
Automatic Evaluation of Ontologies (AEON)

Johanna Völker, Denny Vrandečić, and York Sure

Institute AIFB, University of Karlsruhe
{voelker, vrandecic, sure}@aifb.uni-karlsruhe.de

Abstract. OntoClean is a unique approach towards the formal evalu-
ation of ontologies, as it analyses the intensional content of concepts.
Although it is well documented in numerous publications, and its im-
portance is widely acknowledged, it is still used rather infrequently due
to the high costs for applying OntoClean, especially on tagging concepts
with the correct meta-properties. In order to facilitate the use of Onto-
Clean and to enable proper evaluation of it in real-world cases, we provide
AEON, a tool which automatically tags concepts with appropriate On-
toClean meta-properties. The implementation can be easily expanded to
check the concepts for other abstract meta-properties, thus providing for
the first time tool support in order to enable intensional ontology evalu-
ation for concepts. Our main idea is using the web as an embodiment of
objective world knowledge, where we search for patterns indicating con-
cepts meta-properties. We get an automatic tagging of the ontology, thus
reducing costs tremendously. Moreover, AEON lowers the risk of having
subjective taggings. As part of the evaluation we report our experiences
from creating a middle-sized OntoClean-tagged reference ontology.

1 Introduction

Providing a shared conceptualization of a domain of interest, ontologies have
become an important means for knowledge interchange and integration. The
raise of the Semantic Web leads to distributed nets of knowledge, and plenty of
reasoning will take place on heterogeneously created ontologies. For reason-
ing algorithms to yield useful results the underlying ontologies need to offer
a high quality. Their wide-spread use leads to an increasing need for domain-
independent methodologies and guidelines for ontology engineering and evalua-
tion.

OntoClean [10] is a well-known methodology for the formal analysis of tax-
onomic relationships based on philosophical notions such as essence, unity or
identity. Several tools supporting the OntoClean methodology have been devel-
oped and integrated into ontology editors such as ODEClean for WebODE [7],
OntoEdit [17] or Protégé [15]. Given a taxonomy of concepts annotated with
respect to a set of meta-properties, all these tools are able to perform an auto-
matic analysis of the taxonomic relationships in order to detect cases of invalid
generalization. Nevertheless, since this annotation has to be done manually, the
evaluation of ontologies according to the OntoClean methodology remains a dif-
ficult and time consuming, thus very expensive task.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 716–731, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automatic Evaluation of Ontologies (AEON) 717

In order to solve this problem, we have developed an approach for the auto-
matic tagging of concepts with respect to the meta-properties which constitute
the basis for the OntoClean methodology. We provide an implementation of
our approach, AEON1, which makes use of the World Wide Web as the cur-
rently biggest existing source of common sense knowledge. In line with several
approaches such as [4] and [5] we defined a set of domain independent patterns
which can be considered as indicators for or against Rigidity, Identity, Unity and
Dependence of given concepts in an ontology.

In the next section we give a brief introduction to the OntoClean methodol-
ogy, in particular to the core notions of Rigidity, Unity, Dependence and Identity.
Thereafter, we describe our approach to an automatic annotation of concepts
with respect to these meta-properties (section 3). For the evaluation we needed a
tagged ontology. In Section 4 we describe its creation and the problems we faced.
Section 5 presents the evaluation setting and the results of the evaluation. In
section 6 we discuss some related work, before we finally conclude with a short
summary and an outlook to future work (section 7).

2 OntoClean in Theory

We provide a brief introduction to OntoClean, for a more thorough description
refer to [10], for example. In the OntoClean vocabulary, properties are what
is commonly called concepts or classes. Meta-properties are therefore proper-
ties of properties. Within this paper we will use the term meta-property in the
usual OntoClean way, whereas we will refrain from using the term property but
rather stick to the more common term concept. OntoClean consists of two steps:
first every single concept needs to be tagged with occurrences of the core meta-
properties, which are described below. Thus, every concept will have a certain
tagging like +R+U-D+I. We call an ontology with tagged concepts a tagged
ontology (wrt. OntoClean, to be precise). After the tagging, the second step
of OntoClean is to check all subsumption relations of the ontology (also called
Subclass-relations). OntoClean constraints the possible taxonomic relations by
disallowing subsumption relations between specific combinations of tagged con-
cepts. This way, OntoClean provides a unique approach by formally analyzing
the concepts intensional content and their subsumption relationships.

We now briefly present the four main meta-properties and rules which belong
to OntoClean. The four meta-properties are: Rigidity (R), Unity (U), Depen-
dence (D) and Identity (I). They base on philosophical notions dating back to
Aristotle. Here we will offer a short description of these meta-properties.

Rigidity. Rigidity is based on the notion of essence. A concept is essential for
an instance iff it is necessarily an instance of this concept, in all worlds and at
all times. Iff a concept is essential to all of its instances, the concept is called
rigid and is tagged with +R. Iff it is not essential to some instances, it is called
non-rigid, tagged with -R. An anti-rigid concept is one that is not essential to
1 http://ontoware.org/projects/aeon/

http://ontoware.org/projects/aeon/

718 J. Völker, D. Vrandečić, and Y. Sure

all of its instances. It is tagged ∼R. An example of an anti-rigid concept would
be teacher, as no teacher has always been, nor is necessarily, a teacher, whereas
human is a rigid concept because all humans are necessarily humans and neither
became nor can stop being a human at some time.

Unity. Unity is about “What is part of something and what is not?” This answer
is given by an Unity Criterion (UC), which is true for all parts of an instance
of this concept, and for nothing else. For example, there is an unitiy criterion
for the parts of a human body, as we can say for every human body which parts
belong to it. Concepts carrying an UC have Unity and are tagged +U else -U.

Dependence. A concept C1 is dependent on a concept C2 (and thus tagged
+D), iff for every instance of C1 an instance of C2 must exist. An example
for a dependent concept would be food, as instances of food can only exist if
there is something for which these instances are food. Another way to regard
dependency is to distinguish between intrinsic and extrinsic concepts. Intrinsic
concepts are independent, whereas extrinsic concepts need to be given to an
instance by circumstances or definitions.

Identity. A concept with Identity is one, where the instances can be identified
as being the same at any time and in any world, by virtue of this concept. This
means that the concept carries an Identity Criterion (IC). It is tagged with
+I, and with -I otherwise. It is not important to answer the question of what
this IC is (this may be hard to answer), it is sufficient to know that the concept
carries an IC. For example, the concept human carries an IC, as we are able to
identify someone as being the same or not, even though we may not be able to
say what IC we actually used for that. On the other hand, a concept like red
would be tagged -I, as we cannot tell instances of red apart because of its color.

On a tagged ontology, we can use the existing OntoClean rules to check the
ontology for consistency. Here, we will give only one illustrative example for these
rules. For a full list refer to [11]. As shown in [17] such rules can be formalized
as logical axioms and validated by an inference engine.

∼R can’t subsume +R. Having a concept C subsuming the concept D, with
C tagged ∼R and D tagged +R, would lead to the following inconsistency:
D must always hold true for all of its instances. D, as a subsumed concept,
would always imply C for all of its instances. Therefore there are at least some
instances of C that are necessarily C as they are D. Thus C can not be anti-
rigid, as the tagging says, because this would mean that it is not necessarily true
for any of its instances – which would be a contradiction. The classic example
is student, an anti-rigid concept, subsuming human, a rigid concept, which is
obviously wrong: whereas every student is free to leave the university and stop
being a student, humans cannot stop being humans. As every human would be a
student, according to the example, they never could stop being a student, which
contradicts the previous sentence.

Automatic Evaluation of Ontologies (AEON) 719

3 Approach

Our approach for the automatic assignment of meta-properties according to
the OntoClean methodology is based on three fundamental assumptions. First,
we believe that the nature of concepts is to some degree reflected by human
language and what is said about instances of these concepts in the language
corpus. Because of this, we consider statistics about the occurrences of lexico-
syntactic patterns (see section 3.2) as a feasible means to capture the meta-
properties of ontological concepts. Second, in line with similar approaches by
[9], [14], [16], [3] and [4] we think that using the Web as a corpus is an effective
way of addressing the typical data sparseness problem one encounters when
working with natural language corpora. Finally, from our point of view, the
Web being the biggest source of common-sense knowledge available constitutes
a perfect basis for computational comprehension of human intuition as to the
philosophical notions of essence, unity and identity.

3.1 Architecture and Implementation

In order to evaluate our approach we developed AEON, a tool which matches
lexico-syntactic patterns on the Web to obtain positive and negative evidence
for rigidity, unity, dependence and identity of concepts in an RDFS or OWL
ontology. The architecture of AEON is roughly depicted by figure 1. It consists
of an evaluation component, which is responsible for training and evaluation, a
classifier for mapping given sets of evidence to meta-properties such as +R or
-U, a pattern library and a search engine wrapper.

The pattern library is initialized by means of an XML file containing a
set of abstract patterns for each meta-property (see listing 1.1). Each of these
patterns include a specification of the type of evidence it produces, e.g. negative
evidence for rigidity. Moreover, it contains a declaration of one or more variables
and a set of Web queries which can be instantiated by replacing the regarding

Fig. 1. Architecture of AEON

720 J. Völker, D. Vrandečić, and Y. Sure

variables by the labels of the concepts to be analysed. Finally, a linguistic fil-
ter, i.e. a regular expression over tokens and part-of-speech tags, is defined for
filtering the results obtained by the above mentioned queries (see section 3.3).

Listing 1.1. Negative Evidence for Rigidity (R)

<pattern>
<va r i a b l e name=”x” />
<ev idence type=” f a l s e ” f o r=”R” />
<goog le regex=” i s \ t \w+ no\ t \w+ longe r \ t (DT\w+\t) ?(NN|NP

|NNS |NPS) x\ t [ˆ (NN|NP|NNS |NPS)]”>
<query s t r i n g=” i s no longe r a x” />
<query s t r i n g=” i s no longe r an x” />
<query s t r i n g=” i s no longe r x” />

</google>
</pattern> %

Given a set of instantiated patterns (e.g. ”is no longer a student”) the search
engine wrapper uses the GoogleTMAPI in order to retrieve web pages or snip-
pets, i.e. parts of web pages containing the regarding search string, from the Web.
For normalization purposes (see below) it also queries the web for all occurrences
of the regarding concept, such as ”student” for example.

The linguistic analyser provides methods for tokenization, lemmatizing
and part-of-speech (POS) tagging, which are required for some fundamental
preprocessing of the snippets and HTML pages obtained from the Web and for
an appropriate matching of the linguistic patterns described above. By what we
call Linguistic Filtering we analyse, for example, all those snippets returned by
GoogleTM, which satisfy the query ”is no longer a computer” (cf. listing 1.1). If
the regular expression associated with the query does not match, the particular
snippet is not counted as a hit and thus does not provide any evidence with
respect to the rigidity of computer. This way, we avoid false matches in case of
statements such as ”He is no longer a computer hacker.” or (this would yield false
evidence for the unity of employee) when we find a phrase like ”the computer
of an employee consists of”. Of course, linguistic filtering is also applied in the
normalization process (see above).

Finally, for each pattern i contained in the above mentioned pattern library
the positive or negative evidence evidence(p, i, c) for a concept c having a certain
meta-property p ∈ {R, U, D, I} is given by:

evidence(p, i, c) =
�

q∈Qi
lf(hits(qc))

lf(hits(c)) ,

where Qi is the set of queries associated with pattern i, qc is the instantiation of
query q for concept c, and hits(qc) and hits(c) are the number of hits obtained
for qc or c respectively. lf is a function implementing the linguistic filtering
described above.

Automatic Evaluation of Ontologies (AEON) 721

Given a concept c and the evidence values obtained for all patterns the
decision whether or not a meta-property p applies to c is made by a classifier.
A set of classifiers – one for each meta-property – has been trained on a small
number of examples provided by human annotators (cf. section 5). The manual
effort rests with the creating of a gold standard ontology and classifiers to be
trained on this ontology.

3.2 Patterns

During the last decades, lexico-syntactic patterns have become generally ac-
cepted as an effective means for extracting various types of lexical and ontological
relationships such as hyponymy and meronymy (cf. [13], [2], [12]). Nevertheless,
there has been little if any work on the use of pattern-based approaches towards
the extraction of meta-properties, i.e. properties of concepts or relations. So, we
performed an extensive evaluation of many different pattern candidates before
finally choosing a small subset of particularly promising patterns for the evalua-
tion of our approach. All of these patterns are domain-independent, thus being
well suited for the WWW as a very heterogeneous corpus.

Rigidity. The intuition behind the patterns we defined for Rigidity is the follow-
ing: If any individual can become or stop being a member of a certain class, then
it holds that the membership of this class, e.g. the property being a student, is
not essential for all its individuals. Therefore, we can obtain negative evidence
with respect to Rigidity from the following patterns:

is no longer (a|an)? CONCEPT

became (a|an)? CONCEPT

while being (a|an)? CONCEPT

Unity. As explained in section 2 a concept is tagged with +U if for each of its
instances all parts can be identified and if they share a common Unity Criterion
which holds true for exactly these parts. Because of this, in order to determine
whether a given concept has unity or not we have to find answers to questions
such as ”what is part of an object? and what is not?” or ”under which conditions
is the object a whole?”. If we can answer these questions for at least most of the
instances of the concept, we can take this as positive evidence for Unity.

part of (a|an)? CONCEPT

Moreover, since instances of concepts which are not countable usually do not
carry a unity criterion, we can get positive evidence for Unity by searching for
the following patterns:

(one|two) CONCEPT

Of course, one and two seem to be somewhat arbitrary, but since GoogleTMis
not yet able to process queries containing regular expressions we had to confine
ourselves to what we considered as the most frequent of all possible variations
of this pattern.

722 J. Völker, D. Vrandečić, and Y. Sure

Similarly, negative evidence can be obtained by a pattern which indicates
non-countability of a concept.

amount of CONCEPT

Identity. According to [11] identity is given by the fact that two instances of
a concept are the same iff they have the same parts. This is known as mereo-
logical extensionality and can be expressed by the following patterns providing
positive evidence for Identity:

CONCEPT consists of (two|three) parts

CONCEPT is composed of (two|three) parts

Additional positive evidence for identity can be obtained by the rather
straight-forward pattern:

CONCEPT is identified by

Negative and positive evidence respectively can be obtained by these
merely linguistic patterns checking whether the name of the concept is an ad-
jective or a noun.

Both patterns are matched on the results of GoogleTMqueried for nothing
but the concept name. Please note that linguistic preprocessing as described in
section 3.1 is required to allow this kind of lexico-syntactic pattern matching,
since these patterns assume the text to be an alternate sequence of words and
POS tags. The tags JJ, JJR and JJS indicate an adjective, whereas NN, NP,
NNS and NPS are indicators for a common or proper noun.

(JJ|JJR|JJS) CONCEPT

(NN|NP|NNS|NPS) CONCEPT

Also, countability means that the instances of a concept are obviously iden-
tifiable (or else they would not be countable). Therefore we reuse the same
patterns that we have already used as positive or negative evidence for Unity.

(one|two) CONCEPT

amount of CONCEPT

Dependence. Among the meta-properties Rigidity, Unity, Identity and Depen-
dence we consider Dependence as the most difficult one to learn automatically.
Maybe, this is because of the fact that relational knowledge, i.e. knowledge in-
volving more than one concept, is required in order to detect Dependence. Nev-
ertheless, we tried to capture Dependence of concepts by the following pattern:

cannot be (a|an)? CONCEPT without

Additional Patterns. Due to the flexible architecture of AEON, adding further
patterns is a very easy task. It simply requires the addition of the pattern in
described format to the XML file.

We had some more patterns in mind, but preliminary testing in GoogleTM

revealed often only a small number of hits, which would only lower the efficiency
of the system and not improve the output of the system adequately.

Automatic Evaluation of Ontologies (AEON) 723

3.3 Discussion

The described approach is original, and quite a number of problems were raised.
We solved many of them, but some remain for further research. Both kinds are
described in this section.

Certain patterns could return a lot of inappropriate evidence. Searching for
the fragment ”is no longer a computer” would also return ”is no longer a com-
puter hacker”, which is false evidence about the Rigidity of computers. To solve
this problem we introduced linguistic preprocessing and patterns that recognize
computer not being the subject of the given example. Thus we can get rid of a
lot of false evidence.

The other problem occurs with high level, abstract or seldom used concepts:
they just do not return hits, or return only a small, and thus usually unreliable
number of evidence. However, we do not consider this as a big problem in general,
since this kind of very abstract concepts mostly appear in upper-level ontologies
which are typically smaller and less dynamic than domain ontologies. If we do
not get any hits, the concept will not be part of possible constraint errors. So it
does not really bother the user with wrong warnings but rather simply ignores
this concept.

A much bigger problem is given by the highly ambiguous nature of human
language. So far, our approach does not distinguish between different concepts
which could be meant by the word ”glass”, for example. Whereas the ”glass”
which can be used to drink water certainly has Unity, the ”glass” windows are
made of does not have Unity. Linguistic patterns do not help in this case. We
will try to solve this problem by comparing the context of the word – given
by a GoogleTMsnippet or a Web page – with the semantic neighborhood of the
regarding concept.

Natural language is not as strict and formal as the OntoClean meta-properties.
The best known example is the English verb to be, which can have various mean-
ings based heavily on context, like subsumption, definition or constitution. But
exactly these different meanings play a crucial role within the OntoClean method-
ology. Thus, the translation of the OntoClean definitions of meta-properties to
commonly used language patterns was quite challenging. With the patterns given
in this section we hope to have achieved a good balance between language ambi-
guity, pragmatic indication of meta-properties and number of occurrences for a
wide range of concepts.

The combination of negative and positive evidence right now just happens
by simple subtraction. Maybe more complex combinations will yield even better
results. This is an open issue. So is the difference between Non-, Anti- and Semi-
Rigidity. Right now we just consider Rigidity and Non-Rigidity, but the more
detailed division may lead to an even better evaluation of the ontology.

4 OntoClean in Practice

For the evaluation and training of our automatic methods, we needed a gold
standard tagging of an ontology with the OntoClean meta-properties. Although

724 J. Völker, D. Vrandečić, and Y. Sure

OntoClean is already some years old and appeared in a number of publications,
actual tagged ontologies were found only extremely scarcely. Our best resource
was the example ontology in [11] and some examples in the other publications.
This amounted to about 30-40 tagged concepts. [20] describes the creation of
another ontology evaluated with OntoClean, but this is not publicly available.
To the best of our knowledge there are no further available tagged ontologies.

So we decided to tag an ontology on our own. We wanted a generic, domain-
independent ontology with a not too small number of concepts. This is to ensure
that the experience we gain and the classifiers trained will be most reusable
for further ontologies evaluated with AEON in the future. We chose Proton2, a
freely available upper level ontology developed by OntoText within the European
IST project SEKT3. We merged the System, Top and Upper modules of Proton,
and the merged ontology contained 266 concepts, as diverse as Accident, Alias,
Happening or Woman.

We asked methodology and ontology engineering experts to tag Proton ac-
cording to the OntoClean methodology, because we wanted to base the evaluation
of our own techniques on this human tagging. Most of them told us that based
on their experience with OntoClean the manual tagging of an ontology such as
Proton would take more than one week. Some even considered this as an effort
of one month – which would of course render any evaluation of the ontology far
too expensive to be efficient. Finally, we were able to convince two of them to
create a manual tagging of Proton. The third tagging we used for our evaluation
was done by one of the authors of this paper.

The tagging itself was very strenuous, and often uncertainty arose. Decisions
were debatable and the documentation of OntoClean was open to interpretation.
The experts tagged the ontology in the given time of four to six hours, but they
achieved an agreement far lower than expected (refer to table 2). Concepts simi-
lar to those in the example ontology in [11] were often tagged consistently, but the
agreement on the other concepts was low (close to the baseline given by random
tagging). This suggests that the experts rather worked by analogies (not sur-
prisingly, given the time constraints) to the examples (an approach that is very
common for humans) than by applying the definitions of the meta-properties.

Taking into account that OntoClean is only a method to evaluate the taxo-
nomic relationships of an ontology, these findings point to doubts concerning the
efficiency of manual tagging. Although there are some implementations that sup-
port the tagging with OntoClean meta-properties in existing ontology engineer-
ing environments (refer to section 6), the number of actually tagged ontologies is
obviously far too low. This again points to a discrepancy between the expected
work and the expected benefit of using OntoClean. To turn OntoClean into a
feasible and more often used ontology evaluation method, a far more precise and
yet broader understandable description of OntoClean must become available, or
else an approach for the automatic tagging of concepts must lower the time to

2 http://proton.semanticweb.org
3 http://www.sekt-project.com

http://proton.semanticweb.org
http://www.sekt-project.com

Automatic Evaluation of Ontologies (AEON) 725

tag ontologies dramatically. The latter approach requires far less training to the
individual ontology engineer and evaluator.

The upper level ontology DOLCE was created with the principles of Onto-
Clean in mind. WordNet on the other hand was not created with ontological
categories in mind, but rather adhering to linguistic structures. Aligning those
two should reveal numerous errors in WordNet, by OntoClean standards, due to
the different nature of the two. In [8], where this task is described, the authors
say that the alignment of DOLCE and WordNet yielded almost only constraint
violations regarding rigidity and much less on all other meta-properties. Thus it
was essential to get reliable results for rigidity, more than for the other meta-
properties.

Another problem is that tagging an ontology implies further ontological deci-
sions possibly unintended by the ontology creators. Subjective point of views go-
ing further than the ontology is already committed to can be introduced through
the tagging. For example, regarding the concept Dalai Lama we could state this
concept is not rigid: a person is chosen to become the Dalai Lama. Thus a
question of believe becomes relevant: buddhist religion claims that one does not
become the Dalai Lama, but rather that one is the Dalai Lama since birth - or
not. It is not a role a person plays, but rather it is the identity moving from body
to body through the centuries. Simply tagging an ontology therefore reduces its
possible audience by further ontological commitments.

We see that this contradicts to the definition of Rigidity, as there seem to be
possible worlds where the concept is rigid and possible worlds in which it is not.
Our approach dodges this problem by basing the taggings on statistics over a
large corpus instead of an individual or small group’s subjective point of view.

5 Evaluation

As described in section 4 we decided to use the System, Top and Upper module
of the Proton ontology for the evaluation of our approach. The merged ontology
consists of 266 concepts, most of them annotated with a short natural language
description. The list of all concepts together with their descriptions was given
to three human annotators in the following called A1, A2 and A3. All of them
were considered to be experts in using the OntoClean methodology. Nevertheless,
whereas Rigidity, Identity and Dependence were considered by all annotators,
only two of them also assigned Unity labels to some of the concepts. Table 1
shows the number of concepts and their corresponding taggings created by each
of the human annotators. The data sets labelled A1/A2, A1/A3, A2/A3 were
obtained by building the intersection of two of the single data sets. Obviously,
A1/A2/A3, which is the intersection of all three data sets – the set of concepts
which are tagged identically by all human annotators – is extremely sparse.

In order to illustrate how difficult it was for the human annotators to tag
the ontology according to the OntoClean methodology we measured the human
agreement between the data sets. strict means that two taggings were considered
equal only if they were totally identical. relaxed means that − and ∼ were

726 J. Völker, D. Vrandečić, and Y. Sure

Table 1. Tagged Concepts

R U I D

+ - ∼ + - ∼ + - ∼ + - ∼
A1 147 69 50 156 81 29 194 61 11 151 110 3
A2 208 39 0 103 138 3 189 58 0 31 203 13
A3 201 64 0 0 0 0 223 42 0 63 1 0

avg 185.3 57.3 16.7 86.3 73.0 10.7 202.0 53.7 3.7 81.7 104.7 5.3

A1 / A2 122 3 20 77 61 11 134 17 4 23 94 3
A1 / A3 125 27 15 0 0 0 171 18 1 47 1 0
A2 / A3 161 14 0 0 0 0 163 12 0 9 0 0

avg 136.0 14.7 11.7 25.7 20.3 3.7 156.0 15.7 1.7 26.3 31.7 1.0

A1 / A2 / A3 106 2 6 0 0 0 126 8 0 9 0 0

Table 2. Human Agreement

A1 / A2 A1 / A3 A2 / A3 A1 / A2 / A3

relaxed strict relaxed strict relaxed strict relaxed strict

R 58.7% 50.6% 63.0% 57.4% 71.1% 71.1% 46.3% 43.9%
U 61.1% 56.6% N/A N/A N/A N/A N/A N/A
I 66.4% 64.8% 71.7% 71.3% 71.1% 71.1% 54.5% 54.5%

D 48.9% 45.7% 75.0% 75.0% 15.0% 15.0% 15.0% 15.0%

avg 58.8% 54.2% 69.9% 67.9% 52.4% 52.4% 38.6% 37.8%

considered the same. Since our approach so far does not distinguish between
Semi- and Anti-Rigidity, for example, the strict agreement can be neglected for
the following evaluation. As shown by table 2 the average human agreement is
extremely low, which means close to the random baseline and sometimes much
lower than the results we obtained by automatic tagging. Given these figures
indicating the difficulty of this task, we believe any kind of automatic support
could be of great use for formal ontology evaluation.

Baseline. In order to obtain an objective baseline for the evaluation of AEON
which is statistically more meaningful than the human agreement (see table 2)
we computed a random baseline for the F-Measure as follows: Let x be the
overall number of concepts to be tagged, p the number of positive and n = x−p
the number of negative examples. Given a random tagging for all n concepts
we can assume that half of them are tagged as + and how many are tagged
as −. Of course, the fraction of positives within the whole data set tends to
be the same as in each of the randomly chosen subsets S+ and S− of size n

2 .
Therefore, the number of true positives (TP) and true negatives (TN) is given
by TP = p

x ∗ x
2 = p

2 and FP = (1− p
x) ∗ x

2 = x
2 − p

2 = x−p
2 = n

2 whereas the false
positives (FP) and false negatives (FN) can be computed by TN = n

x ∗ x
2 = n

2
and FN = (1 − n

x) ∗ x
2 = x

2 − n
2 = x−n

2 = p
2 .

Obviously, the Precision P+ for the positive examples (for example, all con-
cepts tagged as +R) is given by P+ = TP/(TP + FP), whereas the Precision

Automatic Evaluation of Ontologies (AEON) 727

Table 3. Random Baseline (F-Measure)

R U I D

+ - M-avg + - M-avg + - M-avg + - M-avg

A1 52.5 47.2 49.9 54.0 45.3 49.6 59.3 35.1 47.2 53.5 45.9 49.7
A2 62.7 24.0 43.4 45.8 53.6 49.7 60.5 32.0 46.2 20.1 63.6 41.8
A3 60.1 32.6 46.4 N/A N/A N/A 62.7 24.1 43.4 66.3 3.0 34.7

avg 58.4 34.6 46.6 49.9 49.5 49.7 60.8 30.4 45.6 46.6 37.5 42.1

A1 / A2 62.7 24.1 43.4 50.8 49.1 50.0 63.6 20.4 42.0 27.7 61.8 44.7
A1 / A3 60.0 33.5 46.7 N/A N/A N/A 64.3 16.7 40.5 66.2 4.0 35.1
A2 / A3 64.8 13.8 39.3 N/A N/A N/A 65.1 12.1 38.6 66.7 N/A N/A

avg 62.5 23.8 43.1 50.8 49.1 50.0 64.3 16.4 40.4 53.5 32.9 39.9

A1 / A2 / A3 65.0 12.3 38.7 N/A N/A N/A 65.3 10.7 38.0 66.7 N/A N/A

Table 4. Rigidity (Best Results with Linguistic Filtering)

P R F Classifier

+ - + - + - M-avg baseline no LF

A1 59.0 51.4 69.5 40.0 63.8 45.0 54.4 49.9 61.6 RandomForest
A2 86.9 31.8 91.0 23.3 88.9 26.9 57.9 43.4 47.8 ADTree
A3 76.5 23.5 76.1 24.0 76.3 23.8 50.1 46.4 44.8 RandomTree

avg 74.1 35.6 78.9 29.1 76.3 31.9 54.1 46.6 51.4

A1 / A2 91.3 64.3 94.9 50.0 93.1 56.3 74.7 43.4 69.4 ADTree
A1 / A3 78.2 66.7 98.0 12.9 87.0 21.6 54.3 46.7 62.6 DecisionStump
A2 / A3 93.8 11.1 93.8 11.1 93.8 11.1 52.5 39.3 48.2 RandomTree

avg 87.8 47.4 95.6 24.7 91.3 29.7 60.5 43.1 60.1

A1 / A2 / A3 95.5 0.0 100.0 0.0 97.7 0.0 48.9 38.7 48.4 NBTree

for the negative examples can be obtained by P− = TN/(TN +FN). Recall can
be computed by R+ = TP/(TP +FN) and R− = TN/(TN +FP) respectively.

Given Recall and Precision we can obtain the F-Measure for positive and
negative examples by F+ = 2∗P+∗R+

P++R+
and F− = 2∗P−∗R−

P−+R− . This leads to an macro-
average F-Measure of F = 1

2 ∗ (F+ + F−), which we consider as a reasonable
baseline for the evaluation of our approach. A detailed overview of the concrete
baselines we determined for all data sets is given by table 3.

Setting. Since we decided to evaluate our system separately for R, U, I and
D, we made 2*7*4=56 experiments (one for each human annotator, each meta-
property, with and without linguistic filtering) using a number of Weka4 classi-
fiers. In order to detect the limitations of our approach and to see what we can
potentially get out of the data we are able to provide, we first tried many differ-
ent types of classifiers, such as Support Vector Machines, Bayesian classifiers and
Decision Trees. Since the latter turned out to perform best we finally decided to
focus on the class of Decision Trees – among them ADTree, RandomForest and
4 http://www.cs.waikato.ac.nz/ml/weka/

728 J. Völker, D. Vrandečić, and Y. Sure

Table 5. Identity (Best Results with Linguistic Filtering)

P R F Classifier

+ - + - + - M-avg baseline no LF

A1 75.0 34.8 84.1 23.2 79.3 27.8 53.6 47.2 49.5 ADTree
A2 79.4 37.5 86.3 26.8 82.7 31.3 57.0 46.2 45.0 ADTree
A3 87.3 55.0 95.8 26.8 91.4 36.1 63.8 43.4 47.9 RandomForest

avg 80.6 42.4 88.7 25.6 84.5 31.7 58.1 45.6 47.5

A1 / A2 87.0 13.3 90.7 10.0 88.8 11.1 50.0 42.0 54.1 RandomTree
A1 / A3 93.0 46.7 95.2 36.8 94.1 41.2 67.7 40.5 50.8 NBTree
A2 / A3 95.7 57.1 98.1 36.4 96.9 44.4 70.7 38.6 48.2 ADTree

avg 91.9 39.0 94.7 27.7 93.3 32.2 62.8 40.4 51.0

A1 / A2 / A3 95.3 66.7 99.2 25.0 97.2 36.4 66.8 38.0 48.5 RandomForest

Table 6. Unity (Best Results with Linguistic Filtering)

P R F Classifier

+ - + - + - M-avg baseline no LF

A1 69.5 49.5 63.6 56.2 66.4 52.6 59.5 49.6 58.8 DecisionStump
A2 43.0 61.2 46.0 58.3 44.4 59.7 52.1 47.7 57.8 ADTree
A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

avg 56.3 55.4 54.8 57.3 55.4 56.2 55.8 48.7 58.3

A1 / A2 57.6 53.6 51.5 59.7 54.4 56.5 55.5 50.0 60.2 ADTree
A1 / A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
A2 / A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

avg 57.6 53.6 51.5 59.7 54.4 56.5 55.5 50.0 60.2

A1 / A2 / A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

J48, for example. The features given to these classifiers were sets of evidences
obtained by all patterns for the regarding meta-property (see section 3.1). Pre-
cision, Recall and F-Measure for both positive and negative examples as well
as the macro-average F-Measure were determined by a 10-fold cross-validation.
Please note that for training and evaluation we only used those concepts which
were annotated in the regarding data set and for which we obtained at least
some evidence. The percentage of tests which failed, because we did not get any
GoogleTMhits for the instantiated patterns was about 20% for rigidity, 5% for
identity and around 10% for unity. Because of this, in many cases the number
of examples we gave to the classifiers was extremely low - especially for the
agreement data sets A1/A2, A1/A3, A2/A3 and A1/A2/A3. The reason why
the results are nevertheless very promising, certainly is the good quality of the
classification features we get by using a pattern-based approach.

Results. One of the main findings of our experiments was that linguistic filtering
really helps in the task of pattern-based ontology evaluation. As shown by tables
4, 5 and 7 without linguistic filtering the baseline for macro-average F-Measure
was missed several times. And especially for Identity we noticed that the results
could be improved by around 30% with the help of linguistic filtering. Another

Automatic Evaluation of Ontologies (AEON) 729

interesting result of the evaluation was that on average our system performed
significantly better on the agreement, i.e. the intersection of two or three data
sets, than on the single data sets. This is probably due to the fact that those
concepts which were tagged identically by at least two of the human annotators
are easier to tag – maybe, because they are less ambiguous.

Table 7. Dependence (Best Results with Linguistic Filtering)

P R F Classifier

+ - + - + - M-avg baseline no LF

A1 68.2 40.9 69.8 39.1 69.0 40.0 54.5 49.7 39.1 RandomTree
A2 30.0 81.5 23.1 86.3 26.1 83.8 55.0 41.8 56.7 RandomForest
A3 100.0 0.0 100.0 0.0 100.0 0.0 50.0 34.7 50.0 ADTree

avg 66.1 40.8 64.3 41.8 65.0 41.3 53.2 42.1 48.6

A1 / A2 45.5 70.0 45.5 70.0 45.5 70.0 57.8 44.7 35.3 ADTree
A1 / A3 100.0 0.0 100.0 0.0 100.0 0.0 50.0 35.1 40.0 ADTree
A2 / A3 100.0 0.0 100.0 0.0 100.0 0.0 50.0 N/A 50.0 ADTree

avg 81.8 23.3 81.8 23.3 81.8 23.3 52.6 39.9 41.8

A1 / A2 / A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

The overall conclusion we draw from the evaluation of AEON was that despite
the weaknesses of our pattern-based approach (see section 3.3) the first results
are already very promising. Given the small amount of training data we had and
the fact that we used standard Weka classifiers without much parameter tuning
we hope to get even better results in future experiments.

6 Related Work

Applying OntoClean for ontology evaluation has been proposed e.g. for tradi-
tional ontology engineering methodologies such as [6,18]. Checking for the de-
scribed constraint violations after tagging reveals any design errors during the
cyclic engineering of ontologies. There are several OntoClean plug-ins created
for ontology engineering suites to support this, in particular for Protégé [15],
WebODE [1] and OntoEdit [17]. They allow the manual tagging of ontologies,
integrated within the ontology engineering task, and also partially check the
consistencies according to the OntoClean rules described in section 2. As we
have seen in section 4, the biggest problem when applying OntoClean is not
the proper user interface for a manual tagging nor the possibility to check the
ontology for formal taxonomic constraints, but rather the high cost of tagging
itself. This is where the work presented here comes into play. To the best of
our knowledge no other approach is known which automatizes the OntoClean
tagging task as we do. DILIGENT [19] is the only known ontology engineering
methodology right now, that explicitly integrates computational agents to be
actors participating in ontology engineering tasks just like human users. The
integration of our approach into DILIGENT is on our agenda.

730 J. Völker, D. Vrandečić, and Y. Sure

7 Conclusion and Outlook

Despite the fact that ontology evaluation is a critical task for ontology engineer-
ing there currently exist only few approaches. OntoClean is the only known ap-
proach, where the intension of the concepts are taken into account when checking
the taxonomic structure of the ontology. Tagging ontological concepts according
to OntoClean is very expensive as it requires a lot of experts time and knowl-
edge. The approach provided in this paper is giving a helpful hand by enabling
an automatic tagging. Instead of claiming full automatic tagging and evaluation
against OntoClean’s meta-properties, we only take into account the concepts we
are pretty sure of in our tagging and point to potential formal errors in the tax-
onomy at hand. But, such a tagging is only the beginning and a small building
block for a next generation integrated ontology engineering environment. While
the user is creating or evolving an ontology, the system checks the taxonomical
relationships in the background, pointing to possible inconsistencies and likely
errors. For those taggings where the system’s confidence is not that high, sugges-
tions will be given. These suggestions can be substantiated with an explanation
based on the patterns found on the Web, which is much more intuitive than the
formal definition of a meta-property.

The flexible architecture described in section 3 can easily be extended to
check for further constraints, not represented by OntoClean’s rules. For exam-
ple, if we find evidence that human being consists of amount of matter then
we could conclude that there is probably no taxonomic relationship between
both concepts. Mereological relationships may be regarded as well. Due to the
strong usage of GoogleTMand its snippets, we are even able to pinpoint to the
very evidence of why two relationships should or should not exist. This way the
automatic tagger can act as a full agent, who does not just point to errors, but
also explains why a certain change is needed.

With the availability of the software presented in this paper we hope to turn
the usage of OntoClean from a few experts method to a widespread and standard
technique for the intensional ontological analysis for every ontology, raising the
quality of ontologies in common use.

Acknowledgements. Research reported in this paper has been partially fi-
nanced by the EU in the IST-2003-506826 project SEKT (http://www.sekt-
project.com). Special thanks go to Aldo Gangemi and Daniel Oberle for their
time spent on tagging our reference ontology and thus making the evaluation
possible. We thank Andreas Hotho, Philipp Cimiano, Peter Haase, Stephan Bloe-
hdorn and Christoph Tempich for helpful comments and interesting discussions.

References

1. J. C. Arṕırez et al. WebODE: a scalable workbench for ontological engineering. In
Proc. of Int. Conf. on Knowledge Capture (K-CAP), Victoria, Canada, 2001.

2. E. Charniak and M. Berland. Finding parts in very large corpora. In Proc. of the
37th Annual Meeting of the ACL, pages 57–64, 1999.

Automatic Evaluation of Ontologies (AEON) 731

3. P. Cimiano, S. Handschuh, and S. Staab. Towards the self-annotating web. In
Proceedings of the 13th World Wide Web Conference, pages 462–471, 2004.

4. P. Cimiano, G. Ladwig, and S. Staab. Gimme’ the context: Context-driven auto-
matic semantic annotation with c-pankow. In Proc. 14th WWW. ACM, 2005.

5. O. Etzioni et al. Web-scale information extraction in KnowItAll (preliminary re-
sults). In Proc. 13th WWW Conf., pages 100–109, 2004.

6. M. Fernández-López et al. Building a chemical ontology using Methontology and
the Ontology Design Environment. IEEE Int. Systems, 14(1), Jan/Feb 1999.

7. M. Fernández-López and A. Gómez-Pérez. The integration of ontoclean in webode.
In Proc. of the EON2002 Workshop at 13th EKAW, 2002.

8. A. Gangemi et al. Sweetening WordNet with Dolce. AI Magazine, Fall 2003.
9. G. Grefenstette. The WWW as a resource for example-based MT tasks. In Proc.

of ASLIB’99 Translating and the Computer 21, 1999.
10. N. Guarino and C. A. Welty. A formal ontology of properties. In Knowledge

Acquisition, Modeling and Management, pages 97–112, 2000.
11. N. Guarino and C. A. Welty. An overview of OntoClean. In S. Staab and R. Studer,

editors, Handbook on Ontologies in Inf. Sys., pages 151–172. Springer, 2004.
12. U. Hahn and K. Schnattinger. Towards text knowledge engineering. In Proc. of

AAAI’98/IAAI’98, 1998.
13. M. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proc.

14th Int. Conf. on Computational Linguistics, pages 539–545, 1992.
14. F. Keller, M. Lapata, and O. Ourioupina. Using the web to overcome data sparse-

ness. In Proc. of EMNLP-02, pages 230–237, 2002.
15. N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protégé-2000:

Combining interoperability and flexibility. In R. Dieng and O. Corby, editors, Proc.
of the 12th EKAW, LNAI, pages 17–32, Juan-les-Pins, France, 2000. Springer.

16. P. Resnik and N. A. Smith. The Web as a parallel corpus. Computational Linguis-
tics, 29(3):349–380, 2003.

17. Y. Sure, J. Angele, and S. Staab. OntoEdit: Multifaceted inferencing for ontology
engineering. Journal on Data Semantics, LNCS(2800):128–152, 2003.

18. Y. Sure, S. Staab, and R. Studer. Methodology for development and employment of
ontology based knowledge management applications. SIGMOD Rec., 31(4), 2002.

19. C. Tempich et al. An argumentation ontology for distributed, loosely-controlled
and evolving engineering processes of ontologies (DILIGENT). In C. Bussler et al.,
editors, ESWC 2005, LNCS, Heraklion, Crete, Greece, 2005. Springer.

20. C. Welty, R. Mahindru, and J. Chu-Carroll. Evaluating ontology cleaning. In
D. McGuinness and G. Ferguson, editors, AAAI2004. AAAI / MIT Press, 2004.

	Introduction
	OntoClean in Theory
	Approach
	Architecture and Implementation
	Patterns
	Discussion

	OntoClean in Practice
	Evaluation
	Related Work
	Conclusion and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

