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Abstract. This paper shows that attribute-value pair blocks, used for
many years in rule induction, may be used as well for computing indis-
cernibility relations for completely specified decision tables. Much more
importantly, for incompletely specified decision tables, i.e., for data with
missing attribute values, the same idea of attribute-value pair blocks
is a convenient tool to compute characteristic sets, a generalization of
equivalence classes of the indiscernibility relation, and also character-
istic relations, a generalization of the indiscernibility relation. For in-
completely specified decision tables there are three different ways lower
and upper approximations may be defined: singleton, subset and con-
cept. Finally, it is shown that, for a given incomplete data set, the set of
all characteristic relations for the set of all congruent decision tables is
a lattice.

1 Introduction

An idea of an attribute-value pair block, used for many years in rule induction
algorithms such as LEM2 [4], may be applied not only for computing indiscerni-
bility relations for completely specified decision tables but also for computing
characteristic relations for incompletely specified decision tables. A characteristic
relation is a generalization of the indiscernibility relation.

Using attribute-value pair blocks for completely specified decision tables,
equivalence classes of the indiscernibility relation are computed first, then the
indiscernibility relation is defined from such equivalence classes. Similarly, for
incompletely specified decision tables, attribute-value pair blocks, defined in a
slightly modified way, are used to compute characteristic sets, then characteristic
relations are computed from these sets.

Decision tables are incomplete mainly for two reasons. First, an attribute
value is lost, i. e., it was recorded but currently is unavailable. Second, the
original value was irrelevant and as such not recorded and the case was classified
on the basis of remaining attribute values. Such missing attribute values will be
called ”do not care” conditions.
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Initially, decision tables with all missing attribute values that are lost were
studied, within rough set theory, in [8], where two algorithms for rule induc-
tion from such data were presented. This approach was studied later, see, e.g.,
[15] and [16] where the indiscernibility relation was generalized to describe such
incompletely specified decision tables.

The first attempt to study ”do not care” conditions using rough set theory
was presented in [3], where a method for rule induction was introduced in which
missing attribute values were replaced by all values from the domain of the
attribute. ”Do not care” conditions were also studied later, see, e.g., [9] and [10],
where the indiscernibility relation was again generalized, this time to describe
incomplete decision tables with ”do not care” conditions.

In this paper we will assume that the same incomplete decision table may
have missing attribute values of both types—lost attribute values and ”do not
care” conditions.

For a given completely specified decision table and concept, the lower and
upper approximations of the concept are unique, though they may be defined in
a few different ways [11] and [12]. For an incomplete decision table, lower and
upper approximations of the concept may be defined in a few different ways,
but—in general—the approximations of different types differ. In this paper we
will discuss three different lower and upper approximations, called singleton, sub-
set, and concept approximations [5]. Singleton lower and upper approximations
were studied in [9], [10], [15] and [16]. As it was observed in [4], concept lower
and upper approximations should be used for data mining. Note that similar
three definitions of lower and upper approximations, though not for incomplete
decision tables, were studied in [2], [13], [17], [18] and [19].

The last topic of the paper is studying the class of congruent incomplete
decision tables, i.e., tables with the same set of all cases, the same attribute
set, the same decision, and the same corresponding specified attribute values.
Two congruent decision tables may differ only by missing attribute values (some
of them are lost attribute values the others are ”do not care” conditions). A
new idea of a signature, a vector of all missing attribute values, is introduced.
There is a one-to-one correspondence between signatures and congruent decision
tables. The paper includes also the Homomorphism Theorem showing that the
defined operation on characteristic relations is again a characteristic relation for
some congruent decision table. For a given incomplete decision table, the set of
all characteristic relations for the set of all congruent decision tables is a lattice.

A preliminary version of this paper was presented at the Fourth International
Conference on Rough Sets and Current Trends in Computing, Uppsala, Sweden,
June 15, 2004 [6].

2 Blocks of Attribute-Value Pairs, Characteristic Sets,
and Characteristic Relations

An example of a decision table is presented in Table 1. Rows of the decision table
represent cases, while columns represent variables. The set of all cases is denoted
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by U . In Table 1,U = {1, 2, ..., 7}. Independent variables are called attributes and a
dependent variable is called a decision and is denoted by d. The set of all attributes
will be denoted by A. In Table 1, A = {Age, Hypertension, Complications}. Any
decision table defines a function ρ that maps the direct product of U and A into the
set of all values. For example, in Table 1, ρ(1, Age) = 20..29. Function ρ describing
Table 1 is completely specified (total). A decision table with completely specified
function ρ will be called completely specified, or, simpler, complete.

Table 1. A complete decision table

Attributes Decision

Case Age Hypertension Complications Delivery

1 20..29 no none fullterm
2 20..29 yes obesity preterm
3 20..29 yes none preterm
4 20..29 no none fullterm
5 30..39 yes none fullterm
6 30..39 yes alcoholism preterm
7 40..50 no none fullterm

Rough set theory, see, e.g., [11] and [12], is based on the idea of an indis-
cernibility relation, defined for complete decision tables. Let B be a nonempty
subset of the set A of all attributes. The indiscernibility relation IND(B) is a
relation on U defined for x, y ∈ U as follows

(x, y) ∈ IND(B) if and only if ρ(x, a) = ρ(y, a) for all a ∈ B.

The indiscernibility relation IND(B) is an equivalence relation. Equivalence
classes of IND(B) are called elementary sets of B and are denoted by [x]B .
For example, for Table 1, elementary sets of IND(A) are {1, 4}, {2}, {3}, {5},
{6}, {7}. The indiscernibility relation IND(B) may be computed using the idea
of blocks of attribute-value pairs. Let a be an attribute, i.e., a ∈ A and let v
be a value of a for some case. For complete decision tables if t = (a, v) is an
attribute-value pair then a block of t, denoted [t], is a set of all cases from U
that for attribute a have value v. For Table 1,

[(Age, 20..29)] = {1, 2, 3, 4},
[(Age, 30..39)] = {5, 6},
[(Age, 40..50)] = {7},
[(Hypertension, no)] = {2, 3, 5, 6},
[(Hypertension, yes)] = {1, 4, 7},
[(Complications, none)] = {1, 3, 4, 5, 7},
[(Complications, obesity)] = {2}, and
[(Complications, alcoholism)] = {6}.
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The indiscernibility relation IND(B) is known when all elementary sets of
IND(B) are known. Such elementary sets of B are intersections of the corre-
sponding attribute-value pairs, i.e., for any case x ∈ U ,

[x]B = ∩{[(a, v)]|a ∈ B, ρ(x, a) = v}.

We will illustrate the idea how to compute elementary sets of B for Table 1
where B = A:

[1]A = [4]A = [(Age, 20..29)]∩ [(Hypertension, no)]∩ [(Complications, none)] =
{1, 4},
[2]A = [(Age, 20..29)]∩[(Hypertension, yes)]∩[(Complications, obesity)] = {2},
[3]A = [(Age, 20..29)] ∩ [(Hypertension, yes)] ∩ [(Complications, none)] = {3},
[5]A = [(Age, 30..39)] ∩ [(Hypertension, yes)] ∩ [(Complications, none)] = {5},
[6]A = [(Age, 30..39)]∩[(Hypertension, yes)]∩[(Complications, alcohol)] = {6},
and
[7]A = [(Age, 40..50)] ∩ [(Hypertension, no)] ∩ [(Complications, none)] = {7}.

A decision table with an incompletely specified (partial) function ρ will be
called incompletely specified, or incomplete. For the rest of the paper we will
assume that all decision values are specified, i.e., they are not missing. Also,
we will assume that all missing attribute values are denoted either by ”?” or
by ”*”, lost values will be denoted by ”?”, ”do not care” conditions will be
denoted by ”*”. Additionally, we will assume that for each case at least one
attribute value is specified. Incomplete decision tables are described by charac-
teristic relations instead of indiscernibility relations. Also, elementary sets are
replaced by characteristic sets. An example of an incomplete table is presented
in Table 2.

Table 2. An incomplete decision table

Attributes Decision

Case Age Hypertension Complications Delivery

1 ? * none fullterm
2 20..29 yes obesity preterm
3 20..29 yes none preterm
4 20..29 no none fullterm
5 30..39 yes ? fullterm
6 * yes alcoholism preterm
7 40..50 no ? fullterm

For incomplete decision tables the definition of a block of an attribute-value
pair must be modified. If for an attribute a there exists a case x such that
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ρ(x, a) = ?, i.e., the corresponding value is lost, then the case x should not be
included in any block [(a, v)] for all values v of attribute a. If for an attribute
a there exists a case x such that the corresponding value is a ”do not care”
condition, i.e., ρ(x, a) = ∗, then the corresponding case x should be included in
all blocks [(a, v)] for every possible value v of attribute a. This modification of the
definition of the block of attribute-value pair is consistent with the interpretation
of missing attribute values, lost and ”do not care” condition. Thus, for Table 2

[(Age, 20..29)] = {2, 3, 4, 6},
[(Age, 30..39)] = {5, 6},
[(Age, 40..50)] = {6, 7},
[(Hypertension, no)] = {1, 4, 7},
[(Hypertension, yes)] = {1, 2, 3, 5, 6},
[(Complications, none)] = {1, 3, 4},
[(Complications, obesity)] = {2},
[(Complications, alcoholism)] = {6}.

We define a characteristic set KB(x) as the intersection of blocks of attribute-
value pairs (a, v) for all attributes a from B for which ρ(x, a) is specified and
ρ(x, a) = v. For Table 2 and B = A,

KA(1) = {1, 3, 4},
KA(2) = {2, 3, 4, 6} ∩ {1, 2, 3, 5, 6} ∩ {2} = {2},
KA(3) = {2, 3, 4, 6} ∩ {1, 2, 3, 5, 6} ∩ {1, 3, 4} = {3},
KA(4) = {2, 3, 4, 6} ∩ {1, 4, 7} ∩ {1, 3, 4} = {4},
KA(5) = {5, 6} ∩ {1, 2, 3, 5, 6} = {5, 6},
KA(6) = {1, 2, 3, 5, 6} ∩ {6} = {6}, and
KA(7) = {6, 7} ∩ {1, 4, 7} = {7}.

The characteristic set KB(x) may be interpreted as the smallest set of cases
that are indistinguishable from x using all attributes from B and using a given
interpretation of missing attribute values. Thus, KA(x) is the set of all cases that
cannot be distinguished from x using all attributes. The characteristic relation
R(B) is a relation on U defined for x, y ∈ U as follows:

(x, y) ∈ R(B) if and only if y ∈ KB(x).

We say that R(B) is implied by its characteristic sets KB(x), x ∈ U . The
characteristic relation R(B) is reflexive but—in general—does not need to be
symmetric or transitive. Also, the characteristic relation R(B) is known if we
know characteristic sets K(x) for all x ∈ U . In our example, R(A) = {(1, 1),
(1, 3), (1, 4), (2, 2), (3, 3), (4, 4), (5, 5), (5, 6), (6, 6), (7, 7)}. The most
convenient way to define the characteristic relation is through the characteristic
sets. Nevertheless, the characteristic relation R(B) may be defined independently
of characteristic sets in the following way:

(x, y) ∈ R(B) if and only if ρ(x, a) = ρ(y, a) or ρ(x, a) = ∗ orρ(y, a) = ∗ for

all a ∈ B such that ρ(x, a) �= ?.
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3 Lower and Upper Approximations

For completely specified decision tables lower and upper approximations are
defined on the basis of the indiscernibility relation. Any finite union of elementary
sets, associated with B, will be called a B-definable set. Let X be any subset of
the set U of all cases. The set X is called a concept and is usually defined as
the set of all cases defined by a specific value of the decision. In general, X is
not a B-definable set. However, set X may be approximated by two B-definable
sets, the first one is called a B-lower approximation of X , denoted by BX and
defined as follows

{x ∈ U |[x]B ⊆ X}.

The second set is called a B-upper approximation of X, denoted by BX and
defined as follows

{x ∈ U |[x]B ∩ X �= ∅.

The above shown way of computing lower and upper approximations, by
constructing these approximations from singletons x, will be called the first
method. The B-lower approximation of X is the greatest B-definable set, con-
tained in X . The B-upper approximation of X is the smallest B-definable set
containing X .

As it was observed in [12], for complete decision tables we may use a second
method to define the B-lower approximation of X , by the following formula

∪{[x]B|x ∈ U, [x]B ⊆ X},

and the B-upper approximation of x may de defined, using the second method,
by

∪{[x]B |x ∈ U, [x]B ∩ X �= ∅).

For incompletely specified decision tables lower and upper approximations
may be defined in a few different ways. First, the definition of definability should
be modified. Any finite union of characteristic sets of B is called a B-definable
set. In this paper we suggest three different definitions of lower and upper ap-
proximations. Again, let X be a concept, let B be a subset of the set A of all
attributes, and let R(B) be the characteristic relation of the incomplete decision
table with characteristic sets K(x), where x ∈ U . Our first definition uses a
similar idea as in the previous articles on incompletely specified decision tables
[9], [10], [14], [15] and [16], i.e., lower and upper approximations are sets of sin-
gletons from the universe U satisfying some properties. Thus, lower and upper
approximations are defined by analogy with the above first method, by con-
structing both sets from singletons. We will call these approximations singleton.
A singleton B-lower approximation of X is defined as follows:

BX = {x ∈ U |KB(x) ⊆ X}.
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A singleton B-upper approximation of X is

BX = {x ∈ U |KB(x) ∩ X �= ∅}.

In our example of the decision table presented in Table 2 let us say that B = A.
Then the singleton A-lower and A-upper approximations of the two concepts:
{1, 4, 5, 7} and {2, 3, 6} are:

A{1, 4, 5, 7} = {4, 7},

A{2, 3, 6} = {2, 3, 6},

A{1, 4, 5, 7} = {1, 4, 5, 7},

A{2, 3, 6} = {1, 2, 3, 5, 6}.

Note that the set A{1, 4, 5, 7} = {1, 4, 5, 7} is not A-definable (this set can-
not be presented as a union of intersections of attribute-value pair blocks). The
problem is caused by case 5. This case appears twice in the list of all blocks of
attribute-value pairs, namely, in [(Age, 30..39)] and [(Hypertension, yes)]. How-
ever, both of these blocks contain also case 6. Hence any intersection of blocks
of attribute value pairs, containing case 5, must also contain case 6. Thus, using
intersection and union of blocks of attribute-value pairs we may construct the set
{1, 4, 5, 6, 7} but not the set {1, 4, 5, 7}. Therefore, singleton approximations
are, in general, not A-definable, and, as such, are not useful for rule induction.

The second method of defining lower and upper approximations for complete
decision tables uses another idea: lower and upper approximations are unions
of elementary sets, subsets of U . Therefore we may define lower and upper ap-
proximations for incomplete decision tables by analogy with the second method,
using characteristic sets instead of elementary sets. There are two ways to do
this. Using the first way, a subset B-lower approximation of X is defined as
follows:

BX = ∪{KB(x)|x ∈ U, KB(x) ⊆ X}.

A subset B-upper approximation of X is

BX = ∪{KB(x)|x ∈ U, KB(x) ∩ X �= ∅}.

Since any characteristic relation R(B) is reflexive, for any concept X , single-
ton B-lower and B-upper approximations of X are subsets of the subset B-lower
and B-upper approximations of X , respectively. For the same decision table, pre-
sented in Table 2, the subset A-lower and A-upper approximations are

A{1, 4, 5, 7} = {4, 7},

A{2, 3, 6} = {2, 3, 6},

A{1, 4, 5, 7} = {1, 3, 4, 5, 6, 7},

A{2, 3, 6} = {1, 2, 3, 4, 5, 6}.
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The second possibility is to modify the subset definition of lower and up-
per approximation by replacing the universe U from the subset definition by a
concept X . A concept B-lower approximation of the concept X is defined as
follows:

BX = ∪{KB(x)|x ∈ X, KB(x) ⊆ X}.

Obviously, the subset B-lower approximation of X is the same set as the
concept B-lower approximation of X . A concept B-upper approximation of the
concept X is defined as follows:

BX = ∪{KB(x)|x ∈ X, KB(x) ∩ X �= ∅} = ∪{KB(x)|x ∈ X}.

The concept B-upper approximation of X is a subset of the subset B-upper
approximation of X . Thus, concept upper approximations are more useful for
rule induction than subset upper approximations. For the decision presented in
Table 2, the concept A-lower and A-upper approximations are

A{1, 4, 5, 7} = {4, 7},

A{2, 3, 6} = {2, 3, 6},

A{1, 4, 5, 7} = {1, 3, 4, 5, 6, 7},

A{2, 3, 6} = {2, 3, 6}.

Note that for complete decision tables, all three definitions of lower approxi-
mations, singleton, subset and concept, coalesce to the same definition. Also, for
complete decision tables, all three definitions of upper approximations coalesce
to the same definition. This is not true for incomplete decision tables, as our
example shows.

4 Congruent Decision Tables

In this section, for simplicity, all characteristic relations will be defined for the
entire set A of attributes instead of its subset B. In addition, and the charac-
teristic relation will be denoted by R instead of R(A). Finally, in characteristic
sets KA(x), the subscript A will be omitted.

Two decision tables with the same set U of all cases, the same attribute set
A, the same decision d, and the same specified attribute values will be called
congruent. Thus, two congruent decision tables may differ only by missing at-
tribute values * and ?. Obviously, there is 2n congruent decision tables, where n
is the total number of all missing attribute values in a decision table.

To every incomplete decision table we will assign a signature of missing at-
tribute values, a vector (p1, p2, ..., pn), where pi is equal to either ? or *, the value
taken from the incomplete decision table; i = 1, 2, ..., n, by scanning the decision
table, row after row, starting from the top row, from left to right. Thus every
consecutive missing attribute value should be placed as a component of the sig-
nature, where p1 is the first missing attribute value, identified during scanning,
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and pn is the last one. For Table 2, the signature is (?, *, ?, *, ?). In the set of
all congruent decision tables, a signature uniquely identifies the table and vice
versa. On the other hand, congruent decision tables with different signatures
may have the same characteristic relations. For example, tables congruent with
Table 2, with signatures (?, *, *, *, *) and (*, ?, *, *, *), have the same character-
istic relations. Two congruent decision tables that have the same characteristic
relations will be called indistinguishable.

Let D1 and D2 be two congruent decision tables, let R1 and R2 be their
characteristic relations, and let K1(x) and K2(x) be their characteristic sets for
some x ∈ U , respectively. We say that R1 ≤ R2 if and only if K1(x) ⊆ K2(x) for
all x ∈ U . For two congruent decision tables D1 and D2 we define a characteristic
relation R = R1 · R2 as implied by characteristic sets K1(x) ∩ K2(x). For two
signatures p and q, p · q is defined as a signature r with ri(x) = ∗ if and only if
pi(x) = ∗ and qi(x) = ∗, otherwise ri(x) = ?, i = 1, 2, ..., n.

Let A = {a1, a2, ..., ak}. Additionally, let us define, for x ∈ U and a ∈ A, the
set [(a, ρ(x, a))]+ in the following way: [(a, ρ(x, a))]+ = [(a, ρ(x, a))] if ρ(x, a) �= ∗
and ρ(x, a) �= ? and [(a, ρ(x, a))]+ = U otherwise.

Lemma. For x ∈ U , the characteristic set K(x) = ∩k
i=1[(ai, ρ(x, ai))]+.

Proof. In the definition of K(x), if ρ(x, a) = ∗ or ρ(x, a) = ?, the corresponding
block [(a, ρ(x, a))] is ignored. Additionally, by our assumption, for every x ∈ U
there exists an attribute a ∈ A such that ρ(x, a) �= ∗ and ρ(x, a) �= ?.

Let D be an incomplete decision table and let p be the signature of D. Let
ψ be a function that maps a signature p into a characteristic relation R of D.

Homomorphism Theorem. Let p and q be two signatures of congruent deci-
sion tables. Then ψ(p · q) = ψ(p) · ψ(q), i.e., ψ is a homomorphism.

Proof. Let D1, D2 be two congruent decision tables with functions ρ1 and
ρ2, signatures p and q, and characteristic relations R1, R2, respectively, where
ψ(p) = R1 and ψ(q) = R2. Let D be a congruent decision table with function ρ
and signature p · q and let ψ(p · q) = R. Due to Lemma, for every x ∈ U

K1(x) · K2(x) = (∩k
i=1[(ai, ρ1(x, ai))]+) ∩ (∩k

i=1[(ai, ρ2(x, ai))]+) =
∩k

i=1[(ai, ρ1(x, ai))]+ ∩ [(ai, ρ2(x, ai))]+

If ρj(x, ai) �= ∗ and ρj(x, ai) �= ? then [(ai, ρj(x, ai))] contains y ∈ U if and
only if ρj(y, ai) = ∗, j = 1, 2. Moreover, [(ai, ρ(x, ai))]+ contains y if and only
if ρ1(y, ai) = ∗ and ρ2(y, ai) = ∗. Thus, K1(x) · K2(x) = ∩k

i=1[(ai, ρ1(x, ai))]+ =
K(x).

Thus, ψ(p) · ψ(q) is the characteristic relation of a congruent decision table
with the signature p · q. For the set L of all characteristic relations for the
set of all congruent decision tables, the operation · on relations is idempotent,
commutative, and associative, therefore, L is a semilattice [1], p. 9. Moreover,
L has a universal upper bound ψ(∗, ∗, ..., ∗) and its length is finite, so L is
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a lattice, see [1], p. 23. The second lattice operation, resembling addition, is
defined directly from the diagram of a semilattice.

Let us define subset E of the set of all congruent decision tables as the set of
tables with exactly one missing attribute value ”?” and all remaining attribute
values equal to ”*”. Let G be the set of all characteristic relations associated
with the set E. The lattice L can be generated by G, i.e., every element of L
can be expressed as ψ(∗, ∗, ...∗) or as a product of some elements from G.

5 Conclusions

An attribute-value pair block is a very useful tool not only for dealing with
completely specified decision tables but, much more importantly, also for in-
completely specified decision tables. For completely specified decision tables
attribute-value pair blocks provide for easy computation of equivalence classes
of the indiscernibility relation. Similarly, for incompletely specified decision ta-
bles, attribute-value pair blocks make possible, by equally simple computations,
determining characteristic sets and then, if necessary, characteristic relations.

For a given concept of the incompletely specified decision table, lower and up-
per approximations can be easily computed from characteristic sets—knowledge
of characteristic relations is not required. Note that for incomplete decision tables
there are three different approximations possible: singleton, subset and concept.
The concept approximations are the best fit for the intuitive expectations for
lower and upper approximations. Our last observation is that for a given in-
complete decision table, the set of all characteristic relations for the set of all
congruent decision tables is a lattice.
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