
A General Diagnosis Method for Ontologies

Gerhard Friedrich and Kostyantyn Shchekotykhin

Universitaet Klagenfurt, Universitaetsstrasse 65,
9020 Klagenfurt, Austria, Europe

firstname.lastname@ifit.uni-klu.ac.at

Abstract. The effective debugging of ontologies is an important prerequisite
for their successful application and impact on the semantic web. The heart of
this debugging process is the diagnosis of faulty knowledge bases. In this paper
we define general concepts for the diagnosis of ontologies. Based on these con-
cepts, we provide correct and complete algorithms for the computation of min-
imal diagnoses of knowledge bases. These concepts and algorithms are broadly
applicable since they are independent of a particular variant of an underlying
logic (with monotonic semantics) and independent of a particular reasoning sys-
tem. The practical feasibility of our method is shown by extensive test
evaluations.

1 Introduction

Ontologies are playing a key role for the successful implementation of the Semantic
Web. Various languages for the specification of ontologies were proposed. The W3C
Web Ontology working group has developed OWL [1] which is currently the language
of choice for expressing Semantic Web ontologies. In fact OWL consists of three lan-
guages of increasing expressive power: OWL Lite, OWL DL and OWL Full. For the
two decidable languages OWL Lite and OWL DL the strong relation to description log-
ics was shown in [2]. OWL Lite and OWL DL are basically very expressive description
logics built upon RDF Schema. Based on these methods efficient reasoning services for
OWL Lite can be provided by systems like RACER [3].

Hand in hand with the increase of applications of ontologies and their growing
size, the support of ontology development becomes an important issue for a broad and
successful technology adoption. In the development phase of ontologies, testing and
debugging is a major activity. Testing validates if the actual knowledge base matches the
intended meaning of the knowledge engineer. In case of errors, the knowledge engineer
has to debug the knowledge base. In this debugging process, the knowledge base must
be diagnosed and changed such that all test cases are successfully passed. Consequently,
the diagnosis process has to identify sets of axioms (preferable minimal sets) which
should be changed in order to match the requirements expressed in tests.

In order to support the debugging process current work focuses on the identification
of sets of axioms which are responsible for an incoherent (rsp. inconsistent) knowledge
base [4, 5]. We enhance current techniques in several lines.

First, we will provide a general definition of the diagnosis problem employing a
broadly accepted theory of diagnosis. On the bases of this theory we introduce test

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 232–246, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A General Diagnosis Method for Ontologies 233

cases which allow the knowledge engineer to formulate application specific require-
ments. Furthermore, this general theory of diagnosis allows the diagnosis of incoherent
and inconsistent knowledge bases which comprise both terminological and assertional
axioms. Second, we will show that concepts introduced in [4] are special cases of the
proposed diagnosis theory. In addition, we argue that the concept of minimal diagnoses
should be preferred over cores, if the goal is to find minimal changes of the knowledge
base. Third, we provide correct and complete algorithms for the computation of mini-
mal diagnoses. These algorithms are independent of a particular variant of a logic with
monotonic semantics and work with arbitrary reasoning systems. Forth, we evaluate our
algorithms employing standard test libraries showing the feasibility of our methods.

The reminder of the paper is organized as follows: In order to make the paper self
contained Section 2 provides a brief introduction to the main concepts of description
logic. Section 3 presents an introductory example for the diagnosis of ontologies. The
basic concepts and properties of our approach are introduced in Section 4. Section 5 de-
scribes the algorithms for the computation of minimal diagnoses and minimal conflicts,
followed by the presentation of our evaluation results in Section 6. The paper closes
with a discussion of related work.

2 Description Logics

Since the underlying knowledge representation method of ontologies in the Semantic
Web is based on description logics we introduce briefly the main concepts. For our in-
vestigation we employ the usual definition of description logics as defined in [6, 7]. A
knowledge base comprises two components a TBox (terminology T ) and a ABox (A).
The TBox defines the terminology whereas the Abox contains assertions about named
individuals in terms of a vocabulary defined in the TBox. The vocabulary consists of
concepts, denoting sets of individuals, and roles, denoting binary relationships between
individuals. These concepts and roles may be either atomic or complex. Complex de-
scriptions are obtained by employing description operators. The language of descrip-
tions is defined recursively by starting from a schema S = (CN , RN , IN ) of disjoint
sets of names for concepts, roles, and individuals. Typical operators for the construction
of complex descriptions are C � D (disjunction), C � D (conjunction), ¬C (negation),
∀R.C (concept value restriction), and ∃R.C (concept exists restriction), where C and
D are concept descriptions and R ∈ RN .

Knowledge bases are defined by a finite set of assertions. Assertions regarding the
TBox are called terminological axioms. Assertions regarding the ABox are called asser-
tional axioms. Terminological axioms are expressed by C � D (Generalized Concept
Inclusion) which corresponds to the logical implication. Let a, b ∈ IN be individual
names then C(a) and R(a, b) are assertional axioms.

Concepts (rsp. roles) can be regarded as unary (rsp. binary) predicates. Roughly
speaking description logics can be seen as fragments of first-order predicate logic (with-
out considering transitive closure or special fixpoint semantics). These fragments are
specifically designed to assure decidability or favorable computational costs.

The semantics of description terms are usually given denotationally using an inter-
pretation I = 〈∆I , (·)I〉, where ∆I is a domain (non-empty universe) of values, and



234 G. Friedrich and K. Shchekotykhin

(·)I a mapping from concept descriptions to subsets of the domain, and from role de-
scriptions to sets of 2-tuples over the domain. The mapping also associates with every
individual name in IN some value in ∆I .

An interpretation I is a model of a knowledge base iff it satisfies all terminological
axioms and assertional axioms. A knowledge base is satisfiable iff there exists a model.

A description E is coherent w.r.t. a TBox T , if there exists a model I of T such that
EI 	= ∅. A TBox is incoherent iff there exists an incoherent concept or role.

3 Example

For the debugging of a knowledge base KB , we distinguish two basic operations. The
first operation is the deletion of axioms and the second operation deals with the addi-
tion of axioms. Changes of axioms can be viewed as combined add/delete operations.
Diagnosis deals with the first operation, i.e. the identification of axioms which must be
changed (deleted) whereas repair deals with the addition of appropriate axioms.

Knowledge bases are designed in order to provide reasoning services. In classical
logical systems such reasoning services assume a satisfiable knowledge base. Conse-
quently, restoring consistency of unsatisfiable knowledge bases is a major goal in de-
bugging. In addition, the coherence of knowledge bases may be required.

Furthermore, knowledge bases may be tested by employing test cases. These test
cases are formulated by the knowledge engineer and define requirements for the knowl-
edge base. A test case is a set of test axioms. For example, we may exploit assertional
axioms to validate a knowledge base. In the configuration domain we may test the
knowledge base if a set of requirements (a set of key components) leads to an intended
configuration which assures certain properties.

Let us assume we test the following knowledge base KBE which is a variant of the
example provided by [4].

ax 1 : A1 � ¬A � A2 � A3 ax 2 : A2 � ¬D � A4
ax 3 : A3 � A4 � A5 ax 4 : A4 � ∀s.F � C
ax 5 : A5 � ∃s.¬F ax 6 : A6 � A4 � D

In addition, we define a background theory BE = {A6(w), A1(u), s(u, v)} which
is considered as correct.

In the following we assume that the knowledge engineer formulates requirements
(test axioms). The goal of the diagnosis process is to find subsets of axioms which must
be changed such that all requirements (test cases) can be met. We will characterize these
sets of axioms by minimal (irreducible) sets. Of course the knowledge engineer may de-
cide to change supersets of these minimal sets, e.g. because the knowledge base should
reflect the mental model of the knowledge engineer as close as possible. However, the
incorporation of mental models for generating diagnoses and repairs is out of the scope
of this paper. Therefore, we use symbols in our example that have no predefined in-
tended interpretation. The intended interpretation is solely defined by the knowledge
base and the test cases.

Let us assume we require a coherent knowledge base (Requirement 1). In our exam-
ple the knowledge base is incoherent (i.e. A1 and A3 are incoherent). The irreducible set



A General Diagnosis Method for Ontologies 235

of axioms which preserves the incoherence of the knowledge base is 〈ax3, ax4, ax5〉1

(i.e. A3 is incoherent). It follows that at least one of these axioms must be changed in
order to fulfill Requirement 1.

If we in addition require that KBE ∪BE is consistent with the assertional test axiom
¬C(w) (Requirement 2) then an additional irreducible set of axioms of the knowledge
base which is unsatisfiable with the test axiom is 〈ax4, ax6〉. Similar to the previous
case, one of these axioms must be changed. In order to achieve satisfiability and coher-
ence with minimal changes, we have to change at least either axiom ax4 or the axioms
[ax3, ax6] or [ax5, ax6].

Let us assume Requirement 3 says that F (v) must be unsatisfiable with KBE ∪BE .
In case where we consider ax4 to be faulty, then it is possible to fulfill all the require-
ments, i.e. we can delete ax4 and find an extension of KBE to satisfy all requirements
including Requirement 3. A trivial extension to satisfy Requirement 3 is to add ¬F (v)
to KBE .

However, in the cases where we consider either [ax3, ax6] or [ax5, ax6] to be
changed then all 3 requirements could not be satisfied since KBE ∪BE − [ax3, ax6] |=
F (v) and also KBE ∪ BE − [ax5, ax6] |= F (v). In order to satisfy Requirement
3 in addition to Requirements 1 and 2 one of the axioms in 〈ax1, ax2, ax4〉 and in
〈ax1, ax3, ax4〉 must be changed. Consequently, the minimal change in order to sat-
isfy all requirements is to replace ax4 (e.g. by A4 � ∀s.¬F � ¬C). All other minimal
changes involve at least 3 axioms, e.g. [ax1, ax3, ax6].

In the next section we will develop a general theory for the diagnosis of logic-based
ontologies.

4 Diagnosis of Ontologies

The goal of the diagnosis process is to identify those axioms which cause faults. Such
axioms are considered as the cause of faults iff the knowledge base without these axioms
is not faulty. What is regarded as fault depends on properties defined by the knowledge
engineer. In knowledge bases which are based on logical descriptions usually satisfiabil-
ity is a necessary property. In addition the knowledge engineer may specify a test case
by a set of axioms. In the following we regard these axioms as correct. Of course the
formulation of these test cases is restricted by the expressive power of the underlying
language.

Let the set of test cases TST be partitioned in 4 disjoint sets TC+, TC−, TI+,
and TI−. We can distinguish four different scenarios for testing.

1. KB ∪ e+ consistent, ∀e+ ∈ TC+

2. KB ∪ e− inconsistent, ∀e− ∈ TC−

3. KB |= ne−, ∀ne− ∈ TI−

4. KB 	|= ne+, ∀ne+ ∈ TI+

1 According to the terminology used in model-based diagnosis such a set is called a conflict set.
For denoting conflict sets (rsp. diagnoses) we use the notation 〈. . .〉 (rsp. [. . .]) employed in
model-based diagnosis.



236 G. Friedrich and K. Shchekotykhin

By exploiting negation the third case is equivalent to the second by checking if
KB ∪¬ne− is unsatisfiable. Likewise, the forth case can be reduced to the first case by
checking if KB ∪ ¬ne+ is satisfiable. Therefore, (without limiting the generality) we
will consider only cases 1 and 2.

Please note that requiring coherence of a knowledge base corresponds to the speci-
fication of appropriate test axioms. Formulated in predicate logic this means we require
{{∃X : C(X)}|C ∈ CN} as a set of test axioms contained in TC+. For presentation
purposes we refer to this set of axioms by ax co. For the coherence of roles (e.g. for DLs
with role constructors) ax ro is {{∃X, Y : r(X, Y )}|r ∈ RN}.

In the following we will extend the approach of diagnosing configuration knowl-
edge bases presented in [8] to logical knowledge bases. In addition, we will allow the
definition of a background theory (represented as a set of axioms) which is considered
to be correct. One reason for the introduction of a background theory is, that during
the debugging process, the knowledge engineer may define some axioms as correct and
therefore these axioms should not be included in any diagnoses.

Definition 1. KB-Diagnosis Problem: A KB-Diagnosis Problem (Diagnosis Problem
for a Knowledge Base) is a tuple (KB, B, TC+, TC−) where KB is a knowledge
base, B a background theory, TC+ is a set of positive and TC− a set of negative test
cases. The test cases are given as sets of logical sentences. We assume that each test
case on its own is consistent.

The principle idea of the following definition is to find a set of axioms of the knowledge
base which must be changed (respectively deleted) and, eventually, some axioms must
be added such that all test cases are satisfied.

Definition 2. KB-Diagnosis: A KB-Diagnosis for a KB-Diagnosis Problem (KB, B,
TC+, TC−) is a set S ⊆ KB of sentences such that there exists an extension EX ,
where EX is a set of logical sentences added to the knowledge base, such that

1. (KB − S) ∪ B ∪ EX ∪ e+ consistent ∀e+ ∈ TC+

2. (KB − S) ∪ B ∪ EX ∪ e− inconsistent ∀e− ∈ TC−

Note, that an extension may be needed to achieve inconsistency with the test cases of
TC−. If we assume that we are interested in minimal changes of the existing axioms
(i.e. it is more likely that an axiom is correct than it is incorrect) then we are especially
interested in minimal (irreducible) diagnoses. In addition, these minimal diagnoses are
exploited to characterize the set of all diagnoses.

Definition 3. Minimal KB-Diagnosis: A KB-Diagnosis S for a KB-Diagnosis Problem
(KB, B, TC+, TC−) is minimal iff there is no proper subset S′ ⊂ S s.t. S′ is a
diagnosis.

Definition 4. Minimum cardinality KB-Diagnosis: A KB-Diagnosis S for a KB-
Diagnosis Problem (KB, B, TC+, TC−) is a minimum cardinality diagnosis iff there
is no diagnosis S′ s.t. |S′| < |S|.

In the following we assume the monotonic semantics of standard logic. A diagnosis
will always exist under the (reasonable) condition that background theory, positive test



A General Diagnosis Method for Ontologies 237

cases, and negative test cases do not interfere with each other. The following proposition
allows us to characterize diagnoses without the extension EX . The idea is to use the
negative examples to define this extension.

Proposition 1. Given a KB-Diagnosis Problem (KB, B,TC+,TC−), a diagnosis S
for (KB, B,TC+,TC−) exists iff ∀e+ ∈ TC+ : e+ ∪ B ∪

∧
e−∈TC−(¬e−) is con-

sistent.

From here on, we refer to the conjunction of all negated negative test cases as NE, i.e.
NE =

∧
e−∈TC−(¬e−).

Corollary 1. S is a diagnosis for (KB, B,TC+,TC−) iff ∀e+ ∈ TC+ : (KB −
S) ∪ B ∪ e+ ∪ NE is consistent.

Example: Let TC+
E = {{¬C(w)} ∪ ax co} and TC−

E = {{F (v)}}. The minimal
diagnoses of (KBE , BE ,TC+

E ,TC−
E) are [ax4], [ax1, ax3, ax6], [ax1, ax5, ax6],

and [ax2, ax3, ax6].
As a consequence, every superset of a minimal diagnosis is a diagnosis. Therefore,

the set of all diagnoses is characterized by the set of minimal diagnoses, i.e. at least the
elements of a minimal diagnosis must be changed.

In order to compute minimal diagnoses we exploit the concept of conflict sets.

Definition 5. Conflict Set: A conflict set CS for (KB, B,TC+,TC−) is a set of ele-
ments of the knowledge base CS ⊆ KB such that ∃e+ ∈ TC+ : CS ∪ B ∪ e+ ∪ NE
is inconsistent.

Definition 6. Minimal Conflict Set: A conflict set CS for (KB, B,TC+,TC−) is
minimal iff there is no proper subset CS′ ⊂ CS s.t. CS′ is a conflict.

Example: The minimal conflict sets for (KBE, BE ,TC+
E ,TC−

E) are 〈ax3, ax4,
ax5〉, 〈ax4, ax6〉, 〈ax1, ax2, ax4〉, and 〈ax1, ax3, ax4〉.

The following proposition (which follows from results of [9]) shows the relation
between minimal conflict sets and minimal diagnoses. It is based on the observation
that at least one element from each minimal conflict must be changed.

Proposition 2. Provided that there exists a diagnosis for (KB, B,TC+,TC−). S is
a minimal diagnosis for (KB, B,TC+,TC−) iff S is a minimal hitting set for the set
of all minimal conflict sets of (KB, B,TC+,TC−).

For the debugging of incoherent TBoxes without test cases and background theory [4]
introduces the concept of minimal incoherence-preserving sub-TBox (MIPS) which cor-
responds to the concept of conflict sets (see [9]) of model-based diagnosis.

Definition 7. Minimal incoherence-preserving sub-TBox [4]: Let T be an incoherent
TBox. A TBox T ′ ⊆ T is a minimal incoherence-preserving sub-TBox (MIPS) of T if
T ′ is incoherent, and every sub-TBox T ′′ ⊂ T ′ is coherent.



238 G. Friedrich and K. Shchekotykhin

Let TC+
MIPS = ax co ∪ ax ro.

Proposition 3. Let T be the TBox of a knowledge base KB. M is a MIPS of T iff M
is minimal conflict set of (T , ∅,TC+

MIPS , ∅).

Based on the concept of MIPS [4] defines the concept of cores. Cores are sets of axioms
occurring in several of these incoherent TBoxes. The rational is that the more MIPS
such a core belongs to, the more likely its axioms will be the cause of contradictions.
Similar ideas (however with a different intention) were formulated in [10].

Definition 8. MIPS-Core [4]: Let T be a TBox. A non-empty intersection of n different
MIPS of the MIPS of T (with n ≥ 1) is called a MIPS-core of arity n for T .

Under the assumption that the correctness of axioms is more likely than their faultiness,
we are interested in minimal diagnoses with a small cardinality. These minimal diag-
noses define minimal sets of axioms to be changed. Unfortunately elements of cores
with maximal arity may not be included in such diagnoses.

Remark 1. Let CORE be a core of T with maximal arity. Let MINDIAG be the set of
minimal cardinality diagnoses of (T , ∅,TC+

MIPS , ∅). It could be the case that CORE
does not contain any element of any minimal cardinality diagnosis, i.e. CORE ∩Si = ∅
for all Si ∈ MINDIAG .

Example: Consider the minimal conflict sets C1:〈a, d〉, C2:〈b, e〉, C3:〈c, f〉, C4:〈a, x〉,
C5:〈b, x〉, and C6:〈c, x〉. The arity of core {x} is 3 (maximal). All other cores have a
lower arity than 3. However, the set of minimal cardinality diagnoses is {[a, b, c]}. x is
only contained in minimal diagnoses with cardinality 4, e.g. [x, d, e, f ].
Consequently, cores may point to axioms which need not be changed. In order to dis-
cover a minimal number of axioms which must be changed, we therefore propose the
computation of minimal diagnoses. Of course the knowledge engineer might decide to
change additional axioms based on her design goals (e.g. readability of the knowledge
base).

5 Computing Minimal Diagnoses

For the computation of minimal diagnoses one of our major design goal is general-
ity of our methods. In particular, our only prerequisite is a reasoning system which
correctly outputs consistent (rsp. inconsistent) if a set of sentences is consistent (rsp.
inconsistent). Consequently, we neither employ any restriction regarding the variant of
a knowledge representation language (based on the standard monotonic semantics) nor
restrictions on the knowledge bases (e.g. acyclic).

The principle idea of our approach is to employ Reiter’s Hitting Set (HS) algorithm
[9] for the computation of a HS-tree. However, this algorithm has the drawback that
it degrades rapidly if the underlying reasoning system does not output minimal con-
flict sets. In the worst case some minimal diagnoses may be missed as pointed out by
[11] who proposed a DAG-variant of the original algorithm. However, the DAG-variant
does not solve the computational problems in case a reasoning system does not output



A General Diagnosis Method for Ontologies 239

minimal conflict sets (or close approximations of them). Therefore, we apply methods
proposed in [12] to compute minimal conflict sets which allow us to use the original
(and simpler) variant of Reiter’s diagnosis methods.

For the computation of the HS-tree we employ a labeling that is similar to the origi-
nal HS-tree. See Figure 1 for the HS-tree of our example. Nodes are labeled either by a
minimal conflict set or by consistent (

√
). Closed branches are marked by ×. If a node n

is labeled by a minimal conflict set CS(n) then for each s ∈ CS(n), edges are leading
away from n which are labeled by s. The set of edge labels on the path leading from
the root to node n is referred to as H(n). If there does not exist a conflict set, the root is
labeled by consistent. A node n must be labeled by a minimal conflict set CS if there
exists a minimal conflict set CS s.t. CS ∩ H(n) = ∅, otherwise this node is labeled by
consistent.

The HS-tree is computed as follows by the application of pruning rules. The result
is a pruned HS-tree which contains also closed branches. The HS-tree is a directed tree
from the root to the leaves.

– If no diagnosis exists stop with exception. I.e. there is a e+ ∈ TC+ s.t. e+∪B∪NE
is inconsistent.

– Generate the HS-tree in breath-first order, level by level.
– Try to generate a minimal conflict set CS for the root node. Label the root with this

conflict set, if such a conflict set exists. Otherwise, label the root with consistent.
In this case return no fault was discovered.

– If a node n′ (other than the root) has to be labeled:

1. If a node n is labeled by consistent and H(n) ⊆ H(n′) close n′, no successors
are generated.

2. If node n has been generated and H(n) = H(n′) then close n′.
3. If there exists a node n labeled by CS(n) s.t. CS(n) ∩ H(n′) = ∅ then reuse

CS(n) to label n′.
4. Otherwise try to generate a minimal conflict set CS(n′) for n′ s.t. CS(n′) ∩

H(n′) = ∅. Label n′ with this conflict set, if such a conflict set exists. Other-
wise, label n′ with consistent.

The leaf nodes of such a pruned HS-tree are either closed nodes or nodes labeled
with consistent. Let n be a node labeled with consistent then H(n) is a minimal diagno-
sis. Since the HS-tree is computed in breath-first order, minimal diagnoses are generated
with increasing cardinality. Consequently, for the generation of all minimum cardinality
diagnoses only the first level of the HS-tree has to be generated, where a node is labeled
with consistent.

For the generation of minimal conflict sets we employ a simplified variant of
QUICKXPLAIN [12] (i.e. no preferences are considered). QUICKXPLAIN takes as
inputs two sets of sentences. The first set is a knowledge base (KB) and the second set
is a background theory (B). If the knowledge base joined with the background theory
is consistent QUICKXPLAIN outputs consistent. If the background theory is inconsis-
tent the output is ∅. Otherwise, the output is a minimal conflict set CS ⊆ KB (w.r.t. a
background theory). QUICKXPLAIN operates on a divide and conquer strategy where



240 G. Friedrich and K. Shchekotykhin

ax1 ax2ax4

<ax3,ax4,ax5>
C

<ax1,ax2,ax4>
C

<ax3,ax4,ax5>
R

<ax4,ax6>
C

ax3

ax
4 ax

6

ax4

<ax4,ax6>
R

ax
5

ax
4 ax

6

<ax4,ax6>
R

ax3

ax
4 ax

6

ax4

<ax4,ax6>
R

ax5

ax
4 ax

6

<ax1,ax3,ax4>
C

ax1 ax3
ax4

Fig. 1. HS-tree for the example given in Section 3. Closed branches are marked with ×. Com-
puted minimal conflict sets are marked with C. Reused minimal conflict sets are marked with R.
Consistent nodes are marked with

√
.

a sequence of calls to a consistency checker is performed in order to minimize the con-
flict sets. If this divide and conquer strategy splits the knowledge base in half, QUICK-
XPLAIN needs log2(n/k) + 2k calls in the best case and 2k · log2(n/k) + 2k in the
worst case where k is the length of the minimal conflict and n is the number of axioms
in the knowledge base.

In order to generate a minimal conflict set for a node n, we have to check if there
exists an e+ ∈ TC+ s.t. (KB−H(n))∪B∪e+ ∪NE is inconsistent (i.e. KB−H(n)
contains a conflict set). For the calls to QUICKXPLAIN KB − H(n) plays the role of
the knowledge base and B ∪ e+ ∪ NE is considered as background theory. Note that
an e+ which is consistent with (KB − H(n)) ∪ B ∪ NE need not be reconsidered for
any successor n′ of n since H(n) ⊂ H(n′). Therefore, we store for each node n all e+

which were found to be consistent with (KB − H(n)) ∪ B ∪ NE in the set CE(n).
For the generation of a label for n′ we only need to check if there is an e+ ∈ {TC+ −
∪m∈predecessor(n′)CE(m)} which is inconsistent with (KB − H(n′)) ∪ B ∪ NE.
The correctness and completeness of the generation of minimal diagnoses follows by
the correctness and completeness of the HS-tree algorithm, QUICKXPLAIN, and the
consistency checker.

Many factors are influencing the execution time of computing minimal diagnoses.
The critical task of computing minimal conflict sets is dominated by the costs of con-
sistency checking which strongly depend on the knowledge representation language as
well as the actual content of the knowledge base. Finding a minimal diagnosis corre-
sponds to a depth first construction of the HS-tree and therefore |MD| + 1 calls to
QUICKXPLAIN are needed where |MD| is the cardinality of this minimal diagnosis.



A General Diagnosis Method for Ontologies 241

However, we can construct cases where even the number of minimum cardinality di-
agnoses grows exponential in the problem size. Therefore, in practice the problem is
simplified.

Diagnosis and conflict generation is exploited to guide further discrimination and
repair actions. Therefore, only a set of leading diagnoses is generated which is a trade
off between computational costs and further costs for diagnoses discrimination. Such
actions may comprise additional tests, validation of axioms, and incremental repair. The
definition of leading diagnoses is problem specific, e.g. a subset of minimal cardinality
diagnoses. If necessary, the knowledge engineer can interrupt the generation of minimal
diagnoses at any time and exploit the minimal conflicts and (partial) diagnoses found
so far for further actions [13].

The execution time strongly depends on the actual diagnosis problem. In particu-
lar, computing minimal diagnoses (i.e. the HS-tree construction) significantly depends
on the cardinality of the minimal diagnoses, the cardinality of minimal conflict sets,
their reuse for constructing the HS-tree, and the actual costs of consistency checking.
We therefore conducted various experiments in order to evaluate the execution time
behavior for frequently used test ontologies.

6 Evaluation

The algorithms described above are implemented in JAVA (Version 1.5.01). For the
consistency (coherence) checks we employed RACER (Version 1.7.23). The tests were
performed on a PC (Intel Pentium M 1.8 GHz) with 1 GB RAM. The operating system
was Windows XP Prof SP2. The results of our tests are depicted in Table 1. For these
tests we employed the test knowledge bases bike2 to bike9, bcs3, galen, and galen3
provided at RACER’s download site.2

For each test we randomly altered the knowledge bases. The result of each single
alteration is an incoherent knowledge base. In order to introduce an incoherency we
randomly picked two concepts where one concept subsumes the other (exploiting the
taxonomy). In a next step, axioms which define these concepts were extended such
that disjointness of these two concepts is enforced. An incoherent concept is the result.
Consequently, every alteration will introduce at least one conflict set. However, since
the introduction of these conflict sets is randomly performed there might be more but
also less minimal conflict sets than the number of alterations.

The diagnosis task is to find minimal diagnoses in order to restore coherence. We
did not provide a background theory and negative test cases because this corresponds
just to additional axioms for consistency checks. The number of axioms (ax) for each
knowledge base (including alterations) is stated in Table 1.

In order to provide realistic test cases from an application point of view we define
a set of leading diagnoses. This set of leading diagnoses comprises the set of minimum
cardinality (MC) diagnoses where we consider at most 10 diagnoses.

Note that in the worst case even the output of a single minimal conflict supports fur-
ther actions for localizing faulty axioms. However, the generation of additional (mini-
mal) diagnoses reduces the costs of actions for diagnoses discrimination and repair.

2 http://racer-systems.com/products/download/index.phtml



242 G. Friedrich and K. Shchekotykhin

Table 1. Test results for diagnosing faulty knowledge bases. Columns are: number of axioms
contained in minimum cardinality diagnoses (|D|), number of minimum cardinality diagnoses (#
D, at most 10), number of minimal conflict sets computed (# C), cardinality of smallest minimal
conflict set (min|C|), cardinality of largest minimal conflict set (max|C|), number of QUICKX-
PLAIN calls (QX), number of coherence checks (# CH), total time for discovering the first mini-
mum cardinality diagnosis (FDT), total time for discovering the first minimal conflict set (FCT),
total time for performing coherence checks (COT), total time for computing leading diagnoses
(TT). Time is measured in seconds.

KB |D| # D # C min |C| max |C| QX # CH FDT FCT COT TT

bike2 min 3 6 4 2 6 10 134 23 7,1 27,4 35
154 ax avg 3,7 8,7 5 2,1 4 13,7 181 47,5 8,3 44,2 55

max 4 10 7 2 4 17 284 61,4 10,1 62,3 77
bike3 min 4 10 4 3 3 14 120 16,3 3,4 16,2 19
109 ax avg 4,5 9,2 5,6 2,6 3 14,9 164 22,4 3,4 25,5 29

max 4 6 7 2 3 13 202 22,4 4,3 31,7 37
bike4 min 3 10 4 3 4 14 162 52,3 12,5 53,1 58
166 ax avg 3,6 9,6 5,9 2,6 5 15,5 244 71,1 12,1 76,7 84

max 4 10 8 3 10 18 358 83,3 13,4 104 115
bike5 min 1 1 3 3 4 4 131 40,6 20,1 56 60
184 ax avg 2,6 5,9 4,6 2,9 3,9 10,5 193 79,8 22 97,4 105

max 3 7 6 3 4 13 247 90,7 21,6 135 145
bike6 min 1 1 3 3 4 4 137 54,3 26,3 75 80
207 ax avg 3 7 5,1 2,8 4 12,1 220 108,5 25,3 127 135

max 3 7 6 3 4 13 263 111,2 25,5 160 171
bike7 min 1 2 2 3 3 4 84 12,6 11,6 23,1 25
162 ax avg 2,9 8,3 3,6 2,8 3 11,9 151 40 12,2 49,9 54

max 3 8 5 2 3 13 186 57,3 12,9 67,7 73
bike8 min 2 4 3 2 3 7 104 33,7 17 50,4 54
185 ax avg 3,2 8,9 4 2,7 3 12,9 172 59,7 17 72,7 79

max 4 10 5 3 3 15 216 89,9 16,3 91,5 99
bike9 min 1 1 3 3 4 4 127 50,1 23,3 72,8 78
215 ax avg 3,1 7,2 4,9 2,7 4 12,1 211 116,2 27,1 131 140

max 4 10 5 3 4 15 218 242,6 28,5 243 253
bcs3 min 3 4 4 2 3 8 118 16,3 1 15,5 18
432 ax avg 3,4 7,1 5,7 2 17,1 12,9 276 46,7 1 51,4 61

max 4 10 9 2 51 19 968 251,7 1,2 232 269
galen min 2 2 3 2 2 5 86 95,8 30,4 65,4 104
3963 ax avg 2,3 3,1 3,2 2 2 6,4 104 172,4 41 125 227

max 3 8 3 2 2 11 116 223,6 39,8 234 366
galen3 min 1 1 2 2 2 3 53 60 49,6 38,2 105
3927 ax avg 2,2 3,6 3 2 2 6,6 94,7 157 34,4 93,2 203

max 4 10 4 2 2 14 150 452,1 40,3 421 489

We therefore not only measured the total time for computing leading diagnoses (TT)
and the total time for performing coherence checks (COT) but also the total time for
discovering the first minimal conflict (FCT) and the first minimum cardinality diagnosis
(FDT). Time is measured in seconds. In addition to time information we reported the



A General Diagnosis Method for Ontologies 243

number of axioms contained in minimum cardinality diagnoses (|D|), the number of
minimum cardinality diagnoses (# D, at most 10), the number of QUICKXPLAIN calls
(QX), the number of coherence checks (# CH), and the number of minimal conflicts (#
C) computed by the algorithm in order to compute the leading diagnoses for each test
case. Since the cardinality of the minimal conflict sets defines the branching of the HS-
tree we reported the minimum cardinality (min|C|) as well as the maximum cardinality
(max|C|) of these conflict sets.

For each knowledge base we performed 30 tests. Each test corresponds to 4 random
alterations (i.e. 8 changes) in order to evaluate the algorithms for multiple failure sce-
narios. Table 1 shows the average values of the test results as well as the data for the
test case with minimum TT and maximum TT. Note, that for these special test cases the
data values may lie above or below the average case.

The algorithm correctly computes the necessary conflicts. As expected each min-
imal conflict contains two changed axioms (beside others). All computed diagnoses
are correct minimum cardinality diagnoses. Furthermore we empirically checked the
completeness of the set of minimum cardinality diagnoses. As expected, the execution
time greatly depends on the number and costs of the consistency checks. The costs of
consistency checks not only depend on the number of axioms but on the content of
a knowledge base. E.g. let us compare the maximum time cases of bike9 and bcs3.
Although bcs3 is two times larger than bike9 and we require roughly 4 times more
coherence checks (# CH) for bcs3 the time spent for these checks (COT) is almost
the same.

As mentioned in the previous section the execution time for finding minimal di-
agnoses depends on the actual diagnosis problem. E.g. knowledge bases with many
failures result in deep HS-trees whereas knowledge bases with many dependencies be-
tween the axioms result in high cardinality minimal conflict sets. These conflict sets
cause broad HS-trees. The generation of conflicts and diagnoses shows no irregularity
except for the knowledge base bcs3, where the cardinality of the minimal conflicts may
become large, i.e. there are many axioms contributing to an incoherence because of the
high cyclical complexity. As expected the overall execution time increases. However,
discovering the first minimal conflict takes approximately a second for bcs3. Note, that
the output of minimal conflict sets is already a valuable help for debugging the knowl-
edge base. Even for the galen knowledge bases (approximately 4000 axioms) comput-
ing the first minimal conflict set takes not longer than 50 seconds.

In addition, we can observe that in the average, discovering the first minimum cardi-
nality diagnosis requires roughly 80% of the total execution time. Therefore, spending
some additional computational resources after the discovery of the first minimum car-
dinality diagnosis may be appropriate. At this stage the reuse of minimal conflict sets
saves computational costs significantly.

The execution time behavior of the proposed method can be regarded as very satisfy-
ing given the size of the knowledge bases. Without such a support, debugging becomes
a very time consuming activity (e.g. locating multiple faults in hundreds or even thou-
sands of axioms). Consequently, our tests show the practical applicability and utility of
the proposed methods.



244 G. Friedrich and K. Shchekotykhin

The integration of the consistency checker and QUICKXPLAIN is a source for
improvements. If a consistency checker efficiently returns a set of axioms (i.e. a con-
flict, not necessarily minimal) involved in the generation of an inconsistency (incoher-
ence) then this helps QUICKXPLAIN to reduce the number of consistency (coherence)
checks. We recommend to implement this feature in consistency (coherence) checkers.

7 Related Work

Diagnosis is strongly related to the generation of explanations. In the description logic
community the work on explanations was pioneered by [14] and further enhanced for
tableaux-based systems [15]. The intention of this work is to provide the basis for “nat-
ural” explanations of subsumption inferences. In particular, their goal is to derive a
sequence of rule applications (i.e. proof fragments) which serve as a basis for natural
explanations. Our approach is different since we compute minimal diagnoses which
can be regarded as sources for unwanted behavior. We think that the work in the area
of generating understandable proofs can be excellently integrated in a diagnosis frame-
work for the explanations of conflicts (e.g. why a set of axioms is inconsistent).

In the area of description logics, the work by [4] is most closely related to our meth-
ods. However, we generalize and unify their concepts with concepts of the theory of
diagnosis. Compared to our approach [4] require unfoldable ALC-TBoxes. Their com-
putation methods are based on the construction of tableaus where formulas are labeled.
This label holds the information which axioms are relevant for the closure of branches.
In contrast to this approach, our proposal works for arbitrary reasoners. However, pro-
vided that the label generation is not too expensive, we can explore this label for limiting
the number of consistency (coherence) checks in order to speed up the computation.

In the work of [5] simple debugging cues are proposed which are integrated in an
ontology development environment based on Pellet (open-source OWL DL reasoner).
The main focus of their work is to improve the interaction between the knowledge en-
gineer and the ontology development systems by debugging features. Regarding diag-
nosis our approach adds functionality, since we provided a clear definition of diagnosis
(which allows the incorporation of test cases) and the correct and complete computation
of multi-fault diagnoses.

Additional important work on improving the quality of ontologies is performed by
[16] and [17]. The basic idea of these approaches is to find general rules and guidelines
which assess the quality of ontologies. Furthermore, properties are expressed which
specify conditions which must hold for error free ontologies. Some of these conditions
may be formulated as test cases, but there are conditions which require reasoning about
the terminology. This is beyond the expressive power of most ontology languages and
therefore cannot be specified as tests. However, one possible extension which could be
investigated is to generate a logical description of an ontology and to apply the general
diagnosis approach to this description.

Since our method deals with the diagnosis of descriptions, the work on model-based
diagnosis of hardware designs [13, 18] and software [19] shows some similarities. How-
ever, the fundamental difference is that these approaches have to generate a (logical)
model of the description whereas in our domain we can exploit the descriptions directly.



A General Diagnosis Method for Ontologies 245

8 Conclusions

In this paper we have proposed a general diagnosis theory for a broad range of ontology
description languages. These concepts allow the formulation of test cases and the diag-
nosis of arbitrary knowledge bases containing terminological and assertional axioms.
Minimal diagnoses identify minimal changes of the knowledge base such that the re-
quirements specified by test cases can be met. We have provided algorithms which are
correct and complete regarding the generation of all minimal diagnoses. Our methods
are broadly applicable since they operate with arbitrary reasoning frameworks which
provide consistency (coherence) checks. The practical feasibility of our method was
shown by extensive test evaluations.

Acknowledgments

We thank anonymous referees for valuable remarks. The research project is funded
partly by grants from the Austrian Research Promotion Agency, Programm Line FIT-IT
Semantic Systems (www.fit-it.at), Project AllRight, Contract 809261 and the European
Union, Project WS-Diamond, Contract 516933.

References

1. Bechhofer, S., Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-Scheider, P.,
Stein, L.: OWL Web Ontology Language Reference. W3C Recommendation, available at
http://www.w3.org/TR/2004/REC-owl-ref-20040210/. (2004)

2. Horrocks, I., Patel-Schneider, P.: Reducing OWL entailment to description logic satisfiabil-
ity. J. of Web Semantics 1 (2004) 345–357

3. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge bases: A
practical case study. In: Proc. IJCAI 01, Seattle, WA, USA (2001) 161–168

4. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description
logic terminologies. In: Proc. IJCAI 03, Acapulco, Mexico (2003) 355–362

5. Parsion, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: WWW 2005, Chiba,
Japan, ACM (2005)

6. Borgida, A.: On the relative expressive power of description logics and predicate calculus.
Artificial Intelligence 82 (1996) 353–367

7. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.: The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press (2003)

8. Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M.: Consistency-based diagnosis of
configuration knowledge bases. Artificial Intelligence 152 (2004)

9. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 23 (1987) 57–95
10. Saraswat, V.A., de Kleer, J., Raiman, O.: Critical Reasoning. In: Proc. IJCAI 93. (1993)

18–23
11. Greiner, R., Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in Reiter’s theory

of diagnosis. Artificial Intelligence 41 (1989) 79–88
12. Junker, U.: QUICKXPLAIN: Preferred explanations and relaxations for over-constrained

problems. In: Proc. AAAI 04, San Jose, CA, USA (2004) 167–172



246 G. Friedrich and K. Shchekotykhin

13. Friedrich, G., Stumptner, M., Wotawa, F.: Model-based diagnosis of hardware designs. Ar-
tificial Intelligence 111 (1999) 3–39

14. McGuinness, D.: Explaining Reasoning in Description Logics. PhD thesis, Department of
Computer Science, Rutgers University (1996)

15. Borgida, A., Franconi, E., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F.: Explaining
ALC subsumption. In: International Workshop on Description Logics, CEUR Workshop
Proc. (CEUR-WS.org). Volume 22. (1999)

16. Guarino, N., Welty, C.: Evaluating Ontological Decisions with Ontoclean. Communications
of the ACM 45 (2002) 61–65

17. Gómez-Pérez, A., Suárez-Figueroa, M.C.: Results of Taxonomic Evaluation of RDF(S) and
DAML+OIL ontologies using RDF(S) and DAML+OIL Validation Tools and Ontology Plat-
forms import services. In: Proceedings of the 2nd International Workshop on Evaluation of
Ontology-based Tools, CEUR Workshop Proc. (CEUR-WS.org). Volume 87. (2003)

18. Wotawa, F.: Debugging VHDL designs: Introducing multiple models and first empirical
results. Applied Intelligence 21 (2004) 159–172

19. Chen, R., Wotawa, F.: Exploiting alias information to fault localization for Java programs.
In: International Conference on Computational Intelligence for Modelling Control and Au-
tomation (CIMCA2004), Gold Coast, Australia (2004)


	Introduction
	Description Logics
	Example 
	Diagnosis of Ontologies
	Computing Minimal Diagnoses
	Evaluation
	Related Work
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




