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Foreword

APLAS 2005 was the Asian Symposium on Programming Languages and Sys-
tems, held in Tsukuba, Japan in November 2–5, 2005. It was the latest event in
the series of annual meetings started in 2000 by Asian researchers in the field
of programming languages and systems. The first three were organized as work-
shops, and were held in Singapore (2000), Daejeon (2001), and Shanghai (2002).
The enthusiasm there, encouraged by the rich production of original research pa-
pers, and the support of the international research communities in programming
languages and systems, led to the first APLAS as a symposium in Beijing (2003),
followed by the one in Taipei (2004). APLAS 2005 was the third symposium in
the series.

In the past five years we have witnessed the growing role of APLAS as one of
the key research communities of the world. This is not only because Asia and the
Pacific Rim is a fast-growing region of IT industries, but because it is a region
of highly cultivated human resources. We are confident that forums like APLAS
will further engender interaction among Asian researchers and with the rest of
the world.

As for the scope of APLAS, from the very beginning we have been striving
to achieve the cross-fertilization of theories and system developments of pro-
gramming and programming languages. The papers selected for the publication
of this volume of the proceedings are the evidence of our efforts. We are very
grateful to the contributors of the submitted papers; they came not only from
Asia and Australia but from Europe and North America.

The symposium was held in the campus of the University of Tsukuba. Bring-
ing APLAS 2005 to its realization was the result of the collaborative work of the
Organizing Committee and various organizations that supported us. Foremost, I
would like to express my thanks for the work of the Program Committee chaired
by Kwangkeun Yi, who was responsible for the collection of high-quality papers
on the state of the art of the research in programming languages and systems. We
had three invited talks, by Patrick Cousot, Haruo Hosoya and Thomas Reps, to
whom we are very grateful. We would like to express our thanks for the support
by AAFS (Asian Association for Foundation of Software), JSSST (Japan Society
for Software Science and Technology), IISF (International Information Science
Foundation), and the University of Tsukuba. Last but not least, I would like to
express our thanks to Springer for its continued support in the publication of
the proceedings in the Lecture Notes in Computer Science series.

Septermber 2005 Tetsuo Ida



Preface

This volume contains the proceedings of the 3rd Asian Symposium on Program-
ming Languages and Systems (APLAS 2005), which took place in Tsukuba,
Japan, November 2–5, 2005. The symposium was sponsored by the Asian Asso-
ciation for Foundation of Software (AAAF), Japan Society for Software Science
and Technology (JSSST), International Information Science Foundation in Japan
(IISF), and University of Tsukuba.

Among the 78 full submissions, the Program Committee selected 24 papers.
Almost all submissions were reviewed by three (or more) PC members with
the help of external reviewers. Papers were selected during a 16-day electronic
discussion phase. I would like to sincerely thank the members of the APLAS
2005 Program Committee for their thorough reviews and dedicated involvement
during the discussion phase. I would also like to thank all the external reviewers
for their invaluable contributions.

The symposium program covered both theoretical and practical topics in
programming languages and systems. In addition to the 24 accepted papers, the
symposium also featured invited talks by three distinguished speakers: Patrick
Cousot (École Normale Superieure, Paris, France), Haruo Hosoya (University of
Tokyo, Japan), and Thomas Reps (University of Wisconsin, Madison, USA).

Many people helped to establish APLAS as a high-quality forum in Asia that
serves programming languages and systems researchers worldwide. The APLAS
series started after informal yet well-attended workshops in Singapore (2000),
Daejeon (2001), and Shanghai (2002). After the workshops, the first two formal
symposiums were held in Beijing (2003) and Taipei (2004). This third symposium
inherited much from this past momentum and owed many people for its success.

I am grateful to the General Chair, Tetsuo Ida, for his invaluable support and
guidance that made our symposium in Tsukuba possible and enjoyable. I am
indebted to our Local Arrangements Chair, Mircea Marin, for his considerable
effort to plan and organize the meeting itself. I thank Hongseok Yang for serving
as the Poster Chair. Last but not least, I also thank Deokhwan Kim for his help
in handling the OpenConf system and preparing these proceedings.

September 2005 Kwangkeun Yi
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Type Systems for XML

Haruo Hosoya

The University of Tokyo

Abstract. XML is a standard data format that is nowadays used every-
where. A notable feature of XML is its user-definable schemas. Schemas
describe structural constraints on XML documents, thus defining “types”
of XML. However, in current languages and systems for processing XML,
those types are used only for dynamically validating data, not for stati-
cally verifying programs.

The goal of this work is to establish methods for the design and imple-
mentation of type systems for XML processing. However, this task is not
a simple transfer of existing knowledges in programming languages since
XML types are based on regular tree expressions and therefore have much
richer structure than standard types treated in past researches. More con-
cretely, difficulties arise in finding suitable definitions and algorithms for
(1) typing concepts already standard in functional programming, e.g.,
subtyping and parametric polymorphism, (2) XML-specific structures,
e.g., (in addition to regular tree expressions) attribute and shuffle ex-
pressions, and (3) language constructs for XML processing, e.g., pattern
matching and its extensions. In this talk, I will overview our efforts deal-
ing with these issues, emphasizing the principles consistently used in all
of these—”definition by semantics” and “implementation based on finite
tree automata.”

This work has been done jointly with Jérôme Vouillon, Benjamin
Pierce, Makoto Murata, Tadahiro Suda, Alain Frisch, and Giuseppe
Castagna.

K. Yi (Ed.): APLAS 2005, LNCS 3780, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



The Essence of Dataflow Programming

(Short Version)

Tarmo Uustalu1 and Varmo Vene2

1 Inst. of Cybernetics at Tallinn Univ. of Technology,
Akadeemia tee 21, EE-12618 Tallinn, Estonia

tarmo@cs.ioc.ee
2 Dept. of Computer Science, Univ. of Tartu,

J. Liivi 2, EE-50409 Tartu, Estonia
varmo@cs.ut.ee

Abstract. We propose a novel, comonadic approach to dataflow
(stream-based) computation. This is based on the observation that both
general and causal stream functions can be characterized as coKleisli ar-
rows of comonads and on the intuition that comonads in general must be
a good means to structure context-dependent computation. In particu-
lar, we develop a generic comonadic interpreter of languages for context-
dependent computation and instantiate it for stream-based computation.
We also discuss distributive laws of a comonad over a monad as a means
to structure combinations of effectful and context-dependent computa-
tion. We apply the latter to analyse clocked dataflow (partial stream
based) computation.

1 Introduction

Ever since the work by Moggi and Wadler [22,35], we know how to reduce impure
computations with errors and non-determinism to purely functional computa-
tions in a structured fashion using the maybe and list monads. We also know how
to explain other types of effect, such as continuations, state, even input/output,
using monads!

But what is more unnatural or hard about the following program?

pos = 0 fby (pos + 1)
fact = 1 fby (fact * (pos + 1))

This represents a dataflow computation which produces two discrete-time signals
or streams: the enumeration of the naturals and the graph of the factorial func-
tion. The syntax is essentially that of Lucid [2], which is an old intensional lan-
guage, or Lustre [15] or Lucid Synchrone [10,27], the newer French synchronous
dataflow languages. The operator fby reads ‘followed by’ and means initialized
unit delay of a discrete-time signal (cons of a stream).

K. Yi (Ed.): APLAS 2005, LNCS 3780, pp. 2–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



The Essence of Dataflow Programming 3

Notions of dataflow computation cannot be structured by monads. As a sub-
stitute, one can use the laxer framework of Freyd categories or arrow types,
proposed independently by Power and Robinson [28] and Hughes [17]. The mes-
sage of this paper is that while this works, one can alternatively use some-
thing much more simple and standard, namely comonads, the formal dual of
comonads. Moreover, comonads are even better, as there is more relevant struc-
ture to them than to Freyd categories. We also mean to claim that, compared
to monads, comonads have received too little attention in programming lan-
guage semantics. This is unfair, since just as monads are useful for speaking and
reasoning about notions of functions that produce effects, comonads can han-
dle context-dependent functions and are hence highly relevant. This has been
suggested earlier, e.g., by Brookes and Geva [8] and Kieburtz [19], but never
caught on because of a lack of compelling examples. But now dataflow com-
putation provides clear examples and it hints at a direction in which there are
more.

Technically, we show that general and causal stream functions, the basic
entities in intensional and synchronous dataflow computation, are elegantly de-
scribed in terms of comonads. Imitating monadic interpretation, we develop a
generic comonadic interpreter for context-dependent computation. By instanti-
ation, we obtain interpreters of a Lucid-like intensional language and a Lucid
Synchrone-like synchronous dataflow language. Remarkably, we get higher-order
language designs with almost no effort whereas the traditional dataflow lan-
guages are first-order and the question of the meaningfulness or right meaning of
higher-order dataflow has been seen as controversial. We also show that clocked
dataflow (i.e., partial-stream based) computation can be handled by distributive
laws of the comonads for stream functions over the maybe monad.

The organization of the paper is as follows. In Section 2, we introduce comon-
ads and argue that they structure computation with context-dependent func-
tions. We show that both general and causal stream functions are smoothly de-
scribed by comonads and develop a comonadic interpreter capable of handling
dataflow languages. In Section 3, we show how effects and context-dependence
can be combined in the presence of a distributive law of the comonad over
the monad, show how this applies to partial-stream functions and present a
distributivity-based interpreter which copes with clocked dataflow languages.
Section 4 is a summary of related work, while Section 5 lists our conclusions.

We assume that the reader is familiar with the basics of functional pro-
gramming (in particular, Haskell programming), denotational semantics and the
Lambek-Lawvere correspondence between typed lambda calculi and cartesian
closed categories (the types-as-objects, terms-as-morphisms correspondence).
Acquaintance with dataflow programming (Lucid or Lucid Synchrone) will be of
additional help. Monads and arrow types are not introduced in this short version
of the paper, but comonads and distributive laws are.

The paper is related to our earlier paper [33], which discussed the relevance of
comonads for dataflow computation but did not treat comonad-based processing
of dataflow languages.
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2 Comonads

2.1 Comonads and Context-Dependent Functions

We start by defining what comonads are and explaining their intuitive relevance
for notions of impure computation.

A comonad on a category C is given by a mapping D : |C| → |C| together
with a |C|-indexed family ε of maps εA : DA → A (counit), and an operation
−† taking every map k : DA → B in C to a map k† : DA → DB (coextension
operation) such that

1. for any k : DA → B, εB ◦ k† = k,
2. εA

† = idDA,
3. for any k : DA → B, � : DB → C, (� ◦ k†)† = �† ◦ k†.

Analogously to Kleisli categories, any comonad (D, ε,−†) defines a category
CD where |CD| = |C| and CD(A, B) = C(DA, B), (idD)A = εA, � ◦D k = � ◦ k†

(coKleisli category) and an identity on objects functor J : C → CD where Jf =
f ◦ εA for f : A → B.

Comonads should be fit to capture notions of “value in a context”; DA would
be the type of contextually situated values of A. A context-dependent function
from A to B would then be a map A → B in the coKleisli category, i.e., a map
DA → B in the base category. The function εA : DA → A discards the context
of its input whereas the coextension k† : DA → DB of a function k : DA → B
essentially duplicates it (to feed it to k and still have a copy left).

Some examples of comonads are the following: each object mapping D below
is a comonad:

– DA = A, the identity comonad,
– DA = A× E, the product comonad,
– DA = StrA = νX.A×X , the streams comonad,
– DA = νX.A× F X , the cofree comonad over F ,
– DA = µX.A× F X , the cofree recursive comonad over F [32].

Accidentally, the pragmatics of the product comonad is the same as that of
the exponent monad, viz. representation of functions reading an environment.
The reason is simple: the Kleisli arrows of the exponent monad are the maps
A → (E ⇒ B) of the base category, which are of course in a natural bijection
with the with the maps A×E → B that are the coKleisli arrows of the product
comonad. But in general, monads and comonads capture different notions of im-
pure function. We defer the discussion of the pragmatics of the streams comonad
until the next subsection (it is not the comonad to represent general or causal
stream functions!).

For Haskell, there is no standard comonad library1. But of course comonads
are easily defined as a type constructor class analogously to the definition of
monads in Prelude and Monad.
1 There is, however, a contributed library by Dave Menendez, see http://www.eyrie.
org/~zednenem/2004/hsce/.
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class Comonad d where
counit :: d a -> a
cobind :: (d a -> b) -> d a -> d b

cmap :: Comonad d => (a -> b) -> d a -> d b
cmap f = cobind (f . counit)

The identity and product comonads are defined as instances in the following
fashion.

instance Comonad Id where
counit (Id a) = a
cobind k d = Id (k d)

data Prod e a = a :& e

instance Comonad (Prod e) where
counit (a :& _) = a
cobind k d@(_ :& e) = k d :& e

askP :: Prod e a -> e
askP (_ :& e) = e

localP :: (e -> e) -> Prod e a -> Prod e a
localP g (a :& e) = (a :& g e)

The stream comonad is implemented as follows.

data Stream a = a :< Stream a -- coinductive

instance Comonad Stream where
counit (a :< _) = a
cobind k d@(_ :< as) = k d :< cobind k as

nextS :: Stream a -> Stream a
nextS (a :< as) = as

2.2 Comonads for General and Causal Stream Functions

The general pragmatics of comonads introduced, we are now ready to discuss
the representation of general and causal stream functions via comonads.

The first observation to make is that streams (discrete time signals) are
naturally isomorphic to functions from natural numbers: StrA = νX. A ×X ∼=
(µX. 1 + X) ⇒ A = Nat ⇒ A. In Haskell, this isomorphism is implemented as
follows:

str2fun :: Stream a -> Int -> a
str2fun (a :< as) 0 = a
str2fun (a :< as) (i + 1) = str2fun as i

fun2str :: (Int -> a) -> Stream a
fun2str f = fun2str’ f 0

fun2str’ f i = f i :< fun2str’ f (i + 1)

General stream functions StrA → StrB are thus in natural bijection with
maps Nat ⇒ A → Nat ⇒ B, which, in turn, are in natural bijection with maps
(Nat⇒ A)×Nat→ B, i.e., FunArg Nat A → B where FunArg S A = (S ⇒ A)×S.
Hence, for general stream functions, a value from A in context is a stream (sig-
nal) over A together with a natural number identifying a distinguished stream
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position (the present time). Not surprisingly, the object mapping FunArg S is a
comonad (in fact, it is the “state-in-context” comonad considered by Kieburtz
[19]) and, what is of crucial importance, the coKleisli identities and composi-
tion as well as the coKleisli lifting of FunArg Nat agree with the identities and
composition of stream functions (which are really just function identities and
composition) and with the lifting of functions to stream functions. In Haskell,
the parameterized comonad FunArg and the interpretation of the coKleisli arrows
of FunArg Nat as stream functions are implemented as follows.

data FunArg s a = (s -> a) :# s

instance Comonad (FunArg s) where
counit (f :# s) = f s
cobind k (f :# s) = (\ s’ -> k (f :# s’)) :# s

runFA :: (FunArg Int a -> b) -> Stream a -> Stream b
runFA k as = runFA’ k (str2fun as :# 0)

runFA’ k d@(f :# i) = k d :< runFA’ k (f :# (i + 1))

The comonad FunArg Nat can also be presented equivalently without using
natural numbers to deal with positions. The idea for this alternative presentation
is simple: given a stream and a distinguished stream position, the position splits
the stream up into a list, a value of the base type and a stream (corresponding
to the past, present and future of the signal). Put mathematically, there is a
natural isomorphism (Nat ⇒ A) × Nat ∼= Str A × Nat ∼= (List A × A) × Str A
where List A = µX. 1 + (A × X) is the type of lists over a given type A. This
gives us an equivalent comonad LVS for representing of stream functions with
the following structure (we use snoc-lists instead of cons-lists to reflect the fact
that the analysis order of the past of a signal will be the reverse direction of
time):

data List a = Nil | List a :> a -- inductive

data LV a = List a := a

data LVS a = LV a :| Stream a

instance Comonad LVS where
counit (az := a :| as) = a
cobind k d = cobindL d := k d :| cobindS d

where cobindL (Nil := a :| as) = Nil
cobindL (az’ :> a’ := a :| as) = cobindL d’ :> k d’

where d’ = az’ := a’ :| (a :< as)
cobindS (az := a :| (a’ :< as’)) = k d’ :< cobindS d’

where d’ = az :> a := a’ :| as’

(Notice the visual purpose of our constructor naming. In values of types LVS A,
both the cons constructors (:>) of the list (the past) and the cons constructors
(:<) of the stream (the future) point to the present which is enclosed between
the constructors (:=) and (:|).)

The interpretation of the coKleisli arrows of the comonad LVS as stream
functions is implemented as follows.
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runLVS :: (LVS a -> b) -> Stream a -> Stream b
runLVS k (a’ :< as’) = runLVS’ k (Nil := a’ :| as’)

runLVS’ k d@(az := a :| (a’ :< as’)) = k d :< runLVS’ k (az :> a := a’ :| as’)

Delay and anticipation can be formulated for both FunArg Nat and LVS.

fbyFA :: a -> (FunArg Int a -> a) fbyLVS :: a -> (LVS a -> a)
fbyFA a0 (f :# 0) = a0 fbyLVS a0 (Nil := _ :| _) = a0
fbyFA _ (f :# (i + 1)) = f i fbyLVS _ ((_ :> a’) := _ :| _) = a’

nextFA :: FunArg Int a -> a nextLVS :: LVS a -> a
nextFA (f :# i) = f (i + 1) nextLVS (_ := _ :| (a :< _)) = a

Let us call a stream function causal, if the present of the output signal only
depends on the past and present of the input signal and not on its future2.

Is there a way to ban non-causal functions? Yes, the comonad LVS is easy
to modify so that exactly those stream functions can be represented that are
causal. All that needs to be done is to remove from the comonad LVS the factor
of the future. We are left with the object mapping LV where LV A = List A ×
A = (µX. 1 + A × X) × A ∼= µX. A × (1 + X), i.e., a non-empty list type
constructor. This is a comonad as well and again the counit and the coextension
operation are just correct in the sense that they deliver the desirable coKleisli
identities, composition and lifting. In fact, the comonad LV is the cofree recursive
comonad of the functor Maybe (we refrain from giving the definition of a recursive
comonad here, this can be found in [32]). It may be useful to notice that the
type constructor LV carries a monad structure too, but the Kleisli arrows of that
monad have nothing to do with causal stream functions!

In Haskell, the non-empty list comonad LV is defined as follows.

instance Comonad LV where
counit (_ := a) = a
cobind k d@(az := _) = cobindL k az := k d

where cobindL k Nil = Nil
cobindL k (az :> a) = cobindL k az :> k (az := a)

runLV :: (LV a -> b) -> Stream a -> Stream b
runLV k (a’ :< as’) = runLV’ k (Nil := a’ :| as’)

runLV’ k (d@(az := a) :| (a’ :< as’)) = k d :< runLV’ k (az :> a := a’ :| as’)

With the LV comonad, anticipation is no longer possible, but delay is un-
problematic.

fbyLV :: a -> (LV a -> a)
fbyLV a0 (Nil := _) = a0
fbyLV _ ((_ :> a’) := _) = a’

Analogously to causal stream functions, one might also consider anticausal
stream functions, i.e., functions for which the present value of the output sig-
nal only depends on the present and future values of the input signal. As
2 The standard terminology is ‘synchronous stream functions’, but we want to avoid

it because ‘synchrony’ also refers to all signals being on the same clock and to the
hypothesis of instantaneous reactions.
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A× Str A ∼= Str A, it is not surprising now anymore that the comonad for an-
ticausal stream functions is the comonad Str, which we introduced earlier and
which is very canonical by being the cofree comonad generated by the identity
functor. However, in real life, causality is much more relevant than anticausality!

2.3 Comonadic Semantics

Is the comonadic approach to context-dependent computation of any use? We
will now demonstrate that it is indeed by developing a generic comonadic in-
terpreter instantiable to various specific comonads, in particular to those that
characterize general and causal stream functions. In the development, we mimic
the monadic interpreter of Moggi and Wadler [22,35].

As the first thing we must fix the syntax of our object language. We will
support a purely functional core and additions corresponding to various notions
of context.

type Var = String

data Tm = V Var | L Var Tm | Tm :@ Tm | Rec Tm
| N Integer | Tm :+ Tm | ... | Tm :== Tm | ... | TT | FF | ... | If Tm Tm Tm
| Tm ‘Fby‘ Tm -- specific for both general and causal stream functions
| Next Tm -- specific for general stream functions only

The type-unaware semantic domain contains integers, booleans and func-
tions, but functions are context-dependent (coKleisli functions). Environments
are lists of variable-value pairs as usual.

data Val d = I Integer | B Bool | F (d (Val d) -> Val d)

type Env d = [(Var, Val d)]

We will manipulate environment-like entities via the following functions3.

empty :: [(a, b)] update :: a -> b -> [(a, b)] -> [(a, b)]
empty = [] update a b abs = (a, b) : abs

unsafeLookup :: Eq a => a -> [(a, b)] -> b
unsafeLookup a0 ((a, b) : abs) = if a0 == a then b else unsafeLookup a0 abs

And we are at evaluation. Of course terms must denote coKleisli arrows, so
the typing of evaluation is uncontroversial.

class Comonad d => ComonadEv d where
ev :: Tm -> d (Env d) -> Val d

But an interesting issue arises with evaluation of closed terms. In the case of
a pure or a monadically interpreted language, closed terms are supposed to
be evaluated in the empty environment. Now they must be evaluated in the
empty environment placed in a context! What does this mean? This is easy to
understand on the example of stream functions. By the types, evaluation of an
3 The safe lookup, that maybe returns a value, will be unnecessary, since we can type-

check an object-language term before evaluating it. If this succeeds, we can be sure
we will only be looking up variables in environments where they really occur.
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expression returns a single value, not a stream. So the stream position of interest
must be specified in the contextually situated environment that we provide. Very
suitably, this is exactly the information that the empty environment in a context
conveys. So we can define:

emptyL :: Int -> List [(a, b)] emptyS :: Stream [(a, b)]
emptyL 0 = Nil emptyS = empty :< emptyS
emptyL (i + 1) = emptyL i :> empty

evClosedLVS :: Tm -> Int -> Val LVS
evClosedLVS e i = ev e (emptyL i := empty :| emptyS)

evClosedLV :: Tm -> Int -> Val LV
evClosedLV e i = ev e (emptyL i := empty)

Back to evaluation. For most of the core constructs, the types tell us what
the defining clauses of their meanings must be—there is only one thing we can
write and that is the right thing. In particular, everything is meaningfully prede-
termined about variables, application and recursion. E.g., for a variable, we must
extract the environment from its context (e.g., history), and then do a lookup.
For an application, we must evaluate the function wrt. the given contextually
situated environment and then apply it. But since, according to the types, a
function wants not just an isolated argument value, but a contextually situated
one, the function has to be applied to the coextension of the denotation of the
argument wrt. the given contextually situated environment.

_ev :: ComonadEv d => Tm -> d (Env d) -> Val d
_ev (V x) denv = unsafeLookup x (counit denv)
_ev (e :@ e’) denv = case ev e denv of

F f -> f (cobind (ev e’) denv)
_ev (Rec e) denv = case ev e denv of

F f -> f (cobind (_ev (Rec e)) denv)
_ev (N n) denv = I n
_ev (e0 :+ e1) denv = case ev e0 denv of

I n0 -> case ev e1 denv of
I n1 -> I (n0 + n1)

...
_ev TT denv = B True
_ev FF denv = B False
_ev (If e e0 e1) denv = case ev e denv of B b -> if b then ev e0 denv else ev e1 denv

There is, however, a problem with lambda-abstraction. For any potential con-
textually situated value of the lambda-variable, the evaluation function should
recursively evaluate the body of the lambda-abstraction expression in the ap-
propriately extended contextually situated environment. Schematically,

_ev (L x e) denv = F (\ d -> ev e (extend x d denv))

where

extend :: Comonad d => Var -> d (Val d) -> d (Env d) -> d (Env d)

Note that we need to combine a contextually situated environment with a con-
textually situated value. One way to do this would be to use the strength of the
comonad (we are in Haskell, so every comonad is strong), but in the case of the
stream function comonads this would necessarily have the bad effect that either
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the history of the environment or that of the value would be lost. We would like
to see that no information is lost, to have the histories zipped.

To solve the problem, we consider comonads equipped with an additional
zipping operation. We define a comonad with zipping to be a comonad D coming
with a natural transformation m with components mA,B : DA×DB → D(A×
B) that satisfies coherence conditions such as εA×B ◦ mA,B = εA × εB (more
mathematically, this is a symmetric semi-monoidal comonad).

In Haskell, we define a corresponding type constructor class.

class Comonad d => ComonadZip d where
czip :: d a -> d b -> d (a, b)

The identity comonad, as well as LVS and LV are instances (and so are many
other comonads).

instance ComonadZip Id where
czip (Id a) (Id b) = Id (a, b)

zipL :: List a -> List b -> List (a, b)
zipL Nil _ = Nil
zipL _ Nil = Nil
zipL (az :> a) (bz :> b) = zipL az bz :> (a, b)

zipS :: Stream a -> Stream b -> Stream (a, b)
zipS (a :< as) (b :< bs) = (a, b) :< zipS as bs

instance ComonadZip LVS where
czip (az := a :| as) (bz := b :| bs) = zipL az bz := (a, b) :| zipS as bs

instance ComonadZip LV where
czip (az := a) (bz := b) = zipL az bz := (a, b)

With the zip operation available, defining the meaning of lambda-abstractions
is easy, but we must also update the typing of the evaluation function, so that
zippability becomes required.

class ComonadZip d => ComonadEv d where ...

_ev (L x e) denv = F (\ d -> ev e (cmap repair (czip d denv)))
where repair (a, env) = update x a env

It remains to define the meaning of the specific constructs of our example
languages. The pure language has none. The dataflow languages have Fby and
Next that are interpreted using the specific operations of the corresponding
comonads. Since each of Fby and Next depends on the context of the value of its
main argument, we need to apply the coextension operation to the denotation
of that argument to have this context available.

instance ComonadEv Id where
ev e denv = _ev e denv

instance ComonadEv LVS where
ev (e0 ‘Fby‘ e1) denv = ev e0 denv ‘fbyLVS‘ cobind (ev e1) denv
ev (Next e) denv = nextLVS (cobind (ev e) denv)
ev e denv = _ev e denv

instance ComonadEv LV where
ev (e0 ‘Fby‘ e1) denv = ev e0 denv ‘fbyLV‘ cobind (ev e1) denv
ev e denv = _ev e denv
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In dataflow languages, the ‘followed by’ construct is usually defined to mean
the delay of the second argument initialized by the initial value of the first
argument, which may at first seem like an ad hoc decision (or so it seemed
to us at least). Why give the initial position any priority? In our interpreter,
we took the simplest possible solution of using the value of the first argument
of Fby in the present position of the history of the environment. We did not
use any explicit means to calculate the value of that argument wrt. the initial
position. But the magic of the definition of fbyLVS is that it only ever uses its
first argument when the second has a history with no past (which corresponds
to the situation when the present actually is the initial position in the history
of the environment). So our most straightforward naive design gave exactly the
solution that has been adopted by the dataflow languages community, probably
for entirely different reasons.

Notice also that we have obtained a generic comonads-inspired language de-
sign which supports higher-order functions and the solution was dictated by
the types. This is remarkable since dataflow languages are traditionally first-
order and the question of the right meaning of higher-order dataflow has been
considered controversial. The key idea of our solution can be read off from the
interpretation of application: the present value of a function application is the
present value of the function applied to the history of the argument.

We can test the interpreter on a few classic examples from dataflow program-
ming. The following examples make sense in both the general and causal stream
function settings.

-- pos = 0 fby pos + 1
pos = Rec (L "pos" (N 0 ‘Fby‘ (V "pos" :+ N 1)))
-- sum x = x + (0 fby sum x)
sum = L "x" (Rec (L "sumx" (V "x" :+ (N 0 ‘Fby‘ V "sumx"))))
-- diff x = x - (0 fby x)
diff = L "x" (V "x" :- (N 0 ‘Fby‘ V "x"))
-- ini x = x fby ini x
ini = L "x" (Rec (L "inix" (V "x" ‘Fby‘ V "inix")))
-- fact = 1 fby (fact * (pos + 1))
fact = Rec (L "fact" (N 1 ‘Fby‘ (V "fact" :* (pos :+ N 1))))
-- fibo = 0 fby (fibo + (1 fby fibo))
fibo = Rec (L "fibo" (N 0 ‘Fby‘ (V "fibo" :+ (N 1 ‘Fby‘ V "fibo"))))

Testing gives expected results:

> runLV (ev pos) emptyS
0 :< (1 :< (2 :< (3 :< (4 :< (5 :< (6 :< (7 :< (8 :< (9 :< (10 :< ...
> runLV (ev (sum :@ pos)) emptyS
0 :< (1 :< (3 :< (6 :< (10 :< (15 :< (21 :< (28 :< (36 :< (45 :< (55 :< ...
> runLV (ev (diff :@ (sum :@ pos)) emptyS
0 :< (1 :< (2 :< (3 :< (4 :< (5 :< (6 :< (7 :< (8 :< (9 :< (10 :< ...

Here are two examples that are only allowed with general stream functions,
because of using anticipation: the ‘whenever’ operation and the sieve of Eratos-
thenes.

-- x wvr y = if ini y then x fby (next x wvr next y) else (next x wvr next y)
wvr = Rec (L "wvr" (L "x" (L "y" (

If (ini :@ V "y")
(V "x" ‘Fby‘ (V "wvr" :@ (Next (V "x")) :@ (Next (V "y"))))
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(V "wvr" :@ (Next (V "x")) :@ (Next (V "y")))))))
-- sieve x = x fby sieve (x wvr x mod (ini x) :/= N 0)
sieve = Rec (L "sieve" (L "x" (

V "x" ‘Fby‘ (V "sieve" :@ (
wvr :@ V "x" :@ (V "x" ‘Mod‘ (ini :@ (V "x")) :/= N 0))))))

-- eratosthenes = sieve (pos + 2)
eratosthenes = sieve :@ (pos :+ N 2)

Again, testing gives what one would like to get.

> runLVS (ev eratosthenes) emptyS
2 :< (3 :< (5 :< (7 :< (11 :< (13 :< (17 :< (19 :< (23 :< (29 :< ...

3 Distributive Laws

3.1 A Distributive Law for Causal Partial-Stream Functions

While the comonadic approach is quite powerful, there are natural notions of
impure computation that it does not cover. One example is clocked dataflow or
partial-stream based computation. The idea of clocked dataflow is that different
signals may be on different clocks. Clocked dataflow signals can be represented
by partial streams. A partial stream is a stream that may have empty positions
to indicate the pace of the clock of a signal wrt. the base clock. The idea is to
get rid of the different clocks by aligning all signals wrt. the base clock.

A very good news is that although comonads alone do not cover clocked
dataflow computation, a solution is still close at hand. General and causal partial-
stream functions turn out to be describable in terms of distributive combinations
of a comonad and a monad considered, e.g., in [8,29]. For reasons of space, we will
only discuss causal partial-stream functions as more relevant. General partial-
stream functions are handled completely analogously.

Given a comonad (D, ε,−†) and a monad (T, η,−�) on a category C, a distrib-
utive law of the former over the latter is a natural transformation λ with compo-
nents DT A → T DA subject to four coherence conditions. A distributive law of
D over T defines a category CD,T where |CD,T | = |C|, CD,T (A, B) = C(DA, T B),
(idD,T )A = ηA ◦ εA, � ◦D,T k = l� ◦λB ◦ k† for k : DA → T B, � : DB → T C (call
it the biKleisli category), with inclusions to it from both the coKleisli category
of D and Kleisli category of T .

In Haskell, the distributive combination is implemented as follows.

class (ComonadZip d, Monad t) => Dist d t where
dist :: d (t a) -> t (d a)

The simplest examples of distributive laws are the distributivity of the iden-
tity comonad over any monad and the distributivity of any comonad over the
identity monad.

instance Monad t => Dist Id t where
dist (Id c) = mmap Id c

instance ComonadZip d => Dist d Id where
dist d = Id (cmap unId d)
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A more interesting example is the distributive law of the product comonad over
the maybe monad.

data Maybe a = Just a | Nothing

instance Monad Maybe where
return a = Just a
Just a >>= k = k a
Nothing >>= k = Nothing

instance Dist Prod Maybe where
dist (Nothing :& _) = Nothing
dist (Just a :& e) = Just (a :& e)

For causal partial-stream functions, it is appropriate to combine the causal
stream functions comonad LV with the maybe monad. And this is possible, since
there is a distributive law which takes a partial list and a partial value (the past
and present of the signal according to the base clock) and, depending on whether
the partial value is undefined or defined, gives back the undefined list-value pair
(the present time does not exist according to the signal’s own clock) or a defined
list-value pair, where the list is obtained from the partial list by leaving out
its undefined elements (the past and present of the signal according to its own
clock). In Haskell, this distributive law is coded as follows.

filterL :: List (Maybe a) -> List a
filterL Nil = Nil
filterL (az :> Nothing) = filterL az
filterL (az :> Just a) = filterL az :> a

instance Dist LV Maybe where
dist (az := Nothing) = Nothing
dist (az := Just a) = Just (filterL az := a)

The biKleisli arrows of the distributive law are interpreted as partial-stream
functions as follows.

runLVM :: (LV a -> Maybe b) -> Stream (Maybe a) -> Stream (Maybe b)
runLVM k (a’ :< as’) = runLVM’ k Nil a’ as’

runLVM’ k az Nothing (a’ :< as’) = Nothing :< runLVM’ k az a’ as’
runLVM’ k az (Just a) (a’ :< as’) = k (az := a) :< runLVM’ k (az :> a) a’ as’

3.2 Distributivity-Based Semantics

Just as with comonads, we demonstrate distributive laws in action by present-
ing an interpreter. This time this is an interpreter of languages featuring both
context-dependence and effects.

As previously, our first step is to fix the syntax of the object language.

type Var = String

data Tm = V Var | L Var Tm | Tm :@ Tm | Rec Tm
| N Integer | Tm :+ Tm | ... | Tm :== Tm | ... | TT | FF | ... | If Tm Tm Tm
| Tm ‘Fby‘ Tm -- specific for causal stream functions
| Nosig | Tm ‘Merge‘ Tm -- specific for partiality
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In the partiality part, Nosig corresponds to a nowhere defined stream, i.e., a
signal on an infinitely slow clock. The function of Merge is to combine two
partial streams into one which is defined wherever at least one of the given
partial streams is defined.

The semantic domains and environments are defined as before, except that
functions are now biKleisli functions, i.e., they take contextually situated values
to values with an effect.

data Val d t = I Integer | B Bool | F (d (Val d t) -> t (Val d t))

type Env d t = [(Var, Val d t)]

Evaluation sends terms to biKleisli arrows; closed terms are interpreted in
the empty environment placed into a context of interest.

class Dist d t => DistEv d t where
ev :: Tm -> d (Env d t) -> t (Val d t)

evClosedLV :: DistEv LV t => Tm -> Int -> t (Val LV t)
evClosedLV e i = ev e (emptyL i := empty)

The meaning of the core constructs are essentially dictated by the types.

_ev :: DistEv d t => Tm -> d (Env d t) -> t (Val d t)
_ev (V x) denv = return (unsafeLookup x (counit denv))
_ev (L x e) denv = return (F (\ d -> ev e (cmap repair (czip d denv))))

where repair (a, env) = update x a env
_ev (e :@ e’) denv = ev e denv >>= \ (F f) ->

dist (cobind (ev e’) denv) >>= \ d ->
f d

_ev (Rec e) denv = ev e denv >>= \ (F f) ->
dist (cobind (_ev (Rec e)) denv) >>= \ d ->
f d

_ev (N n) denv = return (I n)
_ev (e0 :+ e1) denv = ev e0 denv >>= \ (I n0) ->

ev e1 denv >>= \ (I n1) ->
return (I (n0 + n1))

...
_ev TT denv = return (B True )
_ev FF denv = return (B False)
_ev (If e e0 e1) denv = ev e denv >>= \ (B b) -> if b then ev e0 denv else ev e1 denv

In monadic interpretation, the Rec operator is problematic, because recursive
calls get evaluated too eagerly. The solution is to equip monads with a specific
monadic fixpoint combinator mfix by making them instances of a type construc-
tor class MonadFix (from Control.Monad.Fix). The same problem occurs here
and is remedied by introducing a type constructor class DistCheat with a mem-
ber function cobindCheat. The distributive law of LV over Maybe is an instance.

class Dist d t => DistCheat d t where
cobindCheat :: (d a -> t b) -> (d a -> d (t b))

instance DistCheat LV Maybe where
cobindCheat k d@(az := _) = cobindL k az := return (unJust (k d))

where cobindL k Nil = Nil
cobindL k (az :> a) = cobindL k az :> k (az := a)

Using the operation of the DistCheat class, the meaning of Rec can be redefined
to yield a working solution.
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class DistCheat d t => DistEv d t where ...

_ev (Rec e) denv = ev e denv >>= \ (F f) ->
dist (cobindCheat (_ev (Rec e)) denv) >>= \ d->
f d

The meanings of the constructs specific to the extension are also dictated by
the types and here we can and must of course use the specific operations of the
particular comonad and monad.

instance DistEv LV Maybe where
ev (e0 ‘Fby‘ e1) denv = ev e0 denv ‘fbyLV‘ cobind (ev e1) denv
ev Nosig denv = raise
ev (e0 ‘Merge‘ e1) denv = ev e0 denv ‘handle‘ ev e1 denv

Partiality makes it possible to define a version of the sieve of Eratosthenes
even in the causal setting (recall that our previous version without partiality
used anticipation).

-- sieve x = if (tt fby ff) then x else sieve (if (x mod ini x /= 0) then x else nosig)
sieve = Rec (L "sieve" (L "x" (

If (TT ‘Fby‘ FF)
(V "x")
(V "sieve" :@ (If ((V "x" ‘Mod‘ (ini :@ V "x")) :/= N 0) (V "x") Nosig)))))

-- eratosthenes = sieve (pos + 2)
eratosthenes = sieve :@ (pos :+ N 2)

Indeed, testing the above program, we get exactly what we would wish.

> runLVM (ev eratosthenes) (cmap Just emptyS)
Just 2 :< (Just 3 :< (Nothing :< (Just 5 :< (Nothing :< (Just 7 :< (Nothing :< (Nothing :< (
Nothing :< (Just 11 :< (Nothing :< (Just 13 :< (Nothing :< (Nothing :< (Nothing :< ...

4 Related Work

Semantic studies of Lucid, Lustre and Lucid Synchrone-like languages are not
many and concentrate largely on the so-called clock calculus for static well-
clockedness checking [9,10,13]. Relevantly for us, however, Colaço et al. [12] have
very recently proposed a higher-order synchronous dataflow language extending
Lucid Synchrone, with two type constructors of function spaces.

Hughes’s arrows [17] have been picked up very well by the functional pro-
gramming community (for overviews, see [26,18]). There exists by now not only
a de facto standardized arrow library in Haskell, but even specialized syntax
[25]. The main application is functional reactive programming with its special-
izations to animation, robotics etc. [23,16]. Functional reactive programming is
continuous-time event-based dataflow programming.

Uses of comonads to structure notions of computation have been very few.
Brookes and Geva [8] were the first to suggest this application. Kieburtz [19]
made an attempt to draw the attention of functional programmers to comonads.
Lewis et al. [21] must have contemplated employing the product comonad to
handle implicit parameters, but did not carry out the project. Comonads have
also been used in the semantics of intuitionistic linear logic and modal logics
[5,7], with their applications in staged computation and elsewhere, see e.g., [14],
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and to analyse structured recursion schemes, see e.g., [34,24]. In the semantics
of intuitionistic linear and modal logics, comonads are symmetric monoidal.

Our comonadic approach to stream-based programming is, to the best of our
knowledge, entirely new. This is surprising, given how elementary it is. Workers
in dataflow languages have produced a number of papers exploiting the final
coalgebraic structure of streams [11,20,4], but apparently nothing on stream
functions and comonads. The same is true about works in universal coalge-
bra [30,31].

5 Conclusions and Future Work

We have shown that notions of dataflow computation can be structured by
suitable comonads, thus reinforcing the old idea that one should be able to
use comonads to structure notions of context-dependent computation. We have
demonstrated that the approach is fruitful with generic comonadic and distribut-
ivity-based interpreters that effectively suggest designs of dataflow languages.
This is thanks to the rich structure present in comonads and distributive laws
which essentially forces many design decisions (compare this to the much weaker
structure in arrow types). Remarkably, the language designs that these inter-
preters suggest either coincide with the designs known from the dataflow lan-
guages literature or improve on them (when it comes to higher-orderness or to
the choice of the primitive constructs in the case of clocked dataflow). For us,
this is a solid proof of the true essence and structure of dataflow computation
lying in comonads.

For future work, we envisage the following directions, in each of which we
have already taken the first steps. First, we wish to obtain a solid understand-
ing of the mathematical properties of our comonadic and distributivity-based
semantics. Second, we plan to look at guarded recursion schemes associated to
the comonads for stream functions and at language designs based on correspond-
ing constructs. Third, we plan to test our interpreters on other comonads (e.g.,
decorated tree types) and see if they yield useful computation paradigms and
language designs. Fourth, we also intend to study the pragmatics of the combi-
nation of two comonads via a distributive law. We believe that this will among
other things explicate the underlying enabling structure of language designs such
Multidimensional Lucid [3] where flows are multidimensional arrays. Fifth, the
interpreters we have provided have been designed as reference specifications of
language semantics. As implementations, they are grossly inefficient because of
careless use of recursion, and we plan to investigate systematic efficient imple-
mentation of the languages they specify based on interpreter transformations.
Sixth, we intend to take a close look at continuous-time event-based dataflow
computation.

Acknowledgments. We are grateful to Neil Ghani for his suggestion to also look
into distributive laws. This work was partially supported by the Estonian Science
Foundation grant No. 5567.
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Abstract. We present a method for proving data refinement in the
presence of low-level pointer operations, such as memory allocation and
deallocation, and pointer arithmetic. Surprisingly, none of the existing
methods for data refinement, including those specifically designed for
pointers, are sound in the presence of low-level pointer operations. The
reason is that the low-level pointer operations allow an additional po-
tential for obtaining the information about the implementation details
of the module: using memory allocation and pointer comparison, a client
of a module can find out which cells are internally used by the module,
even without dereferencing any pointers. The unsoundness of the exist-
ing methods comes from the failure of handling this potential. In the
paper, we propose a novel method for proving data refinement, called
power simulation, and show that power simulation is sound even with
low-level pointer operations.

1 Introduction

Data refinement [7] is a process in which the concrete representation of some
abstract module is formally derived. Viewed from outside, the more concrete
representation behaves the same as (or better than) the given abstract module.
Thus, data refinement ensures that for every program, we can replace a given
abstract module by the concrete one, while preserving (or even improving) the
observable behavior of the program.

Our aim here is to develop a method of data refinement in the presence of
low-level pointer operations, such as memory allocation and deallocation, and
pointer arithmetic. Developing such methods is challenging, because low-level
pointer operations allow subtle ways for accessing the internals of a module;
without protecting the module internals from these accessing mechanisms (and
thus ensuring that the module internals are only accessed by the module opera-
tions), we cannot have a sound method of data refinement.

The best-known accessing mechanism is the dereference of cross-boundary
pointers. If a client program knows the location of some internal heap cell of a
module, which we call a cross-boundary pointer, it can directly read or write that
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module counter1 { module counter2 { module counter3 {
init() {∗1=allocCell2(); ∗∗1=0;} init() {∗1=0;} init() {∗1=alloc(); ∗∗1=0;}
inc() {∗∗1=(∗∗1)+1;} inc() {∗1=(∗1)+1;} inc() {∗∗1=(∗∗1)+1;}
read() {∗3=(∗∗1);} read() {∗3=(∗1);} read() {∗3=(∗∗1);}
final() {free(∗1); ∗1=0;} } final() {∗1=0;} } final() {free(∗1); ∗1=0;} }

Fig. 1. Counter Modules

internal cell by dereferencing that location. Thus, such a program can detect the
changes in the representation of a module, and invalidate the standard methods
of data refinements. This problem of cross-boundary pointers is well known, and
several methods for data refinement have been proposed specifically to solve this
problem [12, 17, 1, 3, 2].

However, none of the existing data-refinement methods, including the ones
designed for cross-boundary pointers, can handle another accessing mechanism,
which we call allocation-status testing. This mechanism uses the memory allo-
cator and pointer comparison (with specific integers) to find out which cells are
used internally by a module. A representative example check2 that implements
this mechanism is z=alloc(); if (z==2) then v=1 else v=2. Assume that the mem-
ory allocator alloc nondeterministically chooses one inactive cell, and allocates
the chosen cell. Under this assumption, check2 can detect whether cell 2 is used
internally by a module or not. If a module is currently using cell 2, the newly
allocated cell in check2 has to be different from 2, so that check2 always assigns 2
to v. On the other hand, if a module is not using cell 2, so cell 2 is free, then the
memory allocation in check2 may or may not choose cell 2, and so, the variable
v nondeterministically has value 1 or 2. Thus, by changing its nondeterministic
behavior, check2 “observes” the allocation status of cell 2.

Protecting the module internals from the allocation-status testing is crucial
for sound data refinement; using the allocation-status testing, a client can de-
tect space-optimizing data refinements. We explain the issue with the first two
counter modules, counter1 and counter2, in Fig. 1. Both modules implement a
counter “object” with operations for incrementing the counter (inc) or reading
the value of the counter (read). The main difference is that the second module
uses less space than the first module. Let allocCell2() be a memory allocator that
always selects cell 2: if cell 2 is inactive, allocCell2() allocates the cell; otherwise,
i.e., if 2 is already allocated, then allocCell2() diverges. The first module is ini-
tialized by allocating cell 2 (allocCell2()) and storing the value of the counter in
the allocated cell 2. The address of this newly allocated cell, namely 2, is kept
in cell 1. On the other hand, the second module uses only cell 1, and stores the
counter value directly to cell 1. The space-saving optimization in counter2 can
be detected by the command check2 in the previous paragraph. When check2
is run with counter1, it always assigns 1 to v, but when check2 is run with the
other module counter2, it can nondeterministically assign 1 or 2 to v. Thus, the
optimization in counter2 is not correct, because it generates a new behavior of
the client program check2.
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Here, we present a data-refinement method that handles both cross-boundary
pointers and allocation-status testing. Our method is based on Mijajlović et al.’s
technique [12], which ensures correct data refinement in the presence of cross-
boundary pointers, but as stressed there, not with allocation status testing. We
provide a more general method which can cope well with both problems. The
key idea of our method is to restrict the space optimization of a concrete module
to nondeterministically allocated cells only, in order to hide the identities of the
optimized cells from a client program, by making all the allocation-status testing
fail to give any useful information. For instance, our method allows counter3
in Fig. 1 to be optimized by counter2, because the internal cell in counter3
is allocated nondeterministically. Note that even with check2, a client cannot
detect this optimization, e.g. when cell 2 is free initially, counter3.init(); detect2
nondeterministically assigns 1 or 2 to v, just as counter2.init(); detect2 does.
The precise formulation of our method uses a new notion of simulation – power
simulation, to express this restriction on space optimization.

Related Work and Motivation. It has long been known that pointers cause
great difficulties in the treatment of data abstraction [8, 9], and this has lead
on to a non-trivial body of research [1, 3, 14, 11, 19, 17]. The focus of the present
work (and [12]), on problems caused by low-level operations, sets it apart from
all this other research.

Now, the reader might think that these problems arise only because of lan-
guage bugs. Indeed, previous work has relied strongly on protection mechanisms
of high-level, garbage collected languages. In such high-level languages, the non-
deterministic memory allocation is harmless; it does not let one implement the
allocation-status testing (because those languages forbid explicit deallocation
and pointer arithmetic) and the nondeterministic allocation can even be treated
deterministically using location renaming [19, 17]. Moreover, those high-level lan-
guages often have sophisticated type systems [3, 2] that limit cross-boundary
pointers. However, we would counter that a comprehensive approach to abstrac-
tion cannot be based on linguistic restrictions. For, the fact of the existence of
significant suites of infrastructure code – operating systems, database servers,
network servers – argues against it. The architecture of this code is not en-
forced by linguistic mechanisms, and it is hard to see how it could be. Low-level
code naturally uses cross-boundary pointers and address arithmetic. But it is
a mistake to think that infrastructure code is unstructured; it often exhibits a
large degree of pre-formal modularity. In this paper, we will demonstrate that
there is no inherent reason why the idea of refinement of modules should not be
applicable to it.

Outline. We start the paper by defining the storage model and the program-
ming language in Sec. 2 and 3. Then, in Sec. 4, we describe the problem of finding
a sound data-refinement method, and show that the usual forward method of
data refinement fails to be a solution for the problem. In Sec. 5, we introduce the
notion of power simulation, and prove its soundness; so, power simulation is a



22 I. Mijajlović and H. Yang

solution for the problem. Finally, in Sec. 6, we conclude the paper. The missing
proofs of lemmas and propositions appear in the full version of the paper [13].

2 Storage Model and Finite Local Action

Our storage model, St, is the RAM model in separation logic [18, 10]:

Loc = {1, 2, . . .} Int = {. . . ,−2,−1, 0, 1, . . .} St = Loc ⇀fin Int

A state h ∈ St in the model is a finite mapping from locations to integer values;
the domain of h denotes the set of currently allocated memory cells, and the “ac-
tion” of h the contents of those allocated cells. Note that addresses are positive
natural numbers, and so, they can be manipulated by arithmetic operations. We
recall the disjointness predicate h#h′ and the (partial) heap combining operator
h·h′ from separation logic. The predicate h#h′ means that dom(h)∩dom(h′) �= ∅;
and, h·h′ is defined only for such disjoint heaps h and h′, and in that case, it
denotes the combined heap h∪h′. We overload the disjointness predicate #, and
for states h and location sets L, we write h#L to mean that all locations in L
are free in h (i.e., dom(h) ∩ L = ∅).

We specify a property of storage, using subsets of St directly, instead of syn-
tactic formulas. We call such subsets of St predicates, and use semantic versions
of separating conjunction ∗ and preciseness from separation logic:

p, q ∈ Pred def= ℘(St) p ∗ q
def= {hp·hq | hp ∈ p ∧ hq ∈ q} true def= St

p is precise def⇔ for all h, there is at most one splitting hp·h0 =h of h s.t. hp∈p.

An action r is a relation from St to St ∪ {av, flt}. Intuitively, it denotes
a nondeterministic client program that uses a module. Action r can output
two types of errors, access violation av and memory fault flt. The first error av
means that a client attempts to break the boundary between the client and the
module, by accessing the internals of the module directly without using module
operations. The second one, flt, means that a client tries to dereference a null
or a dangling pointer. Note that if ¬h[r]flt, state h contains all the cells that r
dereferences, except the newly allocated cells. As in separation logic, we write
safe(r, h) to indicate this (i.e., ¬h[r]flt).

A finite local action is an action that satisfies: safety monotonicity, frame
property, finite access property, and contents independence. Intuitively, these four
properties mean that each execution of the action accesses only finitely many
heap cells. Some of the cells are accessed directly by pointer dereferencing, so
that the contents of the cells affects the execution, while the other remaining
cells are accessed only indirectly by the allocation-status testing, so that the
execution only depends on the allocation status of the cells, not their contents.
More precisely, we define the four properties as follows:1

– Safety Monotonicity: if h0#h1 and safe(r, h0), then safe(r, h0·h1).
– Frame Property: if safe(r, h0) and h0·h1[r]h′, then ∃h′

0. h′=h′
0·h1∧h0[r]h′

0.

1 All the states free in the properties are universally quantified.
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– Finite Access Property: if safe(r, h0) and h0[r]h′
0, then

∃L⊆finLoc. ∀h1. (h1#h0 ∧ h1#h′
0 ∧ (dom(h1) ∩ L = ∅)) ⇒ h0·h1[r]h′

0·h1.

– Contents Independence: if safe(r, h0) and h0·h1[r]h′
0·h1, then

h0·h2[r]h′
0·h2 for all states h2 with dom(h1)=dom(h2).

The first two properties are well-known locality properties from separation logic,
and mean that if h0 contains all the directly accessed cells by a “command” r,
every computation from a bigger state h0·h1 is safe, and it can be tracked by
some computation from the smaller state h0. The third condition expresses the
converse; every computation from the smaller state h0 can be extended to a
computation from the bigger state h0·h1, as long as the extended part h1 does
not include directly accessed locations (h1#h0 ∧ h1#h′

0) or indirectly accessed
locations (i.e., dom(h1) ∩ L = ∅). Note that the finite set L contains all the
indirectly accessed locations by the computation h0[r]h′

0. The last one, contents
independence, expresses that if safe(r, h0), the execution of r from a bigger state
h0·h1 does not look at the contents of cells in h1; it can only use the information
that the locations in h1 are allocated initially. At first glance, it may seem
that contents independence follows from the frame property, but the following
example suggests otherwise. Let [] be the empty state, and let r be an action
defined by h[r]v ⇔ h = v ∧ (h = [] ∨ (1∈dom(h)∧ h(1)=2)). This “command”
r satisfies both the safety monotonicity and the frame property, but not the
contents independence; even though safe(r, []) and 1 �∈ dom([]), “command” r
behaves differently depending on the contents of cell 1. The finite access property
and contents independence are new in this paper, and they play an important
role in the soundness of our data-refinement method (Sect. 5.1).

Definition 1 (Finite Local Action). A finite local action, in short FLA, is an
action that satisfies safety monotonicity, frame property, finite access property,
and contents independence. A finite local action is av-free iff it does not relate
any state to av.

The set of finite local actions has a structure rich enough to interpret pro-
grams with all the low-level pointer operations that have been considered in
separation logic.2 Let F be the poset of FLAs ordered by the “graph-subset”
relation �3, and let Fnoav be the sub-poset of F consisting of av-free FLAs. Par-
ticularly interesting are the low-level pointer operations, such as the memory
update, allocation and deallocation of a cell, and a test “∗l ∈ I” for location l
and integer set I: if l is allocated and it contains a value in I, the test skips; if l is
allocated but its value is not in I, the test blocks; otherwise (i.e., if l is not allo-
cated), the test generates the memory fault flt. For instance, test(1, {3}) expresses
the conditional statement if (∗1 �=3){diverge}. Note that test(1, {3}) generates flt
precisely when the boolean condition ∗1 �=3 dereferences an inactive cell.
2 Thus, the set of finite local actions, as a semantic domain, expresses the computa-

tional behavior of pointer programs more accurately than the set of local actions,
just as the set of continuous functions is a more “accurate” semantic domain than
that of monotone functions in the domain theory.

3 r � r′ iff ∀h ∈ St.∀v ∈ St ∪ {flt, av}. h[r]v ⇒ h[r′]v.
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Let l be a location, i an integer, n a positive natural number, and I a set of integers.

h[update(l, i)]v def⇔ if l �∈ dom(h) then v=flt else v=h[l 	→ i]

h[cons(l, n)]v
def⇔ if l �∈ dom(h) then v=flt else (∃l′. v=(h[l 	→ l′])·[l′→0, .., l′+n−1→0])

h[dispose(l)]v def⇔ if l �∈ dom(h) then v=flt else v·[l→h(l)]=h

h[test(l, I)]v
def⇔ if l �∈ dom(h) then v=flt else (v=h ∧ h(l)∈I)

Fig. 2. Semantic Low-level Pointer Operations

Lemma 1. The poset Fnoav of av-free FLAs contains the operations in Fig. 2.

Lemma 2. Both F and Fnoav are complete lattices that have the set union as
their join operator: for every family {ri}i∈I in each poset,

⊔
i∈I ri is

⋃
i∈I ri.

3 Programming Language

The programming language is Dijkstra’s language of guarded commands [5] ex-
tended with low-level pointer operations and module operations. The syntax of
the language is given by the grammar:

C ::= f | a | C; C | C[]C | P | fix P. C

where f, a, P are, respectively, chosen from three disjoint sets mop, aop, pid of
identifiers. The first construct f is a module operation declared in the “interface
specification” mop. Before a command in our language gets executed, it is first
“linked” to a specific module that implements the interface mop. This linked
module provides the meaning of the command f . The second construct a is an
atomic operation, which a client can execute without using the module opera-
tions. Usually, a denotes a low-level pointer operation. Note that the language
does not provide a syntax for building specific pointer operations. Instead, we
assume that the interpretation [[−]]a of these atomic client operations as av-free
FLAs is given along with aop, and that under this interpretation, aop includes at
least all the pointer operations in Lemma 1, so that aop includes all the atomic
pointer operations considered in separation logic. The remaining four constructs
of the language are the usual compound commands from Dijkstra’s language:
sequential composition C; C, nondeterministic choice C[]C, the call of a para-
meterless procedure P , and the recursive definition fix P. C of a parameterless
procedure. As in Dijkstra’s language, the construct fix P. C not only defines a
parameterless recursive procedure P , but also calls the defined procedure. We
express that a command C does not have free procedure names, by calling C a
complete command.

We interpret commands using an instrumented denotational semantics; be-
sides computing the usual state transformation, the semantics also checks
whether each atomic client operation accesses the internals of a module, and
for such illegal accesses, the semantics generates an access violation av.

To implement the instrumentation, we parameterize the semantics by what
we call a semantic module. Let init and final be identifiers that are not in mop. A
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µ ∈ E def
= pid → F [[C]](p,η) : E → F [[C]]c(p,η) : F (for complete C)

[[a]](p,η)µ
def
= prot([[a]]a, p) [[C[]C′]](p,η)µ

def
= [[C]](p,η)µ ∪ [[C]](p,η)µ

[[f ]](p,η)µ
def
= η(f) [[P ]](p,η)µ

def
= µ(P )

[[C; C′]](p,η)µ
def
= seq([[C]](p,η)µ, [[C′]](p,η)µ) [[fix P. C]](p,η)µ

def
= fix λr. [[C]](p,η)(µ[P →r])

[[C]]c(p,η)
def
= seq(seq(η(init), [[C]](p,η)⊥), η(final)) (for complete C)

where seq:F×F→F and prot:F×Pred→F are defined as follows:

h[prot(r, p)]v
def⇔ h[r]v ∨ (v=av ∧ ¬h[r]flt ∧ ∃hp, h0. h=hp·h0 ∧ hp ∈ p ∧ h0[r]flt)

h[seq(r, r′)]v
def⇔ (∃h′. h[r]h′ ∧ h′[r′]v) ∨ (h[r]flt ∧ v=flt) ∨ (h[r]av ∧ v=av)

Fig. 3. Semantics of Language

semantic module is a pair of a predicate p and a function η from mop∪{init, final}
to Fnoav, such that (1) ∀h, h′. (safe(η(init), h) ∧ h[η(init)]h′ ⇒ h′∈p∗true); (2) for
all f in mop, ∀h, h′. (safe(η(f), h) ∧ h∈p∗true ∧ h[η(f)]h′ ⇒ h′∈p∗true); (3) p is
precise. Intuitively, the predicate p in the semantic module denotes the resource
invariant for the module internals, and function η specifies the meaning of the
module operations, initialization init and finalization final. The first condition of
the semantic module requires initialization to establish the resource invariant,
and the second condition, that the established resource invariant be preserved by
module operations. The last condition is more subtle. It ensures that using the
invariant p, we can determine which part of each state belongs to the module.
Recall that a predicate q is precise iff every state h in q ∗ true has a unique
splitting hq·h0 = h such that hq ∈ q. Thus, if p is precise, then for every state h
containing both the internals and externals of the module (i.e., h ∈ p ∗ true), we
can unambiguously split h into module-owned part hp and client-owned part h0.
This unambiguous splitting is used in the semantics to detect the access violation
of the atomic client operations, and it also plays a crucial role in the soundness of
our refinement method (Sect. 5.1). We remark that requiring the preciseness of
the invariant p is not as restrictive as one might think, because most of the used
resource invariants are precise; among the used resource invariants in separation
logic, only one invariant is not precise, but even that invariant can safely be
tightened to a precise one.4

Let E be the poset of all functions from pid to F ordered pointwise. Given
semantic module (p, η), we interpret a command as a continuous function [[−]](p,η)
from E to F . For complete commands C, we consider an additional interpretation
[[−]]c(p,η) that uses the least environment⊥ = λP.∅, and runs the initialization and
the finalization of the module (p, η) before and after ([[C]](p,η)⊥), respectively.
The details of these two interpretations are shown in Fig. 3.

The most interesting part of the semantics lies in the interpretation of the
atomic client operations. For each atomic operation a, its interpretation first

4 The only known unprecise invariant is listseg(x, y) in [18], which means the existence
of a (possibly cyclic) linked list segment from x to y. However, even that invariant
can be made precise, if it is restricted to forbid a cycle in the list segment [15].
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looks up the original meaning [[a]]a ∈ Fnoav, which is given when the syntax
of the language is defined. Then, the interpretation transforms the meaning
into prot([[a]]a, p), “the p-protected execution of [[a]]a.” Intuitively, prot([[a]]a, p)
behaves the same as [[a]]a, except that whenever [[a]]a accesses the p-part of the
input state, prot([[a]]a, p) generates av, thus indicating that there is an “access
violation.” Since p is the resource invariant of the module, prot([[a]]a, p) notifies
all illegal accesses to the module internals, by generating av.

Lemma 3. The interpretation in Fig. 3 is well-defined.

4 Data Refinement

The goal of this paper is to find a method for proving that a “concrete” module
(q, ε) data-refines an “abstract” module (p, η). In this section, we first formalize
this goal by defining the notion of data refinement. Then, we demonstrate the
difficulty of achieving the goal, by showing that the standard forward method is
not sound in the presence of allocation-status testing.

We use the notion of data refinement that Mijajlović et al. devised in order to
handle cross-boundary pointers. Usually, data refinement is a relation between
modules defined by substitutability: a module (q, ε) data-refines another module
(p, η) iff for all complete commands C using (p, η), substituting the concrete
module (q, ε) for the abstract module (p, η) improves the behavior of C, i.e., C
becomes more deterministic with the concrete module. Mijajlović et al. weak-
ened this usual notion of data refinement, by dropping the requirement about
improvement for error-generating input states: if C with the abstract module
(p, η) generates an access violation av or a memory fault flt from an input state
h, then for this input h, the data refinement does not constrain the execution
of C with the concrete module (q, ε), and allows it to generate any outputs.
In this paper, we use the following formalization of this weaker notion of data
refinement:

Definition 2 (Data Refinement). A module (q, ε) data-refines another mod-
ule (p, η) iff for all complete commands C and all states h, if [[C]]c(p,η) does not
generate an error from h (i.e., ¬h[[[C]]c(p,η)]av ∧ ¬h[[[C]]c(p,η)]flt), then

(¬h[[[C]]c(q,ε)]av ∧ ¬h[[[C]]c(q,ε)]flt
) ∧ (∀h′. h[[[C]]c(q,ε)]h

′ ⇒ h[[[C]]c(p,η)]h
′).

The main benefit of considering this notion of data refinement is that a proof
method for data refinement does not have to do anything special in order to
handle the cross-boundary pointers. Recall that flt means that a command tries
to dereference dangling pointers or nil, and av means that a command attempts
to dereference the internal cells of a module without using module operations.
Thus, if a command C does not generate an error from an input state h, then
all the cells that C directly dereferences during execution must be allocated and
belong to the “client” portion of the state; in particular, C does not dereference
any cross-boundary pointers directly. Since the data refinement now asks for
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the improvement of only the error-free computations of C, a proof method for
data refinement can ignore the “bad” computations where C dereferences cross-
boundary pointers.

Unfortunately, even with this weaker notion of data refinement, standard
proof methods for data refinement are not sound; they fail to deal with the
allocation-status testing. We explain this soundness problem making use of the
notion of the forward simulation in [12]. As pointed out in their work, while
successfully dealing with the cross-boundary pointer dereferencing problem, the
forward method is not sound for allocation-status testing.

The key concept of the forward simulation in [12] is an operator fsim that
maps a pair (R0, R1) of state relations to a relation fsim(R0, R1) between FLAs.
Intuitively, r′[fsim(R0, R1)]r means that given R0-related input states h′ and h,
if r does not generate an error from h, then (1) r′ does not generates an error
from h′ and (2) every output of r′ from h′ is R1-related to some outcome of r.
More precisely, r′[fsim(R0, R1)]r iff for all states h′ and h, if (h′[R0]h∧¬h[r]flt∧
¬h[r]av), then(¬h′[r′]flt ∧ ¬h′[r′]av

) ∧ (∀h′
1. h′[r′]h′

1 ⇒ ∃h1. h[r]h1 ∧ h′
1[R1]h1

)
.

The condition about the absence of errors comes from the fact that the data
refinement considers only error-free computations. Except this condition, the
way of relating two actions (or commands) in fsim(R0, R1) is fairly standard in
the work on data refinement [6, 4].

Let ∆ be the diagonal relation on states5, and for state relations R0 and R1,
let R0 ∗ R1 be their relational separating conjunction [17]: h′[R0 ∗ R1]h iff h′

and h are, respectively, split into h′
0·h′

1 = h′ and h0·h1 = h such that the first
parts h′

0, h0 are related by R0 and the second parts h′
1, h1 by R1.6 The formal

definition of forward simulation is given below:

Definition 3 (Forward Simulation). Let (q, ε), (p, η) be semantic modules,
and R a relation s.t. R ⊆ q × p. Module (q, ε) forward-simulates (p, η) by R iff

1. ε(init)[fsim(∆, R ∗∆)]η(init) and ε(final)[fsim(R ∗∆, ∆)]η(final);
2. ∀f ∈ mop. ε(f)[fsim(R ∗∆, R ∗∆)]η(f).

The relation R ∗∆ here expresses that the corresponding states of r′ and r
can, respectively, be partitioned into the module and client parts; the module
parts of r′ and r are related by R, but the client parts of r′ and r are the same.

The forward simulation is not sound: there are modules (q, ε), (p, η) such that
the concrete module (q, ε) forward-simulates the abstract module(p, η) by some
R ⊆ q × p, but it does not data-refine it. The main reason of this unsound-
ness is that the low-level pointer operations in our language, especially those
implementing allocation-status testing, break the underlying assumption of the
forward simulation. The forward simulation assumes a language where if a com-
mand C does not call module operations, then for all relations R ⊆ q × p, the

5 h′[∆]h
def⇔ h′ = h.

6 h′[R0 ∗R1]h
def⇔ ∃h′

0, h
′
1, h0, h1. h′

0·h′
1 = h′ ∧ h0·h1 = h ∧ h′

0[R0]h0 ∧ h′
1[R1]h1.
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command “forward-simulates” itself by R: [[C]](q,ε)µ
′[fsim(R∗∆, R∗∆)][[C]](p,η)µ

for all µ′, µ that define fsim(R∗∆, R∗∆)-related “procedures”. Our language,
however, does not satisfy this assumption; if an atomic client command a imple-
ments the allocation-status testing, it is not related to itself by fsim(R∗∆, R∗∆)
in general. For instance, having a concrete module (q, ε) and the abstract one
(p, η) and a relation R between them, consider an atomic command cons(2, 1)
that allocates one new cell initialized to 0 and assigns its address to cell 2; in
case that cell 2 is not allocated initially, cons(2, 1) generates flt. 7 Let R be de-
fined by h′

0[R]h0 ⇔ h′
0 = [] ∧ h0 = [1→2]. Then, h′[R∗∆]h iff there is some state

h1 such that 1 �∈ dom(h1) ∧ h′ = []·h1 ∧ h = [1→2]·h1. Thus, states h′ = [2→0]
and h = [1→2, 2→0] are R∗∆-related. We will now consider the execution of
cons(2, 1) from these R∗∆-related states h′ and h. When cons(2, 1) is run from
h′ (with the concrete module (q, ε)), it can allocate cell 1 and give the output
state h′

1 = [1→0, 2→1] (i.e., h1[[[cons(2, 1)]](q,ε)µ
′]h′

1), because cell 1 is free initially
(i.e., 1 �∈ dom(h′)). However, when the same command is run from h (with the
abstract module (p, η)), it cannot allocate cell 1, because 1 is already active in h
(i.e., 1 ∈ dom(h)). In this case, all the output states of cons(2, 1) have the form
[1→0, 2→n, n→0] for some n ∈ Nats−{1, 2}. Note that the state h′

1 = [1→0, 2→1]
is not R∗∆-related to any such outputs [1→0, 2→n, n→0]. Thus, we cannot have
that

(
[[cons(2, 1)]](q,ε)µ

′)[fsim(R∗∆, R∗∆)]
(
[[cons(2, 1)]](p,η)µ

)
. In the full version

of the paper [13], we have used these R and cons to construct a counter example
for the soundness of the forward simulation.

5 Power Simulation

We now present the main result of this paper: a new method for data refinement,
called power simulation, and its soundness proof.

The key idea of power simulation is to use the state-set lifting lft(r) of a FLA:

lft(r) : ℘(St) ↔ (℘(St) ∪ {flt, av})
H [lft(r)]V def⇔ (V⊆St ∧ ∀h′∈V.∃h∈H. h[r]h′) ∨ ((V =av ∨ V =flt) ∧ ∃h∈H. h[r]V ).

Given an input state set H , the “lifted command” lft(r) runs r for all the states
in H , chooses some states among the results, and returns the set V of the chosen
states. Note that V might not contain some possible outputs from H ; so, lft(r)
is different from the usual direct image map of r, and in general, it is a relation
rather than a function. For each module (p, η), we write lft(η) for the lifting of
all module operations (i.e., ∀f ∈ mop. lft(η)(f) = lft(η(f))), and call (p, lft(η))
the lifting of (p, η).

The power simulation is the usual forward simulation of a lifted “abstract”
module by a normal “concrete” module. Suppose that we want to show that
a concrete module (q, ε) data-refines an abstract module (p, η). Define a power
relation to be a relation between states and state sets. Intuitively, the power sim-
ulation says that to prove this data refinement, we only need to find a “good”

7 h[[[cons(2, 1)]]a]v
def⇔ if 2 �∈ dom(h) then v=fltelse ∃n. v=h[2→n]·[n→0] .
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power relation R ⊆ St × ℘(St) such that every concrete-module operation ε(k)
“forward-simulates” the corresponding lifted abstract-module operation lft(η(k))
byR. The official definition of power simulation formalizes this intuition by spec-
ifying (1) which power relation should be considered good for given modules (q, ε)
and (p, η), and (2) what it means that a normal command “forward-simulates”
a lifted command. For the first, we use the expansion operator and admissibility
condition for power relations. For the second, we use the operator psim that
maps a power-relation pair to a relation on FLAs. We will now define these sub-
components of power simulation, and use them to give the formal definition of
power simulation.

We explain operator psim first. For power relations R0 and R1, psim(R0,R1)
relates a “concrete” FLA r′ with an “abstract” r iff for every R0-related input
state h′ and state set H , if lft(r) does not generate an error from H , then all
the outputs of r′ from h′ are R1-related to some output state sets of lft(r) from
H . More precisely, r′[psim(R0,R1)]r iff for all h′ and H , if h′[R0]H and neither
H [lft(r)]flt nor H [lft(r)]av, then(¬h′[r′]flt ∧ ¬h′[r′]av

) ∧ (∀h′
1. h′[r′]h′

1 ⇒ ∃H1. H [lft(r)]H1 ∧ h′
1[R1]H1

)
.

Note that this definition is the lifted version of fsim in Sec. 4; except that it
considers the lifted computation lft(r), instead of the usual computation r, it
coincides with the definition of fsim. In the definition of power simulation, we
will use this psim to express the “forward-simulation” of a lifted command by a
normal command.

Next, we define the expansion operator −⊗∆ for power relations. The ex-
pansion R⊗∆ of a power relation R is a power relation defined as follows:

h[R⊗∆]H def⇔ ∃hr, h0, Hr.
(
h = hr·h0 ∧ hr[R]Hr ∧ H = Hr ∗ {h0}

)
.

Intuitively, the definition means that h and H are obtained by extending R-
related state hr and state sets Hr by the same state h0. Usually,R is a “coupling”
power relation that connects the internals of two modules, and R⊗∆ expands
this coupling relation to the relation for the entire memory, by asking that the
added client parts must be identical.

The final subcomponent of power simulation is the admissibility condition
for power relations. A power relationR is admissible iff for every R-related state
h and state set H (i.e., h[R]H), we have that8

H �= ∅ ∧ (∀L⊆finLoc−dom(h). ∃H1⊆H.
(
H1 �=∅ ∧ h[R]H1 ∧ ∀h1∈H1. h1#L

))
.

The first conjunct in the admissibility condition means that all related state sets
must contain at least one state. The second conjunct is about the “free cells” in
these related state sets. It means that if h[R]H , state set H collectively has at
least as many free cells as h: for every finite collection L of free cells in h, set
H contains states that do not have any of the cells in L, and, moreover, the set

8 Recall that h1#L iff dom(h1) ∩ L = ∅.
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H1 of such states itself collectively has as many free cells as h. To understand
the second conjunct more clearly, consider power relations R0,R1,R2 defined
as follows:

h[R0]H
def⇔ h=[3→1] ∧H={[3→5]} h[R1]H

def⇔ h=[3→1] ∧H={[3→5, 4→5]}
h[R2]H

def⇔ h=[3→1] ∧ ∃L⊆finLoc. H={[3→5, n→5] | n �∈ L ∪ {3}}

The first power relation R0 is admissible, because set {[3→5]} has only one state
[3→5] that has the exactly same free cells, namely all cells other than 3, as state
[3→1]. On the other hand, R1 is not admissible, because the (unique) state in
{[3→5, 4→5]} has an active cell 4 that is not free in [3→1]. The last relation R2 is
tricky; relation R2 is admissible, even though for all R2-related h and H , every
state in H has more active cells than h. The intuitive reason for this is that for
every free cell in [3→1], set H contains a state that does not contain the cell, and
so, it collectively has as many free cells as [3→1]; in a sense, by having sufficiently
many states, H hides the identity of the additional cell n. The formal proof
that R2 satisfies the second conjunct of the admissibility condition proceeds as
follows. Consider H, h′, L1 such that h′[R2]H and L1 ⊆fin (Loc−dom(h)). By the
definition of R2, there exists a finite location set L such that H = {[3→5, n→5] |
n �∈ L ∪ {3}}. Let H1 = {[3→5, n→5] | n �∈ L ∪ L1 ∪ {3}}. The defined set H1 is
a nonempty subset of H . We now prove that H1 is in fact the required subset
of H in the admissibility condition. Since h′[R2]H1, h′[R2]H1 follows from the
definition of R2 and H1. We also have that ∀h1 ∈ H1. dom(h1)∩L1 = ∅, because
dom(h1) ∩ L1 ⊆ {3} but L1 does not contain 3 (h′=[3→1]#L1).

Using the expansion operator and admissibility condition, we can define the
criteria for deciding which power relation should be considered “good” for given
modules (q, ε) and (p, η). The criteria is: a power relation should be the expansion
R⊗∆ of an admissible R for the module internals (i.e., R ⊆ q × ℘(p)). The
following lemma, which we will prove later in Sec. 5.1, provides the justification
of this criteria:

Lemma 4: For all q, p, and all power relationsR ⊆ q×℘(p), ifR is admis-
sible and q is precise, then ∀r∈Fnoav. prot(r, q)[psim(R⊗∆,R⊗∆)]prot(r, p).

To see the significance of this lemma, recall that the forward simulation in
Sec. 4 failed to be sound mainly because some atomic client operations are
not related to themselves by fsim. The lemma indicates that as long as we
are using admissible power relation R, we do not have such a problem for
psim: if R is admissible, then for all atomic client operations a and all envi-
ronment pairs (µ′, µ) with psim(R⊗∆,R⊗∆)-related procedures, we have that
[[a]](q,ε)µ

′[psim(R⊗∆,R⊗∆)][[a]](p,η)µ.
We now define the power simulation of an abstract module (p, η) by a concrete

module (q, ε). Let R be an admissible power relation such that R ⊆ q × ℘(p),
and let ID be the “identity” power relation defined by: h[ID]H def⇔ {h} = H .

Definition 4 (Power Simulation). Module (q, ε) power-simulates (p, η) by
R iff
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h ∈ p
def⇔ ∃n, n′. n′ �= 1 ∧ n ≥ 0 ∧ h = [1→n′, n′→n]

h[η(init)]v def⇔ if (1�∈dom(h)) then v=flt else ∃n. n �∈dom(h) ∧ v=h[1→n]·[n→0]

h[η(inc)]v def⇔ if (1�∈dom(h) ∨ h(1)�∈dom(h)) then v=flt else v=h[h(1)→(h(h(1))+1)])

h[η(read)]v
def⇔ if (1�∈dom(h) ∨ h(1)�∈dom(h) ∨ 3�∈dom(h)) then v=flt else v=h[3→h(h(1))]

h[η(final)]v def⇔ if (1�∈dom(h) ∨ h(1)�∈dom(h)) then v=flt
else ∃h0. v=h0[1→0] ∧ h=h0·[h(1)→h(h(1))]

h ∈ q
def⇔ ∃n. n ≥ 0 ∧ h = [1→n]

h[ε(init)]v def⇔ if (1�∈dom(h)) then v=flt else v=h[1→0]

h[ε(inc)]v def⇔ if (1 �∈ dom(h)) then v=flt else v=h[1→(h(1)+1)]

h[ε(read)]v
def⇔ if (1�∈dom(h) ∨ 3 �∈dom(h)) then v=flt else v=h[3→h(1)]

h[ε(final)]v def⇔ if (1 �∈ dom(h)) then v=flt else v=h[1→0]

Fig. 4. Definition of Module (p, η) and (q, ε)

1. ε(init)[psim(ID,R⊗∆)]η(init) and ε(final)[psim(R⊗∆, ID)]η(final);
2. ∀f ∈ mop. ε(f)[psim(R⊗∆,R⊗∆)]η(f).

Example 1. We demonstrate power simulation using the semantic modules (q, ε)
and (p, η) that, respectively, correspond to counter2 and counter3 in Fig. 1. Re-
call that both counter2 and counter3 implement a counter “object” with two
operations, inc for incrementing the counter and read for reading the value of
the counter; the main difference is that counter3 uses two cells, namely cell 1
and a newly allocated one, to track the value of the counter, while counter2 uses
only cell 1 for the same purpose. The corresponding semantic modules, (q, ε) for
counter2 and (p, η) for counter3, are defined in Fig. 4. Note that the resource
invariant p indicates that counter3 uses two cells 1 and n internally, and the
invariant q that counter2 uses only one cell 1 internally. We will now show that
the space saving in counter2 is correct, by proving that (q, ε) power-simulates
(p, η).

The first step of power simulation is to find an admissible power relation that
couples the internals of (q, ε) and (p, η). For this, we use the following R:

h[R]H def⇔ ∃L, n. L⊆finLoc ∧ n≥0 ∧ h=[1→n] ∧ H={[1→n′, n′→n] | n′ �∈L∪{1}}.

Intuitively, h[R]H means that all the states in H and state h represent the same
counter having the value h(1), and moreover, H collectively has as many free
cells as h.

The next step is to show that all the corresponding module operations of
(q, ε) and (p, η) are related by psim. Here we only show that ε(init) and η(init)
are psim(ID,R⊗∆)-related. Consider h and H related by the “identity relation”
ID. Then, by the definition of ID, set H must be the singleton set containing the
heap h. Thus, it suffices to show that if lft(η(init)) does not generate an error
from {h}, all the outputs of ε(init) from h are R⊗∆-related to some output
state sets of lft(η(init)) from {h}. Suppose that lft(η(init)) does not generate an
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error from {h}. Then, η(init) cannot output flt from h, and so, cell 1 should
be in dom(h). From this, it follows that the concrete initialization ε(init) does
not generate an error from h. We now check the non-error outputs of ε(init).
When started from h, the concrete initialization ε(init) has only one non-error
output, namely state h[1→0]. We split this output state h[1→0] into [1→0] and
the remainder h0. By the definition of R, the first part [1→0] of the splitting is
R-related to Hr = {[1→n′, n′→0] | n′ �∈ dom(h)}. Thus, extending [1→0] and Hr

by the remainder h0 gives R⊗∆-related state [1→0]·h0 = h[1→0] and state set
Hr∗{h0}. The state set Hr∗{h0} is equal to {h[1→n′]·[n′→0] | n′ �∈ dom(h)}, and
so, it is a possible output of lft(η(init)) from {h} by the definition of lft(η(init)).
We have just shown that the output h[1→0] is R⊗∆-related to some output of
lft(η(init)), as required.

The nondeterministic allocation in the abstract initialization η(init) is crucial
for the correctness of data refinement. Suppose that we change the initialization
of the abstract module such that it allocates a specific cell 2:

h[η(init)]v def⇔ if (1 �∈ dom(h)) then (v=flt)else (2 �∈ dom(h) ∧ v=h[1→2]·[2→0])

Then, (q, ε) no longer data-refines (p, η);9 by testing the allocation status of cell
2 using memory allocation and pointer comparison, a client command can detect
the replacement of (p, η) by (q, ε), and exhibit a behavior that is only possible
with (q, ε), but not with (p, η). Power simulation correctly captures this failure
of data refinement. More specifically, for all power relations R ⊆ q × ℘(p) if
ε(init)[psim(ID,R⊗∆)]η(init), then R cannot be admissible. To see the reason,
suppose that ε(init)[psim(ID,R⊗∆)]η(init). When ε(init) and lft(η(init)) are run
from ID-related [1→0] and {[1→0]}, ε(init) outputs [1→0] and lft(η(init)) outputs
{[1→2, 2→0]} or ∅. Thus, by the definition of psim(ID,R⊗∆), [1→0] should be
R⊗∆-related to {[1→2, 2→0]} or ∅. Then, by the definition of R⊗∆, state [1→0]
isR-related to {[1→2, 2→0]} or ∅. In either case,R is not admissible; the first case
violates the second conjunct about the free cells in the admissibility condition,
and the second case violates the first conjunct about the nonemptiness. ��

5.1 Soundness of Power Simulation

The soundness of power simulation follows from the fact that every atomic client
operation is related to itself by psim (Lemma 4), all language constructs preserve
psim (Lemma 5,6) and psim(ID, ID) is precisely the improvement requirement in
the definition of data refinement (Lemma 7). Among these lemmas, we give the
proof of only the most important one, Lemma 4. Then, we show how all the
lemmas are used to give the soundness of power simulation. The missing proofs
appear in the full version of this paper [13].

Lemma 4. For all predicates q, p, and all power relations R ⊆ q × ℘(p), if q is
precise and R is admissible, then ∀r∈Fnoav. prot(r, q)[psim(R⊗∆,R⊗∆)]prot(r, p).
9 Even when we replace p by a more precise invariant {[1→2, 2→n] | n ≥ 0}, module

(q, ε) does not data-refine (p, η).
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Note that the lemma requires that the “resource invariant” q for the “concrete
module” be precise, and that r be a av-free finite local action. None of these
requirements can be omitted, because the requirements are used crucially in the
proof of the lemma.

Proof. Let rq be prot(r, q) and let rp be prot(r, p). Pick arbitrary [R⊗∆]-related h
and H such that lft(rp) does not generate an error from H . Since h[R⊗∆]H , state
h and state set H can, respectively, be split into hq·h0 = h and H = Hp ∗ {h0}
for some hq, h0, Hp such that hq[R]Hp. We note two facts about these splittings.
First, set Hp contains a state that is disjoint from h0. Since hq and Hp are related
by the admissible relation R and dom(hq) is disjoint from dom(h0), there is a
nonempty subset of Hp such that every h1 in the subset satisfies h1#dom(h0).
We pick one state from this subset, and call it hp. Second, the state hp in Hp

and the part hq of the splitting of h, respectively, belong to p and q. This second
fact follows since hq[R]Hp and R ⊆ q×℘(p). We sum up the obtained properties
about Hp, h0, hq, hp below:

H = Hp ∗ {h0} ∧ h = hq·h0 ∧ hq[R]Hp ∧ hp#h0 ∧ hp ∈ p ∧ hq ∈ q.

We now prove that rq does not generate an error from h. Since the lifted
command lft(rp) does not generate an error from H and state hp·h0 is in this
input state set H , we have that ¬hp·h0[rp]flt ∧ ¬hp·h0[rp]av. This absence of
errors of rp ensures one important property of r: r cannot generate flt from h0.
To see the reason, note that hp is in p, and that ¬hp·h0[r]flt since ¬hp·h0[rp]flt.
So, if h0[r]flt, then by the definition of prot, we have that hp·h0[rp]av, which
contradicts ¬hp·h0[rp]av. We will use this property of r to show ¬h[rq]flt and
¬h[rq]av. Since h = h0·hq and ¬h0[r]flt, by the safety monotonicity of r, we have
that ¬h[r]flt. Thus, ¬h[rq ]flt by the definition of prot. For ¬h[rq]av, we have to
show that

¬h[r]av ∧ (
h[r]flt ∨ (∀mq, m0 ∈ St. (mq·m0=h ∧mq ∈ q) ⇒ ¬m0[r]flt

))
.

Since r is av-free, it does not output av for any input states. For the second
conjunct, consider a splitting mq·m0 of h such that mq ∈ q. Then, since h =
hq·h0, hq ∈ q and q is precise, we should have that mq = hq and m0 = h0. Since
¬h0[r]flt, it follows that ¬m0[r]flt.

Finally, we prove that every output state of rq from h is R⊗∆-related to
some output state set of lft(rp) from H . In the proof, we will use ¬h0[r]flt, which
we have shown in the previous paragraph. Consider a state h′ such that h[rq ]h′.
Since h = h0·hq, by the definition of prot(r, q), we have that h0·hq[r]h′. Since
¬h0[r]flt, we can apply the frame property of r to this computation, and obtain
a substate h′

0 of h′ such that h′ = h′
0·hq. Let L0 be the finite set that includes

all the indirectly accessed locations by the “computation” h0·hq[r]h′
0·hq; L0 is

guaranteed to exist by the finite access property of r. Let L be the location set(
L0 ∪ dom(h0)∪ dom(h′

0)
)− dom(hq). Since hq[R]Hp and R is admissible, there

is a subset H1 of Hp such that

H1 ⊆ Hp ∧ H1[R]hq ∧ ∀h1 ∈ H1. h1#L.
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We will show that H1 ∗{h′
0} is the required output state set. Since hq and H1 are

R-related, their h′
0-extensions, hq·h′

0 and H1 ∗ {h′
0}, have to be R⊗∆-related.

Thus, it remains to show that H = Hp∗{h0}[lft(rp)]H1∗{h′
0}. Instead of proving

this relationship directly, we will prove that

H1 ∗ {h0}[lft(rp)]H1 ∗ {h′
0}.

Because, then, the definition of lft(rp) will ensure that we also have the required
computation. For every m in H1 ∗ {h′

0}, there is a state m1 ∈ H1 such that
m = m1·h′

0. By the choice of H1, we have m1 ∈ Hp ∧m1#L. Then, there exist
splitting n1·n2 = m1 of m1 and splitting o2·o3 = hq of hq with the property
that n1#hq and dom(n2) = dom(o2). Note that n1#hq implies n1#L0, because
L0 ⊆ L∪ dom(hq) and n1·n2#L. We obtain a new computation of rp as follows:

hq·h0[r]hq·h′
0 =⇒ n1·hq·h0[r]n1·hq·h′

0 (∵ the finite access property of r)
=⇒ n1·o2·o3·h0[r]n1·o2·o3·h′

0 (∵ hq = o2·o3)
=⇒ n1·n2·o3·h0[r]n1·n2·o3·h′

0 (∵ the contents independence of r)
=⇒ n1·n2·h0[r]n1·n2·h′

0 (∵ the frame property of r)
=⇒ m1·h0[r]m (∵ m1 = n1·n2 ∧m1·h′

0 = m)
=⇒ m1·h0[rp]m (∵ the definition of prot(r, p))

Note that the input m1·h0 of the obtained computation belongs to the state set
H1∗{h0}. We just have shown H1∗{h0}[lft(rp)]H1∗{h′

0}. ��
Lemma 5. For all power relations R0,R1,R2 and all FLAs r0, r′0, r1, r′1, if
r′0[psim(R0,R1)]r0∧ r′1[psim(R1,R2)]r1, then seq(r′0, r′1)[psim(R0,R2)]seq(r0, r1).

Lemma 6. For all power relations R0,R1, sets I and I-indexed families {r′i}i∈I ,
{ri}i∈I of FLAs, if ∀i∈I.r′i[psim(R0,R1)]ri, then

⋃
i∈I r′i[psim(R0,R1)]

⋃
i∈I ri.

Theorem 1 (Abstraction). Let (q, ε), (p, η) be semantic modules, and R be
an admissible power relation s.t. R ⊆ q × ℘(p). If (q, ε) power-simulates (p, η)
by R, then for all commands C and all environments µ, µ′, we have that

(∀P. µ′(P )[psim(R⊗∆,R⊗∆)]µ(P )) ⇒ [[C]](q,ε)µ
′[psim(R⊗∆,R⊗∆)][[C]](p,η)µ.

Proof. We use induction on the structure of C. When C is a module operation f
or a procedure name P , the theorem follows from the assumption: (q, ε) power-
simulates (p, η) byR, and for all P , µ′(P )[psim(R⊗∆,R⊗∆)]µ(P ). When C is an
atomic client operation a, the theorem holds because of Lemma 4. The remaining
three cases follow from the closedness of psim(R⊗∆,R⊗∆) in Lemma 5 and
6: psim(R⊗∆,R⊗∆) is closed under arbitrary union and seq. This closedness
property directly implies that the induction step goes through for the cases of
C1[]C2 and C1; C2. For fix P.C′, we note that the closedness under arbitrary
union implies that psim(R⊗∆,R⊗∆) is complete,10 and that this completeness
is what we need to prove the induction step for fix P.C′. ��
10 psim(R1,R2) relates the least FLA to itself, and is chain-complete.
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Lemma 7 (Identity Extension). A module (q, ε) data-refines another module
(p, η) iff for all complete commands C, we have that [[C]]c(q,ε)[psim(ID, ID)][[C]]c(p,η).

Theorem 2 (Soundness). If a module (q, ε) power-simulates another module
(p, η) by an admissible power relation R ⊆ q×℘(p), then (q, ε) data-refines (p, η).

Proof. Suppose that a module (q, ε) power-simulates another module (p, η) by
an admissible power relation R ⊆ q × ℘(p). We will show that for all complete
commands C, [[C]](q,ε)[psim(ID, ID)][[C]](p,η), because, then, module (q, ε) should
data-refine (p, η) (Lemma 7). Pick an arbitrary complete program C. Let µ be
an environment that maps all program identifiers to the empty relation. By
Lemma 6, µ(P )[psim(R⊗∆,R⊗∆)]µ(P ) for all P in pid. From this, we derive
the required relationship as follows:

(∀P ∈ pid. µ(P )[psim(R⊗∆,R⊗∆)]µ(P ))
=⇒ [[C]](q,ε)µ[psim(R⊗∆,R⊗∆)][[C]](p,η)µ (∵ Theorem 1)
=⇒ [[C]]c(q,ε)[psim(ID, ID)][[C]]c(p,η) (∵ Lemma 5 and Def. of [[−]]c)

��

6 Conclusion

In this paper, we have proposed a new data-refinement method, called power
simulation, for programs with low-level pointer operations, and provided a non-
trivial soundness proof of the method.

The very idea of relating a state to a state set in power simulation comes
from Reddy’s method for data refinement [16]. In order to have a single complete
data-refinement method for a language without pointers, he lifted forward simu-
lation such that all the components of the simulation become about state sets,
instead of states. However, the details of the two methods, such as the admis-
sibility condition for coupling relations and the lifting operator for commands,
are completely different.
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Abstract. Polymorphic recursion is a useful extension of Hindley-
Milner typing and has been incorporated in the functional program-
ming language Haskell. It allows the expression of efficient algorithms
that take advantage of non-uniform data structures and provides key
support for generic programming. However, polymorphic recursion is,
perhaps, not as broadly understood as it could be and this, in part,
motivates the denotational semantics presented here. The semantics re-
ported here also contributes an essential building block to any semantics
of Haskell: a model for first-order polymorphic recursion. Furthermore,
Haskell-style type classes may be described within this semantic frame-
work in a straightforward and intuitively appealing manner.

1 Introduction

This paper presents a denotational semantics for an extension to the Hindley-
Milner type system [18] called polymorphic recursion [21,16,8,1]. Polymorphic re-
cursion (sometimes called non-uniform recursion) allows functions in which the
type of a recursive call differs from that of the function itself. The approach taken
here conservatively extends the semantics for Hindley-Milner polymorphism due
to Ohori [22,23]. Ohori’s semantics—the simple model of ML polymorphism—
proceeds by construction from any frame model [20] of the simply-typed λ-
calculus. The principal technical result of this work is that any such Ohori model
may be extended to a model of first-order polymorphic recursion in a straight-
forward and natural manner. A compelling prospect for this approach is as a
model for ad hoc polymorphism [29,13,15]. We describe how the simple model of
polymorphic recursion provides a foundation for Haskell-style type classes and
how the approach relates to a previous denotational model [28].

Polymorphic recursion is part of the functional language Haskell [25] and is
a building block for generic programming [11,10] as well. Its presence in Haskell
allows the straightforward expression of efficient data structures and algorithms;
consider this example (adapted from Okasaki [24], page 142):

data Seq a = Nil | SCons a (Seq (a, a))
size :: Seq a → Int
size s = if isNil s then 0 else 1 +2 ∗ size (stl s)

stl :: Seq a→Seq (a, a)
stl (SCons t) = t

� This research supported in part by subcontract GPACS0016, System Information
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The Seq data type represents sequences compactly so as to render their
counting more efficiently than in a standard list representation. The size func-
tion calculates the length of a sequence and runs in O(log n) time while its
list analogue, length, runs in O(n) time. Here, Seq only encodes sequences of
length 2n−1 for some n, although it is simple to extend its definition to cap-
ture sequences of arbitrary length by including an “even” constructor of type
ECons :: (Seq (a, a)) → Seq a; see, for example, Okasaki [24], page 144, for fur-
ther details. Note that the recursive call to size occurs at an instance of its
declared type: Seq (a, a) → Int. Haskell requires explicit type signatures for poly-
morphic recursive definitions as type inference is undecidable in the presence of
polymorphic recursion [8].

It has been recognized since its inception that the Hindley-Milner type system
is more restrictive than is desirable as the following example (due to Milner [18])
makes clear. Consider the following standard ML definitions:

fun f x = x ; fun g y = f 3; fun f x = x and g y = f 3;

When f is defined independently of g (left), it has type ∀a.a→a as one might
expect, but when defined mutually (right), it has, unexpectedly, the less general
type int→int . Polymorphic recursion was initially developed [21] to overcome
such “anomalies” in Hindley-Milner typing. Polymorphic recursive type systems
maintain the type signatures of recursive definitions in universally quantified
form to avoid such unintended typings. More will be said about this in Section 2.

Consider the polymorphic (but not polymorphic recursive) function length:

length :: [a] → Int
length = λ x . if null x then 0 else 1+(length (tail x ))

An Ohori-style semantics denotes length by the collection of its meanings at
ground instances: { 〈τ, lenτ 〉 | τ = [Int]→Int, . . . } where each lenτ is defined:

lenτ = fix (λl . [[λx . if null x then 0 else 1+(length (tail x ))]]ρ[length �→l ])

Here, fix is the least fixed point operator defined conventionally on a domain
Dτ denoting τ . One is tempted to try a similar definition for the polymorphic
recursive function size:

sizeτ = fix (λs . [[λx . if isNil x then 0 else 1 +2 ∗ size (stl x ))]]ρ[size �→s ]) (†)
But, where does this fix “live”? Or, in other words, over which domain is it
defined? Intuitively, here’s the problem: if the “input size” (i.e., the “s” in
“fix (λs . . .”) lives in Dτ for τ = Seq(τ ′)→Int, then the “output size” (i.e., the
“size” in “size(stl x)”) lives in the domain for τ = Seq(τ ′, τ ′)→Int. The above
definition does not appear to make sense in any fixed Dτ as was the case with
length. We answer this question precisely in Section 3.2 below.

The Girard-Reynolds calculus (also known as System F [2] and the poly-
morphic λ-calculus [26]) allows lambda abstraction and application over types
as well as over values; as such, it is sometimes referred to as a second-order
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λ-calculus. Denotational models of second-order λ-calculi exist (e.g., the PER
model described in [2]). Such models provide one technique for specifying ML
polymorphism1. Harper and Mitchell take this approach [5,19] for the core of
Standard ML called core-ML. They translate a core-ML term (i.e., one without
type abstraction or application) into a second-order core-XML term (i.e., one
with type abstraction and application). A core-ML term is then modeled by the
denotation of its translation in an appropriate model of core-XML.

ML polymorphism is considerably more restrictive than that of a second-
order λ-calculus; type quantification and lambda abstraction occur only over
base types and values. Because of its restrictiveness relative to the Girard-
Reynolds calculus, it is possible to give a predicative semantics to ML poly-
morphism [23,22] that is a conservative extension of the frame semantics of
the simply-typed λ-calculus. Ohori’s model of ML polymorphism is appealing
precisely because of its simplicity. It explains ML polymorphism in terms of
simpler, less expressive things (such as the frame semantics of the simply-typed
λ-calculus) rather than in terms of inherently richer and more expressive things
(such as the semantics of the second-order λ-calculus). The model of polymorphic
recursion presented here retains this simplicity.

The rest of this paper proceeds as follows. Section 2 presents the language
for first-order polymorphic recursion; the semantics of this language is then for-
mulated in Section 3. Section 3 begins with an overview of frame semantics and
Section 3.1 presents the simple model of ML polymorphism. Sections 3.2 and
3.3 demonstrate how a straightforward extension of Ohori’s model provides a se-
mantic foundation for first-order polymorphic recursion. Section 4 motivates the
application of this semantic framework to Haskell-style ad hoc polymorphism.
Section 5 discusses the rôle of the present research in the semantics of the Haskell
language and outlines future directions. Related work is discussed throughout
rather than in a separate section.

2 A Language and Type System for Polymorphic
Recursion

The language we consider—called PR hereafter—is shown in Figure 1; it is the
first-order type system referred to as ML/1′ by Kfoury, et al. [16]. Kfoury,
et al. describe several type systems of increasing expressiveness that extend
Hindley-Milner with polymorphic recursion. PR is “syntax-oriented,” meaning
that derivations in this type system are unique (modulo the order of applica-
tion of the type generalization rule GEN); this has a useful (albeit not strictly
necessary) virtue w.r.t. the coherence of the semantic equations.

The type language for PR (following Kfoury, et al. [16]) is stratified into
“open” and “universal” types (T0 and T1, respectively) and, following Ohori

1 Following Ohori [23,22], we shall refer to the first-order variety of polymorphism
occurring in Haskell and ML as ML polymorphism as both languages use varieties
of Hindley-Milner polymorphism [9,18].
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simple types τ ∈ Type τ ::= b | (τ → τ ′)
open types γ ∈ T0 γ ::= α | (γ → γ′) | τ
universal types σ ∈ T1 σ ::= ∀ α. σ | γ
expressions M ::= x | (M N ) | (λ x . M ) | let x = N in M | pfix x .M

GEN
Γ � M : σ

Γ � M :∀α.σ
(α �∈ FV (Γ))

ABS
Γ, x : γ � M : γ′

Γ � (λx.M) : γ→γ′

VAR
Γ(x) = σ, σ �s γ

Γ � x : γ

APP
Γ � M : γ→γ′ Γ � N : γ

Γ � (M N) : γ′

LET
Γ � N : σ′ Γ, x : σ′ � M : σ

Γ � (let x = N in M) : σ

PFIX
Γ, x : ∀ᾱ.γ′ � M : γ′ ∀ᾱ.γ′ � γ

Γ � pfix x.M : γ
(ᾱ �∈ FV (Γ))

Fig. 1. The type system and expression syntax of PR. The type language of PR is
stratified into simple, open, and universal types. PR departs from Hindley-Milner in
its VAR and PFIX rules and polymorphic recursion is manifested in the PFIX rule.

[23,22], includes the set of “simple” (i.e., ground) types Type. Variables τ , γ,
and σ refer (whether subscripted or not) to members of Type, T0, and T1,
respectively, throughout this article. The abstract syntax for PR includes an
explicit fix-point operator for polymorphic recursion called “pfix”.

We will sometimes write a universal type σ = ∀α1. . . .∀αn.γ for 0 ≤ n as
∀ᾱ.γ where ᾱ is a (possibly) empty set of type variables. The relation σ � γ
holds when γ is an instance of σ. Formally, open type γ is an instantiation of
∀ᾱ.γ′ for substitution s (written (∀ᾱ.γ′) �s γ), if, and only if, for some open
types γ1 · · · γn in T0, s = [α1 �→ γ1, . . . , αn �→ γn] and γ = sγ′.

The rules GEN, APP, and ABS are standard and require no further comment.
The LET rule captures let-polymorphism in the usual way, although it has a
slightly different form than one might expect. Both the let term in the conclusion
of the rule and the M term in its hypothesis have universal type σ where one
would typically find an open type γ. This is inherited from ML/1′ and its effect
is merely superficial [16]; one could change the universal σ to an open γ without
affecting the language defined by the type system.

Polymorphic recursion arises in PR because, in the antecedent of the PFIX

rule, the type binding for the recursively defined variable, x : ∀ᾱ.γ′, contains
quantifiers if ᾱ �=∅. Consequently, x can be applied at any instance of its type
(i.e., at any γi such that ∀ᾱ.γ′ � γi). The rule allowing such instantiations is
VAR. VAR performs both variable look-up and instantiation—rôles that would
typically be performed by two separate rules. VAR looks up a variable binding,
x : σ, in the type environment Γ and its conclusion types the variable at an
instantiation of that binding, x : γ.

Figure 2 presents the outline of a type derivation for size in PR illustrating
how PR accommodates polymorphic recursion. Assume that Γ0 contains bindings
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(‡)
Γ1 � λs.if isNil s then 0 else 1 + 2 ∗ size(stl s) :Seq(α)→ Int

ABS

Γ0 � pfix size.λs.if isNil s then 0 else 1 + 2 ∗ size(stl s) :Seq(α)→ Int
PFIX(α)

Γ0 � pfix size.λs.if isNil s then 0 else 1 + 2 ∗ size(stl s) :∀α.Seq(α)→ Int
GEN(α)

Γ2(size) = ∀α.(Seqα)→ Int
(∀α.(Seq α)→ Int) �s Seq(α×α)→ Int
s = [α 	→ α×α]

Γ2 � size :Seq(α×α)→ Int
VAR

. . .

Γ2 � (stl s) : Seq (α×α)

Γ2 � size (stl s) : Int

Fig. 2. Type Checking size in PR. The type derivation for size in PR appears in the
upper derivation. The second derivation (below) occurs within the “(‡)” above. Certain
routine parts are suppressed for the sake of readability.

for arithmetic functions, stl , isNil , SCons and Nil , etc., Γ1 extends Γ0 with
the binding size : ∀α. (Seqα)→ Int, and Γ2 extends Γ1 with s : (Seqα). It is at
the leaves of the derivation in the bottom half of Figure 2 that this derivation
becomes interesting; the application of the VAR rule instantiates size, not at its
defined type, Seq(α) → Int, but rather at the instance Seq(α×α) → Int. This is
precisely where polymorphic recursion manifests itself within size.

3 The Simple Model of Polymorphic Recursion

This section presents the semantics of PR. First, we briefly overview the frame
semantics of the simply-typed λ-calculus and then, in Section 3.1, outline how
this semantics is extended in the simple model of ML polymorphism. Section 3.2
describes the semantic setting where polymorphic recursive fixed-point equations
are solved; Section 3.3 describes the semantics of PR in this setting.

Background on Type-frames Semantics. One may think of a frame model
as set-theoretic version of a cartesian closed category. That is, it provides “ob-
jects” (i.e., Dτ for each simple type τ) and axioms of representability and exten-
sionality characterizing functions from objects to objects in terms of an appli-
cation operator •. In this article, each simple type model Dτ is presumed to be
built from sets with additional structure and we write |Dτ | for the underlying set
of Dτ . We refer to Dτ as a frame object and to |Dτ | as its frame set. We assume
that each |Dτ | �= ∅. A frame is a pair 〈D, •〉 where

1. D = {Dτ | τ ∈ Type } and D �= ∅
2. • is a family of operations •τ1τ2 ∈ |D(τ1 →τ2)|→ |Dτ1 |→ |Dτ2 |

The set function φ : |Dτ1 |→ |Dτ2 | is representable in |D(τ1 →τ2)| if
∃ f ∈ |D(τ1 →τ2)| s.t. φ(d) = f •τ1τ2 d, ∀d ∈ |Dτ1 |
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The frame 〈D, •〉 is extensional if, for all f, g ∈ |D(τ1 →τ2)|,
if f •τ1τ2 d = g •τ1τ2 d for all d ∈ |Dτ1 |, then f = g

A value environment ρ is compatible with a type environment A when

dom(ρ) = dom(A), and ρ x ∈ |Dτ | iff (x : τ) ∈ A
The compatibility relation is designated byA |= ρ. The set of value environments
compatible with A is designated Env(A). Let 〈D, •〉 be any frame, λ→ be the
simply-typed λ-calculus and ρ a value environment such that A |= ρ. Then, the
map D[[−]] ∈ λ→→Env→(

⋃ |Dτ |) obeys the environment model condition if the
following equations hold:

D[[A � x : τ ]]ρ = ρ x
D[[A � (M N) : τ ]]ρ = (D[[A � M : τ ′→τ ]]ρ) • (D[[A � N : τ ′]]ρ)
D[[A � λx : τ1.M : τ1→τ2]]ρ = the f ∈ |Dτ1 →τ2 | s.t. for all d ∈ |Dτ1 |,

f • d = D[[A, x : τ1 � M : τ2]]ρ[x �→ d]

For any extensional frame D, the above equations induce a model of the simply-
typed λ-calculus [3,20].

3.1 The Simple Model of ML Polymorphism

The simple model of ML polymorphism [23,22] defines the meaning of a ML-
polymorphic expression in terms of type-indexed sets of denotations of its ground
instances. It conservatively extends the type-frames semantics of the simply-
typed λ-calculus [3,20] to accommodate polymorphism. It is a typed semantics,
meaning that the denotations are given for derivable typing judgments of terms.

Ohori’s model is quite intuitive. Consider the term (� λx.x : ∀α.α→α). Any
ground instance of this term (e.g., � λx.x : Int → Int) has a meaning within
a frame object (i.e., DInt→Int) of an appropriate frame D. If the elements of
|Dτ →τ′ | are actually functions from |Dτ | to |Dτ′ |, then each of these ground in-
stances is simply the identity function idDτ ∈ |Dτ →τ |. Accordingly, the meaning of
(� λx.x : ∀α.α→α) is just the set: {(τ→τ, idDτ ) | τ ∈ Type}. We use product no-
tation for the collection of these type-indexed sets: Π τ∈S.|Dτ |, each element of
which is assumed to be a set function.

Defining an Ohori Model. This example illustrates the structure of Ohori’s
model: a semantics for the ground typings of an ML-polymorphic language may
be extended conservatively to the full language; that is, a polymorphic term (Γ �
e : σ) is defined by collecting the type-indexed denotations of its ground instances
〈τ, [[A � e : τ ]]〉. To accomplish this extension, one additional bit of machinery is
necessary to calculate the ground instances of universal types, typing environ-
ments, and derivations. This is the subject of the remainder of this section.

We refer to a universal type σ containing no free type variables as a closed
type. A typing environment Γ is closed when the type within each binding (x : σ)
is closed. A judgment Γ � M : σ is closed when Γ and σ are closed. A type
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derivation ∆ is closed when the judgment at its root is closed. N.B., ∆ being
closed does not imply that its subderivations are closed. Given a substitution
η : {α1, . . . , αn}→T0, its canonical extension η∗ to a map from T1 to T1 is:

η∗τ = τ
η∗(γ→γ) = (η∗γ)→(η∗γ)

η∗α =
{

ηα if α ∈ dom(η)
α otherwise

η∗(∀β.σ) = ∀β.(η∗
0σ) where η0 = η \ β

Furthermore, we apply η∗ to type environments and derivations as well:

η∗(x : σ, Γ) = (x : η∗σ), η∗Γ
η∗{} = {}
η∗( ∆

Γ�M :∀ᾱ.γ ) = η∗
0∆

(η∗
0Γ)�M : ∀ᾱ.(η∗

0γ) where η0 = η \ ᾱ

First, we define the set of ground substitutions on a universal type:

Gr(σ) � {η | η : FV (σ)→Type}
For a closed universal type σ = (∀ᾱ.γ) with (possibly empty) set of quantified
variables ᾱ, the set of its ground instances, σType, is:

σType � {η∗γ | η ∈ Gr(γ)}

3.2 Solving Polymorphic-Recursive Equations

Frame models for the simply-typed lambda calculus consist of only data nec-
essary to model application and abstraction. This data suffices for the simple
model of ML polymorphism as the language modeled there does not include re-
cursion [22]. Being recursive, the PR language requires more structure to model
with frames and we extend the notion of type frame to accommodate recursion.
In particular, the notion of a type frame is extended with structure including a
partial order on the elements of frame sets, pointedness of frame objects, and
continuous functions that preserve order and limits. This same methodology has
been employed to specify Haskell’s mixture of lazy and eager evaluation [7].

We return to the question posed in Section 1 at (†): how—or rather, where—
do we solve equations like:

size = λx . if isNil x then 0 else 1 +2 ∗ size (stl x )

As it turns out, if frame D is such that its frame objects, Dτ , are pointed cpos,
then the denotations of polymorphic types in Ohori’s model (i.e., the indexed sets
(Π τ∈S.|Dτ |)) may be extended to pointed cpos2 as well. This idea is made formal
in Theorem 1 below. Within these new cpo structures, we can find appropriate
solutions to polymorphic-recursive equations and define the semantics of PR (as
we do below in Section 3.3).
2 Technically, this is an ω-cpo; that is, every ascending chain possesses a lub. For a

cpo, every directed set has a lub. N.B., every cpo is an ω-cpo, but not vice-versa.
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Frames for Polymorphic Recursion. We introduce the following terminology
for such frames with a pointed cpo structure: A pcpo frame is a frame 〈D, •,�,
�,⊥〉 in which each Dτ ∈ D is a pointed, complete, partial order w.r.t. ⊥τ , �τ ,
and �τ . For a given pcpo frame D, a type-indexed set (Π τ∈S.|Dτ |) is uniquely
determined by the set of types S, and accordingly we introduce the abbreviation
PS � (Π τ ∈ S.|Dτ |). If S is the singleton set {τ}, we write Pτ . A family of
application operators • is defined for the Pτ in the obvious manner in terms of
the • operators in D. Theorem 1 demonstrates that the collection of PS are the
frame objects in a pcpo frame; we will refer to this frame hereafter as P . The
language PR is defined in the frame P below in Section 3.3.

Theorem 1. Let 〈D, •,�,�,⊥〉 be a pcpo-frame and S ⊆ Type be a set of ground
type expressions. Then, PS is a pointed cpo where:

– for any f, g ∈ PS, f �S g ⇔ for all τ ∈ S, fτ �τ gτ , and
– the bottom element is ⊥S� {〈τ,⊥τ 〉 | τ ∈ S}
– Let �τ be the lub operator within the D frame object Dτ .Then the least upper

bound of an ascending chain {Xi} ⊆ |PS| is:⊔
S Xi � {〈τ, uτ 〉 | τ ∈ S, uτ =

⊔
τ (Xiτ )}

Proof. To show: �S and ⊥S define a pointed, complete partial order on PS . As-
sume X, Xi ∈ PS. That �S is reflexive, anti-symmetric, and transitive follows
directly from the fact the each �τ is so. Similarly, ⊥S is the least element of PS

because, for any τ ∈ Type, so is ⊥S τ =⊥τ . Let X0 �S X1 �S · · · be a directed
chain in PS, then it remains to show that {〈τ, uτ 〉 | τ ∈ S, uτ =

⊔
τ (Xiτ )} is the

lub of {Xi}. Define U = {〈τ, uτ 〉 | τ ∈ S, uτ =
⊔

τ (Xiτ )}. It is clear from the defi-
nition of U and �S that U is in PS and is an upper limit of {Xi}. Suppose that
V ∈ PS is an upper bound of {Xi}. Then, Xiτ �τ V τ for every type τ ∈ Type.
∴ ⊔

τ (Xiτ ) �τ V τ for every type τ ∈ Type. By the definition of U , Uτ �τ V τ

for every type τ ∈ Type and, hence, U �S V . ∴ U is the least such upper limit,
justifying the definition of

⊔
S Xi � U . ��

Because PS is a pointed cpo, we may define continuous functions and least
fixed points over it in the standard way [3]. That is, a function f : PS → PT is
continuous when f(

⊔
S Xi) =

⊔
T (f Xi) for all directed chains {Xi} in PS. Then,

fix(f ) =
⊔

S (f n ⊥S ) for n < ω given a continuous endofunction f : PS→PS. We
assume that every continuous function between frame objects in frame P is
representable in P and that P is extensional.

3.3 The Frame Semantics of PR

What remains to be seen is the definition of the PR language in terms of the
pcpo frame P . First, we consider the denotation of universal types and then the
semantics of PR is given.

Denotations of Types. A closed universal type is denoted by the type-indexed
set of its ground instances: [[σ]] = Π τ∈(σType).|Dτ | for closed σ.
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Denotations of Terms. The denotation of PR is defined on term derivations.
Recall that PR is syntax-oriented; the coherence of the semantic equations fol-
lows because the derivations are unique (modulo the order of application of the
GEN rule). Let ∆ be a derivation of (Γ � e : σ) and η ∈ Gr(σ), then the sig-
nature of the semantics is [[∆]]η : Env(η∗Γ)→ [[η∗σ]]. N.B., η∗Γ is a closed type
assignment, and Env(η∗Γ) are the environments compatible with that closed
type assignment. The semantic equations are defined by induction on derivation
trees; this is the subject of the remainder of this section.

GEN. Let σ = ∀α1. . . . ∀αn.γ, η ∈ Gr(σ), and ρ ∈ Env(η∗Γ). Let ⊕ be right-biased
environment extension:

(η ⊕ η′)α =
{

η′α if α ∈ dom(η′)
ηα otherwise

Note that S � σType may be written in terms of extensions to η as:

S = {τ ∈ Type | ητ : {α1, . . . , αn}→Type, τ = (η ⊕ ητ )∗γ}
and, furthermore for any τ ∈ S, the extension ητ such that τ = (η ⊕ ητ )∗γ is
unique. We may therefore define the semantics of a GEN rule application as:

[[Γ � e : σ]]ηρ =
⋃
τ∈S

(
[[Γ � e : γ]](η ⊕ ητ )ρ

)
(1)

VAR. An auxiliary function, ιτ x = {〈τ, x〉}, injects Dτ into Pτ . N.B., that if
x ∈ |Dτ |, then ιτ x ⊆ (Π τ ∈ S.|Dτ |) for any S ⊆ Type such that τ ∈ S. The
binding of a variable x in ρ is a type-indexed set and the denotation of x is a
component of this set:

[[Γ � x : γ]]ηρ = ιτ (ρ x τ), where τ = η∗γ (2)

The definition in (2) determines the correct component of [[∀α.Seq(α) → Int]],
τ , from the ground substitution η and the open type γ. The size example il-
lustrates why this definition works. Consider the VAR application in the ex-
ample derivation at the end of Section 2; recall the judgment at the root is:
Γ2 � size :Seq(α×α) → Int. Let η ∈ Gr(Seq(α×α) → Int) and ρ ∈ Env(η∗Γ2), and
assume ηα = Bool . Note that (ρ size) ∈ (Π τ∈ σType.|Dτ |) for σ = ∀α.Seq(α)→ Int.
The component of (ρ size) denoting x is found at the ground type η∗(Seq(α×α)→
Int) = Seq(Bool×Bool)→ Int.

PFIX. Assuming η ∈ Gr(γ) and ρ ∈ Env(η∗Γ), let S and fS : PS→PS be the
following set and function, respectively:

S = {τ ∈ Type | τ = η∗γ′}
fS = d �→ [[Γ, x : ∀ᾱ.γ′ � M : γ′]]η(ρ[x �→ d])

By Lemma 1 (below), fS is continuous, and we make the additional assumption
that fS is representable in P. Then, polymorphic fixpoints are defined as:

[[Γ � pfix x.M : γ]]ηρ =
⊔

S
(fn ⊥S) for n < ω (3)
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ABS. Let τ = η∗γ and τ ′ = η∗γ′ and f be the function from Pτ to Pτ ′ :

f = d �→ [[Γ, x : γ � M : γ′]]η(ρ[x �→ d])

By Lemma 1 (below), f is continuous, and we assume that f is representable in
P. Then, lambda abstraction is defined as:

[[Γ � λx.M : γ→γ′]]ηρ = f (4)

APP. Let τ = η∗γ, τ ′ = η∗γ′. Then the semantics of application is simply:

[[Γ � MN : γ′]]ηρ = ([[Γ � M : γ→γ′]]ηρ) •τ,τ ′ ([[Γ � N : γ]]ηρ) (5)

N.B., the application operator, •τ,τ ′, is from the objects P(τ→τ ′) and Pτ .

LET. The semantics of let is defined conventionally:

[[Γ � (let x = N in M) : σ]]ηρ = [[Γ, x : σ′ � M : σ]]η(ρ[x 	→ [[Γ � N : σ′]]ηρ]) (6)

The semantic equations for PFIX and ABS rely on Lemma 1 which states that
functions defined in terms of the semantic function are continuous. Lemma 1,
or something very much like it, is part of any conventional cpo semantics of
λ-calculi. Its proof follows along the lines of what one would find in a semantics
textbook (e.g., see Gunter 1992, lemma 4.19, page 130).

Lemma 1. For any closed term (Γ, x : ∀ᾱ.γ′ � M : γ), the following function
from PS to PT is continuous: f = (d ∈ |PS|) �→ [[Γ, x : ∀ᾱ.γ′ � M : γ]]ηρ[x �→ d]).

Proof. By induction on M . Let Γ′ = Γ, x : ∀ᾱ.γ. Each case is straightforward so
we show only the case for M = pfixy. M ′.

To show: f is monotonic. Let e, e ′∈|PS| such that e �S e′. Define di ∈ |PS|
for i < ω as d0 =⊥S and di+1 = [[Γ′, y : σ � M ′ : γ]]ηρ[y �→ di ]. Note that, by
definition, PT = [[η∗γ]]. Then,

[[Γ′ � pfix y.M ′ : γ]]ηρ[x �→ e]
=

⊔
T
([[Γ′, y : σ � M ′ : γ]]ηρ[x �→ e][y �→ di]) {defn.}

�T

⊔
T
([[Γ′, y : σ � M ′ : γ]]ηρ[x �→ e′][y �→ di]) {ind. hyp.}

= [[Γ′ � pfix y.M ′ : γ]]ηρ[x �→ e′] {defn.}

To show: f is preserves limits. Let PX = [[η∗∀ᾱ.γ′]] and xi∈|PX | be such that
xi�Xxi+1. Then,

[[Γ′ � pfix y.M ′ : γ]]ηρ[x �→ �Xxi]
=

⊔
T
([[Γ′, y : σ � M ′ : γ]]ηρ[x �→ �Xxi][y �→ di]) {defn.}

=
⊔

T

⊔
X
([[Γ′, y : σ � M ′ : γ]]ηρ[x �→ xi][y �→ di]) {ind. hyp.}

=
⊔

X

⊔
T
([[Γ′, y : σ � M ′ : γ]]ηρ[x �→ xi][y �→ di]) {exchange}

=
⊔

X
([[Γ′ � pfix y.M ′ : γ]]ηρ[x �→ xi]) {defn.}
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Here, {exchange} refers to what is frequently known as the exchange lemma. This
states that, given a monotone function, f : P ×Q→D, for directed sets P and
Q and cpo D , that the ordering of the limits does not matter:

⊔
x∈P

⊔
y∈Q

f(x, y) =
⊔

y∈Q

⊔
x∈P

f(x, y)

An exchange lemma holds for P ; its proof is exactly the same as that of (Gunter
1992, Lemma 4.9, page 118). ��

4 Application to Haskell Type Classes

This work is part of an effort3 to develop a formal basis for reasoning about
the Haskell core language known as Haskell 98 [25]. The published work in this
endeavor focuses on mixed evaluation (i.e., combined lazy and eager evaluation)
in Haskell [7,6] and its semantic and logical consequences. The original interest
in the simple model of ML polymorphism stems from the observation that its
“type awareness” provides precisely what one needs to specify type classes in
Haskell; the rest of this section presents a high-level overview of this insight.
The initial presentation of polymorphic recursion [21] developed a denotational
semantics based on the ideal model of recursive types [17]. Cousot [1] formulated
a hierarchy of type systems—including Mycroft’s—in terms of a lattice of ab-
stract interpretations of the untyped lambda calculus. However, neither of these
potential starting points—i.e., the ideal model or abstract interpretation—seem
to fit quite as well to type classes as does the Ohori framework.

Type classes in Haskell are an overloading mechanism allowing variables to
be interpreted differently at different types. The Eq class (shown in part below)
defines equality (==); it is the primitive eqInt on instance (Int → Int → Bool).
Equality on pairs of type (a, b) is inherited from equality on a and b instances; in
the last instance declaration below, “x==u” and “y==v” are equality on types
a and b, respectively:

class Eq a where
(==) :: a → a → Bool

instance Eq Int where
(==) = eqInt

instance (Eq a,Eq b) ⇒ Eq (a, b) where
(x , y)==(u, v) = (x==u)&&(y==v)

3 The Programatica project explores the use of Haskell 98 in formal methods. See
www.cse.ogi.edu/PacSoft/projects/programatica for further details.
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Polymorphic recursion first entered Haskell through its type class system
when expert practitioners noticed that polymorphic recursive functions could be
expressed via “kludges” such as the implementation of size below [12]:

size = size′()
class Size d where

size′ :: d→Seq a→Int
instance Size () where

size′ p Nil = 0
size′ p (SCons x xs) = 1 + 2 ∗ size′ p xs

The method “size′” contains a dummy parameter but is otherwise identical
to size. Because type inference is undecidable in the presence of polymorphic
recursion [8], the type of size′ must be declared explicitly and the kludge uses the
type declaration of the size′ method for the same purpose as the original explicit
type declaration of size. The type of the dummy variable—d in the type signature
for size′—is the overloaded type here. The Haskell type system considers the
type variable a in the size′ method signature as quantified (analogously to the
universally typed recursive binding of x in the PFIX rule). Creating a dummy
instance of Size at unit type () allows the definition of the polymorphic recursive
function size by simply applying size′ to the unit value ().

Without polymorphic recursion, overloading in Haskell 98 may be handled
via partial evaluation [14]; that is, the finitely many class instances necessary
within a Haskell program may be determined statically and inlined within the
program itself. With polymorphic recursion, the number of such instances is
potentially unbounded; consider the function foo x = x==x && foo (x , x) which
will require an unbounded number of implementations of ==.

Within a suitable frame P from Section 3, however, a type class may be
viewed as the set of its ground instances:

[[Eq]] = {〈Int→Int→Bool, eqInt〉, 〈Float→Float→Bool, eqFloat〉, . . .}

This denotation should appeal to the intuitions of Haskell programmers, be-
cause, according to this view, a type class is merely the type-indexed set of
its instances—what would be called in Haskell terminology a dictionary [4]. It
is important to note that, while potentially infinite dictionaries foil the use of
partial evaluation as an implementation technique for type classes in general,
they pose no problem for the denotational model for type classes outlined in this
section.

Models and implementation techniques for type classes have been considered
for many years now; a representative, albeit quite non-exhaustive, sampling of
this work is [29,28,15,4,27]. All existing models of type classes have one thing in
common—they are based on the translation of the source language into an inter-
mediate form for which a model or implementation is known. Thatte [28] trans-
lates a first-order λ-calculus extended with a notation for classes and instances
(called “OML”) into a second-order lambda calculus with a special typecase



A Simple Semantics for Polymorphic Recursion 49

construct for examining type structure (called “OXML”). OXML is then given
an interpreter and OML is defined indirectly via its translation into OXML. The
Eq class example above would be translated as:

(==) = Λt . typecase t of { Int : eqInt ; a×b: eqPair〈a〉〈b〉 }
eqPair = Λa. Λb. λ(x :a, y:b). λ(u:a, v :b). (== 〈a〉 x u) && (== 〈b〉 y v)

Here, Λ and 〈−〉 represent type abstraction and application in OXML, respec-
tively. The translation of (==) takes the type t at which it is applied and dy-
namically determines the appropriate method implementation. If t = a × b,
then this involves creating instances of (==) at types a and b (as is done in
the body of eqPair ). Thatte’s semantics is similar to the implementation of
Haskell classes via the dictionary-passing translation (DPT) in which functions
with overloaded types are translated to functions taking an additional dictionary
parameter [29,15,4,27].

In contrast to existing models, the approach outlined in this section is direct:
no intermediate translation of the source language is required. Furthermore, the
“dictionary” denotations of classes in P require no dynamic examination of type
structure. The denotation of Eq above, for example, contains all instances of Eq ;
no typecase construct or on-the-fly dictionary construction is required.

5 Conclusions and Future Directions

This article demonstrates an approach to modeling polymorphic recursion in
functional languages. These models require a fundamental change to the sub-
stance of denotations rather than to their form and this shift is recorded in
the construction of the P type frame (Theorem 1). Types may still be modeled
by cpos and recursion by fixed point calculations as in traditional denotational
semantics, but the underlying structure of those cpos changes to include type
information. This “type awareness” accommodates the additional expressiveness
required to model polymorphic recursion.

The Girard-Reynolds calculus uses abstraction over an (impredicative) uni-
verse of types. Hindley-Milner polymorphism is considerably more restrictive in
that it only allows abstraction and type quantification over values and base types,
respectively. Ohori’s insight was that the relative restrictiveness of Hindley-
Milner admits a predicative semantics; in fact, any frame model of the simply-
typed lambda calculus may be conservatively extended to a model of Hindley-
Milner. This article demonstrates that this extension may continue one step be-
yond Hindley-Milner to a predicative model of first-order polymorphic recursion
and, furthermore, that this extension is straightforward (albeit non-trivial).

This work reports progress in an effort to establish a formal semantics for
the entire Haskell 98 language starting from Ohori’s simple model of ML poly-
morphism [23,22]. Extensions to the Ohori model have already been explored
for characterizing Haskell’s surprisingly complex mixed evaluation [7]. Obvi-
ously, any such Haskell semantics must account for polymorphic recursion for
the simple reason that Haskell allows polymorphic recursive definitions. As was
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described in Section 4, the type awareness of the P type frame suggests a natu-
ral denotational model of type classes, the precise details of which are left to a
sequel.
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Abstract. We describe a sound method for automatically proving Hoare
triples for loop-free code in Separation Logic, for certain preconditions
and postconditions (symbolic heaps). The method uses a form of sym-
bolic execution, a decidable proof theory for symbolic heaps, and extrac-
tion of frame axioms from incomplete proofs. This is a precursor to the
use of the logic in automatic specification checking, program analysis,
and model checking.

1 Introduction

Separation Logic has provided an approach to reasoning about programs with
pointers that often leads to simpler specifications and program proofs than pre-
vious formalisms [12]. This paper is part of a project attempting to transfer the
simplicity of the by-hand proofs to a fully automatic setting.

We describe a method for proving Hoare triples for loop-free code, by a form
of symbolic execution, for certain (restricted) preconditions and postconditions.
It is not our intention here to try to show that the method is useful, just to say
what it is, and establish its soundness. This is a necessary precursor to further
possible developments on using Separation Logic in:
– Automatic Specification Checking , where one takes an annotated program

(with preconditions, postconditions and loop invariants) and chops it into
triples for loop-free code in the usual way;

– Program Analysis , where one uses fixed-point calculations to remove or re-
duce the need for annotations; and

– Software Model Checking.

The algorithms described here are, in fact, part an experimental tool of the first
variety, Smallfoot. Smallfoot itself is described separately in a companion paper
[2]; here we confine ourselves to the technical problems lying at its core. Of
course, program analysis and model checking raise further problems – especially,
the structure of our “abstract” domain and the right choice of widening operators
[3] – and further work is under way on these.

There are three main issues that we consider.
1. How to construe application of Separation Logic proof rules as symbolic

execution. The basic idea can be seen in the axiom

{A ∗ x�→[f : y]} x�f� z {A ∗ x�→[f : z]}
where the precondition is updated in-place, in a way that mirrors the imperative
update of the actual heap that occurs during program execution. The separating
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conjunction, ∗, short-circuits the need for a global alias check in this axiom.
A ∗ x�→[f : y] says that the heap can be partitioned into a single cell x, that
points to (has contents) a record with y in its f field, and the rest of the heap,
where A holds. We know that A will continue to hold in the rest of the heap if
we update x, because x is not in A’s part of the heap.

There are two restrictions on assertions which make the symbolic execution
view tenable. First, we restrict to a format of the form B ∧ S where B is a pure
boolean formula and S is a ∗-combination of heap predicates. We think of these
assertions as “symbolic heaps”; the format makes the analogy with the in-place
aspect of concrete heaps apparent. Second, the preconditions and postconditions
do not describe the detailed contents of data structures, but rather describe
shapes (in roughly the sense of the term used in shape analysis). Beyond the
basic primitives of Separation Logic, Smallfoot at this point includes several
hardwired shape predicates for: singly- and doubly-linked lists, xor-linked lists,
and trees. Here we describe our results for singly-linked lists and trees only.

2. How to discharge entailments A � B between symbolic heaps. We give a
decidable proof theory for the assertions in our language.

One key issue is how to account for entailments that would normally require
induction. To see the issue, consider a program for appending two lists. When
you get to the end of the first list you link it up to the second. At this point to
prove the program requires showing an entailment

ls(x, t) ∗ t �→[n: y] ∗ ls(y, nil) � ls(x, nil)

where we have a list segment from x to t, a single node t, and a further seg-
ment (the second list) from y up to nil. The entailment itself does not follow
at once from simple unwinding of an inductive definition of list segments. In
the metatheory it is proven by induction, and in our proof theory it will be
handled using rules that are consequences of induction but that are themselves
non-inductive in character.

In [1] we showed decidability of a fragment of the assertion language of this
paper, concentrating on list segments. Here we give a new proof procedure, which
appears to be less fragile in the face of extension than the model-theoretic pro-
cedure of [1], since if the fragment is extended with additional formulæ, then the
decision procedure of [1] remains complete but potentially becomes unsound,
while the present proof theory remains sound but potentially becomes incom-
plete. Additionally, and crucially, it supports inference of frame axioms.

3. Inference of Frame Axioms. Separation Logic allows specifications to be
kept small because it avoids the need to state frame axioms, which describe the
portions of the heap not altered by a command [10]. To see the issue, consider
a specification

{tree(p)} disp tree(p) {emp}
for disposing a tree, which just says that if you have a tree (and nothing else) and
you dispose it, then there is nothing left. When verifying a recursive procedure
for disposing a tree there will be recursive calls for disposing subtrees. The
problem is that, generally, a precondition at a call site will not match that
for the procedure due to extra heap around. For example, at the site of a call
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disp tree(i) to dispose the left subtree we might have a root pointer p and the
right subtree j as well as the left subtree – p �→[l: i, r: j] ∗ tree(i) ∗ tree(j)} – while
the precondition for the overall procedure specification expects only a single tree.

Separation Logic has a proof rule, the Frame Rule, which allows us to resolve
this mismatch. It allows us the first step in the inference:

{tree(i)} disp tree(i) {emp}
{p �→[l: i, r: j] ∗ tree(i) ∗ tree(j)} disp tree(i) {p �→[l: i, r: j] ∗ emp ∗ tree(j)}
{p �→[l: i, r: j] ∗ tree(i) ∗ tree(j)} disp tree(i) {p �→[l: i, r: j] ∗ tree(j)}

To automatically generate proof steps like this we need some way to infer frame
axioms, the leftover parts (in this case p �→[l: i, r: j] ∗ tree(j)). Sometimes, this
leftover part can be found by simple pattern matching, but often not. In this
paper we describe a novel method of extracting frame axioms from incomplete
proofs in our proof theory for entailments. A failed proof can identify the “left-
over” part which, were you to add it in, would complete the proof, and we show
how this can furnish us with a sound choice of frame axiom.

The notion of symbolic execution presented in this paper is, in a general
sense, similar in spirit to what one obtains in Shape Analysis or PALE [14, 7].
However, there are nontrivial differences in the specifics. In particular, we have
been unsuccessful in attempts to compositionally translate Separation Logic into
either PALE’s assertion language or into a shape analysis; the difficulty lies in
treating the separating conjunction connective. And this is the key to employing
the frame rule, which is responsible for Separation Logic’s small specifications of
procedures. So it seems sensible to attempt to describe symbolic execution for
Separation Logic directly, in its own terms.

2 Symbolic Heaps

The concrete heap models assume a fixed finite collection Fields, and disjoint
sets Loc of locations, Val of non-addressable values, with nil ∈ Val. We then set:

Heaps def= Loc fin
⇀ (Fields → Val ∪ Loc)

Stacks def= Var → Val ∪ Loc

As a language for reasoning about these models we consider certain pure
(heap independent) and spatial (heap dependent) assertions.

x, y, . . . ∈ Var variables

E � nil | x expressions

P � E=E | ¬P simple pure formulæ
Π � true | P | Π ∧Π pure formulæ

f, fi, . . . ∈ Fields fields
ρ� f1: E1, . . . , fk: Ek record expressions

S � E �→[ρ] simple spatial formulæ
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Σ � emp | S | Σ ∗Σ spatial formulæ

Π � Σ symbolic heaps

Symbolic heaps are pairs Π � Σ where Π is essentially an ∧-separated sequence
of pure formulæ, and Σ a ∗-separated sequence of simple spatial formulæ.1 The
pure part here is oriented to stating facts about pointer programs, where we
will use equality with nil to indicate a situation where we do not have a pointer.
Other subsets of boolean logic could be considered in other situations.

In this heap model a location maps to a record of values. The formula E �→[ρ]
can mention any number of fields in ρ, and the values of the remaining fields are
implicitly existentially quantified. This allows us to write specifications which
do not mention fields whose values we do not care about.

The semantics is given by a forcing relation s, h � A where s ∈ Stacks, h ∈
Heaps, and A is a pure assertion, spatial assertion, or symbolic heap. h = h0 ∗h1
indicates that the domains of h0 and h1 are disjoint, and h is their graph union.

�x�s def= s(x) �nil�s def= nil

s, h � E1=E2
def

iff �E1�s = �E2�s
s, h � ¬P

def

iff s, h � P

s, h � true always
s, h � Π0 ∧Π1

def

iff s, h � Π0 and s, h � Π1

s, h � E0 �→[f1: E1, . . . , fk: Ek]
def

iff h = [�E0�s�r] where r(fi) = �Ei�s for i ∈ 1..k

s, h � emp
def

iff h = ∅

s, h � Σ0 ∗Σ1
def

iff ∃h0h1. h = h0∗h1 and s, h0 � Σ0 and s, h1 � Σ1

s, h � Π � Σ def

iff s, h � Π and s, h � Σ

To reason about pointer programs one typically needs predicates that de-
scribe inductive properties of the heap. We describe two of the predicates (adding
to the simple spatial formulæ) that we have experimented with in Smallfoot.

2.1 Trees

We describe a model of binary trees where each internal node has fields l, r for
the left and right subtrees. The empty tree is given by nil. What we require is
that tree(E) is the least (logically strongest) predicate satisfying:

tree(E)⇐⇒ (E = nil ∧ emp) ∨ (∃x, y. E �→[l: x, r: y] ∗ tree(x) ∗ tree(y))

where x and y are fresh. The use of the ∗ between E �→[l: x, r: y] and the two
subtrees ensures that there are no cycles, and the ∗ between the subtrees ensures
that there is no sharing; it is not a DAG.
1 Note that we abbreviate ¬(E1=E2) as E1 �=E2 and true � Σ as Σ, and use ≡ to

denote “syntactic” equality of formulæ, which are considered up to symmetry of =,
permutations across ∧ and ∗, e.g., Π ∧P ∧P ′ ≡ Π ∧P ′∧P , involutivity of negation,
and unit laws for true and emp. We use notation treating formulæ as sets of simple
formulæ, e.g., writing P ∈ Π for Π ≡ P ∧Π ′ for some Π ′.
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The way that the record notation works allows this definition to apply to any
heap model that contains at least l and r fields. In case there are further fields,
say a field d for the data component of a node, the definition is independent of
what the specific values are in those fields.

Our description of this predicate is not entirely formal, because we do not
have existential quantification, disjunction, or recursive definitions in our frag-
ment. However, what we are doing is defining a new simple spatial formula (ex-
tending syntactic category S above), and we are free to do that in the metatheory.
A longer-winded way to view this, as a semantic definition, is to say that it is
the least predicate such that

s, h � tree(E) holds if and only if
1. s, h � E = nil ∧ emp, or
2. �x, �y exist where (s | x��x, y��y), h � E �→[l: x, r: y] ∗ tree(x) ∗ tree(y)

Of course, we would have to prove (in the metatheory) that the least definition
exists, but that is not difficult.

2.2 List Segments

We will work with linked lists that use field n for the next element. The predicate
for linked list segments is the least satisfying the following specification:

ls(E, F )⇐⇒ (E=F ∧ emp) ∨ (E �=F ∧ ∃y.E �→[n: y] ∗ ls(y, F ))
Once again, this definition allows for additional fields, such as a head field, but
the ls predicate is insensitive to the values of these other fields.

With this definition a complete linked list is one that satisfies ls(E, nil). Com-
plete linked lists, or trees for that matter, are much simpler than segments. But
the segments are sometimes needed when reasoning in the middle of a list, par-
ticularly for iterative programs. (Similar remarks would apply to iterative tree
programs.)

2.3 Examples

For some context and a feel for the sorts of properties expressible, we present
a few example procedures with specifications in the fragment in Table 1. We
do not discuss loops and procedures in the technical part of the paper, but the
techniques we present are strong enough to verify these programs and are used
in Smalllfoot to do so.

The disp tree(p) example accepts any heap in which the argument points to
a tree and deallocates the tree, returning the empty heap. As discussed earlier,
proving this requires inferring frame axioms at the recursive call sites. Also, this
example demonstrates the ability to specify absence of memory leaks, since, if
the dispose p; command was omitted, then the specification would not hold.

While ∗ is required in the proof of disp tree, it does not appear in the spec-
ification. The second example illustrates the use of ∗ in specifications, where
copy tree guarantees that after copying a tree, the input tree and the new copy
occupy disjoint memory cells.

The third example is the source of the entailment requiring induction dis-
cussed in the introduction. This procedure also illustrates how list segments are
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Table 1. Example Programs

disp tree(;p)
[tree(p)] {
local i,j;
if (p==nil) {}
else {

i = p->l;
j = p->r;
disp tree(;i);
disp tree(;j);
dispose p; }

} [emp]

copy tree(q;p)
[tree(p)] {
local i,j,i’,j’;
if (p==nil) {}
else {

i = p->l;
j = p->r;
copy tree(i’;i);
copy tree(j’;j);
q = cons();
q->l = i’;
q->r = j’; }

} [tree(q) ∗ tree(p)]

append list(x;y)
[ls(x, nil) ∗ ls(y, nil)] {
local t,u;
if (x==nil) {

x = y; }
else {

t = x; u = t->n;
while (u!=nil)
[ls(x, t) ∗ t�→[n: u] ∗ ls(u, nil)]
{ t = u;

u = t->n; }
t->n = y; }

} [ls(x, nil)]

Note that in these examples, assertions are enclosed in square brackets, and
procedure parameter lists consist first of the reference parameters, followed by
a semicolon, and finally the value parameters.

sometimes needed in loop invariants of code whose specifications only involve
complete lists ending in nil.

3 Symbolic Execution

In this section we give rules for triples of the form

{Π � Σ} C {Π ′ � Σ′}
where C is a loop-free program. The commands C are given by the grammar:

C � empty | x�E ; C | x�E�f ; C | E�f�F ; C

| new(x) ; C | dispose(E) ; C | ifP thenC elseC fi ; C

The rules in this section appeal to entailments Π � Σ � Π ′ � Σ′ between
symbolic heaps. Semantically, entailment is defined by:

Π � Σ � Π ′ � Σ′ is true iff ∀s, h. s, h � Π � Σ implies s, h � Π ′ � Σ′

For the presentation of rules in this section we will regard semantic entailment
as an oracle. Soundness of symbolic execution just requires an approximation.

3.1 Operational Rules

The operational rules use the following notation for record expressions:

mutate(ρ, f, F ) =

�
f : F, ρ′ if ρ = f : E, ρ′

f : F, ρ if f /∈ ρ
lookup(ρ, f) =

�
E if ρ = f : E, ρ′

x fresh if f /∈ ρ

The fresh variable returned in the lookup case corresponds to the idea that if
a record expression does not give a value for a particular field then we do not
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Table 2. Operational Symbolic Execution Rules

Empty
Π � Σ � Π ′ � Σ′

{Π � Σ} empty {Π ′ � Σ′}

Assign
{x=E[x′/x] ∧ (Π � Σ)[x′/x]} C {Π ′ � Σ′}

{Π � Σ} x�E ; C {Π ′ � Σ′} x′ fresh

Lookup
{x=F [x′/x] ∧ (Π � Σ ∗ E �→[ρ])[x′/x]} C {Π ′ � Σ′}

{Π � Σ ∗ E �→[ρ]} x�E�f ; C {Π ′ � Σ′} x′ fresh, lookup(ρ, f) = F

Mutate
{Π � Σ ∗ E �→[ρ′]} C {Π ′ � Σ′}

{Π � Σ ∗ E �→[ρ]} E�f�F ; C {Π ′ � Σ′} mutate(ρ, f, F ) = ρ′

New
{(Π � Σ)[x′/x] ∗ x�→[]} C {Π ′ � Σ′}
{Π � Σ} new(x) ; C {Π ′ � Σ′} x′ fresh

Dispose
{Π � Σ} C {Π ′ � Σ′}

{Π � Σ ∗ E �→[ρ]} dispose(E) ; C {Π ′ � Σ′}
Conditional
{Π ∧ P � Σ} C1 ; C {Π ′ � Σ′} {Π ∧ ¬P � Σ} C2 ; C {Π ′ � Σ′}

{Π � Σ} ifP thenC1 elseC2 fi ; C {Π ′ � Σ′}

care what it is. These definitions do not result in conditionals being inserted into
record expressions; they do not depend on the values of variables or the heap.

The operational rules are shown in Table 2. One way to understand these
rules is by appeal to operational intuition. For instance, reading bottom-up,
from conclusion to premise, the Mutate rule says: To determine if {Π � Σ ∗
E �→[ρ]} E�f�F ; C {Π ′ � Σ′} holds, execute E�f�F on the symbolic pre-
state Π � Σ ∗ E �→[ρ], updating E in place, and then continue with C. Likewise,
the Dispose rule says to dispose a symbolic cell (a �→ fact), the New rule says to
allocate, and the Lookup rule to read. The substitutions of fresh variables are
used to keep track of (facts about) previous values of variables.

The role of fresh variables can be understood in terms of standard consider-
ations on Floyd-Hoare logic. Recall that in Floyd’s assignment axiom

{A} x�E {∃x′. x=E[x′/x] ∧A[x′/x]}

the fresh variable x′ is used to record (at least the existence of) a previous value
for x. Our fragment here is quantifier-free, but we can still use the same general
idea as in the Floyd axiom, as long as we have an overall postcondition and a
continuation of the assignment command.
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{x=E[x′/x] ∧A[x′/x]} C {B}
{A} x�E ; C {B} x′ fresh

This rule works in standard Hoare logic: the fact that the Floyd axiom expresses
the strongest postcondition translates into its soundness and completeness. All
of the rules mentioning fresh variables are obtained in this way from axioms of
Separation Logic. This (standard) trick allows use of a quantifier-free language.

We will not explicitly give the semantics of commands, but assume Separation
Logic’s “fault-avoiding” semantics of triples (as in, e.g., [12]) in:
Theorem 1. All of the operational rules are sound (preserving validity), and
all except for Dispose are complete (preserving invalidity).

To see the incompleteness of the Dispose rule consider:
{x�→[] ∗ y �→[]} dispose(x) ; empty {x�=y � y �→[]}

This is a true triple, but if we apply the Dispose and Empty rules upwards
we will be left with an entailment y �→[] � x�=y � y �→[] that is false. The rule
loses the implied information that x and y are unequal from the precondition.
Although we can construct artificial examples like this that fool the rule, none of
the naturally-occurring examples that we have tried in Smallfoot have suffered
from it. The reason, so it seems, is that required inequalities tend to be indicated
in boolean conditions in programs, in either while loops or conditionals. We have
considered hack solutions to this problem but nothing elegant has arisen; so in
lieu of practical problems with the incompleteness, we have opted for the simple
solution presented here.

This incompleteness could be dealt with if we instead used the backwards-
running weakest preconditions of Separation Logic [4]. Unfortunately, there is
no existing automatic theorem prover which can deal with the form of these
assertions (which use quantification and the separating implication −−∗). If there
were such a prover, we would be eager consumers of it.

3.2 Rearrangement Rules

The operational rules are not sufficient on their own, because some of them
expect their preconditions to be in particular forms. For instance, in

{x=y � z �→[f : w] ∗ y �→[f : z]} x�f� y ; C {Π ′ � Σ′}
the Mutate rule cannot fire (be applied upwards), because the precondition has
to explicitly have x�→[ρ] for some ρ.

Symbolic execution has a separate rearrangement phase, which attempts to
put the precondition in the proper form for an operational rule to fire. For
instance, in the example just given we can observe that the precondition x=y �
z �→[f : w] ∗ y �→[f : z] is equivalent to x=y � z �→[f : w] ∗x�→[f : z], which is in a form
that allows the Mutate rule to fire.

We use notation for atomic commands that access heap cell E:
A(E)� E�f�F | x�E�f | dispose(E)

The basic rearrangement rule simply makes use of equalities to recognize that
a dereferencing step is possible.



60 J. Berdine, C. Calcagno, and P.W. O’Hearn

Switch(E)

{Π � Σ ∗ E �→[ρ]} A(E) ; C {Π ′ � Σ′}
{Π � Σ ∗ F �→[ρ]} A(E) ; C {Π ′ � Σ′} Π � Σ ∗ F �→[ρ] � E=F

For trees and list segments we have rules that expose �→ facts by unrolling
their inductive definitions, when we have enough information to conclude that
the tree or the list is nonempty.2 A nonempty tree is one that is not nil.

Unroll Tree(E)

{Π � Σ ∗ E �→[l: x′, r: y′] ∗ tree(x′) ∗ tree(y′)} A(E) ; C {Π ′ � Σ′}
{Π � Σ ∗ tree(F )} A(E) ; C {Π ′ � Σ′}

†when Π � Σ ∗ tree(F ) � F �=nil ∧ F=E and x′, y′ fresh

†

Here, we have placed the “side condition”, which is necessary for the rule to
apply, below it, for space reasons. Besides unrolling the tree definition some
matching is included using the equality F=E.

To unroll a list segment we need to know that the beginning and ending
points are different, which implies that it is nonempty.

Unroll List Segment(E)

{Π � Σ ∗ E �→[n: x′] ∗ ls(x′, F ′)} A(E) ; C {Π ′ � Σ′}
{Π � Σ ∗ ls(F, F ′)} A(E) ; C {Π ′ � Σ′}

†when Π � Σ ∗ ls(F, F ′) � F �=F ′ ∧E=F and x′ fresh

†

These rearrangement rules are very deterministic, and are not complete on
their own. The reason is that it is possible for an assertion to imply that a cell is
allocated, without knowing which ∗-conjunct it necessarily lies in. For example,
the assertion y �=z � ls(x, y) ∗ ls(x, z) contains a “spooky disjunction”: it implies
that one of the two list segments is nonempty, so that x�=y ∨ x�=z, but we do
not know which. To deal with this in the rearrangement phase we rely on a
procedure for exorcising these spooky disjunctions. In essence, exor(Π � Σ, E)
is a collection of assertions obtained by doing enough case analysis (adding
equalities and inequalities to Π) so that the location of E within a ∗-conjunct
is determined. This makes the rearrangement rules complete.

We omit a formal definition of exor for space reasons. It is mentioned in the
symbolic execution algorithm below, where exor(g, E) is obtained from triple g
by applying exor to the precondition.

3.3 Symbolic Execution Algorithm

The symbolic execution algorithm works by proof-search using the operational
and rearrangement rules. Rearrangement is controlled to ensure termination.

To describe symbolic execution we presume an oracle oracle(Π � Σ � Π ′ �
Σ′) for deciding entailments. We also use that we can express consistency of a
symbolic heap, and allocatedness of an expression, using entailments:
2 This is somewhat akin to the “focus” step in shape analysis [14].
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incon(Π � Σ) def= oracle(Π � Σ � nil �=nil � emp)
allocd(Π � Σ, E) def= incon(Π � Σ ∗ E �→[]) and incon(E=nil ∧Π � Σ)

We also use pre(g) to denote the precondition in a Hoare triple g. incon and
pre are used to check the precondition for inconsistency in the first step of the
symbolic execution algorithm and allocd is used in the second-last line.

Definition 2. E is active in g if g is of the form

{Π � Σ} A(E) ; C {Π ′ � Σ′}
Algorithm 3 (Symbolic Execution). Given a triple g, determines whether
or not it is provable.

check(g) =
if incon(pre(g)) return “true”
if g matches the conclusion of an operational rule

let p be the premise, or p1, p2 the two premises in
if rule Empty return oracle(p)
if rule Assign, Mutate, New, Dispose, or Lookup return check(p)
if rule Conditional return check(p1) ∧ check(p2)

elseif g begins with A(E)
if Switch(E), Unroll List Segment(E), or Unroll Tree(E) applies

let p be the premise in return check(p)
elseif allocd(pre(g), E) return

∧{check(g′) | g′ ∈ exor(g, E)}
else return “false”

Theorem 4. The Symbolic Execution algorithm terminates, and returns “true”
iff there is a proof of the input judgment using the operational and rearrangement
rules, where we view each use of an entailment in the symbolic execution rules
as a call to the oracle.

4 Proof Rules for Entailments

The entailment Π � Σ � Π ′ � Σ′ was treated as an oracle in the description of
symbolic execution. We now describe a proof theory for entailment.

The rules come in two groups. The first, the normalization rules, get rid of
equalities as soon as possible so that the forthcoming rules can be formulated
using simple pattern matching (i.e., we can use E �→F rather than E′ �→F plus
E′=E derivable), make derivable inequalities explicit, perform case analysis us-
ing a form of excluded middle, and recognize inconsistency. The second group of
rules, the subtraction rules, work by explicating and then removing facts from
the right-hand side of an entailment, with the eventual aim of reducing to the
axiom Π � emp � true � emp.

Before giving the rules, we introduce some notation. We write op(E) as an
abbreviation for E �→[ρ], ls(E, E′), or tree(E). The guard G(op(E)) is defined by:

G(E �→[ρ]) def= true G(ls(E, E′)) def= E �=E′ G(tree(E)) def= E �=nil
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Table 3. Proof System for Entailment

Normalization Rules:

Π ∧E �=E � Σ � Π ′ � Σ′

Π [E/x] � Σ[E/x] � Π ′[E/x] � Σ′[E/x]
Π ∧ x=E � Σ � Π ′ � Σ′

Π � Σ � Π ′ � Σ′

Π ∧E=E � Σ � Π ′ � Σ′

Π ∧G(op(E)) ∧E �=nil � op(E) ∗Σ � Π ′ � Σ′

Π ∧G(op(E)) � op(E) ∗Σ � Π ′ � Σ′ E �=nil /∈ Π ∧G(op(E))

Π ∧ E1 �=E2 � op1(E1) ∗ op2(E2) ∗Σ � Π ′ � Σ′

Π � op1(E1) ∗ op2(E2) ∗Σ � Π ′ � Σ′
G(op1(E1)), G(op2(E2)) ∈ Π

E1 �=E2 /∈ Π

Π ∧ E1=E2 � Σ � Π ′ � Σ′

Π ∧ E1 �=E2 � Σ � Π ′ � Σ′

Π � Σ � Π ′ � Σ′

E1 �≡ E2

E1=E2, E1 �=E2 /∈ Π

fv(E1, E2) ⊆ fv(Π, Σ, Π ′, Σ′)

Π � Σ � Π ′ � Σ′

Π � Σ ∗ tree(nil) � Π ′ � Σ′
Π � Σ � Π ′ � Σ′

Π � Σ ∗ ls(E, E) � Π ′ � Σ′

Subtraction Rules:

Π � emp � true � emp
Π � Σ � Π ′ � Σ′

Π � Σ � Π ′ ∧ E=E � Σ′
Π ∧ P � Σ � Π ′ � Σ′

Π ∧ P � Σ � Π ′ ∧ P � Σ′

S � S′ Π � Σ � Π ′ � Σ′

Π � S ∗Σ � Π ′ � S′ ∗Σ′ S � S E �→[ρ, ρ′] � E �→[ρ]

Π � Σ � Π ′ � Σ′

Π � Σ � Π ′ � tree(nil) ∗Σ′
Π � Σ � Π ′ � Σ′

Π � Σ � Π ′ � ls(E, E) ∗Σ′

Π � E �→[l: E1, r: E2, ρ] ∗Σ � Π ′ � E �→[l: E1, r: E2, ρ] ∗ tree(E1) ∗ tree(E2) ∗Σ′

Π � E �→[l: E1, r: E2, ρ] ∗Σ � Π ′ � tree(E) ∗Σ′

†E �→[l: E1, r: E2, ρ] /∈ Σ′

†

Π ∧ E1 �=E3 � E1 �→[n: E2, ρ] ∗Σ � Π ′ � E1 �→[n: E2, ρ] ∗ ls(E2, E3) ∗Σ′

Π ∧ E1 �=E3 � E1 �→[n: E2, ρ] ∗Σ � Π ′ � ls(E1, E3) ∗Σ′

†E1 �→[n: E2, ρ] /∈ Σ′

†

Π � ls(E1, E2) ∗Σ � Π ′ � ls(E1, E2) ∗ ls(E2, nil) ∗Σ′

Π � ls(E1, E2) ∗Σ � Π ′ � ls(E1, nil) ∗Σ′

Π ∧G(op(E3)) � ls(E1, E2) ∗ op(E3) ∗Σ � Π ′ � ls(E1, E2) ∗ ls(E2, E3) ∗Σ′

Π ∧G(op(E3)) � ls(E1, E2) ∗ op(E3) ∗Σ � Π ′ � ls(E1, E3) ∗Σ′
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The proof rules are given in Table 3. Except for G(op1(E1)), G(op2(E2)) ∈ Π ,
the side-conditions are not needed for soundness, but ensure termination.

Theorem 5 (Soundness and Completeness). Any provable entailment is
valid, and any valid entailment is provable.

The side-conditions are sufficient to ensure that progress is made when ap-
plying rules upwards. Decidability then follows using the naive proof procedure
which tries all possibilities, backtracking when necessary.

Theorem 6 (Decidability). Entailment is decidable.

It is possible, however, to do much better than the naive procedure. For
example, one narrowing of the search space is a phase distinction between nor-
malization and subtraction rules: Any subtraction rule can be commuted above
any normalization rule. Further commutations are possible for special classes of
assertion, and these are used in Smallfoot.

This system’s proof rules can be viewed as coming from certain implications,
and are arranged as rules just to avoid the explicit use of the cut rule in proof
search. For instance, the fourth normalization rule comes from the implications:

E �→[]→ E �=nil E1 �=E2 ∧ ls(E1, E2)→ E1 �=nil

the fifth from the implications:

E1 �→[ρ1] ∗ E2 �→[ρ2]→ E1 �=E2 E2 �=nil ∧ E1 �→[ρ] ∗ tree(E2) → E1 �=E2

E2 �=E3 ∧ E1 �→[ρ] ∗ ls(E2, E3)→ E1 �=E2

E1 �=nil ∧ E2 �=nil ∧ tree(E1) ∗ tree(E2) → E1 �=E2

E1 �=nil ∧E2 �=E3 ∧ tree(E1) ∗ ls(E2, E3)→ E1 �=E2

E1 �=E3 ∧ E2 �=E4 ∧ ls(E1, E3) ∗ ls(E2, E4)→ E1 �=E2

and the last two from the implications:

tree(nil)→ emp ls(E, E) → emp

For the inductive predicates, these implications are consequences of unrolling the
inductive definition in the metatheory. But note that we do not unroll predicates,
instead case analysis via excluded middle takes one judgment to several.

Likewise, the subtraction rules for the inductive predicates are obtained from
the implications:

emp → tree(nil) E �→[l: E1, r: E2, ρ] ∗ tree(E1) ∗ tree(E2)→ tree(E)

emp → ls(E, E) E1 �=E3 ∧ E1 �→[n: E2, ρ] ∗ ls(E2, E3)→ ls(E1, E3)

ls(E1, E2) ∗ ls(E2, nil) → ls(E1, nil)

ls(E1, E2) ∗ ls(E2, E3) ∗ E3 �→[ρ]→ ls(E1, E3) ∗ E3 �→[ρ]
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E3 �=nil ∧ ls(E1, E2) ∗ ls(E2, E3) ∗ tree(E3) → ls(E1, E3) ∗ tree(E3)

E3 �=E4 ∧ ls(E1, E2) ∗ ls(E2, E3) ∗ ls(E3, E4) → ls(E1, E3) ∗ ls(E3, E4)

The first four are straightforward, while the last four express properties whose
verification of soundness would use inductive proofs in the metatheory. The re-
sulting rules do not, however, require a search for inductive premises. In essence,
what we generally do is, for each considered inductive predicate, add a collection
of rules that are consequences of induction, but that can be formulated in a way
that preserves the proof theory’s terminating nature.

In the last subtraction rule, the G(op(E3)) ∧ op(E3) part of the left-hand
side ensures that E3 does not occur within the segments from E1 to E2 or from
E2 to E3. This is necessary for appending list segments, since they are required
to be acyclic.

Here is an example proof, of the entailment mentioned in the Introduction:

t �=nil � emp � emp

t �=nil � ls(y, nil) � ls(y, nil)

t �=nil � t �→[n: y] ∗ ls(y, nil) � t �→[n: y] ∗ ls(y, nil)

t �=nil � t �→[n: y] ∗ ls(y, nil) � ls(t, nil)

t �=nil � ls(x, t) ∗ t �→[n: y] ∗ ls(y, nil) � ls(x, nil)

ls(x, t) ∗ t �→[n: y] ∗ ls(y, nil) � ls(x, nil)

Going upwards, this applies the normalization rule which introduces t �=nil, then
the subtraction rule for nil-terminated list segments, the subtraction rule for
nonempty list segments, and finally ∗-Introduction (the basic subtraction rule
for ∗, which appears fourth) twice.

5 Incomplete Proofs and Frame Axioms

Typically, at a call site to a procedure the symbolic heap will be larger than
that required by the procedure’s precondition. This is the case in the disp tree
example where, for example, the symbolic heap at one of the recursive call sites is
p �→[l: i, r: j]∗ tree(i)∗ tree(j), where that expected by the procedure specification
of disp tree(i) is just tree(i). We show how to use the proof theory from the
previous section to infer frame axioms.

In more detail the (spatial) part of the problem is,

Given: two symbolic heaps, Π � Σ (the heap at the call site), and Π1 � Σ1
(the procedure precondition)
To Find: a spatial predicate ΣF , the “spatial frame axiom”, satisfying the
entailment Π � Σ � Π1 � Σ1 ∗ΣF .

Our strategy is to search for a proof of the judgment Π � Σ � Π1 � Σ1, and if this
search, going upwards, halts at Π ′ � ΣF � true � emp then ΣF is a sound choice
as a frame axiom. We give a few examples to show how this mechanism works.
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First, and most trivially, let us consider the disp tree example:

Assertion at Call Site : p �→[l: i, r: j] ∗ tree(i) ∗ tree(j)
Procedure Precondition : tree(i)

Then an instance of ∗-Introduction

p �→[l: i, r: j] ∗ tree(j) � emp
p �→[l: i, r: j] ∗ tree(i) ∗ tree(j) � tree(i)

immediately furnishes the correct frame axiom: p �→[l: i, r: j] ∗ tree(j).
For an example that requires a little bit more logic, consider:

Assertion at Call Site : x�→[] ∗ y �→[]
Procedure Precondition : x�=y � x�→[]

x�=y � y �→[] � emp
x�=y � y �→[] � x�=y � emp

x�=y � x�→[] ∗ y �→[] � x�=y � x�→[]
x�→[] ∗ y �→[] � x�=y � x�→[]

Here, the inequality x�=y is added to the left-hand side in the normalization
phase, and then it is removed from the right-hand side in the subtraction phase.

On the other hand, consider what happens in a wrong example:

Assertion at Call Site : x�→[] ∗ y �→[]
Procedure Precondition : x=y � x�→[]

??
x�=y � y �→[] � x=y � emp

x�=y � x�→[] ∗ y �→[] � x=y � x�→[]
x�→[] ∗ y �→[] � x=y � x�→[]

In this case we get stuck at an earlier point because we cannot remove the
equality x=y from the right-hand side in the subtraction phase. To correctly get
a frame axiom we have to obtain true in the pure part of the right-hand side; we
do not do so in this case, and we rightly do not find a frame axiom.

The proof-theoretic justification for this method is the following.

Theorem 7. Suppose that we have an incomplete proof (a proof that doesn’t use
axioms):

[Π ′ � ΣF � true � emp]···
Π � Σ � Π1 � Σ1

Then there is a complete proof (without premises, using an axiomatic rule at the
top) of:

Π � Σ � Π1 � Σ1 ∗ΣF .

This justifies an extension to the symbolic execution algorithm. In brief, we
extend the syntax of loop-free triples with a jsr instruction

C � · · · | [Π � Σ] jsr [Π ′ � Σ′] ; C jump to subroutine

annotated with a precondition and a postcondition. In Smallfoot this is gener-
ated when an annotated program is chopped into straightline Hoare triples. The
appropriate operational rule is:
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Π � Σ � Π1 ∧Π � Σ1 ∗ΣF {Π2 ∧Π � Σ2 ∗ΣF } C {Π ′ � Σ′}
{Π � Σ} [Π1 � Σ1] jsr [Π2 � Σ2] ; C {Π ′ � Σ′}

When we encounter a jsr command during symbolic execution we run the proof
theory from the previous section upwards with goal Π � Σ � Π1 � Σ1. If it
terminates with Π ′ � ΣF � true � emp then we tack ΣF onto the postcondition
Σ2, and we continue execution with C. Else we report an error.

The description here is simplified. Theorem 7 only considers incomplete
proofs with single assumptions, but it is possible to generalize the treatment
of frame inference to proofs with multiple assumptions (which leads to several
frames being checked in symbolic execution). Also, we have only discussed the
spatial part of the frame, neglecting modifies clauses for stack variables. A pure
frame must also be discovered, but that is comparatively easy.

Finally, this way of inferring frame axioms works, but is incomplete. To see
why, for [x�→−] jsr [emp] we run into a variant of the same problem discussed
before in incompleteness of the dispose instruction: it we added a frame y �→−
then the postcondition would lose the information that x�=y. Similar incom-
pleteness arises for larger-scale operations as well, such as disp tree. Now, the
incompleteness is not completely disastrous. When reasoning about recursive
calls to disp tree, never do we need to conclude an inequality between, say, a
just-disposed cell in the left subtree and a cell in the right; ∗ gives us the infor-
mation we need, at the right time, for the proof to go through.

It is an incompleteness, still.

6 Conclusion

The heap poses great problems for modular verification and analysis. For ex-
ample, PALE is (purposely) unsound in its treatment of frame axioms for pro-
cedures [7], the “modular soundness” of ESC is subtle but probably not defini-
tive [6], interprocedural Shape Analysis is just beginning to become modular [13].

We believe that symbolic execution with Separation Logic has some promise
in this area. An initial indication is the local way that heap update is treated in
symbolic execution: there is no need to traverse an entire heap structure when
an update to a single cell is done, as is the case with Shape Analysis [14]. Going
beyond this initial point, it will be essential to have a good way of inferring frame
axioms. We have sketched one method here, but there are likely to be others,
and what we have done is only a start.

There are similarities between this work and the line of work started by Alias
Types [16], however there are crucial differences. One of the most significant
points is that here we (completely) axiomatize the consequences of induction for
our inductive predicates, while the ‘coercions’ of [16] include only rolling and un-
rolling of inductive definitions. Relatedly, here we capture semantic entailment
between formulæ exactly, as opposed to providing a coarse approximation. Addi-
tionally, this enables commands to branch on possibly inductive consequences of
heap shape. Another crucial difference is that here we rely on Separation Logic’s
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Frame Rule for a very strong form of modularity, and infer frame axioms us-
ing incomplete proofs, while Alias Types uses second-order quantification (store
polymorphism) with manual instantiation. These differences aside, one wonders
whether the lines of work stemming from Alias Types and Separation Logic
will someday merge; an interesting step along these lines is in [8], and we are
investigating uses of bunched typing [11, 9] for similar purposes.

A different way of automating Separation Logic has recently been put for-
ward by Jia and Walker [5]. An interesting part of their system is how classical
arithmetic and substructural logic work together. They also provide a decidable
fragment based on Linear Logic. There is a gap between the entailment of their
proof theory and that of the heap model, because Linear Logic’s proof theory is
purposely incomplete for the standard additives supported by the model.

To build on this paper’s formulation of symbolic heaps, we would particularly
like to have a general scheme of inductive definitions rather than using hardwired
predicates. (We are not just asking for semantically well-defined recursive pred-
icates, e.g., as developed in [15], but would want a, hopefully terminating, proof
theory.) Soundly extending the techniques here to a class of inductive predicates
which generalizes those presented is largely straightforward, since the operational
symbolic execution rules would be unaffected, the necessary rearrangement rule
for unrolling a more general inductive predicate depends on a certain shape of the
inductive definitions where unrolling is triggered by inequalities, and the proof
system for entailment would remain sound. Maintaining the present degree of
completeness, on the other hand, is nontrivial, since the proof system for en-
tailment becomes incomplete, and exorcising spooky disjunctions may become
incomplete (that is, modifying exor such that the ‘if’ direction of Theorem 4
holds is (very) hard).

We would like to relax the restriction to quantifier-free assertions. For exam-
ple, with ∃y. x�→[n: y] ∗ ls(y, x) we can describe a circular linked list that has at
least one element. It may be that a restricted amount of existential quantification
is compatible with having a complete and terminating proof theory.

We should admit that consideration of completeness has greatly slowed us
down in this work. The main ideas in this paper were present, and implemented
in an early version of Smallfoot, over two years ago. But, the third author (per-
haps foolishly) then asked the first two: Is your proof theory complete? And if
not, please give an undecidability result, thus rendering completeness impossi-
ble. Now, we know that completeness is an ideal that will not always be possible
to achieve, but the first two authors were eventually able to answer in the affir-
mative. Although an ideal, we stress that we would not be satisfied with a sound
proof theory based (just) on rolling and unrolling definitions. Having a mecha-
nism to provide axioms for consequences of induction when defining inductive
predicates is essential. Without such axioms, it is not possible to verify programs
that work at the end of a singly-linked list, or at both ends of a doubly-linked
list (we have given similar proof rules for both conventional doubly-linked and
xor-linked lists).
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That being said, our symbolic execution mechanism is incomplete in two
other areas, the treatment of disposal and inference of frame axioms. The former
is perhaps reparable by hacks, but the latter is more fundamental.

The ideas in this paper would seem to provide a basis for investigating pro-
gram analysis. The first crucial question is the exact nature of the abstract
domain of formulae, which would enable the calculation of invariants by fixed-
point approximation. After that, we would like to attack the problem of mod-
ular, interprocedural heap analysis, leveraging the strong modularity properties
of Separation Logic.
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Abstract. It is known that the branching time language ACTL and the linear
time language ∀LTL of universally quantified formulae of LTL have incompa-
rable expressive powers, i.e., Sem(ACTL) and Sem(∀LTL) are incomparable
sets. Within a standard abstract interpretation framework, ACTL can be viewed
as an abstract interpretation LTL∀ of LTL where the universal path quantifier
∀ abstracts each linear temporal operator of LTL to a corresponding branching
state temporal operator of ACTL. In abstract interpretation terms, it turns out
that the universal path quantifier abstraction of LTL is incomplete. In this paper
we reason on a generic abstraction α over a domain A of a generic linear time
language L. This approach induces both a language αL of α-abstracted formulae
of L and an abstract language Lα whose operators are the best correct abstrac-
tions in A of the linear operators of L. When the abstraction α is complete for the
operators in L it turns out that αL and Lα have the same expressive power, so that
trace-based model checking of αL can be reduced with no lack of precision to A-
based model checking of Lα. This abstract interpretation-based approach allows
to compare temporal languages at different levels of abstraction and to view the
standard linear vs. branching time comparison as a particular instance.

1 Introduction

The relationship between linear and branching time specification languages to be used
in automatic system verification by model checking has been the subject of thorough
investigation [2,8,11,12,13,14,19] (see [20] for a survey). In particular, some of these
works [2,8,11,13,14] studied the relationship between the expressive power of linear vs.
branching time formalisms.

LTL and CTL are the most commonly used languages for, respectively, linear and
branching time model checking. ACTL is the fragment of CTL that uses only the uni-
versal path quantifier. Given a Kripke structure K = (Σ, R−→), the standard approach
for comparing a linear formula ϕ ∈ LTL and a branching formula ψ ∈ CTL consists in
“abstracting” the path semantics [[ϕ]] = {π ∈ P ath(K) | π |= ϕ} to its corresponding
universal (or, dually, existential) state semantics {s ∈ Σ | ∀π ∈ P ath(K). (π(0) =
s) ⇒ π |= ϕ} and then comparing this set of states with the standard state semantics
[[ψ]] = {s ∈ Σ | s |= ψ} of ψ. As shown by Cousot and Cousot [5], the intuition
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that this actually is a step of abstraction can be precisely formalized within the abstract
interpretation framework [3,4]. In fact, Cousot and Cousot [5] show that the universal
path quantifier is an abstraction function ∀ : ℘(Trace(Σ))→ ℘(Σ) mapping any set T
of traces, viz. arbitrary sequences of states, to the set of states s ∈ Σ such that any path
in K that begins in s belongs to T .

The standard approach introduced by Emerson and Halpern [8] for comparing lin-
ear and universal branching time languages relies on the above universal branching ab-
straction ∀. If L ⊆ LTL is a linear time language and L ⊆ ACTL is a branching time
language then L and L can be compared by comparing the sets {∀([[ϕ]]) ⊆ Σ | ϕ ∈ L}
and {[[ψ]] ⊆ Σ | ψ ∈ L} in ℘(℘(Σ)). Thus, the linear time language L is abstracted to
a universal branching time language ∀L, denoted by B(L) in [8]. For example, it is well
known that LTL and ACTL are incomparable (cf. [2,8]), where this means that ∀LTL
and ACTL are incomparable in ℘(℘(Σ)).

Moreover, if L is a linear time language which is inductively generated by a set
of linear operators f ∈ OpL (and a set of atomic propositions p), i.e., L ! ϕ ::=
p | f(ϕ1, ..., ϕn), then the universal path quantifier also induces the following universal
state language: L∀ ! ψ ::= ∀p | ∀f(ψ1, ..., ψn), where each linear temporal opera-
tor in Op is preceded by the universal path quantifier ∀. For example, it turns out that
ACTL = LTL∀. Thus, the comparison between ∀LTL and ACTL boils down to the
comparison between ∀LTL and LTL∀. As a consequence of the incomparability of
∀LTL and LTL∀ we obtain that the abstraction map ∀ is incomplete in the abstract in-
terpretation sense [3,9]. In fact, if ∀ would be complete for the operators of LTL then
we would also have that ∀LTL = LTL∀ whereas this is not the case. Cousot and Cousot
[5] analyzed the linear operators that cause the incompleteness of ∀ and then isolated
some inductive fragments L ⊆ LTL such that ∀L = L∀.

Thus, abstract interpretation allows to cast the linear vs. branching time problem
as a particular instance of a more general “linear vs. A time” problem, where α :
℘(Trace(Σ)) → A is any abstract interpretation of sets of traces to some abstract
domain A. For any such abstraction α, a linear language L therefore induces two “A-
time” languages: αL and Lα.

In this paper, we study a number of abstractions of sets of traces that are alterna-
tive to the above standard universal path quantifier abstraction. We consider abstrac-
tions of ℘(Trace(Σ)) parameterized by some model M , namely by the set P ath(K)
of paths in some Kripke structure K. This is more general than considering abstractions
of ℘(P ath(K)) because we show that ℘(P ath(K)) is a complete (both existential and
universal) abstract interpretation of ℘(Trace(Σ)). Completeness plays a key role in
this generalized approach. In fact, it turns out that when α is complete for the linear
operators in OpL of some language L then αL = Lα. We first study an abstract do-
main consisting of traces of sets of states, i.e., Trace(℘(Σ)). Here, the trace of sets
abstraction tr : ℘(Trace(Σ)) → Trace(℘(Σ)) approximates any set T of traces to the
sequence of sets of states reached by some trace in T . This is a more precise abstraction
than the universal branching abstraction ∀. While tr is not complete for all the linear
operators of LTL, we show that tr is instead complete for disjunction, next and even-
tually operators, namely for the fragment L({∨, X, F}) ⊆ LTL. We then consider a
reachable state abstraction rs : ℘(Trace(Σ)) → ℘(Σ), where any set T of traces T is
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approximated to the set of states reached by some trace in T . This abstraction is incom-
parable with the universal branching abstraction ∀ while it is less precise than the trace
of sets abstraction. In this case, we show that rs is not complete for the next operator
and it is still complete for the fragment L({∨, F}).

This abstract interpretation-based perspective of the linear vs. branching time prob-
lem allows us to show that the Emerson and Halpern [8] transform EH∀ of a lin-
ear time language L to the branching time language ∀L actually can be viewed as
a “higher-order” abstract interpretation. This means that EH∀ is an abstraction from
trace abstract domains to universal branching state abstract domains. Hence, the Emer-
son and Halpern transform can be generalized to a higher-order abstract interpretation
Aα : AbsDom(℘(Trace(Σ))) → AbsDom(A) which is parameterized by any trace
abstraction α : ℘(Trace(Σ))→ A, so that Aα(L) = {α([[ϕ]]) | ϕ ∈ L}. Therefore, this
generalized approach allows to compare the expressive power of linear time languages
at any level of abstraction A. As an example, we consider the linear time language
L ! ϕ ::= p | Fϕ | Gϕ. We show how this approach can be used to prove that the
languages ∀L and L∀ have incomparable expressive powers by comparing them in a
higher-order abstract domain of state partitions.

2 Basic Notions

Notation. Let X be any set. When writing a set S ∈ ℘(℘(X)) we often use a compact
form like in {1, 12, 123} ∈ ℘(℘({1, 2, 3})). We denote by ¬ the complement opera-
tor w.r.t. some universe set. A poset or complete lattice C w.r.t. a partial ordering ≤ is
denoted by C≤ or 〈C,≤〉. A function f : C → C on a complete lattice C is additive
when f preserves arbitrary least upper bounds. We denote by Part(X) the set of par-
titions of X . Part(X) is endowed with the following standard partial order �: given
P1, P2 ∈ Part(X), P1 � P2 (P1 refines P2) iff ∀B ∈ P1.∃B′ ∈ P2.B ⊆ B′. It turns
out that 〈Part(X), �〉 is a complete lattice.

Kripke Structures. We consider transition systems (Σ, R) where the transition relation
R ⊆ Σ × Σ (also denoted by R−→) is total. A Kripke structure K = (Σ, R, AP , �)
consists of a transition system (Σ, R) together with a set AP of atomic propositions
and a labeling function � : Σ → ℘(AP). A trace on Σ is any infinite sequence of
elements in Σ, that is, any function σ : N → Σ. Trace(Σ) denotes the set of traces
on Σ. For any k ∈ N and σ ∈ Trace(Σ), σk ∈ Trace(Σ) denotes the suffix of σ that
begins in σ(k), i.e., σk = λi ∈ N.σ(i + k). A path in a Kripke structure K (or, more
in general, in a transition system) is any trace π ∈ Trace(Σ) such that for any i ∈ N,
π(i) R−→ π(i + 1). P ath(K) denotes the set of paths in K.

Temporal Languages. LTL and ACTL are two well-known temporal specification
languages used in model checking. LTL consists of linear (or path) formulae describing
properties of a computation path through linear temporal operators. ACTL consists of
branching (or state) formulae that describe properties of computation trees because each
temporal operator is preceded by the universal path quantifier. We consider formulae in
negation-normal form, so that LTL is inductively defined as follows:

LTL ! ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Xϕ | U(ϕ1, ϕ2) | V(ϕ1, ϕ2)
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where p ranges over a set AP of atomic propositions that contains true. Given a Kripke
structure K, let us recall the standard semantics [[·]]K : LTL → ℘(P ath(K)) of LTL:

– [[p]]K = {π ∈ P ath(K) | p ∈ �(π(0))};
– [[¬p]]K = Path(K) � [[p]]K;
– [[ϕ1 ∧/∨ ϕ2]]K = [[ϕ1]]K ∩/∪ [[ϕ2]]K;
– “Next”: [[Xϕ]]K = {π ∈ P ath(K) | π1 ∈ [[ϕ]]K};
– “Until”: [[U(ϕ1, ϕ2)]]K = {π ∈ P ath(K) | ∃k ∈ N. πk ∈ [[ϕ2]]K and ∀j ∈

[0, k).πj ∈ [[ϕ1]]K};
– “Release”: [[V(ϕ1, ϕ2)]]K = {π ∈ P ath(K) | ∀n ∈ N.(∀i ∈ [0, n).πi �∈ [[ϕ1]]K)⇒

(πn ∈ [[ϕ2]]K)}.
“Globally” (G), “eventually” (F) and “weak-until” (W) can be defined as derived oper-
ators in LTL as follows: Gϕ

def= V(false , ϕ); Fϕ
def= U(true, ϕ); W(ϕ1, ϕ2)

def= Gϕ1 ∨
U(ϕ1, ϕ2). Moreover, “release” can be expressed in terms of “weak-until”: V(ϕ1, ϕ2)=
W(ϕ2, ϕ1 ∧ ϕ2). If Op is any set of linear operators then we will denote by L(Op) the
subset of LTL formulae which are inductively generated by the grammar:

L(Op) ! ϕ ::= p | op(ϕ1, ..., ϕn)

where op ranges over Op. The universal (or, dually, existential) path quantifier pro-
vides a state semantics of LTL. For any ϕ ∈ LTL, [[∀ϕ]]K = {s ∈ Σ | ∀π ∈
P ath(K). (π(0) = s) ⇒ π ∈ [[ϕ]]K}. For any L ⊆ LTL, ∀L denotes the set of
universally quantified formulae of L, i.e. ∀L = {∀ϕ | ϕ ∈ L}.

ACTL is defined by the following grammar:

ACTL ! ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | AXϕ | AU(ϕ1, ϕ2) | AV(ϕ1, ϕ2)

The standard semantics [[·]]K : ACTL → ℘(Σ) w.r.t. a Kripke structure K goes as
follows:

– [[p]]K = {s ∈ Σ | p ∈ �(s)};
– [[¬p]]K = Σ � [[p]]K;
– [[ϕ1 ∧/∨ ϕ2]]K = [[ϕ1]]K ∩/∪ [[ϕ2]]K;
– [[AXϕ]]K = {s ∈ Σ | ∀t ∈ Σ. (s R−→ t)⇒ t ∈ [[ϕ]]K};
– [[AU(ϕ1, ϕ2)]]K = {s ∈ Σ | ∀π ∈ Path(K). (π(0) = s) ⇒ ∃k ∈ N. πk ∈

[[ϕ2]]K and ∀j ∈ [0, k).πj ∈ [[ϕ1]]K};
– [[AV(ϕ1, ϕ2)]]K = {s ∈ Σ | ∀π ∈ Path(K). (π(0) = s) ⇒ (∀n ∈ N. (∀i ∈

[0, n).πi �∈ [[ϕ1]]K)⇒ (πn ∈ [[ϕ2]]K))}.
It is well known that LTL, i.e. ∀LTL, and ACTL have incomparable expressive

powers [2,8,13,20]. For instance, the ACTL formula AFAGp cannot be expressed in
∀LTL while the ∀LTL formula AFGp cannot be expressed in ACTL.

3 Abstract Interpretation of Inductive Languages

3.1 Abstract Interpretation Basics

In standard abstract interpretation, abstract domains can be equivalently specified either
by Galois connections/insertions (GCs/GIs) or by (upper) closure operators (uco’s) [4].
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These two approaches are equivalent, modulo isomorphic representations of domain’s
objects. The closure operator approach has the advantage of being independent from
the representation of domain’s objects and is therefore appropriate for reasoning on ab-
stract domains independently from their representation. Recall that µ : C → C is a uco
when µ is monotone, idempotent and extensive (viz. x ≤ µ(x)). It is well known that
the set uco(C) of all uco’s on C, endowed with the pointwise ordering �, gives rise
to the complete lattice 〈uco(C),�〉 of abstract domains of C. The ordering on uco(C)
corresponds to the standard order which is used to compare abstract domains with re-
gard to their precision: µ1 � µ2 means that the domain µ1 is a more precise abstraction
of C than µ2, or, equivalently, that the abstract domain µ1 is a refinement of µ2. Each
closure µ ∈ uco(C) is uniquely determined by the set µ(C) of its fixpoints, which is
also its image img(µ). Moreover, a subset X ⊆ C is the set of fixpoints of a uco on C
iff X is meet-closed (i.e. closed under arbitrary greatest lower bounds). Also, we have
that µ � ρ iff ρ(C) ⊆ µ(C). Often, we will identify closures with their sets of fixpoints
since this does not give rise to ambiguity.

We denote by G = (α, C, A, γ) a GC/GI of the abstract domain A into the con-
crete domain C through the abstraction and concretization maps α and γ forming an
adjunction between C and A: α(c) ≤C a ⇔ c ≤A γ(a). Let us recall that it is enough
to specify either the abstraction or the concretization map because in any GC the left
adjoint map α determines the right adjoint map γ and vice versa: on the one hand, α is
additive iff α admits the right adjoint γ(a) = ∨C{c ∈ C | α(c) ≤A a}; on the other
hand, γ is co-additive iff γ admits the left adjoint map α(c) = ∧A{a ∈ A | c ≤C γ(a)}.
Recall that a GC is a GI when α is onto (or, equivalently, γ is 1-1), meaning that
A does not contain useless abstract values. Recall that any GC G induces the uco
µG = γ ◦ α and conversely any µ ∈ uco(C) induces a GI (µ, C, img(µ), id). Ga-
lois connections of a concrete domain C can be ordered according to their precision
by exploiting the above ordering on the induced uco’s: G1 = (α1, C, A1, γ1) ≤ G2 =
(α2, C, A2, γ2) when µG1 � µG2 . Let α : ℘(X) → ℘(Y ) and γ : ℘(Y ) → ℘(X), and
α̃

def= ¬◦α◦¬ and γ̃
def= ¬◦γ◦¬. Recall that (α, ℘(X)⊆/⊇, ℘(Y )⊆/⊇, γ) is a GC/GI iff

(α̃, ℘(X)⊇/⊆, ℘(Y )⊇/⊆, γ̃) is a GC/GI. Thus, results on α/γ and α̃/γ̃ can be dualized
through complementation.

By the above equivalence, throughout the paper, uco(C)� will play the role of the
lattice of abstract interpretations of C [3,4], i.e. the complete lattice of all the abstract
domains of the concrete domain C.

Let (α, C, A, γ) be a GI, f : C → C be some concrete semantic function — for
simplicity of notation, we consider here 1-ary functions — and f � : A → A be a
corresponding abstract semantic function. Then, 〈A, f �〉 is a sound abstract interpreta-
tion when α ◦ f � f � ◦ α. The abstract function fA def= α ◦ f ◦ γ : A → A is called the
best correct approximation of f in A. Completeness in abstract interpretation [3,9] cor-
responds to require the following strengthening of soundness: α ◦ f = f � ◦ α. Hence,
completeness corresponds to require that, in addition to soundness, no loss of precision
is introduced by the abstract function f � on the approximation α(c) of a concrete object
c ∈ C with respect to approximating by α the concrete computation f(c). Complete-
ness is an abstract domain property because it only depends on the abstract domain: in
fact, it turns out that 〈A, f �〉 is complete iff 〈A, fA〉 is complete. Thus, completeness
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can be equivalently stated as a property of closures as follows: µ ∈ uco(C) is complete
for f iff µ ◦ f = µ ◦ f ◦ µ [9].

3.2 Abstract Semantics of Inductive Languages

Concrete Semantics. It is well known that abstract interpretation can be applied to
approximate the semantics of any inductively defined language. Assume that formulae
of a generic inductive language L are defined by:

L ! ϕ ::= p | f(ϕ1, ..., ϕn)

where p ranges over a set of atomic propositions, that is left unspecified, while f ranges
over a finite set Op of operators. Each operator f ∈ Op has an arity1 �(f) > 0. The set
of operators of L is also denoted by OpL. Formulae in L are interpreted on a semantic
structure S = (C,AP, I) where: C is any (concrete) domain of interpretation,AP is a
set of atomic propositions and I is an interpretation function such that for any p ∈AP,
I(p) ∈ C and for any f ∈ Op, I(f) : C�(f) → C. For p ∈AP and f ∈ Op we will
also use p and f to denote, respectively, I(p) and I(f). Also, Op def= {f | f ∈ Op}.
Hence, the concrete semantic function [[·]]S : L → C is inductively defined as follows:

[[p]]S = p and [[f(ϕ1, ..., ϕn)]]S = f([[ϕ1]]S, ..., [[ϕn]]S).

When clear from the context, we will omit the subscript S which denotes the underlying
semantic structure. The set of semantic evaluations in S of formulae in L is denoted
by SemS(L) def= {[[ϕ]]S | ϕ ∈ L}, or simply by SemC(L). SemC(L) is also called the
expressive power (in C) of the language L.

If g is any syntactic operator with arity �(g) = n > 0 and whose interpretation is
given by g : Cn → C then we say that a language L is closed under g when for any
ϕ1, ..., ϕn ∈ L there exists some ψ ∈ L such that g([[ϕ1]]S, ..., [[ϕn]]S) = [[ψ]]S, for
any semantic structure S. In particular, if L is evaluated on a powerset ℘(X) then L is
closed under (infinite) logical conjunction iff for any Φ ⊆ L, there exists some ψ ∈ L
such that

⋂
ϕ∈Φ[[ϕ]]S = [[ψ]]S.

The standard semantics of LTL and ACTL, as recalled in Section 2, can be viewed
as concrete semantic functions, where the concrete semantic domains are given, respec-
tively, by ℘(Path(K)) and ℘(Σ).

Comparing Expressive Power. The standard notion of expressive power is used to
compare different languages. Let L1 and L2 be two languages. L1 is more expressive
than L2, denoted by L1 ≤ L2, when for any semantic structure S = (C,AP, I) such that
I provides an interpretation for all the operators in L1 and L2, SemS(L2) ⊆ SemS(L1),
while L1 is equivalent to L2, denoted by L1 ≡ L2, when L1 ≤ L2 and L2 ≤ L1, viz.,
SemS(L1) = SemS(L2). For instance, as recalled in Section 2, ACTL and ∀LTL have
incomparable expressive powers meaning that ACTL �≤ ∀LTL and ∀LTL �≤ ACTL.

Abstract Semantics. Within the standard abstract interpretation framework for defin-
ing abstract semantics [3,4], for a given semantic structure S = (C,AP, I), C≤ is a

1 It would be possible to consider generic operators whose arity is any possibly infinite ordinal,
thus allowing, for example, infinite conjunctions or disjunctions.
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complete lattice which plays the role of concrete domain. Let us consider an abstract
domain A specified by a GI G = (α, C, A, γ). Thus, A induces an abstract semantic
structure SA = (A,AP, IA) where IA is defined through best correct approximations
as follows:

IA(p) def= α(I(p)) and IA(f) def= α ◦ I(f) ◦ γ.

Thus, SA induces the abstract semantic function [[·]]AS : L → A (also simply denoted
by [[·]]A). We will also use Lα or LA to denote the abstract semantic evaluation of L
induced by the abstract domain A so that Sem(Lα) (or Sem(LA)) denotes the set of
abstract semantics {[[ϕ]]A | ϕ ∈ L}.

On the other hand, the domain A also induces the overall abstraction of the concrete
semantics, namely A[[·]]S : L → A is defined by: A[[ϕ]]S

def= α([[ϕ]]S). In this case, we
will use αL to denote this abstract semantic evaluation of L induced by the abstract
domain A so that Sem(αL) = {A[[ϕ]]S | ϕ ∈ L}.
Definition 1. The abstraction α is complete for L when Sem(αL) = Sem(Lα).

This is indeed a generalization of Emerson and Halpern’s [8] approach for comparing
linear and branching formulae based on the universal path quantifier ∀. In fact, we will
see in Section 4.2 how the universal path quantifier ∀ can be viewed as a particular
abstraction of sets of traces, so that the branching language ∀L = {∀ϕ | ϕ ∈ L} and the
corresponding results in [8] can be cast as particular cases in our framework.

It turns out that the abstract semantic function is always sound by construction:
for any ϕ ∈ L, α([[ϕ]]S) ≤A [[ϕ]]AS (or, equivalently, [[ϕ]]S ≤C γ([[ϕ]]AS )). As far as
completeness is concerned, it turns out that completeness of the abstract domain A for
(the interpretation of) the operators in Op ensures completeness of the abstract semantic
function [5].

Theorem 1 (Cousot and Cousot [5]). If A is complete for every f ∈ OpL then for
every ϕ ∈ L, α([[ϕ]]S) = [[ϕ]]AS . In this case, α is complete for L.

4 Abstracting Traces

4.1 Trace Semantics of Linear Languages

As recalled above, the standard semantics of a linear formula ϕ ∈ LTL consists of a set
of paths in a Kripke structure K = (Σ, R, AP, �). Path(K) can be viewed as a model
M for interpreting LTL. It turns out that this standard semantics can be obtained as an
abstract interpretation of a more general semantics which evaluates formulae in LTL
as a set of traces and therefore is independent from a given model. Following [5], this
trace semantics [[·]] : LTL → ℘(Trace(Σ)) only depends on a state space Σ and is as
follows:

– [[p]] = {σ ∈ Trace(Σ) | p ∈ �(σ(0))};
– [[¬p]] = Trace(Σ) � [[p]];
– [[ϕ1 ∧/∨ ϕ2]] = [[ϕ1]] ∩/∪ [[ϕ2]];
– [[Xϕ]] = X([[ϕ]]) def= {σ ∈ Trace(Σ) | σ1 ∈ [[ϕ]]};
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– [[U(ϕ1, ϕ2)]] = U([[ϕ1, ϕ2]])
def= {σ ∈ Trace(Σ) | ∃k ∈ N. σk ∈ [[ϕ2]] and ∀j ∈

[0, k).σj ∈ [[ϕ1]]};
– [[V(ϕ1, ϕ2)]] = V([[ϕ1, ϕ2]])

def= {σ ∈ Trace(Σ) | ∀n ∈ N. (∀i ∈ [0, n).σi �∈
[[ϕ1]])⇒ (σn ∈ [[ϕ2]])}.
Let M = P ath(K) be a model and let us define αM∀ : ℘(Trace(Σ)) → ℘(M) and

γM∀ : ℘(M)→ ℘(Trace(Σ)) as follows:

αM∀(T ) def= T ∩M and γM∀(P ) def= P.

It is easy to note that (αM∀ , ℘(Trace(Σ))⊇, ℘(M)⊇, γM∀) is a GI. This is a universal
model abstraction (hence the subscript ∀) because sets of traces and paths are ordered
by superset inclusion. The abstraction map λT.T ∩M on ℘(Trace(Σ))⊆ gives also rise
to the existential model abstraction (αM∃ , ℘(Trace(Σ))⊆, ℘(M)⊆, γM∃) where:

αM∃(T ) def= T ∩M and γM∃(P ) def= P ∪¬M.

Note that ¬M is the set of “spurious” traces, namely traces that are not paths. This is a
GI as well. Existential abstraction is dual to universal abstraction because: γM∃ ◦αM∃ =
¬ ◦ (γM∀ ◦ αM∀) ◦¬.

It is immediate to notice that for any ϕ ∈ LTL, [[ϕ]]K = αM∀([[ϕ]]) = αM∃([[ϕ]]).
In abstract interpretation terms, this is a consequence of the fact that the standard path
semantics of LTL is a complete abstract interpretation of trace semantics.

Proposition 1. αM∀ and αM∃ are complete for the linear operators in OpLTL.

As a consequence, αM∀([[ϕ]]) = [[ϕ]]αM∀ = [[ϕ]]K and αM∃([[ϕ]]) = [[ϕ]]αM∃ = [[ϕ]]K,
namely path semantics can be retrieved as complete abstractions of trace semantics.

In the following, we provide a number of abstractions of the trace semantics of LTL,
based on abstract domains of the existential/universal concrete domain ℘(Trace(Σ))⊆/⊇.
Any such trace abstraction α∃/∀

M : ℘(Trace(Σ))⊆/⊇ → A depends on a model M =
P ath(K) and can be factorized as α∃/∀

M = α∃/∀ ◦ αM∃/∀ , where α∃/∀ : ℘(M)⊆/⊇ →
A is a path abstraction, namely an abstraction of of the existential/universal domain
℘(M)⊆/⊇ of sets of paths. It turns out that the above Proposition 1 makes completeness
of trace and path abstractions α∃/∀

M and α∃/∀ equivalent. In fact, if f : ℘(Trace(Σ)) →
℘(Trace(Σ)) is a linear trace operator and f∃/∀ : ℘(M)→ ℘(M) is the corresponding
linear path operator induced by αM∃/∀ (i.e., f∃/∀ = αM∃/∀ ◦ f ◦ γM∃/∀ ), then α∃/∀

M is

complete for f iff α∃/∀ is complete for f∃/∀.

4.2 Branching Abstraction

As shown by Cousot and Cousot [5], the universal path quantifier allows to cast states as
an abstraction of traces, so that state-based model checking can be viewed as an abstrac-
tion of trace-based model checking. Let K be a Kripke structure and M = P ath(K)
be the corresponding model. For any s ∈ Σ and i ∈ N, we define M i

↓s
def= {π ∈

M | π(i) = s}. Therefore, M i
↓s is the set of paths in M whose state at time i is s.

In particular, M0
↓s is the set of paths that start in s. The universal branching abstraction

G∀ = (α∀
M , ℘(Trace(Σ))⊇, ℘(Σ)⊇, γ∀

M ) is defined as follows:

α∀
M (T ) def= {s ∈ Σ |M0

↓s ⊆ T } and γ∀
M (S) def= {π ∈M | π(0) ∈ S}.
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α∃
M (T )

set T
of traces

Fig. 1. Branching abstraction

It turns out that G∀ is a GI. The existential branching abstraction is defined by duality:

– α∃
M (T ) def= ¬(α∀

M (¬(T ))) = {s ∈ Σ |M0
↓s ∩ T �= ∅};

– γ∃
M (S) def= ¬(γ∀

M (¬(S))) = {π ∈ ℘(Trace(Σ)) | (π ∈ M)⇒ (π(0) ∈ S)}.

In this case, G∃ = (α∃
M , ℘(Trace(Σ))⊆, ℘(Σ)⊆, γ∃

M ) is a GI. An example of existential
branching abstraction is depicted in Figure 1.

The branching abstraction exactly formalizes the universal path quantification of
LTL formulae: in fact, it is immediate to observe that for any ϕ ∈ LTL, [[∀ϕ]]K =
α∀

M ([[ϕ]]K). Moreover, as shown by Cousot and Cousot [5], it turns out that the branch-
ing abstraction LTLα∀

M of LTL exactly gives ACTL, namely the best correct approx-

imations of the linear operators of LTL induced by α∀
M coincide with the branching

state temporal operators of ACTL. Therefore, Sem(LTLα∀
M ) = Sem(ACTL).

As recalled above, it is well known that ∀LTL and ACTL have incomparable ex-
pressive powers. In our framework, this means that Sem(α∀

MLTL) and Sem(LTLα∀
M )=

Sem(ACTL) are incomparable sets, i.e. the branching abstraction is incomplete for
LTL. As a consequence, by Theorem 1, it turns out that the branching abstraction is
incomplete for some operators in OpLTL. The sources of incompleteness of α∀

M have
been analyzed by Cousot and Cousot [5]: the branching abstraction results to be in-
complete for the disjunction, until and release operators (see [5]). On the other hand,
Maidl [14] provides a synctatic characterization of the maximum common fragment,
called LTLdet, of LTL and ACTL: for any ϕ ∈ LTL, α∀

M ([[ϕ]]) ∈ Sem(ACTL) iff
[[ϕ]] ∈ Sem(LTLdet). We will further discuss completeness of the branching abstrac-
tion in Section 5.1.

4.3 Trace of Sets Abstraction

Sets of traces can be approximated by a trace of sets. Let us formalize this approxi-
mation. We consider the abstract domain Trace(℘(Σ)), namely sequences of sets of
states. Traces of sets are ordered pointwise: if σ, τ ∈ Trace(℘(Σ)) then σ � τ iff
∀i ∈ N. σ(i) ⊆ τ(i). Thus, we first consider existential traces of sets because ℘(Σ)
is here ordered by ⊆. It turns out that Trace(℘(Σ))� is a complete lattice where
σ � τ = λi. σ(i) ∪ τ(i) and σ � τ = λi. σ(i) ∩ τ(i). The existential trace of sets
abstraction α∃t

M : ℘(Trace(Σ))→ Trace(℘(Σ)) is then defined as follows:

α∃t
M (T ) def= λi ∈ N.{π(i) | π ∈ T ∩M} = λi ∈ N.{s ∈ Σ |M i

↓s ∩ T �= ∅}
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Fig. 2. Existential trace of sets abstraction

a b

a b

c d a b c

Fig. 3. Transition systems T1 (left), T2 (middle) and T3 (right)

and together with its adjoint map γ∃t
M : Trace(℘(Σ))→ ℘(Trace(Σ)) defined by

γ∃t
M (τ) def= {π ∈ Trace(Σ) | (π ∈M)⇒ ∀i ∈ N. π(i) ∈ τ(i)}

gives rise to a GC.

Theorem 2. G∃t = (α∃t
M , ℘(Trace(Σ))⊆, Trace(℘(Σ))�, γ∃t

M ) is a GC.

A graphical example of an existential trace of sets abstraction is given in Figure 2. It
turns out that G∃t is not a GI. In fact, for the transition system T1 in Figure 3, γ∃t

M is not
1-1: γ∃t

M (〈{a}, {a}, {b}, {b}, {b}, ...〉) = γ∃t
M (〈{a}, {a}, {a}, {b}, {b}, ...〉) = ¬M .

The universal trace of sets abstraction is dually defined, where the complement of a
trace of sets is defined pointwise, namely for any τ ∈ Trace(℘(Σ)), ¬τ = λi. ¬τ(i).

– α∀t
M (T ) def= ¬(α∃t

M (¬(T ))) = λi ∈ N.{s ∈ Σ |M i
↓s ⊆ T };

– γ∀t
M (τ) def= ¬(γ∃t

M (¬τ)) = {π ∈M | ∃i ∈ N.π(i) ∈ τ(i)}.
Hence, G∀t = (α∀t

M , ℘(Trace(Σ))⊇, Trace(℘(Σ))�, γ∀t
M ) is a GC as well.

4.4 Reachable State Abstraction

One can approximate a set T of traces through the set of states that can be reached
by some path in T . Let us formalize this approximation. For any s ∈ Σ, let us define
M↓s

def=
⋃

i∈N
M i

↓s = {π ∈ M | ∃i ∈ N. π(i) = s}. Thus, the existential reachable

state abstraction α∃r
M : ℘(Trace(Σ)) → ℘(Σ) is defined by:

α∃r
M (T ) def= {s ∈ Σ |M↓s ∩ T �= ∅}.

Therefore, the corresponding concretization map γ∃r
M : ℘(Σ) → ℘(Trace(Σ)) is as

follows:

γ∃r
M (S) def= {π ∈ Trace(Σ) | (π ∈ M)⇒ (∀i ∈ N. π(i) ∈ S)}.
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Fig. 4. Existential reachable state abstraction

Theorem 3. G∃r def= (α∃r
M , ℘(Trace(Σ))⊆, ℘(Σ)⊆, γ∃r

M ) is a GC.

A graphical example of existential reachable state abstraction is depicted in
Figure 4. Also in this case, this is not a GI. In fact, by considering the transition system
T1 in Figure 3, we have that γ∃r

M is not 1-1: γ∃r
M (∅) = γ∃r

M ({a}) = ¬M .
By duality, the universal reachable state abstraction is defined as follows:

– α∀r
M (T ) def= ¬(α∃r

M (¬(T ))) = λi ∈ N.{s ∈ Σ |M↓s ⊆ T };
– γ∀r

M (S) def= ¬(γ∃r
M (¬S)) = {π ∈ M | ∃i ∈ N.π(i) ∈ S}.

Hence, G∀r = (α∀r
M , ℘(Trace(Σ))⊇, Trace(℘(Σ))�, γ∀r

M ) is a GC as well.

4.5 Comparing Trace Abstractions

It turns out that traces of sets of states are more precise than both branching and reach-
able states, while branching and reachable states abstractions are incomparable.

Proposition 2. G∀t ≤ G∀ and G∀t ≤ G∀r. Also, G∀ and G∀r are incomparable.

5 Completeness of Trace Abstractions

5.1 Branching Abstraction

The maximum common fragment LTLdet of LTL and ACTL has been characterized
by Maidl [14]:

LTLdet ! ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | (p ∧ ϕ1) ∨ (¬p ∧ ϕ2) |
Xϕ | U(p ∧ ϕ1,¬p ∧ ϕ2) |W(p ∧ ϕ1,¬p ∧ ϕ2)

Maidl [14] shows that LTLdet = LTL∩ACTL, namely for any ϕ ∈ LTL, α∀
M ([[ϕ]]) ∈

Sem(ACTL) iff [[ϕ]] ∈ Sem(LTLdet). This result is important in abstract model check-
ing because formulae in LTL ∩ACTL admit linear counterexamples.

It turns out that the branching abstraction is complete for all the logical/temporal
operators of LTLdet.
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Theorem 4. α∀
M is complete for the logical/linear operators in OpLTLdet

.

Thus, as expected, by Theorem 1 we obtain that the branching abstraction is com-
plete for LTLdet so that trace-based and state-based model checking of LTLdet are
equivalent.

We also obtain a further consequence from this completeness result. Some attempts
prior to Maidl’s 2000 work [14] of characterizing LTL∩ACTL considered the so-called
branchable formulae of LTL: given ϕ ∈ LTL, the formula ϕA ∈ ACTL is obtained
from ϕ by preceding each linear temporal operator occurring in ϕ by the universal path
quantifier A. A formula ϕ ∈ LTL is branchable when α∀

M ([[ϕ]]) = [[ϕA]] [11,20]. We
thus define LTLbr

def= {ϕ ∈ LTL | ϕ is branchable}. Since the abstract semantics [[ϕ]]α
∀
M

of a LTL formula ϕ exactly coincides with [[ϕA]], by Theorem 4, we have that LTLbr =
{ϕ ∈ LTL | α∀

M ([[ϕ]]) = [[ϕ]]α
∀
M }. As a consequence of the above Theorem 4, of

Theorem 1 and of Maidl’s Theorem, we obtain the following alternative characterization
relating LTLdet and LTLbr.

Theorem 5. Sem(LTLdet) = Sem(LTLbr).

5.2 Trace of Sets Abstraction

The trace of sets abstraction α∀t
M is not complete for all the operators of LTL. This is

indeed a consequence of a more general result in [16] stating that no refinement of the
branching abstraction can be complete for all the operators of LTL. As an example,
let us show that α∀t

M is not complete for disjunction. In fact, for the transition system
T2 in Figure 3, by considering the set of traces (actually paths) T1 = {abω, cdω} and
T2 = {adω, cbω}, we have that:

α∀t
M (¬T1) � α∀t

M (¬T2) =
〈{b, d}, {a, c}, {a, c}, ...〉 � 〈{b, d}, {a, c}, {a, c}, ...〉 =

〈{b, d}, {a, c}, {a, c}, ...〉 �
α∀t

M (¬T1 ∪¬T2) =
α∀t

M (Trace(Σ)) =
〈{a, b, c, d}, {a, b, c, d}, {a, b, c, d}, ...〉

On the other hand, it turns out that traces of sets are complete for conjunction, next
and globally operators.

Proposition 3. α∀t
M is complete for the following operators on ℘(Trace(Σ)): λS, T.S∩

T , λT.X(T ), λT.G(T ).

Thus, by Theorem 1, we obtain that α∀t
M is complete for L({∧, X, G}). By duality,

α∃t
M is complete for L({∨, X, F}).

5.3 Reachable State Abstraction

As expected, also the reachable states abstraction is not complete for all the linear op-
erators of LTL. For instance, let us show that α∀r

M is not complete for disjunction and
next operators. As far as disjunction is concerned, let us consider the transition system
T3 in Figure 3 and the set of traces (actually paths) T1 = {abω} and T2 = {cbω}.
α∀r

M (¬T1)∪α∀r
M (¬T2) = {c}∪{a} �= α∀r

M (¬T1∪¬T2) = α∀r
M (Trace(Σ)) = {a, b, c}.
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Moreover, for the next operator X we have that:

α∀r
M (X(¬{abω})) = ¬α∃r

M (X({abω}))=¬α∃r
M ({aabω, babω, cabω})=¬{a, b}={c}.

Conversely, we have that α∀r
M (X(γ∀r

M (α∀r
M (¬{abω}))))=¬α∃r

M (X(γ∃r
M (α∃r

M ({abω}))))
and bω ∈ γ∃r

M (α∃r
M ({abω})) so that cbω ∈ X(γ∃r

M (α∃r
M ({abω}))) and in turn c ∈

α∃r
M (X(γ∃r

M (α∃r
M ({abω})))), namely c �∈ α∀r

M (X(γ∀r
M (α∀r

M (¬{abω})))). We have thus
shown incompleteness for X:

α∀r
M (X(¬{abω})) �= α∀r

M (X(γ∀r
M (α∀r

M (¬{abω})))).
Here, it turns out that α∀r

M is complete for conjunction and globally operators.

Proposition 4. α∀r
M is complete for the following operators on ℘(Trace(Σ)): λS, T.S∩

T and λT.G(T ).

Therefore, by Theorem 1, we obtain that α∀r
M is complete for L({∧, G}). By duality,

α∃r
M is complete for L({∨, F}).

6 Comparing Expressive Powers

The standard notion of expressive power recalled in Section 3.2 is based on the idea
of comparing languages in a common domain of interpretation. In fact, given a domain
of interpretation C of some semantic structure S = (C,AP, I) we can compare two
languages L1 and L2 by comparing SemC(L1) and SemC(L2). Thus, we write L1 ≡C

L2 (L1 ≤C/≥C L2) when SemC(L1) = SemC(L2) (SemC(L1) ⊇/⊆ SemC(L2)).
More in general, we can also compare languages in a common “abstract” domain

of interpretation. For example, it is well known how to compare state languages in the
abstract domain of partitions. Let L be a state language, namely to be evaluated on
℘(Σ). Following Dams [6,7], the logical equivalence∼L on the state space Σ induced
by L is defined as follows: s1 ∼L s2 iff ∀ϕ ∈ L.s1 ∈ [[ϕ]] ⇔ s2 ∈ [[ϕ]]. The
state partition associated to the equivalence ∼L is here denoted by PL ∈ Part(Σ)
and, following Dams [6,7], is called the distinguishing power of L. Then, two state
languages L1 and L2 can be also compared according to their distinguishing power:

L1 ≡Part(Σ) L2 iff PL1 = PL2 .

Of course, this is indeed an “abstract” way of comparing languages because

L1 ≡℘(Σ) L2 ⇒ L1 ≡Part(Σ) L2

while the reverse implication is obviously not true. The distinguishing power is more ab-
stract than the expressive power because it is not able to discriminate presence/absence
of negation: in fact, for any language L, if L¬ denotes the language L plus negation then
we have that PL = PL¬ [17]. As an example, let Lµ denotes mu-calculus. It is well
known [1] that PCTL = PLµ , that is CTL ≡Part(Σ) Lµ, whereas Sem℘(Σ)(CTL) �
Sem℘(Σ)(Lµ), that is Lµ �℘(Σ) CTL. A number of further examples can be found in
Dams’ works [6,7].
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The key point here is that the lattice Part(Σ) of state partitions is indeed an ab-
straction of the lattice of abstract domains uco(℘(Σ)), as shown in [17]. Starting from
this observation, the idea of comparing languages at different levels of abstraction can
be precisely formalized by abstract interpretation. Let us recall from [17] how Part(Σ)
can be viewed as an abstraction of the lattice of abstract domains uco(℘(Σ)). We define
the abstraction and concretization maps:

uco(℘(Σ)⊆)� −−−→−→←−−−−−
par

pcl
Part(Σ)�

where, for any s ∈ Σ and µ ∈ uco(℘(Σ)), [s]µ
def= {s′ ∈ Σ | µ({s′}) = µ({s})} and

par(µ) def= {[s]µ | s ∈ Σ}, while pcl(P ) def= λX ∈ ℘(Σ). ∪ {B ∈ P | X ∩ B �= ∅}.
Thus, two states belong to the same block of par(µ) when they are abstracted by µ
to the same set while pcl(P )(X) is the minimal covering of the set X ⊆ Σ through
blocks in P .Let us also remark that pcl(P ) is a uco whose set of fixpoints is given by
all the unions of blocks in P , i.e. pcl(P ) = {∪iBi | {Bi} ⊆ P}. It turns out that
(par, uco(℘(Σ))�, Part(Σ)�, pcl) is a GI.

Let us observe that a state language L (to be evaluated on ℘(Σ)) which is closed
under conjunction can be viewed as an abstract domain, in the sense that Sem℘(Σ)(L) ∈
uco(℘(Σ)⊆) because Sem℘(Σ)(L) is meet-closed (cf. Section 3.1). Assume now that L
is closed under conjunction. Then, the distinguishing power of L can be retrieved as an
abstraction in Part(Σ) of the expressive power of L, that is PL = par(Sem℘(Σ)).

Obviously, this can be done in general for any abstraction (α, uco(℘(Σ))�, A, γ),
namely we can define the α-expressive power of a state language L as the abstract value
α(Sem℘(Σ)) ∈ A. Notice that (α, uco(℘(Σ))�, A, γ) is a generic higher-order abstract
interpretation meaning that here we deal with an abstraction of the higher-order lattice
of abstract domains of the concrete domain ℘(Σ).

6.1 Generalizing the Linear vs. Branching Time Comparison

As recalled in Section 3.2, Emerson and Halpern [8] use the universal path quantifier ∀
for “abstracting” a linear time language L to a corresponding branching time language
B(L) def= {∀ϕ | ϕ ∈ L} so that the expressive power of L can be compared with that
of any state language. As shown in Section 4.2, the path quantifier ∀ can be cast as
the branching abstract interpretation (α∀

M , ℘(Trace(Σ))⊇, ℘(Σ)⊇, γ∀
M ). Thus, the ex-

pressive power of B(L) (in ℘(Σ)) actually can be characterized as Sem℘(Σ)(B(L)) =
{α∀

M ([[ϕ]]) | ϕ ∈ L}. Therefore, Emerson and Halpern [8] indeed define a mapping
which abstracts the “trace” expressive power {[[ϕ]] | ϕ ∈ L} ⊆ Trace(Σ) of any linear
time language L to a corresponding “branching time” expressive power {α∀

M ([[ϕ]]) |ϕ ∈
L} ⊆ Σ.

As noted above, when L is closed under conjunction it turns out that the expressive
power Sem℘(Trace(Σ))(L) of L is an abstract domain in uco(℘(Trace(Σ))⊆) because it
is intersection-closed. Moreover, since α∀

M : ℘(Trace(Σ))⊇ → ℘(Σ)⊇ is an abstrac-
tion map and therefore preserves least upper bounds, it turns out that {α∀

M ([[ϕ]]) | ϕ ∈
L} is intersection-closed as well, i.e., it is an abstract domain in uco(℘(Σ)⊆). In our
framework, this means that Emerson and Halpern define a mapping

EH∀ : uco(℘(Trace(Σ))) → uco(℘(Σ))
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from trace abstract domains to branching state abstract domains. Thus, any trace ab-
straction (α, ℘(Trace(Σ))⊇, A, γ) allows us to generalize the EH∀ transform from the
specific branching abstraction α∀

M to the generic abstraction α: the generic transform
Aα : uco(℘(Trace(Σ))) → uco(A) is therefore defined by Aα(µ) def= {α(T ) | T ∈ µ}.
The interesting point is that Aα gives rise to a higher-order abstract interpretation.

Theorem 6. Aα gives rise to a GI (Aα, uco(℘(Trace(Σ)))�, uco(A)�, Cα), where
Cα(ρ) def= {T ⊆ Trace(Σ) | α(T ) ∈ ρ}.

In particular, the concretization functions HE∀ : uco(℘(Σ))→ uco(℘(Trace(Σ)))
which is right adjoint to Emerson and Halpern’s transform EH∀ is defined by

HE∀(ρ) = {T ⊆ Trace(Σ) | α∀
M (T ) ∈ ρ}.

Therefore, in order to compare a linear time language L and a branching time lan-
guage L (both closed under conjunction) Emerson and Halpern compare the abstrac-
tion EH∀(Sem℘(Trace)(L)) with Sem℘(Σ)(L). In our approach, given any abstraction
(α, ℘(Trace(Σ))⊇, A, γ), like those in Section 4, we can compare L with any lan-
guage L whose semantic evaluation is in A by comparing Aα(Sem℘(Trace(Σ))) with
SemA(L).

Abstractions, namely Galois connections, can be composed. As an example, our ab-
stract interpretation-based view allows to compose Emerson and Halpern’s abstraction
with the partitioning abstraction:

uco(℘(Trace(Σ))⊆)� −−−−→−→←−−−−−
EH∀

HE∀
uco(℘(Σ)⊆)� −−−→−→←−−−−−

par

pcl
Part(Σ)�

This is quite interesting because if L1 and L2 are comparable according to their ex-
pressive power they are also comparable according to their distinguishing power: this
is an obvious consequence of the fact that abstraction maps are monotone. Thus, if L1
and L2 are incomparable in Part(Σ) they are also incomparable in ℘(Σ). This can be
helpful because comparisons in Part(Σ), i.e. based on distinguishing powers, could be
easier than those in ℘(Σ), i.e. based on expressive powers. In fact, one can compute
the distinguishing power PL of some state language L through a partition refinement
algorithm. These can be efficient algorithms because they work by iteratively refining a
current partition so that the number of iterations is always bounded by the height of the
lattice Part(Σ), namely by |Σ|. Some well-known partition refinement algorithms are
those by Paige and Tarjan [15] for CTL and by Groote and Vaandrager [10] for CTL-X.
Moreover, there also exist partition refinement algorithms for generic state languages:
see [6–Chapter 6] and [18]. Let us see an example.

Example 1. Let us consider the following two languages:

L ! ϕ ::= p | Fϕ | Gϕ L ! ψ ::= p | AFψ | AGψ

L ⊆ LTL is linear time, L ⊆ ACTL is branching time and we consider their stan-
dard interpretations. Notice that L = L∀, i.e., for any model M on a state space Σ,
Sem℘(Σ)(L) = Sem℘(Σ)(Lα∀

M ). Our goal is comparing the expressive powers of ∀L
and L, i.e. Sem℘(Σ)(α∀

ML) and Sem℘(Σ)(L). We show that they are incomparable by
comparing their distinguishing powers P∀L and PL.
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Fig. 5. Transition systems T1 (on the left) and T2 (on the right)

Let us consider the transition system T1 in Figure 5. Thus, the labelling for the atomic
propositions p and q determines the initial partition P = {134, 2}. Let us character-
ize PL. We have that [[AGp]] = {3}, so that P is refined to P ′ = {14, 2, 3}. Also,
[[AFAGp]] = {2, 3, 4}, so that P ′ is refined to P ′′ = {1, 2, 3, 4}. Hence, PL =
{1, 2, 3, 4}. Let us now consider ∀L. Since AGp ∈ ∀L, also in this case P is first refined
to P ′ = {14, 2, 3}. It turns out that this partition can be no more refined, because:

– [[AFGp]] = [[AGFp]] = {1, 2, 3, 4}; [[AFGq]] = [[AGFq]] = ∅;
– FGF = GF and GFG = FG.

Thus, PL ≺ P∀L.
Let us now consider the transition system T2 in Figure 5. Here, the labelling for the

atomic propositions provides P = {12, 345, 6} as initial partition. Let us characterize
PL. Since [[AGp]] = {5}, P is refined to P ′ = {12, 34, 5, 6}. This partition can be no
more refined because:

[[AF{12}]] = {1, 2}, [[AG{12}]] = ∅; [[AF{5}]] = {5, 6}, [[AG{5}]] = {5};
[[AF{34}]] = {1, 2, 3, 4}, [[AG{34}]] = ∅; [[AF{6}]] = {6}, [[AG{6}]] = ∅.

Thus, PL = {12, 34, 5, 6}. On the other hand, let us characterize P∀L. In this case, it is
enough to notice that [[AFGp]]={1, 3, 5, 6}, so that P is refined to P ′={1, 2, 3, 4, 5, 6}.
Hence, P∀L = {1, 2, 3, 4, 5, 6}. In this case, we have that P∀L ≺ PL.
Summing up, we showed that ∀L and L are incomparable in Part(Σ), i.e. , they have
incomparable distinguishing powers. This implies that ∀L and L have incomparable
expressive powers. ��
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Abstract. The Astrée static analyzer is a specialized tool that can
prove the absence of runtime errors, including arithmetic overflows, in
large critical programs. Keeping analysis times reasonable for industrial
use is one of the design objectives. In this paper, we discuss the parallel
implementation of the analysis.

1 Introduction

The Astrée static analyzer1 is a tool that analyzes, fully automatically, single-
threaded programs written in a subset of the C programming language, suffi-
cient for many typical critical embedded programs. The tool particularly targets
control/command applications using many floating-point variables and numeri-
cal filters, though it has been successfully applied to other categories of software.
It computes a super-set of the possible run-time errors. Astrée is designed for
efficiency on large software: hundreds of thousands of lines of code are analyzed
in a matter of hours, while producing very few false alarms. For example, some
fly-by-wire avionics reactive control codes (70 000 and 380 000 lines respectively,
the latter of a much more complex design) are analyzed in 1h and 10h 30’
respectively on current single-CPU PCs, with no false alarm [1,2,9].

Other contributions [10,15,16,17,18,14] have described the abstract domains
used in Astrée; that is, the data structures and algorithms implementing the
symbolic operations over abstract set of reachable states in the program to be
analyzed. However, the operations in these abstract domains must be driven by
an iterator, which follows the control flow of the program to be analyzed and
calls the necessary operations. This paper describes some characteristics of the
iterator. We first explain some peculiarities of our iteration algorithm as well
as some implementation techniques regarding efficient shared data structures.
These have an impact on the main contribution of the paper, which is the par-
allelization technique implemented in Astrée.

Even though Astrée presented good enough performances to be used in
practical settings on large-scale industrial code on single-processor systems,

1 http://www.astree.ens.fr
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we designed a parallel implementation suitable both for shared-memory multi-
processor systems and for small clusters of PCs over local area networks. Astrée
being focused on synchronous, statically scheduled reactive programs, we used
that peculiar form of the program to be analyzed in order to design a very sim-
ple, yet efficient, parallelization scheme. We however show that the control-flow
properties that enable such parallel analysis are to be found in other kinds of pro-
grams, including major classes of programs such as event-driven user interfaces.

Section 2 describes the overall structure of the interpreter and the most
significant choices about the iteration strategy. This defines the framework within
which we implement our parallelization scheme. We also discuss implementation
choices for some data structures, which have a large impact on the simplicity
and efficiency of the parallel implementation.

Section 3 describes the parallelization of the abstract interpreter in a range
of practical cases.

2 The ASTRÉE Abstract Interpreter

Our static analyzer is structured in several hierarchical layers:
– a denotational-based abstract interpreter abstractly executes the instruc-

tions in the programs by sending orders to the abstract domains;
– a partitioning domain [12] handles the partitioning of traces depending on

various criteria; it also operates the partitioning with respect to the call stack;
– a branching abstract domain handles forward branching constructs such as

forward goto, break, continue;
– a structure abstract domain resolves all accesses to complex data structures

(arrays, pointers, records...) into may- or must-aliases over abstract cells [2–§6.1];
– various numerical domains express different kinds of constraints over those

cells; each of these domains can query other domains for information, and send
information to those domains (reduction).

2.1 A Denotational-Based Interpreter

Contrary to some presentations or examples of abstract interpretation-based sta-
tic analysis [7] , we did not choose to obtain results through the direct resolution
(or over-approximation) of a system of semantic equations, but rather to follow
the denotational semantics of the program as in [6–Sect. 13].

Consider the following fragment of the C programming language:

l ::= x | t[e] | . . . l-values
e ::= l | e⊕ e | %e | . . . expressions (⊕ ∈ {+, �, . . .};% ∈ {−, . . .})
s ::= τ x; | l = e | if(e){s; . . . ; s}else{s; . . . ; s} | while(e){s; . . . ; s}

L is the set of control states, τ is any type, L (resp. E) is the set of l-
values (resp. expressions). The concrete semantics of a statement s is a function
�s� : M → P(M)× P(E) where M (resp. E) is the set of memory states (resp.
errors). Given an abstraction of sets of stores defined by an abstract domain D�

M
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and a concretization function γM : D�
M → P(M), we can derive an approximate

abstract semantics �P �� : D�
M → D�

M of program fragment P by following the
methodology of abstract interpretation [8].

The soundness of �P �� can be stated as follows: if �P �(ρ) = (m0, e0) and
ρ ∈ γM (d�), then m0 ⊆ γM (�P ��(d�)) (resp. for the error list). The principle
of the interpreter is to compute �P ��(d�) by induction on the syntax of P . D�

M

should provide abstract counterparts (assign, new var, del var, guard) to the
concrete operations (assignment, variable creation and deletion, condition test).
For instance, assign should be a function in L × E × D�

M → D�
M , that in-

puts an l-value, an expression and an abstract value and returns a sound over-
approximation of the set of stores resulting from the assignment: ∀l ∈ L, ∀e ∈ E,
∀d� ∈ D�

M , {ρ[�l�(ρ) �→ �e�(ρ)] | ρ ∈ γM (d�)} ⊆ γM (assign(l, e, d�)). Soundness
conditions for the other operations (guard, new var, del var) are similar.

�l = e; ��(d�) = assign(l, e, d�) where l ∈ L, e ∈ E
�{τ x; s0}��(d�) = del var(τ x, �s0��(new var(τ x, d�)))

�if(e) s0 else s1; ��(d�) = �s0��(guard(e, t, d�)) � �s1��(guard(e, f, d�))
�while(e) s0��(d�) = guard(e, f, lfp�φ�)

where: φ� : x� ∈ D�
M �→ d� � �s0��(guard(e, t, x�))

The function lfp� computes a post-fixpoint of any abstract function (i.e.,
approximation of the concrete least-fixpoint). While the actual scheme imple-
mented is somewhat complex, it is sufficient to say that lfp�f � outputs some x�

such that f �(x�)��x� for some decidable ordering�� such that ∀x�, y� x���y� =⇒
γ(x�) ⊆ γ(y�). This abstract fixpoint is sought by the iterator in “iteration
mode”: possible warnings that could occur within the code are not displayed
when encountered. Then, once L� = lfp�f � is computed — an invariant for the
loop body —, the iterator analyzes the loop body again and displays possible
warnings. As a supplemental safety measure, we check again that f �(L�)��L�.2

� is an abstraction of the concrete union ∪: ∀d1
�, d2

�, γ(d1
�) ∪ γ(d2

�) ⊆
γ(d1

� � d2
�).

An abstract domain handles the call stack; currently in Astrée, it amounts
to partitioning states by the full calling context [12]. Astrée does not handle
recursive functions;3 this is not a problem with critical embedded code, since
2 Let us note that the computationally costly part of the analysis is finding the loop

invariant, rather than checking it. P. Cousot suggested the following improvement
over our existing analysis: using different implementations for finding the invariant
and checking it (at present, the same program does both). . For instance, the check-
ing phase could be a possibly less efficient version, whose safety would be formally
proved. However, since all abstract domains and most associated algorithms would
have to be implemented in that “safe” analyzer, the amount of work involved would
be considerable and we have not done it at this point. Also, as discussed in Sect. 3.2,
both implementations would have to yield identical results, which means that the
“safe” analysis would have to mimic the “unsafe” one in detail.

3 More precisely, it can analyze recursive programs, but analysis may fail to terminate.
If analysis terminates, then its results are sound.
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programming guidelines for such systems generally prohibit the use of recursive
functions. Functions are analyzed as if they were inlined at the point of call.
Multiple targets for function pointers are analyzed separately, and the results
merged with �; see §3 for an application to parallelization.

Other forms of branches are dealt with by an extension of the abstract se-
mantics. Explicit gotos are rarely used in C, except as forward branches to error
handlers or for exiting multiple loops; however, semantically similar branching
structures are very usual and include cases structures, break statements and
return statements. Indeed, a return statement return e carries out two op-
erations: first, it evaluates e and stores the value as the function result; then,
it terminates the current function, i.e. branches to the end of the function. In
this paper, we only consider the case of forward-branching goto’s; the other
constructs then are straightforward extensions.

We extend the syntax of statements with a goto statement goto l where l is a
program point (we implicitly assume that there is a label before each statement
in the program). The execution of a statement s may yield either a new memory
state or a branching to a point after s. Therefore, we lift the definition of the
semantics into a function �s� : (M×(L → P(M))) → (P(M)×(L → P(M))×E).
The concrete states before and after each statement no longer consist solely of
a set of memory states, but of a set of memory states for the “direct” control-
flow as well as a set of memory states for each label l, representing all the
memory states that have occurred in the past for which a forward branch to l
was requested.

The concrete semantics of goto l is defined by: �goto l; �(Ii, φi) = (⊥, φi[l
�→ φi(l) ∪ Ii]) and the concrete semantics of a statement s at label l is defined
from the semantics without branches as: �l : s; �(Ii, φi) = ({Ii} ∪ φi(l), φi).
The definition of the abstract semantics can be extended in the same way. We
straightforwardly lift the abstract semantics of a statement s into a function
�s�� : D�

M × (L → D�
M )→ D�

M × (L → D�
M ).

2.2 Rationale and Efficiency Issues

The choice of the denotational approach was made for two reasons:
– Iteration and widening techniques on general graph representations of pro-

grams are more complex. Essentially, these techniques partly have to recon-
struct the natural control flow of the program so as to obtain an efficient
propagation flow [3,11]. Since our programs are block-structured and do not
contain backward goto’s, this flow information is already present in their
syntax; there is no need to reconstruct it. [6–Sect. 13]

– It minimizes the amount of memory used for storing the abstract environ-
ments. While our storage methods maximize the sharing between abstract
environments, our experiments showed that storing an abstract environment
for each program point (or even each branching point) in main memory was
too costly. Good forward/backward iteration techniques do not need to store
environments at that many points, but this measurement still was an indi-
cation that there would be difficulties in implementing such schemes.
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We measured the memory required for storing the local invariants at part or
all of the program points, for three industrial control programs representative
of those we are interested in; see the table below. We performed several mea-
surements, depending on whether invariant data was saved at all statements,
at the beginning and end of each block, and at the beginning and end of each
function.

For each program and measurement, we provide two figures: from left to
right, the peak memory observed during the analysis, then the size of the serial-
ized invariant (serialization is performed for saving to files or for parallelization
purposes, and preserves the sharing property of the internal representation).

Benchmarks (see below) show that keeping local invariants at the bound-
aries of every block in main memory is not practical on large programs; even
restricting to the boundaries of functions results in a major overhead. A data-
base system for storing invariants on secondary storage could be an option, but
Brat and Venet have reported significant difficulties and complexity with that
approach [4]. Furthermore, such an approach would complicate memory sharing,
and perhaps force the use of solutions such as “hash-consing”, which we have
avoided so far.

Memory requirements are expressed in megabytes; analyses were run in 64-
bit mode on a dual Opteron 2.2 GHz machine with 8 Gb RAM.4 On many
occasions, we had to abort the computation due to large memory requirements
causing the system to swap.

Program 1 Program 2 Program 3
# of lines of C code 67,553 232,859 412,858
# of functions 650 1,900 2,900
Save at all statements 3300 688 > 8000 swap > 8000 swap
Save at beginning / end of blocks 2300 463 > 8000 swap > 8000 swap
Save at beginning / end of functions 690 87 2480 264 4800 428
Save main loop invariant only 415 15 1544 53 2477 96
No save 410 1544 2440

Benchmarks courtesy of X. Rival.

Memorizing invariants at the head of loops (the least set of invariants we can
keep so as to be able to compute widening chains) thus entails much smaller
memory requirements than a näıve graph-based implementation; the latter is
intractable on reasonably-priced current computers on the class of large pro-
grams that we are interested in. It is possible that more complex memorization
schemes may make graph-based algorithms tractable, but we did not investigate
such schemes because we had an efficient and simple working system.

Regarding efficiency, it soon became apparent that a major factor was the
efficiency of the � operation. In a typical program, the number of tests will be
roughly linear in the length of the code. In the control programs that Astrée

4 Memory requirements are smaller on 32-bit systems.
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targets, the number of state variables (the values of which are kept across iter-
ations) is also roughly linear in the length l of the code. This means that if the
� operation takes linear time in the number of variables — an apparently good
complexity —, an iteration of the analyzer takes Θ(l2) time, which is prohibitive.
We therefore argue that what matters is the complexity of � with respect to the
number of updated variables, which should be almost linear: if only n1 (resp.
n2) variables are touched in the if branch (resp. else branch), then the overall
complexity should be at most roughly O(n1 + n2).

We achieve such complexity with our implementation using balanced trees
with strong memory sharing and “short-cuts” [1–§6.2]. Experimentation showed
that memory sharing was good with the rough physical equality tests that we
implement, without the need for much more costly techniques such as hash
consing. Indeed, experiments show that considerable sharing is kept after the
abstract execution of program parts that modify only parts of the global state
(see the ∆-compression in §3.2). Though simple, this memory-saving technique
is fragile; data sharing must be conserved by all modules in the program. This
obligation had an impact on the design of the communications between parallel
processes.

3 Parallelization

In iteration mode, we analyze tests in the following way: �if(e) s0 else s1; ��(d�)
= �s0��(guard(e, t, d�)) � �s1��(guard(e, f, d�)). The analyses of s0 and s1 may
be conducted in total separation, in different threads or processes, or even on
different machines. Similarly, the semantics of an indirect function call may be
approximated as: �(*f)();��(a�) =

⊔
g∈�f�(a�) �g��(a�): g ranges on all the pos-

sible code blocks to which f may point.

3.1 Dispatch Points

In usual programs, most tests split the control flow between short sequences
of execution; the overhead of analyzing such short paths in separate processes
would therefore be considerable with respect to the length of the analysis itself.
However, there exist wide classes of programs where a few tests (at “dispatch
points”) divide the control flow between long executions. In particular, there
exist several important kinds of software consisting in a large event loop: the
system waits for an event, then a “dispatcher” runs an appropriate (often fairly
complex) handler routine:

Initialization
while true do
wait for a request r
dispatch according to the type of r in

handler for requests of the first type
handler for requests of the second type
...

done
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This program structure is quite frequent in network services and traditional
graphical user interfaces (though nowadays often wrapped inside a callback
mechanism):

Initialization
while true do
wait for an event e
dispatch according to e in

event handler 1
event handler 2
...

done

Many critical embedded programs are also of this form. We analyze reactive
programs that, for the most part, implement in software a directed graph of nu-
meric filters. Those numeric filters are in general the discrete-time counterparts
of hardware, continuous-time components, with various sampling rates. The sys-
tem is thus made of n components, each clocked with a period pi · p, where 1/p
is a master clock rate (say, 1 kHz). It is statically scheduled as a succession of
“sequencers” numbered from 0 to N − 1 where N is the least common multiple
of the pi. A task of period pi.p is scheduled in all sequencers numbered k.pi + ci.
ci may often be arbitrarily chosen; judicious choices of ci allow for static load
balancing, especially with respect to worst-case execution time (all sequencers
should complete within a time of p). Thus, the resulting program is of the form:

Initialization
while true do
wait for clock tick (1/p Hz)
dispatch according to i in

sequencer 0
sequencer 1
...

i := i + 1 (mod N)
done

Our analysis is imprecise with respect to the succession of values of i; indeed,
it soon approximates i by the full interval [0, N −1]. This is equivalent to saying
that any of the sequencers is nondeterministically chosen. Yet, due to the nature
of the studied system, this is not a hindrance to proving the absence of runtime
errors: each of the n subcomponents should be individually sound, whatever
the sampling rate, and the global stability of the system does not rely on the
sampling rates of the subcomponents, within reasonable bounds.

Our system could actually handle parallelization at any place in the pro-
gram where there exist two or more different control flows, by splitting the
flows between several processors or machines; it is however undesirable to fork
processes or launch remote analyses for simple blocks of code. Our current sys-
tem decides the splitting point according to some simple ad-hoc criterion, but
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we could use some more universal criteria. For instance, the analyzer, during the
first iteration(s), could measure the analysis times of all branches in if, switch
or multi-aliases function calls; if a control flow choice takes place between sev-
eral blocks for which the analysis takes a long time, the analysis could be split
between several machines in the following iterations. To be efficient, however,
such a system would have to do some relatively complex workload allocation
between processors and machines; we will thus only implement it when really
necessary.

3.2 Parallelization Implementation

Instead of analyzing all dispatch branches in sequence, we split the workload
between p several processors (possibly in different machines). We replace the
iterative computation of f �(X�) = �P1��(X�) � (�P2��(X� � . . . �Pn��(X�)) . . . )
by a parallel computation f �(X�) =

⊔p
i=1(

⊔
k∈πi

�Pk��(X�)) where the πk are
a partition of {1, . . . , n}. Let us note τj the time needed to compute �Pj��.
lk =

∑
j∈πk

τj is the time spent by processor i.
For maximal efficiency, we would prefer that the li should be close to each

other, so as to minimize the synchronization waits. Unfortunately, the problem of
optimally partitioning into the πk is NP-hard even in the case where p = 2 [13].
If the τi are too diverse, randomly shuffling the list may yield improved perfor-
mance. In practice, the real-time programs that we analyze are scheduled so that
all the Pi have about the same worst-case execution time, so as to ensure max-
imal efficiency of the embedded processor; consequently, the τi are reasonably
close together and random shuffling does not bring significant improvement; in
fact, in can occasionally reduce performances.

For large programs of the class we are interested in, the analysis times
(Fig. 1) for n processors is approximately 0.75/n + 0.25 times the analysis time
on one processor; thus, clusters of more than 3 or 4 processors are not much
interesting:

Prog 1 Prog 2 Prog 3

# lines 67,553 232,859 412,858
1 CPU 26’28” 5h 55’ 11h 30’
2 CPU 16’38” 3h 43’ 7h 09’
3 CPU 14’47” 2h 58’ 5h 50’
4 CPU 13’35” 2h 38’ 5h 06’
5 CPU 13’26” 2h 25’ 4h 44’

Venet and Brat also have experimented with parallelization [19–§5], with
similar conclusions; however, the class of programs to be analyzed and the ex-
pected precisions of their analysis are too different from ours to make direct
comparisons meaningful.

Because it is difficult to determine the τi in advance, Astrée features an
optional randomized scheduling strategy, which reduces computation times on
our examples by 5%, with computation times on 2 CPUs &58% of those on 1.
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Fig. 1. Parallelization performances (dual-2.2 GHz Opteron machine + 2 GHz AMD64
machines)

We reduced transmission costs by sending only the differences between ab-
stract values at the input and the output — when the remote computation is
�P��(d�), only answer the difference between d� and �P��(d�). This difference is
obtained by physical comparison of data structures, excluding shared subtrees
(Sect. 2.2). The advantage of that method is twofold:

– Experimentally, such “∆-compression” results in transmissions of about 10%
of the full size on our examples. This reduces transmission costs on networked
implementations.

– Recall that we make analysis tractable by sharing data structures (Sect. 2.2).
We however enforce this sharing by simple pointer comparisons (i.e. we do
not construct another copy of a node if our procedure happens to have the
original node at its disposal), which is fast and simple but does not guarantee
optimal sharing. Any data coming from the network, even though logically
equal to some data already present in memory, will be loaded at a different
location; thus, one should avoid merging in redundant data. Sending only the
difference back to the master analyzer thus dramatically reduces the amount
of unshared data created by networked merge operations.

We request that the � operator should be associative and commutative, so
that f � does not depend on the chosen partitioning. Such a dependency would
be detrimental for two reasons:

– If the subprograms P1, . . . , Pn are enclosed within a loop, the nondetermin-
ism of the abstract transfer function f � complicates the analysis of the loop.
As we said in Sect. 2.1, we use an “abstract fixpoint” operator lfp� that
terminates when it finds L� such that f �(L�) � L�. Because this check is
performed at least twice, it would be undesirable that the comparisons yield
inconsistent results.
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– For debugging and end-user purposes, it is undesirable that the results of
the analysis could vary for the same analyzer and inputs because of runtime
vagaries. 5

In this case of a loop around the P1, . . . , Pn, we could have alternatively
used asynchronous iterations [5]. To compute lfpf �, one can use a central repos-
itory X�, initially containing ⊥; then, any processor i computes f �

i (X�) =⊔
k∈πi

�Pk��(X�) and replaces X� with X��f �
i (X�). If the scheduling is fair (no

�Pk� is ignored indefinitely), such iterations converge to an approximation of the
least fixpoint of X �→ ∪k �Pk� (X). However, we did not implement our analyzer
this way. Apart from the added complexity, the nondeterminism of the results
was undesirable.

4 Conclusion

We have investigated both theoretical and practical matters regarding the com-
putation of fixpoints and iteration strategies for static analysis of single-threaded,
block-structured programs, and proposed methods especially suited for the
analysis of large synchronous programs: a denotational iteration scheme, max-
imal data sharing between abstract invariants, and parallelization schemes. In
several occasions, we have identified possible extensions of our system.

Two major problems we have had to deal with were long computation times,
and, more strikingly, large memory requirements, both owing to the very large
size of the programs that we consider. Additionally, we had to keep a very high
precision of analysis over complex numerical properties in order to be able to
certify the absence of runtime errors in the industrial programs considered.

We think that several of these methods will apply to other classes of pro-
grams. Parallelization techniques, perhaps extended, should apply to wide classes
5 For the same reasons, care should be exercised in networked implementations so

that different platforms output the same analysis results on the same inputs. Subtle
problems may occur in that respect; for instance, there may be differences between
floating-point implementations. We use the native floating-point implementation of
the analysis platform; even though all our host platforms are IEEE-compatible,
the exact same analysis code may yield different results on various platforms, be-
cause implementations are allowed to provide more precision that requested by the
norm. For example, the IA32TM(Intel PentiumTM) platform under LinuxTM(and
some other operating systems) computes by default internally with 80 bits of preci-
sion upon values that are specified to be 64-bit IEEE double precision values. Thus,
the result of computations on that platform may depend on the register schedul-
ing done by the compiler, and may also differ from results obtained on platforms
doing all computations on 64-bit floating point numbers (PowerPCTM, and even
IA32TMand AMD64TMwith some code generation and system settings). Analysis re-
sults, in all cases, would be sound, but they would differ between implementations,
which would be undesirable for the sake of reproducibility and debugging, and also
for parallelization, as explained here. We thus force (if possible) the use of double
(and sometimes single) precision IEEE floating-point numbers in all computations
within the analyzer.
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of event-driven programs; loop iteration techniques should apply to any single-
threaded programs; data sharing and “union” optimizations should apply to any
static analyzer. We also have identified various issues of a generic interest with
respect to widenings and narrowings.

Acknowledgments. We wish to thank P. Cousot and X. Rival, as well as the
rest of the Astrée team.
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14. A. Miné. A new numerical abstract domain based on difference-bound matrices.
In PADO, volume 2053 of LNCS, 2001.
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Abstract. Many problems in program analysis can be expressed naturally and
concisely in a declarative language like Datalog. This makes it easy to specify
new analyses or extend or compose existing analyses. However, previous imple-
mentations of declarative languages perform poorly compared with traditional
implementations. This paper describes bddbddb, a BDD-Based Deductive Da-
taBase, which implements the declarative language Datalog with stratified nega-
tion, totally-ordered finite domains and comparison operators. bddbddb uses bi-
nary decision diagrams (BDDs) to efficiently represent large relations. BDD op-
erations take time proportional to the size of the data structure, not the number
of tuples in a relation, which leads to fast execution times. bddbddb is an ef-
fective tool for implementing a large class of program analyses. We show that a
context-insensitive points-to analysis implemented with bddbddb is about twice
as fast as a carefully hand-tuned version. The use of BDDs also allows us to
solve heretofore unsolved problems, like context-sensitive pointer analysis for
large programs.

1 Introduction

Many program analyses can be expressed naturally and easily in logic programming
languages, such as Prolog and Datalog [14,29,36]. Expressing a program analysis
declaratively in a logic programming language has a number of advantages. First, anal-
ysis implementation is greatly simplified. Analyses expressed in a few lines of Datalog
can take hundreds to thousands of lines of code in a traditional language. By automat-
ically deriving the implementation from a Datalog specification, we introduce fewer
errors. Second, because all analysis information is expressed in a uniform manner, it is
easy to use analysis results or to combine analyses. Finally, optimizations of Datalog
can be applied to all analyses expressed in the language.

However, implementations using logic programming systems are often slower than
traditional implementations and can have difficulty scaling to large programs. Reps
reported an experiment using Corel, a general-purpose logic programming system, to
implement on-demand interprocedural reaching definitions analysis [29]. It was found
that the logic programming approach was six times slower than a native C implemen-
tation. Dawson et al. used Prolog to perform groundness analysis on logic programs
and strictness analysis on functional programs [14]. Using the XSB system, which has
better efficiency than Corel [31], they were able to analyze a number of programs effi-
ciently. However, the programs they analyzed were small — under 600 lines of code.

K. Yi (Ed.): APLAS 2005, LNCS 3780, pp. 97–118, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Other recent work by Liu and Stoller on efficient Datalog appears to have promise, but
they do not present any performance results [21].

Our system for specifying program analyses using Datalog has successfully an-
alyzed programs with tens of thousands of lines of source code, and has regularly
performed faster than handcoded analyses. We will discuss our experience develop-
ing points-to analyses for C and for Java, which we compare with earlier handcoded
versions. We will also discuss the results of using a security analysis and an external
lock analysis which were specified using the same system.

1.1 Datalog Using BDDs

We have developed a system called bddbddb, which stands for BDD-Based Deductive
DataBase. bddbddb is a solver for Datalog with stratified negation, totally-ordered
finite domains and comparison operators. bddbddb represents relations using binary
decision diagrams, or BDDs. BDDs are a novel data structure that were traditionally
used for hardware verification and model checking, but have since spread to other areas.
The original paper on BDDs is one of the most cited papers in computer science [8].

Recently, Berndl et al. showed that BDDs can be used to implement context-
insensitive inclusion-based pointer analysis efficiently [5]. This work showed that a
BDD-based implementation could be competitive in performance with traditional im-
plementations. Zhu also investigated using BDDs for pointer analysis [40,41]. In 2004,
Whaley and Lam showed that BDDs could actually be used to solve context-sensitive
pointer analysis for large programs with an exponential number of calling contexts, a
heretofore unsolved problem [38]. Thus, by using BDDs, we can solve new, harder
program analysis problems for which there are no other known efficient algorithms.

Datalog is a logic programming language designed for relational databases. We
translate each Datalog rule into a series of BDD operations, and then find the fixpoint
solution by applying the operations for each rule until the program converges on a final
set of relations. By using BDDs to represent relations, we can use BDD operations to
operate on entire relations at once, instead of iterating over individual tuples.

Our goal with bddbddb was to hide most of the complexity of BDDs from the user.
We have several years of experience in developing BDD-based program analyses and
we have encoded our knowledge and experience in the design of the tool. Non-experts
can develop their own analyses without having to deal with the complexities of fine-
tuning a BDD implementation. They can also easily extend and build on top of the
results of advanced program analyses that have been written for bddbddb.

Using bddbddb is not only easier than implementing an analysis by hand — it
can also produce a more efficient implementation. bddbddb takes advantage of opti-
mization opportunities that are too difficult or tedious to do by hand. We implemented
Whaley and Lam’s context-sensitive pointer analysis [38] using an earlier version of the
bddbddb system and found that it performed significantly faster than a hand-coded,
hand-tuned implementation based on BDDs. The hand-coded implementation, which
was 100 times longer, also contained many more bugs.

We and others have also used bddbddb for a variety of other analyses and analy-
sis queries, such as C pointer analysis, eliminating bounds check operations [1], find-
ing security vulnerabilities in web applications [22], finding race conditions, escape
analysis, lock analysis, serialization errors, and identifying memory leaks and lapsed
listeners [23].
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1.2 Contributions

This paper makes the following contributions:

1. Description of the bddbddb system. This paper describes in detail how bddbddb
translates Datalog into efficient, optimized BDD operations and reports on the per-
formance gains due to various optimizations. We expand upon material introduced
in an earlier tutorial paper [18].

2. Demonstration of effective application of logic programming to problems in pro-
gram analysis. Whereas previous work shows that there is a penalty in writing pro-
gram analysis as database operations, we show that a BDD implementation of Dat-
alog for program analysis can be very efficient. Interprocedural program analysis
tends to create data that exhibits many commonalities. These commonalities re-
sult in an extremely efficient BDD representation. Datalog’s evaluation semantics
directly and efficiently map to BDD set operations.

3. Experimental results on a variety of program analyses over multiple input programs
show that bddbddb is effective in generating BDD analyses from Datalog specifi-
cations. In particular, we compare bddbddb to some hand-coded, hand-optimized
BDD program analyses and show that bddbddb is twice as fast in some cases,
while also being far easier to write and debug.

4. Insights into using BDDs for program analysis. Before building this tool, we
had amassed considerable experience in developing BDD-based program analy-
ses. Much of that knowledge went into the design of the tool and our algorithms.
This paper shares many of those insights, which is interesting to anyone who uses
BDDs for program analysis.

1.3 Paper Organization

The rest of the paper is organized as follows. We first describe how a program analysis
can be described as a Datalog program in Section 2. Section 3 deconstructs a Datalog
program into operations in relational algebra, and shows how BDDs can be used to rep-
resent relations and implement relational operations. Section 4 describes the algorithm
used by bddbddb to translate a Datalog program into an interpretable program of effi-
cient BDD operations. Section 5 presents experimental results comparing bddbddb to
hand-coded implementations of program analysis using BDDs. In Section 6 we discuss
the related work. Our conclusions are in Section 7.

2 Expressing a Program Analysis in Datalog

Many program analyses, including type inference and points-to analyses, are often de-
scribed formally in the compiler literature as inference rules, which naturally map to
Datalog programs. A program analysis expressed in Datalog accepts an input program
represented as a set of input relations and generates new output relations representing
the results of the analysis.

2.1 Terminology

bddbddb is an implementation of Datalog with stratified negation, totally-ordered finite
domains, and comparison operators. A Datalog program P consists of a set of domains
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D, a set of relationsR, and a set of rules Q. The variables, types, code locations, func-
tion names, etc. in the input program are mapped to integer values in their respective
domains. Statements in the program are broken down into basic program operations.
Each type of basic operation is represented by a relation; operations in a program are
represented as tuples in corresponding input relations. A program analysis can declare
additional domains and relations. Datalog rules define how the new domains and rela-
tions are computed.

A domain D ∈ D has size size(D) ∈ N, where N is the set of natural numbers.
We require that all domains have finite size. The elements of a domain D is the set of
natural numbers 0 . . . size(D)− 1.

A relation R ∈ R is a set of n-ary tuples of attributes. The kth attribute of relation
R is signified by ak (R), and the number of attributes of a relation R is signified by
arity(R). Relations must have one or more attributes, i.e. ∀R ∈ R, arity(R) ≥ 1.
Each attribute a ∈ A has a domain domain(a) ∈ D, which defines the set of possible
values for that attribute. An expression R(x1, . . . , xn) is true iff the tuple (x1, . . . , xn)
is in relation R. Likewise, ¬R(x1, . . . , xn) is true iff (x1, . . . , xn) is not in R.

Rules are of the form:
E0 : −E1, . . . , Ek.

where the expression E0 (the rule head) is of the form R(x1, . . . , xn), where R ∈ R
and n = arity(R). The expression list E1, . . . , Ek (the rule subgoals) is a list of zero
or more expressions, each with one of the following forms:

– R(x1, . . . , xn), where R ∈ R and n = arity(R)
– ¬R(x1, . . . , xn), where R ∈ R and n = arity(R)
– x1 = x2
– x1 �= x2
– x1 < x2

The comparison expressions x1 = x2, x1 �= x2, and x1 < x2 have their normal
meanings over the natural numbers.

The domain of a variable x is determined by its usage in a rule. If x appears as the
kth argument of an expression of the form R(x1, . . . , xn) then the domain of x, denoted
by domain(x), is domain(ak (R)). All uses of a variable within a rule must agree upon
the domain. Furthermore, in a comparison expression such as x1 = x2, x1 �= x2 or
x1 < x2, the domains of variables x1 and x2 must match.

A safe Datalog program guarantees that the set of inferred facts (relation tuples) will
be finite. In bddbddb, because all domains are finite, programs are necessarily safe. If a
variable in the head of a rule does not appear in any subgoals, that variable may take on
any value in the corresponding attribute’s domain; i.e. it will be bound to the universal
set for that domain.

bddbddb allows negation in stratifiable programs [11]. Rules are grouped into
strata, which are solved in sequence. Each strata has a minimal solution, where rela-
tions have the minimum number of tuples necessary to satisfy those rules. In a stratified
program, every negated predicate evaluates the negation of a relation which was fully
computed in a previous strata.

Datalog with well-founded negation is a superset of Datalog with stratifiable nega-
tion, and can be used to express fixpoint queries [15]. We have not yet found it necessary
to extend bddbddb to support well-founded semantics, though it would not be difficult.
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2.2 Example

Algorithm 1 is the Datalog program for a simple Java points-to analysis. It begins with
a declaration of domains, their sizes, and optional mapping files containing meaningful
names for the numerical values in each domain. V is the domain of local variables and
method parameters, distinguished by identifier name and lexical scope. H is the domain
of heap objects, named by their allocation site. F is the domain of field identifiers,
distinguished by name and the type of object in which they are contained.

Relations are declared next, along with the names and domains of their attributes.
Relation vP0 is the set of initial points-to relations. vP0 is declared as a set of tuples
(v,h), where v ∈ V and h ∈ H. vP0(v, h) is true iff the program directly places a ref-
erence to heap object h in variable v in an operation such as s = new String().
Relation store represents store operations such as x.f = y, and load similarly repre-
sents load operations. assign(x, y) is true iff the program contains the assignment x=y.
Assuming that a program call graph is available a priori, intraprocedural assignments
from method invocation arguments to formal method parameters and assignments from
return statements to return value destinations can be modeled as simple assignments.

The analysis infers possible points-to relations between heap objects, and possible
points-to relations from variables to heap objects. vP(v, h) is true if variable v may
point to heap object h at any point during program execution. Similarly, hP(h1, f, h2)
is true if heap object field h1.f may point to heap object h2.

Rule 1 incorporates the initial points-to relations into vP . Rule 2 computes the tran-
sitive closure over inclusion edges. If variable v2 can point to object h and v1 includes
v2, then v1 can also point to h. Rule 3 models the effect of store instructions on the
heap. Given a statement v1.f = v2, if v1 can point to h1 and v2 can point to h2, then
h1.f can point to h2. Rule 4 resolves load instructions. Given a statement v2 = v1.f , if
v1 can point to h1 and h1.f can point to h2, then v2 can point to h2.

Algorithm 1 . Context-insensitive points-to analysis with a precomputed call graph, where pa-
rameter passing is modeled with assignment statements

DOMAINS

V 262144 variable.map
H 65536 heap.map
F 16384 field.map

RELATIONS
input vP0 (variable : V, heap : H)
input store (base : V,field : F, source : V)
input load (base : V,field : F, dest : V)
input assign (dest : V, source : V)
output vP (variable : V, heap : H)
output hP (base : H,field : F, target : H)

RULES

vP(v, h) : − vP0(v, h). (1)
vP(v1, h) : − assign(v1, v2), vP(v2, h). (2)
hP(h1, f, h2) : − store(v1, f, v2), vP(v1, h1), vP(v2, h2). (3)
vP(v2, h2) : − load(v1, f, v2), vP(v1, h1), hP(h1, f, h2). (4)

�
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String a = "fido";
String b;
Dog d = new Dog();
b = a;
d.name = b;

(a)

vP0(va, h1)

vP0(vd, h3)
assign(vb, va)
store(vd,name, vb)

(b)

Fig. 1. (a) Example program for Java pointer analysis. (b) Corresponding input relations.

To illustrate this analysis in action, we will use the simple Java program listed in
Figure 1(a). Domain V contains values va, vb and vd representing variables a, b, and
d. Domain H contains values h1 and h3, representing the objects allocated on lines 1
and 3. Domain F consists of the value name, which represents the name field of a Dog
object.

The initial relations for this input program are given in Figure 1(b). Initial points-to
relations in vP0 are (va, h1) and (vd, h3). The program has one assignment opera-
tion, represented as (vb, va) in relation assign , and one store operation, represented as
(vd,name, vb) in relation store.

We begin by using Rule 1 to find that vP(va, h1) and vP(vd, h3) are true. The
results of the assignment on line 4 are found by using Rule 2, which tells us that
vP(vb, h1) is true since assign(vb, va) and vP(va, h1) are true. Finally, Rule 3 finds
that hP (h3,name, h1) is true, since store(vd,name, vb), vP (vd, h3), and vP(vb, h1)
are true.

3 From Datalog to BDD Operations

In this section, we explain our rationale for using BDD operations to solve Datalog
programs. We first show how a Datalog program can be translated into relational al-
gebra operations. We then show how we represent relations as boolean functions and
relational algebra as operations on boolean functions. Finally, we show how boolean
functions can be represented efficiently as binary decision diagrams (BDDs).

3.1 Relational Algebra

A Datalog query with finite domains and stratified negation can be solved by applying
sequences of relational algebra operations corresponding to the Datalog rules iteratively,
until a fixpoint solution is reached. We shall illustrate this translation simply by way of
an example, since it is relatively well understood.

We use the following set of relational operations: join, union, project, rename, dif-
ference, and select. R1 � R2 denotes the natural join of relations R1 and R2, which
returns a new relation where tuples in R1 have been merged with tuples in R2 in which
corresponding attributes have equal values. R1 ∪R2 denotes the union of relations R1
and R2, which returns a new relation that contains the union of the sets of tuples in R1
and R2. πa1,...,ak

(R) denotes the project operation, which forms a new relation by re-
moving attributes a1, . . . , ak from tuples in R. ρa→a′(R) denotes the rename operation,
which returns a new relation with the attribute a of R renamed to a′. R1 − R2 denotes
the difference of relations R1 and R2, which contains the tuples that are in R1 but not in
R2. The select operation, denoted as σa=c(R), restricts attribute a to match a constant
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value c. It is equivalent to performing a natural join with a unary relation consisting of
a single tuple with attribute a holding value c.

To illustrate, an application of the rule

vP(v1, h) : −assign(v1, v2), vP(v2, h).

corresponds to this sequence of relational algebra operations:

t1 = ρvariable→source(vP );
t2 = assign � t1;
t3 = πsource(t2);
t4 = ρdest→variable(t3);
vP = vP ∪ t4;

Note that rename operations are inserted before join, union, or difference operations
to ensure that corresponding attributes have the same name, while non-corresponding
attributes have different names.

3.2 Boolean Functions

We encode relations as boolean functions over tuples of binary values. Elements in a
domain are assigned consecutive numeric values, starting from 0. A value in a domain
with m elements can be represented in 'log2(m)( bits. Suppose each of the attributes of
an n-ary relation R is associated with numeric domains D1, D2, . . . , Dn, respectively.
We can represent R as a boolean function f : D1 × . . . × Dn → {0, 1} such that
(d1, . . . , dn) ∈ R iff f(d1, . . . , dn) = 1, and (d1, . . . , dn) /∈ R iff f(d1, . . . , dn) = 0.

Let relation R be a set of tuples {(1, 1), (2, 0), (2, 1), (3, 0), (3, 1)} over D1 ×D2,
where D1 = {0, 1, 2, 3} and D2 = {0, 1}. The binary encoding for R is function f ,
displayed in Figure 2(a), where the first attribute of R is represented by bits b1 and b2
and the second attribute by b3.

For each relational algebra operation, there is a logical operation that produces the
same effect when applied to the corresponding binary function representation. Suppose
R1 is represented by function f1 : D1 ×D2 → {0, 1} and R2 by function f2 : D2 ×
D3 → {0, 1}. The relation R1 � R2 is represented by function f3 : D1 ×D2 ×D3 →
{0, 1}, where f3(d1, d2, d3) = f1(d1, d2) ∧ f2(d2, d3). Similarly, the union operation
maps to the binary ∨ operator, and l − r ≡ l ∧ ¬r. The project operation can be
represented using existential quantification. For example, πa2(R1) is represented by
f : D1 → {0, 1} where f(d1) = ∃d2.f1(d1, d2).

3.3 Binary Decision Diagrams

Large boolean functions can be represented efficiently using BDDs, which were origi-
nally invented for hardware verification to efficiently store a large number of states that
share many commonalities [8].

A BDD is a directed acyclic graph (DAG) with a single root node and two terminal
nodes which represent the constants one and zero. This graph represents a boolean
function over a set of input decision variables. Each non-terminal node t in the DAG
is labeled with an input decision variable and has exactly two outgoing edges: a high
edge and a low edge. To evaluate the function for a given set of input values, one simply
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D1 D2 R
b1 b2 b3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(a)

0 1

1b

2b

3b

(b)

1b 1b

2b

3b

10

(c)

Fig. 2. (a) Binary encoding of a relation. (b) and (c) are BDD encodings of the relation given by
(a) with decision variable orders b1, b2, b3 and b2, b1, b3, respectively.

traces a path from the root node to one of the terminal nodes, following the high edge
of a node if the corresponding input variable is true, and the low edge if it is false.
The terminal node gives the value of the function for that input. Figure 2(b) shows a
BDD representation for function f from Figure 2(a). Each non-terminal node is labeled
with the corresponding decision variable, and a solid line indicates a high edge while a
dashed line indicates a low edge.

We specifically use a variant of BDDs called reduced ordered binary decision dia-
grams, or ROBDDs [8]. In an ordered BDD, the sequence of variables evaluated along
any path in the DAG is guaranteed to respect a given total decision variable order. The
choice of the decision variable order can significantly affect the number of nodes re-
quired in a BDD. The BDD in Figure 2(b) uses variable order b1, b2, b3, while the BDD
in Figure 2(c) represents the same function, only with variable order b2, b1, b3. Though
the change in order only adds one extra node in this example, in the worst case an ex-
ponential number of nodes can be added. In addition, ROBDDs are maximally reduced
meaning common BDD subgraphs are collapsed into a single graph, and the nodes
are shared. Therefore, the size of the ROBDD depends on whether there are common
boolean subexpressions in the encoded function, rather than on the number of entries in
the set.

3.4 BDD Operations

The boolean function operations discussed in Section 3.2 are a standard feature of BDD
libraries [20]. The ∧ (and), ∨ (or), and − (difference) boolean function operations can
be applied to two BDDs, producing a BDD of the resulting function. The BDD ex-
istential quantification operation exist is used to produce a new BDD where nodes
corresponding to projected attributes are removed. This operation combines the low
and high successors of each removed node by applying an ∨ operation.

Rename operations are implemented using the BDD replace operation, which
computes a new BDD where decision variables corresponding to the old attributes
have been replaced with decision variables corresponding to the new attribute names.
Replace operations can be eliminated if the renamed attributes are encoded using the
same decision variables as the original attributes. A replace operation which does not
change the relative order of decision variables is only linear with respect to the number
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of nodes in the BDD. If the order is changed, the cost of a replace can be exponential
with respect to the number of decision variables. Care must be taken when encoding
relation attributes to minimize the number of expensive rename operations.

Natural join operations are frequently followed by project operations to eliminate
unnecessary attributes. The BDD relational product operation, or relprod, efficiently
combines this sequence in a single operation. Similarly, the select and project operations
can be combined into a single BDD operation, known as restrict.

BDD operations operate on entire relations at a time, rather than one tuple at a time.
The cost of BDD operations depends on the size and shape of the BDD graphs, not
the number of tuples in a relation. Thus, large relations can be computed quickly as
long as their encoded BDD representations are compact. Also, due to caching in BDD
packages, identical subproblems only have to be computed once. These points are key
to the efficiency of BDD operations, and are the reason why we use this data structure
to represent our relations.

4 Translating and Optimizing Datalog Programs

The bddbddb system applies a large number of optimizations to transform Datalog
programs into efficient BDD operations:

1. Apply Datalog source level transforms and optimizations. (Section 4.1)
2. Remove unnecessary rules, stratify the rules, and determine the rule iteration order.

(Section 4.2)
3. Translate the stratified query into an intermediate representation (IR) consisting of

relational algebra operations. (Section 4.3)
4. Through analysis, optimize the IR and add BDD operations to replace equivalent

sequences of relational algebra operations. (Section 4.4)
5. Choose BDD decision variables for encoding relation attributes. (Section 4.5)
6. Perform more dataflow optimizations after physical domains have been assigned.

(Section 4.6)
7. Interpret the resulting program. (Section 4.7)

To illustrate this process, we use Algorithm 1 from Section 2 as a running example.

vP0

vP

hP

store

load
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Fig. 3. (a) Predicate dependency graph for Algorithm 1. (b) Breaking the PDG into SCCs and
finding cycles.
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4.1 Datalog Source Transformations

Before compilation, we normalize the forms of the input rules as follows:

– Any variable that appears only once in a rule is changed into an underscore ( ) to
indicate an unused attribute.

– If a variable appears multiple times in a single subgoal, we give each additional
use a distinct name, and then add extra equality subgoals to make the new variables
equal to the original variable. For example, a subgoal R(x, x, x) is transformed into
the three subgoals R(x, x′, x′′), x = x′, x = x′′.

– Each comparison subgoal with an attribute of domain D is substituted with a sub-
goal for a corresponding precomputed relation defined over D×D which represents
that comparison function.

– Subgoals in rules that define temporary relations are inlined into the rules that use
those relations. Temporary relations are non-input, non-output relations which are
in the head of only one rule, and appear as a subgoal in only one other rule.

4.2 Datalog Rule Optimization

Rule Removal. The solver removes rules and relations that do not indirectly contribute
to the output relations. A predicate dependency graph (PDG) is built to record depen-
dencies between rules and relations. Each node represents a relation, and there is an
edge g → h marked with rule r if rule r has subgoal relation g and head relation h. (If
the subgoal is negated, the edge is marked as a negative edge.) The PDG for our exam-
ple is shown in Figure 3(a). Necessary rules and relations are found by performing a
backward pass over the PDG, starting from the output relations.

Stratification. We then use the PDG to stratify the program. Stratification guarantees
that the relation for every negated subgoal can be fully computed before applying rules
containing the negation. Each stratum is a distinct subset of program rules that fully
computes relations belonging to that stratum. Rules in a particular stratum may use the
positive forms of relations computed in that stratum, as well as positive or negated forms
of relations calculated in earlier strata and input relations from the relational database.
There are no cyclic dependencies between strata. If the program cannot be stratified, we
warn the user. In our experience designing Datalog programs for program analysis, we
have yet to find a need for non-stratifiable queries.

As our example does not contain any negations, all of the rules and relations are
placed within a single stratum.

Finding Cycles. Cycles in the PDG indicate that some rules and relations are recur-
sively defined, requiring iterative application of rules within the cycles to reach a fixed-
point solution. The PDG for each stratum is split into strongly connected components
(SCCs). We can compute the result for a stratum by evaluating strongly connected com-
ponents and non-cyclic relations in the topological order of the PDG.

A single strongly connected component can encompass multiple loops that share
the same header node. We would like to distinguish between the different loops in a
single SCC so we can iterate around them independently. However, the PDG is typically
not reducible, and the classical algorithm for finding loops—Tarjan’s interval finding
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algorithm—only works on reducible graphs [34]. Extensions have been made to deal
with irreducible graphs, but they typically have the property that a node can only be the
header for one loop [28]. We solve this by identifying one loop in the SCC, eliminating
its back edge, and then recursively re-applying the SCC algorithm on the interior nodes
to find more inner loops.

The steps of the algorithm on our example are shown in Figure ??. We first break
the PDG into five SCCs, labeled 1-5, as shown on the left. Then, we remove the edge
for rule 4 from hP to vP, breaking the larger cycle so that it can topologically sort those
nodes and find the smaller self-cycle on vP for rule 2, as shown on the right.

Determining Rule Application Order. The order in which the rules are applied can
make a significant difference in the execution time. When there are multiple cycles in
a single SCC, the number of rule applications that are necessary to reach a fixpoint
solution can differ based on the relative order in which the two cycles are iterated.
Which application order will yield the fewest number of rule applications depends not
only on the rules but also on the nature of the relations.

Aspects of the BDD library can also make certain iteration orders more efficient
than others, even if they have more rule applications. For example, the BDD library
uses an operation cache to memoize the results of its recursive descents on BDD nodes,
so it can avoid redundant computations when performing an operation. This cache can
also provide benefits across different operations if the BDDs that are being operated
upon share nodes. To take advantage of operation cache locality across operations, one
should perform related operations in sequence. Another aspect influencing iteration or-
der choice is the set-oriented nature of BDD operations. When performing an operation
on tuples generated in a loop, it is ofter faster to apply the operation after completing
all loop iterations, rather than applying it once per loop iteration.

In the absence of profile information from prior runs or from the user, bddbddb
uses static analysis of the rules to decide upon a rule application order. Cycles that
involve fewer rules are iterated before cycles that involve more rules, and rules that
have fewer subgoals are iterated before rules that have more subgoals. The reasoning
behind this is that smaller, shorter chains of rules and smaller rules are faster to iterate
due to operation cache locality. This static metric works very well in the examples we
have tried because small cycles are usually transitive closure computations, which are
fast and expose more opportunities for set-based computation on the larger cycles.

4.3 Intermediate Representation

Once we have determined the iteration order, we translate the rules into an intermediate
representation based on relational algebra operations as follows:

1. For each subgoal with an underscore, project away its unused attributes.
2. For each subgoal with a constant, use the select and project operators to restrict the

relation to match the constant.
3. Join each subgoal relation with each of the other subgoal relations, projecting away

attributes as they become unnecessary.
4. Rename the attributes in the result to match the head relation.
5. If the head relation contains a constant, use the select operator on the result to set

the value of the constant.
6. Unify the result with the head relation.
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4.4 IR Optimizations

In repeated applications of a given rule within a loop, it can be more efficient to make
use of the differential between the current value of a subgoal relation and the previous
value from the last time the rule was applied. This is known as incrementalization or
the semi-naı̈ve evaluation strategy. By computing the difference in subgoal relations
as compared to the previous iteration, we can avoid extra work; if these inputs are the
same as the last iteration, we can avoid applying the rule altogether. The tradeoff of
incrementalization is that the old value of every subgoal in every incrementalized rule
must be stored. We allow the user to control whether incrementalization is performed
on a per rule basis. Performing incrementalization on the sequence of relational algebra
operations derived from Rule (2) (Section 3.1) generates the following IR:

vP ′′ = vP − vP ′;
vP ′ = vP ;
assign ′′= assign − assign ′;
assign ′= assign ;
t1 = ρvariable→source(vP ′′);
t2 = assign � t1;
t3 = ρvariable→source(vP );
t4 = assign ′′ � t3;
t5 = t2 ∪ t4;
t6 = πsource(t5);
t7 = ρdest→variable(t6);
vP = vP ∪ t7;

Next, we apply a number of traditional compiler data flow optimizations on the IR:

– Constant propagation. We propagate empty set, universal set, and constants to
reduce unions, joins, and difference operations.

– Definition-use chains. We calculate the chains of definitions and uses and use this
to optimize the program by eliminating dead code (operations whose results have
no uses), coalescing natural join and project pairs into relprod operations, and
coalescing select and project pairs into restrict operations.

After this stage of optimizations, relational algebra operations are replaced by BDD
operations, using combined relprod operations and restrict operations where pos-
sible. Rule (2) becomes:

vP ′′ = diff(vP , vP ′);
vP ′ = copy(vP);
t1 = replace(vP ′′, variable → source);
t2 = relprod(t1, assign , source);
t3 = replace(t2, dest → variable);
vP = or(vP , t3);

In the optimized IR, the join-project pair involving assign and vP ′′ has been col-
lapsed into a single relprod. Also, the operations for computing and using the differ-
ence of assign have been removed because assign is loop invariant.
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4.5 BDD Decision Variable Assignment

As noted in Section 3.4, the use of BDD operations to implement relational operations
places constraints on the choice of BDD decision variables used to encode relation
attributes. When performing an operation on two BDDs, the decision variables for cor-
responding attributes must match. Likewise, unmatched attributes must be assigned to
different decision variables. A BDD replace operation is used whenever different sets
of decision variables must be substituted into a BDD as the result of a relational rename.

It is most important to minimize the cost of replace operations. This depends on
the choice of decision variables used for encoding each attribute. The cost can be zero,
linear, or exponential depending on whether the new decision variables are the same,
have the same relative order, or have a different relative order. Additionally, we prefer
to perform costly replace operations on smaller BDDs (in terms of BDD nodes) rather
than on larger BDDs.

bddbddb uses a priority-based constraint system to assign attributes to BDD de-
cision variables. This system is expressed in terms of both equivalence and non-
equivalence constraints on relation attributes and sequences of decision variables. We
use a specialized union-find data structure augmented with non-equivalence constraints
to efficiently compute the constraint system. In BDD terminology, a sequence of bi-
nary decision variables used to represent an attribute is often referred to as a physical
domain, which should not be confused with a Datalog domain as defined in Section 2.1.

We avoid introducing replace operations by constraining any renamed attributes
to use the same physical domain as the original attribute. When an introduced constraint
would cause the constraint system to have no solution, we assign the new attribute to a
different physical domain and add a replace operation at that point to allow the con-
straint to be satisfied. By carefully choosing the order of priority in which constraints
are added to the system, we ensure that replace operations are introduced where they
will be most efficient.

For each attribute a in relation R, we create a non-equivalence constraint between
a and other attributes in R. Then, we add constraints for all program operations, in
order of importance. Operations in inner loops have higher importance than operations
in outer loops, under the presumption that these operations will be performed more
often. Within a given loop depth, relprod operations are considered first, in order
of execution, since they are typically the most expensive operations. After relprod
operations, we consider other operations. For a unary operation such as copy, we create
equivalence constraints between corresponding attributes of the source and destination
relations. For a binary operation, the interacting attributes for the input relations are
constrained to be equal. After considering all operations, we add constraints for the
attributes of the input and output relations. The physical domains used by these relations
are specified by the user, since they must be loaded from or stored into the relational
database.

An application of the physical domain assignment algorithm to our running example
reveals that variable from vP ′′ and source from assign can be assigned to the same
physical domain for the relprod. Therefore, the replace that occurs immediately
before can be removed:

vP ′′ = diff(vP , vP ′);
vP ′ = copy(vP);
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t1 = relprod(vP ′′, assign , source);
t2 = replace(t1, dest[V 1] → variable [V 0]);
vP = or(vP , t2);

4.6 Additional Optimizations

After domain assignment, we have the opportunity to apply another set of standard
compiler optimizations:

– Global value numbering. Global value numbering factors the evaluation of com-
mon subexpressions among rules into non-redundant computations. Moreover, it
optimizes loops by hoisting invariants.

– Copy propagation. Copy propagation eliminates unnecessary temporary IR rela-
tions that can be generated by our optimizations.

– Liveness analysis. We use a liveness analysis to clean up dead code. We reduce the
memory footprint during IR interpretation by freeing relation allocations as soon
as the lifetime of a relation has ended.

4.7 Interpretation

Finally, bddbddb interprets the optimized IR and performs the IR operations in se-
quence by calling the appropriate methods in the BDD library.

4.8 Decision Variable Ordering

While BDDs have proven effective in compacting the commonalities in large sets of
data, the extent to which these commonalities can be exploited depends on the ordering
of the decision variables. In our case, the difference between a good or bad ordering can
mean the termination or non-termination (due to memory exhaustion) of an analysis.
Moreover, the relative orderings are not readily apparent given only a static analysis,
and the space of all orders is extremely large (with both precedence and interleaving
conditions, the number of orders is given by the series for ordered Bell numbers).

We have developed an algorithm for finding an effective decision variable order-
ing [9]. The algorithm, based on active learning, is embedded in the execution of Dat-
alog programs in the bddbddb system. When bddbddb encounters a rule application
that takes longer than a parameterized amount of time, it initiates a learning episode
to find a better decision variable ordering by measuring the time taken for alternative
variable orderings. Because rule applications can be expensive, bddbddb maximizes
the effectiveness of each trial by actively seeking out those decision variable orderings
whose effects are least known.

5 Experimental Results

We measure the effectiveness of our bddbddb system and compare it to hand-optimized
BDD programs. Prior to developing the bddbddb system, we had manually imple-
mented and optimized three points-to analyses: a context-insensitive pointer analysis for
Java described by Berndl [5], a context-sensitive pointer analysis based on the cloning
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of paths in the call graph [38], and a field-sensitive, context-insensitive pointer analysis
for C [1]. We then wrote Datalog versions of these analyses which we ran using the
bddbddb system.

The hand-coded Java analyses are the result of months of effort and are well-tuned
and optimized. The variable ordering and physical domain assignment have been care-
fully hand-tuned to achieve the best results. Many of the rules in the hand-coded algo-
rithms were incrementalized. This proved to be a very tedious and error-prone process,
and we did not incrementalize the whole system as it would have been too unwieldy.
Bugs were still popping up weeks after the incrementalization was completed. bddb-
ddb, on the other hand, happily decomposed and incrementalized even the largest and
most complex inference rules.

Because of the unsafe nature of C, the C pointer analysis is much more complicated,
consisting of many more rules. For the hand-coded C pointer analysis, physical domain
assignments, domain variable orderings and the order of inferences were only optimized
to avoid significant execution slowdowns. Specification of low-level BDD operations
was an error-prone, time-consuming process. A good deal of time was spent modifying
physical domain assignments and solving errors due to the incorrect specification of
physical domains in BDD operations. Once the Datalog version of the analysis was
specified, development of the hand-coded version was discontinued, as it was no longer
worth the effort. In the experiment reported here, we compare the hand-coded version
and equivalent Datalog implementation from that time.

We also evaluate the performance of bddbddb on two additional analyses: an anal-
ysis to find external lock objects to aid in finding data races and atomicity bugs, and
an analysis to find SQL injection vulnerabilities in Java web applications [23]. Both
of these analyses build on top of the context-sensitive Java pointer analysis, and both
are fairly sophisticated analyses. We do not have hand-coded implementations of these
analyses as they would be too tedious to implement by hand.

5.1 Comparing Lines of Code

The first metric for comparison is in the number of lines of code in each algorithm:
Specifying the analysis as Datalog reduced the size of the analysis by 4.4 times in

the case of the C analysis, to over 100 times in the case of the context-sensitive Java
analysis. The disparity between the C and Java implementations is due to the fact that
the C implementation combined many BDD operations on a single line, whereas the
Java implementation put each BDD operation on a separate line of code.

Adding a new analysis with bddbddb takes only a few lines of code versus a rewrite
of thousands of lines for a hand-coded implementation. The external lock analysis and
the SQL injection analysis are examples of this. In another example, we easily modified

Analysis Hand-coded Datalog
context-insensitive Java 1975 30
context-sensitive Java 3451 33
context-insensitive C 1363 308
external lock analysis n/a 42
SQL injection analysis n/a 38

Fig. 4. LOC for hand-coded analyses versus lines of Datalog using bddbddb
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the inference rules for the context-insensitive C points-to analysis to create a context-
sensitive analysis by adding an additional context attribute to existing relations. While
this was an extremely simple change to make to the bddbddb Datalog specification,
such a modification would have required rewriting hundreds of lines of low-level BDD
operations in the hand-coded analysis.

5.2 Comparing Analysis Times

For each analysis, we compared the solve time for an incrementalized hand-coded
implementation against a bddbddb-based implementation with varying levels of op-
timization. Analyses were performed on an AMD Opteron 150 with 4GB RAM run-
ning RedHat Enterprise Linux 3 and Java JDK 5.0. The three bddbddb-based analyses
and the hand-coded Java points-to analysis used the open-source JavaBDD library [37],
which internally makes use of the BuDDy BDD library [20]. The hand-coded C points-
to analysis makes direct use of the BuDDy library. The Java context-insensitive analysis
used an initial node table size of 5M and an operation cache size of 750K. The Java
context-sensitive analysis and C points-to analyses both used an initial node table size
of 10M and an operation cache size of 1.5M.

Figures 5, 6 and 7 contain the run times of our Java context-insensitive analysis, Java
context-sensitive analysis, and C pointer analysis, respectively. The first two columns
give the benchmark name and description. The next column gives the solve time in
seconds for the hand-coded solver. The remaining columns give the solve time when
using bddbddb with various optimizations enabled. Each column adds a new opti-
mization in addition to those used in columns to the left. Under No Opts we have
all optimizations disabled. Under Incr we add incrementalization, as described in Sec-
tion 4.3. Under +DU we add optimizations based on definition-use chains. Under +Dom
we optimize physical domain assignments. Under +All we add the remaining optimiza-
tions described in Section 4. For the Java context-insensitive and C pointer analyses,
the +Order column shows the result of bddbddb with all optimizations enabled using
a variable order discovered by the learning algorithm referred to in Section 4.8. For our
C programs, we used the order learned from enscript. For the Java programs we used
the order learned from joeq. In the Java context-sensitive case, the learning algorithm
was not able to find a better order, so we omitted this column. Entries marked with a∞
signified that the test case did not complete due to running out of memory.

The time spent by bddbddb to translate Datalog to optimized BDD operations is
negligible compared to the solve times, so the translation times have been omitted. In
all cases, bddbddb spent no more than a few seconds to compile the Datalog into BDD
operations.

The unoptimized context-insensitive Java analysis was 1.4 to 2 times slower than
the hand-coded version. Incrementalization showed a very small improvement, but by
adding def-use optimizations, we began to see a useful time reduction to 80% of the
original. Optimizing BDD domain assignments reduces the runtime to about 42% of
the original, and enabling all optimizations further reduces the runtime to about 38%
of the original. Improved variable order brought the runtime between 24% and 36%
of the unoptimized runtime. While incrementalization and def-use optimizations were
sufficient to bring the bddbddb analysis close to the hand-coded analysis runtimes, the
remaining optimizations and learned variable order combined to beat the hand-coded
solver runtime by a factor of 2.
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Name Description Hand- bddbddb
coded No Opts Incr +DU +Dom +All +Order

joeq virtual machine and compiler 7.3 10.0 9.4 7.9 4.8 4.5 3.6
jgraph graph-theory library 15.0 25.6 24.1 20.0 11.0 10.4 7.6
jbidwatch auction site tool 26.3 47.4 45.8 35.4 18.6 16.8 13.0
jedit sourcecode editor 67.0 123.5 119.9 100.0 56.4 45.7 35.7
umldot UML class diagrams from Java 16.6 29.0 27.4 20.2 11.6 10.9 8.4
megamek networked battletech game 35.8 71.3 67.1 57.0 26.8 23.0 17.4

Fig. 5. Comparison of context-insensitive Java pointer analysis runtimes. Times are in seconds.

Name Description Hand- bddbddb
coded No Opts Incr +DU +Dom +All

joeq virtual machine and compiler 85.3 323.3 317.8 274.7 124.7 69.7
jgraph graph-theory library 118.0 428.1 431.1 362.2 116.3 94.9
jbidwatch auction site tool 421.1 1590.2 1533.3 1324.3 470.6 361.3
jedit sourcecode editor 147.0 377.2 363.4 293.7 136.4 109.3
umldot UML class diagrams from Java 402.5 1548.3 1619.3 1362.3 456.5 332.8
megamek networked battletech game 1219.2 ∞ ∞ 4306.5 1762.9 858.3

Fig. 6. Comparison of context-sensitive Java pointer analysis runtimes. Times are in seconds.

Name Description Hand- bddbddb
coded No Opts Incr +DU +Dom +All +Order

crafty chess program 8.7 547.3 525.9 571.7 9.4 8.1 8.2
enscript text to PS conversion 41.0 1175.4 1211.7 1128.4 122.3 112.6 31.5
hypermail mbox to HTML conversion 149.4 6263.8 6113.0 5967.1 262.0 231.3 44.2
monkey webserver 16.9 468.9 397.7 398.7 33.1 31.3 9.6

Fig. 7. Comparison of C pointer analysis runtimes. Times are in seconds.

Name Description bddbddb
No Opts Incr +DU +Dom +All

joeq virtual machine and compiler 75.0 60.4 59.3 17.4 15.1
jgraph graph-theory library 64.9 51.0 51.1 13.0 12.5
jbidwatch auction site tool 231.0 183.6 203.5 52.3 51.7
jedit sourcecode editor 20.1 16.3 16.2 5.3 5.1
umldot UML class diagrams from Java 199.3 162.2 161.3 45.0 39.2
megamek networked battletech game 13.3 11.5 10.5 5.1 4.3

Fig. 8. External lock analysis runtimes. Times are in seconds.

Name Description bddbddb
No Opts Incr +DU +Dom +All +Order

personalblog J2EE-based blogging application ∞ 73.0 57.8 25.1 23.1 16.7
road2hibernate hibernate testing application ∞ 86.4 74.8 49.2 39.7 33.4
snipsnap J2EE-based blogging application ∞ 227.8 211.9 98.9 84.5 55.8
roller J2EE-based blogging application ∞ 521.0 479.0 253.7 208.4 185.4

Fig. 9. SQL injection query results. Times are in seconds. ∞ indicates that the analysis did not
finish.
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Results for the context-sensitive Java analysis were similar to the context-insensitive
results. Unfortunately, our variable order learning algorithm was unable to learn a better
variable order for this analysis, leaving the fully optimized bddbddb analysis about
20% faster than the hand-coded version.

In the case of the C analysis, the unoptimized bddbddb analysis was 23 to 60 times
slower than the hand-coded version. This is likely due to the relative complexity of
the Datalog in the C analysis case; optimizations were able to make significant im-
provements to the execution times. Analysis times with all optimizations enabled were
roughly comparable to our hand-coded solver. As with the Java analyses, the largest
gain was due to optimized physical domain assignment. When applying the learned
variable order, bddbddb analysis runtimes were reduced even further, to fall between
30% and 95% of the hand-coded implementation.

5.3 External Lock and SQL Injection Analyses

We also used bddbddb to build external lock and SQL injection detection analyses on
top of the Java points-to analysis results. The runtimes for the external lock analysis
using different levels of optimization are displayed in Figure 8. Incrementalization re-
duces the analysis time to about 80% of the original time. Optimizing physical domain
assignments further reduces the analysis time to about 23% of the original. Figure 9
displays the runtimes of the SQL injection analysis on four web-based applications.
Without any incrementalization, the analysis fails to complete due to memory exhaus-
tion. However, with further optimization we see performance gains similar to those of
the external lock analysis.

6 Related Work

Related work falls into three general categories: optimizing Datalog executions, logic
programming systems that use BDDs, and program analysis with BDDs. We go through
each category in turn.

6.1 Optimizing Datalog

Liu and Stoller described a method for transforming Datalog rules into an efficient
implementation based on indexed and linked data structures [21]. They proved their
technique has “optimal” run time with respect to the fact that the combinations of facts
that lead to all hypotheses of a rule being simultaneously true are considered exactly
once. They did not present experimental results. Their formulation also greatly simpli-
fied the complexity analysis of Datalog programs. However, their technique does not
apply when using BDDs, as the cost of BDD operations does not depend upon combi-
nations of facts, but rather upon the number of nodes in the BDD representation and the
nature of the relations.

There has been lots of research on optimizing Datalog evaluation strategies; for
example, semi-naı̈ve evaluation [10], bottom-up evaluation [10,24,35], top-down with
tabling [12,33], etc. Ramakrishnan et al. investigated the role of rule ordering in com-
puting fixpoints [26]. We use an evaluation strategy geared towards peculiarities of the
BDD data structure — for example, to maximize cache locality, we iterate around inner
loops first.
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There has been work on transforming Datalog programs to reduce the amount of
work necessary to compute a solution. Magic sets is a general algorithm for rewriting
logical rules to cut down on the number of irrelevant facts generated [4]. This idea
was extended to add better support for certain kinds of recursion [25]. Sagiv presented
an algorithm for optimizing a Datalog program under uniform equivalence [30]. Zhou
and Sato present several optimization techniques for fast computation of fixpoints by
avoiding redundant evaluation of subgoals [39].

Halevy et al. describe the query-tree, a data structure that is useful in the optimiza-
tion of Datalog programs [16]. The query-tree encodes all symbolic derivation trees that
satisfy some property.

6.2 Logic Programming with BDDs

Iwaihara et al. described a technique for using BDDs for logic programming [17]. They
presented two different ways of encoding relations: logarithmic encoding, which is the
encoding we use in this paper, and linear encoding, which encodes elements or parts
of elements as their own BDD variable. They evaluate the technique using a transitive
closure computation. The Toupie system translates logic programming queries into an
implementation based on decision diagrams [13].

Crocopat is a tool for relational computation that is used for structural analysis of
software systems [7]. Like bddbddb, they use BDDs to represent relations.

6.3 Program Analysis with BDDs

Both Zhu and Berndl et al. used BDDs to implement context-insensitive inclusion-
based points-to analysis [5,40]. Zhu extended his technique to support a summary-based
context sensitivity [41], whereas Whaley and Lam developed a cloning-based context-
sensitive pointer analysis algorithm that relies heavily on the data sharing inherent in
BDDs [38]. Avots et al. extended Whaley and Lam’s algorithm to support C programs
with pointer arithmetic [1].

Jedd is a Java language extension that provides a relational algebra abstraction over
BDDs [19]. Their treatment of domain assignment as a constraint problem is similar to
ours; they use a SAT solver to find a legal domain assignment. They do not attempt to
order the constraints based on importance.

Besson and Jensen describe a framework that uses Datalog to specify a variety of
class analyses for object oriented programs [6]. Sittampalam, de Moor, and Larsen for-
mulate program analyses using conditions on control flow paths [32]. These conditions
contain free metavariables corresponding to program elements (such as variables and
constants). They use BDDs to efficiently represent and search the large space of possi-
ble instantiations.

Bebop is a symbolic model checker used for checking program behavior [2]. It uses
BDDs to represent sets of states. It has been used to validate critical safety properties
of device drivers [3].

7 Conclusion

This paper described bddbddb, a deductive database engine that uses Datalog for spec-
ifying and querying program analyses. Datalog is a natural means of specifying many
program analyses; many complicated analyses can be specified in only a few lines of
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Datalog. Adding BDDs to this combination works well because BDDs can take advan-
tage of the redundancies that occur in program analyses — especially context-sensitive
analyses — and because BDD whole-set operations correspond closely to Datalog’s
evaluation style.

Our experience with the system is encouraging. Program analyses are so much eas-
ier to implement using bddbddb that we can no longer go back to the old technique
of hand coding analyses. This is especially true because our experiments showed that
bddbddb can often execute program analyses faster than a well-tuned handcoded im-
plementation. Although there is still much work to be done in improving the algorithms
and implementation of bddbddb, we have found the tool to be useful in our research.

The use of our system brings many benefits. It makes prototyping new analyses
remarkably easy. Combining the results of multiple analyses becomes trivial. Concise
specifications are easier to verify than larger traditional programs. The analysis runs
faster because the inference engine automates the tedious process of optimizing and
incrementalizing the analysis. New optimizations can be tested and implemented once
in the inference engine, rather than repeatedly in each analysis. bddbddb bridges the
gap between the specification of a program analysis and its implementation.

However, the greatest benefit of our system is that it makes powerful program anal-
ysis more widely accessible. The ease of a declarative language like SQL is considered
to be one of the reasons for the success in databases [27]. We believe that the use of
Datalog may play a important role in the future of interactive programming tools.

The bddbddb system is publicly available on Sourceforge licensed under the open-
source LGPL license.

Acknowledgments
The authors would like to thank V. Benjamin Livshits and Christopher Unkel for their
contribution of test cases and helpful feedback on their experiences with using bddb-
ddb. This work was supported in part by the NSF under Grant No. 0326227 and an
Intel Graduate Fellowship.

References

1. D. Avots, M. Dalton, V. B. Livshits, and M. S. Lam. Improving software security with a C
pointer analysis. In ICSE ’05: Proceedings of the 27th International Conference on Software
Engineering. ACM Press, 2005.

2. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean programs. In
Proceedings of the 7th International SPIN Workshop on SPIN Model Checking and Software
Verification, pages 113–130. Springer-Verlag, 2000.

3. T. Ball and S. K. Rajamani. Automatically validating temporal safety properties of interfaces.
In SPIN ’01: Proceedings of the 8th International SPIN Workshop on Model Checking of
Software, pages 103–122. Springer-Verlag New York, Inc., 2001.

4. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange ways to
implement logic programs (extended abstract). In PODS ’86: Proceedings of the Fifth ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 1–15. ACM Press,
1986.

5. M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to analysis using BDDs.
In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 Conference on Programming Lan-
guage Design and Implementation, pages 103–114. ACM Press, 2003.



Using Datalog with Binary Decision Diagrams for Program Analysis 117

6. F. Besson and T. Jensen. Modular class analysis with datalog. In R. Cousot, editor, Pro-
ceedings of the 10th Static Analysis Symposium (SAS 2003), pages 19–36. Springer LNCS
vol. 2694, 2003.

7. D. Beyer, A. Noack, and C. Lewerentz. Simple and efficient relational querying of software
structures. In Proceedings of the 10th IEEE Working Conference on Reverse Engineering,
Nov. 2003.

8. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, 35(8):677–691, 1986.

9. M. Carbin, J. Whaley, and M. S. Lam. Finding effective variable orderings for BDD-based
program analysis. To be submitted for publication, 2005.

10. S. Ceri, G. Gottlob, and L. Tanca. Logic programming and databases. Springer-Verlag New
York, Inc., 1990.

11. A. Chandra and D. Harel. Horn clauses and generalizations. Journal of Logic Programming,
2(1):1–15, 1985.

12. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic programs. J.
ACM, 43(1):20–74, 1996.

13. M.-M. Corsini, K. Musumbu, A. Rauzy, and B. L. Charlier. Efficient bottom-up abstract
interpretation of prolog by means of constraint solving over symbolic finite domains. In
PLILP ’93: Proceedings of the 5th International Symposium on Programming Language
Implementation and Logic Programming, pages 75–91. Springer-Verlag, 1993.

14. S. Dawson, C. R. Ramakrishnan, and D. S. Warren. Practical program analysis using general
purpose logic programming systemsa case study. In PLDI ’96: Proceedings of the ACM
SIGPLAN 1996 Conference on Programming Language Design and Implementation, pages
117–126. ACM Press, 1996.

15. A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. J. ACM, 38(3):619–649, 1991.

16. A. Y. Halevy, I. S. Mumick, Y. Sagiv, and O. Shmueli. Static analysis in datalog extensions.
J. ACM, 48(5):971–1012, 2001.

17. M. Iwaihara and Y. Inoue. Bottom-up evaluation of logic programs using binary decision
diagrams. In ICDE ’95: Proceedings of the Eleventh International Conference on Data
Engineering, pages 467–474. IEEE Computer Society, 1995.

18. M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M. Carbin, and C. Unkel.
Context-sensitive program analysis as database queries. In Proceedings of the Twenty-fourth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM,
June 2005.

19. O. Lhoták and L. Hendren. Jedd: a BDD-based relational extension of Java. In PLDI ’04:
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation, pages 158–169. ACM Press, 2004.

20. J. Lind-Nielsen. BuDDy, a binary decision diagram package. http://buddy.sourceforge.net.
21. Y. A. Liu and S. D. Stoller. From datalog rules to efficient programs with time and space

guarantees. In PPDP ’03: Proceedings of the 5th ACM SIGPLAN International Conference
on Principles and Practice of Declarative Programming, pages 172–183. ACM Press, 2003.

22. V. B. Livshits and M. S. Lam. Finding security vulnerabilities in java applications with static
analysis. In 14th USENIX Security Symposium. USENIX, Aug. 2005.

23. M. C. Martin, V. B. Livshits, and M. S. Lam. Finding application errors using PQL: a pro-
gram query language. In Proceedings of the ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), Oct. 2005.

24. J. F. Naughton and R. Ramakrishnan. Bottom-up evaluation of logic programs. In Compu-
tational Logic - Essays in Honor of Alan Robinson, pages 640–700, 1991.

25. J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman. Efficient evaluation of
right-, left-, and multi-linear rules. In SIGMOD ’89: Proceedings of the 1989 ACM SIG-
MOD International Conference on Management of Data, pages 235–242. ACM Press, 1989.



118 J. Whaley et al.

26. R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Rule ordering in bottom-up fixpoint
evaluation of logic programs. In Proceedings of the 16th International Conference on Very
Large Data Bases, pages 359–371. Morgan Kaufmann Publishers Inc., 1990.

27. R. Ramakrishnan and J. D. Ullman. A survey of research on deductive database systems. J.
Logic Programming, 23(2):125–149, 1993.

28. G. Ramalingam. Identifying loops in almost linear time. ACM Transactions on Programming
Languages and Systems, 21(2):175–188, Mar. 1999.

29. T. W. Reps. Demand Interprocedural Program Analysis Using Logic Databases, pages 163–
196. Kluwer, 1994.

30. Y. Sagiv. Optimizing datalog programs. In PODS ’87: Proceedings of the Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 349–362.
ACM Press, 1987.

31. K. Sagonas, T. Swift, and D. S. Warren. Xsb as an efficient deductive database engine. In
SIGMOD ’94: Proceedings of the 1994 ACM SIGMOD International Conference on Man-
agement of Data, pages 442–453. ACM Press, 1994.

32. G. Sittampalam, O. de Moor, and K. F. Larsen. Incremental execution of transformation
specifications. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 26–38. ACM Press, 2004.

33. H. Tamaki and T. Sato. Old resolution with tabulation. In Proceedings on Third International
Conference on Logic Programming, pages 84–98. Springer-Verlag New York, Inc., 1986.

34. R. E. Tarjan. Testing flow graph reducibility. Journal of Computer and System Sciences,
9(3):355–365, Dec. 1974.

35. J. D. Ullman. Bottom-up beats top-down for datalog. In PODS ’89: Proceedings of the
Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 140–149. ACM Press, 1989.

36. J. D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science
Press, Rockville, MD., volume II edition, 1989.

37. J. Whaley. JavaBDD library. http://javabdd.sourceforge.net.
38. J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis using binary

decision diagrams. In PLDI ’04: Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation, pages 131–144. ACM Press, 2004.

39. N.-F. Zhou and T. Sato. Efficient fixpoint computation in linear tabling. In PPDP ’03:
Proceedings of the 5th ACM SIGPLAN International Conference on Principles and Practice
of Declarative Programming, pages 275–283. ACM Press, 2003.

40. J. Zhu. Symbolic pointer analysis. In ICCAD ’02: Proceedings of the 2002 IEEE/ACM
International Conference on Computer-Aided Design, pages 150–157. ACM Press, 2002.

41. J. Zhu and S. Calman. Symbolic pointer analysis revisited. In PLDI ’04: Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation,
pages 145–157. ACM Press, 2004.



Loop Invariants on Demand

K. Rustan M. Leino1 and Francesco Logozzo2

1 Microsoft Research, Redmond, WA, USA
leino@microsoft.com
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Abstract. This paper describes a sound technique that combines the precision
of theorem proving with the loop-invariant inference of abstract interpretation.
The loop-invariant computations are invoked on demand when the need for a
stronger loop invariant arises, which allows a gradual increase in the level of
precision used by the abstract interpreter. The technique generates loop invariants
that are specific to a subset of a program’s executions, achieving a dynamic and
automatic form of value-based trace partitioning. Finally, the technique can be
incorporated into a lemmas-on-demand theorem prover, where the loop-invariant
inference happens after the generation of verification conditions.

1 Introduction

A central problem in reasoning about software is the infinite number of control paths
and data values that a program’s executions may give rise to. The general solution to this
problem is to perform abstractions [10]. Abstractions include, for instance, predicates
of interest on the data (as is done in predicate abstraction [21]) and summaries of the
effects of certain control paths (like loop invariants [19,25]). A trend that has emerged
in the last decade is to start with coarse-grained abstractions and to refine these when the
need arises (as used, for example, in predicate refinement [21,3,24], lemmas-on-demand
theorem provers [16,13,6,2,28], and abstract-interpretation based verifiers [32]).

In this paper, we describe a technique that refines loop invariants on demand. In
particular, the search for stronger loop invariants is initiated as the need for stronger
loop invariants arises during a theorem prover’s attempt at proving the program. The
technique can generate loop invariants that are specific to a subset of a program’s ex-
ecutions, achieving a dynamic and automatic form of value-based trace partitioning.
Finally, the technique can be incorporated into a lemmas-on-demand theorem prover,
where the loop-invariant inference happens after the generation of verification condi-
tions.

The basic idea is this: Given a program, we generate a verification condition, a logi-
cal formula whose validity implies the correctness of the program. We pass this formula
to an automatic theorem prover that will either prove the correctness of the program or
produce, in essence, a set of candidate program traces that lead to an error. Rather than
just giving up and reporting these candidate traces as an error, we invoke an abstract in-
terpreter on the loops along the traces, hoping to find stronger loop invariants that will
allow the theorem prover to make more progress toward a proof. As this process con-
tinues, increasingly more precise analyses and abstract domains may be used with the
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abstract interpreter, which allows the scheme of optimistically trying cheaper analyses
first. Each invocation of the abstract interpreter starts from the information available in
the candidate traces. Consequently, the abstract interpreter can confine its analysis to
these traces, thus computing loop invariants that hold along these traces but that may
not hold for all of the program’s executions. Once loop invariants are computed, they
are communicated back to the theorem prover. This process terminates when the the-
orem prover is able to prove the program correct or when the abstract interpreter runs
out of steam, in which case the candidate traces are reported.

As an example, consider the program in Figure 1. The strongest invariant for the
loop is:

(N � 0 ∧ x = m = 0) ∨ (0 � x � N ∧ 0 � m < N )

Using this loop invariant, one can prove the program to be correct, that is, one can prove
that the assertion near the end of the program never fails. However, because this invari-
ant contains a disjunction, common abstract domains like intervals [10], octagons [33],
and polyhedra [12] would not be able to infer it. The strongest loop invariant that does
not contain a disjunction is:

0 � x ∧ 0 � m

which, disappointingly, is not strong enough to prove the program correct. Disjunctive
completion [11] or loop unrolling can be used to improve the precision of these do-
mains, enough to prove the property. Nevertheless, in practice the cost of disjunctive
completion is prohibitive and in the general case the number of loop unrollings neces-
sary to prove the properties of interest is not known.

Trace partitioning is a well-known technique that provides a good value of the
precision-to-cost ratio for handling disjunctive properties. Our technique performs trace
partitioning dynamically (i.e., during the analysis of the program), automatically, (i.e.,
without requiring interaction from the user), and contextually (i.e., according to the
values of variables and the control flow of the program).

Applying our technique to the example program in Figure 1, the theorem prover
would first produce a set of candidate traces that exit the loop with any values for x

x := 0 ; m := 0 ;
while (x < N ) {

if (. . .) { /* check if a new minimum as been found */
m := x ;

}
x := x + 1 ;

}
if (0 < N ) {

assert 0 � m < N ;
}

Fig. 1. A running example, showing a correct program whose correctness follows from a dis-
junctive loop invariant. The program is an abstraction of a program that iterates through an array
(not shown) of length N (indexed from 0), recording in m the index of the array’s mimimum
element. The then branch of the if statement after the loop represents some operation that relies
on the fact that m is a proper index into the array.
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and m , then takes the then branch of the if statement (which implies 0 < N ) and
then finds the assertion to be false. Not all such candidate trace are feasible, however.
From the information about the candidate traces, and in particular from 0 < N , the
abstract interpreter (with the octagon or polyhedra domain, for example) infers the loop
invariant:

0 � x � N ∧ 0 � m < N

using which the theorem prover can complete the proof.
In Section 2, we present a toy imperative language and define an abstract interpre-

tation for it, parameterized by any abstract domain. We also prescribe for this language
the generation of verification conditions. In Section 3, we present the basic interface
of the theorem prover and define our technique as a “fact generator” for the theorem
prover. Throughout, we apply what we say to the running example shown in Figure 1.
We relate our technique to previous work in Section 4 and conclude the paper in Sec-
tion 5.

2 An Imperative Language and Its Semantics

In this section, we define a while language, its abstract semantics, and its associated
verification conditions. We also show an example program whose analysis benefits from
the combination of an abstract interpreter and a theorem prover.

2.1 Grammar

We consider the source language whose grammar is given in Figure 2. The source lan-
guage includes support for specifications via the assert E statement: if the expression
E evaluates to false, then the program fails. The assignment statement x := E sets

Stmt ::= assert Expr ; (assertion)
| x := Expr ; (assignment)
| havoc x ; (set x to an arbitrary value)
| Stmt Stmt (composition)
| if (Expr) {Stmt} else {Stmt} (conditional)
| while� (Expr) {Stmt} (loop)

Fig. 2. The grammar of the source language

x := 0; m := 0;
while� (x < N ) {

havoc b; if (b) {m := x ; } else {assert true; }
x := x + 1;

}
if (0 < N ) {assert 0 � m < N ; } else {assert true; }

Fig. 3. The program of Figure 1 encoded in the source language
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the variable x to the value of the expression E . The havoc statement havoc x non-
deterministically assigns a value to x . Sequential composition, conditionals, and loops
are the usual ones. Note that we assume that loops are uniquely determined by labels �
taken from a set W : Given a label � , the function LookupWhile(�) returns the while
loop associated with such a label.

For example, Figure 3 shows the program in Figure 1 written in the notation of our
source language. Note the use of havoc b; followed by a use of b in a conditional,
which encodes an arbitrary choice between the two branches of the conditional.

2.2 Abstract Semantics

The abstract semantics ��·� is defined by structural induction in Figure 4. It is para-
meterized by an abstract domain D , which includes a join operator (�), a meet oper-
ator (�), a projection operator (eliminate), and a primitive to handle the assignment
(assign). The pointwise extension of the join is denoted �̇ .

The abstract semantics for expressions is given by a function ��·� ∈ L(Expr) →
D → D . Intuitively, ��E�(d) overapproximates the subset of the concrete states γ(d)
that make the expression E true. For lack of space, we omit here its definition and refer
the interested reader to, e.g., [9].

The input of the abstract semantics is an abstract state representing the initial condi-
tions. The output is a pair consisting of an approximation of the output states and a map
from (the label of) each loop sub-statement to an approximation of its loop invariant.
The rules in Figure 4 are described as follows. The assert statement retains the part
of the input state that satisfies the asserted expression. The effects of an assignment are
handled by the abstract domain through the primitive assign . In the concrete, havoc x
sets the variable x to any value, so in the abstract we handle it by simply projecting
out the variable x from the abstract state. Stated differently, we set the value of x to
* . Sequential composition, conditional, and loops are defined as usual. In particular,
the semantics of a loop is given by a least fixpoint on the abstract domain D . Such
a fixpoint can be computed iteratively, and if the abstract domain does not satisfy the

��·� ∈ L(Stmt) → D → D× (W → D)

��assert E; �(d) = (��E�(d), ∅)
��x := E; �(d) = (d .assign(x , E), ∅)
��havoc x ; �(d) = (d .eliminate(x), ∅)
��S0 S1�(d) = let (d0, f0) = ��S0�(d) in

let (d1, f1) = ��S1�(d0) in
(d1, f0 ∪ f1)

��if (E) {S0} else {S1}�(d) = let (d0, f0) = ��S0�(��E�(d)) in
let (d1, f1) = ��S1�(��¬E�(d)) in
(d0 � d1, f0 ∪ f1)

��while� (E) {S}�(d) =
let (d∗, f ∗)= lfp(λ X ,Y • (d , ∅) �̇ ��S�(��E�(X )) ) in
(��¬E�(d∗), f ∗[ 	→ d∗])

Fig. 4. The generic abstract semantics for the source language
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Cmd ::= assert Expr (assert)
| assume Expr (assume)
| Cmd ; Cmd (sequence)
| Cmd � Cmd (non-deterministic choice)

Fig. 5. The intermediate language

ascending chain condition then the convergence (to a post-fixpoint) of the iterations is
enforced through the use of a widening operator. The abstract state just after the loop
is given by the loop invariant restrainted by the negation of the guard. Notice that the
abstract semantics for the loop also records in the output map the loop invariant for � .

2.3 Verification Conditions

To define the verification conditions for programs written in our source language, we
first translate them into an intermediate language and then apply weakest preconditions
(cf. [29]).

Intermediate Language. The commands of the intermediate language are given by
the grammar in Figure 5. Our intermediate language is that of passive commands, i.e.,
assignment-free and loop-free commands [18].

The assert and assume statements first evaluate the expression Expr . If it eval-
uates to true , then the execution continues. If the expression evaluates to false , the
assert statement causes the program to fail (the program goes wrong) and the assume
statement blocks the program (which implies that the program no longer has a chance
of going wrong). Furthermore, we have a statement for sequential composition and
non-deterministic choice.

The translation from a source language program S to an intermediate language
program is given by the following function ( id denotes the identity map):

translate(S) = let (C , m)= tr(S , id) in C

The goals of the translation are to get rid of (i) assignments and (ii) loops. To achieve
(i), the translation uses a variant of static single assignment (SSA) [1] that introduces
new variables (inflections) that stand for the values of program variables at different
source-program locations, such that within any one execution path an inflection vari-
able has only one value. To achieve (ii), the translation replaces an arbitrary number of
iterations of a loop with something that describes the effect that these iterations have on
the variables, namely the loop invariant. The definition of the function tr is in Figure 6.
The function takes as input a program in the source language and a renaming function
from program variables to their pre-state inflections, and it returns a program in the in-
termediate language and a renaming function from program variables to their post-state
inflections. The rules in Figure 6 are described as follows.

The translation of an assert just renames the variables in the asserted expression
to their current inflections. One of the goals of the passive form is to get rid of the
assignments. As a consequence, given an assignment x := E in the source language,
we generate a fresh variable for x (intuitively, the value of x after the assignment), we
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tr ∈ L(Stmt) × (Vars → Vars) → L(Cmd)× (Vars → Vars)

tr(assert E; , m) = (assert m(E), m)
tr(x := E; , m) = (assume x′ = m(E), m[x 	→ x′]) where x′ is a fresh variable
tr(havoc x; , m) = (assume true, m[x 	→ x′]) where x′ is a fresh variable
tr(S0 S1, m) = let (C 0,n0) = tr(S0,m) in

let (C1,n1) = tr(S1,n0) in
(C0 ; C1, n1)

tr(if (E) {S0} else {S1}, m) =
let (C0, n0) = tr(S0,m) in
let (C1, n1) = tr(S1,m) in
let V= {x ∈ Vars | n0(x) �= n1(x)} in
let V′ be fresh variables for the variables in V in
let D0 = assume m(E) ; C0 ; assume V′ = n0(V) in
let D1 = assume ¬m(E) ; C1 ; assume V′ = n1(V) in
(D0 � D1, m[V 	→ V′])

tr(while� (E) {S}, m) =
let V= targets(S) in
let V′ be fresh variables for the variables in V in
let n = m[V 	→ V′] in
let (C,n0)= tr(S,n) in
let J� be a fresh predicate symbol in
(assume J�〈range(m), range(n)〉 ;
(assume n(E) ; C ; assume false � assume ¬n(E)), n)

Fig. 6. The function that translates from the source program to our intermediate language

apply the renaming function to E , and we output an assume statement that binds the
new variable to the renamed expression. For instance, a statement that assigns to y in
a state where the current inflection of y is y0 is translated as follows, where y1 is a
fresh variable that denotes the inflection of y after the statement:

tr(y := y + 4, [y �→ y0]) = (assume y1 = y0 + 4, [y �→ y1])

The translation of havoc x just binds x to a fresh variable, without introducing any
assumptions about the value of this fresh variable. The translation of sequential compo-
sition yields the composition of the translated statements and the post-renaming of the
second statement. The translations of the conditional and the loop are trickier.

For the conditional, we translate the two branches to obtain two translated state-
ments and two renaming functions. Then we consider the set of all the variables on
which the renaming functions disagree (intuitively, they are the variables modified in
one or both the branches of the conditional), and we assign them fresh names. These
names will be the inflections of the variables after the conditional statement. Then, we
generate the translation of the true (resp. false) branch of the conditional by assum-
ing the guard (resp. the negation of the guard), followed by the translated command
and the assumption of the fresh names for the modified variables. Finally, we use the
non-deterministic choice operator to complete the translation of the whole conditional
statement.
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targets ∈ L(Stmt) → P(Vars)

targets(assert E; ) = ∅
targets(x := E; ) = targets(havoc x; ) = {x}
targets(S0 S1) = targets(if (E) {S0} else {S1}) = targets(S0) ∪ targets(S1)
targets(while� (E) {S}) = targets(S)

Fig. 7. The assignment targets, that is, the set of variables assigned in a source statement

assume x0 = 0 ; assume m0 = 0 ;
assume J�〈(x0,m0, b,N ), (x1,m1, b0,N )〉 ;
( assume x1 < N ;

( assume b1 ; assume m2 = x1 ; assume m3 = m2

� assume ¬b1 ; assert true ; assume m3 = m1

) ;
assume x2 = x1 + 1 ; assume false

�
assume ¬(x1 < N )

) ;
( assume 0 < N ; assert 0 � m1 < N
� assume ¬(0 < N ) ; assert true
)

Fig. 8. The intermediate-language program obtained as a translation of the source-language pro-
gram in Figure 3. J� is a predicate symbol corresponding to the loop.

For the loop, we first identify the loop targets (defined in Figure 7), generate fresh
names for them, and translate the loop body. Then, we generate a fresh predicate symbol
indexed by the loop identifier (J� ), which intuitively stands for the invariant of the loop
LookupWhile(�) . We output a sequence that is made up by the assumption of the loop
invariant (intuition: we have performed an arbitrary number of loop iterations) and a
non-deterministic choice between two cases: (i) the loop condition evaluates to true,
we execute a further iteration of the body, and then we stop checking (assume false ),
or (ii) the loop condition evaluates to false and we terminate normally. Finally, please
note that the arguments of the loop-invariant predicate J� include the names of program
variables at the beginning of the loop (range(m)) and the names of the variables after
an arbitrary number of iterations of the loop (range(n)).

Please note that we tacitely assume a total order on variables, so that, e.g., the sets
range(m) and range(n) can be isomorphically represented as lists of variables. We
will use the list representation in our examples.

For example, applying translate to the program in Figure 3results in the intermediate-
language program shown in Figure 8.

Weakest Preconditions. The weakest preconditions of a program in the intermediate
language are given in Figure 9, where Φ denotes the set of first-order formulae. They
characterize the set of pre-states from which every non-blocking execution of the com-
mand does not go wrong, and from which every terminating execution ends in a state
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wp ∈ L(Cmd)× Φ → Φ

wp(assert E , Q) = E ∧ Q
wp(assume E , Q) = E ⇒ Q
wp(C0 ; C1, Q) = wp(C0, wp(C1,Q))
wp(C0 � C1, Q) = wp(C0,Q) ∧ wp(C1,Q)

Fig. 9. Weakest preconditions of the intermediate language

x0 = 0 ⇒ m0 = 0 ⇒
J�〈(x0,m0, b,N ), (x1, m1, b0,N )〉 ⇒
(x1 < N ⇒

(b1 ⇒ m2 = x1 ⇒ m3 = m2 ⇒ x2 = x1 + 1 ⇒ false ⇒ . . .) ∧
(¬b1 ⇒ true ∧ (m3 = m1 ⇒ x2 = x1 + 1 ⇒ false ⇒ . . .))

) ∧
(¬(x1 < N ) ⇒

(0 < N ⇒ 0 � m1 < N ∧ true) ∧
(¬(0 < N ) ⇒ true ∧ true)

)

Fig. 10. The weakest precondition of the program in Figure 8. We use ⇒ as a right-associative
operator with lower precedence than ∧ . The ellipsis in each of the two occurrences of the
sub-formula “ false ⇒ . . .” stands for the conjunction shown in the second and third last lines.

satisfying Q [15,34]. As a consequence, the verification condition for a given program
S , in the source language, is

wp(translate(S), true) (1)

For example, the verification condition for the source program in Figure 3, obtained
as the weakest precondition of the intermediate-language program in Figure 8, is the
formula shown in Figure 10. (As can be seen in this formula, the verification condition
contains a noticeable amount of redundancy, even for this small source program. We
don’t show it here, but the redundancy can be eliminated by using an important opti-
mization in the computation of weakest preconditions, which is enabled by the fact that
the weakest preconditions are computed from passive commands, see [18,27,4].)

2.4 The Benefit of Combining Analysis Techniques

It is unreasonable to think that every static analysis technique would encode all details
of the operators (like integer addition, bitwise-or, and floating-point division) in a pro-
gramming language. Operators without direct support can be encoded as uninterpreted
functions. A theorem prover that supports quantifications offers an easy way to encode
interesting properties of such functions. For example, the property that the bitwise-or
of two non-negative integers is non-negative can be added to the analysis simply by
including

(∀ x , y • 0 � x ∧ 0 � y ⇒ 0 � bitwiseOr(x , y) ) (2)

in the antecedent of the verification condition. In an abstract interpreter, the addition
of properties like this requires authoring or modifying an abstract domain, which takes
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x := 0 ;

while� (x < N ) {
if (0 � y) {assert 0 � x | y ; } else {assert true; }
x := x + 1;

}

Fig. 11. An artificial program whose analysis benefits from the combination of an abstract inter-
preter and a theorem prover

more effort. On the other hand, to use the theorem prover to prove a program correct,
one needs to supply it with inductive conditions like invariants. An abstract interpreter
computes (over-approximations of) such invariants. By combining an abstract inter-
preter and a theorem prover, one can reap the benefits of both the abstract interpreter’s
invariant computation and the theorem prover’s high precision and easy extensibility.

For example, consider the program in Figure 11, where we use “ |” to denote
bitwise-or. Without a loop invariant, the theorem prover cannot prove that the first asser-
tion holds. Without support for bitwise-or, an abstract interpreter cannot prove it either.
But the combination can prove it: an abstract interpreter with support for intervals infers
the loop invariant 0 � x , and given this loop invariant and the axiom (2), a theorem
prover can prove the program correct.

3 Loop-Invariant Fact Generator

To determine whether or not a program is correct with respect to its specification, we
need to determine the validity of the verification condition (1), which we do using a
theorem prover. A theorem prover can equivalently be thought of as a satisfier, since
a formula is valid if and only if its negation is unsatisfiable. In this paper, we take the
view of the theorem prover being a satisfier, so we ask it to try to satisfy the formula
¬(1) . If the theorem prover’s exhaustive search determines that ¬(1) is unsatisfiable,
then (1) is valid and the program is correct. Otherwise, the prover returns a monome—
a conjunction of possibly negated atomic formulas—that satisfies ¬(1) and, as far as
the prover can tell, is consistent. Intuitively, the monome represents a set of execution
paths that lead to an error in the program being analyzed, together with any information
gathered by the theorem prover about these execution paths.

A satisfying monome returned by the theorem prover may be an indication of an
actual error in the program being analyzed. But the monome may also be the result
of too weak loop invariants. (There’s a third possibility: that the program’s correctness
depends on mathematical properties that are beyond the power or resource bounds of
the prover. In this paper, we offer no improvement for this third possibility.) At the point
where the prover is about to return a satisfying monome, we would like a chance to infer
stronger loop invariants. To explain how this is done, let us give some more details of
the theorem prover.

We assume the architecture of a lemmas-on-demand theorem prover [16,13]. It starts
off viewing the given formula as a propositional formula, with each atomic sub-formula
being represented as a propositional variable. The theorem prover asks a boolean-
satisfiability (SAT) solver to produce monomes that satisfy the formula propositionally.
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Each such monome is then scrutinized by the supported theories. These theories may
include, for example, the theory of uninterpreted function symbols with equality and the
theory of linear arithmetic. If the monome is found to be inconsistent with the theories,
the theories generate a lemma that explains the inconsistency. The lemma is then, in
effect, conjoined with the original formula and the search for a satisfying monome
continues.

If the SAT solver finds a monome that is consistent with the theories, the theorem
prover invokes a number of fact generators [28], each of which is allowed to return
facts that may help refute the monome. For example, one such fact generator is the
quantifier module, which Skolemizes existential quantifiers and heuristically instanti-
ates universal quantifiers [17,28]. Unlike the lemmas generated by the theories, the
facts may or may not be helpful in refuting the monome. Any facts generated are taken
into consideration and the search for a satisfying monome is resumed. Only if the fact
generators have no further facts to produce, or if some limit on the number of fact-
generator invocations has been reached, does the theorem prover return the satisfying
monome.

To generate loop invariants on demand, we therefore build a fact generator that
infers loop invariants for the loops that play a role in the current monome. This fact
generator can apply a more powerful technique with each invocation. For example, in
a subsequent invocation, the fact generator may make use of more detailed abstract do-
mains, it may perform more join operations before applying accelerating widen opera-
tions, or it may apply more narrowing operations. The fact generator can also make use
of the contextual information of the current monome when inferring loop invariants—a
loop invariant so inferred may not be a loop invariant in every execution of the program,
but it may be good enough to refute the current monome.

The routine that generates new loop-invariant facts is shown in Figure 12. The
GenerateFacts routine extracts from the monome each loop-invariant predicate
J�〈V0, V1〉 of interest. The inference of a loop invariant for loop � is done as follows.

First, GenerateFacts computes into d an initial state for the loop � . This initial
state is computed as a projection of the monome µ onto the loop pre-state inflections
(V0 ). We let the abstract interpreter compute this projection, so we start by applying the
abstraction function α , which maps the monome to an abstract element. For instance,
using the polyhedra abstract domain, the α keeps just the parts of the monome that
involve linear inequalities, all the other parts being abstracted away. The initial state,
which is in terms of V0 , is then conjoined with a set of equalities such that each program
variable in V has the value of the corresponding variable in V0 .

Then, GenerateFacts fetches the loop to be analyzed (LookupWhile(�)) and runs
the abstract interpreter with the initial state d . Since the abstract element d represents
a relation on V0 and V , the analysis will infer a relational invariant [30].

The abstract interpreter returns a loop invariant f (�) with variables in V0 and V . The
routine GenerateFacts then renames each program variable (in V ) to its corresponding
loop post-state inflection (in V1 ). Finally, the set of gathered facts is updated with the
implication

γ(d0) ∧ J�〈V0, V1〉 ⇒ γ(LoopInv)
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Intuitively, it says that if the execution trace being examined satisfies d —the initial
state of the loop used in the analysis just performed—then the loop-invariant predicate
J�〈V0, V1〉 is no weaker than the inferred invariant LoopInv . In this formula, the ab-
stract domain elements d and LoopInv are first concretized using the concretization
function γ , which produces a first-order formula in Φ .

Not utilized in Figure 12 are the invariants inferred for nested loops, which are also
recorded in f . With a little more bookkeeping (namely, keeping track of the pre- and
post-state inflections of the nested loop), one can also produce facts about these loops.

Continuing our example, when the negation of the verification condition in Fig-
ure 10 is passed to the theorem prover, the theorem prover responds with the following
monome:

x0 = 0 ∧ m0 = 0 ∧
J�〈(x0, m0, b, N ), (x1, m1, b0, N )〉 ∧
¬(x1 < N ) ∧
0 < N ∧ ¬(0 � m1)

(or, depending on how the SAT solver makes its case splits, the last literal in the
monome may instead be ¬(m1 < N )). When this monome is passed to GenerateFacts
in Figure 12, the routine finds the J�〈(x0, m0, b, N ), (x1, m1, b0, N )〉 predicate, which
tells it to analyze loop � . We assume for this example that a numeric abstract do-
main like the polyhedra domain [12] is used. Since loop � ’s pre-state inflections are
(x0, m0, b, N ) , the abstract element d0 is computed as

x0 = 0 ∧ m0 = 0 ∧ 0 < N

and d thus becomes

x0 = 0 ∧ m0 = 0 ∧ 0 < N ∧
x0 = x ∧ m0 = m ∧ b = b ∧ N = N

The analysis of the loop produces in f (�) the loop invariant

x0 = 0 � x � N ∧ m0 = 0 � m < N

GenerateFacts(Monome µ) =
let Vbe the program variables in
var Facts := ∅ ;
foreach J�〈V0, V1〉 ∈ µ {

var d0 := α(µ) ;
foreach x �∈ V0 { d0 := d0.eliminate(x); }
let d = d0 � ��V0 = V�(d0) in
let ( , f )= ��LookupWhile()�(d) in
let m = V→ V1 in
let LoopInv = m(f ()) in

Facts := Facts ∪ {γ(d0) ∧ J�〈V0, V1〉 ⇒ γ(LoopInv)} ;
}
return Facts

Fig. 12. The GenerateFacts routine, which invokes the abstract interpreter to infer loop
invariants



130 K.R.M. Leino and F. Logozzo

Note that this loop invariant does not hold in general—it only holds in those executions
where 0 < N . Interestingly enough, notice that the condition 0 < N occurs after the
loop in the program, but since it is relevant to the candidate error trace, it is part of the
monome and thus becomes considered during the inference of loop invariants. Finally,
the program variables are renamed to their post-state inflections (to match the second
set of arguments passed to the J� predicate), which yields

x0 = 0 � x1 � N ∧ m0 = 0 � m1 < N

and so the generated fact is

x0 = 0 ∧ m0 = 0 ∧ 0 < N ∧ J�〈(x0, m0, b, N ), (x1, m1, b0, N )〉 ⇒
x0 = 0 � x1 � N ∧ m0 = 0 � m1 < N

With this fact as an additional constraint, the theorem prover is not able to satisfy the
given formula. Hence, the program in Figure 3 has been automatically proved to be
correct.

4 Related Work

Handjieva and Tzolovski [22] introduced a trace partitioning technique based on a pro-
gram’s control points. Their technique augments abstract states with an encoding of the
history of the control flow. They consider finite sequences over {ti , fi} , where i is a
control point and ti (resp. fi ) denotes the fact that the true (resp. false) branch at the
control point i is taken. Nevertheless, their approach abstracts away from the values of
variables at control points, so that with such a technique it is impossible to prove correct
the example in Figure 1.

The trace partitioning technique used by Jeannet et al. [26] allows performing the
partition according the values of boolean variables or linear constraints appearing in the
program text. Their technique is effective for the analysis of reactive systems, but in the
general case it suffers from being too syntactic-based.

Bourdoncle considers a form of dynamic partitioning [7] for the analysis of recur-
sive functions. In particular, he refines the solution of representing disjunctive proper-
ties by a set of abstract elements (roughly, the disjunctive completion of the underlying
abstract domain), by limiting the number of disjuncts through the use of a suitable
widening operator.

Mauborgne and Rival [32] present a systematic view of trace partitioning tech-
niques, and in particular they focus on automatic partitioning for proving the absence of
run-time errors in large critical embedded software. The main difference with our work
is that in our case the partition is driven by the property to be verified, i.e., the refuted
verification condition.

Finally, the theoretical bases for trace partitioning are given by the reduced cardinal
product (RDC) of abstract domains [11,20]. Roughly, the RDC of two abstract domains
D0 and D1 produces a new domain made up of all the monotonic functions with do-
main D0 and co-domain D1 . In trace partitioning, D0 contains the elements that allow
the partitioning.
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Yorsh et al. [36] and Zee et al. [37] use approaches different from ours for com-
bining theorem proving and abstract interpretation: The first work relies on a theorem
prover to compute the best abstract transfer function for shape analysis. The second
work uses an interactive theorem prover to verify that some program parts satisfy their
specification; then, a static analysis that assumes the specifications is run on the whole
program to prove its correctness.

Henzinger et al. [24,23] use the proof of unsatisfiability produced by a theorem
prover to systematically reduce the abstract models checked by the BLAST model
checker. The technique used in BLAST has several intriguing similarities to our tech-
nique. Two differences are that (i) our analysis is mainly performed inside the theorem
prover, whereas BLAST is a separate tool built around a model checker, and (ii) our
technique uses widening, whereas BLAST uses Craig’s interpolation.

5 Conclusion

We have presented a technique that combines the precision and flexibility of a theorem
prover with the power of an abstract interpretation-based static analyzer. The verifi-
cation conditions are generated from the program source, and they are passed to an
automatic theorem prover. The prover tries to prove the verification conditions, and it
dynamically invokes the abstract interpreter for the inference of (more precise) loop
invariants on a subset of the program traces. The abstract interpreter infers a loop in-
variant that is particular to this set of execution traces, and passes it back to the theorem
prover, which then continues the proof. We obtain a program analysis that is a form of
trace partitioning. The partitioning is value-based (the partition is done on the values of
program variables) and automatic (the theorem prover chooses the partitions automati-
cally).

We have a prototype implementation of our technique, built as an extension of the
Zap theorem prover. We have used our prototype to verify the program in our running
example, as well as several other small example programs.

We plan to extend our work in several directions. For the implementation, we plan
(i) to perform several optimizations in the interaction of the prover and the abstract
interpreter, e.g., by caching the calls to the GenerateFacts routine or by a smarter han-
dling of the analysis of nested loops; and (ii) to include our work in the Boogie static
program verifier, which is part of the Spec# programming system [5]. This second point
will give us easier access to many larger programs. But it will also require some exten-
sions to the theoretical framework presented in this paper, because the starting point
of Boogie’s inference is a language with basic blocks and goto statements [14,4] (as
opposed to the structured source language we have presented here).

We also want to extend our work to handle recursive procedures. In this case, the
abstract interpreter will be invoked to generate not only loop invariants, but also proce-
dure summaries, which we are hopeful can be handled in a similar way on demand. If
obtained, such an extension of our technique to procedure summaries could provide a
new take on interprocedural inference.

It will also be of interest to instantiate the static analyzer with non-numeric abstract
domains, for instance a domain for shape analysis (e.g., [35]). In this case, we expect the
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abstract interpreter to infer invariants on the shape of the heap that are useful to prove
heap properties such as that a method correctly manipulates a list (e.g., “if the input is an
acyclic list, then the output is also an acyclic list”), and that combined with the inference
of class invariants [31,8] may allow the verification of class-level specifications (e.g.,
“the class implements an acyclic list”).
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33. Antoine Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE, pages
310–319. IEEE CS Press, October 2001.

34. Greg Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Programming
Languages and Systems, 11(4):517–561, 1989.

35. Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape analysis via 3-
valued logic. ACM Transactions on Programming Languages and Systems, 24(3):217–298,
2002.

36. Greta Yorsh, Thomas W. Reps, and Shmuel Sagiv. Symbolically computing most-precise
abstract operations for shape analysis. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’04), pages 530–545, 2004.

37. Karen Zee, Patrick Lam, Viktor Kuncak, and Martin C. Rinard. Combining theorem proving
with static analysis for data structure consistency. In International Workshop on Software
Verification and Validation, November 2004.



Integrating Physical Systems in the Static

Analysis of Embedded Control Software�

Patrick Cousot
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Abstract Interpretation

Abstract interpretation is a theory of effective abstraction and/or approximation
of discrete mathematical structures as found in the semantics of programming
languages, modelling program executions, hence program properties, at various
levels of abstraction [3,7,8,10,12].

Static Analysis by Abstract Interpretation

The prominent practical application of abstract interpretation has been to static
program analysis, that is the automatic (without any human intervention), sta-
tic (at compile time) determination of dynamic program properties (that always
hold at runtime) involving complex abstractions of the infinite state operational
semantics (e.g. [4,5,9,11]). Abstract interpretation fights undecidability and com-
plexity by approximation of the program execution model which may lead to
false alarms in correctness proofs. This happens whenever the combination of
the abstract domains involved in the analyzer is not precise enough to express
any inductive argument necessary in the correctness proof. Hence, among other
possible alternatives, the idea to specialize static analyzers to well-defined fam-
ilies of programs and properties for which abstract domains can be designed to
express all information necessary to perform inductive proofs [6].

Static Analysis of Embedded Control Software

This approach was successfully illustrated by the ASTRÉE static analyzer which
is specialized for proving the absence of run-time errors in synchronous, time-
triggered, real-time, safety critical, embedded software written or automatically
generated in the C programming language [1,2,13]. It was able to prove the
absence of run-time errors in large industrial avionic control-command programs
[14]. It is a remarkable well-design criterion that the absence of runtime errors
can be proved in such control/command software without any hypotheses on
the controlled systems (but, maybe, for ranges of variation of very few volatile
input variables). This means that the software will go on functioning without any
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runtime error whichever the behavior of the controlled system can be, as long as
the processor on which the program is running does not fail (a situation which
can be handled by fault-tolerance techniques [15]). Obviously not all desirable
properties of the controlled physical system can be proved in this way by a very
coarse abstraction of the properties of this physical system.

Integrating Physical Systems in the Static Analysis of Embedded
Control Software

To go beyond, e.g. to prove robustness or stability, is is necessary to take into
account the full feedback control system that is the controller (from which the
control/command program was generated) but also the mathematical model
of the physical system (either in the form of differential equations, difference
equations or of a numerical model as given e.g. in SimulinkTM):
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We advocate an approach in which code is generated by discretization both for
the continuous dynamic nonlinear model of the controlled system (e.g. from the
block diagram description of the plant, actuators and sensors) and for the digital
implementation of the controller (as given by the control/command program to
be verified).

This code can be that of a specification language when reasoning at the model
level or that of a programming language when reasoning at the implementation
model.

A static analysis of this code can provide information (like reachability sets)
which can hardly be discovered by traditional simulation or test techniques. Such
numerical simulations also involve discretization techniques and floating-point
computations which might not be the same as those involved in the generated
control/command program. Such intricate differences would disappear in an in-
tegrated approach.

Taking the environment of execution of the control/command program into
account allows for more refined properties of this control/command program to
be proved such as reachability in the actual context of use, reactivity, stability,
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uncertainty and robustness, performance validation, etc of feedback control. Such
properties are not always easily expressible as traditional temporal properties
commonly used in computer science correctness proofs.

By static analysis, such refined properties can be verified from the more or
less idealized and precise model of the controller and plant down to the ac-
tual embedded control program. Information can be translated between levels of
refinement to ease static analysis or checking at lower levels and to ensure coher-
ence and soundness of the inferred information at all levels of refinement. The
verification is thus performed from the model to the derived program with re-
spect to the full specification of the execution environment. A central advantage
of this integrated approach is the potential for early discovery of design errors
much before the costly experimentations on an actual physical implementation.

Convex Abstractions

We present new abstract interpretations and abstract domains issued from mod-
ern control theory and convex optimization as a first step towards reaching these
ambitious objectives of integrating physical systems in the static analysis of em-
bedded control software.
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Abstract. Reflection has always been a thorn in the side of Java sta-
tic analysis tools. Without a full treatment of reflection, static analysis
tools are both incomplete because some parts of the program may not be
included in the application call graph, and unsound because the static
analysis does not take into account reflective features of Java that al-
low writes to object fields and method invocations. However, accurately
analyzing reflection has always been difficult, leading to most static an-
alysis tools treating reflection in an unsound manner or just ignoring it
entirely. This is unsatisfactory as many modern Java applications make
significant use of reflection.

In this paper we propose a static analysis algorithm that uses points-
to information to approximate the targets of reflective calls as part of
call graph construction. Because reflective calls may rely on input to the
application, in addition to performing reflection resolution, our algorithm
also discovers all places in the program where user-provided specifications
are necessary to fully resolve reflective targets. As an alternative to user-
provided specifications, we also propose a reflection resolution approach
based on type cast information that reduces the need for user input, but
typically results in a less precise call graph.

We have implemented the reflection resolution algorithms described in
this paper and applied them to a set of six large, widely-used benchmark
applications consisting of more than 600,000 lines of code combined.
Experiments show that our technique is effective for resolving most re-
flective calls without any user input. Certain reflective calls, however,
cannot be resolved at compile time precisely. Relying on a user-provided
specification to obtain a conservative call graph results in graphs that
contain 1.43 to 6.58 times more methods that the original. In one case,
a conservative call graph has 7,047 more methods than a call graph that
does not interpret reflective calls. In contrast, ignoring reflection leads
to missing substantial portions of the application call graph.

1 Introduction

Whole-program static analysis requires knowing the targets of function or
method calls. The task of computing a program’s call graph is complicated for
a language like Java because of virtual method invocations and reflection. Past
research has addressed the analysis of function pointers in C as well as virtual
method calls in C++ and Java. Reflection, however, has mostly been neglected.
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Reflection in Java allows the developer to perform runtime actions given
the descriptions of the objects involved: one can create objects given their class
names, call methods by their name, and access object fields given their name [1].
Because names of methods to be invoked can be supplied by the user, especially
in the presence of dynamic class loading, precise static construction of a call
graph is generally undecidable. Even if we assume that all classes that may be
used are available for analysis, without placing any restrictions of the targets of
reflective calls, a sound (or conservative) call graph would be prohibitively large.

Many projects that use static analysis for optimization, error detection, and
other purposes ignore the use of reflection, which makes static analysis tools
incomplete because some parts of the program may not be included in the call
graph and potentially unsound, because some operations, such as reflectively
invoking a method or setting an object field, are ignored. Our research is
motivated by the practical need to improve the coverage of static error detection
tools [2,3,4]. The success of such tools in Java is predicated upon having a call
graph available to the error detection tool. Unless reflective calls are interpreted,
the tools run the danger of only analyzing a small portion of the available code
and giving the developer a false sense of security when no bugs are reported.
Moreover, when static results are used to reduce runtime instrumentation, all
parts of the application that are used at runtime must be statically analyzed.

A recent paper by Hirzel, Diwan, and Hind proposes the use of dynamic
instrumentation to collect the reflection targets discovered at run time [5]. They
use this information to extend Andersen’s context-insensitive, inclusion-based
pointer analysis for Java into an online algorithm [6]. Reflective calls are generally
used to offer a choice in the application control flow, and a dynamic application
run typically includes only several of all the possibilities. However, analyses used
for static error detection and optimization often require a full call graph of the
program in order to achieve complete coverage.

In this paper we present a static analysis algorithm that uses points-to infor-
mation to determine the targets of reflective calls. Often the targets of reflective
calls can be determined precisely by analyzing the flow of strings that represent
class names throughout the program. This allows us to precisely resolve many
reflective calls and add them to the call graph. However, in some cases reflective
call targets may depend on user input and require user-provided specifications
for the call graph to be determined. Our algorithm determines all specification
points — places in the program where user-provided specification is needed to de-
termine reflective targets. The user is given the option to provide a specification
and our call graph is complete with respect to the specifications provided [7].

Because providing reflection specifications can be time-consuming and error-
prone, we also provide a conservative, albeit sometimes imprecise, approxima-
tion of targets of reflective calls by analyzing how type casts are used in the
program. A common coding idiom consists of casting the result of a call to
Class.newInstance used to create new objects to a more specific type before the
returned object can be used. Relying on cast information allows us to produce
a conservative call graph approximation without requiring user-provided reflec-
tion specifications in most cases. A flow diagram summarizing the stages of our
analysis is shown in Figure 1.

Our reflection resolution approach hinges on three assumptions about the
use of reflection: (a) all the class files that may be accessed at runtime are
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available for analysis; (b) the behavior of Class.forName is consistent with its API
definition in that it returns a class whose name is specified by the first parameter,
and (c) cast operations that operate on the results of Class.newInstance calls
are correct. In rare cases when no cast information is available to aid with
reflection resolution, we report this back to the user as a situation requiring
specification.

1.1 Contributions

This paper makes the following contributions:

– We formulate a set of natural assumptions that hold in most Java applica-
tions and make the use of reflection amenable to static analysis.

– We propose a call graph construction algorithm that uses points-to infor-
mation about strings used in reflective calls to statically find potential call
targets. When reflective calls cannot be fully “resolved” at compile time, our
algorithms determines a set of specification points — places in the program
that require user-provided specification to resolve reflective calls.

– As an alternative to having to provide a reflection specification, we pro-
pose an algorithm that uses information about type casts in the program to
statically approximate potential targets of reflective calls.

– We provide an extensive experimental evaluation of our analysis approach
based on points-to results by applying it to a suite of six large open-source
Java applications consisting of more than 600,000 lines of code combined. We
evaluate how the points-to and cast-based analyses of reflective calls com-
pare to a local intra-method approach. While all these analyses find at least
one constant target for most Class.forName call sites, they only moderately
increase the call graph size. However, the conservative call graph obtained
with the help of a user-provided specification results is a call graph than
is almost 7 times as big as the original. We assess the amount of effort re-
quired to come up with a specification and how cast-based information can
significantly reduce the specification burden placed on the user.

1.2 Paper Organization

The rest of the paper is organized as follows. In Section 2, we provide back-
ground information about the use of reflection in Java. In Section 3, we lay
out the simplifying assumptions made by our static analysis. In Sections 4
we describe our analysis approach. Section 5 provides a comprehensive exper-
imental evaluation. Finally, in Sections 6 and 7 we describe related work and
conclude.

Fig. 1. Architecture of our static analysis framework
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1. String className = ...;
2. Class c = Class.forName(className);
3. Object o = c.newInstance();
4. T t = (T) o;

Fig. 2. Typical use of reflection to create new objects

Object Creation. Object creation APIs in Java provide a way to program-
matically create objects of a class, whose name is provided at runtime; parame-
ters of the object constructor can be passed in as necessary. Obtaining a class
given its name is most typically done using a call to one of the static functions
Class.forName(String, ...) and passing the class name as the first parameter. We
should point out that while Class.forName is the most common way to obtain a
class given its name, it may not be the only method for doing so. An application
may define a native method that implements the same functionality. The same
observation applies to other standard reflective API methods.

The commonly used Java idiom T.class, where T is a class is translated by the
compiler to a call to Class.forName(T.getName()). Since our reflection resolution
algorithm works at the byte code level, T.class constructs do not require a special
treatment. Creating an object with an empty constructor is achieved through a
call to newInstance on the appropriate java.lang.Class object, which provides a
runtime representation of a class.

Method Invocation. Methods are obtained from a Class object by supplying
the method signature or by iterating through the array of Methods returned by one
of Class functions. Methods are subsequently invoked by calling Method.invoke.

Accessing Fields. Fields of Java runtime objects can be read and written
at runtime. Calls to Field.get and Field.set can be used to get and set fields
containing objects. Additional methods are provided for fields of primitive types.

3 Assumptions About Reflection

This section presents assumptions we make in our static analysis for resolving
reflection in Java programs. We believe that these assumptions are quite reason-
able and hold for many real-life Java applications.

2 Overview of Reflection in Java

In this section we first informally introduce the reflection APIs in Java. The
most typical use of reflection by far is for creating new objects given the object
class name. The most common usage idiom for reflectively creating an object
is shown in Figure 2. Reflective APIs in Java are used for object creation,
method invocation, and field access, as described below. Because of the space
limitations, in this section we only briefly outline the relevant reflective APIs.
Interested readers are encouraged to refer to our technical report for a complete
treatment and a case study of reflection uses in our benchmarks applications [8].
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The problem of precisely determining the classes that an application may
access is undecidable. Furthermore, for applications that access the network,
the set of classes that may be accessed is unbounded: we cannot possibly hope
to analyze all classes that the application may conceivably download from the
net and load at runtime. Programs can also dynamically generate classes to be
subsequently loaded. Our analysis assumes a closed world, as defined below.

Assumption 1. Closed world.
We assume that only classes reachable from the class path at analysis time can
be used by the application at runtime.

In the presence of user-defined class loaders, it is impossible to statically deter-
mine the behavior of function Class.forName. If custom class loaders are used,
the behavior of Class.forName can change; it is even possible for a malicious class
loader to return completely unrelated classes in response to a Class.forName call.
The following assumption allows us to interpret calls to Class.forName.

Assumption 2. Well-behaved class loaders.
The name of the class returned by a call to Class.forName(className) equals
className.

To check the validity of Assumption 2, we have instrumented large applications
to observe the behavior of Class.forName; we have never encountered a violation
of this assumption. Finally, we introduce the following assumption that allows
us to leverage type cast information contained in the program to constrain the
targets of reflective calls.

Assumption 3. Correct casts.
Type cast operations that always operate on the result of a call to newInstance
are correct; they will always succeed without throwing a ClassCastException.

We believe this to be a valid practical assumption: while it is possible to have
casts that fail, causing an exception that is caught so that the instantiated object
can be used afterwards, we have not seen such cases in practice. Typical catch
blocks around such casts lead to the program terminating with an error message.

4 Analysis of Reflection

In this section, we present techniques for resolving reflective calls in a program.
Our analysis consists of the following three steps:

1. We use a sound points-to analysis to determine all the possible sources of
strings that are used as class names. Such sources can either be constant
strings or derived from external sources. The pointer analysis-based approach
fully resolves the targets of a reflective call if constant strings account for
all the possible sources. We say that a call is partially resolved if the sources
can be either constants or inputs and unresolved if the sources can only be
inputs. Knowing which external sources may be used as class names is useful
because users can potentially specify all the possible values; typical examples
are return results of file read operations. We refer to program points where
the input strings are defined as specification points.
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2. Unfortunately the number of specification points in a program can be large.
Instead of asking users to specify the values of every possible input string, our
second technique takes advantage of casts, whenever available, to determine
a conservative approximation of targets of reflective calls that are not fully
resolved. For example, as shown in Figure 2, the call to Class.newInstance,
which returns an Object, is always followed by a cast to the appropriate
type before the newly created object can be used. Assuming no exception is
raised, we can conclude that the new object must be a subtype of the type
used in the cast, thus restricting the set of objects that may be instantiated.

3. Finally, we rely on user-provided specification for the remaining set of calls —
namely calls whose source strings are not all constants — in order to obtain
a conservative approximation of the call graph.

We start by describing the call graph discovery algorithm in Section 4.1 as well
as how reflection resolution fits in with call graph discovery. Section 4.2 presents
a reflection resolution algorithm based on pointer analysis results. Finally, Sec-
tion 4.3 describes our algorithm that leverages type cast information for conser-
vative call graph construction without relying on user-provided specifications.

4.1 Call Graph Discovery

Our static techniques to discover reflective targets are integrated into a context-
insensitive points-to analysis that discovers the call graph on the fly [9]. As
the points-to analysis finds the pointees of variables, type information of these
pointees is used to resolve the targets of virtual method invocations, increasing
the size of the call graph, which in turn is used to find more pointees. Our analysis
of reflective calls further expands the call graph, which is used in the analysis to
generate more points-to relations, leading to bigger call graphs. The discovery
algorithm terminates when a fixpoint is reached and no more call targets or
points-to relations can be found.

By using a points-to analysis to discover the call graph, we can obtain a more
accurate call graph than by using a less precise technique such as class hierarchy
analysis CHA [10] or rapid type analysis RTA [11]. We use a context-insensitive
version of the analysis because context sensitivity does not seem to substantially
improve the accuracy of the call graph [9,12].

4.2 Pointer Analysis for Reflection

This section describes how we leverage pointer analysis results to resolve calls to
Class.forName and track Class objects. This can be used to discover the types of
objects that can be created at calls to Class.newInstance, along with resolving
reflective method invocations and field access operations. Pointer analysis is also
used to find specification points: external sources that propagate string values
to the first argument of Class.forName.

Reflection and Points-to Information. The programming idiom that moti-
vated the use of points-to analysis for resolving reflection was first presented in
Figure 2. This idiom consists of the following steps:
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1. Obtain the name of the class for the object that needs to be created.
2. Create a Class object by calling the static method Class.forName.
3. Create the new object with a call to Class.newInstance.
4. Cast the result of the call to Class.newInstance to the necessary type in order

to use the newly created object.

When interpreting this idiom statically, we would like to “resolve” the call to
Class.newInstance in step 3 as a call to the default constructor T(). However,
analyzing even this relatively simple idiom is nontrivial.

The four steps shown above can be widely separated in the code and reside
in different methods, classes, or jar libraries. The Class object obtained in step 2
may be passed through several levels of function calls before being used in step 3.
Furthermore, the Class object can be deposited in a collection to be later re-
trieved in step 3. The same is true for the name of the class created in step 1 and
used later in step 2. To determine how variables className, c, o, and t defined
and used in steps 1–4 may be related, we need to know what runtime objects
they may be referring to: a problem addressed by points-to analysis. Point-to
analysis computes which objects each program variable may refer to.

Resolution of Class.newInstance of Class.forName calls is not the only thing
made possible with points-to results: using points-to analysis, we also track
Method, Field, and Constructor objects. This allows us to correctly resolve re-
flective method invocations and field accesses. Reflection is also commonly used
to invoke the class constructor of a given class via calling Class.forName with
the class name as the first argument. We use points-to information to determine
potential targets of Class.forName calls and add calls to class constructors of the
appropriate classes to the call graph.

The bddbddb Program Database. In the remainder of this section we describe
how pointer information is used for reflection resolution. We start by describing
how the input program can be represented as a set of relations in bddbddb, a
BDD-based program database [9,13]. The program database and the associated
constraint resolution tool allows program analyses to be expressed in a succinct
and natural fashion as a set of rules in Datalog, a logic programming language.
Points-to information is compactly represented in bddbddb with binary decision
diagrams (BDDs), and can be accessed and manipulated efficiently with Datalog
queries. The program representation as well as pointer analysis results are stored
as relations in the bddbddb database. The domains in the database include invo-
cation sites I, variables V , methods M , heap objects named by their allocation
site H , types T , and integers Z.

The source program is represented as a number of input relations. For in-
stance, relations actual and ret represent parameter passing and method returns,
respectively. In the following, we say that predicate A(x1, . . . , xn) is true if tuple
(x1, . . . , xn) is in relation A. Below we show the definitions of Datalog relations
used to represent the input program:
actual : I × Z × V . actual(i, z, v) means that variable v is zth argument of the

method call at i.
ret : I × V . ret(i, v), means that variable v is the return result of the method

call at i.
assign : V ×V . assign(v1, v2) means that there is an implicit or explicit assign-

ment statement v1 = v2 in the program.
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load : V ×F ×V . load(v1, f, v2) means that there is a load statement v2 = v1.f
in the program.

store: V ×F×V . store(v1, f, v2) means that there is a store statement v1.f = v2
in the program.

string2class : H×T . string2class(s, t) means that string constant s is the string
representation of the name of type t.

calls : I ×M is the invocation relation. calls(i, m) means that invocation site
i may invoke method m.

Points-to results are represented with the relation vP :

vP : V × H is the variable points-to relation. vP(v, h) means that variable v
may point to heap object h.

A Datalog query consists of a set of rules, written in a Prolog-style notation,
where a predicate is defined as a conjunction of other predicates. For example,
the Datalog rule D(w, z) : – A(w, x), B(x, y), C(y, z). says that “D(w, z) is true
if A(w, x), B(x, y), and C(y, z) are all true.”

Reflection Resolution Algorithm. The algorithm for computing targets of
reflective calls is naturally expressed in terms of Datalog queries. Below we define
Datalog rules to resolve targets of Class.newInstance and Class.forName calls.
Handling of constructors, methods, and fields proceed similarly.

To compute reflective targets of calls to Class.newInstance, we define two
Datalog relations. Relation classObjects contains pairs 〈i, t〉 of invocations sites
i ∈ I calling Class.forName and types t ∈ T that may be returned from the call.
We define classObjects using the following Datalog rule:

classObjects(i, t) : – calls(i, “Class.forName”),
actual(i, 1, v), vP(v, s), string2class(s, t).

The Datalog rule for classObjects reads as follows. Invocation site i returns
an object of type t if the call graph relation calls contains an edge from i to
“Class.forName”, parameter 1 of i is v, v points to s, and s is a string that
represents the name of type t.

Relation newInstanceTargets contains pairs 〈i, t〉 of invocation sites i ∈ I
calling Class.newInstance and classes t ∈ T that may be reflectively invoked by
the call. The Datalog rule to compute newInstanceTargets is:

newInstanceTargets(i, t) : – calls(i, “Class.newInstance”),
actual(i, 0, v), vP(v, c),
vP(vc, c), ret(ic, vc), classObjects(ic, t).

The rule reads as follows. Invocation site i returns a new object of type t if the call
graph relation calls contains an edge from i to Class.newInstance, parameter 0
of i is v, v is aliased to a variable vc that is the return value of invocation site
ic, and ic returns type t. Targets of Class.forName calls are resolved and calls to
the appropriate class constructors are added to the invocation relation calls :

calls(i, m) : – classObjects(i, t), m = t + “. < clinit >”.

(The “+” sign indicates string concatenation.) Similarly, having computed re-
lation newInstanceTargets(i, t), we add these reflective call targets invoking the
appropriate type constructor to the call graph relation calls with the rule below:
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loadImpl() @ 43 InetAddress.java:1231 => java.net.Inet4AddressImpl
loadImpl() @ 43 InetAddress.java:1231 => java.net.Inet6AddressImpl
...
lookup() @ 86 AbstractCharsetProvider.java:126 => sun.nio.cs.ISO_8859_15
lookup() @ 86 AbstractCharsetProvider.java:126 => sun.nio.cs.MS1251
...
tryToLoadClass() @ 29 DataFlavor.java:64 => java.io.InputStream
...

Fig. 3. A fragment of a specification file accepted by our system. A string identifying
a call site to Class.forName is mapped to a class name that that call may resolve to.

calls(i, m) : – newInstanceTargets(i, t), m = t + “. < init >”.

Handling Constructor and Other Objects. Another technique of reflective
object creation is to use Class.getConstructor to get a Constructor object, and
then calling newInstance on that. We define a relation constructorTypes that
contains pairs 〈i, t〉 of invocations sites i ∈ I calling Class.getConstructor and
types t ∈ T of the type of the constructor:

constructorTypes(i, t) : – calls(i, “Class.getConstructor”),
actual(i, 0, v), vP(v, h), classObjects(h, t).

Once we have computed constructorTypes, we can compute more
newInstanceTargets as follows:

newInstanceTargets(i, t) : – calls(i, “Class.newInstance”),
actual(i, 0, v), vP(v, c), vP(vc, c), ret(ic, vc),
constructorTypes(ic, t).

This rule says that invocation site i calling “Class.newInstance” returns an object
of type t if parameter 0 of i is v, v is aliased to the return value of invocation ic
which calls “Class.getConstructor”, and the call to ic is on type t.

In a similar manner, we can add support for Class.getConstructors, along
with support for reflective field, and method accesses. The specification of these
are straightforward and we do not describe them here. Our actual implemen-
tation completely models all methods in the Java Reflection API. We refer the
reader to a technical report we have for more details [8].

Specification Points and User-Provided Specifications. Using a points-
to analysis also allows us to determine, when a non-constant string is passed
to a call to Class.forName, the provenance of that string. The provenance of a
string is in essence a backward data slice showing the flow of data to that string.
Provenance allows us to compute specification points—places in the program
where external sources are read by the program from a configuration file, system
properties, etc. For each specification point, the user can provide values that
may be passed into the application.

We compute the provenance by propagating through the assignment relation
assign , aliased loads and stores, and string operations. To make the specification
points as close to external sources as possible, we perform a simple analysis of
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strings to do backward propagation through string concatenation operations. For
brevity, we only list the StringBuffer.append method used by the Java compiler
to expand string concatenation operations here; other string operations work
in a similar manner. The following rules for relation leadsToForName detail
provenance propagation:

leadsToForName(v, i) : – calls(i, “Class.forName”), actual(i, 1, v).
leadsToForName(v2, i) : – leadsToForName(v1, i), assign(v1, v2).
leadsToForName(v2, i) : – leadsToForName(v1, i),

load(v3, f, v1), vP (v3, h3), vP (v4, h3), store(v4, f, v2).
leadsToForName(v2, i) : – leadsToForName(v1, i), ret(i2, v1),

calls(i2, “StringBuffer.append”), actual(i2, 0, v2).
leadsToForName(v2, i) : – leadsToForName(v1, i), ret(i2, v1),

calls(i2, “StringBuffer.append”), actual(i2, 1, v2).
leadsToForName(v2, i) : – leadsToForName(v1, i), actual(i2, 0, v1),

calls(i2, “StringBuffer.append”), actual(i2, 1, v2).

To compute the specification points necessary to resolve Class.forName calls, we
find endpoints of the leadsToForName propagation chains that are not string
constants that represent class names. These will often terminate in the return
result of a call to System.getProperty in the case of reading from a system prop-
erty or BufferedReader.readLine in the case of reading from a file. By specifying
the possible values at that point that are appropriate for the application being
analyzed, the user can construct a complete call graph.

Our implementation accepts specification files that contain a simple textual
map of a specification point to the constant strings it can generate. A specifica-
tion point is represented by a method name, bytecode offset, and the relevant
line number. An example of a specification file is shown in Figure 3.

4.3 Reflection Resolution Using Casts

For some applications, the task of providing reflection specifications may be too
heavy a burden. Fortunately, we can leverage the type cast information present in
the program to automatically determine a conservative approximation of possible
reflective targets. Consider, for instance, the following typical code snippet:

1. Object o = c.newInstance();
2. String s = (String) o;

The cast in statement 2 post-dominates the call to Class.newInstance in state-
ment 1. This implies that all execution paths that pass through the call to
Class.newInstance must also go through the cast in statement 2 [14]. For state-
ment 2 not to produce a runtime exception, o must be a subclass of String. Thus,
only subtypes of String can be created as a result of the call to newInstance.
More generally, if the result of a newInstance call is always cast to type t, we say
that only subtypes of t can be instantiated at the call to newInstance.

Relying on cast operations can possibly be unsound as the cast may fail, in
which case, the code will throw a ClassCastException. Thus, in order to work, our
cast-based technique relies on Assumption 3, the correctness of cast operations.
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1. UniqueVector voiceDirectories = new UniqueVector();
2. for (int i = 0; i < voiceDirectoryNames.size(); i++) {
3. Class c = Class.forName((String) voiceDirectoryNames.get(i),
4. true, classLoader);
5. voiceDirectories.add(c.newInstance());
6. }
7.
8. return (VoiceDirectory[]) voiceDirectories.toArray(new
9. VoiceDirectory[voiceDirectories.size()]);

Fig. 4. A case in freetts where our analysis is unable to determine the type of objects
instantiated on line 5 using casts.

Preparing Subtype Information. We rely on the closed world Assumption 2
described in Section 3 to find the set of all classes possibly used by the appli-
cation. The classes available at analysis time are generally distributed with the
application. However, occasionally, there are classes that are generated when
the application is compiled or deployed, typically with the help of an Ant script.
Therefore, we generate the set of possible classes after deploying the application.

We pre-process all resulting classes to compute the subtyping relation
subtype(t1, t2) that determines when t1 is a subtype of t2. Preprocessing even
the smallest applications involved looking at many thousands of classes because
we consider all the default jars that the Java runtime system has access to. We
run this preprocessing step off-line and store the results for easy access.

Using Cast Information. We integrate the information about cast operations
directly into the system of constraints expressed in Datalog. We use a Datalog
relation subtype described above, a relation cast that holds the cast operations,
and a relation unresolved that holds the unresolved calls to Class.forName. The
following Datalog rule uses cast operations applied to the return result vret of a
call i to Class.newInstance to constrain the possible types tc of Class objects c
returned from calls sites ic of Class.forName:

classObjects(ic, t) : – calls(i, “Class.newInstance”), actual(i, 0, v), vP(v, c),
ret(i, vret), cast(_, tc, vret), subtype(t, tc),
unresolved(ic), vP (vc, c), ret(ic, vc).

Information propagates both forward and backward—for example, casting the
result of a call to Class.newInstance constrains the Class object it is called upon.
If the same Class object is used in another part of the program, the type con-
straint derived from the cast will be obeyed.

Problems with Using Casts. Casts are sometimes inadequate for resolv-
ing calls to Class.newInstance for the following reasons. First, the cast-based
approach is inherently imprecise because programs often cast the result of
Class.newInstance to a very wide type such as java.io.Serializable. This pro-
duces a lot of potential subclasses, only some of which are relevant in practice.
Second, as our experiments show, not all calls to Class.newInstance have post-
dominating casts, as illustrated by the following example.
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Example 1. As shown in Figure 4, one of our benchmark applications, freetts,
places the object returned by Class.newInstance into a vector voiceDirectories
(line 5). Despite the fact that the objects are subsequently cast to type
VoiceDirectory[] on line 8, intraprocedural post-dominance is not powerful
enough to take this cast into account. �

Using cast information significantly reduces the need for user-provided spec-
ification in practice. While the version of the analysis that does not use cast
information can be made fully sound with user specification as well, we chose to
only provide a specification for the cast-based version.

5 Experimental Results

In this section we present a comprehensive experimental evaluation of the sta-
tic analysis approaches presented in Section 4. In Section 5.1 we describe our
experimental setup. Section 5.2 presents an overview our experimental results.
Section 5.3 presents our baseline local reflection analysis. In Sections 5.4 and 5.5
we discuss the effectiveness of using the points-to and cast-based reflection reso-
lution approaches, respectively. Section 5.6 describes the specifications needed to
obtain a sound call graph approximation. Section 5.7 compares the overall sizes
of the call graph for the different analysis versions presented in this section.

5.1 Experimental Setup

We performed our experiments on a suite of six large, widely-used open-source
Java benchmark applications. These applications were selected among the most
popular Java projects available on SourceForge. We believe that real-life ap-
plications like these are more representative of how programmers use reflection
than synthetically created test suites, or SPEC JVM benchmarks, most of which
avoid reflection altogether.

Summary of information about the applications is provided in Figure 5. No-
tice that the traditional lines of code size metric is somewhat misleading in the
case of applications that rely on large libraries. Many of these benchmarks de-
pend of massive libraries, so, while the application code may be small, the full
size of the application executed at runtime is quite large. The last column of the

Line File Available
Benchmark Description count count Jars classes

jgap genetic algorithms package 32,961 172 9 62,727
freetts speech synthesis system 42,993 167 19 62,821

gruntspud graphical CVS client 80,138 378 10 63,847

jedit graphical text editor 144,496 427 1 62,910

columba graphical email client 149,044 1,170 35 53,689

jfreechart chart drawing library 193,396 707 6 62,885

Total 643,028 3,021 80 368,879

Fig. 5. Summary of information about our benchmarks. Applications are sorted by the
number of lines of code in column 3.
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table in Figure 5 lists the number of classes available by the time each application
is deployed, including those in the JDK.

We ran all of our experiments on an Opteron 150 machine equipped with 4GB
or memory running Linux. JDK version 1.4.2_08 was used. All of the running
times for our preliminary implementation were in tens of minutes, which, al-
though a little high, is acceptable for programs of this size. Creating subtype
information for use with cast-based analysis took well under a minute.

5.2 Evaluation Approach

We have implemented five different variations of our algorithms: None, Local,
Points-to, Casts, and Sound and applied them to the benchmarks described
above. None is the base version that performs no reflection resolution; Local
performs a simple local analysis, as described in Section 5.3. Points-to and
Casts are described in Sections 4.2 and 4.3, respectively.

Version Sound is augmented with a user-provided specification to make the
answer conservative. We should point out that only the Sound version provides
results that are fully sound: None essentially assumes that reflective calls have
no targets. Local only handles reflective calls that can be fully resolved within
a single method. Points-to and Casts only provide targets for reflective calls
for which either string or cast information constraining the possible targets is
available and unsoundly assumes that the rest of the calls have no targets.

Figure 6 summarizes the results of resolving Class.forName using all five an-
alysis versions. Class.forName calls represent by far the most common kind of
reflective operations and we focus on them in our experimental evaluation. To
reiterate the definitions in Section 4, we distinguish between:

– fully resolved calls to Class.forName for which all potential targets are class
name constants,

– partially resolved calls, which have at least one class name string constant
propagating to them, and

– unresolved calls, which have no class name string constants propagating to
them, only non-constant external sources requiring a specification.

The columns subdivide the total number of calls (T) into fully resolved
calls (FR), partially resolved (PR), and unresolved (UR) calls. In the case of
Local analysis, there are no partially resolved calls — calls are either fully re-
solved to constant strings or unresolved. Similarly, in the case of Sound analysis,
all calls are either fully resolved or unresolved, as further explained in Section 5.5.

5.3 Local Analysis for Reflection Resolution (Local)

To provide a baseline for comparison, we implemented a local intra-method
analysis that identifies string constants passed to Class.forName. This analysis
catches only those reflective calls that can be resolved completely within a single
method. Because this technique does not use interprocedural points-to results,
it cannot be used for identification of specification points. Furthermore, because
for method invocations and field accesses the names of the method or field are
typically not locally defined constants, we do not perform resolution of method
calls and field accesses in Local.
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None Local Points-to Casts Sound

Benchmark T T FR UR T FR PR UR T FR PR UR T FR UR
jgap 27 27 19 8 28 20 1 7 28 20 4 4 89 85 4
freetts 30 30 21 9 30 21 0 9 34 25 4 5 81 75 6
gruntspud 139 139 112 27 142 115 5 22 232 191 19 22 220 208 12
jedit 156 156 137 19 161 142 3 16 178 159 12 7 210 197 12
columba 104 105 89 16 105 89 2 14 118 101 10 7 173 167 6
jfreechart 104 104 91 13 104 91 1 12 149 124 10 15 169 165 4

Fig. 6. Results of resolving Class.forName calls for different analysis versions

A significant percentage of Class.forName calls can be fully resolved by local
analysis, as demonstrated by the numbers in column 4, Figure 6. This is partly
due to the fact that it is actually quite common to call Class.forName with a
constant string parameter for side-effects of the call, because doing so invokes
the class constructor. Another common idiom contributing the number of calls
resolved by local analysis is T.class, which is converted to a call to Class.forName
and is always statically resolved.

5.4 Points-To Information for Reflection Resolution (Points-to)

Points-to information is used to find targets of reflective calls to Class.forName,
Class.newInstance, Method.invoke, etc. As can be seen from Figure 6, for all of
the benchmarks, Points-to information results in more resolved Class.forName
calls and fewer unresolved ones compared to Local.

Specification Points. Quite frequently, some sort of specification is required
for reflective calls to be fully resolved. Points-to information allows us to provide
the user with a list of specification points where inputs needs to be specified for
a conservative answer to be obtained. Among the specification points we have
encountered in our experiments, calls to System.getProperty to retrieve a system
variable and calls to BufferedReader.readLine to read a line from a file are quite
common. Below we provide a typical example of providing a specification.

Example 2. This example describes resolving reflective targets of a call to
Class.newInstance in javax.xml.transform.FactoryFinder in the JDK in order
to illustrate the power and limitation of using points-to information. Class
FactoryFinder has a method Class.newInstance shown in Figure 7. The call to
Class.newInstance occurs on line 9. However, the exact class instantiated at run-
time depends on the className parameter, which is passed into this function.
This function is invoked from a variety of places with the className parameter
being read from initialization properties files, the console, etc. In only one case,
when Class.newInstance is called from another function find located in another
file, is the className parameter a string constant.

This example makes the power of using points-to information apparent — the
Class.newInstance target corresponding to the string constant is often difficult to
find by just looking at the code. The relevant string constant was passed down
through several levels of method calls located in a different file; it took us more
that five minutes of exploration with a powerful code browsing tool to find this
case in the source. Resolving this Class.newInstance call also requires the user
to provide input for four specification points: along with a constant class name,
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1. private static Object newInstance(String className,
2. ClassLoader classLoader) throws ConfigurationError {
3. try {
4. Class spiClass;
5. if (classLoader == null) {
6. spiClass = Class.forName(className);
7. }
8. ...
9. return spiClass.newInstance();
10. } catch (...)
11. ...
12. }

Fig. 7. Reflection resolution using points-to results in
javax.xml.transform.FactoryFinder in the JDK

our analysis identifies two specification points, which correspond to file reads,
one access of system properties, and another read from a hash table. �

In most cases, the majority of calls to Class.forName are fully resolved. How-
ever, a small number of unresolved calls are potentially responsible for a large
number of specification points the user has to provide. For Points-to, the aver-
age number of specification points per invocation site ranges from 3 for freetts
to 9 for gruntspud. However, for jedit, the average number of specification points
is 422. Specification points computed by the pointer analysis-based approach can
be thought of as “hints” to the user as to where provide specification.

In most cases, the user is likely to provide specification at program input
points where he knows what the input strings may be. This is because at a
reflective call it may be difficult to tell what all the constant class names that
flow to it may be, as illustrated by Example 2. Generally, however, the user
has a choice. For problematic reflective calls like those in jedit that produce
a high number of specification points, a better strategy for the user may be to
provide reflective specifications at the Class.forName calls themselves instead of
laboriously going through all the specification points.

5.5 Casts for Reflection Resolution (Casts)

Type casts often provide a good first static approximation to what objects can
be created at a given reflective creation site. There is a pretty significant increase
in the number of Class.forName calls reported in Figure 6 in a few cases, includ-
ing 93 newly discovered Class.forName calls in gruntspud that apprear due to a
bigger call graph when reflective calls are resolved. In all cases, the majority of
Class.forName calls have their targets at least partially resolved. In fact, as many
as 95% of calls are resolved in the case of jedit.

As our experience with the Java reflection APIs would suggest, most
Class.newInstance calls are post-dominated by a cast operation, often located
within only a few lines of code of the Class.newInstance call. However, in our
experiments, we have identified a number of Class.newInstance call sites, which
were not dominated by a cast of any sort and therefore the return result of
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Class.newInstance could not be constrained in any way. As it turns out, most
of these unconstrained Class.newInstance call sites are located in the JDK and
sun.∗ sources, Apache libraries, etc. Very few were found in application code.

The high number of unresolved calls in the JDK is due to the fact that
reflection use in libraries tends to be highly generic and it is common to have
“Class.newInstance wrappers” — methods that accept a class name as a string
and return an object of that class, which is later cast to an appropriate type in
the caller method. Since we rely on intraprocedural post-dominance, resolving
these calls is beyond our scope. However, since such “wrapper” methods are
typically called from multiple invocation sites and different sites can resolve to
different types, it is unlikely that a precise approximation of the object type
returned by Class.newInstance is possible in these cases at all.

Precision of Cast Information. Many reflective object creation sites are lo-
cated in the JDK itself and are present in all applications we have analyzed.
For example, method lookup in package sun.nio.cs.AbstractCharsetProvider re-
flectively creates a subclass of Charset and there are 53 different character sets
defined in the system. In this case, the answer is precise because all of these
charsets can conceivably be used depending on the application execution envi-
ronment. In many cases, the cast approach is able to uniquely pinpoint the target
of Class.newInstance calls based on cast information. For example, there is only
one subclass of class sun.awt.shell.ShellFolderManager available to gruntspud,
so, in order for the cast to succeed, it must be instantiated.

In general, however, the cast-based approach provides an imprecise up-
per bound on the call graph that needs to be analyzed. Because the re-
sults of Class.newInstance are occasionally cast to very wide types, such
as java.lang.Cloneable, many potential subclasses can be instantiated at the
Class.newInstance call site. The cast-based approach is likely to yield more pre-
cise results on applications that use Java generics, because those applications
tend to use more narrow types when performing type casts.

5.6 Achieving a Sound Call Graph Approximation (Sound)

Providing a specification for unresolved reflective calls allows us to achieve a
sound approximation of the call graph. In order to estimate the amount of effort
required to come up with a specification for unresolved reflective calls, we decided
to start with Points-to and add a reflection specification until the result became
sound. Because providing a specification allows us to discover more of the call
graph, two or three rounds of specification were required as new portions of the
program became available. In practice, we would start without a specification
and examine all unresolved calls and specification points corresponding to them.
Then we would come up with a specification and feed it back to the call graph
construction algorithm until the process converges.

Coming up with a specification is a difficult and error-prone task that re-
quires looking at a large amount of source code. It took us about ten hours to
incrementally devise an appropriate specification and ensure its completeness
by rerunning the call graph construction algorithm. After providing a reflection
specification stringing with Points-to, we then estimate how much of the user-
provided specification can be avoided if we were to rely on type casts instead.
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Starting with Strings Starting with Casts
Benchmark Specs Sites Libs App Types/site Specs Sites Libs App Types/site

jgap 1,068 25 21 4 42.72 16 2 2 0 8.0
freetts 964 16 14 2 60.25 0 4 3 1 0.0
gruntspud 1,014 27 26 1 37.56 18 4 4 0 4.5
jedit 1,109 21 19 2 52.81 63 3 2 1 21.0
columba 1,006 22 21 1 45.73 16 2 2 0 8.0
jfreechart 1,342 21 21 0 63.90 18 4 4 0 4.5

Fig. 8. User-provided specification statistics

Specification Statistics. The first part of Figure 8 summarizes the effort
needed to provide specifications to make the call graph sound. The second col-
umn shows the number of specifications of the form reflective call site => type,
as exemplified by Figure 3. Columns 3–5 show the number of reflection calls sites
covered by each specification, breaking them down into sites that located within
library vs application code. As can be seen from the table, while the number of
invocation sites for which specifications are necessary is always around 20, only
a few are part of the application. Moreover, in the case of jfreechart, all of the
calls requiring a specification are part of the library code.

Since almost all specification points are located in the JDK and library
code, specification can be shared among different applications. Indeed, there
are only 40 unique invocation sites requiring a specification across all the bench-
marks. Column 6 shows the average number of types specified per reflective call
site. Numbers in this columns are high because most reflective calls within the
JDK can refer to a multitude of implementation classes.

The second part of Figure 8 estimates the specification effort required if were
were to start with a cast-based call graph construction approach. As can be seen
from columns 8–10, the number of Class.forName calls that are not constrained
by a cast operation is quite small. There are, in fact, only 14 unique invocation
sites — or about a third of invocation sites required for Points-to. This suggests
that the the effort required to provide a specification to make Casts sound is
considerably smaller than our original effort that starts with Points-to.

Specification Difficulties. In some cases, determining meaningful values to
specify for Class.forName results is quite difficult, as shown by the example below.

Example 3. One of our benchmark applications, jedit, contains an embedded
Bean shell, a Java source interpreter used to write editor macros. One of the
calls to Class.forName within jedit takes parameters extracted from the Bean
shell macros. In order to come up with a conservative superset of classes that
may be invoked by the Bean shell interpreter for a given installation of jedit,
we parse the scripts that are supplied with jedit to determine imported Java
classes they have access to. (We should note that this specification is only sound
for the default configuration of jedit; new classes may need to be added to the
specification if new macros become available.) It took us a little under an hour
to develop appropriate Perl scripts to do the parsing of 125 macros supplied with
jedit. The Class.forName call can instantiate a total of 65 different types. �
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We should emphasize that the conservativeness of the call graph depends on
the conservativeness of the user-provided specification. If the specification missed
potential relations, they will be also omitted from the call graph. Furthermore,
a specification is typically only conservative for a given configuration of an ap-
plication: if initialization files are different for a different program installation,
the user-provided specification may no longer be conservative.

Remaining Unresolved Calls. Somewhat surprisingly, there are still some
Class.forName calls that are not fully resolved given a user-provided specification,
as can be seen from the last column in Figure 6. In fact, this is not a specification
flaw: no valid specification is possible for those cases, as explained below.

Example 4. The audio API in the JDK includes method
javax.sound.sampled.AudioSystem.getDefaultServices, which is not called in
Java version 1.3 and above. A Class.forName call within that method resolves
to constant com.sun.media.sound.DefaultServices, however, this class is absent
in post-1.3 JDKs. However, since this method represents dead code, our answer
is still sound. Similarly, other unresolved calls to Class.forName located within
code that is not executed for the particular application configuration we are
analyzing refer to classes specific to MacOS and unavailable on Linux, which is
the platform we performed analysis on. In other cases, classes were unavailable
for JDK version 1.4.2_08, which is the version we ran our analysis on. �

5.7 Effect of Reflection Resolution on Call Graph Size

Figure 9 compares the number of classes and methods across different anal-
ysis versions. Local analysis does not have any significant effect on the num-
ber of methods or classes in the call graph, even though most of the calls to
Class.forName can be resolved with local analysis. This is due to the fact that

Classes
Benchmark None Local Points-to Casts Sound

jgap 264 264 268 276 1,569 5.94
freetts 309 309 309 351 1,415 4.58
gruntspud 1,258 1,258 1,275 2,442 2,784 2.21
jedit 1,660 1,661 1,726 2,152 2,754 1.66
columba 961 962 966 1,151 2,339 2.43
jfreechart 884 881 886 1,560 2,340 2.65

Methods
Benchmark None Local Points-to Casts Sound

jgap 1,013 1,014 1,038 1,075 6,676 6.58
freetts 1,357 1,358 1,358 1,545 5,499 4.05
gruntspud 7,321 7,321 7,448 14,164 14,368 1.96
jedit 11,230 11,231 11,523 13,487 16,003 1.43
columba 5,636 5,642 5,652 6,199 12,001 2.13
jfreechart 5,374 5,374 5,392 8,375 12,111 2.25

Fig. 9. Number of classes and methods in the call graph for different analysis versions
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the vast majority of these calls are due to the use of the T.class idiom, which
typically refer to classes that are already within the call graph. While these triv-
ial calls are easy to resolve, it is the analysis of the other “hard” calls with a lot
of potential targets that leads to a substantial increase in the call graph size.

Using Points-to increases the number of classes and methods in the call
graph only moderately. The biggest increase in the number of methods occurs
for jedit (293 methods). Using Casts leads to significantly bigger call graphs,
especially for gruntspud, where the increase in the number of methods compared
to None is almost two-fold.

The most noticeable increase in call graph size is observed in version Sound.
Compared to None, the average increase in the number of classes is 3.2 times
the original and the average increase for the number of methods is 3 times the
original. The biggest increase in the number of methods occurs in gruntspud,
with over 7,000 extra methods added to the graph.

Figure 9 also demonstrate that the lines of code metric is not always indica-
tive of the size of the final call graph — programs are listed in the increasing
order of line counts, yet, jedit and gruntspud are clearly the biggest benchmarks
if we consider the method count. This can be attributed to the use of large li-
braries that ship with the application in binary form as well as considering a
much larger portion of the JDK in version Sound compared to version None.

6 Related Work

General treatments of reflection in Java are given in Forman and Forman [1]
and Guéhéneuc et al. [15]. The rest of the related work falls into the following
broad categories: projects that explicitly deal with reflection in Java and other
languages; approaches to call graph construction in Java; and finally, static and
dynamic analysis algorithms that address the issue of dynamic class loading.

6.1 Reflection and Metadata Research

The metadata and reflection community has a long line of research originating
in languages such as Scheme [16]. We only mention a few relevant projects here.
The closest static analysis project to ours we are aware of is the work by Braux
and Noyé on applying partial evaluation to reflection resolution for the purpose
of optimization [17]. Their paper describes extensions to a standard partial eval-
uator to offer reflection support. The idea is to “compile away” reflective calls
in Java programs, turning them into regular operations on objects and meth-
ods, given constraints on the concrete types of the object involved. The type
constraints for performing specialization are provided by hand.

Our static analysis can be thought of as a tool for inferring such constraints,
however, as our experimental results show, in many cases targets of reflective calls
cannot be uniquely determined and so the benefits of specialization to optimize
program execution may be limited. Braux and Noyé present a description of how
their specialization approach may work on examples extracted from the JDK,
but lacks a comprehensive experimental evaluation. In related work for languages
other than Java, Ruf explores the use of partial evaluation as an optimization
technique in the context of CLOS [18].
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Specifying reflective targets is explicitly addressed in Jax [19]. Jax is con-
cerned with reducing the size of Java applications in order to reduce download
time; it reads in the class files that constitute a Java application, and performs
a whole-program analysis to determine the components of the application that
must be retained in order to preserve program behavior. Clearly, information
about the true call graph is necessary to ensure that no relevant parts of the ap-
plication are pruned away. Jax’s approach to reflection is to employ user-provided
specifications of reflective calls. To assist the user with writing complete spec-
ification files, Jax relies on dynamic instrumentation to discover the missing
targets of reflective calls. Our analysis based on points-to information can be
thought of as a tool for determining where to insert reflection specifications.

6.2 Call Graph Construction

A lot of effort has been spent of analyzing function pointers in C as well as virtual
method calls in C++ and Java. We briefly mention some of the highlights of call
graph construction algorithms for Java here. Grove et al. present a parameter-
ized algorithmic framework for call graph construction [12,20]. They empirically
assess a multitude of call graph construction algorithms by applying them to
a suite of medium-sized programs written in Cecil and Java. Their experience
with Java programs suggests that the effect of using context sensitivity for the
task of call graph construction in Java yields only moderate improvements.

Tip and Palsberg propose a propagation-based algorithm for call graph con-
struction and investigate the design space between existing algorithms for call
graph construction such as 0-CFA and RTA, including RA, CHA, and four new
ones [7]. Sundaresan et al. go beyond the tranditional RTA and CHA approaches
in Java and and use type propagation for the purpose of obtaining a more pre-
cise call graph [21]. Their approach of using variable type analysis (VTA) is able
to uniquely determine the targets of potentially polymorphic call sites in 32%
to 94% of the cases. Agrawal et al. propose a demand-driven algorithm for call
graph construction [22]. Their work is motivated by the need for just-in-time or
dynamic compilation as well as program analysis used as part of software de-
velopment environments. They demonstrate that their demand-driven technique
has the same accuracy as the corresponding exhaustive technique. The reduction
in the graph construction time depends upon the ratio of the cardinality of the
set of influencing nodes to the set of all nodes.

6.3 Dynamic Analysis Approaches

Our work is motivated to a large extend by the need of error detection tool to
have a static approximation of the true conservative call graph of the applica-
tion. This largely precludes dynamic analysis that benefits optimizations such
as method inlining and connectivity-based garbage collection.

A recent paper by Hirzel, Diwan, and Hind addresses the issues of dynamic
class loading, native methods, and reflection in order to deal with the full com-
plexity of Java in the implementation of a common pointer analysis [5]. Their
approach involves converting the pointer analysis [6] into an online algorithm:
they add constraints between analysis nodes as they are discovered at runtime.
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Newly generated constraints cause re-computation and the results are propa-
gated to analysis clients such as a method inliner and a garbage collector at
runtime. Their approach leverages the class hierarchy analysis (CHA) to up-
date the call graph. Our technique uses a more precise pointer analysis-based
approach to call graph construction.

7 Conclusions

This paper presents the first static analysis for call graph construction in Java
that addresses reflective calls. Our algorithm uses the results of a points-to an-
alysis to determine potential reflective call targets. When the calls cannot be
fully resolved, user-provided specification is requested. As an alternative to pro-
viding specification, type cast information can be used to provide a conservative
approximation of reflective call targets.

We applied our static analysis techniques to the task of constructing call
graphs for six large Java applications, some consisting of more than 190,000 lines
of code. Our evaluation showed that as many as 95% of reflective Class.forName
could at least partially be resolved to statically determined targets with the help
of points-to results and cast information without providing any specification.

While most reflective calls are relatively easy to resolve statically, precisely in-
terpreting some reflective calls requires a user-provided specification. Our pointer
analysis-based approach also identified specification points — places in the pro-
gram corresponding to file and system property read operations, etc., where user
input is needed in order to obtain a full call graph. Our evaluation showed that
the construction of a specification that makes the call graph conservative is a
time-consuming and error-prone task. Fortunately, our cast-based approach can
drastically reduce the specification burden placed on the user by providing a
conservative, albeit potentially imprecise approximation of reflective targets.

Our experiments confirmed that ignoring reflection results in missing signifi-
cant portions of the call graph, which is not something that effective static anal-
ysis tools can afford. While the local and points-to analysis techniques resulted
in only a moderate increase in call graph size, using the cast-based approach
resulted in call graphs with as many as 1.5 times more methods than the orig-
inal call graph. Furthermore, providing a specification resulted in much larger
conservative call graphs that were almost 7 times bigger than the original. For
instance, in one our benchmark, an additional 7,047 methods were discovered in
the conservative call graph version that were not present in the original.
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Abstract. Family polymorphism has been proposed for object-oriented
languages as a solution to supporting reusable yet type-safe mutually
recursive classes. A key idea of family polymorphism is the notion of
families, which are used to group mutually recursive classes. In the orig-
inal proposal, due to the design decision that families are represented
by objects, dependent types had to be introduced, resulting in a rather
complex type system. In this paper, we propose a simpler solution of
lightweight family polymorphism, based on the idea that families are
represented by classes rather than objects. This change makes the type
system significantly simpler without losing much expressibility of the
language. Moreover, “family-polymorphic” methods now take a form of
parametric methods; thus it is easy to apply the Java-style type infer-
ence. To rigorously show that our approach is safe, we formalize the set
of language features on top of Featherweight Java and prove the type
system is sound. An algorithm of type inference for family-polymorphic
method invocations is also formalized and proved to be correct.

1 Introduction

Mismatch between Mutually Recursive Classes and Simple Inheritance. It is
fairly well-known that, in object-oriented languages with simple name-based
type systems such as C++ or Java, mutually recursive class definitions and
extension by inheritance do not fit very well. Since classes are usually closed
entities in a program, mutually recursive classes here really mean a set of classes
whose method signatures refer to each other by their names. Thus, different sets
of mutually recursive classes necessarily have different signatures, even though
their structures are similar. On the other hand, in C++ or Java, it is not allowed
to inherit a method from the superclass with a different signature (in fact, it is
not safe in general to allow covariant change of method parameter types). As
a result, deriving subclasses of mutually recursive classes yields another set of
classes that do not refer to each other and, worse, this mismatch is often resolved
by typecasting, which is a potentially unsafe operation (not to say unsafe, an ex-
ception may be raised). A lot of studies [6,8,11,15,17,20,3,19] have been recently
done to develop a language mechanism with a static type system that allows
“right” extension of mutually recursive classes without resorting to typecasting
or other unsafe features.

K. Yi (Ed.): APLAS 2005, LNCS 3780, pp. 161–177, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Family Polymorphism. Erik Ernst [11] has recently coined the term “family
polymorphism” for a particular programming style using virtual classes [16] of
gbeta [10] and applied it to solve the above-mentioned problem of mutually
recursive classes.

In his proposal, mutually recursive classes are programmed as nested class
members of another (top-level) class. Those member classes are virtual in the
same sense as virtual methods—a reference to a class member is resolved at run-
time. Thus, the meaning of mutual references to class names will change when
a subclass of the enclosing class is derived and those member classes are inher-
ited. This late-binding of class names makes it possible to reuse implementation
without the mismatch described above. The term “family” refers to such a set of
mutually recursive classes grouped inside another class. He has also shown how
a method that can uniformly work for different families can be written in a safe
way: such “family-polymorphic” methods take as arguments not only instances
of mutually recursive classes but also the identity of the family that they be-
long to, so that semantical analysis (or a static type checker) can check if those
instances really belong to the same family.

Although family polymorphism seems very powerful, we feel that there may
be a simpler solution to the present problem. In particular, in gbeta, nested
classes really are members (or, more precisely, attributes) of an object, so types
for mutually recursive classes include as part object references, which serve as
identifiers of families. As a result, the semantical analysis of gbeta essentially
involves a dependent type system [1,19], which is rather complex (especially in
the presence of side effects).

Contributions of the Paper. We identify a minimal, lightweight set of language
features to solve the problem of typing mutually recursive classes, rather than
introduce a new advanced mechanism. As done in elsewhere [15], we adopt what
we call the “classes-as-families” principle, in which families are identified with
classes, which are static entities, rather than objects, which are dynamic. Al-
though it loses some expressibility, a similar style of programming is still possi-
ble. Moreover, we take the approach that inheritance is not subtyping, for type
safety reasons, and also avoid exact types [6], which are often deemed important
in this context. These decisions simplify the type system a lot, making much
easier a type soundness argument and application to practical languages such
as Java. As a byproduct, we can view family polymorphic methods as a kind of
parametric methods found e.g. in Java generics and find that the technique of
type argument synthesis as in GJ and Java 5.0 [2,18] can be extended to our
proposal as well.

Other technical contributions of the present paper can be summarized as
follows:

– Simplification of the type system for family polymorphism with the support
for family-polymorphic methods;

– A rigorous discussion of the safety issues by the development of a formal
model called .FJ (read “dot FJ”) of lightweight polymorphism, on top of
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Featherweight Java [14] by Igarashi, Pierce, and Wadler, with a correctness
theorem of the type system; and

– An algorithm of type argument synthesis for family-polymorphic methods
and its correctness theorem.

The Rest of This Paper. After Section 2 presents the overview of our language
constructs through the standard example of graphs, in Section 3, we formalize
those mechanisms as the calculus .FJ and discuss its type safety. Then, Section 4
presents a type inference algorithm for family-polymorphic method invocations
and discuss its correctness. Section 5 discusses related work, and Section 6 con-
cludes. For brevity, we omit proofs of theorems, which appear in a full version
available at http://www.sato.kuis.kyoto-u.ac.jp/~igarashi/papers/.

2 Programming Lightweight Family Polymorphism

We start by informally describing the main aspects of the language constructs
we study in this paper, used to support lightweight family polymorphism. To
this end, we consider as a reference the example in [11], properly adapted to fit
our “classes-as-families” principle.

This example features a family (or group) Graph, containing the classes
Node and Edge, which are the members of the family, and are used as com-
ponents to build graph instances. As typically happens, members of the same
family can mutually refer to each other: in our example for instance, each node
holds a reference to connected edges, while each edge holds a reference to its
source and destination nodes. Now suppose we are interested in defining a
new family ColorWeightGraph, used to define graphs with colored nodes and
weighted edges—nodes and edges with the new fields called color and weight,
respectively—with the property that the weight of an edge depends on the color
of its source and destination nodes. Note that in this way the the members of
the family Graph are not compatible with those of family ColorWeightGraph
in the sense that an edge of a ColorWeightGraph cannot be used in a plain
Graph. Nevertheless, to achieve code reuse, we would like to define the family
ColorWeightGraph as an extension of the family Graph, and declare a member
Node which automatically inherits all the attributes (fields and methods) of Node
in Graph, and similarly for member Edge. Moreover, as advocated by the family
polymorphism idea, we would like classes Node and Edge in ColorWeightGraph
to mutually refer to each other automatically, as opposed to those solutions ex-
ploiting simple inheritance where class Node of ColorWeightGraph would refer
to Edge of Graph—thus requiring an extensive use of typecasts.

2.1 Nested Classes, Relative Path Types, and Extension of Families

This graph example can be programmed using our lightweight family poly-
morphism solution as reported in Figure 1, whose code adheres to a Java-like
syntax—which is also the basis for the syntax of the calculus .FJ we introduce
in Section 3.
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class Graph {
static class Node {

.Edge[] es=new .Edge[10]; int i=0;
void add(.Edge e) { es[i++] = e; }}

static class Edge {
.Node src, dst;
void connect(.Node s, .Node d) {

src = s; dst = d; s.add(this); d.add(this);
} } }
class ColorWeightGraph extends Graph {

static class Node { Color color; }
static class Edge {

int weight;
void connect(.Node s, .Node d) {

weight = f(s.color, d.color); super.connect(s, d);
} } }

Graph.Edge e; Graph.Node n1, n2;
ColorWeightGraph.Edge we; ColorWeightGraph.Node cn1, cn2;
e.connect(n1, n2); // 1: OK
we.connect(cn1, cn2); // 2: OK
we.connect(n1, cn2); // 3: compile-time error
e.connect(n1, cn2); // 4: compile-time error

<G extends Graph>
void connectAll(G.Edge[] es, G.Node n1, G.Node n2){

for (int i: es) es[i].connect(n1,n2); }

Graph.Edge[] ges; Graph.Node gn1,gn2;
ColorWeightGraph.Edge[] ces; ColorWeightGraph.Node cn1,cn2;
connectAll(ges, gn1, gn2); // G as Graph
connectAll(ces, cn1, cn2); // G as ColorWeightGraph
connectAll(ces, gn1, gn2); // compile-time error

Fig. 1. Graph and ColorWeightGraph Classes

The first idea is to represent families as (top-level) classes, and their members
as nested classes. Note that in particular we relied on the syntax of Java static
member classes, which provide a grouping mechanism suitable to define a family.
In spite of this similarity, however, we shall give a different semantics to those
member classes, in order to support family polymorphism. The types of nodes
and edges of class (family) Graph are denoted by notations Graph.Node and
Graph.Edge which we call absolute path types. Whereas such types are useful
outside the family to declare variables and to create instances of such member
classes, we do not use them to specify mutual references of family members. The
notations .Node and .Graph are instead introduced for this purpose, meaning
“member Node in the current family” and “member Edge in the current family,”
respectively. We call such types relative path types : this terminology is justified by
noting that while the notation for a type C1.C2 resembles an absolute directory
path /d1/d2, notation .C2 resembles the relative directory path ../d2.

The importance of relative path types becomes clear when introducing the
concept of family extension. To define the new family ColorWeightGraph, a new
class ColorWeightGraph is declared to extend Graph and providing the mem-
ber classes Node and Edge. Such new members, identified outside their family by
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the absolute path types ColorWeightGraph.Node and ColorWeightGraph.Edge,
will inherit all the attributes of classes Graph.Node and Graph.Edge, respec-
tively. In particular, ColorWeightGraph.Edge will inherit method connect()
from Graph.Edge, and can therefore override it as shown in the reference
code, and even redirect calls by the invocation super.connect(). However,
since connect() is declared to accept two arguments of relative path type
.Node, it will accept a Graph.Node when invoked on a Graph.Edge, and a
ColorWeightGraph.Node when invoked on a ColorWeightGraph.Edge. Notice
that relative path types are essential to realize family polymorphism, as they
guarantee members of the extended family to mutually refer to each other, and
not to refer to a different (super) family.

2.2 Inheritance Is Not Subtyping for Member Classes

This covariance schema for relative path types—they change as we move from a
family to a subfamily—resembles and extends the construct of ThisType [5], used
to make method signatures of self-referencing classes change covariantly through
inheritance hierarchies. As well known, however, such a covariance schema pre-
vents inheritance and substitutability from correctly working together as hap-
pens in most of common object-oriented languages. In particular, when a relative
path type is used as an argument type to a method in a family member, as in
method connect() of class Edge, they prevent its instances from being substi-
tuted for those in the superfamily, even though the proper inheritance relation
is supported. The following code fragment reveals this problem:

// If ColorWeightGraph.Edge were substitutable for Graph.Edge
Graph.Edge e=new ColorWeightGraph.Edge();
Graph.Node n1=new Graph.Node();
Graph.Node n2=new Graph.Node();
e.connect(n1,n2); // Unsafe!!

If class ColorWeightGraph.Edge could be substituted for Graph.Edge, then it
could happen to invoke connect() on a ColorWeightGraph.Edge passing some
Graph.Node as elements. Such an invocation would lead to the attempt of ac-
cessing field color on an object of class Graph.Node, which does not have such
a field!

To prevent this form of unsoundness, our lightweight family polymorphism
solution disallows such substitutability by adopting an “inheritance without sub-
typing” approach for family members. Applied to our graph example, it means
that while ColorWeightGraph.Node inherits all the attributes of Graph.Node
(for ColorWeightGraph extends Graph), ColorWeightGraph.Node is not a sub-
type of Graph.Node. As a result of this choice, we can correctly typecheck the
invocation of methods in member classes. In the client code in the middle of Fig-
ure 1, the first two invocations are correct as node arguments belong to the same
family of the receiver edge, but the third and fourth are (statically) rejected, as
we are passing as argument a node belonging to a family different from the re-
ceiver edge: in other words, Graph.Node and ColorWeightGraph.Node are not
in the subtype relation.
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2.3 Family-Polymorphic Methods as Parametric Methods

To fully exploit the benefits of family polymorphism it should be possible to
write so-called family-polymorphic methods—methods that can work uniformly
over different families. As an example, we consider the method connectAll()
that takes as input an array of edges and two nodes of any family and con-
nects each edge to the two nodes. In our language this is realized through para-
metric methods as shown at the bottom of Figure 1. Method connectAll() is
defined as parametric in a type G—which represents the family used for each
invocation—with upper-bound Graph and correspondingly the arguments are
of type G.Edge[], G.Node and G.Node respectively. As a result, in the first in-
vocation of the example code, by passing edges and nodes of family Graph the
compiler would infer the type Graph for G, and similarly in the second invocation
infers ColorWeightGraph. Finally, in the third invocation no type can be inferred
for G, since for no G, types G.Edge and G.Node match ColorWeightGraph.Edge
and Graph.Node, respectively.

It may be worth noting that we do not allow relative path types to ap-
pear directly in a top-level class: for instance, .Node cannot appear in Graph or
ColorWeightGraph. This is because allowing it would prevent us from assuming
that ColorWeightGraph is a subtype of Graph (for much the same reason as
above), which is used to realize family-polymorphic methods.

3 .FJ: A Formal Model of Lightweight Family
Polymorphism

In this section, we formalize the ideas described in the previous section, namely,
nested classes with simultaneous extension, relative path types and family-
polymorphic methods as a small calculus named .FJ based on Featherweight
Java [14], a functional core of class-based object-oriented languages. After for-
mally defining the syntax (Section 3.1), type system (Sections 3.2 and 3.3), and
operational semantics (Section 3.4) of .FJ, we show a type soundness result
(Section 3.5).

For simplicity, we deal with only a single level of nesting, as opposed to Java,
which allows arbitrary levels of nesting. We believe that, for programming family
polymorphism, little expressiveness is lost by this restriction, though a language
with arbitrarily deep nesting would be interesting. Although they are easy to
add, typecasts—which appear in Featherweight Java and are essential to discuss
erasure compilation of generics—are dropped since one of our aims here is to
show the programming as in the previous section is possible without typecasts.
In .FJ, every parametric method invocation has to provide its type arguments—
type inference will be discussed in Section 4. Method invocation on super is also
omitted since directly formalizing super would require several global changes
to the calculus, due to the fact that super invocation is not virtual [13] and,
more importantly, it does not really pose a new typing challenge. Invocations on
super work for much the same reason as invocations of inherited methods on
this work.
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3.1 Syntax

The abstract syntax of top-level/nested class declarations, constructor declara-
tions, method declarations, and expressions of .FJ is given in Figure 2. Here,
the metavariables C, D, and E range over (simple) class names; X and Y range
over type variable names; f and g range over field names; m ranges over method
names; x ranges over variables.

We put an over-line for a possibly empty sequence. Furthermore, we abbre-
viate pairs of sequences in a similar way, writing “T f” for “T1 f1,. . .,Tn fn”,
where n is the length of T and f, and “this.f=f;” as shorthand for
“this.f1=f1;. . . ;this.fn=fn;” and so on. Sequences of type variables, field
declarations, parameter names, and method declarations are assumed to contain
no duplicate names. We write the empty sequence as • and denote concatenation
of sequences using a comma.

A family name P, used as a type argument to family-polymorphic methods,
is either a top-level class name or a type variable. Absolute class names can be
used to instantiate objects, so they play the role of run-time types of objects.
A type can be an absolute path type P or P.C, or a relative path type .C. A
top-level class declaration consists of its name, its superclass, field declarations,
a constructor, methods, and nested classes. The symbol � is read extends. On
the other hand, a nested class does not have an extends clause since the class
from which it inherits is implicitly determined. We have dropped the keyword
static, used in the previous section, for conciseness. As in Featherweight Java,
a constructor is given in a stylized syntax and just takes initial (and final) values
for the fields and assigns them to corresponding fields. A method declaration can
be parameterized by type variables, whose bounds are top-level class (i.e., family)
names. Since the language is functional, the body of a method is a single return
statement. An expression is either a variable, field access, method invocation, or
object creation. We assume that the set of variables includes the special variable
this, which cannot be used as the name of a parameter to a method.

A class table CT is a mapping from absolute class names A to (top-level
or nested) class declarations. A program is a pair (CT , e) of a class table and
an expression. To lighten the notation in what follows, we always assume a

P,Q ::= C | X family names
A,B ::= C | C.C absolute class names

S,T,U ::= P | P.C | .C types

L ::= class C � C {T f; K M N} top class declarations

K ::= C(T f){super(f); this.f=f} constructor declarations

M ::= <X � C>T m(T x){ return e; } method declarations

N ::= class C {T f; K M} nested class declarations

d,e ::= x | e.f | e.<P>m(e) | new A(e) expressions
v ::= new A(v) values

Fig. 2. .FJ: Syntax
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fixed class table CT . As in Featherweight Java, we assume that Object has no
members and its definition does not appear in the class table.

3.2 Lookup Functions

Before proceeding to the type system, we give functions to look up field or
method definitions. The function fields(A) returns a sequence T f of field names
of the class A with their types. The function mtype(m, A) takes a method name
and a class name as input and returns the corresponding method signature of
the form <X�C>T→T0, in which X are bound. They are defined by the rules in
Figure 3. Here, m �∈ M (and E �∈ N) means the method of name m (and the nested
class of name E, respectively) does not exist in M (and N, respectively).

As mentioned before, Object does not have any fields, methods, or nested
classes, so fields(Object) = fields(Object.C) = • for any C, and mtype(m, Object)
and mtype(m, Object.C) are undefined. The definitions are straightforward ex-
tensions of the ones in Featherweight Java. Interesting rules are the last rules:
when a nested class C.E does not exist, lookup proceeds in the nested class of
the same name E in the superclass of the enclosing class C. Notice that, when the
method definition is found in a superclass, relative path types, whose meaning
depends on the type of the receiver, in the method signature remain unchanged;
they are resolved in typing rules. Also note that, by this definition, fields(C.D)

Field Lookup:

fields(Object) = •

class C � D{T f;.. }
fields(D) = U g

fields(C) = U g, T f

fields(Object.C) = •

class C � D{.. class E{T f;.. }.. }
fields(D.E) = U g

fields(C.E) = U g, T f

class C � D {.. N} E �∈ N
fields(D.E) = U g

fields(C.E) = U g

Method Type Lookup:

class C � D {.. M}
<X�C>T0 m(T x){ return e; } ∈ M

mtype(m, C) = <X � C>T→T0

class C � D {.. M.. } m �∈ M
mtype(m, D) = <X � C>T→T0

mtype(m, C) = <X � C>T→T0

class C � D {.. class E {.. M}.. }
<X�C>T0 m(T x){ return e; } ∈ M

mtype(m, C.E) = <X � C>T→T0

class C � D {.. class E {.. M}.. }
m �∈ M mtype(m, D.E) = <X � C>T→T0

mtype(m, C.E) = <X � C>T→T0

class C � D {.. N} E �∈ N
mtype(m, D.E) = <X � C>T→T0

mtype(m, C.E) = <X � C>T→T0

Fig. 3. .FJ: Lookup functions
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is defined for any D if C ∈ dom(CT ). It does no harm since we never ask fields
of such non-existing classes when all types in the class table are well formed.
We also think it would clutter the presentation to give a definition in which
fields(C.D) is undefined when C or its superclasses do not have D.

3.3 Type System

The main judgments of the type system consist of one for subtyping ∆ � S <: T,
one for type well-formedness ∆ �A T ok, and one for typing ∆; Γ �A e : T. Here,
∆ is a bound environment, which is a finite mapping from type variables to their
bounds, written X<:C; Γ is a type environment, which is a finite mapping from
variables to types, written x:T. Since we are not concerned with more general
forms of bounded polymorphism, upper bounds are always top-level class names.
By slight abuse of notation, we write ∆(T) for the upper bound of T in ∆, defined
by: ∆(A) = A and ∆(X.C) = ∆(X).C. We never ask the upper bound of a relative
path type, so ∆(.C) is undefined. We abbreviate a sequence of judgments in the
obvious way: ∆ � S1 <: T1, . . . , ∆ � Sn <: Tn to ∆ � S <: T; ∆ �A T1 ok, . . . ,
∆ �A Tn ok to ∆ �A T ok; and ∆; Γ �A e1:T1, . . . , ∆; Γ �A en:Tn to ∆; Γ �A e:T.
Subtyping. The subtyping judgment ∆ � S <: T, read as “S is subtype of T under
∆,” is defined in Figure 4. This relation is the reflexive and transitive closure of
the extends relation with Object being the top type. Note that a nested class,
which does not have the extends clause, has only a trivial super/subtype, which
is itself, even if some members are inherited from another (nested) class.

Type Well-formedness. The type well-formedness judgment ∆ �A T ok, read as
“T is a well formed type in (the body of) class A under ∆.” The rules for well-
formed types appear also in Figure 4. Object and class names in the domain
of the class table are well formed. Moreover, a nested class name C.E is well
formed if E is inherited from C’s superclass D. Type X (possibly with a suffix) is
well formed if its upper bound (with the suffix) is well formed. Finally, a relative
path type .E is well formed in a nested class C.D if C.E is well formed.

Typing. Typing requires another auxiliary (but important) definition. The res-
olution T@S of T at S, which intuitively denotes the class name that T refers to
in a given class S, is defined by:

Subtyping:

∆ � T <: T ∆ � X <: ∆(X)

∆ � T <: Object
class C � D {.. }

∆ � C <: D

∆ � S <: T ∆ � T <: U
∆ � S <: U

Type Well-formedness:

∆ �A Object ok
∆(P) ∈ dom(CT )

∆ �A P ok

class C � D{.. N}
E �∈ N ∆ �A D.E ok

∆ �A C.E ok

∆ �C.D C.E ok

∆ �C.D .E ok

Fig. 4. .FJ: Subtyping and type well-formedness
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Expression Typing:

∆; Γ �A x:Γ (x) (T-Var)

∆; Γ �A e0:T0 fields(∆(T0@A)) = T f

∆; Γ �A e0.fi:Ti@T0
(T-Field)

∆; Γ �A e0 : T0 mtype(m, ∆(T0@A)) = <X � C>U→U0

∆ � P <: C ∆; Γ �A e:T ∆ � T <:([P/X]U)@T0

∆; Γ �A e0.<P>m(e) : ([P/X]U0)@T0
(T-Invk)

fields(A0) = T f ∆; Γ �A e : U ∆ � U <: (T@A0)

∆; Γ �A new A0(e) : A0
(T-New)

Method Typing:

∆ = X <: C ∆;x:T, this:thisty(A) �A e0:U0

∆ � U0 <: T0 ∆ �A T0, T,C ok

if mtype(m, supcls(A)) = <Y � D>S→S0, then C = D and T,T0 = [X/Y](S,S0)

�A <X � C>T0 m(T x){return e0;} ok
(T-Method)

Class Typing:

K = E(U g,T f){super(g);this.f=f;}
fields(supcls(C.E)) = U g �C.E M ok ∅ �C.E T ok

�C class E{T f; K M} ok
(T-NClass)

K = C(U g,T f){super(g);this.f=f;}
fields(D) = U g �C M ok �C N ok ∅ �C T,D ok

� class C � D{T f; K M N} ok
(T-TClass)

Fig. 5. .FJ: Typing

.D@P.C = P.D .D@.C = .D P@T = P P.C@T = P.C.

The only interesting case is the first clause: It means that a relative path type
.D in P.C refers to P.D—it resembles the command cd of UNIX shells: cd ../D
changes the current directory from P/C to P/D. For example, .Edge@Graph.Node =
Graph.Edge. Note that .D@C and .D@X are undefined since a relative path type
is not allowed to appear in top-level classes.

The typing judgment for expressions is of the form ∆; Γ �A e:T, read as
“under bound environment ∆ and type environment Γ , expression e has type
T in class A.” Typing rules are given in Figure 5. Interesting rules are T-Field
and T-Invk, although the basic idea is as usual—for example, in T-Field,
the field types are retrieved from the receiver’s type T0, and the corresponding
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type of the accessed field is the type of the whole expression. We need some
tricks to deal with relative path types (and type variables): if the receiver’s
type T0 is a relative path type, it has to be resolved in A, the class in which e
appears; a type variable is taken to its upper bound by ∆(·). Moreover, if the field
type is a relative path type, it is resolved in the receiver’s type. For example, if
fields(CWGraph.Node) = .Edge edg and Γ = x:CWGraph.Node, y:.Node, then

∆; Γ �CWGraph.Node x.edg : CWGraph.Edge and
∆; Γ �CWGraph.Node y.edg : .Edge.

In this way, accessing a field of relative path type gives a relative path type only
when the receiver is also given a relative path type. Similarly, in T-Invk, the
method type is retrieved from the receiver’s type; then, it is checked whether
the given type arguments are subtypes of bounds C of formal type parameters
and the types of actual value arguments are subtypes of those of formal pa-
rameters, where type arguments are substituted for variables. For example, if
mtype(connectAll, C) = <G�Graph>(G.Node,G.Edge)→void, then

∆; x:C, n:CWGraph.Node, e:CWGraph.Edge �A
x.connectAll<CWGraph>(n,e) : void.

A judgment for method typing is written �A M ok, and derived by T-Method.
Here, thisty(A) and supcls(A) are defined by:

thisty(C) = C supcls(C) = D
thisty(C.E) = .E supcls(C.E) = D.E

where class C � D{.. }. It is checked that the body of the method is well typed
under the bound and type environments obtained from the definition. Note that
this of a nested class is given a relative path type, as the meaning of this
changes in subclasses. The last conditional premise checks that m correctly over-
rides (if it does) the method of the same name in the superclass with the same
signature (modulo renaming of type variables).

There are two class typing rules, one for top-level classes and one for nested
classes. Both of them are essentially the same: they check that field types and
constructor argument types are the same, and that methods are ok in the class.
The rule T-TClass for top-level classes also checks that nested classes are ok.

3.4 Operational Semantics

The operational semantics is given by the reduction relation of the form e −→ e′,
read “expression e reduces to e′ in one step.” We require another lookup function
mbody(m, A), of which we omitted its obvious definition, for the method body with
formal parameters, written x.e, of given method and class names.

The reduction rules are given in Figure 6. We write [d/x, e/y]e0 for the
expression obtained from e0 by replacing x1 with d1, . . . , xn with dn, and y
with e. There are two reduction rules, one for field access and one for method
invocation, which are straightforward. The reduction rules may be applied at any
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fields(A) = T f
new A(e).fi −→ ei

mbody(m<P>, A) = x.e0

new A(e).<P>m(d) −→ [d/x, new A(e)/this]e0

Fig. 6. .FJ: Reduction

point in an expression, so we also need the obvious congruence rules (if e −→ e′

then e.f −→ e′.f, and the like), omitted here. We write −→∗ for the reflexive
and transitive closure of −→.

3.5 Type Soundness

The type system is sound with respect to the operational semantics, as expected.
Type soundness is proved in the standard manner via subject reduction and
progress [22,14]. (Recall that values are defined by: v ::= new A(v), where v can
be empty.)

Theorem 1 (Subject Reduction). If ∆; Γ �A e:T and e −→ e′, then ∆; Γ �A
e′:T′, for some T′ such that ∆ � T′<:T.

Theorem 2 (Progress). If ∅; ∅ �B e:A and e is not a value, then e −→ e′, for
some e′.

Theorem 3 (Type Soundness). If ∅; ∅ �B e:A and e −→∗ e′ with e′ a normal
form, then e′ is a value v with ∅; ∅ �B v:A′ and ∅ � A′<:A.

4 Type Inference for Parametric Method Invocations

The language .FJ in the previous section is considered an intermediate language
in which every type argument to parametric methods is made explicit. In this
section, we briefly discuss how type arguments can be recovered, give an algo-
rithm for type argument inference, and show its correctness theorem.

The basic idea of type inference is the same as Java 5.0: Given a method
invocation expression e0.m(e) that appears in class A without specifying type
arguments, we can at least compute the type T0 of e0, the signature <X�C>U→U0
of the method m, and the types T of (value) arguments. Then, it is easy to
see from the rule T-Invk that it suffices to find P that satisfies P <: C and
T <:([P/X]U)@T0. In other words, the goal of type inference is to solve the set
{X<:C,T<:(U@T0)} of inequalities with respect to X.

We formalize this constraint solving process as function Infer∆
X (S). It takes

as input a set S of inequalities of the form either X<:C or T1<:T2 where T1 does
not contain Xi, and returns a mapping from X to types (more precisely, family
names). ∆ records other variables’ bounds, so X and the domain of ∆ are assumed
to be disjoint. The definition of Infer∆

X (S) is shown in Figure 7. Here, S1 + S2
is a union of S1 and S2, where S1 ∪ S2 = ∅. T1 �∆ T2 is the least upper bound
of T1 and T2 (the least upper bound of given two types always exist since we do
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Infer∆
X (∅) = [ ]

Infer∆
X (S′ � {P.C<:Xi.C}) = [Xi 	→ P] ◦ Infer∆

X ([P/Xi]S
′)

Infer∆
X (S′ � {T1<:Xi} � {T2<:Xi}) = Infer∆

X (S′ � {(T1 �∆ T2)<:Xi})
Infer∆

X (S′ � {T<:Xi,Xi<:Ci}) =

{
[Xi 	→ T] ◦ Infer∆

X (S′) if ∆ � T<:Ci and Xi �∈ S′

fail otherwise

Infer∆
X (S′ � {Xi<:Ci}) =

{
[Xi 	→ Ci] ◦ Infer∆

X (S′) if Xi �∈ S′

fail otherwise

Infer∆
X (S′ � {T1<:T2}) =

{
Infer∆

X (S′) if ∆ � T1<:T2

fail otherwise

Fig. 7. Algorithm for Type Argument Synthesis

not have interfaces, which can extend more than one interface.) We assume that
each clause is applied in the order shown—thus, for example, the fourth clause
will not be applied until there is only one inequation of the form T<:Xi.

The algorithm is explained as follows. The second clause is the case where
a formal argument type is Xi.C and the corresponding actual is P.C: since P.C
has only a trivial supertype (namely, itself), Xi must be P. The third clause is
the case where a type variable has more than one lower bound: we replace two
inequalities by one using the least upper bound. The following two clauses are
applied when no other constraints on Xi appear elsewhere; it checks whether the
constraint is satisfiable.

Now, we state the theorem of correctness of type inference. It means that, if
type inference succeeds, it gives the least type arguments.

Theorem 4 (Type Inference Correctness). If ∆; Γ �A e0:T0 and mtype(m,
∆(T0)@A) = <X�C>U→U0 and ∆; Γ �A e:T and Infer∆

X ({X<:C,T<:(U@T0)}) re-
turns σ = [X �→ P], then ∆; Γ �A e0.<σX>m(e) : (σU0)@T0. Moreover, σ is
the least solution if every Xi occurs in U in the sense that for any σ′ such that
∆; Γ �A e0.<σ′X>m(e) : (σ′U0)@T0, it holds that ∆ � σ(Xi) <: σ′(Xi) for any Xi.

5 Related Work

As we have already mentioned, in the original formulation of family polymor-
phism [11] nested classes are members (or attributes) of an object of their en-
closing class. Thus, to create node or edge objects, one first has to instantiate
Graph and then to invoke new on a class attribute of that object. It would be
written as

Graph g = new Graph();
g.Node n = new g.Node(.. ); g.Edge e = new g.Edge(.. );

Notice that the types of nodes and edges would include a reference g to the
Graph object. Relative path types .Node and .Edge would respectively become
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this.Node and this.Edge, where the meaning of types changes as the meaning
of this changes due to usual late-binding. Finally, connectAll() would take
four value arguments instead of one type and three value arguments as:

void connectAll(Graph g,
g.Edge[] es, g.Node n1, g.Node n2){ .. }

Notice that the first argument appears as part of types of the following argu-
ments; it is required for a type system to guarantee that es, n1, and n2 belong
to the same graph. As a result, a type system is equipped with dependent types,
such as g.Edge, which can be quite tricky (especially in the presence of side-
effects). We deliberately avoid such types by identifying families with classes. As
a byproduct, as shown in the previous section, we have discovered that GJ-style
type inference is easy to extend to this setting. Although complex, the origi-
nal approach has one apparent advantage: one can instantiate arbitrary number
of Graph objects and distinguish nodes and edges of different graphs by static
types. Scala [19] also support family polymorphism, based on dependent types.

Historically, the mismatching problem of recursive class definitions has been
studied in the context of binary methods [4], which take an object of the same
class as the receiver, hence the interface is (self-)recursive. In particular, Bruce’s
series of work [7,5] introduced the notion of MyType (or sometimes called
ThisType), which is the type of this and changes its meaning along the in-
heritance chain, just as our relative path types. Later, he extended the idea
to mutually recursive type/class definitions [6,8,3] by introducing constructs to
group mutually recursive definitions, and the notion of MyGroup, which is a
straightforward extension of MyType to the mutually recursive setting. Jolly et
al. [15] has designed the language called Concord by following this approach and
has applied to a Java-like language with a name-based type system. The core
type system has been proven sound. Our approach is similar to them in the sense
that dependent types are not used. However, in these work, family-polymorphic
methods are not taken into account very seriously, although a similar idea is
mentioned in Bruce et al. [6] and it can be considered a generalization of match-
bound polymorphic methods in the language LOOM [7]. In Bruce et al. [6], in-
heritance is considered subtyping, so ColorWeightGraph.Node <: Graph.Node,
for example. To ensure type safety, they introduced the notion of exact types
and allow to invoke a method that take an argument of the same family only
when the receiver’s family is exactly known. We have avoided them by viewing
every (nested-class) type as exact. JX [17], an extension of Java with nested
inheritance, supports a similar programming style but exactness is kept track of
by using not types but Java’s final.

In Concord, gbeta, Scala, and JX, an inheritance relation between nested
classes can be introduced. For example, C.F can be a subclass of C.E and, in a
subclass D of C, the relationship is preserved while members can be added to both
E and F. Although useful, we have carefully avoided this feature, too, which is not
strongly required by family polymorphism, since there is a semantic complication
as in languages with multiple inheritance: D.F may inherit conflicting members
of the same name from C.F and D.E.
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Finally, we should note that programming described in Section 2 could be
carried out in Java 5.0 proper, which is equipped with generics [2] and F-bounded
polymorphism [9], by using the technique [21] used to solve the “expression prob-
lem”. It requires, however, a lot of boilerplate code for type parameterization,
which makes programs less easy to grasp.

6 Concluding Remarks

We have identified a minimal set of language features to solve the problem of
mismatching between mutually recursive classes and inheritance. Our proposal
is lightweight in the sense that the type system, which avoids (value) dependent
types, is much simpler than the original formulation of family polymorphism and
easy to apply to mainstream languages such as Java and C#. We have shown
type safety of the language mechanism by proving a type soundness theorem
for the formalized core language .FJ. We have also formalized an algorithm for
type argument inference for family polymorphic methods with its correctness
theorem. Although .FJ is not equipped with generics, we believe it can be easily
integrated into the ordinary type argument inference algorithm.

A prototype compiler for the language features presented is being imple-
mented on top of javac. As in the implementation of Java generics, new features
are compiled by erasure [2,14] to Java proper—relative path types are translated
to ordinary static nested class types with the insertion of typecasts (guaranteed
by the type system to succeed) where necessary to make the translated program
well typed.

We feel that the principle of classes-as-families is worth pursuing. There
have been advanced work based on object-based families, such as higher-order
hierarchies [12]. It is interesting to investigate whether this principle can be
applied to those advanced ideas.
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nal theory of objects with dependent types. In Proceedings of ECOOP’03, Springer
LNCS 2743, pages 201–224, Darmstadt, Germany, July 2003.

20. Kresten Krab Thorup and Mads Torgersen. Unifying genericity: Combining the
benefits of virtual types and parameterized classes. In Proceedings of ECOOP’99,
Springer LNCS 1628, pages 186–204, Lisbon, Portugal, June 1999.



Lightweight Family Polymorphism 177

21. Mads Torgersen. The expression problem revisited: Four new solutions using gener-
ics. In Proceedings of ECOOP2004, Springer LNCS 3086, pages 123–146, Oslo,
Norway, June 2004.

22. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, November 1994.



A Portable and Customizable Profiling Framework for
Java Based on Bytecode Instruction Counting

Walter Binder

Ecole Polytechnique Fédérale de Lausanne (EPFL),
Artificial Intelligence Laboratory,
CH-1015 Lausanne, Switzerland
walter.binder@epfl.ch

Abstract. Prevailing profilers for Java, which rely on standard, native-code
profiling interfaces, are not portable, give imprecise results due to serious
measurement perturbation, and cause excessive overheads. In contrast, program
transformations allow to generate reproducible profiles in a fully portable way
with significantly less overhead. This paper presents a profiling framework
that instruments Java programs at the bytecode level to build context-sensitive
execution profiles at runtime. The profiling framework includes an exact profiler
as well as a sampling profiler. User-defined profiling agents can be written in
pure Java, too, in order to customize the runtime processing of profiling data.

Keywords: Profiling, program transformations, bytecode instrumentation, dy-
namic metrics, Java, JVM

1 Introduction

Most prevailing Java profilers rely on the Java Virtual Machine Profiling Interface
(JVMPI) [14,15] or on the JVM Tool Interface (JVMTI) [16], which provide a set of
hooks to the Java Virtual Machine (JVM) to signal interesting events, such as thread
start and object allocations. Usually, such profilers can operate in two modes: In the ex-
act profiling mode, they track each method invocation, whereas in the sampling mode,
the profiler spends most of the time sleeping and periodically (e.g., every few millisec-
onds) wakes up to register the current stack trace.

Profilers based on the JVMPI or JVMTI interfaces implement profiling agents to
intercept various events, such as method invocations. Unfortunately, these profiling
agents have to be written in platform-dependent native code, contradicting the Java
motto ‘write once and run anywhere’. Because exact profiling based on these APIs may
cause an enormous overhead (in extreme cases we even experienced a slowdown of
factor 4 000 and more), developers frequently resort to more efficient sampling-based
profilers to analyze the performance of complex system, such as application servers.
Many prevailing sampling profilers for Java use an external timer to trigger the sam-
pling, resulting in non-deterministic behaviour: For the same program and input, the
generated profiles may vary very much depending on the processor speed and the sys-
tem load. In many cases the accuracy of the resulting profiles is so low that a reasonable
performance analysis based on these profiles is not possible. In short, most prevailing
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Java profilers are either too slow or too imprecise to generate meaningful profiles for
complex systems.

To solve these problems, we developed a novel profiling framework that relies nei-
ther on the JVMPI nor on the JVMTI, but directly instruments the bytecode of Java
programs in order to create a profile at runtime. Our framework includes the exact pro-
filer JP as well as the sampling profiler Komorium. Both profilers exploit the number of
executed bytecodes1 as platform-independent profiling metric, enabling reproducible
profiles and a fully portable implementation of the profilers. Moreover, user-defined
profiling agents written in pure Java may customize the profile generation.

As contributions, this paper introduces bytecode counting as profiling metric and
defines an innovative profiling framework that is completely based on program trans-
formations. Two profiling schemes are presented, one for exact profiling and one for
sampling profiling. We implemented and evaluated both of them: The exact profiler JP
causes 1–2 orders of magnitude less overhead than prevailing exact profilers. The sam-
pling profiler Komorium causes less overhead than existing sampling profilers, and the
resulting profiles are much more accurate.

The remainder of this paper is structured as follows: Section 2 argues for bytecode
counting as profiling metric. Section 3 introduces the data structures on which our pro-
filing framework is based. In Section 4 we explain the program transformation scheme
underlying the exact profiler JP. Section 5 discusses the sampling profiler Komorium.
In Section 6 we evaluate the performance of our profilers, as well as the accuracy of the
profiles generated by the sampling profiler. Section 7 summarizes the limitations of our
approach and outlines some ideas for future improvements. Finally, Section 8 discusses
related work and Section 9 concludes this paper.

2 Bytecode Counting

Most existing profilers measure the CPU consumption of programs in seconds. Al-
though the CPU second is the most common profiling metric, it has several drawbacks:
It is platform-dependent (for the same program and input, the CPU time differs de-
pending on hardware, operating system, and JVM), measuring it accurately may re-
quire platform-specific features (such as special operating system functions) limiting
the portability of the profilers, and results may not be easily reproducible (the CPU time
may depend on factors such as system load). Furthermore, measurement perturbation
is often a serious problem: The measured CPU consumption of the profiled program
may significantly differ from the effective CPU consumption when the program is exe-
cuted without profiling. The last point is particularly true on JVMs where the use of the
JVMPI disables just-in-time compilation.

For these reasons, we follow a different approach, using the number of executed
bytecodes as profiling metric, which has the following benefits:

– Platform-independ profiles: The number of executed bytecodes is a platform-
independent metric [10]. Although the CPU time of a deterministic program with
a given input varies very much depending on the performance of the underlying

1 In this paper ‘bytecode’ stands for ‘JVM bytecode instruction’.
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hardware and virtual machine (e.g., interpretation versus just-in-time compilation),
the number of bytecodes issued by the program remains the same, independent
of hardware and virtual machine implementation (assuming the same Java class
library is used).

– Reproducible profiles: For deterministic programs, the generated profiles are com-
pletely reproducible.

– Comparable profiles: Profiles collected in different environments are directly
comparable, since they are based on the same platform-independent metric.

– Accurate profiles: The profile reflects the number of bytecodes that a program
would execute without profiling, i.e., the profiling itself does not affect the gener-
ated profile (no measurement perturbation).

– Portable and compatible profiling scheme: Because counting the number of ex-
ecuted bytecodes does not require any hardware- or operating system-specific sup-
port, it can be implemented in a fully portable way. The profiling scheme is compat-
ible also with JVMs that support neither the JVMPI nor the JVMTI, or that provide
limited support for profiling in general.

– Portable profiling agents: Custom profiling agents can be written in pure Java and
are better integrated with the environment. Hence, profiling agents are portable and
can be used in all kinds of JVMs.

– Flexible profiling agents: Profiling agents can be programmed to preserve a trace
of the full call stack, or to compact it at certain intervals, whereas existing profilers
frequently only support a fixed maximal stack depth.

– Fine-grained control of profiling agent activation: Profiling agents are invoked
in a deterministic way by each thread after the execution of a certain number of
bytecodes, which we call the profiling granularity. Profiling agents can dynamically
adjust the profiling granularity in a fine-grained way.

– Reduced overhead: The overhead is rather low compared to classical approaches,
since it does not prevent the underlying JVM from putting all its optimization fa-
cilities to work during the profiling.

Consequently, bytecode counting is key to the provision of a new class of portable,
platform-independent profiling tools, which gives advantages to the tool users as well
as to the tool implementors:

On the one hand, bytecode counting eases profiling, because thanks to the platform-
independence of this metric [10], the concrete environment is not of importance. Thus,
the developer may profile programs in the environment of his preference. Since factors
such as the system load do not affect the profiling results, the profiler may be executed as
a background process on the developer’s machine. This increases productivity, as there
is no need to set up and maintain a dedicated, ‘standardized’ profiling environment.

On the other hand, bytecode counting enables fully portable profiling tools. This
helps to reduce the development and maintenance costs for profiling tools, as a single
version of a profiling tool can be compatible with any kind of virtual machine. This
is in contrast to prevailing profiling tools, which exploit low-level, platform-dependent
features (e.g., to obtain the exact CPU time of a thread from the underlying operating
system) and require profiling agents to be written in native code.
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– createMID(STRING class, STRING name,
STRING sig): MID

Creates a new method identifier, consisting of class
name, method name, and method signature.

– getClass(MID mid): STRING
Returns the class name of mid.
getClass(createMID(c, x, y)) = c.

– getName(MID mid): STRING
Returns the method name of mid.
getName(createMID(x, n, y)) = n.

– getSig(MID mid): STRING
Returns the method signature of mid.
getSig(createMID(x, y, s)) = s.

Fig. 1. Method identifier MID

– getOrCreateRoot(THREAD t): IC
Returns the root node of a thread’s MCT. If it does
not exist, it is created.

– profileCall(IC caller,
MID callee): IC

Registers a method invocation in the MCT. The re-
turned IC represents the callee method, identified
by callee. It is a child node of caller in the MCT.

– getCaller(IC callee): IC
Returns the caller IC of callee. It is the parent node
of callee in the MCT.
getCaller(profileCall(c, x)) = c.
This operation is not defined for the root of the MCT.

– getCalls(IC c): INT
Returns the number of invocations of the
method identified by getMID(c) with the caller
getCaller(c).
getCalls(profileCall(x, y))≥ 1.
This operation is not defined for the root of the MCT.

– getMID(IC c): MID
Returns the method identifier associated with c.
getMID(profileCall(x, callee)) = callee.
This operation is not defined for the root of the MCT.

– getCallees(IC c): SET OF IC
Returns the set of callee ICs of c.
∀x ∈ getCallees(c): getCaller(x) = c.
∀x ∈ getCallees(c): getCalls(x)≥ 1.

– profileInstr(IC ic,
INT bytecodes): IC

Registers the execution of a certain number of byte-
codes in ic. The bytecode counter in ic is incre-
mented by bytecodes. Returns ic, after its byte-
code counter has been updated. This operation is not
defined for the root of the MCT.

– getInstr(IC ic): INT
Returns the number of bytecodes executed in ic.
getInstr(profileInstr(x, b))≥ b.
This operation is not defined for the root of the MCT.

Fig. 2. Method invocation context IC

3 Profiling Data Structures

In this section we define the data structures used by our profiling framework as abstract
datatypes. A detailed presentation of the Java implementation of these data structures
had to be omitted due to space limitations.

3.1 Method Call Tree (MCT)

For exact profiling, we rewrite JVM bytecode in order to create a Method Call Tree
(MCT), where each node represents all invocations of a particular method with the same
call stack. The parent node in the MCT corresponds to the caller, the children nodes
correspond to the callees. The root of the MCT represents the caller of the main method.
With the exception of the root node, each node in the MCT stores profiling information
for all invocations of the corresponding method with the same call stack. Concretely, it
stores the number of method invocations as well as the number of bytecodes executed
in the corresponding calling context, excluding the number of bytecodes executed by
callee methods (each callee has its own node in the MCT).
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– getOrCreateAC(THREAD t): AC
Returns the activation counter of a thread. If it does
not exist, it is created.

– setValue(AC ac, INT v): AC
Returns ac, after its value has been updated to v.

– getValue(AC ac): INT
Returns the value of ac.
getValue(setValue(x, v)) = v.

Fig. 3. Activation counter AC

In order to prevent race conditions, either access to the MCT has to be synchro-
nized, or each thread has to maintain its own copy of the tree. To avoid expensive
synchronization and to allow profiling agents to keep the profiling statistics of different
threads separately, we chose to create a separate MCT for each thread in the system.2

The MCT is similar to the Calling Context Tree (CCT) [1]. However, in contrast
to the CCT, the depth of the MCT is unbounded. Therefore, the MCT may consume
a significant amount of memory in the case of very deep recursions. Nonetheless, for
most programs this is not a problem: According to Ball and Larus [5], path profiling
(i.e., preserving exact execution history) is feasible for a large portion of programs.

We define two abstract datatypes to represent a MCT, the method identifier MID
(see Fig. 1) and the method invocation context IC (see Fig. 2). A method invocation
context is a node in the MCT, encapsulating a method invocation counter and a bytecode
counter. We assume the existence of the types INT, STRING, and THREAD, as well as
the possibility to create aggregate types (SET OF).

3.2 Activation Counter

In order to schedule the regular activation of a user-defined profiling agent in a platform-
independent way, our profilers maintain a counter of the (approximate) number of exe-
cuted bytecodes for each thread. If this counter exceeds the current profiling granularity,
the profiling agent is invoked in order to process the collected execution statistics. The
abstract datatype AC (see Fig. 3) represents an activation counter for each thread.

4 Exact Profiling

In this section we describe a fully portable scheme for exact profiling. In order to val-
idate our approach, we implemented the exact profiler JP, which is compatible with
standard JVMs. JP relies neither on the JVMPI nor on the JVMTI, but directly instru-
ments the bytecode of Java programs in order to obtain detailed execution statistics.

In Section 4.1 we explain how programs are transformed to create MCTs at run-
time. While Section 4.2 discusses the necessary code instrumentation to maintain the
bytecode counters within the MCTs, Section 4.3 explicates the periodic activation of a
custom profiling agent. Finally, in Section 4.4 we illustrate the program transformations
with an example.

2 At the implementation level, a thread-local variable may be used to store a reference to the
root of a thread’s MCT. Each thread gets its own instance of the thread-local variable. In Java,
thread-local variables are instances of java.lang.ThreadLocal.
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4.1 MCT Creation

JP rewrites JVM bytecode in order to pass the method invocation context iccaller (type
IC) of the caller as an extra argument to the callee method (i.e., JP extends the sig-
natures of all non-native methods with the additional argument). In the beginning of
a method3 identified by midcallee (type MID), the callee executes a statement corre-
sponding to

iccallee = profileCall(iccaller, midcallee);

in order to obtain its own (i.e., the callee’s) method invocation context iccallee.
Because native code is not changed by the rewriting, JP adds simple wrapper meth-

ods with the unmodified signatures which obtain the current thread’s MCT root by call-
ing getOrCreateRoot(t), where t represents the current thread. Therefore, native
code is able to invoke Java methods with the unmodified signatures.4

For each Java method, we add a static field to hold the corresponding method
identifier. In the static initializer we call createMID(classname, methodname,
signature) in order to allocate a method identifier for each Java method.

4.2 Bytecode Counting

For each method invocation context ic, JP computes the number of exe-
cuted bytecodes. JP instruments the bytecode of methods in order to invoke
profileInstr(ic, bytecodes) according to the number of executed bytecodes.
For each Java method, JP performs a basic block analysis (BBA) to compute a con-
trol flow graph. In the beginning of each basic block it inserts a code sequence that
implements this update of the bytecode counter.

The BBA algorithm is not hard-coded in JP, via a system property the user can
specify a custom analysis algorithm. JP itself offers two built-in BBA algorithms, which
we call ‘Default BBA’ resp. ‘Precise BBA’. In the ‘Default BBA’, only bytecodes that
may change the control flow non-sequentially (i.e., jumps, branches, return of method
or JVM subroutine, exception throwing) end a basic block. Method or JVM subroutine
invocations do not end basic blocks of code, because we assume that the execution will
return after the call. This definition of basic block corresponds to the one used in [7]
and is related to the factored control flow graph [8].

The advantage of the ‘Default BBA’ is that it creates rather large basic blocks.
Therefore, the number of locations is reduced where updates to the bytecode counter
have to be inserted, resulting in a lower profiling overhead. As long as no exceptions
are thrown, the resulting profiling information is precise. However, exceptions (e.g.,
an invoked method may terminate abnormally throwing an exception) may cause some
imprecision in the accounting, as we always count all bytecodes in a basic block, even

3 In this paper we do not distinguish between Java methods and constructors, i.e., ‘method’
stands for ‘method or constructor’.

4 For native methods, which we cannot rewrite, we add so-called ‘reverse’ wrappers which dis-
card the extra IC argument before invoking the native method. The ‘reverse’ wrappers allow
rewritten code to invoke all methods with the additional argument, no matter whether the callee
is native or not.



184 W. Binder

– register(THREAD t, IC root): INT
This operation is invoked whenever a new thread t
is created. It is called by getOrCreateRoot(t),
if a new MCT root node (root) has been allo-
cated. For each thread, this operation is invoked only
once, when it starts executing instrumented code (a
wrapper method as discussed in Section 4.1). After
register(t, root) has been called, the profil-
ing agent must be prepared to handle subsequent in-
vocations of processMCT(IC) by the thread t.
register(t, root) returns the current profil-
ing granularity for t, i.e., the approximate num-
ber of bytecodes to execute until t will invoke
processMCT(IC) for the first time.

– processMCT(IC ic): INT
This operation is periodically invoked by each thread
in the system. Whenever processMCT(ic) is
called, the profiling agent has to process the cur-
rent thread’s MCT. ic is the method invocation
context corresponding to the method that is cur-
rently being executed. The profiling agent may ob-
tain the root of the current thread’s MCT either
from a map (to be updated upon invocations of
register(THREAD, IC)) or by successively ap-
plying getCaller(IC). processMCT(IC) al-
lows the profiling agent to integrate the MCTs of the
different threads into a global MCT, or to generate
continuous metrics [10], which is particularly use-
ful to display up-to-date profiling information of long
running programs, such as application servers.
processMCT(IC) returns the current profiling
granularity for the calling thread, i.e., the approxi-
mate number of bytecodes to execute until the current
thread will invoke processMCT(IC) again.

Fig. 4. ExactProfiler

though some of them may not be executed in case of an exception. I.e., using the ‘De-
fault BBA’, we may count more bytecodes than are executed.

If the user wants to avoid this potential imprecision, he may select the ‘Pre-
cise BBA’, which ends a basic block after each bytecode that either may change the
control flow non-sequentially (as before), or may throw an exception. As there are
many bytecodes that may throw an exception (e.g., NullPointerException may
be raised by most bytecodes that require an object reference), the resulting average basic
block size is smaller. This inevitably results in a higher overhead for bytecode counting,
because each basic block is instrumened by JP.

4.3 Periodic Activation of Custom Profiling Agents

JP supports user-defined profiling agents which are periodically invoked by each thread
in order to aggregate and process the MCT collected by the thread. The custom profiling
agent has to implement the abstract datatype ExactProfiler (see Fig. 4).

Each thread maintains an activation counter ac (type AC) in order to schedule the
regular activation of the custom profiling agent. The value of ac is an upper bound of
the number of executed bytecodes since the last invocation of processMCT(IC). In
order to make ac directly accessible within each method, we pass it as an additional
argument to all invocations of non-native methods. If the value of ac exceeds the pro-
filing granularity, the thread calls processMCT(IC) of the profiling agent. Note that
the value of ac is not part of the profiling statistics, it is only used at runtime to ensure
the periodic activation of the profiling agent.

The value of ac runs from the profiling granularity down to zero, because there are
dedicated bytecodes for the comparison with zero. I.e., the following conditional is used
to schedule the periodic activation of the profiling agent and to reset ac (ic refers to the
current method invocation context):

if (getValue(ac) <= 0) setValue(ac, processMCT(ic));
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The updates of ac are correlated to the updates of the bytecode counters within
the MCT (profileInstr(IC, INT)). However, in order to reduce the overhead,
the value of ac is not updated in every basic block of code, but only in the beginning
of each method, exception handler, and JVM subroutine, as well as in the beginning
of each loop. Each time it is decremented by the number of bytecodes on the longest
execution path until the next update or until the method terminates. This ensures that
the value of ac is an upper bound of the number of executed bytecodes.

The conditional that checks whether processMCT(IC) has to be called is in-
serted in the beginning of each method and in each loop, in order to ensure its presence
in recursions and iteration. As an optimization, we omit the conditional in the beginning
of a method, if before invoking any method, each execution path either terminates or
passes by an otherwise inserted conditional. For instance, this optimization allows to
remove the check in the beginning of leaf methods.

4.4 Rewriting Example

The example in Fig. 5 illustrates the program transformations performed by JP: To
the left is the class Foo with the method sum(int, int) before rewriting, to the
right is the rewritten version.5 sum(int, int) computes the following mathemati-
cal function: sum(a, b) =

∑b
i=a f(i). The method int f(int), which is not shown

in Fig. 5, is transformed in a similar way as sum(int, int). In sum(int, int)
we use an infinite while() loop with an explicit conditional to end the loop instead
of a for() loop that the reader might expect, in order to better reflect the basic block
structure of the compiled JVM bytecode.

For this example, we used the ‘Default BBA’ introduced in Section 4.2.
sum(int, int) has 4 basic blocks of code: The first one (2 bytecodes) initializes
the local variable resultwith zero, the second one (3 bytecodes) compares the values
of the local variables from and to and branches, the third one (2 bytecodes) returns
the value of the local variable result, and the fourth block (7 bytecodes) adds the
return value of f(from) to the local variable result, increments the local variable
from, and jumps to the begin of the loop.

In the rewritten code, the static initializer allocates the method identifier mid sum
to represent invocations of sum(int, int) in the MCT. The rewritten method re-
ceives 2 extra arguments, the activation counter (type AC) and the caller’s method
invocation context (type IC). First, the rewritten method updates the MCT and ob-
tains its own (the callee’s) method invocation context (profileCall(IC, MID)).
The bytecode counter within the callee’s method invocation context is incremented in
the beginning of each basic block of code by the number of bytecodes in the block
(profileInstr(IC, INT)).

The activation counter ac is updated in the beginning of the method and in the loop.
It is reduced by the number of bytecodes on the longest execution path until the next

5 For the sake of better readability, in this paper we show all transformations on Java-based
pseudo-code, whereas our profiler implementations work at the JVM bytecode level. The op-
erations on the abstract datatypes MID, IC, AC, and ExactProfiler are directly inlined in
order to simplify the presentation.
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class Foo { class Foo {
private static final MID mid_sum;
static {

String cl = Class.forName("Foo").getName();
mid_sum = createMID(cl, "sum", "(II)I");

}

static int sum(int from, static int sum(int from,
int to) { int to, AC ac, IC ic) {

ic = profileCall(ic, mid_sum);
profileInstr(ic, 2);
setValue(ac, getValue(ac) - 2);

int result = 0; int result = 0;
while (true) { while (true) {

profileInstr(ic, 3);
setValue(ac, getValue(ac) - 10);
if (getValue(ac) <= 0)

setValue(ac, processMCT(ic));
if (from > to) { if (from > to) {

profileInstr(ic, 2);
return result; return result;

} }
profileInstr(ic, 7);

result += f(from); result += f(from, ac, ic);
++from; ++from;

} }
} }

static int sum(int from, int to) {
Thread t = Thread.currentThread();
return sum(from, to, getOrCreateAC(t),

getOrCreateRoot(t));
}

} }

Fig. 5. Rewriting example: Program transformations for exact profiling

update or method termination. For instance, in the loop it is incremented by 10 (3 + 7),
as this is the length of the execution path if the loop is repeated. The other path, which
returns, executes only 5 bytecodes (3 + 2). The conditional is present in the loop, but
not in the beginning of the method, since the only possible execution path passes by the
conditional in the loop before invoking any method.

A wrapper method with the unmodified signature is added to allow native code,
which is not aware of the additional arguments, to invoke the rewritten method. The
wrapper method obtains the current thread’s activation counter as well as the root of its
MCT before invoking the instrumented method with the extra arguments.

5 Sampling-Based Profiling

Even though exact profiling based on the program transformation scheme presented in
Section 4 causes considerably less overhead than prevailing exact profilers, the over-
head may still be too high for complex applications. Moreover, for applications with
many concurrent threads, maintaining a separate MCT for each thread may consume a
large amount of memory. For these reasons, we developed the sampling profiler Komo-
rium, which is also based on program instrumentation. Komorium relies on the periodic
activation of a user-defined profiling agent to process samples of the call stack.
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Sampling profiles are different from exact ones, since they expose neither the ab-
solute number of method invocations nor the absolute number of executed bytecodes.
However, sampling profiles can be used to estimate the relative distribution of process-
ing effort, guiding the developer in which parts program optimizations may pay off.
In general, there is a correlation between the number of times a certain call stack is
reported to the profiling agent and the amount of processing spent in the correspond-
ing calling context. Typically, the profiling agent counts the number of occurrences of
the different samples (call stacks). The relative frequency of a certain call stack S (i.e.,
number of occurrences of S

total number of samples ) approximates the proportion of processing spent in the

corresponding calling context.

5.1 Call Stack Reification

In order to make the call stack available at execution time, Komorium reifies the current
call stack as a pair 〈mids, sp〉, where mids is an array of method identifiers (type
MID[]) and sp is the stack pointer (type INT), which denotes the next free element
on the reified stack. mids[i] are the identifiers of the activated methods (0 ≤ i < sp).
mids[0] is the bottom of the reified stack and mids[sp− 1] is its top, corresponding to
the currently executing method.

Komorium transforms programs in order to pass the reified call stack of the caller
as 2 extra arguments to the callee method (i.e., Komorium extends the signatures of
all non-native methods with the additional arguments). In the beginning of a method
identified by mid, the callee executes a statement corresponding to

mids[sp++] = mid;

in order to push its method identifier onto the reified stack. The integer sp is always
passed by value. I.e., callees receive (a copy of) the new value of sp and may increment
it, which does not affect the value of sp in the caller. If a method m() invokes first a()
and then b(), both a() and b() will receive the same mids reference and the same
value of sp as extra arguments. b() will overwrite the method identifiers that were
pushed onto the reified stack during the execution of a().

Compatibility with native code is achieved in a similar way as explained in Sec-
tion 4.1: Because native code is not changed by the rewriting, Komorium adds simple
wrapper methods with the unmodified signatures which allocate an array to represent
the reified stack. The initial value of the stack pointer is zero.

5.2 Periodic Sampling

The custom profiling agent has to implement the abstract datatype
SamplingProfiler (see Fig. 6). In order to schedule the regular activation
of the custom profiling agent, each thread maintains an activation counter ac, in a
similar way as described in Section 4.3. ac is updated in the beginning of each basic
block of code; the basic blocks are computed by the ‘Default BBA’ introduced in
Section 4.2. The conditional that checks whether processSample(MID[], INT)
has to be invoked is inserted in each basic block after the update of ac. In contrast to the
exact profiler, we do not reduce overhead by computing an upper bound of the number
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– register(THREAD t): INT
This operation is invoked whenever a new
thread t is created. After register(t) has
been called, the profiling agent must be pre-
pared to handle subsequent invocations of
processSample(MID[], INT) by t.
register(t) returns the current profiling granu-
larity for t.

– processSample(MID[] mids,
INT sp): INT

This operation is periodically invoked by each thread
in the system in order to process a sample of the
reified call stack, which is represented by the pair
〈mids, sp〉.
processSample(MID[], INT) returns the cur-
rent profiling granularity for the calling thread.

Fig. 6. SamplingProfiler

class Foo { class Foo {
private static final MID mid_sum;
static {

String cl = Class.forName("Foo").getName();
mid_sum = createMID(cl, "sum", "(II)I");

}

static int sum(int from, static int sum(int from,
int to) { int to, AC ac, MID[] mids, int sp) {

mids[sp++] = mid_sum;
setValue(ac, getValue(ac) - 2);
if (getValue(ac) <= 0)

setValue(ac, processSample(mids, sp));
int result = 0; int result = 0;
while (true) { while (true) {

setValue(ac, getValue(ac) - 3);
if (getValue(ac) <= 0)

setValue(ac, processSample(mids, sp));
if (from > to) { if (from > to) {

setValue(ac, getValue(ac) - 2);
if (getValue(ac) <= 0)

setValue(ac, processSample(mids, sp));
return result; return result;

} }
setValue(ac, getValue(ac) - 7);
if (getValue(ac) <= 0)

setValue(ac, processSample(mids, sp));
result += f(from); result += f(from, ac, mids, sp);
++from; ++from;

} }
} }

static int sum(int from, int to) {
AC ac = getOrCreateAC(Thread.currentThread());
return sum(from, to, ac, new MID[STACKSIZE], 0);

}
} }

Fig. 7. Rewriting example: Program transformations for sampling-based profiling

of executed bytecodes and by minimizing the insertion of conditionals, because such
optimizations would reduce the accuracy of the generated sampling profiles.

5.3 Rewriting Example

Fig. 7 illustrates the program transformations performed by Komorium with the same
example as in Section 4.4. STACKSIZE is a constant that defines the maximum depth
of a reified stack; typical values are between 1 000 and 10 000.
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Fig. 8. JP: Profiling overhead for different profiler settings and JDKs

6 Evaluation

In the following we present our measurement results for JP and Komorium. While Sec-
tion 6.1 provides performance measurements for JP, Section 6.2 discusses the accuracy
of sampling profiles as well as the overhead caused by Komorium.

6.1 Exact Profiling (JP)

To evaluate the overhead caused by our exact profiler JP, we ran the SPEC JVM98
benchmark suite [17]. We removed background processes as much as possible in or-
der to obtain reproducible results. For all settings, the entire JVM98 benchmark suite
(consisting of several sub-tests) was run 10 times, and the final results were obtained
by calculating the geometric mean of the median of each sub-test. Here we present the
measurements made with Sun JDK 1.5.0 Client VM, Sun JDK 1.5.0 Server VM, as well
as with IBM JDK 1.4.2.

Fig. 8 shows the profiling overhead for two different settings of JP, using the ‘De-
fault BBA’ resp. the ‘Precise BBA’. For both settings of JP, we used a simple profiling
agent with the highest possible profiling granularity (the profiling agent was invoked
by each thread after the execution of approximately 231 − 1 bytecodes). Upon pro-
gram termination, the agent integrated the MCTs of all threads and wrote the resulting
profile into a file using a JVM shutdown hook. Depending on the JVM, the average
overhead for JP using the ‘Default BBA’ is 145–212%. For the ‘Precise BBA’ the av-
erage overhead is slightly higher (176–225%). We experienced the highest overhead of
900–1 414% with the ‘mtrt’ benchmark.
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Fig. 9. Komorium: Average profile accuracy (overlap percentage) and average profiling overhead
for different profiling granularities (X axis) and JDKs

To compare our profiler with a standard profiler based on the JVMPI/JVMTI,
we also evaluated the overhead caused by the ‘hprof’ profiling agent shipped
with the standard JDKs. On Sun’s JVMs we started the profiling agent ‘hprof’
with the ‘-agentlib:hprof=cpu=times’ option, which activates JVMTI-
based profiling (available since JDK 1.5.0), whereas on IBM’s JVM we used
the ‘-Xrunhprof:cpu=times’ option for JVMPI-based profiling. The argument
‘cpu=times’ ensures that the profiling agent tracks every method invocation, as our
profiling scheme does.

Because the overhead caused by the ‘hprof’ profiling agent is 1–2 orders of magni-
tude higher than the overhead caused by JP, Fig. 8 uses a logarithmic scale. On average,
the slowdown due to the ‘hprof’ profiler is 52 902–66 071% on Sun’s JVMs and 2 495%
on IBM’s JVM. For ‘mtrt’, the overhead due to ‘hprof’ exceeds 300 000% on both Sun
JVMs.



A Portable and Customizable Profiling Framework for Java 191

6.2 Sampling Profiling (Komorium)

Even though the overhead caused by JP is 1–2 orders of magnitude lower than the over-
head due to prevailing exact profilers, it may still be too high for certain complex appli-
cations. Komorium aims at computing accurate sampling profiles with lower overhead
than JP. Fig. 9 shows the average profile accuracy and profiling overhead of Komorium
for different profiler settings and JVMs.

We use an overlap percentage metric as defined in [3,11] to compare profiles. The
overlap represents the percentage of profiled information weighted by execution fre-
quency that exists in both profiles. Two identical profiles have an overlap percentage of
100%. In Fig. 9 we show the average accuracy of sampling profiles (i.e., the overlap
percentage of sampling profiles created by Komorium with the corresponding perfect
profiles generated by JP using the ‘Precise BBA’) obtained with different profiling gran-
ularities for the SPEC JVM98 benchmark suite.

With a constant profiling granularity, the achievable accuracy is 91%. The best re-
sults are obtained with a profiling granularity of 5 000–10 000. As one could expect, the
accuracy decreases with increasing profiling granularity (i.e., fewer samples). Surpris-
ingly, also for lower granularities (500–1 000), the accuracy decreases. This is because
program behaviour may correlate with our deterministic sampling mechanism, reducing
the accuracy of profiles [3].

The accuracy can be improved by adding a small random value r to the profiling
granularity [2]. For our measurements, r was equally distributed with 0 ≤ r < 100.
This randomization increases the average overlap percentage for lower profiling granu-
larities up to 96%. In order to enable reproducible results despite of the randomization,
the profiling agent may use a separate pseudo-random number generator for each thread
and initialize it with a constant seed.

For all measured profiling granularities, Komorium causes less overhead than JP.
With a profiling granularity of 10 000, Komorium achieves a good tradeoff between
high accuracy (an average overlap percentage with perfect profiles of more than 90%)
and reasonable overhead of about 47–56% on average (depending on the JVM).

We also evaluated the standard ‘hprof’ profiler in its sampling mode. On JDK 1.4.2
(JVMPI-based profiling), the average overhead is about 150%, while on JDK 1.5.0
(JVMTI-based profiling) the average overhead is about 90%. These overheads are
higher than the overheads caused by Komorium with a profling granularity of 10 000.
Moreover, the accuracy of the sampling profiles generated by ‘hprof’ is very low: On
average, the overlap percentage of the sampling profiles with exact ones (generated by
‘hprof’ in its exact profiling mode) is below 7%. The primary reason for this inferior
accuracy is the low sampling rate used by ‘hprof’ (max. 1 000 samples/second).

7 Limitations and Future Work

While in Section 2 we stressed the benefits of our profiling framework, this section
discusses its limitations and outlines some ideas for future improvements.

The major hurdle of our approach is that it cannot directly account for the execution
of native code. For programs that heavily depend on native code, the generated profiles
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may be incomplete. This is an inherent problem of our approach, since it relies on the
transformation of Java code and on the counting of the number of executed bytecodes.

Concerning our exact profiler JP, which does not limit the depth of the generated
MCTs, memory consumption may be an issue in the case of deep recursions. However,
the developer may resort to our sampling profiler Komorium, for which the extra mem-
ory needed per thread is constant. Moreover, the size of the generated sampling profiles
is factor 2–10 smaller than the size of the corresponding exact profiles, even for the
lowest profiling granularity we measured (500).

Finally, we note that bytecode counting and CPU time are distinct metrics for dif-
ferent purposes. While profiles based on bytecode counting are platform-independent,
reproducible, directly comparable across different environments, and valuable to gain
insight into algorithm complexity, more research is needed in order to assess to which
extend and under which conditions these profiles also allow an accurate prediction of
actual CPU time for a concrete system.

The value of our profiling tools would further increase if we could use profiles based
on bytecode instruction counting to accurately estimate CPU time on a particular target
system. This would enable a new way of cross-profiling. The developer could profile an
application on his preferred platform Pdevelop, providing the profiler some configura-
tion information concerning the intended target platform Ptarget. The profile obtained
on Pdevelop would allow the developer to approximate a CPU time-based profile on
Ptarget.

For this purpose, individual (sequences of) bytecode instructions may receive dif-
ferent weights according to their complexity. This weighting is specific to a particu-
lar execution environment (hardware and JVM) and can be generated by a calibration
mechanism. However, the presence of native code, garbage collection, and dynamic
compilation may limit the achievable accuracy. Therefore, we will focus first on simple
JVM implementations (interpreters), such as JVMs for embedded systems, which do
not involve complex optimization and re-compilation phases.

8 Related Work

Fine-grained instrumentation of binary code has been used for profiling in prior
work [4,13]. In contrast, all profilers based on a fixed set of events such as the one
provided by the JVMPI [15] are restricted to traces at the granularity of the method
call. This restriction also exists with the current version of our profilers and is justified
by the fact that object-oriented Java programs tend to have shorter methods with simpler
internal control flows than code implemented in traditional imperative languages.

The NetBeans Profiler6 integrates Sun’s JFluid profiling technology [9] into the Net-
Beans IDE. JFluid exploits dynamic bytecode instrumentation and code hotswapping in
order to turn profiling on and off dynamically, for the whole application or just a subset
of it. However, this tool needs a customized JVM and is therefore only available for a
limited set of environments.

6 http://profiler.netbeans.org/index.html
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While Komorium is intended as a profiling tool for Java developers, sampling-based
profiling is often used for feedback-directed optimizations in dynamic compilers [3,18],
because in such systems the profiling overhead has to be reduced to a minimum in order
to improve the overall performance. The framework presented in [3] uses code duplica-
tion combined with compiler-inserted, counter-based sampling. A second version of the
code is introduced which contains all computationally expensive instrumentation. The
original code is minimally instrumented to allow control to transfer in and out of the
duplicated code in a fine-grained manner, based on instruction counting. This approach
achieves high accuracy and low overhead, as most of the time the slightly instrumented
code is executed. Implemented directly within the JVM, the instruction counting causes
only minimal overhead. In our case, code duplication would not help, because we im-
plement all transformations at the bytecode level for portability reasons. The bytecode
instruction counting itself contributes significantly to the overhead.

Much of the know-how worked into JP and Komorium comes from our previous
experience gained with the Java Resource Accounting Framework, Second Edition (J-
RAF2) [6,12], which also uses bytecode instrumentation in order to gather dynamic
information about a running application. J-RAF2 only maintains a single bytecode
counter for each thread, comparable to the activation counter used by our profilers
(type AC). When the number of executed bytecodes exceeds a given threshold, a re-
source manager is invoked which implements a user-defined accounting or control pol-
icy. However, J-RAF2 is not suited for profiling: J-RAF2 cannot compute MCTs, and
experiments with a sampling profiler based on J-RAF2 (using the Throwable API
to obtain stack traces in the user-defined resource manager) were disappointing (low
accuracy and high overhead).

9 Conclusion

In this paper we presented a novel profiling framework for Java, consisting of an ex-
act and a sampling profiler. Our profilers exploit the number of executed bytecodes
as platform-independent profiling metric. This metric is key to generate reproducible
and directly comparable profiles, easing the use of the profiling tools. Moreover, this
profiling metric allowed us to implement the profiling framework in pure Java, achiev-
ing compatibility with standard JVMs. Our profiling framework supports user-defined
profiling agents in order to customize the creation of profiles. In contrast to many ex-
isting profiling interfaces which require profiling agents to be written in native code,
we support portable profiling agents implemented in pure Java. The activation of the
profiling agents follows a deterministic scheme, where the agents themselves control
the activation rate in a fine-grained manner.

Performance evaluations revealed that our exact profiler causes 1–2 orders of mag-
nitude less overhead than prevailing exact profilers. Nonetheless, for complex systems
the execution time and memory overheads due to our exact profiler may still be too
high. For these cases, our sampling profiler is able to generate highly accurate profiles
with an overhead lower than standard sampling-based profilers, which often produce
inferior profiles.
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Abstract. Message Sequence Charts (MSCs) are a graphical language
for the description of scenarios in terms of message exchanges between
communicating components in a distributed environment. The language
has been standardised by the ITU and given a formal semantics by means
of a process algebra. In this paper, we review a design anomaly, called
race condition, in an MSC specification and argue that the current so-
lution correcting race conditions is too weak when implementation is
considered. In this paper, we provide an algorithm on partial orders as
our solution. The result is a strengthened partial order, which is race-free
and remains race-free in the implementation.

1 Introduction

Message Sequence Charts (MSCs) [12] are a trace language, describing scenarios
where messages are exchanged between communicating entities in a distributed
environment. The language was designed to supplement SDL [18] by provid-
ing a graphical representation of behavioural aspects in an SDL specification.
The formalism has been recommended as a standard by the ITU (International
Telecommunication Union). During the last decade, it has evolved incremen-
tally from a plain message exchange diagram to a multi-layered documentation
methodology with rich constructs. Due to their readability and tool support,
MSCs have become a specification language in their own right and have been
enjoying a widespread use in specifying telecommunication protocols and reactive
systems, particularly system requirements during early stages of development.

In addition to their industrial popularity, MSCs have been drawing much at-
tention from researchers. Attempts at a formal semantics of MSCs have emerged
since MSC’92 [6]. Various approaches have been adopted for this task, such as
automata theory [13,14], Petri Nets [10], streams [5] and process algebra [7,9,15].
Synthesising system models or behavioural models from MSC scenarios is also
an active topic [1,19,20]. MSC specifications can be syntactically analysed for
a variety of design anomalies, such as deadlocks, race conditions [2], process
divergence and non-local branching choices [3].

In this paper, we are concerned only with race conditions and their solutions.
The semantics of an MSC used here, called causal ordering, is actually a partial
order characterising execution traces on communication events. A race condition

K. Yi (Ed.): APLAS 2005, LNCS 3780, pp. 195–211, 2005.
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refers to an inconsistency between the causal ordering specified in an MSC and
the ordering that may occur in practice. The current solution [16] to correcting
race conditions asserts that given a causal ordering there exists a unique race-free
partial order that is a minimal weakening of the causal ordering. Dually, there
also exists a unique race-free partial order that is a minimal strengthening of the
causal ordering. Both partial orders have syntactically legal MSCs to match.

Here we focus on the strengthening counterpart of a causal ordering. We
have observed that if enforcing the strengthened ordering properties by adding
extra messages as acknowledgements, new race conditions may occur. In this
situation, more acknowledgement messages are required, so that a simple MSC
diagram can be flooded with unnecessary messages and becomes hard to read
and analyse. Such an observation motivates our work. In this paper, we propose
an algorithm on partial orders as the solution. In addition, justification on the
algorithm is also provided before we implement the approach for tool-support.
The result of our work shows that for a causal ordering, there exists a minimally
strengthened partial order, that is race-free and remains race-free when acknowl-
edgement messages are added to enforce the strengthened ordering properties.
Our approach enables specifiers to illustrate explicitly more design details in an
MSC scenario without the risk of race conditions. Although we use MSCs as the
central language in this paper, our approach can be applied to other languages
with partial-order semantics, e.g. UML Sequence Diagrams [4] and LSCs [8].

This paper is organised as follows. Section 2 gives an overview of the MSC
language we use in this paper and its semantics. The concept of race conditions
and the current solutions are also introduced. In section 3, we present the remain-
ing problems which motivate our work; in section 4, we propose an approach to
correcting race conditions without introducing new ones when acknowledgement
messages are added. Conclusions are presented in section 5. Familiarity with the
theories of relations and partial orders is presumed.

2 Preliminary

2.1 Message Sequence Charts

A basic MSC (bMSC) is a building block for an MSC document. As can be seen
in Fig.1(a), MSC1 contains three instances (or processes), namely P1, P2 and
P3, denoted by vertical axes. Three messages, a, b and c, denoted by arrows, are
exchanged between those instances. The frame around the diagram represents
the environment. MSC1 intuitively describes a scenario where P1 sends message
a to P2; after receiving, P2 sends messages b and c to P3 and P1 respectively.

A temporal ordering is defined along each vertical axis and horizontal arrow in
the sense that (1) the events along an instance axis proceed from top to bottom,
and (2) a message must be sent before it is received. In the bMSC convention,
it is assumed that the communication medium between distributed processes is
reliable, i.e. no message gets lost. Furthermore, the setting of a bMSC is assumed
to be of asynchronous communication. Hence in MSC1 of Fig.1(a), the order of
receiving b and c is undefined. The ordering properties can be strengthened
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by a general ordering construct, denoted by a dashed line with an arrowhead
in the middle. A general ordering symbol is attached to the events that need
to be ordered. As illustrated in MSC2 of Fig.1(b), the general ordering adds a
constraint that receiving c has to occur after receiving b.

The core subset of bMSCs we use is described in the ITU-standard [12]. Our
definition is in a similar style to those that can be found in the early MSC-related
work, e.g. [1,2]. The bMSC notation used in this paper is defined as follows.

�� �� ��
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��� ����
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Fig. 1. (a)A bMSC diagram (b)A bMSC with a general ordering

Definition 1. A bMSC is defined as a tuple 〈P ,M,msg,O, <C 〉 where:

– P is a finite set of instances, i.e. P = {Pi | i ∈ 1..n}.
– M is a finite set of message names. A set Σ for all the events in a bMSC

can be derived accordingly as Σ = Σout ∪ Σin where Σout = {!aij | i , j ∈
1..n ∧ a ∈ M} and Σin = {?aij | i , j ∈ 1..n ∧ a ∈ M}. The label !aij

denotes an output event that the instance Pi sends a message ‘a’ to Pj , and
similarly an input event ?aij means Pj receives a message ‘a’ from Pi.

– msg : Σout → Σin is a bijection matching each output event to its corre-
sponding input event, i.e. msg = {x ∈M, i , j ∈ 1..n •!xij �→?xij }.

– O : P(Σ×Σ) is a relation on Σ, recording the constraint of general orderings
in a bMSC. For a pair x �→ y : Σ×Σ, x �→ y ∈ O if and only if there exists
a general ordering symbol from x to y.

– <C : P(Σ×Σ) is a partial order on Σ. For each Pi ∈ P, an adjacency relation
<i denotes the top-to-bottom temporal ordering of the events occurring on
Pi. The partial order <C is the transitive closure of the relation ,C defined
as

,C =
⋃

i:1..n
<i ∪ msg ∪O.

The partial order <C is also known as the causal ordering, which can be under-
stood as a visual order displayed in a bMSC diagram. The semantics of a bMSC
specifically refers to its causal ordering. Unless specified otherwise, the partial
orders in this paper are strict in the sense that they are anti-reflexive. Also note
that the subscripts of the event labels, recording the origin and destination of a
message, are of no importance here and therefore can be ignored. For a message
x ∈ M, its input and output events are represented as ?x and !x respectively.
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A collection of bMSCs can be composed together sequentially or condition-
ally. The High-level MSC, also known as hMSC or road map, is a structuring
mechanism to compose bMSCs. In this paper, we only consider bMSCs, and the
term MSC specifically refers to a bMSC.

2.2 Race Conditions

In discussions of operating systems or distributed systems, where at least two
parallel processes have access to a single resource simultaneously, the term race
condition refers to the situation where, without a synchronisation mechanism,
inconsistencies may arise depending on which process wins the race to commu-
nicate with the resource. In the context of MSCs, however, a race condition does
not match its usual meaning and therefore needs further explanation.

Initially discussed in [2], a race condition in an MSC refers to the likelihood
that the implementation fails to obey the causal ordering described in its MSC
specification. The concept can be illustrated via an example. MSC3 in Fig.2(a)
shows a scenario with a race condition between the events !b and ?c. The spec-
ification requires that the input of c must follow the output of b. Nevertheless,
P3 is specified to send out c after receiving a. Without querying P2, P3 has
no knowledge of when P2 sends b. Therefore, in the implementation of such a
protocol, it is quite possible that the message c arrives at P2 before P2 starts
to send out b, which contradicts the specification.

�� �� ��

�

�

�

��� ����

!a

!b?b

?c

?a

!c

Causal Ordering

Fig. 2. (a)MSC with a race condition (b)Causal ordering <C of MSC3

Formal descriptions of a race condition can be found in the work of Alur
et al. [2] and Mitchell [16] in different styles. In addition to causal ordering,
Alur et al. [2] have defined two other levels of observation, i.e. inferred ordering
and enforced ordering. In their method, detection of race conditions consists
in checking if the inferred ordering is a subset of the transitive closure of the
enforced ordering. They have also proved that detection of race conditions in
a basic MSC1 is decidable, and the tool uBET [11] from Bell Lab has been
developed accordingly to address this problem.

Yet a solution which attempts to correct race conditions in an MSC had
not emerged until Mitchell’s work [16]. Here we quote directly the definition
1 See [17] for detection of race conditions in High-level MSCs.
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of a race condition in [16]. Intuitively, an MSC is race-free iff for an event x
occurring before an input event ?e, x must precede its corresponding output
event !e provided that x is not !e.

Definition 2. An MSC is race-free when its causal ordering <C is race-free. A
partial order < on Σ is race-free if and only if

x <?e ⇒ (x <!e ∨ x =!e)

for every event x ∈ Σ and message e ∈M.

In Mitchell’s work [16], two solutions are proposed when given a causal order-
ing with race conditions. One is based on a race-free inherent causal ordering
<I , which is a minimal weakening of the causal ordering <C . The other is the
existence of a race-free inherent refinement ordering <R, which is a minimal
strengthening of <C . The overall relationship is <I⊆<C⊆<R. Both <I and <R

have syntactically legal MSCs to match. The mapping between an ordering and
its MSC format is trivial and can be automated. Here we are only concerned
with <R. The following definition differs from that in [16] to maintain <R a
unique minimal strengthening of a causal ordering.2

Definition 3. For a causal ordering <C on Σ, its inherent refinement ordering
<R is the transitive closure of the relation ,R defined as

,R = ,C ∪ {(x , !e) ∈ Σ ×Σout | x ,C ?e and ¬ (x ≤C !e)}.

Notations on partial orders. For a causal ordering <C on Σ and x <C y where
x , y ∈ Σ, we say that x is an immediate predecessor of y if and only if x ,C y.
For illustration, however, we use directed graphs to depict the relevant partial
orders. Each vertex represents an element in Σ, and a directed edge is drawn from
x to y, denoted by x → y, whenever x,Cy. A path exists from x to y, denoted
by x � y, iff x <C y. Since <C is anti-reflexive, we have x �� x , meaning a
path consists of at least one edge in the graph. We let ≤C = <C ∪Id(Σ) denote
the reflexive version of <C such that x ≤C x . The symbol �0 is used to denote
a path with zero or more edges, i.e. x �0 y iff x ≤C y. The graph we use here
is a variant of the Hasse diagram for a partial order in the sense that (1) the
shape is different in order to maintain the similarity between a partial order
and its MSC format, and (2) the edges are arrow-headed so that two events are
ordered iff there is a path between them. For example, Fig.2(b) is the graph for
the causal ordering <C of MSC3. It can be observed that the mapping between
the directed graph and its MSC format is trivial. Also note that the variation
pattern between <C , ,C and ≤C also applies to <R.

The intuitive idea of constructing <R from <C of an MSC is to add ordering
properties into <C so that the resulting <R satisfies Definition 2. Note that we

2 Soundness problems of the original definition for the inherent refinement ordering in
[16] will be discussed in our future exposition.
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Fig. 3. (a)Inherent refinement ordering <R of MSC3 (b)Matching MSC scenario

use dashed edges for these additional constraints in a graph. Since the added
ordering properties are facilitated by general ordering symbols in MSCs, dashed
edges can maintain the resemblance between an inherent refinement ordering
and its MSC format. As seen in Fig.2(b), <C of MSC3 has a race condition
since !b �?c but !b ��!c. The solution <R is constructed in Fig.3(a) by adding
a dashed edge between !b and !c, so that <R is race-free because !b �?c and
!b �!c. The MSC scenario matching <R is MSC3′ in Fig.3(b).

3 Motivation

In the previous section, we have demonstrated that given an MSC scenario
MSC3, its race-free counterpart MSC3′ can be derived by constructing <R.
A general ordering is used to delay events to avoid a race condition. In this case,
!c is delayed until !b occurrs, so that MSC3′ is race-free. Nevertheless, further
problems may arise when we consider how a general ordering can be imple-
mented in a distributed environment. Mitchell [16] has indicated that the choice
of implementation is up to the system designers who may use any mechanism
that they deem appropriate for a particular circumstance. This effect can always
be achieved by adding extra messages into the MSC with general orderings.

We recall the basic assumption of the MSC setting. Instances communicate
asynchronously in a distributed environment without sharable resources. An
instance can only get the information from others via message passing. Therefore,
the above approach of adding messages is an effective way for specifiers to reveal
explicitly how to implement the general orderings in an MSC specification. For
example, in order to enforce the general ordering !b �→!c ∈ O in MSC3′, an
acknowledgement message can be added as shown in MSC3′′ of Fig.4(a), where
a silent symbol τ is used to label such a message since it does nothing but
maintain the ordering. It can be easily noted that MSC3′′ is not race-free since
?a <C ?τ1 but ?a �<C !τ1, where <C is the causal ordering of MSC3′′.

The problem continues even if we keep on building the inherent refinement
ordering of MSC3′′, which adds a general ordering between ?a and !τ1. Enforc-
ing the general ordering with another message, say τ2, gives us MSC3′′′ as in
Fig.4(b), where a race condition still exists between !b and ?τ2. It goes back
to the case of MSC3. Without a more sophisticated approach, a simple MSC
scenario can be flooded with unnecessary messages and becomes unreadable.
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Fig. 4. (a)An acknowledgement message (b)MSC flooded with messages

In brief, our work is motivated by the observation that for a race-free inherent
refinement ordering of an MSC with race conditions, an implementation that
enforces the general orderings may not be race-free. The following definition
explains the term implementation we use hereafter under the assumption that
there is no general ordering symbols in the original MSC. Notationally, we use
Rel S as shorthand for the set of relations on S , i.e. Rel S = P(S ×S ). We define
a set A consisting of the events caused by the acknowledgement messages, i.e.
A = {!τi | i ∈ N}∪{?τj | j ∈ N}. The symbol |S | denotes the number of elements
in set S . For a relation R on set S , R∗ is the transitive closure of R.

Definition 4. For a causal ordering <C where O = ∅ and its inherent refine-
ment ordering <R, the implementation of <R is a function IMP : RelΣ →
Rel(Σ ∪ A) such that

IMP(<R) = (Υ1(,R))∗

where the function Υ : RelΣ → Rel(Σ∪A) is defined as follows. For a relation R
on Σ, a message x ∈M, events v1, v2 ∈ Σ and a counter i ∈ 1..(|,R\,C | +1)

Υi(,C ) = ,C

Υi({v1 �→!x} ∪ R) = Υi+1(R) ∪ {!τi �→?τi , v1 �→!τi , ?τi �→!x , v2 �→?τi}
where v1 �→!x ∈ ,R\,C , v1 �→!x �∈ R and v2 �→!x ∈ ,C .

The intuition behind the above definition is to construct a causal ordering of the
MSC in which an acknowledgement message is used to enforce a general ordering
symbol. Here we use two graphs as an example. The relation <R depicted in
Fig.5(a) shows the inherent refinement ordering of MSC3. A dashed edge denotes
the difference between ,C and ,R. The partial order IMP(<R) is displayed in
Fig.5(b) by replacing the dashed edge !b �→!c in <R with !τ1 �→?τ1. Note that
IMP(<R) is not race-free since ?a �?τ1 but ?a ��!τ1. The following proposition
formalises this observation that motivates our work.

Proposition 1. ¬ (∀ <R: RelΣ, <R is race-free ⇒ IMP(<R) is race-free).

This proposition can be easily justified by the counter-example we show in Fig.5.
In the next section, we propose an approach to finding a partial order <RF that
is stronger than <R such that both <RF and IMP(<RF ) are race-free.
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Fig. 5. (a)<R of MSC3 (b)IMP of <R of MSC3

4 Correcting Race Conditions

In this section, we propose our solution for correcting race conditions in an
MSC scenario. The algorithm is expressed in a functional style with the aid of
graphs explaining how the algorithm works. Soundness is then discussed in a
more abstract way. Our intention is to make a formal argument to establish the
correctness of our approach before coding it. Finally, a couple of simple examples
are given for illustration.

4.1 Race-Free Refinement

We have observed that although an inherent refinement ordering is race-free, its
implementation may not be. Our goal is to find another strengthened partial
order <RF , called race-free refinement, such that <R⊆<RF and both <RF and
IMP(<RF ) are race-free. We achieve this task by defining a function RF , which
takes an inherent refinement ordering and non-deterministically returns a race-
free refinement, i.e. <RF= RF (<R). For simplicity, our approach is under the
assumption that there is no general ordering construct in the original MSC
diagram, which means all dashed edges appearing in the graphs are added by
inherent refinement orderings.

The basic concept behind our approach can be understood via the two graphs
in Fig.6. The symbol v stands for an event that can be either input or output. In
Fig.6(a), the triangle (v , !x , ?x ) is a building block of all the inherent refinement
orderings. The implementation of this graph will add a new input event, say ?τ ,
between !y and !x . This addition causes a risk of a new race condition because
?τ is a successor of !y, but !y may not precede its corresponding output event
!τ , which is a successor of v . Nevertheless, no new race condition will occur if we
have ?τ precede !y, which means the dashed arrow should be lifted up to link v
and !y as shown in Fig.6(b). The new graph is still race-free because v →!y and
!y →!x implies v �!x . This trivial example shows the most basic operation of
the function RF , i.e. lifting up the dashed arrows in <R to a preceding output
event. In a life-size MSC, however, there may be many output events preceding
!x . In this case, we pick up the earliest one which does not precede v . To make
this procedure more precise, we define the function ρ to perform this task.
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Fig. 6. (a)Graph for <R (b)Graph for RF (<R)

Definition 5. For a partial order < on Σ and two events u1, u2 ∈ Σ, the func-
tion ρ : RelΣ ×Σ ×Σ → P(Σout) is defined

ρ(<, u1, u2) = min({v : Σout | v ≤ u2 ∧ v �≤ u1})
where min(S ) returns a set of minimal elements of a partially ordered set S in
the sense that an element a in S is called a minimal element if no other element
of S strictly precedes a.

The function renders a set of minimal output events such that the events precede
u2 but do not precede or equal to u1 with respect to the partial order <. The
second parameter u1 stands for the pivot-like event as v in Fig.6. The third
parameter u2 holds a place for the starting event, like !x , from which we trace
back to a preceding output event. The application of ρ on the above example
gives us ρ(<R, v , !x ) = {!y} where <R represents the partial order depicted
in Fig.6(a). Nevertheless, this example is too trivial in the sense that there is
no event preceding !y. Simply replacing v �→!x with v �→!y gives us a race-free
refinement. If we consider the case where some events precede !y, we need another
mechanism to check whether the newly added edge v �→!y will cause a new race
condition or not in the implementation. This mechanism can be explained more
clearly after the function RF is defined.

Conventions on notation and designation are as follows. We let R,S range
over RelΣ. The lower-case letters e, r range over Σ ×Σ and u, v over Σ. For a
pair e ∈ R, e.s ∈ Σ stands for the source vertex of the edge e and e.d ∈ Σ for
the destination vertex. We also define a replacement operator [/] on a set S in
the sense that S [x/y] = {x} ∪ S\{y}.
Definition 6. For a causal ordering <C where O = ∅ and its corresponding
inherent refinement ordering <R, the function RF : RelΣ → RelΣ, which maps
a partial order to a relation, is defined as

RF (<R) = (Φ(,R, ,R\,C ))∗.

The function Φ : RelΣ × RelΣ → RelΣ is defined inductively as

Φ(R, ∅) = R

Φ(R, {e} ∪ S ) =
{

Φ(R,S )\{e} if e ∈ (Φ(R,S )\{e})∗
Γ (Φ(R,S ), r)[r/e] otherwise
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where e �∈ S and

r = e.s �→ v such that v ∈ ρ((Φ(R,S ))∗, e.s , e.d).

Here we classify the right arrow → into dashed or solid ones. A solid arrow,
denoted by x ⇀ y, describes the ordering formed by message arrows and instance
axes. All other arrows are dashed, represented as x ⇁ y, e.g. the edges in the set
,R\,C or those generated by the functions Φ and Γ . Formally, ⇀ =,C and
⇁ =→ \⇀ where → refers to the binding occurrence of the relation R in Γ .

The function Γ : RelΣ× (Σ×Σ) → RelΣ, which solves new race conditions
that may arise when r is added by Φ, is defined as follows.

Γ (R, r) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R\{x �→ r .d} if ∃ x : Σout\{r .s}, x ⇁ r .d (1)
r1 ∪ Γ (R, r1) if ∃ x : Σin\{r .s}, x ⇀ r .d (2)
Γ (R, r1)[r1/x �→ r .d ] if ∃ x : Σin\{r .s}, x ⇁ r .d (3)
r2 ∪ Γ (Γ (R, r1)[r1/x �→ r .d ], r2) if ∃ x , y : Σin\{r .s},

x ⇁ r .d ∧ y ⇀ r .d (4)
r1 ∪ Γ (R, r1)\{y �→ r .d} if ∃ x : Σin\{r .s}, y : Σout\{r .s},

x ⇀ r .d ∧ y ⇁ r .d (5)
R otherwise (6)

where

r1 = x �→ v1 such that v1 ∈ ρ(R∗, x , r .s)
r2 = y �→ v2 such that v2 ∈ ρ((Γ (R, r1)[r1/x �→ r .d ])∗, y, r .s).

The algorithm for finding a race-free refinement consists of two recursive function
calls, i.e. Φ and Γ . For each dashed edge in <R, the basic operation of lifting
that edge to a preceding output event up to its minimum is performed. This
task is achieved by the iteration of the function Φ and can be illustrated in
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Fig. 7. (a)Behaviour of Φ (b)Behaviour of Γ
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a more abstract way as shown in Fig.7(a). The curved edge from !m to e.d
means !m �0 e.d . The event !m is the minimal element with the constraints
such that !m �0 e.d and !m ��0 e.s . In the next section, we will prove in
Lemma 1 that given a pair e ∈ ,R \,C , such an !m always exists and could
be simply e.d . The graph in Fig.7(a) depicts the behaviour of Φ, which replaces
e with another pair r = e.s �→!m. We can observe that an acknowledgement
message enforcing r will add an input event preceding !m, causing no new race
conditions.

The above description shows an ideal scenario where no event immediately
precedes !m. Nevertheless, in some MSC scenarios, it is not unusual that there
is another event immediately preceding !m, causing risks of new race conditions
in the implementation. More precisely, if an input event, say ?o, immediately
precedes !m, the addition of r will always cause a new race condition due to
?o �� r .s , which we will prove later in Proposition 2. On the other hand, if
an output event, say !o, immediately precedes !m, the addition of r will never
cause a new race condition. We justify this feature here. From the definition of
ρ, we can deduce !o �0 r .s , otherwise !o will be the !m. The acknowledgement
message τ adds a pair !τ �→?τ such that r .s →!τ and !o →?τ →!m, which is still
race-free since !o →?τ and !o �0 r .s →!τ .

In Fig.7(b), we demonstrate the situation where an input event ?o immedi-
ately precedes !m. In this case, a new race condition will always occur in the
implementation as mentioned earlier. This feature justifies the existence of the
iteration of Γ within each recursive call of Φ. Tackling further race conditions
caused by r is the task of Γ depending on how !m is preceded. There are in total
six cases expressed in the six equations in Γ . The graph of Fig.7(b) illustrates
the equation (2) from Definition 6. The way we solve the problem is by finding
another minimal output event, say !n, such that !n �0 r .s and !n ��0?o, and
adding an edge r1 =?o �→!n. Similarly, we can also prove that there always exists
such an !n, which could be simply r .s . Note that Γ (R, r1) again appears at the
right hand side of = in the equation (2), which means checking if any new race
condition may occur when r1 is added. In this case, a new race condition occurs
iff there exists at least one input event immediately preceding !n. The recursive
structure of Γ basically forms an iteration to add or replace a set of edges r1..n
after r is added under one recursive call of Φ. A more complicated structure of Γ
is the equation (4), where there are two input events immediately preceding !m.
The approach is similar to the above case except that the iteration of Γ occurs
in one recursive call of Γ itself.

4.2 Soundness

Here we provide justification for the function RF that we claim can correct
race conditions without introducing new ones when extra messages are added
to enforce general orderings. Although RF is defined on partial orders, the style
of our soundness discussion is based on analysing the behaviour of the function
on the corresponding graphs, to which two template diagrams in Fig.7 serve
as visual aids. The first proposition justifies the existence of Γ in the sense
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that a new race condition will always occur in implementation if an input event
immediately precedes the output event found by ρ in Φ, e.g. ?o →!m in Fig.7(b).

Proposition 2. In the context of Γ in RF, if there exists an event x : Σin\{r .s}
such that x → r .d, then x �� r .s.

Proof. There are two cases for x → r .d . One is x ⇀ r .d , and the other is
x ⇁ r .d . We show that x �� r .s in both cases.

Case 1: x ⇀ r .d . Assume x � r .s ; there are two possible routes, i.e. x ⇀�0 r .s
and x ⇁�0 r .s . The former case leads to a contradiction since x ⇀ r .d but
r .d ��0 r .s . The latter case implies an event v ∈ Σ such that x ⇁ v �0 r .s .
Due to the nature of ,R, v must be an output event. So we have x ⇁!y for an
output event !y. The structure of ,R enable us to deduce x ⇀?y from x ⇁!y,
which contradicts the fact that r .d is an output event.

Case 2: x ⇁ r .d . This case implies x ⇀?r .d , where ?r .d denotes the input event
of r .d . Assuming x � r .s , there are two routes, i.e. x ⇁�0 r .s and x ⇀�0 r .s .
The former leads to a contradiction since x ⇁ r .d but r .d ��0 r .s . The latter
also results in a contradiction because x ⇀�0 r .s implies ?r .d �0 r .s . Since
r .d →?r .d and ?r .d �0 r .s , we get r .d � r .s , which violates ρ. �

When explaining the mechanism of Φ, we have already mentioned that given
a pair e ∈ ,R \,C , we can always find a minimal output event v such that
v �0 e.d and v ��0 e.s . The same applies to Γ . Referring to Fig.7, we can say
that !m always exists in the application of Φ, and so does !n in Γ . In the lemma
below, we prove this property by showing that !m could be simply e.d , and !n
could be simply either r .s or the corresponding output event of r .s .

Lemma 1. In the context of RF, the application of ρ gives a non-empty set.

Proof. There are two places where the function ρ is called, i.e. Φ and Γ . In the
case of Γ , the third parameter r .s can be either an input or an output event.

Case 1: Φ. The event e.d is a legitimate !m because e.d is an output event, and
we also have e.d ��0 e.s and e.d �0 e.d .

Case 2: Γ . There are two sub-cases here.

Case 2.1: If r .s is an output event, r .s is a legitimate !n. We prove by contradic-
tion. We assume r .s is not a legitimate !n, which means r .s �0?o. Since ?o →!m
and !m �0 e.d , we can deduce r .s � e.d . In this case, the edge e would not
have not existed in <R to correct a race condition in the first place, which is a
contradiction.

Case 2.2: If r .s is an input event, the corresponding output event of r .s , denoted
by !r .s is a legitimate !n. Similarly, we assume !r .s is not a legitimate !n, i.e.
!r .s �0?o. We know !r .s �=?o, so !r .s �?o. Since <R is race-free, !r .s �?o
implies !r .s �!o. We also know that !o �0 r .s , otherwise !o will be the !m.
Since !o �= r .s , we have !o � r .s hence !o �!r .s . A cycle arises in <R due to
!r .s �!o and !o �!r .s , which is a contradiction. �
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We can observe that the mechanism of RF is to add or replace edges into the
graph of an inherent refinement ordering <R. The following lemma asserts that
the edges added by RF are finite, which implies that the algorithm terminates.
We prove the lemma by showing that each edge that may be added by one
recursive call of Γ is between a pair of unordered input and output events.

Lemma 2. For an inherent refinement ordering <R, the application of RF in-
serts a finite number of edges into the graph of <R.

Proof. The structure of RF requires that for an edge e in,R\,C , the function
Φ replaces e with the edge r , and for each r , a set of edges r1..n may be added
by Γ . Since ,R\,C is finite, the number of edges replaced by Φ is finite. For
an ri ∈ r1..n added by Γ , there must exist an ri−1 and an input event, say ?o,
such that ?o → ri−1.d and ?o = ri .s . Proposition 2 asserts ?o �� ri−1.s . Since
ri .d �0 ri−1.s , we have ?o �� ri .d before ri is inserted. We also know that
ri .d ��0?o from the definition of ρ. Since ri .d �=?o, we have ri .d ��?o. So an
important feature of ri arises in the sense that ri only links a pair of unordered
input and output events in <R. We let the set of such pairs be U . We can assert
r1..n ⊆ U ⊆ Σ ×Σ. Since Σ ×Σ is finite, the set r1..n is therefore finite. �

With the above lemma, we know that the task of RF consists in adding a finite
number of edges into the graph of <R. Here arises another question: how can
we ensure that the relation RF (<R) is still a partial order? For an anti-reflexive
relation, its transitive closure is a partial order if and only if there exists no cycle
in the graph of that relation. Therefore our next observation is that the relation
RF (<R) is a partial order by proving the graph of RF (<R) is acyclic in the
following proposition.

Proposition 3. For an <R, the graph of RF (<R) is acyclic.

Proof. Since the function RF recursively adds a finite number of edges, r1..n ,
into the adjacency version of an inherent refinement ordering (Lemma 2), we can
represent RF (<R) as ,R ∪r1..n . We prove by induction on every n ∈ N that
RF (<R) =,R ∪r1..n is acyclic.

Base case: Setting n = 0, we get RF (<R) =,R. Hence RF (<R) is cycle-free
because <R is a partial order.

Induction steps: Let n = k be an arbitrary number and suppose that ,R ∪r1..k

is acyclic. When n = k + 1, we have RF (<R) =,R ∪r1..k ∪ {rk+1}. There are
two cases for rk+1.

Case 1: rk+1 is generated by Φ, which means there exists an element e ∈,R\,C
such that rk+1 = e.s �→!m where !m ∈ ρ((,R ∪r1..k )∗, e.s , e.d). Due to Lemma
1, there will always be an !m such that !m ��0 e.s , so rk+1 will not form a cycle.

Case 2: rk+1 is generated by Γ , which implies there exists an ri in r1..k and
an input event ?o such that ?o → ri .d and rk+1 =?o �→!n where !n ∈ ρ((,R

∪r1..k )∗, ?o, ri .s). Similarly, Lemma 1 asserts !n always exists such that !n ��0?o.
Hence rk+1 will not form a cycle.
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Since rk+1 does not form a cycle in both cases, the graph of RF (<R) is acyclic. �

The final two propositions justify our intention in this paper. For an inher-
ent refinement ordering <R, we have found a strengthened partial order <RF=
RF (<R) such that both <RF and IMP(<RF ) are race-free. Note that the appli-
cation of IMP on <RF requires its variant ,RF , which is actually the relation
Φ(,R, ,R\,C ) before the transitive closure operator is performed.

Proposition 4. For an <R, <RF is race-free.

Proof. We prove by contradiction. Supposing that <RF has race conditions.
Since <R is race-free, for <RF to get a new race condition, the function RF
must add an extra edge linking an event v ∈ Σ with an input event ?x such that
v →?x but v ��!x . This contradicts the definition of RF since all the edges added
or replaced by RF link an event with an output event in the form of v →!x . �

Proposition 5. For an <R, IMP(<RF ) is race-free.

Proof. We prove by contradiction. Supposing that IMP(<RF ) is not race-free.
The graph of the relation <RF ) must satisfy either one of the following two
cases. We show that both cases contradict the mechanism of RF .

Case 1: ∃ r :,RF \,C such that v : Σ, v �= r .s ∧ v ⇁ r .d .
In terms of the graph, this case holds when there are two dashed edges pointing
to a single output event. This situation contradicts the definition of Γ no matter
v is an input or an output event. If v ∈ Σout , the equation (1) or (5) of Γ
applies, both of which eliminate the pair v �→ r .d from the relation. If v ∈ Σin ,
the equation (3) or (4) is applicable, replacing v �→ r .d with a different edge.

Case 2: ∃ r :,RF \,C such that v : Σ, v �= r .s ∧ v ⇀ r .d ∧ v �� r .s .
This case also contradicts the definition of Γ no matter v is an input or an
output event. If v ∈ Σin , either equation (2) or (5) applies, and both equations
add another edge so that v � r .s . If v ∈ Σout , then we have v � r .s . Otherwise,
due to the definition of ρ, the edge r should have linked r .s with v instead of
r .d in the first place. �

4.3 Examples

We use a couple of MSC scenarios with a reasonable level of complexity to illus-
trate our approach. For economy of space, we only show the MSC scenarios of an
inherent refinement ordering and its corresponding race-free refinement instead
of the partial orders. MSC4 in Fig.8 is an MSC with race conditions between
three pairs of events, i.e. (!a, ?c), (!c, ?e) and (?b, ?d). The MSC matching its
inherent refinement ordering is depicted as MSC4′. In MSC4′, general ordering
symbols are added to delay output events so that the resulting semantics satis-
fies the criteria of a race-free partial order. Nevertheless, if an acknowledgement
message τ is used here to enforce the general ordering !a �→!c, we can see that a
new race condition arises between !b and ?τ . This situation also applies to the
other two general orderings (!c, ?e) and (?b, ?d).



Race Conditions in Message Sequence Charts 209

�� �� �� ��

�

�

� �

�

��� ����

�� �� �� ��

�

�

� �

�

��� ����
�

�� �� �� ��

�

�

�

�

�

��� ����
��

Fig. 8. A simple example
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Fig. 9. A simple example

As illustrated beside MSC4′, MSC4′′ in Fig.8 is the matching MSC scenario
of the race-free refinement, i.e. <RF , that we propose as the solution in this
paper. In this case, adding acknowledgement messages to enforce the general
orderings does not cause new race conditions.

The other example can be found in Fig.9, where MSC5 has race conditions
in two places. Two general ordering symbols are added to form its inherent re-
finement scenario as shown in MSC5′. Our solution, however, requires only one
general ordering symbol to solve the problem as depicted in MSC5′′. As to the
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implementation, MSC5′ needs two additional messages, causing new race con-
ditions. Yet MSC5′′ needs only one, ending up with another race-free scenario.

5 Conclusion

In this paper, we have investigated race conditions in a specification language,
namely MSCs, based on partial-order semantics. The existing solution to cor-
recting race conditions in an MSC is a canonical refinement, called inherent
refinement ordering, which strengthens the causal ordering of the MSC with aid
of general ordering constructs. We claim that new race conditions may occur
if specifiers intend to reveal explicitly in MSCs how the general orderings are
implemented by adding acknowledgement messages. This observation makes the
inherent refinement orderings too weak for solving race conditions in practice.

This paper contributes an approach to finding a minimal strengthening par-
tial order, called race-free refinement, of an inherent refinement ordering. We
prove that for an inherent refinement ordering there exists a race-free refinement
such that its matching MSC is race-free and remains race-free when acknowl-
edgement messages enforcing general orderings are added. The approach is an
algorithm on partial orders. The algorithm is presented in a functional style and
can be later implemented for tool-support.
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Abstract. In recent years, there has been a growing need for tools that an analyst
can use to understand the workings of COTS components, plugins, mobile code,
and DLLs, as well as memory snapshots of worms and virus-infected code. Static
analysis provides techniques that can help with such problems; however, there
are several obstacles that must be overcome:

– For many kinds of potentially malicious programs, symbol-table and debug-
ging information is entirely absent. Even if it is present, it cannot be relied
upon.

– To understand memory-access operations, it is necessary to determine the set
of addresses accessed by each operation. This is difficult because

• While some memory operations use explicit memory addresses in the
instruction (easy), others use indirect addressing via address expres-
sions (difficult).

• Arithmetic on addresses is pervasive. For instance, even when the value
of a local variable is loaded from its slot in an activation record, address
arithmetic is performed.

• There is no notion of type at the hardware level, so address values can-
not be distinguished from integer values.

• Memory accesses do not have to be aligned, so word-sized address val-
ues could potentially be cobbled together from misaligned reads and
writes.

We have developed static-analysis algorithms to recover information about the
contents of memory locations and how they are manipulated by an executable. By
combining these analyses with facilities provided by the IDAPro and CodeSurfer
toolkits, we have created CodeSurfer/x86, a prototype tool for browsing, inspect-
ing, and analyzing x86 executables. From an x86 executable, CodeSurfer/x86 re-
covers intermediate representations that are similar to what would be created by
a compiler for a program written in a high-level language. CodeSurfer/x86 also
supports a scripting language, as well as several kinds of sophisticated pattern-
matching capabilities. These facilities provide a platform for the development of
additional tools for analyzing the security properties of executables.

1 Introduction

Market forces are increasingly pushing companies to deploy COTS software when
possible—for which source code is typically unavailable—and to outsource develop-
� Portions of this paper have appeared in [3,4].

K. Yi (Ed.): APLAS 2005, LNCS 3780, pp. 212–229, 2005.
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ment when custom software is required. Moreover, a great deal of legacy code—for
which design documents are usually out-of-date, and for which source code is some-
times unavailable and sometimes non-existent—will continue to be left deployed. An
important challenge during the coming decade will be how to identify bugs and security
vulnerabilities in such systems. Methods are needed to determine whether third-party
and legacy application programs can perform malicious operations (or can be induced
to perform malicious operations), and to be able to make such judgments in the absence
of source code.

Recent research in programming languages, software engineering, and computer se-
curity has led to new kinds of tools for analyzing code for bugs and security vulnerabil-
ities [25,40,20,14,8,5,10,27,17,9]. In these tools, static analysis is used to determine a
conservative answer to the question “Can the program reach a bad state?”1 In principle,
such tools would be of great help to an analyst trying to detect malicious code hidden
in software, except for one important detail: the aforementioned tools all focus on ana-
lyzing source code written in a high-level language. Even if source code were available,
there are a number of reasons why analyses that start from source code do not provide
the right level of detail for checking certain kinds of properties, which can cause bugs,
security vulnerabilities, and malicious behavior to be invisible to such tools. (See §2.)

In contrast, our work addresses the problem of finding bugs and security vulnera-
bilities in programs when source code is unavailable. Our goal is to create a platform
that carries out static analysis on executables and provides information that an analyst
can use to understand the workings of potentially malicious code, such as COTS com-
ponents, plugins, mobile code, and DLLs, as well as memory snapshots of worms and
virus-infected code. A second goal is to use this platform to create tools that an analyst
can employ to determine such information as

– whether a program contains inadvertent security vulnerabilities
– whether a program contains deliberate security vulnerabilities, such as back doors,

time bombs, or logic bombs. If so, the goal is to provide information about activa-
tion mechanisms, payloads, and latencies.

We have developed a tool, called CodeSurfer/x86, that serves as a prototype for a next-
generation platform for analyzing executables. CodeSurfer/x86 provides a security an-
alyst with a powerful and flexible platform for investigating the properties and possible
behaviors of an x86 executable. It uses static analysis to recover intermediate represen-
tations (IRs) that are similar to those that a compiler creates for a program written in
a high-level language. An analyst is able to use (i) CodeSurfer/x86’s GUI, which pro-
vides mechanisms to understand a program’s chains of data and control dependences,
(ii) CodeSurfer/x86’s scripting language, which provides access to all of the intermedi-
ate representations that CodeSurfer/x86 builds, and (iii) GrammaTech’s Path Inspector,
which is a model-checking tool that uses a sophisticated pattern-matching engine to
answer questions about the flow of execution in a program.

1 Static analysis provides a way to obtain information about the possible states that a program
reaches during execution, but without actually running the program on specific inputs. Static-
analysis techniques explore the program’s behavior for all possible inputs and all possible states
that the program can reach. To make this feasible, the program is “run in the aggregate”—i.e.,
on descriptors that represent collections of memory configurations [15].
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Because CodeSurfer/x86 was designed to provide a platform that an analyst can use
to understand the workings of potentially malicious code, a major challenge is that the
tool must assume that the x86 executable is untrustworthy, and hence symbol-table and
debugging information cannot be relied upon (even if it is present). The algorithms used
in CodeSurfer/x86 provide ways to meet this challenge.

Although the present version of CodeSurfer/x86 is targeted to x86 executables, the
techniques used [3,34,37,32] are language-independent and could be applied to other
types of executables. In addition, it would be possible to extend CodeSurfer/x86 to
use symbol-table and debugging information in situations where such information is
available and trusted—for instance, if you have the source code for the program, you
invoke the compiler yourself, and you trust the compiler to supply correct symbol-table
and debugging information. Moreover, the techniques extend naturally if source code
is available: one can treat the executable code as just another IR in the collection of
IRs obtainable from source code. The mapping of information back to the source code
would be similar to what C source-code tools already have to perform because of the use
of the C preprocessor (although the kind of issues that arise when debugging optimized
code [26,43,16] complicate matters).

The remainder of paper is organized as follows: §2 illustrates some of the advan-
tages of analyzing executables. §3 describes CodeSurfer/x86. §4 gives an overview of
the model-checking facilities that have been coupled to CodeSurfer/x86. §5 discusses
related work.

2 Advantages of Analyzing Executables

This section discusses why an analysis that works on executables can provide more ac-
curate information than an analysis that works on source code.2 An analysis that works
on source code can fail to detect certain bugs and vulnerabilities due to the WYSIN-
WYX phenomenon: “What You See Is Not What You eXecute” [4], which can cause
there to be a mismatch between what a programmer intends and what is actually exe-
cuted by the processor. The following source-code fragment, taken from a login pro-
gram, illustrates the issue [29]:

memset(password, ‘\0’, len);
free(password);

The login program temporarily stores the user’s password—in clear text—in a dynam-
ically allocated buffer pointed to by the pointer variable password. To minimize the
lifetime of the password, which is sensitive information, the code fragment shown above
zeroes-out the buffer pointed to by password before returning it to the heap. Unfortu-
nately, a compiler that performs useless-code elimination may reason that the program
never uses the values written by the call on memset, and therefore the call on memset
can be removed—thereby leaving sensitive information exposed in the heap. This is
not just hypothetical; a similar vulnerability was discovered during the Windows secu-
rity push in 2002 [29]. This vulnerability is invisible in the source code; it can only be
detected by examining the low-level code emitted by the optimizing compiler.

2 Terms like “an analysis that works on source code” and “source-level analyses” are used as a
shorthand for “analyses that work on IRs built from the source code.”
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A second example where analysis of an executable does better than typical source-
level analyses involves pointer arithmetic and an indirect call:

int (*f)(void);
int diff=(char*)&f2-(char*)&f1;//Theoffsetbetweenf1andf2
f = &f1;
f = (int (*)())((char*)f + diff); // f now points to f2
(*f)(); // indirect call;

Existing source-level analyses (that we know of) are ill-prepared to handle the above
code. The conventional assumption is that arithmetic on function pointers leads to
undefined behavior, so source-level analyses either (a) assume that the indirect func-
tion call might call any function, or (b) ignore the arithmetic operations and as-
sume that the indirect function call calls f1 (on the assumption that the code is
ANSI-C compliant). In contrast, the analysis described by Balakrishnan and Reps
[3] correctly identifies f2 as the invoked function. Furthermore, the analysis can

int callee(int a, int b) {
int local;
if (local == 5) return 1;
else return 2;

}

int main() {
int c = 5;
int d = 7;

int v = callee(c,d);
// What is the value of v here?
return 0;

}

mov [ebp+var_8], 5
mov [ebp+var_C], 7
mov eax, [ebp+var_C]
push    eax
mov ecx, [ebp+var_8]
push    ecx
call    _callee
. . .

Standard prolog    Prolog for 1 local
push    ebp push    ebp
mov ebp, esp mov ebp, esp
sub      esp, 4         push    ecx

Fig. 1. Example of unexpected behavior due to compiler opti-
mization. The box at the top right shows two variants of code
generated by an optimizing compiler for the prolog of callee.
Analysis of the second of these reveals that the variable local
necessarily contains the value 5.

detect when arithmetic on
addresses creates an ad-
dress that does not point to
the beginning of a function;
the use of such an address
to perform a function “call”
is likely to be a bug (or else
a very subtle, deliberately
introduced security vulner-
ability).

A third example in-
volves a function call that
passes fewer arguments
than the procedure expects
as parameters. (Many com-
pilers accept such (unsafe)
code as an easy way of
implementing functions
that take a variable number
of parameters.) With most
compilers, this effectively
means that the call-site passes some parts of one or more local variables of the
calling procedure as the remaining parameters (and, in effect, these are passed by
reference—an assignment to such a parameter in the callee will overwrite the value
of the corresponding local in the caller.) An analysis that works on executables can
be created that is capable of determining what the extra parameters are [3], whereas
a source-level analysis must either make a cruder over-approximation or an unsound
under-approximation.

A final example is shown in Fig. 1. The C code on the left uses an uninitialized
variable (which triggers a compiler warning, but compiles successfully). A source-code
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analyzer must assume that local can have any value, and therefore the value of v in
main is either 1 or 2. The assembly listings on the right show how the C code could be
compiled, including two variants for the prolog of function callee. The Microsoft
compiler (cl) uses the second variant, which includes the following strength reduction:

The instruction sub esp,4 that allocates space for local is replaced by
a push instruction of an arbitrary register (in this case, ecx).

An analysis of the executable can determine that this optimization results in local
being initialized to 5, and therefore v in main can only have the value 1.

To summarize, the advantage of an analysis that works on executables is that an
executable contains the actual instructions that will be executed, and hence provides
information that reveals the actual behavior that arises during program execution. This
information includes

– memory-layout details, such as (i) the positions (i.e., offsets) of variables in the
runtime stack’s activation records, and (ii) padding between structure fields.

– register usage
– execution order (e.g., of actual parameters)
– optimizations performed
– artifacts of compiler bugs

Access to such information can be crucial; for instance, many security exploits de-
pend on platform-specific features, such as the structure of activation records. Vulnera-
bilities can escape notice when a tool does not have information about adjacency rela-
tionships among variables.

In contrast, there are a number of reasons why analyses based on source code do
not provide the right level of detail for checking certain kinds of properties:

– Source-level tools are only applicable when source is available, which limits
their usefulness in security applications (e.g., to analyzing code from open-source
projects).

– Analyses based on source code typically make (unchecked) assumptions, e.g., that
the program is ANSI-C compliant. This often means that an analysis does not ac-
count for behaviors that are allowed by the compiler (e.g., arithmetic is performed
on pointers that are subsequently used for indirect function calls; pointers move off
the ends of arrays and are subsequently dereferenced; etc.)

– Programs typically make extensive use of libraries, including dynamically linked li-
braries (DLLs), which may not be available in source-code form. Typically, source-
level analyses are performed using code stubs that model the effects of library calls.
Because these are created by hand they are likely to contain errors, which may cause
an analysis to return incorrect results.

– Programs are sometimes modified subsequent to compilation, e.g., to perform opti-
mizations or insert instrumentation code [41]. (They may also be modified to insert
malicious code.) Such modifications are not visible to tools that analyze source.

– The source code may have been written in more than one language. This com-
plicates the life of designers of tools that analyze source code because multiple
languages must be supported, each with its own quirks.



A Next-Generation Platform for Analyzing Executables 217

– Even if the source code is primarily written in one high-level language, it may con-
tain inlined assembly code in selected places. Source-level analysis tools typically
either skip over inlined assembly code [13] or do not push the analysis beyond sites
of inlined assembly code [1].

Thus, even if source code is available, a substantial amount of information is hidden
from analyses that start from source code, which can cause bugs, security vulnerabil-
ities, and malicious behavior to be invisible to such tools. Moreover, a source-level
analysis tool that strives to have greater fidelity to the program that is actually executed
would have to duplicate all of the choices made by the compiler and optimizer; such an
approach is doomed to failure.

3 Analyzing Executables in the Absence of Source Code

To be able to apply techniques like the ones used in [25,40,20,14,8,5,10,27,17,9], one
already encounters a challenging program-analysis problem. From the perspective of
the compiler community, one would consider the problem to be “IR recovery”: one
needs to recover intermediate representations from the executable that are similar to
those that would be available had one started from source code. From the perspective of
the model-checking community, one would consider the problem to be that of “model
extraction”: one needs to extract a suitable model from the executable. To solve the
IR-recovery problem, several obstacles must be overcome:

– For many kinds of potentially malicious programs, symbol-table and debugging
information is entirely absent. Even if it is present, it cannot be relied upon.

– To understand memory-access operations, it is necessary to determine the set of
addresses accessed by each operation. This is difficult because
• While some memory operations use explicit memory addresses in the instruc-

tion (easy), others use indirect addressing via address expressions (difficult).
• Arithmetic on addresses is pervasive. For instance, even when the value of a

local variable is loaded from its slot in an activation record, address arithmetic
is performed.

• There is no notion of type at the hardware level, so address values cannot be
distinguished from integer values.

• Memory accesses do not have to be aligned, so word-sized address values could
potentially be cobbled together from misaligned reads and writes.

For the past few years, we have been working to create a prototype next-generation
platform for analyzing executables. The tool set that we have developed extends static
vulnerability-analysis techniques to work directly on executables, even in the absence
of source code. The tool set builds on (i) recent advances in static analysis of program
executables [3], and (ii) new techniques for software model checking and dataflow anal-
ysis [7,36,37,32]. The main components of the tool set are CodeSurfer/x86, WPDS++,
and the Path Inspector:

– CodeSurfer/x86 recovers IRs from an executable that are similar to the IRs
that source-code-analysis tools create—but, in many respects, the IRs that
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CodeSurfer/x86 builds are more precise. CodeSurfer/x86 also provides an API to
these IRs.

– WPDS++ [31] is a library for answering generalized reachability queries on
weighted pushdown systems (WPDSs) [7,36,37,32]. This library provide a mecha-
nism for defining and solving model-checking and dataflow-analysis problems. To
extend CodeSurfer/x86’s analysis capabilities, the CodeSurfer/x86 API can be used
to extract a WPDS model from an executable and to run WPDS++ on the model.

– The Path Inspector is a software model checker built on top of CodeSurfer
and WPDS++. It supports safety queries about a program’s possible control
configurations.

In addition, by writing scripts that traverse the IRs that CodeSurfer/x86 recovers, the
tool set can be extended with further capabilities (e.g., decompilation, code rewriting,
etc.).

CodeSurfer

Build SDG

Browse

Executable

Connector

VSA

Initial estimate of
• code vs. data
• procedures
• call sites
• malloc sites

IDA Pro

Build
CFGs

Parse
Executable

• fleshed-out CFGs
• fleshed-out call graph
• used, killed, may-killed
variables for CFG nodes

• points-to sets
• reports of violations

Code
Rewriter

Decompiler

Path
Inspector

User Scripts
WPDS++

CodeSurfer/x86

ASI

Fig. 2. Organization of CodeSurfer/x86 and companion tools

Fig. 2 shows how these components fit together. CodeSurfer/x86 makes use of both
IDAPro [30], a disassembly toolkit, and GrammaTech’s CodeSurfer system [13], a
toolkit originally developed for building program-analysis and inspection tools that ana-
lyze source code. These components are glued together by a piece called the Connector,
which uses two static analyses—value-set analysis (VSA) [3] and aggregate-structure
identification (ASI) [34] to recover information about the contents of memory locations
and how they are manipulated by an executable.3

3 VSA also makes use of the results of an additional static-analysis phase, called affine-relation
analysis (ARA), which, for each program point, identifies affine relationships [33] that hold
among the values of registers; see [3,32].
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An x86 executable is first disassembled using IDAPro. In addition to the disassem-
bly listing, IDAPro also provides access to the following information:

Statically known memory addresses and offsets: IDAPro identifies the statically
known memory addresses and stack offsets in the program, and renames all
occurrences of these quantities with a consistent name. This database is used to
define the set of data objects in terms of which (the initial run of) VSA is carried
out; these objects are called a-locs, for “abstract locations”. VSA is an analysis
that, for each instruction, determines an over-approximation of the set of values
that each a-loc could hold.

Information about procedure boundaries: X86 executables do not have information
about procedure boundaries. IDAPro identifies the boundaries of most of the pro-
cedures in an executable.4

Calls to library functions: IDAPro discovers calls to library functions using an algo-
rithm called Fast Library Identification and Recognition Technology (FLIRT) [23].

IDAPro provides access to its internal resources via an API that allows users to
create plug-ins to be executed by IDAPro. CodeSurfer/x86 uses a plug-in to IDAPro,
called the Connector, that creates data structures to represent the information that it ob-
tains from IDAPro (see Fig. 2); VSA and ASI are implemented using the data structures
created by the Connector. The IDAPro/Connector combination is also able to create the
same data structures for DLLs, and to link them into the data structures that represent
the program itself. This infrastructure permits whole-program analysis to be carried
out—including analysis of the code for all library functions that are called.

CodeSurfer/x86 makes no use of symbol-table or debugging information. Instead,
the results of VSA and ASI provide a substitute for absent or untrusted symbol-table
and debugging information. Initially, the set of a-locs is determined based on the static
memory addresses and stack offsets that are used in instructions in the executable. Each
run of ASI refines the set of a-locs used for the next run of VSA.

Because the IRs that CodeSurfer/x86 recovers are extracted directly from the exe-
cutable code that is run on the machine, and because the entire program is analyzed—
including any libraries that are linked to the program—this approach provides a “higher
fidelity” platform for software model checking than the IRs derived from source code
that other software model checkers use [25,40,20,14,8,5,10,27,17,9].

CodeSurfer/x86 supports a scripting language that provides access to all of the
IRs that CodeSurfer/x86 builds for the executable. This provides a way to connect
CodeSurfer/x86 to other analysis tools, such as model checkers (see §4), as well as to
implement other tools on top of CodeSurfer/x86, such as decompilers, code rewriters,
etc. It also provides an analyst with a mechanism to develop any additional “one-off”
analyses he needs to create.

4 IDAPro does not identify the targets of all indirect jumps and indirect calls, and therefore
the call graph and control-flow graphs that it constructs are not complete. However, the in-
formation computed during VSA is used to augment the call graph and control-flow graphs
on-the-fly to account for indirect jumps and indirect calls.
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3.1 Memory-Access Analysis in the Connector

The analyses in CodeSurfer/x86 are a great deal more ambitious than even relatively
sophisticated disassemblers, such as IDAPro. At the technical level, CodeSurfer/x86
addresses the following problem:

Given a stripped executable E, identify the
– procedures, data objects, types, and libraries that it uses

and
– for each instruction I in E and its libraries
– for each interprocedural calling context of I
– for each machine register and a-loc A

statically compute an accurate over-approximation to
– the set of values that A may contain when I executes
– the instructions that may have defined the values used by I
– the instructions that may use the values defined by execution of I

and provide effective means to access that information both interactively and under
program control.

Value-Set Analysis. VSA [3] is a combined numeric and pointer-analysis algorithm
that determines an over-approximation of the set of numeric values and addresses (or
value set) that each a-loc holds at each program point. The information computed during
VSA is used to augment the call graph and control-flow graphs on-the-fly to account
for indirect jumps and indirect function calls.

VSA is related to pointer-analysis algorithms that have been developed for programs
written in high-level languages, which determine an over-approximation of the set of
variables whose addresses each pointer variable can hold:

VSA determines an over-approximation of the set of addresses that each data
object can hold at each program point.

At the same time, VSA is similar to range analysis and other numeric static-analysis
algorithms that over-approximate the integer values that each variable can hold:

VSA determines an over-approximation of the set of integer values that each
data object can hold at each program point.

The following insights shaped the design of VSA:

– A non-aligned access to memory—e.g., an access via an address that is not aligned
on a 4-byte word boundary—spans parts of two words, and provides a way to forge
a new address from parts of old addresses. It is important for VSA to discover
information about the alignments and strides of memory accesses, or else most
indirect-addressing operations appear to be possibly non-aligned accesses.

– To prevent most loops that traverse arrays from appearing to be possible stack-
smashing attacks, the analysis needs to use relational information so that the values
of a-locs assigned to within a loop can be related to the values of the a-locs used in
the loop’s branch condition (see [3,33,32]).
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– It is desirable for VSA to track integer-valued and address-valued quantities simul-
taneously. This is crucial for analyzing executables because
• integers and addresses are indistinguishable at execution time, and
• compilers use address arithmetic and indirect addressing to implement such

features as pointer arithmetic, pointer dereferencing, array indexing, and ac-
cessing structure fields.

Moreover, information about integer values can lead to improved tracking of
address-valued quantities, and information about address values can lead to im-
proved tracking of integer-valued quantities.

VSA produces information that is more precise than that obtained via several more
conventional numeric analyses used in compilers, including constant propagation, range
analysis, and integer-congruence analysis. At the same time, VSA provides an analog
of pointer analysis that is suitable for use on executables.

Aggregate-Structure Identification. One of the major stumbling blocks in analysis
of executables is the difficulty of recovering information about variables and types,
especially for aggregates (i.e., structures and arrays). CodeSurfer/x86 uses an iterative
strategy for recovering such information; with each round, it refines its notion of the
program’s variables and types.

Initially, VSA uses a set of variables (“a-locs”) that are obtained from IDAPro.
Because IDAPro has relatively limited information available at the time that it applies
its variable-discovery heuristics (i.e., it only knows about statically known memory
addresses and stack offsets), what it can do is rather limited, and generally leads to a
very coarse-grained approximation of the program’s variables.

Once a given run of VSA completes, the value-sets for the a-locs at each instruction
provide a way to identify an over-approximation of the memory accesses performed at
that instruction. This information is used to refine the current set of a-locs by running
a variant of the ASI algorithm [34], which identifies commonalities among accesses to
different parts of an aggregate data value. ASI was originally developed for analysis of
Cobol programs: in that context, ASI ignores all of the type declarations in the program,
and considers an aggregate to be merely a sequence of bytes of a given length; an
aggregate is then broken up into smaller parts depending upon how the aggregate is
accessed by the program. In the context in which we use ASI—namely, analysis of x86
executables—ASI cannot be applied until the results of VSA are already in hand: ASI
requires points-to, range, and stride information to be available; however, for an x86
executable this information is not available until after VSA has been run.

ASI exploits the information made available by VSA (such as the values that a-locs
can hold, sizes of arrays, and iteration counts for loops), which generally leads to a
much more accurate set of a-locs than the initial set of a-locs discovered by IDAPro.
For instance, consider a simple loop, implemented in source code as

int a[10], i;
for (i = 0; i < 10; i++)

a[i] = i;



222 T. Reps et al.

From the executable, IDAPro will determine that there are two variables, one of size 4
bytes and one of size 40 bytes, but will provide no information about the substructure
of the 40-byte variable. In contrast, in addition to the 4-byte variable, ASI will correctly
identify that the 40 bytes are an array of ten 4-byte quantities.

The Connector uses a refinement loop that performs repeated phases of VSA and
ASI (see Fig. 2). The ASI results are used to refine the previous set of a-locs, and the
refined set of a-locs is then used to analyze the program during the next round of VSA.
The number of iterations is controlled by a command-line parameter.

ASI also provides information that greatly increases the precision with which VSA
can analyze the contents of dynamically allocated objects (i.e., memory locations allo-
cated using malloc or new). To see why, recall how the initial set of a-locs is identified
by IDAPro. The a-loc abstraction exploits the fact that accesses to program variables in
a high-level language are either complied into static addresses (for globals, and fields of
struct-valued globals) or static stack-frame offsets (for locals and fields of struct-valued
locals). However, fields of dynamically allocated objects are accessed in terms of offsets
relative to the base address of the object itself, which is something that IDAPro knows
nothing about. In contrast, VSA considers each malloc site m to be a “memory region”
(consisting of the objects allocated at m), and the memory region for m serves as a
representative for the base addresses of those objects. This lets ASI handle the use of
an offset from an object’s base address similar to the way that it handles a stack-frame
offset—with the net result that ASI is able to capture information about the fine-grained
structure of dynamically allocated objects. The object fields discovered in this way be-
come a-locs for the next round of VSA, which will then discover an over-approximation
of their contents.

ASI is complementary to VSA: ASI addresses only the issue of identifying the
structure of aggregates, whereas VSA addresses the issue of (over-approximating) the
contents of memory locations. ASI provides an improved method for the “variable-
identification” facility of IDAPro, which uses only much cruder techniques (and only
takes into account statically known memory addresses and stack offsets). Moreover,
ASI requires more information to be on hand than is available in IDAPro (such as the
sizes of arrays and iteration counts for loops). Fortunately, this is exactly the information
that is available after VSA has been carried out, which means that ASI can be used in
conjunction with VSA to obtain improved results: after a first round of VSA, the results
of ASI are used to refine the a-loc abstraction, after which VSA is run again—generally
producing more precise results.

3.2 CodeSurfer/x86

The value-sets for the a-locs at each program point are used to determine each point’s
sets of used, killed, and possibly-killed a-locs; these are emitted in a format that is
suitable for input to CodeSurfer.

CodeSurfer is a tool for code understanding and code inspection that supports
both a graphical user interface (GUI) and an API (as well as a scripting language) to
provide access to a program’s system dependence graph (SDG) [28], as well as other
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information stored in CodeSurfer’s IRs.5 An SDG consists of a set of program de-
pendence graphs (PDGs), one for each procedure in the program. A vertex in a PDG
corresponds to a construct in the program, such as an instruction, a call to a proce-
dure, an actual parameter of a call, or a formal parameter of a procedure. The edges
correspond to data and control dependences between the vertices [21]. The PDGs are
connected together with interprocedural edges that represent control dependences be-
tween procedure calls and entries, data dependences between actual parameters and
formal parameters, and data dependences between return values and receivers of return
values.

Dependence graphs are invaluable for many applications, because they highlight
chains of dependent instructions that may be widely scattered through the program.
For example, given an instruction, it is often useful to know its data-dependence pre-
decessors (instructions that write to locations read by that instruction) and its control-
dependence predecessors (control points that may affect whether a given instruction
gets executed). Similarly, it may be useful to know for a given instruction its data-
dependence successors (instructions that read locations written by that instruction) and
control-dependence successors (instructions whose execution depends on the decision
made at a given control point).

CodeSurfer’s GUI supports browsing (“surfing”) of an SDG, along with a variety of
operations for making queries about the SDG—such as slicing [28] and chopping [35].6

The GUI allows a user to navigate through a program’s source code using these
dependences in a manner analogous to navigating the World Wide Web.

CodeSurfer’s API provides a programmatic interface to these operations, as well
as to lower-level information, such as the individual nodes and edges of the program’s
SDG, call graph, and control-flow graph, and a node’s sets of used, killed, and possibly-
killed a-locs. By writing programs that traverse CodeSurfer’s IRs to implement addi-
tional program analyses, the API can be used to extend CodeSurfer’s capabilities.

CodeSurfer/x86 provides some unique capabilities for answering an analyst’s ques-
tions. For instance, given a worm, CodeSurfer/x86’s analysis results have been used
to obtain information about the worm’s target-discovery, propagation, and activation
mechanisms by

– locating sites of system calls,
– finding the instructions by which arguments are passed, and
– following dependences backwards from those instructions to identify where the

values come from.

5 In addition to the SDG, CodeSurfer’s IRs include abstract-syntax trees, control-flow graphs
(CFGs), a call graph, VSA results, the sets of used, killed, and possibly killed a-locs at each in-
struction, and information about the structure and layout of global memory, activation records,
and dynamically allocated storage.

6 A backward slice of a program with respect to a set of program points S is the set of all program
points that might affect the computations performed at S; a forward slice with respect to S is
the set of all program points that might be affected by the computations performed at members
of S [28]. A program chop between a set of source program points S and a set of target
program points T shows how S can affect the points in T [35]. Chopping is a key operation in
information-flow analysis.
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Because the techniques described in §3.1 are able to recover quite rich information
about memory-access operations, the answers that CodeSurfer/x86 furnishes to such
questions account for the movement of data through memory—not just the movement
of data through registers, as in some prior work (e.g., [18,11]).

3.3 Goals, Capabilities, and Assumptions

A few words are in order about the goals, capabilities, and assumptions underlying
CodeSurfer/x86.

The constraint that symbol-table and debugging information are off-limits compli-
cated the task of creating CodeSurfer/x86; however, the results of VSA and ASI provide
a substitute for such information. This allowed us to create a tool that can be used when
symbol-table and debugging information is absent or untrusted.

Given an executable as input, the goal is to check whether the executable con-
forms to a “standard” compilation model—i.e., a runtime stack is maintained; activation
records (ARs) are pushed onto the stack on procedure entry and popped from the stack
on procedure exit; each global variable resides at a fixed offset in memory; each local
variable of a procedure f resides at a fixed offset in the ARs for f ; actual parameters of
f are pushed onto the stack by the caller so that the corresponding formal parameters
reside at fixed offsets in the ARs for f ; the program’s instructions occupy a fixed area
of memory, are not self-modifying, and are separate from the program’s data. If the
executable conforms to this model, CodeSurfer/x86 creates an IR for it. If it does not
conform to the model, then one or more violations will be discovered, and correspond-
ing error reports are issued.

The goal for CodeSurfer/x86 is to provide (i) a tool for security analysis, and (ii) a
general infrastructure for additional analysis of executables. Thus, as a practical mea-
sure, when the system produces an error report, a choice is made about how to accom-
modate the error so that analysis can continue (i.e., the error is optimistically treated as
a false positive), and an IR is produced; if the analyst can determine that the error report
is indeed a false positive, then the IR is valid.

The analyzer does not care whether the program was compiled from a high-level
language, or hand-written in assembly code. In fact, some pieces of the program may
be the output from a compiler (or from multiple compilers, for different high-level lan-
guages), and others hand-written assembly code. Still, it is easiest to talk about the
information that VSA and ASI are capable of recovering in terms of the features that
a high-level programming language allows: VSA and ASI are capable of recovering
information from programs that use global variables, local variables, pointers, struc-
tures, arrays, heap-allocated storage, pointer arithmetic, indirect jumps, recursive pro-
cedures, indirect calls through function pointers, virtual-function calls, and DLLs (but,
at present, not run-time code generation or self-modifying code).

Compiler optimizations often make VSA and ASI less difficult, because more of
the computation’s critical data resides in registers, rather than in memory; register op-
erations are more easily deciphered than memory operations.

The major assumption that we make about IDAPro is that it is able to disassemble
a program and build an adequate collection of preliminary IRs for it. Even though (i)
the CFG created by IDAPro may be incomplete due to indirect jumps, and (ii) the call-
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graph created by IDAPro may be incomplete due to indirect calls, incomplete IRs do
not trigger error reports. Both the CFG and the call-graph are fleshed out according to
information recovered during the course of VSA/ASI iteration. In fact, the relationship
between VSA/ASI iteration and the preliminary IRs created by IDAPro is similar to the
relationship between a points-to-analysis algorithm in a C compiler and the preliminary
IRs created by the C compiler’s front end. In both cases, the preliminary IRs are fleshed
out during the course of analysis.

4 Model-Checking Facilities

Model checking [12] involves the use of sophisticated pattern-matching techniques to
answer questions about the flow of execution in a program: a model of the program’s
possible behavior is created and checked for conformance with a model of expected be-
havior (as specified by a user query). In essence, model-checking algorithms explore the
program’s state-space and answer questions about whether a bad state can be reached
during an execution of the program.

For model checking, the CodeSurfer/x86 IRs are used to build a weighted pushdown
system (WPDS) [7,36,37,32] that models possible program behaviors. WPDSs gener-
alize a model-checking technology known as pushdown systems (PDSs) [6,22], which
have been used for software model checking in the Moped [39,38] and MOPS [10] sys-
tems. Compared to ordinary (unweighted) PDSs, WPDSs are capable of representing
more powerful kinds of abstractions of runtime states [37,32], and hence go beyond the
capabilities of PDSs. For instance, the use of WPDSs provides a way to address certain
kinds of security-related queries that cannot be answered by MOPS.

WPDS++ [31] is a library that implements the symbolic algorithms from [37,32] for
solving WPDS reachability problems. We follow the standard approach of using a PDS
to model the interprocedural CFG (one of CodeSurfer/x86’s IRs). The stack symbols
correspond to program locations; there is only a single PDS state; and PDS rules encode
control flow as follows:

Rule Control flow modeled

q〈u〉 ↪→ q〈v〉 Intraprocedural CFG edge u → v
q〈c〉 ↪→ q〈entryP r〉 Call to P from c that returns to r
q〈x〉 ↪→ q〈〉 Return from a procedure at exit node x

In a configuration of the PDS, the symbol at the top of the stack corresponds to the cur-
rent program location, and the rest of the stack holds return-site locations—this allows
the PDS to model the behavior of the program’s runtime execution stack.

An encoding of the interprocedural CFG as a PDS is sufficient for answering queries
about reachable control states (as the Path Inspector does; see below): the reachability
algorithms of WPDS++ can determine if an undesirable PDS configuration is reachable.
However, WPDS++ also supports weighted PDSs, which are PDSs in which each rule
is weighted with an element of a (user-defined) semiring. The use of weights allows
WPDS++ to perform interprocedural dataflow analysis by using the semiring’s extend
operator to compute weights for sequences of rule firings and using the semiring’s com-
bine operator to take the meet of weights generated by different paths [37,32]. (When
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the weights on rules are conservative abstract data transformers, an over-approximation
to the set of reachable concrete configurations is obtained, which means that counterex-
amples reported by WPDS++ may actually be infeasible.)

The advantage of answering reachability queries on WPDSs over conventional
dataflow-analysis methods is that the latter merge together the values for all states as-
sociated with the same program point, regardless of the states’ calling context. With
WPDSs, queries can be posed with respect to a regular language of stack configurations
[7,36,37,32]. (Conventional merged dataflow information can also be obtained [37].)

CodeSurfer/x86 can also be used in conjunction with GrammaTech’s Path Inspector
tool. The Path Inspector provides a user interface for automating safety queries that are
only concerned with the possible control configurations that an executable can reach.
The Path Inspector checks sequencing properties of events in a program, which can be
used to answer such questions as “Is it possible for the program to bypass the authen-
tication routine?” (which indicates that the program may contain a trapdoor), or “Can
this login program bypass the code that writes to the log file?” (which indicates that the
program may be a Trojan login program).

With the Path Inspector, such questions are posed as questions about the existence
of problematic event sequences; after checking the query, if a problematic path exists, it
is displayed in the Path Inspector tool. This lists all of the program points that may occur
along the problematic path. These items are linked to the source code; the analyst can
navigate from a point in the path to the corresponding source-code element. In addition,
the Path Inspector allows the analyst to step forward and backward through the path,
while simultaneously stepping through the source code. (The code-stepping operations
are similar to the single-stepping operations in a traditional debugger.)

The Path Inspector uses an automaton-based approach to model checking: the query
is specified as a finite automaton that captures forbidden sequences of program loca-
tions. This “query automaton” is combined with the program model (a WPDS) using
a cross-product construction, and the reachability algorithms of WPDS++ are used to
determine if an error configuration is reachable. If an error configuration is reachable,
then witnesses (see [37]) can be used to produce a program path that drives the query
automaton to an error state.

The Path Inspector includes a GUI for instantiating many common reachability
queries [19], and for displaying counterexample paths in the disassembly listing. In
the current implementation, transitions in the query automaton are triggered by pro-
gram points that the user specifies either manually, or using result sets from CodeSurfer
queries. Future versions of the Path Inspector will support more sophisticated queries in
which transitions are triggered by matching an AST pattern against a program location,
and query states can be instantiated based on pattern bindings.

5 Related Work

Previous work on analyzing memory accesses in executables has dealt with memory
accesses very conservatively: generally, if a register is assigned a value from memory,
it is assumed to take on any value. VSA does a much better job than previous work
because it tracks the integer-valued and address-valued quantities that the program’s
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data objects can hold; in particular, VSA tracks the values of data objects other than
just the hardware registers, and thus is not forced to give up all precision when a load
from memory is encountered.

The basic goal of the algorithm proposed by Debray et al. [18] is similar to that
of VSA: for them, it is to find an over-approximation of the set of values that each
register can hold at each program point; for us, it is to find an over-approximation of
the set of values that each (abstract) data object can hold at each program point, where
data objects include memory locations in addition to registers. In their analysis, a set of
addresses is approximated by a set of congruence values: they keep track of only the
low-order bits of addresses. However, unlike VSA, their algorithm does not make any
effort to track values that are not in registers. Consequently, they lose a great deal of
precision whenever there is a load from memory.

Cifuentes and Fraboulet [11] give an algorithm to identify an intraprocedural slice
of an executable by following the program’s use-def chains. However, their algorithm
also makes no attempt to track values that are not in registers, and hence cuts short the
slice when a load from memory is encountered.

The two pieces of work that are most closely related to VSA are the algorithm for
data-dependence analysis of assembly code of Amme et al. [2] and the algorithm for
pointer analysis on a low-level intermediate representation of Guo et al. [24]. The al-
gorithm of Amme et al. performs only an intraprocedural analysis, and it is not clear
whether the algorithm fully accounts for dependences between memory locations. The
algorithm of Guo et al. [24] is only partially flow-sensitive: it tracks registers in a flow-
sensitive manner, but treats memory locations in a flow-insensitive manner. The al-
gorithm uses partial transfer functions [42] to achieve context-sensitivity. The transfer
functions are parameterized by “unknown initial values” (UIVs); however, it is not clear
whether the the algorithm accounts for the possibility of called procedures corrupting
the memory locations that the UIVs represent.
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Abstract. Affine size-change analysis has been used for termination
analysis of eager functional programming languages. The same style of
analysis is also capable of compactly recording and calculating other
properties of programs, including their runtime, maximum stack depth,
and (relative) path time costs. In this paper we show how precise (not
just big-O) polynomial bounds on such costs may be calculated on pro-
grams, by a characterization as a problem in quantifier elimination. The
technique is decidable, and complete for a class of size-change terminat-
ing programs with limited-degree polynomial costs. An extension to the
technique allows the calculation of some classes of exponential-cost pro-
grams. We demonstrate the new technique by recording the calculation
in numbers-of-function (or procedure) calls for a simple functional defi-
nition language, but it can also be applied to imperative languages. The
technique is automated within the reduce computer algebra system.

1 Introduction

Polynomial runtime properties are considered essential in many applications.
The ability to calculate such properties statically and precisely will contribute
significantly to the analysis of complex systems. In real-time systems, the time-
cost of a function or procedure may be critical for the correct operation of a
system, and may need to be calculated for validation of the correct operation of
the system. For example, a device-driver may need to respond to some device
state change within a specified amount of time.

In other applications, the maximum stack usage may also be critical in (for
example) embedded systems. In these systems, the memory available to a process
may have severe limitations, and if these limits are exceeded the behaviour of
the embedded system may be unpredictable. An analysis which identifies the
maximum depth of nesting of function or procedure calls can solve this problem,
as the system developer can make just this amount of stack available.

A third motivation for calculating polynomial runtime properties is to cal-
culate more precise relative costs of the individual calls. For example in a flow
analysis of a program we may be interested in which calls are used most often,
with a view to restructuring a program for efficiency. In this scenario, the rela-
tive costs between the individual calls is of interest. In the gcc compiler, a static
branch predictor [3] uses heuristics to restructure the program code, optimizing
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the location of code for a branch more likely to occur. The approach described
here can calculate more precise relative costs to improve these heuristics.

In this paper we explore the automatic calculation of each of these costs
through static analysis of the source of programs which are known to be affine
size-change terminating [2,17], where the focus is on recording parameter size-
changes only. The overall approach has three steps:

1. Assume a (degree k) polynomial upper bound related to the runtime or space
cost. The polynomial variables are the parameter sizes.

2. Derive from the source a set of equations constrained by this upper bound.
3. Solve the equations to derive a symbolic representation of the precise cost.

If the equations reduce to a vacuous result, then the original assumption of the
degree of the polynomial must have been incorrect, and we repeat the process
with a degree k + 1 assumption. This technique is surprisingly useful, and it is
possible to derive precise runtime bounds on non-trivial programs.

We can also calculate the time or space costs for a subclass of exponential
costs, in particular those of the form φ1 ·Kφ2 + φ3 where φ1, φ2 and φ3 are each
a limited-degree polynomial in the parameter sizes, and K ∈ - is a constant.

In the approach presented here, we measure runtime in terms of the number
of calls to each procedure in a simple definition language. This is an appropriate
measure, as the language does not support iteration constructs, and recursive
application of procedures is the only way to construct iteration. Note that this
approach does not restrict the applicability of the technique. Any iteration con-
struct can be expressed as a recursion with some simple source transformation.

In Section 2, we position our work in relation to other research. In Section 3,
preliminary concepts and definitions are introduced. In Section 4, the framework
used for constructing the equations is introduced, along with practical techniques
that may be used to solve the equations. In Section 5, we show examples of
relative time costs for compiler optimization, and calculation of stack depth.
In Section 6, we use recurrence relations to indicate how to classify costs into
polynomial or exponential forms. In Section 7, exponential cost calculations are
explored, before concluding in Section 8.

2 Related Work

There has been some research into run-time analysis for functional programs.
For example, [21] explores a technique to evaluate a program’s execution costs
through the construction of recurrences which compute the time-complexity of
expressions in functional languages. It focuses on developing a calculus for costs,
and does not provide automated calculations. In [11], Grobauer explores the use
of recurrences to evaluate a DML program’s execution costs. Our focus is more
with decidability aspects and precise time-costs than either of these approaches.

An alternative approach is to limit the language in some way to ensure a cer-
tain run-time complexity. For example, in [12], Hofmann proposes a restricted
type system which ensures that all definable functions may be computed in poly-
nomial time. The system uses inductive datatypes and recursion operators. In
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our work, we generate time and stack costs of arbitrary functions or procedures,
through analysis of the derived size-change information.

The works [1,4,5] are clearly related to our work, although they focus on the
polytime (i.e. PTIME) functions. The functions with time costs expressible as a
polynomial are obviously included in the polytime functions, but our approach
cannot handle (for example) max, and so a function g(x, y) with a runtime of
max(x, y), although computable in polytime is not calculated with our method.
As well, a function h(x, y) with a runtime of 2x+y, is not computable in polytime,
but is calculated with our method. The class we consider is thus not the same
as Polytime.

Gómez and Liu [10] devise an automatic time-bound analysis for a higher-
order language by translating programs into time-bound functions which com-
pute time value, representing a bound to the actual time run by the program
with specific program inputs. Time is not represented symbolically, but func-
tionally. In a similar vein, a system to derive upper time-cost bounds of a first
order subset of LISP is described in [19]. This approach is given in an abstract
interpretation setting, and derives a program to compute the time bound func-
tion, in two phases, first deriving a step-counting version of the program, and
then expressing the time bound function as an abstract interpretation of the
step-counting program. As mentioned before we focus in this paper on precise
calculations of time costs, and derive a closed form (see Definition 2). By con-
trast, the time bound function must be executed to discover the time cost, and
itself may not terminate.

A compact summary of a general technique for the calculation of time and
space efficiency is found in the book [20] by Van Roy and Haridi, where re-
currence relations are used to model the costs of the language elements of the
programming language. There is unfortunately no general solution for an arbi-
trary set of recurrence relations, and in practice components of the costs are
ignored, capturing at each stage only the most costly recurrence, and leading to
big-O analysis.

Our paper improves the technique for a specific class of functions, calculating
more precise bounds than those derived from big-O analysis. By exploiting a-
priori knowledge that a particular function terminates, and that the (polynomial)
degree of the particular function is bounded, we can derive a formula which gives
precisely the time or space cost of the program.

3 Preliminaries

The language in Table 1 is in some sense an abstract language, omitting any
parts not relevant to the runtime. In addition, the expressions are given as if
they were all integer values, when in fact they refer to expressions based on the
size of the data types of the language. Size-change analysis operates over well-
founded data structures such as lists or trees, and so a list may be represented
here by a size integer representing the length of the list, and list concatenation
represented by addition of the size values. The ˜ operation is a catch-all for any



Calculating Polynomial Runtime Properties 233

Table 1. The language syntax

v ∈ Var 〈Variables 〉
f, g, h ∈ PName 〈Procedure names 〉
n ∈ Z 〈 Integer constants 〉
β ∈ Guard 〈Boolean expressions 〉

β ::= δ | ¬β | β1 ∨ β2 | β1 ∧ β2

δ ::= True | False | e1 = e2 | e1 �= e2 | e1 < e2 | e1 > e2 | e1 ≤ e2 | e1 ≥ e2

e ∈ AExp 〈Expressions 〉
e ::= n | v | n � e | e1 + e2 | −e

s ∈ Stat 〈Statements 〉
s ::= if β then s1 else s2 | s1;s2 | f(e1, . . . , en) | ~

d ∈ Decl 〈Definitions 〉
d ::= f (x1, . . . , xn) = s;

program operations that do not result in a function call. Finally, the language
only admits affine relations between the program variables and expressions.

3.1 Runtime Analysis

In the process of performing size-change termination analysis described in [18],
arbitrary sets of functions are processed, constructing a finite set of idempo-
tent SCGs (Size-Change Graphs). These SCGs characterize the function, and
detail all the ways in which a particular function entry point may be re-entered.
In the following description, the functions are all derived from an affine SCT
(Size-Change Termination) analysis [2,17], and hence are known to terminate.
A subclass of these functions in which argument size-changes are linear, termed
LA-SCT (Linear-affine SCT programs) define the class of programs analysed
here. Limiting our analysis to this class of functions is not a severe restriction,
as most useful size-change parameter changes would be linear.

We begin by formally defining the runtime of such functions. The term ȳ refers
to the vector (y1, . . . , yn). For the sake of notational brevity, we use a contextual
notation to represent an expression containing at most one function call. For an
expression containing a function call f(ȳ), the corresponding contextual notation
is C[f(ȳ)]. For an expression containing no call, the corresponding contextual
notation is C[].
Definition 1. Given an LA-SCT program p with program parameters x̄ and
body ep and input arguments n̄, the runtime of p, B(p)[n̄/x̄], is defined by the
runtime of ep inductively as follows:

B(s1; s2)[n̄/x̄]
def
= B(s1)[n̄/x̄] + B(s2)[n̄/x̄]

B(if g then s1 else s2)[n̄/x̄]
def
= if g[n̄/x̄] thenB(s1)[n̄/x̄] else B(s2)[n̄/x̄]

B(C[])[n̄/x̄]
def
= 0

B(C[f(m̄)])[n̄/x̄]
def
= B(ef )[m̄/ȳ] + 1 (where ef is the body of f(ȳ))

In practical terms, this indicates that we are counting function calls as a measure
of runtime. Such calls are the only difficult part of a runtime calculation, as other
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program constructs add constant time delays. To clarify this presentation, we
choose to limit the definition to the cost analysis of function calls only.

In the case of a function f(x̄) containing only a direct call h(ȳ), where ȳ =
x̄[ψ], [ψ] = [y1 �→ δ1(x1, x2, . . .), y2 �→ δ2(x1, x2, . . .), . . .] and δ1, δ2 represent
affine terms in the input parameters, we have:

B(f(x̄)) = B(h(x̄[ψ])) + 1

We are primarily interested in runtimes that can be expressed as a polynomial
in the parameter variables. We differentiate between an assumption Ak(p) of the
runtime of a program p, and the actual runtime Bk(p).

Definition 2. The degree-k polynomial runtime Bk(p) of an LA-SCT program p
with m parameters x = x1, . . . , xm is a multivariate degree-k polynomial expres-
sion: Bk(p)

def
= c1x

k
1 +c2x

k
2 + . . .+cmxk

m +cm+1x
k−1
1 x2 + . . .+cn, where c1 . . . cn ∈ Q,

and Bk(p) is the runtime of the program.

An example of such a runtime for a program p(x, y) is B2(p) = x + 1
2y2 + 3

2y.

Definition 3. An assumption Ak(p) of a polynomial runtime of an LA-SCT
program p with m parameters x = x1, . . . , xm is a multivariate polynomial ex-
pression: Ak(p)

def
= c1x

k
1 + c2x

k
2 + . . .+ cmxk

m + cm+1x
k−1
1 x2 + . . .+ cn, where c1 . . . cn

are unknown. Ak(p) contains all possible terms of degree at most k formed by
the product of parameters of p. Note that in this presentation, we search for an
assignment [θ] to the constants c1 . . . cn such that Bk(p) = Ak(p)[θ].

If a program p had two parameters x and y, then

A1(p) = c1x + c2y + c3

A2(p) = c1x
2 + c2y

2 + c3xy + c4x + c5y + c6

A3(p) = c1x
3 + c2y

3 + c3x
2y + c4xy2 + c5x

2 + c6y
2 + c7xy + c8x + c9y + c10

In this presentation, we capture runtime behaviour by deriving sets of equations
of the form Ak(p(x̄)) =

∑
(Ak(fi(x̄[ψi]))+1) for each of the sets of calls fi which

are calls isolated and identified by the same guard. The substitution ψi relates
the values of the input parameters to p to the values of the input parameters on
the call fi. Note that with this formulation, each substitution is linear, and thus
cannot change the degree of the equation.

4 Characterization as a Quantifier-Elimination Problem

The sets of assumptions and runtimes presented in the previous section are
universally quantified over the parameter variables, and this leads to the idea
of formulating this problem as a QE (quantifier-elimination) one. Consider the
following program p1 operating over the naturals with parameters x, y ∈ N:

p1( x, y ) = if (x = 0 ∧ y ≥ 1) then p1a( y, y − 1 )
else if (x ≥ 1) then p1b( x − 1, y )
else ~ ; // ... exit ...
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We can represent the runtime properties for each path through the program p1
with the three equations:

A2(p1)[x 	→ y, y 	→ y − 1]− A2(p1) + 1 = 0
A2(p1)[x 	→ x− 1]− A2(p1) + 1 = 0

A2(p1) = 0

which reduce to:
−c1x

2 + (c1 + c3)y
2 − c3xy − c4x + (c4 − c3 − 2c2)y + c2 − c5 + 1 = 0

c1 − 2c1x− c3y − c4 + 1 = 0
c1x

2 + c2y
2 + c3xy + c4x + c5y + c6 = 0

We wish to find suitable values for the (real-valued) coefficients c1 . . . c6. That
is, we want to eliminate the universally quantified elements of the equalities.

There are several advantages of this QE formulation of the problem. Firstly,
there is an automatic technique for solving sets of polynomial equalities and
inequalities of this form, developed by Alfred Tarski in the 1930’s, but first
fully described in 1951 [23]. Tarski gives an inefficient decision procedure for a
theory of elementary algebra of real numbers. Quantifier elimination is part of
this theory, and after eliminating the quantified variables x and y in the above
expressions, what remains are constraints over the values of the coefficients.

Secondly, precise analysis may be performed by including in the guards for
each of the paths. For example, we can express our QE problem as the single
formula1:

∀x, y :

(
x = 0

∧ y ≥ 1

)
⇒ A2(p1)[x 	→ y, y 	→ y − 1]−A2(p1) + 1 = 0

∧ (x ≥ 1) ⇒ A2(p1)[x 	→ x− 1]−A2(p1) + 1 = 0

∧
(

x = 0
∧ y = 0

)
⇒ A2(p1) = 0

In [15], the author clearly shows how quantifier elimination may be used to
generate program invariants using either a theory of Presburger arithmetic, a
theory involving parametric Gröbner bases, or Tarski’s theory of real closed
fields. This last theory is the most expressive, and a claim is made that the
approach is more widely applicable, and generates stronger invariants than the
Gröbner basis approach in [22]. Our construction is different, and in a different
field (runtime costs rather than program invariants).

4.1 Quantifier Elimination

In 1973, Tarski’s method was improved dramatically by the technique of Cylin-
drical Algebraic Decomposition (CAD) described in [7,6], and leading to a quan-
tifier free formula for a first order theory of real closed fields. In this theory,
atomic formulæ may be of the form φ1 = φ2 or φ1 > φ2, where φ1 and φ2 are
arbitrary polynomials with integer coefficients. They may be combined with the
boolean connectives ⇒, ∧, ∨ and ¬, and variables may be quantified (∀ and ∃).
1 This derivation is automatic, and explained in an expanded version of this paper.
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Definition 4. A Tarski formula T is any valid sentence in the first order theory
of real closed fields. Note that quantifier elimination is decidable in this theory.

Our approach is to construct a particular subset of Tarski formulæ, T [A(p)],
where A(p) is an assumption (defined before). This subset is of the form

T [A(p)] =

⎛
⎝ ∀x, y, . . . g1 ⇒ F1

∧ g2 ⇒ F2

∧ . . . . . . . . .

⎞
⎠

where g1, g2, . . . identify different paths from p(a) to enclosed function calls
fi(b)2. F1, F 2, . . . are formulæ derived from the program p source such that

∀x : gj ⇒ (Fj ⇔ (Ak(p(x̄)) =
∑

i

Ak(fi(x̄[ψi])) + 1))

Inference rules can be used to automatically generate these “Tarski” formulæ
from an arbitrary input program. For example, for the program p1:

A2(p1) =

⎛
⎝ (x = 0 ∧ y = 0) : 0
∧ (x = 0 ∧ y ≥ 1) : A2(p1)[x 	→ y, y 	→ y − 1] + 1
∧ (x ≥ 1) : A2(p1)[x 	→ x− 1] + 1

⎞
⎠

and the equation T [A2(p1)] derived is thus:

T [A2(p1)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀x, y :

(
x = 0

∧ y = 0

)
⇒ A2(p1) = 0

∧
(

x = 0
∧ y ≥ 1

)
⇒ A2(p1)[x 	→ y, y 	→ y − 1]− A2(p1) + 1 = 0

∧ (x ≥ 1) ⇒ A2(p1)[x 	→ x− 1]− A2(p1) + 1 = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and our task now is to reduce this to an expression without x and y, and then
find any example of c1 . . . c6 satisfying the resultant expression.

The following theorem asserts that the solution of the formula T [Ak(p)] cor-
rectly represents the runtime Bk(p) of any LA-SCT program p with a degree-k
polynomial runtime.

Theorem 1. If Bk(p) is the degree-k polynomial runtime of affine SCT pro-
gram p with parameters x̄, and Ak(p) is a degree-k polynomial assumption of the
runtime of LA-SCT program p, and [θ] is the assignment derived from T [Ak(p)],
then

∀n̄ : Ak(p)[θ][n̄/x̄] ≡ Bk(p)[n̄/x̄]

Proof. By structural induction over the form of the definition for Bk(p)[n̄/x̄].

2 Note that they must cover the parameter space of interest and be distinct.
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4.2 Tool Support

There are a range of tools capable of solving this sort of reduction. The tool QEP-
CAD [9], and the redlog package [8] in the computer algebra system reduce, may
be used to eliminate quantifiers giving completely automatic results. Consider
the redlog commands that specify the runtime for program p1:

1: A2p1 := c1*x^2+c2*y^2+c3*x*y+c4*x+c5*y+c6;
2: path1 := sub(x=y,y=y-1,A2p1)-A2p1+1;
3: path2 := sub(x=x-1,A2p1)-A2p1+1;

In line 1 of the above sequence, we define the A2p1 assumption of the runtime
bounds B2 of the program. In lines 2 and 3, A2(p1)[x �→ y, y �→ y−1]−A2(p1)+1
and A2(p1)[x �→ x − 1] − A2(p1) + 1 (The sub command in reduce performs a
series of substitutions in the expression A2p1). The following sequence shows the
redlog commands to solve the problem:

4: TA2p1 := rlqea ex({c1,c2,c3,c4,c5,c6},
rlqe all({x,y},

((x=0 and y=0) impl A2p1=0) and
((x=0 and y>=1) impl path1=0) and
((x>=1) impl path2=0)));

5: B2p1 := sub( part(part(TA2p1,1),2),A2p1);

In line 4 of the above sequence, the inner rlqe function performs quantifier
elimination on the equation T [A2(p1)], returning the following relations:

c4 = 1 ∧ 2c2 − c4 = 0 ∧ c2 − c5 = −1 ∧ c1, c3, c6 = 0

In this example, c1 . . . c6 are uniquely determined, and can be found easily with
a few simple reductions, but in the general case, the constraints over the con-
stants may lead to many solutions. The redlog package can also be used to
find an instance of a solution to an existentially quantified expression, and
hence the outer rlqea function above, which returns an instance of a solution to
the above relations existentially quantified over c1 . . . c6: ∃c1 . . . c6 : T [A2(p1)].
The solution returned by redlog is:

TA2p1 := {{true,{c1=0, c2=1/2, c3=0, c4=1, c5=3/2, c6=0}}}

Finally, in line 5, we substitute the solution instance back in the original as-
sumption A2(p1) = c1x2 + c2y2 + c3xy + c4x + c5y + c6, giving

B2(p1) = A2(p1)[c1 	→ 0, c2 	→ 1

2
, c3 	→ 0, c4 	→ 1, c5 	→ 3

2
, c6 	→ 0]

= x +
1

2
y2 +

3

2
y

We might consider a constraint programming based solution to these sort of
problems, and there are constraint solving systems, for example RISC-CLP(Real)

[13], which use (internally) CAD quantifier elimination to solve polynomial con-
straints. However here we prefer to restrict ourselves to just the underlying tech-
niques, and not clutter up the discussion with other properties of constraint
solving systems.
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5 Calculating Other Program Costs

So far we have limited the presentation to examples which calculate polynomial
runtimes for programs. However, the technique is also useful for deriving other
invariant properties of programs, such as stack depth and relative time costs.

5.1 Stack Depth Calculation

Consider program p2:

p2( x, y ) = if (x = 0 ∧ y ≥ 1) then
p2a( y, y − 1 );
p2b( 0, y − 1 )

else if (x ≥ 1) then p2c( x − 1, y )
else ~ ; // ... exit ...

Note that in this program, we have the sequential composition of two function
calls, and this program has an exponential runtime cost. The depth D of our
class of programs is calculated in precisely the same way as the runtime B, with
only a minor change. In the event of sequential composition, we record not the
sum of the two functions composed, but the maximum value of the two functions.
This corresponds with a Tarski formula for a polynomial solution like this:

⎛
⎝ ∀x, y : (x = 0 ∧ y ≥ 1 ∧D[ψ2a] ≥ D[ψ2b]) ⇒ (D[ψ2a]−D + 1 = 0)

∧ (x = 0 ∧ y ≥ 1 ∧D[ψ2a] < D[ψ2b]) ⇒ (D[ψ2b]−D + 1 = 0)
∧ (x ≥ 1) ⇒ (D[ψ2c]−D + 1 = 0)

⎞
⎠

Given the formula, redlog finds the stack depth cost: D(p2) = x + 1
2y2 + 3

2y.

5.2 Relative Runtime Costs

The third motivation for this approach was to derive relative costs for the dif-
ferent possible paths through a program. For example in program p1, which
function is called more often, and what are the relative costs for each call? This
could be used in compiler optimization, improving the efficiency of the code by
re-ordering and placing more commonly used functions nearby.

The same approach may be used, calculating B for each path. The equation
T [A(p1a)] for the program choosing the first function call may be written as:

T [A(p1a)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀x, y :

(
x = 0

∧ y = 0

)
⇒ A2(p1) = 0

∧
(

x = 0
∧ y ≥ 1

)
⇒ A2(p1)[x 	→ y, y 	→ y − 1]−A2(p1) + 1 = 0

∧ (x ≥ 1) ⇒ A2(p1)[x 	→ x− 1]− A2(p1) = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒ B2(p1a) = y



Calculating Polynomial Runtime Properties 239

The equation T [A(p1b)] for the program choosing the second function call may
be written as:

T [A(p1b)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀x, y :

(
x = 0

∧ y = 0

)
⇒ A2(p1) = 0

∧
(

x = 0
∧ y ≥ 1

)
⇒ A2(p1)[x 	→ y, y 	→ y − 1]− A2(p1) = 0

∧ (x ≥ 1) ⇒ A2(p1)[x 	→ x− 1]− A2(p1) + 1 = 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒ B2(p1b) = x +
1

2
(y2 + y)

The sum of B2(p1a) and B2(p1b) is exactly B2(p1) for the whole program.

6 Towards a Classification of Program Costs

The presentation so far has concentrated on LA-SCT programs with costs that
may be expressed as polynomials over the program variables. However many such
programs have costs that are exponential rather than polynomial. For example,
the following program:

p3( x, y, n ) = if (x �= 0 ∧ n ≥ 1) then p3a( x − 1, y, n )
else if (x = 0 ∧ n > 1) then p3b( 2y + n, 2y, n − 1 )
else ~ ; // ... exit ...

This program has a runtime of B(p3) = y2n + 1
2n2 + 3

2n + x − 2y − 2, not
immediately apparent by observation. The technique such as just described relies
on repeatedly trying ever higher degree polynomial time costs, and would never
discover this runtime. For example, if we started assuming the program was
polynomial, the algorithm indicates that we should try a degree-2 assumption,
followed by a degree-3 assumption and so on. There is no indication as to when
we should give up.

We have an approach to solving programs of this form, but it requires us to
find some way of classifying program costs into either polynomial or exponential.
In this section we present a characterization of the problem as a recurrence, ex-
plaining the choice of the particular class of exponential cost programs that can
be solved. Towards this, we consider a flattened version of the original program
source, in which an arbitrary collection of functions is flattened into a single
function which calls itself. This new flattened source can be easily character-
ized as a recurrence relation, and the solutions to the recurrence relations give
indications of the maximum polynomial degree.

A flattened version of an arbitrary program is easily derived in the absence
of mutual recursion. However, in the case of mutually recursive functions, it is
not as clear how a program may be transformed. The papers [24,16] contain
necessary and sufficient conditions to transform all mutual recursion to direct
or self-recursion. Supposing that our programs are transformed into equivalent
programs which are using only self-recursion, we can define a self-recursive nor-
mal form over a representation of the state of the program variables at any
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time. Consider an m-dimensional array a, indexed by the values of parameters
n1 . . . nm to the self-recursive program p(n1 . . . nm):

Definition 5. The array an1,...,nm is in linear self-recursive normal form iff it
is defined as:

an1,...,nm = af1(n1,...,nm),...,fm(n1,...,nm) + g(n1, ..., nm) (1)

where fi(n1, ..., nm) = ki,1·n1+. . .+ki,m·nm+ki,m+1, ∀ki,j ∈ -, ∀i ∈ {1, . . . , m},
∀j ∈ {1, . . . , m + 1}, and g(n1, ..., nm) = k1 · n1 + . . . + km · nm + km+1.

The above recurrence (1) is supposed to iterate for an arbitrary finite number
of times, say �. We shall explore the expression obtained from (1) after applying
the substitution ni → fi(n1, . . . , nm), ∀i ∈ {1, . . . , m} for � times.

Theorem 2. All linear self-recursive normal forms have a solution.

Proof. (By construction). Denoting by n the vector (n1, . . . , nm), the first iter-
ation of (1) leads to:

af1(n),...,fm(n) = af1(f1(n),...,fm(n)),...,fm(f1(n),...,fm(n))) + g(f1(n), ..., fm(n)) (2)

In order to write this more compactly, let us inductively define the notations
〈

f
(1)
1,m(n)

〉
def= (f1(n), ..., fm(n))〈

f
(�)
1,m(n)

〉
def=
(

f1

(〈
f
(�−1)
1,m (n)

〉)
, . . . , fm

(〈
f
(�−1)
1,m (n)

〉))
for � ≥ 2

where
〈
f

(1)
1,m(n)

〉
is a compressed form of 〈f1,m ◦ ... ◦ f1,m(n)〉, and “◦” stands

for the function composition. The recurrence (2) can then be re-written as:

a〈
f
(1)
1,m

(n)
〉 = a〈

f
(2)
1,m

(n)
〉 + g

(〈
f
(1)
1,m(n)

〉)
(2a)

The given substitution can be further applied �− 1 times, to obtain:

a〈
f
(�−1)
1,m

(n)
〉 = a〈

f
(�)
1,m

(n)
〉 + g

(〈
f
(�−1)
1,m (n)

〉)
(�)

equation By combining the recurrences (1) . . . (�), we obtain an expression for an:

an = a〈
f
(�)
1,m

(n)
〉 + g

(〈
f
(1)
1,m(n)

〉)
+ . . . + g

(〈
f
(�−1)
1,m (n)

〉)
(I)

By replacing fi(n1, ..., nm) with ki,1 ·n1+. . .+ki,m ·nm+ki,m+1, ∀i ∈ {1, . . . , m},
we get the general form:

〈
f

(l)
1,m(n)

〉
= (E1,�, . . . , Em,�), where Ei,l is:

m∑
il=1

...
m∑

i1=1

ki,i1 · . . . ·kil−1,il
·nil

+
m∑

il−1=1

...
m∑

i1=1

ki,i1 · . . . ·kil−1,m+1 + . . .+
m∑

i1=1

ki,i1 · . . . ·ki1,m+1

This is a solution for all recurrences of the self-recursive normal form defined
before, confirming the completeness for this class of recursive programs. 	
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For ease of presentation, and in order to see the complexity of an from (I), let
us highlight only the last (dominant) term. It is:

g
(〈

f
(�−1)
1,m (n)

〉)
= k1 · E1,l−1 + . . . + km · Em,l−1 + km+1

Looking at the general form of the dominant term, namely

ki ·
m∑

il−1=1

...
m∑

i1=1

ki,i1 · . . . · ki�−1,m+1 + . . . +
m∑

i1=1

ki,i1 · . . . · ki1,m+1

we observe that very few cases correspond to a polynomial as an expression for
an. Because of the large number of coefficients in the expression of an, it is almost
impossible to provide a precise boundary between the cases when an is a poly-
nomial and when it is an exponential. However, the formula does immediately
give the following classifications:

1. if ki = 0 for all i ∈ {1, . . . , m}, then an = � · km+1 is a polynomial in � of
degree 1;

2. if m = 1 and k1,1 = 1 then an is a polynomial of degree 2;
3. if m = 1 and k1,1 �= 1 then an is an exponential of base k1,1.
4. if ∃i ∈ {1, . . . , m} such that ki �= 0 and ∃u, v ∈ {1, . . . , m} such that ku,v /∈
{0, 1} then an contains at least one exponential of base ku,v.

The fourth classification above covers a considerable number of situations when
an is an exponential. A useful slight generalization of recurrence (1) can be
done by taking g as a non-linear polynomial. It is easy to see that if m = 1, and
k1,1 = 1, then for a polynomial g of degree k, the solution of an is a polynomial of
degree k+1. We have enlarged the class of self-recursive normal form equations.

The automation of the classification process is possible through procedure
inlining described in [24,16], and the use of algebraic simplification tools. After
inlining, we check if the form of the recursive function maps onto the linear
self-recursive normal form.

6.1 A Case-Study

Let us take a useful example which corresponds to particular values for m, fol-
lowed by a practical application of its use in computing the runtime of a given
program. When trying to compute the runtime cost of p3, we get the following
identities, formed by a guard and a recurrence relation:

x �= 0 ∧ n ≥ 1 implies B(x, y, n) = B(x− 1, y, n) + 1

x = 0 ∧ n > 1 implies B(x, y, n) = B(2y + n, 2y, n− 1) + 1

By inspection of the first identity, and by iterating x → x − 1 for x times,
we get B(x, y, n) = B(0, y, n) + x. By applying the second identity, we have
B(0, y, n) = B(2y + n, 2y, n− 1) + 1 = B(0, 2y, n− 1) + 2y + n + 1. We rewrite
this latter identity, omitting the first argument (without loss of generality), to
the equivalent recurrence relation:

ay,n = a2y,n−1 + 2y + n + 1
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This is a particular instance of recurrence (1), where m is replaced by y, and
f(n, m) = 2m, g(n, m) = 2m + n + 1. Since k1 = 2, the solution of ay,n is an
exponential (case 2(b)). This implies that our automated tool should be fed with
an input having a generic form like B(p3) = φ1 ·Kφ2 +φ3, allowing for a runtime
with quite a complex exponential form.

7 Exponential Cost Calculations

Having established a classification of program costs, we now revert to the original
approach, where we assume an exponential runtime A for the program, initially
for a base of K, and using polynomials of (say) degree 2. The assumed runtime
is A(p3) = φ1 · Kφ2 + φ3, where φ1, φ2 and φ3 are three polynomials of degree
2. The three polynomials bear a peculiar relationship to each other due to the
linearity of the parameter relationships. For example, for any single recursive
call path, since the changes in the parameters are linear, then the runtime for
this call path cannot be exponential. As a result of this, for any single recursive
call path, φ3[ψ]− φ3 + 1 = 0, and the following relation holds:

(φ1[ψ] = φ1 ∧ φ2[ψ] = φ2)
∨ (φ1[ψ] = Kφ1 ∧ φ2[ψ] = φ2 − 1)
∨ (Kφ1[ψ] = φ1 ∧ φ2[ψ] = φ2 + 1)

This relationship between the polynomials may be exploited by constructing
the equations in a similar form to the previous presentation, solving them, and
finally deriving a sample solution. The redlog package is used to define

φ1 = c1x
2 + c2y

2 + c3n
2 + c4xy + c5xn + c6yn + c7x + c8y + c9n + c10

φ2 = c11x
2 + c12y

2 + c13n
2 + c14xy + c15xn + c16yn + c17x + c18y + c19n

φ3 = c21x
2 + c22y

2 + c23n
2 + c24xy + c25xn + c26yn + c27x + c28y + c29n + c30

A = φ1 ·Kφ2 + φ3

The substitutions [ψ3a] = [x �→ x−1] and [ψ3b] = [x �→ 2y+n, y �→ 2y, n �→ n−1]
for the two paths are applied to φ1, φ2 and φ3, yielding the primed polynomials,
and the equation T [A(p3)] for program p3 may be written as:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀x, y, n :

(
x, y > 0

∧ n ≥ 0

)
⇒

⎛
⎜⎜⎜⎜⎝

φ3[ψ3a]− φ3 + 1 = 0
∧⎛

⎝ (φ1[ψ3a] = φ1 ∧ φ2[ψ3a] = φ2)
∨ (φ1[ψ3a] = Kφ1 ∧ φ2[ψ3a] = φ2 − 1)
∨ (Kφ1[ψ3a] = φ1 ∧ φ2[ψ3a] = φ2 + 1)

⎞
⎠

⎞
⎟⎟⎟⎟⎠

∧
⎛
⎝ x = 0
∧ y > 0
∧ n ≥ 0

⎞
⎠ ⇒

⎛
⎜⎜⎜⎜⎝

(φ3[ψ3b]− φ3 + 1 = 0)
∧⎛

⎝ (φ1[ψ3b] = φ1 ∧ φ2[ψ3b] = φ2)
∨ (φ1[ψ3b] = Kφ1 ∧ φ2[ψ3b] = φ2 − 1)
∨ (Kφ1[ψ3b] = φ1 ∧ φ2[ψ3b] = φ2 + 1)

⎞
⎠

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T [A(p3)] is easily reduced by redlog, giving a family of solutions for the bounds:

A(p3) = αy2n +
1

2
n2 +

3

2
n + x− 2y + c30
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where α indicates that any value here might be a solution, and c30 is unknown.
To constrain the solution further, we add in boundary cases for the system, for
example A(p3(0, 1, 1)) = 0, A(p3(0, 2, 1)) = 0, giving:

B(p3) = y2n +
1

2
n2 +

3

2
n + x− 2y − 2

7.1 Another Example

Despite the simplicity of program p2 introduced in subsection 5.1, a translation to
a single-term recurrence is not obvious. The function would have to be flattened,
generating extra guards and program parameters. However, the QE formulation
is still automatic and simple, deriving the equation for the runtime cost T [A(p2)]:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀x, y : (x = 0 ∧ y ≥ 1) ⇒ (φ2[ψ2a] + φ3[ψ2b]− φ3 + 2 = 0)

∧ (x ≥ 10 ∧ y ≥ 0) ⇒

⎛
⎜⎜⎜⎜⎝

(φ3[ψ2c]− φ3 + 1 = 0)
∧⎛

⎝ (φ1[ψ2c] = φ1 ∧ φ2[ψ2c] = φ2)
∨ (φ1[ψ2c] = Kφ1 ∧ φ2[ψ2c] = φ2 − 1)
∨ (Kφ1[ψ2c] = φ1 ∧ φ2[ψ2c] = φ2 + 1)

⎞
⎠

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Given two independent base cases, redlog immediately finds the runtime cost:

B(p2) = 4 ∗ 2y + x− y − 4

We have found it relatively easy to automatically derive exponential runtimes
for programs like these, with polynomials of small degree.

8 Conclusion

In this paper, we have shown a technique for calculating precise bounds on the
runtime of a class of programs, which are known to terminate. The technique
begins with an assumption of the form and degree of the runtime, and is complete
in the sense that if the program p is LA-SCT, and if the runtime is of the form
Bk(p), then a solution will be found. The technique has application in the areas
of precise runtime analysis, stack depth analysis, and in calculations of relative
execution path time.

For practical use, the scalability of any approach such as this is an issue. The
approach can be readily made more efficient by partitioning a program into the
disjoint sets of functions, and then solving the sets independently. A known cost
of a function may be substituted in other enclosing function calculations without
having to reconstruct the graphs or equations. In this way there is a degree of
compositionality that assists in addressing the scalability concern.

The class of functions that may be calculated by the method has not yet been
completely identified. We can solve the functions with costs that are a precise
polynomial, and those with a precise exponential cost of a particular form, and
costs involving min. Work is continuing to try to clarify and categorize the class
of functions that may be calculated by the method.
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We have shown that the technique is safe and complete for the particular class
of programs we have considered. In addition, we have presented an approach
to classifying the costs into either polynomial or exponential time costs using
a recurrence-relation complexity analysis. This outlined a particular form of
exponential time-costs that can be relatively easily solved. In the case of the
limited class of exponential time-costs, these solutions may still be expressed
in terms of some unknowns, but these unknowns are resolved immediately by
considering independent boundary cases for the function.
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A More Examples

The following extra examples illustrate a range of programs operating over nat-
urals, with their automatically generated runtime costs.

Program 4:

p4( x, y ) = if (y ≤ 0) then g( x, 0 )
else p4a( x + 1, y − 1 );

g( x, y ) = if (x ≤ 0) then ~ // ... exit ...
else g( x − 1, y + 1 );

The solution returned by redlog is that B2(p4) = x + 1
2y2 + 3

2y + 1.

Program 5:

p5( x, y ) = f( x, y, y + 1 );
f( x, y, z ) = if (y = z ∧ x > y − z) then fa( x − 1, y, z )

else if (x = y − z ∧ y �= 0) then fb(−x, y − 1, z )
else if (x < y ∧ y �= 0) then fc( x + 1, y, z )
else if (y < z ∧ x = y) then fd( x, y, y )
else ~ ; // ... exit ...

The solution returned by redlog is that B2(p5) = y2 + 3y − x + 1.
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Program 6:

p6( x, y, z ) = if (x �= 0 ∧ z ≥ 1) then p6a( x − 1, y + 1, z )
else if (x = 0 ∧ z ≥ 1) then p6b( 2y, 2y, z − 1 )
else ~ // ... exit ...

The solution returned by redlog is that B2(p6) = 1
6 ((x + y)4z + 6z + 2x− 4y− 6).

Program 7:

With a refinement of our approach not explored in this paper, we can also
derive minimum values for costs, not just polynomial or restricted exponential
costs. For example:

p7( x, y ) = if (x ≥ 1 ∧ y ≥ 1) then p7a( x − 1, y − 1 )
else ~ // ... exit ...

The solution returned by redlog is that B2(p7) = min(x, y).
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Abstract. We define a method to statically bound the size of values
computed during the execution of a program as a function of the size
of its parameters. More precisely, we consider bytecode programs that
should be executed on a simple stack machine with support for alge-
braic data types, pattern-matching and tail-recursion. Our size verifi-
cation method is expressed as a static analysis, performed at the level
of the bytecode, that relies on machine-checkable certificates. We follow
here the usual assumption that code and certificates may be forged and
should be checked before execution.

Our approach extends a system of static analyses based on the notion
of quasi-interpretations that has already been used to enforce resource
bounds on first-order functional programs. This paper makes two ad-
ditional contributions. First, we are able to check optimized programs,
containing instructions for unconditional jumps and tail-recursive calls,
and remove restrictions on the structure of the bytecode that was im-
posed in previous works. Second, we propose a direct algorithm that
depends only on solving a set of arithmetical constraints.

1 Introduction

Bytecode programs are a form of intermediate code commonly used by language
implementors when programs should be distributed and run on multiple plat-
forms. Because of its advantages on performance and portability, many program-
ming languages are actually compiled into bytecode. Java and Microsoft C# are
representative examples, but bytecode compilers can also be found for less con-
ventional languages, such as O’Caml, Perl or PHP. On the downside, bytecode
typically stands at an abstraction level in between (high-level) source code and
machine code: it is usually more compact and closer to the computer architec-
ture than program code that is intended for “human consumption”. Therefore,
it is necessary to devise specific verification methods to guarantee properties at
the bytecode level. For instance, to ensure the safety of executing newly loaded
code, virtual machines generally rely on machine-checkable certificates that the
program will comply with user-specific requirements. The interest of verifica-
tion of such properties at the bytecode level is now well understood, see for
example [14,17].
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As networked and mobile applications become more and more pervasive, and
with the lack of third parties in control of trust management (like e.g. frameworks
based on code signing), security appears as a major issue. Initial proposals for
securing bytecode applications have focused on the integrity of the execution
environment, such as the absence of memory faults and access violations. In
this paper, we consider another important property, namely certifying bounds
on the resources needed for the execution of the code. This problem naturally
occurs when dealing with mobile code, for example to prevent denial of service
attacks, in which the virtual machine is starved of memory by the execution
of a malicious program. More precisely, we define a method to statically bound
the size of values computed during the execution of a program. The size-bound
obtained by this method is expressed as a function of the size of the parameters
of the program (actually as a polynomial expression) and has several uses. For
instance, together with an analysis that bounds the maximal number of stacks
in the evaluation of a program, it gives an overall bound on the memory space
needed by the virtual machine. This size-bound can also be used with automatic
memory management techniques, e.g. to bound the physical size of regions in
region-based systems [18].

We consider bytecode programs that should be executed on a simple stack
machine with support for algebraic data types, pattern-matching and tail-recur-
sion. The bytecode language can be the target of the compilation of a simply-
typed, first-order functional language. We hint at this functional source language
in several places but, since all our results are stated on the bytecode, we do not
need to define it formally here (see [1] for a definition). Our size verification
algorithm is expressed as a static analysis relying on certificates that can be
verified at load time. We follow here the usual assumption that code and cer-
tificates may be forged by a malicious party. In particular, they do not have to
result from the compilation of legit programs. Standard bytecode verification al-
gorithms build for each instruction an abstract representation of the stack. This
information typically consists of the types of the values on the stack when the
instruction is executed. In a nutshell, the size verification algorithm builds for
each instruction an abstract bound on the size of the values in the stack. In our
case the bound is a polynomial expression. It also builds proof obligations that
the bounds decrease throughout program execution.

Our method generalizes (and lift some of the restrictions) an approach de-
signed for first-order functional languages [1] that relies on a combination of stan-
dard techniques for term rewriting systems with a static analysis based on the
notion of quasi-interpretation. Similar analyses were also used to deal with sys-
tems of concurrent, interactive threads communicating via a shared memory [2].
This paper makes two additional contributions. First, we are able to check pro-
grams containing instructions for unconditional jumps and tail-recursive calls,
and remove restrictions on the structure of the bytecode that was imposed in
these two initial works. These two instructions are essential in the optimization
of codes obtained from the compilation of functional programs. They are also
required if we need to compile procedural languages. Second, we propose a di-
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rect algorithm that depends only on solving a set of arithmetical constraints.
Indeed, the size verifications defined in [1,2] are based on a preliminary shape
analysis which builds, for each bytecode instruction, a sequence of first-order ex-
pressions representing the shape of the values in the stack (e.g. it may give the
top-most constructors). While the shape verification is well-suited to the analy-
sis of “functional code”, it does not scale to programs containing tail recursive
calls.

Another result of this work is educational: we present a minimal but still
relevant scenario in which problems connected to bytecode verification can be
effectively studied. For instance, our virtual machine is based on a set of 8
instructions, a number that has to be compared with the almost 200 opcodes
used in the Java Virtual Machine (JVM). We believe that the simplicity of
the virtual machine and the bytecode verifiers defined in this paper make them
suitable for teaching purposes. (Actually, we have already used them for projects
in compiler design classes.)

The paper is organized as follows. Section 2 defines a simple virtual machine
and a bytecode language built from a minimal set of instructions. In Section 3,
we introduce the notion of quasi-interpretations and define our size verification
method. This verification assumes that constructors and function symbols in the
bytecode are annotated with suitable functions to bound the size of the values on
the stack. Before concluding, we study the complexity of checking the constraints
generated during the size analysis. In particular, we show that their satisfiability
can be reduced to checking the sign of a polynomial expression.

2 Virtual Machine

We define a simple set of bytecode instructions and a related stack machine. A
program is composed of a list of mutually recursive type definitions followed by
a list of function definitions. In our setting, a function is a sequence of bytecode
instructions. Unlike traditional virtual machines that operate on literal values,
such as bytes or floating point numbers, we consider values taken from an arbi-
trary set of inductive types.

A value v is a term built from a finite set of constructors, ranged over by
c, d, . . . The size of v, denoted |v|, is 0 if v is a constant (a constructor of arity
0) and 1 + Σi∈1..n|vi| if v is of the form c(v1, . . . , vn).

We consider a fixed set of type identifiers t, t′, . . . where each identifier is
associated to a unique type definition of the form t = . . . cof t1 ∗ · · ·∗ tn . . .
For instance, we can define the type nat of natural numbers in unary format
and the type bw of binary words:

nat = z s of nat , bw = E O of bw I of bw .

For instance, the values s(s(z)) of type nat and O( I(O(E))) of type bw stand for
the number 2. We will often use the type nat in our examples since functions
manipulating natural numbers can be interpreted as an abstraction of functions
manipulating finite lists (e.g. addition is related to list catenation).
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For the sake of simplicity, we suppose that the code and type of functions is
fixed and known in advance. Hence we consider a fixed set of constructor and
function names. We suppose that every constructor is declared with its functional
type (t1, . . . , tn)→ t and we denote ar (c) the arity of the constructor c. Similar
types can be either assigned or inferred for functions. We adopt the notation
ε for the empty sequence and � · �′ for the catenation of two sequences. The
expression |�| denotes the length of � and �[i] denotes the ith element in �. When
the length is given by the context, we will sometimes use the vectorial notation
#v to represent the sequence (v1, . . . , vn). In the following, we equate a function
identifier f with the sequence of instructions of its body code and thus write f [i]
for the ith instruction in f .

The virtual machine is built around three components: (1) a configuration M
that is a stack of call frames; (2) an association list between function identifier
and code; (3) a bytecode interpreter, modeled as a reduction relation M →M ′.
The state of the interpreter, the configuration M , is a sequence of frames and
we write M → M ′ if M reduces to M ′ using one of the transformation rules
described by the table below.

The most important operation of the virtual machine corresponds to function
calls. The execution of a function call is represented by a frame, that is a triple
(f, pc, �)ρ made of a function identifier f , the value of the program counter pc
(a natural number in 1..|f |) and an evaluation stack �. A stack is a sequence of
values that is used to store both the parameters of the call as well as the “local
values” computed during the life span of the frame. Hence the stack partially
plays the role devoted to registers in traditional architectures. The annotation ρ
is used to keep trace of the call that initiated the frame and has no operational
meaning (it is only used to validate our size verification method). We refine the
system of annotations in Section 2.1.

We give an informal description of the bytecode language. Let � be the stack
of the current frame, i.e. the frame on the top of the current configuration. The
instruction load i takes a copy of the ith value of � and puts it on the top of
the stack (i.e. it is equivalent to a register load). New values may be created
using the instruction build c n, where c is a constructor of arity n. When
executed, the n values v1, . . . , vn on top of � are replaced by c(v1, . . . , vn). The
instruction branch c j implements a conditional jump on the shape of the value
v found on top of �. If v is of the form c(v1, . . . , vn) then the top of the stack is
replaced by the n values v1, . . . , vn (rule BranchThen). Otherwise, the stack is
left unchanged and the execution jumps to position j in the code, with j ∈ 1..|f |
(rule BranchElse).

Function calls are implemented by the instruction call f n, where n is the
arity of f . Upon execution, a fresh call frame is created, which is initialized with a
copy of the n values on top of the caller’s stack. The lifetime of the current frame
is controlled by two instructions: return discards the current frame and returns
the value on top of the caller’s stack; stop finishes the execution and returns an
error code. Finally, the instruction jump j n is an unconditional jump, similar
to a goto statement, whereas tcall g n is similar to a call instruction, except
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Bytecode Interpreter: M →M ′

(Load)

f [pc] = load i pc < |f | [i] = v

M · (f, pc, )ρ → M · (f, pc + 1,  · v)ρ

(Build)
f [pc] = build c n pc < |f | ar(c) = n
 = ′ · (v1, . . . , vn) vo = c(v1, . . . , vn)

M · (f, pc, )ρ → M · (f, pc + 1, ′ · vo)ρ

(BranchThen)
f [pc] = branch c j pc < |f |

 = ′ · c(v1, . . . , vn)

M · (f, pc, )ρ → M · (f, pc + 1, ′ · (v1, . . . , vn))ρ

(BranchElse)
f [pc] = branch c j 1 � j � |f |

 = ′ · d(. . . ) c �= d
M · (f, pc, )ρ → M · (f, j, )ρ

(Call)
f [pc] = call g n pc < |f | ar(g) = n

 = ′ · ′′ ′′ = (v1, . . . , vn) ρ′ = g(v1, . . . , vn)

M · (f, pc, )ρ → M · (f, pc, ′)ρ · (g, 1, ′′)ρ′

(Jump)
f [pc] = jump j n 1 � j � |f |
 = ′ · ′′ ′′ = (v1, . . . , vn)

M · (f, pc, )ρ → M · (f, j, ′′)ρ

(TCall)
f [pc] = tcall g n pc < |f | ar(g) = n

 = ′ · ′′ ′′ = (v1, . . . , vn)

M · (f, pc, )ρ → M · (g, 1, ′′)ρ

(Stop)

f [pc] = stop

M · (f, pc, )ρ → error

(Return)
f [pc] = return  = ′′ · vo

M · (g,pc′, ′)ρ′ · (f, pc, )ρ → M · (g,pc′ + 1, ′ · vo)ρ′

that the current frame is used to evaluate the call to g. These two instructions
are used to share common code between functions and to efficiently compile tail
recursion (when call instructions are immediately followed by a return). This is
essential because many programming idioms depend heavily on recursion. For
example, the Scheme language reference explicitly requires tail recursion to be
recognized and automatically optimized by a compiler.

The reduction relation M → M ′ is deterministic and uses a special state of
the memory, error , that denotes the empty configuration ε. The empty state
cannot be reached during an execution that does not raise an error (executes
a stop instruction). A “correct” execution starts with a single frame Mι =
(f, 1, �)f(�), where � = (v1, . . . , vn), and ends with a configuration of the form
Mo = (f, pc, �′ · v0)f(�), where 1 � pc � |f | and f [pc] = return. We name the
configuration Mι a call to f(v1, . . . , vn) and Mo the result of evaluating Mι and
we write Mo ↘ v0. The others cases of blocked configurations are runtime errors.

2.1 Control Flow Graphs and Well-Formedness

Before giving examples of bytecode programs, we define the notions of control
flow graph (CFG) and checkpoints of a function f . The CFG of f is the smallest
directed graph ({1, . . . , |f |}, E) such that for all node i ∈ 1..|f | the edge (i, i+1)
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is in E if f [i] is a load, build, call or branch instruction and (i, j) is in E if
f [i] is branch c j or jump j n. Nodes that are the target of a jump or branch
instruction can have several immediate predecessors. We call such nodes the
checkpoints of f . The first instruction of a function is also a checkpoint.

We associate to every node i of f the node PC i ∈ 1..|f | that is the only
checkpoint dominating the node i in the CFG of f : it is the first checkpoint
encountered from i when moving backward in the CFG. We say that PC i is
the checkpoint of i and we have PC i = i iff i is a checkpoint. By construction,
every node of a CFG is associated to a unique checkpoint and there is a unique
path between PC i and i without cycles. We also define the predicate Control f (i)
which is true iff i is a checkpoint of f .

We refine the semantics of the virtual machine to take into account check-
points in frame annotation. We store in the annotations the state of the execution
stack when we pass a new checkpoint (together with the state of the stack when
the frame is initialized). This improvement is needed for our size analysis but
the dynamic semantics of the machine does not need any change. The only dif-
ference is in the frame annotation ρ that is now of the form (g(�o), i, �c) where
g(�o) is the “call” used to initialize the frame, i is the last checkpoint encountered
and �c is the state of the execution stack when we passed i. For each transition
M · (f, pc, �)ρ →M ′ · (f ′, pc′, �′)ρ′ of the new relation, we have ρ′ = (. . . , pc′, �′)
if pc ′ is a checkpoint of the function f ′ and ρ′ = ρ otherwise. Note that the
evaluation of a call or tcall instruction (the only case in which f �= f ′) always
leads to a configuration where the program counter of the last frame is equal to
1, i.e. is a checkpoint.

Annotated Semantics

(Regular)
M · (f, pc, )g(�o) → M · (f, pc′, ′)g(�o)

Control f (pc′) is false ρ = (g(o), i, c)

M · (f, pc, )ρ → M · (f, pc′, ′)ρ

(Checkpoint)
M · (f, pc, )g(�o) → M ′ · (f ′, pc′, ′)h(�1)

Control f (pc′) is true ρ = (g(o), i, c)

M · (f, pc, )ρ → M ′ · (f ′, pc′, ′)(h(�1),pc′,�′)

Examples. Our first example is the function dble : nat → nat , that doubles
its parameter. A possible specification of this function using a functional syntax
could be dble(z) = z and dble(s(x)) = s(s(dble(x))) (actually, the code given
below is the result of compiling this functional program as in [1]). In the follow-
ing, we display the index of each instruction next to its code and underline the
indices of checkpoints.

dble = 1 : load 1 5 : branch s 10 9 : return
2 : branch z 5 6 : call dble 1 10 : stop
3 : build z 0 7 : build s 1
4 : return 8 : build s 1

The evaluation of the call to dble(s(v)) gives the following reductions, where w
stands for the result of the call to dble(v) (we do not write annotations).

(dble, 1, (s(v))) → (dble , 2, (s(v), s(v))) → (dble , 5, (s(v), s(v))) → (dble , 6, (s(v), v))
→ (dble, 6, (s(v))) · (dble, 1, (v)) → · · · → (dble , 6, (s(v))) · (dble , 9, (w))
→ (dble, 7, (s(v), w)) → (dble, 8, (s(v), s(w))) → (dble , 9, (s(v), s(s(w)))) ↘ s(s(w))
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From this simple example we can already see that first-order functional pro-
grams admit a direct compilation into our bytecode: every function is compiled
into a segment of instructions where pattern matching is represented by a nesting
of branch instructions. In particular the CFG of a compiled program is a tree.
Because our virtual machine does not allow to store code closures, we cannot
directly support subroutines or higher-order functions. We plan to study these
extensions in future works.

We can simplify our first example following two distinct directions. We obtain
an equivalent function by noticing that a natural number that is not of the form
s(. . . ) is necessarily z. Hence we can discard a useless branch instruction. A
better optimization is obtained with the function tdble : nat → nat : we duplicate
the parameter (with a load instruction) and use it as an accumulator, giving the
opportunity to use a jump instruction. Finally, the function xdble : nat → nat is
an example of malicious code that loops and computes unbounded values.

inst. # : dble xdble tdble CFG of tdble
1 : load 1 load 1 load 1 •1
2 : branch s 6 build s 1 load 1 
•2
3 : call dble 1 build s 1 branch s 7 •3
4 : build s 1 call xdble 1 load 2 •4
5 : build s 1 return build s 1 •5
6 : return jump 2 2 •6
7 : load 2 •7
8 : return •8

Our last example is the function sum : nat → nat such that a call to sum(x)
computes the value of the expression x + (x − 1) + · · · + 1. The function sum
is interesting because it is a non trivial example mixing recursive calls and “su-
perlinear” size computations: our size verification can be used to prove that the
size of the result is bound by 1

2 |x|(|x| + 1). The definition of sum makes use of
the function add : (nat , nat) → nat that tallies up its two parameters.

sum = 1 : load 1 3 : call sum 1 5 : return
2 : branch s 5 4 : call add 2

add = 1 : branch s 5 4 : load 2 7 : return
2 : load 1 5 : jump 1 2
3 : build s 1 6 : load 1

Well-Typed Programs. We define a type verification that associates to every
bytecode instruction an abstraction of the stack when it is executed. In our case,
an abstract state T is a sequence of types (t1, . . . , tn) that matches the types of
the values in the stack. We say that a stack � has type T , and we note � : T ,
if � = (v1, . . . , vn) where vi is a value of type ti for all i ∈ 1..n. The type of a
function f is a sequence of length |f | of type stacks and a well-typed function



254 S. Dal Zilio and R. Gascon

Table 1. Type Analysis (wti(f, �T ))

Assume f : (t1, . . . , tn) → t0. Case f [i] of:

(load k) then wti(f, �T ) is true iff i < |f |, Ti[k] = tk and Ti+1 = Ti · tk;

(build c m) let c : (t′
1, . . . , t

′
m) → t′

0, then wti(f, �T ) is true iff i < |f |, Ti = T ·
(t′

1, . . . , t
′
m) and Ti+1 = T · t′

0;

(branch c j) let c : (t′
1, . . . , t

′
m) → t′

0, then wt i(f, �T ) is true iff i < |f |, j ∈ 1..|f |,
Ti = T · t′

0, Ti+1 = T · (t′
1 . . . t′

m) and Tj = Ti;

(call g m) let g : (t′
1, . . . , t

′
m) → t′

0, then wti(f, �T ) is true iff i < |f |, Ti = T ·(t′
1 . . . t′

m)
and Ti+1 = T · t′

0;

(tcall g m) let g : (t′
1, . . . , t

′
m) → t′

0, then wt i(f, �T ) is true iff i < |f |, t0 = t′
0,

Ti = T · (t′
1, . . . , t

′
m) and Ti+1 = T · t0;

(jump j m) then wti(f, �T ) is true iff 1 � j ∈ 1..|f |, Ti = T · (t′
1 . . . t′

m) and Tj =
(t′

1 . . . t′
m);

(return) then wt i(f, �T ) is true iff Ti = T · t0;
(stop) Then wti(f, �T ) is true.

is a sequence of well-typed instructions. The notion of well-typed instruction is
formally defined by means of the relation wt i(f, #T ), defined below. For example,
if f [i] = load k and if the type of f [i] is Ti = (t1, . . . , tn), with n � k, then the
type of f [i+1] should be equal to (t1, . . . , tn, tk). (The abstract state Ti gives the
type of values in the stack ”before” the execution of instruction i.) A program
is well-typed if all its functions are well-typed: a sequence #T is a valid abstract
execution of the function f : (t1, . . . , tn) → t0, denoted wt(f, #T ), if and only if
T1 = (t1 . . . tn) and wt i(f, #T ) for all i ∈ 1..|f |. The definition of wt i(f, #T ) is by
case analysis on the instruction f [i], see Table 1.

We can define from the predicate wt an algorithm that computes a valid type
for a function f if it exists, e.g. using Kildall’s algorithm [16]. (We can view type
verification as a kind of symbolic execution on stacks of types.) Moreover, we can
prove that if the CFG is a connected graph then there is at most one valid type.
Then we can assign to every instruction of f the size of its stack, and to every
element of that stack a single type. As an example, we give the type inferred for
the function tdble : nat → nat .

1 : load 1 (nat) 5 : build s 1 (nat , nat , nat , nat)
2 : load 1 (nat , nat) 6 : jump 2 2 (nat , nat , nat , nat)
3 : branch s 7 (nat , nat , nat) 7 : load 2 (nat , nat , nat)
4 : load 2 (nat , nat , nat) 8 : return (nat , nat , nat , nat)

We can prove that the execution of a well-typed program never fails. For
example, We can prove a subject reduction property and follow an approach
similar to the one used in Section 3 to prove the validity of our size analysis. Due
to the limited amount of space available, we prefer to develop the background
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on size verification, which is the most innovative result of this paper. Most of
the formal details on type verification may be found in [1].

The type verification provides a bound on the length of the stacks during
an execution and we note hf,i the size of the stack � in a frame (f, i, �)ρ of a
well-typed configuration. In the next section we show how to obtain a bound
on the size of the computed values from our size analysis. Together, these two
information can already be used to reject programs that compute arbitrarily
large values but, to obtain a bound on the size needed for the execution of a
program, we also need to bound the maximal number of frames, which usually
necessitates a termination analysis.

3 Size Verification

We define a size verification based on the notion of quasi-interpretations [12].
This paper makes two additional contributions to our previous works on resource
certification [1,2]. First, we are able to check programs whose CFG contains
cycles, improving what was done in previous work. Second, we propose a direct
algorithm that depends only on solving a set of arithmetical constraints, without
resorting to an auxiliary shape analysis.

Quasi-interpretation. Quasi-interpretations have been defined by Marion et
al. [12] to reason about the implicit complexity of term rewriting systems. The
idea is close to polynomial interpretation for termination proofs: we assign to
every function and constructor of a program a numerical function bounding the
size of the computed values. More formally, a quasi-interpretation assigns to
every identifier id in a program a function qid (with arity ar(id)) over the non-
negative rational numbers Q+ such that: (1) if c is a constant then qc( ) = 0;
(2) if c is a constructor with arity n then qc(x1, . . . , xn) = d + Σi∈1..nxi, where
d � 1; (3) if f is a function with arity n then qf : (Q+)n → Q+ is monotonic
and for all i ∈ 1..n we have qf (x1, . . . , xn) � xi.

An assignment can be easily extended to functional expressions as follows:
qx = x; qc(e1,...,en) = qc(qe1 , . . . , qen); and qf(e1,...,en) = qf (qe1 , . . . , qen). Then
an assignment is a valid quasi-interpretation for a system of recursive func-
tion definitions if for all declarations f(p1, . . . , pn) = e in the program, the
inequality qf(p1,...,pn) � qe holds. For instance, if we choose qs = 1 + x for
the quasi-interpretation of the constructor in nat (by definition, qz = 0) then
qdble(x) = 2x is a valid quasi-interpretation for the function dble defined in
our examples: we have qdble(qz( )) � qz( ) and qdble(qs(x)) � qs(qs(qdble(x))). In
general, a quasi-interpretation provides a bound on the size of the computed
values as a function of the size of the input data. If f(v1, . . . , vn) ↘ v then
|v| � qv � qf (|v1|, . . . , |vn|).

The problem of synthesizing quasi-interpretations (from a set of functional
declarations) is connected to the synthesis of polynomial interpretations for ter-
mination but it is generally easier because inequalities do not need to be strict
and small degree polynomials are often enough. For instance, Amadio [3,4] has
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considered the problem of automatically inferring quasi-interpretations in the
space of multi-variate max-plus polynomials.

In this paper, we define a similar notion of quasi-interpretation for byte-
code programs. Assume a function f of the bytecode program. An assignment
associates to every checkpoint i of f a polynomial expression qf,i with hf,i vari-
ables. We also use the notation qf to denote the function qf,1 assigned to the
entry point of f . Like in the functional case, we require that each polynomial
qf,i satisfies the hypotheses for quasi-interpretations (properties (1)-(3) listed
above). The machine-checkable certificates used in our size verification are quasi-
interpretations, that is assignment of numerical functions, in our case polynomial
expressions, to instructions in the program. An advantage of this approach is that
quasi-interpretation can be synthesized at the source-code level and verified at
the bytecode level. We will not address synthesis issues in this paper and we
suppose that the bytecode comes with all the necessary types and size annota-
tions. For example the function tdble has two checkpoints, the nodes 1 and 2,
with respective types (nat) and (nat , nat), which means that htdble,1 = 1 and
htdble,2 = 2. In the following we assume that the assignment is qtdble,1(x1) = 2x1
and qtdble,2(y1, y2) = y1 + y2.

Size Analysis. We show how to check the validity of an assignment and to
obtain a size bound from a quasi-interpretation. Like the type verification, our
size verification associates to every bytecode instruction an abstraction of the
stack at the time it is executed. In this case, the abstraction is a combination
of a sequence of size variables, which stands for the best size bounds we can
obtain, together with arithmetic constraints between these variables. Contrary
to the size verification defined in [1], we directly infer a size bound, without using
an auxiliary “shape verification” (that is a static analysis which provides partial
informations on the structure of the elements in the stack). The advantage of a
direct approach is to get rid of the restrictions imposed by the shape analysis,
especially: (1) that the CFG of functions must be a tree and (2) that along each
execution path, we must not have a branch instruction after a call instruction.

We suppose that the bytecode is well-typed, which means that we know
the number hf,i of elements on the stack before executing the instruction f [i].
We associate to each checkpoint i of the function f : (1) a sequence of fresh
(size) variables #xf,i =def (x1, . . . , xhf,i

) and (2) a polynomial expression qf,i

with variables #xf,i and coefficients in Q.
The size analysis is formally defined by the predicate wsz i(f, #S, #Φ) given in

Table 2. The definition of wsz i(f, #S, #Φ) is by case analysis on the instruction f [i]
and expresses that (1) the size of every element on the stack at instruction i
is bounded by the expression qf,PCi(#xf,PCi), and (2) the quasi-interpretations
decrease every time we pass a new checkpoint. We say that the size analysis is
successful if there are two sequences #S = (S1, . . . , S|f |) and #Φ = (Φ1, . . . , Φ|f |)
such that wsz i(f, #S, #Φ) for all i ∈ 1..|f |, and Si = #xf,i and Φi = ∅ if i is a
checkpoint of f . We note this relation wsz (f, #S, #Φ).
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Table 2. Size Analysis (wsz i(f, �S, �Φ))

Let j = PCi be the checkpoint of i. Case f [i] of:

(load k) let xk be the kth variable of Si, and x a fresh size variable. If Control(i+1) then
wsz i(f, �S, �Φ) iff the formula ψsucc =def

�
Φi ∧ x = xk

� ⇒ �
qf,j(�xf,j) � qf,i+1(Si · x)

�

is a tautology. Otherwise wsz i(f, �S, �Φ) iff
�
Si+1 = Si · x

�
and

�
Φi+1 = Φi ∧ x = xk

�
.

(build c n) Assume n = ar(c) and Si = S′ · (x1, . . . , xn), and let x0 be a fresh size
variable. First we check the validity of ψbuild =def Φi ⇒

�
qf,j(�xf,j) � qc(x1, . . . , xn)

�
.

If Control(i + 1) then wsz i(f, �S, �Φ) iff the formula ψsucc =def
�
Φi ∧ x0 =

qc(x1, . . . , xn)
� ⇒ �

qf,j(�xf,j) � qf,i+1(S
′ ·x0)

�
is a tautology. Otherwise wsz i(f, �S, �Φ)

iff
�
Si+1 = S′ · x0

�
and

�
Φi+1 = Φi ∧ x0 = qc(x1, . . . , xn)

�
.

(branch c k) Assume n = ar(c) and Si = S′ · x0, and let x1, . . . , xn be fresh size
variables. The predicate wsz i(f, �S, �Φ) is true iff the following two conditions are true
(one condition for each successor of i in f).

(C1) if Control (i + 1) then ψthen =def
�
Φi ∧ x0 = qc(x1, . . . , xn)

� ⇒ �
qf,j(�xf,j) �

qf,i+1(S
′ ·(x1 . . . xn))

�
is a tautology otherwise

�
Si+1 = S′ ·(x1 . . . xn)

�
and

�
Φi+1 =

Φi ∧ x0 = qc(x1, . . . , xn)
�
.

(C2) if Control(k) then ψelse =def Φi ⇒
�
qf,j(�xf,j) � qf,k(Si)

�
is a tautology other-

wise
�
Sk = Si

�
and

�
Φk = Φi

�
.

(call g n) Assume n = ar(g) and Si = S′ · (x1, . . . , xn) and let x0 be a fresh size
variable. First we check the validity of ψcall =def Φi ⇒

�
qf,j(�xf,j) � qg,1(x1, . . . , xn)

�
.

If Control(i + 1) then wsz i(f, �S, �Φ) iff the formula ψsucc =def
�
Φi ∧ x0 �

qg,1(x1, . . . , xn)
� ⇒ �

qf,j(�xf,j) � qf,i+1(S
′ · x0)

�
is a tautology. Otherwise

wsz i(f, �S, �Φ) iff
�
Si+1 = S′ · x0

�
and

�
Φi+1 = Φi ∧ x0 � qg,1(x1, . . . , xn)

�
.

(tcall g n) Assume n = ar(g) and Si = S′ · (x1, . . . , xn) and let x0 be a fresh
size variable. The predicate wsz i(f, �S, �Φ) is true iff the formula ψtcall is valid, where
ψtcall =def Φi ⇒

�
qf,j(�xf,j) � qg,1(x1, . . . , xn)

�
.

(jump k n) Assume Si = S′·(x1, . . . , xn). If Control(k) then wsz i(f, �S, �Φ) iff the formula
ψsucc =def Φi ⇒

�
qf,j(�xf,j) � qf,k(x1 . . . xn)

�
is a tautology. Otherwise wsz i(f, �S, �Φ)

iff
�
Sk = (x1, . . . , xn)

�
and

�
Φk = Φi

�
.

(stop or return) Then the predicate wsz i(f, �S, �Φ) is true.

The size analysis is compositional (we only need to analyze each functions
separately) and always terminates (since every instruction is visited at most
once). The size analysis for a function f associates to every instruction i of f a
sequence of variables of size hf,i, denoted Si, and a set of constraints between
linear combinations of these variables, denoted Φi. Intuitively, the kth variable
of Si is a bound on the size of the kth element of the execution stack when
the instruction f [i] is executed, while Φi contains valid constraints between the
bounds. For example, if f [i] = load k and Si = (x1, . . . , xn) we impose that
Si+1 = Si · x and that Φi+1 implies x = xk, meaning that we add a value on
top of the stack �, whose size is bounded by xk, our best known bound on the
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size of the kth value in �. The analysis generates also a set of proof obligations,
ψsucc, ψcall , . . . which are arithmetic formulas that should be checked in order to
prove the validity of the size certificates (i.e. the quasi-interpretation). We say
that the formula Φ ⇒ p(#x) � q(#y) with free size variables #y is a tautology if for
all valuation σ from #y to positive natural numbers such that σ(Φ) is true then
the inequality σ(p(#x) � σ(q(#y)) is true.

We show the result of the size analysis for our running example, tdble. We
give in front of each instruction the size stack Si and the constraint Φi such that
wsz (f, #S, #Φ). Then we check the validity of the various auxiliary conditions: there
is one condition to prove each time the successor of an instruction is a checkpoint
and one condition to prove for each build, call and tcall instruction.

1 : load 1 x1 ∅
2 : load 1 y1 y2 ∅
3 : branch s 7 y1 y2 z1 (z1 = y1)
4 : load 2 y1 y2 z2 (z1 = y1) ∧ (z1 = z2 + 1)
5 : build s 1 y1 y2 z2 z3 (z1 = y1) ∧ (z1 = z2 + 1) ∧ (z3 = y2)
6 : jump 2 2 y1 y2 z2 z4 (z1 = y1) ∧ (z1 = z2 + 1) ∧ (z3 = y2) ∧ (z4 = z3 + 1)
7 : load 2 y1 y2 z1 (z1 = y1)
8 : return y1 y2 z1 z5 (z1 = y1) ∧ (z5 = y2)

We need to check three proof obligations in the size verification of tdble. The
first formula corresponds to the build instruction ψ5 = Φ5 ⇒

(
qtdble,2(y1, y2) �

qs(z3)
)
. The two others formulas correspond to the possible transitions to check-

point 2 (from instructions 1 and 6) which gives ψ1 =def Φ1 ⇒
(
qtdble,1(x1) �

qtdble,2(x1, x1)
)

and ψ6 =def Φ6 ⇒
(
qtdble,2(y1, y2) � qtdble,2(z2, z4)

)
. Once sim-

plified, we can easily show that these constraints are valid: ψ5 is equivalent to
(z1 = y1)∧(z1 = z2 +1)∧(z3 = y2)⇒ y1 +y2 � z3 +1, while ψ1 ≡ 2x1 � x1 +x1
and ψ6 ≡ (y1 = z2 + 1) ∧ (z4 = y2 + 1)⇒ (y1 + y2 � z2 + z4).

Next, we show the result of the size analysis for the function sum. We assume
that the quasi-interpretations of sum and add are the functions qsum(x) =
1
2x(x + 1) and qadd (x, y) = x + y.Instruction 5 of sum is a checkpoint and we
assume that qsum,5(x) = x.

1 : load 1 x1 ∅
2 : branch s 5 x1 x2 (x2 = x1)
3 : call sum 1 x1 y1 (x2 = x1) ∧ (x2 = y1 + 1)
4 : call add 2 x1 y2 (x2 = x1) ∧ (x2 = y1 + 1) ∧ (y2 � qsum(y1))
5 : return z1 ∅

The analysis of sum (note that the functions add and sum may be analysed
separately) gives only two non-trivial proof obligations that are related to the
two call instructions in the code. These formulas are ψ3 = Φ3 ⇒

(
qsum(x1) �

qsum(y1)
)

and ψ4 = Φ4 ⇒
(
qsum(x1) � qadd (x1, y2)

)
. Once simplified, we can

easily show that these constraints are valid: ψ3 is equivalent to qsum(y1 + 1) �
qsum(y1), while ψ4 is a consequence of qsum(y1 + 1) � qsum(y1) + y1 + 1.
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Finally, we can check that the function xdble, our example of malicious code,
does not succeed the size analysis. Let us consider the proof obligations generated
in the analysis of the function xdble:

1 : load 1 x1 ∅
2 : build s 1 x1 x2 x2 = x1

3 : build s 1 x1 x3 x2 = x1 ∧ x3 = x2 + 1
4 : call xdble 1 x1 x4 x2 = x1 ∧ · · · ∧ x4 = x3 + 1
5 : return x1 x5 x2 = x1 ∧ · · · ∧ x5 � qxdble,1(x4)

The condition corresponding to instruction 4, the only call instruction,
is Φ[4] ⇒ qxdble,1(x1) � qxdble,1(x4), that is equivalent to x4 = x1 + 2 ⇒
qxdble,1(x1) � qxdble,1(x4), which is obviously not satisfiable since qxdble,1(x) is
monotone.

Deriving Size Bounds from the Size Analysis. We prove that if the size
analysis returns a solution for all the functions of a program, then we can extract
a bound on the size of the values computed during the execution. In order to
prove this property, we extend the predicate wsz to frames and then configura-
tions of the virtual machine.

Assume wsz (f, #S, #Φ) and let ρ be the annotation (g(�o), k, (v1 . . . vn)). We say
that the frame (f, i, �)ρ is well-sized if qf,k(qv1 , . . . , qvn) bounds the size of all the
values in � and if the constraint Φi is verified when we replace the variables of Si

by the quasi interpretation of the corresponding values in � and the variables of
#xf,k by the values qv1 , . . . , qvn . We denote this last property (f, i, �)ρ |= (#S, #Φ).
Then we say that the configuration M is well-sized if all the frames in M are well-
sized and if the quasi-interpretations of the checkpoints decrease, see the table
below which defines the relation wsz (M). We introduce some auxiliary notations
to help us define the relation wsz formally. Assume wsz (f, #S, #Φ) and let (f, i, �)ρ

be a frame such that ρ is the annotation (g(�o), k, �c). Assume �o = (u1, . . . , un)
and �c = (u′

1, . . . , u′
m). We define the two expressions q̂(ρ) and q(f, ρ) as follows:

q̂(ρ) =def qg,1(qu1 , . . . , qun) and q(f, ρ) =def qf,k(qu′
1
, . . . , qu′

m
). The value of q̂(ρ)

denotes the best size bound known when the frame is initialized, while q(f, ρ)
denotes the best size bound known when we reached the last checkpoint. Let
� = (v1, . . . , vn) be a sequence of values and #x = (x1, . . . , xn) a sequence of vari-
ables of the same length. We write

[
�/�x

]|| the substitution
[
qv1 /x1

]
. . .
[
qvn /xn

]
.

The constraint #Φ is true for the frame (f, i, �)ρ, denoted (f, i, �)ρ |= (#S, #Φ) if and
only if the constraint Φi

[
�/Si

]||[�c/�xf,k

]|| is valid.

Well-Sized Configurations: wsz (M)

wsz (f, �S, �Φ)

(f, pc, )ρ |= (�S, �Φ)  = (v1, . . . , vn)
q̂(ρ) � q(f, ρ) � |vi| i ∈ 1..n

wsz (f, pc, )ρ

M ≡ (f1, i1, 1)ρ1 . . . (fm, im, m)ρm

o
k = arg(M, k + 1) wsz (fk, ik, k · o

k)ρk

wsz (fm, im, m)ρm q(fj , ρj) � q(fj+1, ρj+1)
k ∈ 1..m − 1 j ∈ 1..m− 1

wsz (M)
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We can show that the predicate wsz is preserved by reduction.

Theorem 1 (Preservation). If wsz (M) and M →M ′ then wsz (M ′).

Proof. By induction on the derivation of M →M ′, see [8] for a detailed proof.

A corollary of this result is that for every program succeeding the size analy-
sis, if the initial configuration (f, 1, (v1 . . . vn)) is well-sized then the values com-
puted during the execution are bounded by qf (qv1 , . . . , qvn).

Theorem 2 (Size Bound). Assume f is a function in a program that succeeds
the size analysis. If the initial configuration (f, 1, (v1 . . . vn)) reduces to M then
for all value v occurring in a frame of M we have |v| � qf (qv1 , . . . , qvn).

Proof. Let � be a stack of the form (v1, . . . , vn). Byhypothesis we have (f, 1, �)ρ →∗

M with ρ = (f(�), 1, �) and M ≡ (f1, i1, �1)ρ1 . . . (fm, im, �m)ρm , where ρ1 is
of the form (f(�), P Ci1 , �1

c). By Theorem 1 we have that M is well-sized, that
is wsz (M). Hence (1) q(fj , ρj) � q(fj+1, ρj+1) for all j ∈ 1..m − 1 and (2)
wsz (fk, ik, �k · �o

k)ρk
for all k ∈ 1..m − 1 and wsz (fm, im, �m)ρm . By property

(2) and definition of the predicate wsz on frames, |v| � q(fk, ρk) � q̂(ρk) for
all value v occurring in the kth frame of M and by property (1) we obtain that
|v| � q(f1, ρ1) � q̂(ρ1) = qf (qv1 , . . . , qvn), as needed.

4 Solving Size Constraints

Size verification generates a system of auxiliary arithmetical constraints that we
need to solve. On the whole, each constraint is of the form Φ ⇒ p(#x) � q(#y),
where Φ is a conjunction of equality and inequality constraints (see the discussion
below) and p, q are polynomial expressions with coefficients in Q. A constraint
is generated for each build, call and tcall instruction and for each transition
from an instruction to a checkpoint. In this section we study the problem of
checking the validity of these constraints and show that we can always reduce
to the problem of checking the sign of a polynomial expression.

We start by partitioning the set V of all size variables used in the size verifi-
cation. We define the sets Vload, Vbuild, Vbranch and Vcall of variables that were
introduced respectively when checking a load, build, branch and a call or a
tcall instruction. We also define the set Vo of all variables associated to check-
points. To simplify our result, we assume that branch instructions never act on
variables in Vbuild (and transitively on variables introduced by a load instruction
that corresponds to a variable of Vbuild). Intuitively, this corresponds to forbid
cases where a branch instruction is applied to a value whose head constructor is
known at compile time (indeed it is possible to trace back the build instruction
that created it). A consequence of this assumption is to avoid “dead-code”, i.e.
a part of the code that cannot be reached during an execution.

A brief inspection of the definition of wsz shows that the proof obliga-
tions generated during the size analysis are all of the form Φ ⇒ qf (#xf ) �
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qg(y1, . . . , yn), where #xf is a vector of fresh variables and Φ is a conjunction
of atoms of the form:

(Load) y = x where y ∈ Vload

(Build) y =
∑

i∈I xi + d where y ∈ Vbuild, and d � 1
(Branch)

∑
i∈I yi + d = x where yi ∈ Vbranch for all i ∈ I and d � 1

(Call) y � q(x1, . . . , xn) where y ∈ Vcall and q is a polynomial expression
with the properties of quasi-interpretations.

We can solve this kind of constraints using the following simple steps:

– first, we eliminate the variables of Vload and Vbuild by substitution. This step
eliminates the constraints of type (Load) and (Build). The system resulting
after this step is made up of (Branch) and (Call) constraints and all the
remaining variables are in V \ (Vload ∪ Vbuild) ;

– then we use the hypothesis that we never apply a branch instruction on a
value introduced by a build. So we can replace every (Branch) constraint
by a simple substitution. Hence all the constraints of the resulting system
are of type (Call) with variables in Vo ∪ Vcall ;

– finally we are left to check an inequality of the form σ(g(y1, . . . , yn)) �
σ(f(#xf )) where σ is the substitution obtained after the first two steps. By
construction there are no variables of Vcall in σ(f(#xf )). Let C1, . . . , Cm be
the remaining (Call) constraints. For every i ∈ 1..m the constraint Ci is
of the kind zi � p(#ai). Since there are no variables of Vcall in σ(f(#xf ))
we can simply check the inequality after replacing the occurrences of zi by
the expression p(#ai) (since we work with quasi-interpretation the function p
is monotone). Hence it is equivalent to check the sign of the (polynomial)
expression:

(
f(#xf )− g(y1, . . . , yn)

)
(σ ◦ [p(�ai)/zi

]
i∈1..m).

5 Conclusion and Related Work

Ensuring bounds on the resources needed for executing a program is a critical
safety property. In this paper, we define a new “size analysis” and show how to
derive a bound on the size of the values computed by a program. This method has
several advantages. The size-bound obtained with our approach is a polynomial
expression on the size of the input parameters of the program. Also, programs
can be analyzed incrementally (each function is analyzed separately), at the
level of the bytecode. These features are particularly interesting in the context
of mobile code applications, in which programs can be dynamically loaded from
untrusted, possibly malicious sites.

The problem of bounding computational resources has already attracted con-
siderable attention. Many works have focused on (first-order) functional lan-
guages starting from Cobham’s characterization of polynomial time functions
by bounded recursion on notation [6]. Following works, see e.g. [5,9,10], have de-
veloped various inference techniques that allow for efficient analyses while cap-
turing a sufficiently large range of practical algorithms. None of these works have
been applied to bytecode languages. Actually, most of the researches on bytecode
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verification tends to concentrate on the integrity of the execution environment.
We have presented in [1] a virtual machine and a corresponding bytecode for a
first-order functional language and shown how size and termination annotations
can be formulated and verified at the level of the bytecode. In this paper, we
extend this language with instructions for “tail recursive” calls and uncondi-
tional jumps, which are vital to implement common program optimizations. In
particular, we can analyze bytecode sequences whose control flow graph includes
cycles, whereas the size analysis defined in [1] can only handle tree shaped con-
trol flow graphs. Work on resource bounds for “Java-like” bytecode languages
is carried out in the MRG project [15]. One main technical difference is that
they rely on a general proof carrying code approach while we follow a Typed
Assembly Language (TAL) approach. Also, their analysis focuses on the size of
the heap while we only consider stack allocated values. Crary and Weirich [7]
define a TAL for resource bound certification. Their approach is based on a de-
pendent type-system where types include a “resource skeleton”, that is a set of
functions (expressed in a ML-like language) computing the resource behavior
of the program. Resource skeleton cannot be inferred and should be written by
the programmer. Another related work is due to Marion and Moyen [13] who
define a resource analysis for counter machines by reduction to a certain type of
termination in Petri Nets. Their virtual machine is much more restricted than
the one studied here: natural numbers is the only data type and the stack can
only contain return addresses.

We are currently experimenting with the automatic derivation of quasi-
interpretation at the bytecode level. At the moment, we only have methods to
infer quasi-interpretations (with max-plus polynomials) from functional code [4].
Plans for future works also include extending our approach to a more complicated
virtual machine, e.g. with support for objects (as in the Java Virtual Machine),
heap references or subroutines.
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Abstract. In this paper, we present a path sensitive type system for
resource usage verification. Path sensitivity is essential to model resource
usage in C programs correctly and accurately. So far, most of methods
to analyze this kind of property in the path sensitive way have been
proposed as whole program analyses or unsound analyses. Our main
contributions are as follows. First, we formalize a sound analysis for path
sensitive resource usage properties in C like languages. To the best of our
knowledge, it is the first sound and modular analysis for this problem.
We provide the complete proof for the soundness of the type system and
algorithm. Second, our analysis is modular, and we provide an inference
algorithm to generate function summaries automatically. We believe that
our approach suggests new insights into the design of modular analyses.

1 Introduction

It is an important program correctness criterion that a program uses resources
in valid manner. A resource is an object that must be used according to a well-
defined protocol; such protocol is usually specified by correct sequences of actions
on the resource, recognizable by a finite state machine (FSM). For example, a
file should be open before being written. A memory cell should not be accessed
after deallocation. A lock acquired should be released eventually.

In verification of resource usage protocols, the program analysis should be
path sensitive in order to trace the resource states accurately. For example,
consider the following C code fragments:
[ Program 1 ] [ Program 2 ]
main() { main() {

FILE* fp = fopen("f","w"); FILE* fp = fopen("f","w");
fprintf(fp,"x"); if (fp)
fclose(fp); { fprintf(fp,"x"); fclose(fp); }

} }

In the path where fopen returns a non-zero value, the file is open, but if the
return value is 0, the file is still closed. Thus, Program 1 is unsafe on the path
where fopen returns 0 as fprintf may access the closed file. On the other
hand, Program 2 is correct since those two paths are distinguished by the branch

K. Yi (Ed.): APLAS 2005, LNCS 3780, pp. 264–280, 2005.
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condition. If a program analyzer ignores the return value of fopen and incorrectly
assumes that fopen always opens the specified file, we may get undesirable
results for both programs; the analyzer would miss the bug in Program 1, and
it would produce a false alarm for Program 2 because it concludes that the file
remains open along with the false branch.

So far, a number of static analyses on resource usage protocols have been
proposed in various contexts. In the approaches of [1,17,10,6,14,21,28], they do
not present any concrete method to identify actions which change the state of a
resource. In other words, actions are limited to syntactically identifiable set. It
is not clear whether they can be easily extended to identify actions dependent
on values of variables as shown in the example programs. In the approaches of
[5,2,16,13], they can identify actions in cooperation with values of variables (path
sensitive). All of these works are proposed as whole program analyses. In con-
trast to sound approaches mentioned above, there are several approaches which
are aimed to detect bugs effectively at the cost of unsoundness, which include
resource usage protocols [8,3,31]. In summary, there is no sound program anal-
ysis which can verify the resource usage property in path sensitive and modular
way.

Based on the observations above, our aims are
– To design a resource usage analysis for C like languages that is effective for

the path sensitive resource usage.
– To design it as a modular analysis that enables the modular specification and

verification of resource usage. Also, we expect to overcome the scalability
problem of whole program analysis with modularity.

– To design it as a sound analysis for the purpose of proving the absence of
resource usage bugs.

Main contributions of this paper are as follows:
– We formalize a sound analysis for path sensitive resource usage properties

in C like languages.
– We formalize the analysis as a type system, which gives us insights for de-

signing modular analyses; we devise a function summary mechanism that
is expressive enough in the presence of flow/context/path sensitivity and
automatically inferable.

The remainder of this paper is organized as follows: In Section 2, we give an
overview of our approach. The syntax and dynamic semantics of the language
are described in Section 3. In Section 4, we present the type system to analyze
resource usage in modular and path sensitive way. In Section 5, the type inference
algorithm is presented. We relate our work with previous research in Section 6
and conclude in Section 7.

2 Overview of Our Approach

We have examined intensively the file resource usage appearing in SPEC bench-
mark suite[26], which include gcc packages used as experimental data in a related
work ESP[5].
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Here are some observations we learned from the code:
– The path sensitivity mentioned in Section 1 is a common idiom in design-

ing and using API (Application Programmer Interface) in C. So, the path
sensitivity is essential to model resource usage in C correctly and accurately.

– A pointer to file-like resources is normally used just as a reference. For ex-
ample, consider file pointer fp in program 2. Programmer does not assign
any new value in *fp directly, but just use it (fprintf, fclose).

– The alias may occur by assignment or function argument passing. Intrapro-
cedural alias of resources is frequent but interprocedural alias of resources
via argument passing is not frequent.

– Resource allocation rarely appears within loops. Even if it appears, every
resource allocated in the loop should be deallocated or should have same
specification as we can see in the following example:
while(?) {
Lock* l = malloc(sizeof(Lock));
lock(l); ... unlock(l);

}

– Values to identify paths are often constant limited to some simple integers.

Based on the observations above, we derived main abstraction principles for
our type system as follows:
– Types are modeled as lattice elements or sets of lattice elements. We do

not abstract resource related components of dynamic semantics but use set
union (∪) at the join point of analysis. We abstract other things if we know
that they are not related to resource behavior and use normal join (�) at the
join point. Only resource related functions are typed in the path sensitive
way.

– Pointer variables that represent resources are translated to a normal variable
in our simplified imperative language.

– We trace the alias information in the path sensitive way within function body
under the assumption of no interprocedural alias introduced by function
arguments.

– Resources are identified by allocation points. All resources allocated in the
same program point should satisfy the same resource usage specification.

– Values that possibly identify paths are traced with constant propagation
lattices. (for simpler presentation, we use sign domain in this paper)

3 A Language of Resource Usage: RL

3.1 Syntax

The syntax of resource usage language (RL) used to formalize our idea is given
in Figure 2. A program is a sequence of function declarations which ends with an
expression meaning the main function in C. All expressions are in the K-normal
form[29,19,22]: every non-value expression is bound by a variable by let. A
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closed open

close

useopen returns 0

alloc

free

NA

open returns 1

Fig. 1. FSM specification for File usage

value expression val is denoted as a pair of resource identifier and an integer.
A ResourceId ri denotes a resource allocated by allocation expression alloci

where i means the program point of the resource allocation. r0 is used to express
that it is not a resource. For example, an integer n in C is translated to a value
(r0, n) in RL. Note that alloci is the only way to make a value (ri, n) where
i �= 0. Variables in C including the resource pointer are directly translated to the
variables in RL. Function application, assignment and if expression are standard
language constructors. let expression is used for local variable declaration and
sequencing. alloci, open x and close x are resource usage related expressions.
In fact, they correspond to API functions in C which are related to resource
usage. For example, the valid usage of file resources in C is summarized as
in Figure 1. In our type system, this is represented in the notion of function
type1 as in Figure 6. Some of these resource related expressions are chosen as
language constructs to present our idea clearly. use x and free x are omitted for
presentation brevity. Loop, mutual recursion and global variables are excluded
since they can be translated into RL. We do not consider structure and pointer
arithmetic yet.

3.2 Dynamic Semantics

The dynamic semantics, which is specified in Figure 2, is given by a deterministic
rewriting system C → C′ mapping a configuration (a program state) to a new
configuration. A configuration C consists of a tuple (γ, h, p, K) for program,
(γ, h, e, K) for expression or (finished). (finished) means the termination of
execution. An environment γ is a finite mapping of Id to closure or value which
represents stack-like memory. A resource heap h is a finite mapping of resource
id ri to resource state q, where ri means a resource allocated at the program
point i. A resource heap can be understood as sub-part of the heap-like memory
in C that contains resources in which we are interested. A continuation K is a
sequence of (x, e) or γ which acts as a stack of next computation e or a stack of
environment to be recovered after a function call.

Rewriting rules for program, value, variable, function application, assign-
ment, let2 and branch are given in the standard manner. The dynamic allo-
cation semantics of resources is defined based on the observations in Section 2.
1 The function type will be explained in Section 4.
2 We assume let expressions always introduce a new variable to be free from scoping

issue for brevity.
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p ∈ Program ::= fun f (
x)=e ;p | e
e ∈ Expression ::= val value

| x variable
| f 
x function app
| x := x′ assignment
| let x = e1 in e2 end let (seq)
| if cond then e1 else e2 branch
| alloci resource allocation
| open x resource open
| close x resource close

cond ∈ Condition ::= ? | x ≤ n | n ≤ x condition
val ∈ Value ::= (Rid, n) value
Rid ∈ ResourceId ::= ri resource identifier
x , f ∈ Id identifier

clos ∈ Closure = Env × Id × 
Id × Expression closure
q ∈ Resource State ::= open | closed resource state

γ ∈ Env = Id
fin→ (Closure ∪ V alue) environment

h ∈ Resouce Heap = Rid
fin→ Resource State resource heap

K ∈ Continuation ::= ε | (x, e) :: K | γ :: K continuation
C ∈ Configuration := (γ, h, p, K) | (γ, h, e,K) | (finished) configuration

[prog] (γ, h, fun f (
x)=e ;p, K) → (γ[f 	→ 〈γ, f, 
x, e〉], h, p, K)
[var] (γ, h, x,K) → (γ, h, γ(x),K)
[val-end] (γ, h, val , ε) → (finished) if ∀ri ∈ Dom(h).h(ri) = closed
[val-seq] (γ, h, val , (x, e) :: K) → (γ[x 	→ val ], h, e, K)
[val-env] (γ, h, val , γ′ :: K) → (γ′, h, val , K)
[assign] (γ, h, x := x′, K) → (γ[x 	→ γ(x′)], h, (r0, 0), K)
[let] (γ, h, let x = e1 in e2 end, K) → (γ, h, e1, (x, e2) :: K)
[app] (γ, h, f 
y, K) → (γ′[f 	→ 〈γ′, f, 
x, e〉][
x 	→ γ(
y)], h, e, γ :: K)

if γ(f) = 〈γ′, f, 
x, e〉
[ifT] (γ, h, if cond then e1 else e2 , K) → (γ, h, e1, K) if (γ, cond) = true
[ifF] (γ, h, if cond then e1 else e2 , K) → (γ, h, e2, K) if (γ, cond) = false
[alloc] (γ, h, alloci, K) → (γ, h[ri 	→ closed ], (ri, 0), K)

if (ri /∈ Dom(h)) ∨ (ri ∈ Dom(h) ∧ h(ri) = closed)
[openS] (γ, h, open x,K) → (γ, h[ri 	→ open ], (ri, 1), K)

if γ(x) = (ri, n) ∧ i �= 0 ∧ h(ri) = closed ∧ open succeed
[openF] (γ, h, open x,K) → (γ, h, (ri, 0), K)

if γ(x) = (ri, n) ∧ i �= 0 ∧ h(ri) = closed ∧ open fail
[close] (γ, h, close x , K) → (γ, h[ri 	→ closed], (r0, 0), K)

if γ(x) = (ri, n) ∧ i �= 0 ∧ h(ri) = open

[cond]
(γ, x ≤ n) = if γ(x).1 ≤ n then true else false
(γ, n ≤ x) = if n ≤ γ(x).1 then true else false
(γ, ?) = true or false

Fig. 2. Syntax and Dynamic Semantics of RL
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alloci first checks whether the allocation for the resource ri has been performed
already. If ri has not been allocated before, it is allocated by mapping the state of
resource as initial state. If ri has been allocated already, alloci checks whether
the state of resource ri is in the final state, and updates it to initial state in the
FSM. open x first checks whether the state of the resource bound to x is closed .
If openx succeeds, (γ(x), 1) is returned. Otherwise, (γ(x), 0) is returned. closex
is defined similarly.

4 Type System of Resource Language

We formalize our analysis as a subtype system[25]. Intuitively, each type in our
type system can be understood as a lattice element instrumented with type
variables. Each lattice element (type) abstracts corresponding component of the
dynamic semantics based on the abstraction principles discussed in Section 2,
which is given in Figure 3.

4.1 Types

Before we proceed, we first define some notations and operators used in our type
system. τ denotes an arbitrary type of our type system. X denotes an arbitrary
syntactic element of our language. X̂ denotes a simple type of X . For example, 1̂
is P (Plus) in our type system. FTV (τ) denotes the free type variables in type τ
which is defined in standard manner on each type. We write X.(n−1) to denote
nth element of a tuple type X . �X is used to abbreviate various enumerations.
For example, α1, · · · , αn is abbreviated to �α. Γ (�x) = (�R, �D) is abbreviation for
Γ (x1) = (R1, D1) · · · Γ (xn) = (Rn, Dn). [�x �→ �v] is abbreviation for [x1 �→
v1, · · · , xn �→ vn]. [ �D/�α] is abbreviation for [D1/α1, · · · , Dn/αn]. A substitution

tv ∈ TypeVariable ::= α | ρ | β
bool ∈ boolean ::= t | f | tf
d ∈ sign ::= ⊥ | M | P | Z | MZ | MP | ZP | �
D ∈ Sign ::= α | α �D | d
R ∈ ResourceId ::= ρ | ri

v ∈ ValueType ::= (R, D)
rs ∈ ResourceState ::= ⊥ | O | C | �
al ∈ AllocState ::= ⊥ | AL | NA | �
as ∈ Assumption ::= D � D | R

.
= R | H � H | D#D | R#R

A ∈ AssumptionSet ::= {as1, · · · , asn}
ret ∈ ReturnSet ::= {(v1, H1), ..., (vn, Hn)}
ts ∈ TypeScheme ::= ∀
α, 
ρ, β.{(A1, ret1), · · · , (An, retn)}
Γ ∈ TypeEnv = Id → TypeScheme + ValueType
h ∈ ConstrainedHeap ::= {(R1, al1, rs1), · · · , (Rn, aln, rsn)}
H ∈ ResourceHeap ::= h | H · [R 	→ (al, rs)] | β
Ω ∈ ValueStatePairs ::= {(v1, Γ1, H1), · · · , (vn, Γn, Hn)}

Fig. 3. Types
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Bas =

⎧⎨
⎩
⊥ � C,⊥ � O, C � �, O � �, r1

.
= r1, r1#r2, · · ·

⊥ � M,⊥ � Z,⊥ � P,⊥ � MZ, P � ZP, · · · ,
⊥ � AL,⊥ � NA, AL � �, NA � �

⎫⎬
⎭

[hypoth] A � as if (as ∈ A) or (as ∈ Bas)

[v�]
A � R1

.
= R2 A � D1 � D2

A � (R1, D1) � (R2, D2)

[H1�]

H1 = {(
R, 
al, 
rs)} H2 = {( 
R′, 
al′, 
rs′)}
∀(R′, al′, rs′) ∈ H2.∃(R,al, rs) ∈ H1.

(A � R
.
= R′ ∧ A � al � al′ ∧ A � rs � rs′)

A � H1 � H2

[H2�]

H1 = H · [R 	→ (al, rs)] H2 = {(
R, 
al, 
rs)}
∀(Ri, ali, rsi) ∈ H2.

(A � R
.
= Ri ∧ A � al � ali ∧ A � rs � rsi)

∨ (A � R#Ri ∧ A � H � {(Ri, ali, rsi)})
A � H1 � H2

[A]
∀as ∈ A′.A � as

A � A′

Fig. 4. Constraint rules: ordering, equality, disjointness

is a set of simultaneous replacements for type variables denoted as [�τ/�tv] where
tvi’s are distinct. We write the application of a substitution S to type τ as τS,
and we write the composition of substitution S and S′ as SS′.

Integer values are abstracted into d of sign domain. A Sign type D is instru-
mented sign domain with type variable α. The type variable α means an integer
value given as function argument. A ResourceId type R is defined without any
abstraction because we do not want to lose any information about resources. So,
we do not introduce join instrumentation for ρ in contrast to the Sign type. A
ResourceState type rs is a lattice domain generated by lifting all the states of
FSM specification with ⊥,* like constant propagation domain. An AllocState
type al is a lattice domain that denotes whether a resource is allocated (AL) or
not (NA).

The ResourceHeap type H abstracts Resource Heap of the dynamic seman-
tics. A resource heap ∅ is concretized to every concrete heap possible (i.e., it is
the top heap). {(r1, AL, O)} is concretized to every concrete heap h where re-
source r1 is allocated and the state is in open , and so on. A bottom heap can be
understood as {(ri,⊥,⊥) | ri ∈ all possible ri}. Because we will use the heap
in the context of constraints, we need an additional representation to deal with
update on a heap. H · [R �→ (al , rs)] means a heap H where the most recent
update is R to (al , rs). We name the right part of · as history of the heap.

A TypeEnv Γ is a finite mapping of Id �→ τ . A map in Γ is either f �→ ts
denoting the TypeScheme of function f or x �→ v denoting the ValueType of
variable x . We write Γ (Id) to denote the type τ bound to Id in Γ . We write
Γ [Id �→ τ ] to denote the environment Γ ′ after updating a map Id �→ τ . A
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TypeScheme ts is defined as a set of input, output relations which is quantified
by three kinds of type variables. (ρi,αi) means the ith argument of a function
and β means input resource heap. A ReturnSet reti is a set of tuple (vj , Hj)
which means the set of possible output (path) with respect to the input (path)
constrained by Ai. Note our typing rules manipulate Ai to be always disjoint
assumption set for a ts. We write A � ts1 / ts2 denote instantiation of ts1 with
respect to assumptions A. ts2 is a type scheme after renaming all type variables
of ts1 to be different from FTV (A) (formally defined in our technical memo[18]).

There are three kinds of Assumption (assertion, constraint) as that we are
interested in proving: ordering (inclusion) (�), equality ( .=) and disjointness
(#). Intuitively, an assumption αi � P denotes a path that the ith argument
of a function is given as P. These assertions will in general depend on a set
of assumption (assumptions) A, which contains the typings of basic ordering,
equality, disjointness of our lattice based type. So the basic judgements of our
type system are:

A �as as and A �A A′

Judgement A �as as is read as “Under assumptions A, as is typed”. Simply, “A
types as”. Judgement A �A A′ types set of assumptions. Typing rules for these
judgements3 are given in Figure 4. Typing rules for each assertion is defined in
the standard context of the lattice. Note that the heap ordering is defined to
be consistent with the abstraction explained in the heap type. Full assumption
typing rules (e.g. Ω�), which is required to explain the computation of fixpoint
in inference algorithm of Section 5, is given in [18].

4.2 Typing Rules

Main judgements of our type system are:

(1) A, Γ, H � e : Ω (2) A, Γ, H � p : Ω (3) A, Γ � cond : bool

(1) is read as “Under assumptions A, type environment Γ and resource heap
H , the expression e has type Ω”. Intuitively, it is read as “Ω is the all possible
output result (path) of e for an input (path) (A, Γ, H)”. (2) is read similarly. (3)
is read as “Under assumptions A and type environment Γ , cond has type bool”.

Typing rule for Program is given in Figure 5. To type a function f , we first
prepare a set of well partitioned assumptions A1, · · · , An which denote a set of
disjoint input paths4. Each Ai can be understood as assumptions (constraints)
on each (ρi, αi) in Γf and β. Then, we prepare the function environment Γf

and a resource heap β constrained by each Ai. If each input path (Ai, Γf , β)
types e as Ωi, the type of the function f is ∀�α, �ρ, β.{(A1, ret1), · · · , (An, retn)}.
Note that Γf used to type e contains its own function type in addition to the
arguments types. Finally, we type the remaining part p of the program using the
type scheme proved to be the type of function f .
3 We abbreviate the type of judgements like �as, �A freely in this paper for simplicity.

Symbols like (⊥) and operators like FTV is overloaded freely in similar way.
4 Formal definition of well partitioned assumptions � (A1, · · · , An) and well-formed-

ness A � (Γ, H) are given in [18].
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[Program]

Γf = Γ [f 	→ ∀
α, 
ρ, β.{(A1, ret1), · · · , (An, retn)}][
x 	→ (
ρ, 
α)]
� (A1, · · · , An) A1 � (Γf , β) · · · An � (Γf , β)

A1, Γf , β � e : Ω1 · · · An, Γf , β � e : Ωn

reti = {(vj , Hj) | (vj , Γj , Hj) ∈ Ωi}
A, Γ [f 	→ ∀
α, 
ρ, β.{(A1, ret1), · · · , (An, retn)}], H � p : Ω

A, Γ, H � fun f (
x)=e ;p : Ω

[App]

A � Γ (f) � ∀
α, 
ρ, β.{(A1, ret1), · · · , (An, retn)}
Γ (
x) = (
R, 
D) S = [ 
D/
α][
R/
ρ][H/β] A � AiS

Ω = {(vikS, Γ, (HikS)) | (vik, Hik) ∈ reti }
A, Γ, H � f 
x : Ω

[Value] A, Γ, H � val : {(v̂al, Γ, H)}

[Var] A, Γ, H � x : {(Γ (x), Γ, H)}

[Assign] A, Γ, H � x := x′ : {((r0, Z), Γ [x 	→ Γ (x′)], H)}

[Let]

A, Γ, H � e1 : {(v1, Γ1, H1), · · · , (vn, Γn, Hn)}
A, Γ1[x 	→ v1], H1 � e2 : Ω21

· · ·
A, Γn[x 	→ vn], Hn � e2 : Ω2n

A, Γ, H � let x = e1 in e2 end : Ω21 � · · · � Ω2n

[IfT]
A, Γ � cond : t A, Γ, H � e1 : Ω1

A, Γ, H � if cond then e1 else e2 : Ω1

[IfF]
A, Γ � cond : f A, Γ, H � e2 : Ω2

A, Γ, H � if cond then e1 else e2 : Ω2

[IfTF]
A, Γ � cond : tf A, Γ, H � e1 : Ω1 A, Γ, H � e2 : Ω2

A, Γ, H � if cond then e1 else e2 : Ω1 �Ω2

[AllocA]
A � H � {(ri, NA,�)}

A, Γ, H � alloci : {((ri, Z), Γ, H · [ri 	→ (AL, C)])}

[AllocB]
A � H � {(ri, AL, C)}

A, Γ, H � alloci : {((ri, Z), Γ, H · [ri 	→ (AL, C)])}

[Open]
Γ (x) = (R,D) A � R#r0 A � H � {(R, AL, C)}

A, Γ, H � open x : {((R, P), Γ, H · [R 	→ (AL, O)]), ((R, Z), Γ, H)}

[Close]
Γ (x) = (R, D) A � R#r0 A � H � {(R, AL, O)}
A, Γ, H � close x : {((r0, Z), Γ, H · [R 	→ (AL, C)])}

Fig. 5. Typing Rules: Program , Expression
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alloci : ∀β. {β � {(ri, NA,�)}} → {((ri, Z), β · [ri 	→ (AL, C)])}
{β � {(ri, AL, C))}} → {((ri, Z), β)}

open x : ∀α, ρ, β.{ρ#r0, β � {(ρ, AL, C)}} → {((ρ, P), β · [ρ 	→ (AL, O)]), ((ρ, Z), β)}
close x : ∀α, ρ, β.{ρ#r0, β � {(ρ, AL, O)}} → {((r0, Z), β · [ρ 	→ (AL, C)])}
use x : ∀α, ρ, β.{ρ#r0, β � {(ρ, AL, O)}} → {((r0, Z), β)}
free x : ∀α, ρ, β.{ρ#r0, β � {(ρ, AL, C)}} → {((r0, Z), β · [ρ 	→ (NA, C)])}

Fig. 6. Type specification for File resource

Typing rule [App] for application f �x is defined as follows: we first prepare the
calling context of function f as a substitution S which denotes arguments and
heap passing. Then we find which input path constrained by AiS of function
f is typable under the current assumptions A. If there is a typing (exists an
input assumptions compatible with the calling context), result type (paths) is
generated by replacing type variables of reti to the current calling context.

Typing rules [Value], [Var], [Assign] are defined in the standard way. For
[Let], we type e1 first under the given input path, and then we type e2 under
each output path from e1. + is defined as normal join(�) or set union(∪). In
general, choosing � or ∪ controls the level of path sensitivity in our type system.
For our analysis, distinguishing paths is meaningful only when resource related
part of program state is different. For example, with (Γ1, H1) and (Γ2, H2), if
Γ1, Γ2 has the same location binding (same alias state) and H1 = H2, then we
join(�) two paths. Otherwise we union (∪) two paths. The concrete algorithm
for + is given in Section 5. [IfT], [IfF], [IfTF] rules are path sensitive extension
of standard if typing. If we can conclude that the cond is true under the given
input path (A, Γ ), type of if expression is the type of e1. False case is typed
similarly. If we cannot conclude any of them, type of if expression is Ω1 + Ω2.
Typing rules for cond is given in [18].

There are two rules [AllocA], [AllocB] for alloci. If H is a heap where ri

is not allocated, denoted as A � H � {(ri, NA,*)}, we update the heap such
that ri is allocated and the resource state is initial. If H is a heap where ri

is allocated, we check that the current state of ri is the final state denoted as
A � H � {(ri, AL, C)}. [Open] rule is defined as follows: we first check the value
bound to x is really a resource by using A � R#r0, then we check whether H is
a heap where R is allocated and the state is C. Note that open x generates two
output paths identifiable by the Sign value (either P or Z). [Close] rule is defined
similarly. Note that [AllocA], [AllocB], [Open] and [Close] ([Use], [Free]) can be
equally specified by function types as in Figure 6, meaning the specification and
verification is not restricted to the file resource usage.

4.3 Correctness of Type System

Theorem 1 [Correctness of type system]. If a Configuration C is typed,
then C is (finished) or it goes without type error.

Proof: The complete proof is in [18].
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5 Type Inference

The primary goal of type inference is to discover a minimal well-formed partition
of a given assumption set, which enables us to get a path sensitive type with
respect to the resource usage. Suppose that a function f takes n arguments, and
that m among n arguments are of resource types. When the function f uses k
resources in the body, the maximum size of a well-formed partition is m(k+1) ·
3(n+k). We infer the type of a function with the environment that maps each
argument xi to (ρi, αi). For each ρi, there are at most (k+1) valid assumptions:
ρi

.= r0, · · · , ρi
.= rk, and (ρi#r0 ∧ · · · ∧ ρi#rk) where each ri denotes one of k

resources. For each αi, there are three disjoint assumptions: αi � M, αi � Z, and
αi � P. For each resource ri, we consider the following three cases: (ri, NA,*),
(ri, AL, C), and (ri, AL, O).

In this paper, we design a preliminary type inference algorithm based on
lazy partitioning. Our algorithm automatically partitions the given assumption
set by augmenting it with stronger constraints on the value of an argument α
or the heap β, whenever the stronger assumptions help more precise typing.
For the resource binding ρ of an argument, we assume the maximal partition
A1, · · · , An, where each Ai contains different assumptions on ρ. We call this
the initial partition. For example, with a resource-type argument ρ and two re-
sources r1, r2, the initial partition is comprised of {(ρ#r0), (ρ

.= r1), (ρ#r2)},
{(ρ#r0), (ρ#r1), (ρ

.= r2)}, and {(ρ#r0), (ρ#r1), (ρ#r2)}. We run the algorithm
on each assumption set in the initial partition and combine the results. We con-
jecture the size of the initial partition is small enough, based on the observations
in Section 2. Furthermore, since we prohibit aliases between arguments, the num-
ber of valid assumption sets is much less than m(k+1).

5.1 Type Representations and Operations

In the algorithm, we always use a normalized assumption set that satisfies the
following conditions: (1) for each variable α, there is exactly one constraint on
α of the form α � d, (2) there is exactly one heap constraint of the form β � H
where H is a sorted list of (R, al, rs), and (3) H mentions all the resources in
the analysis scope5; when there are two resources R1 and R2, {(R1, al, rs)} is
extended to {(R1, al, rs), (R2,*,*)}.

We define two operations on assumption sets for the algorithm: the satisfi-
ability check and the conjunction of assumption sets. An assumption set is not
satisfiable if it contains α � ⊥ or β � H , where (R,⊥, ) ∈ H or (R, ,⊥) ∈ H .
The conjunction A1 � A2 of two assumption sets is defined as the following:
A1�A2 = {�α � (D1�D2) |�α � Di ∈ Ai}∪{β � (H1�H2) |β � Hi ∈ Ai}∪{ρ .=
R | ρ .= R ∈ Ai} ∪ {ρ#R | ρ#R ∈ Ai}. With normalized assumption sets, these
operations can be performed in an efficient way. The satisfiability check requires

5 An analysis scope specifies a module (i.e. a set of mutually recursive functions),
which should be analyzed at the same time.
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Ip(A, Γ, H, fun f (
x)=e ;p) =
let F = fix λ F.

let Γf = Γ [f 	→ ∀
α, 
ρ, β. F ][
x 	→ (
α, 
ρ)]
X = ∀(Ai, ) ∈ F. ∪ Ie(Ai, Γf , β, e)

in {(Ai, {(vj , Hj) | (vj , , Hj) ∈ Ωi}) | (Ai, Ωi) ∈ X} end
in Ip(A, Γ [f 	→ ∀
α, 
ρ, β. F ], H, p) end

Ip(A, Γ, H, e) = Ie(A, Γ, H, e)

Ie(A, Γ, H, v) = {(A, {(v̂ , Γ, H)})}
Ie(A, Γ, H, x) = {(A, {(Γ (x), Γ, H)})}
Ie(A, Γ, H, f 
x) =

assume Γ (f ) = ∀
α, 
ρ, β.{(A1, ret1), · · · , (An, retn)}
assume Γ (x i) = (
R, 
D)

let S = [ 
D/
α][
R/
ρ][H/β]
Ωi = {(vjS, Γ, HjS) | (vj , Hj) ∈ reti ∧ satisfiable(A � simplify(AiS))}
X = {(A � simplify(AiS), Ωi) | Ωi �= ∅}

in assert (X �= ∅); X end
Ie(A, Γ, H, x := x′) = {(A, {((r0, Z), Γ [x 	→ Γ (x ′)], H)})}
Ie(A, Γ, H, let x = e1 in e2 end) =

let {(A1, Ω1), · · · , (An, Ωn)} = Ie(A, Γ, H, e1)
Xi = Ie(Ai, Γ1[x 	→ v1], H1, e2) � · · · � Ie(Ai, Γm[x 	→ vm], Hm, e2)

where Ωi = {(v1, Γ1, H1), · · · , (vm, Γm, Hm)}
in X1 ∪ · · · ∪Xn end

Ie(A, Γ, H, if cond then e1 else e2 ) =
let (At, Af , Au) = partition(Γ, cond)

(A′
t, A

′
f , A′

u) = (simplify(At), simplify(Af ), simplify(Au))
in if A � A′

t then Ie(A, Γ, H, e1)
else if A � A′

f then Ie(A, Γ, H, e2)
else if profitable(A, A′

t, A
′
f , Γ, H, e1, e2) then

let Xt = satisfiable(A �A′
t) ? Ie(A � A′

t, Γ, H, e1) : ∅
Xf = satisfiable(A �A′

f ) ? Ie(A �A′
f , Γ, H, e2) : ∅

Xu = satisfiable(A �A′
u) ?

Ie(A �A′
u, Γ, H, e1) � Ie(A �A′

u, Γ, H, e2) : ∅
in Xt ∪Xf ∪Xu end

else Ie(A, Γ, H, e1) � Ie(A, Γ, H, e2)
end

(* For simplicity, assumption sets are presented not in the normal form *)
partition(Γ, cond) = case abstract (cond) of
| ? → ({Γ (x) � ⊥}, {Γ (x ) � ⊥}, {Γ (x) � �} )
| x ≤ M → ({Γ (x) � ⊥}, {Γ (x ) � ZP}, {Γ (x) � M} )
| x ≤ P → ({Γ (x) � MZ}, {Γ (x ) � ⊥}, {Γ (x) � P} )
| x ≤ Z → ({Γ (x) � MZ}, {Γ (x ) � P}, {Γ (x) � ⊥} )
| M ≤ x → ({Γ (x) � ZP}, {Γ (x ) � ⊥}, {Γ (x) � M} )
| Z ≤ x → ({Γ (x) � ZP}, {Γ (x ) � M}, {Γ (x) � ⊥} )
| P ≤ x → ({Γ (x) � ⊥}, {Γ (x ) � MZ}, {Γ (x) � P} )

Fig. 7. Type Inference Algorithm
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O(n + |H |) time and the conjunction of assumption sets requires O(n) time,
where n is the number of distinct variables.

We represent a heap by β · history , where history is the record of all updates
on the heap β. However, we are interested in only the final configuration of the
heap, it is sufficient to keep the set of visible updates instead of all history. The set
representation enables efficient manipulation of heap constraints. In complexity
analysis, we assume a data structure for H allowing O(1) accesses to (R, al, rs)
using R as a key. Note that O(|history|) = O(|H |) = O(k) where k is the number
of resources in the analysis scope.

The function simplify transforms the heap constraint of the form β ·history �
H into the form β � H ′ in O(|H |) time by the following algorithm: for all
(R, al, rs) ∈ history , (1) if (R, al′, rs′) ∈ H satisfies al � al′ and rs � rs′, then
replace (R, al′, rs′) ∈ H with (R,*,*). (2) Otherwise, H ′ = ⊥. The second
case indicates that the heap constraint is not satisfiable. For constraints with no
variables, simplify checks if the constraints are satisfiable then drops it.

Finally, we describe our implementation of the path sensitive join +:
Ω1 +Ω2 =

let Ω′ = Ω1
in for each (v, Γ, H) ∈ Ω2 do

if (v′, Γ ′, H) ∈ Ω′ ∧ SameResourceBinding(Γ, Γ ′) ∧ (v.0 = v′.0)
then replace (v, Γ, H) in Ω′ with (v � v′, Γ � Γ ′, H)
else insert (v′, Γ ′, H) to Ω′;

Ω′

Under the constraint β � H , we consider that two heaps β · history1 and β ·
history2 are identical if H · history1 = H · history2. We transform H · history i

into Hi of a set form by applying all the assignments in history i to H . Since a
heap comparison takes O(|H |) time, the join takes O((|H | + |Γ |) · |Ω1| · |Ω2|).

5.2 The Algorithm

Our type inference algorithm is described in Figure 7. The structure of the
algorithm is as follows:

(1) Ip(A, Γ, H, p) : {(A1, Ω1), · · · , (An, Ωn)}
(2) Ie(A, Γ, H, e) : {(A1, Ω1), · · · , (Am, Ωm)}

Beginning with the well-formed state A � (Γ, H), the algorithm produces a well-
formed partition A1, · · · , An of A, where each Ai preserves well-formedness of
the state, i.e. Ai � (Γ, H). Each Ωi is a correct type of e w.r.t. the type system in
Section 4 under Ai,Γ , and H . Resource manipulation expressions such as alloci

or open x are regarded as function applications that have the types in Figure 6.
Thus, Figure 7 does not have any rules for those expressions.

For function definitions, we require the fixpoint iteration, since our language
permits recursive calls. We begin the iteration with the following type: {(A ∪
Aρ ∪ {�α � *, β � *}, {})} where A is given and Aρ is an element of the initial
partition. Note that A should not have constraints on α and β, since α and
β are bounded to the function type. The iteration always terminates because
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the domain is finite and the transfer function is monotonic; the function further
partitions assumption sets, and Ω grows for each path.

According to the typing rule [App], the algorithm should produce Ai validat-
ing exactly one of the assumption sets in the type of the function to be called.
Suppose the type of the callee is {(A′

1, ret1 ), (A′
2, ret2 )}. When the given assump-

tion set A can validate neither A′
1 nor A′

2, we need to refine A to use the type
of the callee. Since A′

1 and A′
2 are disjoint, A �A′

1 and A � A′
2 is a well-formed

partition of A satisfying such requirement. Unsatisfiable assumption set denotes
infeasible paths. The function satisfiable detects such assumption sets according
to the rules in Section 5.1, and we discard them. Since substitutions may produce
a constraint breaking the normal form condition, we use the function simplify
for the transformation.

We recognize the resource states by values from resource manipulation ex-
pressions such as open x, since our language does not allow to identify the
state of a resource directly. If the purpose of a branch expression is to iden-
tify a resource state, the algorithm should partition the given assumption set
A by the branch condition. In the algorithm, the function profitable determines
whether partitioning helps more precise typing or not. One safe implementation
of profitable is always returning true. The path sensitive join + would recover par-
titions that do not help recognizing resource states. However, we plan to develop
light-weight analyses or heuristics for early detection of useless partitioning, e.g.
both branches do not touch resources. Note that the actual implementation of
profitable does not affect the soundness of the algorithm. The function partition
generates three disjoint assumption sets according to the branch condition; the
first two is for true and false cases, and the last is for the indeterminable case.
Again, A � At, A � Af , and A � Au forms a well-formed partition, and we dis-
card unsatisfiable ones. When the branch condition is indeterminate, the path
sensitive join + combines the results of both branchs.

We extend the path sensitive join + to the results of Ie. Suppose two results
{(A1, Ω1), · · · , (An, Ωn)} and {(A′

1, Ω′
1), · · · , (A′

m, Ω′
m)}. First, + constructs an

intermediate result with the finest well-formed partition: {· · · , (Ai � A′
j , Ωi +

Ω′
j), · · ·} where Ai �A′

j is satisfiable. Then, + recovers the useless partitions in
the result; + merges (A, Ω) and (A′, Ω′) into (A � A′, Ω + Ω′) when Ω and Ω′

have the same resource state, i.e. the same resource heap and binding.

5.3 Correctness of the Algorithm

Theorem 2 [Correctness of the algorithm].
If Ip(A, Γ, H, p) = {(A1, Ω1), · · · , (An, Ωn)}, then Ai, Γ, H � p : Ωi.
If Ie(A, Γ, H, e) = {(A1, Ω1), · · · , (An, Ωn)}, then Ai, Γ, H � e : Ωi.

Proof: Induction on the structure of p and e. The complete proof is in [18].

6 Related and Future Works

Type systems for region-based memory managements[1,30] ensure that deal-
located regions are no longer accessed. Type systems for race detection[11,12]
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ensure that appropriate locks will be acquired before a shared object is accessed.
Type system for object initialization[15] ensures that every object is initialized
before it is accessed. The type system for JVM of [21] ensures that an object
that has been locked will be eventually unlocked. In contrast to these works, our
type system is formalized in more general setting with path sensitivity.

Resource usage analysis[17,20], CQual[14] and type state verification[27,10]
are formalized as general analyses to verify resource usage properties as our
approach. Primary difference from our approach is that they do not formalize
the ideas for identifying actions which is dependent on values of variables (path
insensitive). There are other approaches which can verify resource usage proto-
cols with the help of active cooperation of programmers[6,9,13,28]. For example,
Vault[6] system keeps track of the state of each resource to control accesses to
resources. In contrast, our work does not need user intervention.

SLAM[2], Blast[16], and other software model checking projects can ana-
lyze resource usage properties in cooperation with path information which is
identifiable by the known values of variables as presented in this paper. The
main difference from our approach is that these are whole program analyses. We
can analyze each function separately whenever all used function summaries (not
source code) are given. Summaries can be specified in the path sensitive way for
unavailable program fragments.

ESP[5] is a path sensitive resource usage verification tool that is focusing on
scalability. It analyzes programs in the path sensitive way only when two arms
of a branch have different resource state, like + in our work. It verifies each
resource separately based on the observation that property of each resource is
usually independent. However, it is not clear whether this approach can scale
up arbitrarily because the approach still uses whole program analysis. The pre-
cision and scalability of ESP can be largely dependent on the pointer analysis
used[24,7]. We have a different point of view on scalability. First, we attack the
scalability by formalizing our analysis as modular analysis; we summarize only
once for each function. Second, rather than using a separate whole program alias
analysis to trace resources, our analysis traces it directly in a path sensitive way
together with the resource usage when it computes the summary of a function. In
other words, interprocedural aliases are just rejected and intraprocedural aliases
are traced in the path sensitive way. Experiments to show effectiveness of this
idea are left as a future work.

In contrast to sound approaches mentioned above, there are several ap-
proaches that aim to detect bugs effectively at the cost of unsoundness[8,31,4,3].
MC[8] is a tool that aims to find resource usage related bugs with few false
alarms. Even though it uses a number of heuristics to remove false alarms, it can-
not fully compensate for the information lost due to the under-approximation.
For example, MC may generate a false alarm for the following code:

if (x) { fp = fopen("file"); }
if (x && fp) { fclose(fp); }

Saturn[31] is a SAT solver based approach to detect bugs in the path sensitive
and modular way. It translates a C function into an input language of a SAT
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solver which encodes the possible state and control of code. Then it tries to
find all the satisfiable solutions to summarize the function in an exhaustive way
exploiting the power of SAT solvers which is much improved recently[23]. Their
experimental results show the effectiveness of SAT based approach. It also shows
us the feasibility of exhaustive path sensitive summarization on this problem.
One weakness they pointed out is the way of handling loops and recursion. Saturn
unfolds a loop for some bounded number of times and then tries to find bugs. In
this reason, it may generate false alarms for the following program fragment.

my_fopen() { //extracted from 175.vpr of SPEC benchmark suite.
while (1) {

scanf("%s",fname);
if ((fp = fopen(fname,flag)) != NULL) break;

}
return (fp);

}

Saturn can be understood as an effort to overcome the problems due to the
under-approximation of the real properties for the purpose of error detection.
To the contrary, our work is understood as an effort to overcome the problems
due to the over-approximation for the purpose of verification. Our lazy path
partitioning algorithm discussed in Section 5 is one potential strength of our
work over Saturn’s exhaustive summary computation.

Future works are summarized as follows: we first plan to show that our
approach is effective by experiments with full implementation. Extensions for
structures and pointers in C programs will be considered as well.

7 Conclusion

We have formalized a path sensitive type system for the verification of FSM
based resource usage properties, in the presence of dynamic resource allocations
and aliases. The correctness proof and an inference algorithm are presented.
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Abstract. Size-change termination (SCT) automatically identifies ter-
mination of first-order functional programs. The SCT principle: a pro-
gram terminates if every infinite control flow sequence would cause an
infinite descent in a well-founded data value (POPL 2001).

More recent work (RTA 2004) developed a termination analysis of the
pure untyped λ-calculus using a similar approach, but an entirely differ-
ent notion of size was needed to compare higher-order values. Again this
is a powerful analysis, even proving termination of certain λ-expressions
containing the fixpoint combinator Y . However the language analysed is
tiny, not even containing constants.

These techniques are unified and extended significantly, to yield a
termination analyser for higher-order, call-by-value programs as in ML’s
purely functional core or similar functional languages. Our analyser has
been proven correct, and implemented for a substantial subset of OCaml.

1 Introduction

Background. Termination proofs are an essential part of program verification
and theorem proving. Despite its status as the canonical undecidable problem,
automatic termination analysis is a useful tool.

The size-change termination principle of [10] applies to functional programs
in which all datatypes are well-founded (which leaves all datatypes but integers
and floats, so that natural numbers must be used in lieu of integers). It provides
a fully automatic test for termination that does not rely on explicit lexicographic
or other orders supplied by the user. The approach was adapted to a termination
analysis of the pure untyped λ-calculus [8], using a new well-founded size ordering
defined on higher-order values. Analysis of a λ-expression first produced a control
flow graph together with some size-change graphs, and then applied the SCT
principle.

Contributions of this paper

– A new call-by-value higher-order termination analysis of purely functional
languages such as (subsets of) ML or Scheme. The first-order and λ-calculus

K. Yi (Ed.): APLAS 2005, LNCS 3780, pp. 281–297, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



282 D. Sereni and N.D. Jones

analyses of [10, 8] are extended to handle higher-order values (not in [10]),
and named functions, user-defined datatypes and general recursion (not in
[8]).

– A depth parameter k extends Shivers’ k-CFA [17] to trace flow of data values.
This adjustable parameter steers the tradeoff between analysis precision and
time complexity. The class of programs recognised as terminating strictly
increases as this parameter grows.

– Depth-0 analysis encompasses the analyses of [10, 8]. Depth-1 analysis can
prove termination of yet more sophisticated recursions, as well as call-by-
value translations of many lazy functional programs.

– The analysis has been implemented for a subset of OCaml, and the imple-
mentation is freely available at [15].

1.1 The Core Language

Our termination analysis applies to a purely functional call-by-value language.
This paper uses a very restricted core language with curried function definitions
that is powerful enough to serve as an intermediate representation for most call-
by-value functional languages. The abstract syntax of the core language follows
in an ML-like datatype declaration:

Program = FunctionDef list× Expr def 1 def 2 · · · def n; e
FunctionDef = Name×Name list× Expr f x1 · · ·xn = e

e ∈ Expr = Name x
| FunctionName f
| Const of Constant c
| App of Expr× Expr e1 e2
| If of Expr× Expr× Expr if e then e1 else e2

A program is a list of top-level function declarations, together with an expression
to evaluate in the context of these definitions. Expressions e are standard and so
not explained further. A core language constant may be atomic, e.g., a natural
number 0 or 1; or a primitive operator, e.g., +,− or, as in ML, list constructors
[], :: and hd, tl, null. Numeric values are assumed well-founded so evaluation of
expression 0− 1 will cause termination (abortion). We write f for the body e of
a function f defined by f x1 · · · xn = e.

Translation from a reasonably large OCaml subset to the core language is
sketched in Section 5.1, with more details available in the companion report [16].
Thus we use OCaml syntax where convenient in examples.

The standard function map on lists illustrates the syntax. (The superscripts
are expression labels and can be ignored for now.)

let rec map f xs = match xs with []→ []
| x :: xs→ f x :: 1map f xs

This can be translated to the core language program:

map f xs = if null xs then [] else f (hd xs) :: 1map f (tl xs)
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We write f i to describe a value resulting from applying function f to a length-i
argument list. Thus map 0 is the usual map function and map 1, for example,
describes the value of map (fun x→ x + 1).

A simple first-order program computes the Ackermann function:

ack m n = if m = 0 then n + 1 else

if n = 0 then 1ack (m− 1) 1 else
2ack (m− 1) (3ack m (n− 1))

1.2 Some Examples of Programs Successfully Analysed

Our system recognises as terminating all the first-order examples from [10], in-
cluding the Ackermann program.

Higher-Order Functions. First, an example from [8] (presented in OCaml-like
syntax) computes f n x = x+2n by nontrivial use of recursion and higher-order
functions:

let g r a = r (r a)
let rec f n = if n = 0 then (fun x→ x + 1) else g (f (n− 1))

A number of higher-order functions are in widespread use in functional programs,
and as such are of particular interest. In particular, the standard functionals map,
foldl (fold left) and foldr (fold right) on lists. We will present a whole-program
analysis, so calls of form map f xs where f is an unknown function parameter
cannot occur.

A complication: not every call to map need terminate. For example, the func-
tion f x = hd (map f [x]) is not terminating on any input. It is straightforward
to find a sufficient (but not necessary) condition for an occurrence of map to be
size-change terminating. The expression map e xs is size-change terminating (at
depth k = 0) for any list value of xs, provided

– e is a size-change terminating expression; and
– if e can evaluate to a value described by g i, then no program-computable

value described by g i + 1 can call map 2.

The first condition is clearly necessary. The second condition is stronger than it
could be, but serves to exclude functions such that f above that are indirectly
recursive through a call to map.

Similar results hold for foldl and foldr. In this sense, the following functions
are all size-change terminating at depth k = 0 by the higher-order SCT analysis:

foldr op a x::xs = if null xs then a else op x (foldr op a xs)
foldl op a x::xs = if null xs then a else foldl op (op a x) xs

reverse xs = foldl (fun ys x→ x :: ys) [] xs
(@) xs ys = foldr (::) xs ys

concat xss = foldr (@) xs []
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2 Semantic Issues

The number n of arguments to a program defined function or a constant a is
called its arity, written �a. Thus �0 = �[ ] = 0, and �:: = 2, and �f = n if there
is a function definition of form f x1 . . . xn = e. This notation is extended
to expressions. We assume that expressions are uniquely labelled, so that the
function definition f enclosing an expression e is well-defined. We then define
�e := �f . Thus �e is the number of bound variables in a complete environment
for evaluating e.

The core language is given a standard call-by-value operational semantics,
based on closures [9]. A state consists of an expression or an atomic constant,
together with an environment mapping free variables to values. We represent
variables positionally for simplicity so an environment is just a list of values,
and thus states are written s = a : v1 · · · vk or s = a : vs. Notationally we
write environments as sequences (strings), using ε for the empty environment,
juxtaposition for concatenation, and |vs| for the environment’s length.

A value v is a state that does not require further evaluation because a is an
atomic constant, or it has form s = a : v1 · · · vk with k < �a. Examples: 42 : ε or
:: : 7 or map : (successor : ε). More formally:

s ∈ State = {a : vs | a ∈ Expr ∪Constant ∧ vs ∈ Env ∧ |vs| ≤ �a}
vs, ws ∈ Env = Value∗

v, w ∈ Value = {a : vs ∈ State | |vs| < �a ∨ (a ∈ Constant ∧ �a = 0)}
Note that constants and expressions are distinguished in the semantics; this will
be useful in the sequel.

The operational semantics defines the evaluation judgement s ⇓ v (s reduces
to v, where s is a state and v a value). This is straightforward, with semantic
rules for variable bindings and function application shown in Figure 1. Rules for
constants, primitive operator evaluation, etc. if are usual and may be seen in
[16].

Value
s ⇓ s

s∈Value
FunctionRef
f : vs ⇓ f : ε

Variable
xi : vs ⇓ vsi

App
e1 : vs ⇓ eb : v1 · · · vn e2 : vs ⇓ v eb : v1 · · · vnv ⇓ w

e1e2 : vs ⇓ w
n<	eb

Fig. 1. Operational Semantics (excerpt)

Lemma 1. For any state a : vs reachable in the execution of a program P , a is
either a constant or a subexpression of P .

This result is crucial to our analyses. It holds because of the use of envi-
ronments to represent bindings, rather than substitution. It provides a natural
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finite set of program points, namely the subexpressions of right-side expressions
appearing in the program’s function definitions.

Of course the number of constants and, as well, the number of environments
can grow unboundedly, so some abstraction will be required for program analy-
sis. This justifies treating constants and expressions differently in the semantics:
there are infinitely many potential constants, but only finitely many subexpres-
sions of the program (program points).

Sequentialising Nontermination. The big-step semantics of Figure 1 defines the
evaluation rules clearly, but is not particularly helpful for termination analysis.
Reason: a nonterminating evaluation of a state s is represented by the absence
of any proof tree for a judgement s ⇓ v, which provides no immediate handle on
the nonterminating computation.

To remedy this, we add small-step semantic rules to trace control flow more
exactly in a computation. The extended semantics (following [8], with details in
[16]) defines two judgements: s ⇓ v as above, and s → s′ (s calls s′).

The relation s → s′ holds iff in order to conclude s ⇓ v for some v it is
necessary to find v’ such that state s′ ⇓ v′. This occurs precisely when s′ ⇓
occurs as a premise of the inference rule with conclusion s ⇓ .

For rule App this adds the call. e1e2 : vs → e1 : vs, Furthermore, if the first
premise of the App rule is satisfied (resp. first and second premises), the calls
e1e2 : vs → e2 : vs and e1e2 : vs → eb : v1 · · · vnv are added (respectively, with
notation as in Figure 1).

Definition 1. The dynamic call graph is DCG = (State,→) with states as
nodes, and edges s → s′ as just defined.

The transformed semantics now explicitly represents nontermination:

Lemma 2. For any state s, s ⇓ v for some value v iff there does not exist an
infinite sequence of calls s = s0 → s1 → s2 → · · · .

This result characterises nontermination as the existence of an infinite path
in the dynamic call graph defined by the → relation. Our termination analysis
works by showing that such an infinite path cannot exist.

3 Size-Change Termination

In this section, we lay the groundwork for the higher-order size-change termi-
nation analysis. For generality, these are parametrised on some of the analysis
choices made, e.g., the precision of the control-flow analysis and the choice of
nodes in the size-change graphs. This allows further variations on the analysis
to be defined. We shall complete the description in Section 4.

The SCT analysis has been described in [10] for first-order programs, and
an analysis of the pure λ-calculus was described in [8]. However, in order to
generalise the SCT method, and to enable a more precise analysis, the SCT
framework must be generalised substantially from previous treatments.
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3.1 The Size-Change Principle

The basis of this analysis is the size-change termination principle [10]: a program
terminates if every infinite control flow sequence would result in infinite descent
in at least one well-founded data value. As remarked previously, this relies on all
data value sets being well-founded1.

In our setting Lemma 2 allows a reformulation: If every infinite call sequence
causes infinite descent in at least one data value, by well-foundedness no infinite
call sequences can occur, so the program terminates.

3.2 Size-Change Graphs

Graph Bases The SCT analysis of [10] operates by annotating each call with
some information about size changes. To extend this to the current context we
must decide which components of states we are interested in tracking.

As a simple example, consider the Ackermann program of Section 1.2. In this
case it is natural to track size changes between the m and n parameters across
calls. Function calls in the Ackermann program are of the form e : v1v2 →
ack : w1w2 where e is a subexpression of the body of ack, and vi and wi are
natural numbers (i = 1,2). The values v1 and v2 represent the values of m and
n (respectively) in the calling state, while w1 and w2 are the values of m and n
in the callee state. As ack is a first-order program, the environment is flat (all
bound values are simply constants). In the higher-order case, values bound in
the environment can be arbitrarily complex.

Definition 2. The graph basis function gb : State → P({0, 1, . . . , nv}∗), where
nv is the maximum n such that P has a definition f x1 . . . xn = e and ∗ denotes
Kleene closure. For any state s, gb(s) is defined to be the set of environment
paths of s:

gb(a : v1 · · · vn) = {ε} ∪
n⋃

i=1

{i p | p ∈ gb(vi)}

As noted before, for higher-order programs graph bases can contain paths of ar-
bitrary lengths. As an example, consider the state s = map : (add : (1 : ε)), ([] : ε)
(which might occur in the evaluation of map (add 1) xs). Then gb(s) =
{ε, 1, 1.1, 2}. The environment path 1.1 denotes the first parameter of add (vari-
ables identified positionally).

Each path p in gb(s) denotes a substate of s, namely the value bound in the
environment at path p. This is made precise below:

(a : v1 · · · vn)�ε = (a : v1 · · · vn)
(a : v1 · · · vn)�(i p) = vi�p

1 Avery [1] is currently working on extending the size-change approach to the integers.
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Size Ordering. The SCT analysis relies on a well-founded order on values. We
write this ordering as < throughout. We postpone the definition of this order
until the next section, and merely rely on this property:

< is a well-founded order on the set Value (1)

This is a parameter to the general SCT framework, and different SCT-based
analyses can use different orders.

Size-Change Graphs. Information about size changes in a call s → s′ takes the
form of a size-change graph.

Definition 3. A size-change graph between states s and s′ (or of type s → s′)
is a subset of gb(s)× {≥, >} × gb(s′).

The intention is that an edge (x, >, y) in a size-change graph of type s → s′

should indicate that the substate of s at path x is larger than the substate of s′

at path y. This is formalised below:

Definition 4. A size-change graph γ is safe for (s,s’) if: (x, >, y) ∈ γ implies
s�x > s′�y, and (x,≥, y ∈ γ) implies s�x ≥ s′�y.

There may be many safe size-change graphs for any call (in particular, any
subset of a safe graph is safe); our goal will be to produce graphs that are safe
and as precise as possible.

For example, consider (in the Ackermann program of Section 1.2) a call
Ack : m = 3, n = 4 → Ack : m = 3, n = 3 (where Ack abbreviates the body
of the ack function). The maximal safe size-change graph for this call is γ =
{(m,≥, m), (n, >, n)}, using variable names in lieu of their position. More for-
mally, we should write γ = {(1,≥, 1), (2, >, 2)}. Any subset of γ is safe.

3.3 Recognising Size-Change Termination

The Static Call Graph. The SCT analysis relies on a finite approximation named
the static call graph to the dynamic call graph of Definition 1. The precise con-
struction of the static call graph is the final parameter of the analysis.

Definition 5. A static call graph is a tuple SCG = (A,→scg, α) where A is a
finite set of nodes called abstract states, →scg ⊆ A × A is called the abstract
transition relation, and α : State→ A is called the abstraction function.

The first essential property of the static call graph is that it correctly and
finitely approximates the transitions of the dynamic call graph.

Definition 6. The static call graph is control-safe for program P if for every
s, s′ ∈ State we have

s → s′ ∈ DCG implies α(s) →scg α(s′) ∈ SCG
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We now elaborate this definition to encompass data flow as well as control flow.
The following assigns a graph basis to each abstract state, and a size-change
graph G(t →scg t′) to each static transition in SCG. The net effect is a finite
but two-level graph. The first-level graph (A,→scg, α) has nodes to represent
all dynamic states as in Definition 5. Further, with each dynamic control flow
transition s → s′ there is an associated size-change graph G(α(s) →scg α(s′))
that is required to safely approximate the data flow in s → s′.

Definition 7. A tuple SCG = (A,→scg , α, gb, G) is an annotated static call
graph if (A,→scg, α) is as in definition 5. The new components: gb : State →
FinSet({0, 1, . . .}∗) is called the abstract graph basis, and G associates with each
static call graph edge t →scg t′ a size-change graph G(t →scg t′) ⊆ gb(t) ×
{≥, >} × gb(t′).

Finally, we ensure that the annotated static call graph correctly describes
the program’s flow of data values.

Definition 8. The static call graph SCG is data-flow safe for program P if it
is control-safe for P , and for every s, s′ ∈ State we have

1. gb(α(s)) ⊆ gb(s)
2. s → s′ ∈ DCG and t = α(s), t′ = α(s′) implies G(t →scg t′) is safe for (s, s′)

as in Definition 4.

Condition 1 ensures that any element of the graph basis of an abstracted
state α(s) denotes a valid substate of any state s that it represents. Condition
2 ensures that size-change graphs in the annotated static call graphs correctly
describe data flow in the dynamic state transitions.

The Finite SCT Criterion. We can now state the central results to apply the
SCT principle. More details and proofs may be found in [10, 16]. The criterion
for termination that we shall employ is given below; this can be derived from
the SCT principle and the definition of safety.

Definition 9. An infinite sequence of size-change graphs (γi)i∈N is infinitely
decreasing if there exists a sequence of nodes (xi)i∈N and labels (li)i∈N such that
for each i, (xi, li, xi+1) ∈ γi, and infinitely many of the li are > labels.

Proposition 1 (SCT). Let P be a program, and SCG a data-flow safe anno-
tated call graph for P . If for every infinite call sequence s0 →scg s1 →scg s2 →scg

. . . the graph sequence G(s0 →scg s1), G(s1 →scg s2), . . . is infinitely decreasing,
then P terminates.

The criterion defined in Proposition 1 is stated in terms of all infinite se-
quences in graph G, and so it is not immediately obvious that this is decidable.
However, this is the case, and an algorithm to solve this problem exists [10]:

Theorem 1. The condition defined in Proposition 1 is decidable (and is
PSPACE-complete).

Despite its high worst-case complexity, this test performs well on natural
examples.
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4 Higher-Order Programs

In the previous section we have outlined the components of the SCT analysis: a
well-founded order on values, a finite set of abstract states (together with their
graph bases), and a way of constructing the static call graph, annotated with
size-change graphs. We shall now describe each of these elements in more detail,
completing the overview of this analysis.

4.1 Sizes of Higher-Order Values

The first step is to define the size order < on values. It is straightforward to
compare first-order values. For atomic constants (booleans, natural numbers . . . )
the natural order can be used, as this is well-founded. For constructed constants
such as lists, the structural order is a reasonable choice: such a value can be
written as a term v = C(w1, . . . , wn) for some values wi. Then certainly wi < v
for each i. The order relation generated by this is suitable 2.

The problem of defining a useful size comparison on higher-order values is of
more interest. Recall that such values are represented as closures in our opera-
tional semantics, and thus a higher-order value takes the form e : vs, where e is
an expression, and vs is a list of values. A straightforward but effective order on
such values is again structural:

v < e : vs ⇐⇒ v ≤ vsi for some i

The < relation is the transitive closure of the relation {(v, s) | v is bound in the
environment of s} which is a natural basis for comparing values in the higher-
order case. The usefulness of this size ordering can be seen from the foldl’ ex-
ample (Section 5).

The order on values is then the union of the order on constants and this order
on higher-order values. More refined orderings would be possible (for example,
an ordering that allows a constant and a functional value to be compared) but
this does not appear to increase precision in real cases.

4.2 The Static Call Graph

The key step in the analysis is the construction of the annotated static call
graph. Recall that this has a finite set of abstract states as nodes, and call edges
annotated by size-change graphs. The data-flow safety criterion (Definition 8) is
that the static call graph should overapproximate the DCG, and the size-change
graphs should be safe for the transitions they label. We shall describe such a
construction, based on a k-CFA [18] of the program.

2 The fact that this order is well-founded relies on the fact that no cyclic structures
can be created in the absence of laziness or reference cells.
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The Abstract Domain. The SCG is obtained by abstract interpretation of the
operational semantics of the language. We therefore must define the domain of
abstract states. The set of exact states is infinite for two separate reasons: the
set of constants is infinite, and the depth of closures can become unbounded.

Constants can be handled by mapping concrete constants to a finite set of
abstract constants. For simplicity we shall assume the following mapping here:
all ground constants (such as 42 or []) are mapped to the same value •, and all
primitive operators (such as + or ::) are left unchanged.

The abstract domain is then obtained by only retaining information in en-
vironments up to an a priori fixed depth k. The family of depth-k abstraction
functions is thus defined by recursion:

αk(c : ε) = • : ε if c ∈ Constant
α0(a : v1 · · · vn) = a n

αk+1(a : v1 · · · vn) = a : αk(v1) · · ·αk(vn)

Thus αk(s) is the state obtained from s by turning each constant into its abstract
equivalent, and pruning all environment paths of length greater than k. The base
case (k = 0) discards all information from the environment, but keeps its length
to identify partially applied function values.

As an example, consider the state s = map : (add : (1 : ε)), ([] : ε). Then
α0(s) = map 2, α1(s) = map : (add 1), (• : ε), and α2(s) = map : (add : (• : ε)),
(• : ε).

The graph basis gbk(s) of a depth-k abstract state is defined as the set of
environment paths of length at most k + 1:

gbk(αk(s)) = {p ∈ gb(s) | |p| ≤ k + 1}

This is well-defined, as for any states s and s′ with αk(s) = αk(s′), the sets of
environment paths in gb(s) and gb(s′) of length at most k + 1 are identical. For
example, gb0(ack 2) = {ε, 1, 2} (where 1 and 2 identify parameters m and n of
ack respectively).

Closure Analysis. The construction of a safe call graph by abstract interpretation
is now straightforward. We approximate the call and reduction relations (→ and
⇓ respectively) in the abstract interpretation, and write →scg and ⇓scg for their
approximations. Abstract values are defined similarly to values in the operational
semantic. A depth-0 abstract value is a state of the form e i, where i < �e. A
depth-k (k > 0) abstract value is of the form e : vs where |vs| < �e. Reduction
judgements in the abstract interpretation take the form s ⇓scg v, where s is an
abstract state and v an abstract value.

We illustrate the use of closure analysis to approximate environments in the
depth-0 case. The general case can be found in [16]. The problem that must
be solved is to evaluate states of the form xi n, where xi is a function parame-
ter, as no information is kept from the environment. Let f be the function in
which the expression xi occurs (the is well-defined, as expressions are uniquely
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labelled). Then the only way in which xi could have been bound to a value
v is in the evaluation of a state of the form e1e2 n, where e1 n ⇓scg f i− 1
and e2 n ⇓scg v (where n = �e1e2). By the subexpression property (Lemma 1),
e1e2 is a subexpression of P . This yields the following safe approximation to
environment lookups:

∃e1e2 ∈ subexps(P ) e1 �e1 ⇓scg f (i− 1) e2 �e2 ⇓scg v
xi �xi ⇓scg v

where as before f is the function the body of which contains the expression xi.
In the general case (depth k > 0), the lookup of variable xi yields a state of
depth k − 1. This is promoted to a set of states of depth k by expanding the
leaves of the tree representing this state to all their possible values, using closure
analysis as above.

An Example. We will now illustrate the depth-0 SCG construction for a simple
example. Recall the following program (Section 1.2):

succ x = x + 1
f n = if n = 0 then succ else g (f (n− 1))

g r a = r (r a)

The interesting aspect of this program is function g, which applies its higher-
order parameter r. Closure analysis identifies the possible values of g.r as succ 0
and g 1. There are three self-loops in the SCG, shown below, together with their
associated size-change graphs:

f → f g → g g → g

n n�>
r r

a a

�>
r r

a a

�>

�≥

The decreases in r in both self-calls g → g occur because in both cases a para-
meter (r) becomes the top-level state (g 2). A detailed account of how the SCG
can be annotated with safe size-change graphs is given in [16]. All three loops in
the SCG are therefore size-change terminating, so that this program terminates.

5 Implementation and More Details on Examples

5.1 Implementation

A proof-of-concept implementation of this analysis is freely available [15]. This
is based on the OCaml compiler [11] frontend to input OCaml programs, and
transforms the programs into the core language. The static call graph is then
constructed, together with the size-change graphs annotating edges. Finally, the
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SCT criterion [10] is applied to the static call graph, to produce either a guar-
antee of termination, or a list of loops in the call graph that cannot be proved
to terminate.

The input OCaml program is transformed to a core language program by
a series of semantic-preserving (and in particular nontermination-preserving)
program transformations. The main operations are: eliminating local and anony-
mous function definitions by λ-lifting [7, 14, 3], and eliminating pattern matching
by replacing each match statement by a chain of explicit tests.

A substantial concern is whether this analysis is tractable in practice. Ignor-
ing constants for simplicity, the number of possible states for a program of size
N , with each function taking at most B arguments is O((NB)Bk

) for the depth-k
analysis. Furthermore, deciding the SCT criterion is a PSPACE-complete prob-
lem.

However, in practice the static call graph of real programs is much smaller,
so that only a small portion of the potential state space is explored. Also, the
SCT criterion is inexpensive in practice. By computing the simply-connected
components of the call graph, the SCT test need only be applied to each SCC
in turn, and these tend to be small in real programs.

5.2 A Worked Example

To illustrate the SCT analysis, we will now describe its operation on a simple
example program (at depth k = 0). This program expresses the standard func-
tion foldl (fold left) on lists in term of its dual fold right. The input program
follows:

let rec foldr h e =
function [] → e | x :: xs→ h x (foldr h e xs)

let foldl’ op e xs =
let id x = x in let step x f a = f(op a x) in
foldr step id xs e

The definition of foldr is standard. The interest in this program lies in the fact
that the instance of foldr computes a higher-order value, which is applied to
e to force evaluation of the accumulated result. This program is size-change
terminating, and the operation of the SCT analysis on it is an illuminating
example. The first step is to transform this program to the core language, by
λ-lifting:

foldr h e xs = if null xs then e else 2h (hd xs) 3(foldr h e (tl xs))
id x = x

step op x f a = f (op a x)
foldl’ op e xs = foldr 1(step op) id xs e

What is the control flow of this program? The step function applies its parameter
f , so the call graph of the program depends on the values that step.f may be



Termination Analysis of Higher-Order Functional Programs 293

step 4 id 1

foldl’ 3

foldr 3

Fig. 2. Simplified Call Graph from foldl’

bound to. Closure analysis approximates this. There is one textual application of
step, in the expression labelled 1. This is passed to the foldr function, whence we
can deduce that foldr.h can take a value described by step 1. The h parameter is
then applied in expression 2, so that in this application, the expression h (hd xs)
(which reduces to values of the form step 2) is applied to expression 3. This is
therefore a binding site for step.f identified by closure analysis. The possible
values are:

step.f ≡ id 0 and step.f ≡ step 3

The call graph of the program can easily be deduced; a simplified representation
of it is shown in Figure 2.

There are two self-loops in the call graph. The first is the foldr 3 → foldr 3
recursion; this is easily seen to terminate, as the list parameter xs of foldr de-
creases at each iteration.

The self-loop step 4 → step 4 is of more interest. It occurs because of the
possible value step 3 for f . The size-change graph for this loop is shown below:

op op

x x

f f

a a

�≥

�>

The step loop is thus size-change terminating, as the parameter f decreases.
The decrease in f can be explained as follows: the parameter f is applied as an
operator in step, so all the values bound in the environment of f (two levels down
in the environment of step) now become bound in the top-level environment of
the callee step state. In particular, the value of f in the callee state is a strict
substate of the value of f in the caller state, hence the decreasing edge.

We have therefore shown that the foldl’ function is size-change terminating.
This illustrates the use of the ordering on functions, as well as closure analysis.
Of course, it should be stressed that such informal reasoning is for illustrative
purposes only; in actual fact this result was obtained automatically.
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5.3 Further Examples

The size-change termination analysis has proved successful on practical exam-
ples. In this section we shall show some examples of the SCT analysis in use.

Higher-Order Programs. The standard functions on lists (Section 1) are com-
monly used, but proving termination of these is not too difficult. We now consider
some programs that illustrate the effectiveness of the order on functional values
in proving termination.

Ackermann, Higher-Order. This example illustrates the effect of the depth
parameter k, and is adapted from an example of the use of the λ-calculus SCT
analysis [8], computing the ack function using the fixpoint combinator Y (in
call-by-value form) explicitly.

let Y f = (fun q → f (fun s → q q s))
(fun q → f (fun s → q q s))

let h b f n = if n = 0 then f 1
else f (b f (n− 1))

let g a m = if m = 0 then (fun v → v + 1)
else Y h (a (m− 1))

let ack m n = Y g m n

The depth-0 analysis of this program fails. This can be explained by the fact
that the two loops introduced by uses of Y in the program are merged, due to
the lack of precision. This problem can be solved by using two instances of the
Y combinator [8].

However, the depth-1 analysis successfully proves termination, without hav-
ing to duplicate the Y function. The information kept in the environment allows
the two uses of Y to be separated – specifically, the analysis tracks which function
was passed to Y as f , if not the value of its arguments.

Lazy Functional Programs: repmin. The repmin[2] program illustrates the fact
that lazy functional programs can be analysed within our framework. repmin
replaces all values stored in the leaves of a binary tree by the least such value,
using a circular definition to avoid traversing the tree twice. It is shown below in
its lazy version (in Haskell-like syntax to avoid confusion with strict programs),
assuming a suitable type of trees:

repmin t = mt where (mt, m) = rpm m t

rpm m (Tip x) = (Tip m, x)
rpm m (Fork t1 t2) = (Fork mt1 mt2, m1 minm2)

where (mt1, m1) = rpm m t1

(mt2, m2) = rpm m t2

This program relies crucially on laziness, so that m can be passed as an argument
to rpm before it is evaluated (as it is returned by rpm).
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The key observation is that a program terminates under lazy evaluation iff it
terminates under call-by-name. We use a well-known encoding of call-by-name
in a call-by-value language. A value v that is passed by name is represented by
a suspension, that is a function λ().v that evaluates v on demand, and is forced
when it is used. The function force x = x () achieves this. As this encoding is
standard, we omit the translated program.

The repmin program is size-change terminating at depth k = 1. This is
similar to the higher-order fold-left case, and again derives from the ordering on
functional values. The main difference is that where foldl’ builds a closure that
is isomorphic to the input list, rpm builds a closure that is isomorphic to the
input tree.

This application of the higher-order SCT analysis is particularly fruitful, as
termination of nontrivial lazy functional programs is often hard to establish. In
particular, termination of circular programs such as repmin depends crucially
on evaluation of values never being forced before they are available. The SCT
analysis can further be used to prove termination of algorithms operating on
lazy data structures (a wealth of such algorithms can be found in [13]).

6 Related Work and Conclusion

We have described a termination analysis for higher-order functional call-by-value
languages, such as the purely functional subsets of ML and Scheme. This is very
successful on a wide range of higher-order programs. We have also shown that this
extends to lazy languages, proving termination of programs for which this is a non-
trivial property. We now briefly describe related work, and future directions.

6.1 Related Work

Size-Change Termination. This work is based on the size-change termination
principle, originally described for first-order functional programs in [10]. Its ex-
tension to the pure λ-calculus [8] introduced the idea of comparing functional
values using the structural order on environments. The depth-0 analysis is at
least as powerful as the analysis of [8] on λ-terms, though it is applicable to a
larger language.

As well as dealing with constants and general recursion, our approach adds
the depth parameter as a way of controlling the precision of the analysis. In-
creasing the depth strictly increases the class of programs that are found to
terminate. Depths of 1 and 2 have been found very useful in practice.

Termination Analyses. Much of the work on termination analysis has been di-
rected towards analysing logic programs for termination, as this is often highly
nontrivial. Particularly relevant to the SCT method is the Termilog [12] analyser.
The algorithm used by Termilog is a close counterpart of the SCT criterion. In
particular, size-change graphs for calls from a function are analogous to the
weighted rule graphs of [12], with ≥ and > as weights. There is also much in-
terest in termination of term rewriting system. The AProVE system [4] identifies
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termination (and nontermination) of higher-order, untyped term rewriting sys-
tems. The system can be parametrised by the well-founded orders searched to
prove that there can be no infinite chains in the dependency graph (similar to
the call graph in the functional case). This analysis can also make use of a form
of the SCT principle, though there does not seem to be an equivalent to our
order on higher-order functions in this context.

6.2 Future Work

Expressive Power. A major direction for future work is to investigate the class of
programs that are size-change terminating, to determine the boundaries of the
method precisely. In particular, relating the higher-order SCT criterion to type
systems that guarantee strong normalisation (from the simply-typed λ-calculus,
and up to Girard’s system F [5]) is natural. It is known that at any fixed depth,
there are simply-typed λ-expressions that are not size-change terminating. It
is further known that any terminating λ-expression (without constants) will be
found terminating for some choice of the depth k (for, a terminating λ-expression
has a finite call graph, which the analysis will explore exhaustively for large
enough values of the depth parameter). A more precise characterisation of the
set of programs accepted by this analysis is lacking, however.

A related issue is the problem of determining the appropriate choice of the
depth parameter. In some cases this is straightforward, for example first-order
programs do not benefit from increasing k beyond 0. A systematic procedure
for choosing the depth parameter for more programs would be a significant
improvement.

Applications. There are many applications of termination analysis, the archety-
pal application being program verification (proving termination and partial cor-
rectness separately). Another important application, particularly of functional
languages, lies in theorem proving. In a theorem prover such as HOL [6], func-
tions can be introduced into the logic, provided a formal proof of termination can
be produced (this is necessary to guarantee soundness). HOL currently provides
facilities for helping the user in this task, such as Konrad Slind’s TFL system
[19]. However, in many cases termination cannot be proved fully automatically
and the burden falls on the user. We hope that our analysis could apply to
automatically prove termination in more cases. To integrate our analysis into
(say) HOL, it would be necessary to automatically produce a formal proof of
correctness, rather than just a yes/no result.
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Abstract. Many situations can be modeled as solutions of systems of
simultaneous equations. If the functions of these equations monotonically
increase in all bound variables, then the existence of extremal fixed point
solutions for the equations is guaranteed. Among all solutions, these fixed
points uniformly take least or greatest values for all bound variables.
Hence, we call them homogeneous fixed points. However, there are sys-
tems of equations whose functions monotonically increase in some vari-
ables and decrease in others. The existence of solutions of such equations
cannot be guaranteed using classical fixed point theory. In this paper, we
define general conditions to guarantee the existence and computability of
fixed point solutions of such equations. In contrast to homogeneous fixed
points, these fixed points take least values for some variables and great-
est values for others. Hence, we call them heterogeneous fixed points. We
illustrate heterogeneous fixed point theory through points-to analysis.

1 Introduction

Many situations can be modeled as solutions of systems of simultaneous equa-
tions. If the functions of these equations monotonically increase in all bound
variables, then the existence of extremal fixed point solutions for the equations
is guaranteed through Knaster-Tarski fixed point existence theorem [14,17].
Among all solutions, these fixed points uniformly take least or greatest values
for all bound variables. Hence, we call them homogeneous.

However, there are systems whose functions monotonically increase in some
variables and decrease in others. Emami’s (intraprocedural) points-to analysis [4]
exhibits this behavior. This analysis computes a variant of may and must aliases
in terms of points-to abstraction. The aliases that hold along some but not
along all paths are captured by possibly points-to relation. The aliases that
hold along all paths are captured by definite points-to relation. While their
algorithm performs a fixed point computation, the monotonicity of the functions
is not obvious. Consequently the existence and computability of the fixed point
solutions cannot be assumed.

The definite and possible points-to relations have both positive as well as
negative dependences amongst themselves. Such heterogeneous dependences are
inherent to points-to analysis. If these mutual dependences are consistent in a
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manner we define later, then the existence of fixed points can be guaranteed.
These fixed points called heterogeneous fixed points take least values for some
variables and greatest values for others. We generalize Knaster-Tarski fixed point
existence theorem [14,17] to heterogeneous fixed points.

In section 2, we show that monotonicity of functions in Emami’s points-
to analysis is not obvious. We then reformulate points-to analysis so that the
heterogeneous dependences can be better understood. In section 3, we identify
conditions for consistency of heterogeneous dependences so that the existence of
fixed points can be assured. In section 4, we define a property called heteroge-
neous monotonicity which captures the consistency conditions. We also define
heterogeneous fixed points and show that the former guarantees the existence of
latter. Finally, in section 5, we define the solution of our points-to analysis using
heterogeneous fixed point theory.

2 Points-To Analyses

In this section, we show that monotonicity of functions in Emami’s points-to
analysis is not obvious. We then reformulate the analysis to explicate heteroge-
neous dependences. A brief overview of Emami’s points-to analysis is provided
in the appendix.

2.1 Monotonicity Issues in Emami’s Points-To Analysis

Emami’s points-to analysis [4] computes points-to relation between pointer ex-
pressions. This relation has elements of the following types:

– Definite Points-To. A triple (p1, p2, D) holds at a program point if the stack
location denoted by p1 contains address of the stack location denoted by p2
along every execution path reaching that point.

– Possibly Points-To. A triple (p1, p2, P ) holds at a program point if the stack
location(s) denoted by p1 contains address(es) of the stack location(s) de-
noted by p2 along some execution paths reaching that point.

We abstract the algorithm in [4] as data flow equations. In this paper, we
restrict ourselves to intraprocedural analysis and a subset of the language in [4].

The points-to relation at IN of a node i is a confluence of points-to relations
at OUT of its predecessors p1, . . . , pk.

inputi =
{

Merge
(
outputp1

, . . . , outputpk

)
if i �= entry

φ if i = entry (1)

where “entry” is the unique entry node of the procedure and the Merge opera-
tion [3], defined below, is extended to multiple arguments in an obvious way.

Merge(S1, S2) = {(p1, p2, D) | (p1, p2, D) ∈ S1 ∩ S2} ∪
{(p1, p2, P ) |(p1, p2, r) ∈ S1 ∪ S2 ∧ (p1, p2, D) �∈ S1 ∩ S2}(2)
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Note that the definition of Merge excludes the definite information along all
paths from being considered as possible points-to information.

Let (x, y, r) hold before an assignment in node i where r is either D or P .

– If x is only likely to be modified, then after the assignment, x may or may
not point to y. Hence the definiteness of its pointing to y must be changed
to the possibility of its pointing to y. This is captured by the property
changed inputi (ref. Appendix A: 24 and 25).

– If x is definitely modified as a side effect of the assignment, then x ceases to
point to y. This is captured by the property kill seti (Appendix A: 26).

An R-location represents the variable whose address appears in the rhs. An
L-location represents the variable which is being assigned this address. Both of
the L-location and R-location depend on the nature of points-to information and
can be either definite or possible.

An assignment generates definite points-to information between its defi-
nite L-locations and definite R-locations. All other combinations between its
L-locations and R-locations are generated as possibly points-to information. This
is captured by the property gen seti (Appendix A: 27).

Finally, the points-to information at OUT of node i is

outputi = (changed inputi − kill seti) ∪ gen seti (3)

The existence of a fixed point solution requires that all functions in the
system of equations should be monotonic in an appropriate lattice. As [4] does
not define a partial order over the points-to information domain, we have to
assume it. Since the values being computed are sets of points-to triples, we
embed them in a lattice with set inclusion as the natural partial order.

Example 1. Let a node i contain the following assignment : ∗x = &y. Consider
the following two cases:

1. Let inputi = {(d, a, D), (x, b, P ), (x, c, P )}. Then,

outputi = {(d, a, D), (x, b, P ), (x, c, P ), (b, y, P ), (c, y, P )}.
2. Let input′i = inputi ∪ {(x, d, P ), (b, y, P ), (c, y, P )}. The resulting output′i is

output′i = {(d, a, P ), (x, b, P ), (x, c, P ), (x, d, P ), (b, y, P ), (c, y, P ), (d, y, P )}.

Clearly, outputi and output′i are incomparable and

inputi ⊆ input′i �⇒ outputi ⊆ output′i

Hence the flow function is non-monotonic w.r.t. set inclusion as partial order. ��
As can be seen from the example, an increase in the possible points-to infor-

mation in input has increased the possible points-to information in output and
has decreased the definite points-to information. Similarly, it can be shown that
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an increase in the definite points-to information in input results in increase of
the definite points-to information in output and decrease of the possible points-
to information. This is an instance of heterogeneous dependences. While this
behavior is inherent in points-to analysis, the existence of and convergence to a
fixed point is not guaranteed in general unless monotonicity of functions can be
established.

Consider yet another partial order ≤ in which the D/P tags in the points-to
triples also determine the ordering.

S1 ≤ S2 ⇐⇒ ((x, y, P ) ∈ S1 =⇒ (x, y, P ) ∈ S2) ∧
((x, y, D) ∈ S1 =⇒ (x, y, r) ∈ S2, where r = D/P )

While the flow function could be monotonic under this partial order, Merge still
exhibits non-monotonicity.

Merge ({(x, y, D)}, φ) = {(x, y, P )}
Merge ({(x, y, D)}, {(x, y, D)}) = {(x, y, D)}

Though φ ≤ {(x, y, D)}, Merge({(x, y, D)}, φ) �≤ Merge({(x, y, D)}, {(x, y, D)}).
In summary, the monotonicity of functions in Emami’s analysis has not been

addressed and is not obvious. Consequently the existence and computability of
the fixed point solution cannot be assumed.

2.2 May-Must Points-To Analysis

We now reformulate Emami’s analysis to explicate the heterogeneous depen-
dences. As is customary in data flow analysis [12,11], we associate data flow
information with IN and OUT of a node. Let MustINi/MayINi be respectively
must and may data flow properties at IN of a node i. Let MustOUTi/MayOUTi be
respectively must and may data flow properties at OUT of a node i. Unlike [4], we
compute inclusive may information implying that MayINi and MayOUTi infor-
mation also includes points-to information which holds along all paths reaching
node i. Our may information corresponds to both definite and possible informa-
tion whereas our must information corresponds to definite information only.

Since we use separate data flow properties for may and must information,
we do not need the third component of points-to triples (D/P). Let U be the
universal set containing all type correct points-to pairs 〈p1, p2〉. The lattice of
data flow information is (℘(U),⊆,∪,∩, U, φ), where ℘(U) is power set of U and
⊆ is the partial order. Hereafter, we denote this complete lattice by (℘(U),⊆).

The must L-locations and R-locations are represented by MustLi/MustRi and
the may L-locations and R-locations by MayLi/MayRi. Let x be a variable and
‘&’ and ‘∗’ respectively be dereferencing and referencing operators. The must
and may R-locations and L-locations are defined in Table 1.

The points-to analysis is a forward problem as points-to information flows
along the control flow of program. The must points-to problem being an all path
problem, MustIN of a node is intersection of MustOUT of all its predecessors. In
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Table 1. Definitions of L-locations and R-locations

lhsi MustLi MayLi

x {x} {x}
∗x {y | 〈x, y〉 ∈ MustINi} {y | 〈x, y〉 ∈ MayINi}

rhsi MustRi MayRi

&x {x} {x}
x {y | 〈x, y〉 ∈ MustINi} {y | 〈x, y〉 ∈ MayINi}
∗x {z | 〈x, y〉, 〈y, z〉 ∈ MustINi} {z | 〈x, y〉, 〈y, z〉 ∈ MayINi}

the absence of interprocedural information, MustIN of the entry node is initialized
to empty set. The data flow equations for MustINi and MustOUTi are as follows:

MustINi =

⎧⎨
⎩
⋂

p∈pred(i)

MustOUTp if i �= entry

φ if i = entry
(4)

MustOUTi = (MustINi −MustKilli) ∪MustGeni (5)

where pred(i) is set of all predecessors of node i. This is a conventional form of
data flow analysis which employs IN, OUT, Gen, and Kill properties. Emami’s
analysis involves an additional property for the “changed” input set.

Since an assignment potentially updates any of its may L-locations, all must
points-to pairs from the may L-locations are killed. The set of such pairs is
denoted by MustKilli. Further, an assignment generates must points-to pairs
between all must L-locations and must R-locations. They are contained in the
set MustGeni.

MustKilli = {〈x, y〉 | x ∈ MayLi ∧ 〈x, y〉 ∈ MustINi} (6)
MustGeni = {〈x, y〉 | x ∈ MustLi ∧ y ∈ MustRi} (7)

The may points-to problem is some path problem and hence, MayIN of a node is
union of MayOUT of its predecessors. Again, in the absence of interprocedural
information, MayIN of the entry node is initialized to empty set. The data flow
equations for MayINi and MayOUTi are as follows:

MayINi =

⎧⎨
⎩
⋃

p∈pred(i)

MayOUTp if i �= entry

φ if i = entry
(8)

MayOUTi = (MayINi −MayKilli) ∪MayGeni (9)

An assignment kills all may points-to pairs from any must L-location of the
assignment. The set of such pairs is denoted by MayKilli. Further, an assignment
generates may points-to pairs between all may L-locations and may R-locations.
They are contained in the set MayGeni.

MayKilli = {〈x, y〉 | x ∈ MustLi ∧ 〈x, y〉 ∈ MayINi} (10)
MayGeni = {〈x, y〉 | x ∈ MayLi ∧ y ∈ MayRi} (11)
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1

x = &p
2

x = &q
3

r = &a
4

∗x = &p∗x = &b
5

x = &r
6 7

8

. . .

MustIN1
5 {〈r, a〉}

MayIN1
5 {〈r, a〉, 〈x, p〉, 〈x, q〉}

MustOUT1
5 {〈r, a〉}

MayOUT1
5 {〈r, a〉, 〈x, p〉, 〈x, q〉, 〈p, b〉, 〈q, b〉}

After first iteration

MustIN2
5 {〈r, a〉}

MayIN2
5 {〈r, a〉, 〈x, p〉, 〈x, q〉, 〈x, r〉, 〈p, b〉, 〈q, b〉}

MustOUT2
5 φ

MayOUT2
5 {〈r, a〉, 〈x, p〉, 〈x, q〉, 〈x, r〉, 〈p, b〉, 〈q, b〉, 〈r, b〉}

After second iteration

Fig. 1. How MayINi affects MayOUTi and MustOUTi

The may-must analysis is not a simple combination of the union and intersec-
tion data flow analyses. Usually the dependences among the data flow variables
are all positive. In this case, there are negative dependences as well.

3 Consistency of Dependences

The nature of the underlying dependences in points-to analysis brought out by
may-must formulation is analyzed in this section. We identify the conditions
which guarantee existence of fixed points in presence of such dependences.

3.1 Positive and Negative Dependences

From the underlined terms in the data flow equations (4) – (11), it is clear
that MustOUTi decreases with increase in MayINi and MayOUTi decreases with
increase in MustINi.

Definition 1. A variable x depends on a variable y iff x is defined in terms
of y and there exist at least two distinct values of y such that the corresponding
values of x are distinct, keeping rest of the variables constant.

If the non-decreasing values of y result in the non-decreasing values of x then
x depends positively on y. Otherwise, x depends negatively on y.

Example 2. Consider the program flow graph shown in Figure 1. To create max-
imum optimization opportunities, we want the largest set of must points-to pairs
and the smallest set of may points-to pairs which together form the solution of
may-must analysis. Hence, we initialize the data flow variables as follows:

MustINi = MustOUTi = U (12)
MayINi = MayOUTi = φ (13)
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where U is the universal set containing all type correct points-to pairs.
We compute the data flow properties using round robin iterative method in

which nodes are visited in the reverse depth first order. Let P j
i be a property P

at node i in iteration j. The data flow values at node 5 after first and second
iterations over the program flow graph are shown in Figure 1.

MustIN5 remains the same in first and second iterations, but MayIN5 increases
in second iteration which causes MustOUT5 to decrease. Thus, the dependence
of MustOUTi on MayINi is negative. MayOUT5 increases in second iteration and
hence the dependence of MayOUTi on MayINi is positive. ��

Similarly, it can be shown that MustOUTi depends positively on MustINi and
MayOUTi depends negatively on MustINi. The dependences in may-must data
flow equations can be summarized as follows:

D1. The dependence of MustINi on MustOUTp, p ∈ pred(i), is positive (4).
D2. The dependence of MustOUTi on MustINi is positive but that on MayINi is

negative (5, 6, and 7).
D3. The dependence of MayINi on MayOUTp, p ∈ pred(i), is positive (8).
D4. The dependence of MayOUTi on MayINi is positive but that on MustINi is

negative (9, 10, and 11).
Since not all dependences between the variables are positive, the existence

and computability of fixed point solutions of the equations cannot be guaran-
teed using the classical results [14,13,17]. However, as we demonstrate later if
the dependences are mutually consistent, the existence of fixed points can be
guaranteed.

3.2 Consistency of Dependences

Consistency of dependences can be defined in terms of a dependence graph.
Nodes in this graph represent the bound variables. If a variable x depends
positively on a variable y, then there is a solid edge from x to y. If x depends
negatively on y, then there is a dashed edge from x to y. If a variable x does not
depend on y, then there is no edge from x to y.

The parity of a path in a dependence graph is even if the path has an even
number of dashed edges, otherwise its parity is odd. If all paths between every
pair of nodes have the same parity, then the dependences between those variables
are consistent. If the parity is even then an increase in one’s value leads to an
increase in other’s and vice versa. If the parity is odd then an increase in one’s
value leads to a decrease in other’s and vice versa. If the paths are of different
parities then the mutual influences cannot be determined.

Definition 2. Dependences in a system of simultaneous equations are consistent
iff for every pair of nodes (x, y) contained in a strongly connected component of
the dependence graph, all paths between x and y have the same parity.

For simplicity, we assume that the dependence graph of the variables has
a single maximal strongly connected component. The systems that have more
than one maximal strongly connected components in their dependence graphs
are discussed in [10].
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4 Heterogeneous Fixed Points

In the classical setting, monotonicity and fixed points of a set of functions are
straightforward generalizations of the corresponding definitions of the individual
functions. These generalizations are uniform. Hence, we call them homogeneous.

To capture systems like may-must data flow equations, we generalize these
formulations so that they need not be uniform over the components. We call our
formulations heterogeneous. Here, we present only relevant part of the formula-
tion and associated results. A more detailed treatment can be found in [10]. We
now introduce some terminology used.

Let Sn be a system of n (n > 0) simultaneous equations in n variables:

x1 = f1(x1, . . . , xn)
...

xn = fn(x1, . . . , xn)

The functions f1, . . . , fn are called the component functions of Sn. Let F be
a function defined as F (X) = 〈f1(X), . . . , fn(X)〉 where X = 〈x1, . . . , xn〉. We
call F the function vector of Sn. The variables x1, . . . , xn which appear on the
left side of the equalities are called the bound variables of Sn.

We assume that a bound variable xi takes values from a finite1 complete
lattice Li = (Li,�i,�i,�i,*i,⊥i), where �i is the partial order over the set
Li, �i and �i are respectively join and meet of the lattice, and *i and ⊥i are
respectively the top and bottom of the lattice. Let L = (L, �, �, �, �, ⊥)
= L1×· · ·×Ln. A function fi has type L → Li. The function vector F has type
L → L.

4.1 Heterogeneous Monotonicity

Consider a partition (P, Q) of the set {1, . . . , n}. We define the heterogeneous
monotonicity of a function vector with respect to a partition (P, Q) as follows :

Definition 3. A function vector F : L → L is heterogeneously monotonic
(or simply h-monotonic) w.r.t. a partition (P, Q) iff

1. for an i ∈ P , fi monotonically increases in xj, if j ∈ P and monotonically
decreases in xj , if j ∈ Q and

2. for an i ∈ Q, fi monotonically increases in xj, if j ∈ Q and monotonically
decreases in xj , if j ∈ P .

If the function vector F is h-monotonic w.r.t. a partition (P, Q), then (P, Q)
is called a valid partition for the system. The classical monotonicity of a function
vector F is a special case of h-monotonicity with ({1, . . . , n}, φ) and
(φ, {1, . . . , n}) as (the only) valid partitions.

1 For simplicity, we consider finite lattices. More general treatment is available in [10].
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A function fi monotonically increases in a variable xj iff the variable xi

depends positively on the variable xj . A function fi monotonically decreases in
a variable xj iff the variable xi depends negatively on the variable xj .

Lemma 1. There exists a valid partition for a system Sn iff the dependences in
Sn are consistent.

Proof. Let there be a valid partition but the dependences in Sn not be consistent.
There exist two variables xi and xj such that ρ1 and ρ2 are two paths between
them and the parity of ρ1 is even and that of ρ2 is odd. From the definition of
h-monotonicity and composibility of the dependences, due to the dependences
along the path ρ1, i and j should belong to the same set of a partition. Similarly,
due to the dependences along the path ρ2, i and j should belong to the different
sets of a partition. This is a contradiction.

Let there be no valid partition but the dependences in Sn be consistent. There
exist two variables which can be placed in the same as well as the different sets.
Clearly, there exist two paths between them which have different parities. Hence,
the dependences in Sn are not consistent. ��

If i and j belong to the same set in a valid partition, then xi and xj have
even parity paths between them in the dependence graph. If i and j belong to
different sets in a valid partition, then xi and xj have odd parity paths between
them in the dependence graph. That is, an increase in the value of a variable in
a set can lead only to an increase in the values of the variables in that set and
decrease in the values of the variables in the other set.

4.2 Identifying Valid Partitions

We give an algorithm called Even-Odd-Analysis to identify the valid par-
titions given the dependence graph of a system. This algorithm returns valid
partitions iff the dependences in Sn are consistent. Let D = (V, E) be the de-
pendence graph of a system of equations, where V is the set of bound variables
and E is the set of edges representing the dependences among the variables.

Let dependence be a property of edges. A value 1 of dependence(〈xu, xv〉)
denotes a solid edge from xu to xv while a value −1 denotes a dashed edge from
xu to xv. Let membership(xu) denote to which set of the partition the variable xu

belongs. The function Initialize initializes the dependence properties according
to the monotonicities of the functions and assigns a value 0 to membership
property of all variables to indicate that their membership in the sets of a valid
partition is yet to be determined.
Initialize(D).

1. for each 〈xu, xv〉 ∈ E
2. if fu monotonically increases in xv then
3. dependence(〈xu, xv〉) ← 1 /* solid edge */
4. else
5. dependence(〈xu, xv〉) ← −1 /* dashed edge */
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6. for each xu ∈ V
7. membership(xu)← 0
8. return

Let Strongly-Connected-Components be a function which takes a
graph and returns the strongly connected components in it as sets of sets of
nodes. Select-Node selects an element from a set. Even-Odd-Analysis first
initializes the properties explained above. It then selects a node from a strongly
connected component and assigns it membership in a set. It invokes a function
Dft which traverses the graph in depth-first order and determines memberships
of nodes iff the dependences are consistent. If Dft returns a 0 then the de-
pendences are inconsistent and there is no valid partition. Otherwise, the sets
of the valid partition can be constructed from the membership properties of
nodes.

Even-Odd-Analysis(D).

1. Call Initialize(D)
2. SCC ← Strongly-Connected-Components(D)
3. for each C ∈ SCC
4. xu ← Select-Node(C)
5. membership(xu)← 1
6. success← Dft(xu, C)
7. if success = 0 then
8. print “No partitions possible for the component [C]”
9. else

10. P ← { u ∈ {1, . . . , n} |xu ∈ C ∧ membership(xu) = 1 }
11. Q ← { u ∈ {1, . . . , n} |xu ∈ C ∧ membership(xu) = −1 }
12. print “Partitions for component [C] are ([P ], [Q]) and ([Q], [P ])”
13. return

Dft takes a node xu and a strongly connected graph C. For every neighbour
xv of xu in C, it checks whether xv has been visited previously. If not then it
assigns xv a membership consistent with the dependence 〈xu, xv〉. If the depen-
dence is 1, then xv goes to the same set else it goes to the other set. It then
calls itself on xv and C. If failure is returned then it propagates it upwards.
Otherwise it analyzes other neighbours of xu. If xv has been visited, then it
verifies the consistency of membership of xv w.r.t. the dependence 〈xu, xv〉. If
the dependences are inconsistent, it returns a failure, otherwise it goes to next
neighbour of xu. Finally, returns a success status.

Dft(xu, C).

1. for each xv ∈ C such that 〈xu, xv〉 ∈ E /* for every neighbour of xu */
/* if unvisited, assign membership consistent with dependence 〈xu, xv〉*/

2. if membership(xv) = 0 then
3. membership(xv) ← dependence(〈xu, xv〉) ×membership(xu)
4. success← Dft(xv , C) /* traverse recursively */
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5. if success = 0 then return 0 /* propagate failure upwards */
/* if visited, check for inconsistency with the dependence 〈xu, xv〉 */

6. elseif membership(xv) �= dependence(〈xu, xv〉)×membership(xv) then
7. return 0 /* if inconsistent, return the failure status */
8. return 1 /* return the success status */

4.3 Relating to Homogeneity

We now relate heterogeneity with classical homogeneity. We construct a lattice

L(p,q)=
(
L(p,q), �(p,q), �(p,q), �(p,q), �(p,q), ⊥(p,q)

)
as a product of the component lattices or their duals2 as defined below:

L(p,q) = L
(p,q)
1 × · · · ×L(p,q)

n

where, L
(p,q)
i =

{
Li i ∈ P
L−1

i i ∈ Q

where L−1
i is the dual of Li and (P, Q) is a partition of {1, . . . , n}.

Consider a system S
(p,q)
n whose function vector F (p,q) : L(p,q) → L(p,q) is

isomorphic to F . The component functions of S
(p,q)
n are f

(p,q)
1 , . . . , f

(p,q)
n . The

systems Sn and S
(p,q)
n are called duals of each other w.r.t. the partition (P, Q).

Lemma 2. If the systems Sn and S
(p,q)
n are duals of each other w.r.t. a partition

(P, Q), then (P, Q) is a valid partition for Sn iff the function vector F (p,q) :
L(p,q) → L(p,q) of S

(p,q)
n is monotonic.

Proof. We prove forward implication by considering following two cases:
Case 1. Let i ∈ P . By construction, L

(p,q)
i = Li. Since, the function vector

F of Sn is h-monotonic w.r.t. the partition (P, Q),

if j ∈ P, aj �j a′
j =⇒ fi(x1, . . . , aj , . . . , xn) �i fi(x1, . . . , a′

j, . . . , xn),
if j ∈ Q, aj 1j a′

j =⇒ fi(x1, . . . , aj , . . . , xn) �i fi(x1, . . . , a′
j, . . . , xn),

The component functions fi and f
(p,q)
i are isomorphic. By construction of the

lattice L(p,q),

if j ∈ P, aj�(p,q)
j a′

j =⇒ f
(p,q)
i (x1, . . . , aj , . . . , xn)�(p,q)

i f
(p,q)
i (x1, . . . , a′

j , . . . , xn)

if j ∈ Q, aj�(p,q)
j a′

j =⇒ f
(p,q)
i (x1, . . . , aj , . . . , xn)�(p,q)

i f
(p,q)
i (x1, . . . , a′

j , . . . , xn)

Hence, for an i ∈ P , f
(p,q)
i monotonically increases in all bound variables.

Case 2. For an i ∈ Q, L
(p,q)
i = L−1

i . By arguments similar to the above case,
f

(p,q)
i can be shown to be monotonically increasing in all bound variables.

Thus, all component functions of S
(p,q)
n monotonically increase in all variables

and hence, F (p,q) is monotonic. The converse is by an analogous argument. ��
2 Lattices (L, �, �, �, �, ⊥) and (L, �, �, �, ⊥, �) are called duals of each other.



Heterogeneous Fixed Points with Application to Points-To Analysis 309

Lemma 3. A system Sn and its dual system S
(p,q)
n w.r.t. any partition (P, Q)

of the set {1, . . . , n} have the same solutions.

Proof. The systems are isomorphic and are defined over the same sets. ��

4.4 Heterogeneous Fixed Points

We have assumed that a component lattice Li is a complete lattice, hence any
subset of Li has a least upper bound (lub) and a greatest lower bound (glb). Let
F ix(F ) be the set of fixed points of F . Let F ixi(F ) be the set of elements from
Li that belong to some fixed point of F .

We define hfp(p,q)(F ) element-wise such that its ith element hfp(p,q)
i (F ) is

glb of F ixi(F ), if i ∈ P and lub of F ixi(F ), if i ∈ Q.

hfp(p,q)
i (F ) =

{�iF ixi(F ) if i ∈ P
�iF ixi(F ) if i ∈ Q

(14)

We now show that if (P, Q) is a valid partition for a system Sn, then hfp(p,q)

(F ) exists and is a fixed point of the function vector F . We call this fixed
point, a heterogeneous fixed point (HFP) of an F w.r.t. a partition (P, Q). From
among the fixed point values, it takes element-wise least possible values from the
component lattices with subscripts in P and element-wise greatest possible values
from the component lattices with subscripts in Q. We now give an existence
theorem for heterogeneous fixed points.

Theorem 1 (HFP Existence Theorem). If the function vector F : L → L
of a system Sn is h-monotonic w.r.t. a partition (P, Q), then

hfp(p,q)(F ) ∈ F ix(F )

Proof. Since the function vector F is h-monotonic w.r.t. a partition (P, Q), from
Lemma 2, F (p,q) : L(p,q) → L(p,q) is monotonic. By Knaster-Tarski fixed point
theorem [14,17], the least fixed point of F (p,q), lfp

(
F (p,q)

)
exists. We can write

lfp
(
F (p,q)

)
element-wise as:

lfpi

(
F (p,q)

)
=

{
�(p,q)

i F ixi

(
F (p,q)

)
if i ∈ P

�(p,q)
i F ixi

(
F (p,q)

)
if i ∈ Q

(15)

From Lemma 3, F ix(F ) = F ix
(
F (p,q)

)
. (15) can be rewritten as:

lfpi

(
F (p,q)

)
=

{
�(p,q)

i F ixi(F ) if i ∈ P

�(p,q)
i F ixi(F ) if i ∈ Q

(16)

From the construction of the dual lattice L(p,q), �(p,q)
i = �i, if i ∈ P and

�(p,q)
i = �i, if i ∈ Q. From this and (16) and the definition of hfp (14),

lfpi

(
F (p,q)

)
=
{�iF ixi(F ) if i ∈ P
�iF ixi(F ) if i ∈ Q

}
= hfp(p,q)

i (F )

Hence, hfp(p,q)(F ) ∈ F ix(F ). ��
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For simplicity of exposition, we have proved Theorem 1 by appealing to
Knaster-Tarski theorem, but it is also possible to prove it from the first principles.

From the construction of L(p,q), we already know that

⊥(p,q)
i = ⊥i if i ∈ P

⊥(p,q)
i = *i if i ∈ Q

(17)

The least fixed point lfp
(
F (p,q)

)
can be computed iteratively starting with

⊥(p,q) [13]. Hence, the heterogeneous fixed point of a function vector F w.r.t. a
valid partition (P, Q) can be defined as follows:

hfp(p,q)(F ) = F k
(
⊥(p,q)

)
(18)

where k ∈ N is the least number such that F k
(⊥(p,q)

)
= F k−1

(⊥(p,q)
)

.

5 Solution of May-Must Data Flow Analysis

We now apply the heterogeneous fixed point theory to may-must points-to analy-
sis (ref. section 2.2). Consider the data flow equations (4), (5), (8), and (9). If
there are n nodes in a program flow graph, there are 4× n equations forming a
system S(4×n). MustINi, MustOUTi, MayINi, and MayOUTi, where i ∈ {1, . . . , n}
are the bound variables of the system. The corresponding flow functions are de-
noted by fMustINi, fMustOUTi, fMayINi, and fMayOUTi.

For convenience, we abstract the data flow equations as:

x(4×i−3) = f(4×i−3) (x1, x2, . . . , x4×n)
x(4×i−2) = f(4×i−2) (x1, x2, . . . , x4×n)
x(4×i−1) = f(4×i−1) (x1, x2, . . . , x4×n)
x(4×i−0) = f(4×i−0) (x1, x2, . . . , x4×n)

For translating these equations back to may-must points-to analysis, we will
use the following mappings:

Bound Variables Functions
MustINi ↔ x(4×i−3)

MustOUTi ↔ x(4×i−2)
MayINi ↔ x(4×i−1)

MayOUTi ↔ x(4×i−0)

fMustINi ↔ f(4×i−3)
fMustOUTi ↔ f(4×i−2)

fMayINi ↔ f(4×i−1)
fMayOUTi ↔ f(4×i−0)

A component lattice is Lj = (℘(U),⊆). The product lattice of the system is
L = L1 × · · · × L(4×n) = (℘(U),⊆)(4×n). A component function is of the type
(℘(U),⊆)(4×n) → (℘(U),⊆).

Consider the following two sets P, Q ⊆ {1, . . . , (4× n)}:
P = {(4× i− 1), (4× i− 0) | i ∈ {1, . . . , n}} (19)
Q = {(4× i− 3), (4× i− 2) | i ∈ {1, . . . , n}} (20)
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The set P represents variables MayINi/MayOUTi and the corresponding func-
tions fMayINi/fMayOUTi. Q represents variables MustINi/MustOUTi and the func-
tions fMustINi/fMustOUTi.

Claim. The function vector F of the system S(4×n) is h-monotonic w.r.t. the
partition (P, Q).

Proof. When a variable xi does not depend on a variable xj , then it is safe to
assume that fi either monotonically increases in xj or monotonically decreases
in xj , i.e. xi has either a positive or a negative dependence on xj . The result
follows directly from the dependences D1–D4 and the construction of S(4×n). ��

There could be several other valid partitions, but we are interested in this
particular partition as we want the largest possible must information and the
smallest possible may information, for enabling maximum optimization op-
portunities. In [10], we give results about the number and the nature of valid
partitions for any given system. The desired solution of may-must data flow
equations is hfp(p,q)(F ). To compute the solution, we first initialize the variables
with corresponding elements in ⊥(p,q) as follows:

x(4×i−3) = MustINi = U
x(4×i−2) = MustOUTi = U
x(4×i−1) = MayINi = φ
x(4×i−0) = MayOUTi = φ

(21)

With the above initialization, the heterogeneous fixed point solution can be
computed by iteratively solving the may-must data flow equations until two
consecutive iterations result in same values (ref. (18)).

Further, it can be shown that our analysis and Emami’s analysis compute
equivalent information. Since our analysis converges, it can be shown that start-
ing with appropriate initializations Emami’s analysis also converges [9].

6 Conclusions and Future Work

Many analyses can be modeled as fixed point solutions of systems of simultane-
ous equations in which the functions may monotonically increase in some bound
variables and decrease in others. The classical fixed point theory does not cover
such situations. It requires all dependences among the bound variables to be pos-
itive. The classical extremal fixed points uniformly take either least values for all
variables or greatest values for all variables, where the element-wise comparison
is restricted to the set of solutions.

The heterogeneous fixed point theory is a generalization of the classical fixed
point theory. It allows positive as well as negative dependences among the vari-
ables. We have shown that if the dependences are mutually consistent then the
variables can be partitioned into two sets such that two variables belong to the
same set iff the dependences between them are positive. This guarantees the
existence of a fixed point called heterogeneous fixed point, which depending on
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the partition, takes least values for some variables from among all fixed points,
and greatest values for others. Our theory also suggests appropriate initialization
thereby assuring computability of fixed points. We have applied heterogeneous
fixed point theory to explain convergence issues in points-to analysis.

Further work includes exploring applications of heterogeneous fixed points
in program analysis, abstract interpretation and semantics [2,6], and fixed point
logics. We would also like to compare the expressiveness of heterogeneous fixed
points with other fixed point formulations like mu-calculus [16,8], generalized
inductive definitions [5], etc.
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A Overview of Emami’s Points-To Analysis

Several representations have been proposed for capturing the aliasing informa-
tion [1,7,15,4]. The points-to analysis [4] due to Emami et al. computes points-to
relation between pointer expressions denoting stack locations. The aliases that
hold along some but not along all paths are captured by possibly points-to rela-
tion. If a variable x possibly contains address of a variable y, then it is denoted
by (x, y, P ). The aliases that hold along all paths are captured by definite points-
to relation. If a variable x definitely contains address of a variable y, then it is
denoted by (x, y, D).

For simplicity of exposition, we consider a subset of the language in [4]. Non-
pointer assignments are ignored. The pointer expressions may consist of scalar
and pointer variables, referencing operator ‘&’, and dereferencing operator ‘∗’.
The left-hand side (lhs) of an assignment can be either x or ∗x and the right-
hand side (rhs) can be x, &x, or ∗x, for some variable x. We restrict ourselves
to intraprocedural analysis and view the program as a flow graph. The nodes in
the graph are either empty or contain a single pointer assignment.

We now abstract the algorithm in [4] as data flow equations. The points-to
relation at IN of a node i is a confluence of points-to relations at OUT of its
predecessors p1, . . . , pk.

inputi =
{

Merge
(
outputp1

, . . . , outputpk

)
if i �= entry

φ if i = entry (22)
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where “entry” is the unique entry node of the procedure and the operation
Merge [3], defined below, is extended to multiple arguments in an obvious way.

Merge(S1, S2) = {(p1, p2, D) | (p1, p2, D) ∈ S1 ∩ S2} ∪
{(p1, p2, P ) |(p1, p2, r) ∈ S1 ∪ S2 ∧ (p1, p2, D) �∈ S1 ∩ S2}(23)

Note that the definition of Merge excludes the definite information along all
paths from being considered as possible points-to information.

An R-location represents the variable whose address appears in the rhs. An
L-location represents the variable which is being assigned this address. Both of
the L-location and R-location depend on the nature of points-to information
and could be either definite or possible. Let Li denote the set of L-locations of
an assignment in node i tagged with D or P appropriately. Let Ri denote the
corresponding R-locations. Then,

lhsi Li

x {(x, D)}
∗x {(y, r) | (x, y, r) ∈ inputi}

rhsi Ri

&x {(x, D)}
x {(y, r) | (x, y, r) ∈ inputi}
∗x {(z, r1 ⊕ r2) | (x, y, r1), (y, z, r2) ∈ inputi}

where lhsi and rhsi are lhs and rhs of the assignment in node i, and ⊕ is defined
as

r1 ⊕ r2
�=
{

P if r1 �= r2
r1 otherwise

Let (x, y, r) hold before an assignment in node i.

– If (x, P ) ∈ Li, then x may or may not be modified. Thus after the assignment,
x may or may not point to y. Hence the definiteness of its pointing to y must
be changed to the possibility of its pointing to y. This is captured by (24)
and (25) below.

– If (x, D) ∈ Li, then x is definitely modified as a side effect of the assignment
and x ceases to point to y. This is captured by (26) below.

change seti = {(x, y, D) | (x, P ) ∈ Li ∧ (x, y, D) ∈ inputi} (24)
changed inputi = (inputi−change seti)∪{(x, y,P ) |(x, y,D)∈change seti}(25)

kill seti = {(x, y, r) | (x, D) ∈ Li ∧ (x, y, r) ∈ inputi} (26)

An assignment generates definite points-to information between definite L-
locations and definite R-locations. All other combinations between L-locations
and R-locations are generated as possibly points-to information.

gen seti = {(x, y, D) | (x, D) ∈ Li ∧ (y, D) ∈ Ri} ∪
{(x, y, P ) | (x, r1) ∈ Li ∧ (y, r1) ∈ Ri ∧ (r1 �= D ∨ r2 �= D)} (27)

Finally, the points-to information at OUT of node i is

outputi = (changed inputi − kill seti) ∪ gen seti (28)
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Abstract. We present a simple algorithm for register allocation which
is competitive with the iterated register coalescing algorithm of George
and Appel. We base our algorithm on the observation that 95% of the
methods in the Java 1.5 library have chordal interference graphs when
compiled with the JoeQ compiler. A greedy algorithm can optimally color
a chordal graph in time linear in the number of edges, and we can eas-
ily add powerful heuristics for spilling and coalescing. Our experiments
show that the new algorithm produces better results than iterated regis-
ter coalescing for settings with few registers and comparable results for
settings with many registers.

1 Introduction

Register allocation is one of the oldest and most studied research topics of com-
puter science. The goal of register allocation is to allocate a finite number of
machine registers to an unbounded number of temporary variables such that
temporary variables with interfering live ranges are assigned different registers.
Most approaches to register allocation have been based on graph coloring. The
graph coloring problem can be stated as follows: given a graph G and a positive
integer K, assign a color to each vertex of G, using at most K colors, such that
no two adjacent vertices receive the same color. We can map a program to a
graph in which each node represents a temporary variable and edges connect
temporaries whose live ranges interfere. We can then use a coloring algorithm to
perform register allocation by representing colors with machine registers.

In 1982 Chaitin [8] reduced graph coloring, a well-known NP-complete prob-
lem [18], to register allocation, thereby proving that also register allocation is
NP-complete. The core of Chaitin’s proof shows that the interference relations
between temporary variables can form any possible graph. Some algorithms for
register allocation use integer linear programming and may run in worst-case
exponential time, such as the algorithm of Appel and George [2]. Other algo-
rithms use polynomial-time heuristics, such as the algorithm of Briggs, Cooper,
and Torczon [5], the Iterated Register Coalescing algorithm of George and Ap-
pel [12], and the Linear Scan algorithm of Poletto and Sarkar [16]. Among the
polynomial-time algorithms, the best in terms of resulting code quality appears
to be iterated register coalescing. The high quality comes at the price of han-
dling spilling and coalescing of temporary variables in a complex way. Figure 1
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Fig. 1. The iterated register coalescing algorithm
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Fig. 2. (a) A chordal graph. (b-c) Two non-chordal graphs.

illustrates the complexity of iterated register coalescing by depicting the main
phases and complicated pattern of iterations of the algorithm. In this paper we
show how to design algorithms for register allocation that are simple, efficient,
and competitive with iterated register coalescing.

We have observed that the interference graphs of real-life programs tend to
be chordal graphs. For example, 95% of the methods in the Java 1.5 library have
chordal interference graphs when compiled with the JoeQ compiler. A graph is
chordal if every cycle with four or more edges has a chord, that is, an edge which
is not part of the cycle but which connects two vertices on the cycle. (Chordal
graphs are also known as ‘triangulated’, ‘rigid-circuit’, ‘monotone transitive’,
and ‘perfect elimination’ graphs.) The graph in Figure 2(a) is chordal because
the edge ac is a chord in the cycle abcda. The graph in Figure 2(b) is non-
chordal because the cycle abcda is chordless. Finally, the graph in Figure 2(c) is
non-chordal because the cycle abcda is chordless, just like in Figure 2(b).

Chordal graphs have several useful properties. Problems such as minimum
coloring, maximum clique, maximum independent set and minimum covering by
cliques, which are NP-complete in general, can be solved in polynomial time for
chordal graphs [11]. In particular, optimal coloring of a chordal graph G = (V, E)
can be done in O(|E| + |V |) time.

In this paper we present an algorithm for register allocation, which is based on
a coloring algorithm for chordal graphs, and which contains powerful heuristics
for spilling and coalescing. Our algorithm is simple, efficient, and modular, and
it performs as well, or better, than iterated register coalescing on both chordal
graphs and non-chordal graphs.

The remainder of the paper is organized as follows: Section 1 discusses re-
lated work, Section 3 summarizes some known properties and algorithms for
chordal graphs, Section 4 describes our new algorithm, Section 5 presents our
experimental results, and Section 6 concludes the paper.
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2 Related Work

We will discuss two recent efforts to design algorithms for register allocation that
take advantage of properties of the underlying interference graphs. Those efforts
center around the notions of perfect and 1-perfect graphs. In a 1-perfect graph,
the chromatic number, that is, the minimum number of colors necessary to color
the graph, equals the size of the largest clique. A perfect graph is a 1-perfect
graph with the additional property that every induced subgraph is 1-perfect.
Every chordal graph is perfect, and every perfect graph is 1-perfect.

Andersson [1] observed that all the 27,921 interference graphs made publicly
available by George and Appel [3] are 1-perfect, and we have further observed
that 95.6% of those graphs are chordal when the interferences between pre-
colored registers and temporaries are not considered. Andersson also showed
that an optimal, worst-case exponential time algorithm for coloring 1-perfect
graphs is faster than iterated register coalescing when run on those graphs.

Recently, Brisk et al. [6] proved that strict programs in SSA-form have per-
fect interference graphs; independently, Hack [14] proved the stronger result
that strict programs in SSA-form have chordal interference graphs. A strict pro-
gram [7] is one in which every path from the initial block until the use of a
variable v passes through a definition of v. Although perfect and chordal graphs
can be colored in polynomial time, the practical consequences of Brisk and Hack’s
proofs must be further studied. SSA form uses a notational abstraction called
phi-function, which is not implemented directly but rather replaced by copy in-
structions during an SSA-elimination phase of the compiler. Register allocation
after SSA elimination is NP-complete [15].

For example, Figure 3(a) shows a program with a non-chordal interference
graph, Figure 3(b) shows the program in SSA form, and Figure 3(c) shows the

int m(int x, a, d) {
int b, c;
if(x > 0) {

e = 0;
c = d;

} else {
b = 0;
c = a;
e = b;

}
return e + c;

}

c1 = d;

c2 = a;

a, d

return e+c;

e1 = 0;
b = 0;

d a

e1,d

a, b

1

2

4

5

3

7 e2 = b;

c2,b

e = phi(e1,e2)
c = phi(c1,c2);

c1,e1
c2,e2

c,e

8

9

c1 = d;
c2 = a;

a, d

return e+c;

e1 = 0;
b = 0;

d a

e1,d
a, b

1

2

4
5

3

6
7 e2 = b;

c2,b

11

e = e1

c = c1
e = e2

c = c2

8

9

10

e1,c1

e,c1
c2,e2

e,c2

e,c

e,c

(a) (b) (c)

Fig. 3. (a) A program with a non-chordal interference graph, (b) the program in SSA
form, (c) the program after SSA elimination
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program after SSA elimination. The example program in Figure 3(a) has a cy-
cle of five nodes without chords: a–d–e–c–b–a. In the example in Figure 3(b),
e = phi(e1, e2) will return e2 if control reaches block 8 through block 7, and will
return e1 if control reaches block 8 through block 4. The SSA semantics states
that all phi-functions at the beginning of a block must be evaluated simultane-
ously as the first operation upon entering that block; thus, live ranges that reach
block 8 do not interfere with live ranges that leave block 8. Hack [14] used this
observation to show that phi-functions break chordless cycles so strict programs
in SSA-form have chordal interference graphs. The example program after SSA
elimination, in Figure 3(c), has an interference graph which is non-chordal, non-
perfect, and even non-1-perfect: the largest clique has two nodes but three colors
are needed to color the graph. Note that the interference graph has a cycle of
seven nodes without chords: a–d–e1–c1–e–c2–b–a.

For 1-perfect graphs, recognition and coloring are NP-complete. Perfect
graphs can be recognized and colored in polynomial time, but the algorithms
are highly complex. The recognition of perfect graphs is in O(|V |9) time [9];
the complexity of the published coloring algorithm [13] has not been estimated
accurately yet. In contrast, chordal graphs can be recognized and colored in
O(|E|+ |V |) time, and the algorithms are remarkably simple, as we discuss next.

3 Chordal Graphs

We now summarize some known properties and algorithms for chordal graphs.
For a graph G, we will use ∆(G) to denote the maximum outdegree of any vertex
in G, and we will use N(v) to denote the set of neighbors of v, that is, the set
of vertices adjacent to v in G. A clique in an undirected graph G = (V, E) is
a subgraph in which every two vertices are adjacent. A vertex v ∈ V is called
simplicial if its neighborhood in G is a clique. A Simplicial Elimination Ordering
of G is a bijection σ : V (G) → {1 . . . |V |}, such that every vertex vi is a simplicial
vertex in the subgraph induced by {v1, . . . , vi}. For example, the vertices b, d of
the graph shown in Figure 2(a) are simplicial. However, the vertices a and c are
not, because b and d are not connected. In this graph, 〈b, a, c, d〉 is a simplicial
elimination ordering. There is no simplicial elimination ordering ending in the
nodes a or c. The graphs depicted in Figures 2(b) and 2(c) have no simplicial
elimination orderings.

Theorem 1. (Dirac [10]) An undirected graph without self-loops is chordal if
and only if it has a simplicial elimination ordering.

The algorithm greedy coloring, outlined in Figure 4, is a O(E) heuristic for
graph coloring. Given a graph G and a sequence of vertices ν, greedy coloring
assigns to each vertex of ν the next available color. Each color is a number c
where 0 ≤ c ≤ ∆(G) + 1. If we give greedy coloring a simplicial elimination
ordering of the vertices, then the greedy algorithm yields an optimal coloring
[11]. In other words, greedy coloring is optimal for chordal graphs.
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procedure greedy coloring
1 input: G = (V, E), a sequence of vertices ν
2 output: a mapping m, m(v) = c, 0 ≤ c ≤ ∆(G) + 1, v ∈ V
3 For all v ∈ ν do m(v) ←⊥
4 For i ← 1 to |ν| do
5 let c be the lowest color not used in N(ν(i)) in
6 m(ν(i)) ← c

Fig. 4. The greedy coloring algorithm

procedure MCS
1 input: G = (V, E)
2 output: a simplicial elimination ordering σ = v1, . . . , vn

3 For all v ∈ V do λ(v) ← 0
4 For i ← 1 to |V | do
5 let v ∈ V be a vertex such that ∀u ∈ V, λ(v) ≥ λ(u) in
6 σ(i) ← v
7 For all u ∈ V ∩ N(v) do λ(u) ← λ(u) + 1
8 V ← V − {v}

Fig. 5. The maximum cardinality search algorithm

The algorithm known as Maximum Cardinality Search (MCS)[17] recognizes
and determines a simplicial elimination ordering σ of a chordal graph in O(|E|+
|V |) time. MCS associates with each vertex v of G a weight λ(v), which initially
is 0. At each stage MCS adds to σ the vertex v of greatest weight not yet visited.
Subsequently MCS increases by one the weight of the neighbors of v, and starts
a new phase. Figure 5 shows a version of MCS due to Berry et al. [4].

The procedure MCS can be implemented to run in O(|V |+ |E|) time. To see
that, notice that the first loop executes |V | iterations. In the second loop, for
each vertex of G, all its neighbors are visited. After a vertex is evaluated, it is
removed from the remaining graph. Therefore, the weight λ is increased exactly
|E| times. By keeping vertices in an array of buckets indexed by λ, the vertex of
highest weight can be found in O(1) time.

4 Our Algorithm

Our algorithm has several independent phases, as illustrated in Figure 6, namely
coloring, spilling, and coalescing, plus an optional phase called pre-spilling. Coa-
lescing must be the last stage in order to preserve the optimality of the coloring
algorithm, because, after merging nodes, the resulting interference graph can
be non-chordal. Our algorithm uses the MCS procedure (Figure 5) to produce
an ordering of the nodes, for use by the pre-spilling and coloring phases. Our
approach yields optimal colorings for chordal graphs, and, as we show in Sec-
tion 5, it produces competitive results even for non-chordal graphs. We have
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build MCS
pre-
spilling

MCS
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Fig. 6. The main phases of our algorithm

int gcd (int R1, int R2)
1. IFCMP_I_EQ .. R2 0 (12);
2. ZERO_CHECK_I .. T1 R2;
3. DIV_I T7 R1 R2;
4. CHECK_EX T1
5. MOVE_I R4 T7;
6. MUL_I T8 R2 R4;
7. MOVE_I R5 T8;
8. SUB_I T9 R1 R5;
9. MOVE_I R6 T9;
10. MOVE_I R1 R2;
11. MOVE_I R2 R6;
12. GOTO .. .. .. (1);
13. RETURN_I .. R1;

R4

R1

R2

R6 T8

T7 R5

T9

T1

(a) (b)

Fig. 7. (a) Euclid’s algorithm. (b) Interference graph generated for gcd().

implemented heuristics, rather than optimal algorithms, for spilling and coalesc-
ing. Our experimental results show that our heuristics perform better than those
used in the iterated register coalescing algorithm.

In order to illustrate the basic principles underlying our algorithm, we will as
a running example show how our algorithm allocates registers for the program
in Figure 7 (a). This program calculates the greatest common divisor between
two integer numbers using Euclid’s algorithm. In the intermediate representation
adopted, instructions have the form op, t, p1, p2. Such an instruction defines the
variable t, and adds the temporaries p1 and p2 to the chain of used values. The
interference graph yielded by the example program is shown in Figure 7 (b).
Solid lines connecting two temporaries indicate that they are simultaneously
alive at some point in the program, and must be allocated to different registers.
Dashed lines connect move related registers.

Greedy Coloring. In order to assign machine registers to variables, the greedy
coloring procedure of Figure 4 is fed with an ordering of the vertices of the
interference graph, as produced by the MCS procedure. From the graph shown
in Figure 7 (b), MCS produces the ordering: 〈 T7, R1, R2, T1, R5, R4, T8,
R6, T9 〉, and greedy coloring then produces the mapping between temporaries
and colors that is outlined in Figure 8 (a). If the interference graph is chordal,
then the combination of MCS and Greedy Coloring produces a minimal coloring.
The coloring phase uses an unbounded number of colors so that the interference
graph can always be colored. The excess of colors will be removed in the post-
spilling stage.



Register Allocation Via Coloring of Chordal Graphs 321

R4(0)
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Fig. 8. (a) Colored interference graph. (b) Interference graph after spilling the highest
colors.

Post-Spilling. Given an instance of a register allocation problem, it may be
possible that the number of available registers is not sufficient to accommodate
all the temporary variables. In this case, temporaries must be removed until
the remaining variables can be assigned to registers. The process of removing
temporaries is called spilling. A natural question concerning spilling when the
interference graph is chordal is if there is a polynomial algorithm to determine
the minimum number of spills. The problem of determining the maximum K-
colorable subgraph of a chordal graph is NP-complete [20], but has polynomial
solution when the number of colors (K) is fixed. We do not adopt the polynomial
algorithm because its complexity seems prohibitive, namely O(|V |K) time.

Iterated register coalescing performs spilling as an iterative process. After an
unsuccessful attempt to color the interference graph, some vertices are removed,
and a new coloring phase is executed. We propose to spill nodes in a single
iteration, by removing in each step all nodes of a chosen color from the colored
interference graph. The idea is that given a K-colored graph, if all the vertices
sharing a certain color are removed, the resulting subgraph can be colored with
K − 1 colors. We propose two different heuristics for choosing the next color to
be removed: (i) remove the least-used color, and (ii) remove the highest color
assigned by the greedy algorithm.

The spilling of the highest color has a simpler and more efficient implementa-
tion. The heuristic is based on the observation that the greedy coloring tends to
use the lower colors first. For a chordal graph, the number of times the highest
color is used is bounded by the number of maximal cliques in the interference
graph. A maximal clique is a clique that cannot be augmented. In other words,
given a graph G = (V, E), a clique Q is maximal if there is no vertex v, v ∈ V −Q,
such that v is adjacent to all the vertices of Q. For our running example, Fig-
ure 8 (b) shows the colored interference graph after the highest colors have been
removed, assuming that only two registers are available in the target machine.
Coincidentally, the highest colors are also the least-used ones.
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procedure coalescing
1 input: list l of copy instructions, G = (V, E), K
2 output: G′, the coalesced graph G
3 let G′ = G in
4 for all x := y ∈ l do
5 let Sx be the set of colors in N(x)
6 let Sy be the set of colors in N(y)
7 if there exists c, c < K, c /∈ Sx ∪ Sy then
8 let xy, xy /∈ V be a new node
9 add xy to G′ with color c
10 make xy adjacent to every v, v ∈ N(x) ∪ N(y)
11 replace occurrences of x or y in l by xy
12 remove x from G′

13 remove y from G′

Fig. 9. The greedy coalescing algorithm

Coalescing. The last phase of the algorithm is the coalescing of move related
instructions. Coalescing helps a compiler to avoid generating redundant copy
instructions. Our coalescing phase is executed in a greedy fashion. For each
instruction a := b, the algorithm looks for a color c not used in N(a) ∪ N(b),
where N(v) is the set of neighbors of v. If such a color exists, then the temporaries
a and b are coalesced into a single register with the color c. This algorithm is
described in Figure 9. Our current coalescing algorithm does not use properties
of chordal graphs; however, as future work, we plan to study how coalescing can
take benefit from chordality.

Pre-Spilling. To color a graph, we need a number of colors which is at least the
size of the largest clique. We now present an approach to removing nodes that
will bring the size of the largest clique down to the number of available colors and
guarantee that the resulting graph will be colorable with the number of available
colors (Theorem 2). Gavril [11] has presented an algorithm maximalCl, shown in
Figure 10, which lists all the maximal cliques of a chordal graph in O(|E|) time.
Our pre-spilling phase first runs maximalCl and then the procedure pre-spilling
shown in Figure 11. Pre-spilling uses a map ω which maps each vertex to an
approximation of the number of maximal cliques that contain that vertex. The
objective of pre-spilling is to minimize the number of spills. When an interference
graph is non-chordal, the maximalCl algorithm may return graphs that are not
all cliques and so pre-spilling may produce unnecessary spills. Nevertheless, our
experimental results in Section 5 show that the number of spills is competitive
even for non-chordal graphs.

The main loop of pre-spilling performs two actions: (i) compute the vertex
v that appears in most of the cliques of ξ and (ii) remove v from the cliques in
which it appears. In order to build an efficient implementation of the pre-spilling
algorithm, it is helpful to define a bidirectional mapping between vertices and
the cliques in which they appear. Because the number of maximal cliques is
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procedure maximalCl
1 input: G = (V, E)
2 output: a list of cliques ξ = 〈Q1, Q2, . . . , Qn〉
3 σ ← MCS(G)
4 For i ← 1 to n do
5 Let v ← σ[i] in
6 Qi ← {v} ∪ {u | (u, v) ∈ E,u ∈ {σ[1], . . . , σ[i − 1]}}

Fig. 10. Listing maximal cliques in chordal graphs

procedure pre-spilling
1 input: G = (V, E), a list of subgraphs of G: ξ = 〈Q1, Q2, . . . , Qn〉,

a number of available colors K, a mapping ω
2 output: a K-colorable subgraph of G
3 R1 = Q1; R2 = Q2; . . . Rn = Qn

4 while there is Ri with more than K nodes do
5 let v ∈ Ri be a vertex such that ∀u ∈ Ri, ω(v) ≥ ω(u) in
6 remove v from all the graphs R1, R2, . . . , Rn

7 return R1 ∪ R2 ∪ . . . ∪ Rn

Fig. 11. Spilling intersections between maximal cliques

bounded by |V | for a chordal graph, it is possible to use a bucket list to compute
ω(v), v ∈ V in O(1) time. After a temporary is deleted, a number of cliques may
become K-colorable, and must be removed from ξ. Again, due to the bidirectional
mapping between cliques and temporaries, this operation can be performed in
O(|N(v)|), where N(v) is the set of vertices adjacent to v. Overall, the spilling
algorithm can be implemented in O(|E|).
Theorem 2. The graph pre-spilling(G,maximalCl(G),K,ω) is K-colorable.

Proof. Let 〈Q1, Q2, . . . , Qn〉 be the output of maximalCl(G). Let R1∪R2∪. . .∪Rn

be the output of pre-spilling(G,maximalCl(G),K,ω). Let R•
i = R1∪R2 ∪ . . .∪Ri

for i ∈ 1..n.
We will show that for all i ∈ 1..n, R•

i is K-colorable. We proceed by induction
on i.

In the base case of i = 1, we have R•
1 = R1 ⊆ Q1 and Q1 has exactly one

node. We conclude that R•
1 is K-colorable.

In the induction step we have from the induction hypothesis that R•
i is K-

colorable so let c be a K-coloring of R•
i . Let v be the node σ[i+1] chosen in line

5 of maximalCl. Notice that v is the only vertex of Qi+1 that does not appear in
Q1, Q2, . . . , Qi so c does not assign a color to v. Now there are two cases. First,
if v has been removed by pre-spilling, then R•

i+1 = R•
i so c is a K-coloring of

R•
i+1. Second, if v has not been removed by pre-spilling, then we use that Ri+1

has at most K nodes to conclude that the degree of v in Ri+1 is at most K − 1.
We have that c assigns a color to all neighbors for v in Ri+1 so we have a color
left to assign to v and can extend c to a K-coloring of R•

i+1.
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Fig. 12. (a) Mapping between nodes and maximal cliques. (b) Mapping after pruning
node R1. (c) Interference graph after spilling R1 and R2.
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Fig. 13. (a) Coloring produced by the greedy algorithm. (b) Coalescing R6 and T9. (c)
Coalescing R4 and T7. (d) Coalescing R5 and T8.

Figure 12 (a) shows the mapping between temporaries and maximal cliques
that is obtained from the gcd(x, y) method, described in Figure 7 (a). Assum-
ing that the target architecture has two registers, the cliques must be pruned
until only cliques of size less than two remain. The registers R1 and R2 are the
most common in the maximal cliques, and, therefore, should be deleted. The
configuration after removing register R1 is outlined in Figure 12 (b). After the
pruning step, all the cliques are removed from ξ. Figure 12 (c) shows the inter-
ference graph after the spilling phase.

Figure 13 outlines the three possible coalescings in this example. Coinciden-
tally, two of the move related registers were assigned the same color in the greedy
coloring phase. Because of this, their colors do not had to be changed during
the coalescing stage. The only exception is the pair (R4, T7). In the coalescing
phase, the original color of R4 is changed to the same color of T7. Afterwards,
the registers are merged.

Complexity Analysis. The coloring phase, as a direct application of maximum
cardinality search and greedy coloring, can be implemented to run in O(|V |+|E|)
time.
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Fig. 14. (a) Time spent on coloring, spilling and coalescing in the different heuristics.
(b) Number of registers assigned to methods of the Java 1.5 Standard Library.

Our heuristics for spilling can all can be implemented to run in O(|E|) time.
In order to implement spilling of the least-used color, it is possible to order the
colors with bucket sort, because the maximum color is bounded by the highest
degree of the interference graph plus one. The same technique can be used to
order the weight function for the pre-spilling algorithm because the size of the
list ξ, produced by the procedure maximalCl, is bounded by |V |.

Coalescing is the phase with the highest complexity, namely O(t3), where
t is the number of temporaries in the source code. Our coalescing algorithm
inspects, for each pair of move related instructions, all their neighbors. It is
theoretically possible to have up to t2 pairs of move related instructions in the
target code. However, the number of these instructions is normally small, and
our experimental results show that the coalescing step accounts for less than
10% of the total running time (see Figure 14 (a)).

5 Experimental Results

We have built an evaluation framework in Java, using the JoeQ compiler [19], in
order to compare our algorithm against the iterated register coalescing. When
pre-spilling is used, post-spilling is not necessary (Theorem 2). Our benchmark
suite is the entire run-time library of the standard Java 1.5 distribution, i.e. the
set of classes in rt.jar. In total, we analyzed 23,681 methods. We analyzed
two different versions of the target code. One of them is constituted by the in-
termediate representation generated by JoeQ without any optimization. In the
other version, the programs are first converted to single static assignment form
(SSA), and them converted back to the JoeQ intermediate representation, by
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Table 1. Comparison between our algorithm (NIA) and Iterated Register Coalescing
(IRC), including results for the three different spilling heuristics in Section 4

Algorithm SSA number of register/ spill/ Total maximum coalescing/ running
registers method method spills # spills moves time (s)

NIA no 18 4.20 0.0044 102 15 0.38 2645.1
Post-spilling yes 18 4.13 0.0034 81 14 0.72 2769.9
least-used no 6 3.79 0.43 10,218 30 0.37 2645.0
color yes 6 3.75 0.51 12,108 91 0.73 2781.7

NIA no 18 4.20 0.0048 115 15 0.34 2641.5
Post-spilling yes 18 4.13 0.010 246 63 0.72 2767.0
highest no 6 3.80 0.50 11,923 33 0.35 2674.3
used color yes 6 3.75 0.80 19,018 143 0.69 2764.2

NIA no 18 4.20 0.0044 105 15 0.34 2640.5
Pre-spilling yes 18 4.13 0.0039 94 17 0.72 2763.2

no 6 3.78 0.45 10,749 34 0.35 2645.8
yes 6 3.75 0.49 11,838 43 0.70 2765.1

IRC

no 18 4.25 0.0050 115 16 0.31 2644.1
yes 18 4.17 0.0048 118 27 0.70 2823.2
no 6 3.81 0.50 11,869 32 0.31 2641.5
yes 6 3.77 0.57 13,651 86 0.66 2883.7

substituting the phi functions by copy instructions. In the former case, approx-
imately 91% of the interference graphs produced are chordal. In the latter, the
percentage of chordal graphs is 95.5%.

Table 1 shows results obtained by the iterative algorithm (IRC), and our
non-iterative register allocator (NIA). The implementation of both algorithms
attempts to spill the minimum number of registers. As it can be seen in the table,
our technique gives better results than the traditional register allocator. It tends
to use less registers per method, because it can find an optimum assignment
whenever the interference graph is chordal. Also, it tends to spill less temporaries,
because, by removing intersections among cliques, it decreases the chromatic
number of several clusters of interfering variables at the same time. Notably, for
the method coerceData, of the class java.awt.image.ComponentColorModel,
with 6 registers available for allocation, the pre-spilling caused the eviction of
41 temporaries, whereas Iterated Register Coalescing spilled 86. Also, because
our algorithm tends to spill fewer temporaries and to use fewer registers in
the allocation, it is able to find more opportunities for coalescing. The Iterated
register coalescing and our algorithm have similar running times. The complexity
of a single iteration of the IRC is O(|E|), and the maximum number of iterations
observed in the tests was 4; thus, its running time can be characterized as linear.
Furthermore, both algorithms can execute a cubic number of coalescings, but,
in the average, the quantity of copy instructions per program is small when
compared to the total number of instructions.

Table 2 compares the two algorithms when the interference graphs are chordal
and non-chordal. This data refers only to target programs after SSA elimination.
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Table 2. Comparative performance of our spilling heuristics for chordal and non-
chordal interference graphs

Algorithm chordal number of register/ spill/ Total maximum coalescing/
graph registers method method spills # spills moves

NIA no 18 8.17 0.054 61 17 0.75
Pre-spilling no 6 5.77 4.55 5173 43 0.79

yes 18 3.92 0.0015 33 6 0.69
yes 6 3.65 0.29 6665 31 0.68

IRC

no 18 8.39 0.062 71 27 0.74
no 6 5.79 4.89 5562 86 0.66
yes 18 3.97 0.0015 34 6 0.67
yes 6 3.68 0.39 8089 45 0.67

Table 3. Results obtained from the allocation of registers to 27,921 interference graphs
generated from ML code

Algorithm
chordal Total of maximum coalescing/ allocation
graph spills number of moves time

spills (s)

Post-spilling least yes 1,217 84 0.97
223.8

used color no 63 14 0.94

Post-spilling highest yes 1,778 208 0.97
222.9

used color no 80 20 0.94

Pre-spilling yes 1,127 86 0.97
482.3

no 1,491 23 0.93

In general, non-chordal interference graphs are produced by complex methods.
For instance, methods whose interference graphs are non-chordal use, on average,
80.45 temporaries, whereas the average for chordal interference graphs is 13.94
temporaries.

The analysis of methods whose interference graphs are chordal gives some
insight about the structure of Java programs. When an interference graph is
chordal, the mapping between temporaries and registers is optimal, i.e. it uses the
smallest possible number of registers. Figure 14 (b) shows the relation between
number of methods of the Java Library and the minimum number of registers
necessary to handle them. Only methods that could be colored with less than
18 colors (99.6%) are shown. Allocation results for methods whose interference
graph are non-chordal are also presented, even though these may not be optimal.

Figure 14 (a) compares the amount of time spent on each phase of the al-
gorithm when different spilling heuristics are adopted. The time used in the
allocation process is a small percentage of the total running time presented in
Table 1 because the latter includes the loading of class files, the parsing of byte-
codes, the liveness analysis and the construction of the interference graph. When
pre-spilling is used, it accounts for more than half the allocation time.
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We have also tested our register allocation algorithm on the 27,921 inter-
ference graphs published by George and Appel. Those graphs were generated
by the standard ML compiler of New Jersey compiling itself [3]. Our tests have
shown that 95.7% of the interference graphs are chordal when the interferences
between pre-colored registers and temporaries are not taken into consideration.
The compilation results are outlined in Table 3. The graphs contain 21 pairwise
interfering pre-colored registers, which represent the machine registers available
for the allocation. Because of these cliques, all the graphs, after spilling, de-
manded exactly 21 colors. When the graphs are chordal, pre-spilling gives the
best results; however, this heuristic suffers a penalty when dealing with the
non-chordal graphs, because they present a 21-clique, and must be colored with
21 registers. In such circumstances, the procedure maximalCl from Figure 10
have listed some false maximal cliques, and unnecessary spills have been caused.
Overall, the spilling of the least-used colors gives the best results. The execution
times for analyzing the ML-compiler-based benchmarks are faster than those for
analyzing the Java Library because the latter set of timings includes the times
to construct the interference graphs.

6 Conclusion

This paper has presented a non-iterative algorithm for register allocation based
on the coloring of chordal graphs. Chordal graphs present an elegant structure
and can be optimally colored in O(|V | + |E|) time. For the register allocation
problem, we can find an optimal allocation in time linear in the number of inter-
ferences between live ranges, whenever the interference graph is chordal. Addi-
tionally, our algorithm is competitive even when performing register allocation
on non-chordal inputs.

In order to validate the algorithm, we compared it to iterated register co-
alescing. Our algorithm allocates fewer registers per method and spills fewer
temporaries. In addition, our algorithm can coalesce about the same proportion
of copy instructions as iterated register coalescing.

In addition to being efficient, our algorithm is modular and flexible. Because
it is non-iterative, it presents a simpler design than traditional algorithms based
on graph coloring. The spill of temporaries can happen before or after the
coloring phase. By performing spilling before coloring, it is possible to assign
different weights to temporaries in order to generate better code. Our imple-
mentation and a set of interference graphs generated from the Java methods
tested can be found at http://compilers.cs.ucla.edu/fernando/projects/.
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Abstract. This paper presents a novel method to construct a dynamic
single assignment (DSA) form of array-intensive, pointer-free C programs
(or in any other procedural language). A program in DSA form does
not perform any destructive update of scalars and array elements, i.e.,
each element is written at most once. As DSA makes the dependencies
between variable references explicit, it facilitates complex analyses and
optimizations of programs. Existing transformations into DSA perform a
complex data flow analysis with exponential analysis time and work only
for a limited set of input programs. Our method removes irregularities
from the data flow by adding copy assignments to the program, and then
it can use simple data flow analyses. The DSA transformation presented
scales very well with growing program sizes and overcomes a number
of important limitations of existing methods. We have implemented the
method and it is being used in the context of memory optimization and
verification of those optimizations.

1 Introduction

In a program in dynamic single assignment (DSA) form, there is only one as-
signment at run time to each scalar variable or array element[7]. Essentially this
form directly encodes all the information gathered by an array data flow analysis,
much like static single assignment (SSA) directly encodes use-def chains in the
program[6]. While SSA focuses on scalar variables, DSA is geared towards array
variables that are analyzed element by element. An alternate form of DSA is a
system of recurrence equations[9] (SRE). This form does not give an execution
order to the different statements, and instead only specifies the set of iteration
points. SREs are usually used when the execution order of the original code does
not matter, for example because a new execution order is determined anyway.

DSA form has essentially two advantages: analyses become simpler as each
use can be linked to a single def by matching the array elements accessed, and
there are more opportunities for reordering transformations. DSA form (and
equivalently an SRE) is therefore used in a number of compiler techniques:
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1. Parallelization. The need for decreasing the restrictions on reordering
transformations is necessary to get good results from parallelization[12,7].
SREs are often used as a starting point as it reveals all inherent parallelism
in a program.

2. Systolic arrays. Procedural programs are transformed to SREs, which
are mapped onto systolic arrays, forming the basis for VLSI chip design[16].

3. Memory optimization. Optimization of data-intensive programs, like
multimedia and network applications, benefit from the use of DSA to simplify
the transformations and to get a better result [15,5].

4. Verification of source code transformations. Verification [19,21] is
shown to gain both simplicity and power by the use of DSA.

The contribution of this paper is a new method for transformation to DSA
that offers two advantages over existing work:

1. It overcomes a number of limitations in existing methods. Our method is
not limited to (possibly piecewise) affine expressions for loop bounds, con-
ditionals and array indexation as are [7,10], but instead deals with general
expressions including data-dependent expressions which are prevalent even
in simple programs like Gaussian elimination with pivoting. The sole restric-
tion is that constant bounds must be found on the loop iterators.

2. It is quadratic in the program size and polynomial in the depth of the loop
nests, while existing methods are exponential.

Moreover the implementation has been successfully used in the context of mem-
ory optimizations [5] and verification of those transformations [19,21]. For more
detailed results on the use with verification, see [20].

Section 2 discusses related work and situates our contribution. Section 3
introduces our approach. We explain the preparatory steps in Section 4, we do
the DSA transformation in Section 5 and Section 6 discusses some additional
steps. Section 7 rounds off the complexity analysis and Section 8 presents results
of applying our prototype implementation to a number of multimedia kernels.
Finally, Section 9 concludes.

2 Related Work

In optimizing compilers, data flow analyses are used to determine what optimiza-
tions are possible and how they should be done [1]. Forward data flow analy-
ses propagate information from definitions of variables to their uses; they need
to know which definitions reach which uses. One can distinguish the following
queries (illustrated on the program in Fig. 1):

– What definitions reach a given use? The definitions S1 and S2 reach
the use of c in statement S2.

– Under what condition does each definition reach a given use? For
S2 there are two reaching definitions. The reader can verify that S1 reaches
S2 when i is 0 or when j is 6. S2 reaches itself in all other cases.
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for (k = 0; k <= 10; k++)

c[k] = 0; //S1

for (i = 0; i <= 4; i++)

for (j = 0; j <= 6; j++)

c[i+j] = c[i+j]+a[i]*b[j]; //S2

Fig. 1. Polynomial multiplication 1

for (k = 0; k <= 10; k++)

c[k] = k; //S1

for (i = 0; i <= 4; i++)

for (j = 0; j <= 6; j++)

c[i+j] = c[i+j]+a[i]*b[j]; //S2

Fig. 2. Polynomial multiplication 2

for (k = 0; k <= 10; k++)

c1[k] = k; //S1

for (i = 0; i <= 4; i++)

for (j = 0; j <= 6; j++)

c2[i][j] = ( i==0 || j==6 ? c1[i+j] : c2[i-1][j+1] )+a[i]*b[j]; //S2

for (k = 0; k <= 10; k++)

output(k <= 4 ? c2[k][0] : c2[4][k-4]); //S3

Fig. 3. Dynamic single assignment version of Fig. 2

– What instance of a definition reaches what instance of a use? State-
ment S2 has an instance for each combination of values for i and j, and the
reaching definition varies with the instance of S2. The instance for i= i1 and
j= j1 is denoted S2(i1, j1). For S2(i1, j1) the reaching definition is S1 when
i1 = 0 or j1 = 6. The instance of S1 that reaches S2(i1, j1) is for k= i1 + j1,
denoted as S1(i1 + j1).

The amount of information these three questions ask for increases, and so does
the difficulty to answer them accurately. Classic compiler theory considers only
the first question; this limits the amount of optimization, e.g., in Fig. 1, S1 as-
signs a constant 0 to c, but constant propagation would not be done because c
changes value in the second loop. The information asked for in the first question
can be encoded efficiently in the program (possibly in the intermediate represen-
tation) by putting it in static single assignment (SSA) form [6]. In SSA form there
is only one assignment to each variable in the program text, making the search
for reaching definitions an exercise in variable name matching. A φ-function is
used to select the right reaching definition in case there is more than one.

The answer to the second question – if it can be answered for a particular
case – can be regarded as the φ-functions of SSA form that are made explicit. So
in Fig. 1, instead of assuming that the c[i+j] we read can be produced by either
S1 or S2, we can deduce that it is produced by S1 when i is 0 or j is 6. This
knowledge allows us to split S2 on that condition and to do constant propagation
to the part where the condition is true. The same technique is used to do copy
propagation in [11], although it is not clear for which programs they can do
this and how far they can go. Because it is typically useful for optimizing array-
intensive programs – where the savings in memory accesses usually outweigh the
cost of splitting statements – the form that encodes the answer to the second
question explicitly could be referred to as array SSA (ASSA).
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Finally, the answer to the third question completes the information about
reaching definitions by indicating the exact instance of a statement that reaches
a given use, which is done by giving the values of the iterators of surrounding
loops. This information is necessary for optimizations such as general expression
propagation. Consider Fig. 2 where the initialization of c to zero is replaced by
an expression depending on the iterator k. If we want to propagate S1 to S2
again, we need to determine the correct value of k which will obviously depend
on i and j. The third question supplies us with exactly this information. This
information can be represented explicitly by putting the program in dynamic
single assignment (DSA) form as presented by Feautrier in [7].

A program in DSA form assigns each array element or scalar variable only
once during execution. The DSA form of the program in Fig. 2 is shown in Fig. 3.
We have added an extra statement at the end to indicate where the final coef-
ficients of the product end up being stored. For the conditional split-up we use
the C operator ?:. In statement S2, the condition selects between two reaching
statements, while in statement S3, it selects between different expressions for the
reaching instance. It is surprising how clear the answer to the questions above is
from this program. For example S2 reads both c1 and c2, thus both S1 and S2
reach it. It reads c1 when i is 0 or j is 6, hence that is when S1 reaches S2. The
exact element read by a given instance S2(i2, j2) is c1[i2 + j2], so it is instance
S1(i2 + j2) that reaches i.e., for k equal to (i2 + j2). Despite the information
being quite detailed, retrieving it is again simply a matter of matching.

Besides providing a compiler with very detailed data flow information, DSA
form can enable more transformations. In DSA form, every value produced by
an assignment is given its own memory location. After transformation to DSA
we only have true dependencies which specify that the program should only read
from a memory location after a value was written to it. As the name indicates,
this kind of dependency is inherent to the program. DSA enables all reorderings
of instructions as allowed by the true dependencies.

In [7] an automated method is proposed to translate code consisting of as-
signments to arrays that are arbitrarily nested in for-loops to DSA form, with
the limitation that all loop bounds, conditions and indexation are affine expres-
sions of loop iterators and a number of parameters. These limitations are relaxed
slightly in [10] by allowing certain kinds of modulo and integer division in ex-
pressions for loop bounds, indexation and conditions. Methods to translate to
SREs, e.g., [4], lack the generality of [7] and [10]. However the approach of [7]
can be adapted very easily to generate SREs, which is done by [2].

Finally we note that besides the simple categorization of SSA - ASSA - DSA,
there are other variations in between such as [3] and [13].

3 Our Approach

Languages that impose DSA form, like Silage [8] or Single Assignment C [17],
exist but are not widely used because DSA form can be awkward to write.
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Most applications are written in a multiple assignment1 form. Transformation
to DSA form is tedious and error-prone when done manually, hence automation
is needed.

The methods in [7,10] have limited applicability as they do not deal with
programs that contain data dependent indexation or conditions, as is the case
in e.g., Gaussian elimination or motion estimation. This is in our experience an
important limitation. Another disadvantage of [7] is that it breaks down for larger
programs. The limited scalability is a problem since global optimizations inline
functions to optimize over function boundaries. Indeed, aggressive optimizations
usually require specializing each call-site anyway to obtain the best results.

Our method realizes a scalable DSA transformation. In practice it is linear
in the program size (for constant loop depth). Our method extends on existing
methods; it handles all pointer-free code with static memory allocation. It is
restricted to a single function though, but this is not a real limitation because
functions are inlined as argued above.

The most important obstacle for obtaining a scalable, generally applicable
DSA transformation is that the three questions outlined in Sect. 2 need to be
answered exactly. The data flow analysis presented in [7] gives exact answers, but
because of that it is not generally applicable and scales badly – both in execution
time and memory use. Data flow analyses as presented in [1] give approximate
answers when control flow paths join, or when an array is accessed, and because
of that are generally applicable and fast. The observation underlying our ap-
proach is that we can do away with approximations without sacrificing speed
when all variables are scalars, there are no if-statements, and every assignment
is executed at least once in every iteration of every surrounding loop. In case
the program does not have these properties, we apply simple transformations,
basically adding copy statements, until it does.

The fact that our DSA transformation method adds many copy operations
to the transformed code seems to imply that it is useless in the context of opti-
mization – it both increases memory use and increases the number of memory
accesses. This is however no problem for functional verification of global trans-
formations [19,21] which is very powerful but requires that programs be specified
in DSA form. One of the transformations it is able to verify requires it to handle
addition of copy operations, such that it can look right through the copy oper-
ations our method adds. This verification method can handle certain classes of
data dependent conditions, but up to now there was no general way of trans-
forming programs with data dependent conditions to DSA form. The presented
work remedies that.

The DSA form we obtain can be made more usable by applying advanced
copy propagation [22] on it. This removes the bulk of the added copy operations.
Currently, advanced copy propagation deals with the same class of programs
as the DSA method of [7]; we are extending it to handle the broader class of
programs that our DSA method can transform.

1 As opposed to (dynamic) single assignment.
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for (t = 0; t < 1009; t++) {
c[t] = 0; //S1

for (i = 0; i <= t; i++)

if (i > t - 1000 && i < 10)

c[t] = c[t]+a[i]*b[t-i]; //S2

}
for (t = 0; t < 1009; t++)

output c(c[t]); //S3
(a) Our running example

n maximum loop nest depth 2
d maximum dimension of an array 1
a number of assignments 2
l number of loops 3
r number of variable references 4
s number of statements 7
v number of variables 1
c maximum number of conditions 6

(b) Program characteristics

Fig. 4.

Our running example is discrete convolution (Fig. 4(a)). The code assumes
two signals are given. The first signal consists of 10 samples that are stored in
array a. The second signal consists of 1000 samples that are stored in array
b. The resulting 1009 samples are stored in array c. We focus on array c only
from now on. Features of programs used in the complexity analysis along with
the symbols used to denote them are shown in Fig. 4(b), whose right hand side
column contains the corresponding values for our example program. Since we
focus on c, the values shown in Fig. 4(b) ignore arrays a and b.

The DSA transformation consists of several steps that are described in sub-
sequent sections. The general overview of the DSA transformation is shown in
Fig. 5, with references to the corresponding sections.

4 Preparatory Steps

From array variables to scalars. The main difference between scalars and
arrays is that scalars are assigned as a whole while arrays are typically assigned
element per element. One way to handle this, as suggested in [6], is to introduce
an Update operation for each assignment to an array element that builds a whole
new array with all elements equal to the corresponding elements of the old array
except for one element that gets a new value. The result for our running example
is shown in Fig. 6(a). The Ac functions are technically not necessary as they can
be trivially replaced by direct array references. The meaning of an Up function
is shown in Fig. 6(b).

Every Up function has the old array as parameter (here it is still the same
as the new array), a number of indexation expressions equal to the number of
array dimensions, and the right hand side of the assignment. Setting up these
functions is straightforward, and is O(d) with d the maximum number of array
dimensions in the program. For a assignments, this takes O(d · a) time.

Execute every assignment in every iteration. The two causes preventing
the execution of an assignment are if-statements and loops that have zero iter-
ations (possibly depending on the values of surrounding iterators). The simplest
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transformToDSA(program)

1. make arrays scalar (Section 4)

for each right hand side array reference a :

replace a with a Ac operation

for each assignment a :

replace the assignment by an Up operation

2. pad with copy operations (Section 4)

find constant loop bounds

add no-op copy operations to the program

3. do exact scalar data flow analysis (Section 5)

determine for each variable reference what assignment

instance wrote the value read, and under what condition

4. transformation to DSA (Section 5)

transform to DSA using the result of the data flow analysis

5. expand Up and Ac (Section 6)

replace each Up and Ac by its definition

Fig. 5. High-level script of DSA transformation

for (t = 0; t < 1009; t++) {
c = Up(c, t, 0); //S1

for (i = 0; i <= t; i++)

if (i > t-1000 && i < 10)

c = Up(c,t,Ac(c,t)+a[i]*b[t-i]); //S2

}
for (t = 0; t < 1009; t++)

output c(Ac(c, t)); //S3
(a) Fig. 4(a) with Up and Ac.

for (it = 0; it < 1009; it++)

if (it == i)

v1[it] = e;

else

v1[it] = v2[it];
(b) Meaning v1 = Up(v2,i,e).

Fig. 6. Fig. 4(a) with Up and Ac operations

way to overcome these problems is to transform away if statements and replace
all loop bounds by constants. If these constant upper and lower bounds on iter-
ator values indicate that the body of the loop is never executed, we remove it as
the loop was useless to begin with.

For Fig. 6(a) the maximum value for the i iterator is 9. We can use this as
upper bound on the i loop provided we move the condition that i should be
smaller than t to the if-statement. The first step in removing the condition is
to add an else-branch and add a no-op assignment for each variable assigned
in the other branch. For our running example this results in Fig. 7(a). Note that
now c is always assigned a value, regardless of the value of the condition of the
if-statement. This can be made explicit in C as shown in Fig. 7(b). Now it is
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for (t = 0; t < 1009; t++) {
c = Up(c, t, 0); //S1

for (i = 0; i < 10; i++)

if (i > t-1000 && i <= t)

c = Up(c,t,Ac(c,t)+a[i]*b[t-i]);

else c = c; //S2

}
for (t = 0; t < 1009; t++)

output c(Ac(c, t)); //S3
(a) Padded with copy operations

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

for (t = 0; t < 1009; t++) {
c = Up(c, t, 0); //S1

for (i = 0; i < 10; i++) {
c = i > t-1000 && i <= t ?

Up(c,t,Ac(c, t)+a[i]*b[t-i]):

c; //S2

}
}
for (t = 0; t < 1009; t++) {
output c(Ac(c, t)); //S3

}
(b) S2 assigns c in each iteration

Fig. 7. Removing conditions from Fig. 6(a)

trivial to see that when arriving at S3, the last assignment to c is done by S2
for t equal to 1008 and i equal to 9.

When all bounds and conditions are affine functions of the iterators, we can
use linear programming [18] to find the extremal values for the iterators. Linear
programming is polynomial in the problem size, which can be measured by the
number of loop bounds and conditions governing a statement. If we call the
maximum number of these conditions c, then finding two bounds for each of the
l loops has a time complexity of O(p(c) · l) with p(c) a polynomial in c. Adjusting
the conditions guarding each assignment and adding a no-op assignment to each
of these a assignments is a constant-time operation, thus giving an extra O(a)
for a total of O(p(c) · l + a).

5 Transformation to DSA Form

Reaching definitions analysis. In the following two steps, all array references
will be changed to attain DSA form. First the left hand sides are transformed,
then the right hand sides are changed accordingly using information about which
definitions can reach each use. This information is obtained by running a reaching
definitions analysis [1]. Because of our preparatory transformations, we can do
this analysis exactly. Remember that we transformed all arrays to the equivalent
of scalars, and that we made sure every assignment is executed at least once in
each iteration of each surrounding loop.

The analysis can be performed for each variable separately because variables
cannot interfere with the data flow of other variables. For our running example,
the analysis for c is depicted graphically in Fig. 8. We define program points P1
through P10, one before and after each assignment, and one at the start and at
end of each loop. At each program point we keep the reaching definition instances
and the conditions under which they reach.
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P1 ⊥

P2 t = 0 ⊥ t > 0 S2(t − 1, 9)

P3 S1(t)

P4 i = 0 S1(t) i > 0 S2(t, i − 1)

P5 S2(t, i)

P6 S2(t, 9)

P7 S2(1008, 9)

P8 S2(1008, 9)

P9 S2(1008, 9)

P10 S2(1008, 9)

for (t = 0; t < 1009; t++) {

c = Up(c, t, 0); //S1

for (i = 0; i < 10; i++) {

c = f(c, t); //S2

}

}

for (t = 0; t < 1009; t++) {

output c(Ac(c, t));

}

Fig. 8. Exact reaching definitions analysis on Fig. 7(b)

The number of reaching definitions to distinguish, and the conditions for
each, are determined unambiguously by the following rules:

– At the start of the program (P1), we distinguish one case and denote the
reaching instance with ⊥. This can be interpreted as either an uninitialized
variable, or the initial value of the variable wherever it may come from.

– Upon entering a loop that contains an assignment to the variable we are
analyzing (for example P2), we split cases. Either we are in the first iteration
of the loop (t = 0), in which case we distinguish the same reaching definitions
as just before the loop, or we are in a later iteration (t > 0), in which case
the assignment in the loop has been executed at least once and has killed
all reaching definitions from before the loop. In the latter case the reaching
definition is taken from the end of the previous iteration of the loop. In case
of P2, the end of the loop is P6, and for t > 0, the reaching definition there
is found to be S2(t, 9). Taking into account that we are in the next iteration
of the t loop, the reaching definition to P2 becomes S2(t− 1, 9).

– Upon entering a loop that contains no assignment to the variable being
analyzed (e.g., P8), the reaching definitions are obviously not affected and
hence they are just copied from before the loop.

– Just after a loop (e.g., P6), the reaching definitions are those that reach the
end of the last iteration of that loop. The reaching definitions to P6 are those
at P5 for i = 9. There is only one, and filling in i = 9 gives S2(t, 9).
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for (t = 0; t < 1009; t++) {
if (t == 0) c1[t] = Up(c, t, 0); //S1

else c1[t] = Up(c2[t-1][9], t, 0); //S1

for (i = 0; i < 10; i++)

if (i == 0) c2[t][i] = i > t-1000 && i <= t ?

Up(c1[t],t,Ac(c1[t],t)+a[i]*b[t-i]) : c1[t]; //S2

else c2[t][i] = i > t-1000 && i <= t ?

Up(c2[t][i-1],t,Ac(c2[t][i-1],t)+a[i]*b[t-i]) : c2[t][i-1]; //S2

}
for (t = 0; t < 1009; t++)

output c(Ac(c2[1008][9], t)); //S3

Fig. 9. Converting Fig. 7(b) to full DSA form

– Directly after an assignment (e.g., P5) all other reaching definitions are
killed. Thus the assignment is the only reaching definition, and the reaching
instance is obviously the one from the current iteration of the loop. For P5
this is S2(t, i).

The maximum number of reaching definitions to discern at each program
point is one more than the loop depth. At the start of the program we start
with one case and zero loop depth. When going through a loop without an
assignment of interest, nothing changes and the number of cases is smaller than
the maximum. When entering a loop with an assignment of interest, one case is
added (hence the maximum number of cases is at worst one more than the loop
depth). After the assignment, the number of reaching definitions are reset to one,
which is also the number of reaching definitions at the end of the loop. With
n the maximum loop depth, the amount of information kept at each program
point is O(n2). Calculation of this information for all program points, O(s) in
number, and for all variables, v in number, requires a total time O(s ·n2 ·v). This
is because all information can be calculated without any complex bookkeeping
by just going over the program twice.

Transformation to DSA form. In multiple assignment code involving only
scalars, there are two causes of multiple assignments to the same variable; either
there are two assignments to the same variable, or an assignment is in a loop.
The former cause is removed by renaming the variables in the left hand side of
each assignment such that they each write to a different variable. Typically this
is done by adding a sequence number at the end of the variable. The latter cause
is removed by changing the variable assigned to an array with one dimension
for each surrounding loop, and we index that dimension with the iterator of the
corresponding loop. For our running example this is shown in Fig. 9.

After adjusting the left hand sides, we still need to adjust the variable accesses
in the right hand sides. It is possible that a number of assignments (definitions)
reach a variable access, and which one needs to be read from depends on the
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values of the iterators. This information was derived by applying the reaching
definitions analysis previously described.

For our example, S1(t) is reached by ⊥ when t = 0. In other words when
S1 is executed for t equal to 0, we should read from the variable written by
the implicit assignment at the start of the program, which is just c. If t > 0,
S1(t) is reached by S2(t− 1, 9). So we should read from the variable written by
S2(t− 1, 9), which is c2[t-1][9]. Because of the special form of the left hand
sides, the correspondence between S2(t− 1, 9) and c2[t-1][9] is direct. Filling
everything in in Fig. 7(b) results in Fig. 9.

Adding the sequence number to the left hand side of assignment is a constant
time operation, and because we need to add a number of dimensions equal to
the number of surrounding for-loops, this step is O(n · a) with n the maximum
loop nest depth for each of the a assignments. The adjustment of the right hand
sides is executed for each variable reference, r in number. This requires little
more than just copying the expressions from the calculated reaching definitions,
whose worst case size for each reference is O(n2). The complexity of this step is
thus O(r · n2 + n · a).

6 Additional Steps

Expansion of Up and Ac. Finally, we need to replace the Up and Ac function
by their respective implementations. This is straightforward given the simple
definition of these two functions.

There is an Up function for every assignment – at most a in number – which
on expansion gets an extra number of loops – one for each dimension of the
original array such that the whole array can be written. The maximal dimension
of the array reference is then n + d, and thus the size of the generated array
references is O(n + d). Since the generation is direct, the expansion of all Up
functions requires a time that is O((n + d) · a). There is an Ac function at every
array reference in the original program – at most r in number – which should
be replaced with a new array reference with maximum dimension again n + d.
The expansion of all Ac functions is then O((n + d) · r). The total time needed
for this step is O((n + d) · (a + r)).

Extensions. We have described our DSA transformation for the case where
all loop bounds, indexation and conditions are affine functions of surrounding
iterators. This fact is only used in Sec. 4 to find a constant upper and lower
bound for the iterators. Subsequent steps work with those constants instead of
the original loop bounds. The sole preceding step is the introduction of the Up
and Ac functions, but they take along the indexation literally without analyzing
it. This is illustrated in Fig. 6(b) where index is copied literally.

In general, conditions can be data dependent or non-affine, which prevents us
from simply using linear programming to find the upper and lower bounds for the
loops. We distinguish between bounds containing modulo operations and general
non-affine bounds. When the bounds do contain modulo, we can translate the
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problem of finding a constant upper and lower bound to an equivalent problem
that is affine. It is well known that modulo and integer division can be modeled
using existential variables, e.g., saying that a = b mod c is the same as saying
that ∃q ∈ ZZ : 0 ≤ b− q · c < c ∧ a = b− q · c. For the purpose of finding bounds,
we can drop the requirement that q should be integer. The condition has become
linear and q is just an extra variable in the linear programming problem.

For general non-affine expressions, including data dependent ones, we can
take several approaches:

– Find the extremal values for the iterators in the iteration domain with all
expressions that are not affine functions of the iterators discarded. This does
not work when the only expression bounding an iterator is not affine, but it
was applicable in most experiments we have performed.

– Use the range of the data type of the iterator as upper and lower bound.
This is a crude approximation, but it does not affect our intended use. For
both verification and optimizations like advanced copy propagation, the it-
eration domains would become larger measured by the number of points in
it, but their representation stays the same size – only a constant needs to be
changed.

– A more advanced technique analyzes the range of values that data can take
and uses this to find a tighter bound for data dependent conditions. This
analysis is actually easier on DSA programs and should be performed after
the DSA transformation to tighten the bounds. This is outside the scope of
this paper.

With the above extensions we can conclude that our approach works for general
kinds of conditions, loop bounds and indexation.

7 Complexity Analysis

Since the whole DSA transformation method is the succession of each of the
separate steps, the total complexity is simply the sum of the complexities of all
steps. This results in a grand total of O(d · a + (p(c) · l + a) + s · n2 · v + n · a +
r · n2 + (n + d) · (a + r)) = O(d · (a + r) + n · (s · n · v + r · n + a) + p(c) · l + a).
Assuming that loop depth and array dimension are bounded by a constant, this
simplifies to O(r + a + s · v + p(c) · l). Because every measure in this formula
is worst case proportional to the size of the program, our method is polynomial
in the size of the program. c is typically proportional to the depth of nesting,
hence we can reasonably assume that p(c) is bounded by a constant as well,
and we obtain O(a + s · v + r + l). The presence of s · v in this expression is
due to the reaching definitions analysis, and this is the only term that could
have a tendency to grow large because as the number of statements s increases,
the number of variables v is likely to increase as well. This makes our method
quadratic. However, our experiments suggest that our method tends towards
linearity. The difference between our experiments and our analysis is probably
caused by the fact that the big-O notation discards the constant coefficients
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Table 1. Benchmarks with transformation times

benchmark LOC n time Feaut.
gauss1 16 2 0.024s X
gauss2 17 2 0.027s X
gauss dd1 65 3 0.331s
gauss dd2 64 3 0.284s
mp3 1 75 4 4.946s
mp3 2 66 4 1.898s
qsdpcm 495 12 41.950s
cavdet1 70 4 1.275s

benchmark LOC n time Feaut.
cavdet2 96 4 0.820s
cavdet3 93 4 0.762s
cavdet4 53 4 0.425s
cavdet5 53 4 0.408s
cavdet6 54 4 0.388s
cavdet7 54 4 0.388s
cavdet8 53 4 0.310s
cavdet9 61 4 0.651s

(when some complexity is O(2 ·n), it is also O(n) and vice versa). This seems to
indicate that the coefficients of the linear parts of the complexity weigh heaviest
– most notably p(c) can be quite a large constant.

8 Experimental Results

We have implemented our DSA transformation using the Omega library [14]
for modeling and simplifying the iteration domains and for finding the extremal
values of the iterators. Our implementation has full support for data dependent
indexation and conditions, and partial support for extra data types from C (e.g.,
structs).

We have applied the transformation to a number of multimedia kernels:
Gaussian elimination without pivoting (gauss1 and gauss2) and with pivoting
(gauss dd1 and gauss dd2), a cavity detector (cavdet1 through cavdet9), a MP3
decoder (mp3 1 and mp3 2) and QSDPCM motion estimation (qsdpcm). These
benchmarks are shown in Table 1. The LOC column lists the number of lines of
code, and the n column lists the maximum loop nest depth. The DSA transfor-
mation was run on a Pentium 4 2.4GHz with 768 MB RAM.

Of these benchmarks, only gauss1 and gauss2 do not contain data dependent
indexation or conditions and can be handled by [7]. For example gauss dd1 and
gauss dd2 search for a pivot and then swap rows depending on the location of the
pivot. This location depends on the original matrix elements in a non-trivial way
and changes with each iteration. This makes that these programs cannot easily
be transformed to a form that [7] would be able to handle. The benchmarks that
can be handled by [7] are marked in the last column of Table 1.

For each benchmark (except qsdpcm) the first version is the original ver-
sion of the code. The other versions are obtained by applying transformations
in order to increase locality of access as well as regularity of access usually by
aligning loops and merging them. The effect is that uses and definitions of array
elements are moved closer to each other. Because life times of array elements
become much smaller, fewer elements are live at each point and less memory is
needed to store them. An effect noticeable from Table 1 is that DSA transfor-
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Table 2. Scalability experiment

k 1 2 3 4 5 6 7 8 9 10 25 50
t(s) 1.362 2.679 3.986 5.303 6.612 7.940 9.254 10.56 11.89 13.20 32.93 65.95
t/k 1.362 1.339 1.329 1.326 1.322 1.323 1.322 1.320 1.321 1.320 1.317 1.319

mation times tend to go down with the amount of locality/regularity improving
transformations applied. This is because when the reaching definitions are close
to the uses, they are easier to find. Additionally, fewer reaching definitions need
to be discerned and the conditions governing them become smaller. The bene-
ficial effect of regularity and locality can even outweigh an increase in program
size, as illustrated by cavdet1 vs cavdet2. Note that the time for cavdet9 is longer
than for cavdet8, which seems to go against the general trend. But in cavdet9
heavily used array elements are copied into smaller arrays, which can be placed
in a smaller memory that is faster and consumes less energy [5]. Besides making
the program larger, this makes the data flow more complex again. Intuitively,
the reason is that these arrays are added when there are many uses for a single
definition, and this single definition usually cannot be put close to each use.

To ascertain that our method scales well with growing program size, we have
run our DSA transformation on a program of growing size. Usually two programs
of differing size have a different loop structure as well, even if the maximum loop
depth is the same. This causes a lot of noise on the measurements. A very clear
example is the difference between gauss1 and qsdpcm: an increase of roughly a
factor 30 in LOC, but an increase of 1750 in transformation time. At play here is
the great increase in loop depth. To reduce this noise we have opted to chain the
cavity detector kernel (an adaptation of cavdet1) together a number of times
(denoted k) with the output array of one instance of the cavity detector the
same as the input array of the next instance. This way we can build reasonable
programs of a size that is a multiple of the original cavity detector, but with the
extra that the code that is added each time has a comparable loop structure.
The measurements are shown in Table 2.

The transformation time is shown as t, and the transformation time per
instance of the cavity detector is shown as the ratio t/k. This ratio actually
decreases, but this is due to a constant startup cost of which each instance’s
share decreases as the number of instances increases. Another measure for the
transformation time for one instance of the cavity detector could be the difference
in value for t for n = 1 and n = 2. This difference is 1.317 which t/k seems to
converge to, increasing our confidence that our method indeed behaves linearly.

For comparison with the DSA transformation of [7], we have done the scal-
ability experiment with MatParser [10] as well. MatParser is a mature, heav-
ily optimized tool that is believed ready for commercial use. This makes it a
good candidate for comparison. Because MatParser is not publicly available,
the experiments with MatParser had to be done on a different machine: a Pen-
tium 4 2.8GHz with 768 MB RAM. The results of this experiment are plotted
in Fig. 10. The timings for MatParser only go up to k = 5 because for larger
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Fig. 10. Comparison with MatParser of the transformation time as function of the
number of instances of the cavity detector

k MatParser runs out of memory. There are too few data points to derive whether
the behavior is exponential, but it is in any case not linear. As it turns out the
problem with MatParser (in this case, but also in general) is that it tends to
handle many assignments to the same variable badly. This is a problem specifi-
cally highlighted by our scalability experiment as each assignment to a variable
is repeated k times.

Repeating the same experiment, but with each instance of the cavity detector
given its own private set of variables (by renaming them), should show improve-
ment in MatParser’s performance. The results are shown in Fig. 10 as well. The
first thing to notice is that now it is possible to get up to k = 8 before running
out of memory. Second thing to notice is that the data points lie on a straight
line now, indicating that many assignments to the same variable do indeed pose
a problem for MatParser. An important thing to notice is that for our tool the
experiment with variable renaming results in exactly the same graph as without
variable renaming. This is an important feature of our method: it shows a re-
markable capability to discern different uses of the same variable, which in this
case are the uses of a variable by each instance of the cavity detector. Another
experiment with the qsdpcm benchmark shows that MatParser has problems
with deeply nested loops for the same reason. Because MatParser considers the
dependence over each surrounding loop separately, the statements surrounded by
the 12-dimensional loop are essentially split in 12 separate statements, causing
MatParser to go hopelessly out of memory.

9 Conclusion

In this paper we have presented a new method that transforms programs to
dynamic single assignment which is in practice linear in the size of the program
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(for a constant loop depth). This is achieved by adding copy operations in such
a way that we can use an exact scalar reaching definitions analysis and a simple
way of determining the indexation for each of these reaching definitions whereas
existing methods need an expensive, exact array data flow analysis. We have im-
plemented this DSA transformation and it is currently being used as an enabling
step for functional verification [19,21] and memory optimizations [5]. The extra
copy operations can be removed by advanced copy propagation [22]. We plan
to investigate the interaction between our new DSA transformation and copy
propagation as part of future work. On the one hand experiments show that for
non-data-dependent code (e.g., gauss1 and gauss2 from Fig. 1) all copy opera-
tions can be removed, and the resulting code is equivalent to the code Feautrier’s
method returns. There is the option though to leave some of the copy opera-
tions. This would allow to control the complexity of the transformation as well
as the code complexity of the resulting program, as both are tightly linked. This
complexity is due to the number of cases that need to be discerned, often due to
border conditions which give rise to few copy operation instances that are not
worth removing given the cost of doing so. The investigation of the trade-off of
remaining overhead versus transformation time and code complexity is left for
future work. On the other hand, for programs involving data-dependent indexa-
tion or conditions, not all copy operations can be removed as that would imply
that the program is fully analyzable which is not so in general. In future work,
we want to determine how far copy propagation can go in general.
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Abstract. We propose a framework for dependence analyses, adapted
–among others– to the understanding of static analyzers outputs. Static
analyzers like Astrée are sound but not complete; hence, they may yield
false alarms, that is report not being able to prove part of the properties
of interest. Helping the user in the alarm inspection task is a major chal-
lenge for current static analyzers. Semantic slicing, i.e. the computation
of precise abstract invariants for a set of erroneous traces, provides a use-
ful characterization of a possible error context. We propose to enhance
semantic slicing with information about abstract dependences. Abstract
dependences should be more informative than mere dependences: first,
we propose to restrict to the dependences that can be observed in a slice;
second, we define dependences among abstract properties, so as to isolate
abnormal behaviors as source of errors. Last, stronger notions of slicing
should allow to restrict slices to such dependences.

1 Introduction

In the last few years, many static analyzers were developed so as to answer the
need for certification methods and to check that critical programs satisfy certain
correctness properties, such as memory properties [21], the safety of pointer
operations [25], the absence of buffer overruns [15], or the absence of runtime
errors [11,5]. These tools should produce sound results (they should not claim
any false property to hold) and be automatic (they infer program invariants for
the certification instead of asking the user to provide the invariants and just
check them). Due to the undecidability of the properties they intend to prove,
these tools are necessarily incomplete: they may report false alarms, i.e. critical
operations they are not able to prove safe. From the user point of view, an alarm
could be either a true error, or a false alarm (which may be non-trivial to check
manually); hence, alarm inspection is a major issue in static analysis.

In the case of Astrée, a static analyzer for proving the absence of runtime-
errors in large C programs, a lot of work was done in order to make the analyzer
precise, i.e. reduce the number of false alarms [5]; this approach allowed us to
reduce the number of false alarms to 0 in some families of programs. Then, our
previous work [23] proposed semantic slicing as a way to approximate precisely
a set of executions satisfying some conditions; it may help to prove an alarm
false or to make the alarm diagnosis process easier. Among possible criteria

K. Yi (Ed.): APLAS 2005, LNCS 3780, pp. 347–363, 2005.
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X, X0, X1, X2, X3
floating point variables

t, floating point array of length 2
initializations:
t[2] = {0, 0}; X = 0;

l0 while(true){
l1 input(X0 ∈ [−100., 100.]);
l2 input(X1 ∈ [−50 000, 50 000]);
l3 X2 = −0.5 ∗ t[0] + 5 ∗ t[1] + X;
l4 t[0] = t[1];

l5 t[1] = X1;
l6 X3 = X0 + X1;
l7 X = X3 + X2;
l8 }
l9 . . .

Fig. 1. An unstable retroaction

for defining semantic slices, we can cite the data of a (set of) final state(s) (e.g.
states which may lead to an error), of conditions on the inputs, and of “execution
patterns” which specify sets of control flow paths (described, e.g. by automata).
Semantic slices are helpful in the alarm inspection process. Yet, the amount of
data to investigate may still be fairly important. Moreover, [23] requires the user
to provide the semantic slicing criteria, so we wish to help the user with a more
automatized process, even though these criteria are usually rather simple.

We propose to reinforce the basic dependence analysis implemented in [23]
with more restrictive analyses, producing fewer dependences supposed to be
more “related” to the alarm under investigation. More precisely, we intend to
restrict to dependences that can be observed on a set of program executions
corresponding to an alarm and to compute abstract dependences, i.e. chains of
dependences among abstract properties likely to capture the cause for an alarm.
Such dependences should help making the alarm inspection process more auto-
matic, by providing good candidate slicing criteria. For instance, in the example
of Fig. 1, an unstable retroaction causes X, X2 to diverge: in case the input X1 is
large for all iterations, X will grow, and will eventually overflow –whatever X0.
Astrée discovers two alarms at l3 and l7. Semantic slicing allows to inspect sets
of diverging traces but does not lead to the causes for the divergence. We expect
some dependence analysis to provide some hint about what part of the program
to look at; for instance, the input X0 plays little role in the alarm compared to
X1, so we would expect to rule it out, which is not achieved by classical slicing
[26], conditioned slicing [6], or semantic slicing [23] methods. Last, the cyclic
dependence among “diverging” variables (X, X2) should suggest to unroll the
loop in order to study the divergence; this information may be used to inferring
semantic slicing criteria automatically, thus enhancing [23].

The contribution of this paper is both theoretical and practical:

– we introduce alternative, more selective notions of dependences and pro-
pose algorithms for computing them; we also propose new notions of non-
executable, but analyzable program slices;

– we illustrate these concepts with examples and case studies, together with
early implementation results; moreover, we show how these dependences help
for better semantic slicing and more efficient alarm inspection.

Sect. 2 defines observable and abstract dependences and shows the relevance
of these notions. Sect. 3 provides an ordering among abstract dependences.
Sect. 4 focuses on the approximation of observable dependences. Sect. 5 tackles
the case of abstract dependences. Sect. 6 presents a few case studies. Sect. 7
concludes and reviews related work.



Abstract Dependences for Alarm Diagnosis 349

2 Dependences Framework

2.1 Basic Notations

We let � (resp. �) denote the set of variables (resp. of values); we write � (resp. �)
for the set of expressions (resp. statements, aka programs). We assume that � is
finite. A variable (resp. value) has scalar or boolean type. An expression is either
a constant v ∈ �, a variable x ∈ �, or the application e0⊕e1 of a binary operator
⊕ to a pair of expressions e0, e1 ∈ �. A statement is either an assignment x = e
(where x ∈ �, e ∈ �), a conditional if(e){s0}else{s1} (where e ∈ �, s0, s1 ∈ �),
a loop while(e){s0}, a sequence of statements s0; . . . ; s1, or an input(x ∈ V )
statement which writes a random value chosen in V ⊆ � into variable x. We
do not consider more involved C data and control structures (pointers, unions,
functions, recursion) so as to make the presentation less technical. The control
point before each statement and at the end of each block is associated to a unique
label l ∈ �.

We let � denote the set of states; a state is defined by a control state
l ∈ � and a memory state ρ ∈ �, so that � = � × �. An execution (or
trace) σ of a program is a finite sequence of states 〈(l0, ρ0), . . . , (ln, ρn)〉 such
that ∀i, (li, ρi) → (li+1, ρi+1) where (→) ⊆ �

2 is the transition relation of
the program; Σ is the set of all traces. For instance, in the case of the assign-
ment l0 : x := e; l1, there is a transition (l0, ρ) → (l1, ρ[x ← �e�(ρ)]), where
�e� ∈ � → �; in the case of the input statement l0 : input(x ∈ V ); l1, then
(l0, ρ) → (l1, ρ[x ← v]), where v ∈ V . The semantics �s� of program s collects all
such traces. If P is a set of stores and x ∈ �, we write P (x) for {ρ(x) | ρ ∈ P}.

2.2 Dependences on Functions

Our purpose is to track the following kind of dependences: we would like to know
what observation of the program (that is, which variable, and at which point)
may affect the value (or some abstraction of it) of variable x at point l. We give
a definition for “classical” dependences in the case of functions first and extend
this definition to the dependences in control flow graphs afterwards; extended
definitions are provided in the next subsections. We write Den for � → P(�).

Definition 1 (Classical dependences). Let φ ∈ Den, x0, x1 ∈ �. We say
that φ induces a dependence of x1 on x0 if and only if there exist ρ0 ∈ �, va, vb ∈
� such that φ(ρa)(x1) �= φ(ρb)(x1) where ρi = ρ0[x0 ← vi]. Such a dependence is

written x1
φ� x0 (or x1 � x0 when there is no ambiguity about the function φ).

Last, we let Df [φ] denote the set of dependences induced by φ: Df [φ] = {(x0, x1) |
x1

φ� x0} ∈ Depf (we write Depf = P(�2)).

Intuitively, there is a dependence of x1 on x0 if a single modification of the input
value of x0 may result in a different result for x1. This definition is comparable
to the notion of non-interference [18]; in fact the occurrence of a dependence
corresponds to the opposite of non-interference. It can also be related to the
notions of secure information flow [13]. Our motivation is to investigate the
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origin of some (abnormal) results, which is clearly related to the information
flows to the alarm location. Usual notions of slicing require more dependences
to be taken into account, since they aim at collecting all parts of the program
that play a role in the computation of the result (constant parts are required
even if they do not affect the result; their case will be considered in Sect. 6).

Example 1 (Dependences of functions). Let x, y ∈ �. Let us consider the func-
tion φ ∈ Den defined by φ(ρ) = {ρ[y ← ρ(x)]} if ρ(b) = true and φ(ρ) = ∅ if
ρ(b) = false. Then, if ρ0 ∈ �, and z ∈ �, φ(ρ0[b ← false])(z) = ∅ �= φ(ρ0[b ←
true])(z); hence, z

φ� b. Similarly, we would show that y � x. Last, if z ∈ �\{y},
we could prove that z � z, and that φ has no other dependence.

The definition of dependences among variables in a control flow graph derives
from the above definition and the classical abstraction of sets of traces into
functions [9]. Indeed, let l0, l1 ∈ �, x0, x1 ∈ �. Then, we shall approximate the
set of traces starting at l0 and ending at l1 with a function in fl1l0 ∈ Den defined by
fl1l0(ρ0) = {ρ1 | ∃〈(l0, ρ0), . . . , (l1, ρ1)〉 ∈ �s�}. We say that s induces a dependence
of (l1, x1) on (l0, x0) if and only if (x0, x1) ∈ Df [fl1l0 ] (such a dependence will be
denoted by (l1, x1) � (l0, x0)). Last, we note Dt[s] for {((l0, x0), (l1, x1)) | l0, l1 ∈
�, (x0, x1) ∈ Df [fl1l0 ]} (we write Dept for P((�× �)2)).

Example 2 (Ex. 1 continued). Let us consider the program fragment l0 : if(b){l1 :
y = x; l2 : . . .} . . .. Then, the function fl2l0 corresponds to the function φ intro-
duced in Ex. 1. Therefore, the set of dependences between l0 and l2 is Df [fl2l0 ] =
{(b, y); (x, y)} ∪ {(v, z) | z ∈ � \ {y}, v = z ∨ v = b}.
In the following, we rely on this straightforward extension of the definition of
dependences induced by functions into dependences induced by programs (so
that we do not have to state it again). It is important to note that Df [] is not
monotone; in particular the greatest element of Den is (λρ.�) and induces no de-
pendence. The purpose of the following subsections is to select some dependences
that should be relevant to the problem under consideration.

2.3 Observable Dependences

We consider now the problem of restricting the dependences that can be observed
on a subset of traces (aka a semantic slice). The semantic slice is usually defined
by a criterion c chosen in some domain �; moreover, we assume a concretization
function γ� : � → P(Σ) describes the meaning of semantic slicing criteria in
terms of sets of traces. For instance, we may fix sets of initial and final states;
hence, � = P(�)× P(�) and γ�(I,F) = {〈s0, . . . , sn〉 ∈ Σ | s0 ∈ I ∧ sn ∈ F}; in
the end the semantic slice (traces starting in I and ending in F) boils down to
�s� ∩ γ�(I,F). Other useful examples of semantic slices were introduced in [23]
(input constraints and restriction to some execution patterns).

We let E ⊆ Σ denote a semantic slice and E� : � → P(�) denote an “ab-
straction” [10] for the semantic slice E: if 〈. . . , (l, ρ), . . .〉 ∈ E, then ρ ∈ E�(l).
In practice, E� is computed by a static analyzer like Astrée [5] (E�(l) is the
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Initial condition (l0):
b = true

l0 if(b){
l1 y = x;
l2 }else {
l3 . . .

l4 }
l5 . . .

(a)

Initial condition (l0):
x ∈ [0, 10]
y ∈ [0, 5]
z ∈ [−4, 15]

Final condition (l5):
y ≥ 1 000

l0 if(x > 5){
l1 y = 1000 � x;
l2 } else {
l3 y = y + z;
l4 }
l5 . . .

(b)

Fig. 2. Observable dependences

concretization of the local, abstract numerical invariant at point l). Moreover,
we assume that E satisfies a closeness assumption: 〈s0, . . . , sn, . . . , sm〉 ∈ E ⇐⇒
〈s0, . . . , sn〉 ∈ E ∧ 〈sn, . . . , sm〉 ∈ E. This assumption is required for the deriva-
tion of computable approximations of dependences. It is satisfied for all semantic
slices proposed in [23] (a little complication arises in the case of the “pattern”-
based semantic slicing: in this case, the dependence analysis should use the same
partitioning criteria as the static analysis that computes E�; this case is evoked
in Sect. 4).

Example 3 (Semantic slicing). Fig. 2 presents some cases of semantic slices de-
fined by a set of initial and final states. In the case of Fig. 2(a) (similar to Ex. 2),
the condition on the input b entails that only the true branch may be executed;
moreover, the value of b may not change (it is equal to true), so we expect all
dependences on (l0, b) be removed.

Similarly, in the case of Fig. 2(b), the output condition on y may only be
achieved by executions flowing through the true branch of the conditional; there-
fore, we expect the dependences of (l5, y) on (l0, z), (l0, y) not to be considered.

In the same way as in Sect. 2.2, we propose a definition for dependences in-
duced by functions (the definition for dependences induced by a program fol-
lows straightforwardly). More precisely, we consider in the following definition
the case of a function φ constrained by input and output conditions; the case of
functions abstracting a program semantic slice is more technical but similar.

Definition 2 (Observable dependences). Let φ ∈ Den, Mi, Mo ⊆ �, x0, x1 ∈
�. We say that φ induces an observable dependence of x1 on x0 in the semantic
slice (Mi, Mo) if and only if ∃ρ ∈ Mi, va, vb ∈ Mi(x0) and such that φ(ρ[x0 ←
va])(x1) ∩ Mo(x1) �= φ(ρ[x0 ← vb])(x1) ∩ Mo(x1). We write x1

φ�Mi �⇒Mo
x0 for

such a dependence.

Intuitively, an observable dependence is a dependence of the original function,
which can be observed even when considering executions and values in the slice
only. This notion generalizes the classical dependences presented in Def. 1: in-
deed, if we let Mi = Mo = �, we find the same notion as in Def. 1.

Other possible definitions for observable dependences could have been chosen;
however, most of them are flawed. For instance, considering the dependences of
the restriction φ̃ : ρ �→ φ({ρ} ∩ Mi) ∩ Mo would have caused many additional
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dependences, with no intuitive interpretation: slicing φ = λρ.{ρ} with the input

condition ρ(x) = 0 would include dependences of the form y
φ̃� x for any variable

y, which would not be meaningful. Therefore, we consider dependences of φ,
observed on the restriction.

Example 4 (Ex. 3 continued). Let us consider the program in Fig. 2(a). There
is only one possible value for b at l0, so Def. 2 defines no dependence on (l0, b),
as expected in Ex. 3.

In the program of Fig. 2(b), the condition on the output rules out all traces
going through the false branch. As a consequence, the set of dependences in the
semantic slice between l0 and l2 is {(y, x)} ∪ {(z, z) | z ∈ �, z �= y}.

2.4 Abstract Dependences

A second restriction consists in defining dependences among abstractions of the
values the variables may take in the semantic slice. We consider simple abstrac-
tions only. For instance, we may wish to find out what may cause some variable
to take large values (e.g., to investigate an overflow alarm), or very small val-
ues (e.g., to investigate a division by 0), or out-of-spec values (in case a user-
provided specification maps variables to ranges they are supposed to live in). We
let such a property be represented by an abstraction of sets of values, defined
by a Galois-connection P(�) −−−→←−−−

α

γ
D. The formalism of Galois-connections is

powerful enough for our needs here, since we express dependences among sim-
ple abstractions only (i.e. α is always defined). We let � denote the set of such
abstractions. An abstraction will be identified to its abstraction function, since
there is no ambiguity. For instance, if k is a large scalar value, we may define
γ[k](P [k]

∀ ) = {v | |v| < k}, γ[k](P [k]
∃ ) = {v | |v| ≥ k} and �[k] = {⊥, P [k]

∀ , P [k]
∃ ,*};

this abstraction allows to select which variable may take a large value. If the
analyzer reports a possible overflow of x, then, we may wish to check what x de-
pends on, and more precisely what variables may take abnormal or special (e.g.,
large) values, causing x to overflow; indeed, most arithmetic operators (like +,
−, �) tend to propagate large values in concrete executions and abstract analy-
ses. For instance, we may want to learn what may cause y to grow above 1 000
in the program in Fig. 2(b) (this was the purpose of the output condition on y
when defining the semantic slice) and more precisely to track other abnormal
values in the computation of y. This is the goal of the following definition:

Definition 3 (Abstract dependences). Let φ ∈ Den, Mi, Mo ⊆ �, x0, x1 ∈
�, α0, α1 ∈ � (we write D0, D1 for the abstract domains corresponding to
α0, α1). We say that φ induces an abstract dependence of (x1, α1) on (x0, α0)
in the semantic slice (Mi, Mo) if and only if ∃ρ ∈ Mi, da, db ∈ D0 and such that:

– ∀j ∈ {a, b}, γ0(dj) ∩Mi(x0) �= ∅;
– α1(φ(ρ[x0 ← γ0(da)])(x1) ∩Mo(x1)) �= α1(φ(ρ[x0 ← γ0(db)])(x1) ∩Mo(x1)).

We write (x1, α1) �Mi �⇒Mo
(x0, α0) for such a dependence.
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Intuitively, an abstract dependence is a dependence that can be observed by
looking at abstractions of the values of the variables only. In particular, we
can remark that the notion of abstract dependences generalizes the notion of
observable dependences: if we let α0 = α1 = id where ∀P ⊆ �, id(P ) = P ,
we define the same notion as in Def. 2. As usual, this definition is implicitly
extended to dependences in programs.

Example 5 (Ex. 3 continued). We consider the dependences of (l5, y) on the ex-
ample of Fig. 2(b) again, but we wish to consider dependences involving “large”
values only, i.e. we consider abstractions of the form α[k] where k > 1 000, with
the above notations. Since x does not take any large value, the dependence of
(l5, y, α[1 000]) is restricted to (l2, y, α[1 000]). Furthermore, in this case, the first
occurrence of a large value in the program coincides with the assignment right
before l2; in this sense, following the abstract dependence allows to get an insight
about where the abnormal value for y comes from.

Clearly, the approach proposed here may not lead to the actual error behind an
alarm (e.g., an overflow). First, some large values may be caused by a division by
small values (this case requires considering abstract dependences involving var-
ious kind of abstractions). Second an overflow may be due to a slow divergence;
in this case, only the “cycle” of dependences corresponding to the diverging
values will be discovered. Ideally, we would look for dependences of the form
(x1, α1) � (x0, id) in order to collect all dependences of a variable x1 causing
an overflow; yet this would tend to yield too many dependences. Our approach
mainly aims at characterizing which variables are more likely to cause an error,
by looking at the dependences that may carry abnormal (e.g. large) values first.

3 Comparing Dependences

In this section, we show in what extent abstract and observable dependences are
stronger forms of dependences than the standard notion presented in Def. 1.

Theorem 1 (Hierarchy of dependences). We let φ ∈ Den, Mi, Mo ⊆ �,
x0, x1 ∈ �, α0, α1 ∈ �. Then:

– if φ induces a dependence x1 �Mi �⇒Mo
x0, and M ′

i , M ′
o are such that Mi ⊆ M ′

i

and Mo ⊆ M ′
o, then φ induces a dependence x1 �M ′

i �⇒M ′
o

x0;
– if φ induces a dependence (x1, α1) �Mi �⇒Mo

(x0, α0), and α′
0 is less abstract

than α0 (i.e., there exists an abstraction α′′
0 such that α0 = α′′

0 ◦α′
0) and α′

1 is
less abstract than α1, then φ induces a dependence (x1, α′

1) �Mi �⇒Mo
(x0, α′

0)
(in particular, if we let α0 = α1 = id, then we conclude that there exists a
dependence x1 �Mi �⇒Mo

x0);
– in particular, if φ induces a dependence (x1, α1) �Mi �⇒Mo

(x0, α0), and if we
let M ′

i = M ′
o = � and α0 = α1 = id, then we conclude that there exists a

dependence x1 � x0 in the sense of Def. 1.

These properties are very intuitive: the smaller a semantic slice, the less depen-
dences one can observe on it; similarly, the more “abstract” the abstractions we
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(l5, y)

(l4, y)

(l2, y)

(l3, y)

(l3, z)

(l1, x)

(l0, y)

(l0, z)

(l0, x)

dependence

observable dependence

abstract dependence

Fig. 3. Dependences from (l5, y) in the program of Fig. 2(b)

consider, the less dependences they let observe (the abstractions may hide de-
pendences). In particular, for any semantic slice and any abstraction, observable
and abstract dependences are a subset of the “usual” dependences introduced in
Def. 1. As a consequence, the abstract dependences allow to select some depen-
dences, that are more likely to be useful when trying to understand the origin of
(true or false) alarms; in this sense, they provide more precise information than
mere dependences. We now apply these principles to the program of Fig. 2(b):

Example 6 (Ex. 5 continued). We present in Fig. 3 all possible kinds of local de-
pendences (i.e.dependences on one-step transitions) collected recursively from
(l5, y). Next section discusses how to approximate dependences with such a
graph. As shown in the figure, the restriction to observable dependences in a
semantic slice defined by the conditions in Fig 2(a) allows to throw away the
dependences induced by the false branch; the abstract dependences are even
more restrictive, with only one abstract dependence. This dependence points to
the assignment in the true branch where a large value is assigned to y.

4 Fixpoint-Based Approximation for Observable
Dependences

At this point, we have introduced some relevant notions of dependences; yet,
we need algorithms to compute them (exactly or with some approximation);
the goal of this section is to provide a computable approximation for observable
dependences, to compare it with existing methods and propose refinements. We
generalize this techinique to the approximation of abstract dependences in the
next section.

We start with a semantic-based fixpoint algorithm for approximating de-
pendences and benefit from the semantic foundation to implement various re-
finements. The principle of this algorithm is comparable to existing dependence
analyses [19]; yet, the advantage of our presentation is to allow for a wide variety
of refinements inherited from static analysis to be formulated and proved; these
refinements are described in the end of the section.

The approximation of composition: First, we propose to define an ap-
proximation for ◦ in Depf . We let φ0, φ1 ∈ Den and consider the function
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φ = φ1 ◦ φ0. We let D0, D1 be over-approximations of the dependences in-
duced by φ0, φ1; we try to approximate the set D of dependences of φ. Let
(x0, x2) ∈ �

2, such that ∀x1 ∈ �, (x0, x1) �∈ D0 ∨ (x1, x2) �∈ D1. We let
ρ ∈ �, va, vb ∈ �, and W = {x1 ∈ � | φ0(ρa)(x1) �= φ0(ρb)(x1)} where
∀i, ρi = ρ[x0 ← vi]. We can prove by induction on the number of elements
of W that φ1 ◦ φ0(ρa)(x2) = φ1 ◦ φ0(ρb)(x2) (W is finite since � is finite). As a
consequence:

Lemma 1 (Approximation of ◦). With the above notations, D ⊆ D0 � D1,
where � is the binary operator defined over Depf by D0 � D1 = {(x0, x2) ∈ �2 |
∃x1 ∈ �, (x0, x1) ∈ D0 ∧ (x1, x2) ∈ D1}. As a consequence, if Df [φ0] ⊆ D0 and
Df [φ1] ⊆ D1, then Df [φ1 ◦ φ0] ⊆ D0 � D1.

This approximation is clearly strict in general. Intuitively, the operator � pro-
vides a sound approximation for ◦ in Depf . An approximation for the depen-
dences of semantic slices can be computed in a similar way. Let φ0, φ1 ∈ Den,
and M0, M1, M2 ⊆ �, and φ = φ1 ◦ φ0. We consider the semantic slices of φ0
and φ1 defined respectively by (M0, M1) and (M1, M2); the semantic slice of the
composition is φ̃ : ρ �→ φ1(φ0({ρ} ∩M0) ∩M1) ∩M2. If D0, D1 over-approximate
the dependences of the semantic slices of φ0 and of φ1 respectively, then we can
prove that D0 � D1 over-approximates the dependences of the slice φ̃.

Fixpoint-based over-approximation of dependences: The restriction �s�[p]
of �s� to a path p = l0 · l1 · . . . · ln is the set of traces that follow that path (i.e.
of the form 〈(l0, ρ0), (l1, ρ1), . . . , (ln, ρn)〉). We can abstract �s�[p] into a function
f[p] ∈ Den defined by f[p] : ρ0 �→ {ρn ∈ � | 〈(l0, ρ0), (l1, ρ1), . . . , (ln, ρn)〉 ∈ �s�};
furthermore, f[p] = δ

ln+1
ln

◦ . . . ◦ δl1
l0

where ∀l, l′ ∈ �, δl′
l (ρ) = {ρ′ ∈ � | (l, ρ) →

(l′, ρ′)} is a local semantic transformer. At this point, we can make two remarks:

– Lemma 1 provides an approximation for the dependences induced by f[p]:
Df [f[p]] ⊆ Df [δl1

l0
] � . . . � Df [δ

ln+1
ln

];
– the abstraction flnl0 of the traces from l0 to ln can be decomposed along all

paths from l0 to ln: ∀ρ ∈ �, flnl0 (ρ) = ∪{f[p](ρ) | p path from l0 to ln}; this
allows to prove that a dependence between l0 and ln should be observable
on at least one path from l0 to ln.

We let Dloc ∈ Dept be an approximation of all local dependences in s: (x, x′) ∈
Df [δl′

l ] ⇒ ((l, x), (l′, x′)) ∈ Dloc. An example of a rough definition for Dloc is
shown on Fig. 4. We deduce from the two points above the following theorem (if
F is montone, we write lfpx0

F for the least fixpoint of F , greater than x0):

Theorem 2 (Dependences approximation). Let � be the operator defined
on Dept by D0 � D1 = {(ν0, ν2) | ∃ν1 ∈ (� × �), (ν0, ν1) ∈ D0 ∧ (ν1, ν2) ∈ D1},
and ∆ = {(ν, ν) | ν ∈ (�×�)}. Then, the dependences of s are approximated by:

Dt[s] ⊆ lfp∆Fdep where Fdep : Dept → Dept; D �→ D ∪ Dloc � D

This theorem provides a fixpoint-based algorithm for the over-approximation
of dependences. Comparable algorithms can be obtained via typing approaches
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use : �→ P(�)
use(c) = ∅
use(v) = {v}

use(e0 ⊕ e1) = use(e0) ∪ use(e1)
∀e ∈ �, ρ ∈ �, x ∈ �, va, vb ∈ �,
�e�(ρa) �= �e�(ρb) ⇒ x ∈ use(e)
(where ρi = ρ[x ← vi])

(a) Deps. in expressions

assignment l0 : x = e; l1 :

Df [δ
l1
l0

] ⊆ use(e) × {x} ∪ {(y, y) | y ∈ � \ {x}}
loop l0 : while(e){l1 : . . .}
Df [δ

l1
l0

] ⊆ use(e) × � ∪ {(y, y) | y ∈ �}
conditional l0 : if(e){l1 : . . . ; l2}else{. . .}l3
Df [δ

l1
l0

] ⊆ {(x, y) ∈ �
2 | x = y ∨ x ∈ use(e)}

Df [δ
l3
l2

] ⊆ {(x, x) | x ∈ �}
(b) Approximation for local dependences

Fig. 4. Local dependences for a simple language

[1,2]; we prefer providing a fixpoint based definition in order to design various
kinds of refinements (see the end of this section). Again this theorem also holds
true in the case of observable dependences; however, the proof relies on the
closeness assumption mentioned in Sect. 2.3. This hypothesis is necessary in
order to prove the first point (decomposition of the dependences along a path).

Remark 1 (Control dependences). To simplify the presentation, the fixpoint al-
gorithm of Theorem 2 does not distinguish control and data dependences like
most dependence analyses do [19]. This would result in a loss of precision: for in-
stance, in the case of a conditional l0 : if(b){l1}l2, a dependence (l2, x) � (l0, b)
would be inferred for any variable x, since there is a dependence (l1, x) � (l0, b).
Yet, we can prove that, if l, l′ ∈ � are such that ∀ρ ∈ �, fl

′
l (ρ) �= ∅, if there exists

a dependence (l′, x′) � (l, x), then there exists a path from l to l′ where the
value of x is modified. In the above example, x is not modified between l0 and
l1. Hence, our algorithm does not suffer the loss of precision mentioned above
(our implementation does not include the fictitious dependence (l2, x) � (l0, b)).

Example 7 (Ex. 3 continued). We consider the program in Fig. 2(a) (the input
condition is ignored here). Then, Dloc contains the local dependences (l5, y) �
(l2, y), (l2, y) � (l1, x), (l1, x) � (l0, b); the fixpoint algorithm of Theorem 2
composes these dependences together so, the dependence (l5, y) � (l0, b) is dis-
covered. The dependence (l5, y) � (l0, x) is inferred in the same way. Obviously,
the dependence on (l0, b) does not hold in the semantic slice; so we show in the
following how to get rid of it, by taking the properties of the semantic slice into
account. Similarly, in the case of the program in Fig. 2(b), dependences through
the false branch yield the dependences (l5, y) � (l0, y), (l0, z), which are not
observable in the semantic slice.

Remark 2. Note that a sound dependence analysis for a real language (like C)
requires sound aliasing information to be known: indeed, if x and y are aliased,
an assignment to x creates an implicit dependence on y. Many alias analyses
exist in the literature, e.g. [8,14], so we do not develop this issue here.

Dependence graphs: In general, we are not interested in all the dependences
of s; we only wish to track the dependences of a criterion c, i.e. a set of pairs
(control state,variable) of interest: the set of dependences of interest is dep[c] =
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Dt[s] ∩ ((� × �) × c). For instance, in the case of Fig. 2(b), we considered the
dependence of {(l5, y)}. We can approximate dep[c] by a least-fixpoint form:

Theorem 3 (Dependences of a criterion). dep[c] ⊆ lfp(�×�)×cFdep

In practice, a superset of the dependences (i.e. of Dloc) is collected during a
linear pass; then the computation of an over-approximation of the dependence
of a criterion c ⊆ �× � follows from Theorem 3.

Refinements: We propose now a series of refinements, in order to restrict the
local dependences and their global composition so as to carry out more precise
fixpoint computations. These refinements can be expressed and proved formally
on the basis of Theorem 2. We consider a semantic slice E, approximated by
E� : �→ P(�). Among these refinements, we can cite:

– Removal of unreachable control states: some control state l ∈ � may
be unreachable in the semantic slice. In this case, it is obvious there can be
no observable dependence from or to that point. In practice, the invariant E�

computed in the semantic slicing phase [23] provides an over-approximation
of the reachable control states in the semantic slice (if l reachable, then
E�(l) �= ∅); any other control state should be removed from the dependences
at this point.

– Removal of constant variables: similarly, a variable x may be proved con-
stant at point l in the semantic slice by the analyzer (this amounts to proving
∃v ∈ �, E�(l)(x) ⊆ {v}); in this case, there can be no dependence to (l, x):
indeed, we cannot pick up two distinct values for x at l; as a consequence
any two stores ρa, ρb differing at most in the value for x generate the same
transitions from this point. For instance, in case the semantic slice specifies
a constant value for some input variable, any variable computed from this
input only is constant, hence should be removed from the dependences.
Note that the same simplification on the other side of the dependence does
not hold: indeed, proving ρ(x) ⊆ {v} does not rule out that ρ(x) may be ∅.

– Simplification of constant expressions: The above principle also applies
to sub-expressions, which may help reducing the local dependences induced
by assignments or conditions. For instance, if we consider the assignment
x = x0 � x1 + x1 � x2, where x, x0, x1, x2 ∈ � and x0, x1 are proved constant
in the semantic slice, then only the dependence on x2 should be considered.

– Control partitioning: the analysis carried out in the semantic slicing may
resort to some kind of trace partitioning (either control-based [22] or to dis-
tinguish execution patterns [23]); then, the same principle could be applied
to the dependence analysis. In particular, this approach allows to benefit
from precise abstract invariants, so it may increase the number of contexts
the above refinements can be applied to (for instance, some statements may
be unreachable in some partitions, as shown in Ex. 9).

Example 8 (Ex. 7 continued). In Fig. 2(a), the value of b at l0 is true (constant
value) in the semantic slice; as a result, any dependence (l1, v) � (l0, b) is re-
moved, so that the dependence (l5, y) � (l0, b) does not appear in the fixpoint
computation anymore.
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Similarly, in the semantic slice of the program in Fig. 2(b), the false branch
of the conditional is unreachable; as a result any local dependence involving l3
or l4 is removed from Dloc; as a result, the dependences (l5, y) � (l0, y), (l0, z)
are no longer computed.

Example 9 (Partitioning analysis). Let us consider the program l0 : if(b){x0 =
y}else{x1 = y}; if(b′){z = x0}else{z = x1}; l1 and the semantic slice collect-
ing all executions going through the same branch in both if statements. Then,
the partitioning dependence analysis infers only one dependence from (l1, z),
namely (l0, y). The non-partitioning analysis would also include dependences on
(l0, b), (l0, b′), (l0, x1), (l0, x0). We can see that this refinement allows for global
precision improvements.

5 Approximating Abstract Dependences

Chains of abstract dependences: All results of Sect. 4 can be generalized
straightforwardly to the case of abstract dependences. In particular, Lemma 1
and Theorem 2 can be generalized, by taking the abstractions into account
in the definition of � and �. Indeed, we could prove as for Lemma 1 that
((x0, α0), (x2, α2)) ∈ Df [φ1 ◦ φ0] entails that there exists (x1, α1) ∈ � × � such
that ((x0, α0), (x1, α1)) ∈ Df [φ0] and ((x1, α1), (x2, α2)) ∈ Df [φ1].

However, this solution is not completely satisfactory for several reasons:

– the lattice of all abstractions of P(�) is not representable.
– the fixpoint-based expressions would lead to a rough approximation. In par-

ticular if (l2, x2, α2)
φ1� (l1, x1, α1) and (l1, x1, α1)

φ0� (l0, x0, α0), then a de-

pendence (l2, x2, α2)
φ1◦φ0� (l0, x0, α0) will always be added, which is overly

conservative in the case of abstract dependences.
– we wish to compute sets of abstract dependences that are immediately rel-

evant to the criterion; indeed, given a criterion c = (l, x, α), we would like
to track the observable abstract dependences following immediately from c
first; more complex dependences should be considered only after the sim-
pler ones did not reveal relevant causes for the alarm under investigation.
In this sense, an under-approximation of the abstract dependences from the
criterion makes sense.

As a consequence, we introduce a notion of abstract dependence chain, which
collects local abstract dependences, involving “interesting” abstractions only:

Definition 4 (�-abstract dependence chain). We let � ⊆ � be a set of
abstractions of interest and c be the criterion (l, x, α). An �-abstract dependence
chain from c is a finite sequence (l0, x0, α0), . . . , (ln, xn, αn), such that:

1. ∀i, αi ∈ �,
2. ∀i, ((li, xi, αi), (li+1, xi+1, αi+1)) ∈ Dloc.

For instance, we may choose a family of abstractions composed of the abstrac-
tions mentioned in Sect. 2.4; e.g., we may let � = {α[10n] | n ∈ �, n ≥ 3}, so as
to track large values.
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Computation of abstract dependence chains: We need an abstract de-
pendence graph, that is, an over-approximation for all abstract dependences in-
volving abstractions in � only, that occur on one-step transitions (that is, on
edges of the control flow graph). The rules defined in Sect. 2.4 apply for the
over-approximation of such dependences; refinements of these local dependences
are considered below. In practice, the representation of the abstract dependence
graph consists in a dependence graph, with labels on the edges, that approximate
the abstractions the dependences they correspond to are valid for.

Once the abstract dependence graph is computed, an over-approximation
of the �-abstract dependence chains from any criterion c ∈ � × � × � can be
computed as suggested by Theorem 3, by a fixpoint-based algorithm.

Refinements: All refinements introduced in the case of (concrete) observable
dependences, in Sect. 2.4 are also sound in the case of abstract dependences.

We propose a refinement that generalizes the “removal of constant vari-
ables” (Sect. 4) to abstract dependences. Let us consider (l0, x0, α0), (l1, x1, α1) ∈
� × � × �. If there exists a minimal element d0 of D0 \ {⊥} (where ⊥ is the
least element of D0) such that E�(l0)(x0) ⊆ γ0(d0), then the abstract domain
D0 is not able to distinguish the values observed for x0 at l0 in the seman-
tic slice. An obvious application of Def. 3 shows that there is no dependence
(l1, x1, α1)

E� (l0, x0, α0). For instance, this refinement applies if α0 abstracts
together all “normal” (i.e., not too large) values and if all values for x0 at point
l0 are “normal”.

Example 10 (Ex. 5 continued). For instance, in the case of the program in
Fig. 2(b), x ∈ [0, 10] at point l0; hence, if we consider � as defined above, there
exist no abstractions αx, αy ∈ � such that (l2, y, αy)

E� (l1, x, αx). As a con-
sequence, the only remaining abstract dependence from (l5, y) in the semantic
slice and involving abstractions in � is a dependence of (l5, y) on (l2, y); this �-
abstract dependence chain leads to the point where an “abnormal” value appears
for the first time in the sequence of computations leading to y (see Fig. 3).

6 Slicing and Case Study

Slicing: Slicing [26] aims at selecting a subset of the statements of a program
that may play a role in the computation of some variable x at some point l. The
principle is to include in the slice any statement at point l′ that may modify a
variable x′ such that (l, x) depends on (l′, x′).

The semantics of program slicing is rather subtle for several reasons:

– The notion of dependence involved in slicing is quite different to the one
we considered in Sect. 2. For instance the slice of l0 : x = 3; l1 : y = x; l2
for the criterion (l2, y) should include the statement l0 : x = 3; l1 as well,
even though (l2, y) does not depend on (l1, x) according to Def. 2, since x is
constant at l1.
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– The usual expression of slicing correctness resorts to some kind of projection
of the program semantics, which is preserved by slicing. However, the removal
of non-terminating loops (or of possible sources for errors) may cause the
slice to present more behaviors than the projection of the semantics of the
source program. This issue can be solved by considering a non-standard,
more concrete semantics [7], which is preserved by the transformation, yet
this approach is not natural for static analysis.

As a consequence, we propose a transformation that should be more adapted to
static analysis.

Smaller, non-executable slices: In [23], semantic slices approximate program
executions with abstract invariants. Such an invariant together with a (subset
of a) syntactic slice allow to describe even more precisely a set of program exe-
cutions:

Definition 5 (Abstract slice). An abstract slice E of a program s is defined
by a sound invariant E� : � → P(�) for E and a subset s′ of the program
statements, which is defined by the set of corresponding control states L ′.

The semantics of a semantic slice is defined both by the program transitions (for
the statements which are included in the slice) and by the abstract invariants:

Definition 6 (Abstract slice semantics). The semantics �s′� of the abstract
slice collects all the traces 〈(l0, ρ0), . . . , (ln, ρn)〉 such that:
– ∀i, ρi ∈ E�(li);
– ∀i, (li ∈ L ′ ∧ li+1 ∈ L ′) =⇒ (li, ρi) → (li+1, ρi+1).

Obviously, the definition of abstract slices leaves the choice of the syntactic
slice undetermined. However, the purpose of the abstract slices is to restrict to
the most interesting parts the program; hence, we propose to compute abstract
dependence chains and include any assignment which affect a variable in a de-
pendence chain: this way, the slice preserves only the �-abstract dependence
chains and abstract any other statement of the program into the invariants in
E�. Let us note that this notion allows to solve the two points mentioned above:

– parts of the program that are not immediately relevant to the criterion un-
der investigation (in the sense that they do not appear in the dependences
introduced in Def. 1, Def. 2 and Def. 3) do not need to be included into the
slice anymore; instead, they can be replaced with program invariants (in the
semantic slice). For instance, the assignment l0 : x = 3; l1 can be replaced
with the invariant x = 3 at point l1. Obviously, applying this principle to
larger programs may result in huge gain in slice sizes.

– the intersection with program invariants limits the loss of precision induced
by, e.g. the removal of a loop.

Example 11 (Abstract slice). Let us consider the program of Fig. 2(b), together
with its input/output conditions. Fig. 3 displays the local, observable and ab-
stract dependences that can be recursively composed when starting from (l5, y).
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In case we compute an abstract slice for this program, starting from (l5, y), we
find only one �-abstract dependence chain (Ex. 10). As a consequence, we get the
abstract slice defined by the set of control states L ′ = {l1, l2, l5}. In particular,
the abstract slice contains the assignment l1 : y = 1000 �x; l2, with the invariant
(x ∈ [5, 10]), which gives a likely cause for the error.

Early implementation results and case studies: A simple abstract depen-
dence analysis was implemented inside Astrée (for tracking large values and
overflows), together with an abstract slice extraction algorithm. We could run
these algorithms on some 70 kLOC real world program, which we modified so as
to make some computations unstable (Astrée proves the absence of overflow in
the original version). The static analysis by Astrée takes roughly 20 minutes
and uses 500 Mb on a Bi-opteron 2.2 Ghz with 8 Gb of RAM. The computation
of the dependence graph (by collecting all local dependences and applying local
refinements) takes 72 seconds and requires 300 Mb, on the same machine; this
phase provides all data required to extract a slice from any criterion. The slice
extraction computes a least fixpoint from the criterion (Theorem 3) and applies
recursively local dependences; in the case of abstract dependences, this amounts
to collecting �-abstract dependence chains. The typical slice extraction time is
about 5 seconds, with low memory requirements (around 110 Mb).

The table below displays the gain in size obtained by computing abstract
slices for a series of alarms (size of slices are in LOCs):

Slicing point a1 a2 a3

Classical slice 543 368 1572

Abstract slice 39 160 96

The resulting slices proved helpful for finding the direct consequences of errors
like overflows; moreover, it seemed promising for deriving automatically semantic
slicing criteria, which was one of the motivations for our present work. We re-
marked that the refinements presented in Section 4 played a great role in keeping
the size of dependences down. Cyclic abstract dependence chains suggest some
kind of partitioning could be done in order to isolate certain execution patterns;
they also allow to restrict the part of the program to look at in order to define
an adequate input for defining an error scenario, so that we envisage synthesiz-
ing input constraints in the future. Another possible use for abstract slices is to
cut down the size of programs to analyze during alarm inspection sessions, by
abstracting into invariants parts of the code to analyze.

7 Conclusion and Related Work

We proposed a framework for defining and computing valuable dependence in-
formation, for the understanding and refinement of static analysis results. Early
experiments back-up favorably the usefulness of this approach, especially for
giving good hints for the choice of semantic slicing criteria [23].
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Our definition for dependences are rather related to the definition of non-
interference [18] commonly used in language-based security [24]. This approach is
rather different to the more traditional ways of defining dependences in program
slicing, which rely on program dependence graphs [19], yet these two problems
are related [2,1]. We found that the main benefit of the “dependences as inter-
ference” definition is to allow for wide varieties of refinements for dependence
analyses and extension for the definition of dependences to be stated.

In particular, our definition of abstract dependences is closely related to the
notion of abstract non interference introduced in [17] in the security area, which
aims at classifying program attackers as abstract-interpretations. The authors
propose to compute the strongest safe attacker of a program by resolving an
equation on domains by fixpoint. In our settings, the abstraction on the output is
fixed by the kind of alarm being investigated; moreover, the dependence analysis
should discover the variables the criterion depends on and not only for what
observation. Therefore, the algorithms proposed in [17] do not apply to our goal.

Program slicing [26] is another area related to our work. Many alternative
notions of slices have been proposed since the first, syntactic versions of slic-
ing. In particular, conditioned slicing [6] (applied, e.g. in [12]) aim at extracting
slices preserving some executions of programs, specified by, e.g. a relation on
inputs. Our approach goes beyond these methods: indeed, a set of program exe-
cutions defined by a semantic property (e.g. leading to an error) is characterized
precisely by semantic slicing [23]; these invariants allow to refine precisely the
dependences. Dynamic slicing [3,20,16] records states during concrete executions
and inserts a dependence among the corresponding nodes according to a stan-
dard, rough dependence analysis, in order to produce “dynamic”, non-executable
slices. This approach is adapted to debugging; yet it does not allow to charac-
terize precisely a set of executions defined by semantic constraints either.

There exist a wide variety of methods applied to error cause localization. For
instance, [4] proposes to characterize transitions that always lead to an error
in abstract models; however, this kind of approach requires enumerating the
predicates and/or transitions; hence, it does not apply to Astrée, due to the
number of predicates in the abstract invariants (domains nearly infinite).

Debugging methods start with a concrete trace, which we precisely do not
have, since alarms arise from abstract analyzes.

A first possible direction for future work would be to express abstract depen-
dences involving more complicated, e.g. relational abstractions. Indeed, tracking
the origin of an alarm raised in the analysis of z =

√
x + y requires looking at

dependences involving the property x + y < 0. A second challenge is to let the
dependence analysis interact more closely with the forward-backward analyses
carried out by the semantic slicer [23]; in particular the dependence informa-
tion could give some hints about what part of the invariants to refine (after
specializing the semantic slicing criteria).

Acknowledgments. We deeply thank B. Blanchet and J. Feret for their comments
on a preliminary version of this article.
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Abstract. We define a compositional program logic in the style of Floyd and
Hoare for a simple, typed, stack-based abstract machine with unstructured control
flow, global variables and mutually recursive procedure calls. Notable features of
the logic include a careful treatment of auxiliary variables and quantification and
the use of substructural typing to permit local, modular reasoning about program
fragments. Semantic soundness is established using an interpretation of types and
assertions defined by orthogonality with respect to sets of contexts.

1 Introduction

Recent research on language-based techniques in security and certification has led to
renewed interest in Floyd-Hoare and VDM-style programming logics, and to much
work on type systems and logics for low-level code. Two industrially significant typed
intermediate languges have received a great deal of attention: the bytecode of the JVM,
used as a target for Java, and the Common Intermediate Language of the CLR, used
as a target for languages including C� and Visual Basic. Both of these intermediate
languages are stack-based with control flow expressed using labelled jumps and method
calls.

Most research on formalizing the type systems of these intermediate languages
[33, 12] has treated the reality of stacks and jumps, though some authors have cho-
sen to work with structured imperative control flow [13] or functional-style applicative
expressions [36]. Work on more general specification logics [1, 28, 16] has, however,
mostly been done in the context of high-level languages.

Here we present and prove the correctness of a simple logic for directly proving par-
tial correctness assertions on a minimal stack-based machine with jumps and first-order
procedure calls. This is rather more complex than traditional Hoare logic for while pro-
grams. As well as unstructured control flow, we have to deal with a stack that varies in
size and locations that vary in type, which means some care has to be taken to ensure
assertions are even well-formed. There are also various kinds of error that are, at least
a priori, possible in the dynamic semantics: stack underflow, wild jumps and type er-
rors. We deal with these issues by defining a fairly simple type system that rules out
erroneous behaviour, and defining assertions relative to typed programs.

There are also complexities associated with (possibly mutually-recursive) procedure
calls, which become especially acute if one wishes to be able to reason locally and
modularly, rather than re-analysing bodies at every callsite. We solve these problems
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using three techniques: firstly, we are very explicit about types, contexts and quantifiers
(in particular, we have universally quantified assertions on labels in the context, in the
style of Reynolds’s specification logic [31]); secondly, we adopt a ‘tight’ interpretation
of store typings, which allows us to use substructural reasoning to adapt assumptions on
procedures to their calling context; thirdly, we use a rather general rely/guarantee-style
rule for linking arbitrary program fragments.

The other novelty is the semantics with respect to which we prove soundness. As-
sertions on a program p are interpreted extensionally, using a form of orthogonality
(perping) with respect to contexts extending p. A further twist in the proofs is the use
of step-indexed approximations to the semantics of assertions and their orthogonals.
Fuller details, including proofs, may be found in the companion technical report [8].

2 The Machine

The metavariables n and b range over the integers, Z, and booleans, B, respectively.
We assume a set V of names for global variables, ranged over by x. The metavariables
bop and uop range over typed (binary and unary, respectively) arithmetic and logical
operations such as addition and conjunction. Programs, p, are finite partial functions
from labels, l ∈ N, to instructions I:

I := pushc v | pushv x | pop x | dup | binopbop |
unopuop | brtrue l | call l | ret | halt

Programs ! p := [l1 : I1, . . . , ln : In]

Stores are finite functions from V to values (i.e. to B ∪ Z). Our machine has two
stacks: the evaluation stack, σ, used for intermediate values, passing arguments and
returning results, is a finite sequence of values, whilst the control stack, C, is a finite
sequence of labels (return addresses):

Stores ! G := x1 = v1, . . . , xn = vn

Stacks ! σ := v1, . . . , vn

Callstacks ! C := l1, . . . , ln

We use a comma ‘,’ for both the noncommutative, total concatenation of sequences and
for the commutative, partial union of finite maps with disjoint domains. We write a dash
‘−’ for both the empty sequence and the empty finite map, and use | · | for the length
operation on finite sequences. A configuration is quintuple of a program, a callstack, a
global store, an evaluation stack and a label (the program counter):

Configs = Programs × Callstacks × Stores × Stacks × N

The operational semantics is defined by the small-step transition relation → on con-
figurations shown in Figure 1. The pushc v instruction pushes a constant boolean or
integer value v onto the evaluation stack. The pushv x instruction pushes the value of
the variable x onto the stack. The pop x instruction pops the top element off the stack
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〈p, l : pushc v|C|G|σ|l〉 → 〈p, l : pushc v|C|G|σ, v|l + 1〉
〈p, l : pushv x|C|G, x = v|σ|l〉 → 〈p, l : pushv x|C|G, x = v|σ, v|l + 1〉

〈p, l : dup|C|G|σ, v|l〉 → 〈p, l : dup|C|G|σ, v, v|l + 1〉
〈p, l : pop x|C|G, x = v′|σ, v|l〉 → 〈p, l : pop x|C|G, x = v|σ|l + 1〉
〈p, l : binopbop|C|G|σ, v1, v2|l〉 → 〈p, l : binopbop|C|G|σ, v3|l + 1〉

if v3 = (v1 bop v2).
〈p, l : unopuop|C|G|σ, v|l〉 → 〈p, l : unopuop|C|G|σ, v′|l + 1〉

if v′ = uop v.
〈p, l : brtrue l′|C|G|σ, true|l〉 → 〈p, l : brtrue l′|C|G|σ|l′〉

〈p, l : brtrue l′|C|G|σ, false|l〉 → 〈p, l : brtrue l′|C|G|σ|l + 1〉
〈p, l : call l′|C|G|σ|l〉 → 〈p, l : call l′|C, l + 1|G|σ|l′〉
〈p, l : ret|C, l′|G|σ|l〉 → 〈p, l : ret|C|G|σ|l′〉

Fig. 1. Operational Semantics of the Abstract Machine

and stores it in the variable x. The binopop instruction pops the top two elements off
the stack and pushes the result of applying the binary operator op to them, provided
their sorts match the signature of the operation. The brtrue l instruction pops the top
element of the stack and transfers control either to label l if the value was true, or to the
next instruction if it was false. The halt instruction halts the execution. The call l
instruction pushes a return address onto the call stack before transferring control to la-
bel l. The ret instruction transfers control to a return address popped from the control
stack.

For k ∈ N, we define the k-step transition relation →k and the infinite transition
predicate →ω in the usual way. We say a configuration is ‘safe for k steps’ if it either
halts within k steps or takes k transitions without error. Formally:

Safe0〈p|C|G|σ|l〉 Safek〈p, l : halt|C|G|σ|l〉

〈p|C|G|σ|l〉→ 〈p|C′|G′|σ′|l′〉 Safek〈p|C′|G′|σ′|l′〉
Safek+1〈p|C|G|σ|l〉

and we write Safeω〈p|C|G|σ|l〉 to mean ∀k ∈ N.Safek〈p|C|G|σ|l〉.
Although this semantics is fairly standard, the choice to work with partial stores is

significant: execution can get stuck accessing an undefined variable, so, for example,
there are contexts which distinguish the sequence pushv x;pop x from a no-op.

3 Types and Assertions

As well as divergence and normal termination, programs can get stuck as a result of type
errors applying basic operations, accessing undefined variables, underflowing either of
the stacks, or jumping or calling outside the program. We rule out such behaviour using
a type system, and define assertions relative to those types. This seems natural, but it
is not the only reasonable way to proceed – although both the JVM and CLR have
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Θ; ∆; Σ � n : int Θ; ∆; Σ � b : bool

Θ; ∆, x : τ ; Σ � x : τ Θ, a : τ ; ∆; Σ � a : τ

Θ; ∆; Σ, τ � s(0) : τ
Θ; ∆; Σ � s(i) : τ

Θ; ∆; Σ, τ ′ � s(i + 1) : τ

Θ, a : τ ;∆; Σ � E : bool

Θ; ∆; Σ � ∀a ∈ τ.E : bool

Θ; ∆; Σ � E : τ1 uop : τ1 → τ2

Θ; ∆; Σ � uop E : τ2

Θ; ∆; Σ � E1 : τ1 Θ; ∆; Σ � E2 : τ2 bop : τ1 × τ2 → τ3

Θ; ∆; Σ � E1 bop E2 : τ3

Fig. 2. Expression Typing

type-checkers (‘verifiers’), the CLR does give a semantics to unverifiable code, which
can be executed if it has been granted sufficient permissions. Our type-based approach
prevents one from proving any properties at all of unverifiable code.

3.1 Basic Types and Expressions

A base type, τ , is either int or bool. A stack type, Σ, is a finite sequence τ1, . . . , τn of
base types. A store type, ∆, is a finite map x1 : τ1, . . . , xn : τn from program variables
to base types. We assume a set of auxiliary variables, ranged over by a. An auxiliary
variable context, Θ, is a finite map from auxiliary variables to base types. A valuation,
ρ is a function from auxiliary variables to values. We write ρ : a1 : τ1, . . . , an : τn for
∀1 ≤ i ≤ n. ρ(ai) : τi.

Our low-level machine does not deal directly with complex expressions, but we will
use them in forming assertions. Their grammar is as follows:

E := n | b | x | a | s(i) | E bop E | uop E | ∀a ∈ τ.E

The expression form s(i), for i a natural number, represents the ith element down the
stack. Note that universal quantification over integers and booleans is an expression
form. We assume that at least equality and a classical basis set of propositional con-
nectives (e.g. negation and conjunction) are already operators in the language; other-
wise we would simply add them to expressions. In any case, we will feel free to use
fairly arbitrary first-order arithmetic formulae (including existential quantification and
inductively defined predicates) in assertions, regarding them as syntactic sugar for, or
standard extensions of, the above grammar.

Expressions are assigned base types in the context of a given stack typing, store
typing and auxiliary variable context by the rules shown in Figure 2. Expression typ-
ing satisfies the usual weakening properties, and the definitions of, and typing lemmas
concerning, substitutions E[E′/x], E[E′/a] and E[E′/s(i)] are as one would expect.
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[[v]] ρ G σ = v [[a]]ρ G σ = ρ(a) [[x]] ρ G σ = G(x)
[[s(0)]] ρ G (σ, v) = v [[s(i + 1)]] ρ G (σ, v) = [[s(i)]] ρ G σ

[[uop E]] ρ G σ = uop ([[E]] ρ G σ)

[[E1 bop E2]] ρ G σ = ([[E1]] ρ G σ) bop ([[E2]] ρ G σ)

[[∀a ∈ τ.E]] ρ G σ =
∧

v∈[[τ ]][[E]] ρ[a �→ v] G σ

Fig. 3. Expression Semantics

If Θ; ∆; Σ � E : τ , ρ : Θ, G : ∆ and σ : Σ then we define [[E]] ρ G σ ∈ [[τ ]] as in
Figure 3. The semantics is well defined and commutes with each of our three forms of
substitution. If Θ; ∆; Σ � Ei : bool for i ∈ {1, 2}, we write Θ; Σ; ∆ |= E1 =⇒ E2
to mean

∀ρ : Θ.∀G : ∆.∀σ : Σ. [[E1]] ρ G σ =⇒ [[E2]] ρ G σ.

where =⇒ is classical first-order implication. We define syntactic operations shift(E)
and E \\E′ for reindexing expressions when the stack is pushed or popped by

E shift(E) E \\E′

s(0) s(1) E′

s(i + 1) s(i + 2) s(i)
E1 bop E2 shift(E1) bop shift(E2) (E1 \\E′) bop (E2 \\E′)
uop E1 uop (shift(E1)) uop (E1 \\E′)
∀a ∈ τ.E1 ∀a ∈ τ.shift(E1) ∀a ∈ τ.(E1 \\E′) capture-avoiding
otherwise E E

where the E\\E′ operation, combining substitution for s(0) with ‘unshifting’, is defined
when Θ; ∆; Σ, τ ′ � E : τ and Θ; ∆; Σ � E′ : τ ′.

3.2 Types and Assertions for Programs

One could first present a type system and then a second inference system for assertion
checking. Since the structure of the two inference systems would be similar, and we
need types in defining assertions, we instead combine both into one system. The type
part used here is monomorphic and somewhat restrictive, rather like that of the JVM.
Over this we layer a richer assertion language, including explicit universal quantifica-
tion. We define the structure of, and axiomatise entailment on, this assertion language
explicitly (rather than delegating both to some ambient higher-order logic).

An extended label type, χ, is a universally-quantified pair of a precondition and a
postcondition, where the pre- and postconditions each comprise a store type, a stack
type and a boolean-valued expression:

χ := ∆; Σ; E → ∆′; Σ′; E′ | ∀a : τ.χ

A label environment is a finite mapping from labels to extended label types

Γ := l1 : χ1, . . . , ln : χn
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Order:

Θ � χ ok Θ � Ê : bool
refl

Θ; Ê � χ ≤ χ

Θ; Ê � χ ≤ χ′ Θ; Ê � χ′ ≤ χ′′

trans
Θ; Ê � χ ≤ χ′′

Quantifier:
Θ � ∀a : τ.χ ok Θ � E : τ Θ � Ê : bool

∀-subs
Θ; Ê � ∀a : τ.χ ≤ χ[E/a]

Θ � χ′ ok Θ � Ê : bool Θ, a : τ ; Ê � χ′ ≤ χ
∀-glb

Θ; Ê � χ′ ≤ ∀a : τ.χ

Arrow:

Θ; ∆; Σ � F ∧ Ê =⇒ E Θ; ∆′; Σ′ � E′ ∧ Ê =⇒ F ′

→
Θ; Ê � (∆; Σ; E → ∆′; Σ′; E′) ≤ (∆; Σ; F → ∆′; Σ′; F ′)

Θ � Ê : bool Θ, a : τ ;∆; Σ � E : bool Θ; ∆′; Σ′ � E′ : bool
∀∃ →

Θ; Ê � ∀a : τ.(∆; Σ; E → ∆′; Σ′, E′) ≤ (∆; Σ; ∃a ∈ τ.E → ∆′; Σ′; E′)

Frame:

Θ � Ê : bool Θ; ∆; Σ � I : bool Θ � ∆; Σ; E → ∆′; Σ′; E′ ok

Θ; Ê � (∆; Σ; E → ∆′; Σ′; E′)
≤ (∆, ∆; Σ, Σ; shift |Σ|(I) ∧ E → ∆, ∆′; Σ, Σ′; shift |Σ′|(I) ∧ E′)

Fig. 4. Subtyping/Entailment for Extended Label Types

These are subject to the following well-formedness conditions:

Θ � χ1 ok · · · Θ � χn ok

Θ � l1 : χ1, . . . , ln : χn ok

Θ, a : τ � χ ok

Θ � ∀a : τ.χ ok

Θ; ∆; Σ � E : bool Θ; ∆′; Σ′ � E′ : bool

Θ � ∆; Σ; E → ∆′; Σ′; E′ ok

The intuitive meaning of l : ∆; Σ; E → ∆′; Σ′; E′ is that if one jumps to l with a store
of type ∆ and a stack of type Σ, such that E is true, then the program will, without
getting stuck, either diverge, halt, or reach a ret with the callstack unchanged and a
store of type ∆′ and a stack of type Σ′ such that E′ is true. We will formalise (a more
extensional version of) this intuition in Section 4.

We define χ[E/a] in the obvious capture-avoiding way and axiomatise entailment
on well-formed extended label types as shown in Figure 4. The basic entailment judge-
ment has the form Θ; Ê � χ ≤ χ′ where Θ � Ê : bool (we elide store and stack
types here), Θ � χ ok and Θ � χ′ ok. The purpose of Ê, which will also show up in
the rules of the program logic proper, is to constrain the values taken by the variables in
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Θ. Including Ê in judgements does not seem necessary for proving properties of closed
programs, but we shall see later how it helps us to reason in a modular fashion about
program fragments.

The [→] rule is basically the usual one for subtyping function types, here playing the
role of Hoare logic’s rule of consequence. The [∀∃ →] rule is a kind of internalization
of the usual left rule for existential quantification. Note how in these two rules, classical
first-order logic, which we do not analyse further, interacts with our more explicit, and
inherently intuitionisitic, program logic.

The most complex and interesting case is the frame rule, which is closely related
to the rule of the same name in separation logic [25].1 This allows an invariant I to be
added to the pre and postconditions of an extended label type χ, provided that invariant
depends only on store and stack locations that are guaranteed to be disjoint from the
footprint of the program up to a return to the current top of the callstack. Note how ref-
erences to stack locations in the invariant are adapted by shifting. The frame rule allows
assumptions about procedures to be locally adapted to each call site, which is necessary
for modular reasoning. Rather than a single separating conjunction ∗ on assertions, we
use our ‘tight’ (multiplicative) interpretation of state types to ensure separation and use
ordinary (additive) conjunction on the assertions themselves.

In use, of course, one needs to adapt extended types to contexts in which there is
some relationship between the variables and stack locations mentioned in ∆ and Σ and
those added in ∆ and Σ. This is achieved by using (possibly new) auxiliary variables to
split the state dependency before applying the frame rule: see Example 4 in Section 5
for a simple example.

3.3 Assigning Extended Types to Programs

Our basic judgement form is Θ; Ê; Γ � p � Γ ′ where Γ and Γ ′ are label environments
with disjoint domains, Ê is a boolean-valued expression and p is a program fragment.

The context Γ expresses assumptions about imported code that will be subsequently
linked with p, whilst Γ ′ says what p will guarantee about exported labels, given those
assumptions. Thus none of the labels in Γ , and all of the labels in Γ ′, will be in the
domain of p. The rules for assigning extended types to programs are shown (eliding
some obvious well-formedness conditions in a vain attempt to improve readibility) in
Figures 5 and 6.

The key structural rule is [link], which allows proved program fragments to be con-
catenated. The rule has a suspiciously circular nature: if p1 guarantees Γ1 under assump-
tions Γ2, and p2 guarantees Γ2 under assumptions Γ1, then p1 linked with p2 guarantees
both Γ1 and Γ2 unconditionally. The rule is, however, sound for our partial correctness
(safety) interpretation, as we prove later.

The [∀-r] rule is a mild variant of the usual introduction/right rule for universal
quantification. The auxiliary variable a does not appear free in Γ , so we may univer-
sally quantify it in each (hence the vector notation) of the implictly conjoined conclu-

1 Since our rule concerns both ‘frame properties’ and ‘frames’ in the sense of activation records,
it arguably has even more claim on the name :-).
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Θ; Ê; Γ � p � Γ ′, l : χ
widthr

Θ; Ê; Γ � p � Γ ′

Θ; Ê; Γ � p � Γ ′ Θ � χ ok l �∈ dom(p)
widthl

Θ; Ê; Γ, l : χ � p � Γ ′

Θ; Ê; Γ � p � Γ ′, l : χ Θ; Ê � χ ≤ χ′
subr

Θ; Ê; Γ � p � Γ ′, l : χ′

Θ; Ê; Γ, l : χ � p � Γ ′ Θ; Ê � χ′ ≤ χ
subl

Θ; Ê; Γ, l : χ′ � p � Γ ′

Θ; Ê; Γ � p � Γ ′ Θ, Θ′ � Ê′ =⇒ Ê
ctxl

Θ, Θ′; Ê′; Γ � p � Γ ′

Θ; Ê; Γ � p � li : ∆i; Σi ; Ei → ∆′
i ; Σ

′
i ; E

′
i

ctxr
Θ; true; Γ � p � li : ∆i ; Σi ; Ê ∧ Ei → ∆′

i ; Σ
′
i ; E

′
i

Θ � Γ ok Θ � Ê : bool Θ, a : τ ; Ê; Γ � p � li : χi ∀-r
Θ; Ê; Γ � p � li : ∀a : τ.χi

Θ; Ê; Γ, Γ2 � p1 � Γ1 Θ; Ê; Γ, Γ1 � p2 � Γ2
link

Θ; Ê; Γ � p1, p2 � Γ1, Γ2

Fig. 5. Program Logic: Structural and Logical Rules

sions. The vector notation also appears in the [ctxr] rule, allowing global conditions on
auxiliary variables to be transferred to the preconditions of each of the conclusions. 2

The reader will notice that the axioms fail to cope with branch or call instructions
whose target is the instruction itself, as we have said that judgements in which the same
label appears on the left and right are ill-formed. This is easily rectified either by adding
special case rules, or3 by a more general relaxation of our requirement for imports Γ
and exports Γ ′ to be disjoint, but we omit the (uncomplicated) details here. We also
remark that if we are willing to make aggressive use of the frame rule, subtyping and
auxiliary variable manipulations, the axioms can be presented in a more stripped-down
form. For example, the rule for ret can be presented as just

−; true;− � [l : ret] � l : −;−; true → −;−; true

2 Equivalently, one could state these two rules with a single conclusion and add a right rule for
conjunction. Our presentation threads the subject program p linearly through the derivation,
making it clear that we only analyse its internal structure once.

3 Thanks to one of the referees for this observation.
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Θ; Ê; Γ � [l : halt] � l : χ

Θ; Ê; Γ, l + 1 : ∆; Σ, τ ; E → ∆′; Σ′; E′

� [l : pushc v] � l : ∆; Σ; E \\v → ∆′; Σ′; E′ (where v : τ )

Θ; Ê; Γ, l + 1 : ∆, x : τ ; Σ, τ ;E → ∆′; Σ′; E′

� [l : pushv x] � l : ∆, x : τ ;Σ; E \\x → ∆′; Σ′; E′

Θ; Ê; Γ, l + 1 : ∆, x : τ ; Σ; E → ∆′; Σ′; E′

� [l : pop x] � l : ∆, x : τ ′; Σ, τ ; shift(E)[s(0)/x] → ∆′; Σ′; E′

Θ; Ê; Γ, l + 1 : ∆; Σ, τ, τ ; E → ∆′; Σ′; E′ � [l : dup] � l : ∆; Σ, τ ; E \\s(0) → ∆′; Σ′; E′

Θ; Ê; Γ, l + 1 : ∆; Σ, τ3; E → ∆′; Σ′; E′

� [l : binopbop] � l : ∆; Σ, τ1, τ2; shift(E)[(s(1) bop s(0))/s(1)] → ∆′; Σ′; E′

(where bop : τ1 × τ2 → τ3)

Θ; Ê; Γ, l + 1 : ∆; Σ, τ2; E → ∆′; Σ′; E′

� [l : unopuop] � l : ∆; Σ, τ1; E[(uop s(0))/s(0)] → ∆′; Σ′; E′ (uop : τ1 → τ2)

Θ; Ê; Γ, l + 1 : ∆; Σ; E \\false → ∆′; Σ′; E′ , l′ : ∆; Σ; E \\true → ∆′; Σ′; E′

� [l : brtrue l′] � l : ∆; Σ,bool; E → ∆′; Σ′; E′

Θ; Ê; Γ, l + 1 : ∆′′; Σ′′; E′′ → ∆′; Σ′; E′ , l′ : ∆; Σ; E → ∆′′; Σ′′; E′′

� [l : call l′] � l : ∆; Σ; E → ∆′; Σ′; E′

Θ; Ê; Γ � [l : ret] � l : ∆; Σ; E → ∆; Σ; E

Fig. 6. Program Logic: Instruction-Specific Axioms

4 Semantics of Types and Assertions

One could certainly formulate and prove a correctness theorem for this logic syntacti-
cally, using a ‘preservation and progress’ argument. Technically, the syntactic approach
is probably the simplest way of proving soundness, though it has the mild disadvan-
tage of requiring a somewhat artifical extension of the typing and logical rules to whole
configurations, rather than just the programs with which one starts. More fundamen-
tally, the syntactic approach fails to capture the meaning of types and assertions, which,
although this is partly a question of taste, I believe to be more than a philosophical
objection.

In practice, we would like to be able safely to link low-level components that have
been verified using different proof systems and would arguably also like to have a for-
mal statement of the invariants that should be satisfied by trusted-but-unverified com-
ponents. These goals require a notion of semantics for types and assertions that is for-
mulated in terms of the observable behaviour of programs, independent of a particular
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syntactic inference system. A syntactic approach to the semantics of program logics can
also be excessively intensional, distinguishing observationally equivalent programs in a
way that may weaken the logic for applications such as program transformation. Since
we are making no claims here about completeness of our logic, we refrain from pushing
this argument more strongly, however.

The way in which we choose to formulate an extensional semantics for types and
assertions is via the notion of orthogonality with respect to contexts (‘perping’). This is
a general pattern, related to continuation-passing and linear negation, that has been ap-
plied in a number of different operational settings in recent years, including structuring
semantics, defining operational versions of admissible predicates, logical relations [27]
and ideal models for types [35], and proving strong normalization [19].

To establish the soundness of our link rule we also find it convenient to index our
semantic definitions by step-counts, a technique that Appel and his collaborators have
used extensively in defining semantic interpretations of types over low-level languages
[3, 4, 2]. By contrast with our use of orthogonality, which is a deliberate choice of what
we regard as the ‘right’ semantics, the use of indexing is essentially a technical device
to make the operational proofs go through.

Assume Θ; ∆; Σ � E : bool and ρ : Θ. We define

Eρ(∆; Σ; E) ⊆ Stores×Stacks
def
= {(G, σ) | G : ∆ ∧ σ : Σ ∧ [[E]] ρ G σ = true}

If S ⊆ Stores × Stacks and k ∈ N, we define

S�
k ⊆ Configs = {〈p|C|G′|σ′|l〉 | ∀(G, σ) ∈ S.Safek〈p|C|G′, G|σ′, σ|l〉}

So S�
k is the set of configurations that, when extended with any state in S, are safe for

k steps: think of these as (k-approximate) ‘test contexts’ for membership of S.
Now for Θ � Γ ok, ρ : Θ and k ∈ N, define |=k

ρ p � Γ inductively as follows:

|=k
ρ p � l1 : χ1, ..., ln : χn ⇐⇒ ∧n

i=1 . |=k
ρ p � li : χi

|=k
ρ p � l : ∀a ∈ τ.χ ⇐⇒ ∀x ∈ [[τ ]]. |=k

ρ[a�→x] p � l : χ

|=k
ρ p � l : ∆; Σ; E → ∆′; Σ′; E′ ⇐⇒ ∀(G, σ) ∈ Eρ(∆; Σ; E).
∀〈p, p′|C|G′|σ′|l′〉 ∈ Eρ(∆′; Σ′; E′)�k . Safek〈p, p′|C, l′|G′, G|σ′, σ|l〉

The important case is the last one: a program p satisfies l : ∆; Σ; E → ∆′; Σ′; E′

to a k-th approximation if for any k-test context for E′ that extends p and has entry
point l′, if one pushes l′ onto the call stack, extends the state with one satisfying E, and
commences execution at l, then the overall result is safe for k steps.4

We then define the semantics of contextual judgements by

Θ; Ê; Γ |= p � Γ ′

⇐⇒ ∀ρ : Θ.∀k ∈ N.∀p′. [[Ê]]ρ = true ∧ |=k
ρ p′, p � Γ =⇒ |=k+1

ρ p′, p � Γ ′

4 It would actually suffice only to ask the context to be safe for k − 1 steps, rather than k.
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So p satisfies Γ ′ under assumptions Γ if, for all k, any extension of p that satisfies Γ
for k steps satisfies Γ ′ for k +1 steps. The following theorem establishes the semantic
soundness of the entailment relation on extended label types, and is proved by induction
on the rules in Figure 4:

Theorem 1. If Θ; Ê � χ ≤ χ′ then for all p, l, ρ : Θ, k ∈ N

[[Ê]]ρ = true∧ |=k
ρ p � l : χ =⇒ |=k

ρ p � l : χ′.

We then use Theorem 1 and a further induction on the rules in Figures 5 and 6 to
establish the semantic soundness of the program logic:

Theorem 2. If Θ; Ê; Γ � p � Γ ′ then Θ; Ê; Γ |= p � Γ ′.

5 Examples

Our logic is very fine-grained (and the judgement forms fussily baroque), so proofs of
any non-trivial example programs are lengthy and extremely tedious to construct by
hand. In this section we just present a few micro-examples, demonstrating particular
features of the logic. We hope these convince the reader that, given sufficient patience,
one can indeed prove all the program properties one might expect (subject to the lim-
itations of the simple type system, of course), and do so in a fairly arbitrarily modular
fashion. The technical report contains more details of these examples, as well a simple
example of mutual recursion.

Example 1. It takes around twelve detailed steps to derive

−; true;− � [0 : pushc 1, 1 : binop+, 2 : ret] � 0 : χ0 (1)

where
χ0 = ∀a : int.(−;int; s(0) = a → −;int; s(0) = a + 1)

which establishes that for any integer a, if we call label 0 with a on the top of the stack,
the fragment will either halt, diverge or return with a + 1 on the top of the stack.

Example 2. Now consider the following simple fragment:

[10 : call 0, 11 : br 0]

which one may think of as a tail-call optimized client of the code in the first example.
Write χ′

0 for

∀c : int.(−;int; (s(0) = c) ∧ ((c = b) ∨ (c = b + 1)) → −;int; s(0) = c + 1)

which is well-formed in the context b : int. It takes seven steps to show

b : int; true; 0 : χ′
0 �

[10 : call 0, 11 : br 0] � 10 : −;int; s(0) = b → −;int; s(0) = b + 2 (2)
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which establishes (roughly) that for any b, if the code at label 0 can be relied upon
to compute the successors of b and of b + 1, then the code at label 10 guarantees to
compute b + 2. We now consider linking in the code from the first example. Another
eight or so steps of reasoning with entailment and structural rules allows us to combine
judgements (1) and (2) to obtain

−; true;− � [0 : pushc 1, 1 : binop+, 2 : ret, 10 : call 0, 11 : br 0]�
0 : χ0, 10 : ∀b : int.(−;int; s(0) = b → −;int; s(0) = b + 2)

establishing that for any integer b, calling the code at label 10 with b returns with b + 2.
The point about this example is to demonstrate a certain style of modular reasoning: the
proof about the code at 10 and 11 was carried out under a rather weak assumption about
the code at 0. After linking the two fragments together, we were able to generalize and
conclude a stronger result about the code at 10 in the composed program without re-
analysing either code fragment. To re-emphasize this point, we now consider replacing
the code at 0 with something weaker.

Example 3. Given the source program

p = [0 : dup, 1 : pushc 7, 2 : binop<, 3 : brtrue 5, 4 : ret,
5 : pushc 1, 6 : binop+, 7 : ret]

we can prove, using the rule for conditional branches, that

−; true;− � p � 0 : ∀a : int.(−;int; a < 7 ∧ s(0) = a → −;int; s(0) = a + 1)
(3)

showing that the code at label 0 computes the successor of all integers smaller than 7.
We now consider [link]ing the judgement (3) with that we derived for the client

program (2). With a few purely logical manipulations (using Ê = b < 6) we can derive

−; true;− � p, [10 : call 0, 11 : br 0]
�10 : ∀b : int.(−;int; b < 6 ∧ s(0) = b → −;int; s(0) = b + 2)

showing that calling 10 now computes b + 2 for all b less than 6. Again, we did not
reanalyse the client code, but were able to propogate the information about the range
over which our ‘partial successor’ code at 0 works through the combined program after
linking. The inclusion of Ê, or something equivalent, seems necessary for this kind of
reasoning: we need to add constraints on auxiliary variables throughout a judgement,
as well as to assumptions or conclusions about individual labels.

Example 4. As a simple example of how our entailment relation allows extended types
for labels to be adapted for particular calling contexts, consider the assertion χ0 we had
in our first example. Eight small steps of reasoning with the entailment rules allow one
to deduce

−; true � χ0 ≤ (−;int,int; (s(1) < s(0) → −;int,int; s(1) < s(0))

So, although χ0 only mentions a one-element stack, when one calls a label assumed to
satisfy χ0 one can locally adapt that assumption to the situation where are two things
on the stack and a non-trivial relationship between them. This is a common pattern:
we use the frame rule and new auxiliary variables to add a separated invariant and then
existentially quantify the new variables away.



376 N. Benton

Example 5. Consider the source procedure

void f() {
x := 0;
while(x<5) {

x := x+1;
}

}

A typical Java or C� compiler will compile the loop with the test and conditional back-
wards branch at the end, preceded by a header which branches unconditionally into the
loop to execute the test the first time. This yields code p something like

[1 : pushc 0, 2 : pop x, 3 : pushc true, 4 : brtrue 9, 5 : pushv x,
6 : pushc 1, 7 : binop+, 8 : pop x, 9 : pushv x, 10 : pushc 5, 11 : binop<,
12 : brtrue 5, 13 : ret]

Such unstructured control-flow makes no difference to reasoning in our low-level logic:
as one would hope, we can easily derive

−; true;− � p � 0 : x : int;−; true → x : int;−; x = 5.

Example 6. Although our machine has call and return instructions, it does not specify
any particular calling convention or even delimit entry points of procedures. Both the
machine and the logic can deal with differing calling conventions and multiple entry
points. For example, given

p = [1 : pushv x, 2 : pushc 1, 3 : binop+, 4 : ret]

we can derive

−; true;− � p �

1 : ∀a : int.(x : int;−; x = a → x : int;int; x = a ∧ s(0) = a + 1),
2 : ∀a : int.(−;int; s(0) = a → −;int; s(0) = a + 1)

so one can either pass a parameter in the variable x, calling address 1, or on the top of
the stack, calling address 2.

6 Discussion

We have presented a typed program logic for a simple stack-based intermediate lan-
guage, bearing roughly the same relationship to Java bytecode or CIL that a language
of while-programs with procedures does to Java or C�.

The contributions of this work include the modular treatment of program fragments
and linking (similar to, for example, [11]); the explicit treatment of different kinds of
contexts and quantification; the interplay between the prescriptive, tight interpretation
of types and the descriptive interpretation of expressions, leading to a separation-logic
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style treatment of adaptation; the use of shifting to reindex assertions; dealing with non-
trivially unstructured control flow (including multiple entry points to mutually-recursive
procedures) and an indexed semantic model based on perping.

There is some related work on logics for bytecode programs. Borgström [10] has
approached the problem of proving bytecode programs meet specifications by first de-
compiling them into higher-level structured code and then reasoning in standard Floyd-
Hoare logic. Quigley [29, 30] has formalized rules for Hoare-like reasoning about a
small subset of Java bytecode within Isabelle, but her treatment is based on trying to
rediscover high-level control structures (such as while loops); this leads to rules which
are both complex and rather weak. More recently, Bannwart and Müller [6] have com-
bined the simple logic of an early draft of the present paper [7] with a higher-level, more
traditional Hoare logic for Java to obtain a rather different logic for bytecodes than that
we present here. We should also mention the work of Aspinall et al on a VDM-like
logic for resource verification of a JVM-like language [5].

Even for high-level languages, satisfactory accounts of auxiliary variables and rules
for adaptation in Hoare logics for languages with procedures seem to be surprisingly
recent, see for example the work of Kleymann [18] and von Oheimb & Nipkow [34,
26]. Our fussiness about contexts and quantification, and use of substructural ideas,
differs from most of this other work, leading to a rather elegant account of invariants of
procedures and a complete absence of side-conditions. The use of auxiliary variables
scoped across an entire judgement, and explicit universal quantification (rather than
implicit, closing, quantification on each triple in the context) seems much the best way
to reason compositionally, allowing one to relate assumptions on different labels, but
has previously been shied away from. As von Oheimb [34] says

A real solution would be explicit quantification like ∀Z.{P Z} c {Q Z}, but
this changes the structure of Hoare triples and makes them more difficult to
handle. Instead we prefer implicit quantification at the level of triple valid-
ity[. . . ]

The other line of closely related research is on proof-carrying code [24, 23] and typed
assembly languages [22], much of which has a similar ‘logical’ flavour to this, with
substructural ideas having been applied to stacks [17], heaps [20] and aliasing [32]. Our
RISC-like stack-based low-level machine, with no built-in notion of procedure entry
points or calling conventions, is similar to that of STAL [21]. Compared with most of
the cited work, we have a much simpler machine (no pointer manipulation, dynamic
allocation or code pointers), but go beyond simple syntactic type soundness to give
a richer program logic with a semantic interpretation. Especially close is the work of
Appel et al on semantic models of types in foundational proof-carrying code, from
which we borrowed the step-indexed proof technique, and of Shao and Hamid [14] on
interfacing Hoare logic with a syntactic type system for low-level code as a way of
verifying linkage between typed assembly language modules verified using different
systems.

One might (and all the referees did) reasonably ask why we have not followed most
of the recent work in this area by, firstly, formalizing our logic in a theorem prover and,
secondly, avoiding all the explicit treatment of quantification, auxiliary variables etc.
in favour of inheriting them from a shallow embedding of the semantics in an ambient
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higher-order logic. Machine checking is certainly helpful in avoiding unsoundness, is
probably essential for managing all the details of logics for realistic-scale languages or
machines, and is a necessary component in PCC-like deployment scenarios. We cer-
tainly plan to investigate mechanization in the near future, but believe a traditional
pencil-and-paper appraoch is quite reasonable for preliminary investigations with toy
calculi, despite the history of unsound Hoare logic rules in the literature. We certainly
made errors in earlier versions of this paper but, given an independent semantics and
formalization of correctness (rather than trying to work purely axiomatically), see no
reason why a program logic is more likely to be unsound than any interesting type sys-
tem or static analysis in the literature (though opinions differ on just how likely that
is. . . ). As regards the second point, shallow embeddings are very convenient, especially
for mechanization, but they do have the potential to miss the semantic subtleties of
non-trivial languages. Whether or not one recognizes it, the embedding constitutes a
denotational semantics that, if one is not extremely careful and the language is much
more complex than while-programs, will be far from fully-abstract. Delegating the en-
tailment used in the rule of consequence to implication in the metalogic therefore runs
the risk of being incomplete for reasoning about behavioural properties of programs in
the original language. It is unclear (at least to me) what the semantic import of, say,
a relative completeness result factored through such a non-fully-abstract semantics is
supposed to be.

There are many variations and improvements one might make to the logic, such as
adding subtyping and polymorphism at the type level and adding other connectives to
the program logic level. But it must be admitted that this system represents a rather odd
point in the design space, as we have tried to keep the ‘spirit’ of traditional Hoare logic:
pre and post conditions, first-order procedures and the use of classical predicate calculus
to form assertions on a flat state. A generalisation to higher-order, with first-class code
pointers, would bring some complexity, but also seems to offer some simplifications,
such as the fact that one only needs preconditions as everything is in CPS. Another
extension would be to more general dynamic allocation. Both first-class code pointers
and heaps have been the objects of closely related work on semantics and types for both
low-level and high-level languages (e.g. [9] and the references therein); transferring
those ideas to general assertions on low-level code looks eminently doable. We would
also like to generalize predicates to binary relations on states. Our ultimate goal is a
relational logic for a low-level language into which one can translate a variety of high-
level typed languages whilst preserving equational reasoning. We regard this system as
a step towards that goal, rather than an endpoint in its own right.

We have not yet fully explored the ramifications of our semantic interpretation. One
of its effects is to close the interpretation of extended label types with respect to an
observational equivalence, which is a pleasant feature, but our inference system then
seems unlikely to be complete. The links with work of Honda et al. [15] on observa-
tionally complete logics for state and higher-order functions deserve investigation. Note
that the extent to which our extensional semantics entails a more naive intensional one
depends on what test contexts one can write, and that these test contexts are not merely
allowed to be untypable, but interesting ones all are untypeable: they ‘go wrong’ when
a predicate fails to hold. There is an adjoint ‘perping’ operation that maps sets of con-
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figurations to subsets of Stores×Stacks and more inference rules (for example, involv-
ing conjunction) seem to be valid for state assertions that are closed, in the sense that
[[E]] = [[E]]��. We could impose this closure by definition, or by moving away from
classical logic for defining the basic assertions over states.
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Abstract. This paper concerns the application of formal methods
to biological systems, modelled specifically in BioAmbients [30].
BioAmbients [30] is a variant of the Mobile Ambients (MA)[7] calculus,
designed precisely for more faithfully capturing basic biological concepts.
We propose a new static analysis for BioAmbients which computes
approximate information about the run-time behaviour of a system.
The analysis is derived following the abstract interpretation approach
and introduces two main novelties with respect to the analyses in
literature [25,24,26,27]: (i) it records information about the number
of occurrences of objects; (ii) it maintains more detailed information
about the possible contents of ambients, at any time. In this way, the
analysis gives substantially more precise results and captures both the
quantitative and causal aspect which are really important for reasoning
on the temporal and spatial structure of biological systems. The interest
of the analysis is demonstrated by considering a few simple examples
which point out the limitations of the existing analyses for BioAmbients.

Keywords: Mobile Ambients and BioAmbients calculus, static analysis,
abstract interpretation.

1 Introduction

In the past few years several models, originally developed by computer scientists
for describing systems of interacting components, have been successfully used
for describing biological systems. This is an exciting and interesting application
especially because the simulation and verification tools, designed for these for-
mal models, can be used for understanding the behavior of complex biological
systems. Such verification techniques can offer biologists very important instru-
ments to replace expensive experiments in vitro or guide the biologists in their
experiments by making predictions on the possible results.

Several models and languages, adequate for modeling different aspects of bi-
ological systems, have been proposed. They include traditional specification lan-
guages for concurrent and reactive systems [21,16,15] and also process calculi,
designed for modeling distributed and mobile systems, which can successfully de-
scribe both the molecular and biochemical aspect. This approach is pioneered by
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the application of stochastic π-calculus [31,29], see for example the modeling of
the RTK/MAPK pathway. New process calculi have also been proposed in order
to faithfully model biological structures such as compartments and membranes,
which play a key role in the organization of biomolecular systems. Among them,
BioAmbients [30], Beta-Binders [28], and Brane calculi [6].

BioAmbients (BA) is a variant of Mobile Ambients (MA)[7], a very popular
calculus designed to model distributed and mobile processes. The key concept of
MA is that of ambient. An ambient represents a bounded location where compu-
tation happens; ambients are organized into a hierarchy, that can be dynamically
modified as a consequence of an ambient movement or dissolution. The concepts
of ambient and of ambient movement permit to naturally represent important
aspects of molecular systems, such as localization, compartmentalization and
hierarchy. With the aim of better capturing basic biological concepts, minor
modifications are introduced in BA with respect to MA. Ambients are name-
less; the primitive for opening is replaced by a primitive of merge, which realizes
the fusion of two ambients; capabilities have corresponding co-capabilities; new
primitives for communication and choice are introduced.

For BA both verification and simulation methods have been proposed that are
essential for a practical application of the model. A stochastic simulation tool
has been implemented by extending that of biochemical stochastic π-calculus
[31,29]; tools for automatic verification include model checking [19,20] and static
analysis [25,24,26,27]. Static analysis is a formal technique for computing safe
approximations of the system (run-time) semantics, and it has been typically
applied in the MA setting for verifying security properties. In our opinion, this
technique of approximation is essential for dealing with the intrinsic complexity
of biological systems.

The proposed analyses are obtained by naturally adapting to its variant BA
existing Control Flow Analyses in Flow Logic style of MA. More in details,
the analysis of [25] is derived from [23] and predicts the run-time behavior of
processes, by giving information about the evolution of the ambients hierarchy,
and about which capabilities may be exercised inside any ambient. The proposals
of [24,27] refine the analysis of [23] by introducing more information about the
possible shape of processes and about the context, along the lines of various
analyses for π-calculus or MA [5,12,17].

These analyses give an over-approximation of the behavior of a process, and
as usual guarantee invariant properties showing that certain events will not hap-
pen in each state of the system. In particular, they can be applied to establish
whether an ambient will never end up inside another one; and similarly whether
a capability will never be exercised inside a given ambient. This kind of informa-
tion is crucial, when considering security guarantees, and also in the setting of
biological systems; for example, in [27] this is enough for distinguishing a system
describing a normal LDL degradation process from one presenting mutations or
defects.Nonetheless, we believe that different and more detailed kinds of infor-
mation would be very useful for biologists in order to argue about the spatial
and temporal evolution of biological systems.
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First, we observe that quantitative information plays an essential role in
modeling and observing biological systems, as demonstrated by the following
example.

Example 1. The system described below (inspired from the porin example in
[30]) models the movement of molecules across membrane-bound compartments,
specifically a cell. The cell and the molecules are described by ambients, labeled
cell and mol, respectively; their local processes, e.g. P and M , describe their
possible interactions.

SY S ::= [M ]mol | . . . | [M ]mol | [P ]cell

M ::= recX . inm. outn. X
P ::= recY . (inm. Y + outn. Y ) (1)

P ::= recY . inm. outn. Y (2)

Process M models the ability of molecules of entering and exiting from
the membrane, any number of times. The complementary process P gives the
permission to ambients mol to enter and exit from the cell, and thus regulates the
crossing of the membrane. Specifically, when process (1) is running inside cell,
then, at any time, a molecule can exit from or enter inside cell. Therefore, when
several molecules are present, as described in process SY S, the cell may contain
any number of molecules. By contrast, when process (2) is running inside cell,
then, no other molecule can enter, after one has entered inside the cell. Thus,
no matter how many molecules are present, just one molecule can reside inside
the cell, at the time.

It is clear that processes (1) and (2) produce a substantially differ-
ent behaviour for ambient cell. Unfortunately, the existing analyses for BA
[25,24,26,27] can not capture this relevant difference; in fact, in both cases, they
report that ambients mol may reside inside ambients cell without giving any
information about the possible number of occurrences. Even occurrence count-
ing analyses of MA [17,14] would be too coarse to model this difference, because
they are designed for approximating the number of ambients which occur in the
whole system. �

Another limitation of the existing analyses [25,24,26,27] is that they do not
maintain sufficiently precise information about the possible contents of ambi-
ents, at any computation step. This has serious consequences on their ability
to capture causality aspects which are essential for understanding the temporal
and spatial structure of biological systems, such as pathways and networks of
proteins. This point is illustrated by the following example.

Example 2. The system describes a simplified version of a bi-substrate enzy-
matic reaction, modeled as the movement of molecular ambients [30], where two
molecules mol1 and mol1 interact with an enzyme.
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SY S′ = [M1]mol1 | . . . | [M1]mol1 | [M2]mol2 | . . . | [M2]mol2 | [E]e | . . . | [E]e

M1 ::= recY . inm1. (outn1. P1 + out q1. Y )
M2 ::= recY . inm2. (outn2. P2 + out q2. Y )
E ::= recY . inm1. inm2. (outn2. outn1. Y + out q2. out q1. Y )

The enzyme and its substrates are modeled by ambients, labeled e, mol1 and
mol2, respectively. Processes M1 and M2 describe the movements of ambients
mol1 and mol2, respectively; process E describes how the molecules bind to the
enzyme and how their products are released. Specifically, the enzyme-substrate
binding is modeled as entry of the substrate ambient inside the enzyme ambient,
and it follows a precise order (mol1 and then mol2). When both molecules are
inside the enzyme there are two possible evolutions: both molecules either exit
unbind or exit and release their products P1 and P2 (these steps follow the
inverse order). This process can iterate forever.

This enzymatic reaction has a crucial feature. Not only the binding of both
substrates is necessary for the release of their products, but also it has to follow
a precise order. This can be formalized by the following property: for each state
the binding of mol1 with e (shown by the presence of mol1 inside e) is necessary
for the binding of mol2 with e (shown by the presence of mol2 inside e). Such a
property cannot be proved with the existing analyses for BA [25,24,26,27], which
give too coarse information about the possible run-time nesting of ambients. In
fact, they report that both ambients mol1 and mol2 may reside inside ambient
e without saying whether the presence of one molecule depends on that of the
other.

Moreover, a typical way to test whether both substrates mol1 and mol2 are
necessary for the release of the products is to simulate an experiment where either
mol1 or mol2 are removed. Unfortunately, using the analyses of [25,24,26,27] it
is not possible to observe a change in the release of the products. �

Based on these motivations we propose a new analysis for BA following the
Abstract Interpretation [9,10] approach to program analysis, more specifically in
the style of previous proposals for MA [14,13,17]. The analysis refines the existing
analyses of BA [25,24,26,27] by introducing two (strictly related) novelties: (i)
quantitative information is modeled by recording information about the number
of occurrences of ambients and processes which may appear in any location; (ii)
more detailed information about the possible contents of ambients, at any time,
is obtained by pushing forward the idea of continuations proposed in [17]. In this
way, we obtain a more informative analysis which can be successfully applied to
prove the properties of Examples 1 and 2.

This gain in precision is obviously paid in terms of complexity (in the worst
case, the analysis is exponential); by contrast, the existing analyses [25,24,26,27]
are associated with polynomial time algorithms. A great advantage of the ab-
stract interpretation theory is that it offers the possibility to systematically
define further approximations (e.g. new weaker analyses) by means of widening
operators [11]. We show that this approach can be profitably applied also to
our analysis by introducing a simple parametric widening which turns out to be
polynomial in the size of a chosen partition of abstract labels. We then apply
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the widening to Example 2 for showing that it still gives better results w.r.t. the
existing analyses [25,24,26,27].

The paper is organized as follows. Section 2 introduces the syntax and the
semantics of the BioAmbients calculus. In Section 3 we presents our analysis and
in Section 4 the corresponding widening operator.

2 Syntax and Semantics

For lack of space, we consider here a simplified version of BioAmbients [30]
without communication primitives; the analysis can be extended in a simple
way to the full calculus.

In Control Flow Analysis (see for instance [23,12]) typically processes are
labeled and α-conversion is treated in a particular way, based on a given par-
tition of labels and names. This modification supports simpler specifications of
abstractions. We therefore consider the following sets of names and labels. Let
N (ranged over by n, m, h, k, . . .) be the set of names such that N = +ω

i=1Ni,
where + denotes disjoint union and each Ni is an infinite set. Similarly, let L
(ranged over by λ, µ, . . .) be the set of labels such that L = +ω

i=1Li ∪{*}, where
each Li is an infinite set and * is a distinct symbol used to model the outermost
ambient. Moreover, we consider composite labels (in the following referred to as
labels) L̂ = ℘(L) \ ∅. We adopt meta-variables Ψ, Γ, ∆, . . . to range over L̂ and
we use for simplicity λ for the singleton {λ}. We also consider a set of recursion
variables V (ranged over by X, Y, Z, . . .).

The syntax of (labelled) processes is defined in Table 1. The constructs for in-
activity, parallel composition, restriction are standard (see for instance π-calculus
[22]). The inactive process is denoted by 0; parallel composition is denoted by
P | Q; the restriction operator, denoted by (νn) P , creates a new name n with
scope P . Operator recXλ. P defines a recursive process (for convenience we
adopt recursion in place of standard replication !P ). Specific to the ambient cal-
culi, are the ambient construct, [P ]Ψ , and the capability prefix Mλ. P , where M

Table 1. BioAmbients Processes

M,N::= (capabilities)
inn enter
inn co-enter
outn exit
outn co-exit
mergen merge
mergen co-merge

P,Q::= (processes)
0 inactivity
(νn) P restriction
P | Q parallel composition
X recursion variable

recXλ. P recursive process
[P ]Ψ ambient
Mλ. P capability prefix

Σλ
i∈IMi. Pi capability choice
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is an action or co-action1. Specifically, process [P ]Ψ defines an ambient (labelled)
Ψ where process P runs. Finally, process Σλ

i∈IMi. Pi defines a capability choice
primitive with the obvious meaning.

For processes we adopt standard syntactical conventions. We often omit the
trailing 0 in processes, and we assume that parallel composition has the least
syntactic precedence. The operator (νn)P acts as static binder for name n,
and thus produces the standard notion of free and bound names of a process;
similarly, recX . P is a binder for X with scope P . A process is closed on recursion
variables if it has no free recursion variables. In the following, we assume that
processes are closed on recursion variables. Moreover, since processes are labelled,
with Λ(P ) we indicate the set of labels of a process P .

Table 2. Reduction Rules of BioAmbients

[+inmλ. P | Q]Ψ | [+inmµ. R | S]∆ → [[P | Q]Ψ | R | S]∆ (In)

[[+outmλ. P | Q]Ψ | +outmµR | S]∆ → [P | Q]Ψ | [R | S]∆ (Out)

[+mergemλ. P | Q]Ψ | [+mergemµ. R | S]∆ → [P | Q | R | S]Ψ∪∆ (Merge)

recXλ. P → P [recXλ. P/X] (Rec)

P → Q ⇒ (νn) P → (νn) Q (Res)

P → Q ⇒ P | R → Q | R (Par)

P → Q ⇒ [P ]Ψ → [Q]Ψ (Amb)

(P ′ → Q′, P ≡ P ′, Q′ ≡ Q) ⇒ P → Q (Cong)

As usual, we identify processes which are α-convertible, that is that can be
made syntactically equals by a change of bound names. In typical Control Flow
Analysis style [12,17], we however discipline α-conversion by assuming that a
bound name m can be replaced only with a name n provided that n, m ∈ Ni.
Similarly, we also identify re-labeled processes, i.e. processes that can be made
syntactically equals by changing labels, requiring that a label λ can be replaced
with a label µ, provided that λ, µ ∈ Li.

The semantics of BA is given in the form of a standard reduction relation;
the rules are reported in Table 2. In order to compact several rules together we
introduce a special notation for capability prefix and capability choice. We write
+Mλ. P to denote both process Mλ. P and process Σλ

i∈IMi. Qi, where M = Mi

and P = Qi for some i ∈ I.
1 Notice that we adopt a notation for coactions in the style of Safe Ambients [18] in

place of the standard one.
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The reduction axioms (In), (Out) and (Merge) define the basic interactions;
they model the movement of an ambient, in or out, of another ambient and the
merge of two ambients. They differ from those of MA mainly because ambients
are nameless (labels are attached to processes as comments and do not influence
the interaction). Moreover, the primitive merge replaces the standard primitive
of opening. Notice that, when two ambients labelled Ψ and ∆ are merged, the
new ambient is labelled Ψ∪∆ showing that it is the result of their fusion. Another
difference with MA, common instead with its variant Safe Ambients [18], is that
we prefer to view the unfolding of recursion as a reduction rule, e.g. (Rec), rather
than as a step of structural congruence.

The inference rules (Res), (Par), (Amb) and (Cong) are standard; they handle
reductions in contexts and permit to apply structural congruence. Structural
congruence is needed to bring the participants of a potential interaction into
contiguous positions; it includes standard rules for commuting the positions of
components appearing in parallel and in a choice, and rules for stretching the
scope of a restrictions. For lack of space, we omit the presentation of structural
congruence (e.g. relation ≡) and we refer to [30]. In the following, we say that
a process P is active if either P = Σλ

i∈IMi. Qi, P = Mλ. Q or P = recXλ. P .
Moreover, we use P and AP to denote the set of processes and the subset of
active processes, respectively.

The collecting semantics. The collecting semantics is defined as the least
fixed-point of a function, which collects all the states (namely processes) reach-
able from the initial process. The concrete domain is therefore A = (℘(P),⊆).

Definition 1 (Collecting Semantics). Let P ∈ P be a process such that * �∈
Λ(P ). We define SColl[[P ]] = lfp F (P ) for the function F : P → (A→ A) such
that F (P ) = ΨP and, for Ss ∈ ℘(P),

ΨP (Ss) = {P}
⋃

{P2|P1→P2, P1∈Ss}
{P2}.

3 The Abstraction

Our analysis is designed to prove properties that are true in all the states reach-
able from the initial state. To this aim, it computes an over-approximation of the
following information about any reachable state: for each ambient, which ambi-
ents may be contained and which capabilities may be exercised inside, and their
number of occurrences. Following the abstract interpretation approach of [17] we
define the analysis by giving the abstract states (the abstract processes) and the
abstract transitions (the abstract reduction steps among processes). To formally
prove the correctness of the analysis, we introduce a corresponding abstract do-
main, equipped with an ordering expressing precision of approximations, and we
formalize its relation with the concrete one through a Galois connection [9,10].

The abstraction is parametric with respect to the choice of abstract names
and labels, defined by a partition of names and labels. For these purposes, we
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first consider an abstract partition of labels L, given by L◦ = +iL◦
i ∪{*}, where

i ∈ {1, . . . , h} for some h, L◦
i is a (possible) infinite set of labels, +iL◦

i ∪{*} = L
and L◦ is congruent with L, i.e., λ, µ ∈ Li implies that λ, µ ∈ L◦

j for some j. We
consider, then, abstract labels L̂◦ = ℘(L◦

/∼=) \ ∅ (ranged over by Ψ◦, Γ ◦, ∆◦, . . .),
where ∼= is the obvious equivalence induced by the partition. For names we
proceed in a similar way by considering an abstract partition of names N ◦ =
+iN ◦

i , where i ∈ {1, . . . , h} for some h, +iN ◦
i = N , such that N ◦ is congruent

with N , i.e., n, m ∈ Ni implies that n, m ∈ N ◦
i . We therefore consider abstract

names N̂ ◦ = ℘(N ◦
/∼=∗) \ ∅ (ranged over by A◦, B◦, C◦, . . .). For convenience,

we assume that ∆◦ stands for the abstract label (namely its equivalence class)
corresponding to label ∆; similarly for abstract names.

The abstract partitions of names and labels naturally induce a corresponding
notion of abstract processes; built following the syntax of Table 1 by using names
N̂ ◦ and labels L̂◦. As usual, P◦ and AP◦ stands for the set of abstract and active
abstract processes, respectively. Similarly, P ◦ stands for the abstract process
corresponding to P (this is obtained in the obvious way).

Abstract domain and Galois connection. Abstract states are the key con-
cept behind the abstraction and are designed precisely to represent approximate
information about ”concrete” states (e.g. processes) according to the following
intuitive ideas. An abstract state reports: (i) the abstract labels of the ambients
that may appear; and (ii) for each of them, one or more configurations describ-
ing the possible contents of the ambients with that label. More in details, a
configuration contains the abstract labels of the ambients and the active abstract
processes, which may appear at top- level, and their number of occurrences.
For representing occurrence counting information, we adopt the following setM
={0, 1, [0− ω], [1 − ω]}. Each m ∈ M denotes a multiplicity, with the following
meaning: 0 and 1 indicate zero and exactly one respectively, the interval [1− ω]
at least one while the interval [0− ω] indicate 0 or more.

Example 3. Consider the system (already described in Example 1),

SY S ::= [M ]mol | . . . | [M ]mol | [P ]cell

M ::= recX . inm. outn. X
P ::= recY . inm. outn. Y

Moreover, assume that abstract names and labels are defined by the fol-
lowing equivalence classes {{n, m}} (ranged over by m) and {{mol}, {cell}},
respectively. With respect to this partition of labels and names, the best approx-
imation of SY S is given by the following abstract state (graphically represented
also in Figure 1)

S◦ = {(, C◦
0 ), (mol, C◦

1 ), (cell, C◦
2 )} C◦

0 = {(mol, [1 − ω]), (cell, 1)} C◦
1 = {(M◦, 1)}

C◦
2 = {(P ◦, 1)} M◦ ::= recX. inm.outm. X P ◦ ::= recY . inm. outm. Y

Configuration C◦
0 reports information about the possible internal process

of ambient * (a special symbol representing the outermost ambient). More in
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(mol, [1 − ω]) (cell, 1)

(M◦, 1) (P ◦, 1)

Fig. 1. State S◦ graphically

details, pair (cell, 1) says that exactly one ambient cell may appear at top-level,
while pair (mol, [1− ω]) says that at least one ambient mol may appear at top-
level. Ambients cell and mol may appear in parallel inside ambient *; this is
shown by a dotted line that connects these ambients with their father in Figure 1.
Configurations C◦

1 and C◦
2 describe the possible internal processes of ambients

mol and cell, respectively. In C◦
1 pair (M◦, 1) says that, inside any ambient

mol, exactly one process abstracted by M◦ may be running. In this sense, the
counting of occurrences is local, being [1− ω] the global number of occurrences
of processes M◦. Similarly, in C◦

2 pair (P ◦, 1) says that, inside any (in this case
one) ambient cell, exactly one process abstracted by P ◦ may be running.

Consider then a minor modification of SY S, where more than one ambient
cell may appear, SY S1 = [M ]mol | . . . | [M ]mol | [P ]cell | . . . | [P ]cell. Now the best
approximation is

S◦
1 = {(, {(mol, [1 − ω]), (cell, [1 − ω])}), (mol, C◦

1 ), (cell, C◦
2 )}.

The only difference between S◦ and S◦
1 concerns the multiplicity of ambients

cell, which is now [1−ω]. It is clear that state S◦
1 is also a correct approximation

for process SY S; it is however less precise than S◦, which predicts exactly one
occurrence of ambients cell at top-level.

It is worth noticing that in abstract states S◦ and S◦
1 exactly one configura-

tion describes the possible internal processes of each abstract label (and thus of
the related ambients). It may be convenient however to adopt several different
configurations, as illustrated by the following system,

SY S2 ::= [M ]mol | . . . | [M ]mol | [outm. P | [outm. M ]mol]cell

This process is a derivative of SY S and describes the situation where: one
ambient mol has moved inside ambient cell and is ready to exit; the remaining
ambients mol are still in the initial situation. Process SY S2 could be approxi-
mated by the following abstract state,

S◦
2 = {(*, C◦

0 ), (mol, C◦
4 ), (cell, C◦

5 )}
C◦

5 = {(outm. P ◦, 1), (mol, 1)} C◦
4 = {(M◦, [0− ω]), (outm. M◦, [0− ω])}

Configuration C◦
5 describes the possible contents of ambients cell and shows

that: exactly one ambient mol and exactly one process abstracted by outm. P ◦

may appear; these processes may be running in parallel inside an ambient cell.
Configuration C◦

4 reports the information about the possible contents of ambients
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(mol, [1 − ω]) (cell, 1)

(mol, 1) (outm. P ◦, 1)

(outm. M◦, 1) (M◦, 1)

Fig. 2. State S◦
3 graphically

mol; it describes both those at top-level (that contain the recursive process)
and the one, residing inside ambient cell (where process outm. M◦ is running).
The configuration says that, inside any ambient mol, zero or more processes
abstracted by M◦ and outm. M◦ may appear (in particular they may be running
in parallel). Notice that, since all the ambients mol are identified, the multiplicity,
for each process, is [0−ω] showing that it may be the case that the process does
not appear.

The information about ambients mol in state S◦
2 is rather approximate. Bet-

ter results can be obtained by adopting distinct configurations to describe the
different instances of ambients mol, as in the following abstract state,

S◦
3 = {(, C◦

0 ), (cell, C◦
5 ), (mol, C◦

6 ), (mol, C◦
7 )} C◦

6 = {(M◦, 1)} C◦
7 =

{(outm. M◦, 1)}

In this case, ambients mol are described by two configurations, C◦
6 and C◦

7 .
Their interpretation is that any ambient mol, contains either exactly one process
abstracted by M◦ or exactly one process abstracted by outm. M◦. In this way,
more precise information about the multiplicity of processes M◦ and outm. M◦

is achieved; also, it is possible to argue that the two processes cannot run in
parallel inside the same instance of ambient mol. This state is graphically rep-
resented in Figure 2 where these processes are connected with their enclosing
ambient mol by a plain line precisely for showing that they cannot be in parallel.

�

We introduce the formal definitions. In the following, we use P̂L = L̂◦∪AP◦

to denote the set of abstract labels and abstract active processes; also, we use e
to denote a generic element of P̂L. Moreover, we use (e, m) to denote a generic
element of E = (L̂◦ ×M) ∪ (AP◦ ×M).

Definition 2 (Abstract States). An abstract state S◦ is a set of pairs
(Ψ◦, C◦) where C◦ ∈ ℘(E) is a configuration, such that: (i) if (e, m), (e, m′) ∈ C◦,
then m = m′; and (ii) for each (e, m) ∈ C◦, m �= 0.

Notice that in configurations, no pair (e, 0) can appear, recording explicitly
that there are no occurrences of element e. However, in the following with an
abuse of notation we may write (e, 0) ∈ C◦ in place of (e, m) �∈ C◦ for any m ∈M.
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Table 3. Occurrence Counting

[0 − ω]

[1 − ω]

1 0

⊥

+◦ 0 1 [1 − ω] [0 − ω]

0 0 1 [1 − ω] [0 − ω]

1 1 [1 − ω] [1 − ω] [1 − ω]

[1 − ω] [1 − ω] [1 − ω] [1 − ω] [1 − ω]

[0 − ω] [0 − ω] [1 − ω] [1 − ω] [0 − ω]

−◦ 1

0 0

1 0

[1 − ω] [0 − ω]

[0 − ω] [0 − ω]

This notation simplifies the definition of some operators over configurations and
states. In the following, S◦ and C◦ stand for the set of abstract states and of
configurations, respectively.

Following the intuitive ideas explained in Example 3 we introduce two infor-
mation orders on configurations and abstract states which formalize precision
of approximations. To this aim, we assume that the domain M of multiplicity
comes equipped with the obvious (information) order ≤m and with the set of
operations +◦ and −◦, reported in Table 3.

Definition 3 (Ordering).

– We say that C◦
1 ≤c C◦

2 iff, for each (e, m) ∈ C◦
1 there exists (e, m′) ∈ C◦

2 such
that m ≤m m′;

– We say that S◦
1 ≤s S◦

2 iff, for each (Ψ◦, C◦
1 ) ∈ S◦

1 , there exists (Ψ◦, C◦
2 ) ∈ S◦

2
such that C◦

1 ≤c C◦
2 .

≤s is a pre-order. We consider the order ⊆◦ induced by the pre-order ≤s, namely
the order obtained considering classes of abstract states modulo the equivalence
induced by ≤s. For a sake of simplicity in the rest of the paper the domain
S◦

/∼=s and the equivalence class [S◦]∼=s will be simply indicated by S◦ and S◦

respectively.
Given the ordering over abstract states, it is immediate to define the abstract

domain, A◦ = (S◦,⊆◦). Notice that the concrete domain records sets of states
(e.g. processes); while in the abstract domain only one abstract states collects
all the information.

The relation between the concrete and the abstract domain is formalized by
establishing a Galois connection. To this aim, we first introduce a function that,
given a process reports its best approximation, that is the best abstract state
which has enough information about the process. This is derived along the lines
of the intuitive ideas explained in Example 3. More in details, given a process
P , we proceed as follows
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Table 4. Abstract Translation Function

DRes◦ η◦((νM◦)P ◦) = η◦(P ◦)
DAmb◦ η◦([P ◦]∆

◦
) = ({(∆◦, 1)}, δ◦(∆◦, P ◦))

DZero◦ η◦(0) = (∅, ∅)
DPar◦ η◦(P1 | P2) = (C1

◦ ∪+ C2
◦, S1

◦∪◦S2
◦) η◦(Pi) = (C◦

i , S◦
i ) for i ∈ {1, 2}

DRec◦ η◦(recXΨ◦
. P ◦) = ({(recXΨ◦

. P ◦, 1)}, ∅)
DPref◦ η◦(MΨ◦

. P ◦) = ({(MΨ◦
. P ◦, 1)}, ∅)

DSum◦ η◦(ΣΨ◦
i∈IM

◦
i . P ◦

i ) = ({(ΣΨ◦
i∈IM

◦
i . P ◦

i , 1)}, ∅)

1. we take its abstract version P ◦ where labels L̂ and names N̂ are replaced
with their abstract versions L̂◦ and N̂ ◦, respectively;

2. we produce a representation of P ◦ in terms of set of configurations where
explicit information about the nesting of ambients and processes and about
their quantities is properly introduced.

Formally, we define αaux : P → S◦ as αaux(P ) = δ◦(*, P ◦) where
δ◦ : (L̂◦ × P◦) → S◦ is an auxiliary translation function, giving an abstract
state representing the abstract process with respect to the label of the enclosing
ambient (in this case *).

The translation function δ◦ : (L̂◦×P◦) → S◦ exploits an additional function
η◦ : P◦ → (C◦ × S◦), which intuitively gives: (i) an abstract configuration re-
porting the processes and ambients occurring at top level; (ii) an abstract state
representing the internal ambients. Having in mind this interpretation we define

δ◦(Ψ◦, P ◦) = {(Ψ◦, C◦)} ∪ S◦ where η◦(P ◦) = (C◦, S◦).

Function η◦ is reported in Table 4 and uses an operator ∪+ between config-
urations, which simply realizes the union of two configurations by summing the
multiplicity in the obvious way. Given C◦

1 , C◦
2 ∈ ℘(E), we define

C◦
1 ∪+ C◦

2 = {(e, m) | (e, mi) ∈ C◦
i , for each i ∈ {1, 2}, m = m1+◦m2}.

As an example, it is not difficult to check that for the system of Example 3,
we have δ◦(*, SY S◦) = S◦, where S◦ is the state of Figure 1.

Based on function αaux it is immediate to derive the following abstraction and
concretization functions between sets of processes and abstract states. This per-
mits precisely to formalize when an abstract state is a safe over-approximation
of a set of concrete states. We use ∪◦ between abstract states to denote the l.u.b.
with respect to ⊆◦; it realizes indeed the union of configurations.

Definition 4. Let Ss ∈ ℘(P) and S◦ ∈ S◦. We define α◦ : ℘(P) → S◦ and
γ◦ : S◦ → ℘(P) as follows,

α◦(Ss) =
⋃◦

P∈Ssαaux(P ) γ◦(S◦) =
⋃

{P |αaux(P )⊆◦S◦} P
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Theorem 1. The pair of functions (α◦, γ◦) of Def. 4 is a Galois connection
between 〈A,⊆〉 and 〈A◦,⊆◦〉.

Abstract semantics. We introduce the abstract transitions. They use the fol-
lowing operators which realize the removal from a configuration of one occurrence
of an object e and similarly of a set of objects. For PL◦ ⊆ P̂L we have

C◦\◦e = C◦ \ {(e, m)} ∪ {(e, m−◦1)} C◦\◦PL◦ = C◦\◦
e∈PL◦e.

The abstract transitions are defined by the rules of Table 5; they realize the
unfolding of recursion, the movements of ambients, in and out, and the merge of
two ambients (reflecting rules (Rec), (In), (Out) and (Merge) of Table 2). Due
to the implicit representation of parallel composition, ambient and restriction in
abstract states there are no abstract transitions corresponding to the structural
rules and to structural congruence of the reduction semantics.

Rule Rec◦ models the unfolding of recursion and is applicable to a recursive
process T ◦ = recX∆◦

. P ◦ which is running inside an ambient labeled Γ ◦ (this
means that there exists a configuration C◦ for Γ ◦ that contains process T ◦).
The resulting abstract state is obtained by adding a configuration representing
the ambient labeled Γ ◦ where replication has been unfolded. More specifically,
the configuration is (C◦\◦T ◦)∪+ δ◦(Γ ◦, P ◦[T ◦/X ]) where the translation of the
unfolded process is added and the recursive process T ◦ is removed (according to
their multiplicities).

The rules In◦, Out◦, Merge◦ are similar; as an example we comment In◦.
The rule models the movement of an ambient labeled Ψ◦ inside an ambient
labeled ∆◦. It is applicable whenever: (i) they are possible siblings meaning that
they may be enclosed, at the same time, inside an ambient (labeled Γ ◦); (ii) they
offer the right action or coaction. Formally, it must be the case that: (i) there
exists a configuration C◦ for Γ ◦ which contains both Ψ◦ and ∆◦; (ii) there exist
configurations C1

◦ and C2
◦ for Ψ◦ and ∆◦, where capabilities inM◦ and inM◦

are ready to fire, respectively. If Ψ◦ and ∆◦ happen to be the same label, then
the movement is possible only if their multiplicities are greater than 1.

The resulting abstract state is obtained as follows. Abstract configurations
are added for modeling the ambients labeled Ψ◦ and Γ ◦ which have participated
to the movement:

1. (C◦
1\◦T ◦) ∪+ δ◦(Ψ◦, P ◦) describes the local process of ambient Ψ◦ and is

obtained by removing the executed process T ◦ and by adding its continuation
(according to their multiplicities);

2. (C◦
2\◦T ′◦)∪+ δ◦(∆◦, Q◦)∪+ (Ψ◦, 1) describes the local process of ambient ∆◦

and is obtained similarly as in the previous case. The only relevant difference
is that one occurrence of ambient Ψ◦ is added for modeling the movement.

Similarly, abstract configuration C◦\◦Ψ◦ is added for the ambient labeled Γ ◦,
taking into account precisely that one ambient labeled Ψ◦ has moved somewhere-
else.
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Table 5. Abstract Transitions

Rec◦ (Γ ◦, C◦) ∈ S◦ (T ◦, m) ∈ C◦ T ◦ = recX∆◦
. P ◦

S◦ �→◦S◦∪◦{(Γ ◦, (C◦\◦T ◦) ∪+ δ◦(Γ ◦, P ◦[T ◦/X]))}

In◦

(Ψ◦, C◦
1 ) ∈ S◦ (T ◦, m1) ∈ C◦

1 T ◦ = +inM◦Θ◦
. P ◦

(∆◦, C◦
2 ) ∈ S◦ (T ′◦, m2) ∈ C◦

2 T ′◦ = +inM◦Φ◦
. Q◦

(Γ ◦, C◦) ∈ S◦ (Ψ◦, m3) ∈ C◦ (∆◦, m4) ∈ C◦

∆◦ = Ψ◦ → m3 = m4 >m 1

S◦ �→◦ S◦∪◦ {(Ψ◦, (C◦
1\◦T ◦) ∪+ δ◦(Ψ◦, P ◦))} ∪◦

{(∆◦, (C◦
2\◦T ′◦) ∪+ δ◦(∆◦, Q◦) ∪+ (Ψ◦, 1))} ∪◦ {(Γ ◦, C◦\◦Ψ◦)}

Out◦

(Ψ◦, C◦
1 ) ∈ S◦ (T ◦, m1) ∈ C◦

1 T ◦ = +outM◦Θ◦
. P ◦

(∆◦, C◦
2 ) ∈ S◦ (T ′◦, m2) ∈ C◦

2 T ′◦ = +outM◦Φ◦
. Q◦ (Ψ◦, m3) ∈ C2

◦

(Γ ◦, C◦) ∈ S◦ (∆◦, m4) ∈ C◦

S◦ �→◦ S◦ ∪◦ {(Ψ◦, (C◦
1\◦T ◦) ∪+ δ◦(Ψ◦, P ◦))} ∪◦

{(∆◦, (C◦
2\◦{T ′◦, Ψ◦}) ∪+ δ◦(∆◦, Q◦))} ∪◦ {(Γ ◦, C◦ ∪+ (Ψ◦, 1))}

Merge◦

(Ψ◦, C◦
1 ) ∈ S◦ (T ◦, m1) ∈ C◦

1 T ◦ = +mergeM◦Θ◦
. P ◦

(∆◦, C◦
2 ) ∈ S◦ (T ′◦, m2) ∈ C◦

2 T ′◦ = +mergeM◦Φ◦
. Q◦

(Γ ◦, C◦) ∈ S◦ (Ψ◦, m3) ∈ C◦ (∆◦, m4) ∈ C◦

∆◦ = Ψ◦ → m3 = m4 >m 1

S◦ �→◦ S◦ ∪◦{(Ψ◦ ∪ ∆◦, (C◦
2\◦T ′◦) ∪+ (C◦

1\◦T ◦) ∪+ δ◦(Ψ◦, P ◦) ∪+ δ◦(∆◦, Q◦))} ∪◦

{(Γ ◦, (C◦\◦{∆◦, Ψ◦}) ∪+ (Ψ◦ ∪ ∆◦, 1))}



(mol, [1 − ω]) (cell, 1) (cell, 1) (mol, [0 − ω])

(mol, 1) (outm.P ◦, 1) inm. outm. P ◦ (P ◦, 1)

(outm.M◦, 1) (inm.outm. M◦, 1) (M◦, 1)

Fig. 3. The analysis of SY S

The abstract semantics is then defined as the least fixed-point of a function,
which computes starting from the abstraction of the initial process, an abstract
state that is the union of all the reachable abstract states.

Definition 5 (The abstract semantics). Let P be a process such that * �∈
Λ(P ). We define SColl◦ [[P ]] = lfp F ◦(αaux(P )) for the function F ◦ : S◦ →
(A◦ → A◦) such that F ◦(S◦) = Ψ◦

S◦ and

Ψ◦
S◦(S◦

1 ) = S◦ ∪◦ ⋃◦
{S2

◦|S1
◦ �→◦S2

◦}S2
◦.
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The following theorem shows the correctness of the analysis.

Theorem 2 (Safeness). Let P be a process such that * �∈ Λ(P ). We have

α◦(SColl[[P ]])⊆◦SColl◦ [[P ]].

Example 4. We apply the abstraction to process SY S of Example 3 (and also
Example 1). The analysis computes the following abstract state (also represented
in Figure 3), namely SColl◦ [[P ]] = S◦

SY S

S◦
SY S ={(, C◦

0 ), (mol, C◦
1 ), (cell, C◦

2 ), (cell, C◦
3 ), (cell, C◦

4 ), (, C◦
5 ), (mol, C◦

6 ), (mol, C◦
7 )}

C◦
0 = {(mol, [1 − ω]), (cell, 1)} C◦

1 = {(M◦, 1)} C◦
2 = {(P ◦, 1)}

C◦
3 = {(inm.outm. P ◦, 1)} C◦

4 = {(outm.P ◦, 1), (mol, 1)}

C◦
5 ={(mol, [0 − ω]), (cell, 1)} C◦

6 = {(inm. outm. M◦, 1)} C◦
7 = {(outm. M◦, 1)}

State S◦
SY S reports approximate information about all the derivatives of

SY S, including obviously the configurations C◦
0 , C◦

1 and C◦
2 describing the initial

state of Figure 1. The other configurations are added by performing the abstract
transitions. Configurations C◦

3 and C◦
6 model the unfolding of the recursive pro-

cesses inside ambients cell and mol, respectively; they are added by Rec◦ steps.
In both cases the recursive process, P ◦ or M◦, is deleted from the configuration
precisely because it has multiplicity one (and thus is it has been consumed).
Configurations C◦

4 , C◦
5 and C◦

7 are introduced by the execution of rule In◦,
modelling the movement of one ambient mol inside ambient cell. Configuration
C◦

4 describes the situation where ambient cell contains exactly one ambient mol
and in parallel process outm. P ◦; configuration C◦

5 shows that any number (in-
cluding zero) of ambients mol may appear at top level, because one has moved
somewhereelse; configuration C◦

7 shows that exactly one process outm. M◦ is
running inside mol. In configurations C◦

4 and C◦
7 , processes inm. outm. P ◦ and

inm. outm. M◦, respectively, are deleted because of their multiplicity as ex-
plained above. No other configurations are needed to describe the execution of
Out◦ modeling the movement of ambient mol out from ambient cell.

This analysis is able to capture the relevant feature of SY S and therefore
to establish the property discussed in Example 1: just one molecule can reside
inside the cell, at the time. In fact, in any configuration of cell either there are
no occurrences of ambients mol or there is exactly one occurrence.

It is worth stressing that different configurations are needed to better ap-
proximate the possible contents of ambients, in particular of ambient cell (e.g.
configurations C◦

2 , C◦
3 and C◦

4 ). This permits to have a very precise information
about its possible contents at any computation step, and consequently to sub-
stantially restrict the space of possible interactions. More in details, the analysis
captures that, when one ambient mol resides inside cell, it must be the case that
the process running in parallel is outm. P ◦; and thus no other ambient is au-
thorized to enter (capability inm indeed has been consumed). By using weaker
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analyses where all the configurations of a given ambient are merged (as in the
widening of Section 4 or in analyses in literature [25,24,26,27,17]), it would not
possible to derive this information. Moreover, as we have already pointed out,
the occurrence counting analysis of [14] cannot prove such a property since it
would count the number of ambients mol appearing in the whole system.

We conclude by observing that the analysis of the minor modification of
SY S, where several ambients cell may appear, establishes this property in a
similar way (see SY S1 in Example 3). �

We conclude by briefly discussing the complexity of the analysis. As a mea-
sure of complexity we can take the maximal number of iterations of the fixed-
point operator in the worst case. This is the maximal number of different con-
figurations we can have in an abstract state, and therefore they are exponential
in the size of the abstract process.

4 A Widening Operator

We present here a widening operator [11] which formalizes a natural and simple
way for further approximating the analysis of Section 3. Widening operators
are introduced precisely to speed up convergency of a fix-point computation.
In this setting, a simple widening can be defined by a function ω : A → A,
reporting an approximation of an abstract state; this means that ω(S◦

1 ) = S◦
2

implies S◦
1⊆◦S◦

2 . This function is intended to be applied at each iteration of the
fixed-point computation of function Ψ◦

S◦ which defines the analysis (see Def. 5).
The widening operator defined below is based on the simple idea to have

at most one configuration describing the possible content of any abstract label.
This means that all the configurations describing a given label are put together.
Moreover, in order to be able to completely tune the complexity related to the
size of the set of abstract labels, we make the widening operator parametric
w.r.t. a partition of L̂◦, the set of abstract labels. Let L̃◦ = L̂◦

/∼=, where ∼= is the
equivalence induced by the chosen partition.

To formalize the widening operator, we use ∪c to denote the l.u.b. of two
configurations (according to the ordering of Def. 3); also, we extend ∪c to ab-
stract states for performing the merge of all configurations related to equivalent
abstract labels.

Definition 6 (Widening). Consider L̃◦ a partition of L̂◦. We define the
widening operator ω : A→ A as

ω(S◦) = ∪cS◦ = {(∆◦,∪c
j∈{1,...,k}Cj) | (Γ ◦, Cs) ∈ S◦, ∆◦ ∼= Γ ◦ ⇒

∃l ∈ {1, . . . , k}, (∆◦, Cl) = (Γ ◦, Cs)}

Using the widening operator ω we define a new fixed-point operator Ψω
S◦ : A→ A,

where the widening is applied at each iteration,

Ψω
S◦(S◦

1 ) = ω(S◦
2) if Ψ◦

S◦(S◦
1 ) = S◦

2 .
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In the following, SCollω [[P ]] stands for the result of the fixed-point computa-
tion of Ψω

S◦ . In this way we obtain a new analysis which is polynomial w.r.t the
cardinality of L̃◦, a completely tunable parameter.

The following example shows that this new analysis still gives interesting
results.

Example 5. Consider the system presented in Example 2,

SY S′ ::= [M1]mol1 | . . . | [M1]mol1 | [M2]mol2 | . . . | [M2]mol2 | [E]e | . . . | [E]e

M1 ::= recY . inm1. (outn1. P1 + out q1. Y )
M2 ::= recY . inm2. (outn2. P2 + out q2. Y )
E ::= recY . inm1. inm2. (outn2. outn1. Y + out q2. out q1. Y )

Consider the following partition of names {{m1, q1, n1}, {m2, q2, n2}}
(ranged over by abstract names s and r respectively) and of labels
{{{mol1}}, {{mol2}}, {{e}}, {s ∈ L̂◦ | cardinality(s) > 1}} designed for dis-
tinguishing mol1, mol2 and e. If we apply the analysis of Section 3 we have
SColl◦ [[SY S′]] = S◦ where 2

S◦ = { (, {(mol1, [1 − ω]), (e, [1 − ω]), (mol2, [1 − ω])}),
(, {(mol1, [0 − ω]), (e, [1 − ω]), (mol2, [1 − ω])}),
(, {(mol1, [0 − ω]), (e, [1 − ω]), (mol2, [0 − ω])}),
(mol1, {(M◦

1 , 1)}), (mol1, {(in s. R1, 1)}), (mol1, {(R1, 1)}), (mol1, {(P1, 1)}),
(mol2, {(M◦

2 , 1)}), (mol2, {(in r. R2, 1)}), (mol2, {(R2, 1)}), (mol2, {(P2, 1)})
(e, {(E◦, 1)}), (e, {((in s. in r.R3, 1)}), (e, {((in r. R3, 1), (mol1, 1)}),
(e, {(R3, 1), (mol1, 1), (mol2, 1)}), (e, {((out s. E◦), 1), (mol1, 1)})}

R1 = (out s. P1 + out s. M1
◦), R2 = (out r. P2 + out r. M2

◦)
R3 = (out r. out s. E◦ + out r. out s. E◦).

The analysis establishes that the binding of mol1 and mol2 follows a precise
order; indeed, there is no configuration for ambient e showing the presence of
mol2 without that of mol1. The use of different configurations is essential for
this very precise prediction, similarly as explained in Example 4.The widening
of Definition 6 as well as the existing analysis [25,24,26,27] do not give sufficiently
precise information for proving this property.

However, when compared to the existing analyses [25,24,26,27] the widening
gives more precise predictions due to the different treatment of continuations in
the style of [17]. This causal aspect is very useful in this setting; for instance, it
is adequate for analyzing the system SY S′ where one of the two molecules has
been removed (with the aim of proving that both are necessary). As an example
we consider the case where no molecule mol2 is present, as modelled by the
system SY S′′ ::= [M1]mol1 | . . . | [M1]mol1 | [E]e | . . . | [E]e (the symmetric case
is analogous). We have SCollω [[SY S′′]] = S◦

1 where

S◦
1 = { (, {(mol1, [0 − ω]), (e, [1 − ω]))}),

(mol1, {(M◦
1 , [0 − ω]), (in s. R1, [0 − ω]), (R1, [0 − ω])}),

(e, {(E◦, [0 − ω]), (in s. in r. R3, [0 − ω]), (in r. R3, [0 − ω]), (mol1, [0 − ω])})}
2 For simplicity we are assuming that Pi = 0 for each i ∈ {1, 2}.
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The widening shows that none of products P1 and P2 is released (in particular
it reports that process P1 cannot run at top-level inside ambient mol1 as instead
happens in the abstract state S◦ result of the analysis of system SY S′). This
property cannot be established by applying the existing analyses [25,24,26,27],
precisely because these proposals have a far less precise prediction about the local
processes of ambients. Specifically, they do not capture that the continuation of
capability in r, inside ambient e, cannot be exercised; and consequently that
capability out s cannot be consumed by ambient mol1 to exit from ambient e.

�

5 Conclusions and Related Works

Our analysis introduces many novelties w.r.t. the analyses presented in the lit-
erature [25,24,26,27]. In particular: (i) it gives very precise information on occur-
rence counting (which is local in contrast to standard global information [17,14]);
(ii) it permits to obtain more detailed information about the processes and am-
bients which may reside inside an ambient, at any time. This is obtained by
adopting different configurations to describe ambients in different stages of evo-
lution and by adapting the treatment of continuations of [17]. As a consequence,
the analysis better captures also causality aspects. Causality issues have been
considered in a few type systems [1,2,3] for MA or for its variant Safe Ambi-
ents [18]. The types of [1,3] describe the possible contents of ambients by means
of a sort of traces and probably could give interesting results when applied to
biological systems. They however lack occurrence counting information.

Our analysis is rather expensive from a computational point of view w.r.t.
the proposals of [25,24,26,27]. In our opinion, this additional complexity is mo-
tivated by the need of capturing quantitative and causality information which
are fundamental in the biological systems setting. Examples 1 and 2 (then com-
mented in Sections 3 and 4) demonstrate the relevance of this information and
show the limitations of the existing analyses. Moreover, it is worth noting that
also the occurrence counting analysis of [14] for MA has an exponential com-
plexity even if it does not report sufficiently precise information for proving the
properties of Examples 1 and 2.

Moreover, our approach offers several possibilities for tuning the precision,
and therefore to find out the right balance between precision and computational
cost. The abstraction is parametric, in the sense that one can choose which part
of the system he is interested in by defining equivalence classes of ambients
labels and names. Further approximations can easily be derived by following
the widening approach of abstract interpretation. The polynomial widening of
Section 4 is an interesting example, especially because it gives better results with
respect to the existing analyses [25,24,26,27]. This is discussed in Section 4 by
considering Example 2.

There are several interesting directions for future works. First of all, we in-
tend to implement an abstract interpretation framework for computing analyses
of BA. Furthermore, we would like to design new analyses which to take into ac-
count the stochastic and temporal aspects. In particular, in this setting, it seems
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very important to be able to establish temporal properties much more general
than invariant properties; in particular to observe the possible evolution paths of
a biological system. This is motivated by the variety of recent works concerning
temporal logics and model checking for biological systems [19,20,8,4].

Acknowledgements. We would like to thank the anonymous referees for their
useful comments.
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Abstract. In this paper we propose a new parametric abstract finite
model of Mobile Ambients able to express several properties on processes.
The model can be used for the analysis of these properties by means of
model checking techniques. The precision of the model can be increased
by modifying certain numeric parameters increasingly avoiding thereby
the occurrences of false counterexamples in the analysis.

1 Introduction

The calculus of Mobile Ambients (MA) is meant to model wide area computa-
tions. Introduced in [2], MA has as main characteristic to allow active processes
to move between different sites.

A wide range of work has been recently carried out on the analysis of mobile
ambients [1,8,13,14,18], mostly based on static-analysis techniques and abstract
interpretation [7].

In this paper we propose a parametric finite abstract model to analyse proper-
ties of mobile ambients processes by model checking — as an alternative to static
analysis. Our model is based on techniques introduced first in [11]. Such tech-
niques provide a general framework for modelling and verifying systems whose
computation involves manipulation of pointer structures. The model we define
here is suitable for verifying a wide range of safety properties of systems among
which security properties such as secrecy. It has the following features: (i) It pro-
vides a safe approximation of the concrete transition system of processes. (ii) It
models finitely (by means of abstraction) processes that are in principle infinite
due to replication (i.e., !P ). (iii) The model depends on two (numeric) parame-
ters that can be increased to tune its precision in case false counterexamples are
returned by the model checking algorithm.

The analysis we propose is based on the following strategy. Our models,
called HABA, are special Büchi automata with some typical characteristic of
history-dependent automata [17]. HABA are used to represent the behaviour
of an ambient process P . Properties of interest are expressed in the temporal
logic NTL (introduced in [11]) which is interpreted over HABA runs. Then, the
model checking algorithm defined in [9,12] can be used to verify the validity of
the properties against the model.
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The first contribution of our approach w.r.t. existing analyses of MA lays on
its ability to deal finitely with replication. The model distinguishes between P
and !P at several levels of precision (due to parametricity). Existing techniques
can cope with replication only to a limited extent. They are designed only for
abstraction {0, 1, ω} (i.e., none, one, many). Our abstraction goes beyond this
range by considering a range {0, 1, . . . , M, ω} with M > 1 parameter of the
model. Therefore it is able to detect properties of the kind “a certain number of
copies of ambient n is inside ambient m at the same time”. The second contri-
bution of our approach is that the model introduced here provides a general and
completely automated framework for the verification of properties of MA. This
means that the model is not limited to some specific safety properties (like sta-
tic analysis techniques). Many temporal properties expressible by NTL-formulae
can be automatically checked on the abstract model giving us the possibility to
infer safe answer on ambient processes.

Related work. Our model takes inspiration from the following works. The pa-
per [18] proposes an algorithm detecting process firewalls that are not protective.
The technique is based on a control flow analysis and does not distinguish be-
tween a process P and !P . This technique is enhanced in [13] where the precision
of the analysis is improved by the use of information about the multiplicity of
the number of ambients occurring within another ambient. The distinction is
within the range {0, 1, ω}. Another refinement of the analysis proposed in [18],
for the special case of Safe Ambients [15], is introduced in [8]. However, the
analysis proposed — as the one in [18] — does not distinguish between different
copies of the same ambient. An abstract interpretation framework for MA is
proposed in [14]. Based on [13] and [8] the analysis given in this paper considers
some information about multiplicity of the ambients and contextual informa-
tion. Again, based on [13], the paper [1] defines a more accurate analysis for
capturing boundary crossing. Also in this work no information on multiplicities
is provided.

A parallel stream of work considers model checking for mobile ambients using
spatial logics [5] and in particular ambient logic[3]. In [6] the authors identify a
fragment of mobile ambients (where replication is replaced by recursion) verifi-
able by model-checking. For this fragment, a model-checking algorithm for the
ambient logic is proposed. The paper [4] introduces a spatial logic for synchro-
nous π-calculus and investigate its power. A model-checking algorithm is then
presented for a class of bounded processes. Our contribution stands somehow be-
tween these two independent streams of work in that it applies model checking
in a static analysis oriented fashion.

Organisation of the paper. This paper is organised as follows: Section 2 reviews
some background on the ambient calculus. Section 3 gives an overview of NTL
and HABA. Section 4 defines an operational semantics for MA using HABA.
Section 5 provides some concluding remarks.

Due to space limitation this paper presents the main ideas and results. More
details and proofs are reported in the full version of this paper [10].
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2 An Overview of Mobile Ambients

We consider the pure Mobile Ambients calculus [2] without communication prim-
itives. Let N be a denumerable set of names (ranged over by a, b, n, m). The
set of processes over N is defined according to the following grammar:

N ::= in n
∣∣∣ out n

∣∣∣ open n (capabilities)

P, Q ::= 0
∣∣∣ (νn)P

∣∣∣ P |Q
∣∣∣ !P ∣∣∣ n[P ]

∣∣∣ N.P (processes)

For a process P we write n(P ) for its set of names. 0 does not perform any action.
The restriction (νn)P creates a new name called n that is private in the scope of
P . P | Q is the standard parallel composition of processes P and Q. Replication
!P represents an arbitrary number of copies of P and it is used to introduce
recursion as well as iteration. n[P ] represents an ambient with name n enclosing
a running process P . Ambients can be arbitrarily nested. Capabilities provide
ambients with the possibility to interact with other ambients. In particular, in n
has the effect to move the ambient that performs it into a sibling ambient called
n (if there exists one). Symmetrically, by out n, an ambient nested inside n
moves outside; open n dissolves an ambient n nested inside the one performing
this capability.

The standard semantics of Mobile Ambients is given in [2] on the basis of
a structural congruence between processes, denoted by ≡ (see [2]), and a re-
duction relation →. Processes are identified up to α-conversion. Moreover, note
that: n[P ]|n[Q] ≡/ n[P |Q] that is, multiple copies of an ambient n have distinct
identities; and !(νn)P ≡/ (νn)!P that is, the replication operator combined with
restriction creates an infinite number of new names. The reduction relation →
is defined by the rules listed in Table 1.

Table 1. Reduction rules for Mobile ambients

n[in m.P |Q]|m[R] → m[n[P |Q]|R]
P → Q

n[P ] → n[Q]

P → Q

P |R → Q|R
P → Q

(νn)P → (νn)Q

open n.P |n[Q]→P |Q m[n[out m.P |Q]|R]→n[P |Q]|m[R]
P ′ ≡ P P →Q Q ≡ Q′

P ′ → Q′

3 An Overview on NTL and HABA

In this section we summarise the framework for modelling and model checking
systems with pointers introduced in [11].

Navigation Temporal Logic. Let LVar be a countable set of logical variables
ranged over by x, y, z, and Ent be a countable set of entities ranged over by
e, e′, e1 etc. ⊥ �∈ Ent is used to represent “undefined”; we denote E⊥ = E ∪{⊥}
for arbitrary E ⊆ Ent . Navigation Temporal Logic (NTL) is a linear temporal
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logic where quantification ranges over logical variables that can denote entities,
or may be undefined. The syntax is defined by the grammar:

α ::= nil
∣∣∣ x ∣∣∣ α↑ (navigation expressions)

Φ ::= α = α
∣∣∣ α new

∣∣∣ α � α
∣∣∣ Φ ∧ Φ

∣∣∣ ¬Φ
∣∣∣ ∃x. Φ

∣∣∣ X Φ
∣∣∣ Φ U Φ (formulae)

nil denotes the null reference, x denotes the entity that is the value of x (if any),
and α↑ denotes the entity referred to by (the entity denoted by) α (if any). Let
x↑0 = x and x↑n+1 = (x↑n) ↑ for natural n. The basic proposition α new states
that the entity (referred to by) α is fresh, α = β states that α and β are aliases,
and α � β expresses that (the entity denoted by) β is reachable from (the entity
denoted by) α. The boolean connectives, quantification, and the linear temporal
connectives X (next) and U (until) have the usual temporal interpretation. We
denote α �= β for ¬ (α = β), α �� β for ¬ (α � β) and ∀x. Φ for ¬ (∃ x. ¬Φ).
The other boolean connectives and temporal operators � (eventually) and �

(always) are standard [19]. For example, �(∃x. x �= v ∧ x � v ∧ v � x)
expresses that eventually v will point to a non-empty cycle.

Formulae are interpreted over infinite sequences of triples, called allocation
sequences, (E0, µ0, C0)(E1, µ1, C1)(E2, µ2, C2) . . . where for all i � 0, Ei ⊆ Ent
and µi : E⊥

i → E⊥
i such that µi(⊥) = ⊥; µi encodes the pointer structure of Ei.

Ci is a function on Ei such that Ci(e) ∈ M = {1, . . . , M} ∪ {∗} for some fixed
constant M > 0. The number Ci(e) is called the cardinality of e. Entity e for
which Ci(e) = m � M represents a chain of m “concrete” entities; if Ci(e) = ∗,
e represents a chain that is longer than M . In the latter case, the entity is
called unbounded. (Such entities are similar to summary nodes [20], with the
specific property that they always abstract from chains.) The cardinality of a
set is defined as C({e1, . . . , en}) = C(e1) ⊕ . . . ⊕ C(en) where n ⊕m = n+m if
n+m � M and ∗ otherwise.

Automata-based models. States in our automata are triples (E, µ, C), called con-
figurations. Let Conf denote the set of all configurations ranged over by γ and
γ′. Configurations that represent the same pointer structure at different abstrac-
tion levels are related by morphisms. For γ, γ′ ∈ Conf, a morphism is surjective
function h : Eγ → Eγ′ which maintains the abstract shape of the pointer depen-
dencies represented by the two related configurations. Moreover, a (pure) chain
may be abstracted to a single entity while keeping the cardinality invariant. That
is, the cardinality of an entity e ∈ γ′ is equal to the sum of the cardinalities of
the entities in h−1(e). Collapsing chains to single entities —provided correspon-
dence of the cardinality— is the mechanism used by morphisms to associate to
a configuration another more abstract configuration.

Although morphisms provide us with a tool for abstraction of pointer struc-
tures, they do not model the dynamic evolution of such structures. To reflect the
execution of pointer-manipulating operations as well as the creation or deletion
of entities we use reallocations. For γ, γ′ ∈ Conf, a reallocation is a multi-set
λ : (E⊥ × E′⊥) → M which redistributes (but preserves) cardinalities on E to
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E′. More precisely, the total cardinality
⊕

e′∈E′ λ(e, e′) allocated by λ to e ∈ E
equals C(e); and the total cardinality

⊕
e∈E λ(e, e′) assigned to e′ ∈ E′ equals

C′(e′). As in the case of morphisms, one entity can be related by a reallocation to
more than one entity only if these form a chain. Note that the identity function
id is a reallocation. We write γ

λ
� γ′ if there is a reallocation (named λ) from γ

to γ′. Reallocations are a generalisation of the idea of identity change as present
in history-dependent automata [17]: besides the possible change of identity of
entities, it allows for the evolution of pointer structures1.

To model the dynamic evolution of a system manipulating (abstract) linked
lists, we use a generalisation of Büchi automata where each state is a configura-
tion and transitions exist between states only if these states can be related by
means of a reallocation reflecting the possible change in the pointer structure.

Definition 3.1. A high-level allocation Büchi automaton (HABA) H is a tuple
〈X, C,→, I,F〉 with: (i) X ⊆ LVar, a finite set of logical variables; (ii) C ⊆
Conf, a set of configurations (also called states); (iii) −→⊆ C×(Ent×Ent×M)×
C, a transition relation, s.t. c −→λ c′ ⇒ c

λ
� c′; (iv) I : C ⇀ 2Ent× (X ⇀ Ent),

an initialisation function such that for all c with I(c) = (N, θ) we have N ⊆ E
and θ : X ⇀ E. (v) F ⊆ 2C a set of sets of accept states.

HABA can be used to model the behaviour of systems at different levels of
abstraction. In particular, when all entities in any state are concrete (i.e., C(e) =
1 for all e), a concrete model is obtained that is very close to the actual system
behaviour.

Model Checking NTL. In [9,12] a model checking algorithm which establishes
whether a formula Φ is valid on a given (finite) HABA H was developed. The
model checking algorithm is based on the construction of a tableau graph GH(Φ)
out of H and Φ as in [16]. We give here a short summary of this construction.

States of GH(Φ) are pairs (q, D) where q is a state of H and D is the col-
lections of sub-formulae of Φ, and their negations, that possibly hold in q. A
transition from (q, D) to (q′, D′) exists in GH(Φ) if q −→λ q′ in H and, moreover,
for each sub-formula XΨ in D there exists a “corresponding” Ψ in D′. Here, the
correspondence is defined modulo the reallocation λ. A fulfilling path in GH(Φ)
is then an infinite sequence of transitions — starting from an initial state —
that also satisfies all the “until” sub-formulae Ψ1 U Ψ2. That is, if Ψ1 U Ψ2 is in
a given state in the sequence, then a corresponding Ψ2 (modulo a sequence of
reallocations) occurs in a later state. Fulfilling path are related with the validity
of Φ. More precisely, Φ is valid in H (written H |= Φ) iff there does not exist
a fulfilling path in GH(¬Φ). The existence of a self-fulfilling strongly connected
sub-component (SCS) in GH(¬Φ) provides us with a necessary criterion for the
existence of a fulfilling path. The tableau graph of a finite HABA is always fi-
nite and its number of SCSs is finite as well. Moreover, since the property of

1 A complete treatment of morphisms and reallocations of pointer structures can be
found in [9,11,12].
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self-fulfilment is decidable, this gives rise to a mechanical procedure for verifying
the validity of formulae.

In [9,12] we also showed that if a formula is valid in an abstract HABA H,
then it is valid in all concrete (infinite-state) automata Hc represented by H.
Therefore it is enough to verify the validity on the finite-state abstract automata
to infer the validity of the property in all its concretizations. As usual in model
checking of infinite-state systems in the presence of abstraction the algorithm is
sound but not complete in the sense that it might return false negatives. This
means that if the algorithm fails to show that Φ is valid in H then it cannot be
concluded that Φ is not satisfiable (by some run of H). However, since such a
failure is always accompanied by a “prospective” counterexample of Φ, further
analysis or testing may be used to come to a more precise conclusion.

4 An Abstract Operational Model for Mobile Ambients

Before defining our model we give two motivating examples.

Example 1. In [8] the following system is considered. Ambient m wants to send
a message to ambient b. Messages are delivered enclosed in a wrapper ambient
that moves inside the receiver which acquires the information by opening it. For
secret messages we want to be sure that they can be opened only by the receiver
b: SYS1 = m[mail [out m.in b.msg[out mail .D]]] | b[open msg] | open msg .

Data D is secret, mail is the pilot ambient that goes out of m to reach b. The
outer-most ambient attempts to access the secret by open msg . Once inside b,
the wrapper mail is opened and b reads the secret D. For the process SYS1 we
want to guarantee that the property (UA): “no untrusted ambients can access
D” holds.

The previous example illustrates the relevance of secrecy in wide-area computa-
tions. However, there are other important properties which are relevant for the
safety of systems. An instance is given in the following.

Example 2. Let us assume that a distributed network of an organisation (e.g.,
a bank) has a server used by a certain number of clients to execute critical
operations (e.g., buying/selling stocks). A rather trivial implementation could
be the following system:

SYS2 = Serv [PORT |PORT |PORT |Exec] | Cl[REQ ] | Cl[REQ ]
PORT = P [in Req.in Exec]
REQ = !Req[out Cl.in Serv .open P.DATA]

A client Cl asks the server to execute an order (buying/selling) by sending a
request. Details of orders are contained in DATA. The ambient Req, implement-
ing a request, leaves the client and goes into the server. Once there, Req uses
one of the available PORT s which are the data structures used by the server
to execute the requests. The port P moves the request to some process Exec
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which executes the order in DATA (and then it gives back P to Serv). As any
other real-life server, the bank’s server can accept a limited amount of requests
at the same time. The risk is that its finite number of internal data structures
(ports P s) are consumed in pending requests not yet completed. This can result
in an overflow and the server must be rebooted while — in the meanwhile —
the bank may be loosing millions. Predicting the number of requests may be
difficult. This is mostly because the clients place their orders following some
mathematical models which depend from several random variables.

Safety for such kind of systems involves the number of requests that the server
has to deal with at each time. It is essential that the property no-overflow (NO)
holds, i.e. at any point in time the server has to deal with a number of requests
smaller or equal to the size of its data structures (in this case 3 ports).

Now, suppose that the system is expanded and new clients are added to the
bank’s network. Therefore the designer of the system decides to implement some
strategy meant to avoid overflows. The system is upgraded with a buffer using
the following strategy. If the server gets shorter in ports it sends a broadcast
message (BCAST ) to its clients and informs them to address their requests to
the buffer (instead that the server). From that moment the server accepts only
requests from the buffer which forwards client’s orders when the server ask for
one (by the ambient ASK BUF ). When the server has executed enough requests
and its number of free ports get back to normal, the server broadcasts another
message (ADDR to Ser) to the clients to inform them that from that moment
on they can again address their requests directly to the server. The designer
implements this idea in the following new system:

SYS2 = SER | Cl[REQ |to Ser ] | Cl[REQ |to Ser ]
| Cl[REQ |to Ser ]| Cl[REQ |to Ser ]

REQ = !Req [in to Ser .out to Ser .out Cl.in Serv .open P.DATA|inB.DATA]
BUF = Buf [!ReqB[open Ask Buf .open B.out Buf .in Serv .open P ]]

ASK BUF = !Ask Buf [open Ready for req .out Serv .in Buf .in ReqB]
BCAST = BCast [out Serv .in Cl.open to Ser .B[open Req .out Cl.in Buf .in ReqB ]]

ADDR to Ser = open Norm St .to Ser [out Serv .in Cl]
SER = Serv [ASK BUF |PORT |PORT |PORT |BCAST |BCAST |BCAST

|BCAST |ADDR to Ser |ADDR to Ser |ADDR to Ser |ADDR to Ser ]

Now, it should be formally verified that this patch properly avoids any over-
flows, i.e., in this new system the property no-overflow (NO) holds. Note that
(NO) cannot be accurately verified by analyses dealing only with multiplicities
{0, 1, ω} as those found in the literature. Other example properties that this sys-
tem should have and we might wish to verify are: (REQ): any request eventually
reaches the server; and (REQB): an ambient ReqB leaves the buffer only after
the server has asked for a new request by sending the message Ask Buf .

In this paper we are concerned with the verification of the kind of properties
described in these two examples.



408 D. Distefano

4.1 HABA Modelling Approach

Due to replication, the concrete transition systems of processes are infinite. Since
we want to use model checking as analysis technique for processes it is essential
that their representation in the model is finite. A naive encoding of the process
topology would be hopeless. Therefore, we focus only on essential information
which allow us to infer the properties we need. Along the lines of [8,13,14,18],
the information we retrieve from a mobile ambient process P is: which ambients
may end up in which other ambient. To model P we introduce a classification
among the entities in use. For any ambient a occurring in P we have:

– A special entity aho (called a’s host) is used to record, at any point in the
computation, the ambients (hosted) directly inside any copy of ambient a.
aho is fixed, i.e., during the computation its position within the topology of
the process does not change.

– A special entity ais (called the inactive site of a). It is the repository where
the copies of a are placed when this ambient is inactive. Informally speaking,
inactive means that a cannot yet execute any action (see Section 4.2). As
aho, also ais does not move during the computation.

– All other entities —distinct from aho and ais— represent instances of the
ambient a. A concrete entity can move according to the capabilities of the
particular copy of a it represents. Several instances of a may be represented
by a single multiple or unbounded entity.

Example 3. State qin in Figure 4 depicts how process SYS1 of Example 1 is
represented in our model. Outgoing references define the child/parent relation
µ. Notation e:n says that e denotes an ambient with name n. The host of an
ambient, say a, keeps track of the ambients directly contained in any copy of
a. Thus, ambients m and b are inside the outer-most ambient @, whereas mail
is inside m. Ambients b and mail are empty. Hosts entities are depicted as
squares and inactive sites as patterned squares. msg is inactive since in the
beginning it cannot execute any action. Only when both out m and in b have
been consumed, msg becomes active. Inactive ambients are modelled by having
the copies pointing to their inactive site. Figure 2 (left) shows the use of the
unbounded entity e2 (depicted as patterned circle) to model more than M copies
of the ambient n.

Preliminary notation. We assume the existence of a global function A : Ent →
n(P ) that associates to every entity e a name of the ambient in P represented
by e. For e ∈ Ent , we write e:n as a shorthand for A(e) = n and e:n ∈ E as a
shorthand for e ∈ E ∧ A(e) = n.

We consider two fixed disjoint sets of entities: the set of inactive sites E is
P =

{nis ∈ Ent | n ∈ n(P )} and the set of hosts Eho
P = {nho ∈ Ent | n ∈ n(P )}. For

every ambient n we assume A(nis) = A(nho) = n and in every state of the model
nis points to nho. A HABA state modelling mobile ambients is of the form:

q = 〈γ, P〉 ∈ States
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where States = Conf × (Ent ⇀ 2Proc). The first component γ = (E, µ, C) ∈
Conf is a standard HABA configuration as defined in Definition 3.1. Given
an entity e, the second component P : Ent ⇀ 2Proc associates to e the set of
processes e must execute. In figures the component P(e) is depicted close to e.
It is not written if it is the empty process.

Pre-initial state and Initial state. The pre-initial state is an artificial state added
to the model in order to identify by NTL-formulae which ambient an entity
represents. The pre-initial state of a process P is constructed in such a way that
every entity representing a copy of the ambient n points to the inactive site
nis. The structure of the pre-initial state does not reflect the initial topology
described by P . NTL-formulae exploit the fact that an entity e in the pre-
initial state leads to nis to express that e stands for a copy of the ambient n.
State qpre in Figure 4 illustrates the pre-initial state of the process SYS1 of
Example 1. Although A(e1) = m, this information cannot be exploited in NTL.
However, NTL-formulae can refer to the set X of logical variables in the model
(see Def. 3.1). By having a variables xm for any m ∈ n(P ), and by interpreting
xm into mis (see ϑ in Def. 4.2) NTL-formulae can refer to mis and therefore to
all the other entities. Hence, by the special shape of the pre-initial state, we can
use the formula ∃x : x � xm to express that x as a copy of the ambient m.

The initial-state models the child/parent relation (i.e. the topology) described
by the process in terms of entities and pointers. For example, in Figure 4, qin

is the initial state of the process SYS1 of Example 1. Note that the ambient @
does not have a real instance (it is modelled only by @is and @ho), therefore we
use @is for the execution of capabilities.

Example 4. The security property (UA) of Example 1 is violated if and only if
the following NTL formula is satisfied

ΦUA ≡ ∃x : x � xmsg ∧�(x �/ xmsg ∧ x↑ �= xmail↑ ∧ x↑ �= xb↑).
ΦUA states that msg eventually will be included inside an ambient different from
mail and b (which are the only trustworthy ones). Note the use of xmsg , xmail , xb

to refer to ambient names.
The property no-overflow (NO) (see Example 2) is violated if there are at

least four distinct requests inside the server at the same time:

ΨNO ≡ ∃x, y, z, w : x � xReq ∧ y � xReq ∧ z � xReq ∧ w � xReq ∧
(x �= y ∧ x �= z ∧ x �= w ∧ y �= z ∧ y �= w ∧ z �= w) ∧
�(x↑ = xServer ∧ y↑ = xServer ∧ z↑ = xServer ∧ w↑ = xServer)

REQ and REQB (see Example 2) are satisfied if the following formulae hold:

ΨREQ ≡ ∀x : x � xReq ⇒ �(x↑ = xServ )
ΨREQB ≡ �(∀x:x � xReqB

∧ x↑ = xBuf ⇒ (x↑U ∃y:y � xAsk Buf ∧ y↑=xBuf ))

Hence, if HSYS1 and HSYS2 are the HABA modelling SYS1 and SYS2, the
properties are guaranteed to hold if we verify HSYS1 |= ¬ΦUA, HSYS2 |= ¬ΨNO,
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HSYS2 |= ΨREQ and HSYS2 |= ΨREQB. That can be automatically checked using
the model checking algorithm defined in [9,12].

Canonical form for configurations. As models we use HABA whose configura-
tions are in a special form called canonical. The main advantage of canonical
configurations is that the resulting HABA is proved to be finite-state [9]. Infor-
mally, given a L > 0, a configuration γ is L-canonical (or in L canonical form) if
(a) only concrete entities are closer than L + 1 pointer dereferences from a host;
and, (b) there are no pure chains longer than L + 1. For every configuration γ
its canonical form exists and it is unique (denoted by cf(γ)). cf(γ) is determined
by the unique morphism hcf : γ → cf(γ).

The Parameters M and L. The precision of automaton H is ruled by two para-
meters: L controlling the canonical form; and M defining the minimum number
of copies of an ambient represented by a single unbounded entity. Due to canon-
ical form, non-concrete entities are not direct children of hosts: there are L
concrete entities in between although all of them represent different instances of
the same ambient. In other words, a chain of entities e:b, e′:b . . . pointing to a
host, say aho represents a set of instances of b inside a. By L and M we are able
to distinguish that inside a there are no instances of the ambient b; or there are
precisely i instances of b with 1 ≤ i ≤ L + M ; or there are more than L + M
instances of b. Since L and M are parameters of the model they can be properly
tuned to accomplish a more precise model. For example, assume M = 1 and
L = 3. In q3 of Figure 3, we know that inside a there are exactly two instances
of n and any number of b’s copies strictly greater than 4.2

4.2 Coding Processes into HABA Configurations

In this section we define a function D that codes a given process P into a HABA
state. D returns: (i) a configuration γ that models P ’s topology; and (ii) a
function P that associates to every entity the set of capabilities. We first define
all the auxiliary elements necessary to D’s definition.

Union configuration. For a configuration γ, let Ec
γ = Eγ\(Eho

P ∪ E is
P ) be its set

of non-fixed entities. For configurations γ, γ′ such that Ec
γ ∩Ec

γ′ = ∅, the union
configuration is γ + γ′ = (Eγ ∪Eγ′ , µ, C) where: C(e) = Cγ′(e) if e ∈ Eγ′\Eγ and
C(e) = Cγ(e) otherwise; and

µ(e) =

⎧⎪⎪⎨
⎪⎪⎩

µγ(e) if e ∈ Eγ

µγ′(e) if e ∈ Eγ′\Ec
γ′

first({e′:a ∈ Ec
γ | bho ∈ µ∗(e′)} ∪ {bho}) if e:a ∈ Ec

γ′ and µγ′(e) = bho

µγ′(e) otherwise

2 Between copies of the same ambient, we draw dashed horizontal arrows to stress
that, at the conceptual level, these arrows do not describe a child/parent relation as
the solid vertical ones.
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For e:a ∈ Eγ′ , µ(e) assigns the first entity in the queue of copies of a. If both
configurations have copies of an ambient, say b, inside the same ambient, say a,
the union appends the copies of the second configuration to those of the first
one. The union for P is defined point-wise: let q = 〈γ, P〉 and q′ = 〈γ′, P′〉 and
e ∈ Eγ ∪ Eγ′ , then

(P + P′)(e) =

⎧⎨
⎩

P(e) ∪ P′(e) if e ∈ Eγ ∩Eγ′

P(e) if e ∈ Eγ\Eγ′

P′(e) if e ∈ Eγ′\Eγ

Finally the union of states is 〈γ, P〉 + 〈γ′, P′〉 = 〈γ + γ′, P + P′〉.

Sub-processes executed by ambients. Given a process P the function ρ : Proc→
2Proc returns the set of sub-processes that the ambient containing P can execute:

ρ(0) = ∅ ρ(M.Q) = {M.Q} ρ(Q | Q′) = ρ(Q) ∪ ρ(Q′)
ρ(m[Q]) = ∅ ρ(!Q) = {!Q} ρ((νn)Q) = ρ(Q)

Processes belonging to nested ambients are not returned. Note that because we
do not distinguish between ν!P and !νP we can delete restriction3.

Enabled and active ambients. An enabled ambient is an ambient which is ready
to perform some action. Syntactically enabled ambients are those not guarded
by a capability. The corresponding semantic notion is being active. In state q,
the ambient n is active if �e ∈ Eγq : µγq (e) = nis. If n is not active it is called
inactive. In the operational model only entities related to active ambients can
execute capabilities.

Constructing the state. We use the following abbreviation for a state composed
only by two entities.

(e1, k1, P1) � (e2, k2, P2) = 〈{e1, e2}, {e1 �→ e2}, {e1 �→ k1, e2 �→ k2},
{e1 �→ P1, e2 �→ P2}〉

The next function Ω(a, P, k, act) returns a HABA state representing the process
P contained inside the ambient a. The parameter k deals with cardinalities.
The parameter act is a boolean that instructs Ω to construct the configuration
with the active or with the inactive representation of its ambients. Formally,

3 However, we assume that names occurring bound inside restriction are all distinct
from each other and from the free names.
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Ω(@, m[mail[out m.in b.msg[out mail.D]]], 1, tt)

e1:m e3:mail e4:msg
out m.in b.msg[out mail.D] out mail.D

@is @ho mis mho mail is mailho msg is msgho

e2:b
open msg

@ho@is bis bho

Ω(@, b[open msg], 1, tt)

Fig. 1. HABA states returned by Ω(@,m[mail [out m.in b.msg [out mail .D]]], 1, tt) and

Ω(@, b[open msg ], 1, tt)

���
���
���
���

��
��
��
�� ��

��
��
��

��
��
��
��

in n

nis nho
nis nho@is @ho

e2:n*
in n

@is @ho

* e3:n
in n

e2:n

Fig. 2. Left: HABA state returned by Ω(@, !n[in n], 1, tt). Right: Its 1-canonical form.

Ω : N ×Proc×M∗ × B → States is given by:

Ω(a, 0, k, act) = (ais, 1, 0) � (aho, 1, 0)
Ω(a, m[Q], k, act) = Ω(a, 0, k, act) +Ω(m, Q, k, act)

+
{

(e, k, ρ(Q)) � (aho, 1, 0), if act
(e, k, ρ(Q)) � (mis, 1, 0) otherwise

where e:m is fresh
Ω(a, Q1|Q2, k, act) = Ω(a, Q1, k, act) +Ω(a, Q2, k, act)
Ω(a, (νn)Q, k, act) = Ω(a, Q, k, act)

Ω(a, !Q, k, act) = Ω(a, Q, ∗, act)
Ω(a, N.Q, k, act) = Ω(a, 0, k, act) +Ω(a, Q, k, ff)

The representation of m[Q] in a comprehends ais, aho, the sub-state of Q inside
m and a configuration with a non fixed entity e standing for the copy of m in
a. Depending on the parameter act, this representation can be either the active
or the inactive one. Ω(a, !Q, k) changes the cardinality from k to ∗. Finally, the
representation of N.Q inside a has the inactive representation for the process Q.

Example 5. Figure 1 shows Ω(@, m[mail [out m.in b.msg[out mail .D]]], 1, tt) and
Ω(@, b[open msg], 1.tt). In the former, note the different representation between
active ambients (@, m, mail) and inactive (msg). The left part of Figure 2 shows
a state involving replication. We have Ω(@, !n[in n], 1, tt) = Ω(@, n[in n], ∗, tt)
therefore, the entity e2 modelling the copies of n, becomes unbounded.

Definition 4.1 (Process encoding). The process encoding function D:Proc→
States is given by D(P ) = 〈cf(γ), P[@is �→ ρ(P )]〉 where Ω(@, P, 1, tt) = 〈γ, P〉.
The existence of a unique canonical form is proved in [9,12]. The state in the
left part of Figure 2 is not L-canonical for any L > 0. The canonical form for
L = 1 is shown on the right side. Note that D assigns to @is the set ρ(P ) with
the capabilities to be executed by @. For any process P , its pre-initial state is
given by qpre = Ω(@, P, 1, ff) and the initial state by qin = D(P ). Figure 4 shows
qpre and qin of SYS1.
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Table 2. Functions for moving ambients used in the operational rules

act : Proc × N × Conf → Conf defined by
actQ,a(γ) = (γ\γΩ(a,Q,1,ff)) � γΩ(a,Q,1,tt)

move : Conf × Ent × Ent → Conf defined by
move(γ, e, ê) = (Eγ , µγ [e �→ ê, µ−1

γ (e) �→ µγ(e), e′ �→ e], Cγ)
where µγ(e′) = ê, A(e′) = A(e)

IOUp : (States × Proc × Ent × Ent) → States defined by
IOUp(q, N.Q, e, ê) = 〈actQ,A(e) ◦ move(γq, e, ê), P[e �→ P(e)\{N.Q} ∪ ρ(Q)]〉

diss : (Conf × Ent × Ent) → Conf defined by
diss(γ, aho, e:b) = (Eγ\{e}, µγ [µ−1

γ (e) �→ aho, µ−1
γ (bho) �→ aho], Cγ  Eγ\{e})

OpenUp : (States × Ent × Ent × Proc) → States defined by

OpenUp(q, N.Q, e′:a, e)=〈actQ,a ◦ diss(γq, a
ho, e), P[e′ �→ P(e′)\{N.Q} ∪ ρ(Q) ∪ P(e)]〉
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Ω(@, m[0], 1, tt)

bis bho

bis bhoais ahonis nho

e1:b e4:b e2:n e3:n e5:b e6:b e7:b

@is @ho

mismho

mismho

e1:mΩ(@, m[0], 1, ff)

activate

q1

q2@is @ho

e1:m

ais
nhonis

e1:b e2:n e3:n e4:b e5:b e6:b e7:b

aho

move(γ, e4, nho)

q4

q3

Fig. 3. Left: Rearrangements of pointers performed by actm[0],@(γ). Right: Rearrange-

ments of pointers carried out by move(γ, e4, n
ho).

4.3 Configuration Link Manipulations

In our operational model, the computation of a process P corresponds to specific
pointer manipulations mimicking the movements of P ’s ambients (see Figures 4).
We will now introduce the functions implementing these pointer manipulations.
They will be used in the rules of operational semantics given in Table 3.

State update for in/out. The function IOUp(q, N.Q, e, ê) in Table 2 performs the
overall update of the state q when e moves inside ê because of the execution of
N ∈ {in , out } and continue with Q. There are three kinds of updates to carry
out during the execution of N : (i) First the pointer rearrangements moving e
from its current location to the target location. These updates are performed by
move(γ, e, ê). (ii) Then by applying act , IOUp carries out those rearrangements
needed for the activation of the ambients becoming enabled in Q because of the
execution of N . (iii) Finally, the set of capabilities P(e) is updated to record
that e has executed N and that it must continue with Q. Figure 3 (right part)
shows how the configuration changes when e4 moves inside nho. In Figure 4,
state q1, in b moves e3 inside b by making it point to bho; moreover msg becomes
active and it points to mailho instead of msg is. Figure 3 (left part) depicts the
activation of m by the outer-most ambient @. It corresponds to actm[0],@(γ).
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State update for open. The function OpenUp(q, N.Q, e′:a, e) updates the state
when e′:a executes open of the ambient represented by e. OpenUp(q, N.Q, e′:a, e)
performs the following operations: (i) It dissolves e using diss ; (ii) It activates
the ambients that become enabled; (iii) It updates the set of sub-processes that
remain to be done by the entity executing open. Note that e′ takes the processes
P(e) which were supposed to be executed by e. See the transition between q3
and q4 in Figure 4.

4.4 The HABA Semantics of Processes

We can now define HABA HP defining the abstract model for process P .

Definition 4.2. The abstract semantics of a process P is the HABA HP =
〈XP , S,→, I,F〉 where

– XP = {xn | n ∈ n(P )} ∪ {x@};
– S ⊆ States such that qpre, qin ∈ S;
– let R ⊆ S×(Ent×Ent → M)×S be the smallest relation satisfying the rules

in Table 3. Then −→=R∪{(qpre, λpre, qin)}∪{(q, id , q) |¬∃q′, λ : (q, λ, q′)∈R};
– dom(I) = {qpre} and I(qpre) = 〈∅, ϑ〉 where ϑ(xn) = nis (n ∈ n(P )).
– F = {{q ∈ S | (∃q′, λ : q −→λ q′)⇒ q = q′}}.

XP contains a logical variable for each ambient name in P and x@ for the outer-
most ambient. The transition relation−→ includes a transition from the pre-initial
state to the initial state and an “artificial” self-loop for each deadlocked state in
R. F is defined as the set of states whose only outgoing transition is a self-loop.
The set I contains only the pre-initial state. The interpretation ϑ allows us to
refer to ambient names in NTL-formulae (see discussion at page 409).

Operational rules. The execution of a capability N.Q, in a given state q, ap-
plies the following pattern: γq is first modified with the needed link rearrange-
ments into γ′. This is performed by IOUp (for in and out) or OpenUp (for
open). Because of the rearrangements of the links, γ′ may be not canonical.
Therefore, we consider its safe expansion SExp(γ′)4 and for each of its ele-
ment γ′′ we take the canonical form cf(γ′′). The reallocation is defined as:
λ = hcf ◦ h−1(γ′) where the morphism h is determined by the safe expansion
of γ′ and hcf is the morphism giving the canonical form of h−1(γ′). [12] shows
that this is a good definition of reallocation. In q only concrete non-fixed en-
tities modelling an active ambient and directly pointing to a host can move,
i.e., Em = {e ∈ Ec

q | A(e) is active, µq(e) ∈ Eho
P }. In the rules Em

@ = Em∪{@is}.
Moreover, siblings(e) is the set of ambients having an instance with the same
parent of e. child(a) returns the entities that are children of the ambient a.
parents(b) is the set of parents of ambients b. In the In rule, if e has in b.Q

4 The safe expansion of a (possibly unsafe) configuration γ′ is a finite set of L-safe con-
figurations γ′′ which are related to γ′ by a morphism (i.e., they represent the same
topological structure). Formally: SExp(γ′) = {γ′′ | γ′′ is L-safe and h : γ′′ → γ′}.
See [12] for an exhaustive treatment.
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Table 3. Operational rules for Mobile ambients

In
e ∈ Em, in b.Q ∈ Pq(e), b ∈ siblings(e)

q −→λ cf(γ′′), P′

where 〈γ′, P′〉 = IOUp(q, in b.Q, e, bho) and γ′′ ∈ SExp(γ′)

Out
e ∈ Em, out b.Q ∈ P(e), µ(e) = bho a ∈ parents(b)

q −→λ cf(γ′′), P′

where 〈γ′, P′〉 = IOUp(q, out b.Q, e, aho) and γ′′ ∈ SExp(γ′)

Open
e ∈ Em

@, open b.Q ∈ P(e), e′:b ∈ child(A(e))

q −→λ cf(γ′′), P′

where 〈γ′, P′〉 = OpenUp(q, open b.Q, e, e′) and γ′′ ∈ SExp(γ′)

Bang
e ∈ Em

@, !Q ∈ P(e)

q −→λ cf(γ′), P′
where P′ = Pq [e �→ Pq(e) ∪ ρ(Q)]
and γ′ ∈ SExp(actQ,A(e)(γq))

and there exists a sibling ambient b then e moves inside b. In the Out rule, if e
executes out b.Q and its father is ambient b, i.e. µ(e) = bho then e must move in
every ambient containing a copy of b. In the Open rule, e can execute open b, if
there exists a child(A(e)) e′ modelling a copy of b. Entity e′ is dissolved and the
component P(e) acquires the processes contained in P(e′). In the Bang rule, if
a process !Q is contained in the set of processes that e must execute, then !Q is
expanded using the equivalence !Q ≡ Q|!Q. Note that we do not need structural
rules for parallel composition, restriction, ambients since those constructs are
implicitly represented in the configuration of a state.

Example 6. The HABA modelling SYS1 of Example 1 is depicted in Figure 4.
For SYS1 we want to check the secrecy property (UA) “no untrusted ambients
can access D” expressed by the NTL-formula ΦUA in Example 4. No runs of the
HABA satisfies ΦUA therefore in SYS1 only b can access the secret data D.

Theorem 1. If P → Q then there exists Q′ and a finite sequence of λ1, λ2, . . . ,λk

such that D(P ) →λ1 · · · →λk
D(Q′) and Q′ ≡ Q.

This theorem ensures that the HABA semantics of a process P provides a safe ap-
proximation of all P behaviours. Although for many processes it provides rather
precise information, some limitations occur on processes which combine name re-
striction and replication. Like other analyses based on static analysis [8,13,14,18],
our semantics does not distinguish between processes !(νn)P and (νn)!P . How-
ever, our model is able to capture precise information on the number of copies of
the same ambients that may be inside another ambient. Therefore it is able to
distinguish between P and !P . The precision can easily be increased by increasing
the parameters L and M .
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msgho
mhomis bis msg is

msgho

mail is@ho

e1:m
e2:b

open msg
0
e3:mail

@is

open msg

bho

mailho

e4:msg
D

@is

@ho

mail is

e3:mail

mailho

msg is

e4:msg
out mail.D

msgho

mis

e1:m

bis

mho bho

qpre

open msg
e2:b

out m.in b.msg[out mail.D]

mhomis bis mail is
q2

@ho

e1:m
e2:b

open msg
0
e3:mail

open msg

@is

bho mailho

msg is

e4:msg

out mail.D

q3

mhomis bis mail is msg is

e4:msg

msgho

out mail.D

out mq1

@ho

e1:m
e2:b

open msg

e3:mail
in b.msg[out mail.D]

open msg

@is

bho mailho

bis

bho

mail is

out m.in b.msg[out mail.D]

mhomis bis mail is
out mail

msgho

λpre

qin

@ho

e1:m
e2:b

open msg

mho

e3:mail

mis

open msg

@is

mailho

msg is

e4:msg

msgho

out mail.D

q4

in b

open msg id

@ho

e1:m
e2:b

D

e3:mail
0

open msg

@is bho

mailho

msg is

Fig. 4. HABA modelling the system described in Example 1 by the process SYS 1 =

m[mail [out m.in b.msg [out mail .D]]]|b[open msg ]|open msg

5 Conclusions

The analysis we have developed in this paper represents an alternative approach
which goes beyond the analyses for MA found in the literature. A strong point of
our technique seems to rely on its power of counting occurrences of ambients, as
well as its flexibility on tuning the precision. Another advantage of our approach
w.r.t. static analysis is that the model can be used to investigate properties
of the evolution of the computation (via NTL). Beside the information “which
ambient end up in in which other ambient” our model is able to answer other
involved questions which cannot be answered by existing analyses. For example,
properties like “it is always the case that whenever a and b are inside n, a exit
n before b”. Or, ”a copy of a does not leave b until another copy of a enters b”.
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Abstract. In this paper, we illustrate the rôle of the notion of Abstract
Non-Interference in language based security, by explaining how it
models both the weakening of attackers’ observational capability,
and the declassification of private information. Namely, we show that
in abstract non-interference we model both attackers that can only
observe properties of public data, and private properties that can
or cannot flow. Moreover, we deepen the understanding of abstract
non-interference by comparing it, by means of examples, with some the
most interesting approaches to the weakening of non-interference, such
as the PER model, robust declassification, delimited release and relaxed
non-interference.

Keywords: Language-based Security, Non-Interference, Declassifica-
tion.

1 Introduction

An important task of language based security is to protect confidentiality of
data manipulated by computational systems. Namely, it is important to guar-
antee that no information, about confidential/private data, can be caught by an
external viewer. The standard way used to protect private data is access control:
special privileges are required in order to read confidential data. Unfortunately,
these methods allow to restrict accesses to data but cannot control propagation
of information. Once the information is released from its container, it can be
improperly transmitted without any further control. This means that security
mechanisms such as digital signature and antivirus scanning, do not provide
assurance that confidentiality is maintained during the whole execution of the
checked program. This implies that, if a user wishes to keep some data confi-
dential, he might state a policy stipulating that no data visible to other users
is affected, within the executed program, by modifying confidential data. This
policy allows programs to manipulate and modify private data, as long as visible
outputs of those programs do not reveal information about these data. A policy
of this sort is called non-interference policy [13], since it states that confidential
data may not interfere with public data, but it is also referred as secrecy [25].

K. Yi (Ed.): APLAS 2005, LNCS 3780, pp. 418–433, 2005.
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The standard approach to non-interference, is based on a characterization of
attackers that does not impose any observational or complexity restriction on
the attackers’ power. This means that the attackers are all-powerful, modeled
without any limitation in their quest to obtain confidential information. For this
reason non-interference, as defined in literature, is an extremely restrictive policy.
The problem of refining this kind of security policies has been addressed by
many authors as a major challenge in language-based information flow security
[22], where refining security policies means weakening standard non-interference
checks. In order to adapt security policies to practical cases, we need a weaker
notion of non-interference where the power of the attacker (or external viewer)
is bounded, and where intentional leakage of information is allowed. In [9], we
introduce a weak notion of non-interference for characterizing the secrecy degree
of programs by identifying the most powerful attacker that is not able to disclose
confidential information by observing the execution of programs, but also in
order to characterize the maximal amount of information released. Clearly, this
is not the only, and not even the first attempt to weaken the notion of non-
interference, from both these points of view, as we will see in Sect. 3. But this
is the only one, to the best of our knowledge, that can model, in the same
formalism, both weaker attackers and released information. In this paper we
show, by means of examples, that different techniques proposed in literature for
weakening non-interference (e.g., PER model) and for declassifying information
(e.g., selective dependency, delimited release, relaxed non-interference) can be
equivalently formalized in abstract non-interference, but moreover we show that
in some cases abstract non-interference captures a much more precise notion and
allows to derive certifications of the security degree of programs. The aim of this
paper is to show how abstract non-interference can be simply adapted in order
to cope with different problems concerning secure information flow, and to allow
a deep insight of this notion.

2 Abstract Interpretation: A Panoramic View

In the following of this paper we will use the standard framework of abstract
interpretation [5,6] for modeling the observational capability of attackers. The
idea is that, instead of observing the concrete semantics of programs, namely
the concrete values of public data, the attackers can only observe properties of
public data, namely abstract semantics of the program. For this reason we model
attackers by means of abstract domains. Abstract domains are used for denoting
properties of concrete domains, since their mathematical structure guarantees,
for each concrete element, the existence of the best correct approximation in
the abstract domain. This is due to the property, of abstract domains, of being
closed under the concrete greatest lower bound. So for example an abstract do-
main for the sign analysis is Sign def= {Z, 0+, 0−, {0}, ∅}1, while if we weed out
{0}, then it is no more an abstract domain. Formally, the lattice of abstract

1 0 +
def
= {n | n ≥ 0}, 0 − def

= {n | n ≤ 0}.
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interpretations of C is isomorphic to the lattice uco(C) of all the upper clo-
sure operators on C [6]. An upper closure operator ρ : C → C on a poset C
is monotone, idempotent, and extensive2. Closure operators are uniquely deter-
mined by the set of their fix-points ρ(C), which are abstract domains formalized
independently of the representation of their objects. If C is a complete lat-
tice then 〈uco(C),�,�,�, λx. *, λx. x〉 is the lattice of upper closures, where
for every ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C) and x ∈ C: ρ � η iff η(C) ⊆ ρ(C);
�i∈Iρi =

⋂
i∈I ρi; and �i∈Iρi =M(

⋃
i∈I ρi), whereM is the operation of closing

a domain by concrete greatest lower bound, e.g., intersection on power domains.

3 Non-interference and Declassification: The Road Map

Non-interference for programs essentially means that “a variation of confidential
(high or private) input does not cause a variation of public (low) output” [22].
When this happens, we say that the program has only secure information flows
[1,4,7,15,25]. This situation has been modeled by considering the denotational
(input/output) semantics �P � of the program P . In the following, we consider
programs where data are typed as private (H) or public (L). Program states,
whose set is Σ, are functions (represented as tuples) mapping variables in the
set of values V. Any input state s, can be seen as a pair (h, l), where sH = h
is a value for private data and sL = l is a value for public data. In this case,
(standard) non-interference can be formulated as follows: Let P be a program

P is secure if ∀ s, t ∈ Σ. sL = tL ⇒ (�P �(s))L = (�P �(t))L

This notion has been formulated also as a Partial Equivalence Relation [14,23].
The limitation of this notion of non-interference is that it is an extremely

restrictive policy. Indeed, non-interference requires that any change upon confi-
dential data has not to be revealed through the observation of public data. There
are at least two problems with this approach. On one side, many real systems are
intended to leak some kind of information. On the other side, even if a system
satisfies non-interference, too restrictive tests could reject it as insecure. These
observations address the problem of weakening the notion of non-interference
both characterizing the information that is allowed to flow, and considering
weaker attacker models, that can observe only properties of public data. The
first problem is treated by means of declassification of private information, while
the second problem characterizes the observational capability of the attacker.

Different notions of non-interference dealing with declassification have been
introduced. The first formalization is selective dependency [4], where a property
on private input is declassified, by letting the private input range only upon
sets of confidential values with the same declassified property. In this case non-
interference is checked only whenever a fixed input property holds. So, if we
consider the property ϕ(h) : h mod 3 = 1, then non-interference is checked only

2 ∀x ∈ C. x ≤C ρ(x).
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when the input h satisfies ϕ. Declassification is considered in presence of ac-
tive attackers, i.e., attackers that can modify the code of the program in robust
declassification [26]. Declassification is robust whenever an active attacker can-
not disclose more information than what can be observed by a passive attacker.
This notion is then better formalized in [19], where also a type system is pro-
vided for enforcing robust declassification. More recently two other weakenings of
non-interference are provided for dealing with declassification: delimited release
[21] and relaxed non-interference [17]. Both these notions enforce the respective
non-interference with a type system, the first on a simple imperative language
with explicit declassification of expressions, and the second on λ-calculus. The
end-to-end policy in both of them is the same, and it corresponds to selective
dependency [4]. In [17] a method is also provided for deriving the declassifica-
tion policy that makes the program satisfying relaxed non-interference. All these
approaches are qualitative. There exist also two approaches for quantifying the
information released [3,18].

As far as the model of the attacker is concerned, a possible limitation of
the attackers consists in restricting the possible computational complexity of
attackers [8,16], but we can also think of defining non-interference parametric
on what the attacker can observe of public data. This model can be given in terms
of equivalence relations [14,23,26] or in terms of abstract domains [9,10,11,12].

4 Abstract Non-interference for Modeling Attackers

Consider the program P
def= l := |l| ∗ Sign(h), suppose that | · | is the absolute

value function and suppose Sign(h) returns the sign of h, then “only a portion
of l is affected [by h], in this case l’s sign. Imagine if an observer could only
observe l’s absolute value and not l’s sign” [4] then we could say that the pro-
gram is secure. This is the basic idea in the notion of abstract non-interference
[9], used for modeling both weaker attack models and declassification. The idea
is that an attacker can observe only some properties, modeled as abstract in-
terpretations of the concrete program semantics. In the following, if T ∈ {H, L},
n = |{x ∈ Var(P )|x of type T}|, and v ∈ Vn, we abuse notation by denoting
v ∈ VT the fact that v is a possible value for the variables with security type T.
The model of an attacker , also called attacker , is therefore a pair of abstractions
〈η, ρ〉, with η, ρ ∈ uco(℘(VL)), representing what it can observe about, respec-
tively, the public input and output of a program. We obtain so far the notion of
narrow (abstract) non-interference (NANI) denoted [η]P (ρ), provided in Table 1.
It says that if the attacker is able to observe the property η of public input, and
the property ρ of public output, then no information flow concerning the pri-
vate input is observable from the public output. The problem with this notion is
that it introduces deceptive flows [9], generated by different public output due to
different public inputs, with the same input property η. Consider, for instance,
[Par]if l then l := 2h + l else l := 2h + 1(Par), we can observe a variation of
the output’s parity due to the fact that both 0 and 2, for example, are even
numbers, revealing a flow not due to different private inputs. Most known mod-



422 I. Mastroeni

Table 1. Narrow and Abstract Non-Interference (without declassification)

[η]P (ρ) if ∀h1, h2 ∈ VH, ∀l1, l2 ∈ VL . η(l1) = η(l2) ⇒ ρ(�P �(h1, l1)
L) = ρ(�P �(h2, l2)

L)

(η)P (ρ) if ∀h1, h2 ∈ VH, ∀l ∈ VL .ρ(�P �(h1, η(l))L) = ρ(�P �(h2, η(l))L)

els for weakening non-interference (e.g., PER model [23]) and for declassifying
information (e.g., robust declassification [26]) corresponds to instances of NANI
[9,14]. In order to avoid deceptive interference we introduce a weaker notion of
non-interference which considers, as public input, the set of all the elements
sharing the same property η. Hence, in the previous example, the observable
output for l is the set of the possible values obtained by considering all the in-
puts with the same parity, e.g., if Par(l) = even then we check the parity of{

2h + l
∣∣ l �= 0 is even

} ∪ {2h + 1} which is always unknown, since 2h + 1 is
always odd, and h does not interfere with the final parity. This notion, denoted
(η)P (ρ), is called abstract non-interference (ANI) without declassification, and
it is formally defined in Table 1. So, if P

def= l := |l| ∗Sign(h), and we consider the
closure Abs that forgets the sign of an integer number, i.e., Abs(n) = {n,−n},
then [Abs]P (Abs). While, for example if P

def= if h > 0 then l = m else l = −m,
then [id]P (Abs). Hence abstract non-interference allows the weakening of attack-
ers models without introducing deceptive interference. Moreover, this abstract
model can be used for characterizing the security degree of programs. In partic-
ular, the most concrete output observation for a program, given the input one,
for both narrow and abstract non-interference can be systematically derived [9].
The idea is that of abstracting in the same object all the elements that, if distin-
guished, would generate a visible flow. These most concrete harmless attackers,
with a fixed η in input, are, respectively, denoted [η]�P �(id) and (η)�P �(id), both
in uco(℘(VL)). Hence, in both the programs above, we note that each value n has
to be abstracted in {n,−n}, in order not to generate visible flows, hence the most
concrete harmless attacker can at most observe Abs, i.e., [Abs]�P �(id) = Abs.

4.1 Abstract Non-interference vs PER Model

In [14], the authors analyze the relationship between abstract non-interference
and the PER model of secure information flow. Given the equivalence relations
All, Id such that ∀x, y.x All y and ∀x, y. Id y iff x = y, then the PER model of
secure information flow [23] says that P satisfies non-interference if:

x All× Id y ⇒ �P �(x) All× Id f�P �(y)

where each state x is partitioned in its confidential and public component, i.e.,
x = 〈xH, xL〉. In [14] it is shown that this is an instance of NANI, since it considers
particular equivalence relations, and since equivalence relations can be modeled
by a subset of upper closure operators, called partitioning [20]. This also implies
that abstract non-interference, without declassification, is strictly more general,
as it is proved in [14].
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4.2 Abstract Non-interference vs Security for Robust
Declassification

In [26], in order to accommodate programs that do leak confidential information,
the authors allow the information flow controls to include a notion of declassi-
fied information, where declassifying means downgrading the sensitivity labels on
data. Declassification is defined by saying that a passive attacker , i.e., attackers
that can make only observations of the system and draw inference from those ob-
servations, may be able to learn some confidential information by observing the
system, but by assumption, that information leakage is allowed by the security
policy. The problem is that once a channel is added to the system along which
sensitivity labels are downgraded, there is the potential for the channel to be
abused to release sensitive information other than that intended. This is clearly
possible whenever we are in presence of active attackers , i.e., programs running
concurrently with the system. When such an attacker cannot obtain more con-
fidential information than what a passive attacker can by simply observing the
system, then we say that the system is robust . In other words, robust declassi-
fication guarantees that if a passive attackers may not distinguish between two
memories where the secret part is altered, then no active attackers may distin-
guish between these two memories [24].

We compare this paper with ANI without declassification, since robust de-
classification considers a programming language without explicit declassification
and does not characterize the information declassified. It simply derives robust-
ness of declassification by proving a security property that is equivalent to NANI
defined on trace semantics [9].

Let S = 〈Σ,→〉 be a transition system, and 〈|S|〉 the induced trace seman-
tics. Suppose the observational capability of the attacker is characterized by the
equivalence relation ≈, then the observation of a trace τ of S, through ≈ is
the trace τ/ ≈, such that for each i, (τ/ ≈)i

def= [τi]≈3, and the observation of
S is 〈|S|〉≈ def=

{
τ/ ≈ ∣∣ τ ∈ 〈|S|〉 }. The set of all the traces in S starting from a

state σ is denoted 〈|S|〉(σ) and two traces are equivalent if they are equal up to
stuttering, while two sets of traces are equivalent, i.e., ≡, if all their traces are
equivalent: X ≡ Y ⇔ ∀τ ∈ X ∃τ ′ ∈ Y. τ ≡ τ ′ and vice versa. The security
property for a system S, is S |= SP(≈), which holds iff S[≈] ⊇≈ (note that
≈⊇ S[≈] always holds), where

∀σ, σ′ ∈ Σ. σ S[≈] σ′ ⇔ 〈|S|〉(σ)≈ ≡ 〈|S|〉(σ′)≈

Hence, S |= SP(≈) holds iff ∀σ, σ′ ∈ Σ. σ ≈ σ′ ⇒ 〈|S|〉(σ)≈ ≡ 〈|S|〉(σ′)≈, namely
the set of the traces starting form σ and observed through ≈ is equivalent to
the set of the ≈-observable traces starting from σ′. A ≈-attack is a system
A = 〈Σ,→A〉 such that A |= SP(≈), which means that the attacker does not
know any secret before running with the program. At this point, given an attack
A and a system S, both specified in terms of the same set of states Σ, the attack
on S by A is the union of the systems: A ∪ S, and S is robust w.r.t. ≈, if for
3 τi denotes the i-th element of the trace τ .



424 I. Mastroeni

all the ≈-attacks A, the system A ∪ S, observed through ≈, does not release
more information than what is released by S, always observed through ≈, i.e.,
S[≈] ⊆ (S ∪A)[≈]. Moreover, Theorem 4.1 in [26] says that S |= SP(≈) implies
the system is robust for all the possible ≈-attacks.

Consider narrow non interference defined in terms of trace semantics [12],
where the abstraction ρ of a trace τ is the trace ρ(τ) such that ∀i.ρ(τ)i

def= ρ(τi).
Consider the attacker modeled by using partitioning closures, i.e., equivalence
relations [14], then it is straightforward to prove that narrow non-interference
|=〈|S|〉 [ρ≈]S(ρ≈)4, where ρ≈

def=
{

[x]≈
∣∣x ∈ VL

} ∪ {*,⊥}, is equivalent to the
property S |= SP(≈) [9]. This means that, by Theorem 4.1 [26], also NANI can
be used for characterizing robust declassification. Note that, in both these works
there is not explicit declassification in the language, the idea is simply that what
is naturally released from the semantics of the system has not to be exploited
for obtaining much more information.

Example 1. Consider the following program and its semantics:

P
def= l := 2h + l and 〈|P |〉 =

{ 〈h, l〉→ 〈h, 2h + l〉 ∣∣h ∈ VH, l ∈ VL
}

This program is neither robust nor satisfies non-interference, being S[=L] �=L

since 〈h, l〉 → 〈h, 2h + l〉 �≈ 〈0, l〉 → 〈h, l〉 when h �= 0 and ≈ requires the
equality of the projection on the low values. On the other hand, if we consider
the equivalence relation ≈Par

5, then ∀h1, h2. 〈h1, l〉→ 〈h1, 2h1 + l〉 ≈Par 〈h2, l〉→
〈h2, 2h2 + l〉, since adding 2hi to l does not change l’s parity. Indeed, both
S[≈Par] =≈Par and narrow abstract non-interference hold. Hence, the program is
robust for all the attacks A |= SP(≈Par). For instance, the attack consisting in
the program A

def= l := 2l cannot observe more than what a passive attacker can,
from the execution of P . Indeed,

〈|S ∪A|〉 = {〈h, l〉→ 〈h, 2h + l〉→ 〈h, 4h + 2l〉, 〈h, l〉→ 〈h, 2l〉→ 〈h, 2h + 2l〉}
and the parity of the public output in all the possible executions does not depend
on the input h.

This example shows that, even if declassification in ANI may appear as “vac-
uously robust” [24] since we do not consider explicitly active attackers, also
narrow abstract non-interference can be used for proving robust declassification
of confidential data, without changing any definition.

5 Abstract Non-interference for Declassification

In abstract non-interference we can also model more selective security proper-
ties. For example, “we may not care if output variable b reflects whether input
variable a is odd or even. However, we might like to show that b depends upon a
in no other way” [4]. We can also consider another point of view. Suppose that
we do want the output variable b does not reflect whether input variable a is odd
or even, but we do not care that b depends upon a in other ways.These are two
4 |=〈|P |〉 [η]P (ρ) denotes when NANI is checked by using the trace semantics 〈|P |〉.
5 〈h1, l1〉 ≈Par 〈h2, l2〉 iff Par(l1) = Par(l2).
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Table 2. Abstract Non-Interference

(η)P (φ �[]ρ) if ∀h1, h2 ∈ VH, ∀l ∈ VL . ρ(�P �(φ(h1), η(l))L) = ρ(�P �(φ(h2), η(l))L)

(η)P (φ ⇒ ρ) if ∀h1, h2∈ VH, ∀l ∈ VL .φ(h1) = φ(h2) ⇒ ρ(�P �(h1, η(l))L) =ρ(�P �(h2, η(l))L)

aspects of declassification: the first specifies what is admitted to flow, the other
specifies what cannot flow, admitting that something else may be released.

Abstract non-interference considers a confidential data property, modeled by
an upper closure operator φ, which represents the confidential property we are
interested in keeping secret. This notion is provided in the first definition in Ta-
ble 2, where (η)P (φ �[]ρ) means that the program P keeps secret φ when the at-
tacker is modeled by the I/O pair of observable properties 〈η, ρ〉 and is called de-
classified ANI via blocking. So for example the property (id)l := l∗h2(Sign �[]Sign)

is satisfied, since the public result’s sign does not depend on the private input
sign, which is kept secret. In this case, whenever a flow of information is revealed
this can only be due to the change of the property φ. In this way we model a
notion of non-interference which is parametric both on what the attacker can
observe of public data and on the confidential property that we want to keep
secret.

On the other hand, in ANI [9], we also provide a construction for charac-
terizing the maximal amount of confidential information that flows, for a fixed
attacker model. This corresponds to characterizing the most concrete property
that has to be declassified in order to make the program secure [11]. Declas-
sification can be made explicit also in abstract non-interference, following the
idea of selective dependency [4]. Namely, given the property φ that we want to
declassify, we check abstract non-interference only when the private input has
the same property φ. This notion is provided in the second definition in Ta-
ble 2, where (η)P (φ ⇒ ρ) means that the program P is secure when we let φ to
flow in presence of an attacker modeled by 〈η, ρ〉, and is called declassified ANI
via allowing. So for example, consider P

def= l := l + (h mod 3), if we want to
understand which property flows, we have to characterize which values of the
private input generate different public outputs, and we can note that all the el-
ements in

{
h
∣∣h mod 3 = 0

}
generate the same output l, such as the elements

in
{

h
∣∣h mod 3 = 1

}
and in

{
h
∣∣h mod 3 = 2

}
. In particular, this partition is

such that each pair of values in the same set generates the same public output,
while each pair of values from different sets generates different public values.
This is exactly the maximal amount of information disclosed.

The basic idea of the construction is to collect, for each possible public input,
all the private inputs that give the same result as public output. In this way we
obtain a partition Π(η, ρ)|L for each possible property L in input:

Π(η, ρ) def=
{ 〈{ h ∈ VH

∣∣ρ(�P �(h, η(l))L) = A
}

, η(l)〉 ∣∣ l ∈ VL, A ∈ ρ
}

Π(η, ρ)|L
def=
{

H
∣∣ 〈H, L〉 ∈ Π(η, ρ)

}
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So, like delimited release [21], in presence of passive attacker, it is sufficient to
declassify the property depending on the public input we are observing. Hence
∀h1, h2 ∈ VH, where ∀L ∈ η.πL

def= Π(η, ρ)|L , we have

[h1]πL = [h2]πL ⇒ ρ(�P �(h1, L)L) = ρ(�P �(h2, L)L) (1)

Let us denote this policy as ∀L ∈ η. (η)P (πL ⇒ ρ). It is clear that checking Eq. 1,
could be considered sufficient in presence of only passive attackers, since the stan-
dard idea of non-interference compares only the outputs obtained from compu-
tations with a fixed public input. But is it a realistic notion of non-interference?
Namely, if we have an attacker that observes a system, then we cannot avoid
him to observe computations due also to different public inputs, but if this hap-
pens then the definition in Eq. 1 is no more a non-interference property. So, if
P

def= if h = l then l := 0 else l := 1, then the declassified information should be
Π(id, id)l = {{l},{ h

∣∣h �= l
}

, Z, ∅}. But if the attacker can control the public
input, or can observe computations of P with different public inputs for l, then
it could collect the results, deducing more than what is declassified about h. For
this reason we are interested in a unique property to declassify, which is inde-
pendent of the fixed public input, namely we derive the most abstract property
containing all the properties that should be declassified for each public input
and such that (η)P (φ ⇒ ρ) [9]:

φ
def=

	
L∈η

M(Π(η, ρ)|L) (2)

5.1 Abstract Non-interference vs Enforcing Robust Declassification

In [19] the notion of robust declassification [26] is expressed in a language-based
setting and is generalized in order to make untrusted code and data explicitly
part of the system rather than appearing only when the attacker is active. In this
work the skills of the attacker are made explicit distinguishing between what it
can observe and what it can modify. Hence, each variable on the program has
two security classifications, the first says who can observe and the second says
who can modify it, e.g., xLH means that the variable can be observed but cannot
be modified by a low level user.

More precisely, in [19], the authors consider a syntax, for defining programs,
which includes explicit declassification of expressions to the low security level,
and which allows to leave holes in the code:

e ::= v | x | e1op e2 | declassify(e)
c[−→• ] ::= nil | x := e | if e then c1 else c2 | while e do c | [•]

In these holes the attacker can insert his own code, possibly modifying the com-
putation, i.e., c[a] is the program c under the attack a which means that each
hole [•] in c is substituted by the code a. The system c[−→• ] is robust if ∀σ, σ′ ∈ Σ
(possible initial memories) and ∀a, a′, when both 〈|c[a]|〉(σ) and 〈|c[a]|〉(σ′) termi-
nate, and 〈|c[a]|〉(σ) ≈ 〈|c[a]|〉(σ′) then 〈|c[a′]|〉(σ) ≈ 〈|c[a′]|〉(σ′), where ≈ requires
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the equality of low-level data. This definition says that a system is robust if any
attack cannot change the observable computations of the system.

By considering this view of the problem, we may conclude that it is implicit
in non-interference, and therefore also in abstract non-interference, that all the
secure systems, where only the input public data can be modified by an untrusted
user, are robust. Namely, if we consider the assumption that the attacker may
be able to change inputs, i.e., controls the inputs, but cannot change the code
itself [2], then declassification in ANI is precisely robust, as shown in the follow-
ing examples. Clearly it is a limitation on the possible attacks, and indeed the
extension of ANI to all the possible (active) attacks described in [19] deserves
further investigation. On the other hand, declassified ANI via allowing provides
the construction for deriving what is released by a program.

Example 2. 1. Consider P [−→• ] def= [•]; l := l + declassify(h mod 3), where l : LL
and h : HH. This program satisfies robust declassification. On the other hand,
we can derive the maximal amount of information disclosed from the program
P ′ def= l := l + h mod 3: φ = {*, 3Z, 3Z + 1, 3Z + 2,⊥}, i.e., it is the most
concrete property that has to be declassified in order to guarantee secrecy.
We can prove that (id)P (φ ⇒ id), namely for each possible observation, when
we declassify φ, the program is secure. This also prove that the program P [−→• ]
is robust, since φ describes exactly the property h mod 3 declassified, and
non-interference cannot be violated even if the attacker controls the input l.

2. Let P [−→• ] def= [•]; if declassify(h = l) then h := h − l; else l := l + h, where
l : LL and h : HH. In this case the program is not robust since the attacker can
modify the input of l and therefore can obtain the value of h. Indeed, if we
consider ANI for the program P ′ def= if h = l then h := h− l; else l := l+h,
and we derive the most concrete property that has to be declassified in order
to guarantee secrecy, we obtain the identity:

Π(id, id)|l =
{

Z, {l},{ h
∣∣h �= l

}
, ∅
}

and φ =
	
l∈Z

Π(id, id)|l = id

Namely, we proved that the program cannot be made secure unless we de-
classify the value of private data.

5.2 Abstract Non-interference vs Delimited Release

The aim of delimited release [21] is to find a definition of non-interference which
takes into account explicit declassifications in the code of programs. However,
explicit declassification does not concern with what is actually leaked during
the execution of the program, but simply determines the downgrading policy to
check. Delimited release is a generalization of Cohen’s selective dependency [4].
In standard non interference we check the security property for all the possible
private inputs, this means that the private input can range over the whole domain
of possible values. In delimited release the idea is to select, by using the declassi-
fication explicitly given (consider the simplified declassify operation used in the
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previous section), for which private inputs we have to check non-interference.
Let ≈e the equivalence relation induced by the evaluation of the expression e,
i.e., σ ≈e σ′ iff �e�(σ) = �e�(σ′), we can define σ ≈E σ′ iff ∀e ∈ E.σ ≈e σ′.
Delimited release is defined as follows: Let E be the set of all the declassified
expressions in the program P

∀σ, σ′ ∈ Σ.(σL = σ′L) ∧ σ ≈E σ′ ⇒ �P �(σ)L = �P �(σ′)L

This generalizes selective dependency because ≈E is applied to the whole state
and not only to the high component. But, whenever the expressions in E de-
pend only on the high input, then the two notions collapse, corresponding also
to declassified ANI via allowing. However, whenever the expression E depends
also on public inputs, then we obtain a notion of declassified non-interference
which depends on the fixed public input, as in Eq. 1, inheriting all the problems
expressed for Eq. 1.

At this point, let us see which analogies can be found between declassified
ANI and delimited release. In the following, we say that a closure φ models the
set of declassifications E if ≈E⊆≈φ, where σ ≈φ σ1 iff φ(σH) = φ(σH

1).

Example 3. 1. Consider P
def= avg := declassify((h1 + h2 + . . . + hn)/n). This

program satisfies delimited release [21], and if we derive the maximal amount
of information disclosed in the program P ′ def= avg = (h1 + h2 + . . . + hn)/n,
we obtain the following closure:

φ =
{ { 〈h1, . . . , hn〉

∣∣h1 + . . . + hn = x
} ∣∣x ∈ Z

} ∪ {Z, ∅}

which models exactly the declassified property (being n a known constant).
2. Consider the program

P
def=
[

h1 := h1; h2 := h1; . . . hn := h1;
avg := declassify((h1 + h2 + . . . + hn)/n)

This program does not satisfy delimited release [21], and if we consider ANI
and we derive the maximal amount of information disclosed in the program
without the declassify operation, we obtain:

φ =
{ { 〈h, k2, . . . , kn〉

∣∣∀i.ki ∈ VH
} ∣∣h ∈ Z

} ∪ {Z, ∅}

namely the maximal amount of information disclosed is the identity on the
first private input. Hence the program is not secure, since φ does not model
the information explicitly declassified, e.g., 〈1, 0, . . . , 0〉 ≈e 〈0, 1, . . . , 0〉 while
φ(〈1, 0, . . . , 0〉) �= φ(〈0, 1, . . . , 0〉).

3. Let P
def= if declassify(h ≥ k) then (h := h − k; l := l + k) else nil. This

program does satisfy delimited release [21]. Consider now abstract non-
interference, the maximal information disclosed, for each public input is:

Π(id, id)|k = {{ h
∣∣h ≥ k

}
,
{

h
∣∣h < k

}
, Z, ∅}
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Therefore, if we consider the notion of abstract non-interference in Eq. 1,
we have that the program is secure, but if we suppose that the attacker
can control the public input, or can observe computations corresponding
to different public inputs, then we have to compute the maximal amount
of information disclosed, that in this case is φ = id. Namely, the program
cannot be made secure, unless we declassify the value of private data. For
these reasons, when we consider the program under an attack that can change
the value of k during the computation, as happens in the following program
[21], then it does no more satisfy delimited release.

P
def=

⎡
⎢⎢⎢⎢⎣

l := 0;
while n ≥ 0 do

k := 2n+1;
if declassify(h ≥ k) then (h := h− k; l := l + k) else nil;
n := n− 1;

4. Consider the program

P
def=
[
h := h mod 2;
if declassify(h = 0) then (l := 0; h := 0) else (l := 1; h := 1);

This program does not satisfy delimited release [21]. The maximal amount
of information disclosed in ANI is

φ = {{ h
∣∣h mod 2 = 0

}
,
{

h
∣∣h mod 2 = 1

}
, Z, ∅} ≡ Par

The program is not secure, since the amount of information declassified is
less than the maximal amount of information released, e.g., 〈2, l〉 ≈e 〈3, l〉
(for each l) while φ(2) �= φ(3), i.e, 〈2, l〉 �≈φ 〈3, l〉. The secure program is [21]:
if declassify(h mod 2) then (l := 0; h := 0) else (l := 1; h := 1).

These examples show that delimited release captures a notion of non-interference
which is weaker than declassified ANI, in the sense that it corresponds to a notion
of non-interference (Eq. 1) that holds only in presence of passive attackers unable
to collect results due to different public inputs.

5.3 Abstract Non-interference vs Relaxed Non-interference

The notion of delimited release for λ-calculus is relaxed non-interference [17].
In this notion a λ-term t, cleaned from the security labels, is secure when it is
equivalent to, i.e., can be rewritten as f(n1σ1) . . . (nkσk), where f is a λ-term
without any secret variable, σi are all secret variables and ni are downgrading
policies (λ-terms) for σi such that, for each i, niσi is a public information on
σi. The term f(n1σ1) . . . (nkσk) satisfies non-interference since, when we fix the
public input, included all the niσi, we cannot observe any difference in the
public output, allowing the confidential information to be leaked in a controlled
way, i.e., controlled by the policies ni. Unfortunately, this definition has some
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limitations, in particular, even if the authors do not prove that this is the only
failure situation, they note that this notion fails in presence of, for example, an
exponentially long time attack. However, this failure case is due to the same
problems arisen for Eq. 1. The interesting aspect of this paper is that they can
derive, from the program, the right downgrading policy that makes the program
secure. We show in the following example that this corresponds precisely to the
maximal amount of information disclosed for a fixed input [9]. Note that, even if
at a glance relaxed non-interference could seem to be a declassification more via
blocking than via allowing, this is not true since declassification via blocking is
characterized by checking non-interference for the semantics collecting the results
for all the private inputs that have the same property. Instead, declassification via
allowing is characterized by checking non-interference on the concrete semantics
but only for those private inputs with a fixed property. This is exactly what
happens in relaxed non-interference since the inputs niσi are considered public
(even if the σi’s are private), and therefore fixed, hence only the σi’s that give
the same result niσi are considered.

Example 4. Consider the program P [17] with sec, x, y : H, and in, out : L:

P
def=
[

x := hash(sec); y := x mod 264;
if y = in then out := 1 else out := 0;

where hash is a function. The downgrading policy for sec in the corresponding λ-
program, is λsec.λin.(hash(sec) mod 264) = in [17]. Consider now the maximal
amount of information disclosed for each public input value in:

Π(id, id)in =
{ {

sec
∣∣ �P �(sec, in)out = k

} ∣∣k ∈ {0, 1} }
=
{{

sec
∣∣ (hash(sec) mod 264) = in

}
,{

sec
∣∣ (hash(sec) mod 264) �= in

} }

where �P �(sec, in)out is the value resulting in the variable out, when the in-
puts are sec and in. Note that the closure φin

def= Π(id, id)in ∪ {*,⊥} corre-
sponds, to the downgrading policy above. Moreover, in ANI we can derive the
maximal amount of information disclosed, independently of the public input
φ =



in∈VL Π(id, id)in, making the program also robust in presence of active

attackers.

Note that also relaxed non-interference inherits the problems expressed for Eq. 1,
since it depends on the particular fixed public input. This means that relaxed
non-interference requires the attacker not to be able to observe computations
due to different public inputs and to control the public input.

6 Discussion

In [24] the authors provide a road map for classifying all the different approaches
to declassification, where declassification means weakening non-interference.
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Table 3. Outline

Who PER model ≡ [Id]P (Id)
S |= SP(≈) ≡ |=〈|P |〉 [ρ≈]S(ρ≈)

What (via Allowing) Selective Dependency ≡ (Id)P (φ ⇒ Id)
Delimited Release ≡ ∀l ∈ VL. (Id)P (πl ⇒ Id)

Relaxed Non-interference ≡ ∀l ∈ VL. (Id)P (πl ⇒ Id)

What (via Blocking) (η)P (φ �[]ρ)

They distinguish among four categories, depending on what is released, who con-
trols the information released, where the information is released and when the
information is released. They introduce abstract non-interference as a particular
case of the PER model of information, while in [14] it is proved that, vice versa,
the PER model can be seen as a particular case of abstract non-interference.
Moreover, abstract non-interference is only in the what classification [24], since
only its partial release aspect is considered, but as we show in this paper, there
is also a who function that can be treated in terms of abstract non-interference,
which is made even more evident by the relation existing between abstract non-
interference analysis and robust declassification.

In this paper, we show that our point of view is quite different, in particular,
as regards the who and what distinction. Hence, for us the who class captures all
the weakenings of non-interference where the notion is weakened by modeling the
power of who is observing. For this reason, in this class we put the PER model
[23], the security policy for robust declassification [26], abstract non-interference
[9], and the complexity-based approaches [8,16]. While the what class contains all
the weakenings consisting in modeling what can or cannot flow, independently
of who controls information release, and therefore it contains selective depen-
dency [4], enforced robust declassification [19], abstract non-interference [9], de-
limited release [21], relaxed non-interference [17], and information theory-based
approaches [3,18]. Moreover, we explained the two different aspects of the what
class (here called declassification), one corresponds to fixing what can flow, and
the other to fixing what should not flow, and we show that both can be modeled
in abstract non-interference, while delimited release and relaxed non-interference
can only fix what is allowed to flow. Finally, since abstract non-interference is
in both the classes, we can study the relation between these two different ways
of weakening non-interference, and indeed in [11] the authors proved that the
derivation of what flows and the derivation of who can observe, is formalized in
terms of a Galois connection between the two constructors introduced in [9]. As
future work, in the same spirit of [11], we would like to understand the relation
existing between declassification via allowing and declassification via blocking, in
order, for example to derive the information to block from the maximal amount
of information disclosed, and vice versa.

In Table 3 we summarize the comparisons made in this paper. In particu-
lar we use the notation ≡ for saying that two notions characterize the same
end-to-end security policy, and Id corresponds to the identity relation/closure.
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