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Abstract. We present a simple algorithm for register allocation which
is competitive with the iterated register coalescing algorithm of George
and Appel. We base our algorithm on the observation that 95% of the
methods in the Java 1.5 library have chordal interference graphs when
compiled with the JoeQ compiler. A greedy algorithm can optimally color
a chordal graph in time linear in the number of edges, and we can eas-
ily add powerful heuristics for spilling and coalescing. Our experiments
show that the new algorithm produces better results than iterated regis-
ter coalescing for settings with few registers and comparable results for
settings with many registers.

1 Introduction

Register allocation is one of the oldest and most studied research topics of com-
puter science. The goal of register allocation is to allocate a finite number of
machine registers to an unbounded number of temporary variables such that
temporary variables with interfering live ranges are assigned different registers.
Most approaches to register allocation have been based on graph coloring. The
graph coloring problem can be stated as follows: given a graph G and a positive
integer K, assign a color to each vertex of G, using at most K colors, such that
no two adjacent vertices receive the same color. We can map a program to a
graph in which each node represents a temporary variable and edges connect
temporaries whose live ranges interfere. We can then use a coloring algorithm to
perform register allocation by representing colors with machine registers.

In 1982 Chaitin [8] reduced graph coloring, a well-known NP-complete prob-
lem [18], to register allocation, thereby proving that also register allocation is
NP-complete. The core of Chaitin’s proof shows that the interference relations
between temporary variables can form any possible graph. Some algorithms for
register allocation use integer linear programming and may run in worst-case
exponential time, such as the algorithm of Appel and George [2]. Other algo-
rithms use polynomial-time heuristics, such as the algorithm of Briggs, Cooper,
and Torczon [5], the Iterated Register Coalescing algorithm of George and Ap-
pel [12], and the Linear Scan algorithm of Poletto and Sarkar [16]. Among the
polynomial-time algorithms, the best in terms of resulting code quality appears
to be iterated register coalescing. The high quality comes at the price of han-
dling spilling and coalescing of temporary variables in a complex way. Figure 1
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Fig. 2. (a) A chordal graph. (b-c) Two non-chordal graphs.

illustrates the complexity of iterated register coalescing by depicting the main
phases and complicated pattern of iterations of the algorithm. In this paper we
show how to design algorithms for register allocation that are simple, efficient,
and competitive with iterated register coalescing.

We have observed that the interference graphs of real-life programs tend to
be chordal graphs. For example, 95% of the methods in the Java 1.5 library have
chordal interference graphs when compiled with the JoeQ compiler. A graph is
chordal if every cycle with four or more edges has a chord, that is, an edge which
is not part of the cycle but which connects two vertices on the cycle. (Chordal
graphs are also known as ‘triangulated’, ‘rigid-circuit’, ‘monotone transitive’,
and ‘perfect elimination’ graphs.) The graph in Figure 2(a) is chordal because
the edge ac is a chord in the cycle abcda. The graph in Figure 2(b) is non-
chordal because the cycle abcda is chordless. Finally, the graph in Figure 2(c) is
non-chordal because the cycle abcda is chordless, just like in Figure 2(b).

Chordal graphs have several useful properties. Problems such as minimum
coloring, maximum clique, maximum independent set and minimum covering by
cliques, which are NP-complete in general, can be solved in polynomial time for
chordal graphs [11]. In particular, optimal coloring of a chordal graph G = (V, E)
can be done in O(|E| + |V |) time.

In this paper we present an algorithm for register allocation, which is based on
a coloring algorithm for chordal graphs, and which contains powerful heuristics
for spilling and coalescing. Our algorithm is simple, efficient, and modular, and
it performs as well, or better, than iterated register coalescing on both chordal
graphs and non-chordal graphs.

The remainder of the paper is organized as follows: Section 1 discusses re-
lated work, Section 3 summarizes some known properties and algorithms for
chordal graphs, Section 4 describes our new algorithm, Section 5 presents our
experimental results, and Section 6 concludes the paper.
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2 Related Work

We will discuss two recent efforts to design algorithms for register allocation that
take advantage of properties of the underlying interference graphs. Those efforts
center around the notions of perfect and 1-perfect graphs. In a 1-perfect graph,
the chromatic number, that is, the minimum number of colors necessary to color
the graph, equals the size of the largest clique. A perfect graph is a 1-perfect
graph with the additional property that every induced subgraph is 1-perfect.
Every chordal graph is perfect, and every perfect graph is 1-perfect.

Andersson [1] observed that all the 27,921 interference graphs made publicly
available by George and Appel [3] are 1-perfect, and we have further observed
that 95.6% of those graphs are chordal when the interferences between pre-
colored registers and temporaries are not considered. Andersson also showed
that an optimal, worst-case exponential time algorithm for coloring 1-perfect
graphs is faster than iterated register coalescing when run on those graphs.

Recently, Brisk et al. [6] proved that strict programs in SSA-form have per-
fect interference graphs; independently, Hack [14] proved the stronger result
that strict programs in SSA-form have chordal interference graphs. A strict pro-
gram [7] is one in which every path from the initial block until the use of a
variable v passes through a definition of v. Although perfect and chordal graphs
can be colored in polynomial time, the practical consequences of Brisk and Hack’s
proofs must be further studied. SSA form uses a notational abstraction called
phi-function, which is not implemented directly but rather replaced by copy in-
structions during an SSA-elimination phase of the compiler. Register allocation
after SSA elimination is NP-complete [15].

For example, Figure 3(a) shows a program with a non-chordal interference
graph, Figure 3(b) shows the program in SSA form, and Figure 3(c) shows the

int m(int x, a, d) {
int b, c;
if(x > 0) {

e = 0;
c = d;

} else {
b = 0;
c = a;
e = b;

}
return e + c;

}
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Fig. 3. (a) A program with a non-chordal interference graph, (b) the program in SSA
form, (c) the program after SSA elimination
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program after SSA elimination. The example program in Figure 3(a) has a cy-
cle of five nodes without chords: a–d–e–c–b–a. In the example in Figure 3(b),
e = phi(e1, e2) will return e2 if control reaches block 8 through block 7, and will
return e1 if control reaches block 8 through block 4. The SSA semantics states
that all phi-functions at the beginning of a block must be evaluated simultane-
ously as the first operation upon entering that block; thus, live ranges that reach
block 8 do not interfere with live ranges that leave block 8. Hack [14] used this
observation to show that phi-functions break chordless cycles so strict programs
in SSA-form have chordal interference graphs. The example program after SSA
elimination, in Figure 3(c), has an interference graph which is non-chordal, non-
perfect, and even non-1-perfect: the largest clique has two nodes but three colors
are needed to color the graph. Note that the interference graph has a cycle of
seven nodes without chords: a–d–e1–c1–e–c2–b–a.

For 1-perfect graphs, recognition and coloring are NP-complete. Perfect
graphs can be recognized and colored in polynomial time, but the algorithms
are highly complex. The recognition of perfect graphs is in O(|V |9) time [9];
the complexity of the published coloring algorithm [13] has not been estimated
accurately yet. In contrast, chordal graphs can be recognized and colored in
O(|E|+ |V |) time, and the algorithms are remarkably simple, as we discuss next.

3 Chordal Graphs

We now summarize some known properties and algorithms for chordal graphs.
For a graph G, we will use ∆(G) to denote the maximum outdegree of any vertex
in G, and we will use N(v) to denote the set of neighbors of v, that is, the set
of vertices adjacent to v in G. A clique in an undirected graph G = (V, E) is
a subgraph in which every two vertices are adjacent. A vertex v ∈ V is called
simplicial if its neighborhood in G is a clique. A Simplicial Elimination Ordering
of G is a bijection σ : V (G) → {1 . . . |V |}, such that every vertex vi is a simplicial
vertex in the subgraph induced by {v1, . . . , vi}. For example, the vertices b, d of
the graph shown in Figure 2(a) are simplicial. However, the vertices a and c are
not, because b and d are not connected. In this graph, 〈b, a, c, d〉 is a simplicial
elimination ordering. There is no simplicial elimination ordering ending in the
nodes a or c. The graphs depicted in Figures 2(b) and 2(c) have no simplicial
elimination orderings.

Theorem 1. (Dirac [10]) An undirected graph without self-loops is chordal if
and only if it has a simplicial elimination ordering.

The algorithm greedy coloring, outlined in Figure 4, is a O(E) heuristic for
graph coloring. Given a graph G and a sequence of vertices ν, greedy coloring
assigns to each vertex of ν the next available color. Each color is a number c
where 0 ≤ c ≤ ∆(G) + 1. If we give greedy coloring a simplicial elimination
ordering of the vertices, then the greedy algorithm yields an optimal coloring
[11]. In other words, greedy coloring is optimal for chordal graphs.
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procedure greedy coloring
1 input: G = (V, E), a sequence of vertices ν
2 output: a mapping m, m(v) = c, 0 ≤ c ≤ ∆(G) + 1, v ∈ V
3 For all v ∈ ν do m(v) ←⊥
4 For i ← 1 to |ν| do
5 let c be the lowest color not used in N(ν(i)) in
6 m(ν(i)) ← c

Fig. 4. The greedy coloring algorithm

procedure MCS
1 input: G = (V, E)
2 output: a simplicial elimination ordering σ = v1, . . . , vn

3 For all v ∈ V do λ(v) ← 0
4 For i ← 1 to |V | do
5 let v ∈ V be a vertex such that ∀u ∈ V, λ(v) ≥ λ(u) in
6 σ(i) ← v
7 For all u ∈ V ∩ N(v) do λ(u) ← λ(u) + 1
8 V ← V − {v}

Fig. 5. The maximum cardinality search algorithm

The algorithm known as Maximum Cardinality Search (MCS)[17] recognizes
and determines a simplicial elimination ordering σ of a chordal graph in O(|E|+
|V |) time. MCS associates with each vertex v of G a weight λ(v), which initially
is 0. At each stage MCS adds to σ the vertex v of greatest weight not yet visited.
Subsequently MCS increases by one the weight of the neighbors of v, and starts
a new phase. Figure 5 shows a version of MCS due to Berry et al. [4].

The procedure MCS can be implemented to run in O(|V |+ |E|) time. To see
that, notice that the first loop executes |V | iterations. In the second loop, for
each vertex of G, all its neighbors are visited. After a vertex is evaluated, it is
removed from the remaining graph. Therefore, the weight λ is increased exactly
|E| times. By keeping vertices in an array of buckets indexed by λ, the vertex of
highest weight can be found in O(1) time.

4 Our Algorithm

Our algorithm has several independent phases, as illustrated in Figure 6, namely
coloring, spilling, and coalescing, plus an optional phase called pre-spilling. Coa-
lescing must be the last stage in order to preserve the optimality of the coloring
algorithm, because, after merging nodes, the resulting interference graph can
be non-chordal. Our algorithm uses the MCS procedure (Figure 5) to produce
an ordering of the nodes, for use by the pre-spilling and coloring phases. Our
approach yields optimal colorings for chordal graphs, and, as we show in Sec-
tion 5, it produces competitive results even for non-chordal graphs. We have
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Fig. 6. The main phases of our algorithm

int gcd (int R1, int R2)
1. IFCMP_I_EQ .. R2 0 (12);
2. ZERO_CHECK_I .. T1 R2;
3. DIV_I T7 R1 R2;
4. CHECK_EX T1
5. MOVE_I R4 T7;
6. MUL_I T8 R2 R4;
7. MOVE_I R5 T8;
8. SUB_I T9 R1 R5;
9. MOVE_I R6 T9;
10. MOVE_I R1 R2;
11. MOVE_I R2 R6;
12. GOTO .. .. .. (1);
13. RETURN_I .. R1;

R4

R1

R2

R6 T8

T7 R5

T9

T1

(a) (b)

Fig. 7. (a) Euclid’s algorithm. (b) Interference graph generated for gcd().

implemented heuristics, rather than optimal algorithms, for spilling and coalesc-
ing. Our experimental results show that our heuristics perform better than those
used in the iterated register coalescing algorithm.

In order to illustrate the basic principles underlying our algorithm, we will as
a running example show how our algorithm allocates registers for the program
in Figure 7 (a). This program calculates the greatest common divisor between
two integer numbers using Euclid’s algorithm. In the intermediate representation
adopted, instructions have the form op, t, p1, p2. Such an instruction defines the
variable t, and adds the temporaries p1 and p2 to the chain of used values. The
interference graph yielded by the example program is shown in Figure 7 (b).
Solid lines connecting two temporaries indicate that they are simultaneously
alive at some point in the program, and must be allocated to different registers.
Dashed lines connect move related registers.

Greedy Coloring. In order to assign machine registers to variables, the greedy
coloring procedure of Figure 4 is fed with an ordering of the vertices of the
interference graph, as produced by the MCS procedure. From the graph shown
in Figure 7 (b), MCS produces the ordering: 〈 T7, R1, R2, T1, R5, R4, T8,
R6, T9 〉, and greedy coloring then produces the mapping between temporaries
and colors that is outlined in Figure 8 (a). If the interference graph is chordal,
then the combination of MCS and Greedy Coloring produces a minimal coloring.
The coloring phase uses an unbounded number of colors so that the interference
graph can always be colored. The excess of colors will be removed in the post-
spilling stage.
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R4(0)

R1(1)

R2(2)

R6(0) T8(0)

T7(0) R5(0)

T9(0)

T1(3)

R4(0)

R1(1)

R6(0)

T8(0)

T7(0) R5(0)

T9(0)

(a) (b)

Fig. 8. (a) Colored interference graph. (b) Interference graph after spilling the highest
colors.

Post-Spilling. Given an instance of a register allocation problem, it may be
possible that the number of available registers is not sufficient to accommodate
all the temporary variables. In this case, temporaries must be removed until
the remaining variables can be assigned to registers. The process of removing
temporaries is called spilling. A natural question concerning spilling when the
interference graph is chordal is if there is a polynomial algorithm to determine
the minimum number of spills. The problem of determining the maximum K-
colorable subgraph of a chordal graph is NP-complete [20], but has polynomial
solution when the number of colors (K) is fixed. We do not adopt the polynomial
algorithm because its complexity seems prohibitive, namely O(|V |K) time.

Iterated register coalescing performs spilling as an iterative process. After an
unsuccessful attempt to color the interference graph, some vertices are removed,
and a new coloring phase is executed. We propose to spill nodes in a single
iteration, by removing in each step all nodes of a chosen color from the colored
interference graph. The idea is that given a K-colored graph, if all the vertices
sharing a certain color are removed, the resulting subgraph can be colored with
K − 1 colors. We propose two different heuristics for choosing the next color to
be removed: (i) remove the least-used color, and (ii) remove the highest color
assigned by the greedy algorithm.

The spilling of the highest color has a simpler and more efficient implementa-
tion. The heuristic is based on the observation that the greedy coloring tends to
use the lower colors first. For a chordal graph, the number of times the highest
color is used is bounded by the number of maximal cliques in the interference
graph. A maximal clique is a clique that cannot be augmented. In other words,
given a graph G = (V, E), a clique Q is maximal if there is no vertex v, v ∈ V −Q,
such that v is adjacent to all the vertices of Q. For our running example, Fig-
ure 8 (b) shows the colored interference graph after the highest colors have been
removed, assuming that only two registers are available in the target machine.
Coincidentally, the highest colors are also the least-used ones.
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procedure coalescing
1 input: list l of copy instructions, G = (V, E), K
2 output: G′, the coalesced graph G
3 let G′ = G in
4 for all x := y ∈ l do
5 let Sx be the set of colors in N(x)
6 let Sy be the set of colors in N(y)
7 if there exists c, c < K, c /∈ Sx ∪ Sy then
8 let xy, xy /∈ V be a new node
9 add xy to G′ with color c
10 make xy adjacent to every v, v ∈ N(x) ∪ N(y)
11 replace occurrences of x or y in l by xy
12 remove x from G′

13 remove y from G′

Fig. 9. The greedy coalescing algorithm

Coalescing. The last phase of the algorithm is the coalescing of move related
instructions. Coalescing helps a compiler to avoid generating redundant copy
instructions. Our coalescing phase is executed in a greedy fashion. For each
instruction a := b, the algorithm looks for a color c not used in N(a) ∪ N(b),
where N(v) is the set of neighbors of v. If such a color exists, then the temporaries
a and b are coalesced into a single register with the color c. This algorithm is
described in Figure 9. Our current coalescing algorithm does not use properties
of chordal graphs; however, as future work, we plan to study how coalescing can
take benefit from chordality.

Pre-Spilling. To color a graph, we need a number of colors which is at least the
size of the largest clique. We now present an approach to removing nodes that
will bring the size of the largest clique down to the number of available colors and
guarantee that the resulting graph will be colorable with the number of available
colors (Theorem 2). Gavril [11] has presented an algorithm maximalCl, shown in
Figure 10, which lists all the maximal cliques of a chordal graph in O(|E|) time.
Our pre-spilling phase first runs maximalCl and then the procedure pre-spilling
shown in Figure 11. Pre-spilling uses a map ω which maps each vertex to an
approximation of the number of maximal cliques that contain that vertex. The
objective of pre-spilling is to minimize the number of spills. When an interference
graph is non-chordal, the maximalCl algorithm may return graphs that are not
all cliques and so pre-spilling may produce unnecessary spills. Nevertheless, our
experimental results in Section 5 show that the number of spills is competitive
even for non-chordal graphs.

The main loop of pre-spilling performs two actions: (i) compute the vertex
v that appears in most of the cliques of ξ and (ii) remove v from the cliques in
which it appears. In order to build an efficient implementation of the pre-spilling
algorithm, it is helpful to define a bidirectional mapping between vertices and
the cliques in which they appear. Because the number of maximal cliques is
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procedure maximalCl
1 input: G = (V, E)
2 output: a list of cliques ξ = 〈Q1, Q2, . . . , Qn〉
3 σ ← MCS(G)
4 For i ← 1 to n do
5 Let v ← σ[i] in
6 Qi ← {v} ∪ {u | (u, v) ∈ E,u ∈ {σ[1], . . . , σ[i − 1]}}

Fig. 10. Listing maximal cliques in chordal graphs

procedure pre-spilling
1 input: G = (V, E), a list of subgraphs of G: ξ = 〈Q1, Q2, . . . , Qn〉,

a number of available colors K, a mapping ω
2 output: a K-colorable subgraph of G
3 R1 = Q1; R2 = Q2; . . . Rn = Qn

4 while there is Ri with more than K nodes do
5 let v ∈ Ri be a vertex such that ∀u ∈ Ri, ω(v) ≥ ω(u) in
6 remove v from all the graphs R1, R2, . . . , Rn

7 return R1 ∪ R2 ∪ . . . ∪ Rn

Fig. 11. Spilling intersections between maximal cliques

bounded by |V | for a chordal graph, it is possible to use a bucket list to compute
ω(v), v ∈ V in O(1) time. After a temporary is deleted, a number of cliques may
become K-colorable, and must be removed from ξ. Again, due to the bidirectional
mapping between cliques and temporaries, this operation can be performed in
O(|N(v)|), where N(v) is the set of vertices adjacent to v. Overall, the spilling
algorithm can be implemented in O(|E|).

Theorem 2. The graph pre-spilling(G,maximalCl(G),K,ω) is K-colorable.

Proof. Let 〈Q1, Q2, . . . , Qn〉 be the output of maximalCl(G). Let R1∪R2∪. . .∪Rn

be the output of pre-spilling(G,maximalCl(G),K,ω). Let R•
i = R1 ∪R2 ∪ . . .∪Ri

for i ∈ 1..n.
We will show that for all i ∈ 1..n, R•

i is K-colorable. We proceed by induction
on i.

In the base case of i = 1, we have R•
1 = R1 ⊆ Q1 and Q1 has exactly one

node. We conclude that R•
1 is K-colorable.

In the induction step we have from the induction hypothesis that R•
i is K-

colorable so let c be a K-coloring of R•
i . Let v be the node σ[i+1] chosen in line

5 of maximalCl. Notice that v is the only vertex of Qi+1 that does not appear in
Q1, Q2, . . . , Qi so c does not assign a color to v. Now there are two cases. First,
if v has been removed by pre-spilling, then R•

i+1 = R•
i so c is a K-coloring of

R•
i+1. Second, if v has not been removed by pre-spilling, then we use that Ri+1

has at most K nodes to conclude that the degree of v in Ri+1 is at most K − 1.
We have that c assigns a color to all neighbors for v in Ri+1 so we have a color
left to assign to v and can extend c to a K-coloring of R•

i+1.
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Fig. 12. (a) Mapping between nodes and maximal cliques. (b) Mapping after pruning
node R1. (c) Interference graph after spilling R1 and R2.
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Fig. 13. (a) Coloring produced by the greedy algorithm. (b) Coalescing R6 and T9. (c)
Coalescing R4 and T7. (d) Coalescing R5 and T8.

Figure 12 (a) shows the mapping between temporaries and maximal cliques
that is obtained from the gcd(x, y) method, described in Figure 7 (a). Assum-
ing that the target architecture has two registers, the cliques must be pruned
until only cliques of size less than two remain. The registers R1 and R2 are the
most common in the maximal cliques, and, therefore, should be deleted. The
configuration after removing register R1 is outlined in Figure 12 (b). After the
pruning step, all the cliques are removed from ξ. Figure 12 (c) shows the inter-
ference graph after the spilling phase.

Figure 13 outlines the three possible coalescings in this example. Coinciden-
tally, two of the move related registers were assigned the same color in the greedy
coloring phase. Because of this, their colors do not had to be changed during
the coalescing stage. The only exception is the pair (R4, T7). In the coalescing
phase, the original color of R4 is changed to the same color of T7. Afterwards,
the registers are merged.

Complexity Analysis. The coloring phase, as a direct application of maximum
cardinality search and greedy coloring, can be implemented to run in O(|V |+|E|)
time.
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Fig. 14. (a) Time spent on coloring, spilling and coalescing in the different heuristics.
(b) Number of registers assigned to methods of the Java 1.5 Standard Library.

Our heuristics for spilling can all can be implemented to run in O(|E|) time.
In order to implement spilling of the least-used color, it is possible to order the
colors with bucket sort, because the maximum color is bounded by the highest
degree of the interference graph plus one. The same technique can be used to
order the weight function for the pre-spilling algorithm because the size of the
list ξ, produced by the procedure maximalCl, is bounded by |V |.

Coalescing is the phase with the highest complexity, namely O(t3), where
t is the number of temporaries in the source code. Our coalescing algorithm
inspects, for each pair of move related instructions, all their neighbors. It is
theoretically possible to have up to t2 pairs of move related instructions in the
target code. However, the number of these instructions is normally small, and
our experimental results show that the coalescing step accounts for less than
10% of the total running time (see Figure 14 (a)).

5 Experimental Results

We have built an evaluation framework in Java, using the JoeQ compiler [19], in
order to compare our algorithm against the iterated register coalescing. When
pre-spilling is used, post-spilling is not necessary (Theorem 2). Our benchmark
suite is the entire run-time library of the standard Java 1.5 distribution, i.e. the
set of classes in rt.jar. In total, we analyzed 23,681 methods. We analyzed
two different versions of the target code. One of them is constituted by the in-
termediate representation generated by JoeQ without any optimization. In the
other version, the programs are first converted to single static assignment form
(SSA), and them converted back to the JoeQ intermediate representation, by
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Table 1. Comparison between our algorithm (NIA) and Iterated Register Coalescing
(IRC), including results for the three different spilling heuristics in Section 4

Algorithm SSA number of register/ spill/ Total maximum coalescing/ running
registers method method spills # spills moves time (s)

NIA no 18 4.20 0.0044 102 15 0.38 2645.1
Post-spilling yes 18 4.13 0.0034 81 14 0.72 2769.9
least-used no 6 3.79 0.43 10,218 30 0.37 2645.0
color yes 6 3.75 0.51 12,108 91 0.73 2781.7
NIA no 18 4.20 0.0048 115 15 0.34 2641.5
Post-spilling yes 18 4.13 0.010 246 63 0.72 2767.0
highest no 6 3.80 0.50 11,923 33 0.35 2674.3
used color yes 6 3.75 0.80 19,018 143 0.69 2764.2
NIA no 18 4.20 0.0044 105 15 0.34 2640.5
Pre-spilling yes 18 4.13 0.0039 94 17 0.72 2763.2

no 6 3.78 0.45 10,749 34 0.35 2645.8
yes 6 3.75 0.49 11,838 43 0.70 2765.1

IRC

no 18 4.25 0.0050 115 16 0.31 2644.1
yes 18 4.17 0.0048 118 27 0.70 2823.2
no 6 3.81 0.50 11,869 32 0.31 2641.5
yes 6 3.77 0.57 13,651 86 0.66 2883.7

substituting the phi functions by copy instructions. In the former case, approx-
imately 91% of the interference graphs produced are chordal. In the latter, the
percentage of chordal graphs is 95.5%.

Table 1 shows results obtained by the iterative algorithm (IRC), and our
non-iterative register allocator (NIA). The implementation of both algorithms
attempts to spill the minimum number of registers. As it can be seen in the table,
our technique gives better results than the traditional register allocator. It tends
to use less registers per method, because it can find an optimum assignment
whenever the interference graph is chordal. Also, it tends to spill less temporaries,
because, by removing intersections among cliques, it decreases the chromatic
number of several clusters of interfering variables at the same time. Notably, for
the method coerceData, of the class java.awt.image.ComponentColorModel,
with 6 registers available for allocation, the pre-spilling caused the eviction of
41 temporaries, whereas Iterated Register Coalescing spilled 86. Also, because
our algorithm tends to spill fewer temporaries and to use fewer registers in
the allocation, it is able to find more opportunities for coalescing. The Iterated
register coalescing and our algorithm have similar running times. The complexity
of a single iteration of the IRC is O(|E|), and the maximum number of iterations
observed in the tests was 4; thus, its running time can be characterized as linear.
Furthermore, both algorithms can execute a cubic number of coalescings, but,
in the average, the quantity of copy instructions per program is small when
compared to the total number of instructions.

Table 2 compares the two algorithms when the interference graphs are chordal
and non-chordal. This data refers only to target programs after SSA elimination.
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Table 2. Comparative performance of our spilling heuristics for chordal and non-
chordal interference graphs

Algorithm chordal number of register/ spill/ Total maximum coalescing/
graph registers method method spills # spills moves

NIA no 18 8.17 0.054 61 17 0.75
Pre-spilling no 6 5.77 4.55 5173 43 0.79

yes 18 3.92 0.0015 33 6 0.69
yes 6 3.65 0.29 6665 31 0.68

IRC

no 18 8.39 0.062 71 27 0.74
no 6 5.79 4.89 5562 86 0.66
yes 18 3.97 0.0015 34 6 0.67
yes 6 3.68 0.39 8089 45 0.67

Table 3. Results obtained from the allocation of registers to 27,921 interference graphs
generated from ML code

Algorithm
chordal Total of maximum coalescing/ allocation
graph spills number of moves time

spills (s)
Post-spilling least yes 1,217 84 0.97

223.8
used color no 63 14 0.94

Post-spilling highest yes 1,778 208 0.97
222.9used color no 80 20 0.94

Pre-spilling yes 1,127 86 0.97 482.3
no 1,491 23 0.93

In general, non-chordal interference graphs are produced by complex methods.
For instance, methods whose interference graphs are non-chordal use, on average,
80.45 temporaries, whereas the average for chordal interference graphs is 13.94
temporaries.

The analysis of methods whose interference graphs are chordal gives some
insight about the structure of Java programs. When an interference graph is
chordal, the mapping between temporaries and registers is optimal, i.e. it uses the
smallest possible number of registers. Figure 14 (b) shows the relation between
number of methods of the Java Library and the minimum number of registers
necessary to handle them. Only methods that could be colored with less than
18 colors (99.6%) are shown. Allocation results for methods whose interference
graph are non-chordal are also presented, even though these may not be optimal.

Figure 14 (a) compares the amount of time spent on each phase of the al-
gorithm when different spilling heuristics are adopted. The time used in the
allocation process is a small percentage of the total running time presented in
Table 1 because the latter includes the loading of class files, the parsing of byte-
codes, the liveness analysis and the construction of the interference graph. When
pre-spilling is used, it accounts for more than half the allocation time.
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We have also tested our register allocation algorithm on the 27,921 inter-
ference graphs published by George and Appel. Those graphs were generated
by the standard ML compiler of New Jersey compiling itself [3]. Our tests have
shown that 95.7% of the interference graphs are chordal when the interferences
between pre-colored registers and temporaries are not taken into consideration.
The compilation results are outlined in Table 3. The graphs contain 21 pairwise
interfering pre-colored registers, which represent the machine registers available
for the allocation. Because of these cliques, all the graphs, after spilling, de-
manded exactly 21 colors. When the graphs are chordal, pre-spilling gives the
best results; however, this heuristic suffers a penalty when dealing with the
non-chordal graphs, because they present a 21-clique, and must be colored with
21 registers. In such circumstances, the procedure maximalCl from Figure 10
have listed some false maximal cliques, and unnecessary spills have been caused.
Overall, the spilling of the least-used colors gives the best results. The execution
times for analyzing the ML-compiler-based benchmarks are faster than those for
analyzing the Java Library because the latter set of timings includes the times
to construct the interference graphs.

6 Conclusion

This paper has presented a non-iterative algorithm for register allocation based
on the coloring of chordal graphs. Chordal graphs present an elegant structure
and can be optimally colored in O(|V | + |E|) time. For the register allocation
problem, we can find an optimal allocation in time linear in the number of inter-
ferences between live ranges, whenever the interference graph is chordal. Addi-
tionally, our algorithm is competitive even when performing register allocation
on non-chordal inputs.

In order to validate the algorithm, we compared it to iterated register co-
alescing. Our algorithm allocates fewer registers per method and spills fewer
temporaries. In addition, our algorithm can coalesce about the same proportion
of copy instructions as iterated register coalescing.

In addition to being efficient, our algorithm is modular and flexible. Because
it is non-iterative, it presents a simpler design than traditional algorithms based
on graph coloring. The spill of temporaries can happen before or after the
coloring phase. By performing spilling before coloring, it is possible to assign
different weights to temporaries in order to generate better code. Our imple-
mentation and a set of interference graphs generated from the Java methods
tested can be found at http://compilers.cs.ucla.edu/fernando/projects/.
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