as expected.

898 M. Cinque, D. Cotroneo, and S. Russo

6 Conclusions

This work presented a mobility management and communication architecture for
nomadic environments, which aims to achieve connection and location awareness
in spite of wireless network heterogeneity, while improving the availability level
of connection. We presented the design of the proposed architecture using a
pattern-oriented design approach in order to propose a general solution which
can be adopted irrespective of the wireless technology being adopted. In order to
improve the communication availability, we proposed a new mechanism, based
on the α-count function, capable of discriminating transient RSSI degradations
from persistent ones. This led to a substantial reduction of the number of unnec-
essary handoff procedures. In order to estimate availability improvements and
to configure α-count parameters to tune the locationing service, we adopted an
approach based on combined use of simulation and prototype-based measure-
ments. Values for the simulation model parameters were extracted from direct
measurements on the testbed, deployed over an heterogeneous wireless network,
composed of Bluetooth and Wi-Fi appliances. Results demonstrated that the
architecture is able to achieve availability improvements, thanks to the proposed
α-count mechanism, at an acceptable performance penalty. We plan to use our
communication library as a core building block of an enhanced distributed object
computing middleware for nomadic environments, named ESPERANTO.

Acknowledgments. This work has been partially supported by the Italian Ministry
for Education, University and Research (MIUR) in the framework of the FIRB Project
“Middleware for advanced services over large-scale, wired-wireless distributed systems
(WEB-MINDS), and by Regione Campania in the framework of “Centro di Competenza
Regionale ICT”.

References

1. IEEE. IEEE 802.11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications:, 1999.

2. Bluetooth SIG. Specification of the Bluetooth System - core and profiles v. 1.1,
2001.

3. P. J. Mogowan, D. W. Suvak, and C. D. Knutson. IrDA Infrared Communications:
an Overview. www.irda.org.

4. L. Kleinrock. Nomadicity: Anytime, Anywhere in a disconnected world. Mobile
Networks and Applications, 1(1):351 – 357, December 1996.

5. O.B Akan and I.F. Akyildiz. ATL: An Adaptive Transport Layer Suite for Next-
Generation Wireless Internet. to appear in IEEE Journal on Selected Areas in
Communications, 2nd Quarter 2004.

6. J. E. Bardram. Applications of context-aware computing in hospital work-examples
and design principles. Proc. of the 19th ACM Symposium on Applied Computing
(SAC 2004), March 2004.

7. S. Soucek, T. Sauter, and Koller. Impact of QoS parameters on internet-based
EIA-709.1 control applications. Proc. of the 28th Conf. of the Industrial Electronics
Society, IEEE CS, 2002, 2002.

Mobility Management and Communication Support 899

8. M. Lampe, M. Strassner, and E. Fleisch. A Ubiquitous Computing Environment for
Aircraft Maintenance. Proc. of the 19th ACM Symposium on Applied Computing
(SAC 2004), March 2004.

9. G. Bianchi, N. Blefari-Melazzi, M. Holzbock, Y. Fun Hu, A. Jahn, and Ray E.
Sheriff. Design and validation of QoS aware mobile inernet access procedures
for heterogeneous networks. Mobile Networks and Applications, Special Issues on
Mobility of Systems, Users, Data and Computing, 8(1):11–25, February 2003.

10. J. Tourrilhes and C. Carter. P-handoff: A protocol for fine grained peer-to-peer
vertical handoff. Proc. on the 13th IEEE Int. Symposium on Personal, Indoor and
Mobile Radio Communcations (PIMRC ’02), 2002.

11. V. C. Zandy and B. P. Miller. Reliable network connections. Proc. of the 8th Int.
Conf. on Mobile Computing and Networking (MOBICOM ’02), Sept. 2002.

12. Network Working Group, IETF. IP mobility support, RFC 2002, 1996.
13. E. Wedlund and H. Schulzrinne. Mobility support using SIP. Proc. of the 2nd

ACM Int. Workshop on Wireless Mobile Multimedia (WoWMoM’99), 1999.
14. J. Hightower and G. Borriello. Location systems for ubiquitous computing. Com-

puter, 34(8):57–66, August 2001.
15. F. Gonzalez-Castano and J. Garcia-Reinoso. Bluetooth location networks. Global

Telecommunications Conference, 2002. GLOBECOM ’02. IEEE, Nov. 2002.
16. J. Hallberg and M. Nillson. Positioning with Bluetooth IrDA and RFID. Master’s

thesis, Ulea University of Technology, 2002.
17. C. A. Patterson, R. R. Muntz, and C. M. Pancake. Challenges in location aware

computing. IEEE Pervasive Computing, 2(2):80–89, April-June 2003.
18. P. Reynolds. Mobility management for the support of handover within a heteroge-

neous mobile environments. Proc. of First Int.Conf. on 3G Mobile Communication
Technologies, 27-29 March 2000.

19. A. M. Bin Ahamad and M. D. Bin Baba. Handover strategy for mobile wireless
LAN. Proc. on the 4th National Conf. on Telecomunication Technology, Malaysa,
IEEE CS, October 2003.

20. J. Lansford, A. Stephens, and R. Nevo. Wi-Fi (802.11b) and Bluetooth: Enabling
coexistence. IEEE Network, pages 20 – 27, September/October 2001.

21. M. L. George, L. J. Kallidukil, and J. M. Chung. Bluetooth handover control for
roaming system applications. Proc. of the 45th Midwest Symposium on Circuits
and Systems. MWSCAS-2002., August 2002.

22. A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and F. Grandoni. Threshold-
based mechanisms to discriminate transient from intermittent faults. IEEE Trans.
on Computers, 49(3):230 – 245, March 2000.

23. D. Cotroneo, F. Cornevilli, M Ficco, S. Russo, and V. Vecchio. Implementing posi-
tioning services over an ubiquitous infrastructure. Proc. of 2nd IEEE Workshop on
Software Technologies for Future Embedded and Ubiquitous Systems (WSTFEUS
2004), May 2004.

Platform-Independent Object Migration in
CORBA

Rüdiger Kapitza1, Holger Schmidt2, and Franz J. Hauck2

1 Dept. of Comp. Sciences, Informatik 4, University of Erlangen-Nürnberg, Germany
rrkapitz@cs.fau.de

2 Distributed Systems Laboratory, University of Ulm, Germany
{holger.schmidt, franz.hauck}@uni-ulm.de

Abstract. Object mobility is the basis for highly dynamic distributed
applications. This paper presents the design and implementation of mo-
bile objects on the basis of the CORBA standard. Our system is com-
patible to the CORBA Life-Cycle–Service specification and thus provides
object migration between different language environments and computer
systems. Unlike others, our Life-Cycle–Service implementation does not
need vendor-specific extensions and just relies on standard CORBA fea-
tures like servant managers and value types. Our implementation is
portable; objects can migrate even between different ORBs. It supports
object developers with a simple programming model that defines the
state of an object as value type, provides coordination of concurrent
threads in case of migration, and takes care of location-independent ob-
ject addressing. Additionally we seamlessly integrated our implementa-
tion with a dynamic code-loading service.

Keywords: Object Migration, Platform Independency, CORBA, Life-
Cycle Service, Value Types, Dynamic Loading of Code.

1 Introduction

One of the key features of object-based distributed programming environments
like CORBA (Common Object Request Broker Architecture) is the transparent
access to remote objects. The middleware infrastructure hides the distribution
and the heterogeneity of the underlying computer hardware, operating system,
and programming language. However, full access transparency is not always use-
ful. Sometimes the true distribution of objects should be visible and controllable
by applications. Examples are applications that explicitly move distributed ob-
jects for balancing load, for handling failures, and for minimizing communication
overhead (e.g., mobile agents). For mobile objects the middleware system has
to support state transfer and location-independent addressing of objects. Often,
the support mechanisms are tightly woven into the middleware and therefore
highly system dependent.

CORBA is ammended by the Life-Cycle–Service specification [1], which de-
scribes a service concept based on common design patterns to implement object

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3760, pp. 900–917, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Platform-Independent Object Migration in CORBA 901

mobility and other life-cycle operations. Objects have to implement a special
Life-Cycle interface that, among others, provides a copy() and a move() method
to duplicate and migrate an object. Although the Life-Cycle–Service specifica-
tion defines the general life-cycle process, it has certain shortcomings that lead to
unnecessary burdens for application programmers and to system-dependent and
incompatible implementations. We propose the design of a generic Life-Cycle–
Service implementation, which is only based on common CORBA features and
therefore vendor independent. Our prototype is implemented in Java, but can
easily be ported to other CORBA-supported languages. Mobile objects can even
migrate between different ORBs when those run an implementation of our ser-
vice design.

For the application programmer, we provide a value-type–based state-transfer
mechanism. This frees developers from writing their own state-exchange mecha-
nisms for every mobile object. Furthermore we provide mechanisms for dynamic
loading of code based on previous work [2]. Thus, the code for mobile objects
needs not to be statically deployed. Finally our implementation encapsulates the
coordination of life-cycle operations and frees the application programmer from
location management. Our implementation either forwards requests or uses a
lightweight location service.

The next section gives a brief introduction of the Life-Cycle–Service specifi-
cation, its shortcomings, and existing implementations. In Section 3, we discuss
different solutions for collecting and exchanging the state of a CORBA object.
Section 4 describes the design of our generic Life-Cycle–Service implementation.
The development process of a life-cycle object is illustrated by a simple exam-
ple application in Section 5. Section 6 is devoted to performance evaluations.
Finally, Section 7 discusses related work and Section 8 gives our conclusions.

2 CORBA Life-Cycle Service

CORBA is a standardized architecture defined by the Object Management
Group (OMG) that allows programmers to create and access objects deployed in
a distributed system. CORBA also specifies a set of CORBA services. These ser-
vices represent optional ORB extensions and address general needs of CORBA
applications. The Life-Cycle Service [1] is such a CORBA service, as it enables
application-controlled mobility and other life-cycle operations. In the following
sub-sections we will describe the core components of the Life-Cycle Service, dis-
cuss its weaknesses and shortcomings, and close with a brief overview of existing
implementations.

2.1 Basic Functionality

Standard CORBA provides distribution transparency. With the help of an im-
plementation repository migration of objects can also be made transparent [3].
A servant has to be registered at the implementation repository, which from
this time on takes care that the servant remains accessible. This mechanism

902 R. Kapitza, H. Schmidt, and F.J. Hauck

allows restarting of server processes at different locations, but is not suited for
application-controlled object mobility. Additionally, these implementation repos-
itories are tightly woven into an ORB and its dependend POA1 implement-
ation [4].

In contrast, the Life-Cycle Service allows an application to control the dis-
tribution of objects, e.g., creating, removing, copying, and moving of objects.
This is especially useful for mobile applications (e.g., mobile agents) and for
the management of applications that needs to distribute objects across different
platforms for non-functional reasons like scalability and fault-tolerance.

It is assumed that object creation is performed using factory objects. These
can also be remote allowing for remote object creation. A factory is a CORBA
object offering a method for creating new instances of a particular object type
at a particular location. It is not specified how factories are requested to create a
new object. This is left to the object developer as there can be different parame-
ters required for different object types. However, the Life-Cycle–Service specifi-
cation defines an IDL interface named GenericFactory. This interface contains
a generic create object() operation, which gets a set of criteria represented as
sequence of name-value pairs in the IDL type Criteria. The Life-Cycle–Service
specification gives hints on how to use criteria but does not define any standards.
For a specific factory implementation they can be used to select the required ob-
ject type, object capabilities, different object initializations, and even different
locations. The latter can be accomplished by forwarding the creation request to
a more specific factory object at a particular location depending on a particular
criterion.

interface Li f eCyc l eOb jec t {
Li f eCyc l eOb jec t copy (in FactoryFinder there ,

in Cr i t e r i a t h e c r i t e r i a)
raises (. . .) ;

void move (in FactoryFinder there ,
in Cr i t e r i a t h e c r i t e r i a)

raises (. . .) ;
void remove ()

raises (. . .) ;
} ;

Fig. 1. IDL specification of the LifeCycleObject interface

While object creation is handled by a factory, all other life-cycle operations are
executed at the object itself. Therefore, an object supporting the Life-Cycle Ser-
vice has to implement the LifeCycleObject interface (see Fig. 1). The copy()
operation creates a copy of the object at some location. As a result, a reference
to the newly created object is returned. The move() operation moves the object
to another location; the remove() operation deletes the object.
1 POA = Portable Object Adapter.

Platform-Independent Object Migration in CORBA 903

Both copy() and move() need some notion of location in order to place a copy
or the object itself. The Life-Cycle Service specifies a FactoryFinder interface
for objects representing an abstract location. Taking migration of an object as an
example, Figure 2 shows the first phase of the interaction between object, factory
finder and factory. For duplication of objects the scenario is almost identical.

Ob je ct :Life Cycle Ob je c t Clie n t Fa ctoryFin d e r:Fa ctoryFin d e r

Fa c tory:Ge n e ricFa ctory

1 : m ove 1 .1 : fin d _fa c torie s

1 .2 : c re a te // u n s p e cifie d

Fig. 2. First phase of object migration (UML collaboration diagram)

First a move() method is called on the object implementing the life-cycle
interface. An instance of FactoryFinder is passed as parameter. The move()
operation is supposed to ask the factory finder for a factory that finally can be
used to create another instance of the original object at a certain location. In
form of a key parameter, move() can ask for specific factory properties. The key
is some sort of name-value pair that was originally introduced for naming objects
[5]. Once again, the specification gives hints on how to use the key parameter
but does not standardize anything. Anyway, from the key parameter the finder
has to select a suitable factory.

The factory is a sub-type of interface Factory that remains unspecified2.
Thus, the move() implementation has to know the expected type and has to
cast the factory reference to that type by a narrow operation. The factory can
have type GenericFactory and the criteria set passed to move() can be used
to influence the factory in creating the object. In the end, move() can create a
new instance, transfer the state of the original object to the new one, and finally
take care that the original object reference remains valid, now referring to the
newly created object.

2.2 Open Issues and Shortcomings

The Life-Cycle Service is just a specification. Although the interfaces are spec-
ified in detail, the flow of control is just roughly described and implementation
details are left to the object developer or the service provider. On one side, this
allows for individual implementations of the specified interfaces, as the OMG de-
liberately underspecified certain issues in order to get them solved by an actual
implementation. On the other side, it is likely that Life-Cycle–Service implemen-
tations become system dependent and incompatible.
2 In fact Factory is just an IDL typedef to CORBA::Object, which has subtle differences

to a sub-type.

904 R. Kapitza, H. Schmidt, and F.J. Hauck

There are a number of problems with the specification. First, there is no
concept specified how the FactoryFinder locates existing factories. It is, how-
ever, possible to use a Naming Service to retrieve an object by using the key
parameter as a name. In summary, the configuration of factories and factory
finders is outside of the specification and has to be done by developers. Second,
after migration of an object all references to this object should stay valid to
maintain location transparency. Unfortunately, the precise procedure for solving
this problem is left to the service implementers. Third, the service specification
assumes that at each location the required code of the object servant is avail-
able. In dynamic environments with mobile objects, it would be preferable to be
able to transfer and load code on demand. In a scenario with mobile agents, we
cannot assume that the agent code is present at every possible location. Fourth,
the most severe problem with the specification is that it does not provide any
measures for state transfer. It is neither specified how to determine and gather
the state nor how to do the transfer. Usually it is left to the object developer
to write the corresponding code. Finally, the specification does not deal with
any kind of coordination of concurrent threads. Multiple threads may invoke
life-cycle and normal operations that in turn may interfere with state collection
and transfer.

In total, we believe that there are too many unnecessary burdens left for the
application developers. Additionally, the individual solutions of service develop-
ers to the above-mentioned problems make it hard to port life-cycle objects from
one system to the other. Migration between different ORBs is usually impossible.

2.3 Implementations of the Life-Cycle Service

There are numerous commercial and non-commercial ORB implementations
around that offer facilities and interfaces for application developers to copy or
migrate CORBA objects. But either these solutions are platform-dependent like
those provided by omniORB [6], ACE ORB (TAO) [7], or the Plug-In Model
[8], or they even do not support the Life-Cycle–Service specification at all and
provide a totally vendor-specific solution like VisiBroker [9]. None of these im-
plementations addresses platform-independent migration of state and code in
heterogeneous environments.

In [10], Peter and Guyennet propose a generic solution for object mobility
in CORBA based on the Life-Cycle–Service specification. They focus on coordi-
nation of object access during and immediately before and after migrations to
increase availably. The object state has to be described as an IDL structure that
is used to generate special state-carrying objects with custom access methods.
Forwarding is realized using tool-generated proxy objects on the client and the
server side that use the CORBA Naming Service as location service. This im-
poses special actions on the client side. Furthermore, the implementation does
not address the provision of platform-dependent code.

Choy et al. describe a CORBA environment supporting mobile agents based
on mobile CORBA objects [11]. Based on the Life-Cycle Service and the Exter-
nalization Service a concept was mooted, but apparently not implemented.

Platform-Independent Object Migration in CORBA 905

3 State Transfer in Heterogeneous Environments

As described in Section 2.2, the migration of an object requires the transfer of its
state. In homogeneous and more or less platform-independent environments like
Java the execution environment may already provide serialization mechanisms.
State transfer in CORBA is more challenging, since the state of an object may
be transferred between different language environments, i.e. from C++ to Java
or Cobol. In this case, language-dependent solutions will fail.

There should be a language-independent and fairly abstract transfer format.
For example, it does not make sense to convert the content of a Java Hashtable
object into a transfer format, as there are about 30 internal and implementation-
dependent variables that can hardly be restored in a C++ implementation of
that hash table. Instead, it is necessary to distinguish between the state of a par-
ticular object implementation and a more or less implementation-independent
state that is essential for the object semantics. For a hash table the abstract state
will only contain the stored key-value pairs. This abstract state can hardly be
automatically identified; instead this has to be done by the developer. Finally, it
is useful to define the abstract state in a format that can easily be converted into
all supported programming languages so that object developers immediately can
identify the transferable object state.

As already mentioned, the Life-Cycle Specification does not specify how to col-
lect and transfer state. Instead, it suggests letting the developer use either a propri-
etary solution or the CORBA Externalization Service [12]. A proprietary solution
may be appropriate if mobile objects move within a homogeneous environment as
language-based serialization mechanism can be used. In case of heterogeneous lan-
guage environments, the object developer needs to find an individual solution for
transfer of state, which is likely to be complex and error-prone.

The CORBA Externalization Service was developed to support writing an ob-
ject state into a data stream and reading that state back from a stream. Whereas
this was basically designed for persistence the same concept can be used to sup-
port state transfer by shipping the externalized stream to another location and
internalize that stream back into another object. Although the Externalization
Service offers a common data format this approach has some serious drawbacks.
The developer has to write his own marshalling and unmarshalling procedures
that call the right operations of the Externalization service in the specific order.
This has to be done for every language that is used. In principle, it would be
possible to describe the abstract state in some language-independent format and
automatically generate the marshalling procedures. However, to date there are
no known tools for generating those procedures.

A promising and obvious approach is the description of the transfer state
via IDL. Peter and Guyennet [10] used an IDL struct type and provided tool-
generated wrapper objects with access methods. This is quite complex and the
developer has to implement the invocations of those methods. Instead, we want to
support a more generic approach of state transfer that unburdens the developer
from calling serialization and deserialization methods at all. For state transfer,
we propose IDL value types, a well-known part of the CORBA specification [13].

906 R. Kapitza, H. Schmidt, and F.J. Hauck

A value type is similar to an IDL struct, but it can also have methods much like
CORBA objects. CORBA objects are declared with IDL interface types. Passing
a CORBA object to a possibly remote method transfers the reference to this ob-
ject (call-by-object-reference semantics). In contrast, passing value-type objects
leads to a complete copy of the value type at the receiving side (call-by-value
semantics). Like CORBA objects, value types also support inheritance.

Transfer of a value type is realized by transparent marshalling and unmar-
shalling of the state of the value-type object. In a heterogeneous system it is
possible to rebuild value types implemented in one language in another one,
e.g., from Java in C++.

interface Account{ . . . } ;
valuetype AccountContainer supports Account {

private f loat ac coun t s t a t e ;
} ;

Fig. 3. IDL value type declaration with the supported interface

Like CORBA objects, value types are able to support a specific IDL interface
(see Fig. 3). This implies that methods specified in the supported interface are
implemented in the value type. A value type supporting an interface can be
activated at a POA, and is then remotely accessible. With activation a value
type behaves as an ordinary CORBA object that can be passed by reference.
Nevertheless it is also possible to pass the value type by value, creating a copy
of the value-type object.

For state transfer, we are using value types that support a particular IDL
interface. Object functionality has to be encapsulated in a value-type implemen-
tation. Thus, the public and private members of the value type represent the
abstract state of the object, and the supported IDL interface represents the ob-
ject’s remote methods (cf. Fig. 3). Activated at a POA, the value type works
as an ordinary CORBA object. In case of a state transfer, we just pass the
underlying value type with call-by-value semantics to another location, which
will marshal and unmarshal the necessary state. The object implementation is
usually determined by factories registered at the ORB.

To sum up, value types are perfect candidates for implementing state transfer.
Value types are well known to CORBAdevelopers since they are part of IDL. Value
types can implement CORBA objects and be values at the same time. They docu-
ment the state and allow the IDL compiler to automatically generate all necessary
serialization and deserialization procedures; developers do not have to program
them any longer. In the next section we will show how value types can be used in
conjunction with a specialized factory to design a generic Life-Cycle Service.

4 Design of a Generic Life-Cycle–Service

This section proposes our generic Life-Cycle Service based on value types and
describes the specific implementation details.

Platform-Independent Object Migration in CORBA 907

4.1 Finding and Selecting an Appropriate Factory

The first step before actually copying or moving an object is the selection of an
appropriate factory. The application controls the selection process by passing a
factory finder and so-called criteria parameters to the life-cycle operation. For
the management of multiple factories, we supply a basic factory finder, which will
match the needs of most applications. It extends the specified interface by methods
for registering and removing factories and other factory finders. The latter enables
the common CORBA approach of federations to gain scalability and flexibility.

If a life-cycle object calls the find factories() method, our factory finder
looks for matches in the local factory registry. The specification proposes two
possible types of factories: specific factories and generic factories. Specific fac-
tories support only one type of object; generic factories can support multiple
types of objects. To determine if a generic factory is able to create a certain
object type it provides a supports() method. The factory finder will collect
matching factories from its local registry and from all registered factory finders.
In turn, these finders can also manage other finders and so on, building a hier-
archal federation of finders. After the finder has passed the matching factories,
the life-cycle object has to select the appropriate factory based on the criteria
parameters and additional object-specific requirements. As this is object-specific
it is supposed to be implemented by the developer.

The selection process of the appropriate factory, however, is supported by the
generic factory interface as explained in Section 2. A generic factory provides a
create() method that takes two parameters: a key referencing the object type
and a criteria parameter. If the object type is not known to the object or the
criteria cannot be satisfied, an exception is thrown.

We provide two variants of generic factories: a single-type and a multi-type fac-
tory. The single-type factory can only instantiate a single object type but offers the
possibility to check criteria special to this factory and object type. The multi-type
generic factory represents a registry for single-type generic factories. As an addi-
tional benefit the multi-type factory can process general criteria before even asking
other factories.Thisway, general criteria canbe validated that apply to all factories
managed by a multi-type generic factory (e.g., checking resource requirements).

For both types of generic factories we provide a basic implementation that only
requires an object which implements our CriteriaChecker interface. This inter-
face offers a single method checkCriteria(), which is executed at the beginning
of each creation request. It throws an appropriate exception if the criteria require-
ments either could not be met or are simply invalid. If no exception is thrown, the
creation process proceeds. The single-type factory represents simply a facade im-
plementation of the basic factory, which is explained in detail in Section 4.3, with
an extended interface. So criteria could be handed over to the creation methods.

4.2 Coordination of Life-Cycle Operations

During a life-cycle operation, the access to an object has to be coordinated and
restricted. For consistency, all three life-cycle operations need exclusive access to

908 R. Kapitza, H. Schmidt, and F.J. Hauck

the object in the sense that all earlier invocations have terminated and all others
are blocked until the life-cycle operation is executed. Implementing custom coor-
dination mechanisms at the object level could ensure this, but would require deep
understanding of application and life-cycle functionality. Therefore,we decided for
a solution transparent to object developers.

The first implementation alternative is a specialized POA that controls the ac-
cess to servants representing life-cycle objects, but a modified POA would be an
unwanted ORB-specific extension. Another alternative is the usage of a POAman-
ager, because it can control the state of a POA and block incoming calls via the
hold requests()method. Unfortunately, it turns out that this does not work as
hold requests() cannot be safely called from a life-cycle operation3. Alternativ-
ley, portable interceptors represent a central point in the ORB architecture where
all incoming and outgoing calls can be caught and modified. A life-cycle object
could be registered at a special interceptor at creation time. The interceptor can
analyze invocations and take care of proper coordination. However, intercepting
all incoming calls is very expensive, as it slows down every method invocation even
of non life-cycle objects.

POA Clie n t Se rva n tLoca tor Se rva n t

1 : in voca t ion

1 .3 : p os t in voke

1 .2 : a c tu a l in voca t ion

1 .1 : p re in voke
- g lob a l coord in a t ion

- s e rva n t loca t ion

- in voca t ion forwa rd in g [op t]

- s e rva n t re m ovin g [op t]

- g lob a l coord in a t ion

- re fe re n ce u p d a te s [op t]

Fig. 4. Operating sequence of an incoming invocation (UML sequence diagram)

We decided in favor of a fourth alternative, a servant-locator–based approach.
A servant locator is a special form of a servant manager that is responsible for the
activation and management of servants. On every incoming call the POA notifies
the servant locator by calling its preinvoke() method. The servant locator now
has to locate or set up an appropriate servant and return it to the calling POA.
After themethod invocation on the servant, thePOAcalls the servant locator again
by invoking the postinvoke()method. This triggers the locator to tear down the
servant or to do other management tasks (Fig. 4).

3 The calling operation would try to wait for its own completion.

Platform-Independent Object Migration in CORBA 909

For the access coordination, we implemented a special servant locator that en-
capsulates the access management on behalf of the life-cycle objects. Every life-
cycle object is registered on creation at the locator4 and owns a synchronized invo-
cation counter, which is managed by the locator. If a method of a registered servant
is called, the preinvoke()method is executed and the counter is incremented. Af-
ter the actual invocation, the postinvoke()method decrements the counter of the
servant. This way all pending calls are accounted.

A life-cycle operation can be detected by the servant locator because the
method name of the servant invocation is passed to the preinvoke() method. If
there are currently other pending calls, the life-cycle call is suspended until all oth-
ers invocationswere finished. Then, the life-cycle operation can be executed. Other
incoming invocations—either normal or life-cycle operations—are suspended until
the current life-cycle operation will have finished.

4.3 Creation of a Life-Cycle Object

The creation of a life-cycle object being supported by a special kind of factory is a
key point in our design. As mentioned earlier, factories support the creation of ob-
jects at remote sites on behalf of a life-cycle operation. The factory design pattern
is also very useful at creation time of an object. It encapsulates and hides setting
up the environment for a life-cycle object and therefore reduces the programming
effort for an application developer. Since these tasks are very similar for all life-
cycle objects we implemented a general base factory. This factory only needs to
know the name of the implementation classes to set up a new life-cycle object. The
actual creation process has four steps:

1. Instantiation of a servant
2. Activation of the servant
3. Creation of a CORBA reference
4. Registration at a location service (optional)

The first step is straightforward. If one of several create() methods of the
BaseFactory is called, the appropriate instances for the value type are cre-
ated5. An explicit creation of a value-type object is only necessary if the ob-
ject is completely new (e.g., by calling create()). In case of a migrated or
copied object a value-type object that encapsulates the object state is passed to a
createFromValueType() or createCopyFromValueType() method. Afterwards
the value-type object is activated as a servant at the servant locator. In the next
step a CORBA reference has to be generated. On initial creation of a life-cycle ob-
ject a unique random object id is assigned. This id remains stable for the whole
lifetime of the object even in context of move() operations. To ensure this and to
free the application developer from unnecessary programming effort, every value-
type object has to inherit from MobileContainer. This value type provides two
4 Our implementation also allows the registration of application-defined servant locators

that are used as delegates from our locator.
5 In Java a separate Tie class is needed additional to the value-type implementation.

910 R. Kapitza, H. Schmidt, and F.J. Hauck

attributes, one for the object ID and another for the forwarding mechanisms. On
creation of a new object, a new ID (UUID) is generated and set. In context of a
move() operation the id can be read from the transferred value type. After the ref-
erence is generated, the optional registration at a location service takes place. This
is covered in more detail in Section 4.5.

4.4 Dynamic Code Provision

Up to now, our implementation of a platform-independent Life-Cycle Service does
not address the mobility of code. In dynamic environments, however, it is often re-
quired to transfer not only the state of an object but also the code implementing
that object. The CORBA specification provides a code-base parameter for value
types to dynamically load code on demand. Unfortunately, the specification sug-
gests that the code base references directly the code of one or more implementa-
tions. This is sufficient if an objectmoves between homogeneous environments, but
restricts flexibility if the value type is moved between different language environ-
ments.

We provide a special generic multi-type factory that is based on our Dynamic
Loading Service (DLS) [2]. This service offers the dynamic loading of platform-
dependent code on demand for arbitrary functionalities in an ORB-independent
fashion. If the generic factory is asked whether a certain type is supported or if a
creation of a previously unknown type is requested, the DLS will be queried. If an
appropriate object implementation for the current platform exists, the DLS will
dynamically load the code and instantiate the associated factory.

For using the DLS, there needs to be a DLS implementation that can be plugged
into the local ORB. As DLS is portable to different ORBs this is not a problem. If
a DLS is not available, object developers have to link the necessary code into the
local system, as in most other Life-Cycle–Service implementations.

4.5 Forwarding and Locating

The reference to a life-cycle object should be valid for its entire lifetime even after
migration. Our implementation addresses this problem in two ways: We provide
a forwarder-based approach, where the servant locators at previous locations will
cooperate in locating objects, and a location-service-based approach, where such
a service simply keeps track of the actual object location.

The forwarder-basedapproach is the default, as it requires no additional prepa-
rations and services. The migration of a life-cycle object is initiated by calling the
move()method. Inside the move()method the appropriate factory is selected and
invoked. The factory returns a reference pointing to the new location of the ob-
ject. This new location has to be announced to our servant locator. This is done
indirectly by setting the location field of the base value-type MobileContainer,
which every life-cycle object has to extend. After the move() operation, this value
can be read by the locator inside the postinvoke()method. If the move operation
fails due to unavailability of an appropriate factory, the location field will not be
modified. The servant locator can detect this and the local object remains active.

Platform-Independent Object Migration in CORBA 911

The location value is registered in a special forwarding table. As already described
in Section 4.2, after a life-cycle operation all waiting calls are resumed. Instead of
actually invoking the methods on the local object which has moved, the calls are
forwarded to the new location.This canbe easily done, as thepreinvoke()method
offers a way to throw a forwarding exception with the new object reference. The
client-side ORB handles this exception transparently by reissuing the request to
the new location. Further requests are automatically forwarded to the new loca-
tion as the ORB remembers location changes. This approach is very simple and
has almost no additional overhead (just maintaining the forwarding table). It re-
quires, however, that the object adapters at previous locations stay up until the
object is finally removed. Another downside is a potentially long forwarding chain.
Binding to a very early address could cause the first request to be forwarded many
times tracking down the route of the object to the current location. More severe
is that this method fails if only one of the hosts in the chain crashes or is down for
some reason.

To avoid those drawbacks we implemented a simple location service as an ad-
ditional solution. The key idea is to replace the references provided by our fac-
tory implementations. Instead of returning the actual object reference, it is modi-
fied to refer to a location service first. This way the location service receives the
first invocation after an object is bound and forwards it to the actual location.
In order to seamlessly integrate such a service into our implementation, it pro-
vides a CORBA management interface for registering and updating locations of
life-cycle objects. On creation of an object the factory has to register the object
at the location service and modify the returned reference to refer to the
location service.

The service itself is also implemented as a servant manager, usually in a sep-
arate server process. Instead of locating or setting up the requested servant, the
servant manager simply throws a forward exception referring to the actual loca-
tion of the object. As previously noted this exception is transparently handled by
the client-side ORB and the request is invoked on the actual location of the ob-
ject. If the object moves to another location the factory registers the new loca-
tion of the object at the service. After a move operation, the old servant locator
throws a forwarding exception referencing again the location service which for-
wards the request to the actual location of the object. If the object is moved and
the previous server is no longer accessible, the client-side ORB will fall back to
the initial object reference also referring to the location service, which by then
knows the new location of the object. To avoid a single point of failure for all life-
cycle objects and for scalability reasons, our implementation is able to use multiple
location services.

5 Example Application

In this section we demonstrate the implementation of our Life-Cycle Service by a
simple application. For the development of a life-cycle object, the following steps
have to be performed:

912 R. Kapitza, H. Schmidt, and F.J. Hauck

1. Development of the IDL description of the object interface
2. Development of the state description by defining an IDL value type that im-

plements the object interface
3. Implementation of the value type
4. Instantiation of the object with our BaseFactory

Our example is an Account object described in IDL, which implements simple
bank-account functionality. As shown in Fig. 5, this Account interface has to in-
herit fromLifeCycleObject. The specifiedmethods are object-dependent and im-
plement the needed account functionality.

interface Account : : : CosLi feCycle : : L i f eCyc l eOb jec t {
f loat getBalance () ;
void depos i t (in f loat value) ;
void withdraw (in f loat value) ;

} ;

valuetype AccountContainer :
: : org : : a sp e c t i x : : s e r v i c e s : : l c s : : MobileContainer
supports Account {

private f loat balance ; . . .
} ;

Fig. 5. Account interface and the corresponding value type (IDL)

In a next step the IDL description of the value type actually implementing the ap-
propriate object functionality has to be specified. In this value-type declaration
also the state has to be specified using private or public data members. The value
type has to inherit from MobileContainer as described in Section 4.3. Further-
more, it also has to support the previously specified IDL interface. In the example,
we declared a value type supporting the Account interface (Fig. 5).

The private variable balance implements the actual state of the Account ob-
ject, namely the balance information. This state will be transparently transferred
via the call-by-value semantics of the value type in case of a move or copy operation
(cf. Section 4).

From IDL an abstract AccountContainerclass is automatically generated.We
have to implement a concrete class AccountContainerImpl containing all meth-
ods of the interface and value type. Of course, the LifeCycleObjectmethods have
to be implemented, too. As our Life-Cycle Service takes care of coordination and
request forwarding, the actual implementation is rather simple. As we cannot show
examples due to length restrictions,we roughly sketch their implementation: In the
move() and copy() method, the developer just has to call find factories() at
the FactoryFinder and select the intended factory. Finally, the creation method
on the factory has to be called. Thus the developer can influence the process of se-
lecting an appropriate factory. The code of the remove()method just has to decide
whether the object can be deleted or not. If no exception is raised by the operation,

Platform-Independent Object Migration in CORBA 913

the object will be automatically removed by our servant locator after the execution
of this method returns. Within this method the developer is able to do application-
specific tasks like deleting external files, etc.

All objects have to be created with our BaseFactory. This ensures the neces-
sary POA policies, transparently involves a location service, and reduces develop-
ment efforts. The value-type object might be created directly in the BaseFactory
or it might be created and passed to the factory’s create() method. To run our
example application, a FactoryFinder, the factories and if necessary a location
service have to be started on different machines.

6 Measurements

As our implementation delays calls due to coordination efforts even in cases of no
migration, we performed different measurements for estimating the performance
penalty of our approach. In another series of measurements we compare different
methods of state transfer. All measurements were performed on Intel Xeon 2.4GHz
machines having 2 GB of RAM. We used Java JDK 1.4 and JacORB version 2.2.
Effects caused by just-in-time compilation and other run-time optimizations in the
JVM have been smoothed out.

6.1 Overhead of Migratable Objects

We first compare the implementation of a CORBA object using a value type with
the standard implementation of a CORBA object based on the generated skeleton
code. The measurements were performed on two different ORB implementations,
JacORB [4] and Sun’s built-in ORB from the JDK.

Table 1 shows the results: The first line shows the time needed for a local call
sent to a standardCORBAobject.Thenext line presents the timeneeded for an ob-
ject implemented by the value-type approach. In the following lines the difference
to the standard case is shown, e.g., on JacORB the overhead per call is about 130
ns or 2.3%. In the last three lines we added our servant locator, which has to detect
life-cycle operations, coordinate invocations and maintain forwarding if necessary.

Table 1. Difference of time needed for a call using JacORB and SUN ORB

Variant JacORB SUN ORB
Standard Skeleton 5.67 μs 4.74 μs
Activated Value-Type 5.80 μs 4.78 μs
Overhead compared to Standard 0.13 μs 0.04 μs

2.3 % 0.8 %
Life-Cycle Object (Value Type and Locator) 9.65 μs 11.88 μs
Overhead compared to Standard 3.98 μs 7.14 μs

70 % 151 %

914 R. Kapitza, H. Schmidt, and F.J. Hauck

Our measurements did invoke ordinary operations but still the detection of life-
cycle calls and the check for a necessary forward to another location takes consider-
able time. The implementation uses a Java Hashtable that may be the bottleneck.
However, we have not yet optimized the implementation for performance.

The measurements based on the Sun ORB show similar results. Compared to
the JacORB the value type is much faster, and the locator takes considerably more
time. As our locator is exactly the same the additional time is consumed inside of
the Sun ORB, but we did not yet investigate where.

6.2 State Transfer

In the next step we compared differentmethods of state transfer: Java serialization,
IDL struct and value type. In all three scenarios we use JacORB and a CORBA
remote invocationbetween a client and aCORBAobject.Client and server systems
are connected via switched 100MBitEthernetLAN.The transferred state contains
two long values, two strings containing in total 13 characters and a small octet
sequence about 26 bytes.

Table 2. Difference of time needed for state transfer (using JacORB)

Variant JacORB
Java Serialization 880 μs
IDL Struct 960 μs
Overhead compared to Serialization 80 μs

9.1 %
IDL Value Type 1,150 μs
Overhead compared to Serialization 270 μs

31 %
Overhead compared to IDL Struct 190 μs

20 %

The first test uses Java serializationon the client side to convert the object state
into a byte array that is passed by value to the server where it is deserialized. Note
that we used a CORBA method call here to pass the serialized data. The measure-
ment serves for comparison with the CORBA-based state transfer techniques and
basically shows how much overhead can be saved in a homogeneous environment.
The second and third measurements show the invocation time when transferring
state by using an IDL struct and a value type. Both objects are reconstructed at
the server side without further computation. In both cases, the code is already de-
ployed. Table 2 shows the complete measurements including overheads compared
to serialization.

The overhead of a value type compared to a struct is relatively large because
JacORB uses reflection to instantiate the particular implementation class of the
value type whereas in case of a struct the implementation class is hard-coded into
the demarshalling operation. Still there are possible optimizations that we have

Platform-Independent Object Migration in CORBA 915

not yet investigated in detail. The value-type approach has the additional advan-
tage that the state is already in place at the member components of the value
type. With the struct approach the application usually has to access the data in
the struct. Using Java serialization is only slightly more efficient and cannot cope
with heterogeneous platforms. Of course the precise performance figures depend
on the size of the state being transferred. We expect that the larger the state the
less dominant the overhead of a value type compared to a struct will be. On the
other hand, Java serialization will always be more efficient, but cannot deal with
heterogeneous environments.

7 Related Work

As already stated in Section 2.3, there is no implementation of the CORBA Life-
Cycle Service that addresses the platform-independent object migration of state
and code in heterogeneous environments as our proposed solution does. Only Pe-
ter and Guyennet offer in [10] a generic solution for object mobility based on the
Life-Cycle Service. However, their solution requires special client-side proxy ob-
jects that forward requests. This way, a client has to be aware of life-cycle objects.
The object state has to be described as an IDL structure that is used to generate
special state-carrying objects with custom access methods. Our value-type–based
solution also requires the declaration of the state via IDL, but is more convenient
for developers since they need not to call the access functions of custom objects on
serialization and deserialization of an object. Furthermore, the implementation of
Peter and Guyennet does not address the provision of platform-dependent code.

In the past, a lot of mobile agent systems have been developed, like MOA [14],
Mole [15] or Aglets [16], to name a few. But they all provide only mechanisms for
migration in homogeneous environments. An Agent Transport Service (ATS) was
specified in [17]. There, the Life-Cycle Service was considered, but finally sorted
out in order to support lightweight agents. All migration methods are offered en-
tirely by the platform; the agent developers do not have to write any code for this
purpose. The Object Management Group (OMG) developed a standard for agent
communication: the Mobile Agent System Interoperability Facility (MASIF) [18].
The CORBA Life-Cycle–Service was considered, but as many agent platforms are
not based on CORBA, they created their own methods for migration. As an exam-
ple, many systems use Java Serialization, which can be deployed for homogenous
environments only.

In [19] a platform-neutral approach of agent migration is presented. Instead of
transferring the code just a blueprint is transmitted. This is possible by assuming
that an agent consists of different components. For creating such an agent anAgent-
Factory is specified that creates an executable agent consisting of the right compo-
nents from such a blueprint. Migration is thus based on transferring the blueprint
and the state of an object. The same approach could be layered on top of our Life-
Cycle–Service implementation by structuring a complex application as a set of ob-
jects each representing a component that are moved together as it is proposed by
the CORBA Relationship Service [20].

916 R. Kapitza, H. Schmidt, and F.J. Hauck

Finally the usage of value-type objects in our Life-Cycle–Service implementa-
tion bares some similarities with the functionality of the Freeze Evictor of the ICE
middleware [21]. There the ICE equivalent of a CORBA value type is used to store
objects in persistent storage and to access them as remote objects at the same time.

8 Conclusions

We presented a platform-independent implementation of the CORBA Life-Cycle–
Service. Although our prototype is implemented in Java it can be easily ported to
all CORBA-supported languages and then be used in different ORBs, as it is based
on standard CORBA and does not need any ORB-specific extensions.

For state transfer even in heterogeneous environments, we introduced value
types. The state can easily described in IDL, and developers do not need to im-
plement state transfer routines. Furthermore, we also provided a solution to code
provision in heterogeneous environments. Based on previous work, we offer an op-
tional multi-type–supporting generic factory that loads platform-specific code on
demand. This allows the dynamic instantiation of previously unknown objects. Fi-
nally our implementationpresents flexiblemechanisms to provide persistent object
references in context of object mobility.

Apart from the fact that the current implementation has already reached a ma-
ture state, there are still possible extensions. We currently do not address how to
secure the life cycle operations. This can be achieved bydoing authentication either
at the transport level with the Secure Sockets Layer protocol or at the object level.
We also plan a service implementation in C++ and Python, but do not expect any
implementation problems. Finally, on top of the current service implementation a
mobile agent facility could be established. This would allow for agents that switch
the implementation language while moving.

References

1. Object Management Group (OMG). Life Cycle Service Specification. OMG Docu-
ment formal/2002-09-01, 2002.

2. R. Kapitza and F.J. Hauck. DLS: a CORBA service for dynamic loading of code. In
Proceedings of the OTM Confederated International Conferences, Sicily, Italy, 2003.

3. M. Henning. Binding, Migration, and Scalability in CORBA. Communications of
the ACM special issue on CORBA, 41:67–71, 1998.

4. A. Bendt et al. JacORB 2.2 Programming Guide, 2004.
5. Object Management Group (OMG). Naming Service Specification. OMG Document

formal/2004-10-03, 2004.
6. S.-L. Lo D. Grisby and D. Riddoch. The omniORB version 4.0 User’s Guide, 2004.
7. D.C. Schmidt. Real-time CORBA with TAO (The ACE ORB), May 2004.
8. C. Linnhoff-Popien and T. Haustein. Das Plug-In-Modell zur Realisierung mobiler

COBRA-Objekte. In Kommunikation in Verteilten Systemen, pages 196–209, 1999.
9. Borland Inprise. VisiBroker for C++ 4.5 - Programmers Guide. Technical report,

2001.

Platform-Independent Object Migration in CORBA 917

10. Y. Peter and H. Guyennet. Object mobility in large scale systems. Cluster Comput-
ing, 3(2):177–185, 2000.

11. Breust Choy and Magedanz. A CORBA Environment Supporting Mobile Objects.
Technical Report White Paper Draft Version 1, IKV++ GmbH, 1999.

12. Object Management Group (OMG). Externalization Service Specification. OMG
Document formal/00-06-16, 2000.

13. Object Management Group (OMG). Common Object Request Broker Architecture:
Core Specification, 2004.

14. W. LaForge D.S. Milojicic and D. Chauhan. Mobile Objects and Agents (MOA). In
4th USENIX Conference on Object-Oriented Technologies and Systems, pages 179–
194, Santa Fe, New Mexico, 1998.

15. J. Baumann M. Strasser and F. Hohl. Mole: A Java based mobile agent system.
Proceedings of the 2nd ECOOP Workshop on Mobile Object Systems, 1997.

16. D.B. Lange and M. Oshima. Programming and Deploying Java Mobile Agents
Aglets, 1998.

17. C.A. Mendez and M. Mendes. Agent migration issues in CORBA platforms. In
The Fourth International Symposium on Autonomous Decentralized Systems, pages
332–335, Tokyo Japan, 1999. IEEE.

18. D.S. Milojicic et al. MASIF: The OMG Mobile Agent System Interoperability Facil-
ity. In Mobile Agents: Second International Workshop, MA’98, volume 1477/1998,
page 50, Stuttgart, Germany, 1998. Springer LNCS. 1477.

19. F.M.T. Brazier et al. Agent factory: generative migration of mobile agents in het-
erogeneous environments. In Proceedings of the 2002 ACM symposium on Applied
computing , pages 101–106, Madrid, Spain, 2002. ACM Press.

20. Object Management Group (OMG). Relationship Service Specification. OMG Doc-
ument formal/2000-06-24, 2000.

21. The Internet Communications Engine (ICE), 2005.

Author Index

Abdelmoty, Alia I. II-1466
Aberer, Karl, I-466, II-1243
Ahmad, Khurshid II-1330
Aldred, Lachlan II-1015
Alferes, José Júlio II-1553
Amador, Ricardo II-1553
An, Yuan II-1152

Babaoglu, Ozalp I-612
Bacon, Jean I-366
Baker, Seán I-631
Balasubramaniam, Sasitharan I-846
Balasubramanian, Jaiganesh II-978
Barros, Roberto S.M. II-1381
Batista, Tháıs II-1133
B ↪ebel, Bartosz II-1347
Bender, Matthias I-310
Bensaber, Djamel Amar II-1640
Benslimane, Sidi Mohamed II-1640
Bessani, Alysson Neves, I-662, I-680
Beugnard, Antoine II-997
Bittner, Sven I-148
Blair, Gordon I-732
Blomqvist, Eva II-1314
Bontas, Elena Paslaru II-1296
Borgida, Alex II-1152
Borusch, Daniel I-680
Bosc, Patrick I-256
Briot, Jean-Pierre I-813
Brown, Ross I-94
Buchanan, George I-484

Cacho, Nélio II-1133
Cappiello, Cinzia II-1535
Ceri, Stefano I-20
Cerqueira, Renato II-923
Chatti, Mohamed Amine II-1206
Cheang, Chan Wa II-1416
Chebbi, Issam I-112
Chen, David I-576
Cheong, Taesu I-557
Cinque, Marcello I-882
Conrad, Stefan I-539
Costa, Antonio Theophilo II-923

Cotroneo, Domenico I-882
Coulson, Geoff I-732
Courtenage, Simon I-385

da Silva, Paulo Salem II-1500
da Silva Fraga, Joni, I-662, I-680
de Beer, H.T. I-130
de Melo, Ana Cristina Vieira II-1500
De Meo, Pasquale I-329
Deng, Gan II-978
de Oliveira Valente, Marco Tulio

II-1115
de Rijke, Maarten II-1432
Desai, Siddharth I-780
Deters, Ralph II-1097
Ding, Xiaoning II-1034
Dobson, Simon I-631
dos Santos, Hélio L. II-1381
Dumas, Marlon II-1015

Eder, Johann I-502
Elbaum, Sebastian II-1065
Endler, Markus II-923

Fankhauser, Peter II-1225
Fasli, Maria II-1571
Fekete, Alan I-40
Felber, Pascal II-1083
Ferdean, Corina I-796
Francalanci, Chiara II-1535
Freisleben, Bernd II-1046
Fu, Gaihua II-1466

Gal, Avigdor I-402
Garcia-Haro, J. I-715
Garcia-Sanchez, Antonio-Javier I-715
Garcia-Sanchez, Felipe I-715
Gekas, John II-1571
Gergatsoulis, Manolis II-1188
Gillam, Lee II-1330
Giunchiglia, Fausto I-347
Goebel, Vera II-1365
Gokhale, Aniruddha II-978
Golze, Sebastian I-646
Gong, Zhiguo II-1416

920 Author Index

Gray, Alasdair J.G. I-420
Greenfield, Paul I-40
Gruszczynski, Pawel II-960

Hadjali, Allel I-256
Häık, Grègory , I-813
Halepovic, Emir II-1097
Hauck, Franz J. I-900
Hauswirth, Manfred, I-466, II-1243
He, Yanxiang II-1588
Heizmann, Jörg II-1261
Henricksen, Karen I-846
Herre, Heinrich II-1398
Hidders, Jan I-220
Hinze, Annika, I-148, I-484
Hou U, Leong II-1416
Huang, Tao II-1034
Huhns, Michael I-453
Hung, Edward I-1

IJzereef, Leonie II-1432
Indulska, Jadwiga I-846
Iyer, Karthik I-453

Jacobsen, Arno I-612
Jaeger, Michael C. I-646
Jang, Julian I-40
Jarke, Matthias II-1206
Jin, Beihong II-1034
Jones, Christopher B. II-1466
Jørgensen, J.B. I-22

Kabilan, Vandana I-77
Kammüller, Reiner II-1046
Kamps, Jaap II-1432
Kangasharju, Jaakko I-274
Kang, Dazhou II-1588
Kang, Myong II-1483
Kapitza, Rüdiger I-900
Katsaros, Panagiotis II-941
Kedad, Zoubida I-166
Kementsietsidis, Anastasios I-292
Kensche, David II-1206
Kiani, Ali I-439
Kim, Anya II-1483
Kim, Youngil I-557
Kiringa, Iluju I-292
Kuo, Dean I-40
Kutvonen, Lea I-593
Kwasnikowska, Natalia I-220

Lassen, K.B. I-22
Leao, Diana Campos II-1115
Lee, Minsoo II-1629
Lee, Sung-Young II-1615
Lee, Young-Koo II-1615
Lehmann, Marek I-502
Lehti, Patrick II-1225
Lilis, Pantelis II-1188
Linnemann, Volker I-613
Li, Yanhui II-1588
Liu, Bixin I-763
Loebe, Frank II-1398
Löser, Alexander II-1261
Loyall, Joe I-612
Lu, Jianjiang II-1588
Lung, Lau Cheuk, I-662, I-680
Luo, Jim II-1483

Maciel, Paulo R.M. II-1381
Mahleko, Bendick I-18
Makpangou, Mesaac I-796
Malki, Mimoun II-1640
Masud, Md. Mehedi I-292
Matougui, Selma II-997
May, Wolfgang II-1553
McFadden, Ted I-846
Meersman, Robert II-1605
Metso, Janne I-593
Michel, Sebastian I-310
Midonnet, Serge I-698
Mühl, Gero I-646
Munthe-Kaas, Ellen II-1365
Mylopoulos, John II-1152

Natarajan, Balachandran II-978
Nepal, Surya I-40
Neuhold, Erich I-18
Ngoc, Kim Anh Pham II-1615
Niederée, Claudia I-18
Nutt, Werner I-420

Oanea, Olivia I-183
Oey, Mulyadi II-1065
Osinski, Stanislaw II-960

Paal, Stefan II-1046
Pahl, Claus II-1170
Paik, Hye-young I-94
Pan, Jeff Z. II-1279
Papadopoulos, Filippos I-864

Author Index 921

Papapetrou, Odysseas I-310
Parsons, Jeff II-978
Pavon-Mariño, P. I-715
Pernici, Barbara II-1535
Pietzsch, Dominik I-613
Pitoura, Evaggelia I-864
Pivert, Olivier I-256
Popfinger, Christopher I-539
Porto, Fabio II-1623
Puder, Arno I-780

Quattrone, Giovanni I-329
Queinnec, Christian I-813
Quix, Christoph II-1206

Rashkovits, Rami I-402
Reichert, Manfred I-59, I-238
Rinderle, Stefanie I-59, I-238
Risse, Thomas I-18
Rosa, Nelson S. II-1381
Rossi, Pablo I-828
Ruokolainen, Toni I-593
Russo, Stefano I-882
Ryan, Caspar I-828

Sanderson, Norun II-1365
Schiely, Marc II-1083
Schlangen, David II-1296
Schmidt, Douglas C. II-978
Schmidt, Holger I-900
Schrader, Thomas II-1296
Schuhart, Henrike I-613
Schweer, Andrea I-484
Schwering, Angela II-1449
Shi, Dianxi I-763
Shi, Tony I-40
Shin, Hyoseop II-1629
Shiri, Nematollaah I-439
Shvaiko, Pavel I-347
Sidorova, Natalia I-183
Silva, Rodrigo Palhares II-1115
Sivaharan, Thirunavukkarasu I-732
Skobeltsyn, Gleb II-1243
Srisa-an, Witawas II-1065
Sroka, Jacek I-220
Subrahmanian, V.S. I-1
Sun, Chengzheng I-576
Sun, David I-576
Swedrzynski, Andrzej II-960

Tam, Audrey II-1517
Tarkoma, Sasu I-274
Tata, Samir I-112
Tempich, Christoph II-1261
ter Hofstede, Arthur H.M. II-1015
Terracina, Giorgio I-329
Thom, James A. II-1517
Thomopoulos, Rallou II-1596
Tirelo, Fabio II-1115
Traversat, Bernard II-1097
Tyszkiewicz, Jerzy I-220

Udrea, Octavian I-1
Ursino, Domenico I-329

Van den Bussche, Jan I-220
van der Aalst, Wil M.P. I-22,

I-130, II-1015
van Dongen, B.F. I-130
van Hee, Kees I-183
Vassiliadis, Panos I-864
Vignéras, Pierre I-750
Vu, Le-Hung I-466

Wang, Huaimin I-763
Wang, Shenghui II-1279
Wang, Yufeng I-763
Weber, Barbara I-59
Weikum, Gerhard I-310
Wild, Werner I-59
Williams, Steven I-385
Wombacher, Andreas, I-18, I-520
Wrembel, Robert II-1347

Xia, Steven I-576
Xu, Baowen II-1588
Xue, Xiaohui I-166

Yatskevich, Mikalai I-347
Yoneki, Eiko I-366
Yu, Deng I-1
Yu, Jonathan II-1517
Yu, Zhiwei I-202

Zarras, Apostolos I-864
Zdravkovic, Jelena I-77
Zhang, Li I-202
Zhang, Xin II-1034
Zhao, Gang II-1605
Zlatev, Zlatko I-520

	Frontmatter
	OTM 2005 Keynotes
	Probabilistic Ontologies and Relational Databases
	Intelligent Web Service -- From Web Services to .Plug\&Play. Service Integration
	Process Modeling in Web Applications

	Cooperative Information Systems (CoopIS) 2005 International Conference
	CoopIS 2005 PC Co-chairs' Message
	Workflow
	Let's Go All the Way: From Requirements Via Colored Workflow Nets to a BPEL Implementation of a New Bank System
	A Service-Oriented Workflow Language for Robust Interacting Applications
	Balancing Flexibility and Security in Adaptive Process Management Systems

	Workflow and Business Processes
	Enabling Business Process Interoperability Using Contract Workflow Models
	Resource-Centric Worklist Visualisation
	{\itshape CoopFlow}: A Framework for Inter-organizational Workflow Cooperation

	Mining and Filtering
	Process Mining and Verification of Properties: An Approach Based on Temporal Logic
	A Detailed Investigation of Memory Requirements for Publish/Subscribe Filtering Algorithms
	Mapping Discovery for XML Data Integration

	Petri Nets and Processs Management
	Colored Petri Nets to Verify Extended Event-Driven Process Chains
	Web Process Dynamic Stepped Extension: Pi-Calculus-Based Model and Inference Experiments
	Petri Net + Nested Relational Calculus = Dataflow

	Information Access and Integrity
	On the Controlled Evolution of Access Rules in Cooperative Information Systems
	Towards a Tolerance-Based Technique for Cooperative Answering of Fuzzy Queries Against Regular Databases
	Filter Merging for Efficient Information Dissemination

	Heterogeneity
	Don't Mind Your Vocabulary: Data Sharing Across Heterogeneous Peers
	On the Usage of Global Document Occurrences in Peer-to-Peer Information Systems
	An Approach for Clustering Semantically Heterogeneous XML Schemas

	Semantics
	Semantic Schema Matching
	Unified Semantics for Event Correlation over Time and Space in Hybrid Network Environments
	Semantic-Based Matching and Personalization in FWEB, a Publish/Subscribe-Based Web Infrastructure

	Querying and Content Delivery
	A Cooperative Model for Wide Area Content Delivery Applications
	A Data Stream Publish/Subscribe Architecture with Self-adapting Queries
	Containment of Conjunctive Queries with Arithmetic Expressions

	Web Services, Agents
	Multiagent Negotiation for Fair and Unbiased Resource Allocation
	QoS-Based Service Selection and Ranking with Trust and Reputation Management
	An Integrated Alerting Service for Open Digital Libraries: Design and Implementation

	Security, Integrity and Consistency
	Workflow Data Guards
	Consistency Between {\itshape e}<Superscript>3</Superscript>{\itshape -value} Models and Activity Diagrams in a Multi-perspective Development Method
	Maintaining Global Integrity in Federated Relational Databases Using Interactive Component Systems

	Chain and Collaboration Mangement
	RFID Data Management and RFID Information Value Chain Support with RFID Middleware Platform Implementation
	A Collaborative Table Editing Technique Based on Transparent Adaptation
	Inter-enterprise Collaboration Management in Dynamic Business Networks

	Distributed Objects and Applications (DOA)2005 International Conference
	DOA 2005 PC Co-chairs' Message
	Web Services and Service-Oriented Architectures
	Developing a Web Service for Distributed Persistent Objects in the Context of an XML Database Programming Language
	Comparing Service-Oriented and Distributed Object Architectures
	QoS-Aware Composition of Web Services: An Evaluation of Selection Algorithms

	Multicast and Fault Tolerance
	Extending the UMIOP Specification for Reliable Multicast in CORBA
	Integrating the ROMIOP and ETF Specifications for Atomic Multicast in CORBA
	The Design of Real-Time Fault Detectors

	Communication Services (Was Messaging and Publish/Subscribe)
	A CORBA Bidirectional-Event Service for Video and Multimedia Applications
	GREEN: A Configurable and Re-configurable Publish-Subscribe Middleware for Pervasive Computing
	Transparency and Asynchronous Method Invocation

	Techniques for Application Hosting
	COROB: A Controlled Resource Borrowing Framework for Overload Handling in Cluster-Based Service Hosting Center
	Accessing X Applications over the World-Wide Web
	Exploiting Application Workload Characteristics to Accurately Estimate Replica Server Response Time

	Mobility
	Automatic Introduction of Mobility for Standard-Based Frameworks
	Empirical Evaluation of Dynamic Local Adaptation for Distributed Mobile Applications
	Middleware for Distributed Context-Aware Systems
	Timely Provisioning of Mobile Services in Critical Pervasive Environments
	Mobility Management and Communication Support for Nomadic Applications
	Platform-Independent Object Migration in CORBA

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

