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Preface

Volume IV of the Transactions on Rough Sets (TRS) introduces a number of
new advances in the theory and application of rough sets. Rough sets and ap-
proximation spaces were introduced more than 30 years ago by Zdzis�law Pawlak.
These advances have profound implications in a number of research areas such
as the foundations of rough sets, approximate reasoning, artificial intelligence,
bioinformatics, computational intelligence, cognitive science, intelligent systems,
data mining, machine intelligence, and security. In addition, it is evident from the
papers included in this volume that the foundations and applications of rough
sets is a very active research area worldwide. A total of 16 researchers from 7
countries are represented in this volume, namely, Canada, India, Norway, Swe-
den, Poland, Russia and the United States of America. Evidence of the vigor,
breadth and depth of research in the theory and applications of rough sets can
be found in the 10 articles in this volume.

Prof. Pawlak has contributed a treatise on the philosophical underpinnings
of rough sets. In this treatise, observations are made about the Cantor notion
of a set, antinomies arising from Cantor sets, the problem of vagueness (espe-
cially, vague (imprecise) concepts), fuzzy sets, rough sets, fuzzy vs. rough sets
as well as logic and rough sets. Among the many vistas and research directions
suggested by Prof. Pawlak, one of the most fruitful concerns the model for a
rough membership function, which was incarnated in many different forms since
its introduction by Pawlak and Skowron in 1994. Recall, here, that Prof. Pawlak
introduced approximation spaces in the context of rough sets during the early
1980s. Later, the model for rough membership provided a basis for a model for
rough inclusion in generalized approximation spaces introduced by Skowron and
Stepaniuk during the early 1990s.

In addition, this volume includes seven papers that explore the theory of
rough sets, and two papers that present new applications of rough sets. New
developments in rough set theory are represented by papers that investigate a
framework for reasoning with rough sets utilizing extended logic programs (Aida
Vitória), optimization of decision trees (Igor V. Chikalov, Mikhail Ju. Moshkov,
and Maria S. Zelentsova), fuzzy set and rough set approaches to dealing with
missing data (Dan Li, Jitender Deogun, William Spaulding, and Bill Shuart),
generalization of the indiscernibility relation as an aid to dealing with incom-
pletely specified decision tables (Jerzy W. Grzyma�la-Busse), deterministic and
non-deterministic decision tree complexity in the context of both finite and in-
finite information systems (Mikhail Ju. Moshkov), analogy-based reasoning in
classifier construction (Arkadiusz Wojna), and incremental learning and evalu-
ation of structures of rough decision tables (Wojciech Ziarko). In addition, two
papers in this volume introduce new applications of rough sets, namely, super-
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vised learning in the gene ontology (Herman Midelfart) and the design of an
intrusion detection system (Sanjay Rawat, V.P. Gulati, and Arun K. Pujari).

This issue of the TRS was made possible thanks to the laudable efforts of a
great many generous persons and organizations. We express our thanks to the
many anonymous reviewers for their heroic efforts in providing detailed reviews
of the articles in this issue of the TRS. The editors and authors of this volume
also extend an expression of gratitude to Alfred Hofmann, Ursula Barth, Chris-
tine Günther and the LNCS staff at Springer for their support in making this
volume of the TRS possible. In addition, the editors of this volume extend their
thanks to Marcin Szczuka for his consummate skill and care in the compilation
of this volume. The editors of this volume have been supported by the Ministry
for Scientific Research and Information Technology of the Republic of Poland,
Research Grant No. 3T11C00226, and the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) Research Grant 185986.

July 2005 James F. Peters
Andrzej Skowron
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A Treatise on Rough Sets

Zdzis�law Pawlak

1 Institute for Theoretical and Applied Informatics,
Polish Academy of Sciences, Ba�ltycka 5, 44-100 Gliwice, Poland

2 Warsaw School of Information Technology, Newelska 6, 01-447 Warsaw, Poland
zpw@ii.pw.edu.pl

The central problem of our age is how to act decisively in the absence of certainty.
Bertrand Russell (1950). An Inquiry into Meaning and Truth.

George Allen and Unwin, London;
W.W. Norton, New York

Abstract. This article presents some general remarks on rough sets
and their place in general picture of research on vagueness and uncer-
tainty - concepts of utmost interest, for many years, for philosophers,
mathematicians, logicians and recently also for computer scientists and
engineers particularly those working in such areas as AI, computational
intelligence, intelligent systems, cognitive science, data mining and ma-
chine learning. Thus this article is intended to present some philosophical
observations rather than to consider technical details or applications of
rough set theory. Therefore we also refrain from presentation of many
interesting applications and some generalizations of the theory.

Keywords: Sets, fuzzy sets, rough sets, antinomies, vagueness.

1 Introduction

In this article we are going to give some general remarks on rough sets and their
place in general picture of research on vagueness and uncertainty - concepts of
utmost interest, for many years, for philosophers, mathematicians, logicians and
recently also for computer scientists and engineers particularly those working in
such areas as AI, computational intelligence, intelligent systems, cognitive sci-
ence, data mining and machine learning. Thus this article is intended to present
some philosophical observations rather than to consider technical details or ap-
plications of rough set theory. Therefore we also refrain from presentation of
many interesting applications and some generalizations of the theory.

We start our consideration in Section 2 with general comments on classical
notion of a set, formulated by Georg Cantor [8] over one hundred years ago.
Next, we discuss briefly in Section 3 a source of basic discomfort of classical set
theory, namely the antinomies, which shocked the foundation of mathematics

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets IV, LNCS 3700, pp. 1–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 Z. Pawlak

and the ways out of this embarrassment. Further, the notion of vagueness and
its role in mathematics, as formulated by Gottlob Frege [12] are briefly discussed
in Section 4. The basic notions concerning fuzzy sets and rough sets are presented
in Sections 5 and 6, respectively. The contrast between fuzzy membership [51]
and rough membership [31] is briefly considered in Section 7. Than we discuss
the notions of fuzzy set [51] and rough set [28,30] as certain formalizations of
vagueness. A brief comparison of both notions close this section.

We conclude our deliberation in Section 8 with brief discussion of deductive,
inductive and common sense reasoning and the role of rough sets has played in
these kinds of inference.

2 Sets

The notion of a set is the basic one of mathematics. All mathematical structures
refer to it.

The definition of this notion and the creation of set theory are due to German
mathematician Georg Cantor (1845-1918), who laid the foundations of contem-
porary set theory about 100 years ago. The original, intuitive definition of the
Cantor’s notion of the set [8] is given below:

“Unter einer “Manningfaltigkeit” oder “Menge” verstehe ich nämlich allge-
mein jedes Viele, welches sich als Eines denken lässt, d.h. jeden Inbegriff bes-
timmter Elemente, welcher durch ein Gesetz zu einem Ganzen verbunden werden
kann.”

Thus according to Cantor a set is a collection of any objects, which according
to some law can be considered as a whole. As one can see the notion is very
intuitive and simple.

All mathematical objects, e.g., relations, functions, numbers, etc. are some
kind of sets. In fact set theory is needed in mathematics to provide rigor.

The notion of a set is not only fundamental for the whole mathematics but
it also plays an important role in natural language. We often speak about sets
(collections) of various objects of interest such as, collection of books, paintings
and people.

The intuitive meaning of a set according to some dictionaries is the following:

“A number of things of the same kind that belong or are used together.”
Webster’s Dictionary

“Number of things of the same kind, that belong together because they are
similar or complementary to each other.”

The Oxford English Dictionary

Thus a set is a collection of things which are somehow related to each other but
the nature of this relationship is not specified in these definitions.

In fact, these definitions are due to the original definition given by Cantor.
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3 Antinomies

Well! I’have seen often a cat without a grin, thought Alice; but a grin without a cat!
Lewis Carroll (1994). Alice’s Adventures in Wonderland.

Penguin Books, London

In 1903 the renown English philosopher Bertrand Russell (1872-1970) observed
[37] that the intuitive notion of a set given by Cantor leads to logical antinomies
(contradictions), i.e., set theory was contradictory (there also exist other kinds
of antinomies - we refrain from considering them here). A logical antinomy, for
the sake of simplicity called antinomy in the remaining part of this paper, arises
when after carrying on a correct logical reasoning we come to a contradiction,
i.e., to the propositions A and non-A, which is not allowed in logic.

As an example let us discuss briefly the so-called Russell’s antinomy. Consider
the set X containing all the sets Y , which are not the elements of themselves. If
we assume that X is its own element then X , by definition, cannot be its own
element; while if we assume that X is not its own element then, according to the
definition of the set X , it must be its own element. Thus while applying each
assumption we obtain contradiction.

The above antinomy is often illustrated with the example of a barber, who
got the instruction, that he could only shave all the men who did not shave
themselves. Then a question arises if he may shave himself or not. If we assume
that the barber shaves himself then, according to the instruction, he may not
shave himself. But when we assume that he does not shave himself then, ac-
cording to the instruction, he should shave himself. Thus we have run across an
antinomy.

Another well known antinomy, called the power-set antinomy, goes as fol-
lows: consider (infinite) set X of all sets. Thus X is the greatest set. Let Y
denote the set of all subsets of X . Obviously Y is greater then X , because the
cardinality of the family of all subsets of a given set is always greater the car-
dinality of the set of all its elements. For example, if X = {1, 2, 3} then Y =
{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, where ∅ denotes the empty set.
Hence, X is not the greatest set as assumed and we have arrived at contradiction.

Antinomies show that a set cannot be a collection of arbitrary elements, as
was stipulated by Cantor.

One could think that antinomies are ingenuous logical play, but it is not so.
They question the essence of logical reasoning. That is why there have been
attempts to “repair” Cantor’s theory for over 100 years or to substitute another
set theory for it but the results have not been good so far. Is then all mathematics
based on doubtful foundations?

As a remedy for this defect several improvements of set theory have been
proposed. For example,

– Axiomatic set theory (Zermello and Fraenkel, 1904);
– Theory of types (Whitehead and Russell, 1910);
– Theory of classes (v. Neumann, 1920).
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All of these improvements consist in restrictions put on objects which can form
a set. Such restrictions are expressed by properly chosen axioms, which say how
a set can be built. They are called, in contrast to Cantors’ intuitive set theory,
axiomatic set theories.

Instead of improvements of Cantors’ set theory by its axiomatization, some
mathematicians proposed escape from classical set theory by creating a com-
pletely new idea of a set, which would free the theory from antinomies. Some of
them are listed below.

– Mereology (Leśniewski, 1915, [19]);
– Alternative set theory (Vopenka, 1970, [49]);
– “Penumbral” set theory (Apostoli and Kanada, 1999, [1]).

No doubt the most interesting proposal was given by Polish logician Stanis�law
Leśniewski, who proposed instead of membership relation between elements and
sets, employed in classical set theory, the relation of “being a part”. In his set
theory, called mereology, this relation is a fundamental one [19].

None of the three mentioned above “new” set theories were accepted by math-
ematicians. However, Leniewski’s mereology attracted some attention of philoso-
phers and recently also researchers in computer science (see, e.g., [9,33,43]).

The problem of finding an alternative to classical set theory has failed to be
solved until now.

Basic concept of mathematics, the set, leads to antinomies, i.e., it is contra-
dictory. How is it is then possible that mathematics is so successful and can be
applied almost everywhere – that bridges are not collapsing, air-planes are not
falling down and man has landed on the moon?

The deficiency of sets, mentioned above, has rather philosophical than prac-
tical meaning, since sets used practically in mathematics are free from the above
discussed faults. Antinomies are associated with very “artificial” sets constructed
in logic but not found in sets used in “everyday” mathematics. That is why we
can use mathematics safely.

4 Vagueness

Besides known and unknown what else is three?
Harold Pinter (1965). The Homecoming.

Methuen, London

Another issue discussed in connection with the notion of a set is vagueness.
Mathematics requires that all mathematical notions (including set) must be
exact, otherwise precise reasoning would be impossible. However, philosophers
[17,18,36,38] and recently computer scientists [21,23,24,41] as well as other re-
searchers have become interested in vague (imprecise) concepts.

In classical set theory a set is uniquely determined by its elements. In other
words, this means that every element must be uniquely classified as belonging to
the set or not. That is to say the notion of a set is a crisp (precise) one. For example,
the set of odd numbers is crisp because every number is either odd or even.
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In contrast to odd numbers, the notion of a beautiful painting is vague,
because we are unable to classify uniquely all paintings into two classes: beautiful
and not beautiful. Some paintings cannot be decided whether they are beautiful
or not and thus they remain in the doubtful area. Thus beauty is not a precise
but a vague concept.

Almost all concepts we are using in natural language are vague. Therefore
common sense reasoning based on natural language must be based on vague con-
cepts and not on classical logic. This is why vagueness is important for philoso-
phers and recently also for computer scientists. Interesting discussion of this
issue can be found in [36].

The idea of vagueness can be traced back to ancient Greek philosophers
Eubulides (ca. 400BC) who first formulated so called sorites (Bald Man or Heap)
paradox. The paradox goes as follows: suppose a man has 100 000 hair on his
head. Removing on hair from his head surely cannot make him bald. Repeating
this step we arrive at the conclusion the a man without any hair is not bald.
Similar reasoning can be applied to a hip stones.

Vagueness is usually associated with the boundary region approach (i.e.,
existence of objects which cannot be uniquely classified relative to a set or its
complement) which was first formulated in 1893 by the father of modern logic,
German logician, Gottlob Frege (1848-1925). He wrote:

“Der Begrieff muss scharf begrenzt sein. Einem unscharf begrenzten Begriff
würde ein Bezirk ensprechen, der nicht überall ein scharfe Grentzlinie hätte,
sondern stellenweise gantz verschwimmend in die Umgebung übergine” [12].

Thus according to Frege:
“The concept must have a sharp boundary. To the concept without a sharp

boundary there would correspond an area that had not a sharp boundary-line
all around.”

It means mathematics must use crisp, not vague concepts, otherwise it would
be impossible to reason precisely. Summing up, vagueness is

– not allowed in mathematics;
– interesting for philosophy;
– necessary for computer science.

5 Fuzzy Sets

There is nothing new under the sun.
Ecclesiates 1:9

At the same time, independently of mathematicians’ and philosophers’ inves-
tigations, engineers became interested in the notion of a set. It turned out that
many practical problems could not be formulated and solved by means of clas-
sical Cantor’s notion of a set.

In 1965 Lotfi Zadeh, Professor of University of Berkely, proposed a different
notion of a set, in which elements can belong to a set to some extent and not
definitively, as it is in case of the classical set theory. This proposal turned out
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applicable in many domains and initiated extensive research in fuzzy set theory,
what became the name of Zadeh’s theory [43].

In his approach an element can belong to a set to a degree k (0 ≤ k ≤ 1),
in contrast to classical set theory, where an element must definitely belong or
not to a set. For example, in classical set theory one can say that someone is
definitely ill or healthy, whereas in the fuzzy set theory language we can say that
someone is ill (or healthy) at the 60 percent level (i.e., in degree 0.6).

Let us observe that the definition of fuzzy set involves more advanced math-
ematical concepts – real numbers and functions – whereas in classical set theory
the notion of a set is used as a fundamental notion of whole mathematics and
is used to derive any other mathematical concepts, e.g., numbers and functions.
Consequently fuzzy set theory cannot replace classical set theory, because, in
fact, the theory is needed to define fuzzy sets.

Fuzzy membership function has the following properties:

a) μU−X(x) = 1− μX(x) for any x ∈ U ;
b) μX∪Y (x) = max(μX(x), μY (x)) for any x ∈ U ;
c) μX∩Y (x) = min(μX(x), μY (x)) for any x ∈ U .

That means that the membership of an element to the union and intersection
of sets is uniquely determined by its membership to constituent sets. This is a
very nice property and allows very simple operations on fuzzy sets, which is a
very important feature both theoretically and practically.

Several generalizations of this basic approach to concept approximation are
presented in the literature (see, e.g., [14,42,44,45,50]).

Let us stress once more that classical set is a primitive notion and is de-
fined intuitively or axiomatically. Fuzzy sets are defined by employing the fuzzy
membership function, which involves advanced mathematical structures, num-
bers and functions. Thus it cannot play an analogous role in mathematics similar
to that played by the classical concept of a set, which is used to define numbers
and functions.

Fuzzy set theory can be perceived as new model of vagueness. The the-
ory and its applications developed very extensively over the past four decades
and attracted attention of engineers, logicians, mathematicians and philosophers
worldwide.

6 Rough Sets

Data! data! data!
Sir Artur Conan Doyle (1994). The Adventures of Sherlock Holmes.

Penguin Books, London

Rough set theory, proposed by the author in 1982 [28,30], is still another ap-
proach to vagueness.

Rough set theory expresses vagueness not by means of membership, but by
employing a boundary region of a set. If the boundary region of a set is empty
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it means that the set is crisp, otherwise the set is rough (inexact). A nonempty
boundary region of a set means that our knowledge about the set is not sufficient
to define the set precisely.

In a manner similar to fuzzy set theory, rough set theory it is not an alter-
native to classical set theory but it is embedded in it. Rough set theory can be
viewed as a specific implementation of Frege’s idea of vagueness, i.e., imprecision
in this approach is expressed by a boundary region of a set, and not by a partial
membership, as in fuzzy set theory.

The rough set concept can be defined quite generally by means of topological
operations, interior and closure, called approximations. At the onset of an intro-
duction to rough sets, it was observed that the key to the presented approach is
provided by the exact mathematical formulation of the concept of approximative
(rough) equality of sets in a given approximation space [28]. In [30], an approxi-
mation space is represented by the pair (U, R), where U is a universe of objects,
and R ⊆ U × U is an indiscernibility relation defined by an attribute set. The
relation R is an equivalence relation. Let [x]R denote an equivalence class of an el-
ement x ∈ U under the indiscernibility relation R, where [x]R = {y ∈ U | xRy}.

In this context, R-approximations of any set X ⊆ U are based on the exact
(crisp) containment of sets. Then set approximations are defined as follows:

• x ∈ U belongs with certainty to the R-lower approximation of X ⊆ U , if
[x]R ⊆ X .

• x ∈ U belongs with certainty to the complement set of X ⊆ U , if [x]R ⊆
U −X .

• x ∈ U belongs with certainty to the R-boundary region of X ⊆ U , if [x]R ∩
X �= � and [x]R ∩ (U −X) �= �.

Generalized approximation spaces were introduced in [42]. A generalized approx-
imation space is a system GAS = (U, I, ν) where

• U is a non-empty set of objects, and P(U) is the powerset of U ;
• I : U → P(U) is an uncertainty function such that x ∈ I(x) for any x ∈ U ;
• ν : P(U) x P(U) → [0, 1] denotes rough inclusion

The uncertainty function I defines for every object x a set of similarly defined
objects. In effect, I defines a neighborhood of every sample element x belonging
to the universe U (see, e.g., [32]). The rough inclusion function ν computes the
degree of overlap between two subsets of U. Let P(U) denote the powerset of U .
In general, rough inclusion ν : P(U) x P(U) → [0, 1] can be defined in terms of
the relationship between two sets, e.g., by

ν(X, Y ) =

{
|X∩Y |
|Y | , if Y �= ∅
1 , otherwise

for any X , Y ⊆ U .
From practical point of view it is better to define basic concepts of this theory

in terms of data. Therefore we will start our considerations from a data set called
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an information system. An information system is a data table containing rows
labeled by objects of interest, columns labeled by attributes and entries of the
table are attribute values. For example, a data table can describe a set of patients
in a hospital. The patients can be characterized by some attributes, like age, sex,
blood pressure, body temperature, etc. With every attribute a set of its values
is associated, e.g., values of the attribute age can be young, middle, and old.
Attribute values can be also numerical. In data analysis the basic problem we
are interested in is to find patterns in data, i.e., to find relationship between some
set of attributes, e.g., we might be interested whether blood pressure depends on
age and sex.

Let us describe this problem more precisely. Suppose we are given a finite,
non-empty set of objects U called the universe and a set of attributes A, de-
scribing objects of the universe in terms of attribute values. Let X be a subset
of U and B a subset of A. We want to characterize the set X in terms of at-
tributes B. To this end we will need the basic concepts of rough set theory given
below.

– The lower approximation of a set X with respect to B is the set of all objects,
which can be for certain classified as X using B (are certainly X in view of
B).

– The upper approximation of a set X with respect to B is the set of all objects
which can be possibly classified as X using B (are possibly X in view of B).

– The boundary region of a set X with respect to B is the set of all objects,
which can be classified neither as X nor as not-X using B.

Now we are ready to give the definition of rough sets.

– Set X is crisp (exact with respect to B), if the boundary region of X is
empty.

– Set X is rough (inexact with respect to B), if the boundary region of X is
nonempty.

Thus a set is rough (imprecise) if it has nonempty boundary region; otherwise
the set is crisp (precise). This is exactly the idea of vagueness proposed by
Frege.

Let us observe that the definition of rough sets refers to data (knowledge),
and is subjective, in contrast to the definition of classical sets, which is in some
sense an objective one.

The approximations and the boundary region can be defined more precisely.
To this end we need some additional notation.

Every subset of attributes B determines an equivalence relation on U . This
relation will be referred to as an indiscernibility relation. The equivalence class
determined by an element x and the set of attributes B will be denoted B(x).
The indiscernibility relation in a certain sense describes our lack of knowledge
about the universe. Equivalence classes of the indiscernibility relation, called
granules generated by the set of attributes B, represent an elementary portion
of knowledge we are able to perceive in terms of available data. Thus in view of
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the data we are unable, in general, to observe individual objects but we are forced
to reason only about the accessible granules of knowledge (see, e.g., [27,30,35].

Formal definitions of approximations and the boundary region are as follows:

– B-lower approximation of X

B∗(X) =
⋃

x∈U

{B(x) : B(x) ⊆ X};

– B-upper approximation of X

B∗(X) =
⋃

x∈U

{B(x) : B(x) ∩X �= ∅};

– B-boundary region of X

BNB(X) = B∗(X)−B∗(X).

As we can see from the definition approximations are expressed in terms of
granules of knowledge. The lower approximation of a set is union of all granules
determined by the set of attributes B which are entirely included in the set; the
upper approximation is union of all granules which have non-empty intersection
with the set; the boundary region of set is the difference between the upper and
the lower approximation.

Thus the definition of rough set also requires advanced mathematical con-
cepts (relations) and consequently, similarly as fuzzy set, cannot replace classical
concept of a set.

Several generalizations of the above approach have been proposed in the lit-
erature (see, e.g., [14,27,42,44,45,50]). In particular, in some of these approaches
the set inclusion to a degree is used instead of the exact inclusion. It is worthwhile
to mention that the set inclusion to a degree has been considered by �Lukasiewicz
[20] in studies on assigning fractional truth values to logical formulas.

Different aspects of vagueness in the roughs set framework are discussed, e.g.,
in [21,24,36,41].

Our knowledge about the approximated concepts is often partial and uncer-
tain [15]. For example, the concept approximation should be constructed from
examples and counter examples of objects for the concepts [16]. Hence, the con-
cept approximations constructed from a given sample of objects is extended,
using inductive reasoning, on unseen so far objects. The rough set approach for
dealing with concept approximation under such partial knowledge is presented,
e.g., in [44]. Moreover, the concept approximations should be constructed under
dynamically changing environments [41]. This leads to a more complex situation
when the boundary regions are not crisp sets what is consistent with the postu-
late of the higher order vagueness, considered by philosophers (see, e.g., [17]). It
is worthwhile to mention that is has been also developed a rough set approach to
approximation of compound concepts that we are unable to approximate using
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the traditional methods [7,47]. The approach is based on hierarchical learning
and ontology approximation [27,22,43,5] (see Section 8). Approximation of con-
cepts in distributed environments is discussed in [40]. A survey of algorithmic
methods for concept approximation based on rough sets and boolean reasoning
in presented in [39].

7 Fuzzy Versus Rough

In order to compare both concepts, fuzzy and rough sets we let us observe
that rough sets can be also defined employing, instead of approximation, rough
membership function [31]

μB
X : U →< 0, 1 >,

where

μX(x) =
card(B(x) ∩X)

card(X)
,

and card(X) denotes the cardinality of X .
The rough membership function expresses a conditional probability that x

belongs to X given B and can be interpreted as a degree that x belongs to X
in view of knowledge about x expressed by B. This means that the definition
reflects a subjective knowledge about elements of the universe, in contrast to
classical definition of a set.

It can be shown that the rough membership function has the following prop-
erties [31]:

1) μB
X(x) = 1 iff x ∈ B∗(X);

2) μB
X(x) = 0 iff x ∈ U −B∗(X);

3) 0 < μB
X(x) < 1 iff x ∈ BNB(X);

4) μB
U−X(x) = 1− μB

X(x) for any x ∈ U ;
5) μB

X∪Y (x) ≥ max(μB
X(x), μB

Y (x)) for any x ∈ U ;
6) μB

X∩Y (x) ≤ min(μB
X(x), μB

Y (x)) for any x ∈ U .

From the properties it follows that the rough membership differs essentially from
the fuzzy membership, for properties 5) and 6) show that the membership for
union and intersection of sets, in general, cannot be computed – as in the case
of fuzzy sets – from their constituents membership. Thus formally the rough
membership is more general from fuzzy membership. Moreover, the rough mem-
bership function depends on an available knowledge (represented by attributes
from B). Besides, the rough membership function, in contrast to fuzzy member-
ship function, has a probabilistic flavor.

Let us also mention that rough set theory, in contrast to fuzzy set theory,
clearly distinguishes two very important concepts, vagueness and uncertainty,
very often confused in the AI literature. Vagueness is the property of sets and
can be described by approximations, whereas uncertainty is the property of
elements of a set and can be expressed by the rough membership function.
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Both fuzzy and rough set theory represent two different approaches to vague-
ness. Fuzzy set theory addresses gradualness of knowledge, expressed by the fuzzy
membership – whereas rough set theory addresses granularity of knowledge, ex-
pressed by the indiscernibility relation. A nice illustration of this difference has
been given by Dider Dubois and Henri Prade [11] in the following example. In
image processing fuzzy set theory refers to gradualness of gray level, whereas
rough set theory is about the size of pixels.

Consequently, both theories are not competing but are rather complementary.
In particular, the rough set approach provides tools for approximate construction
of fuzzy membership functions. The rough-fuzzy hybridization approach proved
to be successful in many applications (see, e.g., [25,26]).

Interesting discussion of fuzzy and rough set theory in the approach to vague-
ness can be found in [36].

Finally, let us observe that fuzzy set and rough set theory are not a remedy
for classical set theory difficulties.

8 Logic and Rough Sets

Reality, or the world we all know, is only a description.
Carlos Castaneda (1972). Journey to Ixtlan: The lesson of Don Juan.

Simon & Schuster, New York

The father of contemporary logic is a German mathematician Gottlob Frege
(1848-1925). He thought that mathematics should not be based on the notion of
set but on the notions of logic. He created the first axiomatized logical system
but it was not understood by the logicians of those days.

In the thirties of the previous century a rapid development of logic took place,
to which Polish logicians contributed to a large extent, in particular Alfred Tarski
(1901-1983).

Development of computers and their applications stimulated logical research
and widened their scope.

When we speak about logic we generally mean deductive logic. It gives us
tools designed for deriving true propositions from other true propositions. De-
ductive reasoning always leads to true conclusions. The theory of deduction has
well established generally accepted theoretical foundations. Deductive reason-
ing is the main tool used in mathematical reasoning and found no application
beyond it.

Rough set theory has contributed to some extent to various kind of deductive
reasoning. Particularly, rough set methodology contributed essentially to modal
logics, many valued logic, intuitionistic logic and others (see, e.g., [3]). A sum-
mary of this research can be found in [33] and interested reader is advised to
consult this volume.

In natural sciences (e.g., in physics) inductive reasoning is of primary im-
portance. The characteristic feature of such reasoning is that it does not begin
from axioms (expressing general knowledge about the reality) like in deductive
logic, but some partial knowledge (examples) about the universe of interest are
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the starting point of this type of reasoning, which are generalized next and they
constitute the knowledge about wider reality than the initial one. In contrast
to deductive reasoning, inductive reasoning does not lead to true conclusions
but only to probable (possible) ones. Also in contrast to the logic of deduction,
the logic of induction does not have uniform, generally accepted, theoretical
foundations as yet, although many important and interesting results have been
obtained, e.g., concerning statistical and computational learning and others.

Verification of validity of hypotheses in the logic of induction is based on
experiment rather than the formal reasoning of the logic of deduction. Physics
is the best illustration of this fact.

The research on inductive logic have a few centuries’, long history and out-
standing English philosopher John Stuart Mill (1806-1873) is considered its
father.

The creation of computers and their innovative applications essentially con-
tributed to the rapid growth of interest in inductive reasoning. This domain
develops very dynamically thanks to computer science. Machine learning, knowl-
edge discovery, reasoning from data, expert systems and others are examples of
new directions in inductive reasoning. It seems that rough set theory is very well
suited as a theoretical basis for inductive reasoning. Basic concepts of this theory
fit very well to represent and analyze knowledge acquired from examples, which
can be next used as starting point for generalization. Besides, in fact rough set
theory has been successfully applied in many domains to find patterns in data
(data mining) and acquire knowledge from examples (learning from examples).
Thus, rough set theory seems to be another candidate as a mathematical foun-
dation of inductive reasoning [5,22,44].

The most interesting from computer science point of view is common sense
reasoning. We use this kind of reasoning in our everyday life, and examples
of such kind of reasoning we face in news papers, radio TV etc., in political,
economic etc., debates and discussions.

The starting point to such reasoning is the knowledge possessed by the spe-
cific group of people (common knowledge) concerning some subject and intuitive
methods of deriving conclusions from it. We do not have here possibilities of
resolving the dispute by means of methods given by deductive logic (reason-
ing) or by inductive logic (experiment). So the best known methods of solving
the dilemma is voting, negotiations or even war. See e.g., Gulliver’s Travels
[46], where the hatred between Tramecksan (High-Heels) and Slamecksan (Low-
Heels) or disputes between Big-Endians and Small-Endians could not be resolved
without a war.

These methods do not reveal the truth or falsity of the thesis under consid-
eration at all. Of course, such methods are not acceptable in mathematics or
physics. Nobody is going to solve by voting, negotiations or declare a war – the
truth of Fermat’s theorem or Newton’s laws.

Reasoning of this kind is the least studied from the theoretical point of view
and its structure is not sufficiently understood, in spite of many interesting
theoretical research in this domain [13]. The meaning of common sense reasoning,
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considering its scope and significance for some domains, is fundamental and
rough set theory can also play an important role in it but more fundamental
research must be done to this end [43].

In particular, the rough truth introduced in [29] and studied, e.g., in [2,4]
seems to be important for investigating commonsense reasoning in the rough set
framework.

Let us consider a simple example. In the considered decision table we assume
U = Birds is a set of birds that are described by some condition attributes
from a set A. The decision attribute is a binary attribute Flies with possible
values yes if the given bird flies and no, otherwise. Then, we define the set of
abnormal birds by AbA(Birds) = A∗({x ∈ Birds : Flies(x) = no}). Hence, we
have, AbA(Birds) = Birds − A∗({x ∈ Birds : Flies(x) = yes}) and Birds −
AbA(Birds) = A∗({x ∈ Birds : Flies(x) = yes}). It means that for normal birds
it is consistent, with knowledge represented by A, to assume that they can fly, i.e.,
it is possible that they can fly. One can optimize AbA(Birds) using A to obtain
minimal boundary region in the approximation of {x ∈ Birds : Flies(x) = no}.

It is worthwhile to mention that in [10] has been presented an approach
combining the rough sets with nonmonotonic reasoning. There are distinguished
some basic concepts that can be approximated on the basis of sensor measure-
ments and more complex concepts that are approximated using so called trans-
ducers defined by first order theories constructed overs approximated concepts.
Another approach to commonsense reasoning has been developed in a number
of papers (see, e.g., [35,43,22,27,5]). The approach is based on an ontological
framework for approximation. In this approach approximations are constructed
for concepts and dependencies between the concepts represented in a given on-
tology expressed, e.g., in natural language. Still another approach combining
rough sets with logic programming is discussed in [48].

To recapitulate, the characteristics of the three above mentioned kinds of
reasoning are given below:

1. deductive:
– reasoning method: axioms and rules of inference;
– applications: mathematics;
– theoretical foundations: complete theory;
– conclusions: true conclusions from true premisses;
– hypotheses verification: formal proof.

2. inductive:
– reasoning method: generalization from examples;
– applications: natural sciences (physics);
– theoretical foundation: lack of generally accepted theory;
– conclusions: not true but probable (possible);
– hypotheses verification - experiment.

3. common sense:
– reasoning method based on common sense knowledge with intuitive rules

of inference expressed in natural language;
– applications: every day life, humanities;
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– theoretical foundation: lack of generally accepted theory;
– conclusions obtained by mixture of deductive and inductive reasoning

based on concepts expressed in natural language, e.g., with application
of different inductive strategies for conflict resolution (such as voting,
negotiations, cooperation, war) based on human behavioral patterns;

– hypotheses verification - human behavior.

9 Conclusions

Basic concept of mathematics, the set, leads to antinomies, i.e., it is contradictory.
The deficiency of sets, has philosophical rather than practical meaning, since

sets used in mathematics are free from the above discussed faults. Antinomies
are associated with very “artificial” sets constructed in logic but not found in
sets used in mathematics. That is why we can use mathematics safely.

Fuzzy set and rough set theory are two different approaches to vagueness and
are not remedy for classical set theory difficulties.

Fuzzy set theory addresses gradualness of knowledge, expressed by the fuzzy
membership - whereas rough set theory addresses granularity of knowledge, ex-
pressed by the indiscernibility relation.

From practical point of view both theories are not competing but are rather
complementary.

Summing up:

– The notion of classical set is fundamental for whole mathematics and is
necessary to provide rigor in mathematics.

– Non-classical sets (fuzzy and rough) cannot replace classical sets - for their
definitions need classical set theory (i.e., more advanced mathematical con-
cepts, real numbers, functions and relations).

– The classical sets, lead to antinomies.
– The deficiency of classical sets has rather philosophical than practical mean-

ing, since sets used in everyday mathematics are free from antinomies.
– Non-classical sets (fuzzy and rough) are not remedy for classical set theory

difficulties but are two different approaches to vagueness.

Summary

In this paper a brief discussion on the rough set concept and its place in various
ideas of sets is presented. The article is not intended to serve as an introduction
to rough set theory but is rather meant to give some philosophical background
underlining the theory.
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Abstract. In the paper algorithms are considered which allow to consec-
utively optimize decision trees for decision tables with many-valued de-
cisions relatively different complexity measures such as number of nodes,
weighted depth, average weighted depth, etc. For decision tables over an
arbitrary infinite restricted information system [5] these algorithms have
(at least for the three mentioned measures) polynomial time complexity
depending on the length of table description. For decision tables over one
of such information systems experimental results of decision tree opti-
mization are described.

Keywords: Decision trees, complexity measures, optimization.

1 Introduction

Decision trees are widely used in different applications as algorithms for task
solving and as a way of knowledge representation. Problems of decision tree
optimization are very complicated.

We study decision tables with many-valued decisions. A finite nonempty set
of decisions is attached to each row of such table. For a given row it is required
to find a decision from the set attached to the row. To this end we can choose an
arbitrary attribute (column) and ask for the value at intersection of this column
and the considered row. As algorithms for this problem solving we use decision
trees, and as complexity measures for decision trees we consider number of nodes,
weighted depth, average weighted depth, etc.

Many problems studied in rough set theory [7, 8] can be reduced to decision
tables with many-valued decisions. Let us consider a finite decision system. Such
system is specified by a number of conditional attributes that divide the universe
into domains on which these attributes have fixed values. Our aim is to find the
value of a decision attribute using only values of conditional attributes. Consider
an arbitrary domain. If the decision attribute is constant on this domain then
we can find the exact value of the decision attribute on objects from the domain
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using only values of conditional attributes. Otherwise, it is impossible to find
exact value of the decision attribute for all objects from the domain.

In order to minimize the number of mispredictions the most frequent decision
should be reported as answer that is a value of the decision attribute assigned
to maximal number of objects in the domain. Note that multiple choice of most
frequent decision is possible in some cases. The considered problem of the search
of a most frequent decision can be reduced to a decision table with many-valued
decisions. In this table rows correspond to domains and each row is labeled by
the set of most frequent decisions for the corresponding domain.

In the paper an algorithm is considered which for a given decision table
with many-valued decisions constructs a graph describing the set of all reduced
decision trees. Also an algorithm of decision tree optimization relative to one of
complexity measures is described. The possibilities are discussed for consecutive
optimization of decision trees concerning various measures. Some results of the
paper generalize the results of [1, 2, 4–6] on the case of decision tables with many-
valued decisions.

Note that the considered algorithms have polynomial time complexity de-
pending on the length of table description for decision tables over so-called in-
finite restricted information systems [5]. In the paper we consider one of such
information systems in detail. For considered example an effective implemen-
tation of the tree optimization algorithm is described. Potential of sequential
optimization, temporal and spatial complexity of the problem are illustrated by
results of computational experiments.

2 Reduced Decision Trees

Consider a decision table T depicted in Fig. 1.
Here f1, . . . , fn are names of columns (attributes); w1, . . . , wn are natural

numbers (weights of columns) each of which could be interpreted as time of com-
putation of the corresponding attribute value; D1, . . . , Dm are sets of decisions
corresponding to rows each of which is a nonempty finite set of nonnegative inte-
gers; π1, . . . , πm are natural numbers which are interpreted as ”probabilities” of
rows; δij are numbers from the set Ek = {0, 1, . . . , k−1}, k ≥ 2, which are inter-
preted as values of attributes (we assume that the rows (δ11, . . . , δ1n), . . . , (δm1,
. . . , δmn) are pairwise different).

Denote C(T ) =
⋂m

i=1 Di. Elements from the set C(T ) will be called common
decisions of the table T .

w1 . . . wn

f1 . . . fn

δ11 . . . δ1n D1 π1

. . . . . . . . .
δm1 . . . δmn Dm πm

Fig. 1
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Let fi1 , . . . , fit ∈ {f1, . . . , fn} and a1, . . . , at ∈ Ek. Denote by T (fi1 , a1) . . .
(fit , at) the sub-table of the table T which consists of all rows of T that on the
intersection with columns fi1 , . . . , fit have numbers a1, . . . , at respectively. Such
nonempty tables (including the table T ) will be called separable sub-tables of the
table T . Denote by S(T ) the set of separable sub-tables of the table T .

We will fix some natural form of decision table description such that the
numbers wi, πi, δij and numbers from sets Di will be given by binary represen-
tation. We will say later about the length of decision table description. We will
assume that for any table T and for any separable sub-table Θ of the table T
the length of the sub-table Θ description is at most the length of the table T
description.

One can associate with the table T a game of two players: the first player
chooses a row of the table, and the second one must find a number (decision)
from the set of decisions corresponding to this row. For this purpose the second
player can choose a column (an attribute) and ask for the value at intersection
of the chosen row and this column.

One can interpret decision trees, which we will consider, as strategies of the
second player. During the work of a decision tree the chosen row will be localized
in lesser and lesser separable sub-tables. The process finishes when the obtained
separable sub-table will have a common decision.

More formally, a decision tree for the table T is a finite directed tree with the
root in which each terminal node is labeled by a decision (a number from the
set D1 ∪ . . . ∪Dm), each nonterminal node is labeled by an attribute from the
set {f1, . . . , fn}, and for each nonterminal node edges issuing from this node are
labeled by some pairwise different numbers from Ek. Let v be an arbitrary node
of the considered decision tree. Let us define a sub-table T (v) of the table T . If v
is the root then T (v) = T . Let v be not the root, and in the path from the root
to v nodes be labeled by attributes fi1 , . . . , fit and edges be labeled by numbers
a1, . . . , at respectively. Then T (v) = T (fi1 , a1) . . . (fit , at). It is required that for
each row rj of the table T there exists a terminal node v of the tree such that
rj belongs to the sub-table T (v), and v is labeled by a decision from the set Dj

attached to the row rj .
Denote by E(T ) the set of attributes (columns of the table T ) having at least

two distinct values in the rows of T . For fi ∈ E(T ) let E(T, fi) be the set of
numbers occurred in the column fi.

Among decision trees for the table T we select reduced decision trees. Suppose
that during the work of a decision tree Γ for the table T we came to a node
v of the tree and localized the considered row in the separable sub-table Θ =
T (v). Let the table Θ have a common decision. Then the considered node of the
decision tree Γ is terminal and is labeled by a common decision from the set
C(Θ). Let the table Θ have no common decisions. Then the node v is labeled by
an attribute fi ∈ E(Θ). If E(Θ, fi) = {a1, . . . , at} then t edges issue from the
node v, and these edges are labeled by numbers a1, . . . , at respectively.
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3 Representation of the Set of Reduced Decision Trees

Consider an algorithm A that constructs the graph Δ(T ) representing in some
sense the set of all reduced decision trees for the table T . Nodes of this graph
are some separable sub-tables of the table T . During each step we treat exactly
one node and mark this node by the symbol *. We begin with the graph, which
consists of one node T , and will finish when all nodes of the graph are treated.

Let the algorithm have performed p steps. The step (p+1) will be performed
as follows: if in the considered graph all nodes are treated then the work of the
algorithm is finished, and the considered graph is Δ(T ). Let the graph have
nodes which are not treated. Choose a node that is not treated. Let this node
be a table Θ. If Θ has common decisions then we mark the considered node by
the set C(Θ) of common decisions of Θ, mark it by the symbol * and pass to
the step (p + 2). Let Θ have no common decisions. For each fi ∈ E(Θ) we draw
from the node Θ a bundle of edges. Let E(Θ, fi) = {a1, . . . , at}. Then we draw
t edges from Θ, and mark these edges by pairs (fi, a1), . . . , (fi, at) respectively.
These edges enter nodes Θ(fi, a1), . . . , Θ(fi, at). If some of these nodes are not
in the graph then we add these nodes to the graph. We mark the node Θ by the
symbol * and pass to the step (p + 2).

It is not difficult to prove the following statement.

Proposition 1. For any decision table T the algorithm A constructs the graph
Δ(T ) and performs at most |S(T )|+1 steps. The time of the algorithm A work is
bounded from above by a polynomial on the number |S(T )| of separable sub-tables
of the table T and on the length of the table T description.

Now for each node of the graph Δ(T ) we describe the set of decision trees
corresponding to it. It is clear that Δ(T ) is a directed acyclic graph. A node
of such graph will be called terminal if there are no edges which issue from
this node. We will ”move” from terminal nodes, which are labeled by sets of
numbers (sets of common decisions), to the node T . Let Θ be a node which is
labeled by the set C(Θ) of common decisions. Then the set of trivial decision
trees depicted in Fig. 2, d ∈ C(Θ), corresponds to the considered node. Let

��
��

d

Fig. 2

Θ be a node (table) which have no common decisions. Let fi ∈ E(Θ) and
E(Θ, fi) = {a1, . . . , at}. Let Γ1, . . . , Γt be decision trees from sets corresponding
to the nodes Θ(fi, a1), . . . , Θ(fi, at). Then the decision tree depicted in Fig. 3
belongs to the set of decision trees which corresponds to the node Θ. All such
decision trees belong to the considered set. This set does not contain any other
decision trees. We denote by D(Θ) the set of decision trees corresponding to the
node Θ.
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The following proposition shows that the graph Δ(T ) represents all reduced
decision trees for the table T .

Proposition 2. Let T be a decision table and Θ be a node in the graph Δ(T ).
Then the set D(Θ) coincides with the set of all reduced decision trees for the
table Θ.

Proof. Prove the proposition by induction on nodes in the graph Δ(T ).
For each terminal node Θ only trivial reduced decision trees exist depicted

in Fig. 2, where d ∈ C(Θ). The set D(Θ) contains all these trees and does not
contain any other trees.

Let Θ be a nonterminal node and the statement of proposition hold for
all its descendants. Consider an arbitrary decision tree Γ ∈ D(Θ). Obviously, Γ
contains more than one node. Let the root of Γ be labeled by the attribute fi and
the edges issuing from root be labeled by the numbers a1, . . . , at. For j = 1, . . . , t
we denote by Γj the decision tree (a sub-tree of the tree Γ ) connected to the
root of Γ with the edge labeled by the number aj . From definition of the set
D(Θ) it follows that fi is contained in the set E(Θ), E(Θ, fi) = {a1, . . . , at} and
for j = 1, . . . , t the decision tree Γj belongs to the set D(Θ(fi, aj)). According
to the inductive hypothesis, the tree Γj is a reduced decision tree for the table
Θ(fi, aj). Using these facts one can show that the tree Γ is a reduced decision
tree for the table Θ.

Now consider an arbitrary reduced decision tree Γ for the table Θ. Using
definition of reduced decision tree one can show that the root of Γ is labeled
by an attribute fi from the set E(Θ), |E(Θ, fi)| edges issue from the root and
these edges are labeled by numbers from the set E(Θ, fi), and the sub-trees
whose roots are nodes, which these edges enter, are reduced decision trees for
corresponding descendants of the node Θ. Then, according to definition of the
set D(Θ) and to inductive hypothesis, the tree Γ belongs to the set D(Θ). �
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4 Proper Subgraphs of the Graph Δ(T )

Let us introduce the notion of a proper subgraph of the graph Δ(T ). For each
node of the graph Δ(T ), which is not terminal, we can remove any but not all
bundles that issue from the node. Denote the obtained subgraph by G. Such
subgraphs will be called proper subgraphs of the graph Δ(T ). It is clear that the
set of nodes of G coincides with the set of nodes of Δ(T ). It is clear also that
all terminal nodes of G are terminal nodes of the graph Δ(T ).

Now for each node of the graph G we describe the set of decision trees
corresponding to it. We will ”move” from terminal nodes, which are labeled by
sets of numbers (sets of common decisions), to the node T . Let Θ be a node
which is labeled by the set C(Θ) of common decisions. Then the set of trivial
decision trees depicted in Fig. 2, d ∈ C(Θ), corresponds to the considered node.
Let Θ be a node (table) which have no common decisions. Let fi ∈ E(Θ),
E(Θ, fi) = {a1, . . . , at} and there exists a bundle of edges leaving Θ that are
labeled by pairs (fi, a1), . . . , (fi, at) respectively. Let Γ1, . . . , Γt be decision trees
from sets corresponding to the nodes Θ(fi, a1), . . . , Θ(fi, at). Then the decision
tree depicted in Fig. 3 belongs to the set of decision trees which corresponds to
the node Θ. All such decision trees belong to the considered set. This set does
not contain any other decision trees. We denote by DG(Θ) the set of decision
trees corresponding to the node Θ of the graph G.

5 Complexity Measures

We will consider complexity measures which are given in the following way:
values of a considered complexity measure ψ, which are nonnegative integers,
are defined by induction on pairs (T, Γ ), where T is a decision table and Γ
is a decision tree for T . Let Γ be a decision tree represented in Fig. 2. Then
ψ(T, Γ ) = ψ0 where ψ0 is a nonnegative integer. Let Γ be a decision tree depicted
in Fig. 3. Then

ψ(T, Γ ) = F (π(T ), wi, ψ(T (fi, a1), Γ1), . . . , ψ(T (fi, at), Γt)) .

Here π(T ) is the sum of ”probabilities” attached to rows of the table T , wi

is the weight of the column fi and F (π, w, ψ1, ψ2, . . .) is a computable operator
which transforms the considered tuple of nonnegative integers into a nonnegative
integer. Note that the number of variables ψ1, ψ2, . . . is not bounded from above.
So the complexity measure ψ is defined by the pair (ψ0, F ).

The considered complexity measure will be called monotone if for any natural
i, t, 1 ≤ i ≤ t− 1, and any nonnegative integers a, b, c1, . . . , ct, d1, . . . , dt the in-
equality F (a, b, c1, . . . , ct) ≥ max{c1, . . . , ct} holds, the equality F (a, b, c1, . . . , ci,
ci+1, . . . , ct) = F (a, b, c1, . . . , ci+1, ci, . . . , ct) holds, the inequality F (a, b, c1, . . . ,
ct−1) ≤ F (a, b, c1, . . . , ct) holds if t ≥ 2, and from inequalities c1 ≤ d1, . . . , ct ≤ dt

the inequality F (a, b, c1, . . . , ct) ≤ F (a, b, d1, . . . , dt) follows.
The considered complexitymeasurewill be called stronglymonotone if it ismono-

tone and for any natural t and any nonnegative integers a, b, c1, . . . , ct, d1, . . . , dt
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from inequalities a > 0, b > 0, c1 ≤ d1, . . . , ct ≤ dt and inequality ci < di, which is
true for some i ∈ {1, . . . , t}, the inequality F (a, b, c1, . . . , ct) < F (a, b, d1, . . . , dt)
follows.

The following proposition, which is simple corollary of results from [6], de-
scribes some properties of linear combination of monotone complexity measures.

Proposition 3. Let ϕ1, . . . , ϕn be monotone complexity measures defined by
pairs (ϕ0

1, F1), . . . , (ϕ0
n, Fn), and α1, . . . , αn be natural numbers. Consider com-

plexity measure ψ defined by a pair (ψ0, F ), where ψ0 =
∑n

i=1 αiϕ
0
i and F =∑n

i=1 αiFi. Then the following statements hold:

a) ψ is a monotone complexity measure;
b) if there exists a number j ∈ {1, . . . , n} such that ϕj is a strongly monotone

complexity measure then ψ is a strongly monotone complexity measure.

Now we take a closer view of some complexity measures.
Number of nodes: ψ(T, Γ ) is the number of nodes in decision tree Γ . For this

complexity measure ψ0 = 1 and F (π, w, ψ1, . . . , ψt) = 1+
∑t

i=1 ψi. This measure
is strongly monotone.

Weighted depth: we attach a weight to each path from the root to a termi-
nal node of tree, which is equal to the sum of weights of attributes attached
to nodes of the path. Then ψ(T, Γ ) is the maximal weight of a path from
the root to a terminal node of Γ . For this complexity measure ψ0 = 0 and
F (π, w, ψ1, . . . , ψt) = w + max{ψ1, . . . , ψt}. This measure is monotone.

Average weighted depth: for an arbitrary row δ̄ of the table T we denote
by π(δ̄) its ”probability” and by w(δ̄) we denote the weight of the path from
the root to a terminal node of Γ which accepts δ̄ (it means that δ̄ belongs to
the sub-table T (v) where v is the terminal node of the considered path). Then
ψ(T, Γ ) =

∑
δ̄ w(δ̄)π(δ̄) where we take the sum over all rows δ̄ of the table T .

For this complexity measure ψ0 = 0 and F (π, w, ψ1, . . . , ψt) = wπ +
∑t

i=1 ψi.
This measure is strongly monotone.

The following proposition shows that for any monotone complexity measure
among reduced decision trees at least one is optimal in sense of this measure.

Proposition 4. Let T be a decision table and ψ be a monotone complexity mea-
sure. Then there exists a reduced decision tree for T that is optimal relative to
the complexity measure ψ.

Proof. Let Γ be an optimal decision tree for T relative to the complexity measure
ψ. We will modify the tree Γ in order to obtain a reduced decision tree. The
algorithm sequentially considers nonterminal nodes of the tree Γ . Let u be the
current node and fi be an attribute assigned to the node u. The algorithm tries
to apply the following rules to this node.

1. Let C(T (u)) �= ∅. Then remove all the descendants of u and mark u by a
number r ∈ C(T (u)) instead of the attribute fi.

2. Let the set E(T (u), fi) contain only one number a. Denote by Γa the
decision tree whose root the edge, issuing from u and labeled by a, enters. Then
replace the sub-tree whose root is u with Γa.



On Optimization of Decision Trees 25

3. For each edge issuing from u and labeled by a number that does not contain
in E(T (u), fi) remove this edge and all descendant nodes and edges.

Since each node is considered at most once, the work of the algorithm is
finished after a finite number of steps. Denote the resulted decision tree by Γ̂ .
One can show that Γ̂ is a reduced decision tree for T . Obviously, the applied
transformation does not increase the complexity and, thus, Γ̂ is also optimal. �

We will say that ψ = (ψ0, F ) is a strongly polynomial complexity measure if it
satisfies the following conditions:

a) there exists a polynomial such that for any decision table T and for any
reduced decision tree Γ for T the length of binary representation of the number
ψ(T, Γ ) is bounded from above by the value of this polynomial on the length of
the table T description;

b) the operator F has polynomial time complexity.

Proposition 5. Number of nodes, weighted depth and average weighted depth
are strongly polynomial complexity measures.

Proof. Let ψ1 = (ψ0
1 , F1) be number of nodes, ψ2 = (ψ0

2 , F2) be weighted depth
and ψ3 = (ψ0

3 , F3) be average weighted depth. Consider the decision table T
depicted in Fig. 1. Let Γ be a reduced decision tree for T . It is clear that at least
two edges issue from each nonterminal node of Γ . Using this fact it is not difficult
to prove that the number of nonterminal nodes in Γ is at most the number of
terminal nodes. Taking into account that Γ is a reduced decision tree one can
show that the number of terminal nodes in Γ is at most m where m is the number
of rows in T . Therefore ψ1(T, Γ ) ≤ 2m. Since Γ is a reduced decision tree, nodes
in any path from the root of Γ to a terminal node are labeled by pairwise different
attributes. Therefore the weight of each such path is at most

∑n
i=1 wi. From this

fact it follows that ψ2(T, Γ ) ≤
∑n

i=1 wi and ψ3(T, Γ ) ≤ (
∑n

i=1 wi) × (
∑m

i=1 πi).
Using the obtained inequalities one can show that for each i ∈ {1, 2, 3} there
exists a polynomial such that for any decision table T and for any reduced
decision tree Γ for T the length of binary representation of the number ψi(T, Γ )
is bounded from above by the value of this polynomial on the length of the
table T description. It is clear that the operators F1, F2 and F3 have polynomial
time complexities. Therefore ψ1, ψ2 and ψ3 are strongly polynomial complexity
measures. �

6 Procedure of Optimization

Let G be a proper subgraph of the graph Δ(T ), and ψ be a complexity measure
defined by the pair (ψ0, F ). Describe an algorithm B(ψ) which transforms the
graph G into a proper subgraph Gψ of G.

We begin from terminal nodes and move to the node T . We attach a number
to each node, and possibly remove some bundles of edges, which start in the
considered node. During each step of the algorithm we treat exactly one node
of the graph G. We attach the number ψ0 to each terminal node. Consider
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a node Θ, which is not terminal, and a bundle of edges, which starts in this
node. Let edges be labeled by pairs (fi, a1), . . . , (fi, at), and edges enter to nodes
Θ(fi, a1), . . . , Θ(fi, at), to which numbers ψ1, . . . , ψt are attached already. Then
we attach to the considered bundle the number F (π(Θ), wi, ψ1, . . . , ψt).

Among numbers attached to bundles starting in Θ we choose the minimal
number p and attach it to the node Θ. We remove all bundles starting in Θ
to which numbers are attached that are greater than p. When all nodes will be
treated we obtain a graph. Denote this graph by Gψ.

It is clear that Gψ is a proper subgraph of the graph Δ(T ). As it was done
previously, for any node Θ of Gψ we denote by DGψ

(Θ) the set of decision trees
corresponding to Θ in the graph Gψ.

Proposition 6. Let ψ = (ψ0, F ) be a strongly polynomial complexity measure,
T be a decision table, and G be a proper subgraph of the graph Δ(T ). Then the
algorithm B(ψ) constructs the proper subgraph Gψ of the graph G and performs
at most |S(T )| steps. The time of the algorithm B(ψ) work is bounded from above
by a polynomial on |S(T )| and the length of the table T description.

Proof. It is clear that the number of the algorithm B(ψ) steps coincides with
the number of nodes in the graph G, and the number of nodes in the graph G
is at most |S(T )|. Therefore the algorithm B(ψ) performs at most |S(T )| steps.

Taking into account that ψ is a strongly polynomial complexity measure we
conclude that there exists a polynomial Q such that for any decision table T ′ and
for any reduced decision tree Γ for T ′ the length of binary representation of the
number ψ(T ′, Γ ) is bounded from above by the value of Q on the length of the
table T ′ description. It is not difficult to prove by induction on nodes of G that
for each node Θ of the graph G the number, attached to Θ during the work of the
algorithm B(ψ), is the complexity (relative to the complexity measure ψ) of a
decision tree Γ from DG(Θ). It is clear that DG(Θ) ⊆ D(Θ). Using Proposition
2 we conclude that Γ is a reduced decision tree for the table Θ. Therefore for
each node Θ of the graph G the length of binary representation of the number,
attached to Θ during the work of the algorithm B(ψ), is at most the value of
the polynomial Q on the length of the table T description. Using this fact and
taking into account that the operator F has polynomial time complexity one
can show that the time of the algorithm B(ψ) work is bounded from above by a
polynomial on |S(T )| and the length of the table T description. �

7 Results for Monotone Complexity Measures

Let T be a decision table and ψ be a monotone complexity measure. Let G be a
proper subgraph of Δ(T ) and Θ be an arbitrary node in G. We will denote by
Dψ,G(Θ) the subset of DG(Θ) containing all decision trees having minimal com-
plexity relative to ψ, i.e. Dψ,G(Θ) = {Γ̂ : Γ̂ ∈ DG(Θ), ψ(Θ, Γ̂ ) = min{ψ(Θ, Γ ) :
Γ ∈ DG(Θ)}}.

The following theorem shows that optimized graph Gψ describes only optimal
decision trees in sense of chosen complexity measure.
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Theorem 1. Let T be a decision table and ψ be a monotone complexity measure
defined by the pair (ψ0, F ). Let G be a proper subgraph of Δ(T ) and Θ be an
arbitrary node in the graph G. Then DGψ

(Θ) ⊆ Dψ,G(Θ).

Preface proof of the theorem by the following lemma.

Lemma 1. Let T be a decision table and ψ be a monotone complexity measure
defined by the pair (ψ0, F ). Let G be a proper subgraph of Δ(T ), Θ be an arbitrary
node in the graph G and p be a number assigned to the node Θ by the algorithm
B(ψ). Then for each decision tree Γ from the set DGψ

(Θ) the equality ψ(Θ, Γ ) =
p holds.

Proof. Prove the considered statement by induction on nodes in the graph G. For
each terminal node Θ only trivial reduced decision trees exist depicted in Fig. 2,
and the statement of lemma obviously holds for Θ. Let now Θ be a nonterminal
node and the statement of lemma hold for all descendants of Θ. Consider an ar-
bitrary decision tree Γ ∈ DGψ

(Θ). Let the root of Γ be labeled by the attribute
fi and the edges issuing from the root be labeled by the numbers a1, . . . , at. For
j = 1, . . . , t denote by Γj the decision tree (sub-tree of Γ ) connected to the root
with the edge labeled by the number aj . Let for j = 1, . . . , t the node Θ(fi, aj)
be labeled by the number pj . According to the inductive hypothesis, the equality
ψ(Θ(fi, aj), Γj) = pj holds for j = 1, . . . , t. According to the algorithm B(ψ) de-
scription, p = F (π(Θ), wi, p1, . . . , pt). From the definition of the complexity mea-
sure ψ it follows that ψ(Θ, Γ )=F (π(Θ), wi, ψ(Θ(fi, a1), Γ1), . . ., ψ(Θ(fi, at), Γt).
Using the three last equalities we obtain ψ(Θ, Γ ) = p. Since Γ is an arbitrary
tree from DGψ

(Θ), all the trees in DGψ
(Θ) have the same complexity p. �

Proof (of Theorem 1). The statement of the theorem will be proved by induction
on nodes of the graph G. Let Θ be a terminal node. Then the set DGψ

(Θ)
contains only trees depicted in Fig. 2, d ∈ C(Θ), and these trees, obviously,
belong to Dψ,G(Θ). So the statement of the theorem holds for the node Θ.

Let now Θ be a nonterminal node in G and the statement of the theorem
hold for any descendant of Θ in the graph G. Let the number p be assigned
to the node Θ by the algorithm B(ψ). Lemma 1 implies that all decision trees
in DGψ

(Θ) have the same complexity p. Consider an arbitrary decision tree Γ
from the set Dψ,G(Θ). From the definition of the set Dψ,G(Θ) it follows that
ψ(Γ, Θ) ≤ p.

To prove the statement of the theorem we need to show that ψ(Γ, Θ) = p. Let
the root of Γ be labeled by the attribute fi. Since Γ is a reduced decision tree,
fi is contained in the set E(Θ). Let E(Θ, fi) = {a1, . . . , at}. Then t edges issue
from the root and these edges are labeled by numbers a1, . . . , at. For j = 1, . . . , t
denote by Γj the sub-tree of Γ that is connected to the root with the edge la-
beled by aj . It is clear that Γj is contained in the set DG(Θ(fi, aj)). Let pj be
the number assigned to the node Θ(fi, aj) during the process of the algorithm
B(ψ) work. Taking into account that the statement of the theorem holds for
the node Θ(fi, aj) and using Lemma 1 we obtain ψ(Γj , Θ(fi, aj)) ≥ pj . Let wi

be the weight of the attribute fi. From the description of the algorithm B(ψ)
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it follows that F (π(Θ), wi, p1, . . . , pt) ≥ p. Since ψ is a monotone complexity
measure, we have ψ(Γ, Θ) = F (π(Θ), wi, ψ(Γ1, Θ(fi, a1)), . . . , ψ(Γt, Θ(fi, at))) ≥
F (π(Θ), wi, p1, . . . , pt). The equality ψ(Γ, Θ) = p follows from the two last in-
equalities and the inequality ψ(Γ, Θ) ≤ p. �

8 Results for Strongly Monotone Complexity Measures

Theorem 2. Let T be a decision table and ψ be a strongly monotone complexity
measure. Let G be a proper subgraph of Δ(T ) and Θ be an arbitrary node in the
graph G. Then the set DGψ

(Θ) coincides with the set Dψ,G(Θ).

Proof. Since ψ is strongly monotone, ψ is monotone. Using Theorem 1 obtain
DGψ

(Θ) ⊆ Dψ,G(Θ). Let us prove that for an arbitrary tree Γ ∈ Dψ,G(Θ) the
tree Γ belongs to the set DGψ

(Θ). The induction on the nodes of G will be used.
If Θ is a terminal node then, as it is not difficult to show, DGψ

(Θ) = Dψ,G(Θ) =
DG(Θ). Therefore the statement of the theorem holds for the node Θ. Let Θ be
a nonterminal node and the statement of theorem hold for all descendants of Θ.
Let the root of the tree Γ be labeled by the attribute fi. Since Γ is a reduced
decision tree, fi is contained in the set E(Θ). Let E(Θ, fi) = {a1, . . . , at}. Then t
edges issuing from the root are labeled by the numbers a1, . . . , at. For j = 1, . . . , t
denote by Γj the sub-tree that is connected to the root with the edge labeled by
aj . Since ψ is a strongly monotone complexity measure and Γ ∈ Dψ,G(Θ), the
tree Γj belongs to the set Dψ,G(Θ(fi, aj)). Since the statement of the theorem
holds for the node Θ(fi, aj), the tree Γj belongs to the set DGψ

(Θ(fi, aj)) for
j = 1, . . . , t. Consider the bundle of edges in the graph Δ(T ) that leave the node
Θ and are labeled by the pairs (fi, a1), . . . , (fi, at). Since Γ ∈ Dψ,G(Θ), these
edges were not removed by the algorithm B(ψ). Then, according to the definition
of the set DGψ

(Θ), the tree Γ belongs to this set. �

9 Possibilities of Consecutive Optimization

Let the graph Δ(T ) be constructed for a decision table T by the algorithm A.
Let ψ1 and ψ2 be strongly monotone complexity measures. Apply the algorithm
B(ψ1) to the graph Δ(T ). As a result we obtain the proper subgraph (Δ(T ))ψ1

of the graph Δ(T ). Denote this subgraph by G1. According to Proposition 2 and
Theorem 2, the set of decision trees corresponding to the node T of this graph
coincides with the set of all reduced decision trees for the table T , which have
minimal complexity relative to ψ1. Denote this set by D1. Using Proposition
4 we conclude that decision trees from D1 are optimal relative to ψ1 not only
among reduced decision trees but also among all decision trees for the table T .

Apply the algorithm B(ψ2) to the graph G1. As a result we obtain the proper
subgraph (G1)ψ2 of the graph Δ(T ). Denote this subgraph by G2. The set of de-
cision trees corresponding to the node T of this graph coincides with the set of all
decision trees from D1, which have minimal complexity relative to ψ2. It is possible
to continue this process of consecutive optimization concerning various criteria.
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If ψ2 is a monotone complexity measure then according to Theorem 1 the set
of decision trees, corresponding to the node T of the graph G2, is a subset of the
set of all decision trees from D1, which have minimal complexity relative to ψ2.

10 Decision Tables over Information Systems

Let A be a nonempty set, F be a nonempty set of functions from A to Ek =
{0, . . . , k − 1}, and f �≡ const for any f ∈ F . Functions from F will be called
attributes, and the pair U = (A, F ) will be called a k-valued information system.
Let f1, . . . , fm ∈ F . We will say that the table T depicted in Fig. 1 is a decision
table over the information system U if the set {(δ11, . . . , δ1n), . . . , (δm1, . . . , δmn)}
of the table T rows coincides with the set of tuples (δ1, . . . , δn) ∈ En

k such that
the system of equations

{f1(x) = δ1, . . . , fn(x) = δn} (1)

is compatible (has a solution) on the set A. The number of attributes (columns) n
in the table T will be called the dimension of the table T and will be denoted by
dimT . Denote by T (U) the set of decision tables over U . Consider the function

CU (n) = max{|S(T )| : T ∈ T (U), dimT ≤ n}

which characterizes the maximal number of separable sub-tables depending on
the number of columns in decision tables over U .

Let ψ be a strongly polynomial complexity measure. Using Propositions 1
and 6 we conclude that for tables over U time complexity of the algorithms A
and B(ψ) is bounded from above by some polynomials on the length of table
description if the function CU (n) is bounded from above by a polynomial on n.
Now we consider the criterion of the function CU (n) to be bounded from above
by a polynomial.

A system of equations of the kind (1) will be called a system of equations
over U . Two systems of equations are called equivalent if they have the same set
of solutions on A. A compatible system of equations will be called uncancellable
if each its proper subsystem is not equivalent to the system. Let r be a natural
number. An information system U will be called r-restricted if each uncancellable
system of equations over U consists of at most r equations. An information
system U will be called restricted if it is r-restricted for some natural r. The
following proposition was proved in [5].

Proposition 7. Let U = (A, F ) be a k-valued information system. Then the
following statements hold:

a) if U is r-restricted information system then CU (n) ≤ (nk)r + 1 for any
natural n;

b) if U is not a restricted information system then CU (n) ≥ 2n for any
natural n.

The following example was considered in [5].
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Example 1. Denote by P the set of all points in a plane. Consider an arbitrary
straight line l, which divides the plane into positive and negative open half-
planes and the line l. Assign a function f : P → E2 to the straight line l. The
function f takes the value 1 if a point is situated in the positive half-plane, and
f takes the value 0 if a point is situated in the negative half-plane or in the line
l. Denote by F an infinite set of functions, which correspond to some straight
lines in the plane. Consider two cases.

1) Functions from the set F correspond to t infinite classes of parallel straight
lines. One can show that the information system U is 2t-restricted.

2) Functions from the set F correspond to all straight lines on the plane. One
can show that the information system U is not restricted.

It is possible to consider not only decision tables over an information system
U but also sub-tables of such tables. A table T ′ will be called a sub-table of a
decision table T if T ′ can be obtained from T by removal of some rows. It is clear
that T is a sub-table of T . Denote by T ∗(U) the set of sub-tables of decision
tables over U . Consider the function

C∗
U (n) = max{|S(T )| : T ∈ T ∗(U), dimT ≤ n} .

One can show that C∗
U (n) = CU (n) for any natural n. Using this equality and

Propositions 1, 6 and 7 it is not difficult to prove the following statement.

Proposition 8. Let U be a restricted information system and ψ be a strongly
polynomial complexity measure. Then for sub-tables of decision tables over U
time complexity of the algorithms A and B(ψ) is bounded from above by some
polynomials on the length of sub-table description.

In the next sections we will consider sub-tables of decision tables over 4-
restricted 2-valued information system U = (P, F ), where P is the set of points
in a plane, and functions from F correspond to all straight lines in the plane
each of which is parallel to a coordinate axis.

11 Problem of Classification of Points in a Plane

In this section we consider the following problem. Let A be a finite set of black
and white points in the plane. For a given point from A one should recognize
the color of this point using values of attributes each of which corresponds to
a straight line that is parallel to a coordinate axis. The problem could be rep-
resented in form of a decision table that is in fact a sub-table of some decision
table over information system U = (P, F ) described at the end of the previous
section. Since U is restricted, Proposition 8 implies that there is a polynomial
algorithm for consecutive optimization of decision trees for the considered prob-
lem relatively various complexity measures. In this section we consider a software
implementation of such algorithm.
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Similar problem is search for a set of lines of minimal cardinality that divides
plane into regions such that there is no region containing both black and white
points. The latter problem is proven to be NP -hard in [3].

Let us describe a decision table representing the problem of color recognition
for points from A. Denote XOY coordinate system in the plane and n the
number of points in A. Assume for simplicity that all the points are pairwise
different on each coordinate. Project all points to both coordinate axes and
denote by x1, . . . , xn and y1, . . . , yn coordinates of points in the ascending order.
For i = 1, . . . , n − 1 denote by lxi the vertical line passing by the point ((xi +
xi+1)/2, 0) and denote by lyi the horizontal line passing by the point (0, (yi +
yi+1)/2). Denote by T the decision table, in which columns correspond to the
lines lx1 , . . . , lxn−1, l

y
1 , . . . , lyn−1, all probabilities and attribute weights are equal to

1 and each decision set Di assigned to a row is equal to {0} if the color of the
corresponding point is white, and {1} otherwise.

The above-mentioned general algorithm of decision tree optimization is ap-
plicable to T . Now we describe an effective implementation of the algorithm that
uses specific properties of the table T .

First the procedure of graph traversal will be described. Then two algorithms
will be considered that optimize a subgraph of Δ(T ) and build a single decision
tree described by a subgraph of Δ(T ) respectively.

Let us precede algorithm description by some auxiliary notions. Choose num-
bers x0, xn+1, y0, yn+1 such that x0 < x1, xn+1 > xn, y0 < y1, yn+1 > yn.
Denote by lx0 , lxn the vertical lines passing by the points (x0, 0), (xn+1, 0) and ly0 ,
lyn the horizontal lines passing by the points (0, y0), (0, yn+1). One can see that
for any separable sub-table τ of T its set of rows corresponds to all points from
A in the rectangle bounded by lines lxt , lxu,lyv , lyw for some numbers 0 ≤ t < u ≤ n,
0 ≤ v < w ≤ n. Then each sub-table could be identified by an unique quartet of
numbers. One can see that for sub-table τ identified by a quartet 〈t, u, v, w〉 the
set E(τ) contains attributes lxt+1, l

x
t+2, . . . , l

x
u−1, l

y
v+1, l

y
v+2, . . . , l

y
w−1 and does not

contain other attributes that allows to quickly restore set E(τ) by the sub-table
identifier.

Describe data structure used for storing of a graph Δ(T ) and its sub-graphs.
Balance between time and space complexity forces us to avoid keeping edges of
Δ(T ). Instead for each node the edges are rebuilt upon request by a simple proce-
dure. Thus Δ(T ) is stored in an associative list C where key is a quartet of numbers
identifying a sub-table. After q consecutive steps of optimization the data associ-
ated to each record of C is a vector of q values. For i = 1, . . . , q denote by ψi com-
plexity measure used at the i-th step of optimization and Gi the resulted sub-graph
of Δ(T ). Let τ be a separable sub-table of T and 〈z1, . . . , zq〉 the corresponding as-
sociated data vector. Then for i = 1 . . . , q the value zi is the minimal complexity
(relatively toψi) of a decision tree for τ describedby graphGi. Let fl be an attribute
fromE(τ) and 〈z0

1 , . . . , z0
q 〉, 〈z1

1 , . . . , z1
q 〉 associateddata vectors for τ(fl, 0), τ(fl, 1)

respectively (if τ(fl, δ) is terminal then assume that 〈zδ
1 , . . . , z

δ
q〉 is 〈ψ0

1 , . . . , ψ
0
q〉).

To check whether the split of τ by fl remain in the graph Gq one should check the
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equalities zi = Fi(π(τ), wl , z
0
i , z1

i ) for i = 1, ..., q. Violation at least one equality
means that the split was removed by optimization procedure.

Further a graph traversal procedure is described. The procedure is used by
several algorithms such as consecutive optimization of Δ(T ) and counting the
number of trees described by a subgraph of Δ(T ). Using this procedure each
algorithm can be described as specific Callback() procedure performed at exam-
ining of a split.

11.1 Procedure of Graph Traversal

The graph traversal procedure extends the associated data vector for all records
in C by a flag indicating that the sub-table was already processed. The procedure
uses a stack O for storing identifiers of ”open” sub-tables (for which processing
is started but not finished yet). Each record of O also contains a spilt counter
that iterates among splits from the set E(τ).

Step 0. Push the identifier 〈0, n, 0, n〉 to O. Clear ”processed” flag in all records
of C. Proceed to the step 1.

Step i.
If O is empty then the algorithm finishes its work. Otherwise let t be an identifier
at the top of O, τ sub-table having identifier t and l the split counter for t. Let
E(τ) = {f1, . . . , fm}.
If l > m then mark the record 〈t, l〉 in C as ”processed”, pop the record from O
and proceed to the next step. Otherwise check whether the split fl was removed
at previous optimization step.
If it is true increase l and proceed to the next step. Otherwise call Callback(〈t, l〉).
If for δ = 0 or δ = 1 the table τ(fl, δ) is nonterminal and corresponding node is
not marked in C as ”processed” (add new record to C if there is no record with
such identifier) then push identifier of τ(fl, δ) to O. Increase l if no records were
pushed to O. Proceed to the next step.

11.2 Optimization of Sub-graph Δ(T )

Let q optimization steps have been already done and ψq+1 be the complexity
measure for the current step. Extend associated data vector for all records in
C by zq+1 value and set this value to be infinite. The Callback procedure for
a sub-table τ and a split fl updates the value zq+1 if both sub-tables τ(fl, 0)
and τ(fl, 1) are either terminal or corresponding records are marked as ”pro-
cessed”. For δ = 0, 1 let zδ

q+1 be the last element of associated data vector for
τ(fl, δ) or ψ0

q+1 if the sub-table is terminal. Then zq+1 is assigned the value
min(zq+1, ψq+1(π(τ), wl, z

0
q+1, z

1
q+1)).

11.3 Building of a Single Decision Tree Described by a Sub-graph

We assume that the optimization procedure was applied to Δ(T ) at least once.
Denote by G the decision tree being constructed. Denote by Y the number of
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nodes added to the tree. Associate with each record in O the number of the last
node added to the decision tree. At start of algorithm add a single node to G
and associate its number to the record on the top of O. Describe a single step
of the algorithm.

If C is empty then work of algorithm is finished and G is the resulted tree.
Else let t be the record at the top of O, τ the corresponding sub-table and m
the associated node in G. First the algorithm finds a split that was not removed
at optimization using the procedure described above. Once split is found the
algorithm assigns the corresponding attribute fl to the node m, adds two nodes
(Y + 1) and (Y + 2) to the tree and connects them to m with edges labeled
with 0 and 1 respectively. The record t is popped from O. Then for δ = 0, 1 the
algorithm checks whether the table τ(fl, δ) is terminal. If it is true the common
decision is assigned to the node (Y +1+ δ). Otherwise the corresponding record
is pushed to C. The algorithm proceed to the next step.

12 Experimental Results

In this section experimental results are presented that characterize complexity
of the stated optimization problem and computational effectiveness of the algo-
rithm. The algorithm described above was implemented as a part of a research
software system that allows for consecutive optimization of decision trees against
multiple complexity measures. The system counts number of nodes in the graph
Δ(T ) and total number of reduced decision trees for the problem as well as min-
imal value of complexity measure and number of optimal decision trees at each
step of optimization. The system is capable of processing problems of size up to
200 points at a desktop PC.

In experiments we considered a class of problems where both coordinates
and color of points were randomly chosen from an uniform distribution. Decision
trees were optimized by three complexity measures that are depth, average depth
and number of nodes. We studied dependence on the number of points for the
following parameters:

– the number of nodes in the graph Δ(T );
– the number of reduced decision trees;
– the number of optimal decision trees for given complexity measure;
– the minimal value of complexity measure;
– execution time (measured at a desktop PC with Pentium 4 1.4GHz CPU

and 512MB of RAM).

Table 1 shows results of computational experiments. One can see that the
number of optimal decision trees for a monotone complexity measure (depth) is
larger than for strongly monotone ones (average depth and number of nodes).
Also it should be noted the big number of optimal decision trees that enables
rich possibilities for a consecutive optimization.

Figure 4 shows dependence of execution time of the algorithm on the number
of points and its polynomial approximation.
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Table 1. Dependency of several problem characteristics on number of points (mean
values of 10 experiments are shown). The columns contain (left to right) number of
points in the problem, number of nodes in the graph Δ(T ), number of reduced decision
trees described by Δ(T ), minimal value and number of optimal reduced decision trees
for each of three above-mentioned complexity measures, execution time.

# of #of # of # of nodes Depth Av. Depth Time,
pts. nodes trees trees value trees value trees value sec.
10 1.5 · 102 2.5 · 107 1.0 · 102 7.6 1.6 · 103 2.5 8.8 2.1 0.12
20 1.7 · 103 1.0 · 1019 9.3 · 103 13.6 5.9 · 108 3.3 2.4 · 102 2.8 0.22
30 7.3 · 103 9.9 · 1031 2.4 · 106 19.6 2.7 · 109 4.0 1.9 · 103 3.3 0.71
40 2.3 · 104 4.7 · 1045 1.1 · 109 24.7 3.5 · 1021 4.1 1.0 · 105 3.7 3.0
50 5.1 · 104 1.0 · 1060 6.5 · 1010 30.4 3.3 · 1025 4.8 1.0 · 107 3.9 9.3
60 1.0 · 105 7.7 · 1074 2.7 · 1014 36.3 9.8 · 1026 5.0 7.6 · 107 4.2 24.7
70 1.9 · 105 4.2 · 1090 6.2 · 1016 40.8 7.9 · 1026 5.0 4.0 · 109 4.3 56.6
80 3.2 · 105 6.6 · 10105 7.8 · 1017 46.1 2.0 · 1026 5.0 3.5 · 1010 4.5 124.8
90 5.1 · 105 3.7 · 10122 2.2 · 1022 51.7 9.6 · 1058 5.3 3.4 · 1012 4.7 242.0
100 7.7 · 105 3.5 · 10139 4.2 · 1022 57.0 1.9 · 1062 5.7 2.0 · 1016 4.7 454.0

Fig. 4. Dependence of execution time on the number of points (maximal, minimal and
average values over 10 experiments are shown)

When sequential optimization is performed one can be interested in finding
a decision tree that is optimal according to all considered complexity measures.
However it is often impossible. For example consider a multicriteria optimization
of decision trees by depth and average depth. Draw each decision tree described
by Δ(T ) as a point in a plane whose coordinates are values of corresponding
complexity measures. Consider south-west frontier of the convex hull for the
resulted set of points, and select points that belongs to this line. The selected
points correspond to decision trees that have undominated characteristics. Se-
quential optimization is capable of finding the leftmost and the rightmost points
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Fig. 5. Relation between depth and average depth of decision tree resulted in consecu-
tive optimization (pairs of points showing different optimization sequence for the same
problem are connected by line)

depending on order of applying the complexity measures. Figure 5 shows results
of sequential optimization for several problems, each of which contains 50 points.
One can see that even for small dimensionality of a problem there are decision
trees with undominated characteristics. Thus the order in which optimization
measures are applied impacts the result.

13 Conclusion

We have described algorithms which allow to optimize decision trees consecu-
tively concerning such complexity measures as number of nodes, weighted depth,
average weighted depth. These algorithms may be useful for a detailed investi-
gation of the decision tree set for relatively small decision tables. We have con-
sidered examples of such investigations for decision tables connected with the
problem of recognition of point color in the plane.

References

1. Chikalov, I.V.: Algorithm for constructing of decision trees with minimal number
of nodes. Proceedings of the Second International Conference on Rough Sets and
Current Trends in Computing. Banff, Canada (2000) 107–111

2. Chikalov, I.V.: Algorithm for constructing of decision trees with minimal average
depth. Proceedings of the Eighth International Conference on Information Process-
ing and Management of Uncertainty in Knowledge-based Systems, Vol. 1. Madrid,
Spain (2000) 376–379

3. Chlebus, B.S., Nguyen, S.H.: On finding optimal discretization for two attributes.
Proceedings of the First International Conference on Rough Sets and Current
Trends in Computing. Warsaw, Poland. Lecture Notes in Artificial Intelligence 1424,
Springer-Verlag (1998) 537–544



36 I.V. Chikalov, M. Ju. Moshkov, and M.S. Zelentsova

4. Moshkov, M.Ju., Chikalov, I.V.: On effective algorithms for construction of decision
trees. Proceedings of the Twelfth International Conference Problems of Theoretical
Cybernetics, Part 2. Nizhny Novgorod, Russia (1999) 165 (in Russian)

5. Moshkov, M.Ju., Chikalov, I.V.: On algorithm for constructing of decision trees with
minimal depth. Fundamenta Informaticae 41(3) (2000) 295–299

6. Moshkov, M.Ju., Chikalov, I.V.: Consecutive optimization of decision trees concern-
ing various complexity measures. Fundamenta Informaticae 61(2) (2004) 87–96

7. Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht, Boston, London, 1991

8. Skowron, A., Rauszer, C.: The discernibility matrices and functions in information
systems. Intelligent Decision Support. Handbook of Applications and Advances of
the Rough Set Theory. Edited by R. Slowinski. Kluwer Academic Publishers, Dor-
drecht, Boston, London (1992) 331–362



Dealing with Missing Data: Algorithms Based
on Fuzzy Set and Rough Set Theories�

Dan Li1, Jitender Deogun1, William Spaulding2, and Bill Shuart2

1 Department of Computer Science & Engineering,
University of Nebraska-Lincoln, Lincoln NE 68588-0115

2 Department of Psychology, University of Nebraska-Lincoln,
Lincoln NE 68588-0308

Abstract. Missing data, commonly encountered in many fields of study,
introduce inaccuracy in the analysis and evaluation. Previous methods
used for handling missing data (e.g., deleting cases with incomplete infor-
mation, or substituting the missing values with estimated mean scores),
though simple to implement, are problematic because these methods may
result in biased data models. Fortunately, recent advances in theoreti-
cal and computational statistics have led to more flexible techniques to
deal with the missing data problem. In this paper, we present missing
data imputation methods based on clustering, one of the most popu-
lar techniques in Knowledge Discovery in Databases (KDD). We com-
bine clustering with soft computing, which tends to be more tolerant of
imprecision and uncertainty, and apply fuzzy and rough clustering al-
gorithms to deal with incomplete data. The experiments show that a
hybridization of fuzzy set and rough set theories in missing data imputa-
tion algorithms leads to the best performance among our four algorithms,
i.e., crisp K-means, fuzzy K-means, rough K-means, and rough-fuzzy K-
means imputation algorithms.

Keywords: Missing data, imputation, K-means clustering, fuzzy sets,
rough sets, rough-fuzzy hybridization.

1 Introduction

The problem of missing (or incomplete) data is relatively common in many
fields, and it may have different causes such as equipment malfunction, unavail-
ability of equipment, refusal of respondents to answer certain questions, etc. The
overall result is that the observed data cannot be analyzed because of the in-
completeness of the data. The most appropriate method for handling missing or
incomplete data depends upon how data items became missing. There are three
types of missing data mechanisms [1]. First, data are missing completely at ran-
dom (MCAR). This means the probability that an observation xi is missing is
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unrelated to the value of xi or to the value of any other variables. In this case,
the pattern of data missingness is unpredictable. Second, data are missing at
random (MAR), and the missingness does not depend on the value of xi after
controlling for another variable. In other words, records with incomplete data
differ from records with complete data, but the pattern of data missingness is
traceable or predictable from other variables in the database rather than being
due to the specific variable on which the data are missing. For example, people
who are at higher anxiety level might be less likely to report their income, thus
the level of anxiety will be related to the reported income. However, if within
anxious patients the probability of reported income was unrelated to income
level, then the data would be considered MAR. If data are MCAR or MAR,
we say that the missingness is ignorable. The third type of missing data is that
the missingness is non-ignorable. This means the pattern of data missingness is
non-random and it cannot be predicted from other variables in the database.

This paper deals with missing data in two applications. First, we are de-
veloping a Geospatial Decision Support System (GDSS), with an initial focus
on drought risk management [2]. Data are collected at automated weather sta-
tions and some data items are missing because of malfunction or unavailability
of equipment. This type of missing data is unintended and uncontrolled by the
researchers, and data are missing completely at random. Interpolation methods
can be employed to handle incomplete datasets [3,4,5]. Most conventional inter-
polation methods such as Kriging, are more suitable for handling data when the
data are distributed with relatively high density and the regional conditions are
almost homogeneous. However environmental databases must cover a variety of
areas with different natural/socio economic conditions, and the distribution of
point-based data available for interpolation tends to be much biased. For these
reasons, many conventional interpolation methods cannot be effectively utilized
to solve missing data problem.

The second application focuses on a psychotherapy study to understand in-
formation processing, judgment and decision making in psychiatric diagnosis and
rehabilitation. Here, data are missing at random because respondents refuse to
answer certain questions or because the answers were not recorded. This paper
focuses on situations in which some information is missing from an individual
case rather than the total lack of response to a diagnosis.

A number of researchers over the last several decades have investigated tech-
niques for dealing with missing data [6,7,8,9,1,10,11,12,13]. Methods for handling
missing data can be divided into three categories. The first is ignoring and dis-
carding data. Listwise deletion and pairwise deletion are two widely used methods
in this category [7]. The second group includes the methods based on parameter
estimation, which uses variants of the Expectation-Maximization algorithm to
estimate parameters in the presence of missing data [6]. The third category is
imputation, which denotes the process of filling in the missing values in a dataset
by some plausible values based on information available in the dataset [10].

Among imputation methods, there are many approaches varying from simple
methods such as mean imputation, to some more robust and intricate methods
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based on the analysis of the relationships among attributes. For example, in
hot deck imputation, the missing data are replaced by other cases with the
same (or similar) characteristics. These common characteristics are derived from
auxiliary variables, e.g., age, gender, race, or education degree, whose values are
available from the cases to be imputed. Generally, there are two steps in hot
deck imputation [14]. First, data are partitioned into several clusters based on
certain similarity metric, and each instance with missing data is associated with
one of the clusters. Second, by calculating the mean of the attribute within a
cluster, the complete cases in the cluster are used to fill in the missing values.

One of the most well known clustering algorithms is the K-means method
[15], which takes the number of desirable clusters, K, as an input parameter,
and outputs a partition consisting of K clusters on a set of objects. Conventional
clustering algorithms are normally crisp. However, in reality, an object sometimes
could be assigned to more than one cluster. Therefore, a fuzzy membership
function can be applied to the K-means clustering, which models the degree
of an object belonging to a cluster. Additionally, the theory of rough set has
emerged as a major method for managing uncertainty in many domains, and
has proved to be a useful tool in a variety of KDD processes. The theories
of fuzzy set and rough set present the basic idea of soft computing. The soft
computing paradigm is to exploit the tolerance for imprecision, uncertainty and
partial truth to achieve tractability, robustness and low solution cost [16]. The
use of soft computing techniques in missing data imputation presents the major
difference of our approach from that presented in [14].

In our earlier paper [17], we developed two missing data imputation algo-
rithms. The first algorithm was based on original crisp K-means clustering, and
the second algorithm integrated the concept of fuzzy logic into K-means clus-
tering. This paper is an extended version of that paper and presents two more
missing data imputation algorithms based on rough set theory. The details of
these four algorithms are introduced in Section 2. Experiments and analysis are
presented in Section 3. Finally, concluding remarks and directions for future
research are presented in Section 4.

2 Missing Data Imputation Algorithms

In this section, we review previous research related to missing data imputation
based on K-means clustering. Particularly, missimg data imputation approaches
based on Fuzzy K-means Clustering as well as Rough K-means Clustering are
important in the context of our research.

2.1 Missing Data Imputation with K-Means Clustering

A fundamental problem in missing data imputation is to fill in missing infor-
mation about an object based on the knowledge of other information about the
object [18]. As one of the most popular techniques in data mining, the clustering
method facilitates the process of solving this problem. Given a set of objects,
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the overall objective of clustering is to divide the dataset into groups based on
similarity of objects and to minimize the intra-cluster dissimilarity. In K-means
clustering, the intra-cluster dissimilarity is measured by the summation of dis-
tances between the objects and the centroid of the cluster they are assigned to. A
cluster centroid represents the mean value of the objects in a cluster. A number
of different distance functions, e.g., Euclidean distance, Cosine-based distance,
can be used.

Given a set of N objects X = {x1, x2, ..., xN} where each object has S
attributes, we use xij (1 ≤ i ≤ N and 1 ≤ j ≤ S) to denote the value of attribute
j in object xi. Object xi is called a complete object, if {xij �= φ | ∀ 1 ≤ j ≤ S},
and an incomplete object, if {xij = φ | ∃ 1 ≤ j ≤ S}, and we say object
xi has a missing value on attribute j. For any incomplete object xi, we use
R = {j | xij �= φ, 1 ≤ j ≤ S} to denote the set of attributes whose values
are available, and these attributes are called reference attributes. Our objective
is to obtain the values of non-reference attributes for the incomplete objects.
By K-means clustering method, we divide dataset X into K clusters, and each
cluster is represented by the centroid of the set of objects in the cluster. Let
V = {v1, v2, ..., vK} be the set of K clusters, where vk (1 ≤ k ≤ K) represents
the centroid of cluster k. Note that vk is also a vector in an S-dimensional space.
We use d(vk, xi) to denote the distance between centroid vk and object xi.

Algorithm. K-means-imputation(X, K, ε)
1) Initialization -- randomly select K complete objects from
X as centroids;
2) Assign each object (complete or incomplete) in X to the
closest cluster centroid;
3) Recompute the centroid of each cluster;

4) Repeat steps 2 & 3, until
K∑

k=1

N∑
i=1

d(vk, xi) < ε;

5) For each incomplete object, apply nearest neighbor
algorithm to fill in all the non-reference attributes.

Fig. 1. K-means Clustering for Missing Data Imputation

Figure 1 shows the algorithm for missing data imputation with K-means
clustering method. The algorithm can be divided into three processes. First
(Step 1), randomly select K complete data objects as K centroids. Rather than
random selection, an alternative is to choose the first centroid as the object that
is most central to the dataset, and then pick other (k − 1) centroids one by
one in such a way that each one is most dissimilar to all the objects that have
already been selected. This makes the initial K centroids evenly distributed.
Second (Steps 2 to 4), iteratively modify the partition to reduce the sum of the
distances for each object from the centroid of the cluster to which the object
belongs. The process terminates once the summation of distances is less than
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a user-specified threshold ε. The last process (Step 5) is to fill in all the non-
reference attributes for each incomplete object based on the cluster information.
Data objects that belong to the same cluster are taken as nearest neighbors of
each other. The missing data are replace by Inverse Distance Weighted (IDW)
approach based on the available data values from nearest neighbors.

Generalized LP norm distance [19] is selected to measure the distance be-
tween a centroid and a data object in the cluster,

d(vk, xi) =

⎛
⎝ S∑

j=1

|xi,j − vk,j |p
⎞
⎠

1/p

. (1)

The Euclidean distance is the L2 distance and the Manhattan distance is the L1
distance. Another distance metric is the Cosine-based distance which is calcu-
lated from Cosine Similarity,

d(vk, xi) = e−Sim(vk,xi), where: Sim(vk, xi) =

S∑
j=1

xi,j ∗ vk,j

√√√√ S∑
j=1

xi,j
2

S∑
j=1

vk,j
2

. (2)

The distance functions are normalized for two reasons. First, the distances
can be calculated only from the values of reference attributes, but for incomplete
objects, the number of reference attributes is different. Second, each attribute
(either numerical or categorical) has a different domain and the distance func-
tions do not make sense without normalization. Because the domain of each
attribute is already known in our application domains, we employ the min-max
method to normalize the input data sets.

2.2 Missing Data Imputation with Fuzzy K-Means Clustering

Now, the original K-means clustering method is extended to a fuzzy version to
impute missing data. The reason for applying the fuzzy approach is that fuzzy
clustering provides a better tool when the clusters are not well-separated, as is
sometimes the case in missing data imputation. Moreover, the original K-means
clustering may be trapped in local minimum if the initial points are not selected
properly. However, continuous membership values in fuzzy clustering make the
resulting algorithms less susceptible to get stuck in local minimum [20].

In fuzzy clustering, each data object xi has a membership function which
describes the degree that this data object belongs to certain cluster vk. The
membership function is:

U(vk, xi) =
d(vk, xi)−2/(m−1)

K∑
j=1

d(vj , xi)−2/(m−1)

, (3)
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where m > 1 is the fuzzifier and
∑K

j=1 U(vj , xi) = 1 for any data object xi

(1 ≤ i ≤ N) [21]. Now, the cluster centroids cannot be calculated simply by the
mean values. Instead, the calculation a each cluster centroid needs to consider
the membership degree of each data object. The formula for cluster centroid
computation is:

vk =

N∑
i=1

U(vk, xi) ∗ xi

N∑
i=1

U(vk, xi)

. (4)

Because there are unavailable data in incomplete objects, the fuzzy K-means
approach uses only reference attributes to compute the cluster centroids.

Figure 2 shows the algorithm for missing data imputation with fuzzy K-means
clustering method. This algorithm has three processes which are the same as K-
means-imputation. In the initialization process (Steps 1 & 2), the algorithm picks
K centroids which are evenly distributed to avoid local minimum situation. The
second process (Steps 3 to 5), iteratively updated membership functions and
centroids until the overall distance meets the user-specified distance threshold
ε. In this process, a data object cannot be assigned to a concrete cluster repre-
sented by a cluster centroid (as did in the basic K-mean clustering algorithm),
because each data object belongs to all K clusters with different membership de-
grees. Finally (Step 6), the algorithm replaces non-reference attributes for each
incomplete object.

Algorithm. Fuzzy-K-means-imputation(X, K, ε)
1) Compute the most centered complete object and select it as
the first centroid, i.e.,

v1 = min
1≤i≤N

N∑
j=1

d(xi, xj);

2) Select other (K − 1) complete objects as centroids such
that each one is most dissimilar to all the centroids that
have already been selected, i.e.,

for (2 ≤ i ≤ K) {vi = max
1≤j≤N,xj /∈V

( min
1≤k≤K,vk∈V

d(xj , vk))};

3) Compute the membership function U(vk, xi) using Equation (3)
for each 1 ≤ k ≤ K, and 1 ≤ i ≤ N;
4) Recompute centroid vk using Equation (4);

5) Repeat steps 3 & 4, until
∑K

k=1
∑N

i=1 U(vk, xi)d(vk, xi) < ε;
6) Fill in all the non-reference attributes for each
incomplete data object.

Fig. 2. Fuzzy K-means Clustering for Missing Data Imputation
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Algorithm K-means-imputation fills in missing data by a nearest neighbor
algorithm which takes the data points belonging to the same cluster as nearest
neighbors. However, in Fuzzy-K-means-imputation, the nearest neighbors are
not available, because clusters are not well-separated with regard to the fuzzy
concept. Fuzzy-K-means-imputation replaces non-reference attributes for each
incomplete data object xi based on the information about membership degrees
and the values of cluster centroids,

xi,j =
K∑

k=1

U(xi, vk) ∗ vk,j , for any non-refence attribute j /∈ R. (5)

2.3 Missing Data Imputation with Rough K-Means Clustering

This section presents a missing data imputation algorithm based on rough set
theory. Theories of rough set and fuzzy set are distinct generalizations of set
theory [22,23,16]. A fuzzy set allows a membership value between 0 and 1 which
describes the degree that an object belongs to a set. Based on rough set theory,
a pair of upper and lower bound approximations are used to describe a refer-
ence set. Given an arbitrary set X, the lower bound A(X) is the union of all
elementary sets, which are subsets of X. The upper bound A(X) is the union
of all elementary sets that have a non-empty intersection with X [22]. In other
words, elements in the lower bound of X definitely belong to X, while elements
in the upper bound of X may or may not belong to X.

Algorithm. Rough-Assignment(xi,K, θ)
1) Find the cluster centroid vk to which the data object xi has
the minimum distance, i.e. vk = min d(vk′ , xi) for all 1 ≤ k′ ≤ K;
2) xi is assigned to the lower and upper bounds of cluster vk,
i.e. xi ∈ A(vk) and xi ∈ A(vk), if d(vk′ , xi) − d(vk, xi) > θ for all
1 ≤ k′ ≤ K, and k′ �= k; otherwise
3) xi is assigned to the upper bounds of clusters vk and vk′,
i.e. xi ∈ A(vk) and xi ∈ A(vk′), if d(vk′ , xi) − d(vk, xi) ≤ θ for any
1 ≤ k′ ≤ K, and k′ �= k.

Fig. 3. Data Object Assignment in Rough K-means algorithm

In the original crisp K-means clustering algorithm, data objects are grouped
into the same cluster if they are close to each other and each data object belongs
to only one cluster. In the rough K-means algorithm, each cluster is represented
by two sets which include all the data objects that approximate its lower bound
and upper bound, respectively. Different from crisp K-means method, in rough
K-means, a data object may exist in the upper bound of one or more clusters.
One of the most important issues in the rough K-means clustering is how to
assign each data object into the lower or upper bound of one or more clusters.
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In the crisp K-means algorithm, data objects are assigned to different clusters
simply based on the distances between data objects and cluster centroids. The
rough K-means clustering still uses distance metrics defined earlier to determine
cluster membership, but the process is more complicated because each cluster is
represented by both the lower and upper bound approximations. This process is
shown in Figure 3. A new parameter, θ, is introduced which is used to control
the similarity among the data objects belonging to a common upper bound of a
cluster. Algorithm Rough-Assignment shows that in rough K-means clustering,
each data object can only belong to the lower bound of one cluster, but it may
exist in the upper bound of one or more clusters.

Another important modification in rough K-means clustering is the compu-
tation of cluster centroids. Each cluster is represented by two sets, the lower
bound approximation and the upper bound approximation. Both sets are used
to re-compute the value of a cluster centroid [24]:

vk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
xi∈A(vk)

xi

|A(vk)| ×Wlower +

∑
xi∈(A(vk)−A(vk))

xi

|A(vk)−A(vk)| ×Wupper,

if |A(vk)| �= |A(vk)|,
∑

xi∈A(vk)

xi

|A(vk)| , otherwise.

(6)

In this equation, there are two more parameters, Wlower and Wupper, which
are used to control the relative importance of lower and upper bound approxi-
mations. For the purpose of normalization, the equation does not use the weight
function in the second case. This is different from the equation given in [24].
Generally, Wlower + Wupper = 1 and Wlower ≥ Wupper, based on the definitions
of lower and upper bounds in rough set theory. If a cluster includes an incom-
plete data object, only the reference attributes of the data object are used for
centroid computation.

Overall, the major difference between rough K-means and crisp K-means im-
putation methods lies in the second process. For rough imputation algorithm,
each data object is assigned to the lower or upper bound of one or more clus-
ters based on Rough-Assignment process and re-computed the centroid for each
cluster based on Equation 6.

The imputation methods applied to crisp K-means and fuzzy K-means clus-
terings cannot be applied to rough K-means clustering. In crisp K-means cluster-
ing, a data object only belongs to one cluster, and in fuzzy K-means clustering,
a data object belongs to all K clusters with different membership degrees. How-
ever, in rough K-means clustering, an incomplete data object either exists in the
lower bound of one cluster (also in the upper bound of this cluster) or exists in



Dealing with Missing Data 45

the upper bounds of two or more clusters. Equation 7 shows how we deal with
these two different situations:

xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
xj∈A(vk)

xj

|xj | ×Wlower +

∑
xj∈(A(vk)−A(vk))

xj

|xj | ×Wupper,

if xi ∈ A(vk) for any 1 ≤ k ≤ K, and xj is a complete object,

∑
xj∈A(vk)

xj

|xj | , if xi /∈ A(vk′) for all 1 ≤ k′ ≤ K.

(7)

For fuzzy K-means imputation, the computation of a non-reference attribute is
based on the values of cluster centroids and the information about membership
degrees. This is feasible because each cluster includes all data objects, and the
cluster centroids, in turn, are calculated based on all data points. For rough
K-means imputation, to make the algorithm more accurate, the value of an
incomplete data object is computed based on the values of data objects (rather
than cluster centroids) that are in the same cluster as the imputed data object.
Moreover, two weight parameters, Wlower and Wupper, are used if the imputed
data object exists in both the lower and upper bounds of a cluster.

2.4 Missing Data Imputation with Rough-Fuzzy K-Means
Clustering

There are ongoing efforts to integrate fuzzy logic with rough set theory for deal-
ing with uncertainty arising from inexact or incomplete information [25,26,20].
In this section, we present a rough-fuzzy hybridization method to capture the
intrinsic uncertainty involved in cluster analysis. In this hybridization, fuzzy sets
help handle ambiguity in input data, while rough sets represent each cluster with
lower and upper approximations. In rough K-means clustering, a data object ei-
ther exists in the lower bound of one cluster or exists in the upper bounds of
two or more clusters. To deal with the uncertainty involved in lower and upper
bound approximations,the rough K-means clustering assigns a data object to
the lower bounds of two or more clusters. At the same time, each data object
belongs to the upper bounds of all clusters with different membership degrees.
This drives the main idea of the rough-fuzzy K-means clustering algorithm.

Figure 4 shows the algorithm for data object assignment in rough-fuzzy
cluster-ing. From the description of the algorithm, each data object may be
assigned to the lower bound of one or more clusters depending on the value
of distance, and each object is assigned to the upper bound of every cluster.
Therefore, each data object xi has two membership functions which describe
the degrees that this data object belongs to the lower and upper bounds of
certain cluster vk. The membership functions are defined in Equations 8 and 9.
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Here, U(vk, xi) denotes the membership degree that data object xi belongs to the
lower bound of cluster vk (U(vk, xi) = 0, if xi /∈ A(vk)), and U(vk, xi) denotes
the membership degree that data object xi belongs to the upper bound of cluster
vk.

∑K
k=1 U(vk, xi) =

∑K
k=1 U(vk, xi) = 1 for any data object xi (1 ≤ i ≤ N).

Algorithm. Rough-Fuzzy-Assignment(xi,K, θ)
1) Find the cluster centroid vk to which the data object xi has
the minimum distance, i.e. vk = min d(vk′ , xi) for all 1 ≤ k′ ≤ K;
2) Assign xi to the lower bound of cluster vk, i.e. xi ∈ A(vk);
3) Assign xi to the lower bounds of clusters vk′, i.e. xi ∈
A(vk′), if there exists 1 ≤ k′ ≤ K, and k′ �= k such that
d(vk′ , xi)− d(vk, xi) ≤ θ;
4) Assign xi to the upper bound of each cluster, i.e. xi ∈ A(vk),
for all 1 ≤ k ≤ K.

Fig. 4. Data Object Assignment in Rough-Fuzzy Algorithm

U(vk, xi) =
d(vk, xi)−2/(m−1)∑

xi∈A(vj)

d(vj , xi)−2/(m−1)
. (8)

U(vk, xi) =
d(vk, xi)−2/(m−1)

K∑
j=1

d(vj , xi)−2/(m−1)

. (9)

To accommodate the properties of fuzzy and rough sets, we combine Equa-
tions 4 and 6 into a new formula to calculate cluster centroids in rough-fuzzy
clustering algorithm, as shown in Equations 10.

vk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
xi∈A(vk)

U(vk, xi) ∗ xi

∑
xi∈A(vk)

U(vk, xi)
×Wlower +

∑
xi /∈A(vk)

U(vk, xi) ∗ xi

∑
xi /∈A(vk)

U(vk, xi)
×Wupper,

if |A(vk)| �= |A(vk)|;

N∑
i=1

U(vk, xi) ∗ xi

N∑
i=1

U(vk, xi)

, otherwise.

(10)
The computation of a non-reference attribute for an incomplete data object

is based on two parts considering both lower and upper approximations of a
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cluster, as shown in Equation 11. Because
∑K

k=1 U(vk, xi) =
∑K

k=1 U(vk, xi) = 1
and Wlower + Wupper = 1, this computation formula is well normalized.

xi =
K∑

k=1, xi∈A(vk)

∑N
j=1, xj∈A(vk) U(vk, xi) ∗ xj

|xj |
×Wlower+

K∑
k=1

∑N
j=1, xj /∈A(vk) U(vk, xi) ∗ xj

|xj |
×Wupper.

(11)

The rough-fuzzy K-means imputation algorithm is shown in Figure 5.

Algorithm. Rough-Fuzzy-K-means-imputation(X, K, ε)
1) Select K initial data objects as cluster centroids;
2) Assign each data object xi in X to the appropriate lower and
upper bounds with Algorithm Rough-Fuzzy-Assignment;
3) Compute the membership functions U(vk, xi) and U(vk, xi) using
Equation (8) and (9) for each 1 ≤ k ≤ K;
4) Recompute cluster centroid vk using Equation (10);
5) Repeat steps 2, 3 & 4, until distance threshold ε is
satisfied;
6) Fill in all the non-reference attributes using Equation (11)
for each incomplete data object.

Fig. 5. Rough-Fuzzy Clustering for Missing Data Imputation

3 Experiments and Analysis

Two types of experiments are designed. First, the algorithms are evaluated based
on complete datasets which are subsets of real-life databases without incomplete
data objects. The overall objective of the experiments is to find the best value
for each of the parameters (e.g,. missing percentage, the fuzzifier value, and the
number of clusters, etc.). Second, the algorithms are evaluated based on real-life
datasets with missing values. The best parameter values discovered earlier are
used in this process. There are two types of real-life datasets. One is weather
databases for drought risk management. Weather data are collected at auto-
mated weather stations in Nebraska. These weather stations serve as long-term
reference sites to search for key patterns among climatic events. The other type
of data is the Integrated Psychological Therapy (IPT) outcome databases for
psychotherapy study. A common property in these two types of datasets is that
missing data are present either due to the malfunction (or unavailability) of
equipment or caused by the refusal of respondents. The experimental results
shown in this section are based on the monthly weather data in Clay Center,
NE, from 1950-1999. The dataset includes ten fields. Because each data attribute
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has different domain, to test the algorithms meaningfully, the dataset is first nor-
malized so that all the data values are between 0 and 100. The experiments are
based on the following input parameters: distance metric = Manhattan distance;
the number of cluster K = 7; the fuzzifier m = 1.2; the percentage of missing
data = 5%; the distance threshold θ = 1; Wlower = 0.9; and Wupper = 0.1.

We evaluate the quality of algorithms based on cross validation resampling
method. Each algorithm is tested ten times and each time a sample is randomly
divided into two subsets, test set and training set. The test results are validated
by comparing across sub-samples. The Root Mean Squared Error (RMSE) is
selected to compare the prediction value with the actual value of a test instance.
RMSE error analysis metric is defined as follows:

RMSE =

√√√√√
n∑

i=1

|Fi − fi|2

n
,

where n is the total number of test points, Fi are the estimated data values,
and fi are the actual data values. Note that the RMSE is much biased because
it exaggerates the prediction error of test cases in which the prediction error is
larger than others. However, from another point of view, if the RMSE number
is significantly greater than zero, it means that there are test cases in which
the prediction value is significantly greater or less than the actual value. There-
fore, sensitivity of RMSE number is useful in highlighting test cases in which
prediction value is significantly lower or higher.

3.1 Experiments on Complete Datasets

The performance of the four K-means imputation algorithms is evaluated and
analyzed from two aspects. First, the experiments show the influence of the
missing percentage. Second, the experiments test various input parameters (i.e.,
distance metrics, the value of fuzzifier m, and cluster number K, etc.), and
conclude with the best values. The evaluation of these two aspects is based on
complete datasets, which are subsets of real-life datasets without incomplete
data objects.

3.1.1 Percentage of Missing Data

Figure 6 summarizes the results for varying percentages of missing values in the
test cases. Besides the four K-means imputation algorithms, the experiments
also test a widely used missing data imputation algorithm, mean substitution.
There are four observations from Figure 6:

1. As the percentage of missing values increases, the overall error also increases
considering all of these five algorithms. This is reasonable because we lose
more useful information when the amount of missing data increases.
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Fig. 6. RMSE for Varying Percentages of Missing Values

2. When the missing percentage is less than or equal to 40%, rough-fuzzy K-
means algorithm provides the best results, while the performance of mean
substitution imputation algorithm is the worst.

3. When the missing percentage is greater than 15%, the curve for the crisp K-
means algorithm terminates, as shown in Figure 6. This occurs because for
any incomplete data object, when filling in the values for its non-reference at-
tributes, the algorithm needs to have the values on these attributes from other
data objects which are within the same cluster as this incomplete object. How-
ever, it is possible that all the data objects within the same cluster have a com-
mon non-reference attribute. In this case, the nearest neighbor algorithm used
for K-means imputation will not work. This will not happen in fuzzy or rough
algorithms. In the fuzzy imputation algorithm, the final imputation process
is based on the centroid information and the membership degrees. These two
kinds of information are always available for computation. In the rough impu-
tation algorithm, an incomplete data object may belong to two or more clus-
ters, and the information on lower and upper bounds for a given cluster makes
the computation flexible and feasible to deal with uncertainty.

4. There is a sharp increase in the value of RMSE when the missing percent-
age is greater than 40% considering the four K-means imputation methods.
The mean substitution approach outperforms the four imputation algorithms
when the missing percentage is greater than 45%. This indicates that the four
K-means algorithms cannot properly discover the similarity among data ob-
jects when there are too many missing values.
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3.1.2 Effects of Input Parameters

Distance Metrics. The experiments are designed to evaluate the four miss-
ing data imputation algorithms by testing on different input parameters. First,
the experiments test three distance metrics, Euclidean distance, Manhattan dis-
tance, and Cosine-based distance, as shown in Equations 1 and 2. Figure 7
presents the influence of these metrics. The performance of the four imputa-
tion algorithms is shown in four different groups. Considering all of these four
algorithms, Manhattan distance provides the best performance while the Cosine-
based distance metric is the worst.
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Fig. 7. RMSE for Varying Distance Metrics

Values of Fuzzifier in Fuzzy Algorithms. The experiments test the effect
of the value of fuzzifier in the fuzzy and the rough-fuzzy K-means imputation
methods. Because fuzzifier is a parameter only in the fuzzy imputation algo-
rithms, as shown in Figure 8, the RMSE in the crisp K-means and the rough
K-means clustering methods does not change much as the value of m changes.
However, for the fuzzy algorithms, the change in performance is obvious, and
the best value of m is 1.2 for both the fuzzy and the rough-fuzzy algorithms.
When the value of fuzzifier goes to 1.5, the crisp K-means algorithm outperforms
the fuzzy K-means and the rough-fuzzy K-means methods. This indicates that
selecting a proper parameter value is important for system performance. More-
over, the experimental results are consistent with the recommendation in [21],
which suggested a value between 1 and 1.5 for m.
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Fig. 8. RMSE for Varying the Value of Fuzzifier

Number of Clusters. Now, the experiments test the influence of the number of
clusters, K. The value of K is varied from 4 to 11. Figure 9 shows the performance
of the algorithms when there are 6000 data items in the test dataset. From the
figure, the best value of K is 7 for all four algorithms. It is worth mentioning that
for K = 4, the crisp K-means algorithm is the best one among all four algorithms.
This is because the smaller number of clusters have fewer centroids. This, in turn,
limits the possible variance in the imputed data values for the other three K-
means imputation algorithms. On the other hand, when the number of clusters
is small, the number of data objects in each cluster increases. This provides more
information for the basic K-means algorithm when nearest neighbor algorithm
is applied to estimate missing values.

Weights of Lower and Upper Bounds in Rough Algorithms. The rough
K-means and rough-fuzzy K-means imputation algorithms introduce two weight
parameters, Wlower and Wupper. These two parameters correspond to the relative
importance of lower and upper bounds in rough set theory. Figure 10 presents
the performance of rough K-means and rough-fuzzy K-means algorithms as we
change the value of Wupper. (Because Wlower + Wupper = 1, Figure 10 does
not show the value of Wlower in Figure 10.) As the value of Wupper increases,
the RMSE of these two algorithms also increases. This is reasonable because the
elements in the lower bound of a cluster definitely belong to the cluster, while the
elements in the upper bound of a cluster may or may not belong to the cluster.
The weight function has stronger influence on the rough K-means imputation
algorithm than on the rough-fuzzy K-means algorithm, because fuzzy sets help
handle ambiguity in cluster information.
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Distance Threshold in Rough Algorithms. The rough K-means and rough-
fuzzy K-means algorithms use distance threshold to control the similarity be-
tween data objects that belong to the same upper (for rough imputation algo-
rithms) or lower (for rough-fuzzy imputation algorithm) bound of a cluster. The
experiments test the effect of distance threshold by setting the weight of the
lower bound to two different values (0.8 and 0.5 respectively). As can be seen
in Figure 11, the RMSE increases as the value of distance threshold increases.
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Fig. 11. RMSE for Varying the Value of Distance Threshold

This occurs because the greater distance threshold results in less similarity be-
tween data objects in a given cluster. The experiments present the best perfor-
mance when the distance threshold equals 0.8. When the threshold is less than
0.8, the performance of the two algorithms slightly decreases because the smaller
threshold reduces the number of data objects in the upper or lower bound of a
cluster. This, in turn, compromises the possible benefit we should gain based on
rough set theory.

3.2 Experiments on Real-Life Datasets with Missing Values

The previous experiments are based on test datasets, which are subsets of real-
life datasets without incomplete data objects. However, in reality, the datasets
include incomplete data objects, and we do not have actual data values on the
non-reference attributes for an incomplete data object. Therefore, the algorithms
cannot be evaluated simply based on the root mean square error. To solve this
problem, the experiments are designed in this way: 1) Initially fill the missing
data with one of the algorithms and get a complete dataset. 2) From this new
dataset, randomly remove a certain percentage data which have actual data
values in original dataset. 3) Different imputation algorithms are applied to
estimate these missing data values. 4) The RMSE is computed for each algorithm
based on estimated data values and actual data values.
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Table 1. Experiments on Actual Datasets with 3% Missing

Fill actual Initially fill missing data with
data with Mean Sub Crisp K-m Rough K-m Fuzzy K-m R-F K-m

Mean Substitution 16.22 13.72 13.48 13.45 13.14
Crisp K-means 16.43 13.35 12.92 12.81 12.57
Rough K-means 16.61 13.27 12.51 12.26 12.13
Fuzzy K-means 16.70 13.39 12.40 12.16 12.07
R-F K-means 16.65 13.35 12.29 12.14 12.04

Table 2. Experiments on Actual Datasets with 10% Missing

Fill actual Initially fill missing data with
data with Mean Sub Crisp K-m Rough K-m Fuzzy K-m R-F K-m

Mean Substitution 17.19 14.43 13.57 13.53 13.31
Crisp K-means 17.24 14.15 13.42 13.21 13.03
Rough K-means 17.34 14.11 13.23 13.03 12.87
Fuzzy K-means 17.29 14.21 13.24 12.95 12.86
R-F K-means 17.30 14.32 13.27 12.94 12.85

In addition to the four K-means imputation algorithms, the mean substitu-
tion method is also implemented. Tables 1 and 2 compare the five algorithms
when the percentage of missing data is 3% and 10% respectively. We make three
observations from these two tables:

1. The experimental results are mainly determined by the algorithm which we
initially select to estimate the actual missing data. This explains why the
root mean square errors in each column in Table 1 and 2 have similar values.
Based on this observation, once we fix the algorithm which is initially used,
no matter which algorithm we later choose to estimate missing data, there
is no much difference among the five algorithms.

2. The four K-means imputation algorithms provide better results than the
widely used mean substitution imputation approach and the three algorithms
based on soft computing (i.e. rough, fuzzy and rough-fuzzy K-means imputa-
tion methods) are better than crisp K-means imputation algorithm. Among
the three algorithms, the rough-fuzzy algorithm is the best. From the ex-
periments, comparing the rough-fuzzy algorithm with the mean substitution
algorithm, the percentage of improvement is between 18% and 27%, and the
improvement is between 5% and 12% when we compare the rough-fuzzy im-
putation algorithm with the crisp K-means algorithm. This shows that the
hybridization of rough set theory and fuzzy set theory takes advantages of
both theories and improves the performance comparing with simple fuzzy or
rough algorithm.
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3. The performance of all of these algorithms decreases as the percentage of
missing data increases comparing Table 1 with Table 2. This is consistent
with previous experimental results.

4 Conclusion

Analysis and estimation of incomplete data is an increasingly important issue
in many fields of study. This paper investigates missing data imputation tech-
niques with the aim of constructing robust algorithms. Traditional clustering
algorithms, e.g., K-means clustering, which are normally crisp, have been widely
used in hot deck imputation. However, the “crispness” property makes the al-
gorithms less practical, because an object could be assigned to more than one
cluster. Integrating fuzzy logic into K-mean clustering helps solve the “crisp-
ness” because the fuzzy membership function models the membership degree of
an object in a cluster. Rough set theory has emerged as a major method for man-
aging uncertainty in many domains and has proved to be a useful tool in KDD.
Based on fuzzy set theory and rough set theory, this paper presents three im-
putation algorithms, fuzzy K-means, rough K-means, and rough-fuzzy K-means.
The experimental results demonstrate the strength of these methods compared
with crisp K-means imputation approach. We evaluate the performance of the
algorithms based on the RMSE. The experiments discover that the crisp K-
means algorithm outperforms the mean substitution method, which is a simple
and common approach for missing data imputation. The experiments also show
that the overall performance of the rough-fuzzy K-means method is the best one
among the four K-means imputation methods. For these experiments, we test
the performance of the algorithms based on various input parameters and find
the best value for each parameter. The experiments are based on the datasets
where data are numerical. For future work, a more sophisticated algorithm needs
to be developed to deal with categorical data.
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Abstract. This paper shows that attribute-value pair blocks, used for
many years in rule induction, may be used as well for computing indis-
cernibility relations for completely specified decision tables. Much more
importantly, for incompletely specified decision tables, i.e., for data with
missing attribute values, the same idea of attribute-value pair blocks
is a convenient tool to compute characteristic sets, a generalization of
equivalence classes of the indiscernibility relation, and also character-
istic relations, a generalization of the indiscernibility relation. For in-
completely specified decision tables there are three different ways lower
and upper approximations may be defined: singleton, subset and con-
cept. Finally, it is shown that, for a given incomplete data set, the set of
all characteristic relations for the set of all congruent decision tables is
a lattice.

1 Introduction

An idea of an attribute-value pair block, used for many years in rule induction
algorithms such as LEM2 [4], may be applied not only for computing indiscerni-
bility relations for completely specified decision tables but also for computing
characteristic relations for incompletely specified decision tables. A characteristic
relation is a generalization of the indiscernibility relation.

Using attribute-value pair blocks for completely specified decision tables,
equivalence classes of the indiscernibility relation are computed first, then the
indiscernibility relation is defined from such equivalence classes. Similarly, for
incompletely specified decision tables, attribute-value pair blocks, defined in a
slightly modified way, are used to compute characteristic sets, then characteristic
relations are computed from these sets.

Decision tables are incomplete mainly for two reasons. First, an attribute
value is lost, i. e., it was recorded but currently is unavailable. Second, the
original value was irrelevant and as such not recorded and the case was classified
on the basis of remaining attribute values. Such missing attribute values will be
called ”do not care” conditions.

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets IV, LNCS 3700, pp. 58–68, 2005.
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Initially, decision tables with all missing attribute values that are lost were
studied, within rough set theory, in [8], where two algorithms for rule induc-
tion from such data were presented. This approach was studied later, see, e.g.,
[15] and [16] where the indiscernibility relation was generalized to describe such
incompletely specified decision tables.

The first attempt to study ”do not care” conditions using rough set theory
was presented in [3], where a method for rule induction was introduced in which
missing attribute values were replaced by all values from the domain of the
attribute. ”Do not care” conditions were also studied later, see, e.g., [9] and [10],
where the indiscernibility relation was again generalized, this time to describe
incomplete decision tables with ”do not care” conditions.

In this paper we will assume that the same incomplete decision table may
have missing attribute values of both types—lost attribute values and ”do not
care” conditions.

For a given completely specified decision table and concept, the lower and
upper approximations of the concept are unique, though they may be defined in
a few different ways [11] and [12]. For an incomplete decision table, lower and
upper approximations of the concept may be defined in a few different ways,
but—in general—the approximations of different types differ. In this paper we
will discuss three different lower and upper approximations, called singleton, sub-
set, and concept approximations [5]. Singleton lower and upper approximations
were studied in [9], [10], [15] and [16]. As it was observed in [4], concept lower
and upper approximations should be used for data mining. Note that similar
three definitions of lower and upper approximations, though not for incomplete
decision tables, were studied in [2], [13], [17], [18] and [19].

The last topic of the paper is studying the class of congruent incomplete
decision tables, i.e., tables with the same set of all cases, the same attribute
set, the same decision, and the same corresponding specified attribute values.
Two congruent decision tables may differ only by missing attribute values (some
of them are lost attribute values the others are ”do not care” conditions). A
new idea of a signature, a vector of all missing attribute values, is introduced.
There is a one-to-one correspondence between signatures and congruent decision
tables. The paper includes also the Homomorphism Theorem showing that the
defined operation on characteristic relations is again a characteristic relation for
some congruent decision table. For a given incomplete decision table, the set of
all characteristic relations for the set of all congruent decision tables is a lattice.

A preliminary version of this paper was presented at the Fourth International
Conference on Rough Sets and Current Trends in Computing, Uppsala, Sweden,
June 15, 2004 [6].

2 Blocks of Attribute-Value Pairs, Characteristic Sets,
and Characteristic Relations

An example of a decision table is presented in Table 1. Rows of the decision table
represent cases, while columns represent variables. The set of all cases is denoted
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by U . In Table 1,U = {1, 2, ..., 7}. Independent variables are called attributes and a
dependent variable is called a decision and is denoted by d. The set of all attributes
will be denoted by A. In Table 1, A = {Age, Hypertension, Complications}. Any
decision table defines a function ρ that maps the direct product of U and A into the
set of all values. For example, in Table 1, ρ(1, Age) = 20..29. Function ρ describing
Table 1 is completely specified (total). A decision table with completely specified
function ρ will be called completely specified, or, simpler, complete.

Table 1. A complete decision table

Attributes Decision

Case Age Hypertension Complications Delivery

1 20..29 no none fullterm
2 20..29 yes obesity preterm
3 20..29 yes none preterm
4 20..29 no none fullterm
5 30..39 yes none fullterm
6 30..39 yes alcoholism preterm
7 40..50 no none fullterm

Rough set theory, see, e.g., [11] and [12], is based on the idea of an indis-
cernibility relation, defined for complete decision tables. Let B be a nonempty
subset of the set A of all attributes. The indiscernibility relation IND(B) is a
relation on U defined for x, y ∈ U as follows

(x, y) ∈ IND(B) if and only if ρ(x, a) = ρ(y, a) for all a ∈ B.

The indiscernibility relation IND(B) is an equivalence relation. Equivalence
classes of IND(B) are called elementary sets of B and are denoted by [x]B .
For example, for Table 1, elementary sets of IND(A) are {1, 4}, {2}, {3}, {5},
{6}, {7}. The indiscernibility relation IND(B) may be computed using the idea
of blocks of attribute-value pairs. Let a be an attribute, i.e., a ∈ A and let v
be a value of a for some case. For complete decision tables if t = (a, v) is an
attribute-value pair then a block of t, denoted [t], is a set of all cases from U
that for attribute a have value v. For Table 1,

[(Age, 20..29)] = {1, 2, 3, 4},
[(Age, 30..39)] = {5, 6},
[(Age, 40..50)] = {7},
[(Hypertension, no)] = {2, 3, 5, 6},
[(Hypertension, yes)] = {1, 4, 7},
[(Complications, none)] = {1, 3, 4, 5, 7},
[(Complications, obesity)] = {2}, and
[(Complications, alcoholism)] = {6}.
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The indiscernibility relation IND(B) is known when all elementary sets of
IND(B) are known. Such elementary sets of B are intersections of the corre-
sponding attribute-value pairs, i.e., for any case x ∈ U ,

[x]B = ∩{[(a, v)]|a ∈ B, ρ(x, a) = v}.

We will illustrate the idea how to compute elementary sets of B for Table 1
where B = A:

[1]A = [4]A = [(Age, 20..29)]∩ [(Hypertension, no)]∩ [(Complications, none)] =
{1, 4},
[2]A = [(Age, 20..29)]∩[(Hypertension, yes)]∩[(Complications, obesity)] = {2},
[3]A = [(Age, 20..29)] ∩ [(Hypertension, yes)] ∩ [(Complications, none)] = {3},
[5]A = [(Age, 30..39)] ∩ [(Hypertension, yes)] ∩ [(Complications, none)] = {5},
[6]A = [(Age, 30..39)]∩[(Hypertension, yes)]∩[(Complications, alcohol)] = {6},
and
[7]A = [(Age, 40..50)] ∩ [(Hypertension, no)] ∩ [(Complications, none)] = {7}.

A decision table with an incompletely specified (partial) function ρ will be
called incompletely specified, or incomplete. For the rest of the paper we will
assume that all decision values are specified, i.e., they are not missing. Also,
we will assume that all missing attribute values are denoted either by ”?” or
by ”*”, lost values will be denoted by ”?”, ”do not care” conditions will be
denoted by ”*”. Additionally, we will assume that for each case at least one
attribute value is specified. Incomplete decision tables are described by charac-
teristic relations instead of indiscernibility relations. Also, elementary sets are
replaced by characteristic sets. An example of an incomplete table is presented
in Table 2.

Table 2. An incomplete decision table

Attributes Decision

Case Age Hypertension Complications Delivery

1 ? * none fullterm
2 20..29 yes obesity preterm
3 20..29 yes none preterm
4 20..29 no none fullterm
5 30..39 yes ? fullterm
6 * yes alcoholism preterm
7 40..50 no ? fullterm

For incomplete decision tables the definition of a block of an attribute-value
pair must be modified. If for an attribute a there exists a case x such that
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ρ(x, a) = ?, i.e., the corresponding value is lost, then the case x should not be
included in any block [(a, v)] for all values v of attribute a. If for an attribute
a there exists a case x such that the corresponding value is a ”do not care”
condition, i.e., ρ(x, a) = ∗, then the corresponding case x should be included in
all blocks [(a, v)] for every possible value v of attribute a. This modification of the
definition of the block of attribute-value pair is consistent with the interpretation
of missing attribute values, lost and ”do not care” condition. Thus, for Table 2

[(Age, 20..29)] = {2, 3, 4, 6},
[(Age, 30..39)] = {5, 6},
[(Age, 40..50)] = {6, 7},
[(Hypertension, no)] = {1, 4, 7},
[(Hypertension, yes)] = {1, 2, 3, 5, 6},
[(Complications, none)] = {1, 3, 4},
[(Complications, obesity)] = {2},
[(Complications, alcoholism)] = {6}.
We define a characteristic set KB(x) as the intersection of blocks of attribute-

value pairs (a, v) for all attributes a from B for which ρ(x, a) is specified and
ρ(x, a) = v. For Table 2 and B = A,

KA(1) = {1, 3, 4},
KA(2) = {2, 3, 4, 6} ∩ {1, 2, 3, 5, 6}∩ {2} = {2},
KA(3) = {2, 3, 4, 6} ∩ {1, 2, 3, 5, 6}∩ {1, 3, 4} = {3},
KA(4) = {2, 3, 4, 6} ∩ {1, 4, 7} ∩ {1, 3, 4} = {4},
KA(5) = {5, 6} ∩ {1, 2, 3, 5, 6} = {5, 6},
KA(6) = {1, 2, 3, 5, 6}∩ {6} = {6}, and
KA(7) = {6, 7} ∩ {1, 4, 7} = {7}.
The characteristic set KB(x) may be interpreted as the smallest set of cases

that are indistinguishable from x using all attributes from B and using a given
interpretation of missing attribute values. Thus, KA(x) is the set of all cases that
cannot be distinguished from x using all attributes. The characteristic relation
R(B) is a relation on U defined for x, y ∈ U as follows:

(x, y) ∈ R(B) if and only if y ∈ KB(x).

We say that R(B) is implied by its characteristic sets KB(x), x ∈ U . The
characteristic relation R(B) is reflexive but—in general—does not need to be
symmetric or transitive. Also, the characteristic relation R(B) is known if we
know characteristic sets K(x) for all x ∈ U . In our example, R(A) = {(1, 1),
(1, 3), (1, 4), (2, 2), (3, 3), (4, 4), (5, 5), (5, 6), (6, 6), (7, 7)}. The most
convenient way to define the characteristic relation is through the characteristic
sets. Nevertheless, the characteristic relation R(B) may be defined independently
of characteristic sets in the following way:

(x, y) ∈ R(B) if and only if ρ(x, a) = ρ(y, a) or ρ(x, a) = ∗ orρ(y, a) = ∗ for

all a ∈ B such that ρ(x, a) �= ?.
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3 Lower and Upper Approximations

For completely specified decision tables lower and upper approximations are
defined on the basis of the indiscernibility relation. Any finite union of elementary
sets, associated with B, will be called a B-definable set. Let X be any subset of
the set U of all cases. The set X is called a concept and is usually defined as
the set of all cases defined by a specific value of the decision. In general, X is
not a B-definable set. However, set X may be approximated by two B-definable
sets, the first one is called a B-lower approximation of X , denoted by BX and
defined as follows

{x ∈ U |[x]B ⊆ X}.

The second set is called a B-upper approximation of X, denoted by BX and
defined as follows

{x ∈ U |[x]B ∩X �= ∅.

The above shown way of computing lower and upper approximations, by
constructing these approximations from singletons x, will be called the first
method. The B-lower approximation of X is the greatest B-definable set, con-
tained in X . The B-upper approximation of X is the smallest B-definable set
containing X .

As it was observed in [12], for complete decision tables we may use a second
method to define the B-lower approximation of X , by the following formula

∪{[x]B|x ∈ U, [x]B ⊆ X},

and the B-upper approximation of x may de defined, using the second method,
by

∪{[x]B |x ∈ U, [x]B ∩X �= ∅).

For incompletely specified decision tables lower and upper approximations
may be defined in a few different ways. First, the definition of definability should
be modified. Any finite union of characteristic sets of B is called a B-definable
set. In this paper we suggest three different definitions of lower and upper ap-
proximations. Again, let X be a concept, let B be a subset of the set A of all
attributes, and let R(B) be the characteristic relation of the incomplete decision
table with characteristic sets K(x), where x ∈ U . Our first definition uses a
similar idea as in the previous articles on incompletely specified decision tables
[9], [10], [14], [15] and [16], i.e., lower and upper approximations are sets of sin-
gletons from the universe U satisfying some properties. Thus, lower and upper
approximations are defined by analogy with the above first method, by con-
structing both sets from singletons. We will call these approximations singleton.
A singleton B-lower approximation of X is defined as follows:

BX = {x ∈ U |KB(x) ⊆ X}.
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A singleton B-upper approximation of X is

BX = {x ∈ U |KB(x) ∩X �= ∅}.

In our example of the decision table presented in Table 2 let us say that B = A.
Then the singleton A-lower and A-upper approximations of the two concepts:
{1, 4, 5, 7} and {2, 3, 6} are:

A{1, 4, 5, 7} = {4, 7},

A{2, 3, 6} = {2, 3, 6},

A{1, 4, 5, 7} = {1, 4, 5, 7},

A{2, 3, 6} = {1, 2, 3, 5, 6}.

Note that the set A{1, 4, 5, 7} = {1, 4, 5, 7} is not A-definable (this set can-
not be presented as a union of intersections of attribute-value pair blocks). The
problem is caused by case 5. This case appears twice in the list of all blocks of
attribute-value pairs, namely, in [(Age, 30..39)] and [(Hypertension, yes)]. How-
ever, both of these blocks contain also case 6. Hence any intersection of blocks
of attribute value pairs, containing case 5, must also contain case 6. Thus, using
intersection and union of blocks of attribute-value pairs we may construct the set
{1, 4, 5, 6, 7} but not the set {1, 4, 5, 7}. Therefore, singleton approximations
are, in general, not A-definable, and, as such, are not useful for rule induction.

The second method of defining lower and upper approximations for complete
decision tables uses another idea: lower and upper approximations are unions
of elementary sets, subsets of U . Therefore we may define lower and upper ap-
proximations for incomplete decision tables by analogy with the second method,
using characteristic sets instead of elementary sets. There are two ways to do
this. Using the first way, a subset B-lower approximation of X is defined as
follows:

BX = ∪{KB(x)|x ∈ U, KB(x) ⊆ X}.

A subset B-upper approximation of X is

BX = ∪{KB(x)|x ∈ U, KB(x) ∩X �= ∅}.

Since any characteristic relation R(B) is reflexive, for any concept X , single-
ton B-lower and B-upper approximations of X are subsets of the subset B-lower
and B-upper approximations of X , respectively. For the same decision table, pre-
sented in Table 2, the subset A-lower and A-upper approximations are

A{1, 4, 5, 7} = {4, 7},

A{2, 3, 6} = {2, 3, 6},

A{1, 4, 5, 7} = {1, 3, 4, 5, 6, 7},

A{2, 3, 6} = {1, 2, 3, 4, 5, 6}.
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The second possibility is to modify the subset definition of lower and up-
per approximation by replacing the universe U from the subset definition by a
concept X . A concept B-lower approximation of the concept X is defined as
follows:

BX = ∪{KB(x)|x ∈ X, KB(x) ⊆ X}.
Obviously, the subset B-lower approximation of X is the same set as the

concept B-lower approximation of X . A concept B-upper approximation of the
concept X is defined as follows:

BX = ∪{KB(x)|x ∈ X, KB(x) ∩X �= ∅} = ∪{KB(x)|x ∈ X}.

The concept B-upper approximation of X is a subset of the subset B-upper
approximation of X . Thus, concept upper approximations are more useful for
rule induction than subset upper approximations. For the decision presented in
Table 2, the concept A-lower and A-upper approximations are

A{1, 4, 5, 7} = {4, 7},

A{2, 3, 6} = {2, 3, 6},
A{1, 4, 5, 7} = {1, 3, 4, 5, 6, 7},

A{2, 3, 6} = {2, 3, 6}.

Note that for complete decision tables, all three definitions of lower approxi-
mations, singleton, subset and concept, coalesce to the same definition. Also, for
complete decision tables, all three definitions of upper approximations coalesce
to the same definition. This is not true for incomplete decision tables, as our
example shows.

4 Congruent Decision Tables

In this section, for simplicity, all characteristic relations will be defined for the
entire set A of attributes instead of its subset B. In addition, and the charac-
teristic relation will be denoted by R instead of R(A). Finally, in characteristic
sets KA(x), the subscript A will be omitted.

Two decision tables with the same set U of all cases, the same attribute set
A, the same decision d, and the same specified attribute values will be called
congruent. Thus, two congruent decision tables may differ only by missing at-
tribute values * and ?. Obviously, there is 2n congruent decision tables, where n
is the total number of all missing attribute values in a decision table.

To every incomplete decision table we will assign a signature of missing at-
tribute values, a vector (p1, p2, ..., pn), where pi is equal to either ? or *, the value
taken from the incomplete decision table; i = 1, 2, ..., n, by scanning the decision
table, row after row, starting from the top row, from left to right. Thus every
consecutive missing attribute value should be placed as a component of the sig-
nature, where p1 is the first missing attribute value, identified during scanning,
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and pn is the last one. For Table 2, the signature is (?, *, ?, *, ?). In the set of
all congruent decision tables, a signature uniquely identifies the table and vice
versa. On the other hand, congruent decision tables with different signatures
may have the same characteristic relations. For example, tables congruent with
Table 2, with signatures (?, *, *, *, *) and (*, ?, *, *, *), have the same character-
istic relations. Two congruent decision tables that have the same characteristic
relations will be called indistinguishable.

Let D1 and D2 be two congruent decision tables, let R1 and R2 be their
characteristic relations, and let K1(x) and K2(x) be their characteristic sets for
some x ∈ U , respectively. We say that R1 ≤ R2 if and only if K1(x) ⊆ K2(x) for
all x ∈ U . For two congruent decision tables D1 and D2 we define a characteristic
relation R = R1 · R2 as implied by characteristic sets K1(x) ∩ K2(x). For two
signatures p and q, p · q is defined as a signature r with ri(x) = ∗ if and only if
pi(x) = ∗ and qi(x) = ∗, otherwise ri(x) = ?, i = 1, 2, ..., n.

Let A = {a1, a2, ..., ak}. Additionally, let us define, for x ∈ U and a ∈ A, the
set [(a, ρ(x, a))]+ in the following way: [(a, ρ(x, a))]+ = [(a, ρ(x, a))] if ρ(x, a) �= ∗
and ρ(x, a) �= ? and [(a, ρ(x, a))]+ = U otherwise.

Lemma. For x ∈ U , the characteristic set K(x) = ∩k
i=1[(ai, ρ(x, ai))]+.

Proof. In the definition of K(x), if ρ(x, a) = ∗ or ρ(x, a) = ?, the corresponding
block [(a, ρ(x, a))] is ignored. Additionally, by our assumption, for every x ∈ U
there exists an attribute a ∈ A such that ρ(x, a) �= ∗ and ρ(x, a) �= ?.

Let D be an incomplete decision table and let p be the signature of D. Let
ψ be a function that maps a signature p into a characteristic relation R of D.

Homomorphism Theorem. Let p and q be two signatures of congruent deci-
sion tables. Then ψ(p · q) = ψ(p) · ψ(q), i.e., ψ is a homomorphism.

Proof. Let D1, D2 be two congruent decision tables with functions ρ1 and
ρ2, signatures p and q, and characteristic relations R1, R2, respectively, where
ψ(p) = R1 and ψ(q) = R2. Let D be a congruent decision table with function ρ
and signature p · q and let ψ(p · q) = R. Due to Lemma, for every x ∈ U

K1(x) ·K2(x) = (∩k
i=1[(ai, ρ1(x, ai))]+) ∩ (∩k

i=1[(ai, ρ2(x, ai))]+) =
∩k

i=1[(ai, ρ1(x, ai))]+ ∩ [(ai, ρ2(x, ai))]+

If ρj(x, ai) �= ∗ and ρj(x, ai) �= ? then [(ai, ρj(x, ai))] contains y ∈ U if and
only if ρj(y, ai) = ∗, j = 1, 2. Moreover, [(ai, ρ(x, ai))]+ contains y if and only
if ρ1(y, ai) = ∗ and ρ2(y, ai) = ∗. Thus, K1(x) ·K2(x) = ∩k

i=1[(ai, ρ1(x, ai))]+ =
K(x).

Thus, ψ(p) · ψ(q) is the characteristic relation of a congruent decision table
with the signature p · q. For the set L of all characteristic relations for the
set of all congruent decision tables, the operation · on relations is idempotent,
commutative, and associative, therefore, L is a semilattice [1], p. 9. Moreover,
L has a universal upper bound ψ(∗, ∗, ..., ∗) and its length is finite, so L is
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a lattice, see [1], p. 23. The second lattice operation, resembling addition, is
defined directly from the diagram of a semilattice.

Let us define subset E of the set of all congruent decision tables as the set of
tables with exactly one missing attribute value ”?” and all remaining attribute
values equal to ”*”. Let G be the set of all characteristic relations associated
with the set E. The lattice L can be generated by G, i.e., every element of L
can be expressed as ψ(∗, ∗, ...∗) or as a product of some elements from G.

5 Conclusions

An attribute-value pair block is a very useful tool not only for dealing with
completely specified decision tables but, much more importantly, also for in-
completely specified decision tables. For completely specified decision tables
attribute-value pair blocks provide for easy computation of equivalence classes
of the indiscernibility relation. Similarly, for incompletely specified decision ta-
bles, attribute-value pair blocks make possible, by equally simple computations,
determining characteristic sets and then, if necessary, characteristic relations.

For a given concept of the incompletely specified decision table, lower and up-
per approximations can be easily computed from characteristic sets—knowledge
of characteristic relations is not required. Note that for incomplete decision tables
there are three different approximations possible: singleton, subset and concept.
The concept approximations are the best fit for the intuitive expectations for
lower and upper approximations. Our last observation is that for a given in-
complete decision table, the set of all characteristic relations for the set of all
congruent decision tables is a lattice.
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Abstract. Prediction of gene function introduces a new learning prob-
lem where the decision classes associated with the objects (i.e., genes)
are organized in a directed acyclic graph (DAG). Rough set theory, on
the other hand, assumes that the classes are unrelated cannot handle this
problem properly. To this end, we introduce a new rough set framework.
The traditional decision system is extended into DAG decision system
which can represent the DAG. From this system we develop several new
operators, which can determine the known and the potential objects of a
class and show how these sets can be combined with the usual rough set
approximations. The properties of these operators are also investigated.

1 Introduction

A supervised learning algorithm is given a training set with a set of objects
with known classes. From the training set, it produces a classifier that predicts
the class of an object from some observable attributes of the object. When a
classifier has been found it can later applied to classify objects with unknown
class. An important assumption behind such an algorithm is that the classes are
unordered and discrete. In many real life situations, however, this assumption
does not hold. One particular example is prediction of gene function annotations.

Molecular biologists have sequenced the genome and identified the genes in
many organisms, but they have only fragmented knowledge of the function of
these genes, and this knowledge is scattered in the biological literature and var-
ious biological databases. Consequently, there is a need for databases that de-
scribe the function of the genes.

There are currently several efforts that develop such databases. One impor-
tant effort has been driven by the Gene Ontology (GO) Consortium [2]. This
consortium provides ontologies1 that define structured vocabularies for describ-
ing the function of gene products and catalogs with annotations2 for several
1 The ontologies describe three different aspects of the function of a gene product:

Biological process, which refers to the objective to which a gene or a gene product
contributes, molecular function, which refers to the biochemical activity, i.e., what
the gene product does on the biochemical level, and cellular component, which refers
to the subcellular location where a gene product is active.

2 An annotation associates a gene with a category in the ontology.
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model organisms [3, 4]. However, the catalogs are developed manually, and the
genome of an organism consists of thousands of genes. Developing annotations is
therefore a formidable and time-consuming task. Several studies have been con-
ducted where annotations have been predicted automatically with supervised
learning methods. One example is Brown et al. [1], which used support vector
machines on microarray data to predict 5 classes from the MIPS ontology [5]. A
more recent attempt is Hvidsten et al. [9], which attempted to predict 16 classes
from the process ontology of the GO consortium used Rough Sets [16].

The ontologies of the GO form directed acyclic graphs (DAGs) where the
classes are related (The MIPS ontology is tree). In particular, a class subsumes
its children classes so that a gene annotated to class c also belongs to the parents
of c3. Therefore, a standard supervised learning may not be applied directly to
this task. This problem was avoided in the mentioned studies by a selecting few
unrelated classes manually. However, this is impractical when we want to develop
a full classifier and will typically result in a sub-optimal solution.

In a previous paper [15] we therefore developed an algorithm for supervised
learning in the Gene Ontology. However, this algorithm was not developed for-
mally and was not very robust. In this paper we will present a formal rough set
framework for modeling decision classes in a DAG. A part of this framework was
described in [14], but without most of the details. Here we present the full details
of the framework, which has been revised to large extend. We will introduce a
DAG-decision system, which is an extension of the traditional decision system.
This system captures the structure of the DAG by the means of a partial or-
der. Using this partial order, we will develop several boundary sets, which allow
us to determine whether an object belongs to a class or not, and show how to
combine the standard rough set operators. Properties of these boundary sets
and approximations will be investigated. We will also consider a special type of
DAGs, which we call well-defined. These allow us to simplify the definition of
the boundary sets and hence ease the implementation of these sets. In [13] we
will show how the framework may be used in a supervised learning algorithm
and introduce an new bottom-up algorithm. This algorithm will be evaluated on
both experimental and artificial data sets.

2 What Makes Learning in a DAG Difficult?

It may not be apparent at first sight that learning in a DAG is a special problem
that cannot be handled by an ordinary learning algorithm. In this section, we will
discuss the issues that are introduced by the DAG and motivate the solutions
that will be presented.

2.1 The Classes Are Related

The most obvious problem is the structure between the classes. An ordinary
rule learning algorithm assumes that the classes are unrelated and will try to
3 A full discussion of the semantics can be found in [12–ch. 6].
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discern between related classes if it is applied on the DAG. This may result in
very specific rules. Specific rules are, however, a problem since they cover few
objects and are more likely to be based on artifacts (in the training data) that
do not actually contribute to discerning the objects.

For example, an algorithm, which creates possible rules [7, 8], may create
the rules shown in Figure 2 if it is trained on the decision system in Figure 1.
These rules cover few objects, and it is possible to find a smaller set of more
general rules if the structure of the ontology is considered. According to the
ontology in Figure 1, intracellular protein traffic is a subclass of cell
growth & maintenance so that the rules need not discriminate between them.
The following rule would thus be created.

〈15m-30m, down〉 ∧ 〈30m-1H, down〉 → 〈Process, cell growth〉
This rule covers objects o3, o7, o8, and o9 and is more general than the cor-
responding rules found in Figure 2. So it is clearly an improvement on these
rules. Still, objects o3 and o9 are labeled with subclasses of cell growth &
maintenance. The predictions made by this rule will be less detailed than the
original decision classes of objects o3 and o9. So some information is lost.

However, we may find more general rules for the subclasses as well. Objects
o8 and o9 have almost the same information vector, and it is likely that object
o8 belongs to intracellular protein traffic. If we do not discern between
related classes, we may learn a rule such as:

〈30m-1H, down〉 ∧ 〈1H-2H, down〉 → 〈Process, intracellular p. traffic〉
This rule covers more objects than the corresponding rules in Figure 2. The rules
in the figure have the same number of descriptors as this rule. However, they try
to discern between the objects by means of attribute 0H-15m for which o8 and
o9 have a different value. This difference is most likely an artifact due to noise
such that the rules in Figure 2 may have a lower prediction power than the new
rule. Furthermore, the rule gives a more detailed prediction for object o8.

If the DAG structure is considered we may also resolve inconsistencies. Object
o7 is annotated with a superclass of the class of object o3, and both objects
are members of the same elementary set. Thus, we may assume that object o7
belongs to the same class as object o3 and remove the fifth rule.

Hence, an ordinary learner will try to find rules that discern between related
classes. In order to do so it may choose noisy attributes for the descriptors in
the rules and neglect other more relevant attributes. It will consequently be very
sensitive to noise and may have a low predictive power. If we do not discriminate
between related classes, on the other hand, we may obtain more general and more
accurate rules.

2.2 The Detail Level of the Annotations Varies

Another problem that arises in the ontology is the detail level of the annotations.
The existing biological knowledge about the functions of genes has a strongly
varying detail level. Some annotations refer to leaf classes, but many annotations
concern non-leaf classes as illustrated in Figure 1.
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Root

cell growth & maintenance cell communication

transport intracellular protein traffic cell proliferation cell adhesion cell recognition

cytoplasmic transport

Object 0H-15m 15m-30m 30m-1H 1H-2H 2H-4H Process Name

o1 up up up const const cell proliferation
o2 up up up down down cell proliferation
o3 down down down up up cell proliferation
o4 up up up down down cell adhesion
o5 down up up down up cell adhesion
o6 const const const down down cell adhesion
o7 down down down up up cell growth & maintenance
o8 up down down down down cell growth & maintenance
o9 const down down down down intracellular protein traffic
o10 down up up up up transport
o11 down down up up up cytoplasmic transport

Fig. 1. A DAG-decision system A = 〈U, A, d, �〉. The DAG is a small part of the
process ontology (rev. 1.221 - 05-Feb-2001) from the Gene Ontology Consortium.

〈0H-15m, u〉∧〈15m-30m, u〉 → 〈Process, cell prolif.〉 (o1,o2,o4)
〈0H-15m, d〉∧〈15m-30m, d〉 → 〈Process, cell prolif.〉 (o3,o7)
〈30m-1H, u〉∧〈1H-2H, d〉 → 〈Process, cell adhesion〉 (o4,o5)
〈0H-15m, c〉∧〈15m-30m, c〉 → 〈Process, cell adhesion〉 (o6)
〈0H-15m, d〉∧〈15m-30m, d〉 → 〈Process, cell growth〉 (o3,o7)
〈0H-15m, u〉∧〈15m-30m, d〉 → 〈Process, cell growth〉 (o8)
〈0H-15m, c〉∧〈15m-30m, d)〉 → 〈Process, intra. p. traffic〉 (o9)
〈15m-30m, u〉∧〈30m-1H, u〉∧〈1H-2H, u〉 → 〈Process, transport〉 (o10)
〈15m-30m, d〉∧〈30m-1H, u〉∧〈1H-2H, u〉 → 〈Process, cytop. transport〉 (o11)

Fig. 2. Possible rules when the class relationships are ignored. The values up, down,
and const are represented as u, d, and c, respectively. The objects covered by each rules
is displayed in parentheses.

The variation in the detail level means that we cannot avoid the structure of
the ontology such that an ordinary learning algorithm can be applied directly.
For example, if all of the annotations referred to leaf classes, we could reduce
the problem by only using the leaf classes. However, since an annotation may
refer to a non-leaf class, we would lose a lot of annotations if we tried. Moving
all non-leaf annotations to the leaf classes is not an alternative, either. Most of
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the annotations in the leaf classes would belong to non-leaf classes, and these
would be shared by many leaf classes. Discerning between these classes would
thus be very hard.

Alternatively, we could create a “cut” through the ontology by selecting the
most general classes, which contain genes (i.e., cell growth & maintenance
and cell adhesion in Figure 1) and move the annotations from the subclasses
to these classes. However, the details of the moved annotations would be lost.

Hence, the ontology cannot be reduced to a flat set of unrelated classes without
losing whole annotations or annotation details. So the structure of the ontology
must be considered during learning and prediction.

2.3 There Are Few Objects per Class

A rule learning algorithm needs a minimum number of objects in order to learn
rules that accurately predict a class. The number of objects in an ordinary
training set is therefore much larger than the number of classes. However, the
number of genes in a microarray study may be of same magnitude as (or even
smaller than) the number of classes in the process ontology. Hence, the number
of objects that are available for each class will be very low.

One extreme example is the yeast genome that has about 6, 000 genes. Re-
vision 2.577 of the process ontology, on the other hand, contains about 4, 400
different classes. There will consequently be only 1.34 objects/class.

The number of objects/class may be a little higher in practice. Some of classes
in the ontology may not be relevant for a particular organism, and these may
be removed. Moreover, a gene may be annotated to more than one class so that
several classes may share the same objects. However, there may still be a lot of
classes that need to be discerned, and the annotations may be spread throughout
the whole ontology so that each class may have very few objects. Finding genuine
distinguishing properties in the information vectors may be very hard even if we
do not discriminate between the related classes.

Thus, it may be necessary to increase the number of objects in each class.
This may be achieved by moving the objects from some related classes to a joint
class. Rules for the joint class can then be learned from the total set of objects.

The annotations may be moved either upwards or downwards. Moving objects
upwards is the simplestprocedureand is always correct.Anobjectxannotatedwith
a class cbelongsalso toanyof the superclasses of c. So, if a superclass of c is predicted
forx, a correct prediction has beenmade even though the prediction is less detailed.

Moving objects downwards is more difficult. Details are gained in this case,
but a decision must be made with regard to the subclass to which an annotation
should be moved. The only available knowledge for making such a decision is the
information vectors. However, objects having a similar information vectors are
likely to belong to same class. It seems reasonable to move generally annotated
objects to subclasses where the objects have similar information vectors. One way
to do this would be to apply a similarity measure and compute the similarity
of the information vectors. An object could then be moved to the subclass with
the most similar objects according to this measure.
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We would like to stress that we are not suggesting that we move all objects
to the most general or the most specific classes. This idea was dismissed in
Section 2.2, and we are not reconsidering it. We are only proposing that the
objects are moved to some of the related classes so that the precision and the
detail level of the predictions are optimized.

2.4 There Is a Trade-Off Between Detail Level and Precision

Moving annotations downwards is obviously preferable since more detailed pre-
dictions are obtained. However, it may not be possible to get satisfactory preci-
sion by moving genes downwards, and better results may be obtained by moving
the objects upwards. There is, in fact, a trade-off between the detail level and
the precision of the predictions:

– The number of classes that need to be separated increases as one moves down-
wards in the ontology. The number of classes immediately below the root is
quite small, and it is therefore quite easy to predict these classes. However, the
number of leaf classes is large (The process ontology, rev. 2.577 has 2, 725 leaf
classes), and it may be very difficult to separate all of them. Thus, the difficulty
of the learning problem increases with the detail level of the predictions.

– The number of objects is independent of the number of classes and will
remain the same even if objects are moved. This means that the number of
objects per class will decrease as we move downwards. So, not only must a
larger number of classes be separated, but each class will have fewer objects
that set it apart from the rest.

– The available information for discerning between the objects, i.e., the in-
formation vectors, remains the same as well. Hence, the ability to discern
between the objects does not change, while more classes must be separated
when objects are moved downwards. In particular, the information vectors
may describe only properties of general classes, and it may not be possible to
discern between detailed classes without additional data. The information
vectors may consequently be insufficient for discerning between the more
detailed classes.

Thus, it may not be possible to have both details and precision. There is a
trade-off where the precision of the predictions increases as the detail level is
reduced, and vice versa. In this trade-off, details should be sacrificed for preci-
sion since a classifier giving detailed, but inaccurate predictions is quite useless.
However, no more details should be given away than what is absolutely neces-
sary. Otherwise, we could just use the solution from Section 2.2 where only the
most general classes were selected.

3 A More General Order on the DAG

In order to solve the problems that we just have discussed we need a framework
that allows us to represent the DAG structure. We begin the development of
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this framework by defining an ordering relation on the DAG and show that this
relation corresponds to a partial order. In the following sections we will introduce
two concepts — the neighborhood and the complement of a class — before we
introduce the DAG decision system in Section 6.

Definition 1 (More general). Let G = 〈Vd, E〉 be a DAG where Vd is a set
of decision classes and E ⊆ Vd × Vd is a set of edges in the graph. The relation
c � e denotes that c is more general than e (c, e ∈ Vd) and is defined on G such
that

1. c � c for all c ∈ Vd

2. c � e for all 〈e, c〉 ∈ E
3. for all c, f ∈ Vd, c � f , if there is an e ∈ Vd such that c � e and e � f .

Definition 2 (Less general). c � e denotes that c is less general than e and
holds iff e � c

� (and �) is a partial order as stated by the following proposition.

Proposition 1. � is a partial order on Vd.

Proof. � is reflexive and transitive by case 1 and 3, respectively, and it remains
to show that � is anti-symmetric. Assume that � is not anti-symmetric. Then,
there are some classes c and e in Vd such that c � e and e � c, but c �= e. c � e,
together with case 2 and 3, implies that there is a path 〈e, v1, . . . , vk, c〉 from e
to c in G. Similarly, there must be a path 〈c, w1, . . . , wl, e〉 from c to e (since
e � c). Then, there is a cycle 〈c, w1, . . . , wk, e, v1, . . . , vl, c〉 in the graph, and this
results in a contradiction. Hence, � is anti-symmetric if G is acyclic. This means
that � must be a partial order.

The following relations can be derived from �.

Definition 3 (Strictly more general). Given a partial order � on a set of
classes Vd, we say that c is strictly more general than e (c, e ∈ Vd), denoted as
c � e, iff c � e and c �= e.

Two classes are related if one is more general than the other.

Definition 4 (Related classes). Let � be a partial order on a set of classes
Vd. The classes c, e ∈ Vd are related, denoted as c ≈ e, iff c � e or e � c. If
c �≈ e, we say that c and e are unrelated.

Notice that ≈ is reflexive and symmetric, but not transitive. In the following,
we will also these definitions.

Definition 5 (Classes).

– A class c is a superclass of e if c � e. A class c is an immediate superclass
of e if it is a superclass of e and there is no f ∈ Vd such that c � f � e.
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– A class c is a subclass of e if e � c. A class c is an immediate subclass of e
if it is a subclass of e and there is no f ∈ Vd such that e � f � c.

– A leaf class c has no subclasses. Hence, for all e ∈ Vd, c �� e.
– A non-leaf class c has at least one subclass. Hence, there is some e ∈ Vd such

that c � e.
– A root class c has no superclasses. Hence, for all e ∈ Vd, e �� c holds for c.

4 The Neighborhood of a Class

The neighborhood of a class c consists of the classes that are related to c. The
known and the potential sets that we will develop in Section 7 are defined through
the classes in their neighborhood. We will therefore define special sets that denote
theses classes. Sometimes we need to consider only a part of the neighborhood
such as the classes above or below a class. Hence, we introduce three different
sets: The above set, the below set, and the related set.

Definition 6. Let C ⊆ Vd be a set of classes. Then the classes above, below or
related to C are defined as follows:

– Above set: [C]� = {e ∈ Vd | for some c ∈ C, e � c}
– Below set: [C]� = {e ∈ Vd | for some c ∈ C, c � e}
– Related set: [C]≈ = {e ∈ Vd | for some c ∈ C, c ≈ e}

The sets are defined for set of classes rather than a single class, but may
obviously be used for single classes as well. For example, the set of classes above
class d is [{d}]� = {e ∈ Vd | e � d}. Sometimes we will abuse this notation
and write [c]� instead of [{c}]� when our intention is the later. However, we
follow the convention that sets of classes are denoted with capital letters, and
single classes are denoted with non-capital letters. Hence, it will always be clear
whether we refer to neighborhood of a class or a set of classes.

The above, below, and related sets have several useful properties that we will
apply in our proofs.

Lemma 1

a) C ∩ [D]� = ∅ ⇐⇒ [C]� ∩D = ∅
b) C ∩ [D]� = ∅ ⇐⇒ [C]� ∩D = ∅
c) C ∩ [D]≈ = ∅ ⇐⇒ [C]≈ ∩D = ∅

Proof.

a) C ∩ [D]� = ∅ ⇐⇒ not (for some e ∈ C, e ∈ [D]�)
⇐⇒ not (for some e ∈ C, and for some f ∈ D, e � f)
⇐⇒ not (for some f ∈ D, and for some e ∈ C, e � f)
⇐⇒ not (for some f ∈ D, f ∈ [C]�)
⇐⇒ [C]� ∩D = ∅
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b) Follows from directly from the first case and the commutativity of ∪ (i.e.,
[A]�∩B = ∅ ⇔ A∩ [B]� = ∅ is equivalent to B∩ [A]� = ∅ ⇔ [B]�∩A = ∅).

c) Proven in the same manner as the first case.

Lemma 2

a) [C ∪D]� = [C]� ∪ [D]�

b) [C ∪D]� = [C]� ∪ [D]�

c) [C ∪D]≈ = [C]≈ ∪ [D]≈

Proof. Follows directly from the definitions.

Lemma 3. If C ⊆ D,

a) [C]� ⊆ [D]�

b) [C]� ⊆ [D]�

c) [C]≈ ⊆ [D]≈

Proof. The first case is proven as follows: Since C ⊆ D, we have that D =
C ∪ (D − C). Hence, [D]� = [C ∪ (D − C)]� = [C]� ∪ [D − C]� ⊇ [C]� by
Lemma 2a. The last two cases can be proven in the same manner.

The DAG induces a subset inclusion order on the above and below sets. If e is
above f , every class above e is also above f . Moreover, every class below f is
also below e. This property is captured by the following lemma.

Lemma 4

a) e � f iff [e]� ⊆ [f ]�

b) e � f iff [e]� ⊆ [f ]�

c) A ∩ [e]� �= ∅ iff [e]� ⊆ [A]�

d) A ∩ [e]� �= ∅ iff [e]� ⊆ [A]�

Proof.

a) If e � f , then for any g ∈ [e]� we have that g � e � f . Consequently,
g ∈ [e]� implies g ∈ [f ]� so that [e]� ⊆ [f ]�. If [e]� ⊆ [f ]� then e ∈ [f ]�

since e ∈ [e]�. Hence, e � f .
b) This is proven in the same manner as case a.
c) If A ∩ [e]� �= ∅, there is an f ∈ A such that e � f . Case a implies that

[e]� ⊆ [f ]�, and Lemma 3a implies that [f ]� ⊆ [A]� (since {f} ⊆ A).
Hence, [e]� ⊆ [f ]� ⊆ [A]�.
If [e]� ⊆ [A]�, e must be in [A]� (since e ∈ [e]�). This means that [A]� ∩
{e} �= ∅. Then A ∩ [e]� �= ∅ follows by Lemma 1a.

d) This is proven in the same manner as case c.
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5 The Complement of a Class

The complement of a class c is the set of classes that should be separated from
c by a learning algorithm. In an ordinary (flat) decision system, we want to
separate each class from the other classes in Vd. A learning algorithm will thus
try to discern the objects of c (i.e., the objects in Xc) from the objects of Vd−{c}
(i.e., the objects in

⋃
e∈Vd−{c} Xe = U −Xc). Hence, the complement of c may

be defined as Vd − {c} in this case.
This definition is not appropriate for a DAG-decision system. The DAG de-

fines relationships between the classes, and these relationships create implicit
annotations. For example, an object does not only belong to the class(es) to
which it is annotated, it also belongs to the superclasses of the class(es). Thus,
we define the complement of a class to be the set of classes that are unrelated
to the class.

Definition 7 (Complement). For a set of classes C ⊆ Vd, the complement,
denoted by ∼C, is the set of classes that are unrelated to any class in C:

∼C = {e ∈ Vd | for all c ∈ C, e �≈ c}

Note that we define the complement on a set of classes just as we did with the
above, below, and related sets since the complement of a single class is a special
case of the complement of a set of classes (i.e, ∼{c} = {e ∈ Vd | e �≈ c}). Just as
before we may abuse the notation slightly and write ∼c instead of ∼{c} when
we consider single classes.

The complement ∼C has several interesting properties. In particular, it is
equal to the intersection of the single class complements.

Lemma 5. ∼C =
(⋂

c∈C ∼c
)

if we assume that
(⋂

c∈C ∼c
)

= Vd when C = ∅.

Proof. ∼C = {e ∈ Vd | for all c ∈ C, e �≈ c} = {e ∈ Vd | for all c ∈ C, e ∈ ∼c}
=

(⋂
c∈C ∼c

)
Moreover, it has the following properties on unions and intersections of classes.

Lemma 6. ∼(C ∪D) = ∼C ∩ ∼D

Proof. Follows directly from Lemma 5.

Lemma 7. ∼(C ∩D) ⊇ ∼C ∪ ∼D

Proof. For the set C, we have C = (C ∩ D) ∪ (C − D). Then it follows from
Lemma 6 that ∼C = ∼(C ∩D) ∩ ∼(C −D). This means that ∼C ⊆ ∼(C ∩D)
since A ∩ B ⊆ A holds for any sets A and B. A similar argument holds for D.
Hence, ∼D ⊆ ∼(C ∩D). Then ∼C ∪ ∼D ⊆ ∼(C ∩D) holds since for any sets
A, A′, and B, we have that A ⊆ B and A′ ⊆ B implies A ∪A′ ⊆ B.

The complement is also closely connected to the related set that was defined in
Section 4.
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Fig. 3. The double complement problem: C �= ∼∼C

Lemma 8. ∼C = Vd − [C]≈

Proof. ∼C = {e ∈ Vd | for all c ∈ C, e �≈ c} = Vd−{e ∈ Vd | for some c ∈ C, c ≈
e} = Vd − [C]≈

The standard complement for sets obeys the law of double negation so that
C = Vd − (Vd − C). Unfortunately, it is not true for the complement of a class
such that ∼∼C = Vd−[∼C]≈ = Vd−[Vd−[C]≈]≈ �= C. For example, let C = {c}
in Figure 3. Then∼C = {b1, b2, b3} and∼∼C = {c, d1}. C is nonetheless a subset
of ∼∼C.

Lemma 9. C ⊆ ∼∼C

Proof. [C]≈ ∩ ∼C = ∅ ⇐Lem 2c====⇒ C ∩ [∼C]≈ = ∅ ⇐Lem 8====⇒ C ∩ (Vd −∼∼C) = ∅
⇐Lem 23=====⇒ C ⊆ ∼∼C

Even though ∼∼C ⊆ C does not hold, we may prove that ∼∼∼C ⊆ ∼C.

Lemma 10. ∼C = ∼∼∼C

Proof. Lemma 9 implies that ∼C ⊆ ∼∼∼C. Hence, we will only prove that
∼∼∼C ⊆ ∼C. From Lemma 9, we have that C ⊆ ∼∼C, and C ⊆ ∼∼C Lem 3 c=====⇒
[C]≈ ⊆ [∼∼C]≈ ⇐Lem 22=====⇒ Vd − [∼∼C]≈ ⊆ Vd − [C]≈ ⇐Lem 8====⇒ ∼∼∼C ⊆ ∼C.

We may also prove a weak subset relation between ∼∼C and C.

Lemma 11. [e]≈ ∩ ∼∼C �= ∅ iff [e]≈ ∩ C �= ∅

Proof. Lemmas 8 and 10 implies that

[∼∼C]≈ = Vd − (Vd − [∼∼C]≈) = Vd −∼∼∼C = Vd −∼C = [C]≈

By this property and Lemma 1c, it follows that [e]≈ ∩ ∼∼C �= ∅ ⇐⇒ {e} ∩
[∼∼C]≈ �= ∅ ⇐⇒ {e} ∩ [C]≈ �= ∅ ⇐⇒ [e]≈ ∩ C �= ∅.
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In Lemma 24 (in the appendix) states that if A ∩ B �= ∅ and we replace A
(or B) with a superset A′ (or B′), the intersection A′ ∩B (A ∩ B′) will still be
empty. This allows us to prove the following properties on C and ∼∼C.

Lemma 12

a) [e]� ∩ C �= ∅ implies [e]≈ ∩ C �= ∅
b) [e]� ∩ C �= ∅ implies [e]≈ ∩ C �= ∅
c) [e]� ∩ C �= ∅ implies [e]� ∩ ∼∼C �= ∅
d) [e]� ∩ C �= ∅ implies [e]� ∩ ∼∼C �= ∅

Proof. These properties follow from Lemma 24 since [e]� ⊆ [e]≈, [e]� ⊆ [e]≈,
and C ⊆ ∼∼C (Lemma 9).

The above set [e]� and the below set [e]� of a class e are related through the
complement so that if some class in ∼∼C is in the above set (the below set)
then no class in ∼C is in the below set (the above set), and vice versa. Note this
result is due to a special property of the complement and does not hold for C.

Lemma 13

a) [e]� ∩ ∼∼C �= ∅ implies [e]� ∩ ∼C = ∅
b) [e]� ∩ ∼∼C �= ∅ implies [e]� ∩ ∼C = ∅
c) [e]� ∩ ∼C = ∅ implies [e]≈ ∩ ∼∼C �= ∅
d) [e]� ∩ ∼C = ∅ implies [e]≈ ∩ ∼∼C �= ∅
e) [e]≈ ∩ ∼C = ∅ implies [e]� ∩ ∼∼C �= ∅
f) [e]≈ ∩ ∼C = ∅ implies [e]� ∩ ∼∼C �= ∅

Proof.

a) [e]� ∩ ∼∼C �= ∅ ⇐Lem 4c====⇒ [e]� ⊆ [∼∼C]� [D]� ⊆ [D]≈========⇒ [e]� ⊆ [∼∼C]≈

⇐Lem 23=====⇒ [e]� ∩ (Vd − [∼∼C]≈) = ∅ ⇐Lem 8====⇒ [e]� ∩ ∼∼∼C = ∅ ⇐Lem 10=====⇒
[e]� ∩ ∼C = ∅

b) Proven in the same manner as a.

c) [e]� ∩ ∼C = ∅ ⇐Lem 8 & 23========⇒ [e]� ⊆ [C]≈ e ∈ [e]�=====⇒ e ∈ [C]≈ ⇐⇒
{e} ∩ [C]≈ �= ∅ ⇐Lem 1c====⇒ [e]≈ ∩ C �= ∅ ⇐Lem 11=====⇒ [e]≈ ∩ ∼∼C �= ∅

d) Proven in the same manner as c.
e) [e]≈ ∩ ∼C = ∅ ⇐Lem 1c====⇒ {e} ∩ [∼C]≈ = ∅ ⇐Lem 8 & 23========⇒ {e} ⊆ ∼∼C ⇐⇒

{e} ∩ ∼∼C �= ∅ Lem 24b=====⇒ [e]� ∩ ∼∼C �= ∅ (since {e} ⊆ [e]�)
f) Proven in the same manner as e.

Theorem 1. [e]� ∩ ∼∼C �= ∅ iff [e]� ∩ ∼C = ∅

Proof. Lemma 13a states that [e]� ∩ ∼∼C �= ∅ implies [e]� ∩ ∼C = ∅. So, we
need only to prove that [e]� ∩ ∼C = ∅ implies [e]� ∩ ∼∼C �= ∅.

[e]� ∩ ∼C = ∅ Lem 13c=====⇒ [e]≈ ∩ ∼∼C �= ∅ ⇐By def====⇒ ([e]� ∪ [e]�) ∩ ∼∼C �= ∅

⇐Lem 25=====⇒ [e]� ∩ ∼∼C �= ∅ or [e]� ∩ ∼∼C �= ∅
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The first part of this disjunction is our goal. So, it remains only to prove that
[e]� ∩ ∼∼C �= ∅ also follows from [e]� ∩ ∼C = ∅ when [e]� ∩ ∼∼C �= ∅.
Lemma 13b states that [e]� ∩ ∼C = ∅ follows from [e]� ∩ ∼∼C �= ∅. Hence,
both [e]� ∩ ∼C = ∅ and [e]� ∩ ∼C = ∅ are true.

[e]� ∩ ∼C = ∅ and [e]� ∩ ∼C = ∅ ⇐Lem 25=====⇒ ([e]� ∪ [e]�) ∩ ∼C = ∅

⇐By def====⇒ [e]≈ ∩ ∼C = ∅ Lem 13e=====⇒ [e]� ∩ ∼∼C �= ∅

Theorem 2. [e]� ∩ ∼∼C �= ∅ iff [e]� ∩ ∼C = ∅

Proof. The theorem is proven in the same manner as Theorem 1.

6 DAG-Decision Systems

A DAG-decision system is an extension of a decision system and is defined on
the partial ordered that was introduced in Section 3.

Definition 8 (DAG-decision system). Let A = 〈U,A, d,�〉 denote a DAG-
decision system where

– U is a non-empty finite set of (observable) objects, called the universe.
– A is a set of conditional attributes describing the objects. Each attribute

a ∈ A is a function a : U → Va where Va is a set of values that an object
may have for a.

– d is the decision attribute, which is not in A. It is a function d : U → Vd

where Vd is a set of decision classes.
– � is a partial order on the classes in Vd where p � r denotes that p is more

general than r (p, r ∈ Vd).

This definition allows us to formalize the additional information provided by the
ontology. However, gene function prediction introduces also another problem: A
gene may be annotated with more than one class. Thus, we need to represent
and predict multiple classes for each gene.

One way to achieve this would be redefined the decision attribute so that it
maps an object to set of classes rather than a single class. Another would be to
consider the annotations (i.e., tuples of a gene and a class) as the objects. The last
approach is more convenient for a number of reasons. First, the standard rough
set approximations may be applied directly without any modification since each
object has only one decision class in this case. Second, we may use the standard
rough set approximations to determine, which genes belong to a set D of classes.
This set of genes cannot be defined exactly, since the genes have more than
one class. However, it can be described by a lower and an upper approximation
where the lower contains the genes only labeled with classes from D, while
the upper also contains the genes labeled with classes from both D and the
complement of D.
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Thus, we consider an object to be a tuple 〈x, d〉 where x is a gene in G and d
is a decision class from Vd so that U ⊆ G× Vd. The decision attribute is defined
as d(〈x, d′〉) = d′. We define an indiscernibility relation IND(G) as follows.

IND(G) = {〈x, y〉 ∈ U × U | x = 〈z, dx〉 and y = 〈z, dy〉}

This partitions the universe into a collection of elementary sets that correspond
to the genes in G. The generalized decision defined on IND(G) is ∂G(x) =
{d′(y) | y ∈ [x]G} and represents the classes which are associated with gene
[x]G. Moreover, IND(G) creates a finer partition than IND(A) (the partition
created by the attributes) so that we may apply A and A on top of G and G.
For example, we have that AX = A GX and AX = AGX. More details on this
issue may be found in [12].

7 Ambiguities in the DAG

In set theory, the membership of all objects in the universe is assumed to be
known. An object y is either a member of a set X or it is not. This is also the
starting point in rough set theory, but here an elementary set may belong to
both X and the complement U −X. In this case, we say that the membership is
inconsistent. Hence, rough set theory distinguishes between three different ways
that an element can be related to a set: in, not in, and inconsistent.

We may also recognize a fourth membership category; it may be unknown
whether an object belongs to a set or not. This situation arises in the DAG as
shown in Figure 4 for class c. The objects of the superclasses a and root may
belong to c or some of the classes that are unrelated to c, i.e., b1, b2, and b3.
However, we do not know which class. The membership of these objects is in
other words unknown with respect to c.

This means that a framework for a DAG-decision system must be able to
represent objects whose memberships are unknown. Since rough set theory does
not have such facilities, we must extend it. We do this by employing the same
strategy as rough set theory and define a lower and an upper boundary for

root

a

c

d1 d2

b2

b1

not c

unknown

c

subclasses of c

e1 e2

subclasses of d2

b3

P{c}

K{c}

P{c}

K{c}

Fig. 4. Discernibility of the class c
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each class. The lower boundary Kc, which is also called the known set, basically
consists of the objects that belong to the class c or to the subclasses of c. Note
that the objects of the subclasses are included in this set since they are also
members of c. The upper boundary Pc, which is also called the potential set, is
a superset of Kc. It contains the objects of the superclasses of c in addition to
the objects of Kc. Using these two sets, we can represent the unknown objects
with regard to c as the difference Pc −Kc.

Formally, we could try to define the lower and the upper boundaries as
follows:

Kc = {x ∈ U | c � d(x)} (= {x ∈ U | [d(x)]� ∩ {c} �= ∅})
Pc = {x ∈ U | c ≈ d(x)} (= {x ∈ U | [d(x)]≈ ∩ {c} �= ∅})

For a set of classes C ⊆ Vd, these boundaries could also be defined as the union
of the corresponding boundaries of each class, i.e.,

KC =
⋃
c∈C

Kc = {x ∈ U | [d(x)]� ∩ {c} �= ∅, for some c ∈ C} and

PC =
⋃
c∈C

Pc = {x ∈ U | [d(x)]≈ ∩ {c} �= ∅, for some c ∈ C}

Unfortunately, these definitions are complicated for several reasons.
One problem is that these boundaries are not complementary. We would like

KC to be complementary to P∼C (i.e., KC = U − P∼C) and PC to be comple-
mentary to K∼C (i.e., PC = U −K∼C). Unfortunately, KC = U −P∼C does not
hold.

Example 1. Assume that C = {d1, d2} in Figure 4. Then KC consists of the
objects in d1, d2, e1, and e2. The complement ∼C is, in this case, equal to
{b1, b3}, and P∼C consists of the objects in root, a, b1, b2, and b3. However, the
objects in c do not occur in either set.

The reason that the objects of the class c do not occur in KC and P∼C in the
last example is that c has no other immediate subclasses than d1 and d2. All of
its subclasses are related to C so that no class in the complement ∼C is related
to c. Its objects are therefore not included in P∼C . Moreover, c �∈ C so that its
objects are not in KC , either.

Notice that this issue is not specific to a DAG. It occurs in a tree as well. The
problem also arises when a class has only a single child.

Example 2. Assume that the edge from d2 to c has been removed in Figure 4. In
this case, d1 is a lonely child of c. If C = {d1}, then ∼C = {b1, b2, b3, d2, e1, e2}
and the objects of c are in neither KC nor P∼C .

We may correct this problem by changing the definition of either KC or P∼C .
However, it would be counter-intuitive to define P∼C so that it included the
objects of c in Example 1. Class c is not a superclass of any class in ∼C, and
its objects are not potential members of these classes. On the other hand,
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assume that the objects of c must belong to either d1 or d2, we know that the
objects of c belong to C since C includes both classes. Hence, KC should include
objects from a class if none of its subclasses are in ∼C. More formally, object x
should be in KC if x satisfies

[d(x)]� ∩ ∼C = ∅ (Cond. 1)

Note that this condition subsumes the condition in KC (as shown by the fol-
lowing lemma). Thus, the objects in KC will also satisfy Cond. 1, and we may
replace the condition in the definition of KC with Cond. 1.

Lemma 14. [e]� ∩ {c} �= ∅, for some c ∈ C implies [e]� ∩ ∼C = ∅

Proof. [e]� ∩ {c} �= ∅, for some c ∈ C ⇐Lem 25=====⇒ [e]� ∩ C �= ∅ Lem 12d=====⇒ [e]� ∩
∼∼C �= ∅ ⇐Th 2====⇒ [e]� ∩ ∼C = ∅

Remark 1. Observe that when we assume that the objects of c belong to K{d1,d2},
we make an assumption similar to the Closed World Assumption in Logic Pro-
gramming. We have that d1 → c and d2 → c since the objects of d1 and d2 also
belong to c. This means that d1 ∨ d2 → c. If the objects of c belong to K{d1,d2},
then d1 ∨ d2 ← c. So, c is equivalent to d1 ∨ d2 in this case.

There is another problem with the boundary sets. A class may have several
immediate superclasses in a DAG. This means that some objects may be included
in the (lower and upper) boundaries of both a set C and the complement ∼C.

Example 3. Consider Figure 4 again. If C = {c}, we have ∼C = {b1, b2, b3}. The
classes d2, e1, and e2 are subclasses of c and b2. Hence, they are below a class in
C and a class in ∼C. Their objects will consequently be in both KC and K∼C

(and PC and P∼C).

The DAG introduces in this way a new type of inconsistency, which we will
call DAG-inconsistency. Thus, we have to define upper and lower approxima-
tions of KC and PC . The upper approximations contain all objects from the
subclasses of the classes in C, just as before. The lower approximations, on the
other hand, do not contain the objects from subclasses, which introduce this kind
of inconsistency.

A DAG-inconsistency occurs when a subclass of a class in C also has another
superclass in ∼C. Hence, the objects of a class should only be included in the
lower approximations if there are no superclasses in ∼C. Formally, object x
should be included in the lower approximations if

[d(x)]� ∩ ∼C = ∅ (Cond. 2)

Note that it is necessary to define this condition for a set of classes since a DAG-
inconsistency that occurs for a single class may disappear if a set is considered.

if we
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Example 4. Let C ′ = {c, b2} (in Figure 4), which is a superset of C in Example 3.
In this case, ∼C ′ = {b1}, and the objects of d2, e1, and e2 belong only to KC′

and PC′ and not to K∼C′ and P∼C′ . So the DAG-inconsistency that occurred
for c in Example 3 has vanished.

We may define the following upper and lower approximations of the boundary
sets:

– KC = {x ∈ U | Cond. 1 and Cond. 2}
– KC = {x ∈ U | Cond. 1}
– PC = {x ∈ U | [d(x)]≈ ∩ C �= ∅ and Cond. 2}
– PC = {x ∈ U | [d(x)]≈ ∩ C �= ∅}

Some simplifications are possible, however. The conditions in KC , [e]�∩∼C = ∅
(Cond. 1) and [e]� ∩ ∼C = ∅ (Cond. 2), may be combined into [e]≈ ∩ ∼C = ∅.
This follows from Lemma 25 and that [e]≈ = [e]� ∪ [e]�. Cond. 2 also implies
[e]≈ ∩ C �= ∅. Thus, the first condition in PC may be removed.

Lemma 15. [e]� ∩ ∼C = ∅ implies [e]≈ ∩ C �= ∅

Proof. [e]� ∩ ∼C = ∅ Lem 13c=====⇒ [e]≈ ∩ ∼∼C �= ∅ ⇐Lem 11=====⇒ [e]≈ ∩ C �= ∅

This results in the following boundary sets.

Definition 9 (Boundary sets). Given a set of classes C ⊆ Vd, the following
sets constitute the upper and the lower approximations of the known and the
potential objects of C:

– KC = {x ∈ U | [d(x)]≈ ∩ ∼C = ∅}
– KC = {x ∈ U | [d(x)]� ∩ ∼C = ∅}
– PC = {x ∈ U | [d(x)]� ∩ ∼C = ∅}
– PC = {x ∈ U | [d(x)]≈ ∩ C �= ∅}

8 Properties of the Boundaries

In this section, we will examine the properties of the boundary sets. The first
theorem shows that the boundary sets are complementary.

Theorem 3. Given a set of classes C ⊆ Vd, the following complements hold:

a) K∼C = U − PC

b) K∼C = U − PC

c) P∼C = U −KC

d) P∼C = U −KC

Proof.

a) K∼C = {x ∈ U | [d(x)]≈ ∩ ∼∼C = ∅} = U − {x ∈ U | [d(x)]≈ ∩ ∼∼C �= ∅}
= U − {x ∈ U | [d(x)]≈ ∩ C �= ∅} = U − PC by Lemma 11
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b) K∼C = {x ∈ U | [d(x)]� ∩ ∼∼C = ∅} = U − {x ∈ U | [d(x)]� ∩ ∼∼C �= ∅}
= U − {x ∈ U | [d(x)]� ∩ ∼C = ∅} = U − PC by Theorem 1

c) P∼C = {x ∈ U | [d(x)]� ∩ ∼∼C = ∅} = U − {x ∈ U | [d(x)]� ∩ ∼∼C �= ∅}
= U − {x ∈ U | [d(x)]� ∩ ∼C = ∅} = U −KC by Theorem 2

d) P∼C = {x ∈ U | [d(x)]≈ ∩ ∼C �= ∅} = U − {x ∈ U | [d(x)]≈ ∩ ∼C = ∅}
= U −KC

It follows from this theorem that the boundary set on ∼∼C is equal to the
boundary set on C. So, applying double negation to C produces the same known
and potential sets as C.

Corollary 1

a) K∼(∼C) = KC

b) K∼(∼C) = KC

c) P∼(∼C) = PC

d) P∼(∼C) = PC

Proof. Using Theorem 3b and 3c, we have for option b that K∼(∼C) = U −
P∼C = U − (U − KC) = KC . The other propositions are proven in the same
manner by applying Theorem 3.

We will now examine the properties of the boundaries with respect to unions
and intersections. We begin with unions. Given the discussion in Section 7, it
should not be a surprise that the boundary sets, except for PC , do not maintain
unions. However, we may prove a weaker property. For each boundary set, it
holds that the boundary set on C∪D is a superset of the union of the individual
boundary sets on C and D (where C and D are sets of classes).

Lemma 16. Given two set of classes C and D, the following properties hold:

a) KC∪D ⊇ KC ∪KD

b) KC∪D ⊇ KC ∪KD

c) PC∪D ⊇ PC ∪ PD

d) PC∪D = PC ∪ PD

Proof.

a) KC∪D = {x ∈ U | [d(x)]≈ ∩ ∼(C ∪D) = ∅}
= {x ∈ U | [d(x)]≈ ∩ (∼C ∩ ∼D) = ∅} (Lemma 6)
⊇ {x ∈ U | [d(x)]≈ ∩ ∼C = ∅ or [d(x)]≈ ∩ ∼D = ∅} (Lemma 26)
= KC ∪KD

b) KC∪D = {x ∈ U | [d(x)]� ∩ ∼(C ∪D) = ∅}
= {x ∈ U | [d(x)]� ∩ (∼C ∩ ∼D) = ∅} (Lemma 6)
⊇ {x ∈ U | [d(x)]� ∩ ∼C = ∅ or [d(x)]� ∩ ∼D = ∅} (Lemma 26)

= KC ∪KD
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c) PC∪D = {x ∈ U | [d(x)]� ∩ ∼(C ∪D) = ∅}
= {x ∈ U | [d(x)]� ∩ (∼C ∩ ∼D) = ∅} (Lemma 6)
⊇ {x ∈ U | [d(x)]� ∩ ∼C = ∅ or [d(x)]� ∩ ∼D = ∅} (Lemma 26)
= PC ∪ PD

d) PC∪D = {x ∈ U | [d(x)]≈ ∩ (C ∪D) �= ∅}
= {x ∈ U | [d(x)]≈ ∩ C �= ∅ or [d(x)]≈ ∩D �= ∅} (Lemma 25)

= PC ∪ PD

None of the boundary sets maintains intersections. Still, we can show that a
boundary set on C ∩D is a subset of the intersection of the boundary sets on C
and D.

Lemma 17. Given two set of classes C and D, the following properties hold:

a) KC∩D ⊆ KC ∩KD

b) KC∩D ⊆ KC ∩KD

c) PC∩D ⊆ PC ∩ PD

d) PC∩D ⊆ PC ∩ PD

Proof.

a) This follows directly from options b and c as KC is an intersection of KC

and PC .
b) KC∩D = {x ∈ U | [d(x)]� ∩ ∼(C ∩D) = ∅}

⊆ {x ∈ U | [d(x)]� ∩ (∼C ∪ ∼D) = ∅} (Lemmas 7 and 24)
= {x ∈ U | [d(x)]� ∩ ∼C = ∅ and [d(x)]� ∩ ∼D = ∅} (Lemma 25)

= KC ∩KD

c) PC∩D = {x ∈ U | [d(x)]� ∩ ∼(C ∩D) = ∅}
⊆ {x ∈ U | [d(x)]� ∩ (∼C ∪ ∼D) = ∅} (Lemmas 7 and 24)
= {x ∈ U | [d(x)]� ∩ ∼C = ∅ and [d(x)]� ∩ ∼D = ∅} (Lemma 25)
= PC ∩ PD

d) PC∩D = {x ∈ U | [d(x)]≈ ∩ (C ∩D) �= ∅}
⊆ {x ∈ U | [d(x)]≈ ∩ C �= ∅ and [d(x)]≈ ∩D �= ∅} (Lemma 26)

= PC ∩ PD

Hence, intersections are not maintained. It should be mentioned, however, that
KC∩D and KC ∩KD describe different concepts (the situation is similar for the
other boundary sets). C ∩D is the set of classes that C and D have in common,
and KC∩D is the set of objects that belong to these classes. KC ∩KD, on the
other hand, is the set of objects that C and D have in common. For example,
if we consider the DAG in Figure 4 and set C = {e1} and D = {d2}, then
KC∩D will be empty, while KC ∩KD will contain the objects that are labeled
to e1. In this case, KC ∩ KD seems more useful than KC∩D as it determines
the common known objects of C and D. KC∩D, on the other hand, ignores
the relationships between the classes. It is thus a question if intersection is an
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interesting operator for classes. An operator that takes the relationships into
account would probably be more useful. For example, we could define an operator
like C � D = {c ∈ C ∪D | c ≈ e, for some e ∈ C and c ≈ f , for some f ∈ D}.
However, we will not pursue this issue any further in this paper.

9 Well-Defined DAGs

In Section 7, we had to make several adjustments to the boundary sets since they
were not complementary. In particular, it was necessary to assign the objects in
a class e to the known set of C if none of its subclasses were in ∼C (even though
e was not a subclass of any class in C). Similarly, if a class c was a lonely child
of a class f , f had to be assigned to the known set of c.

It is possible, however, to avoid these complications, if we consider only single
classes and assume that the DAG is well-defined such that there are no lonely
children. In this case, the boundary sets may be simplified. We will consider
these simplifications in this section. We begin with a definition of what it means
for a DAG to be well-defined.

Definition 10 (Well-defined DAG). A DAG is well-defined if it holds for
every non-leaf class e that for each subclass of e there is another subclass of e
that belong to the complement of the first subclass, i.e.,

[e]≺ ∩ {f} �= ∅ implies [e]≺ ∩ ∼f �= ∅

We may now define the simplified boundary sets for a single class.

Definition 11 (Boundary sets for a single class). Given a (single) class
c, the following sets constitute the upper and the lower approximations of the
known and the potential objects of c:

– K∗
c = {x ∈ U | [d(x)]� ∩ {c} �= ∅ and [d(x)]� ∩ ∼{c} = ∅}

– K∗
c = {x ∈ U | [d(x)]� ∩ {c} �= ∅}

– P ∗
c = {x ∈ U | [d(x)]� ∩ ∼{c} = ∅}

– P ∗
c = {x ∈ U | [d(x)]≈ ∩ {c} �= ∅}

It follows immediately from this definition and Definition 9 that P ∗
c = P {c}

and P ∗
c = P {c}. Hence, the single-class potential sets may be used even when

the DAG is not well-defined. The problem lies with the known sets where only
K∗

c ⊆ K{c} and K∗
c ⊆ K{c} hold generally. Still, if the DAG is well-defined, we

may prove the following theorem. It implies that the original set-based known
sets and the simplified single-class known sets must be equal for a single class.
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Lemma 18. If the DAG is well-defined, then [e]� ∩∼{c} = ∅ ⇔ [e]� ∩{c} �= ∅.

Proof.

⇐: Always true, since [e]� ∩ {c} �= ∅ Lem 12d=====⇒ [e]� ∩ ∼∼{c} �= ∅ ⇐Th 2====⇒ [e]� ∩
∼{c} = ∅

⇒: Since [e]≺ ∩ ∼c = ∅, Definition 10 implies [e]≺ ∩ {c} = ∅. Moreover,

[e]� ∩ ∼{c} = ∅ Lem 13d=====⇒ [e]≈ ∩ ∼∼{c} �= ∅ ⇐Lem 11=====⇒ [e]≈ ∩ {c} �= ∅

These two results imply [e]� ∩ {c} �= ∅ since

[e]� ∩ {c} =
(
[e]� ∩ {c}

)
∪ ∅ =

(
[e]� ∩ {c}

)
∪
(
[e]≺ ∩ {c}

)
= [e]≈ ∩ {c} �= ∅

Theorem 4. If the DAG is well-defined, then

a) K∗
c = K{c}

b) K∗
c = K{c}

Proof.

a) K{c} = {x ∈ U | [d(x)]≈ ∩ ∼{c} = ∅}
= {x ∈ U | ([d(x)]� ∪ [d(x)]�) ∩ ∼{c} = ∅} (By def. of ≈)
= {x ∈ U | [d(x)]� ∩ ∼{c} = ∅ and [d(x)]� ∩ ∼{c} = ∅} (Lemma 25)
= {x ∈ U | [d(x)]� ∩ {c} �= ∅ and [d(x)]� ∩ ∼{c} = ∅} (Lemma 18)
= K∗

c

b) Follows immediately from Lemma 18.

The complement of a single class is a set of classes. Thus, we need boundary
sets that apply to a set of classes in order to find the known and the potential
objects of the complement. Such boundary set could perhaps be found by tak-
ing the union of the single-class boundary sets, which belong to the classes in
the complement. However, the previous discussion and Lemma 16 entail that a
union of single-class boundary sets are only a subset of the corresponding set-
based boundary set. This suggests that the complement of a single class may
not be found with the single-class boundary sets. So their utility may appear
limited.

However, the complement is a very special set so that the single-class bound-
ary sets may still be useful. When a set-based boundary set is applied to a set
of classes, it may add some classes that would not be included by the union of
the single-class boundary set (This is the reason why a set-based boundary set is
superset of the union of the corresponding single-class boundary sets). However,
no classes will be added if a boundary set is applied to the complement since
the complement has a special property; any class that possibly could be added
by the boundary set is already in the complement. The union of single-class
boundary sets is thus equal to the set-based boundary set in this case. This will
be proven in Theorem 5.
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This definition defines the boundary sets for the complement by using the
union of single-class boundary sets.

Definition 12 (Boundary set for complement). Let C be a set of classes.
The following sets denote the the upper and the lower approximations of the
known and the potential objects of ∼C:

– K∗
∼C =

⋃
c∈∼C K∗

c

– K∗
∼C =

⋃
c∈∼C K∗

c

– P ∗
∼C =

⋃
c∈∼C P ∗

c

– P ∗
∼C =

⋃
c∈∼C P ∗

c

The following lemmas prove several properties that we will need in Theorem 5.

Lemma 19. [e]� ∩ {c} �= ∅ holds for some c ∈ ∼C iff [e]� ∩ ∼∼C = ∅.

Proof. Lemma 25 states that [e]� ∩ {c} �= ∅ holds for some c ∈ ∼C if and only
if [e]� ∩

(⋃
c∈∼C{c}

)
�= ∅. Since ∼C =

⋃
c∈∼C{c}, it follows that the condition

on the left hand side is equivalent to [e]� ∩ ∼C �= ∅, which is again equivalent
to [e]� ∩ ∼∼C = ∅ by Theorem 1.

Lemma 20. [e]� ∩ ∼{c} = ∅ holds for some c ∈ ∼C iff [e]� ∩ ∼∼C = ∅.

Proof.

⇒: [e]� ∩ ∼{c} = ∅, for some c ∈ ∼C Lem 26=====⇒ [e]� ∩
(⋂

c∈∼C ∼{c}
)

= ∅
⇐Lem 5====⇒ [e]� ∩ ∼∼C = ∅

⇐: [e]� ∩ ∼∼C = ∅ ⇐Th 2====⇒ [e]� ∩ ∼C �= ∅ ⇐=⇒ [e]� ∩
⋃

c∈∼C{c} �= ∅
⇐Lem 25=====⇒ [e]� ∩ {c} �= ∅, for some c ∈ ∼C
Lem 12c=====⇒ [e]� ∩ ∼∼{c} �= ∅, for some c ∈ ∼C
Lem 13a=====⇒ [e]� ∩ ∼{c} = ∅, for some c ∈ ∼C

Lemma 21. [e]� ∩ {c} �= ∅ and [e]� ∩ ∼{c} = ∅ holds for some c ∈ ∼C iff
[e]≈ ∩ ∼∼C = ∅

Proof.

⇒: [e]� ∩ {c} �= ∅ and [e]� ∩ ∼{c} = ∅, for some c ∈ ∼C

=⇒
(
[e]� ∩ {c′} �= ∅, for c′ ∈ ∼C

)
and

(
[e]� ∩ ∼{c′′} = ∅, for c′′ ∈ ∼C

)
⇐Lem 19 & 20========⇒ [e]� ∩ ∼∼C = ∅ and [e]� ∩ ∼∼C = ∅

⇐Lemma 25=======⇒ ([e]� ∪ [e]�) ∩ ∼∼C = ∅ ⇐Def of ≈=====⇒ [e]≈ ∩ ∼∼C = ∅
⇐: We prove first that e ∈ ∼C when [e]≈ ∩ ∼∼C = ∅.

[e]≈ ∩ ∼∼C = ∅ ⇐Lem 11=====⇒ [e]≈ ∩ C = ∅ ⇐Lem 1c====⇒ {e} ∩ [C]≈ = ∅

⇐Lem 8 & 23========⇒ {e} ⊆ ∼C
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Hence, e is in ∼C. Moreover, e satisfies both conditions on the left hand side
of the iff since [e]� ∩ {e} = {e} �= ∅ and [e]� ∩ ∼{e} ⊆ [e]≈ ∩ ∼{e} = ∅.
Consequently, [e]≈∩∼∼C = ∅ implies that [e]�∩{c} �= ∅ and [e]�∩∼{c} = ∅
for some c ∈ ∼C.

Theorem 5

a) K∗
∼C = K∼C

b) K∗
∼C = K∼C

c) P ∗
∼C = P∼C

d) P ∗
∼C = P∼C

Proof.

a) K∗
∼C =

⋃
c∈∼C K∗

c

= {x ∈ U | [d(x)]�∩{c} �= ∅ and [d(x)]�∩∼{c} = ∅, for some c ∈ ∼C}
= {x ∈ U | [d(x)]≈ ∩ ∼∼C = ∅} = K∼C by Lemma 21.

b) K∗
∼C =

⋃
c∈∼C K∗

c = {x ∈ U | [d(x)]� ∩ {c} �= ∅, for some c ∈ ∼C}
= {x ∈ U | [d(x)]� ∩ ∼∼C = ∅} = K∼C by Lemma 19.

c) P ∗
∼C =

⋃
c∈∼C P ∗

c = {x ∈ U | [d(x)]� ∩ ∼{c} = ∅, for some c ∈ ∼C}
= {x ∈ U | [d(x)]� ∩ ∼∼C = ∅} = P∼C by Lemma 20.

d) Follows immediately from the definitions (and Lemma 16d).

Thus, if one assumes that the DAG is well-defined and considers only single
classes and their complements, one may use the simplified boundary sets instead
of the set-based boundaries.

10 Set Approximations for a DAG-Decision System

The boundary sets KC , KC , PC , and PC solve only the part of the problem that
is related to the DAG. They do not consider the multiple annotation problem, nor
do they consider the uncertainty in the data (due to noise), which traditionally
is handled by rough set theory. Hence, the boundary sets may be inconsistent if
they are considered in terms of the elementary sets induced by an indiscernibility
relation. In order to take this kind of inconsistency into account, we apply the
standard rough set approximations on the boundary sets:

– BX(C) = B XC = {x ∈ U | [x]B ⊆ XC}
– BX(C) = B XC = {x ∈ U | [x]B ∩XC �= ∅}

where [x]B = {y ∈ U | 〈x, y〉 ∈ IND(B)}. We create two operators for each
boundary set by replacing X with K, K , P , or P .

The operators are illustrated in Figure 5. However, they do not capture our in-
tuition completely when IND(B) is an indiscernibility relation on the conditional
attributes. The lower approximations BK(C) and BK (C) are very conservative,
and it seems that more elementary sets should belong to C. In particular, the ele-
mentary sets where at least some of the objects are known (with respect to C) and
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Indiscernibility Consistent Indiscernibility Inconsistent

DAG-Consistent DAG-Inconsistent DAG-Consistent DAG-Inconsistent

Known

BK(C) BK (C) BK(C) BK (C)

Likely
known

BL(C) BL (C) BL(C) BL (C)

Unknown

BP (C) BP (C) BP (C) BP (C)

Fig. 5. An illustration of the operators on the DAG in Figure 4 where C = {c}. The
unknown region is displayed as light gray, the known region as medium gray, and the
negative region as white. The region covered by each operator is dark gray.

the remaining ones are unknown, are not included in BK(C) and BK (C). This is
unfortunate since the objects in these elementary sets probably belong to C. Some
of the objects are already known to belong C. So, if we assume that the unknown
objects in these sets belong to the complement classes, we will introduce new in-
consistencies into the decision system. If all objects in these sets belong to C, on
the other hand, no such inconsistencies will occur. Hence, the unknown objects in
these elementary sets most likely belong to C since this leads to the fewest number
of inconsistencies. We call these elementary sets for C-likely-known sets.

A key feature of the C-likely-known sets is that they are consistent with the
potential sets, but inconsistent with the known sets. Thus, the upper approxima-
tions of the known sets and the lower approximations of the potential sets contain
the C-likely-known sets. However, these approximations contain also other ob-
jects that should not be in a lower approximation of the known sets. BK(C) and
BK (C) cover the inconsistent elementary sets where some objects are known to
belong to ∼C. BP (C) and BP (C) cover completely unknown elementary sets,
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i.e., sets consisting of only unknown objects. The intersection of BK (C) and
BP (C), on the other hand, contains only completely known and C-likely-known
elementary sets (The situation is similar for BK(C) and BP (C)). Hence, C-
likely-known sets may be added to BK(C) and BK (C) by using combinations of
these approximations. This motivates us to define the following approximations.

Definition 13 (Approximations with C-likely-known sets)

a) BL(C) = BP (C) ∩BK(C) = {x ∈ U | [x]B ⊆ PC and [x]B ∩KC �= ∅}
b) BL (C) = BP (C) ∩BK (C) = {x ∈ U | [x]B ⊆ PC and [x]B ∩KC �= ∅}
c) BL(C) = BP (C) ∪BK(C) = {x ∈ U | [x]B ⊆ PC or [x]B ∩KC �= ∅}
d) BL (C) = BP (C) ∪BK (C) = {x ∈ U | [x]B ⊆ PC or [x]B ∩KC �= ∅}

Notice that BL(C) and BL (C) contain the same elementary sets as BP (C) and
BP (C) except for the (∼C)-likely-known sets, which must likely belong to the
complement ∼C.

10.1 Some Properties of the Approximations

Each approximation has a dual approximation such that the approximation and
its dual are complementary.

Definition 14 (Dual approximations). Two approximations X and Y are
duals denoted as X ↔ Y if X(C) = U − Y (∼C) and X(∼C) = U − Y (C) hold.

Corollary 2. The approximations form the following duals.

a) BK ↔ BP

b) BK ↔ BP

c) BP ↔ BK

d) BP ↔ BK

e) BL ↔ BL

f) BL ↔ BL

Proof. From rough set theory, we have that B(U −X) = U −B(X) and B(U −
X) = U − B(X) for a set X ⊆ U . Case a–d follow from these properties and
Theorems 3. For case e, we prove BL(C) = U − BL (∼C) as follows: BL(C) =
BP (C) ∩ BK(C) = (U − BK (∼C)) ∩ (U − BP (∼C)) (from case c and d) =
U − (BK (∼C)∪BP (∼C)) = U −BL (∼C). The proof of BL(∼C) = U −BL (C)
follows directly from this property and Corollary 1. The proof of case f is similar.

The approximations are related such that some approximations are subsets of
the other approximations. They may be ordered according to subset inclusion.
This order is shown in Figure 6 where an arrow from one approximation to
another approximation means that the former is a subset of the latter. These
properties follow directly from the definitions. So no proof is given.

One may also derive properties for the approximations with regard to unions
and intersections of classes. However, these follow directly from the properties of
the lower and the upper approximation (see e.g., [10]) and the properties of the
boundary sets that we established in Section 8. So, we will not consider them here.
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BP (C)

BP (C) BP (C)

BL (C)

BP (C)

BL (C) BL(C)

BK (C)

BL(C)

BK (C) BK(C)

BK(C)

Fig. 6. Subset inclusion of the approximations. An arrow from A to B denotes that
A ⊆ B.

11 Conclusion

Prediction of gene function introduces new challenges for supervised learning.
The classes, which are predicted, are typically taken from an ontology. The on-
tology defines a more general ordering of the classes so that the classes may
represent different detail levels of biological knowledge. Moreover, the data asso-
ciated with each class are very sparse so that it is necessary to reduce the detail
level in order to obtain accurate predictions.

To this end, we have presented a general rough set framework, which allow us
to represent and model the structure of the DAG. Several boundary sets, which
allow us to determine the known and potential objects of a class, have been intro-
duced and their properties have been examined. In particular, it has been shown
that the boundary set may be simplified if the DAG is well-defined and only
single classes (and their complements) are considered. It has been demonstrated
how the boundary sets may be combined with the rough set approximations,
and new set of approximations have been defined to deal with the likely known
set problem.

Gene function prediction introduces also another problem besides DAG
structure. A gene may be labeled with more than one annotation. As we have
demonstrated rough set theory lends it self well to this problem. Since a gene
with multiple annotations corresponds to a inconsistent elementary set, we may
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apply the rough set lower and upper approximation to compute which genes
belong completely and partially to a set of classes.

There are some related approaches to our framework. In our framework we
have defined a partial order on the classes. The Dominance-Based Rough Set
Approach (e.g. [6]) considers also an ordering of the classes. However, the order-
ing relation in that case is a linear ordering (or at least a total preorder). Any
two classes are therefore related since the relation is total. This means that the
membership of an object labeled to a class c is not unknown with respect to the
subclasses of c since c does not have two or more unrelated subclasses. Hence, the
unknown-property simply does not occur. Moreover, the inconsistency introduce
by the DAG does not arise either. Ma�luszyński and Vitoria [11] present an rough
set framework for Prolog with unknown objects. However, they develop a Rough
Datalog language and define its semantics. They do not develop approximations
for unknown objects.

It is possible to extend the framework presented here. One could utilize the
objects in the superclasses to a larger extent than we have done in this paper.
Instead of assuming that the class membership of these objects is unknown, we
could assume that the objects of a superclass belong to the class with most
similar objects and move the objects to this class. This assumption may be
implemented by the means of proximity based boundary sets. These sets would
generalize our boundary sets in much the same way as the variable precision
rough set model (VPRS) approximations [17] generalize the standard rough set
approximations. However, in this case we would use a similarity measure rather
than the rough membership function (which is used in VPRS and measures
degree of mismatch between an elementary sets and a set of objects). An object
x labeled to a superclass of c may, for example, be assigned to the known set
of c if there is some object y labeled to c or one of the subclasses of c, and the
similarity is above some predetermined threshold.

In the sequel [13] we apply the framework and the approximations, which we
have introduced, in a bottom-up algorithm and evaluate the performance of this
algorithm.

Acknowledgment. I would like to thank Prof. Jan Komorowski and Prof.
Astrid Lægreid for discussions of this work. I am also grateful to Prof. Andrzej
Skowron for his suggestions, which simplified the framework.

Appendix

The lemmas presented below prove general set properties, which are used in the
paper. As these are easily proven we do not present the proofs. However, the
proofs can be found in [12].

Lemma 22. A ⊆ B iff (U −B) ⊆ (U −A)

Lemma 23. A ⊆ B iff A ∩ (U −B) = ∅
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Lemma 24. Given, B ⊆ C, it is true that

a) A ∩ C = ∅ implies A ∩B = ∅
b) A ∩B �= ∅ implies A ∩ C �= ∅

Lemma 25. Given sets A, B, C, and D1, D2, . . . , Dn, n ≥ 2.

a) A ∩B = ∅ and A ∩ C = ∅ iff A ∩ (B ∪ C) = ∅
b) A ∩Di = ∅, for all 1 ≤ i ≤ n iff A ∩ (

⋃n
i=1 Di) = ∅

c) A ∩B �= ∅ or A ∩ C �= ∅ iff A ∩ (B ∪ C) �= ∅
d) A ∩Di �= ∅, for some 1 ≤ i ≤ n iff A ∩ (

⋃n
i=1 Di) �= ∅

Lemma 26. Given sets A, B, C, and D1, D2, . . . , Dn, n ≥ 2.

a) A ∩B = ∅ or A ∩ C = ∅ implies A ∩ (B ∩ C) = ∅
b) A ∩Di = ∅, for some 1 ≤ i ≤ n implies A ∩ (

⋂n
i=1 Di) = ∅

c) A ∩ (B ∩ C) �= ∅ implies A ∩B �= ∅ and A ∩ C �= ∅
d) A ∩ (

⋂n
i=1 Di) �= ∅ implies A ∩Di = ∅, for all 1 ≤ i ≤ n
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Supervised Learning in the Gene Ontology
Part II: A Bottom-Up Algorithm
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Abstract. Prediction of gene function for expression profiles introduces
a new problem for supervised learning algorithms. The decision classes
are taken from an ontology, which defines relationships between the
classes. Supervised algorithms, on the other hand, assumes that the
classes are unrelated. Hence, we introduce a new algorithm which can
take these relationships into account. This is tested on a microarray data
set created from human fibroblast cells and on several artificial data sets.
Since standard performance measures do not apply to this problem, we
also introduce several new measures for measuring classification perfor-
mance in an ontology.

1 Introduction

Gene annotations are important for interpreting biological studies such as mi-
croarray experiments as they provide information about the biological role of
genes. The Gene Ontology (GO) Consortium [4] has established several ontolo-
gies that define controlled vocabularies for describing the biological role of a gene.
These vocabularies have been applied to annotate the genome of several organ-
isms. However, annotating the genome of an organism is a very time-consuming
task. Several attempts [3, 8, 11] have been made to predict gene function auto-
matically, but these studies have ignored the special problems, which the ontol-
ogy introduces for supervised learning.

The ontologies defined by the GO Consortium organize the classes in directed
acyclic graphs (DAG). In [13], we discussed several issues that must be handled
by a DAG-learning algorithm. These were:

1. The structure of the DAG
2. The varying detail level of the annotations
3. The scarcity of the objects with respect to the classes
4. The trade-off between the detail level and the precision of a prediction
5. The multiple annotations of an object

The framework defined in that paper solves many of these problems. It allows
us to represent the DAG structure and multiple annotations with varying level
of detail. It also introduces several approximations that allow us to determine

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets IV, LNCS 3700, pp. 98–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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the known and potential members of a class. However, in order to develop a
classifier we still have to apply the approximations in an algorithm and find a
solution to other issues.

This paper presents a novel DAG learning algorithm that provides solutions
to these problems. The algorithm creates a set of rules using a covering approach
similar to the LEMS2 algorithm in the LERS system [6, 7]. However, it applies
the new approximations instead of the standard rough set approximations in
order to accommodate the DAG structure. A bottom-up pruning scheme is used
to determine the best trade-off between the detail level and the precision of a
prediction.

The algorithm is evaluated on several data sets. It is first tested on a micro-
carray data set that was created from human fibroblast cells. It is then applied
on several artificial data sets in order to obtain a better understanding of its
behavior.

The DAG also constitutes a problem when a classifier is to be evaluated
since standard performance measures such as accuracy or AUC do not recognize
the structure of the DAG. Therefore, several new performance measures are
introduced.

2 Notation and Definitions

A DAG-decision system is a tuple A = 〈U,A, d,�〉 where the universe U is a
non-empty finite set of (observable) objects. A is a set of conditional attributes
where each attribute a ∈ A is a function a : U → Va. The decision attribute d
is a function d : U → Vd. � is a partial order on the classes in Vd where p � r
denotes that p is more general than r (p, r ∈ Vd). In this paper, we consider
an object to be a tuple 〈x, d〉 where x is a gene in G and d is a class from Vd

so that U ⊆ G × Vd. The decision attribute is defined as d(〈x, d′〉) = d′. The
following indiscernibility relation partitions the universe into elementary sets
corresponding to genes in G.

IND(G) = {〈x, y〉 ∈ U ′ × U ′ | x = 〈z, dx〉 and y = 〈z, dy〉}

The classes c, e ∈ Vd are related, denoted as c ≈ e, iff c � e or e � c. Let
C ⊆ Vd be a set of classes. Then the complement is defined as ∼C = {e ∈ Vd |
for all c ∈ C, e �≈ c}. The classes that are above, below, or related to C are
denoted by [C]�, [C]�, and [C]≈.

A DAG is well-defined if for every non-leaf class e and every subclass f of
e there is another subclass of e that belongs to ∼f . If this condition holds the
known and potential sets of a class c and its complement are defined as

K∗
c = {x ∈ U | [d(x)]� ∩ {c} �= ∅ & [d(x)]� ∩ ∼c = ∅} K∗

∼c =
⋃

e∈∼c
K∗

e

K∗
c = {x ∈ U | [d(x)]� ∩ {c} �= ∅} K∗

∼c =
⋃

e∈∼c
K∗

e



100 H. Midelfart

P ∗
c = {x ∈ U | [d(x)]� ∩ ∼c = ∅} P ∗

∼c =
⋃

e∈∼c
P ∗

e

P ∗
c = {x ∈ U | [d(x)]≈ ∩ {c} �= ∅} P ∗

∼c =
⋃

e∈∼c
P ∗

e

A path from class c0 to class cn is a sequence of nodes 〈c0, c1, . . . , cn〉 where
c0 ≺ c1 ≺ . . . ≺ cn. Let s = 〈b0, b1, . . . , bm〉 and t = 〈c0, c1, . . . , cn〉 be two paths.
s is a subpath of t, denoted as s � t, if there is mapping such that bi = ci+j for all
0 ≤ i ≤ m where 0 ≤ j ≤ n−m. Paths(a, b) represents the set of all paths from
a to b (given b � a), i.e., Paths(a, b) = {〈c0, . . . , cn〉 | a = c0 ≺ . . . ≺ cn = b}.
Sub(c) denotes the immediate subclasses classes of c ∈ Vd, i.e,

Sub(c) = {e ∈ Vd | c � e and there is a path 〈e, c〉 ∈ Paths(e, c)}

The lower B and upper B approximation of a set X ⊆ U are defined with
respect to an indiscernibility relation IND(B).

– B X = {x ∈ U | [x]B ⊆ X}
– B X = {x ∈ U | [x]B ∩X �= ∅}

[x]B denotes the elementary set of x induced by IND(B), i.e, [x]B = {y ∈ U |
〈x, y〉 ∈ IND(B)}.

A decision rule is denoted by α → β and consists of an antecedent α and a
conclusion β. The antecedent α consists of a conjunction of descriptors 〈a1, v1〉∧
· · · ∧ 〈an, vn〉 constructed from the conditional attributes in A. The conclusion
consists of a single descriptor 〈d, v〉 made from the decision attribute d. [[r]]U
denotes the objects in U that satisfies a rule r and is defined inductively as

– [[〈a, v〉]]U = {x ∈ U | a(x) = v}
– [[α ∧ β]]U = [[α]]U ∩ [[β]]U
– [[α → β]]U = (U − [[α]]U ) ∪ [[β]]U

A rule covers all of the objects that satisfy its antecedent. We denote the objects
that are covered by a set RS by

Cov(RS) = {x ∈ U | x ∈ [[α]]A and (α → β) ∈ RS}

The rules, which are associated with a particular class c, are defined as

RSc = {(α → β) ∈ RS | β = 〈d, c〉}

3 The Bottom-Up Pruning Algorithm

A main concern for DAG learning is the scarcity of the data that are available
for each class. An algorithm may attempt to avoid this problem by learning rules
that cover all of the known objects when it learns rules for a class c so that the
objects are moved upwards. However, this means that the objects, which belong
to c, will not only be covered by the rules of c, but also by the rules of any
superclass of c. If c can be predicted accurately, the superclasses of c will be
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Algorithm 1.1. The main part of the bottom-up algorithm
LearnBottomUp:
Input: A rooted DAG-decision system A = 〈U, A, d, �〉 with root 	, training accuracy

γ, split ratio ρ, pruning accuracy δ, and pruning support σ.
Output: A set of rules RS.
1: Clear rule set RS {RS = ∅}
2: for all c ∈ Sub(	) do {For all immediate subclasses of 	}
3: (RS, R) = RecLearnBottomUp(c, RS, A, γ, ρ, δ, σ)
4: return RS

predicted as well. The resulting classifier will thus produce a lot of redundant
predictions. Hence, the algorithm must determine the most specific detail level
which allows for accurate prediction and remove predictions above this level.

This problem may be solved in several ways. In [15, 14] we developed a sim-
ple voting scheme to determine the appropriate detail level and filtered out the
redundant predictions. This scheme was later developed into a more robust sys-
tem where the votes were based on the support of the rules [12]. However, the
application of rules was not very efficient since if the objects of a class c can be
predicted accurately, it is not necessary that the rules of the superclasses cover
them as well. The rules of c would be sufficient. Moreover, the rules created for
the most specific classes would typically cover few objects, and their predictions
would not be very accurate. Hence, their contribution to the overall performance
would be small so that it might actually be better to remove them all together.

A more efficient and robust strategy may be to let the learning algorithm
determine the trade-off between the detail level and the precision directly rather
than applying a voting system during prediction. This is the idea behind the
method that will be presented in this paper. It identifies the most detailed classes
that may be predicted accurately and builds the classifier from the rules of these
classes.

The classes, which can be predicted accurately, can be found efficiently by
examining the DAG in a bottom-up fashion. The algorithm starts with the leaf
classes and moves upwards. For each class, it creates a set of rules and deter-
mines if the rules give accurate predictions. If the rules are of high quality, they
are retained, and the objects covered by them are removed (such that they are
not considered when rules are learned for the superclasses). If the rules are inac-
curate, they are pruned, and the objects of the class are passed to the immediate
superclass(es). The procedure is then repeated for the superclasses.

3.1 The Main Learning Algorithm

The details of the learning algorithm are presented in Algorithms 1.1 and 1.2.
The algorithm assumes that the DAG is well-defined and has a single root (de-
noted by !). It is executed by a call to the procedure LearnBottomUp, which
calls the recursive procedure RecLearnBottomUp for each class on the top
level immediately below the root. RecLearnBottomUp performs the main
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Algorithm 1.2. The recursive part of the bottom-up algorithm
RecLearnBottomUp:
Input: a class c, a set of rules RS a rooted DAG-decision system A = 〈U, A, d, �〉,

training accuracy γ, split ratio ρ, pruning accuracy δ, and pruning support σ.
Output: A set of rules RS and a set of uncovered objects R.
1: if class c has not been visited then
2: Mark c as visited
3: R = ∅
4: for all e ∈ Sub(c) do {For all immediate subclasses of c}
5: (RS, R′) = RecLearnBottomUp(e, RS, A, γ, ρ, δ, σ)
6: R = R ∪ R′

7: Rc = R ∪ (
Xc − Cov≺(RS, c)

)
8: P = G Rc and N = G K∗

∼c

9: if c ∈ Sub(	) and top level pruning is off then
10: RS = RS ∪ LearnRules (P, N , A, d, c, γ)
11: R = ∅
12: else
13: (Pt, Pv) = SplitData(P, ρ) and (Nt, Nv) = SplitData(N , ρ)
14: RS1 = LearnRules (Pt, Nt, A, d, c, γ)
15: RS2 = PruneRules(RS1, Pv, Nv, δ, σ)
16: RS = RS ∪ RS2

17: R = P − Cov(RS2)
18: else
19: R =

⋃
c�e(Xe − Cov�(RS, e) − Cov�(RS, e))

20: return (RS,R)

task. It traverses the DAG depth-first and considers each class in a postfix order
so that rules are learned first for the subclasses and then for the class itself.
As there may be several paths to a class c, the algorithm checks initially if the
class has been visited already and attempts only to create rules (and visit the
subclasses), if the class has not been visited before.

The algorithm attempts to create rules for each class except for the root1. This
is done in two different ways depending on whether a class occurs at top level
immediately below the root or at a more detailed level. In both cases, the objects
are divided into a positive set and a negative set, and rules are learned with the
subalgorithm LearnRules. However, the pruning algorithm PruneRules is not
always applied to rules that are created on the top level. The reason is that the
classes at this level are the most general classes that may be predicted. So the
rules created for them are the most accurate that can be obtained. Moreover, the
objects that are not covered at a more detailed level must at least be covered at
this level. Otherwise, they will not be covered by any rule, and the classifier will
not make any predictions for them. Rules are therefore not pruned at the top

1 The root itself provides no information about an object since all objects belong to
the root. So, if the classifier predicted the root for an object, it would just imply
that the class of the object was unknown.
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level by default. The rules created for the detailed classes, on the other hand,
may be improved. Hence, these rules are pruned. Nevertheless, some rules at the
top level may be of poor quality such that a better performance may actually be
obtained by removing them. The algorithm is therefore equipped with an option
that allows pruning at the top level as well.

3.2 Computation of the Positive and the Negative Set

When the rules of a class c are learned, the objects are divided into a positive
set P containing the objects that should be covered by the rules and a negative
set N containing the genes that should not be covered. The rules are then found
by the LearnRules subalgorithm, which is described in the detail in Section 4.

The definitions of P and N are crucial since these sets control the kind of
rules that are made by the algorithm. In our case, these sets should fulfill several
requirements.

1. The rules learned for class c should not discern the objects of c from the
objects of the classes related to c.

2. The scarcity of the available data for a class c should be compensated by
including all known objects (with regard to c) in P and not only objects
annotated with c.

3. A gene may have several annotations, and all of these annotations should be
predicted.

4. Rules should only be learned for the objects that have not already been
covered at the subclasses.

The first requirement may be fulfilled by using K∗
∼c as the negative set N

since this means that rules may cover the objects in P ∗
c = U −K∗

∼c. The second
requirement is solved by using K∗

c for the positive P. In order to fulfill the third
requirement, we need to assign a G-elementary set (i.e., a gene) to P if there is
an object (i.e., an annotation) in this G-elementary set that is known to belong
to c. This is achieved by applying the G-upper approximation to K∗

c so that
P ⊆ G K∗

c and a G-lower approximation on K∗
∼c so that N = G K∗

∼c.
The positive set P is only a subset of GK∗

c since algorithm should not learn
new rules for the objects that have been covered at the subclasses. Hence, P
contains only the objects in GK∗

c that have not yet been covered. This set can
be computed efficiently as the algorithm moves through the DAG since K∗

c can
be decomposed as follows:

K∗
c = {x ∈ U | c � d(x)} = Xc ∪

⎛
⎝ ⋃

d∈Sub(c)

K∗
d

⎞
⎠ =

⋃
c�d

Xd

where Xc = {x ∈ U | d(x) = c}. The computation is done at several points
in the algorithm. The objects that have not been covered at the subclasses are
collected and added to R in line 6. The objects that belong to the class c are
found in line 7. In this case, it is possible that some of these objects are covered
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by the rules, which have been created for the subclasses. These objects should
not be covered by new rules and must be removed from Xc. This is achieved
with the requirement that the objects in Xc must not be in Cov≺(RS, c). This
set contains the objects that are covered by rules of the subclass and is defined
as

Cov≺(RS, c) = {x ∈ U | x ∈ Cov(RSe) and e ≺ c}
The objects of Xc−Cov≺(RS, c) and R combined into set Rc and the positive set
is computed from Rc in line 8. The algorithm will then learn rules for the class
and prune these rules so that it ends up with a set of rules RS2 that have been
accepted for the class. The objects in P that are not covered by the accepted
rules in RS2 must be passed up to the superclasses such that another attempt
(to learn rules for these objects) can be made at these classes. R is therefore
recomputed in line 17 such that it contains the objects in P that are not covered
by the rules in RS2. Unfortunately, this transfer of objects is complicated by the
DAG structure since a class may be visited again if it has several parents. The
contents of R are not stored since it would require a lot of memory to store this
set for every class in DAG (or at least for every class with multiple parents).
The contents of R are therefore lost when algorithm moves upwards and must
be recomputed if a class is revisited. This computation is done in line 19 where

Cov(RS, c, d) =
⋂

p∈Paths(d,c)

{x ∈ U | x ∈ Cov(RSei
) and ei in p}

and Cov�(RS, c) is defined as Cov≺(RS, c) except that ≺ is replaced by �.

Remark 1. The approximations for P and N do not consider the discernibility
of the objects with regard to the conditional attributes as usual in Rough Set
Theory. This discernibility is instead considered indirectly by the LearnRules
subalgorithm, which searches for rules with accuracy above a threshold γ. A
similar approach is usually taken in machine learning when flat classifiers with
multiple classes are created. In this case, the positive and the negative sets for a
class c are created by assigning the objects labeled with c to the positive set and
the rest to the negative set (see e.g., [5, 1]), and the discernibility of the objects
is handled by the covering algorithm.

Note that it is possible to apply A-approximations defined by an indiscerni-
bility relation on the conditional attributes (i.e., IND(A) = {〈x, y〉 ∈ U × U |
a(x) = a(y), for all a ∈ A}). We may for example create possible rules by setting
P = A G K∗

c and N = A GP ∗
∼c∩AG K∗

∼c
2. However, initial tests suggested that

2 The A-lower approximation with ∼c-likely-known set is applied for the negative
set in order to correct a problem, which occurs when some of the genes in an A-
elementary set are labeled to the classes above c and some are labeled to the classes
in ∼c, but no are labeled to c and its subclasses. In this case the, standard A-lower
approximation will not assign these genes to N so that the rules of c may cover them.
This is corrected with the lower approximation for ∼c-likely-known set so that the
genes are assigned to N . For a full discussion of this issues we refer the reader to [12]
where the positive and negative sets with A-approximations are also used in another
algorithm.
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better results were obtained without A-approximations. Moreover, this simpli-
fies the algorithm since the computation of A-approximations is complicated by
splitting in line 13. Thus, A-approximations are not used.

3.3 Pruning

The pruning subsystem is responsible for removing rules that cannot be predicted
accurately. It can be designed in many different ways. Some of these choices are:

– Single rules vs. full classes: The pruning can be made on two different
levels – either on the class level or on the rule level. In the first case, we
consider all rules that have been learned for a class and estimate how well
they predict the class. If their performance is unsatisfactory, all of them are
pruned. In the second case, each rule is tested separately and pruned if its
performance is not good enough.

The latter option has an advantage over the former since the pruning
is more fine-meshed in this case. The learning task may not have the same
degree of difficulty for all objects of a class c. It may be easier to learn
accurate rules for some objects than for the rest. Accurate rules may thus
be made for the easy objects while the rest of objects may be passed to a
more general superclass and covered by rules created for these classes. With
the former option, this is not possible. All of the objects must be covered
either at c or at a superclass. So the classifier will either give more incorrect
predictions or lose the details of objects that could be predicted to c. Note,
however, that this may be the only option if another learning approach such
as discriminant analysis or support vector machines is applied.

– Validation sample: The algorithm needs a validation sample in order to
estimate the performance of the rules. The training sample can be used for
this purpose. However, this may lead to overfitting as a rule that fits the
training data perfectly may have a different performance on another data
set. The estimated performance may thus be overly optimistic such that a
rule may not be pruned even though it should.

An alternative is to split the original training data into a training sample
and a validation sample such that rules are learned from the training sample
and pruned on the validation sample. Such a strategy is often used in machine
learning to avoid overfitting. Unfortunately, this leaves less data for training
which may be a problem especially for the most specific classes where the
available data are already quite scarce.

– Pruning criterion: The pruning algorithm needs a criterion to determine
whether a rule should be accepted or not. One possible criterion is to allow the
user to specify the minimal acceptable accuracy and prune if the performance
is below this value. Another is to use the rules that are learned for classes im-
mediately below the root as a yardstick. These classes are most general classes
that may be predicted and their rules should thus have the best performance.
The rules that are learned for some class c can then be compared to the rules
of these classes, and if the performance is worse the rules of c can be pruned.



106 H. Midelfart

Algorithm 1.3. Splitting of data
SplitData:
Input: A set X and splitting ratio ρ.
Output: A set T for training and a set V for validation
1: Compute the quotient set X ′ = X/IND(G)
2: Split X ′ into T ′ and V ′ at random such that |T ′| = ρ · |X ′| and |V ′| = (1− ρ) · |X ′|

3: T = {x ∈ X | [x]G ∈ T ′} and V = {x ∈ X | [x]G ∈ V ′}
4: return (T ,V )

Algorithm 1.4. Pruning of rules
PruneRules:
Input: A set of rules RS, positive set Pv, negative set Nv, pruning accuracy δ, and

pruning support σ.
Output: A pruned rule set RS.
1: for all (α → β) ∈ RS do
2: if Accuracy(α, Pv, Nv) < δ or Support(α, Pv) < σ then
3: RS = RS − {α → β} {The rule is pruned}
4: return RS

In the approach presented here we have chosen to prune each rule indepen-
dently. Moreover, the objects are divided into a training sample and a validation
sample such that overfitting is avoided, and a rule is pruned if its accuracy is be-
low the pruning accuracy δ, which is specified by the user. A rule is also removed
if its support is below the pruning support σ.

The learning and pruning of rules are performed in lines 13-15 in Algorithm
1.2. The data in the positive set P and the negative set N are initially di-
vided into training sets (Pt,Nt) and validation sets (Pv,Nv). This is done by the
procedure SplitData, which is shown in Algorithm 1.3. This procedure splits
a set X in two according to the partition induced by IND(G). All objects of
a G-elementary set (i.e., a gene) are therefore put either in the training set
or in the validation set. This is necessary as the objects that belong to the
same G-elementary set (i.e., same gene) should not occur both in the training
set and the validation set. Otherwise, the estimated accuracy on the valida-
tion set would be too optimistic, and rules that should be pruned, might be
retained. How the G-elementary sets are divided on the training set and val-
idation set is controlled by the splitting ratio s. It is typically set to 2/3 so
that 2/3 of the G-elementary sets end up in the training set and 1/3 in the
validation set.

After the algorithm has divided the data into a training and a validation sam-
ple, it learns rules from the training sample (line 14) and prunes these rules on
the validation sample (line 15). The pruning algorithm is shown in Algorithm 1.4.
This procedure examines each rule in RS1 and tests if a rule should be deleted.
This situation occurs if the accuracy of the rule is below the pruning

or the support is below the pruning support σ.The accuracyaccuracy δ
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Algorithm 1.5. Top-down search for rules of a class
LearnRulesTopDown:
Input: Positive set P, negative set N , conditional attributes A, decision attribute d,

decision class c, and training accuracy γ (0 < γ ≤ 1).
Output: A set of rules RS

1: RS = ∅
2: while P �= ∅ do
3: let antecedents I and Ibest be empty.
4: B = {〈a, v〉 | a ∈ A and v ∈ Va}
5: while Accuracy(I, P, N ) < γ and B �= ∅ do
6: select 〈a′, v′〉 ∈ B with the highest Score(I ∧ 〈a′, v′〉 , P, N )
7: add 〈a′, v′〉 to I
8: B = B − {〈a′, v〉 | v ∈ Va′}
9: if Accuracy(I, P, N ) > Accuracy(Ibest, P, N ) or Ibest is empty then Ibest = I

10: for each descriptor 〈a, v〉 in Ibest (in the order that they were added to I) do
11: let I ′

best be Ibest without 〈a, v〉
12: if Accuracy((I ′

best, P, N ) ≥ γ then Ibest = I ′
best

13: P = P − [[Ibest]]P
14: RS = RS ∪ {Ibest → 〈d, c〉}
15: return RS

and support Support(α,Pv) are defined as follows:

Accuracy(α,P,N ) = |[[α]]P |/(|[[α]]P |+ |[[α]]N |)
Support(α,P) = |[[α]]P |

4 Search Algorithms

The bottom-up pruning algorithm does not learn rules on its own, but applies
a rule learning algorithm (called LearnRules in Algorithm 1.1) to find a set
of rules for each class. There are many different algorithms that can be used
for this task. In the experiments that we present in Section 6 we apply two
different algorithms. Both search through a hypothesis space, which consists
of conjunctions of descriptors. However, the search is conducted in different
directions. One searches the hypothesis space in a top-down fashion. The other
searches the space from the bottom and up to the root. We provide their details
in this section.

4.1 Top-Down Search

The top-down algorithm is displayed in Algorithm 1.6. It is a so-called covering
or separate-and-conquer algorithm [5]. This means that it searches for one rule
at the time. When it finds a rule that covers some objects of the positive set
with a certain accuracy (γ), it separates these objects from the rest and conquers
the remaining objects by repeatedly learning rules until all objects are covered.

Accuracy(α,P,N )
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The separate-and-conquer task is performed in the outer-while loop of Algo-
rithm 1.6 (line 2). The loop terminates when P is empty. When an antecedent
has been found, the objects covered by it are removed from P (line 13), and it
is turned into a rule and added to the rule set RS (line 14).

The inner while-loop (line 5) conducts a hill-climbing search for the an-
tecedent. Initially, the antecedent I is empty, and the set B contains all de-
scriptors that may be added to I. In each iteration, the descriptor that has the
highest score is added to I. The loop terminates when I has sufficient accuracy
or no more descriptors may be added to I. The score Score(I,P,N ) is defined as

Score(I,P,N ) = Support(I,P) ·Accuracy(I,P,N )

Note that the selection of descriptors could also have been done according to
the accuracy. However, when the support is multiplied with the accuracy, the
algorithm is forced to consider both measures and not only the accuracy. In this
way we ensure that the rules have a high support as well as a high accuracy.

The best antecedent is maintained in Ibest, which is equal to I if the inner loop
terminates by the first condition. When the inner-while loop terminates by the
second condition, the specified accuracy cannot be obtained and Ibest contains
the most general antecedent with the best accuracy.

The inner while-loop performs a greedy search that may add redundant condi-
tions to an antecedent. The antecedent Ibest is therefore examined and redundant
conditions are removed before a rule is created. This is done in the for-loop at
line 10. The descriptors are processed in the order that they were added to the
antecedent set. A descriptor is deleted from Ibest if the accuracy without the
descriptor is above training accuracy.

4.2 Bottom-Up Search

The bottom-up search algorithm is shown in Algorithm 1.6. Initially, a most
specific antecedent set is created for each object in the positive set where the
most specific antecedent of an object has one descriptor for each attribute in A.
The algorithm tries then to merge the two most similar antecedents into a more
general antecedent by dropping dissimilar descriptors. This merge operation can
be described with the following function.

merge(I1, I2) =
∧

{〈a, v〉 | 〈a, v〉 in I1 and 〈a, v〉 in I2}

The similarity of the antecedents is measured by

dist(I1, I2) = |{a ∈ A | 〈a, v1〉 in I1, 〈a, v2〉 in I2, and v1 �= v2}|

The generalization process is repeated as long as there are some antecedents that
may be merged and the resulting antecedent has an accuracy above the training
accuracy γ.

The antecedent may have redundant descriptors. So after the generalization
process has terminated, each antecedent is examined and redundant descriptors
are removed. This is done in almost same manner as in the top-down search.
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Algorithm 1.6. Bottom-up search for rules of a class
LearnRulesBottomUp:
Input: Positive set P, negative set N , conditional attributes A, decision attribute d,

decision class c, and training accuracy γ (0 < γ ≤ 1).
Output: A set of rules RS.
1: R = {∧a∈A 〈a, a(x)〉 | x ∈ P} and RS = ∅
2: while two antecedents in R can be merged into I and Accuracy(I, P, N ) ≥ γ do
3: select the two most similar I1, I2 ∈ R, i.e., those with the least dist(I1, I2)
4: create I = merge(I1, I2)
5: remove I1, I2 from R and add I to R
6: for each I ∈ R do
7: for each 〈a, v〉 in I do
8: let I ′ be I without 〈a, v〉
9: if Accuracy(I ′, P, N ) ≥ γ then I = I ′

10: RS = RS ∪ {I → 〈d, c〉}
11: return RS

However, the algorithm does not add descriptors to the antecedent such that the
descriptors are just processed in the order that they appear in the antecedent.

5 Performance Measures

The performance of supervised learning methods is usually measured by the
accuracy or the area under the ROC curve (AUC). These measures assume,
however, that each object has a unique decision class and that only one prediction
is made for each object. Moreover, a prediction is either correct (if it is identical
to the decision class of the object) or incorrect (if it is different from the decision
class). It is never partially correct.

These assumptions do not hold in our case. A gene may be annotated with
several decision classes, and several predictions can be made for each gene. A
prediction need not be identical to a decision class, either. It may be above or
below the decision class such that it matches the class only partially.

Thus, standard performance measures of supervised learning are not applica-
ble, and we will introduce new measures in this section.

5.1 Measuring Multiple Annotations and Predictions

Initially, we will ignore the DAG and consider only the situation where a gene
has multiple annotations. In this case, we have a set of decision classes D(x)
and a set of predictions D̂(x) for each gene x ∈ G. There are two ways that a
classifier may fail:

– It may not predict a class c that should be predicted (i.e., c ∈ D(x) and
c �∈ D̂(x)).

– It may predict a class c that should not be predicted (i.e., c �∈ D(x) and
c ∈ D̂(x)).
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These errors can be both assessed with a metric such as

1
|G|

∑
x∈G

|D(x) ∩ D̂(x)|
|D(x) ∪ D̂(x)|

which measures the average share of classes that D(·) and D̂(·) have in common.
This measure is useful for comparing the performance of different classifiers
such that the best classifier can be identified. However, it is not very helpful in
identifying in what way the classifier fails when it achieves less than a full score.
For example, if we want to improve the performance of the classifier, we need to
know what kind of mistakes it makes — does it make too few predictions such
that some annotations are not predicted or does it make too many such that
some predictions do not match any annotations? Unfortunately, both kinds of
errors are measured in the same way by this measure. So, there is no way to tell.

One way to solve this problem is to use two measures – one for each kind of
error. This strategy is taken in Information Retrieval (see e.g., [10–Chapter 8]
and [2–Chapter 3]) which considers a similar problem to the multiple annotation
problem. In this field they measure the recall, which is the ratio RA of anno-
tations that are predicted, and precision, which is the ratio RP of predictions
that are correct, i.e., those that correspond to annotations. We will adopt these
measures here.

Definition 1 (Recall/Precision). Let D(x) be a set of decision classes for
a gene x ∈ G and assume that D̂(x) is a set of predictions made for x by a
classifier.

– Recall: RA =
∑

x∈G |MA(x)|∑
x∈G |D(x)| where MA(x) = D(x) ∩ D̂(x)

– Precision: RP =
∑

x∈G |MP (x)|∑
x∈G |D̂(x)|

where MP (x) = D(x) ∩ D̂(x)

5.2 Measuring the DAG

We will now consider measures for evaluating a classifier trained on a DAG. As
before, we assume that D(x) and D̂(x) denote the annotations and the predic-
tions of gene x ∈ G.

Recall and precision may also be used in this case. However, they consider
an annotation a and a prediction p to match only if a and p are equal. This is
clearly a too strict requirement for the DAG as a and p may match partially if
they are related. The set of matched annotations MA(x) and the set of matched
predictions MP (x) are therefore redefined so that an annotation is considered
matched if there is a related prediction, and a prediction is matched if there is
a related annotation:

MA(x) = {a ∈ D(x) | p ∈ D̂(x) and a ≈ p}
MP (x) = {p ∈ D̂(x) | a ∈ D(x) and p ≈ a}



Supervised Learning in the Gene Ontology 111

The definitions of recall and precision as given in Definitions 1 can then be
applied on these sets instead of MA(x) = MP (x) = D(x) ∩ D̂(x).

These measures estimate the number of the annotations and number of the
predictions that are partially matched. However, they do not consider the loss
of details that may occur when a prediction is more general than an annotation.
In order to quantify this loss, we consider the depth of a class which is equal to
the length of the path from the class to the root (i.e., the number of edges from
the class to the root). There may be more than one path from a class to the root
in a DAG so that a class may occur at several depths. The depth of a class is
therefore defined with respect to a particular path.

Definition 2 (Depth). Let t = 〈c1, . . . , cn,!〉 be a path from c1 ∈ Vd to the
root !. Then the depth of a class c with respect to path t, denoted Deptht(c), is
n (i.e., the length of path t).

The loss associated with a prediction p that is more general than annotation a,
can be measured as the depth of p relative to the depth of a.

Definition 3 (Relative depth). Given an annotation a and a prediction p
with the associated paths ta and tp, the relative depth of a and p with respect to
ta and tp is:

RDepthta,tp
(a, p) =

{
Depthtp (p)
Depthta (a) if ta � tp or tp � ta

0 otherwise

where s � t denotes that s is a subpath of t.

This measure is illustrated in Figure 1. It will be 1 if a and p have the same
depth; less than 1 if p is a superclass of a; and 0 if the a and p are unrelated. It
also measures the gain in detail level that is obtained when a prediction is more
specific than an annotation. In this case, RDepthta,tp

(a, p) > 1.
Note that one of the paths ta and tp in RDepthta,tp

(a, p) must be a subpath
of the other. Otherwise, the paths are not comparable. For example, if p � a
and a has several immediate superclasses, there will be some paths from a to
the root that include p and some that do not. The paths that do not contain p
cannot be compared against the paths of p. So only paths that contain a path
from p to the root as subpath should be considered.

RDepthta,tp
(a, p) depends on the paths ta and tp, and there may be several

different relative depths associated with a and p. We need a single measure on
how well p reassembles a. To this end, the maximal relative depth is used.

Definition 4 (Maximal relative depth). Let a be an annotation and p a
prediction. The maximal relative depth of a and p is defined as

mrd(a, p) = max
ta∈Paths(a,�),
tp∈Paths(p,�)

RDepthta,tp
(a, p)
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Prediction (p)

biological process

cell growth

stress response

oxidative stress response

Annotation (a)

depth(p) = 2

depth(a) = 3

Fig. 1. Depth and relative depth. Assume that an object is labeled a = oxidative
stress response and a prediction is made for this object to p = stress response. In
this case, there are two edges from p to the root such that p has depth Depth(p) = 2.
Similarly, a has depth 3. The relative depth is RDepth(a, p) = Depth(p)

Depth(a) = 2
3 .

mrd(a, p) measures not only the loss (when p � a), but also the gain (when
a � p). However, when we evaluate a classifier, we are mainly interested in how
well the classifier reproduces the actual annotations and less interested if some
details are gained. The maximal relative depth mrd(a, p) is therefore restricted
such that no additional points are given if p is more detailed than a.

Definition 5 (Bounded maximal relative depth). Let a be an annotation
and p a prediction. The bounded maximal relative depth of a and p is

bmrd(a, p) = max(mrd(a, p), 1)

bmrd(a, p) measures only the loss in a prediction with regard to a single anno-
tation. In order to capture the loss in all annotations and objects, we introduce
two measures that accompany recall and precision.

Definition 6 (Average recall/precision depth). Let x ∈ G be annotated
with the decision classes in D(x), and let D̂(x) be a set of predictions made for
object x by a classifier. Then the average recall and precision depths are:

– Avg. recall depth: DA =

∑
x∈U

a∈D(x)
maxp∈D̂(x) bmrd(a, p)∑
x∈U |MA(x)|

– Avg. precision depth: DP =

∑
x∈U

p∈D̂(x)
maxa∈D(x) bmrd(a, p)∑
x∈U |MP (x)|

The recall depth DA is the average bmrd of the best matching prediction
for each matched annotation. This gives an indication of how well the anno-
tations are reproduced. The precision depth DP gives the average bmrd for
each prediction and its best matching annotation, indicating how well each
prediction matches.
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b
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d
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�

Fig. 2. Maximal relative depth. There are two path from a to 	 and one path from p
to the 	. Depth〈a,b,c,p,	〉(p) = 4, Depth〈a,d,p,	〉(p) = 3, and Depth〈p,	〉(p) = 1 The
maximal relative depth is mrd(a, p) = (Depth〈p,	〉(p)/Depth〈a,d,p,	〉(p)) = 1/3.

6 Experimental Results

This section reports on several experiments with the bottom-up algorithm. The
algorithm is first applied to a real life data set created with microarrays. We
then examine the performance on a series of artificial data sets.

6.1 The Fibroblast Data

Our first experiment was on a data set created by Iyer et al. [9]. They studied
the gene response in human fibroblast cells3 with cDNA microarrays. In their
experiments, growth factor serum was initially removed for 48 hours from a
cell culture. This forced the cells into a quiescent state. Growth factor serum
was then added, and samples were collected at 12 different time points (0 h,
15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 12 h, 16 h, 20 h, and 24 h) and analyzed
with cDNA microarrays. Each microarray contained about 8600 genes. Iyer at
al. found that 517 of the genes showed substantial changes in their expression
levels. These genes were clustered using hierarchical clustering, and 10 major
groups were identified by inspecting the dendrogram and the heat map created
by the clustering algorithm.

The data set. The data set4 consisted of the 517 differentially expressed genes
and their associated expression profiles, but contained no annotations for the
genes. The genes were therefore annotated manually by using relevant informa-
tion from the literature and molecular biology databases (see [11] for details).
3 Fibroblasts are connective tissue cells that take part in wound healing and are

capable of differentiating into specialized cells such as cartilage, bone, fat, and mus-
cle cells. In culture, they require growth factors for proliferation (i.e., multiplica-
tion/reproduction). Growth factors are usually provided by fetal bovine serum.

4 This is available at http://genome-www.stanford.edu/serum/.
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The annotation classes were taken from biological process subontology (rev.
1.1152 - 25-Aug-2000) of the GO Consortium. A total of 723 annotations were
found for 323 of the genes in the data set. 203 of these genes were annotated
with more than one class.

The annotations referred to only 234 classes so that most of the classes in the
process ontology were not used. In particular, no gene was annotated with any
of the leaf classes in the ontology. Therefore, a part of the ontology was selected
and only this part was used in the experiment. The part consisted of the most
specific classes with annotations and their superclasses. It had a total of 313
classes where 157 were leaf classes. 113 of the classes were associated with only
one gene.

The microarray measurements, which were real numbers, were discretized5 so
that they could be applied in a rule learning algorithm. This was achieved with
the template approach introduced by Hvidsten et al. [8], which transforms the
real numbers in a gene expression profile into templates. A template is simply
an attribute value that describes a pattern over several consecutive time points.

In this experiment, we created templates that stretched over 2 to 6 time points.
Thus, attributes such as 0H-15min, 0H-30min, 0H-1H, 0H-2H, and 0H-4H were
constructed. Templates were then assigned to each (constructed) attribute and
gene as follows: An up template was created if the slope between the end points in
the interval was greater or equal to 0.03. A down template was constructed if the
slope between the end points was less than or equal to −0.03. A const template
was assigned if the absolute value of the slope between the endpoints was less
than 0.03. If the interval stretched over 3 or more time points an additional
requirement was set such that the slope between adjacent time points in the
interval could not be below −0.02 (above 0.02) for an increasing (decreasing)
template. For a constant template the absolute value of the slope the between
adjacent time points had be below 0.02. If these conditions were not fulfilled no
template was assigned to the gene for this attribute

Results. We applied the bottom-up ensemble method to the data set and es-
timated the performance with 10-fold cross-validation. The algorithm was ex-
ecuted with training accuracy γ = 0.8, split ratio ρ = 0.66, pruning accuracy
δ = 0.8, and pruning support σ = 1. The results are reported in Table 1. Most of
the annotations in the fibroblast data were predicted, and most of the predictions
were correct. However, a lot of the original detail level was lost.

The algorithm was compared to a “flat” algorithm that ignored the DAG
structure. This algorithm learned possible rules for each class similarly to the
LERS system [6], but used the same search algorithms as the bottom-up method.
Table 1 also presents the results obtained with this algorithm. These results were
quite weak. Approx. 10% of the actual annotations were predicted, and most
of the details of these annotations were retained. However, about 90% of the

5 Prior to discretization each expression profile was log2-transformation and normal-
ization as follows: Let Xi (1 ≤ i ≤ 12) be the ratios for a gene over the 12 time points.

A normalized log2-ratio Yi was then computed as: Yi = (log2 Xi)/
√∑12

i=1(log2 Xi)2.
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Table 1. Results on the fibroblast data. For each measure, the average over the 10
cross-validation folds is shown in bold, and the standard is given after the ± sign.

Method Search Top Match Depth
lev. Recall Precision Recall Precision
pru. (RA) (RP) (DA) (DP)

Bottom-up
Top-down Yes 0.79±0.02 0.72±0.02 0.29±0.01 0.32±0.01
Bottom-up Yes 0.79±0.02 0.73±0.03 0.29±0.01 0.32±0.01
Top-down No 0.85±0.02 0.63±0.01 0.30±0.01 0.34±0.01
Bottom-up No 0.84±0.02 0.59±0.02 0.29±0.01 0.32±0.01

Flat
Top-down 0.14±0.01 0.11±0.01 0.95±0.01 0.95±0.01
Bottom-up 0.12±0.01 0.09±0.01 0.89±0.03 0.90±0.02

predictions made by the classifier were incorrect. The results obtained with the
bottom-up method were obviously better. By trading off details, it was able to
reproduce many more annotations with much higher precision.

The predictions made by our algorithms had lost a lot of the details of the
annotation. Most of them were made to the classes immediately below the root.
We believe that this was due to the nature of the fibroblast data. The varia-
tion in the data may not be sufficient to distinguish between the more detailed
classes. Iyer et al. found only 10 major clusters in the data indicating that no
more than 10 classes may be distinguished. So, it seems highly unlikely that all
157 leaf classes in our annotations may be discerned. The genes participating
in different processes may simply be similarly expressed in the experiment of
Iyer et al., and in order to distinguish between the more detailed classes, we
would require more microarray experiments. Thus, the essential variations in
the fibroblast data may be best captured by the general classes at the top of
the ontology.

The fibroblast data have also been classified with Rosetta– originally, in
Hvidsten et al. [8] and more recently in Lægreid et al. [11]. In both studies a
subset of the classes in the ontology was selected, and the genes, which were
annotated to more specific classes, were relabeled with the selected classes. In
Hvidsten et al. the most specific classes, which had at least 10 genes annotated
to either themselves or their subclasses, were selected. This resulted in a set of
16 classes. In Lægreid et al. 23 classes were selected manually using biological
knowledge about the data.

The results obtained in these studies are summarized in Table 2. It should be
mentioned that slightly different versions of the annotations were used in these
studies, and that an intermediate version of these annotations was used in our
experiment. There were also some differences in the definitions of the templates.
This meant that only a rough comparison was possible. However, it appeared
that our results had a higher precision, while more details were retained in the
other studies. The precision in Hvidsten et al. was very low, and even in Lægreid
et al. about 50% of the predictions were incorrect. Compared to our results,
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Table 2. Results obtained with Rosetta on the fibroblast data. These figures are only
rough estimates as Hvidsten et al. only reported sensitivity and specificity for each class.
Lægreid et al. reported recall and precision so that these numbers are exact. However,
recall depth and precision depth were not reported in either study. These figures were
estimated by comparing the original annotations to the “moved” annotations that were
created by relabeling the genes with the selected classes.

Study No. of Match Depth
Classes Recall Precision Recall Precision

(RA) (RP) (DA) (DP)

Hvidsten et al. [8] 16 0.67 0.33 0.71 0.71
Lægreid et al. [11] 23 0.84 0.49 0.69 0.69

it seemed that too many details were kept in these experiments. So at least
some of the selected classes in these studies should have been replaced by more
general classes.

A question is obviously whether our algorithm predicted too general classes
such that details were lost needlessly. This issue is examined in the next section
through controlled experiments with artificial data. The results that will be
reported in that section showed, however, that the bottom-up method retained
the detail level quite well. Hence, it is not likely that details were lost because
of the algorithm.

Still, the results did not depend solely on the bottom-up method, but also on
the search algorithms, which learned the rules. For example, if the rules made by
these algorithms for the detailed classes were poor, they would be pruned so that
the objects would be pushed upwards, and the detail level would be reduced.
This may have happened since the search algorithms were fairly simple and not
robust with regard to noise. They found a minimal set of rules so that at most
one rule was created for each object, and for each rule they selected a minimal
set of descriptors. This made them quite sensitive to noise since a rule would
not be applied and no predictions would be made if an object, which otherwise
matched the rule, had a distorted value for one of the descriptors in the rule.
Hvidsten et al. and Lægreid et al., on the other hand, applied the genetic reduct
algorithm in Rosetta (with the object-wise option). This algorithm created
several rules with different descriptors for each objects. So if an object had a
distorted value for an attribute, it was likely that at least one rule did not have
a descriptor for this attribute and would match the object. The genetic reduct
algorithm was therefore much more robust with regard to noise.

Thus, it is possible that better results could have been obtained with the
genetic reduct algorithm than with the search algorithms that were used in this
study. In order to examine this hypothesis a bit further, we tried to weaken our
results so that we might obtain a recall depth and a precision depth that were
similar to that of Lægreid et al. This was done by changing the pruning accuracy
δ. Some of the results that were achieved are reported in Table 3. However, we
were unable to obtain a similar detail level as these results indicate.
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Table 3. Results on the fibroblast data with relaxed settings (δ = 0.1)

Method Search Top Match Depth
lev. Recall Precision Recall Precision
pru. (RA) (RP) (DA) (DP)

Bottom-up
Top-down Yes 0.81±0.01 0.56±0.02 0.36±0.01 0.39±0.01
Bottom-up Yes 0.80±0.02 0.54±0.01 0.34±0.01 0.37±0.01
Top-down No 0.84±0.01 0.49±0.02 0.35±0.01 0.38±0.01
Bottom-up No 0.83±0.02 0.50±0.01 0.35±0.01 0.37±0.01

This suggests that more details could perhaps have been retained if the ge-
netic reduct algorithm (or another less noise sensitive algorithm) had been used
instead. However, it is not certain that we would have obtained a large increase
in the detail level if this algorithm had been used. The classifier of Lægreid et al.
had a low precision, and 17 of the 23 classes in their study had a depth of 2 or 3.
So, if we wanted to maintain a high precision, we would have had to give up some
of the details that were obtained in their study. Thus, we might still have ended
up with a classifier that predicted mostly classes at the top level (i.e., at depth
1). So, even though it is possible that some more detail could have been obtained
with another search algorithm, we believe that our results are reasonable given
the available data. A much larger data set comprising many more measurements
(created under different experimental conditions) would have been required in
order to obtain more detailed predictions.

6.2 The Artificial Data

We performed several controlled experiments in order to get a better understand-
ing of the performance of the algorithm. These experiments are reported in this
section. In particular, we demonstrate the importance of avoiding discrimina-
tion between related classes, and trading off details for precision. Moreover, we
examine whether the algorithms predict too general classes such that details are
lost needlessly.

The data sets. Several different artificial data sets were created for these exper-
iments. Two different DAGs – one small and one quite large – were constructed
initially. The small DAG contained 13 classes where 7 classes were leaf classes.
Five of these leaf classes had a depth of 3, and two had a depth of 2. The large
DAG consisted of 52 classes with 30 leaf classes. Twenty of these leaf classes had
a depth of 4. The rest had a depth of 3.

Objects were constructed in two steps. Model objects were first created and
assigned to one or more leaf classes. Each model object had an information
vector that consisted of 11 attributes where each attribute could be assigned
one of the following values: up, down, and const. Objects were then created
from the model objects. An object was produced as follows: The attribute-value
pairs in the information vector of the model object were first copied to the



118 H. Midelfart

Table 4. Results without errors. The top-down and bottom-up search algorithms are
abbreviated with T-D and B-U.

DAG Method Search Match Depth
Recall Precision Recall Precision
(RA) (RP) (DA) (DP)

Small Bottom-up T-D 1.000±0.000 1.000±0.000 0.989±0.005 0.989±0.005
B-U 1.000±0.000 1.000±0.000 0.989±0.005 0.989±0.005

Flat T-D 1.000±0.000 1.000±0.000 1.000±0.000 0.847±0.010
B-U 1.000±0.000 1.000±0.000 1.000±0.000 0.847±0.010

Large Bottom-up T-D 1.000±0.000 1.000±0.000 0.996±0.001 0.994±0.002
B-U 1.000±0.000 1.000±0.000 0.996±0.001 0.996±0.001

Flat T-D 1.000±0.000 1.000±0.000 1.000±0.000 0.819±0.007
B-U 1.000±0.000 1.000±0.000 1.000±0.000 0.819±0.007

information vector of the object. The object was then annotated by randomly
generalizing the leaf class label(s) of the model object. For each leaf class label,
a class was selected at random from a pool that consisted of the leaf class and
its superclasses. The object was then labeled with the selected class.

Several objects were created for each model object. Fifteen instances of each
model objects were created for the small DAG, 25 instances were created for the
large DAG. These numbers may seem large, however, only a fraction of these
objects were assigned to the leaf classes. The most detailed leaf classes in the
small DAG had on average 5 instances of same model object. The deepest classes
in the large DAG had 6.25. Since the performance of the classifiers was estimated
with 10-fold cross-validation, these numbers were reduced by approximately 10%
to 4.5 and 5.6. Instances of the same model object had to occur in both the
training set and the validation set in order for the bottom-up method to learn
and accept a rule. A leaf class needed at least 3 objects (when ρ = 0.66) such that
2 objects were placed in the training set and 1 object was put in the validation
set. However, a higher number of objects was required when several model objects
were annotated to the same class since the random splitting, which created the
training and the validation sets, could place all instances of a model object in
only one of these two sets. Hence, the available data in the leaf classes were very
close to minimum required for successful learning.

Results without errors. The bottom-up algorithm was first applied to the
data without introducing any errors into the datasets. The algorithm was ex-
ecuted with training accuracy γ = 1, split ratio ρ = 0.66, pruning accuracy
δ = 1, and pruning support σ = 1 with top level pruning6 (These settings were
used through out the artificial data experiments except for those cases where
other values are explicitly given). The performance was estimated with 10-fold
cross-validation and the results are shown in Table 4.

The bottom-up algorithm classified the objects almost perfectly. All predic-
tions were correct and all annotations were matched. However, a very small loss
6 Similar results were usually also obtained without top level pruning.
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of details was observed. This was expected as the method requires a minimum
of objects in order to accept a rule. Yet, this loss was hardly significant. By set-
ting ρ = 0.55, we achieved perfect results (these are not shown). However, this
depended on the seed given to the random number generator, which was used
when the data were split for cross-validation. Increasing the number of instances
per model object to 20 for the small DAG gave perfect results as well. Thus
the method did not appear to have a tendency to predict too general classes,
besides the small loss that was caused by the need to fill both the training and
the validation set with objects.

The flat method was also tested on the data sets and performed quite well. The
reason was that there were no distortions – in particular no irrelevant attributes
– in the data set so that the algorithm had no opportunity to make mistakes.
So even though it tried to discriminate between similar classes, it found rules
that covered the model vectors. However, it made redundant predictions so that
many of the predictions were related. This resulted in a reduced precision depth.

Results with irrelevant attributes. The data sets without errors correspond
to an ideal situation where each attribute contributes to the discernibility of the
classes. Such a situation will rarely occur in practice. A more realistic data set
will contain noise. In particular, there will be irrelevant attributes that do not
contribute to the discernibility of the classes. In order to make the data sets
more realistic, we added 11 irrelevant attributes to each information vector such
that each vector consisted of a total 22 attributes. The values of the irrelevant
attributes were generated at random when an object was created. The same
three values that were used for the relevant attributes were also assigned to
these attributes.

The results from these data sets are given in Table 5. The results for the
bottom-up method were very good. There were some very small errors, e.g., the
bottom-up method had an RP of 0.993 and 0.995. These errors were merely not
significant as reflected by the associated standard errors. They were estimation
errors that were introduced by unfortunate splits made by the cross-validation
procedure. This was confirmed in several cases by changing the seed of the
random number generator that was used by the cross-validation procedure. In
all of these cases, we were able to obtain perfect results7.

The results obtained with the flat method were clearly much worse. The search
algorithms tried to separate related classes. However, the relevant attribute could
not separate between instances of the same model object that were annotated
to different, but related classes. The rules were thus based on the irrelevant
attributes and this resulted in very poor predictions. This clearly demonstrated
that a DAG learning algorithm should not attempt to discern between related
classes.

7 These results are not shown as we have chosen to create of all of the results in this
paper with the same seed so that they are more comparable.
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Table 5. Results with irrelevant attributes

DAG Method Search Match Depth
Recall Precision Recall Precision
(RA) (RP) (DA) (DP)

Small Bottom-up T-D 1.000±0.000 0.993±0.007 0.989±0.006 0.989±0.006
B-U 1.000±0.000 0.995±0.005 0.943±0.012 0.921±0.019

Flat T-D 0.684±0.021 0.785±0.043 0.877±0.026 0.851±0.020
B-U 0.462±0.052 0.664±0.055 0.867±0.033 0.838±0.028

Large Bottom-up T-D 1.000±0.000 0.999±0.001 0.994±0.002 0.992±0.003
B-U 1.000±0.000 0.999±0.001 0.990±0.002 0.986±0.002

Flat T-D 0.657±0.015 0.777±0.018 0.862±0.015 0.836±0.019
B-U 0.444±0.011 0.532±0.015 0.815±0.022 0.809±0.018

Table 6. Results with inconsistencies. The optimal recall/precision depth was 0.846
for the small DAG and 0.901 for the large DAG.

DAG Method Search Match Depth
Recall Precision Recall Precision
(RA) (RP) (DA) (DP)

Small Bottom-up T-D 1.000±0.000 1.000±0.000 0.823±0.018 0.795±0.012
B-U 1.000±0.000 1.000±0.000 0.828±0.019 0.801±0.018

Flat T-D 1.000±0.000 0.871±0.019 1.000±0.000 0.861±0.010
B-U 1.000±0.000 0.871±0.019 1.000±0.000 0.861±0.010

Large Bottom-up T-D 1.000±0.000 1.000±0.000 0.890±0.005 0.844±0.007
B-U 1.000±0.000 1.000±0.000 0.899±0.005 0.869±0.007

FLat T-D 1.000±0.000 0.937±0.004 1.000±0.000 0.832±0.003
B-U 1.000±0.000 0.937±0.004 1.000±0.000 0.832±0.003

Results with inconsistencies. The ability of the bottom-up algorithm to
trade off details for precision was also examined. This was done by adding incon-
sistencies to the original data sets with no errors. An inconsistency was created
by assigning model objects with identical information vectors to different leaf
classes. Each model object was assigned to one leaf class, and the leaf classes
were selected such that they had at least one superclass in common besides the
root. Objects were then created from these model objects as before, except that
the class labels of these objects were not generalized. All of these objects were
thus assigned to leaf classes.

Several inconsistencies were created for both DAGs. These were made with
different information vectors. The classes, which were assigned to the model ob-
jects, were selected such that the depth of the common superclass varied. Given
the properties of the data sets, we could compute the optimal recall/precision
depth if the learning algorithm identified the common superclasses correctly.
This was 0.846 for the small DAG and 0.901 for the large DAG.

These results are given in Table 6. The bottom-up method traded off details
for precision so that the precision was maintained. The recall depth was very
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Table 7. Results with irrelevant attributes and inconsistencies. The optimal re-
call/precision depth was 0.846 for the small DAG and 0.901 for large DAG.

DAG Method Search σ Top Match Depth
lev. Recall Precision Recall Precision
pru. (RA) (RP) (DA) (DP)

Small Bottom-up T-D 1 Yes 1.00±0.00 0.98±0.01 0.84±0.02 0.79±0.01
B-U 1 Yes 1.00±0.00 0.97±0.01 0.82±0.02 0.80±0.02
T-D 3 Yes 0.97±0.02 1.00±0.00 0.68±0.02 0.66±0.02
B-D 3 Yes 0.97±0.02 0.99±0.01 0.70±0.02 0.67±0.02
T-D 3 No 1.00±0.00 1.00±0.00 0.69±0.02 0.67±0.02
B-U 3 No 1.00±0.00 0.99±0.01 0.69±0.02 0.67±0.02

Flat T-D 0.54±0.04 0.69±0.05 0.87±0.02 0.85±0.02
B-U 0.40±0.03 0.53±0.03 0.88±0.03 0.87±0.03

Large Bottom-up T-D 1 Yes 1.00±0.00 0.96±0.00 0.90±0.01 0.85±0.01
B-U 1 Yes 1.00±0.00 0.98±0.00 0.89±0.01 0.86±0.01
T-D 3 Yes 1.00±0.00 1.00±0.00 0.85±0.00 0.81±0.01
B-U 3 Yes 1.00±0.00 1.00±0.00 0.85±0.00 0.83±0.01

Flat T-D 0.62±0.02 0.70±0.03 0.89±0.01 0.86±0.00
B-U 0.42±0.02 0.50±0.02 0.84±0.01 0.83±0.01

close to the optimal depth. A very small of loss of details was visible. However,
this was of the same magnitude as observed previously, and it occurred most
likely because this method needed a few more objects in order to learn and
accept a rule.

The performance of the flat method was similar to its previous performance
on the data sets without errors. However, the precision was lower because the
algorithm predicted the leaf classes for the inconsistent objects and was not able
to trade of details for precision.

Results with irrelevant attributes and inconsistencies. Finally, the two
kinds of errors were combined in order to examine how the bottom-up algorithm
handled their combined effect. 11 irrelevant attributes were added to the data
sets with the inconsistencies. These attributes were assigned to the information
vectors of both consistent and inconsistent objects. The inconsistent objects
were therefore not inconsistent in the rough set sense of the word as they did
not share the same elementary set. However, they did share the same values
for the relevant attributes. These objects could therefore not be separated by
any rule that was based only on the relevant attributes. A rule based on the
irrelevant attributes could possibly separate them. However, it would not make
any accurate predictions since the values of these attributes were generated at
random. Obviously, this made it much more difficult for an algorithm to recognize
that these objects should be predicted to their common superclass and not to
the leaf classes.

The results are given in Table 7. The bottom-up method performed clearly
much better than the flat method. However, its performance was not perfect
on these data sets. It maintained the detail level quite well when the pruning
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support σ was set to 1, and all annotations were predicted. However, a very few
predictions were incorrect. These incorrect predictions occurred because a few
low quality rules slipped through the pruning system. The search algorithms
created rules for the inconsistent objects with irrelevant attributes. These rules
were usually pruned since they did not cover many objects in the validation
set and had low accuracy. On some rare occasions, however, a rule had a high
accuracy on the validation set and was accepted, and these rules created the
errors. Still, the probability of such an event was very low so that the precision
was only marginally reduced.

We were able to remove these errors in most cases by raising support σ to 3.
However, this meant that the algorithms now needed more objects in order to
learn and accept a rule. Some loss of details was therefore observed – especially
for the small DAG where the objects were less abundant. This was much higher
than the loss of precision that was observed when σ = 1. So, the results for σ = 1
seemed better. The precision was quite close to the optimal value. σ should thus
be kept at 1 – at least when the number of objects is sparse.

7 Conclusion

In this paper we have introduced an algorithm for learning in an ontology and
a framework for evaluating its performance. The experiments with the artificial
data sets demonstrate that the bottom-up algorithm deals appropriately with
the issues introduced by the ontology. It does not discern between related classes
so that its rules have a much higher quality than the rules of a corresponding flat
method. Thus, the predictions made by this algorithm are much more accurate.
The algorithm is able to learn good classifiers when the annotations have a
varying detail level and the data associated with each class are relatively sparse.
The classes of the model objects in the artificial experiments were randomly
generalized so that the annotations had a different detail level, and only a few
objects were assigned to each class. The algorithms still managed to produce
high quality classifiers. The algorithm seems to handle the trade-off between
detail level and precision effectively. When objects are labeled with classes that
cannot be predicted accurately, they identify the most specific classes that may
be predicted.

It is possible that a DAG learning method may lose details that could have
been retained. However, this does not appear to be a problem for the bottom-up
method. It retained the detail level quite well in all of the artificial experiments,
and it did not show a tendency to predict too general classes. Only a very small
loss of details was witnessed in our results. This was expected as the method
requires a minimum of objects in order to split the data into a training set for
learning and a validation set for pruning. So if the examples are very sparse,
a small loss may be observed. However, we believe that this should not be any
problem in a real life situation.

The results on the fibroblast data also show that the bottom-up method per-
forms much better than a corresponding flat method. The predictions ob-
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on this data set are accurate. However, they are very general such that they
do not contribute much biological knowledge. Still, it seems that this is the
best that can be achieved with the available data set when the top-down or the
bottom-up search algorithm is used. It is possible that another search algorithm
may produce more detailed predictions. However, the main problem seems to be
that the fibroblast data set is insufficient for making both detailed and accurate
predictions. Our algorithm should thus be applied on a much larger data set.

One possibility would be to use microarray data from several experimental
studies assuming that these contain a larger variety of expression patterns such
that more classes can be separated. However, it is a question whether enough mi-
croarray data can be obtained such that both accurate and detailed predictions
can be made. By predicting gene function annotations from microarray data
we assume that co-expressed genes are involved in the same biological process.
This assumption has been contested by Shatkay et al. [16], and it is possible
that the function of a gene cannot be predicted with high accuracy from gene
expression data alone. Still, it is feasible to combine microarray data with other
kinds of data such as DNA sequence data. One possibility would be to add
information about transcription factor binding sites to a data set by creating
Boolean attributes denoting the presence or absence of a particular binding site
in a gene. However, the whole sequence could in principle be used. Information
from the biomedical literature such as Medline abstracts may also be applied for
predicting gene function.

An important feature of our method is its generality. It can be applied on many
different kinds of data and is not limited to microarray data. One possibility would
be to use it for text classification – a task which also involves an ontology.

Moreover, it may be combined with many different learning algorithms. The
top-down and the bottom-up search algorithms that we used here were mainly
chosen for their simplicity and may not be the best learning algorithms. Any rule
learning algorithm can be used directly by the bottom-up method. However, the
method is not limited to rule learning. It can be applied to any binary classifier.
In this case, we will just prune whole classes instead of rules. More precisely,
the algorithm will learn a binary classifier on the training sample when a class
is visited. This binary classifier will then be tested on the validation sample and
pruned if its performance is unsatisfactory.
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Abstract. For problems over arbitrary information system we study
the relationships among the complexity of a problem description, the
minimal complexity of a decision tree solving this problem deterministi-
cally, and the minimal complexity of a decision tree solving this problem
nondeterministically. We consider the local approach to investigation of
decision trees where only attributes from a problem description are used
for construction of decision trees solving this problem.
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1 Introduction

Decision trees over finite information systems are investigated in rough set theory
[12,13,17,19], test theory [4,6], theory of questionnaires [14], theory of decision
tables [5], machine learning [2,16], search theory [1,20], etc. The notion of infi-
nite information system is useful in discrete optimization [7] and computational
geometry [15]. However, decision trees over infinite information systems are in-
vestigated to a lesser degree than over finite information systems. In this paper
we consider arbitrary (finite and infinite) information systems.

We study problems with many-valued decisions over considered information
system. Any problem is specified by a number of attributes that divide the
universe into domains on which these attributes have fixed values. A nonempty
finite set of decisions is attached to each domain. For a given object from the
universe it is required to find a decision from the set attached to the domain
containing this object.

Many problems investigated in rough set theory are reduced to problems
with many-valued decisions. Let us consider a finite decision system [18]. This
system is specified by a number of conditional attributes that divide the universe
into domains on which these attributes have fixed values. Our aim is to find the
value of a decision attribute using only values of conditional attributes. Consider
an arbitrary domain. It is clear that using only values of conditional attributes
we will obtain the same value of the decision attribute for all objects from the
domain. If the decision attribute is constant on this domain then we can find its
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exact value for all objects from the domain. Otherwise, we can find exact value
only for some objects. If we want to minimize the number of incorrect answers we
must choose a value of the decision attribute which is true for maximal number
of objects from the considered domain. It is possible that there exists more than
one such value. In this case we deal with a problem with many-valued decisions.

Moreover, problems with many-valued decisions arise naturally in such areas
as discrete optimization, fault diagnosis, computational geometry. For example,
let g1, . . . , gm be functions from IRn to IR. For a given ā ∈ IRn it is required to
find a number from the set D(ā) of numbers i ∈ {1, . . . , m} such that gi(ā) =
min{g1(ā), . . . , gm(ā)}. If for some ā the set D(ā) contains at least two numbers
then we deal with a problem with many-valued decisions.

As algorithms for problem solving we consider decision trees which solve prob-
lems deterministically or nondeterministically. One can interpret decision trees
solving a problem nondeterministically as a way for representation of arbitrary
complete (applicable to any object) decision rule systems for the problem [3].

We consider various complexity measures which characterize time complexity
of decision trees. One of the most known among them is the depth. The depth
of a decision tree is the maximal number of nodes labeling by attributes in a
path from the root to a terminal node of the tree (the depth of a decision rule
system is the maximal number of conditions in the left-hand side of a rule from
the system).

There are two approaches to decision tree investigation: the local approach
where for a problem the decision trees are considered using only attributes from
the problem description, and the global one where for problem solving all at-
tributes from the considered information system can be used. In this paper
decision trees are studied in the frameworks of the local approach.

This paper deals with comparative analysis of the three parameters of prob-
lems over arbitrary information system: the complexity of a problem description
(in the case of the depth, for example, this is the number of attributes in the problem
description), the minimal complexity of a decision tree solving this problem deter-
ministically, and the minimal complexity of a decision tree solving this problem
nondeterministically. Coarse classification of relations among these parameters is
considered and all possible seven types of these relations are enumerated.

Note that the results of this paper were published without proofs in [8,9,10].
Similar results obtained in the frameworks of the global approach can be found
in [9,10,11].

2 Basic Definitions and Results

2.1 Decision Trees

Let ω = {0, 1, 2, . . .}, Ek = {0, 1, . . . , k − 1}, k ≥ 2, A be a nonempty set and
F be a nonempty set of functions from A to Ek. Functions from F will be
called attributes, and the pair U = (A, F ) will be called an information system.
Denote by F ∗ the set of all finite words over the alphabet F including the empty
word λ.
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A node in a finite directed tree is called the root if it is the only node which has
no entering edges. A tree which has such a node will be called a finite directed tree
with root. Nodes without issuing edges will be called terminal nodes. Nodes which
are neither the root nor terminal will be called working nodes. A complete path
in a finite directed tree with root is any sequence ξ = v0, d0, . . . , vm, dm, vm+1
of nodes and edges of the tree such that v0 is the root, vm+1 is a terminal
node, and for i = 0, . . . , m the edge di issues from the node vi and enters the
node vi+1.

A decision tree over information system U is a marked finite directed tree
with root which has at least two nodes and possesses the following
properties:

a) the root and the edges issuing from the root are not labeled;
b) each working node is labeled by an attribute from the set F ;
c) each edge issuing from a working node is labeled by a number from Ek;
d) each terminal node is labeled by a number from ω.

A decision tree is called deterministic if it satisfies the following conditions:

a) exactly one edge issues from the root;
b) edges issuing from a working node are labeled by pairwise different

numbers.

The set of decision trees over U will be denoted by Tree(U). Let Γ ∈ Tree(U).
Denote by At(Γ ) the set of attributes attached to working nodes of Γ . By
Path(Γ ) we denote the set of complete paths in Γ . Let ξ = v0, d0, . . . , vm, dm,
vm+1 be a complete path in Γ . We denote by τ(ξ) the number attached to the
node vm+1. Define a word ϕ(ξ) from F ∗ and a subset A(ξ) of the set A associated
with ξ. If m = 0 then ϕ(ξ) = λ andA(ξ) = A. Let m > 0 and for j = 1, . . . , m the
node vj be labeled by the attribute fj , and the edge dj be labeled by the number
δj . Then ϕ(ξ) = f1 . . . fm and A(ξ) = {a : a ∈ A, f1(a) = δ1, . . . , fm(a) = δm}.
Denote S(ξ) = {f1(x) = δ1, . . . , fm(x) = δm}.

2.2 Problems

The set of nonempty finite subsets of the set ω will be denoted by P(ω). A
problem over U is any (n + 1)-tuple z = (ν, f1, . . . , fn) where n ∈ ω \ {0},
ν : En

k → P(ω) and f1, . . . , fn ∈ F . Denote At(z) = {f1, . . . , fn}. The problem
z may be interpreted as a problem of searching for at least one number from the
set z(a) = ν(f1(a), . . . , fn(a)) for a given a ∈ A. We denote by Probl(U) the set
of problems over the information system U .

Let z ∈ Probl(U) and Γ ∈ Tree(U). We will say that the tree Γ solves the
problem z nondeterministically if the following conditions hold:

a)
⋃

ξ∈Path(Γ )A(ξ) = A.
b) For any a ∈ A and ξ ∈ Path(Γ ) if a ∈ A(ξ) then τ(ξ) ∈ z(a).
We will say that the tree Γ solves the problem z deterministically if Γ is a

deterministic decision tree which solves z nondeterministically.
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2.3 Complexity Measures

A complexity measure over U is any mapping ψ : F ∗ → ω. The complexity
measure ψ will be called limited if it possesses the following properties:

(a) ψ(α1α2) ≤ ψ(α1) + ψ(α2) for any α1, α2 ∈ F ∗.
(b) ψ(α1α2α3) ≥ ψ(α1α3) for any α1, α2, α3 ∈ F ∗.
(c) For any α ∈ F ∗ the inequality ψ(α) ≥ l(α) holds where l(α) is the length

of α.
We extend an arbitrary complexity measure ψ onto the set Tree(U) in the

following way: ψ(Γ ) = max{ψ(ϕ(ξ)) : ξ ∈ Path(Γ )} for any Γ ∈ Tree(U). The
value ψ(Γ ) will be called the complexity of the decision tree Γ .

Now we consider some examples of complexity measures. Let w : F → ω\{0}.
We define the function ψw : F ∗ → ω in the following way: ψw(α) = 0 if α = λ and
ψw(α) =

∑m
i=1 w(fi) if α = f1 . . . fm. The function ψw is a limited complexity

measure over U and it is called a weighted depth. If w ≡ 1 then the function ψw

is called the depth and is denoted by h.
Let ψ be a complexity measure over U and z = (ν, f1, . . . , fn) ∈ Probl(U).

The value ψi
U (z) = ψ(f1 . . . fn) will be called the complexity of the problem z

description. We denote by ψd
U (z) the minimal complexity of a decision tree Γ ∈

Tree(U) which solves the problem z deterministically and satisfies the condition
At(Γ ) ⊆ At(z). We denote by ψa

U (z) the minimal complexity of a decision tree
Γ ∈ Tree(U) which solves the problem z nondeterministically and satisfies the
condition At(Γ ) ⊆ At(z).

2.4 Local Types of T-Pairs

A pair (U, ψ) where U is an information system and ψ is a complexity measure
over U will be called a test-pair (or, t-pair, in short). If ψ is a limited complexity
measure then t-pair (U, ψ) will be called a limited t-pair.

Let (U, ψ) be a t-pair. We have the three parameters ψi
U (z), ψd

U (z) and
ψa

U (z) for any problem z ∈ Probl(U), and we will investigate the relationships
between any two such parameters for problems from Probl(U). Let us consider,
for example, the parameters ψi

U (z) and ψd
U (z). Let n ∈ ω. We will study relations

of the kind ψi
U (z) ≤ n ⇒ ψd

U (z) ≤ u which are true for any z ∈ Probl(U). The
minimal value of u is most interesting for us. This value (if exists) is equal to

Udi
Uψ(n) = max{ψd

U (z) : z ∈ Probl(U), ψi
U (z) ≤ n} .

Also we will study relations of the kind ψi
U (z) ≥ n ⇒ ψd

U (z) ≥ l. In this case the
maximal value of l is most interesting for us. This value (if exists) is equal to

Ldi
Uψ(n) = min{ψd

U (z) : z ∈ Probl(U), ψi
U (z) ≥ n} .

The two functions Udi
Uψ and Ldi

Uψ describe how the behavior of the parameter
ψd

U (z) depends on the behavior of the parameter ψi
U (z).

There are 18 similar functions for all ordered pairs of parameters ψi
U (z),

ψd
U (z) and ψa

U (z). These 18 functions well describe the relationships among the
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considered parameters. It will be very interesting to point out 18-tuples of these
functions for all t-pairs as well as for all limited t-pairs. But this is a very difficult
problem. In this paper instead of functions we will study types of functions. With
any function we will associate its type from the set {α, β, γ, δ, ε}. For example,
if a function has infinite domain, and it is bounded from above then its type is
equal to α. Thus, we will enumerate 18-tuples of types of functions. These tuples
will be represented in tables called the local types of t-pairs.

Now we give definitions of mentioned above notions. Let b, c ∈ {i, d, a}. We
define partial functions Ubc

Uψ : ω → ω and Lbc
Uψ : ω → ω by

Ubc
Uψ(n) = max{ψb

U (z) : z ∈ Probl(U), ψc
U (z) ≤ n} ,

Lbc
Uψ(n) = min{ψb

U (z) : z ∈ Probl(U), ψc
U (z) ≥ n}

for any n ∈ ω. If the value Ubc
Uψ(n) is definite then it is the unimprovable upper

bound on the values ψb
U (z) for problems z ∈ Probl(U) satisfying ψc

U (z) ≤ n.
If the value Lbc

Uψ(n) is definite then it is the unimprovable lower bound on the
values ψb

U (z) for problems z ∈ Probl(U) satisfying ψc
U (z) ≥ n.

Let g be a partial function from ω to ω. We denote by Dom(g) the domain
of g. Denote Dom+(g) = {n : n ∈ Dom(g), g(n) ≥ n} and Dom−(g) = {n : n ∈
Dom(g), g(n) ≤ n}. Now we define the value typ(g) ∈ {α, β, γ, δ, ε} called the
type of g.

– If Dom(g) is an infinite set and g is a bounded from above function then
typ(g) = α.

– If Dom(g) is an infinite set, Dom+(g) is a finite set, and g is an unbounded
from above function then typ(g) = β.

– If both sets Dom+(g) and Dom−(g) are infinite then typ(g) = γ.
– If Dom(g) is an infinite set and Dom−(g) is a finite set then typ(g) = δ.
– If Dom(g) is a finite set then typ(g) = ε.

We denote by typl(U, ψ) a table with three rows and three columns in which
rows from top to bottom and columns from the left to the right are labeled by
indices i, d, a. The pair typ(Lbc

Uψ) typ(Ubc
Uψ) is on the intersection of the row with

index b ∈ {i, d, a} and the column with index c ∈ {i, d, a}. The table typl(U, ψ)
will be called the local type of t-pair (U, ψ).

2.5 Basic Results

The main problem investigated in this paper is to find all local types of t-pairs
as well as of limited t-pairs. The solution of this problem describes all possi-
ble (in terms of functions Ubc

Uψ , Lbc
Uψ types, b, c ∈ {i, d, a}) relationships among

the complexity of problem description, the complexity of problem solving by
deterministic decision trees, and the complexity of problem solving by nondeter-
ministic decision trees.
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Now we define seven tables:

T1 =

i d a
i εα εα εα
d εα εα εα
a εα εα εα

T2 =

i d a
i γγ εε εε
d αα εα εα
a αα εα εα

T3 =

i d a
i γγ δε εε
d αβ γγ εε
a αα αα εα

T4 =

i d a
i γγ γε εε
d αγ γγ εε
a αα αα εα

T5 =

i d a
i γγ γε γε
d αγ γγ γγ
a αγ γγ γγ

T6 =

i d a
i γγ γε γε
d αγ γγ γδ
a αγ βγ γγ

T7 =

i d a
i γγ γε γε
d αγ γγ γε
a αγ αγ γγ

Theorem 2.1. For any t-pair (U, ψ) the relation typl(U, ψ) ∈ {T1, T2, T3, T4, T5,
T6, T7} holds. For any i ∈ {1, 2, 3, 4, 5, 6, 7} there exists a t-pair (U, ψ) such that
typl(U, ψ) = Ti.

Theorem 2.2. For any limited t-pair (U, ψ) the relation typl(U, ψ)∈{T2, T3, T5,
T6, T7} holds. For any i ∈ {2, 3, 5, 6, 7} there exists a limited t-pair (U, h) such
that typl(U, h) = Ti.

Example 2.1. Let n ∈ ω \ {0}, U(n) = (IRn, Ln), Ln = {r(
∑n

i=1 aixi + an+1) :
ai ∈ IR, 1 ≤ i ≤ n + 1}, r : IR → {0, 1} and r(a) = 0 iff a < 0. One can prove
that typl(U(1), h) = T3 and typl(U(n), h) = T7 for any n, n ≥ 2.

Seven similar examples with full proofs are included in Sect. 4 (Lemmas
4.1 - 4.7).

3 Possible Local Upper Types of T-Pairs

Let (U, ψ) be a t-pair. We denote by typlu(U, ψ) a table with three rows and
three columns in which rows from top to bottom and columns from the left to
the right are labeled by indices i, d, a. The value typ(Ubc

Uψ) is on the intersection
of the row with index b ∈ {i, d, a} and the column with index c ∈ {i, d, a}. The
table typlu(U, ψ) will be called the local upper type of t-pair (U, ψ). In this section
all possible local upper types of t-pairs are enumerated.

Now we define seven tables:

t1 =

i d a
i α α α
d α α α
a α α α

t2 =

i d a
i γ ε ε
d α α α
a α α α

t3 =

i d a
i γ ε ε
d β γ ε
a α α α

t4 =

i d a
i γ ε ε
d γ γ ε
a α α α

t5 =

i d a
i γ ε ε
d γ γ γ
a γ γ γ

t6 =

i d a
i γ ε ε
d γ γ δ
a γ γ γ

t7 =

i d a
i γ ε ε
d γ γ ε
a γ γ γ
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Proposition 3.1. For any t-pair (U, ψ) the relation typlu(U, ψ) ∈ {t1, t2, t3, t4,
t5, t6, t7} holds.

Proposition 3.2. For any limited t-pair (U, ψ) the relation typlu(U, ψ)∈{t2, t3,
t5, t6, t7} holds.

We divide the proofs of the propositions into a sequence of lemmas.

Lemma 3.1. Let (U, ψ) be a t-pair and z ∈ Probl(U). Then the inequalities
ψa

U (z) ≤ ψd
U (z) ≤ ψi

U (z) hold.

Proof. Let z = (ν, f1, . . . , fn). It is not difficult to construct a decision tree
Γ0 ∈ Tree(U) which solves the problem z deterministically by sequential com-
putation values of the attributes f1, . . . , fn. Evidently, ψ(Γ0) = ψi

U (z) and
At(Γ0) ⊆ At(z). Therefore ψd

U (z) ≤ ψi
U (z). If a decision tree Γ ∈ Tree(U) solves

the problem z deterministically then the decision tree Γ solves the problem z
nondeterministically. Therefore ψa

U (z) ≤ ψd
U (z). �

Let (U, ψ) be a t-pair, n ∈ ω and b, c ∈ {i, d, a}. The notation Ubc
Uψ(n) = ∞

means that the set {ψb
U (z) : z ∈ Probl(U), ψc

U (z) ≤ n} is infinite. Evidently, if
Ubc

Uψ(n) = ∞ then Ubc
Uψ(n + 1) = ∞. It is not difficult to prove the following

statement.

Lemma 3.2. Let (U, ψ) be a t-pair and b, c ∈ {i, d, a}. Then

a) if there exists n ∈ ω such that Ubc
Uψ(n) = ∞ then typ(Ubc

Uψ) = ε;
b) if there is no n ∈ ω such that Ubc

Uψ(n) = ∞ then Dom(Ubc
Uψ) = {n : n ∈

ω, n ≥ n0} where n0 = min{ψc
U (z) : z ∈ Probl(U)}.

Let (U, ψ) be a t-pair and b, c, e, f ∈ {i, d, a}. The notation Ubc
Uψ �Uef

Uψ means
that for any n ∈ ω the following statements hold:

a) if the value Ubc
Uψ(n) is definite then either Uef

Uψ(n) = ∞ or the value Uef
Uψ(n)

is definite and the inequality Ubc
Uψ(n) ≤ Uef

Uψ(n) holds;
b) if Ubc

Uψ(n) = ∞ then Uef
Uψ(n) = ∞.

Let # be a linear order on the set {α, β, γ, δ, ε} such that α # β # γ # δ # ε.

Lemma 3.3. Let (U, ψ) be a t-pair. Then typ(Ubi
Uψ) # typ(Ubd

Uψ) # typ(Uba
Uψ)

and typ(Uab
Uψ) # typ(Udb

Uψ) # typ(U ib
Uψ) for any b ∈ {i, d, a}.

Proof. From the definition of the functions Ubc
Uψ , b, c ∈ {i, d, a}, and from Lemma

3.1 it follows that Ubi
Uψ � Ubd

Uψ � Uba
Uψ and Uab

Uψ � Udb
Uψ � U ib

Uψ for any b ∈ {i, d, a}.
Using these relations and Lemma 3.2 we obtain the statement of the lemma. �

Lemma 3.4. Let (U, ψ) be a t-pair and b, c ∈ {i, d, a}. Then
a) typ(Ubc

Uψ) = α iff the function ψb
U is bounded from above on the set

Probl(U);
b) if the function ψb

U is unbounded from above on Probl(U) then typ(Ubb
Uψ) = γ.
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Proof. The statement a) is obvious. Let the function ψb
U be unbounded from

above on Probl(U). One can show that in this case the equality Ubb
Uψ(n) = n

holds for infinitely many n ∈ ω. Therefore typ(Ubb
Uψ) = γ. �

Corollary 3.1. Let (U, ψ) be a t-pair and b ∈ {i, d, a}. Then typ(Ubb
Uψ) ∈ {α, γ}.

Lemma 3.5. Let (U, ψ) be a t-pair and typ(U ii
Uψ) �= α. Then typ(U id

Uψ) =
typ(U ia

Uψ) = ε.

Proof. Using Lemma 3.4 we conclude that the function ψi
U is unbounded from

above on Probl(U). Let m ∈ ω. Then there exists a problem z = (ν, f1, . . . , fn) ∈
Probl(U) such that ψi

U (z) ≥ m. Let us consider the problem z′ = (ν′, f1, . . . , fn)
where ν′ ≡ {0}. It is clear that ψi

U (z′) ≥ m. Let Γ be a decision tree which
consists of the root, the terminal node labeling by 0 and the edge connecting these
two nodes. One can show that the tree Γ solves the problem z′ deterministically.
Therefore ψa

U (z′) ≤ ψd
U (z′) ≤ ψ(Γ ) = ψ(λ). Taking into account that m is an

arbitrary number from ω we obtain U id
Uψ(ψ(λ)) = ∞ and U ia

Uψ(ψ(λ)) = ∞. Using
Lemma 3.2 we conclude that typ(U id

Uψ) = typ(U ia
Uψ) = ε. �

Lemma 3.6. Let (U, ψ) be a t-pair. Then typ(Uai
Uψ) ∈ {α, γ}.

Proof. Let U = (A, F ) and f : A → Ek for any f ∈ F . Using Lemma 3.3 and
Corollary 3.1 we obtain typ(Uai

Uψ) ∈ {α, β, γ}. Assume that typ(Uai
Uψ) = β. Then

there exists m ∈ ω \ {0} such that Uai
Uψ(n) < n for any n ∈ ω, n > m. Let

us prove by induction on n that for any problem z ∈ Probl(U) if ψi
U (z) ≤ n

then ψa
U (z) ≤ m0, where m0 = max{m, ψ(λ)}. Using Lemma 3.1 we conclude

that under the condition n ≤ m the considered statement holds. Let it hold
for some n, n ≥ m. Let us show that this statement holds for n + 1 too. Let
z ∈ Probl(U) and ψi

U (z) ≤ n + 1. Since n + 1 > m, we obtain ψa
U (z) ≤ n.

Let Γ ∈ Tree(U), At(Γ ) ⊆ At(z), ψ(Γ ) = ψa
U (z) and Γ solve the problem

z nondeterministically. Assume that in Γ there exists a complete path ξ in
which there are no working nodes. In this case a decision tree, which consists of
the root, the terminal node labeling by τ(ξ) and the edge connecting these two
nodes, solves the problem z nondeterministically. Therefore ψa

U (z) ≤ ψ(λ) ≤ m0.
Assume now that each complete path in the decision tree Γ contains a working
node. Let ξ ∈ Path(Γ ), ξ = v0, d0, . . . , vp, dp, vp+1 and for i = 1, . . . , p the node
vi be labeled by the attribute fi, and the edge di be labeled by the number δi.
Let us consider the problem zξ = (νξ, f1, . . . , fp) where νξ(δ1, . . . , δp) = {τ(ξ)}
and νξ(σ̄) = {τ(ξ) + 1} for any p-tuple σ̄ ∈ Ep

k such that σ̄ �= (δ1, . . . , δp).
It is clear that ψi

U (zξ) ≤ n. Using the inductive hypothesis we conclude that
there exists a decision tree Γξ ∈ Tree(U) which has the following properties:
Γξ solves the problem zξ nondeterministically, At(Γξ) ⊆ At(zξ) and ψ(Γξ) ≤
m0. Let A(ξ) �= ∅. We denote by Γ̃ξ a tree obtained from Γξ by removal all
nodes and edges which satisfy the following condition: there is no a complete
path ξ′ in Γξ which contains this node or edge and for which τ(ξ′) = τ(ξ). Let
{ξ : ξ ∈ Path(Γ ),A(ξ) �= ∅} = {ξ1, . . . , ξr}. Let us identify the roots of the
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trees Γ̃ξ1 , . . . , Γ̃ξr . We denote by G the obtained tree. It is not difficult to show
that G ∈ Tree(U), At(G) ⊆ At(z), ψ(G) ≤ m0 and the decision tree G solves
the problem z nondeterministically. Thus, the considered statement holds. Using
Lemma 3.4 we conclude that typ(Uai

Uψ) = α. The obtained contradiction shows
that typ(Uai

Uψ) ∈ {α, γ}. �

Lemma 3.7. Let (U, ψ) be a limited t-pair and typ(Uai
Uψ) = α. Then typ(Udi

Uψ) ∈
{α, β}.

Proof. Let U = (A, F ) and f : A → Ek for any f ∈ F . Using Lemma 3.4 we
conclude that there exists r ∈ ω such that the inequality ψa

U (z) ≤ r holds for
any problem z ∈ Probl(U). Let f ∈ F and f �≡ const. Let us consider a problem
zf = (ν, f) where ν(δ) = {δ} for any δ ∈ Ek. Let Γ ∈ Tree(U), At(Γ ) ⊆ At(zf ),
ψ(Γ ) = ψa

U (zf) and Γ solve the problem zf nondeterministically. Since f �≡
const, we have f ∈ At(Γ ). Using the property (b) of the complexity measure ψ
we obtain ψ(Γ ) ≥ ψ(f). Consequently, ψ(f) ≤ r.

Let f1, . . . , fn ∈ F , δ1, . . . , δn ∈ Ek and the system of equations

{f1(x) = δ1, . . . , fn(x) = δn} (1)

be compatible on A. Let us consider a problem z = (ν, f1, . . . , fn) where ν :
En

k → {{0}, {1}} and ν(σ̄) = {1} iff σ̄ = (δ1, . . . , δn). Taking into account that
ψa

U (z) ≤ r and the complexity measure ψ has the property (c), it is not difficult
to show that there exists a subsystem of the system (1) which contains at most
r equations and has the same set of solutions just as the system (1).

Let the system (1) be incompatible on A. Let us show that there exists an
incompatible subsystem of the system (1) which contains at most r+1 equations.
If the system {f1(x) = δ1} is incompatible on A then the considered statement
holds. Otherwise there exists i ∈ {1, . . . , n− 1} such that the system

{f1(x) = δ1, . . . , fi(x) = δi} (2)

is compatible on A and the system, which is obtained from the system (2) by
adding the equation fi+1(x) = δi+1, is incompatible on A. According to proved
above, there exists a subsystem S of the system (2) which contains at most r
equations and has the same set of solutions just as the system (2). By adding the
equation fi+1(x) = δi+1 to the system S we obtain a subsystem of the system
(1) which is incompatible on A and contains at most r + 1 equations.

Let z1 ∈ Probl(U). It is clear that there exists a problem z2 ∈ Probl(U)
which has the following properties: z1(a) = z2(a) for any a ∈ A, At(z2) ⊆
At(z1), and f �≡ const for any f ∈ At(z2). Let z2 = (ν, f1, . . . , fn). Now we
consider the problem z3 = (ν′, f1, . . . , fn) from Probl(U) where ν′ satisfies the
following conditions: |ν′(δ̄)| = 1 for any δ̄ ∈ En

k , and ν′(δ̄1) �= ν′(δ̄2) for any
δ̄1, δ̄2 ∈ En

k , δ̄1 �= δ̄2. It is not difficult to show that ψd
U (z1) ≤ ψd

U (z2) ≤ ψd
U (z3).

For δ̄ = (δ1, . . . , δn) ∈ En
k let us denote by A(δ̄) the set of solutions on A for the

following system of equations:

S(δ̄) = {f1(x) = δ1, . . . , fn(x) = δn} .
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Let Δ(z3) = {δ̄ : δ̄ ∈ En
k , A(δ̄) �= ∅} and N = |Δ(z3)|. Taking into account that

any compatible on A system S(δ̄) has a subsystem with at most r equations and
with the same set of solutions just as the system S(δ̄), it is not difficult to show
that

N ≤ (n + 1)r · kr . (3)

For any i ∈ {1, . . . , n} and δ ∈ Ek we denote by N(i, δ) the number of n-tuples
from Δ(z3) in which i-th digit is equal to δ.

It is clear that A =
⋃

δ̄∈Δ(z3) A(δ̄), and for any a1, a2 ∈ A the relation
z3(a1) ∩ z3(a2) �= ∅ holds iff a1 ∈ A(δ̄) and a2 ∈ A(δ̄) for some δ̄ ∈ Δ(z3). Thus,
when we begin to solve the problem z3 for an element a ∈ A, we know only that
the element a belongs to one of the sets A(δ̄), δ̄ ∈ Δ(z3). When the problem
z3 will be solved, we will be able to point to the concrete n-tuple δ̄ ∈ Δ(z3)
such that a ∈ A(δ̄). If the value of the attribute fi is computed and fi(a) = δ
then the number of sets A(δ̄), in which the element a can be contained, reduces
from N to N(i, δ). Let N ≥ 2. Let us show that we can choose at most r + 1
attributes from {f1, . . . , fn} which have the following property: the computation
of these attributes, independently of obtained values, leads to reduction of the
set number in twice. Let i ∈ {1, . . . , n} and σi be a number from Ek such that
N(i, σi) = max{N(i, δ) : δ ∈ Ek}. Evidently,

N(i, δ) ≤ N

2
(4)

for any δ ∈ Ek, δ �= σi. Let σ̄ = (σ1, . . . , σn). Now we consider the system of
equations S(σ̄). According to proved above, there exists a subsystem {fi1(x) =
σi1 , . . . , fim(x) = σim} of the system S(σ̄) which has the same set of solutions
just as the system S(σ̄) and for which m ≤ r + 1. Let we compute values of the
attributes fi1 , . . . , fim on element a ∈ A, and let fi1(a) = t1, . . . , fim(a) = tm.
We denote by Δ′ the set {(δ1, . . . , δn) ∈ Δ(z3) : δi1 = t1, . . . , δim = tm}. It is
clear that a ∈

⋃
δ̄∈Δ′ A(δ̄). If the equality tj = σij holds for any j ∈ {1, . . . , m}

then Δ′ = {σ̄}. Let for some j ∈ {1, . . . , m} the relation tj �= σij hold. Using
(4) we obtain |Δ′| ≤ N

2 . Thus, after the computation values of m ≤ r + 1
attributes the number of the sets A(δ̄), in which the element a can be contained,
reduced in twice. If |Δ′| = 1 then the problem z3 is solved for the element a.
If |Δ′| > 1 then we in the same way look for proper attributes for the set Δ′,
etc. Using the inequality (3) we conclude that there exists a decision tree Γ
which solves the problem z3 deterministically and for which At(Γ ) ⊆ At(z3)
and h(Γ ) ≤ (r + 1) $log2 N% ≤ (r + 1)2 log2 k(n + 1). Taking into account that
ψ(fi) ≤ r for any attribute fi ∈ At(z3) and the complexity measure ψ has the
property (a), we obtain

ψd
U (z3) ≤ r(r + 1)2 log2 k(n + 1) .

Consequently, ψd
U (z1) ≤ r(r+1)2 log2 k(n+1). Taking into account that the com-

plexity measure ψ has the property (c), we obtain ψi
U (z1) ≥ n. Since z1 is an arbi-

trary problem over U , we have Dom+(Udi
Uψ) is a finite set. Therefore typ(Udi

Uψ) �=γ.
Using Lemma 3.3 and Corollary 3.1 we obtain typ(Udi

Uψ)∈ {α, β}. �
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Proof (of Proposition 3.1). Let (U, ψ) be a t-pair. Using Corollary 3.1 we con-
clude that typ(U ii

Uψ) ∈ {α, γ}. Using Corollary 3.1 and Lemma 3.3 we obtain
typ(Udi

Uψ) ∈ {α, β, γ}. From Lemma 3.6 it follows that typ(Uai
Uψ) ∈ {α, γ}.

a) Let typ(U ii
Uψ) = α. Using Lemmas 3.3 and 3.4 we obtain typlu(U, ψ) = t1.

b) Let typ(U ii
Uψ) = γ and typ(Udi

Uψ) = α. Using Lemmas 3.3, 3.4 and 3.5 we
obtain typlu(U, ψ) = t2.

c) Let typ(U ii
Uψ) = γ and typ(Udi

Uψ) = β. From Lemma 3.5 it follows that
typ(U id

Uψ) = typ(U ia
Uψ) = ε. Using Lemmas 3.3 and 3.6 we obtain typ(Uai

Uψ) = α.
From this equality and from Lemma 3.4 it follows that typ(Uad

Uψ) = typ(Uaa
Uψ) =

α. Using the equality typ(Udi
Uψ) = β, Lemma 3.3 and Corollary 3.1 we obtain

typ(Udd
Uψ) = γ. From the equalities typ(Udd

Uψ) = γ, typ(Uaa
Uψ) = α and from

Lemmas 3.2 and 3.4 it follows that typ(Uda
Uψ) = ε. Thus, typlu(U, ψ) = t3.

d) Let typ(U ii
Uψ) = typ(Udi

Uψ) = γ and typ(Uai
Uψ) = α. Using Lemma 3.5 we

obtain typ(U id
Uψ) = typ(U ia

Uψ) = ε. From Lemma 3.4 it follows that typ(Uad
Uψ) =

typ(Uaa
Uψ) = α. Using Lemma 3.3 and Corollary 3.1 we obtain typ(Udd

Uψ) = γ.
From this equality, equality typ(Uaa

Uψ) = α and from Lemmas 3.2 and 3.4 it
follows that typ(Uda

Uψ) = ε. Thus, typlu(U, ψ) = t4.
e) Let typ(U ii

Uψ) = typ(Udi
Uψ) = typ(Uai

Uψ) = γ. Using Lemma 3.5 we conclude
that typ(U id

Uψ) = typ(U ia
Uψ) = ε. Using Lemma 3.3 and Corollary 3.1 we obtain

typ(Udd
Uψ) = typ(Uad

Uψ) = typ(Uaa
Uψ) = γ. Using Lemma 3.3 we obtain typ(Uda

Uψ) ∈
{γ, δ, ε}. Therefore typlu(U, ψ) ∈ {t5, t6, t7}. �

Proof (of Proposition 3.2). Let (U, ψ) be a limited t-pair. Taking into account
that the complexity measure ψ has the property (c) and using Lemma 3.4 we
obtain typ(U ii

Uψ) �= α. Therefore typlu(U, ψ) �= t1. Using Lemma 3.7 we obtain
typlu(U, ψ) �= t4. From these relations and Proposition 3.1 it follows that the
statement of the proposition holds. �

4 Realizable Local Upper Types of T-Pairs

In this section all realizable local upper types of t-pairs are enumerated.

Proposition 4.1. For any i ∈ {1, 2, 3, 4, 5, 6, 7} there exists a t-pair (U, ψ) such
that

typlu(U, ψ) = ti .

Proposition 4.2. For any i ∈ {2, 3, 5, 6, 7} there exists a limited t-pair (U, h)
such that

typlu(U, h) = ti .

We divide the proofs of the propositions into a sequence of lemmas.
Let us define a t-pair (U1, π) as follows: U1 = (ω, F1) where F1 = {f} and

f ≡ 0, and π ≡ 0.
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Lemma 4.1. typlu(U1, π) = t1.

Proof. Using Lemma 3.4 we conclude that typ(U ii
U1π) = α. From this equality

and from Proposition 3.1 it follows that typlu(U1, π) = t1. �

Let us define a t-pair (U2, h) as follows: U2 = (ω, F2) where F2 = F1.

Lemma 4.2. typlu(U2, h) = t2.

Proof. It is not difficult to show that hd
U2

(z) = 0 for any problem z ∈ Probl(U2).
It is clear that the function hi

U2
is unbounded from above on Probl(U2). Using

Lemma 3.4 we conclude that typ(U ii
U2h) = γ and typ(Udd

U2h) = α. From these
equalities and from Proposition 3.1 it follows that typlu(U2, h) = t2. �

Let us define a t-pair (U3, h) as follows: U3 = (ω, F3) where F3 = {li : i ∈
ω \ {0}} and for any i ∈ ω \ {0}, j ∈ ω if j ≤ i then li(j) = 0, and if j > i then
li(j) = 1.

Lemma 4.3. typlu(U3, h) = t3.

Proof. It is not difficult to show that for any compatible on ω system of equations

{li1(x) = δ1, . . . , lim(x) = δm} ,

where li1 , . . . , lim ∈ F3 and δ1, . . . , δm ∈ E2, there exists a subsystem which has
the same set of solutions and which contains at most two equations. Using this
fact it is not difficult to show that ha

U3
(z) ≤ 2 for any problem z ∈ Probl(U3).

From here and from Lemma 3.4 it follows that typ(Uai
U3h) = α. It is clear that

(U3, h) is a limited t-pair. Using Lemma 3.7 we conclude that typ(Udi
U3h) ∈ {α, β}.

Let us show that typ(Udi
U3h) = β. Assume the contrary: typ(Udi

U3h) = α. Using
Lemma 3.4 we conclude that there exists a number m ∈ ω such that hd

U3
(z) ≤ m

for any problem z ∈ Probl(U3). Therefore there exists a number n ∈ ω that
satisfies the following condition: for any problem z ∈ Probl(U3) there exists a
decision tree Γ ∈ Tree(U3) which solves the problem z deterministically and
for which |At(Γ )| ≤ n and At(Γ ) ⊆ At(z). Let us consider a problem z′ =
(ν, l1, . . . , ln+1) from Probl(U3) where ν : En+1

2 → P(ω) and ν(δ̄1) ∩ ν(δ̄2) = ∅
for any δ̄1, δ̄2 ∈ En+1

2 such that δ̄1 �= δ̄2. Let Γ be an arbitrary decision tree over
U3 which solves the problem z′ deterministically and for which At(Γ ) ⊆ At(z′).
It is not difficult to show that At(Γ ) = At(z′) and, hence, |At(Γ )| ≥ n + 1. We
obtained a contradiction. Therefore typ(Udi

U3h) = β. From this equality and from
Proposition 3.1 it follows that typlu(U3, h) = t3. �

Let us define a t-pair (U4, μ) as follows: U4 = (ω, F4) where F4 = F3, μ(λ) =
0, μ(li1 . . . lim) = 1 if m = 1 or m = 2 and i1 > i2, μ(li1 . . . lim) = max{i1, . . . ,
im} in other cases.
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Lemma 4.4. typlu(U4, μ) = t4.

Proof. By analogy with the proof of Lemma 4.3 one can show that typ(Uai
U4μ)=α.

Let us prove that typ(Udi
U4μ) = γ. Let n ∈ ω and n ≥ 4. Now we consider

a problem z = (ν, l1, . . . , ln) from Probl(U4) where ν : En
2 → P(ω) and ν(δ̄1) ∩

ν(δ̄2) = ∅ for any δ̄1, δ̄2 ∈ En
2 such that δ̄1 �= δ̄2. It is clear that μi

U4
(z) = n.

Let Γ be a decision tree over U4 which solves the problem z deterministically
and for which At(Γ ) ⊆ At(z) and μ(Γ ) = μd

U4
(z). It is not difficult to prove

that At(Γ ) = At(z). Therefore |At(Γ )| = n ≥ 4. Using Lemma 3.1 we conclude
that μ(Γ ) ≤ n. Let us show that μ(Γ ) = n. Assume the contrary: μ(Γ ) < n.
Since ln ∈ At(Γ ), there exists a complete path ξ in the decision tree Γ such
that the letter ln is in the word ϕ(ξ). Since μ(ϕ(ξ)) < n, we have ϕ(ξ) = ln
or ϕ(ξ) = lnli where i < n. Let an edge d issue from root of the tree Γ . Then
the node, which d enters, is labeled by the attribute ln. Taking into account
that μ(Γ ) < n and using the properties of the complexity measure μ we obtain
h(Γ ) ≤ 2. Consequently, |At(Γ )| ≤ 3. We obtained a contradiction. Therefore
μ(Γ ) = n and μd

U4
(z) = n. Thus, Udi

U4μ(n) = n. Taking into account that n

is an arbitrary number from ω for which n ≥ 4, we obtain typ(Udi
U4μ) = γ.

From this equality, equality typ(Uai
U4μ) = α and Proposition 3.1 it follows that

typlu(U4, μ) = t4. �

Let us define a t-pair (U5, h) as follows: U5 = (ω, F5) where F5 = {fi : i ∈
ω \ {0}} and for any i ∈ ω \ {0}, j ∈ ω if i = j then fi(j) = 1, and if i �= j then
fi(j) = 0.

Lemma 4.5. typlu(U5, h) = t5.

Proof. Let z ∈ Probl(U5). We will show that hd
U5

(z) = ha
U5

(z). Let Γ be a
decision tree over U5 which solves the problem z nondeterministically and for
which At(Γ ) ⊆ At(z) and h(Γ ) = ha

U5
(z). Let ξ be a complete path in the tree

Γ such that 0 ∈ A(ξ). If in the complete path ξ there are no working nodes
then, as it is not difficult to show, hd

U5
(z) = ha

U5
(z) = 0. Let there be m > 0

working nodes in the path ξ and S(ξ) = {fi1(x) = δ1, . . . , fim(x) = δm}. Since
0 ∈ A(ξ), we have δ1 = . . . = δm = 0. It is clear that for any p ∈ A(ξ) the
relation τ(ξ) ∈ z(p) holds.

Let us describe a decision tree Γ1 over U5 which solves the problem z deter-
ministically and for which At(Γ1) ⊆ At(z) and h(Γ1) ≤ m. For an arbitrary
p ∈ ω the decision tree Γ1 computes the values fi1(p), . . . , fim(p). If fi1(p) =
. . . = fim(p) = 0 then p ∈ A(ξ) and, hence, the problem z is solved since we know
that τ(ξ) ∈ z(p). Let for some j ∈ {1, . . . , m} the equality fij (p) = 1 hold. Then
p = ij and, hence, the problem z is solved too since we know all the set z(p).

It is clear that h(Γ ) ≥ m. Therefore h(Γ1) ≤ ha
U5

(z) and hd
U5

(z) ≤ ha
U5

(z).
Using Lemma 3.1 we conclude that hd

U5
(z) ≥ ha

U5
(z) and, hence, hd

U5
(z) = ha

U5
(z).

From this equality it follows that there is no n ∈ ω for which Uda
U5h(n) = ∞. Using

Lemma 3.2 we conclude that Dom(Uda
U5h) = {n : n ∈ ω, n ≥ n0} for some n0 ∈ ω

and Uda
U5h(n) ≤ n for any n ∈ Dom(Uda

U5h).
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Let n ∈ Dom(Uda
U5h) and n ≥ 1. We will show that Uda

U5h(n) = n. Let z =
(ν, f1, . . . , fn) be a problem from Probl(U5) for which ν(δ̄1) ∩ ν(δ̄2) = ∅ for any
δ̄1, δ̄2 ∈ En

2 such that δ̄1 �= δ̄2. Let Γ be a decision tree over U5 which solves the
problem z nondeterministically and for which At(Γ ) ⊆ At(z) and h(Γ ) = ha

U5
(z).

Let ξ be a complete path in the tree Γ such that 0 ∈ A(ξ). It is clear that in
the complete path ξ there is at least one working node. Let S(ξ) = {fi1(x) =
δ1, . . . , fim(x) = δm}. Since 0 ∈ A(ξ), we have δ1 = . . . = δm = 0. It is clear that
i �∈ A(ξ) for any i ∈ {1, . . . , n}. Therefore for any i ∈ {1, . . . , n} the equation
fi(x) = 0 is contained in the system S(ξ). Consequently, h(Γ ) ≥ n and ha

U5
(z) ≥

n. It is clear that hi
U5

(z) = n. Using Lemma 3.1 we obtain ha
U5

(z) = n and
hd

U5
(z) = n. Therefore Uda

U5h(n) ≥ n and, as proved above, Uda
U5h(n) = n. Taking

into account that n is an arbitrary number from ω such that n ≥ max(n0, 1) we
conclude that Dom−(Uda

U5h) and Dom+(Uda
U5h) are infinite sets and typ(Uda

U5h) = γ.
Using Proposition 3.1 we obtain typlu(U5, h) = t5. �

Let us define a t-pair (U6, h) as follows: U6 = (ω, F6) where F6 = F5 ∪ G6,
G6 = {g2i+1 : i ∈ ω} and for any i ∈ ω, j ∈ ω if j ∈ {2i + 1, 2i + 2} then
g2i+1(j) = 1, and if j /∈ {2i + 1, 2i + 2} then g2i+1(j) = 0.

Lemma 4.6. typlu(U6, h) = t6.

Proof. Let z ∈ Probl(U6). We will show that hd
U6

(z) ≤ ha
U6

(z) + 1. Let Γ be a
decision tree over U6 which solves the problem z nondeterministically and for
which At(Γ ) ⊆ At(z) and h(Γ ) = ha

U6
(z). Let ξ be a complete path in the tree

Γ such that 0 ∈ A(ξ). If in the complete path ξ there are no working nodes
then, as it is not difficult to show, hd

U6
(z) = ha

U6
(z) = 0. Let there be m > 0

working nodes in the path ξ and S(ξ) = {q1(x) = δ1, . . . , qm(x) = δm} where
qi ∈ F6, 1 ≤ i ≤ m. Since 0 ∈ A(ξ), we have δ1 = . . . = δm = 0. It is clear that
for any p ∈ A(ξ) the relation τ(ξ) ∈ z(p) holds.

Let us describe a decision tree Γ1 over U6 which solves the problem z de-
terministically and for which At(Γ1) ⊆ At(z) and h(Γ1) ≤ m + 1. For an ar-
bitrary p ∈ ω the decision tree Γ1 computes the values q1(p), . . . , qm(p). If
q1(p) = . . . = qm(p) = 0 then p ∈ A(ξ) and, hence, the problem z is solved
since we know that τ(ξ) ∈ z(p). Let for some j ∈ {1, . . . , m} the equality
qj(p) = 1 hold. If qj = fi then p = i and, hence, the problem z is solved
too since we know all the set z(p). Let qj = g2i+1. Then p ∈ {2i + 1, 2i + 2}.
Let there be no attributes f2i+1 and f2i+2 in the set At(z). One can show that
in this case z(2i + 1) ∩ z(2i + 2) �= ∅ and, hence, the problem z is solved. Let at
least one from the attributes f2i+1 and f2i+2 be in the set At(z). For example,
let f2i+1 ∈ At(z). Then we compute the value f2i+1(p). If f2i+1(p) = 1 then
p = 2i + 1, and if f2i+1(p) = 0 then p = 2i + 2. In these cases the problem z is
solved too.

It is clear that h(Γ ) ≥ m. Therefore h(Γ1) ≤ ha
U6

(z)+1 and hd
U6

(z) ≤ ha
U6

(z)+
1. From this inequality it follows that there is no n ∈ ω for which Uda

U6h(n) = ∞.
Using Lemma 3.2 we conclude that Dom(Uda

U6h) = {n : n ∈ ω, n ≥ n0} for some
n0 ∈ ω.
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Let n ∈ Dom(Uda
U6h) and n ≥ 1. We will show that Uda

U6h(n) ≥ n + 1. Let
z = (ν, g1, f1, f2, . . ., g2n−1, f2n−1, f2n) be a problem from Probl(U6) such that
ν(δ̄1) ∩ ν(δ̄2) = ∅ for any δ̄1, δ̄2 ∈ E3n

2 , δ̄1 �= δ̄2. It is not difficult to show that
ha

U6
(z) ≤ n. Let us prove that hd

U6
(z) ≥ n + 1. Let Γ be a decision tree over U6

which solves the problem z deterministically and for which At(Γ ) ⊆ At(z) and
h(Γ ) = hd

U6
(z). Let ξ be a complete path in the tree Γ such that 0 ∈ A(ξ). It is

clear that in the complete path ξ there is at least one working node. Let S(ξ) =
{q1(x) = δ1, . . . , qm(x) = δm} where qi ∈ F6, 1 ≤ i ≤ m. Since 0 ∈ A(ξ), we have
δ1 = . . . = δm = 0. It is clear that i �∈ A(ξ) for any i ∈ {1, . . . , 2n}. Therefore
the equation g2i−1(x) = 0 or both equations f2i−1(x) = 0 and f2i(x) = 0 must
belong to the system S(ξ) for any i ∈ {1, . . . , n}. If the number of working nodes
in the path ξ is greater than n then the considered statement holds. Let the
number of working nodes in the path ξ be equal to n. Then S(ξ) = {g1(x) =
0, . . . , g2n−1(x) = 0}. Let v be the last working node in the path ξ and let v be
labeled by the attribute g2i−1. Let us consider the complete path ξ′ in the tree Γ
such that 2i−1 ∈ A(ξ′). Since Γ is a deterministic decision tree, the path ξ′ con-
tains the node v. Assume that in the path ξ′ there are exactly n working nodes.
Then S(ξ′) = {g2·1−1(x) = 0, . . . , g2(i−1)−1(x) = 0, g2i−1(x) = 1, g2(i+1)−1(x) =
0, . . . , g2n−1(x) = 0} and A(ξ′) = {2i − 1, 2i}, but this is impossible since
z(2i−1)∩z(2i) = ∅. Consequently, in the path ξ′ there are at least n+1 working
nodes and h(Γ ) ≥ n + 1. Therefore hd

U6
(z) ≥ n + 1 and Uda

U6h(n) ≥ n + 1. Taking
into account that n is an arbitrary number from ω such that n ≥ max(n0, 1), we
conclude that Dom−(Uda

U6h) is a finite set and Dom+(Uda
U6h) is an infinite set. Con-

sequently, typ(Uda
U6h) = δ. Using Proposition 3.1 we obtain typlu(U6, h) = t6. �

Let us define a t-pair (U7, h) as follows: U7 = (ω, F7) where F7 = F3 ∪ F5.

Lemma 4.7. typlu(U7, h) = t7.

Proof. Using Lemmas 3.2 and 4.3 we conclude that there exists n ∈ ω such that
Uda

U3h(n) = ∞. Using this equality and the relation F3 ⊆ F7 it is not difficult
to show that Uda

U7h(n) = ∞. From here and from Lemma 3.2 it follows that
typ(Uda

U7h) = ε.
From Lemmas 3.4 and 4.5 it follows that the function ha

U5
is unbounded

from above on the set Probl(U5). Using the relation F5 ⊆ F7 it is not difficult
to show that the function ha

U7
is unbounded from above on the set Probl(U7).

Using Lemma 3.4 we obtain typ(Uaa
U7h) = γ. From the equalities typ(Uda

U7h) = ε,
typ(Uaa

U7h) = γ and from Proposition 3.1 it follows that typlu(U7, h) = t7. �

Proof (of Proposition 4.1). The statement of the proposition follows from Lem-
mas 4.1 - 4.7. �

Proof (of Proposition 4.2). The statement of the proposition follows from Lem-
mas 4.2, 4.3, 4.5, 4.6 and 4.7. �
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5 Auxiliary Statements

This section contains some auxiliary statements which will be used under the
analysis of relationships between local upper types and local types of t-pairs.

Let X be a nonempty set, f : X → ω and g : X → ω. We define partial
functions Ufg : ω → ω and Lgf : ω → ω as follows: if n ∈ ω then

Ufg(n) = max{f(x) : x ∈ X, g(x) ≤ n} ,

Lgf (n) = min{g(x) : x ∈ X, f(x) ≥ n} .

The notation Ufg(n) = ∞ means that {f(x) : x ∈ X, g(x) ≤ n} is an infinite
set. Evidently, if Ufg(n) = ∞ then Ufg(n + 1) = ∞.

It is not difficult to prove

Lemma 5.1. The following statements hold:
a) If there exists n ∈ ω such that Ufg(n) = ∞ then typ(Ufg) = ε.
b) If there is no n ∈ ω such that Ufg(n) = ∞ then Dom(Ufg) = {n : n ∈

ω, n ≥ ng} where ng = min{g(x) : x ∈ X}.
c) If the function f is bounded from above on X then typ(Lgf ) = ε.
d) If the function f is unbounded from above on X then Dom(Lgf ) = ω.

Lemma 5.2. The following statements hold:
a) typ(Ufg) = α iff typ(Lgf ) = ε.
b) typ(Ufg) = ε iff typ(Lgf ) = α.

Proof. a) Let typ(Ufg) = α. Using Lemma 5.1 one can show that the function
f is bounded from above on X and typ(Lgf ) = ε. Let typ(Lgf ) = ε. Using
Lemma 5.1 one can show that the function f is bounded from above on X and
typ(Ufg) = α.

b) Let typ(Ufg) = ε. From Lemma 5.1 it follows that the function f is un-
bounded from above on X and there exists m ∈ ω such that Ufg(m) = ∞. There-
fore Dom(Lgf ) = ω and Lgf (n) ≤ m for any n ∈ ω. Consequently, typ(Lgf ) = α.
Let typ(Lgf ) = α. Using Lemma 5.1 we conclude that Dom(Lgf ) = ω and there
exists m ∈ ω such that Lgf (n) ≤ m for any n ∈ ω. Therefore Ufg(m) = ∞ and
typ(Ufg) = ε. �

Lemma 5.3. Let typ(Ufg) �= α and typ(Ufg) �= ε. Then
a) |Dom−(Ufg)| < ∞ iff |Dom+(Lgf )| < ∞.
b) |Dom+(Ufg)| < ∞ iff |Dom−(Lgf )| < ∞.

Proof. Using Lemmas 5.1 and 5.2 we obtain Dom(Ufg) = {n : n ∈ ω, n ≥ ng}
and Dom(Lgf ) = ω where ng = min{g(x) : x ∈ X}.

a) Let |Dom−(Ufg)| < ∞. Then there exists m ∈ ω, m ≥ ng, such that
Ufg(n) > n for any n ∈ ω, n ≥ m. Let n ≥ m. Then there exists an element
x0 ∈ X such that g(x0) ≤ n and f(x0) ≥ n + 1. Therefore Lgf (n + 1) ≤ n.
Consequently, Lgf (n) < n for any n ∈ ω, n ≥ m + 1, and |Dom+(Lgf )| < ∞.

Let |Dom+(Lgf )| < ∞. Then there exists m ∈ ω such that Lgf (n) < n for
any n ∈ ω, n ≥ m. Let n ∈ ω and n ≥ m. Then there exists an element x0 ∈ X
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such that g(x0) ≤ n−1 and f(x0) ≥ n. Therefore Ufg(n−1) ≥ n. Consequently,
Ufg(n) > n for any n ∈ ω, n ≥ m− 1, and |Dom−(Ufg)| < ∞.

b) Let |Dom+(Ufg)| < ∞. Then there exists m ∈ ω, m ≥ ng, such that
Ufg(n) < n for any n ∈ ω, n ≥ m. Let n ≥ m. Then for any element x ∈ X such
that g(x) ≤ n the inequality f(x) < n holds. Therefore for any element x ∈ X
such that f(x) ≥ n the inequality g(x) > n holds. Consequently, Lgf (n) > n
and |Dom−(Lgf )| < ∞.

Let |Dom−(Lgf )| < ∞. Then there exists m ∈ ω such that Lgf (n) > n
for any n ∈ ω, n ≥ m. Let n ∈ ω and n ≥ max(m, ng). Then for any element
x ∈ X such that f(x) ≥ n the inequality g(x) > n holds. Therefore for any
element x ∈ X such that g(x) ≤ n the inequality f(x) < n holds. Consequently,
Ufg(n) < n and |Dom+(Ufg)| < ∞. �
Lemma 5.4. The following statements hold:

a) typ(Ufg) = β iff typ(Lgf ) = δ.
b) typ(Ufg) = γ iff typ(Lgf ) = γ.
c) typ(Ufg) = δ iff typ(Lgf ) = β.

Proof. a) Let typ(Ufg) = β. Using Lemma 5.2 we obtain Dom(Lgf ) is an infinite
set. From Lemma 5.3 it follows that |Dom−(Lgf )| < ∞. Therefore typ(Lgf ) = δ.
Let typ(Lgf ) = δ. Using Lemma 5.2 we conclude that Dom(Ufg) is an infinite
set and the function Ufg is unbounded from above. From Lemma 5.3 it follows
that |Dom+(Ufg)| < ∞. Therefore typ(Ufg) = β.

b) Let Ufg = γ. Using Lemma 5.3 we obtain typ(Lgf ) = γ. Let typ(Lgf ) = γ.
Using Lemma 5.2 we obtain typ(Ufg) �= α and typ(Ufg) �= ε. From here and
from Lemma 5.3 it follows that typ(Ufg) = γ.

c) Using Lemma 5.2 and statements a), b) of the lemma we conclude that
typ(Ufg) = δ iff typ(Lgf ) = β. �

Let us define a function ρ : {α, β, γ, δ, ε} → {α, β, γ, δ, ε} as follows: ρ(α) =
ε, ρ(β) = δ, ρ(γ) = γ, ρ(δ) = β, ρ(ε) = α.

Proposition 5.1. Let X be a nonempty set, f : X → ω, g : X → ω,Ufg(n) =
max{f(x) : x ∈ X, g(x) ≤ n} and Lgf (n) = min{g(x) : x ∈ X, f(x) ≥ n} for
any n ∈ ω. Then typ(Lgf ) = ρ(typ(Ufg)).

Proof. The statement of the proposition follows from Lemmas 5.2 and 5.4. �

6 Proofs of Theorems 2.1 and 2.2

Using Proposition 5.1 we obtain the following statement.

Proposition 6.1. Let (U, ψ) be a t-pair and b, c ∈ {i, d, a}. Then typ(Lcb
Uψ) =

ρ(typ(Ubc
Uψ)).

Proof (of Theorem 2.1). The statement of the theorem follows from Propositions
3.1, 4.1 and 6.1. �
Proof (of Theorem 2.2). The statement of the theorem follows from Propositions
3.2, 4.2 and 6.1. �
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Abstract. Intrusion Detection system has become the main research
focus in the area of information security. Last few years have witnessed
a large variety of technique and model to provide increasingly efficient
intrusion detection solutions. We advocate here that the intrusive behav-
ior of a process is highly localized characteristics of the process. There
are certain smaller episodes in a process that make the process intrusive
in an otherwise normal stream. As a result it is unnecessary and most
often misleading to consider the whole process in totality and to attempt
to characterize its abnormal features. In the present work we establish
that subsequences of reasonably small length of sequence of system calls
would suffice to identify abnormality in a process. We make use of rough
set theory to demonstrate this concept. Rough set theory also facilitates
identifying rules for intrusion detection. The main contributions of the
paper are the following- (a) It is established that very small subsequence
of system call is sufficient to identify intrusive behavior with high ac-
curacy. We demonstrate our result using DARPA’98 BSM data; (b) A
rough set based system is developed that can extract rules for intrusion
detection; (c) An algorithm is presented that can determine the status
of a process as either normal or abnormal on-line.

Keywords: Data mining, Decision Table, Rough Set, Intrusion Detec-
tion, Anomaly, Misuse.

1 Introduction

Intrusion detection systems (IDSs) have become a major area of research and
product development. They work on the premise that intrusions can be detected
through examinations of various parameters such as network traffic, CPU uti-
lization, I/O utilization, user location, and various file activities. Based on the
various approaches, different types of IDS are proposed in the literature. On the
basis of audit data, there are two types of IDS. The network-based systems collect
data directly from the network that is being monitored, in the form of packets
[29] and the host-based systems collect data from the host being protected [2].

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets IV, LNCS 3700, pp. 144–161, 2005.
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Based on processing of data to detect attacks, IDS can also be classified into
two types – misuse-based systems and anomaly-based systems. While the for-
mer keeps the signatures of known attacks in the database and compares new
instances with the stored signatures to find attacks, the latter learns the normal
behavior of the monitored system and then looks out for any deviation in it for
signs of intrusions. It is clear that misuse based IDS cannot detect new attacks
and we have to add manually any new attack signature in the list of known
patterns. IDS based on anomaly detection, on the other hand, are capable of de-
tecting new attacks as any attack is assumed to be different from normal activity.
However anomaly based IDS sometimes sets false alarms because it cannot dif-
ferentiate properly between deviations due to authentic user’s activity and that
of an intruder.

Among various IDS approaches, signature-analysis stores patterns of attacks
as semantic descriptions [21]. The main drawback of the signature analysis tech-
nique, like all misuse-based approaches, is the need for frequent updates to keep
up with the stream of new vulnerabilities/attacks discovered. Rule-based intru-
sion detection [34][20][13] assumes that intrusion attempts can be characterized
by sequences of events that lead to the state of compromised-system. Such sys-
tems are characterized by their expert system properties that fire rules when au-
dit records or system status information begin to indicate suspicious activity. The
main limitations of this approach are the difficulty of extracting knowledge about
attacks and the processing speed. State transition analysis technique describes
an attack with a set of goals and transitions, and represents them as state tran-
sition diagrams [18][19][32]. The most widely used approach of anomaly-based
intrusion detection is statistical [16][27]. User or system behavior is measured
by a number of variables sampled over time and stored in a profile. The current
behavior of each user is maintained in a profile. At regular intervals the current
profile is merged with the stored profile. Anomalous behavior is determined by
comparing the current profile with the stored profile.

Forrest et al [11][12] suggest that system calls trace of a process under normal
execution can be taken as its normal behavior in terms of system calls, as varia-
tion in sequences of system calls is very small. On the other hand, this variation
is relatively higher when compared to a sequence of system calls under abnormal
execution. This variation can be attributed to the presence of one or more alien
(thus malicious) subsequences in the abnormal process. It should be noted that
not all the subsequences of an abnormal process are malicious. Thus intrusive
part should be detectable as a subsequence of the whole abnormal sequence of
the process.

In this paper we present a technique of discovering rules for intrusion detection.
We make use of rough set theory for this purpose. To best of our knowledge, Lin
was the first to propose the idea of applying rough sets to the problem of anomaly
detection [25]. Though the paper lacks the experimental results [25], it provides
some solid theoretical background. The following two theorems are important:

1. Every sequence of records in computer has a repeating sequence
2. If the audit trail is long enough, then there are repeating records
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Following the argument of Forrest et al and in the view of above theorems,
our approach is based on subsequences of system calls. We formulate the problem
as a classification problem by writing the set of subsequences as a decision table.
The proposed method is a combination of signature-based and anomaly based
approaches. A program behavior is monitored as a sequence of system calls.
These sequences are further converted into the subsequences of shorter length.
These subsequences are considered as the signatures for malicious as well as nor-
mal activities. By doing so, one of the disadvantages of signature-based approach
of frequently updating the signature database can be avoided. Empirical results
show that the proposed system is able to detect new abnormal activities without
updating the signatures. Further, these signatures are represented in the form of
IF-THEN type decision rules. The advantage of representing signatures in this
form is that such signatures are easy to interpret for further analysis. Rough set
theory is used to induce decision rules. Rules induced by using rough set theory
are very compact because before inducing rules, all the redundant features of the
audit data are removed. This makes the matching of rules faster, thus making
the system suitable for on-line detection. The proposed system is also fast in the
sense that process is compared, in parts, as it starts calling system calls. So we
do not have to wait until it exits.

The major contributions of the paper are:

– It is established empirically that short sequences of system calls are sufficient
to detect intrusive behavior with high accuracy;

– A rough set based approach is developed that can extract decision rules for
intrusion detection;

– An algorithm is presented that can classify a process as normal or abnormal
on-line.

Rest of the paper is organized as follows: Section 2 gives an overview of
research work on process profiling using sliding window approaches and learning
rules for intrusion detection. Section 3 presents some preliminary background
to understand the approach. A detailed description of the proposed scheme is
given in the section 4. Section 5 covers the experimental setup and analysis of
the results. Section 6 concludes the paper.

2 Related Work

Recently, process monitoring for the sign of intrusions has attracted the atten-
tion of many researchers and active research is being done in this area. In the
approach, called time-delay embedding (tide), initiated by Forrest et al [11][12],
normal behavior of processes is captured because programs show a stable be-
havior over the period of time under normal execution. In this approach, short
sequences of system calls are used to profile a process. It uses a sliding window
algorithm to populate a table with the positional relationships between system
calls. Forrest et al use a sliding window of size k + 1 to record which system
calls succeed or precede each other at offsets 1 through k. This implementation
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is said to have a ”forward” lookahead because while matching with the testing
process, the current system call is used as the index to the table and anomalies
are found by performing a pair wise comparison between the current system call
and each system call that follows at offsets 1 through k. If the process, under
consideration, has a matching system call in the table at each offset, then it can
be considered normal. Otherwise it is abnormal.

Inspired by human immune system, tide approach is extended by Hofmeyr
et al [17] by using a technique called sequence time-delay embedding (stide). In
this approach, the traces of system calls generated by a process are scanned and
a database of all unique sequences of a given length, k that occurred during the
trace, is built up. The database, then, is used to monitor the ongoing behavior of
the processes invoked by the program, by calculating Hamming distance between
two sequences. An anomaly count is defined as the number of mismatches in a
temporally local region. If the count is greater than a predefined threshold, the
sequence is flagged as anomalous.

A simple addition to stide, called stide with frequency threshold (t-stide) is
proposed to test the premise that rare sequences are suspicious [37]. For each se-
quence in database, frequency of its occurrence in training data is also recorded.
Sequences from test traces are compared to those in the database, just like stide.
Rare sequences, as well as those not included in the database, are counted as
mismatches. These mismatched are aggregated into locality frame count. Some
better results are found if the length of the sequences is not fixed [38]. These
approaches are not suitable for on-line detection as the frequency cannot be de-
termined until after the process terminates [37]. Following the inspirations from
immune system, Cabrera et al propose to build Anomaly Dictionaries as self for
anomalous sequences [6]. These anomaly dictionaries contain short sequences of
system calls spawn by processes under attacks. A string matching classifier is
used to classify any new process.

A similar approach is followed by Lee et al [22], but they make use of a
rule learner RIPPER, to form the rules for classification. The normal process
is transformed into sequences of fixed length, k. Each sequence is turned into a
RIPPER sample by treating all system calls, except the last in the sequence, as
attributes and the last one as the target class.

All of the above approaches concentrate only on the sequences of system
calls. Tandon and Chan [36] propose to consider system calls arguments and
other parameters, along with the sequences of system calls. They make use of
the variant of a rule learner LERAD (Learning Rules for Anomaly Detection).
Three variants of LERAD are proposed to generate rules under different in-
puts - S-LERAD for sequences of system calls only, A-LERAD for system call
arguments and other key attributes and M-LERAD for argument information
and sequences of system calls. A total of six system calls are used in training -
first five as conditions and sixth one as decision. In A-LERAD, system calls are
taken as pivotal attributes. Any value for other arguments (path, return value,
error status), given a system call, which was never encountered in the value for
a long time, would trigger an alarm. M-LERAD merges both S-LERAD and
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A-LERAD. Each input comprises of system call, arguments, path, return value,
error status and the previous five system calls.

In a recent paper [33], an efficient scheme is proposed by using kNN classifier.
A new similarity measure is proposed to consider the frequency and ordering of
system calls in a process under normal execution.

Rough set theory has well been applied to many data mining techniques like
association rules, classification and clustering. The use of rough sets in the simple
and improved formation of association rules is shown by Guan et al [15] and Delic
et al [10]. Guan et al show that maximal association rules can be formed by
applying basic rough set operations in a much simpler manner. Delic et al argue
to reduce the computational time by applying the concept of reduct extraction
directly on the produced rules, not on attribute. As a result, they propose the
hybridization of apriori algorithm and rough set, named as Apriori+, to generate
association rules.

With the increase of web-based transactions over internet, it is interesting and
necessary to learn user’s activities for better understanding and improvement of
web services. Often, it is very difficult to categorize users into different clusters as
boundary of user’s activities is not sharp. A rough set based clustering scheme is
proposed by Lingras to cluster various users, based on their access-patterns [26].
The scheme is applied on university students to cluster them into three groups–
studious, crammers and workers, by using five attributes of access-patterns. The
genetic algorithms are used to maximize the prescision value. The problem of
vague boundaries is tackled by calculating lower and upper approximations of
three groups.

An et al [1] investigate the idea of applying rough set to text classification,
particularly web page classifications. As a standard technique, pages are de-
scribed as frequencies or top n occurring words under each of the k categories.
Out of these n words, many may be redundant and, therefore, can be discarded.
Rough set based operation, called positive region, is used to calculate the impor-
tance of the attributes and thereby removing the unnecessary attributes (words).
ELEM2 rule induction algorithm is used to learn the rules for each category.
Each rule is given a score, termed as rule quality and based on this number, test
instances are classified to different categories.

Dan Zhu et al [39] present a comparative study on IDS based on neural network,
inductive learning and rough sets and find that, on an average, rough set based ap-
proach performs better over other techniques. But, according to their study, rough
sets are not as efficient as neural network in classifying unseen objects.

Rough set theory has been applied on sequence of system calls made by a
process to learn the normal behavior of process in terms of IF-THEN rules [7].
These rules are used to predict the (k+1)th system call in a sequence of length k.
If the predicted and the actual system calls are identical, the sequence is normal
otherwise abnormal. The present study takes a similar approach but instead of
predicting next system call in order to classify the process, it shows that a process
can directly be classified as normal or abnormal based on its subsequences of
system calls.
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Very recently, Lian-hua et al [24] apply rough set classification (RSC) tech-
nique to network-based IDS. In their approach, decision table consists of network
connection records, provided by KDD data set. The approach is based on the
observation that rough set reduct computation can be viewed as a minimal hit-
ting set problem. A minimal hitting set is computed from the multiset which, in
turn, computed from the discernibility function. A hybrid genetic algorithm is
used to calculate the reducts of rough set. The results are compared with the
SVM-based IDS and are found to be better for DoS and probing attacks, but
inferior in case of R2L and U2R categories of attacks. The computation time for
reduct calculation is also minimized by using new hybrid genetic algorithm.

3 Preliminary Background

In this section, we provide some basic definitions and notations used in our work.
Later in the section we try to formulate intrusion detection as a problem in rough
set theory.

3.1 Rough Set Theory

Knowledge discovery comprises of techniques from machine learning, statistics,
pattern recognition, fuzzy and rough sets etc to extract knowledge or information
from the huge amount of data. Rough set theory was introduced by Z. Pawlak
[31] to provide a systematic mathematical framework for studying imprecise and
insufficient knowledge to generate decision rules. A rough set is a set of objects
that cannot be precisely characterized based on a set of available attributes. The
idea of rough set consists of the approximation of a set by a pair of sets, called
as lower approximation and upper approximation.

Let S =< U, Q, V, f > be an information system where U - is the closed
universe, a finite set of N objects x1, x2, ..., xN ; Q is a finite set of n attributes
q1, q2, ..., qn; V =

⋃
q∈Q Vq where Vq the domain of attribute q; and f : U×Q → V

is the total function called as information function such that f(x, q) ∈ Vq for
every x ∈ U and q ∈ Q. A subset of attributes A ⊆ Q determines as equivalence
relation of the universe U , called as indiscernibility relation and denoted as
IND(A).

Definition 1: For a given A ⊆ Q and X ⊆ U (a concept X), the A-lower
approximation (AX) and A-upper approximation (AX) of set X are defined as
follows:

AX = {x ∈ U : [x]A ⊆ X} =
⋃
{Y ∈ A∗ : Y ⊆ X}

AX = {x ∈ U : [x]A ∩X �= φ} =
⋃
{Y ∈ A∗ : Y ∩X �= φ} (1)

where [x]A = {y ∈ U : xIND(A)y} and A∗ is the partition of U generated by
IND(A) on U .

Definition 2: The accuracy of an approximation of the set X by the set of
attributes A is defined as:

αA(X) =
|AX |
|AX |

(2)
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Definition 3: Given an information system S =< U, Q, V, f >, with condition
and decision attributes Q = A ∪ D, s.t. A ∩ D = φ, for a given set of condi-
tion attributes A, we can define the A-positive region POSA(D) in the relation
IND(D) as:

POSA(D) =
⋃
{AX : X ∈ D∗} (3)

where D∗ denotes the family of equivalence classes defined by the relation
IND(D). POSA(D) contains all the objects in U which can be classified perfectly
without error into the distinct classes defined by IND(D), based only on infor-
mation in relation IND(D). Similarly, in general, if A, B ⊆ Q, then A-positive
region of B is defined as

POSA(B) =
⋃

X∈B∗
AX (4)

3.2 Decision Table

A data set is represented as a table, where each row represents an object or case.
Every column represents an attribute that can be measured for each object. In
supervised learning, there is an outcome of classification that is known. This a
posteriori knowledge is expressed by one distinguished attribute called decision
attribute. A table wherein one of the attributes is decision attribute is called a
decision table. More precisely:

Definition 4: Given an information system S =< U, Q, V, f >, if Q can be
expressed as condition and decision attributes i.e. Q = A ∪D, with A ∩D = φ,
then S is called a decision table (or decision system) [8].

Definition 5: A decision table is said to be consistent if each unique row has only
one value of decision attribute. Objects from decision table can be partitioned
into disjoint classes, called concepts, based on the decision attributes D.

Definition 6: An expression (a = v), where a ∈ A and v ∈ Vq, is called an
atomic formula (or elementary condition) c. An elementary condition c can be
interpreted as mapping:

c : U → {true, false}

A conjunction C of q elementary condition is denoted by

C = c1 ∧ c2 ∧ ... ∧ cq.

Definition 7: The cover of C, denoted by [C], is the subset of objects (examples),
which satisfy the conditions represented by C.

[C] = {x ∈ U : C(x) = true}
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3.3 Decision Rules

The decision rules are logically described as

If (a conjunction of elementary conditions) then (decision)

In general decision rules can be considered as data patterns, which represent
relationships between values of attributes in the decision table. The rule set,
obtained from a consistent table, is said to be deterministic. Any set of rules
may fall into any of the following three categories [35]:

– Minimum set of decision rules,
– Exhaustive set of decision rules,
– Satisfactory set of decision rules

First category contains the smallest number of rules sufficient to cover the set
of objects belonging to one class. Second category consists of all the rules that
can be induced from the table. However, time complexity for the second choice is
exponential and using this approach may not be practical for larger data set [35].
For our experiment we, therefore, choose the first approach of inducing rules, as
the data set used in our experiment is very large. We make use of a rough set
based algorithm LEM2 for inducing rules [14], which is presented in figure 1. We
use the same notations introduced in the previous section. Additionally C(G)
denote the set of conditions c currently considered to be added to the conjunc-
tion C. K is the concept and rule r is characterized by its conditional part R.

Input:K- set of objects
Output:R- set of rules
begin

G = K;
R = φ;
while G �= φ do

begin
C = φ;
C(G) = {c : [c] ∩ G �= φ};
while (C = φ) or (!([C] ⊆ K)) do

begin
select a pair c ∈ C(G) such that |[c] ∩ G| is maximum;
if ties, select a pair c ∈ C(G) with the smallest cardinality |[c]|;
if further ties occur, select the first pair from the list;
C = C ∪ {c}; G = [c] ∩ G;
C(G) = {c : [c] ∩ G �= φ};
C(G) = C(G) − C;
end;
for each elementary condition c ∈ C do

if [C − c] ⊆ K then C = C − {c};
create rule r basing the conjunction C and add it to R;

G = K −
⋃

r∈R

[R];

end;
for each r ∈ R do
if

⋃
s∈R−r

[S] = K then R = R − r

end

Fig. 1. LEM2 algorithm
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LEM2 algorithm follows a heuristic strategy from machine learning techniques.
The strategy starts with creating a first rule by choosing sequentially the ’best’
elementary conditions (conjunction of attributes values). Then, all the learning
examples that matches this rules are removed from consideration. The process is
repeated iteratively while some learning examples remain uncovered. The rules
so obtained are capable of classifying new unseen objects [35]. In the whole pro-
cess, the algorithm also discards all the dispensable attributes. Thus the number
of attributes to be matched is reduced which makes the algorithm faster and
hence more suitable for nearly real time detection.

4 The Proposed Approach: Rough Set and Intrusion
Detection

The data mining techniques are well suited for IDS design because the aim of
an intrusion detection system is to trigger alarm (present knowledge) when any
intrusion occurs. Thus an IDS can be thought of a decision support system
which stores huge data (host or network related) and extracts useful patterns
(information about the normal and abnormal behavior) so that it can classify
normal and abnormal data precisely. Forrest et al [12] suggested the use of
small sequences of system calls, made by a process, as the profile of the process.
The study done by Lee et al [22] also validates this observation. But if we
analyze normal and abnormal processes, we find that not all parts of an abnormal
process are responsible for intrusion. Thus intrusive part should be detectable
as a subsequence of the whole abnormal sequence of the process. Thus one point
of focus of this study is to determine the adequate length of such subsequences.
Also as pointed out earlier, not all of the subsequences of an abnormal process are
abnormal. Many of them will be identical to those occurred in normal process.
This is the point where rough set theory can be used to derive disjoint set of
subsequences.

Let P be a set of normal processes, defined as sequences of system calls. Then
the lth process can be represented as

< pl
1, p

l
2, . . . , p

l
n >

where n is the length of the process and pl
j is jth system call. Each of these

processes is transformed into the subsequences of length k. Thus for lth sequence,
ith subsequence is given by

pl
i, p

l
i+1 . . . , pl

i+k−1

Each of these subsequences is labeled as normal. In case of abnormal processes,
as pointed out earlier, not all of the subsequences of an abnormal process are
abnormal. Many of them are identical to those occurred in normal process. Thus
a subsequence corresponding to an abnormal process, matching with any of the
normal subsequences, is discarded; otherwise it is labeled as abnormal. With the
above formulation, we consider an intrusion detection system as an information
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system S =< U, Q, V, f >, defined in the section 3.1 with Q = A ∪ D, D=
{normal, abnormal}. The number of attributes in the conditional part A equals
the length of the subsequence. V consists of all the system calls appearing in all
the processes used for training. U consists of all the subsequences of the chosen
length that can be derived from all the processes using sliding window of the
chosen length k. It should be noted that by removing duplicate subsequences,
we get a consistent decision table because no subsequence can belong to normal
as well as abnormal classes. To put in rough set terminology, let P and T be
two normal and abnormal processes respectively given as P =< p1, p2, . . . , pn >
and T =< t1, t2, . . . , tm > where pi’s and tj ’s are system calls. Let k be the size
of sliding window. Each process P and T is transformed into subsequences of
length k. Then the information system S can be represented as follows:
A is comprised of k attributes A1, A2 . . . , Ak. U consists of all the subsequences
of the forms Pi = pi, pi+1, . . . , pi+k−1 and Ti = ti, ti+1, . . . , ti+k−1, represented as
rows of S. Let us denote normal and abnormal classes by Dnormal and Dabnormal,
which is a partition of U by the decision attribute D, denoted as D∗. As men-
tioned earlier that there will be many Ti’s which are identical to some Pi’s, but
labeled as abnormal. Therefore the lower approximations of both the classes
Dnormal and Dabnormal are calculated as ADnormal and ADabnormal. Therefore
the positive region

POSA(D) = ADnormal ∪ADabnormal

contains only those subsequences that belong to either of the classes but not
both. We apply LEM2 algorithm on S to form the certain rules. By doing so, we
get the signature for normal and abnormal processes. Let us take an example to
make it more clear. Let
P 1 = <fcntl, close, close, fcntl, close, fcntl, close, open> and
P 2 = <fcntl, close, fcntl, close, open, open>
be normal and abnormal processes respectively. We transform P 1 into a set of
subsequences using a sliding window of length 5. We label all the 4 subsequences
as normal. While calculating the subsequences of P 2, the first subsequence <
fcntl, close, fcntl, close, open> matches with the last subsequence of
P 1 and therefore it is discarded. The second subsequence < close, fcntl,
close, open, open> is labeled as abnormal and added to the decision table.
The final decision table is shown in the table 1. It can be seen in table 1 that the

Table 1. Representation of subsequences

Objects A1 A2 A3 A4 A5 Decision
1 fcntl close close fcntl close normal
2 close close fcntl close fcntl normal
3 close fcntl close fcntl close normal
4 fcntl close fcntl close open normal
5 close fcntl close open open abnormal
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Table 2. Representation of IF-THEN rules

1 (A2 = close)⇒ (Dec =normal)
2 (A1 = close)∧ (A2 = fcntl) ∧ (A3 = close) ∧ (A4 = fcntl)⇒ (Dec = normal)
3 (A1 = close) ∧ (A2 = fcntl) ∧ (A3 = close) ∧ (A4 = open) ⇒ (Dec=abnormal)

Training Phase

1. Collect normal and abnormal processes
2. Calculate the subsequences of these processes of length k (number of attributes)
3. Remove duplicates
4. Construct the decision table with labels normal and abnormal
5. Calculate decision rule set DR using LEM2

Testing Phase

1. For each process P in the testing data do
2. Convert the process into decision table of length k
3. Classify each subsequence using the rule set DR
4. if any of the subsequence is classified as abnormal then
5. P is abnormal
6. else P is normal
7. end do

Fig. 2. Algorithmic representation of the proposed scheme

decision table, thus created, is consistent. We can calculate IF-THEN rules, using
LEM2 algorithm, shown in table 2. The rules, induced by LEM2, are used to
classify new processes. While classifying any new process, it is first transformed
into a set of subsequences and each of these subsequences is classified on the
basis on decision rules. If any subsequence pertaining to a process is classified as
abnormal, the whole process is considered as abnormal. The algorithmic form of
the proposed scheme is presented in figure 2 below.

5 Experimental Setup and Results

The scheme described in the previous section is tested upon the well-cited
DARPA’98 data [9]. The whole data comprises of network level data and host
level data. The host-based data is provided in two forms - NT audit logs and
BSM audit logs. Process level information can be derived from BSM audit data.
Therefore we use BSM audit logs from the 1998 DARPA data for training and
testing of our algorithm. A detailed procedure for the extraction of process from
the audit logs can be found in [33]. However, for completeness, we summarize
the whole process below.

For each day of data, a separate BSM file is provided with the ’BSM List
File’. All the intrusive sessions are labeled with the name of the attacks launched
during the sessions. On analyzing the entire set of BSM logs (list files), we
locate the five days which are free of any type of attacks. We choose the first
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four days for our training data and the fifth one for the testing of the normal
data to determine the false positive rate. There are around 2000 normal sessions
reported in the four days of data. We extract the processes occurring during
these days and our training data set consists of 606 unique processes. There are
412 normal sessions on the fifth day and we extract 339 unique normal processes
from these sessions. We use these 339 normal processes for the testing data. A
total of 28 abnormal processes are extracted from the whole seven-week of data.
Out of these 28 processes, 12 are used for training and remaining 16 are used
for testing the detection rate of the approach. In case of a normal process, all of
its subsequences should be normal. Therefore in order to test the false positive
rate, we take normal subsequences of all the 339 processes together and define
coefficient of normal accuracy as

ηn =
Nc

N
(5)

Where Nc is the total number of normal subsequences correctly classified as
normal and N is total normal subsequences used in testing data. In case of
abnormal process, as mentioned earlier, not all the subsequences are abnormal.
Therefore, we say that an abnormal process is detected is any of its subsequences
is labeled as abnormal and we define coefficient of abnormal accuracy as

ηa =
Ac

A
(6)

where Ac is total number of processes classified as abnormal and A is total
abnormal processes used in testing data. It should be noted that coefficient of
normal accuracy ηn is inversely proportional to the false positive rate i.e. higher
the value of ηn, lower is the false positive rate.

We perform the experiments for different values of the length of the subse-
quences. For each value, a set of decision rule is calculated. Using this set of
rules, the values of ηn and ηa are calculated. Table 3 shows the results of exper-
iments for different values of length of subsequences. It should be pointed out
that while doing the above experiment, no default rule is defined i.e. any subse-
quence, not covered by any of the rules is assigned to a special class undefined
and such subsequences are excluded while calculating ηn. The minimum value
of ηn is 0.997 i.e. in worst case the false positive rate is 0.003, which implies
that per day, there are 339× 0.003 = 1.017 false alarms. This type of approach
is well suitable in situation where there is a second level of check to further
analyze the data when we are not certain about the event and tolerance level
is high in terms of attacks. But such an approach may delay in decision-making
due to lack of high confidence. We, therefore, repeat our series of experiments
with a default rule ‘any subsequence, which is not covered by any of the rule is
abnormal ’. This approach is well suited in situation wherein tolerance limit for
attacks is very low. Thus no event is classified based on further analysis, but
based on the rules including the default one i.e. each event is classified on-line.
It may also be noted that while the former approach is a misuse-based, second
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Table 3. Values of coefficients of normal and abnormal accuracy for different values
of subsequence length without a default rule

Length of the
subsequence

Number of the subse-
quences before/after re-
moving duplicates

Number of
rules

Value of ηn Value of ηa
(ηn+ηa)

2

5 170976/2461 929 0.999 0.750 0.8745
10 167886/5968 1702 0.997 0.750 0.8735
15 164801/8441 1828 0.999 0.750 0.8745
20 161724/10525 1797 0.998 0.812 0.9050
25 158669/12299 1707 1.000 0.750 0.8750
30 155640/13939 1789 1.000 0.860 0.9300
35 152625/15398 1810 0.999 0.930 0.9645
40 149628/16641 1762 0.998 0.860 0.9290
45 146654/17666 1699 0.998 0.928 0.9630

Table 4. Values of coefficients of normal and abnormal accuracy for different values
of subsequence length with a default rule

Length of the
subsequence

Number of
rules

Value of ηn Value of ηa
(ηn+ηa)

2

5 929 0.966 0.875 0.9205
10 1702 0.959 0.812 0.8855
15 1828 0.954 0.812 0.8830
20 1797 0.958 0.875 0.9165
25 1707 0.960 0.875 0.9175
30 1789 0.958 0.930 0.9440
35 1810 0.959 0.930 0.9445
40 1762 0.958 1.000 0.9790
45 1699 0.959 0.928 0.9435

is a hybrid (anomaly and misuse) approach. Table 4 lists the results of the ex-
periment. The minimum value of ηn is 0.958 i.e. in worst case the false positive
rate is 0.042, which implies that per day, there are 339 × 0.042 = 14.23 false
alarms.

If we look at figure 3, we find that for first set of experiment, the value of
ηn is high (i.e. low rate of false positives (first longest bar in the figure)) but
detection rate (ηa ) could not reach 1.0. There is a clear distinction between the
values of ηn with and without a default rule. This can be understood as we train
our system only with 12 abnormal processes, which is much smaller than 606
normal processes used in training. In the second experiment when we included
a default rule, we could get detection rate of 1.0 with normal accuracy as high
as 0.958. The presence of the default rule has made the system anomaly-based
and from this point of view, a decline in the value of ηn (rise in the rate of false
positive) is anticipated as anomaly-based systems are known to have a high rate
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of false positive. An efficient IDS should have high values of ηn and ηa i.e. low
false positive rate and high detection rate. The last column of table 3 and table
4 shows the average taken over the values of ηn and ηa. Figure 4 shows that the
results obtained with a default rule (hybrid approach) outperform those obtained
without a default rule (but not with a significant difference). The bold lines in
the figure 4 represent the trends i.e. as we increase the length of subsequence,
accuracy also increases and after a length of 35, accuracy ceases to increase. We
also observe that though the accuracy increases as we increase the length of the
subsequences, it is not a global pattern, particularly in the case of misuse-based
approach (without a default rule). Therefore the length of the subsequence can
be as short as 5 or as large as 40, we still can detect attacks without matching the
whole process. The main point to observe here is that normally anomaly-based
systems have good detection rate with a high false positive rate as compared to
those based on misuse detection.

Our experiments show that anomaly-based IDS can have as low false positive
rate as that of a misuse-based system with a very high detection rate. Also once
the rules are computed, there is no further computation involved in classifying
the processes. Only the subsequences of a process are matched against the rules
for classifications. This makes the system very fast suitable for on-line detection.

All the above experiments are conducted using RSES and DIXER tools,
developed at the University of Warsaw [5].

Fig. 3. Variation between values of coefficients of normal and abnormal accuracy, with
and without a default rule
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Fig. 4. Graph between average accuracy and length of subsequence, with and without
a default rule

6 Conclusion

Rough set theory is applied to many areas as one of many data mining and
machine learning techniques. The present paper proposes the use of rough set
theory in the area of intrusion detection to make it more suitable as on-line
detection system. The main motivation behind using rough set for IDS is that
boundary between normal patterns and abnormal ones is not always very sharp
which leads to the ambiguity in the decision of the classifiers. Rough set the-
ory is known for its capability to handle such type of data where uncertainty
and vagueness is difficult to avoid. In rough sets, most of the operations involve
comparing logical operators. Therefore it is also faster in decision making. The
resources used in data collection, preprocessing of data and detection of intru-
sion are directly proportional to the number of features under consideration for
each object. Obviously, in order to have a real time response from IDS, number
of features should be minimized without affecting the classification power of the
system. Rough set theory is capable for of inducing rules that discard redundant
attribute values. Knowledge representation is very simple and learning rate is
very fast as compared to other techniques. Our study shows that it is possible to
detect an attack by mare looking at some portion of the abnormal process. This
reduces the dimension of the data to be processed and thus makes the subse-
quent computations much faster. The decision rules induced by rough set theory
are easy to interpret and thus can be useful in further analyzing the events. We
have tested our scheme by conducting experiments on DARPA’98 data. Empir-
ical results, reported in the paper, justify our approach of making use of rough
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set for intrusion detection. As our future work, we intend to use the concept
of incremental learning so that new rules can be learnt without retraining on
whole data. We are also analyzing the IF-THEN rules to better understand the
relationship among system calls to gain more insight about attacks. Our future
work also includes to combine rough set method with other learning techniques,
e.g. neural networks to propose a more robust IDS in terms of accuracy.

Acknowledgement

The authors are thankful to anonymous reviewers for their useful comments to
improve the presentation and quality of the paper. The first author is associated
with IDRBT as research fellow and thankful to IDRBT for providing financial
assistance and infrastructure to carry out this work. The third author is thankful
to MIT, India for its funding.

References

1. An A., Huang Y., Huang X., Cercone N.: Feature Selection with Rough Sets for
Web Page Classification. In Dubois D., Grzymala-Busse J.W., Inuiguchi M., and
Polkowski L. (eds), Rough Sets and Fuzzy Sets, Springer-Verlag (2004)

2. Bace R., Mell P.: NIST special publication on intrusion detection system. SP800-31,
NIST, Gaithersburg, MD (2001)

3. Bazan J.: A Comparison of Dynamic and non-Dynamic Rough Set Methods for
Extracting Laws from Decision Tables, In: Skowron A., Polkowski L.(ed.), Rough
Sets in Knowledge Discovery 1, Physica-Verlag, Heidelberg, (1998) 321–365

4. Bazan J., Nguyen H. S., Nguyen S. H., Synak P., and Wrblewski J.: Rough set
algorithms in classification problem. In: Polkowski L., Tsumoto S., Lin T.Y. (eds.),
Rough Set Methods and Applications, Physica-Verlag, Heidelberg, (2000) 49-88.

5. Bazan J. G., Szczuka M. S., Wrblewski A.: A New Version of Rough Set Exploration
System. In: Proceedings of the Third International Conference on Rough Sets and
Current Trends in Computing RSCTC, Malvern, PA, Lecture Notes in Artificial
Intelligence vol. 2475, Springer-Verlag (2002) 397-404
Available at: http://logic.mimuw.edu.pl/~rses/

6. Cabrera J. B. D., Ravichandran B., Mehra R. K.: Detection and classification of
intrusions and faults using sequences of system calls. In: ACM SIGMOD Record,
Special Issue: Special Section on Data Mining for Intrusion Detection and treat
Analysis, Vol. 30(4) (2001) 25-34

7. Cai Z., Guan X., Shao P., Peng Q., Sun G.: A Rough Set Theory Based Method
for Anomaly intrusion Detection in Computer Network Systems. J Expert System
20(5) (2003) 251-259

8. Cios K., Pedrycz W., Swiniarski Roman W.: Data mining methods for Knowledge
discovery. Kluwer Academic Publisher USA, (2000)

9. DARPA 1998 Data Set, MIT Lincoln Laboratory, available at:
http://www.ll.mit.edu/IST/ideval/data/data index.html

10. Delic D., Lenz Hans-J, Neiling M.: Improving the Quality of Association Rule Min-
ing by Means of Rough Sets. In: Proceedings of the First International Workshop
on Soft Methods in Probability and Statistics (SMPS’02), Warsaw (poland) (2002)



160 S. Rawat, V.P. Gulati, and A.K. Pujari

11. Forrest S., Hofmeyr S. A., Somayaji A.: Computer Immunology. Communications
of the ACM, 40(10) (1997) 88-96

12. Forrest S., Hofmeyr S. A., Somayaji A., Longstaff T. A.: A Sense of Self for Unix
Processes. In: Proceedings of the 1996 IEEE Symposium on Research in Security
and Privacy. Los Alamitos, CA. IEEE Computer Society Press, (1996) 120-128

13. Garvey T., Lunt T. F.: Model-based Intrusion Detection. In: Proceedings of the
14th National Computer Security Conference. (1991) 372-385

14. Grzymala-Busse J. W.: A New Version of the Rule Induction System LERS. Fun-
damenta Informaticae, 31(1) (1997) 27-39

15. Guan J. W., Bell D. A., Liu D. Y.: The Rough Set Approach to Association Rule
Mining. In: Proceedings of the Third IEEE International Conference on Data Min-
ing (ICDM’03), (2003)

16. Helman P., Liepins G.: Statistical Foundations of Audit Trail Analysis for the
Detection of Computer Misuse. IEEE Transactions on Software Engineering, 19(9)
(1993) 886-901

17. Hofmeyr S. A., Forrest A., Somayaji A.: Intrusion Detection Using Sequences of
System Calls. Journal of Computer Security, 6 (1998) 151-180

18. Ilgun K.: USTAT: A Real-Time Intrusion Detection System for UNIX. In: Pro-
ceedings of the 1993 IEEE Symposium on Research in Security and Privacy. (1993)
16-28

19. Ilgun K., Kemmerer R. A., Porras P. A.: State Transition Analysis: A Rule-Based
Intrusion Detection Approach. IEEE Transactions on Software Engineering 21(3)
(1995) 181-199

20. Kemmerer R. A.: NSTAT: A Model-based Real-time Network Intrusion Detection
System. Technical Report, Number TRCS97-18, Computer Science, University of
California, Santa Barbara. (1998)

21. Kumar S., Spafford E.: A Pattern-Matching Model for Intrusion Detection. In:
Proceedings National Computer Security Conference, (1994) 11-21

22. Lee W., Stolfo S., Chan P.: Learning Patterns from Unix Process Execution Traces
for Intrusion Detection. In: Proceedings of the AAAI97 workshop on AI methods
in Fraud and risk management. AAAI Press. (1997) 50-56

23. Lee W., Stolfo Salvatore J.: Data Mining Approaches for Intrusion Detection. In:
Proceedings of the 7th USENIX Security Symposium (SECURITY-98), Usenix
Association, January 26-29. (1998) 79-94

24. Lian-hua Z., Guan-hua Z., Lang YU., Jie Z., Ying-cai B.: Intrusion Detection Using
Rough Set Classification. Journal of Zhejiang University SCIENCE Vol. 5(9) (2004)
1076-1086

25. Lin T. Y.: Anomaly Detection: A Soft Computing Approach. In: Proceedings of
the 1994 Workshop on New Security Paradigms, Little Compton, Rhode Island,
United States, IEEE Computer Society Press (1994) 44-53

26. Lingras P.: Rough Set Clustering for Web Mining. In: Proceedings of the IEEE
International Conference on Fuzzy Systems 2002, Honolulu, Hawaii (2002)

27. Lunt T. F.: Using Statistics to Track Intruders. In: Proceedings of the Joint Sta-
tistical Meetings of the American Statistical Association (1990)

28. Lunt T. F., Tamaru A., Gilham F., Jagannathan R., Neumann P. G., Javitz H. S.,
Valdes A., Garvey T. D.: A Real-Time Intrusion Detection Expert System (IDES)
Technical Report, SRI Computer Science Laboratory (1992)

29. Mukherjee B., Heberlein L. T., Levitt K. N.: Network Intrusion Detection. IEEE
Network. 8(3) (1994) 26-41



A Fast Host-Based Intrusion Detection System Using Rough Set Theory 161

30. Mukkamala R., Gagnon J., Jajodia S.: Integrating Data Mining Techniques with
Intrusion detection Methods. In: Research Advances in database and Information
System Security: IFIPTCII, 13th working conference on Database security, July,
USA, Kluwer Academic Publishers (2000)

31. Pawlak Z.: Rough sets: Theoretical aspects of reasoning about data. Kluwer Aca-
demic Publishers, Dordrecht (1991)

32. Porras P. A.: STAT – A State Transition Analysis Tool For Intrusion Detection.
Technical Report, Number TRCS93-25, Computer Science. University of Califor-
nia, Santa Barbara (1993)

33. Rawat S., Gulati V. P., Pujari A. K.: Frequecy And Ordering Based Similarity Mea-
sure For Host Based Intrusion Detection. J Information Management and Com-
puter Security. 12(5), Emerald Press (2004) 411-421

34. Sebring M. M., Shellhouse E., Hanna M. E., Whitehurst R. A.: Expert System in
Intrusion Detection: A Case Study. In: Proceedings of the 11th National Computer
Security Conference, (1988) 74-81

35. Stefanowski J.: On Rough Set Based Approaches to Induction of Decision Rules.
In: Polkowski L, Skowron A (eds) Rough Sets in Data Mining and Knowledge
Discovery, vol 1. Physica Verlag, Heidelberg. (1998) 500-529

36. Tandon G., Chan P.: Learning Rules from System Calls Arguments and Sequences
for Anomaly Detection. In: ICDM Workshop on Data Mining for Computer Secu-
rity (DMSEC), Melbourne, FL. (2003) 20-29

37. Warrender C., Forrest S., Pearlmutter B.: Detecting Intrusions Using System Calls:
Alternative Data Modelss. In: IEEE Symposium on Security and Privacy (1999)

38. Wespi A., Dacier M., Debar H.: Intrusion Detection Using Variable-Length Audit
Trail Patter. In : LNCS # 1907, RAID 2000. Toulouse, France. (2000) 110-129

39. Zhu D., Premkumar G., Zhang X., Chu Chao-Hsien: Data mining for Network
Intrusion Detection: A comparison of alternative methods. J. Decision Sciences
32(4) (2001) 635-660



Incremental Learning and Evaluation of
Structures of Rough Decision Tables

Wojciech Ziarko

Department of Computer Science, University of Regina,
Regina, SK, S4S 0A2, Canada

Abstract. Rough decision tables were introduced by Pawlak in the
context of rough set theory. A rough decision table represents, a non-
functional in general, relationship between two groups of properties of
objects, referred to as condition and decision attributes, respectively. In
practical applications, the rough decision tables are normally learned
from data. In this process, for better coverage of the domain of inter-
est, they can be structured into hierarchies. To achieve convergence of
the learned hierarchy of rough decision tables to a stable final state,
it is desirable to avoid total regeneration of the learned structure after
new objects, not represented in the hierarchy, are encountered. This can
be accomplished through an incremental learning process in which the
structure of rough decision tables is updated, rather than regenerated,
after new observations appeared. The introduction and the investigation
of this incremental learning process within the framework of the rough
set model is the main theme of the article. The article is also concerned
with evaluation of learned decision tables and their structures by intro-
ducing the absolute gain function to measure the quality of information
represented by the tables.

1 Introduction

Decision tables learned form data, referred here as rough decision tables, were
originally proposed by Pawlak in the framework of rough set theory [1]. A rough
decision table represents a relation, typically functional or partially functional,
between a group of input values and a set of output (decision) values. As op-
posed to classical decision tables defined manually based on some pre-existing
knowledge [13], the rough decision tables are derived from data representing
observations about objects, states etc. belonging to a domain of interest re-
ferred to as the universe. The observations are collected in the form of property
vectors accumulated from sensors, test results or by some other measurement
techniques. In applications, a rough decision table obtained from data models a
relationship between properties of objects. The objective is to learn the true and
complete model of the relationship based on finite ”training” sample collection
of observations drawn from often infinite universe. The relationship of interest
is a functional, or partial functional dependency between object properties.

The generalized version of rough decision tables, defined in the context of
the variable precision rough set model [4],[3],[2] and called probabilistic decision
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tables [5], make use of probabilistic information associated with occurrences of
object properties (attribute values) or their combinations. The probabilistic de-
cision tables are oriented towards modelling probabilistic relations among object
properties while avoiding any assumptions about probabilistic independence and
probability distributions of property values.

In this article, we are concerned with acquisition of functional and partial
functional relations represented by rough decision tables learned from data. Re-
lations of this kind are of interest in many applications, in particular in control-
related problems where often there is no room for any uncertainty in decision
making. The learning methodology presented here is however extendible to prob-
abilistic decision tables [5]. The methodology is concerned with forming hierar-
chical structures of decision tables during learning, rather than using single level
table. The motivation behind this approach is twofold: the reduction of the com-
putational complexity of the learning process and the reduction of the degree of
non-determinism of the learned relation [6].

The hierarchical structure of decision tables is formed by treating the rough
boundary area of initial (root) table as a training sample drawn from a proper
subset of the universe, to be used as a basis of the next, child layer table deriva-
tion. This basic step is then repeated recursively for the child layer table, and
so on. The algorithm HDTL, originally introduced in [6], summarizes the main
stages of the hierarchy derivation process. The related extension of the algorithm
for deriving hierarchies of probabilistic decision tables appeared in [10].

An important aspect of any machine learning method is handling the adap-
tation and growth of learned knowledge structures with the arrival of new, pre-
viously unseen observations about objects of the universe of interest. In the
case of decision table hierarchies, it is always possible to totally regenerate the
structure of decision tables after new cases appear, but it is inefficient and may
lead to the loss of previously learned model. It may also result in the lack of
convergence of the learned tables to a final stable and complete state. A more
desirable approach involves gradual adaption of the learned structures, to reflect
new knowledge represented by new cases, in a process referred to as incremental
learning [8],[7].

In what follows, an approach to incremental expansion of decision table hi-
erarchy in the process of the hierarchical structure learning is presented. The
presentation also includes the elementary background introduction to relevant
notions of rough set theory in the context of probability theory, the presenta-
tion of the extended version of HDTL algorithm to handle multiple decisions,
the introduction of incremental updating strategies for the learned hierarchy
of decision tables and a comprehensive illustrative example. In addition, a new
technique for evaluation of learned decision tables is introduced. The absolute
gain function is proposed to measure the average degree of increase in quality
of information, as represented by a decision table in terms of attributes and
their values, relative to situation when no attributes are present. The absolute
gain function is subsequently extended to evaluation of decision table hierarchies
produced by the HDTL algorithm.
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Most of the methods discussed in the article have been implemented as a
part of an experimental control algorithm acquisition systems for vehicle control
[11] and for controlling the movements of components of a simulated walking
device [9]. They are also being used in experimentation with speaker-independent
recognition of isolated spoken words.

2 Probabilistic View of Rough Sets

In this section we briefly review the essential assumptions and definitions of the
rough set theory in the context of probability theory.

One of the prime notions is the universe of interest, a set of objects e ∈
U about which observations are acquired by sampling sensor readings or by
some other means.The existence of probabilistic measure P over σ-algebra of
measurable subsets of U is also assumed. We will assume here that the universe
is infinite in general, but that we have access to a finite sample S ⊆ U expressed
by accumulated observations about objects in S. The sample represents available
information about the universe U . We will say that a subset X ⊆ U occurred
if X ∩ S �= ∅, where X ∩ S is a set of occurrences of X . It is assumed that all
subsets X under consideration are measurable with 0 < P (X) < 1. That is,
from the probabilistic perspective, they are likely to occur but their occurrence
is not certain. Regarding the notation, the notational distinction between sample
S ⊆ U and the universe U will be made only when there is a need to emphasize
the fact that we are dealing with a sample of larger universe and an estimate of
a probability rather than the actual probability. In all other situations symbol
U will be used to denote both the sample and the universe.

We also assume, that observations about objects are expressed through val-
ues of a finite set of functions C∪D on U , referred to as attributes. The functions
belonging to the set C are called condition attributes, whereas functions in D are
referred to as decision attributes. We can assume, without loss of generality, that
there is only one decision attribute, that is D = {d}. Each attribute a belonging
to C∪D is a mapping a : U → Va, where Va is a finite set of values called the do-
main of the attribute a. In many applications, attributes are functions obtained
by discretizing values of real-valued variables representing measurements taken
on objects. The set of condition attributes C defines a joint mapping denoted
as C : U → C(U) ⊆ ⊗a∈CVa, where ⊗ denotes Cartesian product operator of all
domains of attributes in C. Both condition attributes and the decision attributes
jointly define a mapping denoted as C ∪D : U → C ∪D(U) ⊆ ⊗a∈C∪DVa. The
mapping C ∪D : S → C ∪D(S) can be represented by an information table
consisting of information vectors, corresponding to elements of the collection
C ∪D(S). The information table summarizes all known associations between
objects and attribute values, as represented by the sample S ⊆ U . An example
information table computed from the sample S is shown in Table 1.

For each combination of condition attribute values x ∈ C(U), the set Ex =
C−1(x) = {e ∈ U : C(e) = x} is called a C-elementary set. That is, each C -
elementary set is a collection of objects with identical values of the attributes
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Table 1. Example Information Table

U a b c d
e1 1 1 2 1
e2 1 1 2 1
e3 1 0 1 1
e4 1 0 1 2
e5 2 2 1 2
e6 2 2 1 2
e7 2 0 2 1
e8 1 1 2 1
e9 0 2 1 3
e10 2 2 1 2
e11 2 2 1 2
e12 0 2 1 1

belonging to the set C. Similarly, the subsets of the universe corresponding to
the information vectors are called (C,D)-elementary sets. The elementary sets
are equivalence classes of an equivalence relation, called indiscernibility relation
[1], which makes equivalent any two objects having identical values of attributes
in C. In general, any subset z of values of attributes B ⊆ C∪D of an information
vector x corresponds to a set of objects B−1(z) matching these values, where
B−1(z) = {e ∈ U : B(e) = z}.

The collection of all C -elementary sets forms a partition of the universe U ,
denoted as U/C = {Ex}x∈C(U). Clearly, from our initial assumption and from
the basic properties of the probability measure P , follows that for all E ∈ U/C
we have 0 < P (E) < 1 and

∑
E∈U/C P (E) = 1. In practice, the partition U/C is

a representation of the limits of our ability to distinguish individual objects of the
universe by using values of condition attributes. The pair A = (U, U/C) is called
the approximation space. Similarly to condition attributes, the decision attribute

Table 2. Information Table with Rough Region Designation

U a b c d Region
e1 1 1 2 1 POS
e2 1 1 2 1 POS
e3 1 0 1 1 BND
e4 1 0 1 2 BND
e5 2 2 1 2 POS
e6 2 2 1 2 POS
e7 2 0 2 1 POS
e8 1 1 2 1 POS
e9 0 2 1 3 BND
e10 2 2 1 2 POS
e11 2 2 1 2 POS
e12 0 2 1 1 BND
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induces a partition of U consisting of decision categories (D -elementary sets)
U/D = {F1, F2, . . . Fk}, k ≥ 2, corresponding to different values of the attribute
d ∈ D. That is, if the domain of d is Vd = {vd

1 , vd
2 , . . . , vd

k}, then Fi = {e ∈ U :
d(e) = vd

i }, 1 ≤ i ≤ k. As with C -elementary sets, for all D -elementary sets
F ∈ U/D we have 0 < P (F ) < 1 and

∑
F∈U/D P (F ) = 1

Our interest here is in the analysis of the relation between condition and
decision attributes, as represented by the information table. In particular, we
are interested in investigating the degree of determinism of the relation, i.e.
whether it is functional, or if not, which part of it is not functional. For that
purpose, the rough approximation regions of the decision classes Fi, (i = 1 . . . k)
are defined as follows [1].

The positive region POSC,D(i) of the class Fi, 1 ≤ i ≤ k in the approxima-
tion space A is defined as POSC,D(i) = ∪{E ∈ U/C : E ⊆ Fi)}. The positive
region POSC,D(i) is composed of C -elementary sets contained in the decision
category Fi.

The negative region NEGC,D(i) of the class Fi is defined as NEGC,D(i) =
∪{E ∈ U/C : E ⊆ (U − Fi)}. The negative region POSC,D(i) is composed of
C -elementary sets contained in the complement of the decision category Fi.

The complement of the positive regions of all decision classes BNDC,D(U) =
U − ∪iPOSC,D(i) is called the boundary region of the partition U/D in the
approximation space A. The C -elementary sets forming the boundary region are
not contained in any decision category.

Finally, the positive region POSC,D(U) of the partition U/D in the approx-
imation space A is defined as POSC,D(U) = ∪{E ∈ U/C : ∃i E ⊆ POSC,D(i)}.
That is, POSC,D(U) = ∪iPOSC,D(i). The positive region of the partition U/D
includes all C -elementary sets contained in a decision category.

An example of an information table with the associated designation of an
approximation region for each object of the universe is shown in Table 2.

3 Rough Decision Tables

To define rough decision tables precisely, we will introduce the following notation.
For any elementary set E, we will denote the by d(E) the collection of associated
values of decision attribute d, that is the values assigned to some objects e
belonging the set E:

d(E) = {v ∈ Vd : (∃e ∈ E)d(e) = v} (1)

We define the rough decision table DT C,D as a mapping derived from the
information table such that mathbfC(U) → 2{vd

1 ,vd
2 ,...,vd

k}. The mapping is as-
sociating each combination of condition attribute values x ∈ C(U) with a set
of possible values a decision attribute may take on objects belonging to the
elementary set Ex:

DT C,D
U (x) = d(Ex). (2)

In tabular form, the logical disjunction symbol ∨ will be used to denote the pos-
sible values of a decision attribute an object may take, as illustrated in Table 3.
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Table 3. Decision Table Derived from Information Table 2

a b c d
1 1 2 1
1 0 1 1 ∨ 2
2 2 1 2
2 0 2 1
0 2 1 3 ∨ 1

Because there is only one value of the decision attribute associated with an ele-
mentary set in the positive region, the rough decision table can be expressed as
a follows:

DT C,D
U (x) =

{
d(Ex) ⇔ Ex ⊆ BNDC,D(U)

vd
i ⇔ Ex ⊆ POSC,D(i) (3)

In the mapping, the value d(Ex) is representing the disjunction of more than
one possible decisions. We say that the rough decision table is deterministic if
the boundary region is empty. Otherwise, the rough decision table is said to be
non-deterministic. The rough decision table is an approximate representation
of the relation between condition and decision attributes. It is most useful for
decision making or prediction when the relation is deterministic (functional) or
largely deterministic (partially functional).

We define the positive region decision table DT C,D as a mapping associat-
ing each combination of condition attribute values x ∈ C(U) with its unique
designation of the rough approximation region the respective elementary set Ex

is included in:

DT C,D
U (x) =

{
∗ ⇔ Ex ⊆ BNDC,D(U)
vd

i ⇔ Ex ⊆ POSC,D(i) (4)

The mapping produces one of k + 1 values, with the value * representing the
lack of definite decision, that is the boundary region designation. Clearly, positive
region decision tables are always deterministic. The positive region decision table
is said to be empty if it is mapping onto only one symbol *, which corresponds
to the absence of the positive region. The positive region decision table based
on information Table 2, is demonstrated in Table 4.

Table 4. Positive Region Decision Table

a b c d
1 1 2 1
1 0 1 *
2 2 1 2
2 0 2 1
0 2 1 *
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As indicated in Section 2, in many practical applications, complete infor-
mation about the universe U is unavailable. In real-life situations we normally
deal with samples and probability estimates from those samples. The available
information typically represents a part S ⊆ U of the universe. Consequently, any
decision table derived from the sample S is also incomplete in general, partially
and perhaps inaccurately representing the relationships existing in the universe
U . Such a decision table will be called empirical decision table. In general, it is not
possible to assert the correctness and completeness of empirical decision tables.
However, we can prove that if individual objects in S are selected at random
then, with the growth of S, empirical decision tables will converge, in proba-
bilistic sense, to true rough decision table extending over the whole universe.
Consequently, empirical decision tables are subject of learning and adaptation
with the arrival of new observations. An example empirical decision table derived
from information table given in Table 2 is shown in Table 3.

4 Evaluation of Rough Decision Tables

Rough decision tables can be evaluated by dependency and predictive gain mea-
sures. The degree of determinism represented by the decision table can be esti-
mated in terms of a dependency measure, denoted as γ(DT C,D). The dependency
is given by the probability of positive region of the partition U/D:

γ(DT C,D
U ) = P (POSC,D(U)). (5)

For the purpose of evaluation of empirical decision tables, the probability can
be estimated from the sample S in usual way by:

γ(DT C,D
S ) =

card(POSC,D(S))
card(S)

, (6)

where card(∗) denotes the number of elements in the set (the set cardinality).
The dependency measure computed from the sample reflects the proportion of
objects in S which are associated with a unique decision category. For exam-
ple, the dependency degree between condition attributes C = {a, b, c} and the
decision attributes D = {d} of Table 2 is given by γ(DTC, D) = 8

12 .
The information gain of individual elementary set E ∈ U/C with respect to

predicting the occurrence of the target set F ∈ U/D can be expressed by means
of local absolute gain function defined by

gabs(E) = |P (F |E)− P (F )|, (7)

where | ∗ | denotes absolute value function.
The overall predictive gain of a decision table, with respect to the decision

category F ∈ U/D, is given by the absolute gain function 0 ≤ GABSC,DF

U < 1
defined as

GABSC,DF

U =
∑

E∈U/C

P (E)gabs(E). (8)
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Table 5. Example Summary of Elementary Sets and Cardinalities

E a b c card(E) card(F ∩ E)
E1 1 1 2 3 3
E2 1 0 1 2 1
E3 2 2 1 4 0
E4 2 0 2 1 1
E5 0 2 1 2 1

Alternatively, the absolute gain function can be expressed as

GABSC,DF

U =
∑

E∈U/C

|P (F ∩ E)− P (F )P (E)|, (9)

in which case it can be perceived as an average measure of degree of probabilistic
independence between groups of attributes C and D.

If sample S ⊆ U is used to estimate the probabilities appearing in formula
(9), set cardinalities can be used to estimate the value of the absolute gain
function:

GABSC,DF

S =

∑
E∈S/C |card(S)card(F ∩ E)− card(F )card(E)|

card(S)2
, (10)

The absolute gain function measures the average degree of change of oc-
currence probability of F , relative to its prior probability P (F ), as a result of
occurrences of elementary sets E ∈ U/C. The prior probability represents the
likelihood of occurrence of target set F in the absence of any additional infor-
mation expressed in terms of attribute-value vectors. The notion of the absolute
gain function stems from the idea of the relative gain measure introduced in
[12]. More details about the gain measures are provided in [15] and [16]. A com-
prehensive review of related measures can be found in [14].

To illustrate the application of the absolute gain function (10), we will cal-
culate its value for the decision category F = {e ∈ S : d(e) = 1} based on the
information contained in Table 2. To do it conveniently, it is useful to enumerate
all elementary sets and the associated cardinalities in the Table 5. Given that
card(F ) = 6 and card(S) = 12, we can easily calculate from the Table 5 the
absolute gain value for Table 2, which is GABSC,DF

S = 0.333. This represents
0.333 average increase in the certainty of prediction of d = 1 or d �= 1, due to
presence of condition attributes, in comparison to the situation when no condi-
tion attributes are available, as represented by the prior probability P (F ) = 0.5.

The overall predictive gain of a decision table is defined as the expected value
0 ≤ GABSC,D

U < 1 of absolute gain functions of its all decision categories:

GABSC,D
U =

∑
F∈U/D

P (F )GABSC,DF

U (11)
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The overall gain function can be estimated from empirical decision tables in
usual way by estimating the respective probabilities from the sample S.

5 Hierarchy Generation Algorithm HDTL

In this section, the basic procedure for forming decision table hierarchies with
progressively narrower boundary regions is described.

Given information table (a parent table) with non-empty positive region and
non-empty boundary region, one can associate with it a positive region decision
table, which provides the specification of decisions to be taken for all positive
region elementary sets and the definition of the boundary area. The boundary
area can be next treated as a new universe, if additional condition attributes
are available, to produce a ”child” level positive region decision table and the
definition of its boundary area. By applying this step recursively, one can define
positive region decision table based on the boundary region of the parent table,
and so on, as long as the boundary areas of the parent tables are non-empty and
extra attributes are available to produce a non-empty positive region decision
table at each level. In this way, a linear hierarchy of positive region rough deci-
sion tables can be formed, in which each non-root table is based on the boundary
area of its predecessor. The final table in the hierarchy is the rough determin-
istic or non-deterministic decision table. The latter case occurs when no more
attributes are available to obtain non-empty positive region decision table on a
given level. In the process of building the hierarchy, the child decision attributes
D′ are simply parent decision attributes D restricted to the boundary area, that
is that is, D′ = D|BNDC,D(U). However, the child condition attributes C′ are
new attributes that can be unrelated to the parent condition attributes C. In
practice, to achieve the reduction of the boundary, the condition attributes used
in each non-root layer of the hierarchy should be significantly different from the
ones used in the parent layer. They should not be merely restrictions of parent
level attributes to the child level domain, that is, to the boundary region of the
parent level. They should represent essential new information helping to catego-
rize boundary area of a parent into classes which are impossible to achieve with
parent’s existing attributes.

The method for the hierarchy construction can be summarized more precisely
in the form of an algorithm referred to as HDTL-M . The presented algorithm
is a multi-valued generalization of the original HDTL method published in [6].
In this algorithm, U is the initial set of objects, C is the initial set of attributes
and D is the decision attribute of the initial set of objects. In addition, U, C,
D are variables representing current set of objects, current condition attributes
and current decision attribute respectively. We will denote by α, 0 < α ≤ 1 the
desired degree of the global dependency of the whole structure of decision tables.
The degree α will be used as a termination criterion to stop the expansion of the
hierarchy of decision tables once satisfactory global dependency degree Γ of the
whole structure of decision tables with the decision attribute has been reached.
The Γ global dependency is a generalization of the degree of dependency γ for
a single table and is defined in detail in the next section.
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Algorithm. HDTL-M

1. U ←− U, C ←− C, D ←− D

2. Define root layer information table and the associated positive region de-
cision table DT

C,D)
U

3. Repeat
{

4. Compute dependency of current layer γ(DT
C,D)
U

)
5. Compute dependency Γ of the current hierarchy
6. If (γ(DT

C,D)
U

) = 0 or Γ ≥ α Then
{
Output current layer decision table DT C,D

U

Exit
}

7. Attempt to define new condition attributes on BNDC,D(U)
8. If (new condition attributes not defined) Then

{
Output current layer decision table DT C,D

U

Exit
}

9. Output current layer positive region decision table DT C,D
U

10. Define new universe, initiate new layer, U ←− BNDC,D(U)
11. Assign new condition attributes, C ←− new (C, D)
12. Define new information table and the decision table DT

C,D)
U

}

The algorithm HDTL-M produces a sequence of connected decision tables.
All tables in the sequence, with except of the last one, are positive region decision
tables. The final table is a rough decision table as defined in Section 3. The
computational procedure is linear in the number of elementary sets and in the
number of objects.

To illustrate the algorithm HDTL-M, we can consider the information given
in Table 2 as the initial input. After the first iteration of the algorithm, the first
layer positive region decision table (Table 4) was produced and a new information
table (Table 6) was defined based on the boundary area of Table 2, with new
condition attributes m and n and U ′ = BNDC,D(U). The corresponding second
layer positive region decision table, obtained from second layer information table,
is shown in Table 7.

Similarly, based on the boundary area of the second layer information table
(Table 6), the final layer of the hierarchy can be constructed, assuming that there
is only one new condition attribute p on this level with U” = BNDC′,D′

(U ′).
The respective information and decision tables for this layer are shown in Tables
8 and 9 respectively.
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Table 6. Second Layer Information Table

U ′ m n d Region
e3 x y 1 BND
e4 x z 2 POS
e9 x y 3 BND
e12 z y 1 POS

Table 7. Second Layer Decision Table

m n d
x y *
x z 2
z y 1

Table 8. Final Layer Information Table

U” p d Region
e3 1 1 POS
e9 2 3 POS

Table 9. Final Layer Decision Table

p d
1 1
2 3

6 Evaluation of Decision Table Hierarchies

As with single layer tables, one can evaluate the total degree of determinism of
the relation between condition and decision attributes as represented by the hier-
archy. The total degree of dependency can be computed by recursively applying,
starting from the leaf table and going up to the root table, the following formula
for computing the dependency of a parent table γ(DT C,D

U ), if the dependency
of a child table γ(DT C′,D′

U ′ ) is given:

γ(DT C,D
U ) = P (POSC,D(U)) + P (BNDC,D(U))γ(DT C′,D′

U ′ ). (12)

The probabilities appearing in the formula (12) can be estimated from the
finite sample S ⊆ U , leading to the following formulation applicable to empirical
decision tables:

γ(DT C,D
S ) =

card(POSC,D(S)) + card(BNDC,D(S))γ(DT C′,D′
S′ )

card(S)
. (13)
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The dependency measure represents the fraction of objects that can be
uniquely classified into decision categories by applying the decision tables in
the hierarchy. The dependency of the whole structure of decision tables, the last
dependency computed in the recursive application of formula (12) or (13), is
called a global dependency and denoted by Γ .

For example, to compute the dependency of the structure of decision tables
used in the previous section to illustrate the algorithm HDTL, the dependency of
the third (final) layer table (Table 9) is computed first, which is 1. By applying
formula (13), the dependency of the structure composed of third layer table
(Table 9) and second layer table (Table 7) is computed next, which yields 2+2∗1

4 =
1. Similarly, the dependency of the whole structure composed of layer 1 (Table
4) and layers 2 and 3 is computed by applying formula (13) again: 8+4∗1

12 = 1.
In addition to evaluating the hierarchies in terms of dependency measure,

they can also be evaluated in terms of absolute gain function. Let R∗ represent
the final partitioning of the universe U , as obtained by recursive splitting of the
universe U by attribute-value vectors appearing in successive levels of the hier-
archy. The absolute gain of the hierarchy of decision tables in the context of the
partitioning R∗ is defined as expected value of the local gains of all elementary
sets present in R∗:

GABSF
S =

∑
E∈R∗

|P (F ∩ E)− P (F )P (E)|. (14)

In terms of cardinalities of elementary sets computed from the finite sample
S ⊆ U , the formula (14) can be expressed as:

GABSF
S =

∑
E∈R∗ |card(S)card(F ∩ E)− card(F )card(E)|

card(S)2
. (15)

Similarly, the expected gain function can be defined for all decision categories
by:

GABSU =
∑

F∈U/D

P (F )GABSF
U . (16)

Using set cardinalities, based on sample S ⊆ U , the formula (16) can be re-
written as:

GABSS =

∑
F∈S/D card(F )GABSF

S

card(S)
. (17)

The interpretation of the gain measures for hierarchies of decision tables is
essentially identical to their interpretation for individual decision tables.

7 Incremental Expansion of Decision Table Hierarchies

One of the key issues in effective machine learning is handling new observations
(cases). Models obtained via analysis of empirical data are typically inaccurate
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and incomplete. New cases may either contradict the model or can fall outside
the scope of the model. A common approach to deal with situations like that is
to add the new cases to the pool of data previously used to produce the model,
and to regenerate the model again, taking the presence of the new cases into
account. This approach however suffers from a number of problems. Firstly, the
re-computation of the model may lead to the loss of what was learned previ-
ously, so that new model could not be related to the previous one, making it
impossible to assess the degree of model variation or convergence to a stable
state. Secondly, the total re-computation of the model is usually time consum-
ing, particularly when large data collections are used or when the complexity
of the model generation algorithms is high. The re-computation of the model
can be avoided by using new cases to expand the existing model through rela-
tively minor modifications, while preserving as much as possible of the existing
structure. The main advantage of this approach is the possibility of tracking the
variations of the model to evaluate its usefulness in terms of its ability to con-
verge to the stable fully learned state. The process of learning by adapting the
exiting model in response to occurrence of new observations is called incremental
learning.

Not every modelling technique allows for incremental adaptation, for example
it does not appear to be possible in modelling using neural nets. The hierarchies
of decision tables, on the other hand, are very well suited for this kind of adap-
tation. Below we summarize the hierarchy adaptation strategy in response to
occurrences of new observations falling into one of four possible categories. We
will say that a new case is inconsistent if it matches the pattern of condition
attributes values of an elementary set belonging to the positive region but it
does not match the value of the decision attribute. Otherwise, the new case is
consistent.

1. New case falls into boundary region of one of the layers of the
hierarchy of decision tables.
Action: Adjust the count of the cases belonging to the matching elemen-
tary set and the count of the universe of the affected layer; recompute the
dependency of the hierarchy of decision tables.

2. New consistent case falls into positive region of one of the layers
of the hierarchy of decision tables.
Action: Adjust the count of the cases belonging to the matching elemen-
tary set and the count of the universe of the affected layer; recompute the
dependency of the hierarchy of decision tables.

3. New inconsistent case falls into positive region of one of the layers
of the hierarchy of decision tables.
Action: Shift the affected elementary set E into boundary area; expand the
child layer information table by the elementary set E by individually adding
cases belonging to E and recursively applying the adaptation rules; recom-
pute the dependency of the adapted hierarchy of decision tables; recompute
new decision tables for all affected subordinate layers.
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Table 10. First Layer Information Table After Modification

U a b c d Region
e1 1 1 2 1 BND
e2 1 1 2 1 BND
e3 1 0 1 1 BND
e4 1 0 1 2 BND
e5 2 2 1 2 POS
e6 2 2 1 2 POS
e7 2 0 2 1 POS
e8 1 1 2 1 BND
e9 0 2 1 3 BND
e10 2 2 1 2 POS
e11 2 2 1 2 POS
e12 0 2 1 1 BND
e13 1 1 2 2 BND

Table 11. First Layer Decision Table After Modification

a b c d
1 1 2 *
1 0 1 *
2 2 1 2
2 0 2 1
0 2 1 *

4. New case, not matching any of the elementary sets, falls into one
of the layers of the hierarchy of decision tables.
Action: Expand the universe and the information table of the affected layer
by creating a new positive region elementary set; recompute the dependency
of the hierarchy of decision tables; modify decision table for the affected layer
by adding an extra row.

Among the above adaptation strategies, the strategy number 3 is most com-
plex and potentially has most significant impact on the structure of the hierarchy
of decision tables due to possible propagation of change through multiple sub-
ordinate layers of the structure.

To illustrate this strategy based on the Table 2, assume that a new inconsis-
tent case, denoted by e13 and represented by the information vector (1, 1, 2, 2)
of first layer attributes a, b, c and d, respectively, appeared. According to strat-
egy 3, the boundary area of root information table was expanded, as shown in
Table 10. The associated decision table was modified accordingly (Table 11). In
addition, the universe of second layer table was expanded and the new case was
classified into positive region, based on values of second layer attributes m and n.
This is reflected in modified second layer information and decision tables shown
in Tables 12 and 13, respectively. The final layer was not affected by the change.
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Table 12. Second Layer Information Table After Modification

U ′ m n d Region
e1 x x 1 POS
e2 x x 1 POS
e3 x y 1 BND
e4 x z 2 POS
e8 z x 1 POS
e9 x y 3 BND
e12 z y 1 POS
e13 y y 2 POS

Table 13. Second Layer Decision Table After Modification

m n d
x x 1
x y *
x z 3
z x 1
z y 1
y y 2

8 Conclusions

The focus of the article is on learning approximate models of functional, or partial
functional relations from data. Learning functional or partial functional models
from data seems to be significant from application perspective, as in many appli-
cation areas standard mathematical modelling techniques are not applicable due
to excessive problem complexity or lack of continuity. As a possible approach to
dealing with this problem, the article introduced an extension HDTL-M of the
original algorithm HDTL for building hierarchies of rough decision tables, ab-
solute gain measure for evaluating the quality of the learned tables and of their
structures, and several update strategies for managing the growth of the hier-
archies in response to occurrences of new observations. The use of incremental
learning methodology reduces the complexity of learning and allows for control-
ling the convergence of the learning process. It appears to be well suited for
automated control applications as a technique for control algorithm acquisition
from empirical data. Two promising experimental control-related applications
have recently been undertaken [9], [11].
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Abstract. Rough sets framework has two appealing aspects. First, it
is a mathematical approach to deal with vague concepts. Second, rough
set techniques can be used in data analysis to find patterns hidden in
the data. The number of applications of rough sets to practical problems
in different fields demonstrates the increasing interest in this framework
and its applicability. This thesis1 proposes a language that caters for
implicit definitions of rough sets obtained by combining different regions
of other rough sets. In this way, concept approximations can be derived
by taking into account domain knowledge. A declarative semantics for
the language is also discussed. It is then shown that programs in the
proposed language can be compiled to extended logic programs under
the paraconsistent stable model semantics. The equivalence between the
declarative semantics of the language and the declarative semantics of the
compiled programs is proved. This transformation provides the computa-
tional basis for implementing our ideas. A query language for retrieving
information about the concepts represented through the defined rough
sets is also discussed. Several motivating applications are described. Fi-
nally, an extension of the proposed language with numerical measures is
presented. This extension is motivated by the fact that numerical mea-
sures are an important aspect in data mining applications.

1 Introduction

This thesis addresses the problem of using rough sets for knowledge representa-
tion. We propose an extension of the basic rough set formalism [1] that caters
for the representation of vague concepts and reasoning about those concepts.

We present a language that allows the user to define rough sets implicitly.
This contrasts with most of the currently existing systems based on rough set
techniques where rough sets can only be defined explicitly by a set of examples.

We also introduce a query language to retrieve non-trivial knowledge implied
by the defined rough sets.

This introductory section starts by presenting the motivation that drove us
into this research (section 1.1), followed by the formulation of the concrete prob-

1 This work has been partially supported by the European Commission and by the
Swiss Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (http://rewerse.net).

J.F. Peters and A. Skowron (Eds.): Transactions on Rough Sets IV, LNCS 3700, pp. 178–276, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Framework for Reasoning with Rough Sets 179

lem addressed in this thesis (section 1.2), and then we highlight the main contri-
butions of our work (section 1.3). Finally, we give an overview of the structure
of this thesis (section 1.4).

1.1 Motivation

Rough sets techniques [1,2] can be used to discover new interesting data pat-
terns (or knowledge) hidden in large tables with many lines and several columns.
In more concrete terms, the main aim of rough set techniques is to synthesize
descriptions of concepts from the data in the tables. The concept descriptions
consist of a set of decision rules. These decision rules can be used in two dif-
ferent perspectives. First, rules can be used for building predictive models (i.e.
classifiers) from the data. Second, rules can reveal interesting relationships in
the data, i.e. each rule may represent an interesting pattern hidden in the data.
These techniques have been successfully applied to many real problems in dif-
ferent areas like medicine [3,4], economy [5], and bioinformatics [6]. Therefore,
it is not a surprise that rough set methods are enjoying an increasing popularity
in the data mining field.

The rough set framework has two major appealing aspects. First, it proposes
a method to handle inconsistencies due to imprecise or noisy data. Approximate
concept descriptions can then be induced. This point is particularly relevant
from the point of view of knowledge representation. As a consequence of using
approximations, the derived decision rules describing concepts are categorized
into certain and possible rules. In addition, rough set techniques have a clear
mathematical foundation.

Several other important problems are also tackled in the context of rough sets:

– reducing the number of relevant attributes;
– measuring the significance of attributes;
– discovering the degree of dependency between attributes;
– generating classifiers with the possibility to predict more than one class for

an object.

What we wish to emphasize here is the relevance of the rough set framework
from the knowledge representation and data mining perspectives. The capability
to handle vague and contradictory knowledge makes rough sets an important
technique that can be incorporated in knowledge base systems. On the other
hand, rough set methods can also be used to perform data exploration what
makes them relevant from a data mining point of view. These two aspects account
for the motivation that drove us in this research.

1.2 Problem Formulation

Most of the research in the rough sets field has been focused on the following
issues: algebraic characterization and interpretation of rough sets [7]; relations of
rough set theory with other theories to represent knowledge, like modal logics [8];
integration of rough sets with other techniques like inductive logic programming
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[9] or fuzzy sets [10,11]; extensions to the basic rough set formalism using differ-
ent types of indiscernibility relations and more general definitions of upper and
lower approximations [8,12,13]; construction of software tools for data mining
based on rough sets methods [14]; application of rough set techniques to real
problems [3,6,15].

Most of the current rough sets techniques and software systems based on
them only consider rough sets defined explicitly by concrete examples given in
tabular form. The previous research mostly disregards the following problems.

– How to define rough sets in terms of other rough sets. For instance, we may
wish to express that a rough set is obtained as a projection of another rough
set over a subset of its attributes.

– How to incorporate domain or expert knowledge. An example of domain
knowledge could be “if a gene participates in cytoplasmic transport then
it may also participate in the transport process”. A question arises of how
concept approximations can be derived by taking into account not only the
examples provided explicitly by one or more tables but also the domain
knowledge.

The problems described above are in the focus of this thesis. They are also
addressed in [16] presenting the Computer Aided Knowledge Engineering tech-
nique supported by system CAKE. However, several important differences ex-
ist between this system and our framework. This issue is further discussed in
section 7.

1.3 Contributions

The main contributions of this thesis are as follows.

– Definition of a language [17,18,19] that caters for implicit definitions of rough
sets obtained by combining different regions of other rough sets (e.g. lower
approximations, upper approximations, and boundaries). The language also
allows defining rough sets in terms of explicit examples, as in most currently
available systems. A declarative semantics for the language is also proposed.

– Definition of a query language [19] for retrieving information about the con-
cepts represented through the defined rough sets.

– Definition of a computational engine for the proposed language. This en-
gine is obtained by a translation of the proposed language to the language
of extended logic programs, under the paraconsistent stable model seman-
tics. We also prove the correctness of the proposed translation with respect
to the declarative semantics of the language. In this way we establish a
link between two important fields, rough set theory and paraconsistent logic
programming [20].

– Several motivating applications are discussed [21]. These examples show that
several useful techniques and extensions to rough sets, reported in the liter-
ature, and implemented in an “ad hoc” way can be naturally expressed in
our language.
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– Extension of the proposed language with numerical measures [22] is pre-
sented. This extension is motivated by the fact that numerical measures are
an important aspect in data mining applications.

– A software system based on the proposed language. The system was de-
veloped by R. Andersson [23] under joint supervision of the author and J.
Ma�luszyński.

Although the major ideas presented in this thesis have been previously pub-
lished in conference and journal papers, there are some new notions that are
not addressed in those previous publications. First, we present a declarative
semantics for the language that caters for implicit definition of rough sets,
without considering quantitative measures. Second, the declarative semantics
of the query language is also formalized. Third, the correctness of the trans-
formation of rough programs (without quantitative measures) into extended
logic programs is only proved in this thesis. Finally, the correctness of the
query answering algorithm presented in this work has not been previously pub-
lished.

This thesis also gives a more comprehensive introduction to both rough sets
and logic programming main notions than the previous publications. Hence,
readers acquainted with none or just one of the fields can easily read this
work.

1.4 Structure of the Thesis

The rest of this thesis is organized as follows.

– Section 2 gives an introduction to rough sets and a brief overview of how
several main problems are addressed in this framework.

– Section 3 surveys some important notions of logic programming and paracon-
sistent stable model semantics. These topics help the reader to understand
the transformation technique applied to the proposed language.

– Section 4 introduces formally a language that caters for implicit definitions of
rough sets in terms of other rough sets. We present the declarative semantics
of the language. We also show a transformation of programs in this language
to paraconsistent logic programs. Moreover, we prove that this transforma-
tion is correct with respect to the declarative semantics of the language. In
addition, a query language is also defined and an algorithm to obtain answers
to the queries is discussed.

– Section 5 demonstrates the feasibility of our approach on practical appli-
cations by formulating in our language several problems, presented in the
rough set literature.

– Section 6 proposes an extension of the language with numerical measures.
We also give an overview of a software system, available through a Web page,
based on these ideas.

– Section 7 concludes this thesis and points to several problems that deserve
further research.
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2 Basics of Rough Set Theory

This section provides a brief overview of rough set theory. Rough set theory
was introduced by Z. Pawlak [1,24] in the early eighties as a methodology for
handling uncertainty in data.

The underlying idea of rough set theory is that several objects may look
similar due to the limitations in our knowledge. Hence, it is only possible to
distinguish classes of objects rather than individual objects. Consequently, only
approximate descriptions of concepts (sets of objects) can be constructed. Sec-
tion 2.1 discusses this idea while section 2.2 presents the notion of concept ap-
proximations and formalizes the notion of rough set.

One of the important problems addressed in the rough set framework is the
generation of decision rules from which classifiers are then built. Section 2.3 is
devoted to this topic.

Numerical measures are another central problem in rough set theory and
this is the issue addressed in section 2.4. We first survey some basic numerical
measures that can be used to analyze the quality of the derived decision rules.
We then discuss how to measure the degree of dependency between attributes
and significance of attributes.

Classifiers obtained by the rough set techniques may predict more than one
class for an object. The problem of how multiple class prediction can be handled
is briefly surveyed in section 2.5.

We conclude this section by presenting, in section 2.6, an extension to the
basic rough set formalism, called Variable Precision Rough Set Model, that is
widely used in practical applications.

Most of the contents of this section are based on the ideas presented in the
tutorials [25,26].

2.1 Rough Sets: The Main Idea

Datasets in many practical problems are presented as a single database relation
or table. For instance, entries in the table may correspond to persons with sight
problems and they record for each person whether he has astigmatism, the person
age, whether the tear production is normal or reduced, and whether the person
is currently using spectacles. Assume that all these persons have experimented
the use of contact lenses. The table also records for each person whether he has
experienced any major problem, related to the use of contact lenses, that led
him to stop using contact lenses. A concrete example of such table is given.

Example 1. In table 1 the column headings (or attributes) have the following
meaning: Ast stands for astigmatism and can have the value 0 (no astigmatism)
or 1 (with astigmatism); Age can have the values 0 (not more than 20 years old),
1 (more than 20 years old but not more than 50 years old), and 2 (more than 50
years old). TearP stands for tear production and can have the value 1 (reduced
tear production) or 2 (normal tear production); Spec stands for spectacles and
can have the value 0 (using spectacles) or 1 (not using spectacles); and Lenses
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Table 1. Table of people with sight problems.

Ast Age TearP Spec Lenses
o1 0 0 1 0 0
o2 1 1 1 0 0
o3 1 0 2 1 1
o4 1 1 1 0 0
o5 1 0 1 0 0
o6 0 0 1 0 0
o7 0 2 1 1 1
o8 0 2 1 1 1
o9 1 2 1 0 1
o10 0 0 2 1 0
o11 1 0 1 0 0
o12 1 0 1 0 0
o13 1 0 2 1 1
o14 1 2 2 1 1
o15 0 2 1 1 1
o16 0 0 2 1 1
o17 1 0 1 0 0
o18 1 0 2 1 0

stands for contact lenses and can have the value 0 (stopped using contact lenses)
or 1 (did not stop using contact lenses). �

As the example above shows, objects of a given universe U (e.g. people with
sight problems) are described in terms of certain chosen attributes (e.g. tear
production). An attribute a can be seen as a total function a : U → Va, where
Va is called the value domain of a. In this thesis, we assume that we do not
have missing (unknown) attribute values. Thus, every object is associated with
a tuple of attributes.

The special constant null may belong to the value domain Va off an attribute
a. If for an object o ∈ U , a(o) = null, then this means that for this particular
object o the value of attribute a is not defined (alternatively, attribute a could
be seen as a partial function). Note that null does not denote a missing value.
In the latter case a value exists but it is not known, while in our framework null
means that the attribute value is not relevant. For example, if patient’s age is
’<2’ then the value of the attribute employer should be null.

Objects of the universe are often classified as belonging or not to a predefined
class determined by one of the attributes, often called decision attribute. Con-
sider again the example above. We may consider two classes of persons: those
who had to abandon the use of contact lenses and those who had not. Each
person o ∈ U is then classified as belonging to the former class (Lenses(o) = 0)
or to the latter one (Lenses(o) = 1). Hence, Lenses is in this case the decision
attribute.

The notion of decision table is formalized to capture these ideas.
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Definition 1. A decision table D is a triple (U, A, d), where U is a set of objects,
A is a set of condition attributes, and d is a (often binary) decision attribute
such that null �∈ Vd (i.e. for each object o ∈ U , d(o) is defined).

The table of example 1 can be seen as the decision table Lenses =
(U, A, Lenses), where U={o1, . . . , o18} and A = {Ast, Age, TearP, Spec}. More-
over, using the attributes from A, persons o3 and o18 are indiscernible from each
other because they are represented by the same tuple of condition attributes
〈1, 0, 2, 1〉. However, they have different outcomes for the decision attribute: o3
did not have to stop using contact lenses, while o18 did have. This points out
that the information available in a decision table may be contradictory.

Definition 2. Given a decision table D = (U, A, d), an object oi ∈ U is indis-
cernible from object oj ∈ U if and only if, for all condition attributes a ∈ A,
a(oi) = a(oj) .

Hence, a decision table D = (U, A, d) induces an indiscernibility relation RA,

RA = {(oi, oj) ∈ U2 | oi is indiscernible from oj} .

The indiscernibility relation is an equivalence relation and it induces a partition
of the universe U into equivalence classes. These equivalence classes are also
known in the rough set literature as indiscernibility classes or elementary sets.
The pair (U, RA) is called approximation space and R∗

A denotes the set of its
equivalence classes.

Note that if a(o) = null, for some object o of an indiscernibility class, then
a(o′) = null, for every other object o′ in the same equivalence class.

To simplify the presentation of several central ideas in later sections (e.g.
decision rules), we introduce informally the notion of derived decision table.

Example 2. The decision table 2, Lenses′ = (U ′, A, Lenses’), is derived from
table 1. Column Class designates an indiscernibility class of table 1. Hence, the
universe U ′ of the derived table is composed of indiscernibility classes. The con-
dition attributes remain the same as in table 1, i.e. A = {Ast, Age, TearP, Spec}.

Table 2. Decision table derived from Table 1

Class Ast Age TearP Spec Lenses’
E1 0 0 1 0 {0}
E2 1 0 2 1 {0, 1}
E3 1 1 1 0 {0}
E4 0 2 1 1 {1}
E5 1 2 1 0 {1}
E6 1 0 1 0 {0}
E7 1 2 2 1 {1}
E8 0 0 2 1 {0, 1}
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The values for the decision attribute Lenses’ are now non-empty subsets of
{0, 1}. If an indiscernibility class E only contains objects whose outcome for the
decision attribute in table 1 is 0 (1) then the decision attribute in this derived
table has value {0} ({1}). However, if some objects in an indiscernibility class
E have outcome 0 for decision attribute Lenses while other objects belonging
to E have outcome 1, then the decision attribute in this derived table has value
{0, 1} (i.e. Lenses’= {0, 1}).

There are 8 indiscernibility classes:

E1 = {o1, o6},
E2 = {o3, o13, o18},
E3 = {o2, o4},
E4 = {o7, o8, o15},
E5 = {o9},
E6 = {o5, o11, o12, o17},
E7 = {o14},
E8 = {o10, o16}.

From the second line of table 2, we can read that indiscernibility class E2
contains some objects whose outcome for the decision attribute Lenses is 0 (o18)
while other objects in E2 have outcome 1 (o3 and o13).

Each indiscernibility class can be described by a boolean formula. For in-
stance, consider E1. It can be described by

(Ast = 0 ∧ Age = 0 ∧ TearP = 1 ∧ Spec = 0) .

Alternatively, we can simply use the tuple 〈0, 0, 1, 0〉 to describe the same indis-
cernibility class. This is the approach followed in this thesis. �

As shown in the example 2, indiscernibility classes can be described by a
unique tuple of

∏
ai∈A Vai

2. These elementary sets are like atomic information
granules that are used to define concepts, i.e. subsets of the universe. The next
example illustrates this point.

Example 3. Consider the decision table 2. This decision table is associated with
two concepts: those people who stopped using contact lenses and those who did
not. The former concept is denoted by the subset

WithoutLenses = {o1, o2, o4, o5, o6, o10, o11, o12, o17, o18} ,

while the latter is denoted by the subset

WithLenses = {o3, o7, o8, o9, o13, o14, o15, o16} .

An important question is

2 The expression
∏

ai∈A Vai denotes the cartesian product Va1 × · · · × Vak , where
A = {a1, · · · , ak}.
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– When can we say that a person could be recommended the use of contact
lenses, based on the attributes Ast, Age, TearP, and Spec and their values
shown on the decision table 2?

To answer this question, we need to build a discriminating description of con-
cept WithLenses. This description can be obtained in terms of the description
of the indiscernibility classes. We remind the reader that each indiscernibility
class can be described by a tuple of (condition) attribute values. For instance,
E4 ⊆ WithLenses. Hence, we can conclude that for people satisfying the con-
ditions

(Ast = 0 ∧ Age = 2 ∧ TearP = 1 ∧ Spec = 1) ,

the use of contact lenses should be recommended. However, indiscernibility class
E2 seems to raise a problem in this context because E2 is neither contained in
WithLenses nor it is disjoint from WithLenses. This indicates that concept
WithLenses cannot be defined precisely using the available information. �

We can conclude from the example above that it is not always possible to
learn precise descriptions of concepts. This is due to the fact that we may have
contradictory knowledge that leads to vague concepts. It is in this context that
the notion of rough set emerges naturally, since it introduces the idea of set (or
concept) approximations.

2.2 Approximations and Rough Sets

Let (U, RA) be an approximation space. The tuple describing each indiscernibil-

ity class E ∈ R∗
A is denoted by

−→
EA. For example, in table 2,

−→
EA

1 = 〈0, 0, 1, 0〉.

Definition 3. Let D = (U, A, d) be a decision table and X ⊆ U . Rough set
theory introduces two types of approximations of concept X in the approximation
space (U, RA).

– Lower approximation of X, denoted by X,

X = {
−→
EA | E ∈ R∗

A and E ⊆ X} .

– Upper approximation of X, denoted by X,

X = {
−→
EA | E ∈ R∗

A and E ∩X �= ∅} .

Let ¬X = U \X , where U is the set of objects under consideration. The upper
approximation X can informally be interpreted as a description of the objects
that possibly belong to a given concept X . Notice that some doubt exists in this
description because there may exist a tuple t ∈ X∩¬X . The lower approximation
of X should informally be viewed as a description of those objects that definitely
belong to the concept. The set X = X ∩ ¬X is called the boundary and it
corresponds to the conflicting cases (i.e. the doubtful ones).
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Example 4. Consider once more the decision table 2 and the concepts

WithLenses = {o3, o7, o8, o9, o13, o14, o15, o16} ,

¬WithLenses = {o1, o2, o4, o5, o6, o10, o11, o12, o17, o18} .

Note that ¬WithLenses represents the same concept as WithoutLenses, intro-
duced in example 3. Their upper and lower approximations are given.

WithLenses = {〈1, 0, 2, 1〉 , 〈0, 2, 1, 1〉 , 〈1, 2, 1, 0〉 ,
〈1, 2, 2, 1〉 , 〈0, 0, 2, 1〉} ,

WithLenses = {〈0, 2, 1, 1〉 , 〈1, 2, 1, 0〉 , 〈1, 2, 2, 1〉} ,

¬WithLenses = {〈0, 0, 1, 0〉 , 〈1, 0, 2, 1〉 , 〈1, 1, 1, 0〉 ,
〈1, 0, 1, 0〉 , 〈0, 0, 2, 1〉} ,

¬WithLenses = {〈0, 0, 1, 0〉 , 〈1, 1, 1, 0〉 , 〈1, 0, 1, 0〉} .

The upper approximation of WithLenses describes those persons who possi-
bly will not have problems in using contact lenses while the lower approximation
of ¬WithLenses describes those person who certainly will have problems due
to the use of contact lenses. Notice that the tuple 〈1, 0, 2, 1〉 belongs to both
WithLenses and ¬WithLenses, i.e. 〈1, 0, 2, 1〉 ∈ WithLenses. This fact indi-
cates that for persons satisfying the condition

(Ast = 1 ∧ Age = 0 ∧ TearP = 2 ∧ Spec = 1)

there exists contradictory evidence and, therefore, it is not possible to state with
certainty whether they should be recommended to use contact lenses. �

Let (U, RA) be an approximation space and X, Y ⊆ U . It has been proved
that set approximations have several important properties [24]. We list some of
them.

(1) X ⊆ X ⊆ X.
(2) (X ∪ Y ) = X ∪ Y .
(3) (X ∩ Y ) ⊆ X ∩ Y .
(4) (X ∪ Y ) ⊇ X ∪ Y .
(5) (X ∩ Y ) = X ∩ Y .
(6) ¬X = ¬X .
(7) ¬X = ¬X .
(8) If X ⊆ Y then X ⊆ Y and X ⊆ Y .

A concept that cannot be defined precisely is represented by a pair of sets of
tuples, to be called rough set.

Definition 4. A rough set (or rough relation) S is a pair (S,¬S) such that
S,¬S ⊆

∏
ai∈A Vai , for some non empty set of attributes A. The rough comple-

ment of a rough set S = (S,¬S) is the rough set ¬S = (¬S, S).
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Example 5. Consider again example 4. Since concept WithLenses cannot be
defined precisely in terms of the elementary sets belonging to R∗

A, where A =
{Ast, Age, TearP, Spec}, this concept is then represented by the rough set Lenses
= (WithLenses,¬WithLenses). �

We stress that there is not a unique way to define a rough set. Different
definitions for the concept of rough set have been proposed in the literature [7].
For instance, a rough set could be defined as the pair S = (S, S). All these
definitions formalize the idea of vague sets due to the existence of a boundary
region. The reason for preferring one definition over another is related to the
concrete application the definition’s author has in mind. We have chosen to
define a rough set as S = (S,¬S) rather than S = (S, S) because the former
definition gives information about all negative examples while the latter only
indicates those negative examples in the boundary region.

The notion of rough set used in our framework differs in a number of respects
from those usually presented in rough set literature. First in our framework,
lower and upper approximations are sets of tuples while these approximations
are usually defined as subsets of the universe U . Second, we assume that a rough
set may partition the set of all possible tuples W =

∏
ai∈A Vai , where A is a set

of condition attributes, into four regions. Figure 1 illustrates this point.

S SS

W

Fig. 1. The four regions generated by a rough set S

Given a rough set S, these four regions correspond to S, ¬S, S, and the
set of tuples about which there is no information, W \ (S ∪ ¬S ∪ S). Most
literature considers that a rough set divides the universe U in three regions: lower
approximation of a rough set S, lower approximation of ¬S, and boundary.

Let (U, RA) be an approximation space, [x]A be the equivalence class of object
x ∈ U in that approximation space, and S be a rough set. Then, ε(x, S) denotes
whether x belongs to the concept represented by rough set S and it is defined
as follows.

ε(x, S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
true if

−−→
[x]A ∈ S

false if
−−→
[x]A ∈ ¬S

! if
−−→
[x]A ∈ S

⊥ otherwise .
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ε(x, S) = ! indicates the existence of contradictory information about object x
and ε(x, S) = ⊥ shows lack of information about x.

Let us assume, without loss of generality, that d is a binary decision attribute
of a decision table D = (U, A, d). It is easy to see that we can associate a rough
set D = (D,¬D) with D, where D is the set of tuples with positive outcome
for the decision attribute d and ¬D is the set of tuples with negative outcome.
Our definition of rough set cannot be seen as an alternative representation for a
decision table. This can be explained by the fact that, for the former case, there
is no information associated with each tuple of how many objects belong to the
corresponding indiscernibility class or how many objects in an indiscernibility
class have positive (negative) outcome for the decision attribute. From a formal
point of view, this problem can be easily addressed and we will discuss it in
section 2.4.

We have adopted the convention to give the same name to a decision ta-
ble, to its decision attribute, and to the rough relation it defines, since all these
concepts are very associated with each other. However, the appearance of the
printed names is different for each case. For instance, if a decision table is called
“Lenses”, a name usually starting with calligraphic letter, then its decision at-
tribute is called “Lenses” and it defines the rough relation “Lenses”. We use
interchangeably the expression “objects” and “individuals” to refer to the ele-
ments of the universe U under consideration.

We stress that, in this work, we only consider approximation spaces (U, RA)
where RA is an equivalence relation. The literature also discusses its general-
izations to tolerance approximation spaces [12] and similarity approximation
spaces [27].

2.3 Decision Rules

In the context of supervised learning, an important task is the discovery of
classification rules from the data provided in the decision tables. The decision
rules not only capture patterns hidden in the data as they can also be used to
classify new unseen objects.

Definition 5. Let D = (U, A, d) be a decision table and {a1, . . . , an} ⊆ A. As-
sume also that {vd1, . . . , vdk} ⊆ Vd and vi ∈ Vai , for 1 ≤ k and 1 ≤ i ≤ n. A
decision rule is an expression of the form

(a1 = vi) ∧ . . . ∧ (an = vn) −→ (d = vd1) ∨ . . . ∨ (d = vdk) .

If k = 1 then the decision rule is called a deterministc rule. Otherwise (k > 1),
the decision rule is called non-deterministic rule.

A decision rules can informally be understood as an implication. Symbols
“∧”, “∨” can be read as “and” and “or”, respectively.

Given a decision rule r, cond(r) denotes the expression on the left hand side
of symbol “→” and dec(r) denotes the expression on the right hand side.
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Example 6. Consider again table 2. Then, r1 is a deterministic decision rule
obtained from this table

r1 ≡ (Age = 0) ∧ (TearP = 2) ∧ (Spec = 1) −→ (Lenses’ = {0, 1}) .

It states that if a person’s age is not more than 20 years, and his tear production
is normal, and he does not use spectacles then the outcome for the decision
attribute Lenses is 0 or 1, i.e. the optician cannot with certainty recommend
contact lenses.

The above rule corresponds to the following non-deterministic rule for deci-
sion table 1.

(Age = 0) ∧ (TearP = 2) ∧ (Spec = 1) −→ (Lenses = 0) ∨ (Lenses = 1)

Hence, this rule describes some of the objects belonging to the upper approxi-
mation of rough set Lenses.

Consider now the decision rule

r2 ≡ (Age = 0) ∧ (Spec = 1) −→ (Lenses’ = {0, 1}) .

Both decision rules r1 and r2 above can be used to identify some of the ob-
jects belonging to Lenses. However, an important difference should be pointed.
The latter rule is more general than the former in the sense that it states a
smaller number of conditions in cond(r). Therefore, r2 is more likely to be ap-
plied to a larger number of new objects to predict the outcome for the decision
attribute. �

Let us call decision classes to the partitions of the universe generated by the
decision attribute, i.e. elements of R∗

{d}. The preceding example points that
rules induced from a decision table with a minimal number of conditions (i.e.
attribute-value pairs, (a = v)) are the most useful because those rules are more
general. In the context of data mining, one of the main aims of rough-set based
algorithms is to either find a set of minimal rules that covers a given decision
class or to compute all minimal rules for the chosen decision class.

As shown in the previous sections, the concept associated with a given deci-
sion class may not be definable in terms of the elementary sets, i.e. the concept
is rough. Decision rules can then be computed either with respect to the lower
approximation or upper approximation of the target concept. An important dif-
ference between these two cases is that rules generated from the lower approx-
imation are deterministic while rules generated from the upper approximation
may be non-deterministic.

We turn now to the formalization of minimal decision rules.
Let D = (U, A, d) be a decision table, c1 ≡ (a1 = v1) ∧ . . . ∧ (an = vn) and

c2 ≡ (a1 = v1) ∨ . . . ∨ (an = vn) be two conditions, with {a1, . . . , an} ⊆ A and
1 ≤ n. Cover(c1) and Cover(c2) denote the following subsets of U .

Cover(c1) =
⋂

1≤i≤n{o ∈ U | ai(o) = vi} ,

and
Cover(c2) =

⋃
1≤i≤n{o ∈ U | ai(o) = vi} .
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A rule r covers all objects that match the condition on its left-hand side, denoted
as Cover(r), i.e. Cover(r) = Cover(cond(r)). This definition can be extended
to a set of rules S:

Cover(S) =
⋃
r∈S

Cover(r) .

Let c1 ≡ (a11 = v11) ∧ . . . ∧ (a1n = v1n) and c2 ≡ (a21 = v21) ∧ . . . ∧ (a2k =
v2k), with n, k ≥ 1, be two conditions. We write c1 # c2 to denote that every
attribute-value pair (a1i = v1i) occurring in c1, with 1 ≤ i ≤ n, also occurs
in c2. The expression c1 ≺ c2 means that c1 # c2 and c1 �= c2. For instance,
(Age = 2) # (Age = 2) ∧ (TearP = 1).

Definition 6 ([26]). Let r be a decision rule. A value reduct for r, denoted as
red(r), is a condition satisfying the following properties.

(1) red(r) # cond(r).
(2) Cover(red(r)) ⊆ Cover(dec(r)). i.e. value reduct preserves the inclusion

relation of the set of objects covered by the rule in Cover(dec(r));
(3) For every condition c ≺ red(r), Cover(c) �⊆ Cover(dec(r)), i.e. the value

reduct is a minimal condition, with respect to the partial order ≺, satisfying
properties (1) and (2).

The definition of minimal rules is based on the notion of value reduct.

Definition 7. Let r be a decision rule. r is a minimal rule if and only if red(r) =
cond(r).

Given a decision rule r, a single value reduct can be computed in linear time
with respect to the number of attributes that appear in cond(r).

Example 7. Consider example 6 and table 2. Decision rule

(Age = 0) ∧ (TearP = 2) ∧ (Spec = 1) −→ (Lenses’ = {0, 1})

is not minimal while

(Age = 0) ∧ (Spec = 1) −→ (Lenses’ = {0, 1}) and
(Age = 0) ∧ (TearP = 2) −→ (Lenses’ = {0, 1})

are minimal decision rules. Note that

Cover((Age = 0) ∧ (Spec = 1)) = E2 ∪ E8 = Cover(Lenses’ = {0, 1}) . �

Let D = (U, A, d) be a decision table, A = {a1, . . . , an}, and assume that v ∈
Vd. An algorithm based on value reducts that computes a set of minimal rules
covering the decision class Dv = {o ∈ U | d(o) = v} can be easily devised.
Assume that we are interested in a set of deterministic rules.

Computation of Minimal Rules [26]:
(i) Compute Dv . Let L be a set of decision rules initialized to the empty set.
(ii) Consider the decision rule
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r ≡ (a1 = v1) ∧ . . . ∧ (an = vn) → (d = v)

associated with each tuple 〈v1, . . . , vn〉 ∈ Dv.
(ii.1) Compute a value reduct for rule r, i.e. red(r).
(ii.2) If the Cover(red(r)) �⊆

⋃
ri∈L Cover(ri) then

L = L ∪ {red(r) → (d = v)} .

(iii) Output each rule in L.

If a set of non-deterministic rules is sought instead then Dv should be replaced
by Dv in the algorithm above. The algorithm can be computed in polynomial
time. Its time complexity is proportional to the number of condition attributes
and number of tuples in Dv (Dv).

Example 8. Consider again table 2 and let us compute the minimal deterministic
decision rules for Lenses′{0,1}, corresponding to the boundary region of table
Lenses. We have that

Lenses′{0,1} = {〈1, 0, 2, 1〉 , 〈0, 0, 2, 1〉} .

It can be easily verified that for the decision rules associated with tuples 〈1,0,2, 1〉
and 〈0, 0, 2, 1〉 there are two possible value reducts

(Age = 0) ∧ (Spec = 1) and
(Age = 0) ∧ (TearP = 2)

It can be also easily verified that (Age = 2) is a value reduct for each of the
decision rules obtained from the tuples belonging to the set

Lenses′{1} = {〈0, 2, 1, 1〉 , 〈1, 2, 1, 0〉 , 〈1, 2, 2, 1〉} .

Note that Lenses′{1} corresponds to the lower approximation of rough set Lenses.
Since

Cover(Age = 2) �⊆ Cover((Age = 0) ∧ (Spec = 1)) and
Cover((Age = 0) ∧ (Spec = 1)) �⊆ Cover(Age = 2) ,

the following two minimal decision rules describe the set of objects
Lenses′{0,1} ∪ Lenses′{1}.

(Age = 0) ∧ (Spec = 1) −→ (Lenses’ = {0, 1}) ,
(Age = 2) −→ (Lenses’ = {1}) .

If we consider table 1 instead then, the deterministic decision rules above
correspond to a non-deterministic rule and to a deterministic rule, respectively.

(Age = 0) ∧ (Spec = 1) −→ (Lenses = 0) ∨ (Lenses = 1) ,
(Age = 2) −→ (Lenses = 1) .

These two rules cover all objects described by tuples in the upper approximation
of rough set Lenses (obtained from table 1). �
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In step (iii) above, L is a non-empty set of minimal rules such that Cover(L)
= Dv. Hence, these set of rules form a discriminating description of the approx-
imated concept. However, from the point of view of knowledge discovery, it is
more interesting to find all possible minimal rules than just one set of mini-
mal rules. In contrast to the above algorithm that is polynomial, computing all
possible minimal rules is NP-hard.

All minimal rules can be computed by first creating the decision-relative
discernibility matrix. A Boolean expression can then be constructed from this
matrix. This expression is simplified (absorption law of Boolean algebra can
be applied) and prime implicants of the simplified expression are computed.
Each prime implicant can finally be translated to a decision rule. More detailed
descriptions of this algorithm can be obtained from [25,28]. A survey of the
main algorithms for inducing decision rules using rough set theory is presented
in [29,30].

2.4 Numerical Measures

The first part of this section is devoted to the discussion of several numerical
measures that can be associated with a decision rule for measuring its quality.
In the second part, we introduce the notion of reduct and we briefly mention an
algorithm to compute decision rules based on reducts.

Measuring Quality of Decision Rules. Quality measures associated with
decision rules can be used to eliminate some of the decision rules. We list below
some of these quality measures [25].

Given a set S, the expression |S| denotes the number of elements in S.

Definition 8 (Support). Let r be a decision rule induced from a decision table
D = (U, A, d). The support of r, denoted as Supp(r), is defined as

Supp(r) = |Cover(cond(r)) ∩Cover(dec(r))| .

The support of a rule represents the number of objects of the universe that
match both conditions cond(r) and dec(r).

Definition 9 (Strength). Let r be a decision rule induced from a decision table
D = (U, A, d). The strength of r, denoted as Strength(r), is defined as

Strength(r) =
|Supp(r)|

|U | .

The strength of a rule indicates the proportion of objects in the universe
that match both cond(r) and dec(r); i.e. the percentage of objects for which
the pattern expressed by the rule is true. Hence, Strength(r) can be seen as an
estimate of the probability Pr(cond(r) ∧ dec(r)).

Definition 10 (Accuracy). Let r be a decision rule induced from a decision
table D = (U, A, d). The accuracy of r, denoted as Acc(r), is defined as
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Acc(r) =
Supp(r)

|Cover(cond(r))| .

The accuracy of a rule corresponds to the conditional probability Pr(o ∈
Cover(dec(r)) | o ∈ Cover(cond(r))). By other words, Acc(r) expresses how
trustworthy is the rule is drawing the conclusion dec(r) for an object matching
the condition on the left-hand side of the rule.

Definition 11 (Coverage). Let r be a decision rule induced from a decision
table D = (U, A, d). The coverage of r, denoted as Cov(r), is defined as

Cov(r) =
Supp(r)

|Cover(dec(r))| .

The coverage of a rule corresponds to the conditional probability Pr(o ∈
Cover(cond(r)) | o ∈ Cover(dec(r))). Hence, Cov(r) quantifies how well the
rule left-hand side, cond(r), describes the set of objects covered by its right-
hand side, dec(r).

Reducts. The derived decision table shown in example 2 contains nearly the
same information as in table 1. However in the derived table, if Lenses’(E) =
{0, 1}, for some indiscernibility class E, then we cannot know how many objects
in E have outcome 0 for decision attribute Lenses and how many have outcome
1. To overcome this problem, we define a family of functions. Let D = (U, A, d)
be a decision table and Vd = {v1, . . . , vn}. We have then that, for each indis-
cernibility class E ∈ R∗

A,

λi
D(
−→
EA) = |{o ∈ E | d(o) = vi}| ,

with 1 ≤ i ≤ n. Moreover, card(
−→
EA) = |E| =

∑
1≤i≤n λi

D(
−→
EA), i.e. card(

−→
EA)

denotes the number of objects in the indiscernibility class described by tuple−→
EA. Function card can be extended to a set of tuples T .

card(T ) =
∑
t∈T

card(t) .

Let (U, RB1) and (U, RB2) be two approximation spaces. We now define those
objects of the universe for which knowing the values of attributes B1 is sufficient
for determining the values of attributes B2, denoted as PosB1(B2).

PosB1(B2) =
⋃

X∈R∗
B2

X ,

where X is the lower approximation of X in the approximation space (U, RB1).
An interesting numerical measure associated with a decision table is the

degree of functional dependency [25,26] between two subsets of attributes of the
table.
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Definition 12. Let D = (U, A, d) be a decision table and B1, B2 ⊆ A ∪ {d}.
The degree of functional dependency in the relationship between attribute sets
B1 and B2, denoted as κ(B1, B2), is defined as

κ(B1, B2) =
card(PosB1(B2))

|U | .

Function κ(B1, B2) can be understood as the proportion of objects of the
universe U for which knowing the values of attributes B1 is enough to determine
the values of attributes B2. Obviously, 0 ≤ κ(B1, B2) ≤ 1. If κ(B1, B2) = 1 then
functional dependency B1 → B2 exists in the table and it can be easily shown
that RB1 ⊆ RB2 (i.e. the partition generated by attributes B1 is finer than the
partition generated by B2). If κ(B1, B2) = 0 then no values of attributes B2 can
be determined by values of attributes B1. If 0 < κ(B1, B2) < 1 then the values
of attributes B2 can be determined by values of attributes B1, only for some
objects (but not all).

Example 9. Consider decision tables of example 1 and 2. For the first table,

κ({Ast, Age, TearP, Spec}, {Lenses}) ( 0.72

indicating that the decision attribute is not functionally determined by the condi-
tion attributes. For the second table κ({Ast, Age, TearP, Spec}, {Lenses’}) = 1.
Hence, we can conclude that the functional dependency

{Ast, Age, TearP, Spec} → {Lenses’}

holds for this table. �

If we consider decision table 2, we can conclude that

κ({Age, TearP}, {Lenses’}) = 1 .

Hence, we only need condition attributes Age and TearP in order to be able to
determine the decision class of an object, i.e. to determine Lenses’(Ei) (1 ≤
i ≤ 8). This makes possible savings in the amount of information that needs to
be represented and it may also lead to a table where regularities are more easy
to find. Relative reducts formalize this idea.

Definition 13. Let A and B be two sets of attributes. A relative reduct of
A with respect to κ(A, B), denoted as red(A, B), is a subset of A having the
following properties.

(1) κ(A, B) = κ(red(A, B), B).
(2) For all a ∈ red(A, B),

κ(red(A, B) \ {a}, B) �= κ(A, B) ,

i.e. red(A, B) is a minimal subset of A satisfying (1).
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From a practical point of view, we are often interested in discovering relative
reducts with respect to κ(A, {d}), for a decision table D = (U, A, d).

A single relative reduct can be computed in linear time. However, computing
all relative reducts or a minimal reduct is NP-hard. Most of the algorithms
for determining all reducts are based on a decision-relative discernibility matrix
[25,28].

In section 2.3, we have presented an algorithm to compute a set S of (min-
imal) decision rules forming a discriminating description for a given decision
class Dv. This algorithm is based on a covering approach since Dv = Cover(S)
or Dv = Cover(S). A set of non-deterministic rules is obtained in the former
case, while only deterministic rules are computed for the latter. However, rules
can be computed in a different way: find first relative reducts and then create
decision rules by overlaying the reducts over objects in the table. We illustrate
this second approach with the next example.

Example 10. Consider decision table 2. A relative reduct of {Ast, Age, TearP,
Spec}, with respect to κ({Ast, Age, TearP, Spec}, Lenses’), is {Age, TearP}. The
following decision rules would then be obtained

(Age = 0) ∧ (TearP = 1) −→ (Lenses = 0) ,
(Age = 0) ∧ (TearP = 2) −→ (Lenses = 0) ∨ (Lenses = 1) ,
(Age = 1) ∧ (TearP = 1) −→ (Lenses = 0) ,
(Age = 2) ∧ (TearP = 1) −→ (Lenses = 1) ,
(Age = 2) ∧ (TearP = 2) −→ (Lenses = 1) .

Notice that the above decision rules are not minimal. For instance, (Age = 2) is
a value reduct of the last two rules above. �

It is also possible to use approximations of a relative reduct red(A, B), with
respect to κ(A, B). These approximations are subsets of A that “almost” pre-
serve the same capability as the attribute set A in determining the values of
attributes B. An advantage of using approximations of reducts is that decision
rules synthesized from them are less sensitive to noise in the data and, therefore,
the quality of classification of new objects tends to increase. We briefly mention
two approaches: dynamic reducts [31] and s-reducts [28].

Let D = (U, A, d) be a decison table and red(A, B) be a relative reduct,
with respect to κ(A, B), where B ⊆ A ∪ {d}. A dynamic reduct is a subset of A
appearing “sufficiently often” as a relative reduct in random sample subtables
obtained from D. Notice that “sufficiently often” should be understood as a
parameter that is tuned according to the data in the table.

We can measure how the dropping of a number of attributes from attribute
set A1 changes the coefficient κ(A1, B). Let A2 ⊆ A1.

α(A1,B)(A2) = 1− κ(A2, B)
κ(A1, B)

.

It is worth noting that if A2 is the minimal subset of A1 such that κ(A1, B) =
κ(A2, B) (i.e. A2 is a relative reduct of A1 with respect to κ(A1, B)) then
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α(A1,B)(A2) = 0. The attribute set A2 is an s-reduct if α(A1,B)(A2) is not larger
than a given threshold called error level. This error level should be tuned for the
table being considered.

2.5 Prediction

In sections 2.3 and 2.4, we have introduced decision rules and gave an idea
about how they can be computed. These decision rules can then be used to make
predictions for unseen objects. For instance, the decision rules obtained from one
relative reduct form a classifier. Classifiers with better prediction capabilities are
usually obtained by combining rules obtained from several reducts.

Classifiers may be non-deterministic because

– the new object matches non-deterministic rules, or
– the object matches several (deterministic) rules that lead to different deci-

sions.

An obvious question is how to solve the problem of conflicting decisions. This
issue can be addressed by voting [25]. We describe below this strategy.

Without loss generality, we assume that a classifier only contains determin-
istic decision rules. A non-deterministic rule

(a1 = v1) ∧ . . . ∧ (an = vn) → (d = vd) ∨ (d = vd′)

can always be replaced by two deterministic rules,

(a1 = v1) ∧ . . . ∧ (an = vn) → (d = vd) and
(a1 = v1) ∧ . . . ∧ (an = vn) → (d = vd′) .

Let C be a classifier, i.e. a set of (deterministic) decision rules. Moreover,
RulC(o) denotes the set of decision rules of C that match object o and it is
formally defined as

RulC(o) = {r ∈ C | o ∈ Cover(r)} .

Voting Algorithm:
(1) If RulC(o) = ∅ then classification is not possible. Otherwise, proceed with

step (2).
(2) For each possible decision v ∈ Vd compute the number of votes casted by

each rule.
votes(v) =

∑
r∈RulC(o)

νv(r) ,

where

νv(r) =
{

0 if dec(r) �= v
Supp(r) otherwise

(3) Compute δ =
∑

v′∈Vd
votes(v′), i.e. the total number of casted votes.
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(4) For each possible decision v ∈ Vd compute the certainty factor

certainty(o, v) =
votes(v)

δ
.

(5) Output the decision with the largest certainty.

The voting algorithm described above can be modified in a number of ways.
For instance, the number of votes casted by each rule fired can be based on some
other measured instead of rules’s support.

2.6 The Variable Precision Rough Set Model

In section 2.2, we introduced the notions of concept approximations, lower and
upper approximations. These ideas have been further generalized by W. Ziarko,
see [13], who introduced the variable precision rough set model (VPRSM).

We start by discussing informally the VPRSM. Consider two parameters l
and u, called precision control parameters, such that 0 ≤ l < u ≤ 1. General-
ization of lower (upper) approximation and boundary region of a rough relation
can be obtained as follows. The lower approximation of a concept X (¬X) is
obtained from those indiscernibility classes E such that its degree of overlap-
ping with the set X (¬X) is larger or equal than u (1− l). Those indiscernibility
classes E such that their degree of overlapping with X is between l and u remain
in the boundary region. This technique can also be seen as a way to “thin” the
boundary region and it has the advantage of making concept approximations
less sensitive to possible noise contained in the data.

To formalize this idea, we need to introduce a function assigning to each
indiscernibility class E a measure of the degree of overlapping of set X with E.
This function corresponds to the conditional probability

Pr(o ∈ X | o ∈ E) =
|(X ∩E)|

|E| .

Let (U, RA) be an approximation space. Concept approximations can then
be defined as

X = {
−→
EA | E ∈ R∗

A and Pr(o ∈ X | o ∈ E) ≥ u} ,

¬X = {
−→
EA | E ∈ R∗

A and Pr(o ∈ X | o ∈ E) ≥ (1− l)} ,

X = {
−→
EA | E ∈ R∗

A and u < Pr(o ∈ X | o ∈ E) < l} .

It is worth to note that if u = 1 and l = 0 then the above definitions of lower
(upper) approximations and boundary are equivalent to the ones presented in
section 2.2.

Let X ⊆ U and Pr(X) = |X|
|U| . To obtain some gain in the predictive capa-

bility, it is required that u > Pr(X) and l < Pr(X). Requiring that u > Pr(X)
(l < Pr(X)) will enable us to predict that an object o ∈ X (o ∈ ¬X) more
accurately than random guess.
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3 Logic Programming Framework

This section surveys the logic programming concepts needed in the sequel and
it is self-contained. It gives to the reader the essential notions to understand the
compilation technique discussed in sections 4 and 6.

We start by introducing definite logic programs, in section 3.1, and then
present in section 3.2 a more general class of logic programs, called extended logic
programs. We also discuss the declarative semantics of extended logic programs
and queries.

3.1 The Main Idea: Definite Logic Programs

Logic programming [32,33,34,35] is a computational formalism that uses logic
(e.g. first-order logic) to express knowledge and inference to manipulate the
knowledge in order to be able to extract new knowledge.

In this work, the syntax of a logic program makes use of three disjoint al-
phabets: an alphabet of variable symbols V ar, an alphabet of constant sym-
bols Const, and an alphabet of predicate symbols Pred. Moreover, the set of
symbols {¬,not} � Pred. A term t is either a constant symbol or a variable,
i.e t ∈ V ar ∪ Const. To distinguish between constants and variable sym-
bols, we follow the usual convention: variables start with upper case letter (e.g.
X, Dist ∈ V ar), while using names beginning with lower case letters for con-
stants (e.g. small, c ∈ Const). An atom is an expression of the form p(t1, . . . , tn),
where p is an n-ary predicate symbol (p ∈ Pred) and each t1, . . . , tn is a term.
We write p/n, with n ≥ 0, to express that p is an n-ary predicate symbol. An
atom with zero arguments is simply written as p .

Intuitively, predicates denote n-ary relations and atoms can be seen as state-
ments saying that an n-ary tuple belongs to an n-ary relation. For instance,
the atom office(xana, spetsen, 7) expresses that xana’s office is on 7th floor
of building spetsen, i.e. the tuple 〈xana, spetsen, 7〉 belongs to the relation
denoted by predicate office.

In the logic programming framework, knowledge is represented through
clauses.

Definition 14. A definite clause is an expression of the form

H :- A1, . . . , An. ,

where H and each Ai (0 ≤ i ≤ n) is an atom.

The left side of a (definite) clause (with respect to :-) is called the head and
the right side is designated as body of the clause. A fact is a clause with empty
body (i.e. n = 0), succinctly represented by H. . When no confusion arises, we
will refer to “clauses” instead of “definite clauses”.

Clauses can informally be understood as implications: if every atom in the
body is true then the head must also be true. Therefore, the comma symbol “,”
is interpreted as conjunction.
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Example 11. We give an example of a definite clause and a fact.

(1) fly(tom) :- bird(tom). “If tom is a bird then tom flies.
(2) bird(tom). “Tom is a bird.” �

The order by which atoms appear in the body of a clause is irrelevant. Thus,
both clauses fly(tom) :- bird(tom), healthy(tom). and fly(tom) :-
healthy(tom), bird(tom). have the same meaning.

If no variables occur in the atoms of a clause (atom), then the clause (atom)
is ground. For instance, clause (1) of the example above is ground.

Definition 15. Let X1,. . ., Xn be variables occurring in some atom q(t1,. . ., tm),
with 1 ≤ n ≤ m. A grounding substitution θ is a set of bindings

θ = {X1/c1, . . . , Xn/cn}

(including the empty set) of variables Xi (1 ≤ i ≤ n) to constants ci ∈ Const.

A substitution θ = {X1/c1, . . . , Xn/cn} can be applied to a clause C (atom
A), written as Cθ (Aθ), and it represents the clause (atom) obtained from C
(A) by substituting each variable Xi for ci (1 ≤ i ≤ n). For instance, if θ =
{X1/c1, X2/c2} then p(X1, X2)θ is the atom p(c1, c2). We can also say that
variable X1 (X2) is instantiated with constant c1 (c2).

A ground instance of a clause C is obtained by applying a grounding sub-
stitution θ to clause C and Cθ is ground. A non-ground clause stands for all its
ground instances. Therefore, variables are implicitly universally quantified.

Example 12. We give an example of a non-ground definite clause.

(3) fly(X) :- bird(X). “All birds fly”.

More formally, clause (3) represents the following implication

∀X(bird(X) ⇒ flies(X)) .

Clause (1), in example 11, can be obtained by applying substitution {X/tom}
to clause (3). �

Definition 16. A definite logic program is a set of definite clauses.

Given a definite logic program P , ground(P) represents the set of all ground
instances of any clause C ∈ P . This notation will also be used for sequence of
atoms A1, . . . , An (n ≥ 1), i.e. ground(A1, . . . , An).

Example 13. Consider the following definite logic program.

P = {fly(X) :- bird(X). ,
bird(piu). ,
bird(tom).}.
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Note that for this logic program, Const = {piu, tom}. The non-ground clause
fly(X) :- bird(X). stands for the two ground clauses below, corresponding to
its ground instances.

fly(piu) :- bird(piu). fly(tom) :- bird(tom).

The atom fly(piu) is a ground atom, whereas fly(X) is not. We can also
say that the atom fly(piu) is a ground instance of fly(X) (i.e. fly(piu) ∈
ground(fly(X)) ). �

An interesting aspect of the logic programming framework is the possibility to
query the knowledge encoded in logic programs. By querying a logic program one
may retrieve interesting non-trivial knowledge. For instance, given the program
of example 13, we may ask whether tom flies or which birds fly. In the former
case, we expect to obtain a positive answer. In the latter case, we should get
as answer tom and piu. This point is particularly relevant for the operational
semantic (i.e. implementation) of the query languages proposed in later sections.

We discuss in more detail queries in next section. However, we first introduce
a more general class of logic programs that includes definite logic programs.

3.2 Extended Logic Programs

Extended Logic Programming (ELP) is the target language of the transforma-
tions discussed in section 4, and we resort only to the disjunctive free fragment
of the languages described in [36,37], generalizing Answer Set Semantics [38] to
the paraconsistent case.

In contrast to ELP, it is not possible to represent negative information in a
definite logic program. The main distinctive feature of ELP is that it allows to
express two forms of negation, explicit and default, allowing both open-world and
closed-world reasoning. Explicit negation describes negative evidence, e.g. “Tom
does not fly.”, while default negation allows reasoning with lack of information,
e.g. “There is no evidence that tom flies.”.

The language in which extended logic programs are expressed is also based
in an alphabet of variable, constant, and predicate symbols, i.e. V ar ∪ Const ∪
Pred. Let At denote the set of all atoms built with alphabet symbols. An objec-
tive literal L is either an atom A ∈ At or its explicit negation ¬A. The set of all
objective literals is OLit = At∪¬At, where ¬At = {¬A : A ∈ At}. The default
negation of a literal L is represented by not L, also called default negated literal.
A literal is either an objective literal L or its default negation not L, and the set
of all literals is

Lit = OLit ∪ not OLit = {A,¬A,not A,not ¬A : A ∈ At} .

Intuitively, an objective literal represents a (positive or negative) evidence,
while the default negated literal represents lack of (respectively, positive or neg-
ative) evidence. This makes it possible, for example, to represent differently the
information that a flight departed without delay obtained from the flight control,
from lack of the delay announcement.
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Similar to definite logic programs, knowledge is encoded as sets of clauses in
ELP. However, clauses of an extended logic program may include explicit and
default negation.

Definition 17. A clause is an expression

L0:- L1, . . . , Lm,not Lm+1, . . . ,not Ln.

where each Li is an objective literal and 0 ≤ m ≤ n.

An integrity constraint has the form

:- L1, . . . , Lm,not Lm+1, . . . ,not Ln. ,

with n ≥ m ≥ 1 and it can be seen as a clause with the head being the atom
false (or ⊥) representing falsehood. For instance, the integrity constraint

:- human(X), male(X), female(X).

expresses that no human can be male and female, simultaneously.

Definition 18. An extended logic program is a finite set of clauses and in-
tegrity constraints.

The notions of ground atom previously introduced can be easily extended to
literals and sequences of literals. Moreover, the definitions of ground program
and substitution presented for definite logic programs apply also to extended
logic programs.

Example 14. Assume that the following clauses belong to the extended logic
program P .

“Someone is guilty if he is guilty”
(1) guilty(X) :- guilty(X).

“Someone is innocent if we cannot prove he is guilty.”
(2) innocent(X) :- not guilty(X).

“Someone is not guilty if he is innocent.”
(3) ¬guilty(X) :- innocent(X).

“A person is a male if we cannot prove he is a female.”
(4) male(X) :- person(X), not female(X).

“A person is a female if we cannot prove she is a male.”
(5) female(X) :- person(X), not male(X).

“A person cannot be guilty and non-guilty, simultaneously.”
(6) :- person(X), guilty(X), ¬guilty(X).

“Tommy is a person.”
(7) person(tommy)

Clauses (4) and (5) together express the idea that a person must be either a
male or a female. �
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Declarative Semantics of Extended Logic Programs The declarative se-
mantics of a program captures its meaning. The declarative semantics of (ex-
tended) logic programs is based on the notion of interpretation. An interpretation
is simply a subset of the ground objective literals, also known as the extended
Herbrand base.

Definition 19. An interpretation I of an extended logic program P is any sub-
set of ground(OLit) = ground(At) ∪ ¬ground(At).

As usual, an interpretation settles the set of true literals. If L ∈ I then the
objective literal L has the truth value true, and if L �∈ I then the objective
literal L is false. Clearly, if an objective literal L is false then not L is true.

An interpretation induces the following consequence relation:

I |= L if an only if L ∈ I ,
I |= not L if and only if L �∈ I ,
I |= L1, . . . , Ln if and only if I |= L1 and . . . and I |= Ln ,

where L is an arbitrary ground objective literal and each Li (1 ≤ i ≤ n) is an
arbitrary ground literal.

Example 15. Consider the extended logic program P of example 14. A possible
interpretation for P is

I = {innocent(tommy),¬guilty(tommy), male(tommy), person(tommy)} .

In this interpretation the literals guilty(tommy), female(tommy),
not male(tommy) are false, i.e. I �|= guilty(tommy) , I �|= female(tommy) ,
I �|= not male(tommy) . Obviously,

I |= ¬guilty(tommy),not female(tommy) . �

An interpretation I satisfies a program clause if the corresponding implica-
tion holds in I, and satisfies an integrity constraint if at least one literal in its
body is false. Next definition formalizes this idea.

Definition 20. A model MP of an extended logic program P is any inter-
pretation that satisfies every clause and integrity constraint of ground(P), i.e.
(0 ≤ m ≤ n)

1. For every L0:- L1, . . . , Lm,not Lm+1, . . . ,not Ln ∈ ground(P),
if I |= L1, . . . , Lm,not Lm+1, . . . ,not Ln then I |= L0.

2. For every :- L1, . . . , Lm,not Lm+1, . . . ,not Ln ∈ ground(P), then
I �|= L1, . . . , Lm,not Lm+1, . . . ,not Ln.

For instance, the interpretation I in example 15 is also a model of the program.
Intuitively, an integrity constraint discards all model candidates that make every
literal in its body true.
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An extended logic program may have zero, one, or more models. Moreover,
set inclusion is a partial order for the set of models of an extended logic program.
Since we want to consider only the models such that each objective literal can be
justified by some evidence in the program, only (some of) the minimal models are
of interest. To capture formally this intuition, we need to recall an important
property of definite logic programs (theorem 1) and introduce the notion of
reduct 3 of an extended logic program [39].

Note that an extended logic program may have several minimal models while
a definite logic program has always a least model (unique minimal model).

Theorem 1 ([32]). Let P be a definite logic program. Then, P has a least
model.

Definition 21 ([39]). Let P be an extended logic program and I an interpre-
tation. The reduct of P with respect to I is the definite logic program ψI(P)
such that L0:- L1, . . . , Lm. ∈ ψI(P) if and only if there is a program clause
of the form L0:- L1, . . . , Lm,not Lm+1, . . . ,not Ln. ∈ ground(P) such that
I |= not Lm+1, . . . ,not Ln , where 0 ≤ n ≤ m.

It should be stressed that ψI(P) is always a definite logic program. Hence
by theorem 1, it must have a least model.

Definition 22. Let P be an extended logic program. An interpretation I is a
paraconsistent stable model of P if and only I is the least model of ψI(P) and
I satisfies all integrity constraints of P.

The semantics of extended logic programs is captured by those minimal mod-
els that are also paraconsistent stable models. The semantics is paraconsistent
because a piece of information and its explicit negation can simultaneously hold.
Note that an extended logic program may have no paraconsistent stable mod-
els, although it can have several minimal models. Intuitively, these programs
are meaningless. The paraconsistent stable model semantics coincides with the
stable model semantics [39,40,41] whenever explicit negated literals do not occur
in the program.

Example 16. Consider once more the extended logic program P of example 14
and assume that P1 = P ∪ {:- female(X).}. Although,

I1 = {innocent(tommy),¬guilty(tommy),
female(tommy), person(tommy)}

is a model of P , it cannot be a model of P1 because the new integrity constraint
rejects those interpretations containing any ground instance of literal female(X).

The following interpretations

M1 = {guilty(tommy), male(tommy), person(tommy)} and
M2 = {innocent(tommy),¬guilty(tommy),

male(tommy), person(tommy)}
3 Reduct of a logic program and reduct of a decision table (commonly used in the

rough set framework) are two independent notions.
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are minimal models of P1. However, only M2 is a paraconsistent stable model,
whereas M1 is not.

Intuitively, the reason for M1 not being a paraconsistent stable model is
that guilty(tommy) is a justification to itself (see clause (1) of example 14).
However, we can justify having innocent(tommy) in M2 because there is no
evidence that guilty(tommy) is true (i.e. not guilty(tommy) is true) and then,
by clause (2), we must have that innocent(tommy) is true.

Formally, taking definition 22, the reduct of P1 with respect to M1 is the
definite logic program ϕM1(P1) consisting of the following clauses.

guilty(tommy) :- guilty(tommy).
¬guilty(tommy) :- innocent(tommy).
male(tommy) :- person(tommy).
person(tommy).

The least model of ϕM1(P1) is M = {male(tommy), person(tommy)}. Since
M1 �= M, we conclude that M1 is not a paraconsistent stable model. It can be
easily checked that M2 is in this case a paraconsistent stable model. �

We introduce now the notion of a ground literal l to be implied by an extended
logic program P , denoted as P |= l.

Definition 23. Let P be an extended logic program and L be a ground literal.
There is a paraconsistent stable model M of P such that M |= L if and only if
P |= L.

We conclude this section with a final remark. The semantics presented in this
section is non-monotonic because by adding a new statement to a program the
set of literals implied by the program may decrease. For instance consider again
the program of example 14. If the fact guilty(tommy). would be added to P
then P �|=innocent(tommy).

Queries As we mentioned in the end of the section 3.1, one of the main aims
of the ELP framework is to extract information from extended logic programs
by querying them. Let us introduce the notion of query.

Definition 24. A query is a pair (L1, . . . , Ln , P), with n ≥ 1, where P is an
extended logic program and each Li is a literal.

We need now to define the notion of answer.

Definition 25. Let (Q, P) be a query. An answer to the query is the set of
ground substitutions

{θ | Qθ ∈ ground(Q) and M |= Qθ} ,

for some paraconsistent stable model M of P.

Example 17. Consider the extended logic program P of example 14 and the
queries
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(innocent(X), P) “Who is innocent?”
(guilty(tommy), P) “Is Tommy guilty?”

The answer to the first query is {{X/tommy}}, since innocent(tommy) belongs
to a paraconsistent stable model of P (see M2 in example 16). However, the
answer to the second question is ∅ because the literal guilty(tommy) does not
belong to any paraconsistent stable model of P . �

Finally, we refer that Smodels [42,43] and dlv [44,45] are currently available
systems for computing stable models of programs (often with tens of thousands
of clauses). Both systems can also handle integrity constraints, and can be used in
practice to determine paraconsistent stable models of extended logic programs.
Moreover, any standard Prolog system [46] can be used to compute answers to
queries (Q, P), when P is a definite logic program.

4 A Language for Defining Rough Relations

This section presents a new language [19,21] for defining and querying rough
relations, based on logic programming.

The main intuitive idea underlying this language is as follows. A rough rela-
tion S divides the universe in four regions: those examples that definitely belong
to the concept represented by S (to be denoted S); those examples that def-
initely do not belong to the concept (to be denoted ¬S), those examples for
which there is contradictory evidence (to be denoted S); and those examples for
which there is not any information of whether they belong to the concept (i.e.
the remaining part of the universe not contained in S ∪ ¬S ∪ S). Using clauses
we can then combine regions of different rough relations to define implicitly a
new rough relation. The language introduced in this section does not take into
account quantitative measures. This extension is discussed in section 6.

The declarative semantics of the language (discussed in section 4.2) associates
a rough set S with each predicate symbol s of the language. Hence, we give
indirectly a four-valued interpretation to each predicate: if tuple t ∈ S then s(t)
has the logic value true; if tuple t ∈ ¬S then s(t) has the logic value false; if
tuple t ∈ S then s(t) has the logic value ! (denoting contradictory evidence);
otherwise, s(t) has the logic value ⊥ (denoting lack of information). Four-valued
logics have been studied by other authors, of which the most well-known is
Belnap’s four-valued logic [47,48]. However, statements in our language make
explicit reference to one of the three regions of a rough set (lower approximation,
upper approximation, or boundary region) or the remaining part of the world
not belonging to any of these three regions. In other words, the statements
contain explicit tests of whether a tuple t belongs to one of those four regions (as
shown in the next section, predicate symbols can only occur in rough or testing
literals). Since each of those four regions is a crisp set, we do not need to resort
to four-valued logical operations (e.g. disjunction). We use instead two-valued
logic. The main advantage of using two-valued semantics is that there are several
systems [46,43] readily available that can be used for making computations and
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answering queries. This aspect is particularly relevant from the point of view of
implementing a system that can answer queries about knowledge bases encoded
in our language. Formulating a language with a four-valued semantics that caters
for representing and reasoning with rough concepts is out of the scope of this
thesis, although this could be an issue for future work.

Section 4.1 introduces the language and its declarative semantics is then
formalized in section 4.2. A transformation of the proposed language into the
language of extended logic programs and a proof of its correctness is presented
in section 4.3. Finally, section 4.4 puts forward a query language to extract
information from rough relations defined in a program.

4.1 The Syntax

The language we are going to introduce uses three disjoint alphabets: an alpha-
bet of variable symbols V ar, an alphabet of constant symbols Const, and an
alphabet of predicate symbols Pred. The notions of term and atom are similar
to the ones introduced for logic programs. A term t is any symbol belonging
to V ar ∪ Const. We follow the usual convention that variables start with up-
per case letter (e.g. X, Dist ∈ V ar) and constants begin with lower case (e.g.
small, c ∈ Const). Moreover, an n-ary predicate p is often denoted p/n ∈ Pred
and the set of symbols {¬,not} � Pred. An atom A is an expression of the form
p(t1, . . . , tn), where p is an n-ary predicate symbol and each t1, . . . , tn is a term.

Given a predicate p/n of arity n > 0, formulas of the form l(t1, . . . , tn),
l(t1, . . . , tn) , or l(t1, . . . , tn) , where l is either p or ¬p, are called rough literals.
Moreover, the expression p?(t1, . . . , tn) represents a testing literal.

Definition 26. A rough clause is any expression of the form

H:- B1, . . . , Bn, T1, . . . , Tm.

where H and every Bi (0 ≤ i ≤ n) is a rough literal, and each Tj (0 ≤ j ≤ m)
is a testing literal such that all variables occurring in a testing literal also occur
in some Bi.

Rough clauses with an empty body (i.e. n = 0 and m = 0) are called rough
facts.

The order by which rough (testing) literals occur in a rough clause is irrele-
vant. Thus, both rough clauses

p(X, Y ):- q1(X, Y ),¬q2(X, Y ), r1?(X), r2?(Y ).

p(X, Y ):- ¬q2(X, Y ), q1(X, Y ), r2?(X), r1?(Y ).

have the same meaning.
We can now define the notion of rough program.

Definition 27. A rough program P is a finite set of rough clauses.
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Intuitively, each predicate p denotes a rough relation P and we use rough literals
to represent evidence about tuples. The lower (upper) approximation of P is
represented by p(t1, . . . , tn) (p(t1, . . . , tn)). The boundary of P is denoted by
p(t1, . . . , tn). Obviously, the rough literals
p(t1, . . . , tn) and ¬p(t1, . . . , tn) have the same meaning. For instance, the rough
facts4

recommendLenses(young, myope, yes).

and
¬recommendLenses(young, myope, yes).

express the information that the tuple 〈young, myope, yes〉 belongs to both
RecommendLenses and to ¬RecommendLenses (thus, to the boundary of
RecommendLenses). Informally, the first fact states that young myope people
with astigmatism should use contact lenses while the second asserts exactly the
opposite (perhaps, because different opticians have different opinions for these
customers). The rough fact

recommendLenses(young, myope, no).

states that the tuple 〈young, myope, no〉 is a positive example of rough relation
RecommendLensesbut cannot be a negative example of it (i.e. 〈young, myope, no〉
∈ RecommendLenses). Notice that rough literals of the form ¬p(t1, . . . , tn) or
¬p(t1, . . . , tn) express negative evidence.

A testing literal p?(t1, . . . , tn) asserts that there is no information whether
tuple 〈t1, . . . , tn〉 describes a positive and/or a negative example of the concept
represented by rough relation P .

A decision table D = (U, A, d) can be easily represented in our language,
if quantitative measures are ignored. A row 〈c1, . . . , cn〉 of D corresponding to
a positive (negative) example, where each ci ∈ Vai is the value of a condition
attribute ai ∈ A, is represented as the fact d(c1, . . . , cn) (¬d(c1, . . . , cn)). An
important aspect to bear in mind is that the proposed language does not rep-
resent the individuals in U . Rough relations are represented as sets of tuples of
attribute values, not as sets of individuals.

We stress that condition attributes are not referred by their name (e.g. Age)
in the rough literals. They are instead identified by their position in the argu-
ment list of the rough literal. For instance, we use the convention that the first
argument of the predicate recommendLenses represents the condition attribute
Age. The condition attribute associated with a term ti in a rough literal

q(t1, . . . , tn) or ¬q(t1, . . . , tn) or
q(t1, . . . , tn) or ¬q(t1, . . . , tn) or
q(t1, . . . , tn) or ¬q(t1, . . . , tn),

is represented as attQ(i). Each term ti can only represent values belonging to
VattQ(i).

4 The third condition attribute refers to whether the person suffers from astigmatism.
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A rough clause represents an implication, as in the context of logic programs.
The use of variables in a rough literal of a rough clause indicate that the under-
lying implication is valid for each possible value of the corresponding condition
attribute. Since rough clauses allow lower and upper approximations of a relation
as well as boundaries to occur both in the body and in the head of a clause, it
is possible to define separately each of the regions (i.e. lower and upper approx-
imations and boundary) of a rough relation in terms of regions of other rough
relations. For instance, we can state that the boundary of a rough relation Q is
contained in the lower approximation of another rough relation P . If predicates
q/3 and p/3 denote the rough relations Q and P , respectively, then the rough
clause

p(X1, X2, X3):- q(X1, X2, X3).

captures such information.
Given a rough relation P with n attributes, an n-ary tuple t is undefined

with respect to P if and only if t is neither a positive nor a negative example of
the relation, i.e.

〈t1, . . . , tn〉 �∈ P and 〈t1, . . . , tn〉 �∈ ¬P ,

where each ti ∈ VattP (i). We can test in the body of a rough clause whether
a tuple 〈t1, . . . , tn〉 is undefined with respect to P , by using the testing literal
p?(t1, . . . , tn).

The following rough clause

p(X1, X2, X3):- q(X1, X2, X3), r?(X1, X2, X3).

asserts that if a tuple t ∈ Q and and t is undefined with respect to R (i.e. there
is no information whether t describes a positive or a negative example of the
concept represented by rough relation R) then t also belongs to P .

The following two examples motivate the potential usefulness of our language.
More examples are presented in the next section.

Example 18. A relation Train has two arguments (condition attributes) rep-
resenting time and location, respectively. Two (or more) sensors automatically
detect presence/absence of an approaching train at a crossing, producing facts
like train(12:50,montijo). automatically added to the knowledge base. A
malfunction of a sensor may result in the contradictory fact ¬train(12:50,
montijo). being added, too. Crossing is allowed if for sure no train approaches.
This can be described by the following clause involving lower approximation in
the body.

cross(X,Y) :- ¬train(X,Y). �

Example 19. Statistical data on purchases of certain product during a calendar
year is organized as a decision table with the following 3 condition attributes
defining groups of customers:
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Area - zip code of the area where the customer lives
Income - customer’s income interval
Age - customer’s age interval

Notice that the decision table may define a rough relation: a young customer
living in Norrköping and having medium income may be considered inactive
(perhaps, because he has not bought any product item during last year) while
another young customer, also living in Norrköping and with medium income is
classified as active.

The marketing department uses the activity tables act1 and act2 from two
consecutive years to identify the groups of growing activity (ga). The tables
are represented as rough facts in our language. The activity of a group may
be defined: (1) as definitely growing, if the group was possibly inactive in year
1 and definitely active in year 2; (2) as definitely non growing, if its activity
changed from possibly active to definitely inactive; and (3) as a boundary, if the
activity was boundary in both years. This can be described by the following
rough clauses.

(1) ga(Area, Inc, Age) :- ¬act1(Area, Inc, Age),
act2(Area, Inc, Age).

(2) ¬ga(Area, Inc, Age) :- act1(Area, Inc, Age),
¬act2(Area, Inc, Age).

(3) ga(Area, Inc, Age) :- act1(Area, Inc, Age),
act2(Area, Inc, Age). �

The language described in this section extends substantially the language
presented in [17,18]. The language discussed in this previous work only allows
the use of upper approximations in the definition of new rough relations.

4.2 The Declarative Semantics

The main idea underlying the proposed language is that each predicate symbol
occurring in a rough program denotes a rough relation. We formalize this idea
in this section.

Definition 28. Let P be a rough program. A rough interpretation I of P is a
function mapping each predicate symbol q/n occurring in P into a rough relation
QI = (QI ,¬QI) such that QI ,¬QI ⊆

∏
1≤i≤n VattQ(i).

If no variables occur in a rough (testing) literal then the rough (testing)
literal is called a ground rough (testing) literal. A rough clause is ground, if all
rough and testing literals occurring in it are also ground.

The notion of a rough literal L being true in a rough interpretation I, denoted
as I |= L, is defined by statements (1)− (8) below.

(1) I |= q(c1, . . . , cn) ⇔ 〈c1, . . . , cn〉 ∈ QI .
(2) I |= q(c1, . . . , cn) ⇔ (〈c1, . . . , cn〉 ∈ QI and 〈c1, . . . , cn〉 �∈ ¬QI).



A Framework for Reasoning with Rough Sets 211

(3) I |= q(c1, . . . , cn) ⇔ (〈c1, . . . , cn〉 ∈ QI and 〈c1, . . . , cn〉 ∈ ¬QI).
(4) I |= ¬q(c1, . . . , cn) ⇔ 〈c1, . . . , cn〉 ∈ ¬QI .
(5) I |= ¬q(c1, . . . , cn) ⇔ (〈c1, . . . , cn〉 ∈ ¬QI and 〈c1, . . . , cn〉 �∈ QI).
(6) I |= ¬q(c1, . . . , cn) ⇔ (〈c1, . . . , cn〉 ∈ QI and 〈c1, . . . , cn〉 ∈ ¬QI).
(7) I |= q?(c1, . . . , cn) ⇔ (〈c1, . . . , cn〉 �∈ QI and 〈c1, . . . , cn〉 �∈ ¬QI).
(8) I |= B1, · · · , Bn, T1, · · · , Tm ⇔ (I |= B1, · · · , I |= Bn,

I |= T1, · · · , I |= Tm), where each Bi (0 ≤ i ≤ n) is a ground rough literal
and each Tj (0 ≤ j ≤ m) is a ground testing literal.

Note that for any rough interpretation I, it is possible that

I |= q(t1, . . . , tn),¬q(t1, . . . , tn) ,

for two rough literals q(t1, . . . , tn) and ¬q(t1, . . . , tn). However, if we consider
lower approximations instead then we must have

I �|= q(t1, . . . , tn),¬q(t1, . . . , tn) .

Consider a rough literal l(t1, . . . , tn), with 1 ≤ n and l is either q, or q, or q,
or ¬q, or ¬q, or ¬q, for some predicate q/n. Recall that each term ti is associated
with a condition attribute of rough relation Q whose value domain is VattQ(i).

Definition 29. Let X1j , . . . , Xnk (1 ≤ n and 1 ≤ j ≤ k) be variables occurring
in some rough literal, where the second index indicates the variable’s position
in the argument list of the literal. Assume also that q is the predicate symbol
occurring in the rough literal. A grounding substitution θ is a set of bindings
{X1j/c1, . . . , Xnk/cn} (including the empty set) of variables Xim (1 ≤ i ≤ n and
j ≤ m ≤ k) to constants ci ∈ VattQ(m).

The notion of ground rough program is similar to the notion of ground (ex-
tended) logic program, presented previously. A ground instance of a rough clause
C, denoted by Cθ, is obtained by applying a grounding substitution θ to rough
clause C and Cθ is ground. Given a rough program P , ground(P) represents the
set of all ground instances of any rough clause C ∈ P .

A rough interpretation I of a rough program P satisfies a rough clause

H:- B1, . . . , Bn, T1, . . . , Tm. ∈ ground(P)

if and only if

• if I |= B1, . . . , Bn, T1, . . . , Tm then I |= H .

Definition 30. A model of a rough program P is a rough interpretation that
satisfies each rough clause of ground(P).

A rough program may have several models or no models at all. For instance,
the rough program

P = {p(a):- q(b). ,¬p(a). , q(b).}

has no models. Example 20 below shows a rough program with more than one
model.
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We turn now to the definition of a partial order between the models of a
rough program.

Definition 31. Let M1 and M2 be two models of a rough program P. M1 #
M2 if and only if

QM1 ⊆ QM2 and ¬QM1 ⊆ ¬QM2 ,

for every predicate symbol q/n occurring in P.

Based on the partial order # defined above, we introduce the notion of min-
imal models.

Definition 32. A model M is a minimal model of a rough program P if and
only if M′ � M, for every other model M′ of P.

We give next an example illustrating a situation where a rough program has
more than one model.

Example 20. Consider that we want to represent some expert knowledge saying
that

”If someone possibly has an infection but his temperature is normal, then
he either might suffer from diseaseA or from diseaseB (but never from
both).”

Moreover, two decision tables are given. Based on the existence of certain
symptoms and results of some clinical tests, several experts decide independently
whether a patient has diseaseA or diseaseB. Symptoms and clinical test results
form the condition attributes. For instance, a condition attribute is temperature
that can have the values low, normal, or high.

The expert knowledge can be represented as follows. Assume that predicates
diseaseA and diseaseB have arity three (i.e. the corresponding decision tables
have three condition attributes).

diseaseA(infect, normal, Z) :- ¬diseaseB(infect, normal, Z).

diseaseB(infect, normal, Z) :- ¬diseaseA(infect, normal, Z).

Note that rough relations DiseaseA and DiseaseB, denoted by predicates
diseaseA and diseaseB respectively, are partially defined explicitly by decision
tables. Some other tuples belonging to these relations are obtained from the
clauses above. In reality experts may decide in different ways whether a person
may have a certain disease.

Consider the rough program P consisting of the two clauses above and in-
cluding also the following facts obtained from the decision tables.

¬diseaseA(infect, normal, c). ¬diseaseB(infect, normal, c).

Program P has (at least) two models, M1 and M2, reflecting two possible
situations according to the available knowledge.
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– 〈infect, normal, c〉 ∈ DiseaseAM1 and
〈infect, normal, c〉 ∈ ¬DiseaseBM1 .

– 〈infect, normal, c〉 ∈ DiseaseBM2 and
〈infect, normal, c〉 ∈ ¬DiseaseAM2 .

In practice it may be desirable to find preferred models or at least discard
some models seen as not relevant. This issue has been studied in the context
of logic programming and the proposed techniques may be applicable here. In
the context of rough sets, we could address this problem by extending to clauses
the quantitative measures associated with decision tables. In the example above,
model M1 is obtained by applying the first clause above, while model M2 is
obtained by applying the second clause. If the tuple 〈infect, normal, c〉 appears
as a negative example many more times in the decision table for diseaseB
than in the decision table for diseaseA then we may decide to discard the
second model. �

Let P be a rough program and q be a relation symbol occurring in P . We are
obviously not interested in any model M of P that makes more tuples to belong
to QM or to ¬QM than what is needed to satisfy the rough clauses of P . Thus,
minimal models (as defined in 32) seem good candidates to express the meaning
of a rough program. However, not all minimal models may properly capture the
semantics of a rough program. Next example tries to illustrate this point.

Example 21. Consider the following rough program

P = {r(c):- ¬r(c). ,¬r(c).} .

A minimal model M of P maps predicate r into the rough relation RM =
({〈c〉}, {〈c〉}) i.e. 〈c〉 belongs to the boundary of rough relation RM. However,
no information encoded in the rough clauses of P leads to the conclusion that
〈c〉 ∈ RM. In order to be able to conclude that 〈c〉 ∈ RM, it would be needed
that M |= ¬r(c). By rough clause

r(c):- ¬r(c). (1)

we could then conclude that 〈c〉 ∈ RM. However, M �|= ¬r(c). Hence, it seems
reasonable to reject model M. Note that a rough interpretation I such that
RI = (∅, {〈c〉}) is not a model of P because it does not satisfy rough clause (1).
Thus, P seems to bear a contradiction. Rough clause (1) informally states that if
there is evidence that 〈c〉 is only a negative example of the concept represented
by rough relation R (i.e. there is no evidence that 〈c〉 is a positive example
of the concept) then we can conclude that 〈c〉 is also a positive example of
that concept. �

Let I be a rough interpretation of a rough program P . In order to be able
to define the declarative semantics of a rough program, we need to introduce
the following function, ΨI , transforming P into a ground rough program ΨI(P)
such that neither lower approximations nor testing literals occur in the body
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of any of its rough clauses. This transformation can be informally described as
follows. Assume that C is a rough clause of ground(P). For every ground rough
literal q(t1, . . . , tn) referring to a lower approximation and occurring in the body
of C, if I �|= ¬q(t1, . . . , tn) then q(t1, . . . , tn) in the body of C is replaced by
q(t1, . . . , tn). Moreover, if a ground testing literal occurring in the body of C is
true in I, then it is removed from the body of the clause. The underlying idea
behind this transformation is that if I is a model of P then it should also be
a model of the transformed rough program. We give a simple example of this
transformation.

Example 22. Consider the following ground rough clause

p(a, b):- q(a, b), r?(b, c). ∈ ground(P)

and an interpretation I of P such that QI = ¬QI = RI = ¬RI = ∅. Since
I �|= ¬q(a, b) and I |= r?(b, c), we have that

p(a, b):- q(a, b). ∈ ΨI(P) . �

We present below the formal definition of function Ψ . This definition extends
the notion of reduct proposed in [39] to rough programs.

Consider that ¬¬q ≡ q, for any predicate symbol q.

Definition 33. Let P be a rough program and I be a rough interpretation of
P. Assume also that each lj (1 ≤ j ≤ k) in the expression below is either qi or
¬qi, for some predicate qi. Then ΨI(P) maps P into a ground rough program
satisfying the following condition (n, i, k ≥ 0 and m1, . . . , mk ≥ 0):

H:- B1, . . . , Bn, l1(t11, . . . t1m1), . . . , lk(tk1, . . . tkmk
). ∈ ΨI(P)

if and only if there is a rough clause

H:- B1, . . . , Bn,
l1(t11, . . . t1m1), . . . , lk(tk1, . . . tkmk

),
T1, . . . , Ti. ∈ ground(P)

such that
I �|= ¬l1(t11, . . . t1m1), . . . ,¬lk(tk1, . . . tkmk

) and
I |= T1, . . . , Ti ,

where each Bj (0 ≤ j ≤ n) is a rough literal not referring to a lower approxima-
tion and each Tl (0 ≤ l ≤ i) is a testing literal.

An important property of a rough program ΨI(P) is that it either has a least
model (a unique minimal model) or no model at all.

Lemma 1. Let P be a rough program and I be a rough interpretation of P. If
ΨI(P) has a model then it has a least model, with respect to partial relation #.
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Proof. Let us assume that ΨI(P) has a model. To prove that ΨI(P) has a least
model, we show that any rough interpretation M defined as below is also a
model of ΨI(P). Let V be any non-empty set of models of ΨI(P).

QM = (
⋂

M′∈V

QM′ ,
⋂

M′∈V

¬QM′) ,

for each rough relation Q.
Assume that H:- B. ∈ ΨI(P) and that M |= B. Then, W |= B, for every

W ∈ V . The key to understanding this point is that the body B can only contain
rough literals referring to upper approximations and to boundaries. Moreover,
upper approximations and boundaries can be seen as monotonic operators.

We conclude that W |= H , for every model W ∈ V , and consequently,
M |= H .

It is obvious that M# W , for all W ∈ V . �
The meaning of a rough program is captured by those minimal models that

satisfy the condition described in the following definition.

Definition 34. Let P be a rough program and min(P) be the set of minimal
models of P. The semantics of P, denoted as sem(P), is defined as

sem(P) = {M ∈ min(P) | M is the least model of ΨM(P)} .

Example 23. Consider a rough program P containing only the rough clauses and
facts of example 20. Then, sem(P) = {M1,M2}.

DiseaseAM1 = ({〈infect, normal, c〉}, {〈infect, normal, c〉}) ,
DiseaseBM1 = (∅, {〈infect, normal, c〉}) ,

DiseaseAM2 = (∅, {〈infect, normal, c〉})
DiseaseBM2 = ({〈infect, normal, c〉}, {〈infect, normal, c〉}) .

Note that ΨM1(P) has only the following rough clauses

diseaseA(infect, normal, c) :- ¬diseaseB(infect, normal, c).

¬diseaseA(infect, normal, c).

¬diseaseB(infect, normal, c).

It is easy to see that M1 (M2) is the least model of ΨM1(P) (ΨM2(P)). �

Different minimal models M ∈ sem(P) can be informally understood as
different alternative scenarios implied by the knowledge encoded in P .

Example 24. Consider again the rough program presented in example 21,

P = {r(c):- ¬r(c). ,¬r(c).} ,

and the minimal model M such that RM = ({〈c〉}, {〈c〉}). Note that ΨM(P) =
{¬r(c).}. Obviously, M is not the least model of ΨM(P). Hence, M �∈ sem(P).

We can easily see that sem(P) = ∅. �



216 A. Vitória

Finally, we introduce the notion of a rough (testing) literal l to be implied
by a rough program P , denoted as P |= l.

Definition 35. Let P be a rough program and l be a rough or testing literal.
There is a model M ∈ sem(P) such that M |= l if and only if P |= l.

4.3 Computing the Semantics of Rough Programs

In the previous section, we define the declarative semantics of a rough program
P as a subset of its minimal models. An obvious question is how such models,
belonging to sem(P), can be computed. This section addresses this problem.

Each rough program is compiled to an extended logic program. As we show
in section 4.3, each paraconsistent stable model, of the extended logic program
obtained by compiling a rough program P , is isomorphic to a model belonging to
sem(P), and vice-versa. The operational semantics of extended logic programs
is well studied [42,34] and there are several systems, like dlv [44,45] and Smodels
[49,43], that can be used to compute paraconsistent stable models of extended
logic programs.

Some rough programs have at most one model. Absence of recursion is a
sufficient condition for a rough program to have either a least model or no
models. These rough programs can be compiled to a non-recursive extended logic
program. Rough programs can be queried (queries are discussed in section 4.4).
Queries to a rough program are also transformed into queries to the compiled
program. Given a non-recursive extended logic program, any standard Prolog
system [46] can be used to determine whether this program has a paraconsistent
stable model and answer queries. Hence for non-recursive rough programs, we
could implement a system based on our ideas in Prolog. An easy way to verify
whether a rough program is recursive consists in checking whether the ground
compiled extended logic program is recursive.

We give below some examples of recursive and non-recursive rough programs.

Example 25. Consider the following rough programs.

P1 = {q(a, b):- r(a, b). , r(a, b):- q(a, b).} ,
P2 = {q(a, b):- r(a, b). , r(a, b):- q(c, b).} ,
P3 = {q(a, b):- ¬q(a, b).} .

Rough program P1 is recursive while rough programs P2 and P3 are not. �

Generally speaking, the application problems discussed in rough set litera-
ture that can be formulated in our language do not seem to require recursive
rough programs and, therefore, they are not compiled to recursive extended logic
programs. Some of these applications are discussed in the next section. More-
over, we have also implemented in Prolog a system that is able to reason about
rough relations defined in a non-recursive rough program. This system is the
topic of section 6.
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Compiling Rough Programs into Extended Logic Programs. In this sec-
tion, we discuss in detail how rough programs can be transformed into extended
logic programs.

The transformation to be presented has the following property. A model M
of a rough program P belongs to sem(P) if and only if there is a paraconsistent
stable model M′ of the transformed program P ′ such that each predicate symbol
q/n occurring in P denotes the rough relation

QM=({〈c1, . . . , cn〉 | q(c1, . . . , cn)∈ M′}, {〈c1, . . . , cn〉 | ¬q(c1, . . . , cn) ∈ M′}) .

In section 4.3, we prove that this property is in fact guaranteed by the proposed
compilation.

The intuition underlying the compilation procedure is as follows. Assume
that P and Q are the rough relations denoted by predicates p and q occur-
ring in a rough program, respectively. Then, the literal p(t1, . . . , tn) states that
the tuple 〈t1, . . . , tn〉 belongs to P and the literal ¬p(t1, . . . , tn) indicates that
tuple 〈t1, . . . , tn〉 is not in P . (i.e. belongs to ¬P ). The default negated lit-
eral not p(t1, . . . , tn) (not ¬p(t1, . . . , tn)) states that there is no evidence that
the tuple 〈t1, . . . , tn〉 is a positive (negative) example of P . Now the notions
of approximations and boundary reflected by rough literals can be equivalently
expressed by conjunctions of literals of extended logic programs, as formalized
by the following transformation τ2. This transformation can be used to compile
rough literals in the bodies of rough clauses.

τ2(p?(t1, . . . , tn)) = not p(t1, . . . , tn),not ¬p(t1, . . . , tn) ,
τ2(p(t1, . . . , tn)) = p(t1, . . . , tn),not ¬p(t1, . . . , tn) ,

τ2(¬p(t1, . . . , tn)) = ¬p(t1, . . . , tn),not p(t1, . . . , tn) ,
τ2(p(t1, . . . , tn)) = p(t1, . . . , tn) ,

τ2(¬p(t1, . . . , tn)) = ¬p(t1, . . . , tn) ,
τ2(p(t1, . . . , tn)) = p(t1, . . . , tn),¬p(t1, . . . , tn) ,

τ2(¬p(t1, . . . , tn)) = τ2(p(t1, . . . , tn)) ,
τ2((B1, . . . , Bn)) = τ2(B1), . . . , τ2(Bn) .

The translation above is not directly applicable to the heads of rough clauses,
since the heads in the target programs can contain neither conjunctions of literals
nor default negated literals. In order to address this problem, rough clauses in
the source program are compiled into a clause and an integrity constraint of the
target program, as described below. For example, consider the rough clause

p(X1, X2, X3):- q(X1, X2, Xn).

stating that the boundary of Q (rough relation denoted by predicate q/3) is
contained in the lower approximation of P (rough relation denoted by predicate
p/3). Any element in the boundary of Q should be also considered a positive
example of P but it should be excluded that those tuples are examples of ¬P .
Moreover, a tuple t belongs to the boundary of Q if and only if it represents
both positive and negative evidence of it. Thus,

p(X1, X2, X3):- q(X1, X2, X3),¬q(X1, X2, X3). (1)
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and
:- ¬p(X1, X2, X3), q(X1, X2, X3),¬q(X1, X2, X3). (2)

capture the same information as the rough clause above. Clause (1) states that
tuples belonging to both Q and ¬Q also belong to P , while the integrity con-
straint (2) does not allow those tuples to belong to ¬P .

The discussion above gives a motivation for the formalization of the trans-
lation of rough clauses into clauses of an extended logic program. This formal-
ization is defined as the following function τ1 which refers to the above defined
function τ2. Note that ¬p in an extended logic program should essentially be
viewed as a new predicate symbol representing explicit negation.

τ1(p(t1, . . . , tn):- B.) = {p(t1, . . . , tn):- τ2(B). , :- ¬p(t1, . . . , tn) , τ2(B).} ,

τ1(p(t1, . . . , tn):- B.) = {p(t1, . . . , tn):- τ2(B).} ,

τ1(¬p(t1, . . . , tn):- B.) = {¬p(t1, . . . , tn):- τ2(B). , :- p(t1, . . . , tn) , τ2(B).} ,

τ1(¬p(t1, . . . , tn):- B.) = {¬p(t1, . . . , tn):- τ2(B).} ,

τ1(p(t1, . . . , tn):- B.) = {¬p(t1, . . . , tn):- τ2(B). , p(t1, . . . , tn):- τ2(B).} ,

τ1(¬p(t1, . . . , tn):- B.) = τ1(p(t1, . . . , tn):- B.) .

A rough program P will be transformed into an extended logic program by
compiling each rough clause. Thus, τ1(P) =

⋃
C∈P τ1(C) .

Next example illustrates the proposed encoding of rough programs.

Example 26. Assume that we have two similar decision tables

Deathmi1=(U1, {Age, Hypert, Scanabn}, Deathmi1) ,
Deathmi2=(U2, {Age, Hypert, Scanabn}, Deathmi2) ,

referring to different periods of time (e.g. year 1 and year 2, respectively). These
tables record for several patients their age group (Age), whether they have hy-
pertension (Hypert), and the result of a medical test to the heart (Scanabn).
The decision attribute indicates whether the patient had a major heart problem
during the follow up period. Both tables are represented as a set of facts in our
language.

Our aim is to monitor changes in the boundary region from one period of
time to another. For instance, this can give us an idea whether there are groups
of patients for who the risk of having a serious cardiac problem has increased,
decreased, or remained stable from the first period of time to the second period.
Thus, if a tuple t describing an indiscernibility class belongs to the boundary
of table Deathmi1 and the same tuple belongs the lower approximation of the
rough relation represented by table Deathmi2 then, we may interpret this fact
as an increase of risk for those patients having the symptoms and test results
indicated by t.

These ideas can be expressed by the following rough clauses defining a new
rough relation, denoted by predicate risk, in such a way that Risk, ¬Risk, and
Risk correspond to an increase, decrease, and stability of the risk of a cardiac
event, respectively.



A Framework for Reasoning with Rough Sets 219

(1)risk(Age, Hypert, Scanabn) :- deathmi1(Age, Hypert, Scanabn),
deathmi2(Age, Hypert, Scanabn).

(2)¬risk(Age, Hypert, Scanabn):- deathmi1(Age, Hypert, Scanabn),
¬deathmi2(Age, Hypert, Scanabn).

(3)risk(Age, Hypert, Scanabn) :- deathmi1(Age, Hypert, Scanabn),
deathmi2(Age, Hypert, Scanabn).

Next, we show the result of compiling (i.e. applying function τ1 to) each
rough clause above.

– Compilation of rough clause (1).

risk(Age, Hypert, Scanabn) :- deathmi1(Age, Hypert, Scanabn),
¬deathmi1(Age, Hypert, Scanabn),
deathmi2(Age, Hypert, Scanabn),
not ¬deathmi2(Age, Hypert, Scanabn).

:- ¬risk(Age, Hypert, Scanabn), deathmi1(Age, Hypert, Scanabn),
¬deathmi1(Age, Hypert, Scanabn), deathmi2(Age, Hypert, Scanabn),
not ¬deathmi2(Age, Hypert, Scanabn).

– Compilation of rough clause (2).

¬risk(Age, Hypert, Scanabn) :-deathmi1(Age, Hypert, Scanabn),
¬deathmi1(Age, Hypert, Scanabn),
¬deathmi2(Age, Hypert, Scanabn),
not deathmi2(Age, Hypert, Scanabn).

:- risk(Age, Hypert, Scanabn), deathmi1(Age, Hypert, Scanabn),
¬deathmi1(Age, Hypert, Scanabn), ¬deathmi2(Age, Hypert, Scanabn),
not deathmi2(Age, Hypert, Scanabn).

– Compilation of rough clause (3).

risk(Age, Hypert, Scanabn) :- deathmi1(Age, Hypert, Scanabn),
¬deathmi1(Age, Hypert, Scanabn),
deathmi2(Age, Hypert, Scanabn),
¬deathmi2(Age, Hypert, Scanabn).

¬risk(Age, Hypert, Scanabn) :- deathmi1(Age, Hypert, Scanabn),
¬deathmi1(Age, Hypert, Scanabn),
deathmi2(Age, Hypert, Scanabn),
¬deathmi2(Age, Hypert, Scanabn).

�
Recall that, for each rough interpretation I of a rough program P , a predi-

cate q occurring in P may denote a different rough relation, represented as QI .
Consequently, the denotation of a predicate is always with respect to a rough
interpretation.
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Correctness of the Compilation Procedure. In order to be able to prove
that the compilation function τ1 is correct, we first show that each model of a
rough program P corresponds to a model of τ1(P), and vice-versa.

We start by defining a bijective function that maps each model of a rough
program into a model of an extended logic program.

Definition 36. Let I be a rough interpretation of a rough program. Then, ϕ(I)
is a interpretation of an extended logic program defined as follows.

(i) If 〈c1, . . . , cn〉 ∈ QI then q(c1, . . . , cn) ∈ ϕ(I).
(ii) If 〈c1, . . . , cn〉 ∈ ¬QI then ¬q(c1, . . . , cn) ∈ ϕ(I).
(iii) ϕ(I) is the smallest set (with respect to set inclusion) satisfying both condi-

tions(i) and (ii).

Lemma 2. Let I be a rough interpretation of a rough program. Then, ϕ−1(ϕ(I))
= I.

Proof. Note that ϕ is a bijection, i.e. it is a surjection and an injection. �

Lemma 3. Let I1 and I2 be two rough interpretations of a rough program.
Then, I1 # I2 if and only if ϕ(I1) ⊆ ϕ(I2).

Proof. The statement I1 # I2 ⇔ ϕ(I1) ⊆ ϕ(I2) can be easily proved by taking
into account the definition of function ϕ and the definition of
partial relation #. �

Lemma 4. Let B1, . . . , Bn (n ≥ 1) be rough or testing literals. Assume also that
I is a rough interpretation.

• I |= B1, . . . , Bn if and only if ϕ(I) |= τ2(B1, . . . , Bn).

Proof. The prove can be simply done by structural induction. We start with the
base case.

(i.1) First, we show that if I |= B then ϕ(I) |= τ2(B). Assume that I |= B and
let us consider the different possibilities for B.
• B ≡ q(c1,. . ., cn). Thus, 〈c1, . . . , cn〉 ∈ QI and, by definition 36, q(c1, . . . ,

cn) ∈ ϕ(I). Since τ2(q(c1, . . . , cn)) = q(c1, . . . , cn), we conclude that
ϕ(I) |= τ2(B).

• B ≡ ¬q(c1, . . . , cn). The argument is similar to the previous case.
• B ≡ q(c1, . . . , cn). Thus, 〈c1, . . . , cn〉 ∈ QI and 〈c1, . . . , cn〉 �∈ ¬QI . By

definition 36, q(c1, . . . , cn) ∈ ϕ(I) and ¬q(c1, . . . , cn) �∈ ϕ(I). We have
then that

ϕ(I) |= q(c1, . . . , cn),not ¬q(c1, . . . , cn) .

Since
τ2(q(c1, . . . , cn)) = q(c1, . . . , cn),not ¬q(c1, . . . , cn) ,

we conclude that ϕ(I) |= τ2(B).
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• B ≡ ¬q(c1, . . . , cn). The argument is similar to the previous case.
• B ≡ q(c1, . . . , cn). Thus, 〈c1, . . . , cn〉 ∈ QI and 〈c1, . . . , cn〉 ∈ ¬QI . By

definition 36, q(c1, . . . , cn) ∈ ϕ(I) and ¬q(c1, . . . , cn) ∈ ϕ(I). We have
then that

ϕ(I) |= q(c1, . . . , cn),¬q(c1, . . . , cn) .

Since
τ2(q(c1, . . . , cn)) = q(c1, . . . , cn),¬q(c1, . . . , cn) ,

we conclude that ϕ(I) |= τ2(B).
• B ≡ ¬q(c1, . . . , cn). The argument of the previous case applies to this

case, too.
• B ≡ q?(c1, . . . , cn). Thus, 〈c1, . . . , cn〉 �∈ QI and 〈c1, . . . , cn〉 �∈ ¬QI . By

definition 36, q(c1, . . . , cn) �∈ ϕ(I) and ¬q(c1, . . . , cn) �∈ ϕ(I). We have
then that

ϕ(I) |= not q(c1, . . . , cn),not ¬q(c1, . . . , cn) .

Since τ2(q(c1, . . . , cn)) = not q(c1, . . . , cn),not ¬q(c1, . . . , cn) , we con-
clude that ϕ(I) |= τ2(B).

(i.2) Second, we show that if ϕ(I) |= τ2(B) then I |= B. Assume that ϕ(I) |=
τ2(B) and let us consider the different possibilities for B.
• B = q(c1, . . . , cn). Since τ2(q(c1, . . . , cn)) = q(c1, . . . , cn) and ϕ(I) |=

q(c1, . . . , cn), we conclude that q(c1, . . . , cn) ∈ ϕ(I). By definition 36, we
have that 〈c1, . . . , cn〉 ∈ QI . Hence, I |= B.

• B = ¬q(c1, . . . , cn). The argument is similar to the previous case.
• B = q(c1, . . . , cn). Since

τ2(q(c1, . . . , cn)) = q(c1, . . . , cn),not ¬q(c1, . . . , cn)

and ϕ(I) |= q(c1, . . . , cn),not ¬q(c1, . . . , cn), we conclude that q(c1, . . . ,
cn) ∈ ϕ(I) and ¬q(c1, . . . , cn) �∈ ϕ(I). By definition 36, we have that
〈c1, . . . , cn〉 ∈ QI and 〈c1, . . . , cn〉 �∈ ¬QI . Hence, I |= B.

• B = ¬q(c1, . . . , cn). The argument is similar to the previous case.
• B ≡ q(c1, . . . , cn). Then by definition of τ2, we have that ϕ(I) |= q(c1,

. . . , cn),¬q(c1, . . . , cn). Moreover by definition 36, we also have that
〈c1, . . . , cn〉 ∈ QI and 〈c1, . . . , cn〉 ∈ ¬QI . We can then conclude that
I |= B.

• B ≡ ¬q(c1, . . . , cn). This case is equal to the previous one.
• B ≡ q?(c1, . . . , cn). Then by definition of τ2, we have that ϕ(I) �|=

q(c1, . . . , cn) and ϕ(I) �|= ¬q(c1, . . . , cn). Moreover by definition 36, we
also have that 〈c1, . . . , cn〉 �∈ QI and 〈c1, . . . , cn〉 �∈ ¬QI . We can then
conclude that I |= B.

We proceed now to the inductive step.

(ii.1) First, we prove that if I |= B1, . . . , Bn then ϕ(I) |= τ2(B1, . . . , Bn). Note
that the base case (n = 1) has been proved in (i.1). If I |= B1, . . . , Bn

then I |= B1, . . . , I |= Bn . Consequently, by inductive hypothesis, ϕ(I) |=
τ2(B1), . . . , ϕ(I) |= τ2(Bn) . The same is to say that ϕ(I) |= τ2(B1), . . . ,
τ2(Bn). By definition of τ2, ϕ(I) |= τ2(B1, . . . , Bn) .
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(ii.2) Second, we show that if ϕ(I) |= τ2(B1, . . . , Bn) then I |= B1, . . . , Bn. Note
that the base case (n = 1) has been proved in (i.2). If ϕ(I) |= τ2(B1, . . . , Bn)
then, by definition of τ2, ϕ(I) |= τ2(B1), . . . , τ2(Bn). This is the same as
ϕ(I) |= τ2(B1), . . . , ϕ(I) |= τ2(Bn). By inductive hypothesis, I |= B1, . . . ,
I |= Bn and, consequently, I |= B1, . . . , Bn . �

Lemma 5. Let P be a rough program and P ′ = τ1(P). If MP′ is a model of P ′

then ϕ−1(MP′) is a model of P.

Proof. Assume that MP = ϕ−1(MP′) and let us prove that MP is a model
of P . Hence, we need to show that MP satisfies each rough clause H:- B. ∈
ground(P). If MP �|= B then MP trivially satisfies H:- B. . Otherwise, let us
assume that MP |= B. The head H of the rough clause can be one of the rough
literals:

(i) H ≡ q(c1, . . . , cn). Then, the compilation function τ1 ensures that q(c1, . . . ,
cn):- τ2(B). ∈ P ′. By lemma 4, MP′ |= τ2(B). Consequently, MP′ |=
q(c1, . . . , cn) because MP′ is a model of P ′. By definition of function ϕ, we
can conclude that 〈c1, . . . , cn〉 ∈ QMP . Hence, MP |= q(c1, . . . , cn).

(ii) H ≡ ¬q(c1, . . . , cn). The argument is similar to case (i).
(iii) H ≡ q(c1, . . . , cn). Then, the compilation function τ1 ensures that

{q(c1, . . . , cn):- τ2(B). , :- ¬q(c1, . . . , cn), τ2(B).} ⊆ P ′ .

By lemma 4, MP′ |= τ2(B). Consequently, MP′ |= q(c1, . . . , cn) and MP′ �|=
¬q(c1, . . . , cn) because MP′ is a model of P ′. By definition of function ϕ,
we can conclude that 〈c1, . . . , cn〉 ∈ QMP but 〈c1, . . . , cn〉 �∈ ¬QMP . Hence,
MP |= q(c1, . . . , cn).

(iv) H ≡ ¬q(c1, . . . , cn). The argument is similar to case (iii).
(v) H ≡ q(c1, . . . , cn). Then, the compilation function τ1 ensures that

{q(c1, . . . , cn):- τ2(B). , ¬q(c1, . . . , cn):- τ2(B).} ⊆ P ′ .

By lemma 4, MP′ |= τ2(B). Consequently, MP′ |= q(c1, . . . , cn) and MP′ |=
¬q(c1, . . . , cn) because MP′ is a model of P ′. By definition of function ϕ,
we can conclude that 〈c1, . . . , cn〉 ∈ QMP and 〈c1, . . . , cn〉 ∈ ¬QMP . Hence,
MP |= q(c1, . . . , cn).

(vi) H ≡ ¬q(c1, . . . , cn). This case is equivalent to case (v). �

Lemma 6. Let P be a rough program and P ′ = τ1(P). If MP is a model of P
then ϕ(MP ) is a model of P ′.

Proof. Assume that MP is a model of P . Hence, we need to show that ϕ(MP)
satisfies each clause H:- B1. ∈ ground(P ′) and each integrity constraint
:- B2. ∈ ground(P ′). Note that clauses and integrity constraints belonging
to ground(P ′) can only have some particular forms determined by the compila-
tion function τ1. Let us then consider each possible case of function τ1.
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(i) Assume that the rough clause q(c1, . . . , cn):- B. ∈ P . Since MP satisfies
q(c1, . . . , cn):- B. , we have either that MP �|= B or MP |= B, q(c1, . . . , cn).
If MP �|= B then, by lemma 4, ϕ(MP) �|= τ2(B), and consequently, ϕ(MP)
trivially satisfies the clause in
τ1(q(c1, . . . , cn):- B.) ⊆ P ′. Otherwise, MP |= B, q(c1, . . . , cn) and, by
lemma 4, ϕ(MP) |= τ2(B). Moreover by definition 36, q(c1, . . . , cn)∈ϕ(MP ).
Hence, ϕ(MP ) satisfies the clause in τ1(q(c1, . . . , cn):- B.).

(ii) Assume that the rough clause ¬q(c1, . . . , cn):- B. ∈ P . This case can be
justified in a way similar to the previous one.

(iii) Assume that the rough clause q(c1, . . . , cn):- B. ∈ P . Since MP satisfies
q(c1, . . . , cn):- B. , we have either that MP �|= B or MP |= B, q(c1, . . . , cn).
If MP �|= B then, by lemma 4, ϕ(MP ) �|= τ2(B), and consequently, ϕ(MP)
satisfies the clause and the integrity constraint in τ1(q(c1, . . . , cn):- B.) ⊆
P ′. Otherwise, MP |= B and MP |= q(c1, . . . , cn). By lemma 4, ϕ(MP) |=
τ2(B) and by definition of |=, 〈c1, . . . , cn〉 ∈ QMP and 〈c1, . . . , cn〉 �∈ ¬QMP .
By definition 36, we have that q(c1, . . . , cn) ∈ ϕ(MP) but ¬q(c1, . . . , cn) �∈
ϕ(MP). Hence, ϕ(MP) satisfies the clause q(c1, . . . , cn):- τ2(B). and the
integrity constraint :-¬q(c1, . . . , cn), τ2(B). obtained by compiling the rough
clause.

(iv) Assume that the rough clause ¬q(c1, . . . , cn):- B. ∈ P . An argument
similar to the previous case can be also used here.

(v) Assume that the rough clause q(c1, . . . , cn):- B. ∈ P . Since MP satisfies
q(c1, . . . , cn):- B. , we have either that MP �|= B or MP |= B, q(c1, . . . , cn).
If MP �|= B then, by lemma 4, ϕ(MP) �|= τ2(B), and consequently, ϕ(MP)
satisfies both clauses in τ1(q(c1, . . . , cn):- B.) ⊆ P ′. Otherwise, MP |= B
and MP |= q(c1, . . . , cn). By lemma 4, ϕ(MP) |= τ2(B) and by definition of
|=, 〈c1, . . . , cn〉 ∈ QMP and 〈c1, . . . , cn〉 ∈ ¬QMP . By definition 36, we have
that q(c1, . . . , cn) ∈ ϕ(MP) and ¬q(c1, . . . , cn) ∈ ϕ(MP). Thus, ϕ(MP)
satisfies both clauses q(c1, . . . , cn):- τ2(B). and ¬q(c1, . . . , cn):- τ2(B).
obtained by compiling the rough clause.

(vi) Assume that the rough clause ¬q(c1, . . . , cn):- B. ∈ P . This case is equiv-
alent to the previous one. �

Lemma 7. Let P be a rough program. M is the least model (with respect to #)
of P if and only if ϕ(M) is the least model (with respect to ⊆) of τ1(P).

Proof. This lemma is direct consequence of lemmas 3, 5, and 6. �

Lemma 8. Let P be a rough program and M be one of its models. Then,

ψϕ(M)(τ1(P)) = {H:- B. ∈ τ1(ΨM(P))} .

Proof. To simplify the presentation of this proof, we represent (rough) predicate
argument tuples as

−→
t , i.e. q(t1, . . . , tn) is represented as q(

−→
t ).

(i) We assume that
q(
−→
t ) :- B. ∈ τ1(ΨM(P)) .
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and then show that q(
−→
t ) :- B. ∈ ψϕ(M)(τ1(P)).

From the hypotheses, it follows that one of the rough clauses below belongs
to ΨM(P).

q(
−→
t ) :- B′.

q(
−→
t ) :- B′.

q(
−→
t ) :- B′. ,

where B′ is such that τ2(B′) = B.
Assume that q(

−→
t ) :- B′. ∈ ΨM(P) (the other two cases follow a similar

reasoning). By definition of ΨM, there is a rough clause

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ), s1?(

−→
t′1 ), . . . , sm?(

−→
t′m). ∈ ground(P) ,

with k, m ≥ 0,

M �|= ¬r1(
−→
t1 ), . . . ,¬rk(

−→
tk ) (1)

M |= s1?(
−→
t′1 ), . . . , rk?(

−→
t′k ) (2)

and B′ ≡ B1, r1(
−→
t1 ), . . . , rk(

−→
tk ). Consequently,

q(
−→
t ) :- τ2(B1), r1(

−→
t1 ), not ¬r1(

−→
t1 ) . . . , rk(

−→
tk ), not rk(

−→
t1k),

not s1(
−→
t′1 ), not ¬s1(

−→
t′1 ) . . . , not ¬sm(

−→
t′m),¬sm(

−→
t′m).

belongs to τ1(ground(P)). Moreover, we conclude from (1) that

ϕ(M) |= not ¬r1(
−→
t1 ), . . . , not ¬rk(

−→
tk )

and (2) implies that

ϕ(M) |= not s1(
−→
t′1 ), not ¬s1(

−→
t′1 ) . . . , not sm(

−→
t′m), not ¬sm(

−→
t′m) .

But then,

q(
−→
t ) :- τ2(B1), r1(

−→
t1 ), . . . , rk(

−→
tk ). ∈ ψϕ(M)(τ1(P)) .

Note that ψϕ(M)(τ1(ground(P))) = ψϕ(M)(τ1(P)).
Since (τ2(B1), r1(

−→
t1 ), . . . , rk(

−→
tk )) = τ2(B′) = B, we can conclude that

q(
−→
t ) :- B. ∈ ψϕ(M)(τ1(P)) .

(ii) We now assume
q(
−→
t ):- B. ∈ ψϕ(M)(τ1(P))

and then show that q(
−→
t ):- B. ∈ τ1(ΨM(P)).

From the hypotheses, it follows that there is a clause

q(
−→
t ) :- B, not ¬r1(

−→
t1 ), . . . , not ¬rk(

−→
tk ),

not s1(
−→
t′1 ), not ¬s1(

−→
t′1 ), . . . , not sm(

−→
t′m), not ¬sm(

−→
t′m).
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belonging to τ1(ground(P)), with m, k ≥ 0, and

ϕ(M) |= not ¬r1(
−→
t1 ), . . . , not ¬rk(

−→
tk ) (3)

ϕ(M) |= not s1(
−→
t′1 ), not ¬s1(

−→
t′1 ), . . . ,

not sm(
−→
t′m), not ¬sm(

−→
t′m) (4)

Moreover, B ≡ B′, r1(
−→
t1 ), . . . , rk(

−→
tk ). One of the following rough clauses has

then to belong to ground(P).

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ), s1?(

−→
t′1 ), . . . , sm?(

−→
t′m).

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ), s1?(

−→
t′1 ), . . . , sm?(

−→
t′m).

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ), s1?(

−→
t′1 ), . . . , sm?(

−→
t′m). ,

where τ2(B1) = B′.
Assume that

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ), s1?(

−→
t′1 ), . . . , sm?(

−→
t′m). ∈ ground(P)

(the other two cases follow a similar reasoning). We can conclude from (3)
that

M �|= ¬r1(
−→
t1 ), . . . ,¬rk(

−→
tk )

and (4) implies that

M |= s1?(
−→
t′1 ), . . . , sm?(

−→
t′m) .

We have then that q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ). ∈ ΨM(P) . Consequently,

q(
−→
t ) :- B′, r1(

−→
t1 ), . . . , rk(

−→
tk ). ∈ τ1(ΨM(P)) .

Hence, q(
−→
t ) :- B. ∈ τ1(ΨM(P)).

Lemma 9. Let P be a rough program. If M is the least model of ΨM(P) then
ϕ(M) is the least model of {H:- B. ∈ τ1(ΨM(P))}.
Proof. Let P ′ = {H:- B. ∈ τ1(ΨM(P))}. If M is the least model of ΨM(P)
then, by lemma 7, ϕ(M) is the least model of τ1(ΨM(P)) and, therefore, it is a
model of P ′.

Note that default negated literals cannot occur in any clause or integrity
constraint of τ1(ΨM(P)). The reason is that neither lower approximations nor
testing literals occur in the body of any rough clause in ΨM(P). In addition,
τ1(ΨM(P)) is definite logic program with integrity constraints.

Assume that ϕ(M) is not the least model of P ′. Then, there is a model
(e.g. the least model) M′ of P ′ such that M′ ≺ ϕ(M). Therefore, there is
one atom q(t1, . . . , tn) (or ¬q(t1, . . . , tn)) such that q(t1, . . . , tn) ∈ ϕ(M) but
q(t1, . . . , tn) �∈ M′. Only the occurrence of a default negated literal, e.g. not
q(t1, . . . , tn), in an integrity constraint belonging to τ1(ΨM(P)) could force the
entrance of an atom in the least model of P ′ in order to be also able to satisfy
the integrity constraints. However, as we pointed out above, this cannot be the
case. �
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Lemma 10. Let P be a rough program and I be a rough interpretation of P. If
ϕ(I) satisfies each integrity constraint in τ1(P) then ϕ(I) satisfies each integrity
constraint in τ1(ΨI(P)).

Proof. To simplify the presentation of this proof, we represent predicate argu-
ment tuples as

−→
t , i.e. q(t1, . . . , tn) is represented as q(

−→
t ).

Assume that ϕ(I) satisfies each integrity constraint in τ1(P). Taking into
account the definition of τ1, we conclude that integrity constraints originate
from compilation of rough clauses with a lower approximation in their head.
Hence, suppose that

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ), s1?(

−→
t′1 ), . . . , sm?(

−→
t′m). ∈ P ,

where k, m ≥ 0 and no lower approximations or testing literals occur in B1. Let
ic be an integrity constraint defined as follows.

ic = :- ¬q(
−→
t ), τ2(B1), r1(

−→
t1 ), not ¬r1(

−→
t1 ), . . . , rk(

−→
tk ), not ¬rk(

−→
tk ),

not s1(
−→
t′1 ), not ¬s1(

−→
t′1 ), . . . ,not sm(

−→
t′m), not ¬sm(

−→
t′m).

Then, ic ∈ τ1(P) and ϕ(I) |= ic.
Assume also that

(a) I �|= ¬r1(
−→
t1 ), . . . ,¬rk(

−→
tk ) and

(b) I |= s1?(
−→
t′1 ), . . . , sm?(

−→
t′m).

From (a) and (b) and by definition of ΨI ,

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ). ∈ ΨM(P) .

Thus, i′c ∈ τ1(ΨI(P)), with

i′c = ¬q(
−→
t ), τ2(B1), r1(

−→
t1 ), . . . , rk(

−→
tk ). ∈ τ1(ΨI(P)) .

Moreover,

– from (a), we have that ϕ(I) |= not ¬r1(
−→
t1 ), . . . not ¬rk(

−→
tk ) and

– from (b), we have that

ϕ(I) |= not s1(
−→
t′1 ), not ¬s1(

−→
t′1 ), . . . ,not sm(

−→
t′m), not ¬sm(

−→
t′m) .

Since ϕ(I) |= ic, we can conclude that ϕ(I) |= i′c. �

Theorem 2. Let P be a rough program and P ′ = τ1(P). Then, M ∈ sem(P) if
and only if ϕ(M) is a paraconsistent stable model of P ′.

Proof. (i) First, we prove that if M ∈ sem(P) then ϕ(M) is a paraconsistent
stable model of P ′.
Assume that M∈ sem(P). Then, M is the least model (with respect to #)
of ΨM(P) and, by lemma 9, ϕ(M) is the least (with respect to ⊆) model
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of {H :- B. ∈ τ1(ΨM(P))}. Consequently, by lemma 8, ϕ(M) is the least
model of ψϕ(M)(τ1(P)). Moreover, ϕ(M) satisfies each integrity constraint
belonging to τ1(P) because M is a model of P and, by lemma 6, ϕ(M) is a
model of τ1(P). We can then conclude that ϕ(M) is a paraconsistent stable
model of τ1(P).

(ii) Second, we show that if ϕ(M) is a paraconsistent stable model of P ′ then
M ∈ sem(P). Assume that ϕ(M) is a paraconsistent stable model of P ′.
Then,
(a) ϕ(M) satisfies all integrity constraints belonging to τ1(P) and
(b) ϕ(M) is the least model of ψϕ(M)(τ1(P)).
From (a) and lemma 10, we conclude that ϕ(M) satisfies all integrity con-
straints in τ1(ΨM(P)). From (b) and lemma 8, we have that ϕ(M) is the
least model of {H :- B. ∈ τ1(ΨM(P))}. These two facts lead us to the con-
clusion that ϕ(M) has to be the least model of τ1(ΨM(P))}. Then, by lemma
7, M is the least model of ΨM(P) and, therefore, M∈ sem(P). �

Theorem 3 (Correctness). Let P be a rough program and P ′ = τ1(P) and l
be a rough or testing literal. Then, P |= l if and only if P ′ |= τ2(l).

Proof. This theorem is a direct consequence of theorem 2, of lemma 4, and of
definitions 23 and 35.

4.4 Queries

This section proposes a query language for querying rough programs. This can
be achieved by adapting existing systems based on the stable model semantics
[44,43]. Here, we only present queries and their expected answers. Since there
might exist more than one model for a rough program P , answers are computed
with respect to one model of sem(P). If a rough program has a unique model,
which may often be the case5, the answers will refer to this model.

Definition 37. A rough query is a pair (Q,P), where P is a rough program
and Q is defined by the following abstract syntax rules

Q1 −→ A? | A?,Q1 .

Q2 −→ L1 | L1,Q2 | Q2,Q1 .
Q3 −→ L1 ⊆ L2 | L1 ⊆ L2,Q3 .
Q −→ Q1 | Q2 | Q3 .

where A? is a testing literal and each Li (i = 1, 2) is a rough literal. Moreover,
a rough query is well-formed if the following conditions are satisfied.

(i) Any testing literal A? is ground (i.e. it does not contain any variables) or
its variables occur also in some rough literal of the query.

5 For instance, any rough program whose rough clauses do not contain lower approx-
imations or testing literals in their bodies either has a least model or no model at
all.
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(ii) For an expression of the form L1 ⊆ L2 occurring in the query, any variable
occurring in L1 should also occur in L2, and vice-versa.

For example, rough queries (p(X1, X2), q?(X2, X3),P)and(p(X1, X2, X3)⊆
q(X1, X2),P) are not well-formed because the former does not satisfy condition
(i) and the latter violates condition (ii). In what follows, we always assume that
rough queries are well-formed.

Consider the rough query (q(c1, c2),P). Before presenting the notion of an-
swer, we explain informally what is being queried and the corresponding an-
swer. With that query we want to know whether the tuple 〈c1, c2〉 belongs to
the boundary region of the rough relation denoted by q, in some model of P
belonging to sem(P). If the atom occurring in the query is not ground then, as
answer, we may obtain a list of examples valid in a certain model. For example,
the query (q(X, Y ),P) requests a list of pairs that belong to QM, for some some
model M∈ sem(P).

We formalize now the notion of answer to a rough query.

Definition 38. Let (Q,P) be a rough query.

(i) If Q is of the form Q1 or Q2 (see definition 37) then an answer to the rough
query is the set of ground substitutions

{θ | Qθ ∈ ground(Q) and M |= Qθ} ,

for some model M ∈ sem(P).
(ii) If Q is of the form L11 ⊆ L21, . . . , L1n ⊆ L2n, where each L1i and L2i

(1 ≤ i ≤ n) are rough literals, then the answer to the rough query is
(ii.1) yes , if there is a model M∈ sem(P) such that

M |= L11θ ⇒M |= L21θ ,
...

M |= L1nθ ⇒M |= L2nθ ,

for every ground substitution θ;
(ii.2) no , otherwise.

Note that {∅} is a possible answer to a rough query. This answer can be
obtained in case (i) when the query is ground and it should essentially be viewed
as an affirmative answer. This contrasts with the empty set answer that should
be interpreted as a negative answer. For instance, if the answer to the rough
query (q(c1, c2),P) is ∅ then this means that 〈c1, c2〉 does not belong to the
upper approximation of rough relation Q (whatever is the model M ∈ sem(P)
that is considered).

The notion of answer to a rough query introduced above is declarative. Hence,
we need to discuss how such answers can be computed. A rough query (Q,P),
where Q is of the form Q1 or Q2 (see definition 37), is translated into a query
to the extended logic program τ1(P)

(τ2(Q), τ1(P)) ,
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and each set of substitutions obtained as answer to this query is also an answer
to the rough query.

We now discuss how a query of the form (L1 ⊆ L2,P), where L1 and L2
are rough literals, could be answered. The idea is to translate it to a set of
integrity constraints that are added to the compiled program (τ1(P)). Hence,
a new extended logic program P ′ is obtained in this way. Then, the answer to
the query is yes (i.e. the test succeeds) if P ′ has at least one paraconsistent
stable model. Otherwise, the answer is no (i.e. the test fails). Thus, we reduce
the answering problem for this kind of queries to the problem of checking the
existence of paraconsistent stable models of an extended logic program where
certain properties, expressed by the integrity constraints, hold.

Given an objective literal L, we assume that ¬¬L and L have the same
meaning. Moreover, consider the rough query (L1 ⊆ L2,P), where L1 and L2
are rough literals. We define a function τ3 that transforms these queries into an
extended logic program with integrity constraints, for each possible case of L2
(i.e. L, L, L).

τ3((L1 ⊆ L,P)) = τ1(P) ∪ {:- τ2(L1),not L.} ,
τ3((L1 ⊆ L,P)) = τ1(P) ∪ {:- τ2(L1),not L. , :- τ2(L1),¬L.} ,
τ3((L1 ⊆ L,P)) = τ1(P) ∪ {:- τ2(L1),not L. , :- τ2(L1),not ¬L.} .

It is trivial to extend function τ3 for compiling queries of the form (Q3,P).
Assume that P is a rough program, L1i and L2i are rough literals, with 1 ≤ i ≤ n,
then

τ3((L11 ⊆ L21, · · · , L1n ⊆ L2n,P)) =
⋃

1≤i≤n

τ3((L1i ⊆ L2i,P)) .

Thus, given a rough program P , we have that the answer to the query (Q3,P)
is yes, if the extended logic program τ3((Q3,P)) has a paraconsistent stable
model. Otherwise, the answer is no.

Example 27. Consider again the rough program

P= {diseaseA(infect, normal, Z) :- ¬diseaseB(infect, normal, Z). ,
diseaseB(infect, normal, Z) :- ¬diseaseA(infect, normal, Z). ,
¬diseaseA(infect, normal, Z). ,
¬diseaseB(infect, normal, Z).} .

and the queries

(i) (diseaseA(X, Y, Z), P),
(ii) (diseaseA(X, Y, Z) ⊆ ¬diseaseB(X, Y, Z), P).

Recall that there are two models that belong to sem(P), see example 23.
The answer to query (i) is the set of substitutions

{{X/infect, Y/normal, Z/c}}

because in one of the models, M1, 〈infect, normal, c〉 ∈ DiseaseAM1 .
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Note that

τ3(diseaseA(X, Y, Z) ⊆ diseaseB(X, Y, Z), P) = τ1(P) ∪
{:- τ2(diseaseA(X, Y, Z)),not diseaseB(X, Y, Z). ,

:- τ2(diseaseA(X, Y, Z)),¬diseaseB(X, Y, Z).}

Since M1 is a paraconsistent stable model of this extended logic program, ob-
tained after compiling rough query (ii), we conclude that the answer to

(diseaseA(X, Y, Z) ⊆ ¬diseaseB(X, Y, Z), P)

is yes. �

The query language proposed here is slightly more general than the one
presented in [19], since now we allow for testing arbitrary inclusions between
lower and upper approximations. For instance in [19], we could not test whether
the lower approximation of one rough relation R1, denoted by predicate r1/n, was
included in the upper approximation of another rough relation R2, denoted by
another predicate r2/n. With the rough query language discussed in this section,
this can be achieved through the query (r1(X1, . . . , Xn) ⊆ r2(X1, . . . , Xn) , P).

In some applications it is necessary to check rough inclusion or rough equality
of given rough relations. We recall the notions of rough inclusion and rough
equality [24].

Definition 39. Rough relation Q1 is roughly included in rough relation Q2,
denoted as Q1�Q2, if and only if Q1 ⊆ Q2 and Q1 ⊆ Q2.

Definition 40. The rough sets Q1 and Q2 are roughly equal, denoted as Q1 ≈
Q2, if and only if Q1 = Q2 and Q1 = Q2.

Given a rough program P and two predicates q1/n and q2/n denoting rough
relations Q1 and Q2, respectively, we can easily test whether Q1�Q2 or Q1 ≈ Q2.
The rough query

(q1(X1, . . . , Xn) ⊆ q2(X1, . . . , Xn), q1(X1, . . . , Xn) ⊆ q2(X1, . . . , Xn) , P)

tests for rough inclusion. Rough equality can be tested through the rough query

(q1(X1, . . . , Xn) ⊆ q2(X1, . . . , Xn),
q2(X1, . . . , Xn) ⊆ q1(X1, . . . , Xn),
q1(X1, . . . , Xn) ⊆ q2(X1, . . . , Xn),
q2(X1, . . . , Xn) ⊆ q1(X1, . . . , Xn) , P) .

Finally, we show the equivalence between the proposed technique to compute
answers of a rough query and its declarative semantics. To that end, we need to
prove the following two lemmas.

Lemma 11. Let (Q,P) be a rough query.
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(i) Assume that Q is of the form Q1 or Q2 (see definition 37). If θ is a ground
substitution belonging to an answer of (τ2(Q), τ1(P)) then θ also belongs to
an answer of (Q,P).

(ii) Assume that Q is of the form Q3. If the extended logic program τ3((Q,P))
has a paraconsistent stable model then the answer to the rough query (Q,P)
is yes . Otherwise, the answer is no .

Proof. (i) Assume that θ is a ground substitution belonging to an answer of
(τ2(Q), τ1(P)). Hence by definition 23, we have that

τ1(P) |= τ2(Q)θ .

It easy to see that τ2(Q)θ = τ2(Qθ). By theorem 3, we have then that
P |= Qθ.

(ii) Assume that the extended logic program τ3((Q,P)) has a paraconsistent
stable model. Let Q ≡ L11 ⊆ L12, . . . , Ln1 ⊆ Ln2.

(ii.1) If some Li1 ⊆ Li2 ≡ Li1 ⊆ L (1 ≤ i ≤ n) then for all paraconsistent
stable models M of τ3((Q,P)) and ground substitutions θ we have that

M �|= τ2(Li1)θ, not Lθ . (1)

Consider a paraconsistent stable model M of τ3((Q,P)) and a ground
substitution θ such that M |= τ2(Li1)θ. By (1), we have then that M �|=
not Lθ. Therefore, Lθ ∈M and, consequently, M |= Lθ.

If M |= τ2(Li1θ), Lθ then, by lemma 4 and definition of function τ2,
ϕ−1(M) |= Li1θ, Lθ. Since M is a paraconsistent stable model of τ3
((Q,P)), M is also a paraconsistent stable model of τ1(P). Hence by
lemma 2, ϕ−1(M) ∈ sem(P).
We can then conclude that there is a model M′ ∈ sem(P) such that, if
M′ |= Li1θ then M′ |= Lθ, for any ground substitution θ.

(ii.2) If some Li1 ⊆ Li2 ≡ Li1 ⊆ L (1 ≤ i ≤ n) then for all paraconsistent
stable models M of τ3((Q,P)) and ground substitutions θ we have that

M �|= τ2(Li1)θ, not Lθ . (2)

and
M �|= τ2(Li1)θ,¬Lθ . (3)

Consider a paraconsistent stable model M of τ3((Q,P)) and a ground
substitution θ such thatM |= τ2(Li1)θ. By (2) and (3), we have then that
M |= Lθ and M |= not ¬Lθ, i.e. M |= (L, not ¬L)θ ⇔M |= τ2(Lθ).
If M |= τ2(Li1θ) and M |= τ2(Lθ) then, by lemma 4, ϕ−1(M) |= Li1θ
and ϕ−1(M) |= Lθ. Moreover, as it was shown in the previous case,
ϕ−1(M) ∈ sem(P).
We can then conclude that there is a model M′ ∈ sem(P) such that, if
M′ |= Li1θ then M′ |= Lθ, for any ground substitution θ.
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(ii.3) If some Li1 ⊆ Li2 ≡ Li1 ⊆ L (1 ≤ i ≤ n) then for all paraconsistent
stable models M of τ3((Q,P)) and ground substitutions θ we have that

M �|= τ2(Li1)θ, not Lθ . (4)

and
M �|= τ2(Li1)θ, not ¬Lθ . (5)

Consider a paraconsistent stable model M of τ3((Q,P)) and a ground
substitution θ such that M |= τ2(Li1)θ. By (4) and (5), we have then
that M |= Lθ and M |= ¬Lθ, i.e. M |= (L,¬L)θ ⇔M |= τ2(Lθ).
If M |= τ2(Li1θ) and M |= τ2(Lθ) then, by lemma 4, ϕ−1(M) |= Li1θ
and ϕ−1(M) |= Lθ. Moreover, as it was shown previously, ϕ−1(M) ∈
sem(P).
We can then conclude that there is a model M′ ∈ sem(P) such that, if
M′ |= Li1θ then M′ |= Lθ, for any ground substitution θ. �

Lemma 12. Let (Q,P) be a rough query.

(i) Assume that Q is of the form Q1 or Q2 (see definition 37). If θ is a ground
substitution belonging to an answer of (Q,P) then θ also belongs to an answer
of (τ2(Q), τ1(P)).

(ii) Assume that Q is of the form Q3. If the answer to the rough query (Q,P) is
yes then the extended logic program τ3((Q,P)) has a paraconsistent stable
model.

Proof. (i) The statement above is direct consequence of theorem 3 and of defi-
nition of answer of a query to an extended logic program.

(ii) Let M ∈ sem(P). Assume also that Q ≡ L1 ⊆ L2 and that the answer to
the rough query (L1 ⊆ L2,P) is yes . Thus by definition of answer to a
rough query,

M |= L1θ ⇒M |= L2θ , (6)

for every ground substitution θ.
If M ∈ sem(P) then, by theorem 2, ϕ(M) is a paraconsistent stable model
of τ1(P). Moreover, from (6) and by lemma 4,

ϕ(M) |= τ2(L1)θ ⇒ ϕ(M) |= τ2(L2)θ (7)

We need now to show that τ3((L1 ⊆ L2,P)) has a paraconsistent stable
model. We consider each possible case for the rough literal L2.

(ii.1) Let L2 ≡ L. Recall that the integrity constraint

:- τ2(L1), not L.

is added in this case to τ1(P). From (7), we have that

ϕ(M) |= :- τ2(L1), not L. .

Since ϕ(M) is a paraconsistent stable model of τ1(P), we can conclude
that ϕ(M) is a paraconsistent stable model of τ3((L1 ⊆ L2,P)).
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(ii.2) Let L2 ≡ L. Recall that the set of integrity constraints

{:- τ2(L1), not L. , :- τ2(L1),¬L.}

is added in this case to τ1(P). By reasoning in a way similar to case (i),
we can conclude that ϕ(M) is a paraconsistent stable model of τ3((L1 ⊆
L2,P)).

(ii.3) Let L2 ≡ L . Recall that the set of integrity constraints

{:- τ2(L1), not L. , :- τ2(L1), not ¬L.}

is added in this case to τ1(P). By reasoning in a way similar to case (i),
we can conclude that ϕ(M) is a paraconsistent stable model of τ3((L1 ⊆
L2,P)).

This proof generalizes easily to the case Q ≡ L11 ⊆ L12, . . . , Ln1 ⊆ Ln2,
with 1 < n. �

Theorem 4. Let (Q,P) be a rough query.

(i) Assume that Q is of the form Q1 or Q2 (see definition 37). A ground substi-
tution θ belongs to the answer of (τ2(Q), τ1(P)) if and only if θ also belongs
to the answer of (Q,P).

(ii) Assume that Q is of the form Q3. The extended logic program τ3((Q,P)) has
a paraconsistent stable model if and only if the answer to the rough query
(Q,P) is yes .

Proof. This theorem is a direct consequence of both lemmas 11 and 12. �
The theorem above shows that the problem of answering rough queries re-

duces to one of the two problems: to compute answer substitutions for a query
to the compiled program; or to test whether the compiled program has a para-
consistent stable model. This provides a foundation for implementation of the
language. Since the compilation procedure is polynomial with respect to the size
of a rough program, the efficiency of the algorithm to answer rough queries is
mainly determined by the system (e.g. Prolog, dlv, Smodels) used to compute
answers to the queries for the compiled program. Howevere, deciding the ex-
istence of a (paraconsistent) stable model for an extended logic program is a
NP-complete problem [50].

5 Application Examples

This section presents several examples [21] that highlight the applicability of the
language previously discussed.

We have chosen three different relevant problems reported in the rough set lit-
erature and show how these problems can be encoded in the proposed language.
In contrast to the specific-purpose solutions usually presented, our language of-
fers a general framework where the solution to different types of problems can
be declaratively expressed. Moreover, another particularly important aspect il-
lustrated is the integration of rough sets with domain knowledge.



234 A. Vitória

We start by presenting, in section 5.1, a technique to reduce the boundary
region of a rough relation. Then in section 5.2, we show how to monitor changes
in the boundary region of a rough relation, when some condition attributes are
eliminated. Finally, section 5.3 illustrates the integration of expert knowledge
through the use of default rules encoded in our language.

5.1 Hierarchy-Structured Decision Tables

A technique to reduce, and eventually eliminate, the boundary region of a rough
relation R (or decision table) is introduced in [51], in the context of the variable
precision rough set model [13]. This is a relevant issue because any object be-
longing to the boundary cannot be classified with certainty as belonging to R or
¬R. If we interpret a rough relation as a classifier then a large boundary might
imply that the classifier is of little value.

One way to cope with the above problem is, for instance, to add more condi-
tion attributes to the table. Alternatively, if some attributes have been subject to
discretization then, we could increase the precision of the existing attributes by
providing more cut-points (i.e. the number of attribute values would increase).
However, the disadvantage of these ideas is the rapid growth in the number of
decision rules, each of them with a smaller domain coverage, i.e. cov(r) tends to
decrease for each decision rule r.

The main idea described in [51] is to associate only with the boundary ex-
amples a new layer of decision tables. For instance, more cut-points could be
introduced for discretization of attribute values of objects in the boundary re-
gion. This would lead to the thinning of the boundary region, in may cases. Note
that this “refining” process is only applied to that part of the table correspond-
ing to the boundary region, instead of considering the whole decision table. This
idea can be concretized in two ways: by building a hierarchical tree structure
of decision tables or by creating a hierarchical linear structure of tables. These
techniques are described below.

Each indiscernibility class contained in the boundary region can be treated
as new independent universe of objects by itself and a new decision table is
associated with each class, forming a new layer of decision tables. The attributes
of the decision tables in a new layer have to be “more precise” in the sense
they split each indiscernibility class (of the previous layer) into several sub-
equivalence classes. This process can be applied recursively yielding a hierarchical
tree structure of decision tables.

Next example shows how a tree-structured hierarchy of decision tables could
be easily encoded in our language. We remind the reader that the value of an
attribute a for an object o is null, i.e. a(o) = null, if the valued of a is not
defined for that particular object o.

Example 28. Consider the decision table shown in table 3.
Each line of the decision table above can be encoded in our language as a

fact. For instance, the first lines would be represented as
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Table 3. Table of patients with heart problems

Age Hypert Scanabn Deathmi
o1 < 70 no no no
o2 > 70 no no no
o3 > 70 yes yes yes
o4 > 70 yes no yes
o5 > 70 yes no no
o6 > 70 yes no no
o7 < 70 yes yes no
o8 < 70 yes yes yes

¬deathmi(<70, no, no).
deathmi(>70, yes, yes).
deathmi(>70, yes, no).

...
We stress that expressions like “<70”, used as arguments of a predicate,

should be understood as constants.
It is easy to see that the indiscernibility classes

E1 = {o4, o5, o6} ,
E2 = {o7, o8}

are in the boundary region.
In order to reduce the boundary region, a different set of condition attributes

can be considered for some of these indiscernibility classes (in the boundary
area), i.e. the new set of attributes considered for one class may be different from
the set of attributes considered for another indiscernibility class in the boundary.
The new combination of attributes may have been defined by experts in the field
of application. It could also be the case that for some other indiscernibility classes
the same attributes as in the original table have been considered, but increased
discretization precision of the condition attributes has been applied to each of
these classes, possibly with different cut-points for each of them. Let us illustrate
these ideas with the table above.

Suppose that experts decided to consider a different set of attributes for
patients belonging to E1: instead of the age, it was considered whether the
patient was a smoker. For patients in E2 only different discretization for the Age
attribute was applied.

As the reader can see from tables 4 and 5, the boundary region has been
reduced to one indiscernibility class with two patients only, E3 = {o4, o6}.

The decision tables 4 and 5 can be represented by the following facts. Note
that each decision table is recorded under a different predicate name (deathmi,
deathmi1, and deathmi2).

deathmi1(yes, no, yes). ¬deathmi2(<40, yes, yes).
¬deathmi1(yes, no, no). deathmi2(>40, yes, yes).
¬deathmi1(yes, no, yes).
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Table 4. Decison table associated with class E1

Hypert Scanabn Smoke Deathmi
o4 yes no yes yes
o5 yes no no no
o6 yes no yes no

Table 5. Decison table associated with class E2

Age Hypert Scanabn Deathmi

o7 < 40 yes yes no
o8 > 40 yes yes yes

Putting together all the above decision tables, we create a new rough relation
shown in table 6. It corresponds to the initial decision table Deathmi with a
reduced boundary, by integrating tables 4 and 5. Using rough clauses, the rough
relation corresponding to this table can be easily encoded. Predicate deathmi3
denotes this rough relation.

Table 6. Decision table obtained by integrating tables 4 and 5 with table 3

Age Hypert Scanabn Smoke Deathmi

o1 < 70 no no null no
o2 > 70 no no null no
o3 > 70 yes yes null yes
o4 null yes no yes yes
o5 null yes no no no
o6 null yes no yes no
o7 < 40 yes yes null no
o8 > 40 yes yes null yes

(1) deathmi3(Age,Hypert,Scanabn,null) :- deathmi(Age,Hypert,Scanabn).
(2) ¬deathmi3(Age,Hypert,Scanabn,null) :- ¬deathmi(Age,Hypert,Scanabn).
(3) deathmi3(null,Hypert,Scanabn,Smoke) :- deathmi1(Hypert,Scanabn,Smoke).
(4) ¬deathmi3(null,Hypert,Scanabn,Smoke) :- ¬deathmi1(Hypert,Scanabn,Smoke).
(5) deathmi3(Age,Hypert,Scanabn,null) :- deathmi2(Age,Hypert,Scanabn).
(6) ¬deathmi3(Age,Hypert,Scanabn,null) :- ¬deathmi2(Age,Hypert,Scanabn).

As we can see in this example, it is possible that some indiscernibility classes
in the boundary region have been split into new classes (for instance, E1 =
{o4, o5, o6} was split into E11 = {o4, o6} and E12 = {o5}) and that some of them
are still in the boundary region (E11 = {o4, o6}). Then, the same idea could be
applied once more generating another layer of decision tables. �

A slightly different method (also proposed in [51]) for reducing the boundary
region is obtained by treating the whole subset of the universe corresponding to
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the boundary as a new domain by itself. Thus, a new decision table is associated
with this subset of the universe forming a new layer. However, in this case each
new layer has one table only and, consequently, we get a hierarchical linear
structure of decision tables.

The following example shows how a linear-structured hierarchy of decision
tables could be encoded in our language.

Example 29. Consider the decision table 3 of example 28. The whole boundary
region is treated as new domain by itself and we associate with it a new deci-
sion table. In this case the hypertension attribute was replaced by the sex of
the patient and one more condition attribute indicating whether the patient is
a smoker was considered. The aim is that when considering these new set of
attributes, the boundary region will be reduced (or even eliminated).

Table 7. Decison table associated with the boundary region of table 3

Age Scanabn Sex Smoke Deathmi
o4 > 70 no M yes yes
o5 > 70 no F no no
o6 > 70 no M no no
o7 < 70 yes M yes no
o8 < 70 yes M yes yes

Looking at the table 7, we see that the boundary has been reduced to two
objects E3 = {o7, o8}. Experts decided to try a different discretization for the
age attribute, with the aim to eventually eliminate the boundary region. Thus,
another decision table (see table 8) was associated with the boundary of table 7.

Table 8. Decison table associated with the boundary of table 7

Age Scanabn Sex Smoke Deathmi
o7 < 40 yes M yes no
o8 > 40 yes M yes yes

Decision tables 7 and 8 are represented in our language as a set of facts under
predicates deathmi1 and deathmi2, respectively.

deathmi1(>70, no, M, yes). ¬deathmi2(<40, yes, M, yes).
¬deathmi1(>70, no, F, no). deathmi2(>40, yes, M, yes).
¬deathmi1(>70, no, M, no). ¬deathmi1(<70, yes, M, yes).
deathmi1(<70, yes, M, yes).

The relation between the decision tables 3, 7, and 8, a hierarchical linear
structure, can be encoded using rough clauses. All these decision tables are
related to the same rough set (relation) that we designate by predicate deathmi3.
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(1) deathmi3(Age,Hypert,Scanabn,null,null) :- deathmi(Age,Hypert,Scanabn).
(2) ¬deathmi3(Age,Hypert,Scanabn,null,null) :- ¬deathmi(Age,Hypert,Scanabn).
(3) deathmi3(Age,null,Scanabn,Sex,Smoke) :- ¬deathmi1(Age,Scanabn,Sex,Smoke).
(4) ¬deathmi3(Age,null,Scanabn,Sex,Smoke) :- ¬deathmi1(Age,Scanabn,Sex,Smoke).
(5) deathmi3(Age,null,Scanabn,Sex,Smoke) :- deathmi2(Age,Scanabn,Sex,Smoke).
(6) ¬deathmi3(Age,null,Scanabn,Sex,Smoke) :- ¬deathmi2(Age,Scanabn,Sex,Smoke).

When considering a graphical interface, possibly showing the hierarchical
structure of the tables, the clauses above could be generated automatically.
Moreover, the graphical interface could also hide those predicate arguments cor-
responding to attributes with null value.

5.2 Avoiding Expensive Tests

In many practical applications, the attribute values correspond to the outcome
of a certain test applied to objects of the universe (e.g. a medical test performed
on patients). Thus, we may intuitively associate with each attribute a cost,
corresponding to the cost of the test that must be performed. Obviously, some
attributes may be more expensive than others. For instance, a medical test may
be considered expensive because it requires the use of expensive equipment, or
because it may cause a lot of discomfort to the patient, or because in general
the underlying procedure is expensive.

Given an object o of the universe U and, based on the values of a set of
attributes A, a certain decision d is taken (e.g. whether a patient suffers from a
certain disease). This information, for each object, can be thought as recorded in
the form of a decision table DA = (U, A, d). Assume that a set of attributes B ⊂
A has been identified as being expensive and, therefore, desirable to avoid. We
would like to identify those objects o for which the knowledge about attributes
B is absolutely necessary for making a decision, i.e. for determining d(o).

The problem described has been studied in [3] and following the approach
suggested there, identification of the above mentioned set of objects requires
monitoring changes in the boundary of DA (the rough relation defined by deci-
sion table DA) when considering only the set of attributes A \B (i.e. removing
expensive tests B). Next, we summarize the main idea described in [3].

Given two sets A and B, the expression A \B denotes set difference.
Let DA = (U, A, d) be a decision table, with a binary decision attribute, and

[t] denote the set of objects belonging to the indiscernibility class described by
tuple t. If β is a set of tuples then the set of objects described by the tuples
belonging to β is given by

obj(β) =
⋃
t∈β

[t] .

Assume also that DA\B = (U, A \ B, d) corresponds to the decision table DA

without attributes B (i.e. it is a projection of table DA). When considering a
subset A \B of attributes, we have that

RA ⊆ RA\B ,
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where RA and RA\B are the indiscernibility relations induced by decision tables
DA and DA\B, respectively. Intuitively, this means that when considering the set
of attributes A\B, several indiscernibility classes may be merged into one single
class. Thus, when considering less attributes, the approximation space may be
formed by a smaller number of larger indiscernibility classes. Consequently, the
number of objects belonging to obj(DA) tends to decrease while the number of
objects in obj(DA) tends to increase. Hence, it can also be easily concluded that

obj(DA\B) ⊆ obj(DA) and obj(¬DA\B) ⊆ obj(¬DA) .

When considering the reduced set of attributes A\B, the number of objects in
the boundary region of DA also increases, since some indiscernibility classes previ-
ously belonging to ¬DA or belonging to DA have now migrated to the new bound-
ary. Intuitively, characterization of these indiscernibility classes defines the set of
objects for which knowledge about attributes B is crucial for making a decision.
For all other objects, knowledge about B will not change the region, ¬DA, DA or
DA, where they alreadybelong.The set ofmigrating objects can then be defined as

Migrate(A, B, D) = (obj(DA\B) ∩ obj(DA))
∪

(obj(DA\B) ∩ obj(¬DA)). (1)

Although the definition above looks different from the one used in [3], they
are both equivalent. However, the formulation presented here is more suitable in
the context of our framework, as the reader will see soon.

Obviously, the set on non-migrating objects is defined as

¬Migrate(A, B, D) = obj(DA\B) ∪ obj(¬DA\B) ∪ obj(DA). (2)

It is important to note that the set of (non)migrating objects is rough, if only
attributes A\B are considered. Otherwise, if all attributes A are considered then
the set is crisp. The example 30 illustrates this point.

The migration set enables us to find those objects that require the results of
the tests associated with attributes B to be known in order to be able to make
a decision. Thus, we aim at finding a description of this set of objects using
attributes A \ B. This description can then be applied to new (unseen) objects
to decide whether tests B should be performed.

In practice, for all objects falling in the upper approximation of the migrate
set (i.e. conforming to the description of the upper approximation), tests associ-
ated with attributes B could be requested. However, if the upper approximation
gets very large when attributes B are removed, then not that much is gained.
This points to the need of associating some numerical measures with the upper
and lower approximations giving some information about the number of objects
they might contain. This issue is discussed further in section 6.

Both expressions above, the set of migrating and non-migrating objects, can
be translated to a set of rough clauses. These rough clauses permit the user to
discover a set of tuples describing those objects belonging to Migrate(A, B, D)
(¬Migrate(A, B, D)). The next example illustrates this application.
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Table 9. Decision table of patients with heart problems

Age Test A1 Test A2 Deathmi
> 70 b1 c1 no
> 70 b1 c2 yes
> 70 b1 c2 no

> 40 < 70 b2 c3 yes
> 40 < 70 b2 c4 no

< 40 b3 c5 yes
< 40 b3 c5 no
< 40 b3 c5 no
< 40 b4 c3 yes

Example 30. Consider the decision tableDeathmi=(U, {Age, Test A1, Test A2},
Deathmi), where U is a set of patients with heart problems. Assume that the
condition attributes A1 and A2 represent two medical tests. Moreover, test A2 is
usually considered as being expensive, and therefore, desirable to avoid.

From table 9, it is easy to see that

(i) {〈>70, b1, c1〉 , 〈>40 <70, b2, c4〉} ⊆ ¬Deathmi;
(ii) {〈>40 <70, b2, c3〉 , 〈<40, b4, c3〉} ⊆ Deathmi;
(iii) {〈>70, b1, c2〉 , 〈<40, b3, c5〉} ⊆ Deathmi;

The table is encoded as facts in our language.

¬deathmi(>70, b1, c1). deathmi(>70, b1, c2).
¬deathmi(>70, b1, c2). deathmi(>40 <70, b2, c3).
¬deathmi(>40 <70, b2, c4). deathmi(<40, b3, c5).
¬deathmi(<40, b3, c5). deathmi(<40, b4, c3).

Moreover, the following clauses monitor the impact in the boundary region of
not considering test A2. Basically, these clauses translate the set of migrating and
non-migrating patients represented by formulas (1) and (2) above. The predicate
d denotes the rough relation D corresponding to the projection in the first two
attributes of Deathmi (table 9).

(1) d(Age,Test_A1) :- deathmi(Age,Test_A1,Test_A2).

(2) ¬d(Age,Test_A1) :- ¬deathmi(Age,Test_A1,Test_A2).
(3) migrate(Age,Test_A1) :- d(Age,Test_A1),

deathmi(Age,Test_A1,Test_A2).

(4) migrate(Age,Test_A1) :- d(Age,Test_A1),
¬deathmi(Age,Test_A1,Test_A2).

(5) ¬migrate(Age,Test_A1) :- ¬d(Age,Test_A1).
(6) ¬migrate(Age,Test_A1) :- d(Age,Test_A1).

(7) ¬migrate(Age,Test_A1) :- deathmi(Age,Test_A1,Test_A2).
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Thus, by clauses (1) and (2), we have that {〈>70, b1〉, 〈>40 <70, b2〉,
〈<40, b3〉} ⊆ D. By clause (4), 〈>70, b1〉 ∈ Migrate and it corresponds to
a (class of) patient(s) that migrated from the lower approximation of rough
set ¬Deathmi. But by clause (7) and taking into account (iii), 〈>70, b1〉 ∈
¬Migrate. Thus, 〈>70, b1〉 is in the boundary of relation migrate, conse-
quently, showing that the set of migrating patients is rough in this case.

By clause (3) or (4), 〈>40 <70, b2〉 ∈ Migrate and it corresponds to the
merging of two indiscernibility classes, one originating from Deathmi and the
other from ¬Deathmi.

By clause (6), 〈<40, b4〉 ∈ ¬Migrate. This indiscernibility class remains
in the lower approximation, even after dropping attribute A2. Thus, nothing is
gained in performing the expensive test for these patients.

By clause (7), 〈<40, b3〉 ∈ ¬Migrate and it corresponds to a non-migrating
(class of) patient(s) that remained in the boundary after dropping the attribute
corresponding to the 3rd argument of deathmi, i.e. the expensive medical test.

Let P be the rough program obtained from the set of facts encoding decision
table 9 together with the rough clauses (1)−(7). The query (migrate(Age,A1),P)
requests a description of all patients that may migrate when the expensive test is
dropped. The answer is the set of substitutions θ,

θ = {{Age/>40 <70, A1/b2}, {Age/>70, A1/b1}} ,

indicating that the tuples 〈>40 <70, b2〉 and 〈>70, b1〉 belong to the upper
approximation of rough relation denoted by migrate (i.e. Migrate). We may
then conclude that for a new patient whose age is between 40 and 70 and who
obtained the result b2 for the test A1, it is advisable to perform the medical test
A2. We may also ask

– “For which patients older than 70 years it is worth to perform test A2?”

This can be translated to the rough query (migrate(>70,A1), P). As answer
we get the singleton {{A1/b1}} stating that only patients with outcome b1 for
test A1 should be submitted to test A2.

Another relevant question is

– “Which patients may not be submitted to test A2?”

It can be represented by the rough query (¬migrate(Age,A1), P). As answer
we get the set of substitutions θ′

θ′ = {{Age/<40, A1/b3}, {Age/<40, A1/b4}, {Age/>70, A1/b1}} .

This answer can be interpreted as stating that if a patient conforms to the case

((Age < 40) ∧ (Test A1 = b3)) ∨
((Age < 40) ∧ (Test A1 = b4)) ∨
((Age > 70) ∧ (Test A1 = b1))

then test A2 may be rather irrelevant. �
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In [3], the migration set is defined in a different way.

Migrate(A, B, D) = obj(DA\B) ∩ (U \ obj(DA)) . (3)

Note that U is the set of all objects represented in the decision tables DA and
DA\B. Thus,

U \ obj(DA) = obj(DA) ∪ obj(¬DA) .

This shows that expressions (1) and (3) above are equivalent. Based on (3), a
new decision table D1 = (U, A \B, d1) is defined in [3]:

d1(o) =
{
yes o ∈ Migrate(A, B, D)
no otherwise

A specific program then takes as input the decision table DA = (U, A, d) and
creates as output table D1 = (U, A \B, d1), as defined above.

What we wish to emphasize here is that the language we propose is a general
framework to create new rough relations and to describe them declaratively in
terms of other rough relations. This contrasts with the way the problem was tack-
led in [3], since there a specific program to create a specific rough relation had to
be built.

5.3 Representing Default Knowledge

In this section, we show through a couple of examples that we can also easily
express default knowledge in our language and, as in system CAKE [16], define
priorities between defaults.

Intuitively, default knowledge corresponds to conclusions assumed to be true
in general (we may also call it common sense knowledge), even if we do not have
a direct evidence of their truth. For example, we assume that

– “If someone is driving a car then he has a driving licence.”

However, this does not always have to be true. We may have information that
invalidates this conclusion by default (e.g. the person is less than 18 years old).

Representation of default knowledge has been addressed by Reiter who has
proposed default logic [52]. The following example shows how normal default
rules of the default logic can be encoded in our formalism. A formal comparison
of default logic with our formalism is out of the scope of this thesis.

Example 31. Consider table 10

Distance = (U, {Dif, Road Conditions, Physical Distance}, Distance).
This table takes a set of traffic situations U characterized by

– the difference between the actual speed of a vehicle and the speed limit at
the road where the vehicle circulates (attribute Dif);

– road conditions (dry, wet, snow, or ice); and
– the distance between the vehicle and the one in front of it.
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Table 10. Decision table classifying vehicle distances

Dif Road Conditions Physical Distance Distance
10 dry 9 medium
10 ice 15 medium
10 ice 12 small
30 wet 30 large

−10 snow 9 medium
−10 snow 9 small

This data could have been acquired from a number of different sources. For in-
stance, road conditions could have been obtained by sensors, a camera records
traffic images, while speed limit in roads are obtained from a database. Then, one
or more experts in traffic safety, decide for each situation whether the distance
between vehicles is large, medium, or small. It is easy to accept that this clas-
sification depends on the attributes mentioned above. It may also happen that,
given the same traffic situation, different experts classify differently the distance
(i.e. one expert might say that the distance is small and another consider it as
medium).

Note that the decision attribute Distance is not binary in this case, since it
may assume the values small, medium, or large. However, it is easy to see this
table as three decision tables defining the (rough) concepts of small, medium,
and large distance. Moreover, this idea can be easily expressed in our language
as rough clauses (1)− (9) together with the facts under predicate p (see below).
The whole table is encoded as a set of positive facts.

p(10, dry, 9, medium). p(10, ice, 15, medium).
p(10, ice, 12, small). p(30, wet, 30, large).
p(-10, snow, 9, medium). p(-10, snow, 9, small).

(1) large(X1,X2,X3):- p(X1,X2,X3,large).
(2) ¬large(X1,X2,X3):- medium(X1,X2,X3).
(3) ¬large(X1,X2,X3):- small(X1,X2,X3).

(4) medium(X1,X2,X3):- p(X1,X2,X3,medium).
(5) ¬medium(X1,X2,X3) :- small(X1,X2,X3).
(6) ¬medium(X1,X2,X3) :- large(X1,X2,X3).

(7) small(X1,X2,X3):- p(X1,X2,X3,small).
(8) ¬small(X1,X2,X3):- medium(X1,X2,X3).
(9) ¬small(X1,X2,X3):- large(X1,X2,X3).

Another decision table, see table 11,

Danger = (U, {Dif, Road Conditions, Distance}, Danger) ,

shows whether a number of traffic situations has been classified as dangerous by
an expert. As usual, this table is represented as a set of facts.
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Table 11. Decision table classifying the danger of several traffic situations

Dif Road Conditions Distance Danger

10 dry large no
20 ice small yes
0 wet medium no
10 wet medium yes
10 wet medium no

−10 snow medium yes

¬danger(10, dry, large). danger(20, ice, small).
¬danger(0, wet, medium). danger(10, wet, medium).
¬danger(10, wet, medium). danger(-10, snow, medium).

We also would like to add some common sense knowledge to the set of facts
above. For instance, consider the following statement expressing that usually
people assume by default that small distances between two vehicles yield to a
dangerous situation.

– “If the distance between two vehicles is small, then we may assume that the
situation is dangerous (unless there is evidence to the contrary ).”

This statement could be expressed by the following (normal) default rule,
where the variables should be understood as universally quantified.

small(X1, X2, X3) : danger(X1, X2, small)
danger(X1, X2, small)

. (1)

The default rule (1) can be formally read as follows. If in a certain situa-
tion small(x1, x2, x3) holds (i.e. it can be proved) and danger(x1, x2, small)
is consistent with the current knowledge, then (by default) we assume that
danger(x1, x2, small) holds, too. Note that danger(x1, x2, small) is consistent
with the current knowledge, if we have no evidence that ¬danger(x1, x2, small)
is true. Thus, no contradiction with the available knowledge arises by the fact
that danger(x1, x2, small) is assumed.

Moreover, consider that we also want to express the next common sense
(default) idea.

– “If the distance between two vehicles is not small, then we may assume that
the situation is not dangerous (unless it can be proved otherwise).”

This statement could be expressed in default logic by default rules (2) and (3).

medium(X1, X2, X3) : ¬danger(X1, X2, medium)
¬danger(X1, X2, medium)

, (2)

large(X1, X2, X3) : ¬danger(X1, X2, large)
¬danger(X1, X2, large)

. (3)
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Our next step is to show that the above default rules can be expressed in the
proposed language.

(10) danger1(X1,X2,small):- small(X1,X2,X3), danger?(X1,X2,small).

(11) ¬danger1(X1,X2,medium):- medium(X1,X2,X3), danger?(X1,X2,medium).

(12) ¬danger1(X1,X2,large):- large(X1,X2,X3), danger?(X1,X2,large).

Rough clauses (10)− (12) express the default rules (1)−(3), respectively. For
instance, consider rough clause (10). The testing literal

danger?(X1,X2,small)

in its body allows to test whether a tuple 〈c1, c2, small〉 is undefined, i.e.
〈c1, c2, small〉 �∈ Danger and 〈c1, c2, small〉 �∈ ¬Danger. If 〈c1, c2, small〉 ∈
Danger then rough clause (10) is not applicable because no new information
would be obtained. If 〈c1, c2, small〉 ∈ ¬Danger then rough clause (10) is not
applicable because its application would lead to a conclusion that would not be
consistent with the available knowledge.

Finally, we put together the knowledge coming from the table Danger with
the default knowledge. To achieve this we define a new rough relation (clauses
(13)−(16)) and use a new predicate name (danger2).

(13) danger2(X1,X2,X3):- danger(X1,X2,X3).

(14) danger2(X1,X2,X3):- danger1(X1,X2,X3).

(15) ¬danger2(X1,X2,X3):- ¬danger(X1,X2,X3).
(16) ¬danger2(X1,X2,X3):- ¬danger1(X1,X2,X3).

From the fifth row of the first table we see that medium(-10,snow,9) holds.
But, the tuple 〈-10,snow,medium〉 corresponds to a dangerous traffic situation
(see last line of the second table). Thus, rough clause (11) (encoding default
rule (2)) cannot be applied because danger(-10,snow,medium) holds and con-
sequently 〈-10,snow,medium〉 is not undefined with respect to rough relation
Danger.

Note that small(-10,snow,9) holds (last line of table Distance) but the
tuple 〈-10,snow,small〉 does not exist in the table Danger (i.e. thus, it does
not correspond to a traffic situation known as non-dangerous). Hence, from rough
clause (10) (corresponding to default rule (1)), we conclude danger
(-10,snow,small) . �

Next example, illustrates the use of priorities between default rules.

Example 32. Consider once more the (decision) tables of the previous example
and default rules (1) and (2). Moreover, we also assume that

– “If distance between vehicles is medium and the road conditions are icy,
then we may conclude that the traffic situation is dangerous (unless it can
be proved otherwise).”
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Using a default rule, we could express this statement as

medium(X1, ice, X3) : danger(X1, ice, medium)
danger(X1, ice, medium)

. (4)

Informally, looking at the second row of the first table, we conclude that
medium(10,ice,15) holds. Moreover, from the second table we can conclude
that the tuple 〈10,ice,medium〉 is not considered as a dangerous (or non-
dangerous) situation (actually, there is no such tuple in the second table). Thus,
default rule (2) can be applied and we conclude that ¬danger(10,ice,medium)
also holds. Similarly, default rule (4) can be applied, to conclude that danger
(10,ice,medium) holds, too.

Hence, from this example, we conclude that by applying different default
rules, we may obtain contradictory information. Although this may be accept-
able in some situations (it is a case belonging to the boundary region), in other
situations we may wish to express priorities between several applicable defaults.
For instance, if both default rules (2) and (4) are applicable, then we may
give priority to (4) and block application of default (2) for safety reasons. To
achieve this idea we first define a new rough relation expressing the default rules
(1) and (4).

(10) danger1(X1,X2,small):- small(X1,X2,X3), danger?(X1,X2,small).

(11) danger1(X1,ice,medium):- medium(X1,ice,X3), danger?(X1,ice,medium).

We put then together the knowledge coming from the table Danger with the
default knowledge. The last rough clause, (15), encodes default rule (2) and gives
it lower priority than rough clause (11) (encoding default rule (4)).

(12) danger2(X1,X2,X3):- danger(X1,X2,X3).

(13) ¬danger2(X1,X2,X3):- ¬danger(X1,X2,X3).
(14) danger2(X1,X2,X3):- danger1(X1,X2,X3).

(15) ¬danger2(X1,X2,medium):- medium(X1,X2,X3),
danger?(X1,X2,medium), danger1?(X1,X2,medium).

6 The Rough Knowledge Base System

We present the principles of a system, called Rough Knowledge Base System
(RKBS). The system is available through a Web page

http://www.ida.liu.se/rkbs .

It can reason about rough relations defined in a rough program and answer
queries. The implementation was done by R. Andersson as a master thesis
[23,53]. The ideas on which this implementation is based were already previ-
ously explored in a prototype written by A. Vitória and C. V. Damásio.

The language supported by RKBS (to encode rough programs) extends that
of section 4 by associating quantitative measures with each tuple of a rough
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relation [22]. However, this system may not be able to compute answers for all
queries to a recursive rough program.

We believe that several interesting data mining applications using rough sets
could be encoded in our language. For instance, the example discussed in section
5.2 illustrates an application of our language to a problem in the data mining
field. Note that quantitative measures are an important aspect in data mining
applications while recursion does not seem to be required by many of them. For
this reason, we have extended our language to support the former feature while
the latter is not yet supported.

A distinction must also be made between the compilation technique pre-
sented in section 4 and the compilation of rough programs with quantitative
measures. The latter generates extended logic programs which require aggregate
functions6, while these functions are not needed by the former. RKBS compiles
rough programs with quantitative measures to standard Prolog [33,46] programs.
This opens for the use of Prolog built-in predicates and structured terms like lists.
Note that each extended logic program, obtained by compiling a non-recursive
rough program encoded in the language discussed in section 4, corresponds also
to a Prolog program.

Another reason for considering only non-recursive rough programs is that
the semantics of aggregates and stable models has been an open problem under
investigation [54,55]. We avoid this problem because each non-recursive rough
program with quantitative measures can be compiled to a logic program with at
most one paraconsistent stable model.

The user interface of the system has been implemented in Java [56]. We have
chosen XSB Prolog system [57] to write the compiler and to reason with the
compiled programs for the following reasons. First, XSB Prolog supports defi-
nite clause grammars. This fact simplifies the writing of a parser and compiler
for a rough program. Second, XSB provides ISO-predicates such as setof/3 and
findall/3. These predicates can be used to implement aggregate functions, like
sum and count. A third reason is that XSB allows the use of a technique called
tabling when computing answers to queries for logic programs. Due to this fact,
it is possible to obtain answers to queries for a large class of recursive logic pro-
grams, while more traditional Prolog systems based on SLDNF-resolution [32]
would simply loop forever. This class corresponds to non-floundering logic pro-
grams that enjoy the bounded term-depth property [58,59,60,61]. An important
well-known subclass of this class of programs is Datalog. This aspect opens the
future possibility of easily extending our system to applications that require a
limited use of recursive rough programs. Fourth, version 2.6 of XSB has the
XASP package that provides an efficient interface to Smodels [42,49,43] from
XSB system. Note that XSB cannot be used to compute stable models, while
SModels can do it. Thus, this connection between both systems could make pos-
sible to extend RKBS to support any recursive rough program. Finally, XSB
Prolog is free and well-documented software.

6 sum and count from SQL are examples of aggregate functions.
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Since we are presenting work in progress, we have restricted ourselves to the
implementation issues of the language supported by RKBS. Hence, we do not
formally present the declarative semantics for this language, as we did for the
language introduced in chaper 4. A fuller description of the declarative seman-
tics of rough programs with quantitative measures will be submitted for later
publication.

As for the language discussed in section 4, predicates of a rough program
supported by RKBS denote rough sets. However, the notion of rough set has
been extended to account for quantitative measures. In section 6.1, we extend
the notion of rough set and review some quantitative measures. We then present
in section 6.2 the language supported by our system. Section 6.3 is devoted to
the compilation of (non-recursive) rough programs with quantitative measures.
The query language of the system is discussed in section 6.4. Finally, we describe
some examples in section 6.5 .

6.1 Rough Sets Revisited

This section presents an extension of the rough set notion discussed previously
in section 2 that explicitly takes into account quantitative measures. We then
review some quantitative measures associated with rough sets in the context of
our framework.

Recall that the set of values associated with an attribute a is denoted as Va.

Definition 41. Given a set of attributes A = {a1, . . . , an}, a rough set (or
rough relation) S is a pair of sets (S,¬S) satisfying conditions (i) and (ii).

(i) The elements of sets S and ¬S are expressions of the form

〈t1, . . . , tn〉 : k ,

where 〈t1, . . . , tn〉 ∈
∏

ai∈A Vai and k is an integer larger than zero.
(ii) The following implications are true.

〈t1, . . . , tn〉 : k ∈ S ⇒ ∀k′ �= k(〈t1, . . . , tn〉 : k′ �∈ S) ,
〈t1, . . . , tn〉 : k ∈ ¬S ⇒ ∀k′ �= k(〈t1, . . . , tn〉 : k′ �∈ ¬S) .

The rough complement of a rough set S = (S,¬S) is the rough set ¬S = (¬S, S).

For simplicity, we denote by t a general tuple 〈t1, . . . , tn〉 and by [t] the
indiscernibility class described by tuple t. Moreover, we may also write t ∈ S
(t ∈ S or t ∈ S or t ∈ ¬S or t ∈ ¬S or ¬S), if the associated quantitative
measure k is irrelevant.

Intuitively, an element t : k ∈ S (t : k ∈ ¬S) indicates that the indiscernibility
class described by the tuple t belongs to the upper approximation of the rough
set S (¬S) and that this class contains k > 0 individuals that are positive
examples of the concept described by S (¬S). Lower approximation of rough set
S, represented S, is then defined as

S = {t : k1 ∈ S | ∀k2 > 0 (t : k2 �∈ ¬S)}
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and the boundary region, represented S, is defined as

S = {t : k1 : k2 | ∃k1, k2 > 0 (t : k1 ∈ S and t : k2 ∈ ¬S)} .

A rough set D = (D,¬D), as defined above, can be seen as an alternative
representation of a decision table D = (U, A, d). An expression t : k1 ∈ D cor-
responds to k1 > 0 lines t of the table with positive outcome for the decision
attribute, while t : k2 ∈ ¬D corresponds to k2 > 0 lines t with negative out-
come for the decision attribute. The fact that we consider only binary decision
attributes is not a restriction in practice, as shown in section 5 (see example 31).

Recall that in our work a rough set is not defined in terms of individuals of
the universe, but instead in terms of the tuples that describe each indiscernibility
class to which the individuals belong.

Quantitative Measures. Let a tuple t be the description of an indiscernibility
class [t] of a decision table D = (U, A, d). Assume also that |d| (|¬d|) is the num-
ber of individuals (or lines of the table) that have positive (negative) outcome
for the decision attribute d. Thus, |d|+ |¬d| is the number of objects (lines) in
the corresponding table. The following quantitative measures are then defined.

• The support of d(t), denoted supp(d(t)), corresponds to the number of in-
dividuals in the indiscernibility class [t] that are positive examples. Thus, if
t : k ∈ D then supp(d(t)) = k.

• The strength of d(t), denoted strength(d(t)), indicates how often individuals
in the indiscernibility class [t] have positive outcome for the decision attribute
d. Thus, if t : k ∈ D then strength(d(t)) = k

|d|+|¬d| .
• The accuracy of d(t), denoted acc(d(t)), corresponds to the conditional prob-

ability Pr(d(i) = yes | i ∈ [t]). By other words, acc(d(t)) expresses how
trustworthy the indiscernibility class described by t is in drawing the con-
clusion that the outcome for the decision attribute d is positive. Thus, if
t : k1 ∈ D and t : k2 ∈ ¬D then, acc(d(t)) = k1

k1+k2
.

• The coverage of d(t), denoted cov(d(t)), corresponds to the conditional prob-
ability Pr(i ∈ [t] | d(i) = yes). By other words, cov(d(t)) expresses how well
the indiscernibility class [t] describes the positive decision class. Thus, if
t : k ∈ D then cov(d(t)) = k

|d| .

Obviously, the same measures can also be defined for ¬d(t). For instance, if
t : k1 ∈ D and t : k2 ∈ ¬D then acc(¬d(t)) = k2

k1+k2
. Moreover, supp(d(t)) +

supp(¬d(t)) = |[t]| and acc(d(t)) + acc(¬d(t)) = 1.
In section 2.4, we introduce the notions of support, strength, accuracy, and

coverage for decision rules. Let 〈t1, . . . , tn〉 be a tuple describing an indiscerni-
bility class of a rough relation D such that Ai = attD(i), with 1 ≤ i ≤ n. If we
interpret any statement

〈t1, . . . , tn〉 ∈ D or
〈t1, . . . , , tn〉 ∈ ¬D

as a decision rule

(A1 = t1) ∧ . . . ∧ (An = tn) −→ (d = yes) or
(A1 = t1) ∧ . . . ∧ (An = tn) −→ (d = no),
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respectively, then we can easily see that the quantitative measures presented
above correspond to the ones discussed in section 2.4.

6.2 A Language with Numerical Measures

In this section, we extend the language presented in section 4 with quantitative
measures. We add now to the language the capability to keep track of the num-
ber of individuals that belong to each indiscernibility class of a rough relation.
Moreover, quantitative measures such us support, strength, accuracy, and cov-
erage, discussed in section 6.1, can be used to define a rough relation. We start
by an informal introduction of the language.

A rough program is a set of rough facts and rough clauses. Rough facts encode
rough relations defined explicitly by a decision table, while rough clauses are used
to define implicitly new rough relations obtained by combining different regions
(e.g. lower approximation, upper approximation, and boundary) of other rough
relations. For instance,

r(c1, c2, c3) : 5. and
¬r(c1, c2, c3) : 8.

are two rough facts. The first says that the indiscernibility class described by the
tuple of attribute values 〈c1, c2, c3〉 has 5 individuals. Moreover, these individuals
are positive examples of the concept represented by the rough relation denoted
by r, designated as R. The second rough fact states that the same indiscernibility
class has 8 individuals that are negative examples of R (or positive examples of
¬R). Next, we give an example of a rough clause in the extended language.

p(X1, X2) :-[α, F ] q(X1, X2),¬r(X1, X2).

The expression to the right of :-[α, F ] (i.e. q(X1, X2),¬r(X1, X2)) is called
the body and the expression to the left (i.e. p(X1, X2)) is called the head of the
rough clause. Moreover, α should be a rational number between 0 and 1 and F
should be an associative and commutative binary function. (e.g. the minimum).
If quantitative measures are ignored, the rough clause above can informally be
interpreted in a way similar to the interpretation of rough clauses discussed in
section 4. The expression q(X1, X2) can be seen as representing an indiscernibil-
ity class belonging to the lower approximation of rough relation Q, denoted by
q. Note that X1 and X2 are variables that can be thought as representing any
attribute value. Hence, the body of the rule above captures those indiscernibility
classes [〈c1, c2〉] that are in the intersection of the lower approximation of the
rough relation Q with the upper approximation of rough relation ¬R. Moreover,
the rough rule above expresses that each of these indiscernibility classes belongs
to the upper approximation of rough relation P , denoted by p.

Let us now intuitively explain how quantitative information is handled. As-
sume that there are two indiscernibility classes described by tuple 〈c1, c2〉: one in-
discernibility class is part of Q and the other indiscernibility class belongs to ¬R.
Function F is then used to combine supp(q(c1, c2)) with the supp(¬r(c1, c2)).
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Hence, the rough clause above states that, given a tuple 〈c1, c2〉 describing an
indiscernibility class, if

〈c1, c2〉 : k2 ∈ Q and 〈c1, c2〉 : k3 ∈ ¬R

then 〈c1, c2〉 : k1 ∈ P , where

supp(p(c1, c2)) = k1 ≥ *α× F (k2, k3)+ .

Note that the support k1 should be computed by taking into account all clauses
of a rough program, as shown in example 33. This is the reason for writing
k1 ≥ *α× F (k2, k3)+ instead of writing k1 = *α× F (k2, k3)+.

In contrast with the language presented in section 4, the head of a rough
clause cannot refer to the boundary region of a rough relation, i.e. an expression
as p(X1, X2) could not be the head of a rough clause. However, this is not a real
restriction as shown in example 33. If rough literals referring to the boundary
region were allowed in the head of a rough clause then we could not know how
many individuals computed from the body would be positive examples and how
many would be negative examples. This is the motivation behind this restriction.
Moreover, no testing literals (e.g. l?(t)) can occur in the body of a rough clause,
although this feature could be easily added.

We argue now on the usefulness of having user parameterized rough clauses
H:-[α, F ] B. , where α and F are the parameters. An example illustrating the
importance of parameter α is when the user wants to decrease his trust on certain
data. For example, assume that the user strongly doubts of the reliability of the
information carried by 20% of the examples belonging to any indiscernibility
class only with positive examples of Q and for which the second attribute has
value c. A rough clause like

q1(X, c):-[0.8,−] q(X, c).

could be used to express such doubt. The new predicate q1 denotes the same
rough relation as q except that any indiscernibility class described by a tuple
〈t1, c〉 ∈ Q1 has only 80% of the individuals in the corresponding indiscernibility
class 〈t1, c〉 ∈ Q.

We also think that the way the support information, obtained from the ex-
pressions in the body, should be combined strongly depends on the application.
For instance, if the user wants to represent the join of two decision tables then
parameter F should correspond to the product function. But, if he wants to de-
fine a new rough relation R that captures those indiscernibility classes belonging
to the same region of two rough relations P and Q (i.e. having the same descrip-
tion) then, it might make more sense to use the minimum function. The rough
clauses below could together express this idea.

r(X1, X2) :-[1, min] p(X1, X2), q(X1, X2).
r(X1, X2) :-[1, min] p(X1, X2), q(X1, X2).
¬r(X1, X2) :-[1, min] ¬p(X1, X2),¬q(X1, X2).
¬r(X1, X2) :-[1, min] ¬p(X1, X2),¬q(X1, X2).
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Thus, if t : k1 ∈ P and t : k2 ∈ Q then one may conclude that, for both relations,
there is an indiscernibility class described by tuple t in the lower approximation
and supp(r(t)) ≥ min(k1, k2).

Example 33. We give an example of a rough program P and discuss informally
its meaning.

P = {p(X1, X2) :-[1, min] q(X1, X2),¬r(X1, X2). ,
p(X, c) :-[1,−] q1(X, c). ,
¬p(X, c) :-[1,−] ¬q1(X, c). ,
q(a, c) : 2. ,
r(a, c) : 3. ,¬r(a, c) : 4. ,
q1(a, c) : 3. ,¬q1(a, c) : 7. }

The body of the first rough clause represents the intersection of the lower ap-
proximation of the rough relation Q, denoted by q, with the boundary of rough
relation ¬R, denoted by ¬r. From the facts of P , we get that 〈a, c〉 : 2 ∈ Q and
〈a, c〉 : 4 : 3 ∈ ¬R. Hence, from the first rough clause can be concluded that
supp(p(a, c)) ≥ 1× min(2, 4) (supp(q(a, c)) = 2 and supp(¬r(a, c)) = 4).

The second and third rough clauses together state that if an indiscernibility
class [t] belongs to the boundary of rough relation ¬Q1 and its second attribute
has value c then, [t] also belongs to the boundary of P . Moreover, the same num-
ber of positive and negative examples in [t] should be inherited by rough relation
P (i.e. supp(q1(a, c)) = 3 individuals should be considered as representing posi-
tive examples of P , while supp(¬q1(a, c)) = 7 individuals should be considered
as representing negative examples of P ). Since the body of each of the rough
clauses has only one expression, the choice of function F is irrelevant. This can
be represented by the use of ‘−’ instead of some concrete function.

Putting all together, it can be concluded from P that supp(p(a, c)) = min
(2, 4) + 3 = 5 and supp(¬p(a, c)) = 7.

As this example shows, information concerning an indiscernibility class may
be obtained independently from different rough clauses. For instance, informa-
tion related with indiscernibility class 〈a, c〉 ∈ P is obtained from the three rough
clauses of P . Note that supp(p(a, c)) is computed by summing the support ob-
tained from different rough clauses. �

Another important aspect of the language is the possibility of using quanti-
tative measure expressions in the body of a rough clause. For example,

acc(p(c1, c2)) > acc(¬q(c1, c2)) and
supp(¬p(c1, c2)) > 7

are quantitative measure expressions. The first quantitative measure expression
states that the accuracy of the indiscernibility class described by 〈c1, c2〉 of rough
relation P is larger than the accuracy of the indiscernibility class [〈c1, c2〉] of
rough relation ¬Q. The second states that indiscernibility class [〈c1, c2〉] has
more than 7 individuals with negative outcome for the decision attribute p.
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The next step is to define formally the language supported by RKBS, to
encode rough programs. To this end, we first define the notion of quantitative
measure expression.

Definition 42. Assume that m stands either for supp, or strength, or acc, or
cov and that relOp is one of the relation symbols =, <,≤, >,≥, �=. A quantitative
measure expression is a formula of the form

m(l(t1, . . . , tn)) relOp k or
m(l1(t1, . . . , tn)) relOp m(l2(t1, . . . , tn)) ,

where

– l, l1, and l2 are either p or ¬p, for some predicate symbol p; and
– n ≥ 0; and
– k is a positive rational number.

Note that not all quantitative measure expressions are meaningful. For exam-
ple, acc(q(a, b)) > supp(r(a, b)) is meaningless because it does not make sense
to compare accuracy with support.

Definition 43. A rough clause in RKBS is any expression of the form

H :-[α, F ] B1, . . . , Bi, M1, . . . , Mk. ,

where

– H is either l(t1, . . . , tn) or l(t1, . . . , tn), with n ≥ 0 and l being either p or
¬p, for some predicate symbol p; and

– α is a rational number such that 0 < α ≤ 1; and
– F is a commutative and associative binary function; and
– each Bj is a rough literal, with 1 ≤ j ≤ i; and
– each Mj is a quantitative measure expression such that all variables occurring

in Mj also occur in some rough literal in the body of the rough clause, with
1 ≤ j ≤ k; and

– i, k ≥ 0.

As expected, a rough fact in RKBS is a rough clause with empty body (i.e.
i = k = 0) and a rough program supported by RKBS is a finite set of non-
recursive rough clauses (as defined in 43).

Each predicate occurring in a rough program, supported by RKBS, denotes
a rough relation as defined in section 6.1 (see definition 41).

6.3 Compilation of RKBS Programs

Our system transforms a rough program into a Prolog program, where the special
predicates bagof/3 and findall/3 occur. These predicates are used for the
following purposes.
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– To count the number of individuals in each indiscernibility class of a rough
relation that are positive (negative) examples of the underlying concept.

– To count the number of individuals in the universe of a rough relation D
that have positive (negative) outcome for the decision attribute d (i.e. to
compute |d| and |¬d|).

We first informally introduce those special predicates. We then discuss the
details about the compilation of (non-recursive) rough programs with quantita-
tive measures.

All Solutions Predicates in Prolog. Any standard Prolog system [46] has two
built-in predicates, bagof/3 and findall/3, to collect together all solutions to
a problem. We explain their meaning through a couple of examples.

Example 34. Consider the following (definite) logic program containing a num-
ber of facts about employees and their salaries.

P = {salary(peter, 100). ,
salary(terry, 150). ,
salary(john, 100). ,
salary(susan, 150). ,
who(X, L) :- bagof(Y, salary(Y,X), L).

For instance, the fact salary(peter, 100). states that “Peter’s salary is
100.”.

The query
(who(150, L), P)

requests a list of all employees who earn 150. The answer is the set of substitu-
tions

{{[ terry, susan ]/L}} .

Note that a list of items is represented between square brackets, ‘[’ and ‘]’. Thus,
[ terry, susan ] represent the list with constants terry and susan.

The query
(who(X, L), P)

requests all salaries together with a list of people who earn each salary. The
answer is the set of substitutions

{{100/X, [ peter, jonh ]/L}, {150/X, [ terry, susan ]/L}} . �

The atom bagof(Template, Goal, List) can be interpreted as the “List
of all instances of Template such that Goal is satisfied”. Note that List may
contain duplicates, if the same instance of Template can be proved in several
ways.

Next example illustrates the use of predicate findall.
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Example 35. Consider the following (definite) logic program.

P = {salary(peter, 100). ,
salary(terry, 150). ,
salary(john, 100). ,
salary(susan, 150). ,
allSalaries(L) :- findall(X, salary(Y,X), L). ,
total(T) :- findall(X, salary(Y,X), L), sum(L, T).}

Assume that predicate sum(L, T) has the following meaning: “T is the sum
of all numbers in list L”. For example, the atom sum([ 2, 5, 4 ], 11) is true.
This predicate can be easily defined in Prolog.

The query
(allSalaries(L), P)

requests a list of all salaries paid to the employees. The answer is the set of
substitutions

{{[ 100, 150, 100, 150 ]/L}} .

The query
(total(T), P)

requests the total amount spent in salaries. The answer is the set of substitutions
{{500/T }}. �

An empty list (i.e. a list with no elements) is represented as “[]”. Moreover,
the atom sum([], 0) is always true.

The main difference between

bagof(Template, Goal, List) and
findall(Template, Goal, List)

is that the former may produce as answer a set with several substitutions, if
there are variables that occur in Goal but do not appear in Template, while the
latter produces only singleton answers. A query

(bagof(Template, Goal, List), P)

produces a substitution for each possible instantiation of the variables of Goal
that do not appear in Template.

The Compilation. For each indiscernibility class t of a rough relation R, we
need now to compute the support measures, i.e. supp(r(t)) and supp(¬r(t)).
This point is complicated by the following. By applying one rough clause of
the program, we may conclude that a certain number k1 > 0 of individuals
belong to [t] and that they are positive examples. It may also be the case that
by applying another rough clause of the same program, we conclude that other
k2 > 0 individuals belong to the same indiscernibility class and that they are
also positive examples. Hence to compute the number of individuals belonging
to [t] that are positive (negative) examples of a rough relation, we may need to



256 A. Vitória

consider different rough clauses. To this end, the special atoms introduced in the
previous section are used in the transformed program.

We start by giving an overview of the compilation procedure. Figure 2 shows
the different functions that are called during compilation of a rough program in
RKBS.

p

F

m

Fig. 2. Compilation procedure of RKBS

Function τ compiles a rough program P to a program τ(P) corresponding
to a standard Prolog program. It calls two other functions, τ1 and τp. Function
τ1 compiles each rough clause to a set of clauses and integrity constraints. τp

generates a set of clauses for each predicate symbol q occurring in P that gather
support information for each indiscernibility class of rough relation Q. The com-
pilation τ1(C) of a rough clause C ∈ P originates a call to function τF to compile
the body of C. If the body of C contains quantitative measure expressions then
τF calls function τm to compile each quantitative measure. In the reminder of
this section, we discuss in detail each of the functions mentioned above.

Without loss of generality, we assume that each rough relation defined in a
rough program P has a different name. Thus, no two equal predicate symbols
with different arity may occur in P .

To simplify the presentation of the compilation procedure, we use some no-
tation shortcuts.

– The compiled programs may contain clauses with explicit disjunction, rep-
resented as ‘;’, in the body of a clause. These clauses can easily be re-written
as clauses without disjunction in the body. For example, the clause

p(X):- q(a, X), r(X) ; q(b, X).

can be replace by the following two clauses

p(X):- q(a, X), r(X).
p(X):- q(b, X).
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– If we are not interested in the constant value with which a variable X gets
instantiated then, we use ‘−’ instead of X . For instance, if the value with
which the first argument of q is instantiated is irrelevant then we write
q(−, Y ).

– We may write q(X) instead of q(X1, . . . , Xn), for a predicate q/n.
– Given a pair u = 〈c1, c2〉, we write u.1st to denote c1 and u.2nd to denote c2.

It should be stressed that the compiled program τ(P) may contain integrity
constraints, given a rough program P . Integrity constraints are not allowed in
standard Prolog programs. However, each logic program τ(P) can be easily trans-
formed into a standard Prolog program. Assume that no predicate symbol named
false occurs in τ(P). Each integrity constraint :- B. ∈ τ(P) can be replaced
by a clause false :- B. . If the atom false belongs to the least model of
the Prolog program obtained this way then we can conclude that some integrity
constraint cannot be satisfied.

Compiling a rough program P implies compilation of each rough clause and
rough fact. For each predicate symbol p occurring in P , p∗, pπ, ¬p, ¬p∗, and
¬pπ should be seen as new predicate symbols not occurring in P . Note that ¬p,
¬p∗, and ¬pπ represent explicit negation.

Each predicate p in the compiled program has an extra argument that
carries information about the support. For example, both atoms p(c1, c2, k)
and p∗(c1, c2, k) (¬p(c1, c2, k) and ¬p∗(c1, c2, k, )) indicate that the indiscerni-
bility class [〈c1, c2〉] belongs to P (¬P ). However, the former states that the
supp (p(c1, c2)) (supp(¬p(c1, c2))) is exactly k, while the latter says that
supp(p(c1, c2)) (supp (¬p(c1, c2))) is at least k. An atom pπ(c1, c2) (¬pπ(c1, c2))
indicates that the indiscernibility class [〈c1, c2〉] belongs to the upper approxi-
mation of P (¬P ) but it does not keep any information about the support.

In the reminder of this section we assume that l (l1, l2, · · · ) is either p or ¬p
and that ¬¬p is equivalent to p, for some predicate symbol p.

We introduce first a function τm to compile quantitative measures in the
body of a rough clause. For example, the compilation of a quantitative measure
such as τm(supp(q(t))) returns a pair u, where

– u.1st is the body of a clause, and
– u.2nd is a variable that will be instantiated with the support of atom q(t).

If t describes an indiscernibility class of rough relation Q then literal q(t, K)
expresses that the supp(q(t)) = K. The default negated literal not qπ(t) is true,
if t describes an indiscernibility class that does not belong to Q. The conjunction
of atoms

findall(K1, q(X, K1), L1), sum(L1, K
′)

imposes that K ′ = |q|, i.e. K ′ represents the number of individuals in the universe
of rough relation Q that have positive outcome for the decision attribute. Hence,
the following conjunction of atoms expresses that K is the total number of
individuals in universe of Q.
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findall(K1, q(X, K1), L1),
findall(K2,¬q(X, K2), L2),
sum(L1, K

′
1), sum(L2, K

′
2), K = K ′

1 + K ′
2

Function τm that compiles quantitative measures is formally presented below.

τm(supp(l(t))) = 〈code , K〉
code = l(t, K) ;

not lπ(t), K = 0

τm(strength(l(t))) = 〈code , K〉
code = l(t, K0),

findall(K1, l(X, K1), L1),
findall(K2,¬l(X, K2), L2),
sum(L1, K

′
1), sum(L2, K

′
2), K = K0

K′
1+K′

2
;

not lπ(t), K = 0

τm(acc(l(t))) = 〈code , K〉
code = l(t, K1),¬l(t, K2), K = K1

K1+K2
;

l(t, K1), not ¬lπ(t), K = 1 ;
not lπ(t), K = 0

τm(cov(l(t))) = 〈code , K〉
code = l(t, K1)

findall(K2, l(X, K2), L), sum(L, K3), K = K1
K3

;
not lπ(t), K = 0 .

Let us informally describe the first two cases above.

– The compilation of supp(l(t)) considers two possible cases. If atom l(t, K) is
true then supp(l(t)) = K. If t does not describe an indiscernibility class in
the upper approximation, i.e. not lπ(t) is true, then supp(l(t)) = K = 0.

– The compilation of strength(l(t)) considers also two cases. If t describes
an indiscernibility class in the upper approximation then, atom l(t, K0) is
true, supp(l(t)) = K0, and the number of individuals in the universe is given
by K ′

1 + K ′
2. Otherwise, the default negated literal not lπ(t) is true and

supp(l(t)) = strength(l(t)) = 0.

The next step is to show how to compile the body of a rough clause (with
quantitative measures). Let I+ denote the set of positive integers including zero
and F be a commutative and associative binary function such that F : I+ → I+.
This function indicates how the support of the atoms p(t) or ¬p(t), occurring in
rough literals of the body, should be combined to compute the support of the
atom corresponding to the head. Given the body B of a rough clause, τF (B)
returns a pair such that (τF (B)).1st is the body of a clause of a logic program
and (τF (B)).2nd represents a variable. Assume that m is either supp, strength,
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acc, or cov. E1 and E2 represent quantitative measure expressions. B1 and B2
stand for rough literals.

τF (m(l(t)) relOp k) = 〈code , −〉
code = τm(m(l(t))).1st,

τm(m(l(t))).2nd relOp k

τF (m(l1(t1)) relOp m(l2(t2))) = 〈code , −〉
code = τm(m(l1(t1))).1st, τm(m(l2(t2))).1st,

τm(m(l1(t1))).2nd
relOp

τm(m(l2(t2))).2nd

τF ((E1, E2)) = 〈code , −〉
code = (τF (E1)).1st, (τF (E2)).1st

τF (p(t)) = 〈code , K〉
code = p(t, K), not ¬pπ(t)

τF (¬p(t)) = 〈code , K〉
code = ¬p(t, K), not pπ(t)

τF (p(t)) = 〈code , K〉
code = p(t, K)

τF (¬p(t)) = 〈code , K〉
code = ¬p(t, K)

τF (p(t)) = 〈code , K〉
code = p(t, K),¬pπ(t)

τF (¬p(t)) = 〈code , K〉
code = ¬p(t, K), pπ(t)

τF ((B1, B2)) = 〈code , K〉
code = (τF (B1)).1st, (τF (B2)).1st,

K = F ((τF (B1)).2nd, (τF (B2)).2nd)

τF ((B1, E1)) = 〈code , K〉
code = (τF (B1)).1st, τm(E1).1st,

K = (τF (B1)).2nd .

The reader can confirm that the underlying idea to compile the body of a
rough clause is similar to what was discussed in section 4.

We need to define a function that compiles a rough clause into a set of clauses
and integrity constraints. This function is presented below and it is based on
ideas similar to the ones discussed in section 4.
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τ1(p(t):-[α, F ] B.) = {p∗(t, K):- (τF (B)).1st,
K = *α× (τF (B)).2nd+. ,

:- ¬pπ(t), (τF (B)).1st.} ,

τ1(p(t):-[α, F ] B.) = {p∗(t, K):- (τF (B)).1st,
K = *α× (τF (B)).2nd+.} ,

τ1(¬p(t):-[α, F ] B.) = {¬p∗(t, K):- (τF (B)).1st,
K = *α× (τF (B)).2nd+. ,

:- pπ(t), (τF (B)).1st.} ,

τ1(¬p(t):-[α, F ] B.) = {¬p∗(t, K):- (τF (B)).1st,
K = *α× (τF (B)).2nd+.} .

The compilation of a rough clause might generate clauses with repeated lit-
erals. Thus, it is convenient to eliminate repeated literals from the bodies of
compiled clauses.

Let [t] be an indiscernibility class of a rough relation R. Application of differ-
ent rough clauses may lead to the conclusion that a certain number of individuals
belonging to [t] are positive examples of a rough relation R (¬R). Hence, it is
needed to gather support information for each indiscernibility class of a rough
relation. Function τp formalizes this idea. For each predicate symbol r occurring
in the rough program, the following set of clauses is generated.

τp(r) = {r(X, K):- bagof(K ′, r∗(X, K ′), L), sum(L, K). ,
¬r(X, K):- bagof(K ′,¬r∗(X, K ′), L), sum(L, K). ,
rπ(X):- r(X,−). ,
¬rπ(X):- ¬r(X,−).} .

Functions τ1 and τp can also be applied to a rough program P . Let βP be
the set of all predicate symbols occurring in P .

τ1(P) =
⋃

C ∈P τ1(C) ,
τp(P) =

⋃
p∈βP τp(p).

Compilation of a rough program P is obtained by applying function τ to P ,

τ(P) = τ1(P) ∪ τp(P) .

The example below illustrates the compilation of a simple rough program in
RKBS.

Example 36. Consider again the program

P = {p(X1, X2) :-[1,−] q(X1, X2), acc(q(X1, X2)) > 0.85. ,
p(X, c) :-[1,−] q1(X, c). ,
¬p(X, c) :-[1,−] ¬q1(X, c). ,
q(a, c) : 2. ,
q1(a, c) : 3. ,¬q1(a, c) : 7. }
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– Compilation of the first rough clause

τ1(p(X1, X2) :-[1,−] q(X1, X2), acc(q(X1, X2)) > 0.85.)

adds the following clauses to τ(P).

p∗(X1, X2, K1):- q(X1, X2, K1),¬q(X1, X2, K2),
K3 = K1

K1+K2
, K3 > 0.85.

p∗(X1, X2, K1):- q(X1, X2, K1),not ¬qπ(X1, X2),
K2 = 1, K2 > 0.85.

p∗(X1, X2, K1):- q(X1, X2, K1),not qπ(X1, X2),
K2 = 0, K2 > 0.85.

– Compilation of the second rough clause

τ1(p(X, c) :-[1,−] q1(X, c).)

adds the following clause to τ(P).

p∗(X, c, K):- q1(X, c, K),¬qπ
1 (X, c).

– Compilation of the third rough clause

τ1(¬p(X, c) :-[1,−] ¬q1(X, c).)

adds the following clause to τ(P).

¬p∗(X, c, K):- ¬q1(X, c, K), qπ
1 (X, c).

– Compilation of the rough facts adds the following facts to τ(P).

q∗(a, c, 2).

q∗1(a, c, 3).

¬q∗1(a, c, 7).

Finally, function τp is called for each predicate symbol.

τp(p) = {p(X1, X2, K):- bagof(K ′, p∗(X1, X2, K
′), L), sum(L, K). ,

¬p(X1, X2, K):- bagof(K ′,¬p∗(X1, X2, K
′), L), sum(L, K). ,

pπ(X1, X2):- p(X1, X2,−). ,
¬pπ(X1, X2):- ¬p(X1, X2,−).} .

τp(q) = {q(X1, X2, K):- bagof(K ′, q∗(X1, X2, K
′), L), sum(L, K). ,

¬q(X1, X2, K):- bagof(K ′,¬q∗(X1, X2, K
′), L), sum(L, K). ,

qπ(X1, X2):- q(X1, X2,−). ,
¬qπ(X1, X2):- ¬q(X1, X2,−).} .

τp(q1) = {q1(X1, X2, K):- bagof(K ′, q∗1(X1, X2, K
′), L), sum(L, K). ,

¬q1X1, X2, K):- bagof(K ′,¬q∗1(X1, X2, K
′), L), sum(L, K). ,

qπ
1 (X1, X2):- q1(X1, X2,−). ,
¬qπ

1 (X1, X2):- ¬q1(X1, X2,−).} . �
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6.4 The Query Language of RKBS

Our system allows rough programs to be queried. Quantitative measure expres-
sions may also appear in queries.

A rough query is a pair consisting of the query itself and a rough program
from which an answer should be retrieved. We start by formally defining the
query language of the system.

Definition 44. A rough query in RKBS is a pair (Q,P), where P is a rough
program supported by RKBS and Q is defined by the following abstract syntax
rules

RelOp −→ ==|�=|>|≥|<|≤ .

Q1 −→ K = M | K = M,Q1 | K = M, K RelOp k,Q1 |
K1 = M, K2 = M, K1 RelOp K2,Q1 .

Q2 −→ classify(A) .
Q3 −→ L | L,Q3 | Q1 .
Q −→ Q3 | Q2 .

where M is a quantitative measure, K, K1, K2 are variables, k is a rational
number, L is a rough literal, and A is an objective literal. A rough query is well-
formed, if all variables occurring in a quantitative measure expression also occur
in some other rough literal of the query.

In contrast to the query language presented in section 4, it is not possible to
test whether a region of a rough relation (e.g. lower approximation) is a subset
of another region of some other rough relation. Thus, rough inclusion and rough
equality cannot be tested, either. On the other side, the system supports queries
of the form (classify(d(t)) , P).

We describe informally the meaning of some (well-formed) rough queries.
Consider the rough query

(classify(d(c1, X, c3)) , P) .

Each tuple t = 〈c1, c2, c3〉 describing an indiscernibility class of a rough relation
D can be seen as a decision rule. Assume that rough relation D corresponds
(implicitly) to the decision table D = (U, {a1, a2, a3}, d). If t ∈ D then it induces
the decision rule (a1 = c1) ∧ (a2 = c2) ∧ (a3 = c3) → (d = yes) . If t ∈ ¬D
then it induces the decision rule (a1 = c1) ∧ (a2 = c2) ∧ (a3 = c3) → (d = no) .
The query above requests a prediction for the decision class to which a new
individual i described by (a1 = c1 ∧ a3 = c3) may belong. To answer this query
the strategy described in section 2.5 is followed. The answer to the rough query
is either the pair (d = yes, CF ), or (d = no, CF ), or (d = unknown, 0), where
CF is the certainty factor of the prediction. The last case corresponds to the
situation where no decision rule is fired.

Consider another rough query

(p(X1, X2), K1 = supp(p(X1, X2)), K2 = supp(¬p(X1, X2)) , P) .
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This rough query requests the description of all indiscernibility classes in the
boundary region of P with indication, for each indiscernibility class, of how
many individuals of that class are positive examples and how many individuals
are negative examples. Hence, the substitution

{a/X1, b/X2, K1/5, K2/7}

couldbeananswerstatingthat〈a, b〉 ∈ P ,supp(p(a, b))=5,andsupp(¬p(a, b))=7.
The rough query

(p(X1, b), K = acc(p(X1, b)), K > 0.6 , P)

requests a description of all indiscernibility classes in the upper approximation
of P such that the second attribute has value b and their corresponding accuracy
is larger than 0.6.

The system answers a rough query for a rough program P by compiling it
to one or more Prolog queries to the Prolog program corresponding to τ(P).
The compilation of rough queries is based on ideas similar to the compilation
functions τm and τF , presented in section 6.3. Answers to (rough) queries are
sets of substitutions, like for the query language introduced in section 4. We
give an example showing how a rough query can be answered by querying the
compiled program.

Example 37. Consider the rough query

(p(X1, b), K = supp(r(X1, b)), K < 10 , P)

The following two queries are generated for the compiled program.

(pπ(X1, b),¬pπ(X1, b), r(X1, b, K), K < 10 , τ(P)) and

(pπ(X1, b),¬pπ(X1, b), not rπ(X1, b), K = 0, K < 10 , τ(P)) .

The union of the sets representing the answers to the queries above is the answer
to the initial rough query. �

As the example above shows, a rough query may be answered by issuing more
than one query to the compiled program. The compilation of quantitative mea-
sures (see definition of function τm) involves more than one possible case. This
explains why more than one query might be needed. Assume that variable X1 is
instantiated with a constant c. In the example above, the first query, obtained
by compiling the rough query, corresponds to the case where the indiscernibility
class described by 〈c, b〉 ∈ R, i.e. supp(r(c, b)) > 0. The second query corresponds
to the case where 〈c, b〉 �∈ R, i.e. supp(r(c, b)) = 0.

6.5 Application Examples

Variable Precision Rough Relations. We show below how quantitative mea-
sure expressions in the body of rough clauses can be used to build generalized
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rough approximations of a relation, in the spirit of the variable precision rough
set model [13], described in section 2.6. This aspect illustrates an important ap-
plication of our language, since the VPRSM is the rough set model often used
in practical applications.

Example 38. Let q denote a rough relation Q (possibly obtained directly from a
decision table and encoded as a set of rough facts in our language) , l and u be
two precision control parameters such that l < u.

We define then a new rough relation Q1 such that

– if acc(q(t)) ≥ u then t ∈ Q1;
– if acc(q(t)) ≤ l then t ∈ ¬Q1;
– If l < acc(q(t)) < u then t ∈ Q1.

q1(X1, X2) :-[1,−] q(X1, X2).

¬q1(X1, X2) :-[1,−] ¬q(X1, X2).

%Any indiscernibility class t in the boundary s.t.
% acc(q(t)) ≥ u is considered to be in Q
q1(X1, X2) :-[1, sum] q(X1, X2),¬q(X1, X2), acc(q(X1, X2)) ≥ u.

% Any indiscernibility class t in the boundary s.t.
% acc(q(t)) ≤ l is considered to be in ¬Q
¬q1(X1, X2) :-[1, sum] q(X1, X2),¬q(X1, X2), acc(q(X1, X2)) ≤ l.

% Any indiscernibility class t in the boundary s.t.
% l < acc(q(t)) < u remains in the boundary
q1(X1, X2) :-[1,−] q(X1, X2), acc(q(X1, X2)) > l, acc(q(X1, X2)) < u.

¬q1(X1, X2) :-[1,−] ¬q(X1, X2), acc(q(X1, X2)) > l, acc(q(X1, X2)) < u.

Note that the use of q(X1, X2),¬q(X1, X2) in the body of the third and fourth
rough clauses captures those indiscernibility classes [t] in the boundary of Q.
Moreover, it is worth to note the use of function sum to combine supp(q(t)) with
supp(¬q(t)), since supp(q(t)) + supp(¬q(t)) gives the total number of individuals
in the indiscernibility class [t]. �

The rough program above shows that our framework caters for extending the
VPRSM to implicitly defined rough relations.

Avoiding Expensive Tests Revisited. In section 5.2, we describe a possible
technique to identify those individuals for who expensive tests, corresponding to
some of the condition attributes, can (cannot) be avoided. We show now the same
problem formulated in the language supported by our system. In addition, we
illustrate how quantitative measure expressions can be used to retrieve relevant
information.

Example 39. Consider the decision table Deathmi = (U, {Age, A1, A2}, Deathmi),
where U is a set of patients with heart problems. This decision table is encoded
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as a set of rough facts shown below. Assume that the conditional attributes A1
and A2 represent two medical tests. Moreover, test A2 is usually considered as
being expensive, and therefore, desirable to avoid.

¬deathmi(>70, b1, c1): 2.
¬deathmi(>70, b1, c2): 2.
¬deathmi(>40 <70, b2, c4): 2.
¬deathmi(<40, b3, c5): 2.

deathmi(>70, b1, c2): 3.
deathmi(>40 <70, b2, c3): 4.
deathmi(<40, b3, c5): 3.
deathmi(<40, b4, c3): 8.

The following rough clauses monitor the impact in the boundary region of
not considering test A2.

(1) d(Age, A1) :-[1,_] deathmi(Age, A1, A2).

(2) ¬d(Age, A1) :-[1,_] ¬deathmi(Age, A1, A2).

(3) migrate(Age, A1) :-[1,min] d(Age, A1), deathmi(Age, A1, A2).

(4) migrate(Age, A1) :- [1,min] d(Age, A1), ¬deathmi(Age, A1, A2).

(5) ¬migrate(Age, A1) :-[1,_] ¬d(Age, A1).

(6) ¬migrate(Age, A1) :-[1,_] d(Age, A1).

(7) ¬migrate(Age, A1) :-[1,sum] deathmi(Age, A1, A2), ¬deathmi(Age, A1, A2).

Predicate migrate denotes the rough relation

Migrate = ({〈>70, b1〉 : 2, 〈>40 <70, b2〉 : 6},
{〈>70, b1〉 : 5, 〈<40, b3〉 : 5, 〈<40, b4〉 : 8}) .

We show some useful queries and their answers. Assume that rough program
P contains all rough facts above and the rough clauses (1)− (7).

– “For which patients it may be useful to request the expensive test A2? And
what is the expected gain if only those patients undergo test A2?”

This request can be formulated by the rough query Q1

Q1 = (migrate(Age, A1),
K1 = strength(migrate(Age, A1)),
K2 = strength(¬migrate(Age, A1)) , P) .

The answer to this rough query is the set

{{>70/Age, b1/A1, 0.0769/K1, 0.1923/K2} ,
{>40 <70/Age, b2/A1, 0.2308/K1, 0/K2}} .
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This answer indicates that

� for patients who are more than 70 years old and have got result b1 in the
test A1, or

� for patients who are between 40 and 70 years and have got result b2 in the
test A1,

it may be advisable to perform additionally test A2. Moreover, if only the
patients suggested by this answer undergo the expensive test then, we may expect
to avoid the test for about 50% of the patients. Notice that if∑

t∈Migrate

(strength(migrate(t)) + strength(¬migrate(t)))

would get too close to one then, this would indicate that not that much would
be gained by not requesting test A2 for all patients.

– “Make a prediction of whether individuals with result b1 for test A1 need to
be submitted to test A2.”

This query could be formulated as follows

Q2 = (classify(migrate(Age, b1)) , P) .

The answer is
(migrate = no , 0.7193)

Thus, the prediction of the system is that the expensive test is not needed and
the confidence factor on this prediction is 0.7 . �

The example discussed in this section has been tested in RKBS. The system
has also been tested with the same problem but more realistic data was used:
the deathmi table contained 418 patients and 12 condition attributes. Figure 3
shows the interface of the RKBS. On the top part there is a text area where the
user can enter the rough clauses and rough facts of a rough program. In this case,
the text area displays some of the rough clauses belonging to the rough program
presented in the example above. It is also possible to load a rough program from
a local file or from a Web page.

Figure 4 displays the first rough query of the example above. On the bottom
part, it is shown the answer to the rough query in table format. Rough queries
can be directly entered in the text area or can be constructed with the help of
several menus. The second rough query and its answer is shown in figure 5.

7 Conclusions and Future Work

This thesis has introduced a language to define intensionally rough relations. An
extension of the language supporting basic quantitative measures has also been
considered.

This section is intended to summarize the work presented in this thesis (sec-
tion 7.1) and point out possible directions for future research (section 7.2).
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Fig. 3. The Rough Knowledge Base System

7.1 Concluding Remarks

Rough sets framework has two appealing aspects. First, it is a mathematical
approach to deal with vague concepts. Second, rough set techniques can be used
in data analysis to find patterns hidden in the data. The number of applications
of rough sets to practical problems in different fields demonstrates the increasing
interest in this framework and its applicability.

The first point above suggests that rough sets techniques can be generalized
to knowledge bases. It is not uncommon that our knowledge about a concept
bears contradictory information. For instance, one expert may state that a vehi-
cle driven at medium speed in a wet road corresponds to a dangerous situation
while another expert may consider that medium speed does not imply a danger-
ous traffic situation in general. Thus, the concept “dangerous traffic situation”
cannot be defined precisely using the available knowledge. There will always be
situations that are considered non-dangerous according the knowledge provided
by one expert while the same situation is classified as dangerous when consid-
ering the criteria provided by the other expert. Rough set based techniques can
be used to represent and deal with contradictory knowledge, as in the situation
depicted previously. To this end we have proposed a language that caters for
implicit definitions of rough sets.

Different regions (e.g. lower approximation, upper approximation or bound-
ary region) of several rough sets can be combined to define a region of another
rough set. In this way, existing rough sets can be used in the definition of other
rough sets. This is achieved in the proposed language through the use of rough
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Fig. 4. The RKBS showing query Q1 and its answer

clauses and rough facts, forming together a rough program. The main strengths
of our language can be summarized as follows.

• The language captures and integrates in a uniform way vague knowledge
with two possible sources: knowledge obtained directly from experimental
data and encoded as rough facts; domain or expert knowledge expressed as
rough rules. This contrasts with most of current rough set techniques that
only allow definition of (vague) concepts to be obtained from experimental
data.

• Several useful techniques and extensions to rough sets, reported in the litera-
ture [3,51], and implemented in an “ad hoc” way can be naturally expressed
in our language.

Another important aspect of the work presented in this thesis is the definition
of a query language to retrieve information about the defined rough sets and
patterns implicit in the data.

The computational basis for reasoning with the rough sets defined in a rough
program is a program transformation. Rough programs are compiled to extended
logic programs whose semantics is captured by paraconsistent stable models. Sys-
tems like Smodels [43] or dlv [45] can then be readily used to run extended logic pro-
grams. The correctness of the proposed compilation technique has been proved.
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Fig. 5. The RKBS showing query Q2 and its answer

An extension of our language to quantitative measures has also been ex-
plored. Quantitative measures are particularly relevant in data mining applica-
tions. However, we have restricted this extension to non-recursive rough pro-
grams. We have implemented a system, called Rough Knowledge Base System,
that can reason and answer queries about rough sets defined in this language.
We also show that this extension allows to capture the variable precision rough
set model [13] and to extend its application to implicitly defined rough sets.

To our knowledge, besides our work, only system CAKE [16] addresses the
problem of defining implicitly rough sets. We present below a brief comparison
of CAKE with the framework presented in this thesis.

– Our language distinguishes tuples for which there is no information available
from tuples for which there is contradictory evidence. The latter case corre-
sponds to tuples in the boundary region. System CAKE does not support
this distinction: the boundary region includes tuples about which there is no
information at all and tuples about which there is contradictory information.
Hence, our language is based on a 4−valued logic while CAKE is based on
a 3−valued logic.

– In our framework quantitative measures can be easily supported. This ex-
tension seems less obvious to achieve in CAKE.

– Another important difference is that CAKE only supports a restricted type
of recursively defined rough sets, corresponding to stratified programs, while
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our language supports any recursive (rough) program. However, this restric-
tion of CAKE has the benefit of ensuring its tractability. Computing all
models capturing the meaning of a rough program is an intractable prob-
lem.

– Most knowledge representation systems incorporate either the open-world
assumption or the closed-world assumption in their reasoning procedures.
Systems using the former assume that they may not have complete infor-
mation about the world. Thus, information not known is assumed to be
unknown. Under closed-world assumption, if a system cannot prove that a
tuple belongs to a relation then it is assumed that the tuple does not belong
to the relation. Both systems, the language we propose and CAKE, support
reasoning under the open-world assumption. However, the latter also allows
to apply the closed-world assumption locally in a particular context. This
feature is achieved in CAKE through the use of contextually closed queries
(CCQ) [62] consisting of a query itself and a particular context for evaluating
the query. This context specifies minimization (maximization) policies to be
applied to selected relations and a number of integrity constraints. However,
answering queries using CCQs is co-NPtime complete [62].

7.2 Future Work

This section presents possible future directions of our research. We list below
several aspects that can be improved and extensions of this work.

– We have discussed in section 6 an extension of our language supporting
some basic quantitative measures. However, the declarative semantics of the
language was not formally defined. Moreover, the compilation technique dis-
cussed only applies to non-recursive rough programs. Thus, we plan to for-
malize the declarative semantics of our extended language and investigate a
computational technique that supports recursive rough programs with quan-
titative measures.

– We plan to investigate how the query language can be enriched. For in-
stance, we would like to provide system support for formulating and testing
hypothesis.

– More efficient implementation of our language is also one of our goals in the
future. We plan to develop an implementation for recursive rough programs
re-using the existing expertise in stable model systems, such as Smodels [43].

– We also plan to search for other concrete problems that can be formulated
in our framework. To this end, we may take a closer look to rough mereology
[63,64,65] applications. Mereology is a formal theory of parts and wholes. In
rough mereology, “parthood” is a rough relation.

– A particular type of domain knowledge that often has to be considered when
classifying objects of a universe is an ontology of decision classes. An inter-
esting research direction is to investigate how ontologies can be represented
in our framework. The problem of integrating learning algorithms based on
rough set techniques with a gene ontology has been addressed in [66,6,67] to
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predict gene function. Several operators to build approximations of decision
classes are proposed. An open question is whether these operators could be
easily encoded in our language or which extensions need to be considered to
achieve that goal.

– This thesis presents foundation and implementation principles for a rule lan-
guage able to support reasoning on incomplete and imprecise information. The
necessity of rule languages for handling imprecise and incomplete Web data
seems to be obvious. The research on this topic fits well with the objectives of
the EU FP6 Network of Excellence REWERSE (http://rewerse.net) aim-
ing at designing rule-based web reasoning languages. A topic of future research
is deployment of the proposed language for web reasoning purposes.
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Notation Summary

Notation Meaning

|S| the number of elements in a set S
A \ B set difference between A and B
D = (U, A, d) a decision table such that

U is a set of objects, A is a set of condition attributes,
and d is a decision attribute

RA the indiscernibility relation induced by
a set of attributes A

R∗
A the set of equivalence classes induced by RA−→

EA the tuple describing indiscernibility class E
(U,RA) an approximation space
X the upper approximation of rough set X
X the lower approximation of rough set X

X the boundary region of rough set X
cond(r) → dec(r) a decision rule r
cover(c) the set of objects satisfying condition c
cover(r) cover(cond(r))
Dv the set of objects having outcome v

for the decision attribute
red(r) a valued reduct for decision rule r
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Notation Meaning

κ(A,B) the degree of functional dependency between
the sets of attributes A and B

red(A,B) a relative reduct of the set of
attributes A w.r.t. κ(A, B)

V ar an alphabet of variable symbols
Const an alphabet of constant symbols
Pred an alphabet of predicate symbols
p/n a predicate p with arity n
I (a rough) interpretation
M a (rough) model
X/c a binding of a variable X to a constant c
θ a substitution
¬A an explicit negated atom A
not A a default negated atom A
ground(P) a ground (rough) program
H:- B. a (rough) clause
:- B. an integrity constraint
sem(P) the semantics of a (rough) program
(Q,P) a (rough) query to a (rough) program P
ψI(P) the reduct of the ELP P
ΨI(P) the ground rough program, obtained from P ,

without lower approximations or testing literals
in the body of its rough clauses

I |= l (rough) literal l is true in I
P |= l (rough) program P implies (rough) literal l
QI the rough set denoted by predicate q

in interpretation I
〈t1, . . . , tn〉 a tuple whose attribute values are t1, . . . , tn

t a tuple
[t] the indiscernibility class described by tuple t
〈t1, . . . , tn〉 : k k objects belonging to the indiscernibility class

[〈t1, . . . , tn〉] are positive examples
〈t1, . . . , tn〉 : k1 : k2 k1 (k2) objects belonging to the indiscernibility

class [〈t1, . . . , tn〉] are positive (negative) examples
q(X) q(X1, . . . , X1)
q(−,X) the first argument of predicate q is irrelevant
u.1st if u = 〈c1, c2〉 then u.1st = c1

u.2nd if u = 〈c1, c2〉 then u.2nd = c2

τ1 the compilation function for rough clauses
τ2 the compilation function for bodies of

rough clauses belonging to rough programs
without quantitative measures

τF the compilation function for bodies of
rough clauses in RKBS

τm the compilation function for quantitative measures
τp the compilation function for predicate symbols

occurring in a rough program in RKBS
F a commutative and associative binary function
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Abstract. Analogy-based reasoning methods in machine learning make
it possible to reason about properties of objects on the basis of similari-
ties between objects. A specific similarity based method is the k nearest
neighbors (k-nn) classification algorithm. In the k-nn algorithm, a deci-
sion about a new object x is inferred on the basis of a fixed number k of
the objects most similar to x in a given set of examples. The primary con-
tribution of the dissertation is the introduction of two new classification
models based on the k-nn algorithm.

The first model is a hybrid combination of the k-nn algorithm with
rule induction. The proposed combination uses minimal consistent rules
defined by local reducts of a set of examples. To make this combina-
tion possible the model of minimal consistent rules is generalized to a
metric-dependent form. An effective polynomial algorithm implement-
ing the classification model based on minimal consistent rules has been
proposed by Bazan. We modify this algorithm in such a way that after
addition of the modified algorithm to the k-nn algorithm the increase
of the computation time is inconsiderable. For some tested classification
problems the combined model was significantly more accurate than the
classical k-nn classification algorithm.

For many real-life problems it is impossible to induce relevant global
mathematical models from available sets of examples. The second model
proposed in the dissertation is a method for dealing with such sets based
on locally induced metrics. This method adapts the notion of similarity
to the properties of a given test object. It makes it possible to select the
correct decision in specific fragments of the space of objects. The method
with local metrics improved significantly the classification accuracy of
methods with global models in the hardest tested problems.

The important issues of quality and efficiency of the k-nn based meth-
ods are a similarity measure and the performance time in searching for
the most similar objects in a given set of examples, respectively. In this
dissertation both issues are studied in detail and some significant im-
provements are proposed for the similarity measures and for the search
methods found in the literature.
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1 Introduction

Decision-making as a human activity is often performed on different levels of ab-
straction. It includes both simple everyday decisions, such as selection of prod-
ucts while shopping, choice of itinerary to a workplace, and more compound
decisions, e.g., in marking a student’s work or in investments. Decisions are al-
ways made in the context of a current situation (i.e., the current state of the
world) on the basis of the knowledge and experience acquired in the past. Com-
puters support decision making. Several research directions have been developed
to support computer-aided decision making. Among them are decision and game
theory [57, 81], operational research [10], planning [28], control theory [67, 87],
and machine learning [61]. The development of these directions has led to dif-
ferent methods of knowledge representation and reasoning about the real world
for solving decision problems.

Decision-making is based on reasoning. There are different formal reasoning
systems used by computers. Deductive reasoning [5] is based on the assumption
that knowledge is represented and extended within a deductive system. This
approach is very general and it encompasses a wide range of problems. How-
ever, real-life problems are usually very complex, and depend on many factors,
some of them quite unpredictable. Deductive reasoning does not allow for such
uncertainty. Therefore in machine learning another approach, called inductive
reasoning [33, 50, 59], is used. Decision systems that implement inductive rea-
soning are based on the assumption that knowledge about a decision problem
is given in the form of a set of examplary objects with known decisions. This
set is called a training set. In the learning phase the system constructs a data
model on the basis of the training set and then uses the constructed model to
reason about the decisions for new objects called test objects. The most popular
computational models used in inductive reasoning are: neural networks [15], de-
cision trees [65], rule based systems [60], rough sets [63], bayesian networks [45],
and analogy-based systems [68]. Inductive reasoning applied to large knowledge
bases of objects made it possible to develop decision support systems for many
areas of human activity, e.g., image, sound and handwriting recognition, med-
ical and industrial diagnostics, credit decision making, fraud detection. Besides
such general methods there are many specific methods dedicated to particular
applications.

The goal of this dissertation is to present and analyze machine learning meth-
ods derived from the analogy-based reasoning paradigm [68], in particular, from
case-based reasoning [3, 52]. Analogy-based reasoning reflects natural human rea-
soning that is based on the ability to associate concepts and facts by analogy. As
in other inductive methods, we assume in case-based reasoning that a training
set is given and reasoning about a new object is based on similar (analogous)
objects from the training set.

Selection of a similarity measure among objects is an important component
of this approach, which strongly affects the quality of reasoning. To construct
a similarity measure and to compare objects we need to assume a certain fixed
structure of objects. Most of data are collected in relational form: the objects
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are described by vectors of attribute values. Therefore, in the dissertation we
assume this original structure of data. Numerous different metrics are used for
such data [1, 14, 22, 51, 56, 77, 84, 88]. To construct such a metric one can use
both general mathematical properties of the domains of attribute values and
specific information encoded in the training data.

Case-based reasoning is more time-consuming than other inductive methods.
However, the advance of hardware technology and the development of indexing
methods for training examples [11, 29, 35, 43, 46, 62, 66, 78, 82] have made possi-
ble the application of case-based reasoning to real-life problems.

1.1 Results Presented in This Thesis

The research was conducted in two parallel directions. The first direction was
based on the elaboration of reasoning methods and theoretical analysis of their
quality and computational complexity. The second direction was focused on the
implementation of the elaborated methods, and on experiments on real data fol-
lowed by an analysis of experimental results. The quality of the methods devel-
oped was tested on data sets from the Internet data repository of the University
of California at Irvine [16].

One of the widely used methods of case-based reasoning is the k nearest
neighbors (k-nn) method [4, 23, 26, 31]. In the k-nn method the decision for a
new object x is inferred from a fixed number k of the nearest neighbors of x
in a training set. In the dissertation we present the following new methods and
results related to the k-nn method:

1. A new metric for numerical attributes, called the Density Based Value Dif-
ference Metric (DBVDM) (Subsection 3.2),

2. An effective method for computing the distance between objects for the
metrics WVDM [88] and DBVDM (Subsection 3.2),

3. Two attribute weighting algorithms (Subsections 3.4 and 3.5),
4. A new indexing structure and an effective searching method for the k nearest

neighbors of a given test object (Section 4),
5. A classification model that combines the k-nn method with rule based fil-

tering (Subsections 5.3 and 5.4),
6. The k-nn classification model based on locally induced metrics (Subsection

5.6).

Below we provide some detailed comments on the results of the dissertation.
Ad.(1). In case of the classical k-nn method is an important quality factor the

selection of an appropriate similarity measure among objects[1, 2, 14, 22, 25, 51],
[56, 77, 84, 85, 89, 88]. To define such a metric, in the first place, some generalmath-
ematical properties of the domains of attribute values can be used. The funda-
mental relation for comparing attribute values is the equality relation: for any
pair of attribute values one can check if they are equal or not. Other relations
on attribute values depend on the attribute type. In typical relational databases
two types of attributes occur. Nominal attributes (e.g., color, shape, sex) are the
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most general. The values of such attributes can only be compared by the equality
relation. The values of numerical attributes (e.g., size, age, temperature)
are represented by real numbers. Numerical attributes provide more information
about relations between values than nominal attributes, e.g., due to their linearly
ordered structure and the existence of a measure of distance between values. The
examples of metrics using only general relations on attribute values are the
Hamming distance for nominal attributes and the lp or the χ-square distance for
numerical attributes.

However, in decision making such general relations on attribute values are
not relevant, as they do not provide information about the relation between the
values of attributes and the decision. Hence, an additional source of information,
i.e., a training set, is used to construct a metric. By contrast to the properties of
general relations on attribute values, this information depends on the problem to
be solved and it helps to recognize which attributes and which of their properties
are important in decision making for this particular problem. An example of such
a data-dependent metric is provided by the Value Difference Metric (VDM) for
nominal attributes. The VDM distance between two nominal values is defined on
the basis of the distance between decision distributions for these two values in a
given training set [77, 22]. Wilson and Martinez [88] proposed analogous metrics
for numerical attributes: the Interpolated Value Difference Metric (IVDM) and
the Windowed Value Difference Metric (WVDM). By analogy to VDM both
metrics assign a decision distribution to each numerical value. To define such an
assignment, for both metrics the objects whose values fall into a certain interval
surrounding this value are used. The width of this interval is constant: it does
not depend on the value. In many data sets the density of numerical values
depends strongly on the values, and the constant width of the interval to be
sampled can lead to the situation where for some values the sample obtained is
not representative: it can contain either too few or too many objects.

In the dissertation we introduce the Density Based Value Difference Metric
(DBVDM). In DBVDM the width of the interval to be sampled depends on
the density of attribute values in a given training set. In this way we avoid the
problem of having either too few or too many examples in the sample.

Ad.(2). The time required to compute the decision distribution for each
numerical value by means of WVDM or DBVDM is linear with respect to the
training set size. Hence, it is impractical to perform such a computation every
time one needs the distance between two objects. In the dissertation we show
that the decision distributions for all the values of a numerical attribute can
be computed in total time O(n log n) (where n is the size of the given training
set). This allows to compute the distance between two objects in logarithmic
or even in constant time after preliminary conversion of the training set. This
acceleration is indispensable if WVDM or DBVDM is to be applied to real-
life data.

Ad.(3). Usually in real-life problems there are some factors that make at-
tributes unequally important in decision making. The correlation of some at-
tributes with the decision is stronger. Moreover, some attribute values are
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influenced by noise, which makes them less trustworthy than exact values of
other attributes. Therefore, to ensure good similarity measure quality it is im-
portant to use attribute weights in its construction. Much research has been done
on the development of algorithms for on-line optimization of attribute weights
(i.e., training examples are processed sequentially and weights are modified after
each example) [2, 48, 51, 69]. However, for real-life data sets the k-nn classifica-
tion requires an advanced indexing method. We discuss this in more detail in
the dissertation. In this case on-line algorithms are ineffective: indexing must
be performed each time attribute weights are modified, i.e., after each example.
Another disadvantage of on-line algorithms is that they are sensitive to the order
of training examples.

Attribute weighting algorithms, used in practice, are batch algorithms with
a small number of iterations, i.e., the algorithms that modify attribute weights
only after having processed all the training examples. Lowe [56] and Wettschereck
[84] have proposed such algorithms. Both algorithms use the conjugate gradient
to optimize attribute weights, which means minimizing a certain error function
based on the leave-one-out test on the training set. However, Lowe and Wettis-
chereck’s methods are applicable only to the specific weighted Euclidean metric.

In the dissertation we introduce two batch weighting algorithms assuming
only that metrics are defined by a weighted linear combination of metrics for
particular attributes. This assumption is less restrictive: attribute weighting can
be thus applied to different metrics. The first algorithm proposed optimizes
the distance to the objects classifying correctly in the leave-one-out test on the
training set. The second algorithm optimizes classification accuracy in the leave-
one-out test on the training set. We performed experiments consisting in the
application of the proposed weighting methods to different types of metrics and
in each case the weighting algorithms improved metric accuracy.

Ad.(4). Real-life data sets collected in electronic databases often consist
of thousands or millions of records. To apply case-based queries to such large
data tables some advanced metric-based indexing methods are required. These
methods can be viewed as the extension of query methods expressed in the SQL
language in case of relational databases where the role of similarity measure is
taken over by indices and foreign keys, whereas similarity is measured by the
distance between objects in an index and belonging the ones to the same set at
grouping, respectively.

Metric-based indexing has attracted the interest of many researchers. Most
of the methods developed minimize the number of I/O operations [9, 12, 13, 20,
43, 47], [55, 62, 66, 71, 83, 86]. However, the increase in RAM memory available
in modern computers makes it possible to load and store quite large data sets in
this fast-access memory and indexing methods based on this type of storage gain
in importance. Efficiency of indexing methods of this type is determined by the
average number of distance computations performed while searching a database
for objects most similar to a query object. The first methods that reduces the
number of distance computations have been proposed for the case of a vector
space [11, 29]. They correspond to the specific Euclidean metric.



282 A. Wojna

In the dissertation we consider different metrics defined both for numerical
and nominal attributes and therefore we focus on more general indexing methods,
such as BST [46], GHT [78], and GNAT [18]. GHT assumes that only a distance
computing function is provided. BST and GNAT assume moreover that there is a
procedure that computes center of an object set, which corresponds to computing
the mean in a vector space. However, no assumptions about the properties of the
center are used. In each of these two methods both the indexing and searching
algorithms are correct for any definition of center. Such a definition affects only
search efficiency.

In the most popular indexing scheme the indexing structure is constructed in
the form of a tree. The construction uses the top-down strategy: in the beginning
the whole training set is split into a number of smaller nodes and then each node
obtained is recursively split into smaller nodes. Training objects are assigned to
the leaves. All the three indexing methods (BST, GHT, and GNAT) follow this
general scheme. One of the important components that affects the efficiency of
such indexing trees is the node splitting procedure. BST, GHT, and GNAT use
a single-step splitting procedure, i.e., the splitting algorithm selects criteria to
distribute the objects from a parent node and then assigns the objects to child
nodes according to these criteria. At each node this operation is performed once.
In the dissertation we propose an indexing tree with an iterative k-means-like
splitting procedure. Savaresi and Boley have shown that such a procedure has
good theoretical splitting properties [70] and in the experiments we prove that
the indexing tree with this iterative splitting procedure is more efficient than
trees with a single-step procedure.

Searching in a tree-based indexing structure can be speeded up in the follow-
ing way: the algorithm finds quickly the first candidates for the nearest neigh-
bors and then it excludes branches that are recognized to contain no candidates
closer than those previously found. Each of the three methods BST, GHT, and
GNAT uses a different single mathematical criterion to exclude branches of the
indexing tree. However, all the three criteria assume similar properties of the
indexing tree. In the dissertation we propose a search algorithm that uses all the
three criteria simultaneously. We show experimentally that for large data sets
the combination of this new search algorithm with the iterative splitting based
tree makes nearest neighbors searching up to several times more efficient than
the methods BST, GHT, and GNAT. This new method allows us to apply the
k-nn method to data with several hundred thousand training objects and for the
largest tested data set it makes it possible to reduce the 1-nn search by 4000
times as compared with linear search.

Ad.(5). After defining a metric and choosing a method to speed up the
search for similar objects, the last step is the selection of a classification model.
The classical k-nn method finds a fixed number k of the nearest neighbors of
a test object in the training set, assigns certain voting weights to these nearest
neighbors and selects the decision with the greatest sum of voting weights.

The metric used to find the nearest neighbors is the same for each test object:
it is induced globally from the training set. Real-life data are usually too complex
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to be accurately modeled by a global mathematical model. Therefore such a
global metric can only be an approximation of similarity encoded in data and
it can be inaccurate for specific objects. To ensure that the k nearest neighbors
found for a test object are actually similar, a popular solution is to combine the
k-nn method with another classification model.

A certain improvement in classification accuracy has been observed for mod-
els combining the k-nn approach with rule induction [25, 37, 54]. All these models
use the approach typical for rule induction: they generate a certain set of rules
a priori and then they apply these generated rules in the classification process.
Computation of an appropriate set of rules is usually time-consuming: to select
accurate rules algorithms need to evaluate certain qualitative measures for rules
in relation to the training set.

In the dissertation we propose a classification model combining the k-nn with
rule induction in such a way that after addition of the rule based component
the increase of the performance time of the k-nn method is inconsiderable. The
k-nn implements the lazy learning approach where computation is postponed
till the moment of classification [6, 34]. We add rule induction to the k nearest
neighbors in such a way that the combined model preserves lazy learning, i.e.,
rules are constructed in a lazy way at the moment of classification.

The combined model proposed in the dissertation is based on the set of all
minimal consistent rules in the training set [74]. This set has good theoretical
properties: it corresponds to the set of all the rules generated from all local
reducts of the training set [94]. However, the number of all minimal consistent
rules can be exponential with respect both to the number of attributes and to the
training set size. Thus, it is practically impossible to generate them all. An effec-
tive lazy simulation of the classification based on the set of all minimal consistent
rules for data with nominal attributes has been described by Bazan [6]. Instead
of computing all minimal consistent rules a priori before classification the algo-
rithm generates so called local rules at the moment of classification. Local rules
have specific properties related to minimal consistent rules and, on the other
hand, they can be effectively computed. This implies that classification based
on the set of all minimal consistent rules can be simulated in polynomial time.

In the dissertation we introduce a metric-dependent generalization of the
notions of minimal consistent rule and local rule. We prove that the model of
rules assumed by Bazan [6] is a specific case of the proposed generalization
where the metric is assumed to be the Hamming metric. We show that the
generalized model has properties analogous to those of the original model: there is
a relationship between generalized minimal consistent rules and generalized local
rules that makes the application of Bazan’s lazy algorithm to the generalized
model possible.

The proposed metric-dependent generalization enables a combination of
Bazan’s lazy algorithm with the k-nn method. Using the properties of the gen-
eralized model we modify Bazan’s algorithm in such a way that after addition
of the modified algorithm to the k-nn the increase of the performance time is
insignificant.
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We show that the proposed rule-based extension of the k-nn is a sort of voting
by the k nearest neighbors that can be naturally combined with any other vot-
ing system. It can be viewed as the rule based verification and selection of similar
objects found by the k-nn classifier. The experiments performed show that the pro-
posed rule-based voting gives the best classification accuracy when combined with
a voting model where the nearest neighbors of a test object are assigned the inverse
square distance weights. For some data sets the rule based extension added to the
k-nn method decreases relatively the classification error by several tens of percent.

Ad.(6). The k-nn, other inductive learning methods and even hybrid combi-
nations of these inductive methods are based on the induction of a mathematical
model from training data and application of this model to reasoning about test
objects. The induced data model remains invariant while reasoning about differ-
ent test objects. For many real-life data it is impossible to induce relevant global
models. This fact has been recently observed by researches in different areas, like
data mining, statistics, multiagent systems [17, 75, 79]. The main reason is that
phenomena described by real-life data are often too complex and we do not have
sufficient knowledge in data to induce global models or a parameterized class of
such models together with searching methods for the relevant global model in
such a class.

In the dissertation we propose a method for dealing with such real-life data.
The proposed method refers to another approach called transductive learning
[79]. In this approach the classification algorithm uses the knowledge encoded in
the training set, but it also uses knowledge about test objects in construction of
classification models. This means that for different test objects different classifi-
cation models are used. Application of transductive approach to problem solving
is limited by longer performance time than in inductive learning, but the advance
of hardware technology makes this approach applicable to real problems.

In the classical k-nn method the global, invariant model is the metric used to
find the nearest neighbors of test objects. The metric definition is independent
of the location of a test object, whereas the topology and the density of training
objects in real data are usually not homogeneous. In the dissertation we propose
a method for inducing a local metric for each test object and then this local
metric is used to select the nearest neighbors. Local metric induction depends
locally on the properties of the test object, therefore the notion of similarity
can be adapted to these properties and the correct decision can be selected in
specific distinctive fragments of the space of objects.

Such a local approach to the k-nn method has been already considered in
literature [24, 32, 44]. However, all the methods described in literature are spe-
cific: they can be applied only to data from a vector space and they are based on
local adaptation of a specific global metric in this space. In the dissertation we
propose a method that requires a certain global metric but the global metric is
used only for a preliminary selection of a set of training objects used to induce a
local metric. This method is much more general: it makes the global metric and
the local metric independent and it allows us to use any metric definition as a
local metric.
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In the experiments we show that the local metric induction method is help-
ful in the case of hard classification problems where the classification error
of different global models remains high. For one of the tested data sets this
method obtaines the classification accuracy that has never been reported before
in literature.

Partial results from the dissertation have been published and presented at
the international conferences RSCTC, ECML and ICDM [8, 39, 38, 76, 91] and
in the journal Fundamenta Informaticae [40, 92]. The methods described have
been implemented and they are available in the form of a software library and
in the system RSES [8, 73].

1.2 Organization of the Thesis

Section 2 introduces the reader to the problem of learning from data and to the
evaluation method of learning accuracy (Subsections 2.1 and 2.2). It describes
the basic model of analogy-based learning, the k-nn (Subsections 2.3–2.5), and
it presents the experimental methodology used in the dissertation (Subsections
2.6 and 2.7).

Section 3 introduces different metrics induced from training data. It starts
with the definition of VDM for nominal attributes (Subsection 3.1). Then, it
describes three extensions of the VDM metric for numerical attributes: IVDM,
WVDM and DBVDM, and an effective algorithm for computing the distance be-
tween objects for these metrics (Subsection 3.2). Next, two attribute weighting
algorithms are presented: an algorithm that optimizes distance and an algo-
rithm that optimizes classification accuracy (Subsections 3.3–3.5). Finally, ex-
periments comparing accuracy of the described metrics and weighting methods
are presented (Subsections 3.6–3.9).

Section 4 describes the indexing tree with the iterative splitting procedure
(Subsections 4.2–4.4), and the nearest neighbors search method with three com-
bined pruning criteria (Subsections 4.5 and 4.6). Moreover, It presents an exper-
imental comparison of this search method with other methods known from the
literature (Subsections 4.7 and 4.8).

In Section 5, first we describe the algorithm that estimates automatically the
optimal number of neighbors k in the k-nn classifier (Subsection 5.1). The rest
of the section is dedicated to two new classification models that use previously
described components: the metrics, indexing and the estimation of the optimal
k. First, the metric-based extension of rule induction and the combination of
a rule based classification model with the k nearest neighbors method is de-
scribed and compared experimentally with other known methods (Subsections
5.3–5.5). Next, the model with local metric induction is presented and evaluated
experimentally (Subsections 5.6 and 5.7).

2 Basic Notions

In this section, we define formally the problem of concept learning from examples.
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2.1 Learning a Concept from Examples

We assume that the target concept is defined over a universe of objects U∞.
The concept to be learnt is represented by a decision function dec : U∞ → Vdec.
In the thesis we consider the situation, when the decision is discrete and finite
Vdec = {d1, . . . dm}. The value dec(x) ∈ Vdec for an object x ∈ U∞ represents
the category of the concept that the object x belongs to.

In the thesis we investigate the problem of decision learning from a set of
examples. We assume that the target decision function dec : U∞ → Vdec is
unknown. Instead of this there is a finite set of training examples U ⊆ U∞

provided, and the decision values dec(x) are available for the objects x ∈ U only.
The task is to provide an algorithmic method that learns a function (hypothesis)
h : U∞ → Vdec approximating the real decision function dec given only this set
of training examples U .

The objects from the universe U∞ are real objects. In the dissertation we as-
sume that they are described by a set of n attributes A = {a1, . . . , an}. Each real
object x ∈ U∞ is represented by the object that is a vector of values (x1, . . . , xn).
Each value xi is the value of the attribute ai on this real object x. Each attribute
ai ∈ A has its domain of values Vi and for each object representation (x1, . . . , xn)
the values of the attributes belong to the corresponding domains: xi ∈ Vi for all
1 ≤ i ≤ n. In other words, the space of object representations is defined as the
product X = V1 × . . . × Vn. The type of an attribute ai is either numerical, if
its values are comparable and can be represented by numbers Vi ⊆ R (e.g., age,
temperature, height), or nominal, if its values are incomparable, i.e., if there is
no linear order on Vi (e.g., color, sex, shape).

It is easy to learn a function that assigns the appropriate decision for each
object in a training set x ∈ U . However, in most of decision learning prob-
lems a training set U is only a small sample of possible objects that can oc-
cur in real application and it is important to learn a hypothesis h that recog-
nizes correctly as many objects as possible. The most desirable situation is to
learn the hypothesis that is accurately the target function: h(x) = dec(x) for
all x ∈ U∞. Therefore the quality of a learning method depends on its abil-
ity to generalize information from examples rather than on its accuracy on the
training set.

The problem is that the target function dec is usually unknown and the
information about this function dec is restricted only to a set of examples. In
such a situation a widely used method to compare different learning algorithms
is to divide a given set of objects U into a training part Utrn and a test part
Utst, next, to apply learning algorithms to the training part Utrn, and finally,
to measure accuracy of the induced hypothesis on the test set Utst using the
proportion of the correctly classified objects to all objects in the test set [61]:

accuracy(h) =
|{x ∈ Utst : h(x) = dec(x)}|

|Utst|
.
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2.2 Learning as Concept Approximation in Rough Set Theory

The information available about each training object x ∈ Utrn is restricted
to the vector of attribute values (x1, . . . , xn) and the decision value dec(x).
This defines the indiscernibility relation IND = {(x, x′) : ∀ai ∈ A xi = x′

i}.
The indiscernibility relation IND is an equivalence relation and defines a par-
tition in the set of the training objects Utrn. The equivalence class of an object
x ∈ Utrn is defined by IND(x) = {x′ : xINDx′}. Each equivalence class con-
tains the objects that are indiscernible by the values of the attributes from the
set A. The pair (Utrn, IND) is called an approximation space over the set Utrn

[63, 64].
Each decision category dj ∈ Vdec is associated with its decision class in

Utrn: Class(dj) = {x ∈ Utrn : dec(x) = dj}. The approximation space AS =
(Utrn, IND) defines the lower and upper approximation for each decision
class:

LOWERAS(Class(dj)) = {x ∈ Utrn : IND(x) ⊆ Class(dj)}
UPPERAS(Class(dj)) = {x ∈ Utrn : IND(x) ∩ Class(dj) �= ∅}

The problem of concept learning can be described as searching for an exten-
sion (U∞, IND∞) of the approximation space (Utrn, IND), relevant for approx-
imation of the target concept dec. In such an extension each new object x ∈ U∞

provides an information (x1, . . . , xn) ∈ X with semantics IND∞(x) ⊆ U∞. By
‖(x1, . . . , xn)‖Utrn and ‖(x1, . . . , xn)‖U∞ we denote the semantics of the pat-
tern (x1, . . . , xn) in Utrn and U∞, respectively. Moreover, ‖(x1, . . . , xn)‖Utrn =
IND(x) and ‖(x1, . . . , xn)‖U∞ = IND∞(x).

In order to define the lower and upper approximation of Class(dj) ⊆ U∞

using IND∞ one should estimate the relationships between IND∞(x) and
Class(dl) for l = 1, . . . , m.

In the dissertation two methods are used.
In the first method we estimate the relationships between IND∞(x) and

Class(dl) by:

1. selecting from Utrn the set NN(x, k) of k nearest neighbors of x by using a
distance function (metric) defined on patterns;

2. using the relationships between ‖(y1, . . . , yn)‖Utrn and Class(dl) ∩ Utrn for
y ∈ NN(x, k) and l = 1, . . . , m to estimate the relationship between IND∞

(x) and Class(dj).

One can also use another method for estimating the relationship between
IND∞(x) and Class(dj). Observe that the patterns from {(y1, . . . , yn) : y ∈
Utrn} are not enough general for matching arbitrary objects from U∞. Hence,
first, using a distance function we generalize the patterns (y1, . . . , yn) for y ∈ Utrn

to patterns pattern(y) that are combinations of so called generalized descriptors
ai ∈ W , where W ⊆ Vi, with the semantics ‖ai ∈ W‖Utrn = {y ∈ Utrn : yi ∈
W}. The generalization preserves the following constraint: if ‖(y1, . . . , yn)‖Utrn ⊆
Class(dl) then ‖pattern(y)‖Utrn ⊆ Class(dl). For a given x ∈ U∞ we select
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all pattern(y) that are matching x and we use the relationships between their
semantics and Class(dl) for l = 1, . . . , m to estimate the relationship between
IND∞(x) and Class(dj).

Since in the considered problem of concept learning the only information
about new objects to be classified is the vector of attribute values (x1, . . . , xn) ∈
X the objects with the same value vector are indiscernible. Therefore searching
for a hypothesis h : U∞ → Vdec approximating the real function dec : U∞ → Vdec

is restricted to searching for a hypothesis of the form h : X → Vdec. To this end
the space of object representations X is called for short the space of objects
and we consider the problem of learning a hypothesis using this restricted form
h : X → Vdec.

2.3 Metric in the Space of Objects

We assume that in the space of objects X a distance function ρ : X2 → R is de-
fined. The distance function ρ is assumed to satisfy the axioms of a pseudometric,
i.e., for any objects x, y, z ∈ X:

1. ρ(x, y) ≥ 0 (positivity),
2. ρ(x, x) = 0 (reflexivity),
3. ρ(x, y) = ρ(y, x) (symmetry),
4. ρ(x, y) + ρ(y, z) ≥ ρ(x, z) (triangular inequality).

The distance function ρ models the relation of similarity between objects. The
properties of symmetry and triangular inequality are not necessary to model
similarity but they are fundamental for the efficiency of the learning methods
described in this thesis and for many other methods from the literature [9, 11, 12,
18, 19, 20, 29, 35, 36]. Sometimes the definition of a distance function satisfies the
strict positivity: x �= y ⇒ ρ(x, y) > 0. However, the strict positivity is not used
by the distance based learning algorithms and a number of important distance
measures like VDM [77] and the metrics proposed in this thesis do not satisfy
this property.

In the lp-norm based metric the distance between two objects x=(x1, . . . , xn),
y = (y1, . . . , yn) is defined by

ρ(x, y) =

(
n∑

i=1

ρi(xi, yi)p

) 1
p

where the metrics ρi are the distance functions defined for particular attributes
ai ∈ A.

Aggarwal et al. [1] have examined the meaningfulness of the concept of sim-
ilarity in high-dimensional real value spaces investigating the effectiveness of
the lp-norm based metric in dependence on the value of the parameter p. They
proved the following result:
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Theorem 1. For the uniform distribution of 2 points x, y in the cube (0, 1)n

with the norm lp (p ≥ 1):

lim
n→∞E

[(
max(‖x‖p , ‖y‖p)−min(‖x‖p , ‖y‖p)

min(‖x‖p , ‖y‖p)

)
√

n

]
= C

√
1

2p + 1

where C is a positive constant and ‖·‖p denotes the standard norm in the
space lp.

It shows that the smaller p, the larger relative contrast is between the point
closer to and the point farther from the beginning of the coordinate system. It
indicates that the smaller p the more effective metric is induced from the lp-
norm. In the context of this result p = 1 is the optimal trade-off between the
quality of the measure and its properties: p = 1 is the minimal index of the lp-
norm that preserves the triangular inequality. The fractional distance measures
with p < 1 do not have this property.

On the basis of this result we assume the value p = 1 and in the thesis we
explore the metrics that are defined as linear sum of metrics ρi for particular
attributes ai ∈ A:

ρ(x, y) =
n∑

i=1

ρi(xi, yi). (1)

In the problem of learning from a set of examples Utrn the particular distance
functions ρi are induced from a training set Utrn. It means that the metric
definition depends on the provided examples and it is different for different data
sets.

2.4 City-Block and Hamming Metric

In this subsection we introduce the definition of a basic metric that is widely
used in the literature. This metric combines the city-block (Manhattan) distance
for the values of numerical attributes and the Hamming distance for the values
of nominal attributes.

The distance ρi(xi, yi) between two values xi, yi of a numerical attribute ai

in the city-block distance is defined by

ρi(xi, yi) = |xi − yi| . (2)

The scale of values for different domains of numerical attributes can be differ-
ent. To make the distance measures for different numerical attributes equally
significant it is better to use the normalized value difference. Two types of nor-
malization are used. In the first one the difference is normalized with the range
of the values of the attribute ai

ρi(xi, yi) =
|xi − yi|

maxi −mini
, (3)
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where maxi = maxx∈Utrn xi and mini = minx∈Utrn xi are the maximal and the
minimal value of the attribute ai in the training set Utrn. In the second type of
normalization the value difference is normalized with the standard deviation of
the values of the attribute ai in the training set Utrn:

ρi(xi, yi) =
|xi − yi|

2σi

where σi =

√
x∈Utrn

(xi−μi)2

|Utrn| and μi = x∈Utrn
xi

|Utrn| .

The distance ρi(xi, yi) between two nominal values xi, yi in the Hamming
distance is defined by the Kronecker delta:

ρi(xi, yi) =
{

1 if xi �= yi

0 if xi = yi.

The combined city-block and Hamming metric sums the normalized value dif-
ferences for numerical attributes and the values of Kronecker delta for nominal
attributes. The normalization of numerical attributes with the range of values
maxi − mini makes numerical and nominal attributes equally significant: the
range of distances between values is [0; 1] for each attribute. The only possible
distance values for nominal attributes are the limiting values 0 and 1, whereas
the normalized distance definition for numerical attributes can give any value
between 0 and 1. It results from the type of an attribute: the domain of a nom-
inal attribute is only a set of values and the only relation in this domain is the
equality relation. The domain of a numerical attribute are the real numbers and
this domain is much more informative: it has the structure of linear order and
the natural metric, i.e., the absolute difference.

Below we define an important property of metrics related to numerical
attributes:

Definition 2. The metric ρ is consistent with the natural linear order of nu-
merical values if and only if for each numerical attribute ai and for each three
real values v1 ≤ v2 ≤ v3 the following conditions hold: ρi(v1, v2) ≤ ρi(v1, v3) and
ρi(v2, v3) ≤ ρi(v1, v3).

The values of a numerical attribute reflect usually a measure of a certain
natural property of analyzed objects, e.g., size, age or measured quantities like
temperature. Therefore, the natural linear order of numerical values helps often
obtain useful information for measuring similarity between objects and the notion
of metric consistency describes the metrics that preserve this linear order.

Fact 3. The city-block metric is consistent with the natural linear order.

Proof. The city-block metric depends linearly on the absolute difference as de-
fined in Equation 2 or 3. Since the absolute difference is consistent with the
natural linear order, the city-block metric is consistent too. �
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Fig. 1. The Voronoi diagram determined by examples on the Euclidean plane

2.5 K Nearest Neighbors as Analogy-Based Reasoning

One of the most popular algorithms in machine learning is the k nearest neigh-
bors (k-nn). The predecessor of this method, the nearest neighbor algorithm
(1-nn) [23], induces a metric ρ from the training set Utrn, e.g., the city-block
and Hamming metric described in Subsection 2.4, and stores the whole training
set Utrn in memory. Each test object x is classified by the 1-nn with the decision
of the nearest training object ynearest from the training set Utrn according to
the metric ρ:

ynearest := arg min
y∈Utrn

ρ(x, y),

dec1−nn(x) := dec(ynearest).

On the Euclidean plane (i.e., with the Euclidean metric) the regions of the
points nearest to particular training examples constitute the Voronoi diagram
(see Figure 1).

The k nearest neighbors is an extension of the nearest neighbor [26, 31].
Instead of the one nearest neighbor it uses the k nearest neighbors NN(x, k) to
select the decision for an object x to be classified. The object x is assigned with
the most frequent decision among the k nearest neighbors:

deck−nn(x) := arg max
dj∈Vdec

|{y ∈ NN(x, k) : dec(y) = dj}| . (4)

Ties are broken arbitrary in favor of the decision dj with the smallest index j or
in favor of a randomly selected decision among the ties.

The k nearest neighbors method is a simple example of analogy-based rea-
soning. In this approach a reasoning system assumes that there is a database
providing the complete information about examplary objects. When the system
is asked about another object with an incomplete information it retrieves similar
(analogous) objects from the database and the missing information is completed
on the basis of the information about the retrieved objects.
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In the k-nn the induced metric ρ plays the role of a similarity measure. The
smaller the distance is between two objects, the more similar they are. It is
important for the similarity measure to be defined in such a way that it uses
only the information that is available both for the examplary objects in the
database and for the object in the query. In the problem of decision learning it
means that the metric uses only the values of the non-decision attributes.

2.6 Data Sets

The performance of the algorithms described in this dissertation is evaluated for
a number of benchmark data sets. The data sets are obtained from the repos-
itory of University of California at Irvine [16]. This repository as the source of
benchmark data sets is the most popular in the machine learning community
and all the data sets selected to evaluate learning algorithms in this dissertation
have been also used by other researchers. This ensures that the presented per-
formance of algorithms can be compared to the performance of other methods
from the literature.

To compare the accuracy of the learning models described in this dissertation
(Section 3 and Section 5) 10 benchmark data sets were selected (see Table 1). All
the selected sets are the data sets from UCI repository that have data objects
represented as vectors of attributes values and have the size between a few
thousand and several tens thousand of objects. This range of the data size was
chosen because such data sets are small enough to perform multiple experiments
for all the algorithms described in this dissertation and to measure their accuracy
in a statistically significant way (see Subsection 2.7). The evaluation of these
algorithms is based on the largest possible data sets since such data sets are
usually provided in real-life problems.

To compare the efficiency of the indexing structures used to speedu up search-
ing for the nearest neighbors (Section 4) all the 10 data sets from Table 1 were
used again with 2 additional very large data sets (see Table 2). The size of the 2
additional data sets is several hundred thousand. The indexing and the searching

Table 1. The data sets used to evaluate accuracy of learning algorithms

Data set Number Types Training Test
of attributes of attributes set size set size

segment 19 numeric 1 540 770
splice (DNA) 60 nominal 2 000 1 186
chess 36 nominal 2 131 1 065
satimage 36 numeric 4 435 2 000
mushroom 21 numeric 5 416 2 708
pendigits 16 numeric 7 494 3 498
nursery 8 nominal 8 640 4 320
letter 16 numeric 15 000 5 000
census94 13 numeric+nominal 30 160 15 062
shuttle 9 numeric 43 500 14 500
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Table 2. The data sets used to evaluate efficiency of indexing structures

Data set Number Types Training Test
of attributes of attributes set size set size

census94-95 40 numeric+nominal 199 523 99 762
covertype 12 numeric+nominal 387 308 193 704

process are less time consuming than some of the learning models. Therefore,
larger data sets are possible to be tested. The 2 largest data sets illustrate the
capabilities of the indexing methods described in the dissertation.

Each data set is split into a training and a test set. Some of the sets (splice,
satimage, pendigits, letter, census94, shuttle, census94-95 ) are available in the
repository with the original partition and this partition was used in the experi-
ments. The remaining data sets (segment, chess, mushroom, nursery, covertype)
was randomly split into a training and a test part with the split ratio 2 to 1.
To make the results from different experiments comparable the random parti-
tion was done once for each data set and the same partition was used in all the
performed experiments.

2.7 Experimental Evaluation of Learning Algorithms

Both in the learning models constructed from examples (Sections 3 and 5) and
in the indexing structures (Section 4) described in the dissertation there are
elements of non-determinism: some of the steps in these algorithms depend on
selection of a random sample from a training set. Therefore the single test is
not convincing about the superiority of one algorithm over another: difference
between two results may be a randomness effect. Instead of the single test in each
experiment a number of tests was performed for each data set and the average
results are used to compare algorithms. Moreover, the Student’s t-test [41, 30]
is applied to measure statistical significance of difference between the average
results of different algorithms.

The Student’s t-test assumes that the goal is to compare two quantities
being continuous random variables with normal distribution. A group of sample
values is provided for each quantity to be compared. In the dissertation these
quantities are either the accuracy of learning algorithms measured on the test
set (see Subsection 2.1) or the efficiency of the indexing and searching algorithm
measured by the number of basic operations performed.

There are the paired and the unpaired Student’s t-test. The paired t-test is
used where there is a meaningful one-to-one correspondence between the values
in the first and in the second group of sample values to be compared. In our
experiments the results obtained in particular tests are independent. In such a
situation the unpaired version of the Student’s t-test is appropriate.

Another type of distinction between different tests depends on the informa-
tion one needs to obtain from a test. The one-tailed t-test is used if one needs to
know whether one quantity is greater or less than another one. The two-tailed
t-test is used if the direction of the difference is not important, i.e., the infor-
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Table 3. The Student’s t-test probabilities

df \ α 90% 95% 97.5% 99% 99.5%

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169

mation whether two quantities differ or not is required only. In our experiments
the information about the direction of difference (i.e., whether one algorithm is
better or worse than another one) is crucial so we use the one-tailed unpaired
Student’s t-test.

Let X1 and X2 be continuous random variables and let p be a number of
values sampled for each variable Xi. In the Student’s t-test only the means
E(X1), E(X2) and the standard deviations σ(X1), σ(X2) are used to measure
statistical significance of difference between the variables. First, the value of t is
to be calculated:

t =
E(X1)− E(X2)√

σ(X1)2+σ(X2)2
p

.

Next, the degree of freedom df is to be calculated:

df = 2(p− 1).

Now the level of statistical significance can be checked in the table of the t-test
probabilities (see Table 3). The row with the calculated degree of freedom df is
to be used. If the calculated value of t is greater than the critical value of t given
in the table then X1 is greater than X2 with the level of significance α given in
the header of the column. The level of significance α means that X1 is greater
than X2 with the probability α.

3 Metrics Induced from Examples

This section explores metrics induced from examples.

3.1 Joint City-Block and Value Difference Metric

Subsection 2.4 provides the metric definition that combines the city-block metric
for numerical attributes and the Hamming metric for nominal attributes. In this
subsection we focus on nominal attributes.



Analogy-Based Reasoning in Classifier Construction 295

x
i

y
i

(0,1,0)

(0,0,1)

(1,0,0)

P(dec=1|a =v)i
P(dec=2|a =v)i

P(dec=3|a =v)i

Fig. 2. An example: the Value Difference Metric for the three decision values Vdec =
{1, 2, 3}. The distance between two nominal values xi, yi corresponds to the length of
the dashed line.

The definition of the Hamming metric uses only the relation of equality in
the domain of values of a nominal attribute. This is the only relation that can be
assumed in general about nominal attributes. This relation carries often insuf-
ficient information, in particular it is much less informative than the structure
of the domains for numerical attributes where the values have the structure of
linear order with a distance measure between the values.

Although in general one can assume nothing more than equality relation
on nominal values, in the problem of learning from examples the goal is to
induce a classification model from examples assuming that a problem and data
are fixed. It means that in the process of classification model induction the
information encoded in the database of examples should be used. In the k nearest
neighbors method this database can be used to extract meaningful information
about relation between values of each nominal attribute and to construct a
metric.

This fact has been used first by Stanfill and Waltz who defined a measure
to compare the values of a nominal attribute [77]. The definition of this mea-
sure, called the Value Difference Metric (VDM), is valid only for the problem of
learning from examples. It defines how much the values of a nominal attribute
ai ∈ A differ in relation to the decision dec. More precisely, the VDM metric
estimates the conditional decision probability P (dec = dj |ai = v) given a nom-
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inal value v and uses the estimated decision probabilities to compare nominal
values. The VDM distance between two nominal values xi, yi is defined by the
difference between the estimated decision probabilities P (dec = dj |ai = xi),
P (dec = dj |ai = xi) corresponding to the values xi, yi (see Figure 2):

ρi(xi, yi) =
∑

dj∈Vdec

|P (dec = dj |ai = xi)− P (dec = dj |ai = yi)| . (5)

The estimation of the decision probability P (dec = dj |ai = v) is done from
the training set Utrn. For each value v, it is defined by the decision distribution
in the set of all the training objects that have the value of the nominal attribute
ai equal to v:

PV DM (dec = dj |ai = v) =
|{x ∈ Utrn : dec(x) = dj ∧ xi = v}|

|{x ∈ Utrn : xi = v}| .

From Equation 5 and the definition of PV DM (dec = dj |ai = v) one can
see that the more similar the correlations between each of two nominal values
xi, yi ∈ Vi and the decisions d1, . . . , dm ∈ Vdec in the training set of examples
Utrn are the smaller the distance in Equation 5 is between xi and yi. Different
variants of these metric were used in many applications [14, 22, 77].

To define a complete metric the Value Difference Metric needs to be combined
with another distance function for numerical attributes. For each pair of possible
data objects x, y ∈ X the following condition ρi(xi, yi) ≤ 2 is satisfied for any
nominal attribute ai ∈ A. It means that the range of possible distances for the
values of nominal attributes in the Value Difference Metric is [0; 2]. It corresponds
well to the city-block distance for a numerical attribute ai normalized by the
range of the values of this attribute in the training set Utrn (see Subsection 2.4):

ρi(xi, yi) =
|xi − yi|

maxi −mini
.

The range of this normalized city-block metric is [0; 1] for the objects in the
training set Utrn. In the test set Utst this range can be exceeded but it happens
very rarely in practice. The most important property is that the ranges of such
a normalized numerical metric and the VDM metric are of the same order.

The above described combination of the distance functions for nominal and
numerical attributes was proposed by Domingos [25]. The experimental results
described in Subsection 3.7 and 3.9 prove that this combination is more effective
than the same normalized city-block metric combined with the Hamming metric.

3.2 Extensions of Value Difference Metric for Numerical Attributes

The normalized city-block metric used in the previous subsection to define the
joint metric uses information from the training set: it normalizes the difference
between two numerical values v1, v2 by the range of the values of a numerical
attribute maxi −mini in the training set. However, it defines the distance be-
tween values of the numerical attribute on the basis of the information about
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this attribute only, whereas the distance definition for nominal attributes makes
use of the correlation between the nominal values of an attribute and the deci-
sion values. Since this approach improves the effectiveness of metrics for nominal
attributes (see Subsection 3.7) analogous solutions has been investigated for nu-
merical attributes.

Wilson and Martinez proposed two analogous distance definitions. In the
Interpolated Value Difference Metric (IVDM) [88, 89] it is assumed that the
range of values [mini; maxi] of a numerical attribute ai in a training set is
discretized into s equal-width intervals. To determine the value of s they use the
heuristic value

s = max (|Vdec| , 5) .

The width of such a discretized interval is:

wi =
maxi −mini

s
.

In each interval Ip = [mini +(p− 1) ·wi; mini + p ·wi], where 0 ≤ p ≤ s+1, the
midpoint midp and the decision distribution P (dec = dj |ai ∈ Ip) are defined by

midp = mini + (p− 1
2
) · wi,

P (dec = dj |ai ∈ Ip) =

{
0 if p = 0 or p = s + 1

|{x∈Utrn: dec(x)=dj∧xi∈Ip}|
|{x∈Utrn: xi∈Ip}| if 1 ≤ p ≤ s.

.
To determine the decision distribution in the IVDM metric for a given nu-

merical value v the two neighboring intervals are defined by

I(v) = max{p ≤ s + 1 : midp ≤ v ∨ p = 0},

I3 I4 I5 I6I0 v

j
P(dec=d |a =v)

i

I I1 2

Fig. 3. An example of the interpolated decision distribution for a single decision dj

with the number of intervals s = 5
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(0,0,1)
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P(dec=2|a =v)iP(dec=1|a =v)i

P(dec=3|a =v)i

i

yi

Fig. 4. The Interpolated Value Difference Metric: to measure the distance between two
numerical values xi, yi the decision distribution for each value is interpolated between
the decision distributions in the midpoints of the two neighboring intervals.

I(v) = min{p ≥ 0 : midp ≥ v ∨ p = s + 1}.

If v is out of the range [mid0; mids+1] the interval indices are set either to zero:
I(v) = I(v) = 0 or to s + 1: I(v) = I(v) = s + 1, and the null distribution is
assigned to v. If v lies in the range [mid0; mids+1] there are two cases. If I(v)
and I(v) are equal the value v is exactly the midpoint of the interval II(v) = II(v)
and the decision distribution from this interval P (dec = dj |ai ∈ II(v)) is used
to compare v with other numerical values. Otherwise, the decision distribution
for the value v is interpolated between the two neighboring intervals II(v) and
II(v). The weights of the interpolation are proportional to the distances to the
midpoints of the neighboring intervals (see Figure 3):

PIV DM(dec = dj |ai = v) =

P (dec = dj |ai ∈ II(v)) ·
midI(v) − v

wi
+ P (dec = dj |ai ∈ II(v)) ·

v −midI(v)

wi
.

The decision distributions for the values of a numerical attribute correspond
to the broken line in the space of decision distributions in Figure 4. The di-
mension of this space is equal to the number of decisions m = |Vdec|. To define
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the IVDM metric these decision distributions for numerical values are used by
analogy to the decision distributions for nominal values of nominal attributes
the VDM metric. The IVDM distance between two numerical values is defined
by Equation 5 as equal to the city-block distance between the two corresponding
distributions in the space of decision distributions.

The IVDM metric can be explained by means of sampling the value of
P (dec = dj |ai ∈ Ip) at the midpoint midp of each discretized interval [midp −
wi

2 ; midp + wi

2 ]. Then the IVDM metric interpolates between these sampled
points to provide a continuous approximation of the decision probability P (dec =
dj |ai = v) for the whole range of values of the attribute ai.

The IVDM metric is computationally effective. The limits of the range of
values mini, maxi, the interval width wi and the decision distributions in the
discretized intervals I0, . . . , Is+1 for all attributes can be computed in linear
time O(|Utrn| |A|). The cost of the single distance computation is also linear
O(|A| |Vdec|): the two neighboring intervals of a value v can be determined in a
constant time by the evaluation of the expressions:

I(v) =

⎧⎪⎨
⎪⎩

0 if v < mini − wi

2
s + 1 if v > maxi + wi

2⌊
v−mini+

wi
2

wi

⌋
if v ∈ [mini − wi

2 ; maxi + wi

2 ],

I(v) =

⎧⎪⎨
⎪⎩

0 if v < mini − wi

2
s + 1 if v > maxi + wi

2⌈
v−mini+

wi
2

wi

⌉
if v ∈ [mini − wi

2 ; maxi + wi

2 ].

and the interpolation of two decision distributions can be computed in O(|Vdec|).
Another extension of the VDM metric proposed by Wilson and Martinez

is the Windowed Value Difference Metric (WVDM) [88]. It replaces the linear
interpolation from the IVDM metric by sampling for each numerical value. The
interval width wi is used only to define the size of the window around the value
to be sampled. For a given value v the conditional decision probability P (dec =
dj |ai = v) is estimated by sampling in the interval [v− wi

2 ; v + wi

2 ] that v is the
midpoint in:

PWV DM (dec = dj |ai = v) ={
0 if v ≤ mini − wi

2 or v ≥ maxi + wi

2
|{x∈Utrn: dec(x)=dj∧|xi−v|≤wi

2 }|
|{x∈Utrn: |xi−v|≤wi

2 }|
if v ∈ [mini − wi

2 ; maxi + wi

2 ].

The WVDM metric locates each value v to be estimated in the midpoint of
the interval to be sampled and in this way it provides a closer approximation of
the conditional decision probability P (dec = dj |ai = v) than the IVDM metric.
However, the size of the window is constant. In many problems the density of
numerical values is not constant and the relation of being similar between two
numerical values depends on the range where these two numerical values occur.
It means that the same difference between two numerical values has different
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meaning in different ranges of the attribute values. For example, the meaning
of the temperature difference of the one Celsius degree for the concept of water
freezing is different for the temperatures over 20 degrees and for the temperatures
close to zero.

Moreover, in some ranges of the values of a numerical attribute the sample
from the training set can be sparse and the set of the training objects falling
into a window of the width wi may be insufficiently representative to estimate
correctly the decision probability. In the extreme case the sample window can
even contain no training objects.

To avoid this problem we propose the Density Based Value Difference Metric
(DBVDM) that is a modification of the WVDM metric. In the DBVDM metric
the size of the window to be sampled depends on the density of the attribute
values in the training set. The constant parameter of the window is the number
of the values from the training set falling into the window rather than its width.
To estimate the conditional decision probability P (dec = dj |ai = v) for a given
value v of a numerical attribute ai the DBVDM metric uses the vicinity set of
the value v that contains a fixed number n of objects with the nearest values of
the attribute ai. Let wi(v) be such a value that

∣∣∣∣
{

x ∈ Utrn : |v − xi| <
wi(v)

2

}∣∣∣∣ ≤ n and
∣∣∣∣
{

x ∈ Utrn : |v − xi| ≤
wi(v)

2

}∣∣∣∣ ≥ n.

vic(x ) vic(y ) a

(1,0,0) (0,1,0)

(0,0,1)

P(dec=3|a =v)

P(dec=2|a =v)P(dec=1|a =v)

xi

y
i

i i

i i

i

Fig. 5. The Density Based Value Difference Metric: The decision distributions for xi, yi

are sampled from the windows vic(xi), vic(yi) around xi and yi, repsectively, with a
constant number of values in a training set
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iwi

midpoint

a

Fig. 6. A window with the midpoint ascending in the domain of values of a numerical
attribute ai

The value wi(v) is equal to the size of the window around v dependent on the
value v. The decision probability in the DBVDM metric for the value v is defined
as in the WVDM metric. However, it uses this flexible window size wi(v) (see
Figure 5):

PDBV DM (dec = dj |ai = v) =

∣∣∣{x ∈ Utrn : dec(x) = dj ∧ |xi − v| ≤ wi(v)
2

}∣∣∣∣∣∣{x ∈ Utrn : |xi − v| ≤ wi(v)
2

}∣∣∣ .

The DBVDM metric uses the sample size n as the invariable parameter of the
procedure estimating the decision probability at each point v. If the value n is
selected reasonably the estimation of the decision probability avoids the problem
of having either too few or too many examples in the sample. We performed a
number of preliminary experiments and we observed that the value n = 200 was
large enough to provide representative samples for all data sets and increasing
the parameter n above 200 did not improve the classification accuracy.

The WVDM and the DBVDM metric are much more computationally com-
plex than the IVDM metric. The basic approach where the estimation of the
decision probability for two numerical values v1, v2 to be compared is performed
during distance computation is expensive: it requires to scan the whole windows
around v1 and v2 at each distance computation. We propose another solution
where the decision probabilities for all values of a numerical attribute are esti-
mated from a training set a priori before any distance is computed.

Theorem 4. For both metrics WVDM and DBVDM the range of values of a
numerical attribute can be effectively divided into 2 · |Utrn| + 1 or less intervals
in such a way that the estimated decision probability in each interval is constant.

Proof. Consider a window in the domain of real values moving in such a way that
the midpoint of this window is ascending (see Figure 6). In case of the WVDM
metric the window has the fixed size wi. All the windows with the midpoint
v ∈

(
−∞; mini − wi

2

)
contain no training objects. While the midpoint of the

window is ascending in the interval
[
mini − wi

2 ; maxi + wi

2

]
the contents of the

window changes every time when the lower or the upper limit of the window
meets a value from the training set Utrn. The number of different values in
Utrn is at most |Utrn|. Hence, each of the two window limits can meet a new
value at most |Utrn| times. Hence, the contents of the window can change at
most 2 · |Utrn| times. Since the decision probability estimation is constant if the
contents of the window does not change there are at most 2 · |Utrn|+ 1 intervals
each with constant decision probability.
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In the DBVDM metric at the beginning the window contains a fixed number
of training objects with the lowest values of the numerical attribute to be con-
sidered. Formally, while the midpoint of the window is ascending in the range(
−∞; mini + wi(mini)

2

)
the upper limit of the window is constantly equal to

mini +wi(min) and the lower limit is ascending. Consider the midpoint ascend-
ing in the interval[
mini + wi(mini)

2 ; maxi − wi(maxi)
2

]
. In DBVDM the size of the window is chang-

ing but one of the two limits of the window is constant. If the lower limit has
recently met an object from the training set then it is constant and the upper
limit is ascending. If the upper limit meets an object it becomes constant and
the lower limit starts to ascend. This repeats until the upper limit of the window
crosses the maximum value maxi. Hence, as in WVDM, the contents of the win-
dow can change at most 2 · |Utrn| times and the domain of numerical values can
be divided into 2 · |Utrn|+1 intervals each with constant decision probability. �

Given the list of the objects from the training set sorted in the ascending
order of the values of a numerical attribute ai the proof provides a linear pro-
cedure for finding the intervals with constant decision probability. The sorting
cost dominates therefore the decision probabilities for all the values of all the
attributes can be estimated in O(|A| |Utrn| log |Utrn|) time. To compute the dis-
tance between two objects one needs to find the appropriate interval for each
numerical value in these objects. A single interval can be found with the binary
search in O(log |Utrn|) time. Hence, the cost of a single distance computation is
O(|A| |Vdec| log |Utrn|). If the same objects are used to compute many distances
the intervals corresponding to the attribute values can be found once and the
pointers to these intervals can be saved.

All the metrics presented in this subsection: IVDM, WVDM and DBVDM
use the information about the correlation between the numerical values and the
decision from the training set. However, contrary to the city-block metric none of
those three metrics is consistent with the natural linear order of numerical values
(see Definition 2). Summing up, the metrics IVDM, WVDM and DBVDM are
based more than the city-block metric on the information included in training
data and less on the general properties of numerical attributes.

3.3 Weighting Attributes in Metrics

In the previous subsections we used the distance defined by Equation 1 without
attribute weighting. This definition treats all attributes as equally important.
However, there are numerous factors that make attributes unequally significant
for classification in most real-life data sets. For example:

– some attributes can be strongly correlated with the decision while other
attributes can be independent of the decision,

– more than one attribute can correspond to the same information, hence,
taking one attribute into consideration can make other attributes redundant,
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– some attributes can contain noise in values, which makes them less trust-
worthy than attributes with the exact information.

Therefore, in many applications attribute weighting has a significant impact
on the classification accuracy of the k-nn method [2, 51, 56, 85]. To improve the
quality of the metrics described in Subsection 3.2 we also use attribute weighting
and we replace the non-weighted distance definition from Equation 1 with the
weighted version:

ρ(x, y) =
n∑

i=1

wi · ρi(xi, yi). (6)

In the dissertation we combine attribute weighting with linear metrics. As we
substantiated in Subsection 2.3 the linear metric is the optimal trade-off between
the quality of the measure and its properties.

Weighting methods can be categorized along several dimensions [85]. The
main criterion for distinction depends on whether a weighting algorithm com-
putes the weights once following a pre-existing model or uses feedback from
performance of a metric to improve weights iteratively. The latter approach has
an advantage over the former one: the search for weight settings is guided by
estimation how well those settings perform. Thus, attribute weights are adjusted
to data more than in case of a fixed, pre-existing model. In this dissertation we
propose the weighting methods that incorporate performance feedback.

The next distinction among algorithms searching in a weight space depends
on the form of a single step in an algorithm. The algorithms fall into two
categories:

– on-line algorithms: training examples are processed sequentially and the
weights are modified after each example; usually the weights are modified in
such a way that the distance to nearby examples from the same class is de-
creased and the distance to nearby examples from other classes is increased,

– batch algorithms: the weights are modified after processing either the whole
training set or a selected sample from the training set.

Online algorithms change weights much more often than batch algorithms so
they require much less examples to process. However, for large data sets both
online and batch algorithms are too expensive and an advanced indexing method
must be applied (see Section 4). In such a case online algorithms are impractical:
indexing must be performed every time when weights are modified, in online
algorithms it is after each example. Therefore we focus our research on batch
methods. Batch algorithms have the additional advantage: online algorithms are
sensitive to an order of training examples, whereas batch algorithms are not.

Lowe [56] and Wettschereck [84] have proposed such batch algorithms using
performance feedback. Both algorithms use the conjugate gradient to optimize
attribute weights in order to minimize a certain error function based on the leave-
one-out test on a training set. However, Lowe and Wettischereck’s methods are
applicable only to the specific weighted Euclidean metric. To make it possible
to apply attribute weighting to different metrics we propose and test two batch



304 A. Wojna

Algorithm 1. Attribute weighting algorithm optimizing distance

nearest(x) - the nearest neighbor of x in the sample Strn

for each attribute wi := 1.0
modifier := 0.9
convergence := 0.9
repeat l times

Strn := a random training sample from Utrn

Stst := a random test sample from Utrn

MR := x∈Stst:dec(x)�=dec(nearest(x)) ρ(x,nearest(x))

x∈Stst
ρ(x,nearest(x))

for each attribute ai

MR(ai) := x∈Stst:dec(x)�=dec(nearest(x)) ρi(xi,nearest(x)i)

x∈Stst
ρi(xi,nearest(x)i)

for each attribute ai

if MR(ai) > MR then wi := wi + modifier
modifier := modifier · convergence

methods based on less restrictive assumptions. They assume only that metrics
are defined by the linear combination of metrics for particular attributes as
in Equation 6. The first proposed method optimizes distance to the objects
classifying correctly in a training set and the second one optimizes classification
accuracy in a training set.

A general scheme of those algorithms is the following: they start with the
initial weights wi := 1, and iteratively improve the weights. At each iteration
the algorithms use the distance definition from Equation 6 with the weights wi

from the previous iteration.

3.4 Attribute Weighting Method Optimizing Distance

Algorithm 1 presents the weighting method optimizing distance. At each itera-
tion the algorithm selects a random training and a random test samples Strn and
Stst, classifies each test object x from Stst with its nearest neighbor in Strn and
computes the global misclassification ratio MR and the misclassification ratio
MR(ai) for each attribute ai. The misclassification ratio is the ratio between
the sums of the distances to the nearest neighbors ρ(x, nearest(x)) for the in-
correctly classified objects and for all training objects, respectively. Attributes
with greater misclassification ratio MR(ai) than others have a larger share in
the distance between incorrectly classified objects and their nearest neighbors.
All attributes ai that have the misclassification ratio MR(ai) higher than the
global misclassification ratio MR have the weights wi increased.

If the misclassification ratio MR(ai) of an attribute ai is large then the
distance between incorrectly classified objects and their nearest neighbors is
influenced by the attribute ai more than the distance between correctly clas-
sified objects and their nearest neighbors. The goal of weight modification is
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Algorithm 2. Attribute weighting algorithm optimizing classification accuracy

nearest(x) - the nearest neighbor of x with the same decision
in the sample Strn

nearest(x) - the nearest neighbor of x with a different decision
in the sample Strn

for each attribute wi := 1.0
modifier := 0.9
convergence := 0.9
repeat l times

Strn := a random training sample from Utrn

Stst := a random test sample from Utrn

correct := x : ρ(x,nearest(x)) ≤ ρ(x,nearest(x))
for each attribute ai

correct(ai) := x : ρi(xi, nearest(x)i) ≤ ρi(xi, nearest(x)i)
for each attribute ai

if correct(ai) > correct then wi := wi + modifier
modifier := modifier · convergence

to replace incorrectly classifying nearest neighbors without affecting correctly
classifying nearest neighbors. Increasing the weights of attributes with the large
misclassification ratio gives a greater chance to reach this goal than increasing
the weights of attributes with the small misclassification ratio.

In order to make the procedure convergable the coefficient modifier used to
modify the weights is decreased at each iteration of the algorithm. We performed
a number of preliminary experiments to determine the appropriate number of
iterations l. It is important to balance between the optimality of the final weights
and the time of computation. For all tested data sets we observed that increasing
the number of iterations l above 20 did not improve the results significantly and
on the other hand the time of computations with l = 20 is still acceptable for
all sets. Therefore in all further experiments we set the number of iterations
to l = 20.

3.5 Attribute Weighting Method Optimizing Classification
Accuracy

Algorithm 2 presents the weighting method optimizing classification accuracy. At
each iteration the algorithm selects a random training and a random test samples
Strn and Stst and for each test object x from Stst it finds the nearest neighbor
nearest(x) with the same decision and the nearest neighbor nearest(x) with a
different decision in Strn. Then for each attribute ai it counts two numbers. The
first number correct is the number of objects that are correctly classified with
their nearest neighbors according to the total distance ρ, i.e., the objects for
which the nearest object with the correct decision nearest(x) is closer than the
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nearest object with a wrong decision nearest(x). The second number correct(ai)
is the number of objects for which the component ρi(xi, nearest(x)i) related to
the attribute ai in the distance to the correct nearest neighbor ρ(x, nearest(x))
is less than the corresponding component ρi(xi, nearest(x)i) in the distance to
the wrong nearest neighbor ρ(x, nearest(x)). If the number of objects correctly
classified by a particular attribute ai (correct(ai)) is greater than the number
of objects correctly classified by the total distance (correct), the weight for this
attribute wi is increased. Like in the previous weighting algorithm to make the
procedure convergable the coefficient modifier used to modify the weights is
decreased at each iteration and the number of iterations is set to l = 20 in all
experiments.

3.6 Experiments

In the next subsections we compare the performance of the k nearest neighbors
method for the metrics and the weighting methods described in the previous
subsections. We compare the Hamming metric (Subsection 2.4) and the Value
Difference Metric (Subsection 3.1) for nominal attributes and the city-block met-
ric (Subsection 2.4), the Interpolated Value Difference Metric and the Density
Based Value Difference Metric (Subsection 3.2) for numerical attributes. Com-
parison between the Interpolated and the Windowed Value Difference Metric
(Subsection 3.2) was presented in [88] and the authors reported that there was
no significant difference between both metrics. Since the interpolated version
is more efficient it was chosen to be compared in this dissertation. As the at-
tribute weighting models we compare the algorithm optimizing distance, the
algorithm optimizing classification accuracy and the model without weighting,
i.e., all weights are equal wi := 1.

To compare the metrics and the weighting methods we performed a num-
ber of experiments for the 10 benchmark data sets presented in Table 1. Each
data set was partitioned into a training and a test set as described in Subsec-
tion 2.7 and the test set was classified by the training set with the k nearest
neighbors method. Each data set was tested 5 times with the same partition
and the average classification error is used for comparison. To compare ac-
curacy we present the classification error for k = 1 and for k with the best
accuracy for each data set. The results for k with the best accuracy are com-
puted in the following way. In each test the classification error was computed
for each value of k in the range 1 ≤ k ≤ 200 and the smallest error among
all k was chosen to compute the average error from 5 tests. It means that for
the same data set the results of particular tests can correspond to different val-
ues of k.

3.7 Results for Data with Nominal Attributes Only

First, we compare the metrics and the weighting methods for data only with
nominal attributes. Among the 10 described data sets there are 3 sets that
contain only nominal attributes: chess, nursery and splice.
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Fig. 7. The average classification error of the 1-nn for the two metrics: Hamming
metric and VDM and for the three weighting models: Optimizing distance, optimizing
classification accuracy and without weighting
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Fig. 8. The average classification error of the k-nn with the best k for the two metrics:
Hamming metric and VDM and for the three weighting models: Optimizing distance,
optimizing classification accuracy and without weighting

Figure 7 presents the average classification error of the nearest neighbor
method for those 3 data sets. The graph presents the results for the two metrics
and for the three weighting methods.
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The results for the VDM metric are distinctly better than for the Hamming
metric therefore we focus our attention on comparison of the weighting methods
for the VDM metric.

The differences between the weighting methods are much smaller but the
Student’s t-test (see Subsection 2.7) indicates that they are still significant. In
case of the data set chess the method optimizing distance outperforms the two
others the maximum confidence level 99.5%. In case of the data set nursery
the weighting does not help: the algorithm optimizing classification accuracy
gives exactly the same result as without weighting and the algorithm optimizing
distance gives a worse result with the confidence level 99.5%. In case of the data
set splice the algorithm optimizing distance has again the lowest classification
error but the statistical significance of the difference is only 97.5%.

Figure 8 presents the average classification error for the best value of k. As
in case of the 1-nn, the results for the VDM metric are much better than for the
Hamming metric so we compare the weighting methods for the VDM metric.

The table below presents the average value of k with the smallest classification
error for particular data sets.

Metric Hamming VDM
Weighting optimizing optimizing none optimizing optimizing none

distance accuracy distance accuracy
chess 2.6 1.8 3 1 1 1

nursery 11.6 13 13 1 1 1
splice 152.4 78.4 158 8.2 7 7

In case of the data sets chess and nursery the average value of the best k
for all weighting models for the metric VDM is 1 what means that in all tests
the smallest error was obtained for k = 1. Hence, for those two data sets and
for all the weighting models the average classification error for the best k is
equal to the average classification error for k = 1 presented before. For chess
the weighting method optimizing distance outperformed the others with the
maximum confidence level 99.5% and for nursery the model without weighting
provided exactly the same results like the weighting optimizing classification
accuracy and both models outperformed the weighting optimizing distance also
with the maximum confidence level 99.5%. In case of the data set splice the
average values of the best k for all the weighting models are greater than 1 so
the results are slightly different. In case of 1-nn the weighting optimizing distance
is the best but only with the confidence level 97.5% whereas in case of the best
k the weighting optimizing distance is the best with the maximum confidence
level 99.5%.

The results for data sets with nominal attributes show clearly that the VDM
metric is more accurate than the Hamming metric. In case of the Hamming
metric the properties of the domain of values of a nominal attribute are only used
(the equality relation), whereas in the case of the VDM metric the information
contained in a training set is also used. In the latter case a structure of a metric
is learnt from a set of values of an attribute in a training set. In comparison to
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the equality relation such a structure is much richer and it allows to adapt the
VDM metric more accurately to data than in the case of the Hamming metric.

The comparison between the weighting methods is not unilateral. However,
in most cases the method optimizing distance works best and in case when it
loses (for the data set nursery) the difference is not so large: the error 1.38%
of the weighting optimizing distance in comparison to the error 1.07% of the
remaining methods.

3.8 Results for Data with Numerical Attributes Only

In this subsection we present the performance analysis of the metric and weight-
ing models for data only with numerical attributes. There are 6 data sets that
contain only numerical attributes: letter, mushroom, pendigits, satimage, seg-
ment and shuttle. All the tests for the data set mushroom gave the error 0% and
all the tests for the data set shuttle gave an error not greater than 0.1%. These
two data sets are very easy and the classification results for them can not be a
reliable basis for comparison of different metrics and weighting methods. There-
fore we exclude those two sets from analysis and we focus on the 4 remaining
data sets: letter, pendigits, satimage and segment.

Figure 9 presents the average classification error of the nearest neighbor
method for those 4 data sets. The graph presents the results for the three metrics
and for the three weighting methods. First we compare again the metrics. The
results are not so unilateral as in case of data with nominal attributes. The table
below presents statistical significance of the differences in accuracy between the
tested metrics.
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Fig. 9. The average classification error of the 1-nn for the three metrics: The city-block
metric, DBVDM and IVDM and for the three weighting models: Optimizing distance,
optimizing classification accuracy and without weighting
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Weighting optimizing optimizing none
distance accuracy

letter City-block 99.5% City-block 99.5% City-block 99.5%
pendigits City-block 99.5% City-block 99.5% City-block 99.5%
satimage City-block 90% DBVDM 99,5% DBVDM 99,5%
segment City-block DBVDM City-block & IVDM

¡90% (from DBVDM) 99.5% 99.5%
90% (from IVDM)

Each cell in the table presents the metric (or metrics) that the best classifica-
tion accuracy was obtained for, and explains the confidence level of the difference
between this best metric and the other tested metrics for the data set given in
the row header and with the weighting method given in the column header. For
example, the cell on the crossing of the first row and the first column states
that for the data set letter with the weighting method optimizing distance the
best accuracy was obtained by the city-block metric and the probability that
the city-block metric outperforms the others is 99.5%.

The results from the table indicate that the city-block metric wins in most
cases, especially when combined with the weighting method optimizing distance.
In this case the city-block metric is never worse: for letter and pendigits it wins
with the maximum confidence level 99.5% and for satimage and segment the
classification accuracy for all metrics is similar. In combination with the two
other weighting methods the results are not unilateral but still the city-block
metric dominates.

If we consider the value of k with the smallest classification error, in each
test for the tree data sets: letter, pendigits and satimage it is usually greater
than 1. The table below presents the average value of the best k for particular
data sets:

Metric City-block DBVDM IVDM
Weighting opt. opt. none opt. opt. none opt. opt. none

dist. acc. dist. acc. dist. acc.
letter 1 5 5 3 2.6 3 1.4 1 1

pendigits 4.6 4 4 3.2 4 4 3.8 4 4
satimage 4.2 3 3 4.6 3 3 3.8 3 3
segment 1.6 1 1 1 1 1 1.4 1 1

Since in tests the best value of k was often greater than 1 the results are
different from the case of k = 1. Figure 10 presents the average classification
error for the best value of k and in the table below we present the winning metric
(or metrics) and the confidence level of the difference between the winning metric
and the others for the results at Figure 10:
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Fig. 10. The average classification error of the k-nn with the best k for the three
metrics: The city-block metric, DBVDM and IVDM metric and for the three weighting
models: Optimizing distance, optimizing classification accuracy and without weighting

Weighting optimizing optimizing none
distance accuracy

letter City-block 99.5% City-block 99.5% City-block 99.5%
pendigits City-block 99.5% City-block 99.5% City-block 99.5%
satimage City-block City-block City-block

¡90% (from IVDM) 99.5% 99.5%
99.5% (from DBVDM)

segment City-block DBVDM City-block & IVDM
¡90% (from DBVDM) 99.5% 99.5%

90% (from IVDM)

The results are even more unilateral than for the case of k = 1. The city-block
metric loses only in one case: for the data set segment when combined with the
weighting method optimizing classification accuracy.

The general conclusion is that the city-block metric is the best for data with
numerical attributes and up to now different attempts to replace it with metrics
induced from data like the VDM metric for nominal attributes are unsuccessful.
This conclusion for numerical data is opposite to the analogous conclusion for
nominal data. Like the Hamming metric the city-block metric uses mainly the
properties of the domain of values of a numerical attribute. The probable reason
for the opposite observation is that the properties of a numerical attribute are
much more informative than the equality relation in case of a nominal attribute.
In many cases the natural linear order in the domains of numerical attributes
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corresponds well with the properties of objects important for a decision attribute
and the information provided in this linear order is rich enough to work well in
the city-block metric. Therefore, it is difficult to construct a better metric from
training data. The proposed metrics: DBVDM and IVDM are not consistent
with the natural linear order of numerical values. The presented results show
that this order is important for reasoning from numerical attributes.

Now, we compare accuracy of the weighting models. The results are presented
in Figures 9 and 10 by means of the graphs used for comparison of metrics.
The results are different for the different data sets and metrics. However, the
city-block metric appeared to be generally the best so we focus on this metric.
The table below presents the winning weighting method (or methods) and the
confidence level of the difference between this winning method and the others
in case of the 1-nn classification and in case of the classification with the best k
(using the city-block metric):

k k = 1 the best k

letter optimizing distance 99.5% optimizing distance 99.5%
pendigits optimizing acc. & none ¡90% optimizing acc. & none 99.5%
satimage optimizing acc. & none ¡90% optimizing acc. & none 99.5%
segment optimizing distance optimizing distance

99% (from none) 99.5%
99.5% (from optimizing acc.)

The results are not unilateral but we show that the method optimizing dis-
tance dominates for the city-block metric. For this metric the results of the
method optimizing accuracy differs from the results without weighting only in
case of the data set segment : the model without weighting provides a better
classification. Then it is enough to compare the method optimizing distance to
the model without weighting. For k = 1, in the cases where the method optimiz-
ing distance wins, the statistical significance of the difference is quite large: at
least 99%, and the error reduction is also large: from 4.85% to 3.05% for letter
(37% of the relative difference) and from 3.13% to 2.63% for segment (16% of
the relative difference) whereas in cases when the method optimizing distance
loses the difference is statistically insignificant and relatively very small: 2% of
the relative difference for pendigits and 0.5% for satimage. For the best k all
the differences are statistically significant with the maximum confidence level
99.5% but the relative differences are still in favour of the method optimizing
distance: for letter and segment the reduction in error is similar to the case of
k = 1 (33% and 17% respectively) and for pendigits and satimage the opposite
relative differences in error are only 8% and 5% respectively.

The conclusion is that for the city-block metric it pays to apply the method
optimizing distance because a gain in case of improvement can be much larger
than a loss in case of worsening. For the two other metrics the results of the
weighting methods are more similar and the method optimizing distance does
not have the same advantage as in case of the city-block metric.
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3.9 Results for Data with Numerical and Nominal Attributes

In this subsection we present analysis of the performance of the metrics and the
weighting models for data with both nominal and numerical attributes. There
is only one such a data set: census94. It is the most difficult data set among
all the tested sets: the classification accuracy obtained for census94 by different
classification algorithms from the literature is the lowest [40, 53].

Figure 11 presents the average classification error of the 1-nn for the data set
census94 for all the combinations of the four joint metrics: the Hamming with
the city-block, the VDM with the city-block, the VDM with the DBVDM and
the VDM with the IVDM metric and the three weighting models: optimizing
distance, optimizing accuracy and without weighting. The results are surprising:
the best combination is the VDM metric for nominal attributes with the DB-
VDM metric for numerical attributes. The same is in the analogous classification
results of the k-nn with the best k presented at Figure 12.

Generally, the combinations of the VDM metric with its extensions for nu-
merical attributes: DBVDM and IVDM work better than with the city-block
metric. In a sense it is contradictory to the results for data only with numerical
attributes. The possible explanation is that the data census94 are more diffi-
cult and the information contained in the properties of the domain of numerical
attributes does not correspond directly to the decision. The metrics DBVDM
and IVDM are more flexible, they can learn from a training set more than
the city-block metric and in case of such difficult data they can adapt more
accurately to data.
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Fig. 11. The average classification error of the 1-nn for the four joint metrics: Hamming
with the city-block metric, VDM with the city-block metric, VDM with DBVDM and
VDM with IVDM and for the three weighting models: Optimizing distance, optimizing
classification accuracy and without weighting, obtained for the data set census94
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Fig. 12. The average classification error of the k-nn with the best k for the four joint
metrics: Hamming with the city-block metric, VDM with the city-block metric, VDM
with DBVDM and VDM with IVDM and for the three weighting models: Optimizing
distance, optimizing classification accuracy and without weighting, obtained for the
data set census94

In case of the simpler data sets from Subsection 3.8 the experimental results
do not indicate clearly that one of the two metrics DBVDM or IVDM dominates.
In case of the data set census94 the difference between the DBVDM and the
IVDM metric is more visible in favour of the DBVDM metric: the classification
accuracy of VDM joint with DBVDM is always at least 1% better than the
accuracy of VDM joint with IVDM.

Now, we compare the weighting models. The results for k = 1 and for
the best k are quite different. For k = 1 the method optimizing classifica-
tion accuracy gives the best classification in combination with all the metrics,
whereas for the best k the method optimizing distance gives the best accu-
racy also for all metrics. It is related to the fact that the value of k with
the best accuracy is always large for the data set census94. The table below
presents the average of the best k for all the combinations of the metrics and the
weighting methods:

optimizing distance optimizing accuracy none
Hamming+City-block 43.4 23 45

VDM+City-block 34.2 23 27
VDM+DBVDM 84.2 61 83
VDM+IVDM 41a 31 41

The difference in classification between the method optimizing distance and
the method optimizing accuracy is not large: in all cases it is below 3% of the
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relative classification error. The advantage of the method optimizing distance
is that in all cases it gives a better result than the model without weighting
whereas the method optimizing accuracy is sometimes worse.

3.10 Summary

In this section we have presented the following new methods:

– a Density Based Value Difference Metric for numerical attributes (Subsection
3.2): as distinguished from other metrics of this type from the literature
[89, 88] the estimation of the decision probability in DBVDM depends on
the density of values,

– an effective method for computing the distance between objects for the met-
rics WVDM [88] and DBVDM (Subsection 3.2),

– the two attribute weighting batch algorithms using performance feedback,
applicable to the whole class of linear metrics: the first one optimizes distance
in a training set (Subsection 3.4) and the second one optimizes classification
accuracy in a training set (Subsection 3.5).

The experimental results presented in Subsections 3.7, 3.8 and 3.9 lead to the
following final conclusions. For nominal attributes the general properties of the
domain of values are poor and the information contained in training data is much
richer and, therefore, it is important for classification accuracy to incorporate
the information from training data into a metric. Hence, a good solution for
nominal attributes is the Value Difference Metric described in Subsection 3.1. For
numerical attributes the situation is different. The natural linear order provided
in the properties of numerical attributes is an important, powerful source of
information about objects and in most cases the city-block metric consistent
with this natural linear order outperforms the metrics that do not regard this
order so strictly. However, the results in Subsection 3.9 show that in cases where
data are difficult and the relation between numerical attributes and a decision
is not immediate the information contained in data can be still important for
the accuracy of a metric. In this case the best classification accuracy has been
obtained with use of the DBVDM metric.

In summary, the combination of the VDM metric for nominal attributes and
the city-blockmetric for numerical attributes gives generally the best accuracy and
we choose this metric to use in further research: on methods accelerating k nearest
neighbors search described in Section 4 and on more advanced metric-based classi-
fication models described in Section 5. Since the DBVDM metric was the best for
the most difficult data set and in a few other cases, in some experiments in Section
5 we use also the combination of the VDM and the DBVDM metric for comparison.

Comparison of the weighting models does not indicate a particular method
to be generally better than others but weighting attributes in a metric usually
improves classification accuracy so we decided to choose one for further ex-
periments. Since both for nominal and numerical data the weighting algorithm
optimizing distance seems to dominate this one is chosen to be always applied
in all further experiments.
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Some of the presented metrics and weighting algorithms have been included
in the system RSES [8, 73]. The system provides different tools to analyze data,
in particular the k nearest neighbors classifier. Two of the presented metrics:
the joint VDM and city-block metric and the joint VDM and DBVDM metric
and all the three presented weighting models are available in this classifier. They
are implemented exactly as described in this section and some of the described
parameters of the metrics and the weighting algorithms are available to be set
by a user.

4 Distance-Based Indexing and Searching for k Nearest
Neighbors

Distance-based indexing and the problem of searching for k nearest neighbors is
investigated in this section.

4.1 Problem of Searching for k Nearest Neighbors

In this section we consider the efficiency problem of the k-nn classifier described
in Subsection 2.5. For a long time k-nn was not used in real-life applications
due to its large computational complexity. However, the development of meth-
ods accelerating searching and the technology advance in recent decade made
it possible to apply the method to numerous domains like spatial databases,
text information retrieval, image, audio and video recognition, DNA and pro-
tein sequence matching, planning, and time series matching (e.g., in stock market
prognosis and weather forecasting) [3, 80].

The main time-consuming operation in the k-nn classifier is the distance-
based searching for k nearest neighbors of a given query object. Distance-based
searching is an extension of the exact searching widely used in text and database
applications. It is assumed that a distance measure ρ is defined in a space of
objects X and the problem is to find the set NN(x, k) of k objects from a given
training set Utrn ⊆ X that are nearest to a given query object x.

We restrict our consideration to application of k-nn for object classification.
It requires fast access to data therefore we concentrate on the case when data
are kept in the main memory. With growing size of the main memory in data
servers this case attracts more and more attention of people working in different
application areas.

The basic approach to searching for k nearest neighbors in a training set is
to compute the distance from a query object to each data object in the training
set and to select the objects with the smallest distances. The computational
cost of finding the nearest neighbors from Utrn to all queries in a test set Utst is
O(|Utst| |Utrn|). In many applications the size of a database is large (e.g., several
hundred thousand objects) and the cost O(|Utst| |Utrn|) is not acceptable. This
problem is an important issue in many applications therefore it is the subject
of the great interest among researchers and practitioners and a considerable ef-
fort has been made to accelerate searching techniques and a number of indexing
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Fig. 13. Indexing and searching in a data set: (a) the hierarchical structure of data
clusters (b) the indexing tree with the nodes corresponding to data clusters (c) search
pruning in the indexing tree

methods both general and for particular applications have been developed. The
most popular idea of indexing is a top-down scheme introduced by Fukunaga and
Narendra [35]. It splits the whole training set into clusters in such a way that
each cluster contains objects from the same region of a data space (Figure 13a).
Each cluster has a compact representation that allows to check quickly whether
the cluster can contain the nearest neighbors of a query object (Figure 13b).
Instead of comparing a query object directly with each data object first it is
compared against the whole regions. If a region is recognized not to contain the
nearest neighbors it is discarded from searching. In this way the number of dis-
tance computations, and in consequence the performance time, are considerably
reduced (Figure 13c).

In the literature one can find indexing methods based on the bottom-up
scheme like Ward’s clustering [82]. It was recognized that bottom-up construc-
tions lead to a very good performance but instead of reducing the computational
cost those bottom-up methods transfer it only from searching to indexing, i.e.,
searching is much faster but indexing has the O(|Utrn|2) complexity. Hence, this
approach is too expensive for most of applications and the top-down scheme
has remained the most popular in practice. In the dissertation we focus on the
top-down scheme.

An important issue for indexing method construction are the initial assump-
tions made about a data space. Different models are considered in the literature.
The first one assumes that data objects are represented by vectors from a vector
space. This model is applicable to databases with numerical attributes or with
complex multimedia objects transformable to vectors. It makes it possible to
use the algebraic operations on objects in an indexing algorithm: summation
and scaling, and construct new objects, e.g., the mean of a set of objects. How-
ever, not all databases fit to the model of a vector space. In the dissertation
we consider data with both numerical and nominal attributes. The domains of
nominal attributes do not have the structural properties used in the model with
a vector space. The indexing methods for such data use only a small subset of
the properties available in a vector space. Moreover, there are data not based
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on feature vectors, e.g., texts with the editing distance, DNA or time dependent
sequences or plans. The structure of such objects is very specific and for such
data the model is limited only by the distance axioms defined in Subsection 2.3.
They are sufficient for the k nearest neighbors classification (see Subsection 2.5)
therefore many indexing methods in the literature assume the distance model
based only on these axioms.

Since a great part of applications is associated with structural databases and
multimedia objects transformed to feature vectors a number of indexing tech-
niques have been developed for vector spaces (e.g.,, quad-trees [29] and k-d trees
[11]). The cost of a distance computing operation between two vectors is usually
low so the methods such as grid-files [62], k-d-b tree [66], R-tree [43] and its
variants R+-tree [71] and R�-tree [9] were focused on optimizing the number of
I/O operations. The above techniques work well for low dimensional problems,
but the performance degrades rapidly with increasing dimensionality. This phe-
nomenon called the dimensional curse have been theoretically substantiated by
Beyer et al. [13]. They proved that under certain reasonable assumptions the
ratio of the distances to the nearest and the farthest neighbor converges to 1
while increasing the dimension of the vector space. To avoid the problem some
specialized methods for high-dimensional spaces have been proposed: X-trees
[12], SR-trees [47], TV-trees [55] and VA-files [83].

All the above tree based methods are based on regions in the shape of hy-
percubes so application of these methods is strictly limited to vector spaces.
However, a large number of databases with other kinds of distance measures
have raised an increase of interest in general distance-based indexing methods.
An exhaustive overview of indexing methods for metric spaces is contained in
[19]. SS-tree [86] uses a more general clustering scheme with spheres instead of
rectangles as bounding regions but it is still limited to vector spaces because
it uses the mean as the center of a cluster. A general distance-based indexing
scheme is used in BST [46] and GHT [78]. Both trees have the same construc-
tion but different search pruning criteria are used. GNAT [18], SS-tree [86] and
M-tree [20] are specialized versions of the BST/GHT tree. To balance the tree
GNAT determines separately the number of child nodes for each node. As the
splitting procedure GNAT uses the algorithm that selects the previously com-
puted number of centers from a sample and assigns the objects from the parent
node to the nearest centers. SS-tree and M-tree are focused on optimizing the
number of I/O operations. They maintain a structure of nodes similar to B-trees
and assume the dynamic growth of the database. Clustering in M-tree is simi-
lar to the clustering algorithm in SS-tree but M-tree uses either a random or a
sampled set of the centers instead of the means. Thus, it uses only the distance
function and is applicable to any metric space.

All the above mentioned indexing structures from the literature use a one-
step clustering procedure to split a node in the tree. Such a procedure selects a
number of cluster centers among objects in the given node and assigns each data
object from the node to the nearest center. Moreover, the described searching
methods use always a single search pruning criterion to accelerate searching in
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Algorithm 3. The indexing schema
k - the splitting degree of the tree nodes
root - the top node with all the training data objects from Utrn

priorityQueue - the priority queue of leaf nodes used
for the selection of the next node to be split

priorityQueue := {root}
repeat

parent := the next node from priorityQueue to be split
splitCluster(parent,k)
add k child nodes of parent to priorityQueue

until the number of nodes in priorityQueue ≥ 1
5 |Utrn|

an indexing structure. In the next subsections we propose a new method that
uses an iterative clustering procedure to split nodes while indexing instead of
the one-step procedure and combines three search pruning criteria from BST,
GHT and GNAT into one.

We present three versions of this method, depending on the model of data.
The first version is appropriate for the model of a vector space, i.e., for data only
with numerical attributes. The second variant is appropriate for the model of
data considered in the dissertation, i.e., for data with both numerical and nomi-
nal attributes. It depends on the metric used to measure distance between data
object too. Since the joint city-block and the Value Difference Metric provides
the best classification accuracy in the experiments from Section 3 we present the
version of indexing that assumes this metric to be used. As the third solution
we propose the algorithm based on the most general assumption that only a
distance measure is available for indexing.

4.2 Indexing Tree with Center Based Partition of Nodes

Most of the distance based indexing methods reported in the literature [11, 29,
43], [66, 71] and all the methods presented in the paper are based on a tree-like
data structure. Algorithm 3 presents the general indexing scheme introduced by
Fukunaga and Narendra [35]. All indexing algorithms presented in the paper
fit to this scheme. It starts with the whole training data set Utrn and splits
recursively the data objects into a fixed number k of smaller clusters. The main
features that distinguish different indexing trees are the splitting degree of tree
nodes k, the splitting procedure splitCluster and the pruning criteria used in
the search process.

Algorithm 3 assumes that the splitting degree k is the same for all nodes
in the tree. An exception to this assumption is Brin’s method GNAT [18] that
balances the tree by selecting the degree for a node proportional to the number
of data objects contained in the node. However, on the ground of experiments
Brin concluded that a good balance was not crucial for the performance of the
tree. In Subsection 4.4 we present the results that confirm this observation.
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Algorithm 4. Theiterativek-centers splittingproceduresplitCluster(objects, k)
objects - a collection of data objects to be split

into k clusters
Cl1, . . . , Clk - partition of data objects from objects

into a set of clusters
centers - the centers of the clusters Cl1, . . . , Clk
prevCenters - the centers of clusters

from the last but one iteration
getCenter(Clj) - the procedure computing

the center of the cluster Clj

repeat
centers := select k initial seeds c1, . . . , ck from objects
for each x ∈ objects

assign x to the cluster Clj
with the nearest center cj ∈ centers

prevCenters := centers
centers := ∅
for each cluster Clj

cj := getCenter(Clj)
add cj to centers

until prevCenters = centers

We have assumed that the algorithm stops when the number of leaf nodes
exceeds 1

5 of the size of the training set |Utrn|, in other words when the average
size of the leaf nodes is 5. It reflects the trade-off between the optimality of
a search process and the memory requirements. To make the search process
effective the splitting procedure splitCluster has the natural property that data
objects that are close each to other are assigned to the same child node. Thus,
small nodes at the bottom layer of the tree have usually very close objects, and
splitting such nodes until singletons are obtained and applying search pruning
criteria to such small nodes do not save many distance comparisons. On the other
hand, in our implementation the memory usage for the node representation is
2-3 times larger than for the data object representation so the model with the
number of leaf nodes equal to 1

5 of the number of data objects does not increase
memory requirements as significantly as the model where nodes are split until
the leafs are singletons and the number of all tree nodes is almost twice as the
size of the training data set Utrn.

Algorithm 4 presents the iterative splitting procedure splitCluster(objects,
k) that generalizes the k-means algorithm. Initially, it selects k objects as the
centers c1, . . . , ck of clusters. Then it assigns each object x to the cluster with
the nearest center and computes the new centers c1, . . . , ck. This assignment
procedure is iterated until the same set of centers is obtained in two subsequent
iterations.
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The procedure getCenter(·) computes the center of a cluster of objects. Ex-
cept for this procedure the presented indexing structure preserves the generality:
it uses only the notion of distance. The indexing structure is correct for any defi-
nition of the procedure getCenter(·). However, the efficiency of searching in this
structure depends strongly on how the centers of clusters are defined. Therefore
we propose different definitions of the centers, depending on the information
about the type of a space of objects.

In case of a vector space we propose the means as the centers of clusters:

getCenter(Cl) :=
∑

x∈Cl x

|Cl|

In this case Algorithm 4 becomes the well known k-means procedure. Boley and
Savaresi have proved the following property of the 2-means algorithm:

Theorem 5. [70] If a data set is an infinite set of data points uniformly dis-
tributed in a 2-dimensional ellipsoid with the semi-axes of the length 1 and a
(0 < a < 1) the 2-means iterative procedure with random selection of initial cen-
ters has 2 convergence points: one is locally stable and one is locally unstable.
The splitting hyperplanes corresponding to the convergence points pass through
the center of the ellipsoid and are orthogonal to the main axes of the ellipsoid. In
the stable convergence point the splitting hyperplane is orthogonal to the largest
axis (see Figure 14).

This theorem shows that in an infinite theoretical model the 2-means proce-
dure with random selection of initial centers converges in a sense to the optimal

c 1 c 2

Fig. 14. The convergence of the 2-means procedure to the locally stable partition for
data distributed uniformly in an ellipse; the splitting line is orthogonal to the largest
axis of the ellipse
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partition of data, which may substantiate good splitting properties of this pro-
cedure in practice and explain the good experimental performance of the tree
based on the 2-means splitting procedure presented in Subsection 4.7.

In the dissertation, we consider data with both numerical and nominal at-
tributes. In Section 3 the joint city-block and VDM metric was proved to provide
the best classification accuracy. Therefore, for data with both types of attributes
we present the definition of the center of a cluster getCenter(Cl) that assumes
this metric to be used for measuring the distance between objects.

The numerical attributes constitute a vector space. Therefore, as in the
first version, we propose the mean to be the center value for each numerical
attribute ai:

getCenter(Cl)i :=
∑

x∈Cl xi

|Cl| .

In case of a nominal attribute the domain of values does not provide the op-
erations of summation and division and the only general property of nominal
values is the equality relation. Therefore, as in the problem of metric definition,
to define the center of a set of nominal values we use the information encoded
in data. Since the centers of clusters are used only by the operation of the
distance computation, it is enough to define how the center of nominal values
is represented in Equation 5 defining the Value Difference Metric. This equa-
tion does not use values directly but it uses the decision probability estimation
PV DM(dec = dj |ai = v) for each nominal value v. Therefore, for each nominal
attribute ai it is enough to define the analogous decision probability estimation
for the center of a set of nominal values:

PV DM (dec = dj |ai = getCenter(Cl)i) :=
∑

x∈Cl PV DM(dec = dj |ai = xi)
|Cl| .

This definition of the decision probability estimation for the centers of clus-
ters is correct, because it satisfies the axioms of probability: PV DM(dec =
dj |getCenter(Cl)i) ≥ 0 and

∑
dj∈Vdec

PV DM(dec = dj |getCenter(Cl)i) = 1.
The indexing and searching algorithm use this definition to compute the VDM
distance between centers and other objects from a space of objects.

The last version of the procedure getCenter(·) is independent of the metric
definition. It is useful in the situation where the model of data does not provide
the information how to construct new objects and training objects in Utrn are the
only objects from a space of objects X available for an indexing method. In this
general case we propose the following approximation of the cluster center. When
a cluster Cl contains one or two data objects it selects any of them as the center
of Cl. Otherwise the algorithm constructs a sample S that contains the center
used to assign objects in the previous iteration of the procedure splitCluster and
randomly selected max(3,

⌊√
|Cl|

⌋
) other objects from Cl. Then it computes the

distances among all pairs of objects from S, and selects the object in S that
minimizes the second moment of the distance ρ in S, as the new center of Cl:

getCenter(Cl) := arg min
x∈S

E
(
ρ(x, y)2

)
.
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In this way it selects the center from S that minimizes the variance of S.
The assumption that the center from the previous iteration is included into
the sample S in the next iteration makes it possible to use the previous cen-
ter in the next center selection. It provides a chance for the stopping con-
dition to be satisfied at each iteration and saves a significant number of
unnecessary iterations.

The choice of the value max(3,
⌊√

|Cl|
⌋
)+1 as the size of the sample S in this

center selection algorithm is strictly related to its complexity. A single iteration
of the algorithm requires |S|2 distance computations: it computes the distance
among all pairs of objects in S. Since the size of the sample S is O(|Cl|

1
2 ) the

computational cost of a single iteration remains linear with respect to the cluster
size |Cl|, and thus, it is comparable to the case of the k-means procedure used
for vector spaces.

The last algorithm selects the approximate centers for clusters among objects
belonging to these clusters. Therefore, in the next subsections we call it the k-
approximate-centers algorithm.

The discussion and experimental analysis related to selection of initial centers
in Algorithm 4 and the degree of nodes of the presented indexing structure are
presented in the next two subsections.

4.3 Selection of Initial Centers

One can consider three general approaches for selection of the initial centers
for clusters in the procedure splitCluster (see Algorithm 4) known from the
literature: random, sampled [18] and exhaustive. The description of BST [46]
and GHT [78] is quite general and either it does not specify any particular
selection of initial centers or it assumes a simple random model. M- [20] and
SS-trees [86] are the dynamic structures and the splitting procedures assume
that they operate on an existing inner node of a tree and they have access only
to the information contained in a node to be split. While splitting a non-leaf
node the algorithm does not have access to all data objects from the subtree of
the node so the splitting procedures from M- and SS-trees are incomparable to
the presented iterative procedures.

To select the initial centers in GNAT [18] a random sample of the size 3k
is drown from a set of data objects to be clustered and the initial k centers
are picked from this sample. First, the algorithm picks one of the sample data
objects at random. Then it picks the sample point that is the farthest from this
one. Next, it picks the sample point that is the farthest from these two, i.e.,
the minimum distance from the two previously picked seeds is the greatest one
among all unpicked sample objects. Finally, it picks the point that is the farthest
from these three and so on until there are k data points picked.

In the dissertation, we propose yet another method for selecting initial k
centers presented in Algorithm 5. It is similar to GNAT’s method but it selects
the first center more carefully and for selection of the others it uses the whole
set to be clustered instead of a sample. Therefore we call this algorithm the
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Algorithm 5. The global algorithm for selection of initial centers in the proce-
dure splitCluster

c := getCenter(Cl)
c1 := arg maxx∈Cl ρ(c, x)
for j := 2 to k

cj := arg maxx∈Cl min1≤l≤j−1 ρ(cl, x)

global selection of the farthest objects. First, the algorithm computes the center
c of the whole set to be clustered Cl. As the first seed c1 it picks the object
that is the farthest from the center c of the whole data set. Then it repeats
selection of the farthest objects as in GNAT, but from the whole set Cl instead
of from a sample. The algorithm can be performed in O(|Cl|k) time: it requires
to store the minimal distance to selected centers min1≤l≤j−1 ρ(cl, x) for each
object x ∈ Cl and to update these minimal distances after selection of each next
center. For small values of k this cost is acceptable.

One can consider the exhaustive procedure that checks all k-sets among ob-
jects to be clustered as the sets of k centers and selects the best one according to
a predefined quality measure. However, the computational cost of this method
O(|Cl|k) does not allow us to use it in practice.

Figure 15 presents the performance of the search algorithm for three different
seeding procedures used in the k-means based indexing trees with k = 2, k = 3
and k = 5: a simple random procedure, GNAT’s sampled selection of the farthest
objects and the global selection of the farthest objects described above. The
experiments have been performed for the joint city-block and VDM metric with
the representation of the center of a cluster extended to nominal attributes as
described in the previous subsection, and for the searching algorithm described
in Subsections 4.5 and 4.6. All 12 benchmark data sets presented in Tables 1
and 2 have been tested in the following way: the training part of a data set have
been indexed with the k-means based indexing tree (once for each combination
of k ∈ {2, 3, 5} and the three seeding procedures), and for each object in a test
set the two searches have been performed in each indexing tree: for the 1 nearest
neighbor and for the 100 nearest neighbors of the test object. At each search
the number of distance computations has been counted. The graphs present the
average number of distance computations for the whole test set in the 1-nn and
the 100-nn search.

The results indicate that the indexing trees with all three methods have
comparable performance what may be explained with the good theoretical con-
vergence property of the k-means algorithm formulated in Theorem 5. However,
for a few larger data sets: census94, census94-95, covertype and letter the dif-
ference between the global and the two other selection methods is noticeable. In
particular, the largest difference is for the data set census94-95, e.g., in case of
the 2-means based indexing tree the global method takes only 65% of the time
of the sampled method and 60% of the time of the random method (as presented
at the two upper graphs at Figure 15).
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Fig. 15. The average number of distance computations per single object in 1-nn search
(the left graphs) and 100-nn search (the right graphs) with the use of 2-means based,
3-means based and 5-means based indexing trees, and with the three different methods
of initial center selection: Globally farthest, sampled farthest and random

Summing up, the global method seems to have a little advantage over the
others and we decide to use this one in further experiments described in the
next subsections.

4.4 Degree of the Indexing Tree

In order to analyze the performance of the k-means based indexing trees, in
dependence on the degree of nodes k, we have performed experiments for 8
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Fig. 16. The average number of distance computations per single object in 1-nn search
(the left graph) and 100-nn (the right graph) with the use of the k-means based indexing
trees with k in the range 2 ≤ k ≤ 9

successive values of k ranging from 2 to 9. Figure 16 presents the performance
graphs for particular data sets. As it is shown they are quite stable in the range
of tested values except for the value 2 and different values of k have the best
performance for particular data sets. For the 1-nn search 7 data sets have the
best performance at k = 3, 1 at k = 4 and 2 at k = 5 and k = 8. For 100-nn
search 4 data sets have the best performance at k = 3, 2 at k = 4, 5 and 8 and 1
at k = 7 and 9. These statistics indicate that the best performance is for small
values of k (but greater than 2). Assignment of k to 3, 4 or 5 ensures almost
optimal performance.

In the literature the splitting degree of tree nodes is usually assumed to
be constant over all nodes in a tree. The exception to this rule is the GNAT
structure [18] that attempts to balance the size of branches by choosing different
splitting degrees for nodes. It assumes a fixed k to be the average splitting degree
of nodes and applies the following procedure to construct a tree. The top node
is assigned the degree k. Then each of its child nodes is assigned the degree
proportional to the number of data points contained in this child node (with
a certain minimum and maximum) so that the average degree of all the child
nodes is equal to the global degree k. This process works recursively so that the
child nodes of each node have the average degree equal to k. In his experiments
Brin set the minimum of the degree to 2 and the maximum to min(5k, 200). On
the basis of experiments he reported that good balance was not crucial for the
performance of the tree.

We have implemented this balancing procedure too. In case of k = 2 the value
2 is both the average and the minimal possible value of the splitting degree in the
k-means balanced indexing tree so the balancing procedure assigns the degree 2
to all nodes and it behaves identically as in case of the constant degree 2. Hence,
the comparison of the balanced and the constant degree selections makes sense
for the value of k greater than 2. Figure 17 presents the comparison between the
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Fig. 17. The average number of distance computations per single object in 1-nn search
(the upper graph) and in 100-nn search (the lower graph) with the use of the k-means
based indexing trees with constant and with balanced degrees of tree nodes; for each
data set the first pair of columns represents the performance for the constant and for
the balanced degree k = 5, the second pair represents the performance for k = 10 and
the third one for k = 20

k-means based balanced trees where k is the average degree of child nodes and
the corresponding k-means trees with the constant degree k. The results show
that the balancing procedure does not improve performance of the tree with a
constant degree and in many experiments searching in the tree with a constant
degree is even faster. It indicates that in order to make profit from balancing
more sophisticated procedures are required. Up to now it is not known whether
there is a balancing policy with acceptable computational complexity having a
significant advantage over the non-balanced structures.

4.5 Searching in the Indexing Tree

In this subsection we present Algorithm 6 that is a general searching schema
finding a fixed number k of data objects nearest to the query q [35]. The al-
gorithm traverses the indexing tree rooted at root in the depth-first order. In
nearestQueue it stores the nearest data objects, maximally k, from already
visited nodes. At each tree node n the algorithm checks with pruning criteria
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Algorithm 6. Searching schema
root - the root node of the indexing tree to be searched
nodeStack - the stack of nodes to be searched
nearestQueue - the queue of the data objects nearest to q

sorted according to the distance ρ
discard(n :node, q :query, rq :range) - the procedure checking whether

pruning criteria apply to a node n while searching
the neighbors of q in the distance less or equal rq

nodeStack := {root}
repeat

n := pull the top node from nodeStack
rq := maxx∈nearestQueue ρ(q, x)
if |nearestQueue| < k or not discard(n, q, rq)

if n is a leaf
for each data object x ∈ n

if |nearestQueue| <k then add x to nearestQueue
else

check x against the farthest
object y ∈ nearestQueue
and replace y with x if ρ(q, x) < ρ(q, y)

else
push the child nodes of n to nodeStack in the decreasing
order of the distance of the the child node centers
to the query q (the nearest on the top)

until nodeStack is empty
return nearestQueue

whether n should be visited, i.e., whether n can contain an object that is closer
to the query q than any previously found nearest neighbor from nearestQueue.
If so and the node n is a leaf, it compares each data object x ∈ n against data
objects in nearestQueue and replaces the farthest object y from nearestQueue
by x, if x is closer to the query q than y. In case where the node n is an inner
node it adds the child nodes of n to nodeStack to be visited in the future.

The important issue for efficiency of the algorithm is the selection of a heuris-
tic procedure determining the order of visiting child nodes. The child nodes of
the same parent node are visited always in the increasing order of the distance
between the center of a child node and the query q, i.e., the child node with
the nearest center is visited first and the child node with the farthest center is
visited last. The closer center of a child node is to the query q the closer objects
to the query are contained in this node. If the nodes with the nearest centers
are visited first, it is more probable to find near neighbors quickly and to limit
the range of search rq to a small radius. Thus, more nodes are discarded during
further search.

In Subsection 4.6 different node pruning criteria for the function discard are
described and compared.
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4.6 Optimization of Searching in the Indexing Tree

Algorithm 6 presents the searching procedure that uses search pruning criteria
to discard nodes while traversing the indexing tree. If the algorithm finds the
first k objects and inserts them to nearestQueue it starts to check with the
procedure discard(n, q, rq) whether subsequent visited nodes can contain objects
closer to the query q than any previously found neighbor from nearestQueue.
The algorithm does it in the following way: it stores the current search radius
rq defined as the distance ρ(q, y) between the query q and the farthest from q
object y ∈ nearestQueue and for each visited node it checks whether the node
can contain an object x such that ρ(q, x) < rq .

The definition of the k nearest neighbor classification model from Subsection
2.5 does not use the axioms of metric from Subsection 2.3. Those axioms are not
required for the model but they serve two other purposes. In the first place, they
represent mathematically the natural properties of the notion of analogy. Second,
all the metric axioms are necessary for correctness of search pruning rules de-
scribed in the literature [18, 20, 46, 78, 86]. In this subsection we describe all these
pruning rules and we propose a combination of the presented rules into one rule.

The most common search pruning criterion applied in BST [46], SS-tree [86]
and M-tree [20] uses the covering radius (Figure 18a). Each node n of the index-
ing tree keeps the center cn computed with the function getCenter(n) and the
covering radius rn:

rn := max
x∈n

ρ(cn, x).

A node n is discarded from searching if the intersection between the ball around
q containing all nearest neighbors from nearestQueue and the ball containing
all members of the node n is empty:

ρ(cn, q) > rq + rn.

Uhlmann has proposed another criterion for his Generalized-Hyperplane Tree
(GHT) [78]. The important assumption for correctness of this criterion is that
at the end of the splitting procedure (see Algorithm 4) each object from a parent
node is assigned to the child node with the nearest center. It is ensured with
the stopping condition: the splitting procedure stops if the centers from the last
and the last but one iteration are the same. The procedure returns the object
assignment to the centers from the last but one iteration and this stopping
condition makes this assignment appropriate for the final centers too.

Uhlmann’s criterion uses the hyperplanes separating the child nodes of the
same parent (Figure 18b). A node ni is discarded if there is a brother node nj of
ni (another child node of the same parent node as ni) such that the whole query
ball is placed beyond the hyperplane separating ni and nj (midperpendicular
to the segment connecting the centers cni and cnj ) on the side of the brother
node nj:

ρ(cni , q)− rq > ρ(cnj , q) + rq.
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Fig. 18. The three search pruning criteria: (a) the covering radius from BST (b) the
hyperplane cut from GHT (c) the rings-based from GNAT

The third pruning criterion used in Brin’s GNAT tree [18] is also based on
a mutual relation among brother nodes but it is more complex (Figure 18c).
If the degree of a tree node is k then each child node ni keeps the minimum
mi,1, . . . , mi,k and the maximum Mi,1, . . . , Mi,k distances between its elements
and the centers cn1 , . . . , cnk

of the remaining brother nodes:

mi,j = min
x∈ni

ρ(cnj , x),

Mi,j = max
x∈ni

ρ(cnj , x).

The node ni is discarded if there is a brother node nj such that the query ball is
entirely placed outside the ring around the center of nj containing all members
of ni:

either ρ(cnj , q) + rq < mi,j or ρ(cnj , q)− rq > Mi,j.

The covering radius and the hyperplane criterion require only to store the center
cn and the covering radius rn in each node n. The criterion based on the rings
requires more memory: each node stores the 2(k− 1) distances to the centers of
the brother nodes.

All the three described criteria are based on the notion of the center of a
node. The hyperplane based criterion requires moreover the object assignment
condition to be satisfied but it is ensured with the stopping condition of the
splitting procedure. Hence, all the three criteria can be applied simultaneously
to the indexing structure described in Subsection 4.2, and in this dissertation
we propose their combination as the complex criterion for acceleration of the
nearest neighbors search.

Figure 19 presents the experimental comparison of the performance for all
possible combinations of the three criteria. In a single form the most effective
criterion is the covering radius, the least effective is the hyperplane criterion
and the differences in performance among all three criteria are significant. In
case of the 100-nn search the covering radius alone is almost as powerful as
all the three criteria. Addition of the two remaining criteria does not increase
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Fig. 19. The average number of distance computations per single object in 1-nn search
(the upper graph) and 100-nn search (the lower graph) with the use of the 2-means
based indexing tree, and with all the possible combinations of the three search pruning
criteria: The covering radius, the hyperplanes and the rings

the performance. The different behavior is observed in case of the 1-nn search:
none of them is comparable to the case where all the three criteria are applied.
Both the covering radius and the hyperplane cut are crucial for the performance
and only the rings based criterion can be removed with no significance loss in
the performance.

The presented results indicate that the combination of the different cri-
teria improves the performance of the k-nn search with a single criterion at
least for small values of k. On the other hand, in both cases of the 1-nn and
the 100-nn search addition of the memory consuming criterion based on rings
does not improve the combination of the two remaining criteria. This result
may suggest that the covering radius and the hyperplanes provide the optimal
pruning combination and there is no need to search for a more sophisticated
pruning mechanism.

4.7 Analysis of Searching Cost in the Indexing Tree

The most interesting question is how much the search process profits from the
additional cost due to the iterative splitting procedure presented in Algorithm
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Fig. 20. The average number of distance computations per single object in 1-nn search
(the upper graph) and 100-nn search (the lower graph) with the use of the index-
ing trees with the iterative 3-means, with the iterative 3-approximate-centers, and
with the one-step 2-centers splitting procedure, this last tree in two search variants:
With the combination of the 3 search pruning criteria and with the single covering
radius criterion

4 and the combined search pruning criterion from the previous subsection in
comparison to the case with the one-step procedure and a single pruning cri-
terion. The iterative procedure selects initial centers, assigns the data objects
to be split to the nearest centers and computes new centers of clusters. Then,
the assignment of the data objects to the centers and computation of the new
cluster centers is iterated as long as the same set of the cluster centers is gener-
ated in two subsequent iterations. The one-step procedure works as in the other
indexing trees BST, GHT, GNAT, SS-tree and M-tree. It stops after the first
iteration and uses the initial centers as the final ones. The globally farthest data
objects are used as the set of the initial centers both in the iterative and in the
non-iterative splitting procedure.

Figure 20 presents the cost of searching in the trees with the iterative k-
means, with the iterative k-approximate-centers and with the one-step k-centers
splitting procedure. The results both for the trees with the iterative procedures
and for the first tree with the one-step procedure are obtained with the use of
the combination of all the three search pruning criteria. The fourth column at
each data set presents the performance of the one-step based tree with the single
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covering radius criterion. We chose this criterion for comparison since it had the
best performance among all the three tested criteria (see Subsection 4.6). Except
for a single case we have observed that the performance of the one-step based
trees deteriorates while increasing k (it has been checked for k = 2, 3, 5 and
7). Then for comparison we have selected the most competitive value k = 2
(the exception was the 100-nn search in the data set splice, the case k = 5 has
provided the best performance, and hence, this case has been presented at the
graph instead of k = 2). In case of both iterative procedures the value k = 3 was
used since it is one of the most optimal values (see Subsection 4.4).

While comparing the performance of the iterative 3-means (the first column)
and the one-step 2-centers (the third column) procedures the profit from applying
the iterative procedure is noticeable. In case of the 1-nn search the savings range
from 20% (satimage) to 50% (nursery), in case of the 100-nn search the savings
are similar to the 1-nn case, except for a single data set splice where the saving
is 5%. These results indicate that replacing the one-step procedure with the
iterative 3-means procedure can improve the performance even twice.

The comparison between the third and the fourth column presents the profit
for the tree with the one-step procedure only from the application of the combined
search pruning criterion instead of the single one. For the 1-nn search the com-
bined criterion outperforms significantly the single one, in particular for the largest
data sets (census94, census94-95, covertype) the acceleration reaches up to several
times. For the 100-nn search the difference is not so large but it is still noticeable.
These results show that for the tree with the one-step splitting procedure the com-
plex criterion is crucial for the performance of the tree. In case of the tree with
the k-means splitting procedure the results are different, i.e., the difference in per-
formance between the single covering radius and the combined criteria is much
smaller (see Subsection 4.6). It indicates that the iterative k-means procedure has
very good splitting properties and the choice of the searchpruning criterion for this
case is not so crucial as for the non-iterative case.

The comparison between the first and the fourth columns shows that the tree
with the 3-means splitting procedure and the complex search pruning criterion
is always at least several tens percent more effective than the tree with the one-
step procedure and a single criterion. In case of the 1-nn search the former tree
is usually even several times more effective than the latter one.

We obtain different conclusions while comparing the iterative k-approximate-
centers (the second column) and the one-step (the third column) procedures. Al-
though for most of data sets the iterative procedure outperforms the non-iterative
one, the differences in the performance are usually insignificant and for the three
large data sets (census94, census94-95, letter) the performance of the iterative pro-
cedure is even worse than the performance of the non-iterative one. These results
indicate that in case of the tree with the k-approximate-centers the profit in the
performance is mainly due to the complex search criterion. Since the only feature
that differentiates the k-means and the k-approximate-centers procedures is how
the algorithm selects and represents the center of a cluster of data objects this fea-
ture seems to be an important issue for the performance of indexing trees.



334 A. Wojna

Uhlmann has introduced another type of an indexing structure: the vantage
point tree [78]. It is the binary tree constructed in such a way that at each node the
data objects are split with the use of the spherical cut. Given a node n the splitting
algorithmpicks an object p ∈ n, called the vantage point, and computes themedian
radius M , i.e., half of the data objects fromn fall inside the ball centered at the van-
tage point p with the radius M and half of them fall outside this ball. The objects
inside the ball {x ∈ n : ρ(p, x) ≤ M} are inserted into the left branch of the node
n and the objects outside the ball {x ∈ n : ρ(p, x) > M} are inserted into the right
branch. The vantage point tree is balanced and the construction takes O(n log n)
time in the worst case. While searching for the nearest neighbors of a query q the
branch with objects inside the ball is pruned if M +ρ(q, xnearest) < ρ(p, q) and the
branch with the objects outside the ball is pruned if M − ρ(q, xnearest) > ρ(p, q).
Yianilos has described an implementation of the vantage point tree with sampled
selection of the vantage point [95]. For the experimental comparison we have im-
plemented this structure as described by Yianilos.

Figure 21 presents the comparison of the performance of the trees with
the 2-means, with the 2-approximate-centers and with the vantage point split-
ting procedure (since the vantage point tree is a binary tree we use k = 2 in
all the tested trees to make them comparable). The result are presented only
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Fig. 21. The average number of distance computations in 1-nn search (the upper graph)
and 100-nn search (the lower graph) with the use of the indexing trees with the k-means,
with the k-approximate-centers and with the vantage point splitting procedure
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Fig. 22. The average reduction of the number of distance computations in relation to
linear search obtained by the 3-means based indexing tree with the 3 search pruning
criteria presented in percentage terms in dependence on the training set size

for 10 data sets because for the 2 largest data sets: census94-95 and cover-
type the experiments with the vantage point tree takes too much time. The
results show a large advantage of the trees based on the centers over the tree
based on the vantage points. It indicates that the center based representation
of tree nodes provides better search pruning properties than the vantage point
based representation.

An interesting question is how much of the searching cost the indexing tree
with the iterative splitting procedure and the three pruning criteria reduces
in relation to the linear scan of a training set. Figure 22 presents the average
reduction of the linear search cost for training sets of the different sizes (for the
six largest data sets from all 12 sets in Tables 1 and 2). A particularly advanced
acceleration level has been reached for the two largest data sets. The size of
the data set covertype is almost 400 thousand, whereas the average number of
distance comparisons per single object (the fourth column set from the left at
Figure 20) is less than 100 for the 1-nn search and close to 1300 for the 100-nn
search. It means that the 3-means based tree reduces the cost of searching 4000
times in case of the 1-nn search and 300 times in case of the 100-nn search.
For the second largest data set census94-95 (the second column set from the
left at Figure 20, the size almost 200 thousand) the reductions in cost are 400
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times and 60 times, respectively. This good performance has been reached both
due to the improved splitting procedure and due to the use of the complex
search criterion.

4.8 Comparison of Searching and Indexing Cost

The results from the previous subsection have proved that the k-means based
indexing tree is a good accelerator of searching for the nearest neighbors. The
question arises whether the cost of constructing a tree is not too large in com-
parison to the cost of searching.

Figure 23 presents the comparison between the number of computed distances
per single object in the indexing process (in other words the average cost of
indexing a single object) and the average number of the distances computed in
the 100-nn search.

The results for the k-means and for the k-approximate centers procedure are
similar. For k = 2 they are quite optimistic, for all the tested data sets except
shuttle the average cost of indexing a single object is several times lower than
the average cost of searching for the 100 nearest neighbors of a single object.
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Fig. 23. The average number of distance computations per single object in the indexing
algorithm and in 100-nn search, with the use of the indexing trees with the k-means (the
upper graph) and with the k-approximate-centers (the lower graph) splitting procedure.
For each data set the first pair of columns represents the costs of indexing and searching
for k = 2, the second pair represents these costs for k = 3 and the third one for k = 5.
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It means that if the size of the training and the test set are of the same order
the main workload remains on the side of the search process. For the data sets
shuttle and mushroom the differences in the cost are smaller but it results from
the fact that the search process is more effective for these two data sets than for
the others.

The situation changes to worse while increasing the degree k. In case of
k = 5 the cost of indexing for the five data sets: chess, covertype, mushroom,
segment and shuttle is at least comparable and is sometimes higher than the cost
of searching. It has been mentioned in Subsection 4.4 that the computational
cost of searching is stable for k ≥ 3. On the other hand, the cost of indexing
increases significantly while increasing the degree k. It means that the larger
degree k the lower profit from applying the advanced indexing structure is. The
results from this subsection and Subsection 4.4 indicate that the best trade-off
between the indexing cost and the search performance is obtained for k = 3.
Increasing the value of k more increases the cost of indexing with no profit
from searching.
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Fig. 24. The height of the tree (the upper graph) and the average number of itera-
tions in the splitting procedure (the lower graph) in the k-means based and in the
k-approximate-centers based indexing tree. For each data set the first pair of columns
represents the height (at the upper graph) and the iterations (at the lower graph) for
the 2-means based and the 2-approximate-centers based tree, the second pair represents
these quantities for k = 3 and the third one for k = 5.



338 A. Wojna

We have analyzed the case of the 100-nn search. In many application, e.g.,
while searching for the optimal value of k or for some topological properties in a
data set, there is the need to search for a large number of the nearest neighbors.
In this case the presented trees keep the appropriate balance between the costs
of construction and searching. The results for the 1-nn case do not lead to such
an unequivocal conclusion. The usefulness of the presented structures for queries
with a small k depends more on the specific properties of a data set and on the
number of queries to be performed.

The upper graph atFigure 24 provides some information about the shape of the
indexing trees. The fact that the height of the trees, i.e., the distance between the
root and the deepest leaf, exceeds rarely 25, indicates that the shape of the trees
is quite balanced: they do not contain very long thin branches. The lower graph
presents the average number of iterations in the splitting procedures. In many ex-
periments, especially for k = 2, this number does not exceed 5 what indicates that
the construction cost in case of the tree with the iterative splitting procedure is
only a few times larger than in case of the tree with the non-iterative procedure.

4.9 Summary

In this section we analyze the different properties of distance based indexing
algorithms with center based splitting procedures and search for the optimal
parameters of the indexing algorithm. As the result we introduce the following
new methods to be used in construction of an indexing structure and in the
search process:

– the iterative procedure for splitting nodes in an indexing tree (Subsection
4.2) generalizing the k-means algorithm; the procedure has been presented
in two versions: the specific case where the weighted joint city-block and
VDM metric is used and the general case of any metric,

– the method for selection of the initial centers in the node splitting procedure
(Subsection 4.3); in this method, as distinguished from Brin’s method [18],
the initial centers are searched globally among all the objects from a given
tree node instead of in a sample,

– a complex search pruning criterion combining three different single criteria
(Subsection 4.6).

We have compared the three methods for selection of the initial centers in the
iterative splitting procedure: random, sampled and global methods. Savaresi and
Boley have reported that the 2-means algorithm has good convergence properties
[70] so the selection of the initial centers is not very important. This result
has been confirmed by the experimental results for most of the tested data
sets. However, it was obtained for an infinite theoretical model and there are
real-life data sets where the global selection of the initial centers gives a little
better performance than the other two methods. We have also observed that
the performance of the indexing trees of different splitting degrees is comparable
except for the tree of the degree k = 2 that has a little worse performance



Analogy-Based Reasoning in Classifier Construction 339

than the trees of the degrees k ≥ 3. On the other hand, the cost of indexing
increases significantly while increasing the degree k. These observations lead
to the conclusion that the degree k = 3 is the optimal trade-off between the
performance of the search process and the cost of indexing.

We have compared the significance of the three different search pruning cri-
teria using the center based representation of tree nodes. Two of criteria are
based on the covering radius and on the separating hyperplanes, and the third
criterion is based on rings that require more information to be stored at the tree
nodes. The experimental results indicate that the most effective criterion is the
covering radius. In searching for the 100 nearest neighbors this single criterion
is as efficient as all the three criteria combined together. In the case of the 1-nn
search none of the tree criteria alone is comparable to all the three criteria used
simultaneously, but the combination of the two: the covering radius and the hy-
perplane criterion is. These results indicate that the two simple criteria define
the optimal combination and there is no need to search for a more sophisticated
mechanism like the rings based criterion.

The center based indexing trees outperform the vantage point trees. How-
ever, the performance of the center based tree still depends much on how the
center of a set of data objects is constructed or selected. While comparing the
iterative k-means algorithm to the non-iterative one the advantage of the for-
mer one is noticeable but the k-means algorithm is applicable only to vector
spaces. As a general solution we have proposed the approximate centers that
replace the means by centers selected from a sample of objects. Although there
is some evidence that the approximate centers perform a little better than the
non-iterative centers the difference does not seem to be significant. The gap
between the performance of the means and the approximate centers is much
larger. These observations indicate that the representation of the center of a
set of data objects is crucial for the effectiveness of the center based search
pruning and we find the problem of the center selection an important issue for
future research.

The experimental results show that the tree with the iterative 3-means split-
ting procedure and the combined search pruning criteria is up to several times
more effective than the one-step based tree with a single criterion. A particu-
larly advanced acceleration level in comparison to the linear search has been
reached in case of the largest data sets. The presented structure has reduced
the 1-nn search cost 4000 times in case of the data set covertype and 400
times in case of the data set census94-95. During the 100-nn search the re-
ductions of the performance cost are 300 and 60 times, respectively. These
results show the great capability of k-nn based methods in applications to
large databases.

It is known that bottom-up constructions give a very good performance but
such an immediate construction requires O(n2) time. Brin, in conclusions of
[18], has considered the iterative transformation of the tree from a top-down
construction to a bottom-up construction in such a way that at each iteration the
tree is constructed with the use of the structure from the previous iteration. Such
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an approach can result in an indexing structure that reflects more topological
properties of a data set than a tree constructed by the top-down method. We
find it interesting to instantiate this idea.

The presented indexing and searching method is also described in [91, 92]. It
was implemented with the programming language Java and it is used to accel-
erate the k nearest neighbors classifier in the system RSES [8, 73].

5 Neighborhood-Based Classification Methods

Neighborhood-based classification methods are investigated in this section.

5.1 Estimating the Optimal Neighborhood Size

In the experiments we noticed that the accuracy of the k-nn classifier depends
significantly on the number k and different k are appropriate for different data
sets. Therefore it is important to estimate the optimal value of k before classifi-
cation and in this subsection we consider this problem.

Since the optimal value k depends on the data set, we present an algorithm
that estimates this optimal value from a training set. The idea is that the leave-
one-out classification is applied to the training set in the range of values 1 ≤ k ≤
kmax and k with the best leave-one-out accuracy is chosen to be used for a test
set. Applying it directly requires repeating the leave-one-out estimation kmax

times. However, we emulate this process in time comparable to the single leave-
one-out test for k equal to the maximum possible value k = kmax. Algorithm 7
implements this idea.

The function getClassificationV ector(x, kmax) returns the decision of the
k-nn classifier for a given object x for the subsequent values of k in the range
1 ≤ k ≤ kmax. After calling this function for all training objects x ∈ Utrn the
algorithm compares the total accuracy of different values k for the whole set
Utrn and it selects the value k with the maximum accuracy.

At the beginning the function getClassificationV ector(x, kmax) finds the
kmax training objects from Utrn \ {x} that are nearest to the object x. This is
the most time-consuming operation in this function and performing it once in-
stead of for each value 1 ≤ k ≤ kmax saves a significant amount of performance
time. Then the function counts the votes for particular decisions for successive
values of k and for each k it stores the most frequent decision as the result
of the classification of the object x. In this way it implements the majority
voting model but by analogy one can implement other voting models of the
k-nn classifier.

To find the kmax nearest training objects from Utrn \ {x} one can use the
indexing and searching method described in Section 4 with the small modifica-
tion: the searching algorithm ignores the object x during search and it does not
add it to the set of the nearest neighbors.

The setting kmax = 100 makes the algorithm efficient enough to apply it to
large data sets and we use this setting in further experiments. The maximum
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Algorithm 7. The function findOptimalK estimating the optimal value k from
a training set Utrn in the range 1 ≤ k ≤ kmax

function findOptimalK(kmax)
for each x ∈ Utrn

Ax := getClassificationV ector(x, kmax)
return arg max1≤k≤kmax |{x ∈ Utrn : Ax[k] = dec(x)}|

function getClassificationV ector(x, kmax)
n1, . . . , nkmax := the sequence of the kmax nearest neighbors of x

sorted in the increasing order of the distance to x
for each dj ∈ Vdec votes[dj ] := 0
mostFrequentDec :=arg maxdj∈Vdec

|{x ∈ Utrn : dec(x) = dj}|
for k := 1 to kmax

votes[dec(nk)] := votes[dec(nk)] + 1
if votes[dec(nk)] > votes[mostFrequentDec]

then mostFrequentDec := dec(nk)
Ax[k] := mostFrequentDec

return Ax

Fig. 25. The classification accuracy for the data set letter in dependence on the para-
meter k

possible value of kmax is the size of the training set |Utrn|. The interesting
question is how much the setting kmax = 100 affects the classification results. To
answer this question the following experiment was performed for the data sets
from Table 1: for the smallest two data sets: chess and splice the k-nn accuracy
was computed for all possible values of k and for the 8 remaining data sets
accuracy was computed for all values k with the maximum value kmax = 500.
For each data set the classification accuracy was measured with the leave-one-out
method applied to the training set.
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Fig. 26. The classification accuracy for the data sets census94 and splice in dependence
on the parameter k

For 8 of the tested data sets (all the sets except census94 and splice) the
maximum accuracy was obtained for small values of k (always ≤ 5) and while
increasing k the accuracy was significantly falling down (see, e.g., Figure 25).

The dependence between the accuracy and the value k for the two remaining
data sets is presented at Figure 26. For the data set splice the accuracy remains
stable in a wide range of k, at least for the whole range 1 ≤ k ≤ 1000, and it
starts to fall down for k > 1000. However, the maximum accuracy was obtained
at the beginning of this wide range: for k = 15. In case of the data set census94
accuracy becomes stable for k ≥ 20 and it remains stable to the maximum
tested value k = 500. We observed that the maximum accuracy was obtained for
k = 256 but the difference to the accuracy for the best k in the range 1 ≤ k ≤ 100
was insignificant: accuracy for k = 24 was only 0.04% lower than for k = 256.

The conclusion is that for all the tested data sets the accuracy reaches a value
close to the maximum for a certain small value k. Then either it starts quickly
to fall or it remains stable for a wide range of k, but then the fluctuations in the
accuracy are very small. The conclusion is that accuracy close to the maximum
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can be always found in the range 1 ≤ k ≤ 100. Therefore, kmax = 100 provides
a good balance between the optimality of the results and the searching time and
we assume this setting in further experiments.

5.2 Voting by k Nearest Neighbors

During the classification of any test object x in the k-nn classifier the k nearest
neighbors of x vote for different decisions and the classifier chooses the best
decision according to a certain voting model.

The most common majority voting model [31] is given in Equation 4. This
model assigns the same weight to each object in the set of the k nearest neighbors
NN(x, k).

In the literature there are a number of other voting models that take into
consideration the distances from the neighbors to the test object x [27, 72]. It
has been argued that for a finite training set Utrn the distance weighted voting
models can outperform the majority voting model [4, 58, 84, 93, 96].

Dudani [27] proposed the inverse distance weight where the weight of a neigh-
bor vote is inversely proportional to the distance from this neighbor to the test
object x. In this way closer neighbors are more important for classification than
farther neighbors. In the dissertation we consider the modified version of Du-
dani’s model, the inverse square distance weights:

decweighted−knn(x) := arg max
dj∈Vdec

∑
y∈NN(x,k):dec(y)=dj

1
ρ(x, y)2

. (7)

In the above model the weight of any neighbor vote is inversely proportional
to the square of the distance from this neighbor to the test object x. It makes
the weights more diversified than in Dudani’s model.

Empirical comparison of the two voting models: with the equal weights and
with the inverse square distance weights is discussed in Subsection 5.5.

5.3 Metric Based Generalization of Lazy Rule Induction

In this subsection we consider another approach to learning from examples based
on rule induction. Rule induction is one of the most popular approaches in
machine learning [7, 21, 42, 60, 74]. Our goal is to combine the k nearest neighbors
method with rule induction.

The k-nn model implements the lazy learning approach [6, 34]. In this ap-
proach the model is assumed to be induced at the moment of classification. For
the k-nn it is implemented in a natural way because the k nearest neighbors
are searched in relation to a test object. In this subsection we consider a lazy
approach to rule based classification. Bazan [6] has proposed an effective lazy
rule induction algorithm for data with nominal attributes. In this subsection,
we make the first step towards combining Bazan’s algorithm with the k near-
est neighbors method: we extend this algorithm to the case of data with both
numerical and nominal attributes. The extension uses the assumption that a
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linear weighted metric from Equation 6 is provided for data. We show that the
proposed extension generalizes Bazan’s method.

The main feature of rule based classifiers is the set of rules used for
classifying objects.

Definition 6. A rule consists of a premise and a consequent:

ai1 = v1 ∧ . . . ∧ aip = vp ⇒ dec = dj .

The premise is conjunction of attribute conditions and the consequent indicates
a decision value. A rule is said to cover an example x = (x1, . . . , xn), and vice
versa, the example x is said to match the rule, if all the attribute conditions in
the premise of the rule are satisfied by the object values: xi1 = v1, . . . , xip = vp.
The consequent dec = dj denotes the decision value that is assigned to an object
if it matches the rule.

In rule based classifiers a set of rules is induced from a training set. The important
properties of rules are consistency and minimality [74].

Definition 7. A rule ai1 = v1 ∧ . . . ∧ aip = vp ⇒ dec = dj is consistent with
a training set Utrn if for each object x ∈ Utrn matching the rule the decision of
the rule is correct, i.e., dec(x) = dj.

The notion of consistency describes the rules that classify correctly all the cov-
ered objects in a given training set.

Definition 8. A consistent rule ai1 = v1∧ . . .∧aip = vp ⇒ dec = dj is minimal
in a training set Utrn if for each proper subset of conditions occurring in the
premise of this rule C ⊂ {ai1 = v1, . . . , aip = vp} the rule built from these
conditions, i.e.,

∧
C ⇒ dec = dj is inconsistent with the training set Utrn.

The notion of minimality selects the consistent rules of the minimum length in
terms of the number of conditions in the premise of a rule. These rules maximize
also the set of covered objects in a training set.

The complete set of all minimal consistent rules has good theoretical prop-
erties: it corresponds to the set of all rules generated from all local reducts of
a given training set [94]. However, the number of all minimal consistent rules
can be exponential in relation both to the number of attributes |A| and to the
training set size |Utrn| and computing all minimal consistent rules is often infea-
sible [90]. Therefore many rule induction algorithms are based on a smaller set
of rules [7, 42].

However, in the dissertation we consider a rule based classification model
that allows us to classify objects on the basis of the set of all minimal consistent
rules without computing them explicitly. The decision for each object to be
classified is computed using the rules covering the object. Usually in a given set
of rules they are not mutually exclusive and more than one rule can cover a test
object. Therefore a certain model of voting by rules is applied to resolve conflicts
between the covering rules with different decisions.
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Algorithm 8. Algorithm decisionlocal−rules(x) classifying a given test object x
based on lazy induction of local rules

for each dj ∈ Vdec support[dj] := ∅
for each y ∈ Utrn

if rlocal(x, y) is consistent with Utrn then
support[dec(y)] := support[dec(y)] ∪ {y}

return arg maxdj∈Vdec
|support[dj ]|

Definition 9. The support of a rule ai1 = v1 ∧ . . . ∧ aip = vp ⇒ dec = dj in
a training set Utrn is the set of all the objects from Utrn matching the rule and
with the same decision dj:

support(ai1 = v1 ∧ . . . ∧ aip = vp ⇒ dec = dj) =
{x = (x1, . . . , xn) ∈ Utrn : xi1 = v1 ∧ . . . ∧ xip = vp ∧ dec(x) = dj}.

In the dissertation, we focus on the commonly used rule based classification
model using the notion of the rule support:

decrules(x, R) := arg max
dj∈Vdec

∣∣∣∣∣∣
⋃

α⇒dec=dj∈R: x satisfies α

support(α ⇒ dec = dj)

∣∣∣∣∣∣ .
(8)

where R is a given set of rules used by the classifier. This model computes the
support set for each rule r ∈ R covering a test object x and then it select the
decision with the greatest total number of the supporting objects.

Algorithm 8 presents Bazan’s lazy rule induction algorithm
decisionlocal−rules [6] that simulates this rule support based classifier decrules

where R is the complete set of all minimal consistent rules. The algorithm was
designed originally only for data with nominal attributes and it is based on the
following notion of a local rule:

Definition 10. The local rule for a given pair of a test object x and a training
object y ∈ Utrn is the rule rlocal(x, y) defined by∧

ai:yi=xi

ai = yi ⇒ dec = dec(y).

The conditions in the premise of the local rule rlocal(x, y) are chosen in such a
way that both the test object x and the training object y match the rule and the
rule is maximally specific relative to the matching condition. This is opposite
to the definition of a minimal consistent rule where the premise of a rule is
minimally specific. However, there is the following relation between minimal
consistent rules and local rules:

Fact 11. [6] The premise of a local rule rlocal(x, y) for a test object x and a
training object y ∈ Utrn implies the premise of a certain minimal consistent rule
if and only if the local rule rlocal(x, y) is consistent with the training set Utrn.



346 A. Wojna

It means that if a local rule is consistent with a training set then it can be
generalized to a certain minimal consistent rule covering both the test and the
training object and this property is used to compute the support set of minimal
consistent rules matched by a test object in Algorithm 8. Instead of computing
all minimal consistent rules covering a given test object x to be classified the
algorithm generates the local rules spanned by the object x and each training
object y ∈ Utrn, and next, it checks the consistency of each local rule against the
training set Utrn. If the local rule rlocal(x, y) is consistent with the training set,
then the object y supports a certain minimal consistent rule and the algorithm
uses y to vote. Hence, the following conclusion can be drawn:

Corollary 12. [6] The classification result of the rule support based classifier
from Equation 8 with the set R of all minimal consistent rules and the lazy local
rule induction classifier (Algorithm 8) is the same for each test object x:

decrules(x, R) = decisionlocal−rules(x).

To check the consistency of a local rule rlocal(x, y) with the training set Utrn

the algorithm checks for each object z ∈ Utrn with the decision different from y:
dec(z) �= dec(y) whether z matches the local rule. Hence, the time complexity
of the lazy rule induction algorithm for a single test object is O(|Utrn|2 |A|) and
the classification of the whole test set Utst has the time complexity O(|Utrn|2
|Utst| |A|). It means that lazy induction of rules reduces the exponential time
complexity of the rule based classifier to the polynomial time. This makes it
possible to apply this algorithm in practice.

The original version of the algorithm was proposed for data only with nominal
attributes and it uses equality as the only form of conditions on attributes in the
premise of a rule (see Definition 6). We generalize this approach to data with
both nominal and numerical attributes and with a metric ρ defined by linear
combination of metrics for particular attributes (see Equation 6). Equality as
the condition in the premise of the rule from Definition 6 represents selection of
attribute values, in this case always a single value. We replace equality conditions
with a more general metric based form of conditions. This form allows us to select
more than one attribute value in a single attribute condition, and thus, to obtain
more general rules.

First, we define the generalized versions of the notions of rule and consistency.

Definition 13. A generalized rule consists of a premise and a consequent:

ρi1(ai1 , v1) ≤ r1 ∧ . . . ∧ ρip(aip , vp) < rp ⇒ dec = dj .

Each condition ρij (aij , vj) ≤ rj or ρij (aij , vj) < rj in the premise of the gener-
alized rule is described as the range of acceptable values of a given attribute aiq

around a given value vq. The range is specified by the distance function ρiq that
is the component of the total distance ρ and by the threshold rq.

The definition of rule consistency with a training set for the generalized rules is
analogous to Definition 7.
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Definition 14. A consistent generalized rule ρi1(ai1 , v1) < r1∧ . . .∧ρip(aip , vp)
< rp ⇒ dec = dj is minimal in a training set Utrn if for each attribute
aiq ∈ {ai1 , . . . , aip} occurring in the premise of the generalized rule the rule
ρi1(ai1 , v1) < r1 ∧ . . .∧ ρiq (aiq , vq) ≤ rq ∧ . . .∧ ρip(aip , vp) < rp ⇒ dec = dj with
the enlarged range of acceptable values on this attribute (obtained by replacing
< by ≤ in the condition of the original rule) is inconsistent with the training
set Utrn.

Observe, that each condition in the premise of a minimal consistent gener-
alized rule is always a strict inequality. It results from the assumption that a
training set Utrn is finite.

For the generalized version of the classifier based on the set of all minimal con-
sistent rules we use the notion of a generalized rule center.

Definition 15. An object (x1, . . . , xn) is center of the rule from Definition 13
if for each attribute aij from its premise we have xij = vj.

Observe, that a rule can have many centers if there are attributes that do not
occur in the premise of the rule.

In the generalized rule support based classification model the support is
counted using the set R equal to the set of all generalized minimal consistent
rules centered at a test object x:

decisiongen−rules(x, R) :=

arg max
dj∈Vdec

∣∣∣∣∣∣
⋃

α⇒dec=dj∈R: xis a center of α⇒dec=dj

support(α ⇒ dec = dj)

∣∣∣∣∣∣ .(9)

Although in the generalized version we consider only minimal consistent rules
centered at a test object the number of these rules can be exponential as in the
non-generalized version:

Fact 16. For arbitrary large set of attributes A there is a training set Utrn and
a test object x such that the number of minimal consistent rules centered at x is
exponential with respect both to the number of attributes |A| and to the size of
the training set |Utrn|.

Proof. We assume that the number of attributes n = |A| is even and the decision
is binary: Vdec = {0, 1}. In the proof we use any linear metric from Equation
6 to define distance between attribute values and we assume only that each
attribute has at least two different values, let us assume that {0, 1} ⊆ Vi. We
define the training set Utrn consisting of n

2 + 1 objects. The first object x0 has
all the attribute values and the decision value equal to 0: x0

i = 0, dec(x0) = 0.
Any object xj from the remaining n

2 objects x1, . . . , x
n
2 has the two values of

neighboring attributes and the decision value equal to 1: xj
2j−1 = xj

2j = 1,
dec(xj) = 1 and the remaining attributes have the value equal to 0: xj

i = 0
(i �= 2j−1, 2j). Consider the object x = x0 and minimal consistent rules centered
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at x. To exclude each of the training object xj a minimal consistent rule contains
the condition with exactly one of the two attributes that have the value 1 in
the object xj . On the other hand the rule can contain the condition with any
attribute from each pair a2j−1, a2j . It means the for each selection function
sel : {1, . . . , n

2 } → {0, 1} there is the corresponding minimal consistent rule:
∧

1≤j≤ n
2

ρ2j−sel(j)(a2j−sel(j) , x
0
2j−sel(j)) < ρ2j−sel(j)(0, 1) ⇒ dec = 0.

Each of the above rules is unique. Hence, the number of minimal consistent rules
centered at x is 2

n
2 and we obtain the following exponential relation between this

number of minimal consistent rules denoted by Rx and the number of attributes
and the training set size:

Rx = 2|Utrn|−1 = (
√

2)|A|. �

Since it is impossible to enumerate all generalized minimal consistent rules in
practice we propose to simulate the generalized rule support based classification
model from Equation 9 by analogy to Algorithm 8. First, we introduce the
definition of a generalized local rule analogous to Definition 10. The conditions
in a generalized local rule are chosen in such a way that both the test and the
training object match the rule and the conditions are maximally specific.

Definition 17. The generalized local rule for a given pair of a test object x and
a training object y ∈ Utrn is the rule rgen−local(x, y):∧

ai∈A

ρi(ai, xi) ≤ ρi(yi, xi) ⇒ dec = dec(y).

For each attribute ai the range of acceptable values in the corresponding condition
of the generalized local rule is defined as the set of values whose distance to the
attribute value xi in the test object is less or equal to the distance from the
attribute value yi in the training object to xi.

First, we identify the relation between the original and the generalized notion
of a local rule. Let us consider the case where to define the generalized rules the
Hamming metric described in Subsection 2.4 is used for all the attributes, both
the nominal and the numerical ones.

Fact 18. For the Hamming metric the notion of the generalized local rule
rgen−local(x, y) in Definition 17 is equivalent to the notion of the local rule
rlocal(x, y) in Definition 10.

Proof. Consider a single attribute ai. If the values of x and y on this attribute
are equal xi = yi the corresponding condition in the local rule rlocal(x, y) has the
form of equality ai = yi. The attribute distance in the Hamming metric between
two equal values is 0 so the corresponding condition in the generalized local rule
has the form ρi(ai, xi) ≤ 0. The distance between two attribute values in the
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Hamming metric is 0 if and only if these two value are equal. Hence, in case of
xi = yi the corresponding conditions ai = yi and ρi(ai, xi) ≤ 0 in the local and
in the generalized local rule, respectively, are equivalent.

If the values of x and y on the attribute ai are different xi �= yi the condition
corresponding to the attribute ai does not occur in the local rule rlocal(x, y). This
means that the local rule accepts all values on this attribute. In the generalized
local rule rgen−local(x, y) the corresponding condition has the form ρi(ai, xi) ≤ 1.
But in the Hamming metric the attribute distance between two values is always
either 0 or 1 so the condition ρi(ai, xi) ≤ 1 is satisfied for all the values of the
attribute ai too.

Hence, for each attribute the corresponding conditions in the local rule
rlocal(x, y) and in the generalized rule rgen−local(x, y) with the Hamming metric
are equivalent so the whole premises of these two rules are equivalent too. �

Now we present an example how the presented generalization works for the case
of a non-trivial metric. We consider the joint city-block and VDM metric defined
in Subsection 3.1. Let us assume that the following training set is provided:

Object Age (A) Weight (W) Sex (S) BloodGroup (BG) Diagnosis

y1 35 90 M A Sick
y2 40 65 F AB Sick
y3 45 68 F AB Healthy
y4 40 70 M AB Healthy
y5 45 75 M B Sick
y6 35 70 F B Healthy
y7 45 70 M 0 Healthy

Age and Weight are the numerical attributes and Sex and BloodGroup are
the nominal attributes. We consider the following test object:

Object Age (A) Weight (W) Sex (S) BloodGroup (BG) Diagnosis

x1 50 72 F A ?

For the attribute BloodGroup there are 4 possible values: A, AB, B and 0.
To construct the generalized local rules for x1 we need to compute the attribute
distance from A to each other value:

ρBG(A, A) = 0,

ρBG(A, AB) = |P (Diagn = Healthy|A)− P (Diagn = Healthy|AB)| −
− |P (Diagn = Sick|A)− P (Diagn = Sick|AB)| =

=
∣∣∣∣0− 2

3

∣∣∣∣−
∣∣∣∣1− 1

3

∣∣∣∣ =
4
3
,

ρBG(A, B) = |P (Diagn = Healthy|A)− P (Diagn = Healthy|B)| −
− |P (Diagn = Sick|A)− P (Diagn = Sick|B)| =

=
∣∣∣∣0− 1

2

∣∣∣∣−
∣∣∣∣1− 1

2

∣∣∣∣ = 1,
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ρBG(A, 0) = |P (Diagn = Healthy|A)− P (Diagn = Healthy|0)| −
− |P (Diagn = Sick|A)− P (Diagn = Sick|0)| =
= |0− 1| − |1− 0| = 2.

Consider the generalized local rule rgen−local(x1, y1). Since the objects x1 and
y1have the same value A on the attribute BloodGroup, the local rule accepts
only this value on the attribute BloodGroup:

A ∈ [35; 65]∧W ∈ [54; 90] ∧BG = A ⇒ Diagn = Sick.

No other training object except for y1 satisfies the premise of this rule so it is
consistent and it can be extended to a minimal consistent rule, e.g.,

BG = A ⇒ Diagn = Sick.

If we consider the generalized local rule rgen−local(x1, y2) for the objects x1
and y2, the distance between the values of x1 and y2 on the attribute BloodGroup
is ρBG(A, AB) = 4

3 . It makes the three values A, AB and B be accepted in the
rule rgen−local(x1, y2) on the attribute BloodGroup:

A ∈ [40; 60]∧W ∈ [65; 79] ∧ S = F ∧BG ∈ {A, AB, B} ⇒ Diagn = Sick.

Now we obtain the inconsistent rule because, e.g., the object y3 satisfies the
premise of this rule and it has the inconsistent decision Diagn = Healthy.

The most important property of the presented generalization is the relation
between generalized minimal consistent rules and generalized local rules analo-
gous to Fact 11.

Theorem 19. The premise of the generalized local rule rgen−local(x, y) for a
test object x and a training object y ∈ Utrn implies the premise of a certain
generalized minimal consistent rule centered at x if and only if the generalized
local rule rlocal(x, y) is consistent with the training set Utrn.

Proof. First, we show that if the generalized local rule rgen−local(x, y) is consis-
tent with the training set Utrn it can be extended to the generalized minimal
rule centered at x. We define the sequence of rules r0, . . . , rn in the following
way. The first rule in th sequence is the local rule r0 = rgen−local(x,y). To define
each next rule ri we assume that the previous rule ri−1:∧

1≤j<i

ρj(aj , xj) < Mj

∧
i≤j≤n

ρj(aj , xj) ≤ ρj(yj , xj) ⇒ dec = dec(y).

is consistent with th training set Utrn and the first i−1 conditions of the rule ri−1
are maximally general, i.e., replacing any strong inequality ρj(aj , xj) < Mj for
j < i by the weak makes this rule inconsistent. Let Si be the set of all the object
that satisfy the premise of the rule ri−1 with the condition on the attribute ai

removed:

Si = {z ∈ Utrn : z satisfies
∧

1≤j<i

ρj(aj , xj) < Mj

∧
i<j≤n

ρj(aj , xj) ≤ ρj(yj , xj)}.
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In the rule ri the i-th condition is maximally extended in such way that the
rule remains consistent. It means that the range of acceptable values for the
attribute ai in the rule ri has to be not larger than the attribute distance from x
to any object in Si with a decision different from dec(y). If Si does not contain
an object with a decision different from dec(y) the range remains unlimited:

Mi =
{
∞ if ∀z ∈ Si dec(z) = dec(y)
min{ρi(zi, xi) : z ∈ Si ∧ dec(z) �= dec(y)} otherwise.

(10)
If we limit the range of values on the attribute ai in the rule ri by the Mi with
the strong inequality in the condition:∧
1≤j<i

ρj(aj , xj) < Mj∧ρi(ai, xi)<Mi

∧
i<j≤n

ρj(aj , xj) ≤ ρj(yj , xj) ⇒ dec=dec(y)

then it ensures that the rule ri remains consistent. On the other hand, the value
of Mi in Equation 10 has been chosen in such a way that replacing the strong
inequality by the weak inequality or replacing the range by a value larger than
Mi causes the situation where a certain object with a decision different from
dec(y) satisfies the condition on the attribute ai and the whole premise of the
rule ri, i.e., the rule ri becomes inconsistent.

Since ri−1 was consistent the range Mi is greater than the range for the
attribute ai in the rule ri−1: Mi > ρ(yi, xi). Hence, the ranges for the previous
attributes M1, . . . , Mi−1 remain maximal in the rule ri: widening of one of these
ranges in the rule ri−1 makes an inconsistent object match ri−1 and the same
happens for the rule ri.

By induction the last rule rn :
∧

1≤j≤n ρj(aj , xj) < Mj ⇒ dec = dec(y) in the
defined sequence is consistent too and all the conditions are maximally general.
Then rn is consistent and minimal. Since the premise of each rule ri−1 implies
the premise of the next rule ri in the sequence and the relation of implication
is transitive the first rule r0 that is the generalized local rule rgen−local(x, y)
of the objects x, y implies the last rule rn that is a minimal consistent rule.
Thus we have proved the theorem for the case when the generalized local rule is
consistent.

In case where the generalized local rule rgen−local(x, y) is inconsistent each
rule centered at x implied by rgen−local(x, y) covers all objects covered by
rgen−local(x, y), in particular it covers an object causing inconsistency. Hence,
each rule implied by rgen−local(x, y) is inconsistent too. �

The above theorem allows to define an effective generalized version of the
local rule based algorithm simulating the rule support based classifier (see Al-
gorithm 8). Algorithm 9 works in the same way as the non-generalized version.
Instead of computing all the generalized minimal consistent rules centered at a
given test object x to be classified the algorithm generates the generalized local
rules spanned by the object x and each training object y ∈ Utrn and then checks
consistency of each local rule against the training set Utrn. The time complexity
of the generalized lazy rule induction algorithm is the same as the complexity of
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Algorithm 9. Algorithm decisiongen−local−rules(x) classifying a given test ob-
ject x based on lazy induction of the generalized local rules

for each dj ∈ Vdec support[dj] := ∅
for each y ∈ Utrn

if rgen−local(x, y) is consistent with Utrn then
support[dec(y)] := support[dec(y)] ∪ {y}

return arg maxdj∈Vdec
|support[dj ]|

the non-generalized version: O(|Utrn|2 |Utst| |A|). Theorem 19 ensures that the
algorithm counts only those objects that are covered by a certain generalized
minimal consistent rule centered at x. Hence, we obtain the final conclusion.

Corollary 20. The classification result of the generalized rule support based
classifier from Equation 9 with the set R of all the generalized minimal con-
sistent rules centered at x and the generalized lazy local rule induction classifier
(Algorithm 9) is the same for each each test object x:

decisiongen−rules(x, R) = decisiongen−local−rules(x).

In this way we extended the effective lazy rule induction algorithm for data
with nominal attributes to the case of data with both nominal and numerical
attributes and with linear weighted distance provided.

5.4 Combination of k Nearest Neighbors with Generalized Lazy
Rule Induction

In this subsection we consider an approach from multistrategy learning, i.e., a
method combining more than one different approaches. We examine the combi-
nation of the k nearest neighbors method with rule induction. In the literature
there is a number of different solutions combining these two methods [25, 37, 54].
Contrary to the other solutions combining k-nn with rule induction we propose
the algorithm that preserves lazy learning, i.e., rules are constructed in lazy way
at the moment of classification like the nearest neighbors. The proposed com-
bination uses the metric based generalization of rules described in the previous
subsection.

For each test object x Algorithm 9 looks over all the training examples y ∈
Utrn during construction of the support sets support[dj ]. Instead of that we can
limit the set of the considered examples to the set of the k nearest neighbors of x.
The intuition is that training examples far from a test object x are less relevant
for classification than closer objects. Therefore in the algorithm combining the
two approaches we use the modified definition of the rule support, depending on
a test object x:

Definition 21. The k-support of the generalized rule α ⇒ dec = dj for a test
object x is the set:

k − support(x, α ⇒ dec = dj) = {y ∈ NN(x, k) : y matches α ∧ dec(x) = dj}.
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The k-support of the rule contains only those objects from the original support
set that belong to the set of the k nearest neighbors.

Now, we define the classification model that combines the k-nn method with
rule induction by using the k-supports of the rules:

decisionknn−rules(x, R) :=arg max
dj∈Vdec

∣∣∣∣∣∣
⋃

r∈R: r centered in x

k−support(x, r)

∣∣∣∣∣∣ . (11)

In the above model R is the set of all generalized minimal consistent rules. The
difference between the generalized rule support based classifier decisiongen−rules

from Equation 9 and the combined classifier decisionknn−rules is that the com-
bined classifier counts only those objects supporting minimal consistent rules
that belong to the set of the k nearest neighbors.

The form of the definition of the combined classifier decisionknn−rules in
Equation 11 presents the difference between the combined classifier and the pure
rule based classifiers described in the previous subsection. Now, we consider the
combined classifier from the point of view of the k nearest neighbors method.

Fact 22. The combined classifier decisionknn−rules can be defined by the equiv-
alent formula:

decisionknn−rules(x, R) := arg max
di∈Vdec

∑
y∈NN(x,k):dec(y)=di

δ(y, R) (12)

where the value of δ(y) is defined by

δ(y) :=
{

1 if ∃r ∈ R centered in x supported by y
0 otherwise

and R is the set of all generalized minimal consistent rules for the training set
Utrn.

The above fact shows that the combined classifier presented in this subsection
can be considered as a special sort of the k nearest neighbors method: it can be
viewed as the k-nn classifier with the specific rule based zero-one voting model.
Such a zero-one voting model is a sort of filtering: it excludes some of the k
nearest neighbors from voting. Such a voting model can be easily combined with
other voting models, e.g., with the inverse square distance weights defined in
Equation 7:

decweighted−knn−rules(x, R) := arg max
di∈Vdec

∑
y∈NN(x,k):dec(y)=di

δ(y, R)
ρ(x, y)2

. (13)

As for the generalized rule support classifier we propose an effective algo-
rithm simulating the combined classifier decisionknn−rules based on the gener-
alized local rules. The operation of consistency checking for a single local rule
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Algorithm 10. Algorithm decisiongen−local−knn−rules(x) simulating the classi-
fier decisionknn−rules(x) with lazy induction of the generalized local rules

for each dj ∈ Vdec support[dj] := ∅
neighbor1, . . . , neighbork := the k nearest neighbors of x

sorted from the nearest to the farthest object
for each i := 1 to k

if rgen−local(x,neighbori) is consistent
with neighbor1, . . . , neighbori−1 then

support[dec(neighbori)] :=support[dec(neighbori)]∪{neighbori}
return arg maxdj∈Vdec

|support[dj ]|

in Algorithm 9 takes O(|Utrn| |A|) time. If the linear weighted distance from
Equation 6 is used we can use the following fact to accelerate the consistency
checking operation in the local rule based algorithm for the combined classifier
decisionknn−rules:

Fact 23. For each training object z ∈ Utrn matching a generalized local rule
rgen−local(x, y) based on a linear weighted distance ρ the distance between the
objects x and z is not greater than the distance between the objects x and y:

ρ(x, z) ≤ ρ(x, y).

Proof. The generalized local rule rgen−local(x, y) for a test object x = (x1, . . . ,
xn) and a training object y = (y1, . . . , yn) has the form∧

ai∈A

ρi(ai, xi) ≤ ρi(yi, xi) ⇒ dec = dec(y).

If z = (z1, . . . , zn) matches the rule then it satisfies the premise of this rule. It
means that for each attribute ai ∈ A the attribute value zi satisfies the following
condition: ρi(zi, xi) ≤ ρi(yi, xi). Hence, we obtain that the distance between the
objects x and z is not greater than the distance between the objects x and y:

ρ(x, z) =
∑
ai∈A

wiρi(zi, xi) ≤
∑
ai∈A

wiρi(yi, xi) = ρ(x, y). �

The above fact proves that to check consistency of a local rule rgen−local(x, y)
with a training set Utrn it is enough to check only those objects from the training
set Utrn that are closer to x than the object y.

Algorithm 10 presents the lazy algorithm simulating the classifier
decisionknn−rules(x, R) combining the k nearest neighbors method with rule
induction. The algorithm follows the scheme of the generalized local rule based
algorithm described in the previous subsection (see Algorithm 9). There are two
differences. First, only the k nearest neighbors of a test object x are allowed
to vote for decisions. Second, the consistency checking operation for each local
rule rgen−local(x, y) checks only those objects from the training set Utrn that
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are closer to x than the object y. Thus the time complexity of the consistency
checking operation for a single neighbor is O(k |A|). For a single test object
the consistency checking operation is performed once for each of the k nearest
neighbors. Hence, the cost of consistency checking in the whole procedure test-
ing a single object is O(k2 |A|). In practice, it takes less time than searching for
the k nearest neighbors. In this way we have obtained an important property
of the proposed combination: addition of the rule induction to the k nearest
neighbors algorithm does not lengthen significantly the performance time of the
k-nn method.

Algorithm 10 simulates the classifier decisionknn−rules(x, R) correctly only
if the distances from a test object x to training objects are different. To omit
this assumption the algorithm requires two small changes. First, the procedure
searching for the k nearest neighbors of x returns all objects that are equally
distant from x as the k-th nearest neighbor of x. It means that sometimes the
algorithm considers more than k nearest neighbors of x. Second, in the procedure
checking consistency of a rule rgen−local(x, neighbori) the algorithm checks also
all the neighbors neighbori+1, . . . , neighbori+l that are equally distant from x
as the neighbor neighbori.

5.5 Experimental Results for Different Voting Models

In this subsection we compare the performance of the k-nn method with different
voting models described in the previous subsections. Four voting models are
compared: the majority voting model with equal weights defined in Equation 4,
the inverse square distance weights (see Equation 7), the zero-one voting model
using generalized minimal consistent rules to filter objects (see Equation 12) and
the combination of the last two methods, i.e., the inverse square distance weights
with rule based filtering (see Equation 13).

On the basis of the results from Section 3 we choose two most effective
metrics to be used in the experiments. The first tested metric is the joint city-
block and VDM metric (see Subsection 3.1) with the attribute weighting method
optimizing distance (see Subsection 3.4) and the second tested metric is the
joint DBVDM and VDM metric (see Subsection 3.2) with the same attribute
weighting method.

To compare the voting models we performed a number of experiments for the
10 benchmark data sets presented in Table 1. Each data set was partitioned into a
training and a test set as described in Subsection 2.7. For each data set and for each
votingmodel the k nearest neighborsmethod was trained and tested 5 times for the
same partition of the data set and the average classification error was calculated
for comparison. In each test first the metric was induced from the training set, then
the optimal value of k was estimated from the training set in the range 1 ≤ k ≤ 200
withAlgorithm7 andfinally, the test part of a data setwas testedwith thek nearest
neighbor method for the previously estimated value of k.

Both in case of the joint city-block and VDM metric and in case of the joint
DBVDM and VDM metric all the tests for the data set mushroom gave the error
0% and all the tests for the data set shuttle gave an error not greater than 0.1%.
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Since the classification error for these two data sets is always very small it does
not provide reliable results to compare different voting models and we focus on
the 8 remaining data sets: census94, chess, letter, nursery, pendigits, satimage,
segment and splice.

First, we consider the weighted joint city-block and VDM metric. The table
below presents the average value of the estimation of the optimal k for particular
voting models with this metric:

Data set equal sqr. inv. equal weights sqr. inv. dist. weights
weights dist. weights & rule based filter. & rule based filter.

census94 30.6 119.4 88.8 181
chess 1 1 1.4 49.2
letter 1 4 1 5.6

nursery 5.4 15.4 19.4 16.8
pendigits 2.2 3.6 2.2 4.2
satimage 2 5.2 2 5.6
segment 1 2.4 1 5.6
splice 1.8 3 2.6 3.6

The estimation of the optimal k for the models with the inverse square dis-
tance weights is usually larger than for the models with equal weights. It indicates
that the most important objects for classification of a test object are the nearest
neighbors but a number of farther objects can provide useful information too.
The information from farther objects should only be considered less important
than information from the nearest objects.
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Fig. 27. The average classification error of the k-nn with the optimal k estimated from
the training set for the joint city-block and VDM metric with the attribute weighting
method optimizing distance
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Figure 27 presents the average classification error of the k nearest neighbor
method for the weighted joint city-block and VDM metric. The table below
presents the best voting model for this metric and the confidence level of the
differences between the best voting model and the others (see Subsection 2.7)
for particular data sets:

The data set The winning voting model The confidence level
census94 equal weights 99.5%

chess sqr. inv. distance weights 99.5%
& rule based filtering

letter sqr. inv. distance weights 90% (from sqr. inv. dist.)
& rule based filtering 99.5% (from the two remaining)

nursery sqr. inv. distance weights 99.5%
& rule based filtering

pendigits sqr. inv. distance weights ¡90% (from sqr. inv. dist.)
& rule based filtering 90% (from the two remaining)

satimage sqr. inv. distance weights 90% (from sqr. inv. dist.)
& rule based filtering 99.5% (from the two remaining)

segment equal weights ¡90% (from sqr. inv. dist.)
both with and without 95% (from sqr. inv. dist.

rule based filtering & rule based filter.)
splice sqr. inv. distance weights 90% (from sqr. inv. dist.)

& rule based filtering 99.5% (from the two remaining)

Figure 27 and the above table indicate that the voting model combining the
inverse square distance weights with rule based filtering is the best: it gives the
smallest error for six of the eight data sets: chess, letter, nursery, pendigits,
satimage and splice. The most noticeable reduction in error is obtained for the
two data sets: in case of the data set nursery the combined voting model gives
the 0.3% error in comparison to the 1.57% error of the pure majority voting
model with equal weights and in case of the data set chess the combined model
gives the 1.46% error in comparison to the 2.24% error of the majority model.

While comparing the second and the third column in Figure 27 for each of the
six data sets where the combined model is the best the model with the inverse
square distance weights alone provides always a smaller error than the model
with the equal weights and rule based filtering. This observation indicates that
the inverse square distance weights are a more important component for the
accuracy of the combined voting model than the rule based filtering. It is also
confirmed by the fact that the difference between the combined voting model
and the two models with equal weights (with and without rule based filtering)
has almost always the maximum confidence level whereas the difference between
the inverse square distance weights with and without rule based filtering has
often a low confidence level. However, in case of the data sets nursery and chess,
where the reductions in error by the combined voting model are largest, both
components of this model contribute significantly to such good results.
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Now, we consider the second metric: the weighted joint DBVDM and VDM
metric. Since for data with nominal attributes this metric is equivalent to the
weighted joint city-block and VDM metric we present the result only for data
that contain numerical attributes. The table below presents the average value of
the estimation of the optimal k for particular voting models with the weighted
joint DBVDM and VDM metric:

Data set equal sqr. inv. equal weights sqr. inv. dist. weights
weights dist. weights & rule based filter. & rule based filter.

census94 40.2 168.4 128.2 183
letter 1 4.4 1 6

pendigits 1 3.8 1 5.2
satimage 3.6 4 3.6 3.8
segment 1 1 1 4.8

We can make the same observation as in case of the weighted joint city-block
and VDM metric: the voting models with the inverse square distance weights
make use of the distance-dependent weights and they use more objects to vote
than the models with equal weights.
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Fig. 28. The average classification error of the k-nn with the optimal k estimated from
the training set for the joint DBVDM and VDM metric with the attribute weighting
method optimizing distance

Figure 28 presents the average classification error of the k nearest neigh-
bor method for the weighted joint DBVDM and VDM metric. The table below
presents the best voting model for this metric and the confidence level of the
difference between the best voting model and the others, for particular data sets:
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The data set The winning voting model The confidence level
census94 equal weights 97.5% (from eq. weights

(with rule based filter.)
99.5% (from the two remaining)

letter inv. sqr. distance weights 99.5%
& rule based filtering

pendigits sqr. inv. distance weights 99.5%
& rule based filtering

satimage sqr. inv. distance weights 95% (from sqr. inv. dist.)
& rule based filtering 99.5% (from the two remaining)

segment sqr. inv. distance weights 90%
& rule based filtering

As in case of the weighted joint city-block and VDM metric the results indi-
cate that the voting model combining the inverse square distance weights with
rule based filtering is the best: it gives the smallest error for all the data sets
except for census94. The results are usually worse than for the weighted joint
city-block and VDM metric. An interesting observation is that each of the two
components of the combined metric: the inverse square distance weights and rule
based filtering alone gives very small improvement (compare the second and the
third column for each data set in Figure 28) and only the combination of these
two components gives more noticeable reduction of the classification error.

The final conclusion from the presented results is that the voting model
combining the inverse square distance weights with rule based filtering gives
generally the best classification accuracy. It indicates that the significance of
the information for a test object provided by the nearest neighbors correlates
with the distance of the nearest neighbors to the test object and it is helpful
to use this correlation. Distance measure and grouping of objects by rules are
the two different sorts of similarity models and the application of rule based
filtering to the nearest neighbors is a sort of combination of these two models.
The neighbors selected for voting in such a combined method are similar to
a test object according to both models, which gives more certainty that these
neighbors are appropriate for decision making.

The above general conclusion does not fit to the results for the data set
census94. This is related with the specificity of this data set. The estimated
value of the optimal k for the data set census94 is always much larger than
for the other data sets. In case of such a large neighborhood the models with
the inverse square distance weights are not enough accurate to improve the
classification results and more accurate voting model should be searched.

5.6 K Nearest Neighbors with Local Metric Induction

All the variants of the k nearest neighbors method presented in the dissertation
up to now and all other machine learning methods based on inductive concept
learning: rule based systems, decision trees, neural networks, bayesian networks
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Fig. 29. K-nn classification with local metrics

and rough sets [59, 61, 63] induce a mathematical model from training data and
apply this model to reasoning about test objects. The induced model of data
remains invariant for different test objects. For many real-life data it is not
possible to induce relevant global models. This fact has been recently observed
by researches from different areas like data mining, statistics, multiagent systems
[17, 75, 79]. The main reason is that phenomena described by real-life data are
often too complex and we do not have sufficient knowledge to induce global
models or a parameterized class of such models together with feasible searching
methods for the relevant global model in such a class. Developing methods for
dealing with such real-life data is a challenge.

In this subsection we propose a step toward developing of such methods. We
propose a classification model that is composed of two steps. For a given test
object x, first, a local model dependent on x is induced, and next, this model is
used to classify x.

To apply this idea we extend the classical k-nn classification model described
in Subsection 2.5. The classical k-nn induces a global metric ρ from the training
set Utrn, and next, for each test object x it uses this induced metric ρ to find
the k nearest neighbors of x and it computes a decision from the decisions of
these k neighbors. We propose a new algorithm extending the classical k-nn
with one additional intermediate step (see Figure 29). First, it induces a global
metric ρ like in the classical k-nn method but this global metric ρ is used only
in preliminary elimination of objects not relevant for classifying x. For each
test object x the extended algorithm selects a neighborhood of x according to
the global metric ρ and it induces a local metric ρx based only on the selected
neighborhood. Local metric induction is a step to build a model that depends
locally on the properties of the test object x. The final k nearest neighbors that
are used to make a decision for the test object x are selected according to the
locally induced metric.

A local approach to the k-nn method has been already considered in the lit-
erature. However, all the methods described in the literature apply only to data
with numerical attributes and they assume always a specific metric to be defined.

Friedman proposed a method that combines the k-nn method with recursive
partitioning used in decision trees [32]. For each test object the method starts
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with the whole training set and it constructs a sequence of partitions. Each parti-
tion eliminates a number of training objects. In this way after the last partition a
small set of k objects remains to be used for classification. To make a single par-
tition the algorithm selects the partition with the greatest decision discernibility.

The algorithm proposed by Hastie and Tibshirani [44] starts with the Euclid-
ean metric and for each test object it iteratively changes the weights of attributes.
At each iteration it selects a neighborhood of a test object and it applies local dis-
criminant analysis to shrink the distance in the direction parallel to the boundary
between decision classes. Finally, it selects the k nearest neighbors according to
the locally transformed metric.

Domeniconi and Gunopulos use a similar idea but they use support vector
machines instead of local discriminant analysis to determine class boundaries
and to shrink the distance [24]. Support vectors can be computed during the
learning phase what makes this approach much more efficient in comparison to
local discriminant analysis.

As opposed to the above three methods our method proposed in this subsec-
tion is general: it assumes only that a procedure for metric induction from a set
of objects is provided.

Algorithm 11. The k nearest neighbors algorithm decisionlocal−knn(x) with
local metric induction

ρ - the global metric induced once
from the whole training set Utrn

l - the size of the neighborhood
used for local metric induction

kopt - the optimal value of k estimated
from the training set Utrn (kopt ≤ l)

NN(x, l) := the set of l nearest neighbors of x from Utrn

according to the global metric ρ
ρx := the local metric induced from the neighborhood NN(x, l)
NNlocal(x, kopt) := the set of kopt nearest neighbors of x

from NN(x, l) according to the local metric ρx

return arg maxdj∈Vdec
|{y ∈ NNlocal(x, kopt) : dec(y) = dj}|

In the learning phase our extended method induces a global metric ρ and
estimates the optimal value kopt of nearest neighbors to be used for classification.
This phase is analogous to the classical k-nn.

Algorithm 11 presents the classification of a single query object x by the
method extended with local metric induction. First, the algorithm selects the l
nearest neighbors NN(x, l) of x from the training set Utrn according to the global
metric ρ. Next, it induces a local metric ρx using only the selected neighborhood
NN(x, l). After that the algorithm selects the set NNlocal(x, kopt) of the nearest
neighbors of x from the previously selected neighborhood NN(x, l) according to
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this local metric ρx . Then, the selected set NNlocal(x, kopt) is used to compute
the decision decisionlocal−knn(x) that is returned as the final result for the query
object x.

Both for the global and for the local metric definition the algorithm can use
any metric induction procedure. Moreover, different metrics can be used in the
global and in the local step.

The neighborhood size l is the parameter of the extended method. To improve
classification accuracy this value should be large, usually at least of an order of
several hundred objects. To accelerate the selection of a large number of nearest
neighbors from a training set we use the indexing tree with the iterative 3-
means splitting procedure and the combined search pruning criteria described in
Section 4.

The optimal value kopt is estimated from a training set within the range
1 ≤ k ≤ l with the use of the same efficient procedure as in case of the classical
k-nn presented in Algorithm 7 in Subsection 5.1. However, the estimation process
uses Algorithm 11 as the classification procedure instead of the classical k-nn
classification procedure from Equation 4. This is the only difference between the
learning phases of the classical and the extended method.

In Algorithm 11 we use the most popular majority voting model with equal
weights. However, as in the classical k-nn method any voting model can be used
in the method with local metric induction.

The classical k-nn is a lazy method: it induces a global metric and it per-
forms the rest of computation at the moment of classification. The algorithm
proposed in this subsection extends this idea: it repeats the metric induction at
the moment of classification. The proposed extension allows us to use the local
properties of data topology in the neighborhood of a test object and to adjust
the metric definition to these local properties.

5.7 Comparison of k-nn with Global and with Local Metric

In this subsection we compare the performance of the k nearest neighbors method
with the local metric induction described in the previous subsection and the
performance of the classical k-nn method. We compare the classical k-nn and
the extended k-nn with the three different values of the neighborhood size l: 100,
200 and 500.

To compare the methods we tested the 10 benchmark data sets presented in
Table 1. As in all the previous experiments described in the dissertation each
data set was partitioned into a training and a test set as described in Subsection
2.7. Then training and testing for each data set and for each classification method
was performed 5 times for the same partition of the data set and the average
classification error was calculated for comparison. For the classical k-nn method
the optimal value kopt was estimated in the range 1 ≤ kopt ≤ 200 and for the
extended method for each of the values of l: 100, 200 and 500 the optimal value
kopt was estimated in the range 1 ≤ kopt ≤ l.

The two most effective global metrics were tested: the joint city-block and
VDM metric (see Subsection 3.1) with the attribute weighting method optimiz-
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Fig. 30. The average classification error of the classical and the extended k-nn with
the two metrics: The weighted joint city-block and VDM metric and the weighted joint
DBVDM and VDM metric as the global metric, and with the weighted joint city-block
and VDM metric as the local metric, obtained for the three different neighborhood
sizes: 100, 200 and 500

ing distance (see Subsection 3.4) and the joint DBVDM and VDM metric (see
Subsection 3.2) with the same attribute weighting method. Using the weighted
joint DBVDM and VDM metric as the local metric makes the k nearest neigh-
bors impractical: the performance time of k-nn with this metric becomes too
long. Therefore the weighted joint city-block and VDM metric was always used
as the local metric. Since the voting model combining the inverse square dis-
tance weights with rule based filtering provides generally the best classification
accuracy (see Subsection 5.5) we apply this voting model in the experiment.

For the seven of the 10 tested data sets: chess, letter, mushroom, nursery,
pendigits, segment and shuttle the classical k-nn method with the combined vot-
ing model obtained the classification accuracy over 97% (see Subsection 5.5).
Such a good accuracy is hard to improve and for these seven data sets the k
nearest neighbors with local metric induction does not provide better results or
the improvement in accuracy is insignificant. Therefore we focus on the three
most difficult data sets: census94 (16.44% error by the weighted joint city-block
and VDM metric and 15.54% error by the weighted joint DBVDM and VDM
metric), satimage (9.33% error by the weighted city-block metric and 9.6% er-
ror by the weighted DBVDM metric) and splice (5.77% error by the weighted
VDM metric).

Figure 30 presents the average classification errors of the classical and the
extended k-nn method with the two types of the global metric. For the three
presented data sets the extended method provides always better classification
accuracy than the classical method. The table below presents the confidence
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level of the difference between each of the extended method and the classical
k-nn (see Subsection 2.7) for each data set:

Data set local k-nn (l=100) local k-nn (l=200) local k-nn (l=500)
Global metric vs. classical k-nn vs. classical k-nn vs. classical k-nn

census94 99.5% 99.5% 99.5%
city-block & VDM

census94 99.5% 99.5% 99.5%
DBVDM & VDM

satimage 95% 99% ¡90%
city-block
satimage ¡90% ¡90% ¡90%
DBVDM

splice 99.5% 99.5% 99.5%
VDM

The best improvement was obtained for the data set splice. The difference
between the extended and the classical k-nn has always the maximum confidence
level and in the best case of l = 500 the extended method reduced the classi-
fication error from 5.77% to 3.86%. This result is particularly noteworthy: the
author has never met such a good result in the literature for this data set. For
the data set census94 the difference between the extended and the classical k-nn
has always the maximum confidence level too. For this data set the improvement
by the extended method is not so large but it is still noticeable: in the best case
of l = 500 for the weighted joint DBVDM and VDM metric the classification
error was reduced from 15.54% to 14.74%. The least effect of applying local met-
ric induction one can observed for the data set satimage: only in one case the
statistical significance of the difference between the extended and the classical
method is trustworthy: in case of l = 200 for the weighted city-block metric the
classification error was reduced from 9.33% to 9.07%.

An interesting observation is that the largest improvement was obtained for
data only with nominal attributes and the smallest improvement was obtained for
data only with numerical attributes. It correlates with the fact that the general
properties of the domain of values of nominal attributes are poor and the methods
for data with nominal attributes learn mainly from the information encoded in
data. Hence, a metric induced globally from the whole training set and a metric
induced locally from a neighborhood of a test object can differ significantly, the
localmetric can adapt strongly to local properties of the neighborhood and thus the
possibility of improving accuracy by the local metric is large. In case of numerical
attributes there are a structure of linear order and a distance measure defined in
the set of values. In many cases this structure corresponds well with the properties
of objects important for the decision attribute. The weighted city-block metric is
consistent with this structure and it is often enough to apply this metric in order to
obtain almost optimal classification accuracy. Therefore improving a global metric
by local metric induction in case of data with numerical attributes is much more
difficult than in case of data with nominal attributes.
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An interesting issue is the dependence between the classification accuracy
and the neighborhood size l used to induce a local metric. For the two data
sets: census94 and splice where the improvement by local metric induction is
significant the best results was obtained for the maximum tested neighborhood
size l = 500. It indicates that an important factor for the quality of a local
metric is the representativeness of the sample used for metric induction and it
is important to balance between the locality and the representativeness of the
neighborhood used to induce a local metric.

5.8 Summary

In this section we have introduced two new classification models based on the k
nearest neighbors:

– k nearest neighbors method combined with rule based filtering of the nearest
neighbors,

– k nearest neighbors method based on a locally induced metric.

In the beginning, we have presented the algorithm estimating the optimal
value of k from training data. The algorithm allows us to set automatically an
appropriate value of k.

Then we have considered different voting models known from the literature.
The most popular is the majority voting model where all the k nearest neighbors
are weighted with equal weights. The distance based voting model replaces equal
weights by the inverse square distance weights. The classification accuracy of
the distance based voting model is better than the majority voting model what
reflects the fact that the significance of the information for a test object provided
by the nearest neighbors correlates with the distance of the nearest neighbors to
the test object and it is helpful to use this correlation.

The first new model introduced in this section adds rule based filtering of
the k nearest neighbors to the classical k-nn method. As the origin we took
Bazan’s lazy algorithm simulating effectively the classification model based on
all minimal consistent rules for data with nominal attributes and we generalized
the equality based model of minimal consistent rules to the metric based model.
Next, we adapted Bazan’s algorithm to the metric based model of minimal con-
sistent rules, and finally, we attached this generalized rule based classification
model to the k nearest neighbors in the form of rule based filtering of the k
nearest neighbors. An important property of the proposed combination is that
the addition of rule based filtering does not change essentially the performance
time of the k nearest neighbors method. The experimental results show that the
application of rule based filtering improves the classification accuracy especially
when combined with the voting model with the inverse square distance weights.
It indicates that rule based filtering improves selection of objects for reasoning
about a test object.

The estimation of the optimal value of k and all the described voting models
are available in the k nearest neighbors classifier in the system RSES [8, 73].
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The classifier makes it possible to choose between the model with equal weights
and the model with the inverse square distance weights, and optionally, it allows
us to apply rule based filtering to the k nearest neighbors for each test object.

As the second method we proposed a new classification model that is an
extension of the classical k-nn classification algorithm. The extended method
induces a different metric for each test object using local information in the
neighborhood of an object. The k-nn model with a local metric corresponds to
the idea of transductive reasoning [79]. The transductive approach assumes that a
classification model should depend on the objects to be classified and it should be
adapted according to the properties of these objects. The presented extension of
the k-nn algorithm implements transduction: the local metric induction adapts
the metric definition to the local topology of data in the neighborhood of an
object to be classified.

The experimental results show that the local approach is particularly useful
in the case of hard problems. If the classification error of the methods based on
global models remains large a significant improvement can be obtained with the
local approach.

An important problem related to the k nearest neighbors method with lo-
cal metric induction is that the local metric induction for each test object is a
time-consuming step. As a future work we consider the extension of data rep-
resentation in such a way that the algorithm can use the same local metric for
similar test objects.

6 Conclusions

In the dissertation we have developed different classification models based on
the k-nn method and we have evaluated them against real-life data sets.

Among the k-nn voting models based on the global metric the most accurate
model can be obtained by the method combining the inverse square distance
weights with the nearest neighbors filtering performed by means of the set of
minimal consistent rules. The assignment of the inverse square distance weights
to the nearest neighbors votes reflects the fact that the more similar a test
object is to a training object, the more significant is for the test object the
information provided by the training object. The rule-based filtering method
introduced in the dissertation makes it possible to construct an alternative model
that combined with the k-nn method enables verification of objects recognized
by the k-nn as similar and the rejection of the objects that are not confirmed
to be similar by the rule based model. The proposed rule-based extension is
independent of the metric and does not increase the performance time of the
classical k-nn method. Therefore it can be applied whenever the classical k-nn
is applicable.

We compared different metrics in the k-nn classification model. In general,
the best metrics are the normalized city-block metric for numerical attributes
and the Value Difference Metric for nominal attributes, both combined with at-
tribute weighting. For nominal attributes there is no mathematical structure in
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the domain of values, therefore the Value Difference Metric uses the information
encoded in the training data to measure similarity between nominal values. Do-
mains with numerical values have the structure of linear order and a distance
measure consistent with this linear order. These properties reflect usually the
natural relationship among the values of the numerical attribute and this infor-
mation is often sufficient to define an accurate similarity measure for the values
of a numerical attribute. However, there are decision problems where the nat-
ural metric on numerical values does not reflect directly the differences between
decision values. For such data the correlation between the attribute values and
the decision encoded in training objects is the information more useful than the
general structure of numerical values. Hence, solutions analogous to the Value
Difference Metric for nominal attributes are more accurate. We have analyzed
three numerical metrics of this type: IVDM, WVDM, and DBVDM. They esti-
mate decision probabilities for particular numerical values in the training set and
use these estimations to define distance between values. In DBVDM the sample
for decision probability estimation is chosen more carefully than in IVDM and
WVDM and it gives the most accurate classification among these three metrics.

There are hard classification problems where the relationship between at-
tributes and the decision is complex and it is impossible to induce a sufficiently
accurate global model from data. For such data the method with local model
induction is a better solution. The algorithm yields a separate local decision
model for each test object. This approach allows us to adapt each local model to
the properties of a test object and thus to obtain a more accurate classification
than in the case of the global approach.

To apply metric-based classification models to large databases a method that
would speed up the nearest neighbors search is indispensable. The extension of
the indexing and searching methods described in literature, i.e., the iterative
splitting based tree with three search pruning criteria, as proposed in the dis-
sertation, allows us to use the k-nn method to data sets with several hundred
thousand objects.

The results presented in the dissertation do not exhaust all the aspects of
case-based reasoning from data. The following extensions can be considered.

Experiments with different metrics for numerical data have proved that the
city-block metric is more accurate than metrics that do not preserve consistency
with the natural linear order of the real numbers. However, such a metric uses
the natural metric of real numbers and the training set is used marginally to
modify this natural metric. An interesting issue is to construct and investigate
metrics preserving the natural order of numerical values and to use training data
to differentiate the value of the distance in dependence on the range of values to
be compared.

A more general problem related to metric construction is that the induction
of an accurate metric only from data without additional knowledge is impossible
for more complex decision problems. Therefore the development of methods for
inducing similarity models based on interaction with a human expert acquires
particular importance.
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Another possible continuation is related to the induction of local classification
models. The method presented in the dissertation induces a separate model for
each test object. Such a solution is computationally much more expensive than
methods based on the global model. Another possible solution is to use the
common sense assumption that a local model can be relevant for a fragment
of a space of objects. Such an approach has been already used in data mining
[49] where transactions are partitioned into groups and a specific optimization
function is defined for each group. By analogy, one can partition training objects
into groups of similar objects and construct one local classification model for each
group. This approach integrated with an indexing structure could be comparable
to the global k-nn method in terms of efficiency.

Acknowledgments

The paper is the full version of my phd dissertation supervised by Andrzej
Skowron, approved in May 2005 by Warsaw University, Faculty of Mathematics,
Informatics and Mechanics.

I wish to express my gratitude to my supervisor Professor Andrzej Skowron
for leading me towards important research issues and for his guidance in my
research work. His attitude to me has been invariably kind and gentle, and
Professor has always enabled me to pursue my own research endeavors. I am
also indebted to him for making such great efforts to thoroughly revise this
dissertation. I am happy that I have been given the opportunity to work with
Professor Andrzej Skowron.

I thank my wife, Ewa. Her sincere love, support and forbearance helped me
very much in writing this dissertation.

I am also grateful to many other people who contributed to my PhD disser-
tation. Dr Marcin Szczuka has supported me with hardware and software nec-
essary for performing experiments. The pleasant and fruitful cooperation with
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Appendix. List of Symbols Used in the Dissertation

|. . .| — size of a set
‖. . .‖p — norm of a vector in the space lp
μi — mean of a numerical attribute ai in a training set Utrn

ρ — distance function X2 → R
ρi — distance function R2 → R defined for the values of an attribute ai

σi — standard deviation of a numerical attribute ai in a training set Utrn

σ(X) — standard deviation of a continuous variable X
ai — single attribute
A — set of attributes
cj — center of the j-th cluster Clj in a node splitting procedure
Clj — j-th cluster of data objects in a node splitting procedure
dec — decision function X → Vdec to be learnt by classifiers
df — degree of freedom in the Student’s t-test
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dj — single decision value
E(X) — expected value of a continuous variable X
Ip — p-th interval at discretization of a numerical attribute for the IVDM metric
I(v) — index of the upper neighboring interval of a value v for the IVDM metric
I(v) — index of the lower neighboring interval of a value v for the IVDM metric
k — number of nearest neighbors in the k-nn classifier
kmax — upper limit of the range of values examined by the procedure estimating
the optimal k
l — number of iterations in attribute weighting algorithms
maxi — maximum value of an attribute ai in a training set Utrn

midp — midpoint of the interval Ip

mini — minimum value of an attribute ai in a training set Utrn

MR — global misclassification ratio
MR(ai) — misclassification ratio for an attribute ai

NN(x, k) — set of the k nearest neighbors of a data object x in a training set
Utrn

P (dec = dj |ai = v) — conditional decision probability given a value v of an
attribute ai

P (dec = dj |ai ∈ I) — conditional decision probability given an interval of values
I of an attribute ai

PDBV DM (dec = dj |ai = v) — estimated conditional decision probability in the
DBVDM metric
PIV DM(dec = dj |ai = v) — estimated conditional decision probability in the
IVDM metric
PV DM(dec = dj |ai = v) — estimated conditional decision probability in the
VDM metric
PWV DM (dec = dj |ai = v) — estimated conditional decision probability in the
WVDM metric
rlocal(x,y) — local rule for a pair of a test object x and a training object y ∈ Utrn

rgen−local(x,y) — generalized local rule for a pair of a test object x and a training
object y ∈ Utrn

Rx — number of generalized minimal consistent rules centered at x
R — set of real numbers
s — number of intervals at discretization of a numerical attribute for the IVDM
metric
support(r) — set of all objects in Utrn matching the rule r
t — value t in the Student’s t-test
Utrn — training set
Utst — test set
Vdec — set of decision values
Vi — domain of values of the attribute ai

xi — value of an attribute ai in a data object x ∈ X
X — space of data objects, domain of learning
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