
Debugging OWL-DL Ontologies: A Heuristic Approach

Hai Wang, Matthew Horridge, Alan Rector,
Nick Drummond, and Julian Seidenberg

Department of Computer Science,
The University of Manchester,

Manchester M13 9PL, UK
{hwang, mhorridge, rector, ndrummond, jms}@cs.man.ac.uk

Abstract. After becoming a W3C Recommendation, OWL is becoming increas-
ingly widely accepted and used. However most people still find it difficult to cre-
ate and use OWL ontologies. On major difficulty is “debugging” the ontologies -
discovering why a reasoners has inferred that a class is “unsatisfiable” (inconsis-
tent). Even for people who do understand OWL and the logical meaning of the
underlining description logic, discovering why concepts are unsatisfiable can be
difficult. Most modern tableaux reasoners do not provide any explanation as to
why the classes are unsatisfiable. This paper presents a ‘black boxed’ heuristic
approach based on identifying common errors and inferences.

1 Introduction

One of the advantages of logic based ontology languages, such as OWL, in particular
OWL-DL or OWL-Lite, is that reasoners can be used to compute subsumption rela-
tionships between classes and to identify unsatisfiable (inconsistent) classes. With the
maturation of tableaux algorithm based DL reasoners, such as Racer [11], FaCT [8],
FaCT++ [7] and PELLET [4], it is possible to to perform efficient reasoning on large
ontologies formulated in expressive description logics.

However, when checking satisfiability (consistency) most modern description logic
reasoners can only provide lists of unsatisfiable classes. They offer no further explana-
tion for their unsatisfiability. The process of “debugging” an ontology - i.e. determining
why classes are unsatisfiable - is left for the user. When faced with several unsatisfi-
able classes in a moderately large ontology, even expert ontology engineers can find it
difficult to work out the underlying error. This is a general problem which gets worse
rather than better with improvements in DL reasoners; the more powerful the reasoner
the greater its capacity to make non-obvious inferences.

Debugging an ontology is a non-trivial task because:

– Inferences can be indirect and non-local. Axioms can have wide-ranging effects
which are hard to predict.

– Unsatisfiability propagates. Therefore, a single root error can cause many classes
to be marked as unsatisfiable. Identifying the root error from amongst the mass of
unsatisfiable classes is difficult.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 745–757, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

746 H. Wang et al.

2 A Heuristic Approach to Ontology Debugging

In short, the current state of ontology development environments and reasoning services
within these environments is akin to having a programming language compiler detect
an error in a program, without explaining the location of the error in the source code.

Over the past five years we have presented a series of tutorials, workshops and
post-graduate modules on OWL-DL and its predecessors. Based on our experience, a
list of frequently made errors have been identified as reported in [10]. This catalogue
of common errors has been used in turn to develop a set of heuristics that have been
incorporated into debugging tool for Protégé-OWL [5]. The examples in this paper
are all taken from these tutorials and use the domain of Pizzas used in the introductory
tutorial.

The heuristic debugger treats the tableaux reasoner as a ‘black box’or ‘oracle’. This
‘black box’ approach has the advantage that it is independent of the particular reasoner
used. It works with any DIG [1]compliant reasoner, even ones which have been spe-
cially augmented or adapted. 1

Being independent of the reasoner has advantages even if only as single reasoner is
to be used. Many modern reasoners transform the input ontology in order to optimise
the reasoning process. Although logically equivalent, the internal representation may
bear little resemblance to the ontology as it was constructed by the user. Given such
transformations, even it were possible for the reasoner to ‘explain’ its actions, the ex-
planation in terms of the transformed ontology would be unlikely to be of direct use to
the user. An additional advantage of the ‘black box’ approach is that it is independent
of such transformations.

3 Background

3.1 OWL Overview

OWL [2] is the latest standard in ontology languages, which was developed by members
of the World Wide Web Consortium2 and Description Logic community.

An OWL ontology consists of classes, properties and individuals. Classes are in-
terpreted as sets of objects that represent the individuals in the domain of discourse.
Properties are binary relations that link individuals and are represented as sets of or-
dered pairs that are subsets the cross product of the set of objects.

OWL classes fall into two main categories – named classes and anonymous (un-
named) classes. Anonymous (unnamed) classes are formed from logical descriptions.
They contain the individuals that satisfy the logical description. Anonymous classes
may be sub-divided into restrictions and ‘logical class expressions’. Restrictions act
along properties, describing sets of individuals in terms of the types of relationships
that the individuals participate in.

1 The DIG Interface is a standard DL reasoner communication protocol that sits between DL
based applications and DL reasoners, thereby allowing these applications to communicate with
different third party DL reasoners.

2 http://www.w3.org

http://www.w3.org

Debugging OWL-DL Ontologies: A Heuristic Approach 747

Logical classes are constructed from other classes using the boolean operators AND
(�), OR (�) and NOT (¬).

An important point to note from the point of view of debugging is that OWL allows
the nesting of anonymous class expressions to arbitrary levels. For example, the expres-
sion:
Pizza � ∃ hasTopping (PizzaTopping � ∃ hasIngredient (SpicyIngredient � ∃
hasColour RedColour)) describes the individuals that are pizzas that have pizza top-
pings that have ingredients which are spicy ingredients that are coloured red.

Disjoint Axioms. All OWL classes are assumed to overlap unless it is otherwise stated
that they do not. To specify that two classes do not overlap they must be stated to be dis-
joint with each other using a disjoint axiom. The use (and misuse) of disjoint axioms is
one of the primary causes of unexpected classification results and inconsistencies [10].
Disjoint axioms are ‘inherited’ by their subclasses. For example if Pizza is disjoint
from PizzaTopping then all subclasses of Pizza will be disjoint from all subclasses of
PizzaTopping. This can make debugging difficult for ontologies that have deep taxo-
nomical hierarchies.

Describing Classes. Named OWL classes are described in terms of their named and
anonymous super classes, equivalent classes and disjoint classes. When a restriction is
added to a named class, it manifests itself as an anonymous superclass of the named
class.

For example the named class SpicyPizzaTopping might have a named superclass
called PizzaTopping and also the anonymous super class ∃ hasSpicyIngredient
SpicyIngredient. That is, things that are SpicyPizzaToppings are also PizzaToppings
and things that have at least one SpicyIngredient. We refer to these super classes as
conditions, as they specify the conditions for membership of a given class.

In summary, OWL has three types of class axioms:

– Subclass axioms – These axioms represent necessary conditions.
– Equivalent class axioms – These axioms represent necessary & sufficient condi-

tions.
– Disjoint axioms – These axioms represent additional necessary conditions.

Domain and Range Axioms. OWL also allows ‘global’ axioms to be put on proper-
ties. In particular, the domain and range can be specified for properties. In many other
languages, domain and range are commonly used as constraints that are checked and
generate warnings or errors if violated. Hence domain and range constraints can be used
in inference and are a potential cause of unsatisfiability.

3.2 Unsatisfiable OWL Classes

An OWL class is deemed to be unsatisfiable (inconsistent) if, because of its description,
it cannot possibly have any instances. While there are many different ways in which the
axioms in an ontology can cause a class to be unsatisfiable, the key observation in heuris-
tic debugging is that there are limited number of root causes for the unsatisfiability.

In general, there are three categories of causes.

748 H. Wang et al.

Local unsatisfiability. The combination of directly asserted restrictions and named su-
perclasses are unsatisfiable.

Propagated unsatisfiability. The combination of directly asserted restrictions and
named superclasses would be satisfiable except that some class used in them is
unsatisfiable.

Global unsatisfiability. There is some global constraint, usually a domain or range
constraint, from which along with other information in the ontology it can be in-
ferred that the class is unsatisfiable.

Local unsatisfiability is usually easy to spot. Section 4.5 describes the various rea-
sons that may lead to a class being locally unsatisfiable. Propagated unsatisfiabiity is
more difficult. There are two primary mechanisms for propagation:

Unsatisfiable ancestor classes. All descendant classes of an unsatisfiable class are un-
satisfiable. Therefore unsatisfiability propagates down the subclass hierarchy.

Unsatisfiable fillers of existential restrictions. Any existential (or minimum cardinal-
ity) restriction with an unsatisfiable filler is itself unsatisfiable.

A single error can cause large swathes of the ontology to be unsatisfiable. The key
strategy of the heuristic debugger is to collect all global conditions so that they can be
treated as local.

4 Heuristic Debugging Process

Figure 1 gives a principled view of the heuristic debugging process; in practice this is
optimised.

– Check that the selected class is indeed unsatisfiable
– Determine the basic debugging necessary conditions

OWL Reasoner

Debuggger

Check if OWL class is

inconsistent

Identify the

unsatisfiable core

Determine the basic debugging

necessary conditions.

Generate the debugging

super conditions

Analyse the most general conflict

and generate explanation

Determine the most

general conflict

Fig. 1. The debugging process

Debugging OWL-DL Ontologies: A Heuristic Approach 749

– Identify the unsatisfiable core, or smallest set of unsatisfiable subset of the basic
debugging necessary conditions

– Generate the the debugging super conditions, which are the conditions that are
implied by the conditions in the unsatisfiable core.

– Determine the most general conflicting class set based on the unsatisfiable core.
– Analyse the most general conflict in order to produce an explanation of why the

class is unsatisfiable.

Each step is examined in detail below.

4.1 Determining the Basic Debugging Necessary Conditions (BDNC)

As discussed in section 3.1 OWL uses three kinds of class axioms:

– Subclass axioms – necessary conditions.
– Equivalent class axioms – necessary & sufficient conditions.
– Disjoint axioms – necessary conditions.

An OWL class is unsatisfiable if and only if a subset of the above conditions, which
we refer to as the basic debugging necessary conditions is unsatisfiable. The first step
of the debugging process is the generation the ‘basic debugging necessary conditions’.
This is achieved by collecting together the necessary, and necessary & sufficient con-
ditions of the class that is being debugged, and then adding a condition for each class
that the given class is disjoint with, which represents the complement class of each dis-
joint class. For example, suppose the class in question was disjoint with class D. The
condition ¬ D would be added to the set of basic debugging necessary conditions.

4.2 Identifying the Unsatisfiable Core

After obtaining the set of basic debugging necessary conditions, they are refined and
reduced to obtain the unsatisfiable core. The unsatisfiable core is the smallest unsat-
isfiable subset of the basic debugging necessary conditions. The unsatisfiable core is
defined as follows:

Definition 1. Let BDNC(C) be the ‘basic debugging necessary conditions’ of a un-
satisfiable Class C. An unsatisfiable core (UC(C)) of the class C is a set of OWL class
descriptions, such that:

1. UC(C) ⊆ BDNC(C)
2. Intersection of all the concepts belonging to UC(C) is unsatisfiable.
3. For every set of class descriptions CD:

CD ⊂ UC(C) ⇒ Intersection of all the concepts belonging to CD is
satisfiable∨ CD = ∅
Condition 3 ensures that an unsatisfiable core is the most minimal possible set of

conditions. An unsatisfiable class could have more than one unsatisfiable core, in which
case the first is analysed.

750 H. Wang et al.

Rule 1: Named class rule
(a) IF C1 ∈ DSC(C) ∧ C1 � C2, where C1 is a named OWL class

THEN C2 ∈ DSC(C)
(b) IF C1 ∈ DSC(C) and Disj(C1, C2), where C1 and C2 are named

OWL classes
THEN ¬C2 ∈ DSC(C)

Rule 2: Complement class rule
(a) IF ¬C1 ∈ DSC(C), where C1 is a named OWL class

THEN IF C2 � C1, THEN ¬C2 ∈ DSC(C)
IF C1 ≡ C2, THEN ¬C2 ∈ DSC(C)

(b) IF ¬C1 ∈ DSC(C), where C1 is an anonymous OWL class
THEN NORM(C1) ∈ DSC(C)

Rule 3: Domain/Range rule
(a) IF ∃S.C1 ∈ DSC(C) ∨ ≥ n S ∈ DSC(C) ∨ = n S ∈ DSC(C),

where n > 0, and DOM(S) = C2

THEN C2 ∈ DSC(C)
(b) IF ∃S.C1 ∈ DSC(C) ∨ ≥ n S ∈ DSC(C) ∨ = n S ∈ DSC(C),

and where n > 0, INV (S) = S1 and RAN(S1) = C2

THEN C2 ∈ DSC(C)
(c) IF ∃S.C1 ∈ DSC(C) ∨ ≥ n S ∈ DSC(C) ∨ = n S ∈ DSC(C),

where n > 0, and RAN(S) = C2

THEN ∀S.C2 ∈ DSC(C)
Rule 4: Functional/Inverse functional property

(a) IF ∃S.C1 ∈ DSC(C) or ≥ n S ∈ DSC(C) or = n S ∈ DSC(C),
where n > 0 and S is functional

THEN ≤ 1 S ∈ DSC(C)
(b) IF ∃S.C1 ∈ DSC(C) or ≥ n S ∈ DSC(C) or = n S ∈ DSC(C),

where n > 0 and INV (S) = S1, S1 is inverse functional
THEN ≤ 1 S ∈ DSC(C)

Rule 5: Inverse Rule
IF ∃S.C1 ∈ DSC(C) and INV (S) = S1,
and C2
 C1 and C2 � ∀S1C3

THEN C3 ∈ DSC(C)
Rule 6: Symmetric Rule

IF ∃S.C1 ∈ DSC(C) and S is a symmetric property,
and C2
 C1 and C2 � ∀SC3

THEN C3 ∈ DSC(C)
Rule 7: Transitive Rule

IF ∀S.C1 ∈ DSC(C) and S is a transitive property,
THEN ∀S ∀S.C1 ∈ DSC(C)

Rule 8: Intersection Rule
IF C ∧ C1 ∈ DSC(C),
THEN C ∈ DSC(C) and C1 ∈ DSC(C)

Rule 9: Subproperty Rule
(a) IF ∀S.C1 ∈ DSC(C) and S1 � S, THEN ∀S1.C1 ∈ DSC(C)
(b) IF ≤ nS ∈ DSC(C) and S1 � S, THEN ≤ nS1.C1 ∈ DSC(C)
(c) IF ∃S.C1 ∈ DSC(C) and S1 � S, THEN ∃S1.C1 ∈ DSC(C)
(d) IF ≥ nS ∈ DSC(C) and S1 � S, THEN ≥ nS ∈ DSC(C)

Rule 10: Other inference Rule
IF C1 can be inferred by any subset of UC(C), where C is a named class
THEN C1 ∈ DSC(C)

Fig. 2. Rules for the membership of Debugging Super Conditions (DSC)

Debugging OWL-DL Ontologies: A Heuristic Approach 751

4.3 Generating the Debugging Super Conditions

The unsatisfiable core merely identifies the set of axioms which have resulted in the
inconsistency. However, as described above, the inconsistency may have been caused
by global conditions (section 3.1). The debugging process, therefore, ‘collects’ global
axioms – primarily domain/range and disjoint axioms – and maps them into local ax-
ioms – i.e. sets of necessary conditions. These are the debugging super conditions. The
set of debugging super conditions is expanded by recursive application of the rules in
Figure 2, the most important of which are explained below.

Debugging Super Condition Generation Rules

Named class rule (Rule 1): If an OWL named class C1 is added to the debugging su-
per conditions, all its direct super classes are also added to the debugging super
conditions. For each OWL class C2 which is asserted to be disjoint with C1, ¬C2

will be added to the debugging super conditions.
Complement class rule (Rule 2): If an OWL complement class ¬C1 is added to the

debugging super conditions, it will be converted to negation normal formal (NNF)
so that negations only appear directly before named classes. For example
¬(∀ eats P lant) ≡ ∃ eats ¬Plant. Futhermore, if C1 is a named class, the com-
plement of all the subclasses of C1 will be added. The complement of each neces-
sary & sufficient conditions of C1 will also be added.

Domain/Range axioms (Rule 3): As explained in section 3.1, in OWL, domain re-
strictions act as universal restrictions such that the all individuals to the property is
applied can be inferred to be of the type indicatged by the domain. Therefore, if an
existential (someValuesFrom) restriction acting along the property P is added to
the debugging super conditions, and P has a domain of Cd, then Cd is also added
to the debugging super conditions. (Note that the domain of P might have been
declared as the range of its inverse.)

Functional /Inverse functional property (Rule 4): If an existential restriction
(someValuesFrom) or a hasValue restriction is added to the debugging super con-
ditions, and the property that the restriction acts along is a functional property P 3,
then a ≤ 1 P restriction (max cardinality restriction) is added to the debugging
super conditions.

Intersection Rule (Rule 8): If an OWL class C1 � C2 is added to, then both C1 and
C2 are added to the debugging super conditions.

4.4 Determining the Most General Conflict

Determining the most general conflict is based on a simple observation: If an OWL
class C conflicts with another class D, then then it conflicts with any subclass of D).
Therefore we can can eliminate any classes that are subclasses of other classes already
in the Debugging super conditions.

The most general conflict – MGC(C) – is therefore defined as follows.

3 A functional property implies that an individual may only be related to at most one other
individual via that property.

752 H. Wang et al.

Definition 2. Let DSC(C) to debugging super conditions of the unsatisfiable Class
C. The most general conflict (MGC(C)) of C is a set of OWL class descriptions, such
that:

1. MGC(C) ⊆ DSC(C)
2. Intersection of MGC(C) of all the concepts belonging to is unsatisfiable.
3. ∀ C1 : MGC(C), C2 : MGC(C) , such that C1 � C2 ⇒ C1 = C2

4. � C1 : DSC(C), such that
C2
 MGC(C) and ∃C2 : MGC(C) such that C2 � C1 and
Intersection of all the concepts belonging to MGC(C) ∪{C1} − {C2} is unsatis-
fiable

Condition 3 ensures that no class in MGC(C) is subclass of another class in MGC(C).
Condition 4 ensures that if we replace any class in MGC(C) with one of its superclass
in DSC(C), the intersection of MGC(C) will become satisfiable.

4.5 Analysing the Most General Conflict

Having determined the most general conflict set, the final step is to analyse it to find the
route use of the conflict and provide the explanation to users about the reason these set
of axioms are conflicted. Although there theoretically indefinitely many ways in which
inconsistencies may arise, we have found empirically that most can be boiled down to
a small number of ‘error patterns’ to be checked by the heuristic debugger.

There are two broad classes of reasons that the Most general conflict set can be
unsatisfiable.

– It can contain one or more classes – including restrictions – that are themselves
unsatisfiable

– The intersection of two or more classes could be unsatisfiable.

Each of these cases will be dealt with in turn; the debugger generates suitable error
messages for each case.

Unsatisfiable Superclasses

Existential (someValuesFrom) restriction. There are three common reasons for an
existential restriction to be unsatisfiable:

– Its filler may be unsatisfiable, in which case the filler must be analysed to find
the root cause from which the unsatisfiability propagated. In this case the de-
bugger will suggest that the filler should be the next class to be debugged.

– The filler may be disjoint from the range of the property. In this case the de-
bugger will suggest that the filler and property range should be examined to
determine why they are disjoint.

– The property may have an unsatisfiable domain. In this case the domain class
will have already been added to the debugging super conditions and will there-
fore be found to be the cause of unsatisfiability.

Debugging OWL-DL Ontologies: A Heuristic Approach 753

Universal (allValuesFrom) restriction. A universal restriction alone will never be un-
satisfiable. Since a universal restriction does not imply that anything actually exists,
it can be trivially satisfied. A universal restriction only leads to an inconsistency
when there is a corresponding existential restriction along the same property that
has a filler which is disjoint from the filler of the universal restriction. However,
universal restrictions that are only trivially satisfiable are usually errors. Later ad-
dition of existential restrictions are likely to cause classes to become unsatisfiable.
Therefore, the debugger generates warnings for trivially satisfied restrictions.

Maximum/Minimum/Equality cardinality restriction. In OWL, cardinality restric-
tions do not specify a filler 4. Therefore, the only common situation in which they
themselves can be unsatisfiable is if the restricted property has an unsatisfiable do-
main and the restriction is a minimum cardinality greater than zero restriction. In
this case the domain class will have been added to the debugging super conditions
and will therefore be found to be the cause of unsatisfiability.

Intersection condition. An intersection condition will be unsatisfiable if at least one
of the operand classes is unsatisfiable. All of conditions that represent the operand
classes will have been added to the debugging super conditions and therefore the
cause of unsatisfiability will be found by examining these operand conditions.

Union condition. A union conditions will only be unsatisfiable if all of its operand
classes are unsatisfiable. In this case the debugger will suggest that all of the operand
conditions should be debugged by individually checking them.

Complement condition. If a complement condition is unsatisfiable the operand class
must be equal or be inferred equal to owl:Thing.

hasValue restriction. If a hasValue restriction is unsatisfiable, the filler individual is a
member of an unsatisfiable class or a class disjoint with the range of the property
in question. In this case the debugger will suggest that the class which the filler is a
member of should be debugged.

Contradictory Super Conditions. The second common cause of a class being unsat-
isfiable is that two or more debugging super conditions contradict each other, i.e. their
conjunction is unsatisfiable. This situation can arise for a variety of reasons as described
below. Unless otherwise stated, the debugger generates an explanation for the user.

– The class in question has been asserted to be disjoint with one of its super condi-
tions.

– A universal (allValuesFrom) and an existential (someValuesFrom) that act along
the same property have disjoint fillers. In this case the debugger will suggest that
the intersection of the two fillers should be debugged in order to determine why the
fillers are disjoint from each other.

– A universal (allValuesFrom) has an unsatisfiable filler (owl:Nothing) which con-
flicts with any existential or minimum cardinality restriction on the same property.

– The super conditions contain a maximum (or equality) cardinality restriction, lim-
iting the number of relationships along property P to n, but there are more than n
disjoint filler classes implied by existential and/or minimum cardinality constraints.

– The super conditions contain two or more cardinality restrictions that act along the
same property but contradict each other. For example, ≤ 2P and ≥ 3P .

4 i.e. there are no “qualified cardinality restrictions”.

754 H. Wang et al.

5 Case Study

This section illustrates the use of the debugger with an example taken from an ontology
about pizzas 5. The pizza ontology contains the class hierarchy shown in Figure 3. The
ontology also contains the property hasTopping, which has a domain of Pizza. The
ontology contains the following class axioms:

IceCreamWithChocolateSauce � ∃ hasTopping ChocolateSauce

Pizza � ¬ (∃ hasTopping ¬ PizzaTopping)

Fig. 3. ExampleHierarchy

When the ontology is classified, it is found that the class IceCreamWithChoco-
lateSauce is unsatisfiable. In order to debug this class, the debugger is started and
the class is selected. With the debugger running, the user is lead through the steps
shown in Figure 4. At the end of each debugging step, the debugger presents a tree
of conditions, which represent the conditions that instances of the class being debugged
must fulfil – the parent child relationships in the tree are is-generated-from. For exam-
ple, at the end of the first debugging step depicted in Figure 4, all instances of Ice-
CreamWithChocolateSauce must also be instances of Pizza, which was generated
from ∃ hasTopping ChocolateSauce due to the fact that Pizza is in the domain of the
hasTopping property. Conditions that cause an unsatisfiability are boxed in red, and an
explanation is generated. In this case the conditions ∃ hasTopping ChocolateSauce
and ∀ hasTopping PizzaTopping contradict each other – the explanation being “The
universal restriction means that all relationships along hasTopping must be to individ-
uals that are members of PizzaTopping. However, the existential restriction means that
there must be at least one relationship to an individual from ChocolateSauce, which is
disjoint from PizzaTopping.” After the user has has pressed the Continue button, the de-
bugger suggests that the next step is to determine why PizzaTopping and Chocolate-
Sauce are disjoint from each other. At the end of this final step the debugger explains

5 We typically use the domain of pizzas as it is easily understood but rich enough to illustrate
key principles and common errors [6].

Debugging OWL-DL Ontologies: A Heuristic Approach 755

Fig. 4. DebuggingSteps

that the classes PizzaTopping and ChocolateSauce are disjoint from each other be-
cause PizzaTopping is disjoint with DessertTopping which is an ancestor class of
ChocolateSauce – the explaination being “The two classes ChocolateSauce and Piz-
zaTopping are disjoint from each other. DessertTopping, which is an ancestor class of
ChocolateSauce, has been asserted to be disjoint with PizzaTopping.”

6 Related Work and Conclusions

6.1 Related Work

Work in the area of reasoner explanation is still in its infancy. Other approaches were
discussed at the 3rd International Semantic Web Symposium (ISWC 2004) held in Hi-

756 H. Wang et al.

roshima, Japan, where the Pellet reasoner [4] team’s future work includes the develop-
ment of an explanation mechanism for concept satisfiability. The OWL-Lite ontology
editor OntoTrack [9], is able to generate explanations for subsumption, equivalence and
concept satisfiability using algorithms based on the work of Borgida et. al. in explaining
subsumption in ALC [3]. The OntoTrack team implemented their own tableaux based
explanation generator, which is currently limited to working with unfoldable ALEN¸
ontologies, and generates an explanation corresponding to the stages of the tableaux
algorithm expansion.

6.2 Limitations

As the title of this paper suggests, the debugger is based on heuristics and pattern match-
ing. The debugger cannot determine the root cause of unsatisfiability in every case, and
is therefore not complete. However, we have found that this does not have a serious
impact on the usefulness of the debugger, since in most cases the mistakes made by
ontologists, ranging from students to experts, can be described by a small number of
error patterns that the debugger is adept at spotting.

6.3 Conclusions and Future Work

In this paper we have described a heuristic approach to ontology debugging that uses
a DL Reasoner, treating the reasoner as a ‘black box’. This means that the debugger
is totally reasoner independent, thereby affording the user the benefits of being able
to select a reasoner that is appropriate for their needs. The black box approach also
helps to minimise any potential versioning problems between the debugger and future
advancements in DL reasoners, since the debugger does not need to know the details of
any internal tableaux algorithms, reasoner optimisations or capabilities. The debugger
is useful for beginners constructing small ontologies, through to domain experts and
ontology engineers working with large complex ontologies, as it reduces the amount of
time and frustration involved in tracking down ontological inconsistencies.

Acknowledgements

This work was supported in part by the CO-ODE project funded by the UK Joint In-
formation Services Committee and the HyOntUse Project (GR/S44686) funded by the
UK Engineering and Physical Science Research Council and by 21XS067A from the
National Cancer Institute. Special thanks to all at Stanford Medical Informatics, in par-
ticular Holger Knublauch, for their continued collaboration and to the other members of
the ontologies and metadata group at Manchester for their contributions and critiques.

References

1. Sean Bechhoffer. The dig description logic interface: Dig/1.1. Technical report, The University
Of Manchester, The University Of Manchester, Oxford Road, Manchester M13 9PL, 2003.

2. Sean Bechoffer, Frank van Harmlen, Jim Hendler, Ian Horrocks, Deborah McGuinnes, Peter
Patel-Schneider, and Lynn Andrea Stein. Owl web ontology langauge reference, February
2004.

Debugging OWL-DL Ontologies: A Heuristic Approach 757

3. A Borgida, E Franconi, I Horrocks, D McGuinness, and P Patel-Schneider. Explaining alc
subsumption. In Description Logics, 1999.

4. Bijan Parsia Evren Sirin. Pellet: An owl dl reasoner. In Ralf Moller Volker Haaslev, editor,
Proceedings of the International Workshop on Description Logics (DL2004), June 2004.

5. Alan Rector Holger Knublauch, Mark Musen. Editing description logic ontologies with the
protege-owl plugin. In International Workshop on Description Logics - DL2004, 2004.

6. Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, and Chris Wroe. A
practical guide to building owl ontologies using protégé-owl and the co-ode tools. Available
from http://www.co-ode.org/resources, 2004.

7. Ian Horrocks. Fact++ web site. http://owl.man.ac.uk/factplusplus/.
8. Ian Horrocks. The fact system. In Automated Reasoning with Analytic Tableaux and Related

Methods: International Conference Tableaux’98, pages 307 – 312. Springer-Verlag, May
1998.

9. Thorsten Liebig and Olaf Noppens. Ontotrack: Combining browsing and editing with rea-
soning and explaining for owl lite ontologies. In S.A. McIlraith et al., editor, Proceedings of
the 3rd International Semantic Web Conference (ISWC2004). Springer-Verlag, 2004.

10. Alan L. Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger Knublauch,
Robert Stevens, Hai Wang, and Chris Wroe. Owl pizzas: Practical experience of teaching
owl-dl: Common errors and common patterns. In Proceedings of Engineering Knowledge in
the Age of the Semantic Web, 2004 2004.

11. Ralf Moller Volker Haarslev. Racer system description. In International Joint Conference
on Automated Reasoning, IJCAR 2001, 2001.

http://www.co-ode.org/resources
http://owl.man.ac.uk/factplusplus/

	Introduction
	A Heuristic Approach to Ontology Debugging
	Background
	OWL Overview
	Unsatisfiable OWL Classes

	Heuristic Debugging Process
	Determining the Basic Debugging Necessary Conditions (BDNC)
	Identifying the Unsatisfiable Core
	Generating the Debugging Super Conditions
	Determining the Most General Conflict
	Analysing the Most General Conflict

	Case Study
	Related Work and Conclusions
	Related Work
	Limitations
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

