


Lecture Notes in Computer Science 3729
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Yolanda Gil Enrico Motta
V. Richard Benjamins Mark A. Musen (Eds.)

The Semantic Web –
ISWC 2005

4th International Semantic Web Conference, ISWC 2005
Galway, Ireland, November 6-10, 2005
Proceedings

13



Volume Editors

Yolanda Gil
University of Southern California
Information Sciences Institute
Marina Del Rey, CA 90292, USA
E-mail: gil@isi.edu

Enrico Motta
The Open University
Knowledge Media Institute
Walton Hall, Milton Keynes, MK7 6AA, UK
E-mail: e.motta@open.ac.uk

V. Richard Benjamins
Intelligent Software Components, iSOCO S.A.
Spain
E-mail: rbenjamins@isoco.com

Mark A. Musen
Stanford University
Stanford Medical Informatics
251 Campus Drive, MSOB X-215, Stanford, CA 94305, USA
E-mail: musen@smi.stanford.edu

© Photograph on the cover: Brian Wall, Galway, Ireland

Library of Congress Control Number: 2005934830

CR Subject Classification (1998): H.4, H.3, C.2, H.5, F.3, I.2, K.4

ISSN 0302-9743
ISBN-10 3-540-29754-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29754-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11574620 06/3142 5 4 3 2 1 0



Preface

A little over a decade has passed since the release of the first Netscape browser.
In 1995, the World Wide Web was viewed largely as an academic curiosity. Now,
of course, the Web is an integral part of the fabric of modern society. It is
impossible to imagine science, education, commerce, or government functioning
without the Web. We take the Web for granted, and often assume that Internet
connectivity is guaranteed to all of us as a birthright.

Although the Web indeed has become “world wide” and has lost a bit of
its original aura as a consequence of its ubiquity, a burgeoning community of
researchers and practitioners continues to work toward the next generation of
the Web—a Web where information will be stored in a machine-processable
form and where intelligent computer-based agents will access and automatically
combine myriad services on the Internet of the kind that are now available only
to people interacting directly with their Web browsers.

It is this vision that attracted several hundred computer scientists, develop-
ers, vendors, government workers, venture capitalists, students, and potential
consumers of the Semantic Web to Galway, Ireland, November 6–10, 2005, for
the 4th International Semantic Web Conference (ISWC 2005). Building on pre-
vious successful meetings in Sardinia, Sanibel Island, and Hiroshima, this fourth
annual conference demonstrates new research results and technology that are
bringing us closer to making the Semantic Web as real as the Netscape browser
was in 1995. With increasing participation from industry and mounting evidence
that research initiatives are being translated into practical solutions, ISWC 2005
showed that the Semantic Web is taking root.

This volume contains the main proceedings of ISWC 2005, which we are
uniformly excited to provide. The tremendous response to our Call for Papers
from a truly international community of researchers and practitioners, the careful
nature of the review process, and the breadth and scope of the papers finally
selected for inclusion in this volume all speak to the quality of the conference
and to the contributions made by the papers in these proceedings.

The Research/Academic Track of the conference attracted 217 submissions,
an increase over the number of papers submitted to ISWC 2004. This result
shows the robustness of the research base in this area, at a time when everyone’s
conference calendar has become extremely crowded. The review process included
three distinct phases. First, all papers were reviewed by members of the Scientific
Program Committee; then, in a second phase, each paper and associated reviews
provided the basis for a meta-review process, led by an experienced member of
the Scientific Program Committee, who had not participated in the earlier review
process. This strategy produced a joint recommendation from reviewers and the
meta-reviewer to the Program Chairs, who then, in a third phase, analysed
each recommendation in detail, in some cases commissioning additional reviews



VI Preface

and initiating further discussions. The Program Chairs then made a definitive
decision regarding each paper. Such a structured process ensured a high-quality
review, but of course required a great deal of effort from the members of the
Scientific Program Committee. It is a sign of the health of our community that
the Scientific Program Committee responded extremely well to the task and put
tremendous work into ensuring a high-quality review process. In total, 54 papers
were accepted, out of 217 submissions, a 25% acceptance rate.

The Industrial Track of ISWC 2005 comprised 17 papers, a significant in-
crease compared to ISWC 2004. We are very encouraged to see the growing
number of organizations that are applying Semantic Web technology in indus-
trial settings. More than 30 papers were submitted to the Industrial Track,
and each paper was reviewed by three referees. All reviewers were recognized
researchers, managers, and practitioners from non-academic organizations, en-
abling us to obtain “industrial” feedback on these contributions. The majority of
the papers deal with applications in particular industrial sectors, including au-
tomobile manufacturing, law, healthcare, entertainment, public administration,
and telecommunications. A second group of papers describes new technology for
building applications, including Web services and aggregation technology. Other
papers present methodological and feasibility aspects of building industrial ap-
plications that incorporate Semantic Web technology.

A unique aspect of the International Semantic Web Conferences is the Se-
mantic Web Challenge. The challenge is a competition in which workers from
both academia and industry are encouraged to show how Semantic Web tech-
niques can provide useful or interesting applications to end-users. In the three
years since the Challenge was first organised, we have seen more than 30 inte-
grated applications built around distributed data sources, which use some kind
of semantic descriptions to handle the data. This year, nine applications were
submitted to the Challenge. Each submission was reviewed by three different
reviewers who have backgrounds in either industry or academia. The reviewers
judged the applications on the extent to which they take full advantage of Se-
mantic Web techniques and provide interesting usage scenarios. The submitters
of the top five applications were asked to provide short descriptions of their work,
which are included in these proceedings. This year’s Semantic Web Challenge
applications are quite diverse. They include a system that uses ontologies to inte-
grate information from different bio-informatics databases, peer-to-peer systems
that exchange ontology meta-data or publication data, an annotation system for
conference photos, and a system that visualises the distribution and evolution
of research areas. The winner(s) of the challenge were announced at the ISWC
and they received 1,000 travel support plus a 250 voucher to purchase books
from Springer.

IWSC 2005 was further enriched by four invited talks from prominent sci-
entists: Professor Carole Goble, University of Manchester; Dr. Alfred Spector,
IBM Software Group; Daniel J. Weitzner, W3C; and Sir Tim Berners-Lee, W3C.
The conference was also enlivened by a large poster and demonstration session, a
tutorial program, a doctoral symposium for graduate students, and a rich set of



Preface VII

workshops that highlighted new and emerging ideas. We are grateful to Riichiro
Mizoguchi (Poster and Demo Chair), Natalya F. Noy (Workshop Chair), R.V.
Guha (Tutorial Chair), and Edward Curry and Enda Ridge (Doctoral Sympo-
sium Organizers) for ensuring the success of these events. We offer many thanks
to Eric Miller, for co-ordinating the production of the semantic mark-up associ-
ated with each contribution to the conference.

We would like to thank the Semantic Web Science Association for providing
the organizational oversight for ISWC 2005. The meeting would not have been
possible without the tireless work of the local organizers at the Digital Enterprise
Research Institute in Galway. Christoph Bussler provided executive oversight to
an impressive team that included Brian Cummins (local arrangements), Liam Ó
Móráin (industrial relations), Brahmananda Sapkota (publications), and Juan
Gomez and Tingting Zhu (publicity). We would also like to acknowledge the
generous contribution from our sponsors, in particular from Science Foundation
Ireland (SFI), and to thank our sponsor chairs, Dean Allemang and York Sure,
for their excellent work.

Finally we would like to thank Manos Papagelis, for providing excellent sup-
port for the Confious conference system, which was used to manage the review
process.

In conclusion, ISWC 2005 was an extremely exciting event, reflecting the high
level of energy, creativity, and productivity that permeates the Semantic Web
community. This is a great time to be involved in Semantic Web activities and
we hope all the attendees found the conference both productive and stimulating.

November 2005 Yolanda Gil and Enrico Motta
Programme Co-chairs, Research/Academic Track

Richard V. Benjamins
Programme Chair, Industrial Track

Michel Klein and Ubbo Visser
Co-chairs, The Semantic Web Challenge

Mark A. Musen
Conference Chair



Organising Committee

General Chair: Mark A. Musen (Stanford University, USA)
Research/Academic Track Yolanda Gil (ISI, University of Southern
Co-chairs: California, USA )

Enrico Motta (The Open University, UK)
Industrial Track Chair: Richard V. Benjamins (iSOCO S.A., Spain)
Tutorials Chair: R.V. Guha (Google, USA)
Workshops Chair: Natalya F. Noy (Stanford University, USA)
Meta-data Chair: Eric Miller (World-Wide Web Consortium)
Sponsorship Chair: Liam Ó Móráin (DERI, Ireland)
Local Organization Chair: Christoph Bussler (DERI, Ireland)
Publications Chair: Brahmananda Sapkota (DERI, Ireland)
Doctoral Symposium Edward Curry (National University of
Co-chairs: Ireland, Galway, Ireland)

Enda Ridge (University of York, UK)
Posters and Demo Chair: Riichiro Mizoguchi (Osaka University, Japan)
Semantic Web Challenge Michel Klein (Vrije Universiteit Amsterdam,
Co-chairs: The Netherlands)

Ubbo Visser (Universität Bremen, Germany)

Programme Committee

Karl Aberer (EPFL, Switzerland)
Jose Luis Ambite (ISI, USA)
Lora Aroyo (Eindhoven University of Technology, The Netherlands)
Wolf-Tilo Balke (L3S and University of Hannover, Germany)
Sean Bechhofer (University of Manchester, UK)
Zohra Bellahsene (Université Montpellier II, France)
Richard V. Benjamins (iSOCO, Spain)
Abraham Bernstein (University of Zurich, Switzerland)
Walter Binder (EPFL, Switzerland)
Kalina Bontcheva (University of Sheffield, UK)
Paolo Bouquet (University of Trento, Italy)
Francois Bry (Ludwig-Maximilians-Universität München, Germany)
Liliana Cabral (The Open University, UK)
Diego Calvanese (Free University of Bozen-Bolzano, Italy)
Mario Cannataro (University “Magna Graecia” of Catanzaro, Italy)
Jeremy Carroll (Hewlett-Packard Labs, UK)
Pierre-Antoine Champin (University of Lyon, France)
Vinay Chaudhri (SRI International, USA)



X Organisation

Weiqin Chen (University of Bergen, Norway)
Ann Chervenak (ISI, University of Southern California, USA)
Nigel Collier (National Institute of Informatics, Japan)
Oscar Corcho (University of Manchester, UK)
Isabel Cruz (University of Illinois at Chicago, USA)
Jos de Bruijn (University of Innsbruck, Austria)
Mike Dean (BBN, USA)
Keith Decker (University of Delaware, USA)
Stefan Decker (National University of Ireland, Galway, Ireland)
Thierry Declerck (DFKI, Germany)
Grit Denker (SRI International, USA)
Ian Dickinson (Hewlett-Packard, UK)
Ying Ding (University of Innsbruck, Austria)
John Domingue (The Open University, UK)
Erik Duval (Katholieke Universiteit Leuven, Belgium)
Martin Dzbor (The Open University, UK)
Jerome Euzenat (INRIA, Rhône-Alpes, France)
Boi Faltings (EPFL, Switzerland)
Dieter Fensel (University of Innsbruck, Austria)
Richard Fikes (Stanford University, USA)
Aldo Gangemi (National Research Council, Italy)
Maria Gini (University of Minnesota, USA)
Fausto Giunchiglia (University of Trento, Italy)
Carole Goble (University of Manchester, UK)
Christine Golbreich (University of Rennes, France)
Asun Gomez-Perez (Universidad Politecnica de Madrid, Spain)
Marko Grobelnik (J. Stefan Institute, Slovenia)
Nicola Guarino (National Research Council, Italy)
Mohand Said Hacid (University of Lyon 1, LIRIS-CNRS, France)
Patrick Hayes (Florida Insitute for Human and Machine Cognition, USA)
Jeff Heflin (Lehigh University, USA)
Jim Hendler (University of Maryland, USA)
Masahiro Hori (Kansai University, Japan)
Ian Horrocks (University of Manchester, UK)
Michael Huhns (University of South Carolina, USA)
Jane Hunter (University of Queensland, Australia)
Zachary Ives (University of Pennsylvania, USA)
Anupam Joshi (University of Maryland, Baltimore County, USA)
Rich Keller (NASA Ames, USA)
Carl Kesselman (ISI, University of Southern California, USA)
Roger (Buzz) King (University of Colorado, USA)
Yasuhiko Kitamura (Kwansei Gakuin University, Japan)
Matthias Klusch (DFKI, Germany)
Alfred Kobsa (University of California, Irvine, USA)
Yiannis Kompatsiaris (Informatics and Telematics Institute, Thessaloniki, Greece)



Organisation XI

Manolis Koubarakis (Technical University of Crete, Greece)
Ruben Lara (Technologia, Informacion y Finanzas, Spain)
Ora Lassila (Nokia Research Center, USA)
Thibaud Latour (CRP Henri Tudor, Luxembourg)
Georg Lausen (Albert-Ludwigs-Universität Freiburg, Germany)
David Leake (Indiana University, USA)
Domenico Lembo (University of Rome, Italy)
Maurizio Lenzerini (University of Rome, Italy)
Robert MacGregor (Siderean Software, USA)
David Martin (SRI International, USA)
Mihhail Matskin (Royal Institute of Technology, Sweden)
Masaki Matsudaira (OKI, Japan)
Diana Maynard (University of Sheffield, UK)
Brian McBride (Hewlett-Packard, UK)
Luke McDowell (United States Naval Academy, USA)
Deborah McGuinness (Stanford University, USA)
Sheila McIlraith (University of Toronto, Canada)
Vibhu Mittal (Google Research, USA)
Pavlos Moraitis (University of Cyprus, Cyprus)
Boris Motik (FZI Forschungszentrum Informatik, Germany)
Wolfgang Nejdl (L3S and University of Hannover, Germany)
Tim Oates (University of Maryland, Baltimore County, USA)
Bijan Parsia (University of Maryland, USA)
Peter Patel-Schneider (Bell Labs, USA)
Terry Payne (University of Southampton, UK)
Paulo Pinheiro da Silva (Stanford University, USA)
Dimitri Plexousakis (University of Crete, Greece)
Line Pouchard (Oak Ridge National Laboratory, USA)
Chris Priest (Hewlett-Packard, UK)
Chantal Reynaud (University of Orsay – LRI, France)
Mark Roantree (Dublin City University, Ireland)
Marie-Christine Rousset (University of Orsay – LRI, France)
Stefan Rüger (Imperial College London, UK)
Henryk Rybinski (Warsaw University of Technology, Poland)
Norman Sadeh (Carnegie Mellon University, USA)
Fereidoon Sadri (University of North Carolina, USA)
Ulrike Sattler (University of Manchester, UK)
Guus Schreiber (Vrije Universiteit Amsterdam, The Netherlands)
Amit Sheth (University of Georgia, USA)
Wolf Siberski (L3S and University of Hannover, Germany)
Carles Sierra (Spanish Research Council, Spain)
Michael Sintek (DFKI, Germany)
Andrzej Skowron (Institute of Mathematics, Warsaw University, Poland)
Derek Sleeman (University of Aberdeen, UK)
Steffen Staab (University of Koblenz, Germany)



XII Organisation

Giorgos Stamou (National Technical University of Athens, Greece)
Lynn Andrea Stein (Olin College, USA)
Heiner Stuckenschmidt (Vrije Universiteit Amsterdam, The Netherlands)
Rudi Studer (University of Karlsruhe, Germany)
Gerd Stumme (University of Kassel, Germany)
Said Tabet (Macgregor Group, USA)
Hideaki Takeda (National Institute of Informatics, Japan)
Herman ter Horst (Philips Research, The Netherlands)
Raphael Troncy (National Research Centre, Italy)
Yannis Tzitzikas (University of Namur, Belgium)
Andrzej Uszok (Florida Institute for Human and Machine Cognition, USA)
Frank van Harmelen (Vrije Universiteit Amsterdam, The Netherlands)
Dan Vodislav (Conservatoire National des Arts et Métiers, France)
Christopher Welty (IBM Watson Research Center, USA)
Steve Willmott (Universitat Politècnica de Catalunya, Spain)
Marianne Winslett (University of Illinois at Urbana - Champaign, USA)
Michael Wooldridge (University of Liverpool, UK)
Guizhen Yang (SRI International, USA)
Yiyu Yao (University of Regina, Canada)
Djamel Zighed (University of Lyon 2, France)

Industrial Track Programme Committee

Chair: Dr. Richard V. Benjamins (iSOCO, Spain)

Technology

Rama Akkiruja (IBM T.J. Watson Research Center, New York, USA)
Dean Allemang (TopQuadrant Inc., USA)
Jose Manuel Lopez Cobos (Atos Ȯrigin, Spain)
Jürgen Angele (Ontoprise, Germany)
Jack Berkowitz (Network Inference, USA)
Vinay K. Chaudhri (SRI, USA)
Jesús Contreras (iSOCO, Spain)
Oscar Corcho (iSOCO, Spain)
Marten Den Uyl (ParaBots, The Netherlands)
Michael Denny (Consultant, USA)
Elmar Donar (SAP, Germany)
Garry Edwards (ISX, USA)
David Ferrucci (IBM T.J. Watson Research Center, New York, USA)
Lars M. Garshol (Ontopia, Norway)
Atanas Kiryakov (Ontotext, Bulgaria)
Chris Preist (HP Labs, Bristol, UK)



Organisation XIII

Juan Antonio Prieto (Ximetrix, Spain)
Christian de Sainte Marie (ILOG, Franca)
Amit Sheth (Semagix, UK)
Chris van Aart (Acklin, The Netherlands)
Andre Valente (Knowledge Ventures, USA)

Telecom

John Davies (British Telecom, UK)
Alistair Duke (BT, UK)
Shoji Kurakake (NTT DoCoMo, Japan)
Alain Leger (France Télécom, France)

Cultural Heritage

Carlos Wert (Residencia de Estudiantes, Spain)

Knowledge Management

Ralph Traphoener (Empolis, Germany)
Andy Crapo (GE, USA)
Gertjan van Heijst (Oryon, The Netherlands)

Enterprise Systems

Kim Elms (SAP, Australia)

Automotive

Ruediger Klein (DaimlerChrysler, Germany)
Alexander Morgan (General Motors, USA)

Aeronautics

Mike Uschold (Boeing, USA)

Public Administration

Alasdair Mangham (London Borough of Camden, UK)

Pharmaceutics, Biomedicine

Andreas Presids (Biovista, Greece)



XIV Organisation

Engineering

Richard Watts (Lawrence Livermore National Labs, USA)

Legal

Pompeu Casanovas (IDT, UAB, Spain)

Standards

Jose Manuel Alonso (W3C)
Ivan Herman (W3C)

Local Organising Committee

Chair: Christoph Bussler (DERI, Ireland)
Johannes Breitfuss (DERI, Austria)
Brian Cummins (DERI, Ireland)
Alice Carpentier (DERI, Austria)
Edel Cassidy (DERI, Ireland)
Peter Capsey (DERI, Ireland)
Gerard Conneely (DERI, Ireland)
Brian Ensor (DERI, Ireland)
Christen Ensor (DERI, Ireland)
Hilda Fitzpatrick (DERI, Ireland)
Gearóid Hynes (DERI, Ireland)
Mick Kerrigan (DERI, Ireland)
Edward Kilgarriff (DERI, Ireland)
Sylvia McDonagh (DERI, Ireland)
Fergal Monaghan (DERI, Ireland)
Matthew Moran (DERI, Ireland)
Liam Ó Móráin (DERI, Ireland)
Seaghan Moriarty (DERI, Ireland)
Joseph O’Gorman (DERI, Ireland)
Katharina Siorpaes (DERI, Austria)
Brendan Smith (DERI, Ireland)
Maria Smyth (DERI, Ireland)
Brian Wall (DERI, Ireland)
Ilona Zaremba (DERI, Ireland)

Additional Reviewers

Nik Naila Binti Abdullah (Université Montpellier II, France)
Raja Afandi (University of Illinois at Urbana-Champaign, USA)
Salima Benbernou (Université Montpellier II, France)



Organisation XV

Ansgar Bernardi (DFKI, Germany)
Uldis Bojars (National University of Ireland, Ireland)
Roberto Boselli (University of Milano-Bicocca, Italy)
Carola Catenacci (National Research Council, Italy)
Philippe Chatalic (University of Orsay, France)
Wei Chen (University of Delaware, USA)
Timothy Chklovski (USC Information Sciences Institute, USA)
Massimiliano Ciaramita (National Research Council, Italy)
Emilia Cimpian (DERI, Ireland)
Philippe Cudre-Mauroux (Ecole Polytechnique Fédérale de Lausanne,

Switzerland)
Martine De Cock (Ghent University, Belgium)
Tomasso Di Noia (Politecnico di Bari, Italy)
Jörg Diederich (L3S and University of Hannover, Germany)
Thomas Eiter (Vienna University of Technology, Austria)
Carlos F. Enguix (National University of Ireland, Ireland)
Nicola Fanizzi (University of Trento, Italy)
Cristina Feier (University of Innsbruck, Austria)
Mariano Fernandez-López (Universidad Politecnica de Madrid, Spain)
Stefania Galizia (The Open University, United Kingdom)
Sarunas Girdzijauskas (Ecole Polytechnique Fédérale de Lausanne, Switzerland)
Birte Glimm (University of Manchester, UK)
Francois Goasdoue (University of Orsay, France)
Antoon Goderis (University of Manchester, UK)
Jennifer Golbeck (University of Maryland, USA)
Karthik Gomadam (University of Georgia, USA)
Perry Groot (University of Nijmegen, The Netherlands)
Yuanbo Guo (Lehigh University, USA)
Hakim Hacid (University of Lyon 2, France)
José Kahan (World Wide Web Consortium, France)
Yardan Katz (University of Maryland, USA)
Christoph Kiefer (University of Zurich, Switzerland)
Malte Kiesel (DFKI, Germany)
Jintae Kim (University of Illinois at Urbana-Champaign, USA)
Fabius Klemm (Ecole Polytechnique Fédérale de Lausanne, Switzerland)
Jacek Kopecky (University of Innsbruck, Austria)
Reto Krummenacher (University of Innsbruck, Austria)
Julien Lafaye (Conservatoire National des Arts et Métiers, France)
Holger Lausen (University of Innsbruck, Austria)
Adam Lee (University of Illinois at Urbana-Champaign, USA)
Lei Li (University of Manchester, UK)
Carsten Lutz (Institute for Theoretical Computer Science, Germany)
Francisco Martin-Recuerda (University of Innsbruck, Austria)
Meenakshi Nagarajan (University of Georgia, USA)
Natalya F. Noy (Stanford University, USA)



XVI Organisation

Daniel Olmedilla (L3S and University of Hannover, Germany)
Lars Olson (University of Illinois at Urbana-Champaign, USA)
Ignazio Palmisano (University of Trento, Italy)
Jeff Z. Pan (University of Manchester, UK)
Axel Polleres (University of Innsbruck, Austria)
Pierre Pompidor (Université Montpellier II, France)
Livia Predoiu (University of Innsbruck, Austria)
Yannick Prié (French National Center for Scientific Research, France)
Abir Qasem (Lehigh University, USA)
Jinghai Rao (Carnegie Mellon University, USA)
Thomas Reichherzer (Indiana University, USA)
Christophe Rey (Université Montpellier II, France)
Juan A. Rodrguez-Aguilar (Spanish Research Council, Spain)
Dumitru Roman (University of Innsbruck, Austria)
Riccardo Rosati (University of Rome, Italy)
Marco Ruzzi (University of Rome, Italy)
Brigitte Safar (University of Orsay, France)
Satya S. Sahoo (University of Georgia, USA)
Stefan Schlobach (Vrije Universiteit Amsterdam, The Netherlands)
Roman Schmidt (Ecole Polytechnique Fédérale de Lausanne, Switzerland)
Marco Schorlemmer (Spanish Research Council, Spain)
James Scicluna (University of Innsbruck, Austria)
Julian Seidenberg (University of Manchester, United Kingdom)
Luciano Serafini (University of Trento, Italy)
Kai Simon (Albert-Ludwigs-Universität Freiburg, Germany)
Rishi Rakesh Sinha (University of Illinois at Urbana-Champaign, USA)
Nikolaos Spanoudakis (University of Paris-Dauphine, France)
Michael Stollberg (University of Innsbruck, Austria)
Martin Szomszor (University of Southampton, UK)
Snehal Thakkar (USC Information Sciences Institute, USA)
Ioan Toma (University of Innsbruck, Austria)
Farouk Toumani (Université Ḿontpellier II, France)
Dmitry Tsarkov (University of Manchester, UK)
Tomas Uribe (SRI International, USA)
Tim van Pelt (Ecole Polytechnique Fédérale de Lausanne, Switzerland)
Wamberto Vasconcelos (University of Aberdeen, UK)
Max Völkel (National University of Ireland, Ireland)
Peter Vorburger (University of Zurich, Switzerland)
Holger Wache (Vrije Universiteit Amsterdam, The Netherlands)
Yeliz Yesilada (University of Manchester, UK)
Charles Zhang (University of Illinois at Urbana-Champaign, USA)
Cai-Nicolas Ziegler (Albert-Ludwigs-Universität Freiburg, Germany)
Evgeny Zolin (University of Manchester, UK)



Table of Contents

Invited Paper

Using the Semantic Web for e-Science: Inspiration, Incubation, Irritation
Carole Goble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Semantic Acceleration Helping Realize the Semantic Web Vision or
“The Practical Web”

Alfred Z. Spector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Semantic Web Public Policy Challenges: Privacy, Provenance, Property
and Personhood

Daniel J. Weitzner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Research/Academic Track

Constructing Complex Semantic Mappings Between XML Data and
Ontologies

Yuan An, Alex Borgida, John Mylopoulos . . . . . . . . . . . . . . . . . . . . . . . . . 6

Stable Model Theory for Extended RDF Ontologies
Anastasia Analyti, Grigoris Antoniou, Carlos Viegas Damásio,
Gerd Wagner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Towards a Formal Verification of OWL-S Process Models
Anupriya Ankolekar, Massimo Paolucci, Katia Sycara . . . . . . . . . . . . . . 37

Web Service Composition with Volatile Information
Tsz-Chiu Au, Ugur Kuter, Dana Nau . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A Large Scale Taxonomy Mapping Evaluation
Paolo Avesani, Fausto Giunchiglia, Mikalai Yatskevich . . . . . . . . . . . . . 67

RDF Entailment as a Graph Homomorphism
Jean-François Baget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

RitroveRAI: A Web Application for Semantic Indexing and
Hyperlinking of Multimedia News

Roberto Basili, Marco Cammisa, Emanuale Donati . . . . . . . . . . . . . . . . . 97



XVIII Table of Contents

Querying Ontologies: A Controlled English Interface for
End-Users

Abraham Bernstein, Esther Kaufmann, Anne Göhring,
Christoph Kiefer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Semantic Browsing of Digital Collections
Trevor Collins, Paul Mulholland, Zdenek Zdrahal . . . . . . . . . . . . . . . . . . 127

Decentralized Case-Based Reasoning for the Semantic Web
Mathieu d’Aquin, Jean Lieber, Amedeo Napoli . . . . . . . . . . . . . . . . . . . . . 142

Finding and Ranking Knowledge on the Semantic Web
Li Ding, Rong Pan, Tim Finin, Anupam Joshi, Yun Peng,
Pranam Kolari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Choreography in IRS-III – Coping with Heterogeneous Interaction
Patterns in Web Services

John Domingue, Stefania Galizia, Liliana Cabral . . . . . . . . . . . . . . . . . . 171

Bootstrapping Ontology Alignment Methods with APFEL
Marc Ehrig, Steffen Staab, York Sure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A Strategy for Automated Meaning Negotiation in Distributed
Information Retrieval

Vadim Ermolayev, Natalya Keberle, Wolf-Ekkehard Matzke,
Vladimir Vladimirov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

On Applying the AGM Theory to DLs and OWL
Giorgos Flouris, Dimitris Plexousakis, Grigoris Antoniou . . . . . . . . . . . 216

A General Diagnosis Method for Ontologies
Gerhard Friedrich, Kostyantyn Shchekotykhin . . . . . . . . . . . . . . . . . . . . . 232

Graph-Based Inferences in a Semantic Web Server for the Cartography
of Competencies in a Telecom Valley

Fabien Gandon, Olivier Corby, Alain Giboin, Nicolas Gronnier,
Cecile Guigard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Ontology Design Patterns for Semantic Web Content
Aldo Gangemi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Guidelines for Benchmarking the Performance of Ontology Management
APIs

Raúl Garćıa-Castro, Asunción Gómez-Pérez . . . . . . . . . . . . . . . . . . . . . . . 277



Table of Contents XIX

Semantically Rich Recommendations in Social Networks for Sharing,
Exchanging and Ranking Semantic Context

Stefania Ghita, Wolfgang Nejdl, Raluca Paiu . . . . . . . . . . . . . . . . . . . . . . 293

On Partial Encryption of RDF-Graphs
Mark Giereth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Seven Bottlenecks to Workflow Reuse and Repurposing
Antoon Goderis, Ulrike Sattler, Phillip Lord, Carole Goble . . . . . . . . . . 323

On Logical Consequence for Collections of OWL Documents
Yuanbo Guo, Jeff Heflin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

A Framework for Handling Inconsistency in Changing Ontologies
Peter Haase, Frank van Harmelen, Zhisheng Huang,
Heiner Stuckenschmidt, York Sure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Preferential Reasoning on a Web of Trust
Stijn Heymans, Davy Van Nieuwenborgh, Dirk Vermeir . . . . . . . . . . . . . 368

Resolution-Based Approximate Reasoning for OWL DL
Pascal Hitzler, Denny Vrandečić . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Reasoning with Multi-version Ontologies: A Temporal Logic Approach
Zhisheng Huang, Heiner Stuckenschmidt . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Piggy Bank: Experience the Semantic Web Inside Your Web Browser
David Huynh, Stefano Mazzocchi, David Karger . . . . . . . . . . . . . . . . . . . 413

BRAHMS: A WorkBench RDF Store and High Performance Memory
System for Semantic Association Discovery

Maciej Janik, Krys Kochut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

A Template-Based Markup Tool for Semantic Web Content
Brian Kettler, James Starz, William Miller, Peter Haglich . . . . . . . . . . 446

Representing Web Service Policies in OWL-DL
Vladimir Kolovski, Bijan Parsia, Yarden Katz, James Hendler . . . . . . 461

Information Modeling for End to End Composition of Semantic Web
Services

Arun Kumar, Biplav Srivastava, Sumit Mittal . . . . . . . . . . . . . . . . . . . . . 476

Searching Dynamic Communities with Personal Indexes
Alexander Löser, Christoph Tempich, Bastian Quilitz,
Wolf-Tilo Balke, Steffen Staab, Wolfgang Nejdl . . . . . . . . . . . . . . . . . . . . 491



XX Table of Contents

RUL: A Declarative Update Language for RDF
M. Magiridou, S. Sahtouris, V. Christophides, M. Koubarakis . . . . . . . 506

Ontologies Are Us: A Unified Model of Social Networks
and Semantics

Peter Mika . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

OMEN: A Probabilistic Ontology Mapping Tool
Prasenjit Mitra, Natasha F. Noy, Anuj Rattan Jaiswal . . . . . . . . . . . . . 537

On the Properties of Metamodeling in OWL
Boris Motik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

A Bayesian Network Approach to Ontology Mapping
Rong Pan, Zhongli Ding, Yang Yu, Yun Peng . . . . . . . . . . . . . . . . . . . . . 563

Ontology Change Detection Using a Version Log
Peter Plessers, Olga De Troyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

RelExt : A Tool for Relation Extraction from Text in Ontology
Extension

Alexander Schutz, Paul Buitelaar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

Containment and Minimization of RDF/S Query Patterns
Giorgos Serfiotis, Ioanna Koffina, Vassilis Christophides,
Val Tannen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607

A String Metric for Ontology Alignment
Giorgos Stoilos, Giorgos Stamou, Stefanos Kollias . . . . . . . . . . . . . . . . . 624

An Ontological Framework for Dynamic Coordination
Valentina Tamma, Chris van Aart, Thierry Moyaux,
Shamimabi Paurobally, Ben Lithgow-Smith, Michael Wooldridge . . . . . 638

Introducing Autonomic Behaviour in Semantic Web Agents
Valentina Tamma, Ian Blacoe, Ben Lithgow-Smith,
Michael Wooldridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

Combining RDF and Part of OWL with Rules: Semantics, Decidability,
Complexity

Herman J. ter Horst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668

Benchmarking Database Representations of RDF/S Stores
Yannis Theoharis, Vassilis Christophides, Grigoris Karvounarakis . . . . 685



Table of Contents XXI

Towards Imaging Large-Scale Ontologies for Quick Understanding and
Analysis

KeWei Tu, Miao Xiong, Lei Zhang, HaiPing Zhu, Jie Zhang,
Yong Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

Automatic Evaluation of Ontologies (AEON)
Johanna Völker, Denny Vrandečić, York Sure . . . . . . . . . . . . . . . . . . . . . 716

A Method to Combine Linguistic Ontology-Mapping Techniques
Willem Robert van Hage, Sophia Katrenko, Guus Schreiber . . . . . . . . . . 732

Debugging OWL-DL Ontologies: A Heuristic Approach
Hai Wang, Matthew Horridge, Alan Rector, Nick Drummond,
Julian Seidenberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745

Rapid Benchmarking for Semantic Web Knowledge Base
Systems

Sui-Yu Wang, Yuanbo Guo, Abir Qasem, Jeff Heflin . . . . . . . . . . . . . . . 758

Using Triples for Implementation: The Triple20 Ontology-Manipulation
Tool

Jan Wielemaker, Guus Schreiber, Bob Wielinga . . . . . . . . . . . . . . . . . . . . 773

A Little Semantic Web Goes a Long Way in Biology
K. Wolstencroft, A. Brass, I. Horrocks, P. Lord, U. Sattler, D. Turi,
R. Stevens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786

Provenance-Based Validation of E-Science Experiments
Sylvia C. Wong, Simon Miles, Weijian Fang, Paul Groth,
Luc Moreau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

Industrial Track

Semantic Service Integration for Water Resource Management
Ross Ackland, Kerry Taylor, Laurent Lefort, Mark Cameron,
Joel Rahman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816

Towards a Killer App for the Semantic Web
Harith Alani, Yannis Kalfoglou, Kieron O’Hara, Nigel Shadbolt . . . . . . 829

Enterprise Architecture Reference Modeling in OWL/RDF
Dean Allemang, Irene Polikoff, Ralph Hodgson . . . . . . . . . . . . . . . . . . . . 844



XXII Table of Contents

MediaCaddy - Semantic Web Based On-Demand Content Navigation
System for Entertainment

Shishir Garg, Amit Goswami, Jérémy Huylebroeck,
Senthil Jaganathan, Pramila Mullan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858

LKMS – A Legal Knowledge Management System Exploiting Semantic
Web Technologies

Luca Gilardoni, Chistian Biasuzzi, Massimo Ferraro, Roberto Fonti,
Piercarlo Slavazza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872

Definitions Management: A Semantics-Based Approach for Clinical
Documentation in Healthcare Delivery

Vipul Kashyap, Alfredo Morales, Tonya Hongsermeier, Qi Li . . . . . . . . 887

Ubiquitous Service Finder Discovery of Services Semantically Derived
from Metadata in Ubiquitous Computing

Takahiro Kawamura, Kouji Ueno, Shinichi Nagano,
Tetsuo Hasegawa, Akihiko Ohsuga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902

Ontological Approach to Generating Personalized User Interfaces for
Web Services

Deepali Khushraj, Ora Lassila . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916

On Identifying Knowledge Processing Requirements
Alain Léger, Lyndon J.B. Nixon, Pavel Shvaiko . . . . . . . . . . . . . . . . . . . . 928

An Application of Semantic Web Technologies to Situation
Awareness

Christopher J. Matheus, Mieczyslaw M. Kokar, Kenneth Baclawski,
Jerzy J. Letkowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944

Task Knowledge Based Retrieval for Service Relevant to Mobile User’s
Activity

Takefumi Naganuma, Shoji Kurakake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959

Supporting Rule System Interoperability on the Semantic Web with
SWRL

Martin O’Connor, Holger Knublauch, Samson Tu, Benjamin Grosof,
Mike Dean, William Grosso, Mark Musen . . . . . . . . . . . . . . . . . . . . . . . . . 974

Automated Business-to-Business Integration of a Logistics Supply
Chain Using Semantic Web Services Technology

Chris Preist, Javier Esplugas-Cuadrado, Steven A. Battle,
Stephan Grimm, Stuart K. Williams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987



Table of Contents XXIII

A Semantic Search Engine for the International Relation Sector
L. Rodrigo, V.R. Benjamins, J. Contreras, D. Patón, D. Navarro,
R. Salla, M. Blázquez, P. Tena, I. Martos . . . . . . . . . . . . . . . . . . . . . . . . 1002

Gnowsis Adapter Framework: Treating Structured Data Sources as
Virtual RDF Graphs

Leo Sauermann, Sven Schwarz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016

Do Not Use This Gear with a Switching Lever! Automotive Industry
Experience with Semantic Guides

Hans-Peter Schnurr, Jürgen Angele . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029

The Concept Object Web for Knowledge Management
James Starz, Brian Kettler, Peter Haglich, Jason Losco,
Gary Edwards, Mark Hoffman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1041

Semantic Web Challenge

The Personal Publication Reader
Fabian Abel, Robert Baumgartner, Adrian Brooks, Christian Enzi,
Georg Gottlob, Nicola Henze, Marcus Herzog, Matthias Kriesell,
Wolfgang Nejdl, Kai Tomaschewski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050

DynamicView: Distribution, Evolution and Visualization of Research
Areas in Computer Science

Zhiqiang Gao, Yuzhong Qu, Yuqing Zhai, Jianming Deng . . . . . . . . . . . 1054

Oyster - Sharing and Re-using Ontologies in a Peer-to-Peer Community
Raúl Palma, Peter Haase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059

The FungalWeb Ontology: Semantic Web Challenges in Bioinformatics
and Genomics

Arash Shaban-Nejad, Christopher J.O. Baker, Volker Haarslev,
Greg Butler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063

CONFOTO: A Semantic Browsing and Annotation Service for
Conference Photos

Benjamin Nowack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1071



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 1 – 3, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Using the Semantic Web for e-Science: Inspiration, 
Incubation, Irritation 
(Extended Abstract) 

Carole Goble 

School of Computer Science,  
The University of Manchester, Manchester, M13 9PL UK 

carole@cs.man.ac.uk 

We are familiar with the idea of e-Commerce - the electronic trading between 
consumers and suppliers. In recent years there has been a commensurate paradigm 
shift in the way that science is conducted.  e-Science is science performed through 
distributed global collaborations between scientists and their resources enabled by 
electronic means, in order to solve scientific problems. No one scientific laboratory 
has the resources or tools, the raw data or derived understanding or the expertise to 
harness the knowledge available to a scientific community. Real progress depends on 
pooling know-how and results. It depends on collaboration and making connections 
between ideas, people, and data. It depends on finding and interpreting results and 
knowledge generated by scientific colleagues you do not know and who do not know 
you, to be analysed in ways they did not anticipate, to generate new hypotheses to be 
pooled in their turn. The importance of e-Science has been highlighted in the UK, for 
example, by an investment of over £240 million pounds over the past five years to 
specifically address the research and development issues that have to be tacked to 
develop a sustainable and effective e-Science e-Infrastructure. 

The Web has served scientists well. Many data sets and tools are published and 
accessed using web protocols and web browsers. Sharing data repositories and tool 
libraries has become straightforward. Widespread collaboration is possible by 
publishing a simple web page. However, standard web technology is now straining to 
meet the needs of scientists. The scale of data is one problem thanks to high 
throughput scientific methods – more data is about to be generated in the next five 
years than has been generated by mankind hitherto fore. Another problem is that 
communities can no longer be isolated silos – chemists must share with molecular 
biologists; earth scientists collaborate with physicists and so on. Yet a Web-based 
distributed information infrastructure is still a place where the scientists manually: 
search the web for content; interpret and process content by reading it and interacting 
with web pages; infer cross-links between information; integrate content from 
multiple resources and consolidate the heterogeneous information, while preserving 
the understanding of its context. Sound familiar?  

It would seem self-evident that the Semantic Web should be able to make a major 
contribution to the fabric of e-Science [1,2].  The first W3C Semantic Web for Life 
Science Workshop in 2004 attracted over 100 participants with representation from all 
the major pharmaceutical and drug discovery players, and leading scientists 
(http://www.w3.org/2004/07/swls-ws.html). Scientific communities are ideal 
incubators for the Semantic Web: they are knowledge driven, fragmented, and have 



2 C. Goble 

valuable knowledge assets whose contents need to be combined and used by many 
applications. The content is diverse, being structured (databases, electronic lab 
books), semi-structured (papers, spreadsheets) and unstructured (presentations, Web 
blogs, images). The scale necessitates that the processing be done automatically. 
There are many suppliers and consumers of knowledge and a loose-coupling between 
suppliers and consumers – information is used in unanticipated ways by knowledge 
workers unknown to those who deposited it. People naturally form communities of 
practice, and there is a culture of sharing and knowledge curation. For a Semantic 
Web to flourish, the communities it would serve needs to be willing to create and 
maintain the semantic content. Most scientific communities embrace ontologies. The 
Life Science world, for example, has the desire for collaboration, a culture of 
annotation, and service providers that might be persuaded to generate RDF or at least 
annotated XML. A semantic web is expensive to set up and maintain, and thus is only 
likely to work for communities where the added value is worthwhile and an “open 
source data” philosophy prevails. 

The Scientific Community has been inspired by the results of the Semantic Web 
initiative already. The inferencing capabilities of OWL have been shown to aid the 
building of large and sophisticated ontologies such as The Gene Ontology 
(http://www.geneontology.org) and BioPAX (http://www.biopax.org/). The self-
describing nature of RDF and OWL models enables flexible descriptions for data 
collections, suiting those whose schemas may evolve and change, or whose data types 
are hard to fix, like knowledge bases of scientific hypotheses, provenance records of 
in silico experiments or publication collections [3]. These are examples where the 
semantic technologies have been adopted by scientific application. Genuine 
“Semantic WEB” examples, with the emphasis on Web, are also starting to appear. 
SciFOAF builds a FOAF community mined from the analysis of authors and 
publications over PubMed (http://www.urbigene.com/foaf/). Scientific publishers like 
the Institute of Physics (http://syndication.iop.org/), publish RSS feeds in RDF using 
standard RSS, Dublin Core and PRISM RDF vocabularies. The Uniprot protein 
sequence database has an experimental publication of results in RDF (http://www.isb-
sib.ch/~ejain/rdf/). YeastHub [4] converts the outputs of a variety of databases into 
RDF and combines them in a warehouse built over a native RDF data store. 
BioDASH (http://www.w3.org/2005/04/swls/BioDash/Demo/) is an experimental 
Drug Development Dashboard that uses RDF and OWL to associate disease, 
compounds, drug progression stages, molecular biology, and pathway knowledge for 
a team of users. Correspondences are not necessarily obvious to detect, requiring 
specific rules. Semantic technologies are being used to assist in the configuration and 
operation of e-Science middleware such as the Grid [6]. These examples should be an 
inspiration to the Semantic Web community. 

However, there is also irritation. There are some problems with the expressivity of 
OWL for Life Science, Chemical and Clinical ontologies. The mechanisms for trust, 
security, and context are important for intellectual property, provenance tracing, 
accountability and security, as well as untangling contradictions or weighting support 
for an assertion; yet these are immature or missing. Performance over medium-large 
RDF datasets is disappointing – the CombeChem combinatorial chemistry project 
generated 80 million triples trivially and broke most of the triple stores it tried 
(http://www.combechem.org). There is poor support for grouping RDF statements, 



 Using the Semantic Web for e-Science: Inspiration, Incubation, Irritation 3 

yet this is fundamental. Semantic web purists claim that the Life Science Identifier 
[5], for example, is unnecessary, although these critics seem not to have actually 
developed any applications for life scientists. Sometimes there is irritation that the 
wrong emphasis is being placed on what is important and what is not by the 
technologists, leading to a communication failure between those for whom the 
Semantic Web is a means to an end and those for whom it is the end [7]. 

The Web was developed to serve a highly motivated community with an 
application and a generous spirit–High Energy Physics. The Semantic Web would 
also benefit from the nursery of e-Science. In my talk I explore this opportunity, the 
mutual benefits, give some pioneering examples, and highlight some current problems 
and concerns: inspiration, incubation, and irritation.  

References 

[1] James Hendler Science and the Semantic Web Science 299: 520-521, 2003 
[2] Eric Neumann A Life Science Semantic Web: Are We There Yet? Sci. STKE, Vol. 2005, 

Issue 283, 10 May 2005 
[3] Jun Zhao, Chris Wroe, Carole Goble, Robert Stevens, Dennis Quan, Mark Greenwood, 

Using Semantic Web Technologies for Representing e-Science Provenance in Proc 3rd 
International Semantic Web Conference ISWC2004, Hiroshima, Japan, 9-11 Nov 2004, 
Springer LNCS 3298 

[4] Cheung K.H., Yip K.Y., Smith A., deKnikker R., Masiar A., Gerstein M. YeastHub: a 
semantic web use case for integrating data in the life sciences domain (2005) 
Bioinformatics 21 Suppl 1: i85-i96. 

[5] Clark T., Martin S., Liefeld T. Globally Distributed Object Identification for Biological 
Knowledgebases Briefings in Bioinformatics 5.1:59-70, March 1, 2004.  

[6] Goble CA, De Roure D, Shadbolt NR and Fernandes AAA Enhancing Services and 
Applications with Knowledge and Semantics in The Grid: Blueprint for a New Computing 
Infrastructure Second Edition (eds. I Foster and C Kesselman), Morgan Kaufman 2003 

[7] Phillip Lord, Sean Bechhofer, Mark Wilkinson, Gary Schiltz, Damian Gessler, Carole 
Goble, Lincoln Stein, Duncan Hull. Applying semantic web services to bioinformatics: 
Experiences gained, lessons learnt. in Proc 3rd International Semantic Web Conference 
ISWC2004, Hiroshima, Japan, 9-11 Nov 2004 , Springer LNCS 3298 



Semantic Acceleration Helping Realize the
Semantic Web Vision or “The Practical Web”

Alfred Z. Spector

Vice President of Strategy and Technology,
IBM Software Group

Abstract. The Semantic Web envisions a future where applications
(computer programs) can make sense and therefore more productive use
of all the information on the web by assigning common “meaning” to
the millions of terms and phrases used in billions of documents. AI and
knowledge representation must rise to the occasion and work with de-
centralized representations, imprecision and incompleteness. Standard
web-based representations are an essential enabler and we have made
good progress in their design. But we still rely on humans to assign se-
mantics and here there is a big leap of faith: The World Wide Web has
grown at startling rates because humans are prolific at producing enor-
mous volumes of unstructured information, that is, information without
explicit semantics; on the other hand navigating this mass of information
has proven to be both possible and profitable to the point that there is a
$6 B search advertising industry. It’s is not practical to expect the same
will automatically happen for semantically enriched content. And yet we
need semantics to better leverage the huge value on the web.

The Practical Web is about confronting this challenge. Its about re-
alizing that we will need to automate the assignment of semantics to
unstructured content to ultimately realize the vision of the Semantic
Web. If well done the results will be synergistic with the motors of web
expansion: user value and commercial value.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, p. 4, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Semantic Web Public Policy Challenges:
Privacy, Provenance, Property and Personhood

Daniel J. Weitzner

Co-director, MIT Decentralized Information Group (DIG),
Technology and Society Domain Lead, World Wide Web Consortium (W3C)

http://www.w3.org/People/Weitzner.html

Abstract. The growing inferencing and knowledge linking power of the
Semantic Web will, we all hope, make the world a better place: enrich
democratic discourse, support more rapid scientific discovery, enable new
forms of personal communication and culture, and generally enhance crit-
ical analysis of information. However, with this greater inferencing power
comes daunting social and public policy questions that must be faced as
first class technical design challenges, not just as issues to be resolved
in courts and legislatures. How will we maintain fundamental privacy
values in the face of inferencing and searching power that can systemat-
ically uncover sensitive facts about us even has we try to keep such data
secret? Today’s Web has enabled a departure from traditional editorial
control and historically-trusted information sources. Will attention to
provenance on the Semantic Web enable us to develop new mechanisms
for assessing the reliability of information? What new challenges to al-
ready frayed intellectual property regimes will the Semantic Web bring?
Finally, how will we assert and represent personal identity on the Seman-
tic Web? At this early stage of the development of the Semantic Web, it’s
hard enough to have problems in focus, much less solutions. However, we
believe that transparent reasoning and accountability mechanisms will
play a critical role in enabling systems and services built on the Semantic
Web to be more responsive to social and policy needs.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, p. 5, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Constructing Complex Semantic Mappings
Between XML Data and Ontologies

Yuan An1, Alex Borgida2, and John Mylopoulos1

1 University of Toronto, Canada
{yuana, jm}@cs.toronto.edu

2 Rutgers University, USA
borgida@cs.rutgers.edu

Abstract. Much data is published on the Web in XML format satisfy-
ing schemas, and to make the Semantic Web a reality, such data needs
to be interpreted with respect to ontologies. Interpretation is achieved
through a semantic mapping between the XML schema and the ontology.
We present work on the heuristic construction of complex such semantic
mappings, when given an initial set of simple correspondences from XML
schema attributes to datatype properties in the ontology. To accomplish
this, we first offer a mapping formalism to capture the semantics of XML
schemas. Second, we present our heuristic mapping construction algo-
rithm. Finally, we show through an empirical study that considerable
effort can be saved when constructing complex mappings by using our
prototype tool.

1 Introduction

An important component of the Semantic Web vision is the annotation, using
formal ontologies, of material available on the Web. Semi-structured data, pub-
lished in XML and satisfying patterns expressed in DTD or XML Schema form
an important subclass of such material. In this case, the annotation can be ex-
pressed in a formal way, through a semantic mapping connecting parts of the
schema with expressions over the ontology. For example, [1,11] essentially con-
nect paths in XML to chains of properties in an ontology. Such mappings have
already found interesting applications in areas such as data integration as well
as peer-to-peer data management systems [7].

Mappings from database schemas to ontologies could be as simple as value
correspondences between single elements or as complex as logic formulas. In
most applications, such as information integration, complex logic formulas are
needed. Until now, it has been assumed that humans specify these complex
mapping formulas — a highly complex, time-consuming and error-prone task.
In this paper, we propose a tool that assists users in the construction of complex
mapping formulas between XML schemas and OWL ontologies, expressed in a
subset of First Order Logic.

Inspired by the success of the Clio tool [14,15], our tool takes three inputs:
an ontology, an XML schema (actually, its unfolding into tree structures that

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 6–20, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Constructing Complex Semantic Mappings 7

we will call element trees), and simple correspondences between XML attributes
and ontology datatype properties, of the kind possibly generated by already
existing tools (e.g., [4,12,13]). The output is a ranked list of complex formulas
representing semantic mappings of the kind described earlier.

In short, the main contributions of this work are as follows: (i) we propose
a mapping formalism to capture the semantics of XML schemas based on tree-
pattern formulas [3]; (ii) we propose a heuristic algorithm for finding semantic
mappings, which are akin to a tree connection embedded in the ontology; (iii)
we enhance the algorithm by taking into account information about (a) XML
Schema features such as occurrence constraints, key and keyref definitions, (b)
cardinality constraints in the ontology, and (c) XML document design guidelines
under the hypothesis that an explicit or implicit ontology existed during the
process of XML document design; (iv) we adopt the accuracy metric of schema
matching [13] and evaluate the tool with a number of experiments.

The rest of the paper is organized as follows. Section 2 discusses related work,
while Section 3 presents formal notations used later on. Section 4 describes some
principles, as well as the mapping construction algorithm. Section 5 reports on
empirical studies and Section 6 discusses how to refine the results by reasoning
about ontologies. Finally, Section 7 summarizes the results of this work and
suggests future directions.

2 Related Work

Much research has focused on converting and storing XML data into relational
databases [16]. It is natural to ask whether we could utilize the mapping al-
gorithm we have developed in [2] – for discovering mappings from relational
schemas to ontologies – by first converting XML DTDs/schemas into relational
tables. Unfortunately, this approach does not work. Among others, the algo-
rithms that generate a relational schema from an XML DTD use backlinks and
system generated ids in order to record the nested structure, and these confuse
the algorithms in [2], which rely heavily on key and foreign key information.

The schema mapping tool Clio [14,15] discovers formal queries describing
how target schemas can be populated with data from source schemas, given sets
of simple value correspondences. The present work can be viewed as extending
Clio to the case when the target schema is a ontology treated as a relational
schema consisting of unary and binary tables. However, as argued in [2], the chase
algorithm of Clio would not produce the desired mappings due to several reasons:
(i) the chase only follows nested referential constraints along one direction, while
the intended meaning of an XML element tree may follow a binary relationship
along either direction (see also Section 4.1); (ii) Clio does not explore occurrence
constraints in the XML schema. These constraints carry important semantic
information in searching for “reasonable” connections in the ontology.

The Xyleme [5] project is a comprehensive XML data integration system
which includes an automatic mapping generation component. A mapping rule
in terms of a pair of paths in two XML data sources is generated based on term



8 Y. An, A. Borgida, and J. Mylopoulos

matching and structural, context-based constraints. Specifically, terms of paths
are first matched syntactically and semantically. Then the structural information
is exploited. Our work differs from it significantly in that we propose to discover
the mappings between tree structures in XML data and that in ontologies. The
discovery is guided by a forward engineering process.

The problem of reverse engineering is to extract a conceptual schema (UML
diagram, for example) from an XML DTD/schema [8]. The major difference be-
tween reverse engineering and our work is that we are given an existing ontology,
and want to interpret the XML data in terms of it, whereas reverse engineering
aims to construct a new one.

Finally, Schema Matching [4,12,13] identifies semantic relations between
schema elements based on their names, data types, constraints, and structures.
The primary goal is to find the one-one simple correspondences which are part
of the input for our mapping discovery algorithm.

3 Formal Preliminaries

An OWL ontology consists of classes (unary predicates over individuals), object
properties (binary predicates relating individuals), and datatype properties (bi-
nary predicates relating individuals with values). Classes are organized in terms
of a subClassOf/ISA hierarchy. Object properties and their inverses are subject
to cardinality restrictions; the ones used here are lower bound of 1 (marking total
relationships), and upper bound of 1 (called functional relationships). We shall
represent a given ontology using a directed graph, which has class nodes labeled
with class names C, and edges labeled with object properties p. (Sometimes,
when we speak class C, we may mean its corresponding node in the ontology
graph.) Furthermore, for each datatype property f of class C, we create a sep-
arate attribute node Nf,C labeled f and an edge labeled f too from C to Nf,C

in the graph. We propose to have edge p from C to B, written in the text as
C -- p -- B , to represent that p has domain class C and range class B. (If

the relationship is functional, we write C -- p -->- B .) We may also connect
C to B by edge labeled p if we find a restriction stating that each instance of
C is related to some (all) instances of B by p. For the sake of space limitation,
graphical examples of ontologies (see [2]) are omitted.

For our purpose, we require that each XML document be described by an
XML schema consisting of a set of element and attribute type definitions. Specif-
ically, we assume the following countably infinite disjoint sets: Ele of element
names, Att of attribute names, and Dom of simple type names including the
built-in XML schema datatypes. Attribute names are preceded by a ”@” to dis-
tinguish them from element names. Given finite sets E ⊂Ele and A ⊂Att, an
XML schema over (E, A) specifies the type of each element � in E, the attributes
that � has, and the datatype of each attribute in A. Specifically, an element type τ
is defined by the grammar τ ::= ε|Sequence[�1 : τ1, ...�n : τn]|Choice[�1 : τ1, .., �n :
τn], where �1, .., �n ∈ E, ε is for the empty type, and Sequence and Choice
are complex types. Each element associates an occurrence constraint with two



Constructing Complex Semantic Mappings 9

values: minOccurs indicating the minimum occurrence and maxOccurs indicat-
ing the maximum occurrence. (We mark with * multiply occurring elements.)
The set of attributes of an element � ∈ E is defined by the function ρ : E → 2A;
and the function κ : A →Dom specifies the datatypes of attributes in A. For
brevity, in this paper we do not consider simple type elements (corresponding
to DTD’s PCDATA), assuming instead that they have been represented using
attributes. We also assume the Unique Name Assumption (UNA) for attributes,
i.e., for any two elements �i, �j ∈ E, ρ(�i) ∩ ρ(�j) = ∅.

For example, an XML schema describing articles and authors has the follow-
ing specification:
E ={article, author, contactauthor, name},
A ={@title, @id, @authorid, @fn, @ln},
τ(article) = Sequence[(author)∗ :τ(author), contactauthor:ε],
τ(author) = Sequence[name:ε],
ρ(article) = (@title), ρ(author) = (@id), ρ(contactauthor) = (@authorid),
ρ(name) = (@fn, @ln), κ(@title) = String, κ(@authorid) = Integer, κ(@id)=
Integer, κ(@fn)= String, κ(@ln)= String, and the element article is the root.
Note that for the article element, title and contactauthor only occur once, while
author may occur many times. For the author element, name occurs once.

The XML Schema Language is an expressive language that can also express
key and keyref constraints.

An XML schema can be viewed as a directed node-labeled graph called
schema graph consisting of the following edges: parent-child edges e = � → �i for
elements �, �i ∈ E such that if τ(�)= Sequence[...�i : τi...] or Choice[...�i : τi...];
and attribute edges e = �→ α for element � ∈ E and attribute α ∈ A such that
α ∈ ρ(�). For a parent-child edge e = � → �i, if the maxOccurs constraint of �i

is 1, we show the edge to be functional, drawn as � ⇒ �i. Since attributes are
single-valued, we always draw an attribute edge as � ⇒ α. The schema graph
corresponding to the XML schema above is shown in Figure 1.

Elements and attributes as nodes
article

author @title

contactauthor

@authorid

@id
name

@fn @ln

Fig. 1. The Schema Graph

in a schema graph are located by path
expressions. To avoid regular expres-
sions, we will use a simple path ex-
pression Q = ε|�.Q. In order to do
this in a general fashion, we introduce
the notion of element tree.

An element tree represents an
XML structure whose semantics we
are seeking. A semantic mapping
from the entire XML schema to an
ontology consists of a set of mapping formulas each of which is from an ele-
ment tree to a conjunctive formulas in the ontology. An element tree can be
constructed for each element by doing a depth first search (DFS). During the
DFS, shared attributes are renamed to maintain the UNA, and cycles are un-
folded. For the schema graph shown in Figure 2 (a), the element trees for the



10 Y. An, A. Borgida, and J. Mylopoulos

controls

department project

@did
@pid

employee

@eid manager

@mid

controls

department project

@did
@pid

employee

@eid1 manager

@mid1

employee

manager

@mid2

@eid2

employee

manager

@mid

@eid1

employee

@eid2

manager

@mid1
employee

@eid manager

@mid2

(a) (b) (c) (d)

Fig. 2. Schema Graph and Element Trees

elements controls, employee, and manager are shown in Figure 2 (b), (c), (d).
For simplicity, we specify each element tree as rooted in the element from which
the tree is constructed.

Now we turn to the mapping language describing XML schemas in terms of
ontologies. On the XML side, we start with attribute formulas, which are specified
by the syntax α ::= �|�(@a1 = x1, .., @an = xn), where � ∈ E, @a1, .., @an ∈ A,
and x1, . . . , xn are distinct variables. Tree formulas over (E, A) are defined by
ϕ ::= α|α[ϕ1, .., ϕn], where α are attribute formulas over (E, A). For example,
employee(@eid1 = x1)[manager(@mid = x2)[employee(@eid2 = x3)]]
is the tree formula representing the element tree in Figure 2 (c).

On the ontology side, we use conjunctive formulas, which treat concepts and
properties as unary and binary predicates respectively.

A mapping formula between an element tree and an ontology then has the
form Φ(X) → Ψ(X, Y ), where Φ(X) is a tree formula in the XML schema and
Ψ(X, Y ) is a conjunctive formula in the ontology. For example, given an ontology
containing the class Employee, with a datatype property hasId, and a functional
property hasManager (whose inverse is manages, which is not functional), the fol-
lowing mapping formula ascribes a semantics of the element tree in Figure 2 (c):
employee(@eid1 = x1)[

manager (@mid = x2)[
employee (@eid2=x3) ]] →

Employee(Y1),hasId(Y1, x1), Employee(Y2),hasId(Y2, x2),
hasManager(Y1, Y2), Employee(Y3),hasId(Y3, x3),manages(Y2, Y3).
Since we maintain the UNA assumption, we can drop the variable names xis,
and just use attribute names in the formula. The variables Yjs are implicitly
existentially quantified and refer to individuals in the ontology.

Given an element tree T and an ontology O, a correspondence P.@c�C.f
will relate the attribute ”@c” of the element E reached by the simple path P
to the datatype property f of the class C in the ontology. A simple path P is
always relative to the root of the tree. For example, we can specify the following
correspondences for the element tree in Figure 2 (c):
employee.@eid1�Employee.hasId,
employee.manager.@mid�Employee.hasId.
employee.manager.employee.@eid2�Employee.hasId



Constructing Complex Semantic Mappings 11

Since our algorithm deals with ontology graphs, formally a correspondence L will
be a mathematical relation L(P, @c, C, f, Nf,C), where the first two arguments
determine unique values for the last three.

4 Mapping Construction Algorithm

Before presenting the algorithm, we first explain some principles underlying it.

4.1 Principles

As in the relational case [2], we start from a methodology presented in the
literature [6,9] for designing XML DTDs/schemas from an ontology/conceptual
model (CM). As with relational schemas, there is a notion of XML normal form
(XNF) for evaluating the absence of redundancies and update anomalies in XML
schemas [6]. The methodology in [6] claims to develop XNF-compliant XML
schemas from CMs. It turns out that these “good” XML schemas are trees
embedded in the graph representations of the CMs. Using the term “element
tree” instead of “schema tree” in [6], we briefly describe the algorithm of [6]
(called EM-algorithm).

Example 1. For a “binary and canonical hypergraph” H (viz. [6]), representing
a CM, EM-algorithm derives an element tree T such that T is in XNF and every
path of T reflects a sequence of some connected edges in H. For example, starting
from the Department node of the ontology in Figure 3 the following element
tree (omitting attributes) T is obtained: Department[(FacultyMember[(Hobby)*,
(GradStudent[Program, (Hobby)*])*])*], where we use [ ] to indicate hierarchy
and ( )* to indicate the multiple occurrences of a child element (or non-functional
edges) in element trees.

In essence, EM-algorithm recur-
Faculty
Member

Department

ProgramGrad Student

Hobby

Fig. 3. Sample CM/ontology graph

sively constructs the element tree T
as follows: it starts from a concept
node N in CM, creates tree T rooted
in a node R corresponding to N , and
constructs the direct subtrees below R
by following nodes and edges
connected to N in CM. Finally, a
largest hierarchical structure embedded within CM is identified and an edge of T
reflects a semantic connection in the CM. �

A binary and canonical CM can naturally be viewed as an OWL ontology:
concepts are classes, binary relationships are object properties, and attributes
are datatype properties. So, given an XNF-compliant element tree T , we may
assume that there is a semantic tree S embedded in an ontology graph such that
S is isomorphic to T . If the correspondences between elements and classes were
given, we should be able to identify S in terms of the ontology.

Example 2. Suppose elements in the element tree T of Example 1 correspond to
the classes (nodes) in Figure 3 by their names. Then we can recover the semantics



12 Y. An, A. Borgida, and J. Mylopoulos

of T recursively starting from the bottom, e.g., for the subtree GradStudent[
Program, (Hobby)* ], because the edge GradStudent ⇒ Program is functional
and GradStudent → Hobby is non-functional, and GradStudent is the root,
we look for functional edges from GradStudent to Program and 1 : N or M :
N edges from GradStudent to Hobby in the ontology graph. Likewise, we can
recover the edges from FacultyMember to GradStudent and Hobby. Finally,
the 1 : N edge between Department and FacultyMember is recovered. �

In an element tree T , attributes are the leaves of T and correspond to the
datatype properties of classes in an ontology. There has been much research
on schema matching tools [4,12,13] which focus on generating these kinds of
correspondences automatically. Given the correspondences from XML attributes
to datatype properties of an ontology, we expect to identify the root and the
remaining nodes of the semantics tree S and connect them meaningfully.

Example 3. Suppose the following correspondences:
X :GradStudent.@ln�O:GradStudent.lastname,
X :GradStudent.@fn � O:GradStudent.firstname,
X :GradStudent.Program.@pname�O:Program.name,
are for the element tree GradStudent(@ln, @fn)[Program(@pname)], where
we use prefixes X and O to distinguish terms in the element tree and the ontology.
Then we could identify the class O:GradStudent as the root of the semantic tree
and recover it as the edge O:GradStudent -->- O:Program. �

The first principle of our mapping construction algorithm is to identify the
root of a semantic tree and to construct the tree by connecting the root to the
rest of nodes in the ontology graph using edges having compatible cardinality
constraints with edges in the element tree.

However, identifying the root of the semantic tree is the major obstacle. The
following example illustrates the problem for an XML schema which is not XNF
compliant. Such a schema can be easily encountered in reality.

Example 4. for the element tree
GradStudent[Name(@ln, @fn), Program(@pname)]
with the correspondences
X :GradStudent.Name.@ln�O:GradStudent.lastname,
X :GradStudent.Name.@fn �O:GradStudent.firstname,
X :GradStudent.Program.@pname�O:Program.name,
the element X :Name corresponds to O:GradStudent by its attributes and the
element X :Program corresponds to O:Program. Further, both X :Name and
X :Program occur once and are at the same level. Then the question is which one
is the root of the semantic tree? O:GradStudent or O:Program? Since the order
of nodes on the same level of the element tree does not matter, both are potential
roots. Therefore, the mapping algorithm should recover the functional edges from
O:GradStudent to O:Program as well as from O:Program to O:GradStudent,
if any. �

This leads to the second principle of our algorithm: for each class C in the
ontology graph such that C corresponds to a child element E of the root element



Constructing Complex Semantic Mappings 13

R in the element tree T and R ⇒ E is functional, C is a potential root of the
semantic tree S. Treating an attribute as a subtree, the mapping construction
algorithm will recursively recover the semantic tree S in a bottom-up fashion.

Unfortunately, not every functional edge from a parent element to a child
element represents a functional relationship. Specifically, some element tags
are actually the collection tags containing a set of instances of the child el-
ements. For example, for the element tree: GradStudent[Name(@ln, @fn),
Hobbies[(Hobby(@title))*]] with the correspondences
X :GradStudent.Name.@ln�O:GradStudent.lastname,
X :GradStudent.Name.@fn �O:GradStudent.firstname,
X :GradStudent.Hobbies.Hobby.@title�O:Hobby.title,
the element tag X :Hobbies represents a collection of hobbies of a graduate stu-
dent. Although the edge X :GradStudent ⇒ X :Hobbies is functional, X :Hobbies
→ X :Hobby is non-functional. Therefore, when O:Hobby is identified as the root
of the semantic tree for the subtree Hobbies[(Hobby(@title))*], O:Hobby should
not be considered as a potential root of the semantic tree for the entire element
tree. Eliminating classes corresponding to collection tags from the set of the
potential roots is our third principle.

In most cases, we try to discover the semantic mapping between an XML
schema and an ontology such that they were developed independently. In such
cases, we may not be able to find an isomorphic semantic tree S embedded in the
ontology graph, or we may find an isomorphic tree that is not the intended one,
for a given element tree. For example, for the element tree City( @cityName)[
Country (@countryName)] and a ontology with a path City -- locatedIn

-->- State -- locatedIn -->- Country (recall -->- indicates a functional
property), the intended semantics is the path rather than a single edge. The
fourth principle for discovering mappings is to find shortest paths in the ontology
graph instead of single edges, where the semantics of the paths is consistent with
the semantics of the edges in the element tree in terms of cardinality constraints.

Even though we could eliminate some collection tags from the set of potential
roots to reduce the number of possible semantic trees, there are still too many
possibilities if the ontology graph is large. In order to further restrict the set of
potential roots, we can make use of key and keyref definitions in XML schemas.

Example 5. For the element tree
Article[T itle(@title), Publisher(@name),
ContactAuthor(@contact), (Author(@id))∗]
if the attribute @title is defined as the key for Article, then we should only choose
the class corresponding to @title as the root of the semantic tree, eliminating the
classes corresponding to @name and @contact (picked by the second principle).
Further, if @contact is defined as a keyref referencing some key, we also can
eliminate the class corresponding to @contact. �

So our fifth principle is to use key and keyref definitions to restrict the set
of potential roots.



14 Y. An, A. Borgida, and J. Mylopoulos

Reified Relationships. To represent n-ary relationships in OWL ontologies,
one needs to use classes, called reified relationship (classes). For example, an on-
tology may have class O:Presentation connected with functional roles to classes
O:Author, O:Paper, and O:Session, indicating participants. It is desirable to
recover reified relationships and their role connections from an XML schema.
Suppose the element tree Presentation[Presenter(@author), Paper(@title), Ses-
sion(@eventId)] represents the above ternary relationship. Then, in the ontology,
the root of the semantic tree is the reified relationship class O:Presentation,
rather than any one of the three classes which are role fillers. The sixth principle
then is to look for reified relationships for element trees with only functional
edges from a parent to its children that correspond to separate classes1.
ISA. In [6], ISA relationships are eliminated by collapsing superclasses into their
subclasses, or vice versa. If a superclass is collapsed into subclasses, correspon-
dences can be used to distinguish the nodes in the ontology. If subclasses are
collapsed into their superclass, then we treat the ISA edges as special functional
edges with cardinality constraints 0 : 1 and 1 : 1. The last principle is then to
follow ISA edges whenever we need to construct a functional path2.

4.2 Algorithm

First, to get a better sense of what we are aiming for, we present the
encodeTree(S, L) procedure, which translates an ontology subtree S into a con-
junctive formula, taking into account the correspondences L.

Function encodeTree(S, L)
Input subtree S of ontology graph, correspondences L from attributes of element
tree to datatype properties of class nodes in S.
Output variable name generated for root of S, and conjunctive formula for the
tree.
Steps:

1. Suppose N is the root of S, let Ψ = {}.
2. If N is an attribute node with label f , find @d such that L( , @d, , f, N) =

true, return (@d, true).
3. If N is a class node with label C, then introduce new variable Y ; add conjoint

C(Y ) to Ψ ; for each edge pi from N to Ni:

(a) let Si be the subtree rooted at Ni;
(b) let (vi, φi(Zi))=encodeTree(Si, L);
(c) add conjunct pi(Y, vi) ∧ φi(Zi) to Ψ ;

4. return (Y, Ψ).

1 If a parent functionally connects to only two children, then it may represent an M:N
binary relationship. So recover it as well.

2 Thus, ISA is taken care of in the forthcoming algorithm by proper treatment of
functional path.



Constructing Complex Semantic Mappings 15

The following procedure constructTree(T, L) generates the subtree of the on-
tology graph for the element tree after appropriately replicating nodes3 in the
ontology graph.

Function constructTree(T, L)
Input an element tree T , an ontology graph, and correspondence L from at-
tributes in T to datatype properties of class nodes in the ontology graph.
Output set of (subtree S, root R, collectionTag) triples, where collectionTag
is a boolean value indicating whether the root corresponds to a collection tag.
Steps:
1. Suppose N is the root of tree T .
2. If N is an attribute, then find L( , N, , , R) = true; return ({R},R, false).

/*the base case for leaves.*/
3. If N is an element having n edges {e1, .., en} pointing to n nodes {N1, .., Nn},

let Ti be the subtree rooted at Ni,
then compute (Si,Ri, collectionTagi)= constructTree(Ti, L) for i = 1, .., n;
(a) If n = 1 and e1 is non-functional, return (S1,R1, true);/*N probably is a

collection tag representing a set of instances each of which is an instance
of the N1 element.*/

(b) Else if n = 1 and e1 is functional return (S1,R1,collectionTag1).
(c) Else if R1=R2=...=Rn, then return (combine(S1, .., Sn), R1, false)4.
(d) Else let F={Rj1 , .., Rjm | s.t. ejk

is functional and collectionTagjk
=

false for k = 1, .., m, jk∈{1, ..., n}} and NF={Ri1 , .., Rih
| s.t. eik

is
non-functional, or eik

is functional and collectionTagik
= true for k =

1, .., h, ik∈{1, ..., n}}, let ans = {}, /*separate nodes according to their
connection types to N .*/
i. Try to limit the number of nodes in F by considering the following

cases: 1) keep the nodes corresponding to key elements located on
the highest level; 2) keep those nodes which are not corresponded by
keyref elements.

ii. If NF = ∅, find a reified relationship concept R with m roles rj1, ..,rjm

pointing to nodes in F , let S= combine({rjk
}, {Sjk

}) for k = 1, .., m;
let ans= ans∪(S, R, false). If R does not exist and m = 2, find
a non-functional shortest path p connecting the two nodes Rj1 , Rj2

in F ; let S= combine(p, Sj1 , Sj2); let ans= ans∪(S, Rj1 , false).
/*N probably represents an n-ary relationship or many-many binary
relationship (footnote 3 of the sixth principle.)*/

iii. Else for each Rjk
∈ F k = 1, .., m, find a shortest functional path pjk

from Rjk
to each Rjt ∈ F−Rjk

for t = 1, .., k−1, k+1, .., m; and find
a shortest non-functional path qir from Rjk

to each Rir ∈ NF for r =
1, .., h; if pjk

and qir exist, let S= combine({pjk
}, {qir},{S1, .., Sn});

let ans=ans∪(S,Rjk
,false). /*pick an root and connect it to other

nodes according to their connection types.*/
3 Replications are needed when multiple attributes correspond to the same datatype

property. See [2] for details.
4 Function combine merges edges of trees into a larger tree.



16 Y. An, A. Borgida, and J. Mylopoulos

iv. If ans 
= ∅, return ans; else find a minimum Steiner tree5 S connect-
ing R1, .., Rn, return (S,R1, false). /*the default action is to find a
shortest Steiner tree.*/

It is likely that the algorithm will return too many results. Therefore, at the
final stage we set a threshold Nthresh for limiting the number of final results
presented. In the following experimental section, this threshold was set to 10.

5 Mapping Construction Experiences

We have implemented the mapping algorithm and conducted a set of experiments
to evaluate its effectiveness and usefulness.

Measures for mapping quality and accuracy. We first attempt to use the
notions of precision and recall for the evaluation. Let R be the number of correct
mapping formulas of an XML schema, let I be the number of correctly identified
mapping formulas by the algorithm, and let P be the total number of mapping
formulas returned. The two quantities are computed as: precision = I/P and
recall = I/R. Please note that for a single input element tree T , which has a
single correct mapping formula, the algorithm either produces the formula or
not. So the recall for T is either 0 or 1, but the precision may vary according to
the number of output formulas. For measuring the overall quality of the mapping
results, we computed the average precision and recall for all tested element trees
of an XML schema.

However, precision and recall alone cannot tell us how useful the algorithm is
to users. The purpose of our tool is to assist users in the process of constructing
complex mappings, so that productivity is enhanced. Consider the case when
only one semantic mapping is returned. Even if the tool did not find the exactly
right one, it could still be useful if the formula is accurate enough so that some
labor is saved. To try to measure this, we adopt the accuracy metric for schema
matching [13]. Consider the mapping formula Φ(X)→Ψ(X, Y ) with the formula
Φ(X) encoding an element tree. The formula Ψ(X, Y ) encodes a semantic tree
S = (V, E) by using a set of unary predicates for nodes in V , a set of binary
predicates for edges in E, and a set of variables, Y , assigned to each node (there
are predicates and variables for datatype properties as well). For a given element
tree T , writing the complex mapping formula consists of identifying the semantic
tree and encoding it into a conjunctive formula (which could be treated as a set
of atomic predicates). Let Ψ1 = {a1(Z1), a2(Z2), .., am(Zm)} encode a tree S1,
let Ψ2 = {b1(Y 1), b2(Y 2), .., bn(Y n)} encode a tree S2. Let D = Ψ2\Ψ1 = {bi(Y i)|
s.t. for a given partial one-one function f : Y → Z representing the mapping from
nodes of S2 to nodes of S1, bi(f(Y i)) ∈ Ψ1}. One can easily identify the mapping
f : Y → Z by comparing the two trees S2 and S1 (recall an ontology graph
contains class nodes as well as attribute nodes representing datatype properties)
so we consider that it comes for free. Let c = |D|. Suppose Ψ1 be the correct
5 A Steiner tree on R1, .., Rn is a spanning tree that may contain nodes other than

R1, .., Rn.



Constructing Complex Semantic Mappings 17

formula and Ψ2 be the formula returned by the tool for an element tree. To reach
the correct formula Ψ1 from the formula Ψ2, one needs to delete n− c predicates
from Ψ2 and add m− c predicates to Ψ2. On the other hand, if the user creates
the formula from scratch, m additions are needed. Let us assume that additions
and deletions need the same amount of effort. However, browsing the ontology
for correcting formula Ψ2 to formula Ψ1 is different from creating the formula Ψ1

from scratch. So let α be a cost factor for browsing the ontology for correcting
a formula, and let β be a factor for creating a formula. We define the accuracy
or labor savings of the tool as labor savings = 1 − α[(n−c)+(m−c)]

βm . Intuitively,
α < β, but for a worst-case bound let us assume α = β in this study. Notice
that in a perfect situation, m = n = c and labor savings = 1.

Schemas and ontologies. To evaluate the tool, we collected 9 XML schemas
varying in size and nested structure. The 9 schemas come from 4 application do-
mains, and 4 publicly available domain ontologies were obtained from the Web
and literature. Table 1 shows the characteristics of the schemas and the ontolo-
gies; the column heads are self-explanatory. The company schema and ontology
are obtained from [9] in order to test the principles of the mapping construc-
tion. The conference schema is obtained from [10]. UT DB is the schema used
for describing the information of the database group in University of Toronto.
SigmodRecord is the schema for SIGMOD record. The rest of the schemas are
obtained from the Clio test suite (http://www.cs.toronto.edu/db/Clio). The KA
ontology, CIA factbook, and the Bibliographic-Data are all available on the Web.
We have published the schemas and ontologies on our website along with some
sample mapping results at the following URL:
http://www.cs.toronto.edu/ ˜yuana/research /maponto/testData.html.

Experimental results. Our experiments are conducted on a Dell desktop with
a 1.8GHZ Intel Pentium 4 CPU and 1G memory. The first observation is the
efficiency. In terms of the execution times, we observed that the algorithm gen-
erated results on average in 1.4 seconds which is not significantly large, for our
test data.

Table 1. Characteristics of Test XML Schemas and Ontologies

XML Schema Max Depth (DFS) in # Nodes in # Attributes in Ontology # Nodes # Links

Schema Graph Schema Graph Schema Graph

Company 6 30 17 Company 18 27

Conference 5 21 12 KA 105 4396

UT DB 6 40 20 KA 105 4396

Mondial 6 214 93 CIA factbook 52 77

DBLP 1 3 132 63 Bibliographic 75 749

DBLP 2 5 29 11 Bibliographic 75 749

SigmodRecord 3 16 7 Bibliographic 75 749

Amalgam 1 3 117 101 Bibliographic 75 749

Amalgam 2 3 81 53 Bibliographic 75 749



18 Y. An, A. Borgida, and J. Mylopoulos

0
10

20
30

40

50

60
70

80
90

100

Com
pa

ny

Con
fer

en
ce

UofT
DB

Gro
up

Mon
dia

l

DBLP
1

DBLP
2

Sigm
od

Rec
or

d

Amalg
am

1

Amalg
am

2

A
vg

.P
re

ci
si

on
/R

ec
al

l(
%

)
Avg. Precision

Avg. Recall

Fig. 4. Average Recall and Precision for 9 Mapping Cases

0

20

40

60

80

100

Com
pa

ny

Con
fe

re
nc

e

Uof
T

DBGro
up

M
on

dia
l

DBLP
1

DBLP
2

Sigm
od

Rec
or

d

Am
alg

am
1

Am
alg

am
2

A
vg

.L
ab

or
S

av
in

gs
(%

)

Fig. 5. Average Labor Savings for 9 Mapping Cases

Figure 4 shows the average precision and recall measures of the 9 mapping
pairs. For each pair of schema and ontology, the average precision and recall are
computed as follows. For the element trees extracted from the schema graph, a
set of correct mapping formulas is manually created. We then apply the algo-
rithm on the element trees and ontologies to generate a set of formulas. Next
we examine each of the generated formulas to count how many are correct and
compute the average precision and recall. The overall average precision is 35%
and overall average recall is 75%. Notice that we have limited the number of
formulas returned by the tool to 10.

Finally, we evaluate the usefulness of the tool. Figure 5 shows the average
values of labor savings for the 9 mapping cases. For each mapping case, the



Constructing Complex Semantic Mappings 19

average labor savings is computed as follows. Examine each incorrect formula
returned by the algorithm and compute its labor saving value relative to the
manually created one. Take the average value of the labor savings of all incor-
rect formulas. Note that even when the correct formula was identified by the
algorithm, we still computed the labor savings for all incorrect ones to see how
useful the tool is in case only one formula was returned. The overall average
labor savings is over 80%, which is quite promising. Especially in view of the
pessimistic assumption that α = β in the labor savings formula, we take this as
evidence that the tool can greatly assist users in constructing complex mappings
between XML schemas and ontologies with a proper schema matching tool as a
front-end component.

6 Refining Mappings by Ontology Reasoning

Rich ontologies provide a new opportunity for eliminating “unreasonable” map-
pings. For example, if the ontology specifies that once a Person owns a CellPhone,
they do not rent another one, then a candidate semantic formula Person(X),
rents(X, Y ), Cell(Y ), owns(X, Z), Cell(Z) can be eliminated 6, since no ob-
jects X can satisfy it. When ontologies, including constraints such as the one
about renting/owning, are expressed in OWL, one can actually use OWL rea-
soning to detect inconsistent semantics by converting semantic trees into OWL
concepts, and then testing them for incoherence with respect to the ontology.
For example, the above formula can be translated, using an algorithm resembling
encodeTree(S,L), into the OWL concept whose abstract syntax is intersectionOf(
Person, restriction(rents someValuesFrom(Cell)), restriction(owns someValues-
From(Cell))). The ontologies we have found so far are unfortunately not suffi-
ciently rich to demonstrate the usefulness of this idea.

7 Conclusions

In this paper, we have motivated and defined the problem of constructing com-
plex semantic mappings from XML data to ontologies, given a set of simple
correspondences from XML attributes to OWL datatype properties. The prob-
lem is well-motivated by the needs to annotate XML data in terms of ontologies,
to translate XML data into ontologies, and to integrate heterogeneous XML
data on the semantic web. We have proposed a tool for semi-automatically con-
structing complex mappings for users, and we evaluated the tool on a variety of
real XML schemas and ontologies. Our experimental results suggest that quite
significant savings in human work could be achieved by the use of our tool.

Integrating our tool with schema matching tools which automatically gener-
ate schema and ontology element correspondences is an open problem to address
in the future. We also plan to develop filters for mappings by making use of in-
stance data to assist users in choosing the correct mapping among a list of
possible candidates.
6 Probably some other relationship than rents(X,Y ) needs to be used.



20 Y. An, A. Borgida, and J. Mylopoulos

Acknowledgments. We are grateful to anonymous reviewers for offering valu-
able comments, corrections, and suggestions for improvement.

References

1. B. Amann, C. Beeri, I. Fundulaki and M. Scholl. Ontology-Based Integration of
XML Web Resources. In ISWC’02.

2. Y. An, A. Borgida, and J. Mylopoulos. Inferring Complex Semantic Mappings
between Relational Tables and Ontologies from Simple Correspondences. In
ODBASE’05.

3. M. Arenas and L. Libkin. XML Data Exchange: Consistency and Query Answering.
In PODS’05, Baltimore, USA.

4. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering
Complex Semantic Matches between Database Schemas. In SIGMOD’04.

5. C. Delobel, C. Reynaud, and M. Rousset, J. Sirot, and D. Vodislav. Semantic
Integration in Xyleme: A Uniform Tree-Based Approach. Data and Knowledge
Engineering 44(2003), 267-298, 2002.

6. D. W. Embley and W. Y. Mok. Developing XML Documents with Guaranteed
“Good” Properties. In ER’01.

7. A. Halevy, Z. Ives, P. Mork, and I. Tatarinov. Piazza: Data Management Infras-
tructure for Semantic Web Applications. In WWW’03.

8. M. Jensen, T. Moller and T. Pedersen. Converting XML DTDs to UML Diagrams
for Conceptual Data Integration. Data and Knowledge Engineering 44(2003), 323-
346, 2002.

9. C. Kleiner and U. W. Lipeck. Automatic Generation of XML DTDs from Concep-
tual Database Schemas. GI Jahrestagung (1), 2001.

10. D. Lee and W. W. Chu. Constraint-Preserving Transformation from XML Docu-
ment Type Definition to Relational Schema. In ER’00.

11. L. V.S. Lakshmanan and F. Sadri. Interoperability on XML Data. In ISWC’03.
12. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching with Cupid.

In VLDB’01.
13. S. Melnik, H. Garcia-Molina and E. Rahm. Similarity Flooding: A Versatile Graph

Matching Algorithm and its Application to Schema Matching. In ICDE’02.
14. R. Miller, L. Haas, and M. Hernandez. Schema Mapping as Query Discovery. In

VLDB’01.
15. L. Popa, Y. Velegrakis, R. Miller, M. Hernandez, and R. Fagin. Translating Web

Data. In VLDB’02.
16. J. Shanmugasundaram et al. Relational Database for Querying XML Documents:

Limitations and Opportunities. In VLDB’99.



Stable Model Theory for Extended RDF
Ontologies�

Anastasia Analyti1, Grigoris Antoniou1,2,
Carlos Viegas Damásio3, and Gerd Wagner4

1 Institute of Computer Science, FORTH-ICS, Greece
{analyti, antoniou}@ics.forth.gr

2 Department of Computer Science, University of Crete, Greece
3 Centro de Inteligência Artificial, Universidade Nova de Lisboa, Portugal

cd@di.fct.unl.pt
4 Inst. of Informatics, Brandenburg Univ. of Technology at Cottbus, Germany

G.Wagner@tu-cottbus.de

Abstract. Ontologies and automated reasoning are the building blocks
of the Semantic Web initiative. Derivation rules can be included in an
ontology to define derived concepts based on base concepts. For exam-
ple, rules allow to define the extension of a class or property based on
a complex relation between the extensions of the same or other classes
and properties. On the other hand, the inclusion of negative information
both in the form of negation-as-failure and explicit negative information
is also needed to enable various forms of reasoning. In this paper, we
extend RDF graphs with weak and strong negation, as well as deriva-
tion rules. The ERDF stable model semantics of the extended framework
(Extended RDF) is defined, extending RDF(S) semantics. A distinctive
feature of our theory, which is based on partial logic, is that both truth
and falsity extensions of properties and classes are considered, allowing
for truth value gaps. Our framework supports both closed-world and
open-world reasoning through the explicit representation of the partic-
ular closed-world assumptions and the ERDF ontological categories of
total properties and total classes.

1 Introduction

The idea of the Semantic Web is to describe the meaning of web data in a way
suitable for automated reasoning. This means that descriptive data (meta-data)
in machine readable form are to be stored on the web and used for reasoning.
Due to its distributed and world-wide nature, the Web creates new problems for
knowledge representation research. In [2], the following fundamental theoretical
problems have been identified: negation and contradictions, open-world versus
closed-world assumptions, and rule systems for the Semantic Web. For the time
being, the first two issues have been circumvented by discarding the facilities to

� This research has been partially funded by European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (www.rewerse.net).

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 21–36, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



22 A. Analyti et al.

introduce them, namely negation and closed-world assumptions. Though the web
ontology language OWL [13], which is based on description logic (DL), includes a
form of classical negation through class complements, this form is limited. This
is because, to achieve decidability, classes are formed based on specific class
constructors and negation on properties is not considered. Rules constitute the
next layer over the ontology languages of the Semantic Web and, in contrast to
DL, allow arbitrary interaction of variables in the body of the rules. The widely
recognized need of having rules in the Semantic Web [10,14] has restarted the
discussion of the fundamentals of closed-world reasoning and the appropriate
mechanisms to implement it in rule systems, such as the computational concept
of negation-as-failure.

The RDF(S) recommendation [6] provides the basic constructs for defining
web ontologies and a solid ground to discuss the above issues. RDF(S) is a
special predicate logical language that is restricted to existentially quantified
conjunctions of atomic formulas, involving binary predicates only. Thus, RDF(S)
does not support negation and rules. In [18], it was argued that a database, as
a knowledge representation system, needs two kinds of negation, namely weak
negation ∼ (expressing negation-as-failure or not-truth) and strong negation ¬
(expressing explicit negative information or falsity) to be able to deal with partial
information. In [19], this point was made for the Semantic Web as a framework
for knowledge representation in general. In the present paper we make the same
point for the Semantic Web language RDF and show how it can be extended to
accommodate the two negations of partial logic [7], as well as derivation rules.
We call the extended language Extended RDF and denote it by ERDF . The
model-theoretic semantics of ERDF, called ERDF stable model semantics, is
developed based on partial logic [7].

In partial logic, relating strong and weak negation at the interpretation level
allows to distinguish four categories of properties and classes. Partial properties
are properties p that may have truth-value gaps and truth-value clashes, that is
p(x, y) is possibly neither true nor false, or both true and false. Total properties
are properties p that satisfy totalness, that is p(x, y) is true or false (but pos-
sibly both). Coherent properties are properties p that satisfy coherence, that is
p(x, y) cannot be both true and false. Classical properties are total and coherent
properties. For classical properties p, the classical logic law applies: p(x, y) is
either true or false. Partial, total, coherent, and classical classes c are defined
similarly, by replacing p(x, y) by rdf :type(x, c).

Partial logic allows also to distinguish between properties (similarly, classes)
that are completely represented in a knowledge base and those that are not.
The classification if a property is completely represented or not is up to the
owner of the knowledge base: the owner must know for which properties there is
complete information and for which there is not. Clearly, in the case of a com-
pletely represented (closed) predicate p, negation-as-failure implies falsity, and
the underlying completeness assumption is also called Closed-World Assumption
(CWA). A CWA for p is represented in our framework through the inclusion of
the derivation rule ¬p(?x, ?y) ← ∼p(?x, ?y) (for a closed class c, the correspond-



Stable Model Theory for Extended RDF Ontologies 23

ing CWA is ¬rdf :type(?x, c)← ∼rdf :type(?x, c)). In the case of an incompletely
represented (open) predicate p, negation-as-failure is not applicable and explicit
negative information has to be supplied along with ordinary (positive) informa-
tion. In particular, the inclusion of the derivation rule ¬p(?x, ?y) ← ∼p(?x, ?y)
will not affect the semantics of p. Unfortunately, neither classical logic nor Pro-
log supports this distinction between “closed” and “open” predicates. Classical
logic supports only open-world reasoning. On the contrary, Prolog supports only
closed-world reasoning, as negation-as-failure is the only negation mechanism
supported. For arguments in favor of the combination of closed and open world
reasoning in the same framework, see [1].

Specifically, in this paper:

1. We extend RDF graphs to ERDF graphs with the inclusion of strong nega-
tion, and then to ERDF ontologies (or ERDF knowledge bases) with the
inclusion of general derivation rules. ERDF graphs allow to express existen-
tial positive and negative information, whereas general derivation rules allow
inferences based on formulas built using the connectives ∼, ¬, ⊃, ∧, ∨ and
the quantifiers ∀, ∃.

2. We extend the vocabulary of RDF(S) with the terms erdf :TotalProperty
and erdf :TotalClass, representing metaclasses of total properties and total
classes, on which the open-world assumption applies.

3. We extend RDFS interpretations to ERDF interpretations including both
truth and falsity extensions for properties and classes. Then, we define co-
herent ERDF interpretations by imposing coherence on all properties. In the
developed model-theoretic semantics of ERDF, we consider only coherent
ERDF interpretations. Thus, total properties and classes become synony-
mous to classical properties and classes.

4. We extend RDF graphs to ERDF formulas that are built from positive triples
using the connectives ∼, ¬, ⊃, ∧, ∨ and the quantifiers ∀, ∃. Then, we define
ERDF entailment between two ERDF formulas, extending RDFS entailment
between RDF graphs.

5. We define the ERDF models, Herbrand interpretations, minimal Herbrand
models, and stable models of ERDF ontologies. We show that stable model
entailment on ERDF ontologies extends RDFS entailment on RDF graphs.

6. We show that if all properties are total, classical (boolean) Herbrand model
reasoning and stable model reasoning coincide. In this case, we make an
open-world assumption for all properties and classes.

The rest of the paper is organized as follows: In Section 2, we extend RDF
graphs to ERDF graphs and ERDF formulas. Section 3 defines ERDF interpre-
tations and ERDF entailment. We show that ERDF entailment extends RDFS
entailment. In Section 4, we define ERDF ontologies and the Herbrand models of
an ERDF ontology. In Section 5, we define the stable models of an ERDF ontol-
ogy and show that stable model entailment extends RDFS entailment. Section
6 reviews related work and Section 7 concludes the paper.



24 A. Analyti et al.

2 Extending RDF Graphs with Negative Information

In this section, we extend RDF graphs to ERDF graphs, by adding strong nega-
tion. Moreover, we extend RDF graphs to ERDF formulas, which are built from
positive ERDF triples, the connectives ∼, ¬, ⊃, ∧, ∨, and the quantifiers ∀, ∃.

According to RDF concepts [12,6], URI references are used for naming web
resources. A URI reference consists of two parts: a namespace URI ns and a
local name ln, and is denoted by ns:ln. A plain literal is a string “s”, where s is
a sequence of Unicode characters, or a pair of a string “s” and a language tag t,
denoted by “s”@t. A typed literal is a pair of a string “s” and a datatype URI
reference d, denoted by “s”̂ d̂. A (Web) vocabulary V is a set of URI references
and/or literals (plain or typed). We denote the set of all URI references by URI,
the set of all plain literals by PL, the set of all typed literals by T L, and the set
of all literals by LIT .

In our formalization, we consider a set Var of variable symbols, such that the
sets Var, URI, LIT are pairwise disjoint. In the main text, variable symbols are
explicitly indicated, while in our examples, variable symbols are prefixed by ?.

Below we extend the notion of RDF triple to allow for both positive and
negative information.

Definition 1 (ERDF triple). Let V be a vocabulary. A positive ERDF triple
over V (also called ERDF sentence atom) is an expression of the form p(s, o),
where s, o ∈ V ∪Var are called subject and object, respectively, and p ∈ V ∩URI
is called predicate or property.
A negative ERDF triple over V is the strong negation ¬p(s, o) of a positive
ERDF triple p(s, o) over V .
An ERDF triple over V (also called ERDF sentence literal) is a positive or
negative ERDF triple over V . �

For example, ex:likes(ex:Gerd, ex:Riesling) is a positive ERDF triple, and ¬ex:
likes(ex:Carlos, ex:Riesling) is a negative ERDF triple. Note that an RDF
triple is a positive ERDF triple with the constraint that the subject of the triple is
not a literal. For example, ex:nameOf(“Grigoris”, ex:Grigoris) is a valid ERDF
triple but not a valid RDF triple. Our choice of allowing literals appearing in
the subject position is based on our intuition that this case can naturally appear
in knowledge representation (as in the previous example). Moreover, note that
a variable in the object position of an ERDF triple in the body of a rule, can
appear in the subject position of the ERDF triple in the head of the rule. Since
variables can be instantiated by a literal, a literal can naturally appear in the
subject position of the derived ERDF triple.

Definition 2 (ERDF formula). Let V be a vocabulary. We consider the log-
ical factors {∼,¬,∧,∨,⊃, ∃, ∀}, where ¬, ∼, and ⊃ are called strong negation,
weak negation, and material implication respectively. We denote by L(V ) the
smallest set that contains the positive ERDF triples over V and is closed with
respect to the following conditions: if F, G ∈ L(V ) then {∼F, ¬F, F∧G, F∨G,
F ⊃ G, ∃xF, ∀xF} ⊆ L(V ), where x ∈ Var. An ERDF formula over V is an



Stable Model Theory for Extended RDF Ontologies 25

element of L(V ). We denote the set of variables appearing in F by Var(F ), and
the set of free variables1 appearing in F by FVar(F ). �

For example, let F =∀?x ∃?y (rdf :type(?x, ex:Person) ⊃ ex:hasFather(?x, ?y))
∧ rdf :type(?z, ex:Person). Then, F is an ERDF formula over the vocabulary
V = {rdf :type, ex:Person, ex:hasFather} with Var(F ) = {?x, ?y, ?z} and
FVar(F ) = {?z}.

We will denote the sublanguages of L(V ) formed by means of a subset S of
the logical factors, by L(V |S). For example, L(V |{¬}) denotes the set of (positive
and negative) ERDF triples over V .

Definition 3 (ERDF graph). An ERDF graph G is a set of ERDF triples
over some vocabulary V . We denote the variables appearing in G by Var(G),
and the set of URI references and literals appearing in G by VG. �
Intuitively, an ERDF graph G represents an existentially quantified conjunction
of ERDF triples. Specifically, let G = {tr1, ..., trn} be an ERDF graph, and
let V ar(G) = {x1, ...xk}. Then, G represents the formula ∃x1, ...xk tr1∧...∧trn.
Following the RDF terminology [12], the variables of an ERDF graph are called
blank nodes, and intuitively denote anonymous web resources.

Note that as an RDF graph is a set of RDF triples [12,6], an RDF graph is
also an ERDF graph.

3 ERDF Interpretations

In this section, we extend RDF(S) semantics by allowing for partial properties
and classes. In particular, we define ERDF interpretations and satisfaction of an
ERDF formula. For simplicity, we disregard RDF(S) containers, collections, and
reification, as no special semantic conditions are imposed on these, and thus can
be included by a straightforward extension.

Below we define a partial interpretation as an extension of a simple interpre-
tation [6], where each property is associated not only with a truth extension but
also with a falsity extension allowing for partial properties.

Definition 4 (Partial interpretation). A partial interpretation I of a vocab-
ulary V consists of:

– A non-empty set of resources ResI , called the domain or universe of I.
– A set of properties PropI .
– A vocabulary interpretation mapping IV : V ∩ URI→ ResI ∪ PropI .
– A property-truth extension mapping PTI : PropI → P(ResI ×ResI).
– A property-falsity extension mapping PFI : PropI → P(ResI ×ResI).
– A mapping ILI : V ∩ T L → ResI .
– A set of literal values LVI ⊆ ResI , which contains V ∩ PL.

We define the mapping: I : V → ResI ∪ PropI such that:
1 Without loss of generality, we assume that a variable cannot have both free and

bound occurrences in F , and more than one bound occurrence.



26 A. Analyti et al.

– I(x) = IV (x), ∀x ∈ V ∩ URI.
– I(x) = x, ∀ x ∈ V ∩ PL.
– I(x) = ILI(x), ∀ x ∈ V ∩ T L. �

Definition 5 (Satisfaction of an ERDF formula w.r.t. a partial inter-
pretation and a valuation). Let F, G be ERDF formulas and let I be a
partial interpretation of a vocabulary V . Let v be a mapping v : Var(F )→ ResI

(called valuation). If x ∈ Var(F ), we define [I+v](x) = v(x). If x ∈ V , we define
[I + v](x) = I(x).

– If F = p(s, o) then I, v |= F iff p ∈ V ∩ URI, s, o ∈ V ∪ Var, I(p) ∈ PropI , and
〈[I + v](s), [I + v](o)〉 ∈ PTI(I(p)).

– If F = ¬p(s, o) then I, v |= F iff p ∈ V ∩ URI, s, o ∈ V ∪ V ar, I(p) ∈ PropI , and
〈[I + v](s), [I + v](o)〉 ∈ PFI(I(p)).

– If F = ∼G then I, v |= F iff all URIs and literals appearing in G belong to V ,
and I, v �|= G.

– If F = F1∧F2 then I, v |= F iff I, v |= F1 and I, v |= F2.
– If F = F1∨F2 then I, v |= F iff I, v |= F1 or I, v |= F2.
– If F = F1 ⊃ F2 then I, v |= F iff I, v |= ∼F1∨F2.
– If F = ∃x G then I, v |= F iff there exists mapping u : Var(G) → ResI such that

u(y) = v(y), ∀y ∈ Var(G) − {x}, and I, u |= G.
– If F = ∀x G then I, v |= F iff for all mappings u : Var(G) → ResI such that

u(y) = v(y), ∀y ∈ Var(G) − {x}, it holds I, u |= G.
– All other cases of ERDF formulas are treated by the following DeMorgan-style

rewrite rules expressing the falsification of compound ERDF formulas:
¬(F ∧ G) → ¬F ∨ ¬G, ¬(F ∨ G) → ¬F ∧ ¬G, ¬¬F → F, ¬ ∼ F → F ,
¬∃x F → ∀x ¬F, ¬∀x F → ∃x ¬F, ¬(F ⊃ G) → F∧¬G. �

Definition 6 (Satisfaction of an ERDF formula w.r.t. a partial inter-
pretation). Let F be an ERDF formula and let I be a partial interpretation
of a vocabulary V . We say that I satisfies F , denoted by I |= F , iff for every
mapping v : Var(F ) → ResI , it holds I, v |= F. �
Note that as an ERDF graph represents an existentially quantified conjunction
of ERDF triples, the above definition applies also to ERDF graphs. Specifically,
let G be an ERDF graph representing the formula F = ∃x1, ...xk tr1∧...∧trn.
We say that a partial interpretation I satisfies the ERDF graph G (I |= G) iff
I |= F .

We are now ready to define an ERDF interpretation over a vocabulary V
as an extension of an RDFS interpretation [6], where each property and class
is associated not only with a truth extension but also with a falsity extension,
allowing for both partial properties and partial classes. Additionally, an ERDF
interpretation gives special semantics to terms from the ERDF vocabulary.

The vocabulary of RDF, VRDF , and the vocabulary of RDFS, VRDFS , are
defined in [6]. The vocabulary of ERDF , VERDF , is a set of URI references in the
erdf : namespace. Specifically, the set of ERDF predefined classes is CERDF =
{erdf :TotalClass, erdf :TotalProperty}. We define VERDF = CERDF . Intu-
itively, instances of the metaclass erdf :TotalClass are classes c that satisfy to-
talness, meaning that each resource belongs to the truth or falsity extension of



Stable Model Theory for Extended RDF Ontologies 27

c. Similarly, instances of the metaclass erdf :TotalProperty are properties p that
satisfy totalness, meaning that each pair of resources belongs to the truth or
falsity extension of p.

Definition 7 (ERDF interpretation). An ERDF interpretation I of a vo-
cabulary V is a partial interpretation of V ∪VRDF ∪VRDFS ∪VERDF , extended
by the new ontological categories ClsI ⊆ ResI for classes, TClsI ⊆ ClsI for
total classes, and TPropI ⊆ PropI for total properties, as well as the class-
truth extension mapping CTI : ClsI → P(ResI), and the class-falsity extension
mapping CFI : ClsI → P(ResI), such that:

1. x ∈ CTI(y) iff 〈x, y〉 ∈ PTI(I(rdf :type)), and
x ∈ CFI(y) iff 〈x, y〉 ∈ PFI(I(rdf :type)).

2. The ontological categories are defined as follows:
PropI = CTI(I(rdf :Property)) ClsI = CTI(I(rdfs:Class))
ResI = CTI(I(rdfs:Resource)) LVI = CTI(I(rdfs:Literal))
TClsI = CTI(I(erdf :TotalClass)) TPropI = CTI(I(erdf :TotalProperty)).

3. if 〈x, y〉 ∈ PTI(I(rdfs:domain)) and 〈z, w〉 ∈ PTI(x) then z ∈ CTI(y).
4. If 〈x, y〉 ∈ PTI(I(rdfs:range)) and 〈z, w〉 ∈ PTI(x) then w ∈ CTI(y).
5. If x ∈ ClsI then 〈x, I(rdfs:Resource)〉 ∈ PTI(I(rdfs:subclassOf)).
6. If 〈x, y〉 ∈ PTI(I(rdfs:subClassOf)) then x, y ∈ ClsI , CTI(x) ⊆ CTI(y), and

CFI(y) ⊆ CFI(x).
7. PTI(I(rdfs:subClassOf)) is a reflexive and transitive relation on ClsI .
8. If 〈x, y〉 ∈ PTI(I(rdfs:subPropertyOf)) then x, y ∈ PropI , PTI(x) ⊆ PTI(y), and

PFI(y) ⊆ PFI(x).
9. PTI(I(rdfs:subPropertyOf)) is a reflexive and transitive relation on PropI .

10. If x∈CTI(I(rdfs:Datatype)) then 〈x, I(rdfs:Literal)〉∈PTI(I(rdfs:subClassOf)).
11. If x ∈ TClsI then CTI(x) ∪ CFI(x) = ResI .
12. If x ∈ TPropI then PTI(x) ∪ PFI(x) = ResI × ResI .
13. If “s”̂ r̂df :XMLLiteral ∈ V and s is a well-typed XML literal string, then

ILI(“s”̂ r̂df :XMLLiteral) is the XML value of s,
ILI(“s”̂ r̂df :XMLLiteral) ∈ LVI , and
ILI(“s”̂ r̂df :XMLLiteral) ∈ CTI(I(rdf :XMLLiteral)).

14. If “s”̂ r̂df :XMLLiteral ∈ V and s is an ill-typed XML literal string then
ILI(“s”̂ r̂df :XMLLiteral) ∈ ResI − LVI , and
ILI(“s”̂ r̂df :XMLLiteral) ∈ CFI(I(rdfs:Literal)).

15. I satisfies the RDF and RDFS axiomatic triples [6], as well as the ERDF ax-
iomatic triples:
rdfs:subClassOf(erdf :TotalClass, rdfs:Class).
rdfs:subClassOf(erdf :TotalProperty, rdf :Property). �

Note that the semantic conditions of ERDF interpretations may impose con-
straints to both the truth and falsity extensions of properties and classes.

Definition 8 (Coherent ERDF interpretation). An ERDF interpretation
I of a vocabulary V is coherent iff for all x ∈ PropI , PTI(x) ∩ PFI(x) = ∅. �

Coherent ERDF interpretations enforce the constraint that a pair of resources
cannot belong to both the truth and falsity extensions of a property. Since
rdf :type is a property, this constraint also implies that a resource cannot be-
long to both the truth and falsity extensions of a class.



28 A. Analyti et al.

In the rest of the document, we consider only coherent ERDF interpretations.
This means that referring to an “ERDF interpretation”, we implicitly mean a
“coherent” one.

According to RDFS semantics, the only source of RDFS-inconsistency is the
appearance of an ill-typed XML literal in the RDF graph (possibly causing an
XML clash, for details see [6]). An ERDF graph can be ERDF-inconsistent2, not
only due to the appearance of an ill-typed XML literal in the ERDF graph, but
also due to the additional semantic condition for coherent ERDF interpretations.

For example, let p, q, s, o ∈ URI and let G = {p(s, o), rdfs:subPropertyOf(p,
q), ¬q(s, o)}. Then, G is ERDF-inconsistent, since there is no (coherent) ERDF
interpretation that satisfies G.

The following proposition shows that for total properties and total classes of
(coherent) ERDF interpretations, weak negation and strong negation coincide
(boolean truth values).
Proposition 1. Let I be an ERDF interpretation of a vocabulary V and let
V ′ = V ∪ VRDF ∪ VRDFS ∪ VERDF . Then,
1. For all p, s, o ∈ V ′, such that I(p) ∈ TPropI , it holds:

I |= ∼p(s, o) iff I |= ¬p(s, o) (equivalently, I |= p(s, o) ∨ ¬p(s, o)).
2. For all x, c ∈ V ′ such that I(c) ∈ TClsI , it holds:

I |= ∼rdf :type(x, c) iff I |= ¬rdf :type(x, c)
(equivalently, I |= rdf :type(x, c) ∨ ¬rdf :type(x, c)).

Definition 9 (Classical ERDF interpretation). A (coherent) ERDF inter-
pretation I of a vocabulary V is classical iff for all x ∈ PropI , PTI(x) ∪
PFI(x) = ResI ×ResI . �
A classical ERDF interpretation is close to an interpretation of classical logic,
since for every formula F , weak and strong negation coincide.
Proposition 2. Let I be an ERDF interpretation of a vocabulary V and let
V ′ = V ∪ VRDF ∪ VRDFS ∪ VERDF . Then,
1. If TPropI = PropI then I is a classical ERDF interpretation.
2. If I is a classical ERDF interpretation and F is an ERDF formula over V ′

such that I(p) ∈ PropI , for every property p in F , then it holds:
I |= ∼F iff I |= ¬F (equivalently, I |= F ∨ ¬F ).
The following definition defines ERDF entailment between two ERDF for-

mulas.
Definition 10 (ERDF Entailment). Let F, F ′ be ERDF formulas. We say
that F ERDF-entails F ′ (F |=ERDF F ′) iff for every ERDF interpretation I, if
I |= F then I |= F ′. �
For example, let F = ∀?x ∃?y (rdf :type(?x, ex:Person) ⊃ ex:hasFather(?x, ?y))
∧ rdf :type(ex:John, ex:Person), and let F ′ = ∃?y ex:hasFather(ex:John, ?y)
∧ rdf :type(ex:hasFather, rdf :Property). Then F |=ERDF F ′.

The following proposition shows that an RDF graph is RDFS satisfiable iff
it is ERDF satisfiable.
2 Meaning that there is no (coherent) ERDF interpretation that satisfies the ERDF

graph.



Stable Model Theory for Extended RDF Ontologies 29

Proposition 3. Let G be an RDF graph such that VG∩VERDF = ∅. Then, there
is an RDFS interpretation that satisfies G iff there is an ERDF interpretation
that satisfies G.

The following proposition shows that ERDF entailment extends RDFS entail-
ment from RDF graphs to ERDF formulas.

Proposition 4. Let G, G′ be RDF graphs such that VG ∩ VERDF = ∅ and
VG′ ∩ VERDF = ∅. Then, G |=RDFS G′ iff G |=ERDF G′.

4 ERDF Ontologies

In this section, we define an ERDF ontology as a pair of an ERDF graph G and
a set P of ERDF rules. ERDF rules should be considered as derivation rules
that allow us to infer more ontological information based on the declarations in
G. Moreover, we define the Herbrand interpretations and the Herbrand models
of an ERDF ontology.

Definition 11 (ERDF rule, ERDF program). An ERDF rule r over a vo-
cabulary V is an expression of the form: G ← F , where F ∈ L(V ) is called
condition and G ∈ L(V |{¬}) is called conclusion. We assume that no bound
variable in F appears free in G. We denote the set of variables and the set of
free variables of r by Var(r) and FVar(r)3, respectively. Additionally, we write
Cond(r) = F and Concl(r) = G.
An ERDF program P is a set of ERDF rules over some vocabulary V . We denote
the set of URI references and literals appearing in P by VP . �

Definition 12 (ERDF ontology). An ERDF ontology (or knowledge base) is
a pair O = 〈G, P 〉, where G is an ERDF graph and P is an ERDF program. �

The following definition defines the models of an ERDF ontology.

Definition 13 (Satisfaction of an ERDF rule and an ERDF ontology).
Let I be an ERDF interpretation of a vocabulary V .

– We say that I satisfies an ERDF rule r, denoted by I |= r, iff it holds:
If there is a mapping v : Var(r) → ResI such that I, v |= Cond(r) then
I, v |= Concl(r).

– We say that I satisfies an ERDF ontology O = 〈G, P 〉 (also, I is a model
of O), denoted by I |= O, iff I |= G and I |= r, ∀ r ∈ P . �

Definition 14 (Skolemization of an ERDF graph). Let G be an ERDF
graph. The skolemization function of G is an 1:1 mapping skG : Var(G) → URI,
where for each x ∈ Var(G), skG(x) is an artificial URI denoted by G:x. The set
skG(Var(G)) is called the Skolem vocabulary of G.

The skolemization of G, denoted by sk(G), is the ground ERDF graph derived
from G after replacing each variable x ∈ Var(G) by skG(x). �
3 FVar(r) = FVar(F ) ∪ FVar(G).



30 A. Analyti et al.

Intuitively, the Skolem vocabulary of G (that is, skG(V ar(G))) contains arti-
ficial URIs giving “arbitrary” names to the anonymous entities whose existence
was asserted by the use of blank nodes in G.
Proposition 5. Let G be an ERDF graph and let I be an ERDF interpretation.
Then, I |= sk(G) implies I |= G.

Definition 15 (Vocabulary of an ERDF ontology). Let O = 〈G, P 〉 be an
ERDF ontology. The vocabulary of O is defined as VO = Vsk(G) ∪ VP ∪ VRDF ∪
VRDFS ∪ VERDF . �
Let O = 〈G, P 〉 be an ERDF ontology. We denote by ResH

O the union of VO and
the set of XML values of the well-typed XML literals in VO minus the well-typed
XML literals.
Definition 16 (Herbrand interpretation, Herbrand model of an ERDF
ontology). Let O = 〈G, P 〉 be an ERDF ontology and let I be an ERDF
interpretation of VO. I is a Herbrand interpretation of O iff:

– ResI = ResH
O .

– IV (x) = x, for all x ∈ VO ∩URI.
– ILI(x) = x, if x is a typed literal in VO other than a well-typed XML literal,

and ILI(x) is the XML value of x, if x is a well-typed XML literal in VO.

We denote the set of Herbrand interpretations of O by IH(O).
A Herbrand interpretation I of O is a Herbrand model of O iff I |= 〈sk(G), P 〉.
We denote the set of Herbrand models of O by MH(O). �
Obviously, every Herbrand model of an ERDF ontology O is a model of O.

5 Minimal Herbrand Interpretations and Stable Models

In the previous section, we defined the Herbrand models of an ERDF ontology
O. However, not all Herbrand models of O are desirable. In this section, we
define the intended models of O, called stable models of O, based on minimal
Herbrand interpretations. In particular, defining the stable models of O, only
the minimal interpretations from a set of Herbrand interpretations that satisfy
certain criteria are considered.

For example, let p, s, o ∈ URI, let G = {p(s, o)} and let O = 〈G, ∅〉, Then,
there is a Herbrand model I of O such that I |= p(o, s), whereas we want ∼p(o, s)
to be satisfied by all intended models of O, as p is not a total property4 and
p(o, s) cannot be derived from O (negation-as-failure).

To define the minimal Herbrand interpretations of an ERDF ontology O, we
need to define a partial ordering on the Herbrand interpretations of O.

Definition 17 (Herbrand interpretation ordering). Let O = 〈G, P 〉 be an
ERDF ontology. Let I, J ∈ IH(O). We say that J extends I, denoted by I ≤ J
(or J ≥ I), iff PropI ⊆ PropJ , and for all p ∈ PropI , it holds PTI(p) ⊆ PTJ(p)
and PFI(p) ⊆ PFJ(p). �
4 On total properties and classes, the open-world assumption applies.



Stable Model Theory for Extended RDF Ontologies 31

The intuition behind Definition 17 is that by extending a Herbrand inter-
pretation, we extend both the truth and falsity extension for all properties, and
thus (since rdf :type is a property), for all classes.

Definition 18 (Minimal Herbrand Interpretations). Let O be an ERDF
ontology and let I ⊆ IH(O). We define minimal(I) = {I ∈ I | 
 ∃J ∈ I : J 
= I
and J ≤ I}. �
Let I, J ∈ IH(O), we define [I, J ]O = {I ′ ∈ IH(O), I ≤ I ′ ≤ J}. Additionally,
we define the minimal Herbrand models of O, asMmin(O) = minimal(MH(O)).

However minimal Herbrand models do not give the intended semantics to
all ERDF rules. This is because ERDF rules are derivation and not implication
rules. Derivation rules are often identified with implications. For nonmonotonic
rules (e.g. with negation-as-failure), this is no longer the case.

To define the intended (stable) models of an ERDF ontology, we need first
to define grounding of ERDF rules.

Definition 19 (Grounding of an ERDF program). Let V be a vocabulary
and r be an ERDF rule. We denote by [r]V the set of rules that result from r if
we replace each variable x ∈ FVar(r) by v(x), for all mappings v : FVar(r) → V .
Let P be an ERDF program. We define [P ]V =

⋃
r∈P [r]V . �

Below, we define the stable models of an ERDF ontology based on the co-
herent stable models of partial logic [7] (which, on extended logic programs, are
equivalent [7] to Answer Sets [5]).

Definition 20 (Stable model). Let O = 〈G, P 〉 be an ERDF ontology and
let M ∈ IH(O). We say that M is a stable model of O iff there is a chain of
Herbrand interpretations of O, I0 ≤ ... ≤ Ik such that Ik−1 = Ik = M and:

1. I0 ∈ minimal({I ∈ IH(O) | I |= sk(G)}).
2. For 0 < α ≤ k:

Iα ∈ minimal{I ∈ IH(O) | I ≥ Iα−1 and I |= Concl(r), for all r ∈
P[Iα−1,M ]}, where
P[Iα−1,M ] = {r ∈ [P ]VO | I |= Cond(r), ∀I ∈ [Iα−1, M ]O}.

The set of stable models of O is denoted by Mst(O). �
The following proposition shows that a stable model of an ERDF ontology O is
a Herbrand model of O.

Proposition 6. Let O = 〈G, P 〉 be an ERDF ontology and let M ∈ Mst(O).
It holds M ∈MH(O).

On the other hand, if all properties are total, a Herbrand model M of an
ERDF ontology O = 〈G, P 〉 is a stable model of O. This is because, in this case
M ∈ minimal({I ∈ IH(O) | I |= sk(G)}) and M ∈ minimal{I ∈ IH(O) | I ≥
M and I |= Concl(r), for all r ∈ P[M,M ]}.
Proposition 7. Let O = 〈G, P 〉 be an ERDF ontology, such that
rdfs:subclass(rdf :Property, erdf :TotalProperty)∈G. Then,Mst(O)=MH(O).



32 A. Analyti et al.

From Proposition 2, it follows that if rdfs:subclass(rdf :Property,
erdf :TotalProperty) ∈ G then each M ∈MH(O) is a classical ERDF interpre-
tation. Therefore, the above proposition shows that classical (boolean) Herbrand
model reasoning on ERDF ontologies is a special case of stable model reasoning.

Similarly to [5,8,7], stable models do not preserve Herbrand model satis-
fiability. For example, let O = 〈∅, P 〉, where P = {p(s, o) ← ∼p(s, o)}, and
p, s, o ∈ URI. Then, Mst(O) = ∅, whereas there is a Herbrand model of O that
satisfies p(s, o).

Definition 21 (Stable model entailment). Let O = 〈G, P 〉 be an ERDF
ontology and let F be an ERDF formula. We say that O entails F under the
(ERDF) stable model semantics, denoted by O |=st F iff for all M ∈ Mst(O),
M |= F . �

For example, let O = 〈∅, P 〉, where P = {p(s, o)← ∼q(s, o)} and p, q, s, o ∈ URI.
Then, O |=st ∼q(s, o) ∧ p(s, o). Let O = 〈G, P 〉, where
G = {rdfs:subclass(rdf :Property, erdf :TotalProperty)} and P is as in the
previous example. Then, O |=st q(s, o) ∨ p(s, o), but O 
|=st ∼q(s, o) and
O 
|=st p(s, o). This is the desirable result, since q is a total property, and thus in
contrast to the previous example, an open-world assumption is made for q. As
another example, let p, s, o ∈ URI, let G = {p(s, o)}, and let P = {¬p(?x, ?y) ←
∼p(?x, ?y)}. Then, 〈G, P 〉 |=st ∼p(o, s) ∧ ¬p(o, s) (note that P contains a CWA
on p). Let G = {rdf :type(p, erdf :TotalProperty), p(s, o)} and let P be as in
the previous example. Then, 〈G, P 〉 |=st ∀?x ∀?y (p(?x, ?y) ∨¬p(?x, ?y)) (see
Proposition 1), but 〈G, P 〉 
|=st ∼p(o, s) and 〈G, P 〉 
|=st ¬p(o, s). Indeed, the
CWA in P does not affect the semantics of p, since p is a total property.

Let us now see a more involved example5. Consider the following ERDF
program P , specifying some rules for concluding that a country is not a member
state of the European Union (EU).

(r1) ¬rdf : type(?x,EUMember) ← rdf : type(?x, AmericanCountry).
(r2) ¬rdf : type(?x,EUMember) ← rdf : type(?x, EuropeanCountry),

∼rdf : type(?x,EUMember).

A rather incomplete ERDF ontology O = 〈G, P 〉 is obtained by including
the following information in the ERDF graph G:

¬rdf : type(Russia,EUMember). rdf : type(Canada, AmericanCountry).
rdf : type(Austria,EUMember). rdf : type(Italy, EuropeanCountry).
rdf :type(?x, EuropeanCountry). ¬rdf :type(?x,EUMember).

Using stable model entailment on O, it can be concluded that Austria is a
member of EU, that Russia and Canada are not members of EU, and that it
exists a European Country which is not a member of EU. However, it is also
concluded that Italy is not a member of EU, which is a wrong statement. This
is because G does not contain complete information of the European countries

5 For simplicity, the example namespace ex: is ignored.



Stable Model Theory for Extended RDF Ontologies 33

that are EU members (e.g., it does not contain rdf :type(Italy,EUMember)).
Thus, incorrect information is obtained by the closed-world assumption ex-
pressed in rule r2. In the case that rdf :type(EUMember, erdf :TotalClass) is
added to G (that is, an open-world assumption is made for the class EUMember)
then ∼rdf :type(Italy,EUMember) and thus, ¬rdf :type(Italy,EUMember) are
not longer entailed. This is because, there is a stable model of the extended
O that satisfies rdf :type(Italy,EUMember). Moreover, if complete information
for all European countries that are members of EU is included in G then the
stable model conclusions of O will also be correct (the closed-world assumption
will be correctly applied). Note that, in this case G will include rdf :type(Italy,
EUMember).

The following proposition shows that stable model entailment extends RDFS
entailment from RDF graphs to ERDF ontologies.

Proposition 8. Let G, G′ be RDF graphs such that VG ∩ VERDF = ∅, VG′ ∩
VERDF = ∅, and VG′ ∩skG(V ar(G)) = ∅. It holds: G |=RDFS G′ iff < G, ∅ >|=st

G′.

Below we define the stable answers of a query F w.r.t. an ERDF ontology.

Definition 22 (Stable answers). Let O = 〈G, P 〉 be an ERDF ontology. A
query F is an ERDF formula. The (ERDF) stable answers of F w.r.t. O are
defined as follows: Ansst

O (F ) = {v : FV ar(F ) → VO | ∀M ∈ Mst(O) : M |=
v(F )}, where v(F ) is the formula F after replacing all the free variables x in F
by v(x). �
An ERDF ontology O = 〈G, P 〉 is called simple if each rule in P has the form
L0 ← L1, ..., Lk,∼Lk+1, ...,∼Ln, where each Li is an ERDF triple (positive or
negative). The following proposition shows that the stable answers of a query F
w.r.t. a simple ERDF ontology can be computed through Answer Set Program-
ming [5] on an extended logic program (ELP).

Proposition 9. Let O = 〈G, P 〉 be a simple ERDF ontology and let F be
an ERDF formula. We can define an extended logic program ΠO and a corre-
sponding formula F ′ such that: The answers of F ′ according to the answer set
semantics [5] of ΠO coincide with Ansst

O (F ).

Intuitively, ΠO is generated as follows: (i) each [∼|¬]p(s, o) ∈ L(VO|{∼,¬})
is represented by [∼|¬]Holds(s, p, o), where Holds is a conventional predicate
name and p becomes a term, (ii) sk(G) is represented as a set of facts, and (iii)
semantics implicit in the definition of an ERDF interpretation is represented as
rules. ΠO is the union of the rules generated in (ii-iii).

6 Related Work

In this section, we briefly review extensions of web ontology languages with rules.
TRIPLE [15] is a rule language for the Semantic Web supporting RDF and

a subset of OWL Lite [13]. It is based on F-Logic [11]. Part of the semantics of
the RDF(S) vocabulary is represented in the form of pre-defined rules and not



34 A. Analyti et al.

as semantic conditions on interpretations. TRIPLE includes a form of negation-
as-failure under the well-founded semantics [4]. Strong negation is not used.

Flora-2 [20] is a rule-based object-oriented knowledge base system for reason-
ing with semantic information on the Web. It is based on F-logic [11] and sup-
ports metaprogramming, nonmonotonic multiple inheritance, logical database
updates, encapsulation, dynamic modules, and two kinds of weak negation
(specifically, Prolog negation and well-founded negation [4]). In Flora-2, anony-
mous resources are handled through skolemization (similarly to our theory).

Notation 3 (N3) provides a more human readable syntax for RDF and also
extends RDF by adding numerous pre-defined constructs (“built-ins”) for being
able to express rules conveniently (see [17]). Remarkably, N3 contains a built-
in (log:definitiveDocument) for making restricted completeness asumptions and
another built-in (log:notIncludes) for expressing simple negation-as-failure tests.
The addition of these constructs was motivated by use cases. However, N3 does
not have any direct formal semantics for these constructs, and does not provide
strong negation. In an extended version of this paper we will show how these N3
constructs can be mapped to ERDF.

OWL-DL [13] is an ontology representation language for the Semantic Web,
that is a syntactic variant of the SHOIN (D) description logic and a decidable
fragment of first-order logic. However, the need for extending the expressive
power of OWL-DL with rules has initiated several studies, including the SWRL
(Semantic Web Rule Language) proposal [10]. In [9], it is shown that this ex-
tension is in general undecidable. For an overview of (decidable) approaches of
combining Description Logics with rules, see [3]. In several of these approaches,
entailment on the extended with rules DL is based on first-order logic, that is
both the DL component and the logic program are viewed as a set of first-order
logic statements. Thus, negation-as-failure, closed-world-assumptions, and non-
monotonic reasoning cannot be supported. In contrast in our work, we support
both weak and strong negation, and allow closed-world and open-world reasoning
on a selective basis.

7 Conclusions

In this paper, we extended RDF graphs to ERDF graphs by allowing negative
triples, and then to ERDF ontologies with the inclusion of derivation rules, al-
lowing freely appearance of (meta)properties and (meta)classes in the body and
head of the rules, all logical factors ∼, ¬, ∀, ∃, ⊃, ∧, ∨ in the body of the rules,
and strong negation ¬ in the head of the rules. Moreover, the RDF(S) vocab-
ulary was extended with the terms erdf :TotalProperty and erdf :TotalClass.
We have developed the model-theoretic semantics of ERDF ontologies, called
ERDF stable model semantics, showing that stable model entailment extends
RDFS entailment on RDF graphs. We have shown that classical (boolean) Her-
brand model reasoning is a special case of our semantics, when all properties are
total. In this case, similarly to classical logic, an open-world assumption is made
for all properties and classes. Allowing totalness of properties and classes to



Stable Model Theory for Extended RDF Ontologies 35

be declared on a selective basis and the explicit representation of closed-world
assumptions (as derivation rules) enables the combination of open-world and
closed-world reasoning in the same framework. For simple ERDF ontologies, our
semantics can be computed through Answer Set Programming [5]. Future work
concerns the support of datatype maps, including XSD datatypes, and the ex-
tension of the ERDF vocabulary to other useful ontological categories possibly
in accordance with [16].

References

1. A. Analyti, G. Antoniou, C. V. Damasio, and G. Wagner. Negation and Negative
Information in the W3C Resource Description Framework. Annals of Mathematics,
Computing & Teleinformatics (AMCT), 1(2):25–34, 2004.

2. Tim Berners-Lee. Design issues - architectual and philosophical points. Personal
notes, 1998. Available at http://www.w3.org/DesignIssues/.

3. E. Franconi and S. Tessaris. Rules and Queries with Ontologies: A Unified Logi-
cal Framework. In Second International Workshop on Principles and Practice of
Semantic Web Reasoning (PPSWR 2004), pages 50–60, 2004.

4. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.

5. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren
and Szeredi, editors, 7th International Conference on Logic Programming, pages
579–597. MIT Press, 1990.

6. Patrick Hayes. RDF Semantics. W3C Recommendation, 10 February 2004. Avail-
able at http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.

7. H. Herre, J. Jaspars, and G. Wagner. Partial Logics with Two Kinds of Negation
as a Foundation of Knowledge-Based Reasoning. In D.M. Gabbay and H. Wansing,
editors, What Is Negation? Kluwer Academic Publishers, 1999.

8. H. Herre and G. Wagner. Stable Models are Generated by a Stable Chain. Journal
of Logic Programming, 30(2):165–177, 1997.

9. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language.
In 13th International Conference on World Wide Web (WWW’04), pages 723–731.
ACM Press, 2004.

10. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A semantic web rule language combining OWL
and RuleML. W3C Member Submission, 21 May 2004. Available at
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

11. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and
Frame-Based Languages. Journal of the ACM, 42(4):741–843, 1995.

12. G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C Recommendation, 10 February 2004. Available at
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

13. D. L. McGuinness and F. van Harmelen. OWL Web Ontology Lan-
guage Overview. W3C Recommendation, 10 February 2004. Available at
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

14. The rule markup initiative (ruleml). Available at http://www.ruleml.org.
15. M. Sintek and S. Decker. TRIPLE - A Query, Inference, and Transformation

Language for the Semantic Web. In First International Semantic Web Conference
on The Semantic Web (ISWC2002), pages 364–378. Springer-Verlag, 2002.



36 A. Analyti et al.

16. H. J. ter Horst. Extending the RDFS Entailment Lemma. In 3rd International
Semantic Web Conference (ISWC2004), pages 77–91, 2004.

17. Tim-Berners-Lee. Notation 3 - An RDF language for the Semantic Web. W3C
Recommendation, 1998. Available at
http://www.w3.org/DesignIssues/Notation3.html.

18. G. Wagner. A Database Needs Two Kinds of Negation. In 3rd Symposium on Math-
ematical Fundamentals of Database and Knowledge Base Systems (MFDBS’91),
pages 357–371. Springer-Verlag, 1991.

19. G. Wagner. Web Rules Need Two Kinds of Negation. In 1st International Workshop
on Principles and Practice of Semantic Web Reasoning (PPSWR’03), pages 33–50.
Springer-Verlag, December 2003.

20. Guizhen Yang and Michael Kifer. Inheritance and Rules in Object-Oriented Se-
mantic Web Languages. In 2nd International Workshop on Rules and Rule Markup
Languages for the Semantic Web (RULEML’03), pages 95–110, 2003.



Towards a Formal Verification of OWL-S
Process Models �

Anupriya Ankolekar, Massimo Paolucci, and Katia Sycara

Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA

{anupriya, paolucci, katia}@cs.cmu.edu

Abstract. In this paper, we apply automatic tools to the verification of
interaction protocols of Web services described in OWL-S. Specifically,
we propose a modeling procedure that preserves the control flow and the
data flow of OWL-S Process Models. The result of our work provides
complete modeling and verification of OWL-S Process Models.

1 Introduction

Verification of the interaction protocol of Web services is crucial to both the im-
plementation of Web services and to their use and composition. The verification
process can prove important and desirable properties of the control flow of a Web
service. At implementation time, a Web service provider will want to verify that
the protocol to be advertised is indeed correct, e.g. does not contain deadlocks.
A Web service provider may also want to guarantee additional properties, e.g.
purchased goods are not delivered if a payment is not received.

Even if the Web service provider verifies the correctness of the programming
logic behind its Web services, it will still need to verify the advertised inter-
action protocol. The mapping from the programming logic of the Web service
to the interaction protocol of the Web service is typically lossy. Thus, the Web
service provider will need to verify that claims that were true of the Web service
program also hold true of the interaction protocol. Furthermore, the interaction
protocol may make use of several Web services provided by the same Web ser-
vice provider or possibly by other third-party providers. In either case, verifying
the programming logic of multiple Web services is impracticable. In these cases,
verifying the interaction protocol itself is both possible and useful.

During composition and use of Web services, a Web service client may want
to verify the Web service provider’s interaction protocol to obtain a guarantee
that the protocol is correct, e.g. it does not contain an infinite loop, and that
it conforms to the client’s requirements. For example, the client may want to
ensure that whenever a payment is received by the service provider, the goods

� This research was funded by the Defense Advanced Research Projects Agency as
part of the DARPA Agent Markup Language (DAML) program under Air Force
Research Laboratory contract F30601-00-2-0592 to Carnegie Mellon University.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 37–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



38 A. Ankolekar, M. Paolucci, and K. Sycara

are delivered to the client, or that there is the possibility of reimbursement, if
the goods are returned.

In this paper, we explore the verification of OWL-S1 interaction protocols
using automatic verification tools, such as the Spin model-checker [8]. OWL-S is
one of the leading standards for the description of Web services on the Semantic
Web. The OWL-S Process Model describes the interaction protocol between
a Web service and its clients. Such protocols are inherently non-deterministic
and can be arbitrarily complex, containing multiple concurrent threads that
may interact in unexpected ways. By performing an efficient exploration of the
complete set of states that can be generated during an interaction between a
Web service and its clients, Spin is able to verify numerous properties of the
OWL-S Process Model.

The work presented in this paper builds on work presented in [2]2. In par-
ticular, we relaxed many of the abstractions in the previous version, added the
modeling of loops and enriched the literature review. The rest of this paper is
organized as follows. After reviewing related work in section 2, we provide a
quick overview of OWL-S 1.1 in section 3, using a running example based on
the Amazon Web service. In section 4, we provide an introduction to verification
with Spin. In section 5, we then define a mapping of the Amazon example from
OWL-S 1.1 to Spin’s Promela language, which is used to construct models
that the Spin system can analyze. We then describe the verification of claims
on the Amazon Process Model using Spin in section 6. Finally, in section 7 we
will discuss our results and future work.

2 Related Work

Previous work on OWL-S verification is scant. Narayanan et al. [9] proposed a
Petri Net-based operational semantics, which models the control flow of a Process
Model exclusively3. On the basis of this mapping of OWL-S Process Models to
Petri Nets, a number of theorems are proven on the computational complexity
of typical verification problems, such as reachability of states and discovery of
deadlocks. The results show that the complexity of the reachability problem for
OWL-S Process Models is PSPACE-complete. This result is not surprising given
the complexity of the OWL-S Process Modeling language.

Our approach improves on Narayanan’s seminal work in three directions.
First, we provide a model of Web service data flow in addition to control flow. As
a result, the verification procedure can detect harmful interactions (see section
5.1) between data and control flow that would be undetected otherwise. Second,
as part of our modeling methodology, we translate an OWL-S Process Model

1 Our work is based on the OWL-S 1.1 release available at
http://www.daml.org/services/owl-s/1.1/.

2 The authors are in debt to the participants of the workshop on “Semantic Web
Services” at ISWC2004 for their useful comments.

3 Narayanan’s semantics was defined for an earlier version of OWL-S (namely DAML-S
0.5), which did not model data-flow.



Towards a Formal Verification of OWL-S Process Models 39

into a simpler model that nevertheless preserves all the essential behavior to
be verified. Third, we provide initial results on the actual verification of OWL-
S Process Models using existing verification tools such as Spin. The result of
our work is a complete procedure for the modeling and verification of OWL-S
Process Models.

While we are aware of only one other work on the verification of OWL-S
Process Models, there has been a considerable amount of work on the verification
of BPEL [1] Models. For example, WSAT (Web Service Analysis Tool) [13,6]
provides a formal verification of composite Web services expressed in BPEL
and WSDL using guarded automata (GA) to construct the model, and then
mapping the GA into Promela using Spinas verifier. A different approach to
the verification of BPEL is followed by [7], which is based on message sequence
charts, while [11] provide a Petri Net semantics and verification model.

Unfortunately, there is no clear mapping between OWL-S and BPEL. BPEL
aims to represent the composition of Web services, showing how different ser-
vices can interact to solve a problem. Consequently, any verification of BPEL
compositions aims to check that the different composed services can indeed work
together. OWL-S, on the other hand, provides a representation of the Process
Model of one single Web service, leaving the composition problem to some other
entity, typically a synthetic planner. The focus here is on verifying whether the
particular Web service has the properties that the client expects in order to make
use of it. It is therefore quite difficult to export the results of work on verifying
BPEL to the verification of OWL-S Web services.

3 OWL-S Process Model

The OWL-S Process Model is organized as a workflow of processes. Each pro-
cess is described by three components: inputs, preconditions and results. Results
specify what outputs and effects are produced by the process under a given con-
dition. For example, a process may have different results depending on whether
the client is a premium user, or an ordinary user. OWL-S processes describe the
information transformation produced by the Web service; while preconditions
and effects describe the knowledge state transition produced by the execution of
a Web service.

Processes in the workflow are related to each other by data flow and con-
trol flow. Control flow allows the specification of the temporal relation between
processes. OWL-S supports a wide range of control flow mechanisms includ-
ing sequentially executed processes, spawning of concurrent processes, synchro-
nization points between concurrent processes, conditional statements and non-
deterministic selections of processes. OWL-S distinguishes between atomic and
composite processes. Atomic processes are indivisible processes that result in a
message exchange between the client and the server. Composite processes are
used to describe the control flow relation between processes. Fig. 1 shows a
simple fragment of the Process Model adopted by Amazon.com’s Web service.
The nodes of the tree correspond to composite processes that represent different



40 A. Ankolekar, M. Paolucci, and K. Sycara

Fig. 1. The Process Model of Amazon.com’s Web service

control constructs such as Choice for non-deterministic choices, Sequence for
deterministic sequences of processes, and If conditionals. Atomic processes are
represented as the leaves of the tree. For example, Author Search requires the
client to provide information such as the name of an author. It then reports
books found written by that author.

Data flow allows the specification of the relation between inputs and outputs
of processes. An example of data flow is shown using dashed lines in Fig. 1.
An output of the process AuthorSearch is a book which is then passed to the
parent process, Browse and further up until it reaches the input of the process
AddToShoppingCart. The scope of the data flow is limited to within a composite
process. Therefore processes in a composite process can exchange data among
themselves or with the parent process, but with no other processes. As the
figure shows, data exchanges between two arbitrary processes, as for example
AuthorSearch and AddToShoppingCart result from the composition of data flow
links in the whole Process Model.

4 Model Checking with Spin

OWL-S Process Models are typically verified using human inspection, simula-
tion and testing. However, due to their complex and concurrent nature, OWL-S
Process Models are not very amenable to such verification techniques. Instead,
we use model checking [5], a method that has been successful in the verification
of distributed systems, such as Web services [6,12]. Model checking exhaustively
checks all possible executions of a system to verify that certain properties hold.
It can thus formally prove the correctness of a system.

To construct such proofs, model checking requires two decisions to be made
[8]. The first decision is about what claims to prove: a claim states invariant prop-
erties of the code, e.g. that a variable will always be instantiated or that it will



Towards a Formal Verification of OWL-S Process Models 41

always reach a given value. Typically, two kinds of properties are proven about
a given protocol: safety properties, which guarantee that specified undesired
states, such as deadlocking states, are never reached; and liveness properties,
which specify that desired states are eventually reached.

The second decision relates to what and how to model, in other words which
aspects of the protocol are relevant to the claims to be verified, and how to ensure
that the model of the protocol preserves the behaviors to be checked. Certain
aspects of the protocol may be verified better in other ways, for instance type
safety can be ensured using a type checker. Moreover, a simplified model of the
implementation, one that captures the essentials of the design, but avoids the full
complexity of the implementation, can often be verified easily, even when the full
implementation cannot. Thus, generating a verification model for an interaction
protocol entails the translation of the protocol into a formal specification, which
encapsulates the modeling decisions and specifies the claims to be verified.

This specification is input to a model checking tool, such as Spin, to au-
tomatically verify that the protocol satisfies the claims. If Spin verifies that a
claim is true in the Promela specification, given that the specification captures
the relevant behavior of the OWL-S Process Model, we know that the claim is
also true in the corresponding Process Model. On the other hand, if the protocol
contains an error, a model checker can provide a counter-example, identifying
the conditions under which the error occurs. The claim may still hold in the
OWL-S Process Model, because the Promela specification does not capture
the full behavior of the Process Model. In this case, the counterexample that
Spin provides can be analyzed and simulated in the actual Process Model. If
this does produce faulty behavior, then a bona fide bug has been discovered,
else a spurious bug [5] has been identified.

In this work, we use the Spin model checker, a generic verification system
that supports the design and verification of a system of asynchronous processes.
Spin accepts design specifications in Promela (a Process Meta Language) and
correctness claims in LTL (Linear Temporal Logic). Promela is akin to a highly
concurrent programming language, while LTL enables the representation of for-
mulae about possible execution paths of a process. Due to space limitations, in
the rest of the paper we will describe aspects of Promela and LTL only as
relevant to our work. For a comprehensive discussion of Promela and LTL, the
readers are referred to Chapters 3 and 6 of [8].

5 Modeling OWL-S Process Models in Promela

The mapping of OWL-S to Promela hinges on the decision of which aspects
of the OWL-S Process Model are to (and can) be expressed in Promela, and
on how to perform such a mapping. In the rest of this section, we describe
the mapping of OWL-S Process Models to Promela models. Throughout this
section, the Process Model of the Amazon Web service (Fig. 1) [10] will be used
as a running example to illustrate the mapping rules.



42 A. Ankolekar, M. Paolucci, and K. Sycara

(1) proctype Shop () {

(2) chan syncChan = [1] of { int,mtype };

(3) chan dataChan = [1] of { int };

(4) pid x1, x2;

(5) x1 = run Browse(syncChan, dataChan);

(6) if

(7) :: syncChan??eval(x1),done ->

(8) x2 = run BookFound(syncChan, dataChan);

(9) if :: syncChan??eval(x2),done -> skip; fi

(10) fi;

(11) }

Fig. 2. The Shop Process

Modeling Composite Processes. OWL-S Processes map naturally onto pro-
cesses in Promela. Processes in Promela are introduced by proctype and
are instantiated with the run operator. For example, Fig. 2 shows the result of
the translation of the top-level Shop process to Promela. Shop, being a top-
level process, does not take any arguments. Instantiated processes are inherently
concurrent. Thus, Browse and BookFound run concurrently with Shop.

In Promela, if processes are to be executed in a particular order, e.g. in a
sequence, they must be explicitly synchronized. Each parent composite process,
therefore, creates a syncChan, a typed channel for control flow4, and optionally
an additional typed channel for data flow, dataChan, to be used by its child
processes. Channels are used to model data flow between processes and can be
either globally scoped or locally scoped within a single process. Channels can
have a predetermined storage capacity. When the channel capacity has been
reached, additional messages sent to the channel will be dropped. Receive state-
ments (lines 7 and 9) that retrieve messages from channels block until a message
is present in the channel. Fig. 2 shows the definition of these channels, within
the Shop process, in lines 2-3. The channels have a storage capacity of at most
one message. They are passed to the processes Browse and BookFound (lines 5
and 8 resp.). The if statement in lines 6-10 is explained later when we discuss
the modeling of OWL-S sequences.

The syncChan channel holds tuples consisting of an integer, corresponding
to the process id of the sending process, and done. Messages sent to dataChan
are integers, representing the data values sent via data flow links (see below).
Promela supports all the traditional programming language types such as int,
4 An alternative to channels is the use of variables, as follows: a process would set

a particular synchronization variable just before it terminates and other processes
would wait for the variable to become true before executing. Although this mech-
anism is attractively simple, it fails when multiple concurrent processes are used.
Since Promela admits only two kinds of scope, global or local to a single process,
any synchronization variable must necessarily be globally defined. However, global
variables may be overwritten when multiple instances of processes can be spawned
dynamically.



Towards a Formal Verification of OWL-S Process Models 43

(1) proctype SplitJoin(chan syncChan, dataChan) {

(2) chan childSync = [2] of { int,mtype };

(3) pid childA = run A(childSync);

(4) pid childB = run B(childSync);

(5) if

(6) :: childSync??eval(childA),done ->

(7) if

(8) :: childSync??eval(childB),done;

(9) fi

(10) fi

(11) syncChan!_pid,done;

(12)}

Fig. 3. Implementation of a prototypical SplitJoin statement

char, boolean, arrays and records. In addition, Promela supports a form of
enumerated type called mtype, which is typically used to describe message types,
such as done.

Modeling Split and SplitJoin. Since processes in Promela are intrinsically
concurrent, Split and SplitAndJoin can be naturally implemented as follows:
the counterpart of each construct is a process in Promela, which simply spawns
all its child processes. At this point, a Split process would immediately termi-
nate, whereas a SplitAndJoin process would wait for the termination of the
processes it spawned.

Since there are no Split and SplitAndJoin statements in the Amazon ex-
ample, Fig. 3 shows a prototypical implementation of a SplitAndJoin in lines
3-4. The process spawns off two processes A() and B() with no data flow link in
between. The guards in lines 6 and 8 check whether childSync contains a done
message sent by childA or childB, respectively. The entire SplitAndJoin pro-
cess blocks until the guard becomes true, thus synchronizing the process with
the termination of its child processes. Finally, in line 11, the process signals its
own termination. The implementation of a Split statement would be identical,
but skip lines 5-10, which implement the Join synchronization.

Modeling Sequences. While concurrent processes can be implemented in a rel-
atively straightforward way, the modeling of OWL-S sequences requires explicit
synchronization, which is similar to the synchronization proposed for SplitJoin.
We implement sequences by first spawning off the first process in the list, block-
ing until the process terminates, then spawning off the second process. The
implementation of the Shop process, a sequence of Browse and BookFound
processes is shown in Fig. 2. The Promela specification of Shop first spawns
the Browse process in line 5. In the if statement, the execution of Shop is blocked
(line 7) until it receives a done message from Browse, signaling that the Browse
process is complete. Shop then spawns BookFound (line 8) and waits for it to
complete before terminating itself.



44 A. Ankolekar, M. Paolucci, and K. Sycara

(1) proctype Browse (chan syncChan, dataChan) {

(2) chan childSync = [1] of { int,mtype };

(3) chan childData = [1] of { int };

(4) pid child; int product;

(5) if

(6) :: true -> child =

run AuthorSearch(childSync, childData);

(7) if

(8) :: childData?product -> dataChan!product;

(9) :: childSync??eval(child),done;

(10) fi

(11) :: true -> child =

run ArtistSearch(childSync, childData);

(12) if

(13) :: childData?product -> dataChan!product;

(14) :: childSync??eval(child),done;

(15) fi

(16) fi;

(17) syncChan!_pid,done;

(18)}

Fig. 4. Choice and Conditionals: the Browse Process

Modeling Choices and Conditionals. OWL-S Choices and Conditionals
are both implemented using Promela’s guarded non-deterministic choice state-
ments if :: fi. A non-deterministic choice in Promela is defined by an if
statement, where all guard conditions are true. The implementation of Browse,
shown in Fig. 4, provides an example of a choice between two atomic processes,
AuthorSearch and ArtistSearch. The conditions of the if statement at lines
6 and 11 are both true, so Promela non-deterministically chooses one of the
branches for execution. After spawning the chosen process, the execution blocks,
waiting for the process to complete, and then sets the output product.

In OWL-S conditions occur in Result statements and if statements. A
Result condition specifies when a given output or effect is generated, an if
is defined as part of the control construct. OWL-S Result conditions reflect
the state of the server. For example, while interacting with a Web service like
Amazon’s, the client may discover that the book being sought is not available.
Similarly, if conditions in OWL-S depend on the knowledge of the agent at
execution time, in particular on the effects of previous steps and their interac-
tion with the agent’s knowledge. From the point of view of software verification,
such a condition could be considered a random variable, whose value cannot
be known at verification time and may equally be true or false. We therefore
model Results and if statements as non-deterministic choice. This forces the
verifier to evaluate the correctness of both branches of the Model. An OWL-S
conditional is implemented in a similar way to OWL-S Choice, but with the
if condition as a guard to the then statement and an else guard to the else
statement. According to Promela semantics, the else guard is only true, if all
other guards are false.



Towards a Formal Verification of OWL-S Process Models 45

(1) proctype AuthorSearch (chan syncChan, dataChan) {

(2) if /* implement conditional outputs */

(3) :: true -> atomic {

(4) int bookResult= 1;

(5) dataChan!bookResult;}

(6) :: true -> skip

(7) fi;

(8) syncChan!_pid,done;

(9) }

Fig. 5. Atomic process: the AuthorSearch Process

Modeling Atomic Processes. Finally, we present the mapping of an atomic
process, which produces different results, to Promela. We model the selection of
results with a non-deterministic choice. The implementation of the atomic pro-
cess AuthorSearch is shown in figure 5. The conditional outputs are specified in
lines 3 and 6 with a non-deterministic choice. If line 3 is selected, then the variable
bookResult is assigned to 1 (line 4) and its value is sent out on the data channel
(line 5). The other atomic processes, ArtistSearch and AddToShoppingCart
can be specified analogously.

Modeling Data Flow. For a given data flow link that maps outputs to in-
puts, one would ideally like a guarantee that the class of the input always sub-
sumes the class of the output. Verifying this using Spin would require the
subsumption relations in the ontology of the client to be represented within
the Promela model. In addition, Spin would need to be able to compute a
subsumption hierarchy of classes. Since this would immediately overwhelm the
verifier, we abstract from the actual values of inputs and outputs. Instead, the
types of inputs and outputs are modeled as integers and data flow links as chan-
nels. Inputs that are not bound by a data flow link are expected to be initialized
with some suitable value, usually 0. The evaluation of type subsumption claims
are deferred to a pre-processor, such as a type-checker or a reasoner, that can
methodically verify the integrity of all data flow links.

The data flow is represented by a variable that represents the output and the
dataChan channel that transfers data between processes. Different parts of the
data flow have been represented in the samples code shown above. For instance,
lines 3 to 5 of Fig. 5 represent the output bookResult and the transmission of its

(1) proctype AddToShoppingCart (chan syncChan, dataChan) {

(2) int product; dataChan?product;

(3) assert(product);

(4) syncChan!_pid,done;

(5) }

Fig. 6. Data flow: the AddToShoppingCart Process



46 A. Ankolekar, M. Paolucci, and K. Sycara

(1) proctype Repeat-While(chan syncChan, dataChan) {

(2) int v_1 = v_1_init;

(3) int v_2 = v_2_init;

(4) do

(5) :: c -> p

(6) :: else -> break

(7) od

(8) syncChan!_pid,done;

(9) }

Fig. 7. Implementation of a prototypical Repeat-While statement

value on the dataChan channel. Lines 8 and 13 of Fig. 4 show how channels are
chained in composite processes, where the results of child processes are trans-
mitted as the results of the parent process. This chaining implements the data
flow chain, shown in Fig. 1. Finally, the data transmitted across all the links of
the chain should reach the input of another atomic process and be consumed
there. Line 3 of Fig. 6 shows the implementation of the input product and its
instantiation with the value coming from dataChan. The line assert(product)
(line 3) specifies a claim on the state reached, namely that the value of product
should not be zero, i.e. the input is instantiated to some value.

Modeling Loops. There are two kinds of loops in OWL-S: the Repeat-While
process and the Repeat-Until process. OWL-S loops have a loop condition c,
a process p that is executed during every iteration of the loop and a number
of variables, v i that are local to the loop. Some of these variables may be
referenced in the loop condition c.

Promela supports loops through the guarded do :: od statements. As an
example of the implementation of loops, the definition of the Repeat-While
process using do is shown in Fig. 7. The process first declares and initialises the
loop variables, v 1 and v 2, in lines 2 and 3 respectively. Then, the process enters
the do loop, checking during each iteration that the condition c is true (line 5). If
so, the process p is executed; otherwise, the loop is broken (line 6) and the process
signals its termination (line 8). The Repeat-Until statement is implemented

(1) proctype Repeat-Until(chan syncChan, dataChan) {

(2) int v_1 = v_1_init;

(3) int v_2 = v_2_init;

(4) p;

(5) do

(6) :: !c -> p

(7) :: else -> break

(8) od

Fig. 8. Implementation of a prototypical Repeat-Until statement



Towards a Formal Verification of OWL-S Process Models 47

Fig. 9. An example of interaction between data and control flow in OWL-S

analogously (Fig. 8) with two key differences. The loop process p is executed once
before checking the loop condition c. Secondly, in the Repeat-Until construct,
the condition c is a termination condition, such that the loop terminates when
c is true. Therefore, in the do loop, the loop process is executed if the condition
is not satisfied.

5.1 Verifying Interaction Between Data and Control Flow

Data and control flow can often interact in unexpected ways. The simple process
model depicted in Fig. 9 shows one such interaction that may prove harmful.
The figure depicts a choice process, named Browse, that can be realized by
either an atomic process named ArtistSearch or by an atomic process named
AuthorSearch. A data flow link exists between the output of ArtistSearch to
the input of AuthorSearch. Although this Process Model is legal in OWL-S, it is
flawed. This is because either AuthorSearch or ArtistSearch is executed, but
not both. Thus, whenever AuthorSearch is executed, ArtistSearch is not and
therefore the input to AuthorSearch is never instantiated.

The Promela model generated by the mapping described thus far, would
detect the harmful interaction between control flow and data flow. The model
of the choice statement specifies that one of the two atomic processes will exe-
cute, while the assert constraint on the input of AuthorSearch requires that
ArtistSearch is always instantiated. Since there does not exist a model where
both claims are simultaneously true, Spin reports an error. The ability to detect
such interactions between data flow and control flow in OWL-S Process Models
is one of the main contributions of this work, which goes beyond other verifica-
tion models constructed for OWL-S. Indeed we claim that the model provided
by Narayanan et al. [9], would not detect the flaw in the process model described
above.

5.2 Summary of the OWL-S Model Construction

This section presented a detailed description of the modeling of OWL-S Process
Models in the Promela modeling language. A summary of our modeling is



48 A. Ankolekar, M. Paolucci, and K. Sycara

Table 1. Summary of the Modeling of OWL-S Process Models in Promela

Full Modeling Partial Modeling Out of scope
Processes Conditions (non-deterministic choice) Preconditions and Effects
Control Flow Inputs/Outputs (model assignment) Data Values
Concurrency
Data Flow
Loops

presented in Table 1, highlighting the OWL-S Process Model features retained,
partially modeled and the features out of scope. We already discussed how the
checking of data values could be deferred to a type-checker or semantic reasoner.
Thus, while we represent inputs and outputs, we do not represent their values
or their (ontological) data-type, limiting ourselves to modeling assignment.

Similarly, we do not model OWL-S preconditions and effects. Preconditions
to OWL-S processes are essentially warnings, that if the preconditions are not
heeded, the execution of the process may fail. If the client is a hard-coded pro-
cess, then the preconditions and effects serve as warnings or information for the
programmer; on the other hand, if the client is an agent, the OWL-S precon-
ditions and effects are for the benefit of the agent’s planner. However, there is
nothing to prevent a client from ignoring the preconditions, trying to execute
the process, and possibly failing. Thus, OWL-S preconditions and effects do not
affect execution of the Process Model. Consequently, they do not affect the ver-
ification of the Process Model either. Nevertheless, if a client wishes to ensure
that the preconditions can be fulfilled in addition to verifying the Process Model,
a promising approach might be to use a planner based on model-checking [4].

6 Verification of the Amazon Example

Given a Promela specification of an OWL-S Process Model, Spin constructs
a verifier, that can check several claims on the execution of the Process Model.
These properties include the values of certain variables at certain points in the
code and true statements that can be made about execution states (state proper-
ties) or the paths of execution (path properties). In addition, since Spin searches
the entire state space of a verification model, it can also identify unreachable or
dead code in a Process Model.

In this section, we present various kinds of verification that can be performed
on a Promela model generated by the mapping described in the sections above.
Using Spin and the Promela specification presented in the previous section,
several properties of the execution of the Amazon OWL-S Process Model were
verified. These properties were verified as part of five tests described below. For
each test, the size of the model constructed by Spin, the time taken in seconds
to construct the model and the time for verification were measured5.
5 The tests were carried out on a 750MHz Pentium 4 machine with 256MB of memory.



Towards a Formal Verification of OWL-S Process Models 49

Table 2. Performance of OWL-S verification using Spin (time in seconds)

#States Model Construction Time Verification Time
Amazon 132 0.20 0.01
Data flow 139 0.35 0.02
Liveness 345 0.15 0.04
Loop-2 654382 0.03 8.77
Loop-3 3902280 0.04 >7200

1. Simple Amazon: In the first case, the Promela specification of the Ama-
zon.com Web service was checked for basic safety conditions, such as the
absence of deadlocks and the correctness of the data-flow within the model
which derive directly from the mapping reported in the previous section.

2. Data flow : To the simple Amazon model, we added an assert statement to
verify the data flow between the Browse and ProductFound processes. The
statement specifies that Browse must return a product before the product is
added to the shopping cart, i.e. before ProductFound executes the process
AddToShoppingCart.

3. Liveness : Several interesting liveness claims can be made about the Ama-
zon example. For example, a client may wish to verify that the Amazon
Web service will always complete and not execute in an infinite loop, be-
fore deciding to use it. In other words, the user would like to express the
requirement that “ShopBook process will eventually complete.” In LTL this
statement is expressed as: ♦Done ShopBook. Another liveness claim a client
may wish to verify is that if a desired product is found with Amazon, then
the client can always add it to the shopping cart. This can be expressed
as ”in every execution sequence in which a product was found, the next
process to be executed is AddToShoppingCart.” In LTL this statement is
expressed as : �(productAvailable→ X(♦Done AddToShoppingCart)). In
other words, whenever productAvailable is true, in the next state, the
AddToShoppingCart process will eventually complete.

4. Loop-2 and Loop-3 : In order to test how loops could affect the performance
of Spin, we added a loop to the Promela model, which created multiple
concurrent instances of ShopBook. In the cases of Loop-2 and Loop-3, two
and three concurrent instances of ShopBook were created respectively.

The experiment shows that the verification of OWL-S Process Models that
do not contain any loops can be done very effectively. This is an important
result since we expect that the great majority of Process Models will be loop-
free6. Narayanan et al. [9] shows that the complexity the verification of the
OWL-S Process Model with loops is PSPACE while the complexity of the same
model without loops is NP-complete. Consistent with Narayanan’s claim, the
search complexity increases greatly, when the OWL-S Process Model is aug-
mented with additional loops. However, it should be pointed out that the loops
6 The great majority of e-business sites available on the Web are loop-free. We expect

that these sites provide a blue print for e-commerce Web services.



50 A. Ankolekar, M. Paolucci, and K. Sycara

we constructed are among the most difficult to verify since they spin off two
concurrent executions of the Amazon’s Process Model. Sequential executions of
Process Models would certainly exhibit less interaction.

The exponential increase in number of states and verification time, while
troublesome, seems to be manageable since checking more than two concur-
rent instances of ShopBook is superfluous and violates the requirement that the
verification model be the minimum sufficient model to perform the verification
successfully. Verifying two concurrent instances of ShopBook reveal all the dan-
gerous interaction effects just as well as three concurrent instances do. Therefore,
we do not gain in verification power by checking more than two instances. In our
future research we will search for a better modeling of loops that will minimize
the state explosion that has been revealed by our experiments.

7 Conclusions

In this paper we proposed a procedure for the verification of correctness claims
about OWL-S Process Models. We described a mapping of OWL-S statements
into equivalent Promela statements that can be evaluated by the Spin model
checker. In the process, a number of abstractions were presented for OWL-S
Process Models. The abstractions reduce the complexity of verification while
producing a model that is sufficiently rich to be able to make useful claims
about OWL-S Process Models.

The work presented here is a starting point and we see numerous possible ex-
tensions to it. For instance, we intend to relax some of the modeling abstractions
to report a richer output. In particular, we would like to specify not only the
reachability of states, but also under which conditions a state is reachable. This
information is important for a Web service client because it typically needs to
know what information must be sought in order to guarantee a correct execution
of the Process Model and what kind of commitments it will have to make. To
this extent we are currently exploring the use of a different verification system,
specifically NuSMV [3] which may allow a natural representation of conditions.

Another extension of this work that we would like to pursue is the automatic
generation of liveness claims. Based on the OWL-S markup and an appropriate
services ontology, a Web service client should be able to reason about processes
in an OWL-S Process Model, generating claims on-the-fly, such as ”the Delivery
process always executes after the Buy process.” These claims can then be verified
before the client decides to invoke the Web service. There are multiple sources of
liveness claims; in this paper we tested the reachability of one particular state,
but the client of a service may also want to verify the correctness with respect
to policies that the client has to satisfy.

Finally, this work does not include any modeling of the interaction between
the client and the server. We intend to extend the verification to the data map-
pings specified in the OWL-S Grounding. Such verification may provide guar-
antees on the data that processes will receive from the Server. In this direction
the work proposed in [13,6] is of particular interest since it may provide a rep-



Towards a Formal Verification of OWL-S Process Models 51

resentation of the mapping between the XML data that Web services exchange
with the OWL based data representation used in the OWL-S Process Model.

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.
Specification: Business process execution language for web services version 1.1.
http://www.ibm.com/developerworks/library/ws-bpel/, 2003.

2. A. Ankolekar, M. Paolucci, and K. Sycara. Spinning the OWL-S Process Model–
Towards the verification of the OWL-S Process Models. Presented at the Semantic
Web Services: Preparing to Meet the World of Business Applications workshop
at the International Semantic Web Conference (ISWC 2004), Hiroshima, Japan,
2004.

3. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool for symbolic model
checking. In Proceeding of International Conference on Computer-Aided Verifica-
tion (CAV 2002), Copenhagen, Denmark, 2002.

4. A. Cimatti and M. Roveri Conformant Planning via Symbolic Model Checking. In
Journal of Artificial Intelligence Research, 31, pg. 305–338, 2000.

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, MA, USA, 2000.

6. X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web services. In Pro-
ceedings of the 13th International World Wide Web Conference (WWW’04), New
York, NY, USA, 2004. ACM Press.

7. H.Foster, S. Uchitel, J. Kramer, and J. Magee. Model-based verification of web
service compositions. In Proceedings of the Automated Software Engineering (ASE)
Conference 2003, Montreal, Canada, October 2003.

8. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2003.

9. S. Narayanan and S. McIlraith. Simulation, verification and automated composi-
tion of web services. In Proceedings of the Eleventh International World Wide Web
Conference (WWW-11), May 2002.

10. M. Paolucci, A. Ankolekar, M. Srinivasan, and K. Sycara. The DAML-S virtual ma-
chine. In Second International Semantic Web Conference, Sanibel Island, Florida,
USA, 2003.

11. K. Schmidt and C. Stahl. A petri net semantic for bpel4ws - validation and ap-
plication. In Proceedings of the 11th Workshop on Algorithms and Tools for Petri
Nets (AWPN ’04), Paderborn, 2004.

12. C. Walton. Model checking multi-agent web services. In Proceedings of the 2004
Spring Symposium on Semantic Web Services, Stanford, CA, USA, March 2004.

13. T. B. X. Fu and J. Su. Wsat: A tool for formal analysis of web services. In
Proceedings of the 16th International Conference on Computer Aided Verification,
2004.



Web Service Composition with Volatile Information

Tsz-Chiu Au, Ugur Kuter, and Dana Nau

Department of Computer Science and Institute for Systems Research,
University of Maryland, College Park, MD 20742, USA

{chiu, ukuter, nau}@cs.umd.edu

Abstract. In many Web service composition problems, information may be
needed from Web services during the composition process. Existing research on
Web service composition (WSC) procedures has generally assumed that this in-
formation will not change. We describe two ways to take such WSC procedures
and systematically modify them to deal with volatile information.

The black-box approach requires no knowledge of the WSC procedure’s inter-
nals: it places a wrapper around the WSC procedure to deal with volatile infor-
mation. The gray-box approach requires partial information of those internals, in
order to insert coding to perform certain bookkeeping operations.

We show theoretically that both approaches work correctly. We present ex-
perimental results showing that the WSC procedures produced by the gray-box
approach can run much faster than the ones produced by the black-box approach.

1 Introduction

Most existing research on automated composition of semantic Web services has focused
on Web service composition (WSC) procedures, i.e., procedures for finding a composi-
tion of Web services to accomplish a given task. In order to assemble a composition, a
WSC procedure itself may need to retrieve information from Web services while it is
operating. Existing works have generally assumed that such information is static, i.e., it
will never change. For example, the Golog-based [1] and HTN-based [2, 3] approaches
both use the Invocation and Reasonable Persistence (IRP) condition. The WSC proce-
dures reported in [4, 5] are even more restrictive: they require that all of the information
needed by their procedures is provided by the user as input parameters. We will refer to
such procedures as static-information WSC procedures.

Clearly there are many cases where the static-information assumption is unrealistic.
There are thousands of Web services whose information may change while a WSC
procedure is operating: for example, whether a product is in stock, how much it will
cost or how much has been bid for it, what the weather is like, what time a train or
airplane will arrive, what seats are available for an airplane or a concert, what resources
are available in a grid-computing environment, and so forth.

This paper focuses on how to take static-information WSC procedures such as the
ones mentioned above, and translate them into volatile-information WSC procedures
that work correctly when information obtained from Web services may change.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 52–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Web Service Composition with Volatile Information 53

Our primary contributions are as follows:

1. We provide a general procedural model for a class of WSC procedures. We model
them as trial-and-error search procedures that may try different possible Web ser-
vice compositions in order to find one that accomplishes the desired task.

2. We describe a black-box approach for translating static-information WSC proce-
dures into volatile-information WSC procedures. In particular, we describe a wrap-
per that can be placed around any WSC procedure, without needing to know how
the underlying composition procedure operates.

3. We describe a gray-box approach for translating static-information WSC proce-
dures into volatile-information WSC procedures. This approach is based on tak-
ing our procedural model mentioned above, and modifying it to deal with volatile
information—hence the same modification will work on any WSC procedure that
is an instance of our general procedural model. We call this approach a gray-box
approach because it requires partial knowledge about a WSC procedure: namely,
that the WSC procedure is an instance of our procedural model.

4. We state theorems saying that both the black-box and the gray-box approaches
work correctly on any WSC procedure that is an instance our general model.

5. We provide experimental results demonstrating that the gray-box approach pro-
duces volatile-information WSC procedures that may run exponentially faster than
the ones produced by the black-box approach. For example, in a set of problems
in which there were only seven information items that needed to be retrieved from
Web services, the procedure produced by the gray-box approach ran 50 times as
fast as the one produced by the black-box approach.

It also would be possible to define a white-box approach, namely to take the code for the
WSC procedure and rewrite it by hand. But this approach would be labor-intensive and
it would only extend a single composition procedure, hence we do not consider it in this
paper. Our results show that in comparison with the black-box approach, the gray-box
approach already can provide substantial speedups without having to delve into all of
the details of the original WSC procedure.

2 Procedural Model of Web Service Composition

Existing approaches for Web Service Composition formulate the problem in different
ways, depending mainly on how the developers of those approaches perceive the prob-
lem. Examples include the following:

• In [1], the states of the world and the world-altering actions are modeled as Golog
programs, and the information-providing services are modeled as external functions
calls made within those programs. The goal is stated as a Prolog-like query and
the answer to that query is a sequence of world-altering actions that achieves the
goal, when executed in the initial state of the world. During the composition process,
however, it is assumed that no world-altering services are executed. Instead, their
effects are simulated in order to keep track of the state transitions that will occur
when they are actually executed.



54 T.-C. Au, U. Kuter, and D. Nau

• In [2], the WSC procedure is based on the relationship between the OWL-S process
ontology [6] used for describing Web services and Hierarchical Task Networks as in
HTN Planning [7]. OWL-S processes are translated into tasks to be achieved by the
SHOP2 planner [7], and SHOP2 generates a collection of atomic process instances
that achieves the desired functionality.

• [3] extends the work in [2] to cope better with the fact that information-providing
Web services may not return the needed information immediately when they are ex-
ecuted, or at all. The ENQUIRER algorithm presented in this work does not cease
the search process while waiting answers to some of its queries, but keeps search-
ing for alternative compositions that do not depend on answering those specific
queries.

• [4] models Web services and information about the world using the “knowledge-
level formulation” first introduced in the PKS planning system [8]. This formulation
models Web services based not on what is actually true or false about them, but what
the agent that performs the composition actually knows to be true or false about their
operations and the results of those operations. A composition is formulated as a con-
ditional plan, which allows for interleaving the executions of information-providing
and world-altering services, unlike the works described above.

Despite their differences, the aforementioned approaches have the following features in
common:

1. The WSC procedure is given the specification of the Web services written in a
formal language such as OWL-S [6], and a goal to be accomplished in the world.

2. The WSC procedure does a trial-and-error search through some space of possi-
ble solutions, to try to find a complete solution. A solution for a Web service-
composition problem is a set of services with ordering constraints such that, when
executed, the services achieve the desired functionality required by the input
service-composition problem.

3. The WSC procedure does not have a complete knowledge of the state of the world;
the missing information must be obtained from information-providing services. The
WSC procedures execute the information-providing services to obtain the missing
information either during the composition process or during the execution of the
composition.

4. The WSC procedure does not execute any Web services that have world-altering
effects during the composition process.

5. The information returned from the information-providing services is static. This is
the assumption that our work is intended to overcome.

We now describe a way to take a class of WSC procedures that have the characteristics
mentioned above, and modify them to work with volatile information. We start by defin-
ing an unknown to be any item of information that a WSC procedure needs to obtain
to carry out the composition process. For an unknown u, a WSC procedure sends a
query qu to the available information-providing Web services that can provide the
value vu for u.The value for u is returned by a Web service to the WSC procedure as



Web Service Composition with Volatile Information 55

Procedure General-WSC(P )
S0 ← create-initial-state(P ); OPEN ← {S0}; ANSWERS ← ∅
loop

insert all new answers for the pending queries (if any) into ANSWERS
select a node S from OPEN and remove it
if solution(S, P, ANSWERS) then return extract-solution(S, P )
issue queries about zero or more unknowns in S that are not in ANSWERS
OPEN ← (OPEN \ {S}) ∪ children-of(S, P )

Fig. 1. The General-WSC procedure is an abstract model of many static-information WSC pro-
cedures. It is based on the observation that most existing WSC procedures are trial-and-error
search procedures that may try different possible Web service compositions in order to find one
that accomplishes the desired task. P is the problem description, and the initial state S0 is derived
from it.

an answer for the query qu. A query issued by a WSC procedure is said to be pending
if no answers have been received for that query. Otherwise, it is completed. A pending
query becomes completed if all answers for that query is received.

Our procedural model is the General-WSC procedure shown in Figure 1. This
model captures the procedural behavior of most existing service-composition tech-
niques. Examples include [1, 2, 3, 4, 5], and others.

In the General-WSC procedure, each state is an abstract representation of a partial
solution to the WSC problem. If S is a state, then each child S′ of S is obtained by
making some kind of refinement to the partial solution represented by S. We assume
that whether or not S can be refined to produce S′ will depend on some precondition
pre(S, S′), whose value may be true or false depending on the values of some of
the unknowns. If pre(S, S′) = false then the refinement cannot be performed, hence
S′ is a dead end. But if pre(S, S′) = true then the refinement can be performed.
In the latter case, either S′ is a solution to the WSC problem or else it has one or
more children of its own. A state is a terminal state if it is either a dead end or a
solution.

Let S0 be the initial state of a WSC problem, and let 〈S0, S1, . . . , Sn〉 be a sequence
of states such that each Si+1 is a child of Si and Sn is a terminal node. Then from the
above assumptions, it follows that Sn is a solution if and only if

pre(S0, S1) ∧ pre(S1, S2) ∧ . . . ∧ pre(Sn−1, Sn) = true.

The variable OPEN is the set of all states that the WSC procedure has generated but
has not yet been able to examine. The variable ANSWERS is the set of all answers that
have been returned in response to a WSC procedure’s pending queries; i.e.,

ANSWERS = {(u, v) : a Web service has returned the value v for the unknown u}.

General-WSC begins with a set called OPEN that contains only the initial
state S0. Within each iteration of the loop, General-WSC does the following:



56 T.-C. Au, U. Kuter, and D. Nau

• It updates ANSWERS to include any answers that have been returned in response to
its queries.

• It selects S ∈ OPEN to work on next. Which node is selected depends on the partic-
ular WSC procedure. For example, in both the Golog-based [1] and SHOP2-based
[2] approaches, the search is performed in a depth-first manner. The PKS-based ap-
proach reported in [4] can perform either depth-first or breadth-first search.

• It checks whether or not S constitutes a solution (i.e., a composition that achieves
the goals of the current WSC problem). In the pseudocode of Figure 1, this check
is represented by the solution subroutine. The definition of the solution subroutine
depends on the particular instance of General-WSC. For example, in [1, 2, 3], so-
lution checks whether or not the sequence of world-altering services can really be
executed given the information collected from the information-providing services
during the composition process. In the PKS-based approach of [4], the definition of
solution includes (1) checking for the correctness and consistency of the knowledge-
level databases that PKS maintains, and (2) checking for whether the current solution
achieves the goals of the current WSC problem.

• If S is not a solution, then the procedure has an option to issue queries about the
unknowns that appear in S. Then it generates the successors of S, and inserts them
into the OPEN set. The children-of subroutine is responsible for this operation,
and again the details depend on the particular WSC procedure. In [1], children-of
a state is defined through the Trans rules described in that work. A successor state
generated by those rules specify the next Golog program to be considered by the
composition procedure as well as the current partial composition generated so far.
In HTN plannning based approaches as in [2, 3], successor states are computed via
task-decomposition techniques.

3 Dealing with Volatile Information

The previous section dealt with static-information WSC procedures, i.e., WSC proce-
dures for the case where the values of the unknowns will never change. We now consider
volatile-information WSC procedures, i.e., WSC procedures for the case where values
of the unknowns may change over time.

Figure 2 illustrates the life cycle for the value of an unknown u. Suppose a WSC pro-
cedure issued a query qu to a Web service W at time t = tissue(qu), asking for the value
of u. The answer for this query will arrive at time treturn(qu) = tissue(qu) + tlag(qu),
where the lag time tlag(qu) includes both the time the information-providing service
takes to process the query qu and the time delay due to network traffic.

In addition to the lag times of queries, we also need to consider (1) the time needed
to compute a precondition pre(S, S′), and the time needed to perform the refinement
refine(S, S′) that takes us from the state S to the state S′. Note that if pre(S, S′) =
false, then the time to perform refine(S, S′) is zero. If pre and refine refer to un-
knowns whose values are not currently known, then computing them may require send-
ing queries to Web services, thereby incurring some lag times. We assume that except
for those lag times, the time needed to compute pre and refine is negligible.



Web Service Composition with Volatile Information 57

TimeLine

query qu issued
at time tissue(qu)

value vu returned
at time treturn(qu)

vu expired
at time texpire(qu, vu)

lag time tlag(qu) valid time tvalid(qu, vu)

Fig. 2. A typical execution of an information-providing service. Above, tissue(qu) is the time that
a WSC procedure issues a query to a Web service for the value of an unknown u. treturn(qu) is
the time at which the value of u is received, and texpire(qu, vu) is the time point after which that
value is no longer guaranteed to be valid.

Suppose the answer for qu specified the value vu for u. Associated with the answer
is a valid time tvalid(qu, vu), i.e., the amount of time that the answer is guaranteed to be
valid.1 This means that the value of the unknown u is guaranteed to be vu between the
times treturn(qu) and texpire(qu, vu) = treturn(qu)+tvalid(qu, vu). At texpire(qu, vu),
the value vu expires; i.e., u’s value is no longer guaranteed to be vu after the time
texpire(qu, vu).

Since the values of the unknowns change over time, the correctness of a solution
composition returned a volatile-information WSC procedure depends on the values
gathered during the composition time. In order to guarantee that the returned com-
position will be executed correctly on the Web, we will define a solution composi-
tion to be T -correct if it is guaranteed to remain correct for at least some time T
after a WSC procedure returns that solution. In order to provide such a guarantee,
we assume that a value obtained for an unknown u will remain valid for at least
time T .

A static-information WSC procedure is said to be sound if whenever it returns a
solution to a WSC problem, the solution is a correct one. By analogy, we will say that
a volatile-information WSC procedure is T -sound if whenever it returns a solution, the
solution is T -correct.

In the following subsections, we introduce two approaches for taking static-
information WSC procedures and translating them into volatile-information WSC pro-
cedures. For both of them, if the original WSC procedure is sound, the translated
procedure will be T -sound.

1 Some WSC procedures provide a valid time explicitly. For example, hotel rooms can usually
be held without charge until 6pm on the night of arrival; and the web site at our university’s
concert hall will hold seating selections for several minutes (with a countdown timer showing
how much time is left). However, our approach does not actually need a valid time to be given
explicitly, as long as there is a mechanism to inform the WSC procedure immediately after an
expiration has occurred.

However, in that case, the WSC procedure can no longer guarantee how long the solution
will remain valid after it is returned, because expirations may occur anytime after the solution
is returned.



58 T.-C. Au, U. Kuter, and D. Nau

3.1 The Black-Box Approach

[9] investigated how to generate plans in the presence of incomplete and volatile in-
formation. The authors provided a query management strategy that could be wrapped
around most automated-planning systems, to manage their queries to external
information sources.

Our black-box approach is a modified version of the approach described in [9]. The
modifications are: (1) replace the planner with a WSC algorithm, (2) replace the infor-
mation sources with information-providing Web services, and (3) modify the strategy
to pretend that each unknown u’s expiration time is texpire(qu, vu) − T rather than
texpire(qu, vu). The latter modification is necessary to ensure that the solution returned
by the WSC procedure is T -correct.

[9] also described two query-management strategies that we can use with the black-
box approach:

• In the eager strategy, when the information collected from external information
sources is expired, the query-management strategy immediately re-issues the rele-
vant query or queries and suspends execution of the underlying WSC procedure until
the answers come back.

• In the lazy strategy, the query-management strategy does not immediately reissue
new queries about the expired information. Instead, it assumes that such information
is still valid and continues with the composition process until the underlying WSC
procedure generates a solution. At that point, the lazy strategy re-issues queries about
all expired information that that solution depends on, and suspends execution of the
WSC procedure until all of the answers is received.

If the same answers are received for the re-issued queries as before, these strategies
restart the WSC procedure from where it left off. With the lazy strategy, this means the
procedure immediately returns the solution and exits. Otherwise, the strategies back-
track the WSC procedure to the first point where it made a decision that depends on an
unknown whose value has changed, and restarts the procedure from that point.

The following theorem establishes the correctness of the black-box approach:

Theorem 1. Let A be a WSC procedure that is an instance of General-WSC, and let
AB be the modified version of A produced by the black-box approach. If A is sound,
then AB is T -sound.

For a detailed discussion and analysis on the black-box approach, please see [9].

3.2 The Gray-Box Approach

Although the black-box approach described in the previous section is a simple and
a general technique to modify WSC procedures to deal with volatile information, it
has one drawback: it does not consider the internal operations of the underlying WSC
procedures, and therefore, it may not perform very efficiently in some WSC problems.
In this section, we describe another technique, called the gray-box approach, that takes
into account the internals of WSC procedures that are instances of General-WSC in
order to generalize them to deal with volatile information.



Web Service Composition with Volatile Information 59

Procedure VI-General-WSC(P, T )
S0 ← create-initial-state(P ); OPEN ← {S0}; ANSWERS ← ∅
loop

remove some or all expired answers from ANSWERS
insert all new answers for the pending queries into ANSWERS
select a node S from OPEN
if solution(S, P, ANSWERS) then

if S contains no unknowns whose values have expired or will
expire within time period T , then

return extract-solution(S, P )
else

remove zero or more values from ANSWERS that have expired or
will expire within time period T , and re-issue queries about them

OPEN ← OPEN ∪ {S}
else

issue queries about zero or more unknowns in S that are not in ANSWERS
OPEN ← (OPEN \ {S}) ∪ children-of(S, P )

Fig. 3. The VI-General-WSC procedure generalizes the General-WSC to deal with volatile
information. It returns a solution to the WSC problem that will remain correct for at least T
amount of time after the solution is returned.

The gray-box approach is based on a modified version of the General-WSC pro-
cedure, called VI-General-WSC, that works with volatile information. This procedure
is shown in Figure 3. In this approach, we take an instance of the abstract General-
WSC service-composition procedure, and translate it into the corresponding instance
of VI-General-WSC.

Like General-WSC, VI-General-WSC performs a search in the space of states,
but it also keeps track of the expired values for the unknowns for which it issued queries
previously, and maintains the ANSWERS set accordingly. At each iteration, a state
S in OPEN is active, if for every unknown u that appears in S we have (u, v) ∈
ANSWERS, where v is the value of u in S. In other words, a state in OPEN is active
at a particular iteration of VI-General-WSC, if all of the information that it depends on
is valid at that iteration. Otherwise, S is inactive. As an example, in Figure 4, the solid
squares are active states and the dashed squares are inactive ones.

The following theorem establishes the correctness of the gray-box approach:

Theorem 2. Let A be a WSC procedure that is an instance of General-WSC, and let
AG be the modified version of A produced by the gray-box approach. If A is sound,
then AG is T -sound.

This theorem holds because (1) given a set of unknowns and possible values for them,
both A and AG have the same search traces, and (2) AG terminates only when the
solution satisfies the solution function and the values the solution depends on remain
valid for time T . Therefore, the solution is T -correct only if A is sound.

Earlier, for the black-box approach, we defined two query-management strategies:
the eager and lazy strategies. In the gray-box approach, since we have some control



60 T.-C. Au, U. Kuter, and D. Nau

S1

S2

S3

S4

S5

S6

S7
S8

S9

S10

S11

S12 S13

S14
S15

u1 = v1

u1 = v2
u1 = v3

u1 = v4

u2 = v5 u2 = v6 u2 = v5
u2 = v6

Fig. 4. An example snapshot of a VI-General-WSC search space. There are three unknowns, and
their current values are u1 = v3, u1 = v4, and u2 = v5. The squares represent the states in the
open list, and the circles represent the states that have already been visited. The label on each
edge (Si, Sj) gives a value uh = vk that the refinement refine(Si, Sj) depends on. For example,
refine(S12, S14) only works if u2 = v5, and the state S14 is a valid refinement of S1 only if both
u1 = v4 and u2 = v5. The solid squares denote active states; these represent valid refinements of
S1. The dashed squares denote inactive states: these once were valid refinements of S1, but they
are not currently valid because some of the information they depend on has expired.

over the way underlying WSC procedures perform their search, our query-management
strategies can be more sophisticated. For example, here are two query management
strategies for use with the gray-box approach:

• The active-only strategy selects the first active state from the OPEN set, if there
exists any. If there is no active state in the OPEN set, then the composition process
stops until some states become active again. In this case, when an answer for a query
expires, we immediately re-issue that query.

• The active-inactive strategy first attempts to select an active node, if there are active
nodes in the OPEN list. If not, it attempts to select an inactive node, assuming that
the values for the unknowns that this selection depends on will become valid at some
point later in the composition process. In this case, we do not reissue a query after its
value is expired; instead, we treat the expired values as if they are not expired. When
we get to a goal state, we reissue all the queries for all expired values that some goal
state in the OPEN set depends on.

4 Implementation and Experimental Evaluation

In our experiments, we used both the black-box and gray-box techniques to gener-
ate volatile-information WSC procedures. In particular, we used the static-information
WSC procedure described in [2], which is an instance of the abstract General-WSC
procedure. This WSC procedure is based on a translation of OWL-S process models
into HTN methods and operators for use within the SHOP2 planning system [7].



Web Service Composition with Volatile Information 61

In our experiments, we assumed that this translation process had already been car-
ried out, hence we started directly with the SHOP2 methods and operators. We im-
plemented the following four volatile-information WSC procedures:

• Eager and Lazy: black-box translations of the static-information WSC procedure
using the eager and the lazy strategies, respectively.

• Active-Only and Active-Inactive: gray-box translations of the static-information
WSC procedure using the active-only and the active-inactive strategies, respectively.

For our experiments, we used two service-composition scenarios. The first is the
Delivery-Company application described in [3]. In this domain, a delivery company
is trying to arrange the shipment of a number of packages by coordinating its several
local branches. The company needs to query Web services to gather information from
its branch offices about the locations and the availability of vehicles (i.e., trucks and
planes) and the status of packages. The goal is to generate a sequence of commands
to send as Web service calls to the vehicle controllers, such that the execution of these
commands will route all of the packages to their final destinations.

Our second service-composition scenario involves a simplified model for grid- and
utility-based computing [10]. In our scenario, there are a number of Grid Services for
reserving computing resources owned by several different companies on the Web. Some
of them are information-providing grid services giving the current workload, memory
usage, software license, etc. The WSC procedure’s goals are to figure out which com-
puting resources to use for a given computing task, and to generate a composite Grid
Service that actually makes the reservation once it is executed. Since the workload and
the memory usage of the machines keep changing, it is necessary for the WSC proce-
dure to deal with the change of information during composition.

We randomly created 7 delivery-company problems and 8 grid-computing prob-
lems. Then, in the description of each problem, we randomly inserted n number of un-
known symbols, for n = 1, . . . , 9. For each number of unknowns, we ran each problem
50 times and averaged the running times. Every time a query was issued, we generated
the lag time for that query and the valid time for the answer by choosing numbers at
random from the time interval 0.5 ≤ t ≤ 2.5 seconds.

The results are shown in Figures 5 and 6 on Delivery-Company and Utility-
Computing problems using an Intel Xeon 2.6GHz CPU with 1GB memory. Each data
point is an average of 350 and 400 runs, respectively. Missing data points correspond
to experiments where one or more of the runs went for longer than 30 minutes.

In these experiments, the two WSC procedures produced by the gray-box approach
(the Active-Only and Active-Inactive procedures) performed much better than the two
WSC procedures produced by the black-box approach (the Eager and Lazy proce-
dures). This occurred because the former were able to explore alternative compositions
for a problem while awaiting responses from the information-providing services. The
improvement in running time was roughly exponential. For example, with 7 unknowns
Active-Inactive took roughly 1/50 the time required by the Lazy procedure.



62 T.-C. Au, U. Kuter, and D. Nau

Active-Only

Active-Inactive

Eager

Lazy

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9

Number of Unknowns

A
v

g
. 
C

P
U

 T
im

e
s

 (
s

e
c

.'
s

)

Fig. 5. Average running times of our algorithms on Delivery-Company problems, as a function of
the number of unknowns

Active-Only

Active-Inactive

Eager

Lazy

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9

Number of Unknowns

A
v

g
. 
C

P
U

 T
im

e
s

 (
s

e
c

.'
s

)

Fig. 6. Average running times of our algorithms on Utility-Computing problems, as a function of
the number of unknowns

In addition, the Active-Inactive procedure performed much better than the Active-
Only procedure.2 The reason is that in the case when there are no active nodes

2 Analogously, Lazy performed much better than Eager. This confirms the results reported in
[9].



Web Service Composition with Volatile Information 63

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9

Number of Unknowns

A
v

g
. 
C

P
U

 T
im

e
s

 (
s

e
c

.s
)

Active-Only (vt=2.5) Active-Inactive (vt=2.5) Active-Only (vt=3.5)

Active-Inactive (vt=3.5) Active-Inactive (vt=5.0) Active-Only (vt=5.0)

Fig. 7. Average running times of our algorithms on Delivery-Company problems with varying
number of unknowns and valid times for the answers of queries. In each case, “vt” denotes the
upper bound for the valid times used in the experiments.

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9

Number of Unknowns

A
v

g
. 
C

P
U

 T
im

e
s

 (
s

e
c

.'
s

)

Active-Only (vt=2.5) Active-Inactive (vt=2.5) Active-Only (vt=3.5)

Active-Inactive (vt=3.5) Active-Only (vt=5.0) Active-Inactive (vt=5.0)

Fig. 8. Average running times of our algorithms on Utility-Computing problems, with varying
number of unknowns and valid times for the answers of queries. In each case, “vt” denotes the
upper bound for the valid times used in the experiments.

(i.e., when every state in the OPEN set depends on an unknown whose value has ex-
pired), Active-Only suspends execution while waiting for responses from Web services,
whereas Active-Inactive keeps working: it expands the inactive nodes assuming the



64 T.-C. Au, U. Kuter, and D. Nau

responses they depend on may become valid again at some point in the future. This en-
ables Active-Inactive to explore many more alternative compositions than Active-Only
in the same amount of time.

Note that the running times of our WSC procedures grow exponentially with the
number of unknowns. The reason is that it is getting harder to get all required valid val-
ues simultaneously as the number of unknowns increases. In order to further investigate
the effect of valid times on the behavior of our WSC procedures, we also did another
set of experiments in which we varied the upper bounds for the valid times of the an-
swers for our WSC procedures. In these experiments, we used the same experimental
scenarios described above with 2.5, 3, 5 and 5.0 seconds as upper bounds for the valid
times in our random simulation.

Figures 7 and 8 show the results of these experiments on the Delivey-Company
and Utility-Computing problems, respectively. As shown in these figures, the perfor-
mances of our procedures increase dramatically with the increasing valid times for
the answers of their queries. The Active-Only procedure was able to solve the prob-
lems with 9 unknowns, which it was not able to solve before. The Active-Inactive
procedure outperformed Active-Only in all cases. Finally, the performance of Active-
Inactive increased expoenentially with the increasing valid times. This is because,
when the values obtained for the unknowns do not expire very quickly as in our first
set of experiments, Active-Inactive quickly finds a solution as it expands inactive
states as well as active ones and returns it before any value that that solution depends
on expires.

5 Related Work

In addition to the service-composition techniques [1, 2, 3, 4] described earlier, another
WSC procedure that fits into our framework is a technique based on an estimated-
regression planner called Optop [5]. As an instance of the General-WSC procedure,
a state is a situation in Optop, which is essentially a partial plan. The solution function
checks whether the current situation satisfies the conjunction of the goal literals given to
the planner as input, and the children-of function computes a regression-match graph
and returns the successors of the current situation.

[11] is another WSC approach that also fits into our framework. It is based on a
partial-order planner that uses STRIPS-style services translated from DAML-S descrip-
tions of atomic services to compose a plan. As an instance of the General-WSC, a state
is a partial-order plan; the solution function checks if there is any unsatisfied subgoal
in a plan, and the children-of function generates child nodes by either instantiating op-
erators or using external inputs or preconditions to satisfy the subgoals. By using our
approach, the extended procedure might obtain information about the conditions of the
subgoals though Web services during planning.

In [12] and [13], a planning technique based on the “Planning as Model Checking”
paradigm is described for the automated composition of Web services. The BPEL4WS
process models was first translated into state transition systems that describe the dy-
namic interactions with external services. Given these state-transition systems, the plan-
ning algorithm, using symbolic model checking techniques, returns an executable pro-



Web Service Composition with Volatile Information 65

cess rather than a linear sequence of actions. It is not immediately clear to us if this
approach fits into the trial-and-error framework that our approaches are based on.

6 Conclusions and Future Work

In this paper, we have described two approaches for taking WSC procedures designed
to work in static-information environments, and modifying them to work correctly in
volatile-information environments.

The black-box approach requires no knowledge of the internal operation of the orig-
inal WSC procedure. It puts a wrapper around the procedure to deal with the volatile
information.

The gray-box approach requires some knowledge of the original WSC procedure,
but only partial knowledge: it requires knowing that the original procedure is an in-
stance of our General-WSC. The gray-box approach works by inserting some addi-
tional bookkeeping operations at various points in the instances of General-WSC.

Our experimental results show that despite the simplicity of these modifications,
the resulting volatile-information WSC procedures can perform much better than the
ones produced by the black-box approach. This is because the modifications enable the
volatile-information WSC procedure to explore alternative Web service compositions
while waiting for its queries to be answered.

This paper is just a first step in the development of WSC procedures for volatile-
information environments. There are several important topics for future work:

• There are situations in which some of the valid times are so short that the WSC pro-
cedure cannot finish its task due to an overwhelmingly large number of expirations.
Furthermore, there are situations in which the WSC procedure can never get hold
of valid values of some of the unknowns simultaneously, and thus it is impossible
to return a valid solution. We would like to determine what kinds of conditions are
sufficient to guarantee that our procedure will terminate with a solution.

• Like most of the previous work on WSC procedures, we have assumed that the WSC
procedure does not execute any Web services that have world-altering effects dur-
ing the composition process—just the information-providing services. We intend to
generalize our work to accommodate the execution of services that have information-
providing effects, world-altering effects, or both during service composition.

• Even more generally, we are interested in allowing the possibility of interleaving
composition and execution—e.g., to allow the WSC procedure to execute a portion
of the composition before generating the rest of the composition.

• We believe the gray-box approach can be made even more efficient by extending it to
make use of knowledge of what the search space looks like, and what the solutions
should look like.

Acknowledgment. This work was supported in part by NSF grant IIS0412812 and
AFOSR grant FA95500510298. The opinions expressed in this paper are those of au-
thors and do not necessarily reflect the opinions of the funders.



66 T.-C. Au, U. Kuter, and D. Nau

References

[1] McIlraith, S., Son, T.: Adapting Golog for composition of semantic web services. In:
KR-2002, Toulouse, France (2002)

[2] Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composi-
tion using SHOP2. Journal of Web Semantics 1 (2004) 377–396

[3] Kuter, U., Sirin, E., Nau, D., Parsia, B., Hendler, J.: Information gathering during planning
for web services composition. In: ISWC-2004. (2004)

[4] Martinez, E., Lespérance, Y.: Web service composition as a planning task: Experiments
using knowledge-based planning. In: ICAPS-2004 Workshop on Planning and Scheduling
for Web and Grid Services. (2004)

[5] McDermott, D.: Estimated-regression planning for interactions with web services. In:
AIPS. (2002)

[6] OWL Services Coalition: OWL-S: Semantic markup for web services (2004) OWL-S
White Paper http://www.daml.org/services/owl-s/1.1/owl-s.pdf.

[7] Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.: SHOP2: An
HTN planning system. JAIR 20 (2003) 379–404

[8] Petrick, R.P.A., Bacchus, F.: A knowledge-based approach to planning with incomplete
information and sensing. In: AIPS. (2002)

[9] Au, T.C., Nau, D., Subrahmanian, V.: Utilizing volatile external information during plan-
ning. In: ECAI. (2004)

[10] Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The physiology of the
grid: An open grid services architecture for distributed systems integration.
http://www.globus.org/research/papers/ogsa.pdf (2002)

[11] Sheshagiri, M., desJardins, M., Finin, T.: A planner for composing services described in
daml-s. In: AAMAS Workshop on Web Services and Agent-based Engineering. (2003)

[12] Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and monitoring
web service composition. In: AIMSA. (2004)

[13] Traverso, P., Pistore, M.: Automated composition of semantic web services into executable
processes. In: ISWC. (2004)



A Large Scale Taxonomy Mapping Evaluation

Paolo Avesani1, Fausto Giunchiglia2, and Mikalai Yatskevich2

1 ITC-IRST, 38050 Povo, Trento, Italy
avesani@itc.it

2 Dept. of Information and Communication Technology,
University of Trento, 38050 Povo, Trento, Italy

{fausto, yatskevi}@dit.unitn.it

Abstract. Matching hierarchical structures, like taxonomies or web di-
rectories, is the premise for enabling interoperability among heteroge-
nous data organizations. While the number of new matching solutions
is increasing the evaluation issue is still open. This work addresses the
problem of comparison for pairwise matching solutions. A methodology
is proposed to overcome the issue of scalability. A large scale dataset is
developed based on real world case study namely, the web directories of
Google, Looksmart and Yahoo!. Finally, an empirical evaluation is per-
formed which compares the most representative solutions for taxonomy
matching. We argue that the proposed dataset can play a key role in
supporting the empirical analysis for the research effort in the area of
taxonomy matching.

1 Introduction

Taxonomic structures are commonly used in file systems, market place cata-
logs, and the directories of Web portals. They are now widespread as knowledge
repositories (in this case they can be viewed as shallow ontologies [23]) and the
problem of their integration and interoperability is acquiring a high relevance
from a scientific and commercial perspective. A typical application of hierarchical
classification interoperability occurs when a set of companies wants to exchange
products without sharing a common product catalog. The typical solution to the
interoperability problem amounts to performing matching between taxonomies.
The Match operator takes two graph-like structures as input and produces a
mapping between the nodes of the graphs that correspond semantically to each
other.

Many diverse solutions to the matching problem have been proposed so far,
see for example surveys in [20, 21] and concrete solutions [13, 15, 6, 18, 24, 3, 19,
17, 8], etc. Unfortunately nearly all of them suffer from the lack of evaluation.
Until very recently there were no comparative evaluations and it was quite diffi-
cult to find two systems which were evaluated on the same dataset. At the same
time the evaluation efforts were mostly concentrated either on datasets artifi-
cially synthesized under questionable assumptions or on the ”toy” examples.

In this paper we introduce a large scale dataset for evaluating matching
solutions. The dataset is constructed from the mappings extracted from real

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 67–81, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



68 P. Avesani, F. Giunchiglia, and M. Yatskevich

web directories and contains thousands of mappings. We have evaluated the
dataset using the most representative state of the art solutions to the matching
problem. The evaluation highlighted that the dataset has four key properties
namely Complexity, Discrimination capability, Incrementality and Correctness.
The first means that the dataset is ”hard” for state of the art matching systems,
the second that it discriminates among the various matching solutions, the third
that it is effective in recognizing weaknesses in the state of the art matching
systems and the fourth that it can be considered as a correct tool to support
the improvement and research on the matching solutions. At the same time
the current version of dataset contains only ”true positive” mappings. This fact
limits the evaluations on the dataset to measuring only Recall. This is a weakness
of the dataset that we plan to improve. However, as highlighted in [16], the
biggest problem in nowadays matching systems is recall, while completeness is
much less of an issue.

The rest of the paper is organized as follows. Section 2 summarizes the defini-
tion of the matching problem and recalls the state of the art. Section 3 expands
more on the notion of mapping evaluation problem. Section 4 illustrates how
the large scale dataset has been arranged. Section 5 is devoted to a large scale
empirical evaluation on two leading matching systems. Section 6 presents the
results of our experiments and argues why the proposed dataset is of interest.
Section 7 concludes the paper.

2 The Matching Problem

In order to motivate the matching problem and illustrate one of the possible situ-
ations which can arise in the data integration task let us use the two taxonomies
A and B depicted on Figure 1. They are taken from Yahoo! and Standard busi-
ness catalogues. Suppose that the task is to integrate these two taxonomies.

Fig. 1. Parts of Yahoo and Standard taxonomies



A Large Scale Taxonomy Mapping Evaluation 69

We assume that all the data and conceptual models (e.g., classifications,
database schemas, taxonomies and ontologies) can be represented as graphs (see
[9] for a detailed discussion). Therefore, the matching problem can be repre-
sented as extraction of graph-like structures from the data or conceptual mod-
els and matching the obtained graphs. This allows for the statement and so-
lution of a generic matching problem, very much along the lines of what done
in [15, 13].

The first step in the integration process is to identify candidates to be
merged or to have relationships under an integrated taxonomy. For example,
Computer HardwareA can be assumed equivalent to Computer HardwareB

and more general than Personal ComputersB . Hereafter the subscripts desig-
nate the schema (either A or B) from which the node is derived.

We think of a mapping element as a 4-tuple 〈IDij , n1i, n2j , R〉, i = 1, ..., N1;
j = 1, ..., N2; where IDij is a unique identifier of the given mapping element;
n1i is the i-th node of the first graph, N1 is the number of nodes in the first
graph; n2j is the j-th node of the second graph, N2 is the number of nodes in
the second graph; and R specifies a similarity relation of the given nodes. A
mapping is a set of mapping elements. We think of matching as the process of
discovering mappings between two graph-like structures through the application
of a matching algorithm.

Matching approaches can be classified into syntactic and semantic depending
on how mapping elements are computed and on the kind of similarity relation
R used (see [10] for in depth discussion):

– In syntactic matching the key intuition is to find the syntactic (very often
string based) similarity between the labels of nodes. Similarity relation R in
this case is typically represented as a [0, 1] coefficient, which is often consid-
ered as equivalence relation with certain level of plausibility or confidence
(see [13, 7] for example). Similarity coefficients usually measure the closeness
between two elements linguistically and structurally. For example, the sim-
ilarity between Computer Storage DevicesA and Data Storage DevicesB

based on linguistical and structural analysis could be 0,63.
– Semantic matching is an approach where semantic relations are computed

between concepts (not between labels) at nodes. The possible semantic re-
lations (R) are: equivalence (=); more general or generalization (⊇); less
general or specification (⊆ ); mismatch (⊥); overlapping (∩). They are or-
dered according to decreasing binding strength, i.e., from the strongest (=)
to the weakest (∩). For example, as from Figure 1 Computer HardwareA

is more general than Large Scale Com-putersB

In this paper we are focused on taxonomy matching. We think about tax-
onomy as a 〈N, A, Fl〉, where N is a set of nodes, A is a set of arcs, such that
〈N, A〉 is a rooted tree. Fl is a function from N to set of labels L (i.e., words
in natural language). An example of taxonomy is presented on Figure 1. No-
tice that the distinguishing feature of taxonomies is the lack of formal encoding
semantics.



70 P. Avesani, F. Giunchiglia, and M. Yatskevich

3 The Evaluation Problem

Nearly all state of the art matching systems suffer from the lack of evaluation. Till
very recently there was no comparative evaluation and it was quite difficult to
find two systems evaluated on the same dataset. Often authors artificially synthe-
size datasets for empirical evaluation but rarely they explain their premises and
assumptions. The last efforts [22] on matching evaluation concentrate rather on
artificially produced and quite simple examples than real world matching tasks.
Most of the current evaluation efforts were devoted to the schemas with tenth of
nodes and only some recent works (see [6] for example) present the evaluation
results for the graphs with hundreds of nodes. At the same time industrial size
schemas contain up to tenth thousands of nodes.

The evaluation problem can be summarized as the problem of acquiring the
reference relationship that holds between two nodes. Given such a reference rela-
tionship it would be straightforward to evaluate the result of a matching solution.
Up to now the acquisition of the reference mappings that hold among the nodes
of two taxonomies is performed manually. Similarly to the annotated corpora for
information retrieval or information extraction, we need to annotate a corpus
of pairwise relationships. Of course such an approach prevents the opportunity
of having large corpora. The number of mappings between two taxonomies are
quadratic with respect to taxonomy size, what makes hardly possible the manual
mapping of real world size taxonomies. It is worthwhile to remember that web
directories, for example, have tens thousands of nodes. Certain heuristics can
help in reducing the search space but the human effort is still too demanding.

Our proposal is to build a reference interpretation for a node looking at its
use. We argue that the semantics of nodes can be derived by their pragmatics,
i.e., how they are used. In our context, the nodes of a taxonomy are used to
classify documents. The set of documents classified under a given node implic-
itly defines its meaning. This approach has been followed by other researchers.
For example in [5, 14] the interpretation of a node is approximated by a model
computed through statistical learning. Of course the accuracy of the interpreta-
tion is affected by the error of the learning model. We follow a similar approach
but without the statistical approximation. The working hypothesis is that the
meaning of two nodes is equivalent if the sets of documents classified under those
nodes have a meaningful overlap.

The basic idea is to compute the relationship hypotheses based on the co-
occurence of documents. This document-driven interpretation can be used as
a reference value for the evaluation of competing matching solutions. A simple
definition of equivalence relationship based on documents can be derived by the
F1 measure of information retrieval.

Figure 2 shows a simple example. In the graphical representation we have
two taxonomies, for each of them we focus our attention on a reference node.
Let be S and P two sets of documents classified under the reference nodes of
the first and second taxonomies respectively. We will refer to AS and AP as the
set of documents classified under the ancestor nodes of S and P . Conversely, we
will refer to TS and TP as the set of documents classified under the subtrees of S



A Large Scale Taxonomy Mapping Evaluation 71

Fig. 2. The pairwise relationships between two taxonomies

and P . The goal is to define a relationship hypothesis based on the overlapping
of the set of documents, i.e. the pragmatic use of the nodes.

The first step, the equivalence relationship, can be easily formulated as the
F1 measure of information retrieval [2]. The similarity of two sets of documents
is defined as the ratio between the marginal sets and the shared documents:

Equivalence =
|MS

P |+ |MP
S |

|OS
P |

where the set of shared documents is defined as OS
P = P ∩S and MS

P = S \OS
P is

the marginal set of documents classified by S and not classified by P (similarly
MP

S = P \ OS
P ). The following equivalence applies OS

P = OP
S . Notice that ”O”

stands for ”overlapping” and ”M” stands for ”Marginal set”.
We do a step forward because we do not only compute the equivalence hy-

pothesis based on the notion of F1 measure of information retrieval, but we
extend such equation to define the formulation of generalization and specializa-
tion hypotheses. Generalization and specialization hypotheses can be formulated
taking advantage of the contextual encoding of knowledge in terms of hierarchies
of categories. The challenge is to formulate a generalization hypothesis (and con-
versely a specialization hypothesis) between two nodes looking at the overlapping
of set of documents classified in the ancestor or subtree of the reference nodes [1].

The generalization relationship holds when the first node has to be considered
more general of the second node. Intuitively, it happens when the documents
classified under the first nodes occur in the ancestor of the second node, or the



72 P. Avesani, F. Giunchiglia, and M. Yatskevich

documents classified under the second node occur in the subtree of the first node.
Following this intuition we can formalize the generalization hypothesis as

Generalization =
|MS

P |+ |MP
S |

|OS
P |+ |OP

AS
|+ |OS

TP
|

where OP
AS

represents the set of documents resulting from the intersection be-
tween MP

S and the set of documents classified under the concepts in the hierarchy
above S (i.e. the ancestors); similarly OS

TP
represents the set of documents re-

sulting from the intersection between MS
P and the set of documents classified

under the concepts in the hierarchy below P (i.e. the children).
In a similar way we can conceive the specialization relationship. The first

node is more specific than second node when the meaning associated to the first
node can be subsumed by the meaning of the second node. Intuitively, it happens
when the documents classified under the first nodes occur in the subtree of the
second node, or the documents classified under the second node occur in the
ancestor of the first node.

Specialization =
|MS

P |+ |MP
S |

|OS
P |+ |OP

TS
|+ |OS

AP
|

where OP
TS

represents the set of documents resulting from the intersection be-
tween MP

S and the set of documents classified under the concepts in the hierarchy
below S (i.e. the children); similarly OS

AP
represents the set of documents result-

ing from the intersection between MS
P and the set of documents classified under

the concepts in the hierarchy above P (i.e. the ancestors).
The three definitions above allow us to compute a relationship hypothesis

between two nodes of two different taxonomies. Such an hypothesis relies on the
assumption that if two nodes classify the same set of documents, the meaning
associated to the nodes is reasonably the same. Of course this assumption is true
for a virtually infinite set of documents. In a real world case study we face with
finite set of documents, and therefore, this way of proceeding is prone to error.
Nevertheless, our claim is that the approximation introduced by our assumption
is balanced by the benefit of scaling with the annotation of large taxonomies.

4 Building a Large Scale Mapping Dataset

Let us try to apply the notion of document-driven interpretation to a real world
case study. We focus our attention to web directories for many reasons. Web
directories are widely used and known; moreover they are homogeneous, that is
they cover general topics. The meaning of a node in a web directory is not de-
fined with formal semantics but by pragmatics. Furthermore the web directories
address the same space of documents, therefore the working hypothesis of co-
occurence of documents can be sustainable. Of course different web directories
don’t cover the same portion of the web but the overlapping is meaningful.



A Large Scale Taxonomy Mapping Evaluation 73

The case study of web directories meets two requirements of the matching
problem: to have heterogeneous representations of the same topics and to have
taxonomies of large dimensions.

We address three main web directories: Google, Yahoo! and Looksmart.
Nodes have been considered as categories denoted by the lexical labels, the tree
structures have been considered as hierarchical relations, and the URL classi-
fied under a given node as documents. The following table summarizes the total
amount of processed data.

Web Directories Google Looksmart Yahoo!
number of nodes 335.902 884.406 321.585
number of urls 2.425.215 8.498.157 872.410

Let us briefly describe the process by which we have arranged an annotated
corpus of pairwise relations between web directories.

Step 1. We crawled all three web directories, both the hierarchical structure
and the web contents, then we computed the subset of URLs classified by
all of them.

Step 2. We pruned the downloaded web directories by removing all the URLs
that were not referred by all the three web directories.

Step 3. We performed an additional pruning by removing all the nodes with a
number of URLs under a given threshold. In our case study we fixed such a
threshold at 10.

Step 4. We manually recognized potential overlapping between two branches
of two different web directories like

Google:/Top/Science/Biology
Looksmart:/Top/Science-and-Health/Biology

Yahoo:/Top/Computers-and-Internet/Internet
Looksmart:/Top/Computing/Internet

Google:/Top/Reference/Education
Yahoo:/Top/Education

We recognized 50 potential overlapping and for each of them we run an
exhaustive assessment on all the possible pairs between the two related sub-
trees. Such an heuristic allowed us to reduce the quadratic explosion of carte-
sian product of two web directories. We focussed the analysis on smaller
subtrees where the overlaps were more likely.

Step 5. We computed the three document-driven hypothesis for equivalence,
generalization and specialization relationships as described above. Hypothe-
ses of equivalence, generalization and specialization are normalized and es-
timated by a number in the range [0,1]. Since the cumulative hypothesis of
all three relationships for the same pair of nodes can not be higher than 1,
we introduce a threshold to select the winning hypothesis. We fixed such a
threshold to 0.5.



74 P. Avesani, F. Giunchiglia, and M. Yatskevich

We discarded all the pairs where none of the three relationship hypothe-
ses was detected. This process allowed us to obtain 2265 pairwise relationships
defined using the document-driven interpretation. Half are equivalence relation-
ships and half are generalization relationships (notice that by definition gener-
alization and specialization hypothesis are symmetric).

In the following we will refer to this dataset as TaxME, TAXonomy Mapping
Evaluation.

5 The Empirical Evaluation

The evaluation was designed in order to assess the major dataset properties
namely:

– Complexity, namely the fact that the dataset is ”hard” for state of the art
matching systems.

– Discrimination ability, namely the fact that the dataset can discriminate
among various matching approaches.

– Incrementality, namely the fact that the dataset allows to incrementally
discover the weaknesses of the tested systems.

– Correctness, namely the fact that the dataset can be a source of correct
results.

We have evaluated two state of the art matching systems COMA1 and S −
Match and compared their results with baseline solution. Let us describe the
matching systems in more detail.

The COMA system [13] is a generic syntactic schema matching tool. It ex-
ploits both element and structure level techniques and combines the results of
their independent execution using several aggregation strategies. COMA pro-
vides an extensible library of matching algorithms and a framework for combin-
ing obtained results. Matching library contains 6 individual matchers, 5 hybrid
matchers and 1 reuse-oriented matcher. One of the distinct features of the COMA
tool is the possibility of performing iterations in the matching process. In the
evaluation we used default combination of matchers and aggregation strategy
(NamePath+Leaves and Average respectively).

S-Match is a generic semantic matching tool. It takes two tree-like structures
and produces a set of mappings between their nodes. S-Match implements se-
mantic matching algorithm in 4 steps. On the first step the labels of nodes are
linguistically preprocessed and their meanings are obtained from the Oracle (in
the current version WordNet 2.0 is used as an Oracle). On the second step the
meaning of the nodes is refined with respect to the tree structure. On the third
step the semantic relations between the labels at nodes and their meanings are
computed by the library of element level semantic matchers. On the fourth step

1 In the evaluation we use the version of COMA described in [13]. A newer version of
the system COMA++ exists but we do not have it. However as from the evaluation
results presented in [10, 11], COMA is still best among the other syntactic matchers.



A Large Scale Taxonomy Mapping Evaluation 75

the matching results are produced by reduction of the node matching problem
into propositional validity problem, which is efficiently solved by SAT solver or
ad hoc algorithm (see [10, 11] for more details).

We have compared the performance of these two systems with baseline solu-
tion. The pseudo code of baseline node matching algorithm is given in Algorithm
1. It is executed for each pair of nodes in two trees. The algorithm considers a
simple string comparison among the labels placed on the path spanning from a
node to the root of the tree. Equivalence, more general and less general relations
are computed as the corresponding logical operations on the sets of the labels.

Algorithm 1. Baseline node matching algorithm
1: String nodeMatch(Node sourceNode, Node targetNode)
2: Set sourceSetOfLabels=getLabelsInPathToRoot(sourceNode)
3: Set targetSetOfLabels=getLabelsInPathToRoot(targetNode)
4: if sourceSetOfLabels ≡ targetSetOfLabels then
5: result=”≡”
6: else if sourceSetOfLabels ⊆ targetSetOfLabels then
7: result=”⊆”
8: else if sourceSetOfLabels ⊇ targetSetOfLabels then
9: result=”⊇”

10: else
11: result=”Idk”
12: end if
13: return result

The systems have been evaluated on the dataset described in Section 4.
We computed the number of matching tasks solved by each matching system.
Notice that the matching task was considered to be solved in the case when the
matching system produce specification, generalization or equivalence semantic
relation for it. For example, TaxME suggests that specification relation holds in
the following example:

Google:/Top/Sports/Basketball/Professional/NBDL
Looksmart:/Top/Sports/Basketball

COMA produced for this matching task 0.58 similarity coefficient, which can be
considered as equivalence relation with probability 0.58. In the evaluation we
consider this case as true positive for COMA (i.e., the mapping was considered
as found by the system).

Notice that at present TaxME contains only true positive mappings. This
fact allows to obtain the correct results for Recall measure, which is defined as
a ratio of reference mappings found by the system to the number of reference
mappings. At the same time Precision, which is defined as ratio of reference
mappings found by the system to the number of mappings in the result, can not
be correctly estimated by the dataset since, as from Section 4, TaxME guarantee
only the correctness but not completeness of the mappings it contains.



76 P. Avesani, F. Giunchiglia, and M. Yatskevich

Table 1. Evaluation Results

Google vs. Looksmart Google vs. Yahoo Looksmart vs.Yahoo Total
COMA 608 250 18 876 (38,68%)

= 608 250 18 876
⊆ not applicable not applicable not applicable not applicable
⊇ not applicable not applicable not applicable not applicable

S-Match 584 83 2 669 (29,54%)
= 2 5 0 7
⊆ 46 19 2 67
⊇ 536 59 0 595

Baseline 54 76 0 130 (5,39%)
= 52 0 0 52
⊆ 0 76 0 76
⊇ 2 0 0 2

6 Discussion of Results

Evaluation results are presented on Table 1. It contains the total number of
mappings found by the systems and the partitioning of the mappings on seman-
tic relations. Let us discuss the results through the major dataset properties
perspective.

6.1 Complexity

As from Table 1, the results of baseline are surprisingly low. It produced slightly
more than 5% of mappings. This result is interesting since on the previously
evaluated datasets (see [4] for example) the similar baseline algorithm performed
quite well and found up to 70% of mappings. This lead us to conclusion that the
dataset is not trivial (i.e., it is essentially hard for simple matching techniques).

As from Figure 3, S-Match found about 30% of the mappings in the biggest
(Google-Yahoo) matching task. At the same time it produced slightly less than
30% of mappings in all the tasks. COMA found about 35% of mappings on
Google-Looksmart and Yahoo-Looksmart matching tasks. At the same time it
produced the best result on Google-Yahoo. COMA found slightly less than 40%
of all the mappings. These results are interesting since, as from [13, 10], previ-
ously reported recall values for both systems were in 70-80% range. This fact
turn us to conclusion that the dataset is hard for state of the art syntactic and
semantic matching systems.

6.2 Discrimination Ability

Consider Figure 4. It presents the partitioning of the mappings found by S-
Match and COMA. As from the figure the sets of mappings produced by COMA
and S-Match intersects only on 15% of the mappings. This fact turns us to an
important conclusion: the dataset is discriminating (i.e., it contains a number of
features which are essentially hard for various classes of matching systems and
allow to discriminate between the major qualities of the systems).



A Large Scale Taxonomy Mapping Evaluation 77

Fig. 3. Percentage of correctly determined mappings(Recall)

Fig. 4. Partitioning of the mappings found by COMA and S-Match

6.3 Incrementality

In order to evaluate incrementality we have chosen S-Match as a test system. In
order to identify the shortcomings of S-Match we manually analyzed the map-
pings missed by S-Match. This analysis allowed us to clasterize the mismatches
into several categories. In this paper we describe in detail one of the most im-
portant categories of mismatches namely Meaningless labels.

Consider the following example:

Google:/Top/Science/Social_Sciences/Archaeology/Alternative/
South_America/Nazca_Lines

Looksmart:/Top/Science_&_Health/Social_Science/Archaeology/
By_Region/Andes_South_America/Nazca

In this matching task some labels are meaningful in the sense they define the
context of the concept. In our example these are Social Sciences, Archaeology,
South America, Nazca. The other labels do not have a great influence on the
meaning of concept. At the same time they can prevent S-Match from producing
the correct semantic relation. In our example S-Match can not find any semantic
relation connecting Nazca Lines and Nazca. The reason for this is By Region



78 P. Avesani, F. Giunchiglia, and M. Yatskevich

label, which is meaningless in the sense it is defined only for readability and
taxonomy partitioning purposes. An other example of this kind is

Google:/Top/Arts/Celebrities/A/Affleck,_Ben
Looksmart:/Top/Entertainment/Celebrities/Actors/Actors_A/

Actors_Aa-Af/Affleck,_Ben/Fan_Dedications

Here, A and Actors A/Actors Aa-Af do not influence on the meaning of the
concept. At the same time they prevent S-Match to produce the correct semantic
relation holding between the concepts.

An optimized version of S-Match (S-Match++) has a list of meaningless la-
bels. At the moment the list contains only about 30 words but it is automatically
enriched in preprocessing phase. A general rule for considering natural language
label as meaningless is to check whether it is used for taxonomy partitioning
purposes. For example, S-Match++ consider as meaningless the labels with the
following structure by 〈word〉, where 〈word〉 stands for any word in natural lan-
guage. However, this method is not effective in the case of labels composed from
alphabet letters (such as Actors Aa-Af from previous example). S-Match++
deals with the latter case in the following way: the combination of letters are
considered as meaningless if it is not recognized by WordNet, not in abbrevia-
tion or proper name list, and at the same time its length is less or equal to 3.
The addition of these techniques allowed to improve significantly the S-Match
matching capability. The number of mappings found by the system on TaxME
dataset increased by 15%. This result gives us an evidence to incrementality of
the dataset (i.e., the dataset allows to discover the weaknesses of the systems
and gives the clues to the systems evolution).

Analysis of S-Match results on TaxME allowed to identify 10 major bottle-
necks in the system implementation. At the moment we are developing ad hoc
techniques allowing to improve S-Match results in this cases. The current ver-
sion of S-Match (S-Match++) contains the techniques allowing to solve 5 out of
10 major categories of mismatches. Consider Figure 5.It contains the results of

Fig. 5. Percentage of correctly determined mappings(Recall)



A Large Scale Taxonomy Mapping Evaluation 79

comparative evaluation S-Match++ against the other systems. As from the fig-
ure S-Match++ significantly outperforms all the other systems. It found about
60% of mappings in all the matching tasks, what is twice better than S-Match
result. This significant improvement would hardly be possible without compre-
hensive evaluation on TaxME dataset.

6.4 Correctness

We manually analyzed correctness of the mappings provided by TaxME. At the
moment 60% of mappings are processed and only 2-3% of them are not correct.
Taking into account the notion of idiosyncratic classification [12] (or the fact
that human annotators on the sufficiently big and complex dataset tend to have
resemblance up to 20% in comparison with their own results), such a mismatch
can be considered as marginal.

7 Conclusions

In this paper we have presented a mapping dataset which carries the key impor-
tant properties of Complexity, Incrementality, Discrementality and Correctness.
We have evaluated the dataset on two state of the art matching systems repre-
senting different matching approaches. As from the evaluation, the dataset can
be considered as a powerful tool to support the evaluation and research on the
matching solutions.

The ultimate step which needs to be performed is to acquire the user map-
pings for TaxME dataset. We have already arranged such a kind of test and the
results though preliminary are promising. Unfortunately at the moment more
significant statistics needs to be collected in order to further improve TaxME.

Acknowledgment

We would like to thank Claudio Fontana and Christian Girardi for their helpful
contribution in crawling and processing the web directories. We also would like
to thank Pavel Shvaiko and Ilya Zaihrayev for their work on S-Match.

This work has been partially supported by the European Knowledge Web
network of excellence (IST-2004-507482).

References

1. P. Avesani. Evaluation framework for local ontologies interoperability. In AAAI
Workshop on Meaning Negotiation, 2002.

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

3. S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of semistruc-
tured and structured data sources. SIGMOD Record, (28(1)):54–59, 1999.



80 P. Avesani, F. Giunchiglia, and M. Yatskevich

4. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: a new approach
and an application. In Fensel D., Sycara K. P., and Mylopoulos J., editors, The
Semantic Web, volume 2870 of LNCS, Sanibel Island, Fla., 20-23 October 2003.

5. H. Doan, P. Domingos, and A. Halevy. Learning to match the schemas of data
sources: A multistrategy approach. Machine Learning, 50:279–301, 2003.

6. M. Ehrig and Y. Sure. Ontology mapping - an integrated approach. In Christoph
Bussler, John Davis, Dieter Fensel, and Rudi Studer, editors, Proceedings of the
First European Semantic Web Symposium, volume 3053 of Lecture Notes in Com-
puter Science, pages 76–91, Heraklion, Greece, MAY 2004. Springer Verlag.

7. J. Euzenat and P. Valtchev. An integrative proximity measure for ontology align-
ment. In Proceedings of Semantic Integration workshop at International Semantic
Web Conference (ISWC), 2003.

8. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-lite.
In Proceedings of European Conference on Artificial Intelligence (ECAI), pages
333–337, 2004.

9. F. Giunchiglia and P. Shvaiko. Semantic matching. The Knowledge Engineering
Review Journal, (18(3)):265–280, 2003.

10. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: an algorithm and an
implementation of semantic matching. In Bussler C., Davies J., Fensel D., and
Studer R., editors, The semantic web: research and applications, volume 3053 of
LNCS, Heraklion, 10-12 May 2004.

11. F. Giunchiglia, M. Yatskevich, and E. Giunchiglia. Efficient semantic matching. In
Proceedings of the 2nd european semantic web conference (ESWC’05), Heraklion,
29 May-1 June 2005.

12. D. Goren-Bar and T.Kuflik. Supporting user-subjective categorization with self-
organizing maps and learning vector quantization. Journal of the American Society
for Information Science and Technology JASIST, 56(4):345–355, 2005.

13. H.H.Do and E. Rahm. COMA - a system for flexible combination of schema match-
ing approaches. In Proceedings of Very Large Data Bases Conference (VLDB),
pages 610–621, 2001.

14. R. Ichise, H. Takeda, and S. Honiden. Integrating multiple internet directories by
instance-based learning. In IJCAI, pages 22–30, 2003.

15. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid.
The Very Large Databases (VLDB) Journal, pages 49–58, 2001.

16. B. Magnini, M. Speranza, and C. Girardi. A semantic-based approach to interop-
erability of classification hierarchies: Evaluation of linguistic techniques. In Pro-
ceedings of COLING-2004, August 23 - 27, 2004.

17. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging
and testing large ontologies. In Proceedings of International Conference on the
Principles of Knowledge Representation and Reasoning (KR), pages 483–493, 2000.

18. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm. In Proceedings of International Conference on Data Engineer-
ing (ICDE), pages 117–128, 2002.

19. Noy N. and Musen M. A. Anchor-prompt: Using non-local context for semantic
matching. In Proceedings of workshop on Ontologies and Information Sharing
at International Joint Conference on Artificial Intelligence (IJCAI), pages 63–70,
2001.

20. E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching.
VLDB Journal, (10(4)):334–350, 2001.

21. P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal
on Data Semantics, IV, 2005.



A Large Scale Taxonomy Mapping Evaluation 81

22. Y. Sure, O. Corcho, J. Euzenat, and T. Hughes. Evaluation of Ontology-based Tools.
Proceedings of the 3rd International Workshop on Evaluation of Ontology-based
Tools (EON), 2004. http://CEUR-WS.org/Vol-128/.

23. C. Welty and N. Guarino. Supporting ontological analysis of taxonomic relation-
ships. Data and Knowledge Engineering, (39(1)):51–74, 2001.

24. L. Xu and D.W. Embley. Using domain ontologies to discover direct and indirect
matches for schema elements. In Proceedings of Semantic Integration workshop at
International Semantic Web Conference (ISWC), 2003.



RDF Entailment as a Graph Homomorphism

Jean-François Baget

INRIA Rhône-Alpes, 655 avenue de l’Europe,
38334, Saint Ismier, France

jean-francois.baget@inrialpes.fr

Abstract. Semantic consequence (entailment) in RDF is ususally com-
puted using Pat Hayes Interpolation Lemma. In this paper, we reformu-
late this mechanism as a graph homomorphism known as projection in
the conceptual graphs community.

Though most of the paper is devoted to a detailed proof of this result,
we discuss the immediate benefits of this reformulation: it is now easy
to translate results from different communities (e.g. conceptual graphs,
constraint programming, . . . ) to obtain new polynomial cases for the NP-
complete RDF entailment problem, as well as numerous algorithmic
optimizations.

1 Introduction

Simple RDF is the knowledge representation language on which RDF (Resource
Description Framework) and its extension RDFS are built. As a logic, it is pro-
vided with a syntax (its abstract syntax will be used here), and model theoretic
semantics [1]. These semantics are used to define entailments: an RDF graph G
entails an RDF graph H iff H is true whenever G is. However, since an infinity
of interpretations must be evaluated according to this definition, an operational
inference mechanism, sound and complete w.r.t. entailment, is needed. This is
the purpose of the interpolation lemma [1]: a finite procedure characterizing en-
tailments. It has been extended to take into account more expressive languages
(RDF, RDFS [1], and other languages e.g. [2]). All these extensions rely on a
polynomial-time initial treatment of the graphs, the hard kernel remaining the
basic simple entailment, which is a NP-hard problem.

In this paper, we intend to contribute to the study of this fundamental simple
entailment by reformulating it as a graph homomorphism, extensively studied
both in mathematics and in graph theory. This will allow the RDF community
to import numerous results from related problems: colored homomorphisms [3],
conceptual graphs projection [4], or constraint satisfaction problems [5]. The
experience acquired during the last 20 years in these different communities can
help us to quickly develop efficient algorithms for RDF entailment, as well as
understand what are the polynomial cases for this problem.

However, the bulk of the paper presented here is devoted to the reformula-
tion as a graph homomorphism itself. All necessary proofs have been included,
independently from the proof of the interpolation lemma [1]. Indeed, we believe

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 82–96, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



RDF Entailment as a Graph Homomorphism 83

that our proof framework can be used as a basis to apply our reformulation to
many extensions of simple RDF: in that case, an in-depth understanding of that
proof is required.

Section 2 is devoted to the basic definitions and results of [1]. In section 3, we
reformulate the interpolation lemma as a directed, multigraph homomorphism.
Section 4 provides a standalone proof of this result, via a reformulation of entail-
ment as a directed hypergraph homomorphism. In section 5, we provide a list of
results that can be translated to simple RDF entailments. Finally, in section 6,
we discuss the advantages and limitations of this approach.

2 Simple RDF: Syntax, Semantics, and Inferences

This section presents simple RDF, the basic logic on which RDF and RDFS are
built: we recall here definitions and results presented in [1]. We first present the
abstract syntax of RDF: note that we distinguish here an RDF tripleset (a set of
triples) from its associated graph (that will be presented in the next section). The
semantics of RDF triplesets allows to formally define the notion of entailment,
that is characterized by the interpolation lemma. Note also that though we use
here the terms of interpretations, entailment, it refers here without ambiguity to
what is called simple interpretation or simple entailment in [1]. These definitions
precise our notations, and the examples given introduce the running example
used all along this paper. The reader should refer to [1] for more explanations.

2.1 RDF Abstract Syntax

We consider a set of terms V partitioned in three pairwise disjoint sets: a set U
of URI references (or urirefs), a set B of blanks, and a set L of literals (itself
partitioned into two disjoint sets, the set LP of plain literals and the set LT of
typed literals). Let V ⊆ V be a subset of V , then we denote by U(V ) (resp. B(V ),
LP (V ), L(V ), LT (V )) the set of urirefs of V (resp. of blanks of V , of literals of
V , of plain literals of V , of typed literals of V ). Without loss of generality, and
for the sake of simplicity, we have not taken language tags into account here.

Definition 1 (RDF tripleset). An RDF tripleset is a subset of (U∪B)×U×V.
Its elements are called RDF triples.

An RDF triple 〈s, p, o〉 can be read “there is a relation of sort p whose subject
is the entity s an whose object is the entity o”. Let G be an RDF tripleset. We
denote by V(G) the terms of V that appear in any triple of G, i.e. V(G) = {v ∈
V | ∃〈s, p, o〉 ∈ G, x = s or x = p or x = o}.

Example 1. Let V = {u1, u2, b1, b2, l} be a set of terms where u1 and u2 are
urirefs, b1 and b2 are blanks, and l is a plain literal. Let us now consider the two
following RDF triplesets, used as a running example along this paper:

– H = {〈u1, u1, b1〉 〈u1, u1, b2〉, 〈b2, u2, l〉, 〈b1, u1, b2〉}
– G = {〈u1, u1, b1〉 〈b1, u1, b1〉, 〈b1, u2, l〉, 〈u1, u2, u2〉 }



84 J.-F. Baget

2.2 Interpretations

Definition 2 (Simple Interpretations). Let V be a set of terms. An inter-
pretation of V is a 5-tuple 〈IR, IP , ιext, ιs, ιl〉 where IR is a set of resources con-
taining LP (V )1, IP is a set of properties, ιext : IP → 2IR×IR maps each property
to a set of pairs of resources (the extension of the property), ιs : U(V )→ IR∪IP

maps each uriref to a resource or a property, and ιl : LT (V ) → IR maps each
typed literal to a resource.

Example 2. Let V be the set of terms defined in Ex. 1. We consider the following
interpretation I = 〈IR, IP , ιext, ιs, ιl〉 of V defined by:

– IR = {♣,♥, l};
– IP = {♣,♥};
– ιext(♣) = {〈♣,♥〉, 〈♥,♥〉} and ιext(♥) = {〈♥, l〉};
– ιs(u1) = ♣ and ιs(u2) = ♥.

For the sake of clarity, it has been proposed in [1] to give a graphical represen-
tation of an interpretation as shown in Fig. 1.

u1 u2

♣ ♥
IP IR

l

ιext(♣) ιext(♥)

ιSιS

Fig. 1. A Graphical Representation of the Interpretation I

Definition 3 (Models). Let G be an RDF tripleset, and V be a set of terms
that contains the set of terms of G, i.e. such that (U(V(G))∪L(V(G))) ⊆ V . An
interpretation 〈IR, IP , ιext, ιs, ιl〉 of V is a model of G iff there exists a mapping
ι : V(G) → IR ∪ IP such that:

1. for each plain literal l ∈ LP (V(G)), ι(l) = l;
2. for each typed literal l ∈ LT (V(G)), ι(l) = ιl(l);
3. for each uriref u ∈ U(V(G)), ι(u) = ιs(u);
4. for each blank b ∈ B(V(G)), ι(b) ∈ IR;
5. for each triple 〈s, p, o〉 ∈ G, 〈ι(s), ι(o)〉 ∈ ιext(ι(p)).

1 This inclusion allows to avoid, for the sake of simplicity, the set LV of literal values.



RDF Entailment as a Graph Homomorphism 85

Example 3. Let us show that the interpretation I in Ex. 2 is a model for the
RDF tripleset H in Fig. 1. We have ι(u1) = ♣, ι(u2) = ♥, and ι(l) = l (all
these values are constrained by the interpretation I). Our only choice is with
the blanks: we chose ι(b1) = ι(b2) = ♥ ∈ IR. It remains now to check that for
each triple 〈s, p, o〉 of H , 〈ι(s), ι(o)〉 ∈ ιext(ι(p)). We will only check the triple
〈b2, u2, l〉: ιext(ι(u2)) = ιext(♥) = {〈♥, l〉} ⊇ 〈ι(b2), ι(l)〉. The condition is also
verified for the 4 other triples. It follows that I is a model of H . A tenacious
reader can now check that I is not a model of G (he has to prove that no mapping
ι respects these conditions).

2.3 The Interpolation Lemma

Definition 4 (Satisfiability, Entailment). Let G and H be two RDF triple-
sets. We say that G is satisfiable if there exists an interpretation that is a model
of G. We say that H is a semantic consequence of G (we also say that G entails
H, and note G |= H) if every model of G is also a model of H.

Example 4. The RDF tripleset H of Ex. 1 is satisfiable since the interpretation
I of Ex. 2 is a model of H . Since I is not a model of G (Ex. 1), we can conclude
that H does not entail G.

Definition 5 (Instance). Let G be an RDF tripleset, and let V be a set of
terms that contains the set of terms of G. Let us consider an instance mapping
α : V(G) → V mapping each blank of G to a term of V , and each uriref or
literal to itself. The RDF tripleset Gα = {〈α(s), p, α(o)〉 | 〈s, p, o〉 ∈ G} is called
an instance of G.

Example 5. Let us consider the set of terms V and the RDF tripleset G of Ex. 1.
We define an instance mapping α as follows: α(b1) = b1, α(b2) = b1 (every other
element of V is mapped to itself). The instance Hα is the RDF tripleset defined
by: Hα = {〈u1, u1, b1〉, 〈b1, u2, l〉, 〈b1, u1, b1〉} (notice that a second occurence of
〈u1, u1, b1〉 has been removed from the set).

Theorem 1 (Interpolation Lemma). Let G and H be two RDF triplesets.
Then G |= H iff there exists an instance H ′ of H such that H ⊆ G.

Example 6. Since the RDF tripleset Hα of Ex. 5 is a subset of the RDF tripleset
G of Ex. 1, then G |= H .

3 RDF Triplesets as Directed, Labelled Multigraphs

RDF triplesets are given a standard graphical representation: the drawing of
the graph (as a mathematical structure) associated with the tripleset (hence
the usual name of RDF graphs). It is generally assumed that most people are
more comfortable with this representation than with triples, at least when the
graphs involved are not to big. The graphs whose drawings correspond to this



86 J.-F. Baget

representation are directed, labelled multigraphs (there can be many arcs be-
tween two nodes, a requirement since two arcs can have different labels). In
this section, we reformulate the usual characterization of entailment (the inter-
polation lemma of [1], expressed on the RDF tripleset) as a graph homomor-
phism: graphs are no longer only used for a representation purpose, but also for
reasonings.

3.1 Standard Graphical Representation of an RDF Tripleset

Definition 6 (Directed, Labelled Multigraphs). A directed labelled multi-
graph (or M-graph) over a set of terms V is a 4-tuple G = 〈N, A, γ, ε〉 where N
is a finite set of nodes, A is a finite set of arcs, γ : A→ N ×N maps each arc
to a pair of nodes called its ends (the first being the origin and the second the
destination), and ε : N ∪A→ V maps each node and arc to a term.

Let G be an RDF tripleset. We call entities of G the subset of V(G) that contains
the terms appearing either as subject or object in a triple of G, i.e. ent(G) =
{x ∈ V(G) | ∃〈s, p, o〉 ∈ G, x = s or x = o} (it is called the nodeset in [2]). The
M-graph M(G) = 〈N, A, γ, ε〉 associated with the RDF tripleset G is built as
follows:

1. To each term e ∈ ent(G) we associate a distinct node m(e). Then N =
{m(e) | e ∈ ent(G)}. Each node is labelled by the element of the set of terms
associated to it: ε(m(e)) = e.

2. To each triple t = 〈s, p, o〉 ∈ G we associate a distinct arc m(t). Then
A = {m(t) | t ∈ G}. The ends of the arc m(t) are the nodes associated with
the subject and the object of the triple t: γ(m(t)) = 〈m(s), m(o)〉. The label
of the arc m(t) is the property of the triple t: ε(m(t)) = p.

Example 7. The M-graph M(H) = 〈N, A, γ, ε〉 obtained from the graph H of
Ex. 1 is defined by: N = {1, 2, 3, 4}, A = {a, b, c, d}, γ(a) = 〈1, 2〉, γ(b) = 〈2, 3〉,
γ(c) = 〈1, 3〉, γ(d) = 〈3, 4〉, ε(1) = u1, ε(2) = b1, ε(3) = b2, ε(4) = l, ε(a) = u1,
ε(b) = u1, ε(c) = u1, and ε(d) = u2.

The M-graphM(G) associated with an RDF tripleset G can be drawn as follows:
each node labelled by a uriref or a blank is represented by an oval, and each node
labelled by a literal is represented by a rectangle. The label of the node is written
inside the oval or rectangle associated to it (it is not mandatory to write the label
when it is a blank). Each arc a with γ(a) = 〈x, y〉 is represented by an arrow
from the figure associated with x to the figure associated with y. The label ε(a)
is written next to this arrow.

Example 8. Fig. 2 represents the drawing of the M-graph M(H) of Ex. 7 (usu-
ally conflated with the RDF tripleset H itself).

Note that the complexity in both time and space of the transformation M is
linear in the size of the tripleset if the graph is encoded by an adjacence list,
and is quadratic if it is encoded by an incidence matrix.



RDF Entailment as a Graph Homomorphism 87

u1 u1

u1
u1

u2b1

b2

l

Fig. 2. Drawing of the M-graph associated with an RDF tripleset

3.2 Simple Entailment as a Multigraph Homomorphism

Here we caracterize RDF entailment as a M-graph homomorphism. Graphs ho-
momorphisms have been extensively studied in mathematics as well as in com-
puter science (e.g. [3]), though the generalization we use here is more akin to
the projection used to caracterize entailment of conceptual graphs (CGs) [4].
Though we have decided not to present our results via a translation to CGs,
the reader can refer to [6] or [7] for precise relationships between RDF and
CGs.

Definition 7 (Directed, Labelled Multigraph Homomorphism). Let G =
〈N, A, γ, ε〉 and G′ = 〈N ′, A′, γ′, ε′〉 be M-graphs over a set of terms V . Let ≤ be
a preorder over V . A directed, labelled multigraph homomorphism according to
≤ (or ≤-M-morphism) from G into G′ is a mapping π : N → N ′ that preserves
the preorder on labels as well as incidence of arcs, i.e.:

1. for each n ∈ N , ε′(π(n)) ≤ ε(n);
2. for each a ∈ A with γ(a) = 〈s, o〉, ∃a′ ∈ A′ such that γ′(a′) = 〈π(s), π(o)〉

and ε′(a′) ≤ ε(a).

Example 9. Let us consider the M-graphs associated with the triplesets G and
H of Ex. 1. Now we define ≤1 as the smallest preorder defined on the set of
terms V fulfilling these conditions:

– for each two blanks b1 and b2, b1 ≤1 b2;
– for each blank b and each uriref or literal c, c ≤1 b.

It implies that urirefs and literals are pairwise non comparable. Then there exists
a ≤1-M-morphism from H into G, illustrated by the dashed arrows in fig. 3.

It remains now to prove that such a ≤1-M-morphism caracterizes simple RDF
entailment.

Theorem 2. Let G and H be two RDF triplesets defined over a set of terms V .
Let ≤1 be the partial order on V defined in Ex. 9. Then G |= H if and only if
there is a ≤1-M-morphism from M(H) into M(G).

As proven below, this is a mere reformulation of the interpolation lemma. Next
section provides a standalone proof (that can be considered as an another proof
for the interpolation lemma). Further sections will be devoted to the advantages
of this reformulation (complexity and algorithms).

Proof. We use the interpolation lemma to prove both directions of the equivalence:



88 J.-F. Baget

u1

u1

u1 u1

u1

u1
u1

u2
u2

u2

u2

b1

b1

b2

l

l M(H)

M(G)

Fig. 3. ≤1-M-morphism from the M-graph M(H) into the M-graph M(G)

(⇒) Suppose G |=s H . Then there exists an instance mapping α such that Hα ⊆ G.
Let us consider the mapping π from the nodes of M(H) into the nodes of M(G)
defined as follows: for each node m(x) of M(H) (i.e. associated with the term x in
V(H)), π(m(x)) = m(α(x)) (where m(α(x)) is the node of M(G) associated with
the term α(x)). Let us now prove that π is a ≤1-M-morphism from M(H) into
M(G).

1. We first prove that π preserves the preorder on nodes labels. Let m(x) be an
arbitrary node of M(H). The label of m(x) is x. The label of π(m(x)) is the
label of m(α(x)), i.e. α(x). It remains to show that α(x) ≤1 x. If x is a blank,
then it is greater than anything else (def. of ≤1). Otherwise, α(x) = x. In both
cases, α(x) ≤1 x.

2. Finally, we prove that π preserves the incidence of arcs and the preorder on
their labels. Let a be an arc of H with γ(a) = 〈m(s),m(o)〉 and ε(a) = p.
By construction of M(H), 〈s, p, o〉 is a triple of H . The interpolation lemma
asserts that 〈α(s), p, α(o)〉 is a triple of G. By construction of M(G), it contains
an arc a′ such that γ(a′) = 〈m(α(s)),m(α(o))〉 and ε(a′) = p. We have ε(a′) =
p ≤1 ε(a) = p and, by definition of π, γ(a′) = 〈π(m(s)), π(m(o))〉. ��

(⇐) Suppose a ≤1-M-morphism from M(H) into M(G). Let us consider the mapping
α : V(H) → V defined as follows: for every node m(b) in M(H) labelled by a
blank, α(b) = ε(π(m(b))), for every node m(x) ∈ M(H) labelled by an uriref or
a literal, α(x) = x. The mapping α is an instance mapping. It remains to prove
that Hα ⊆ G. Let us consider an arbitrary triple 〈α(s), p, α(o)〉 ∈ Hα. We have
to prove that this triple is an element of G. By construction of M(H), there
exists an arc a of M(H) such that γ(a) = 〈m(α(s)),m(α(o))〉 and ε(a) = p.
By definition of an homomorphism, there exists an arc a′ ∈ M(G) with γ(a′) =
〈π(m(α(s))), π(m(α(o)))〉 and ε(a′) ≤1 ε(a). Since it is an uriref, ε(a) = ε(a′) = p.
See that for every entity e ∈ H , π(m(α(e))) = m(α(e)). If e is a uriref or a literal,
α(e) = e, and we have to prove that π(m(e)) = m(e). It is true because there is a
unique node in M(G) labelled by e, and the node labelled by e in M(H) must be
mapped into it.2 If e is a blank, then α(e) = ε(π(m(e))) (by definition of α). Then
m(α(e)) = m(ε(π(m(e)))) = π(m(e)). It follows that γ(a′) = 〈m(α(s)),m(α(o))〉
and finally, that the triple 〈α(s), p, α(o)〉 (used to obtain a′) is in G. ��

2 The reader familiar with conceptual graphs will recognize here the requirement for
a normality condition.



RDF Entailment as a Graph Homomorphism 89

A first interest of this reformulation is in a representational point of view:
in fig. 3, not only data is graphically represented, but also inferences (the
drawing of the morphism that caracterizes entailment). Experiences in the CG
community (e.g. [8]) show that these “graphical inferences” are very easy to
understand for non-specialists in logics or computer science. We will also show
(in Sect. 5) that this reformulation offer great benefits for computational
purposes.

4 RDF Triplesets as Directed, Labelled Hypergraphs

But before that, we will focus on another encoding of RDF triplesets (as hy-
pergraphs). A different representation of RDF triplesets (as bipartite graphs)
has been proposed in [9]. Its main advantage is its proximity to the tripleset’s
semantics. Here we use this representation (these bipartite graphs are the in-
cidence bipartites associated with our hypergraphs, so they can be considered
as the same mathematical objects) also for a reasoning purpose. Indeed we use
a transformation of RDF triplesets into hypergraphs (as in [9]) as well as a
transformation of interpretations into the same hypergraphs.

A first result (Lemma 2) shows that an interpretation I is a model for a
tripleset G iff there is a morphism from the hypergraph associated with G into the
one associated with H . The immediate interests are twofold: it provides us with
a clear graphical representation of interpretations (extending the representation
in [9] to interpretations), and, in the same way as in the previous section, it is
a graphical representation of the proof that an interpretation is a model of a
tripleset.

The same morphism, this time between two graphs associated with triplesets,
is used to caracterize simple RDF entailment (Theorem 3). It shows how the
graphs in [9] can be used for reasonings. Finally, we show the equivalence between
this caracterization and the one used in Theorem 2, effectively providing another
proof for the Interpolation Lemma.

Let us now discuss about the proof of Theorem 3 itself. It is grounded on
a very simple framework. Let us consider a logic L (here simple RDF). Let
us consider a set E (here the hypergraphs), and a transitive relation � (here
the existence of a morphism) on E . Let us now introduce a transformation H
associating an element of E to each formula and each interpretation of L. This
transformation must satisfy the following criteria:

1. i is a model of f if and only if H(f) � H(i);
2. for every satisfiable formula f of L, there exists a model i of f such that
H(i) = H(f).

These two criteria are then sufficient to prove that � is sound and complete
w.r.t. entailment of L, i.e. that f |= f ′ iff f ′ � f . Lemma 2 expresses the first
condition, and lemma 3 the second. Theorem 3 reformulates this soundness and
completeness result in the case of RDF triplesets.



90 J.-F. Baget

Note that this framework has been successfully applied for conceptual graphs
[10], and remains valid for many extensions of simple RDF: we show in the next
section how it can be extended to RDF/RDFS, but it could also be used for the
extensions presented in [2]. A Master’s thesis is actually devoted in our team,
using this framework, to extend RDF entailment to path queries.

4.1 Preliminary Definitions

Definition 8 (Directed, Labelled Hypergraph). A directed labelled hyper-
graph (or H-graph) over a set of terms V is a triple G = 〈N, H, ε〉 where N is
a finite set of nodes, H ⊆ N+ is a finite set of hyperarcs, and ε : N ∪H → V
maps each node and hyperarc to an element of the set of terms.

An H-graph can be represented as follows: a node is represented by a rectangle
in which we write its label. An hyperarc 〈x− 1, ..., xp〉 is represented by an oval
in which we write its label. For 1 ≤ i ≤ p, we draw a line between the oval and
the rectangle associated with the node xi, and write the number i next to this
line to indicate the ordering of this tuple. We have chosen this representation
by analogy with conceptual graphs (indeed, the CG semantically equivalent to
a tripleset has the same representation as this hypergraph).

We must now update our morphisms to this new structure. The following
lemma handles the required transitivity of the binary relation associated with
the existence of a morphism.

Definition 9 (Directed, Labelled Hypergraph Homomorphism). Let G=
〈N, H, ε〉 and G′ = 〈N ′, H ′, ε′〉 be two H-graphs over a set of terms V . Let ≤ be
a preorder over V . A directed, labelled hypergraph homomorphism according to
≤ (or ≤-H-morphism) from G into G′ is a mapping π : N → N ′ that preserves
the preorder on labels as well as incidence of hyperarcs, i.e.:

1. for each n ∈ N , ε′(π(n)) ≤ ε(n);
2. for each h = 〈n1, . . . , nk〉 ∈ H, ∃a′ = 〈π(n1), . . . , π(nk)〉 ∈ H ′ such that

ε′(a′) ≤ ε(a).

Lemma 1 (Composition). The composition of two ≤-H-morphisms is a ≤-
H-morphism.

Proof. Let G1, G2, G3 be three H-graphs over a set of terms V . Let ≤ be a preorder
on V . Let π1 (resp. π2) be a ≤-H-morphism according to ≤ from G1 into G2 (resp.
from G2 into G3). We prove that π2 ◦ π1 is a ≤-H-morphism from G1 into G3.

1. Let n be a node of G1. We have ε(π1(n)) ≤ ε(n) and ε(π2(π1(n))) ≤ ε(π1(n)) (def.
of H-morphism). Since a preorder is transitive, ε(π2(π1(n))) ≤ ε(n).

2. Let h1 = 〈n1, . . . , np be an hyperarc of G1. Then there exists an hyperarc h2 =
〈π1(n1), . . . , π1(np)〉 of G2 with ε(h2) ≤ ε(h1) (def. of H-morphism). Similarly,
there exists an hyperarc h3 = 〈π2(π1(n1)), . . . , π2(π1(np))〉 with ε(h3) ≤ ε(h2). We
also conclude thanks to the transitivity of ≤. ��



RDF Entailment as a Graph Homomorphism 91

4.2 Hypergraph Representation of a Simple Interpretation

Let I = 〈IR, IP , ιext, ιs, ιl〉 be an interpretation of a set of terms V . We associate
to this interpretation an H-graph H(I) = 〈N, H, ε〉 built as follows:

1. To each resource r ∈ IR ∪ IP we associate a distinct node h(r). Then N =
{h(r) | r ∈ IR ∪ IP }. Each of these nodes will be labelled by a subset of V .
Intuitively, ε(h(x)) = {v1, . . . , vk} means that v1, . . . , vk are all the terms of
V interpreted by the resource or property x in I. Let us now formally build
this labelling: each node is initially labelled by the emptyset {}. Then for
each element x of V :
– if x is a plain literal in LP (V ), ε(h(x)) = ε(h(x)) ∪ {x};
– if x is a typed literal in LT (V ), ε(h(ιl(x))) = ε(h(ιl(x))) ∪ {x};
– if x is an uriref in U(V ), ε(h(ιs(x))) = ε(h(ιs(x))) ∪ {x};
– otherwise, if x is a blank in B(V ), do nothing.

2. For each element p ∈ IP , for each pair 〈x, y〉 ∈ ιext(p), there exists an
hyperarc 〈h(x), h(p), h(y)〉 in H labelled by {iext}.

Example 10. Fig. 4 shows the representation of the H-graph associated with
the interpretation of Ex. 2. This representation is simpler than the usual one
(Fig. 1), and highlights the structure of the interpretation. However we have lost
information on the set IP , since a node that is not the second argument of an
hyperarc may belong to IP or not (though this information is never needed).

{iext}

{iext}
{iext}{u2}{u1}

1
1

1
2

2

2
3

3

3 {l}

Fig. 4. The H-graph associated with an interpretation

4.3 Hypergraph Representation of an RDF Tripleset

Let G be an RDF tripleset. The directed, labelled hypergraph H(G) = 〈N, H, ε〉
associated with G is built as follows:

1. To each element e ∈ V(G) we associate a distinct node h(e). Then N =
{h(e) | e ∈ V(G)}. As for the hypergraph associated with an interpretation,
each node h(e) is labelled by a set. This set is the emptyset if e is a blank
and the singleton {e} otherwise.

2. To each triple t = 〈s, p, o〉 ∈ G we associate a distinct hyperarc h(t) =
〈h(s), h(p), h(o)〉. Then H = {〈h(s), h(p), h(o)〉 | 〈s, p, o〉 ∈ G}. The label of
the arc h(t) is {iext}.

Example 11. Fig. 5 shows the H-graph associated with the RDF tripleset H of
Ex. 1.



92 J.-F. Baget

{}

{}

{iext}

{iext}

{iext}

{iext}
{u2}{u1} 1

1
1

1 2

2
2

2 33

3

3

{l}

Fig. 5. The H-graph associated with an RDF tripleset

4.4 Simple Entailment as an Hypergraph Homomorphism

Lemma 2. Let G be an RDF tripleset, and V be a set of terms that contains
the set of terms of G. Let ≤2 be the partial order defined by e ≤2 e′ ⇔ e′ ⊆ e.
An interpretation I of V is a model of G iff there exists a ≤2-H-morphism from
H(G) into H(I).

Proof. We successively prove both directions of the equivalence.

(⇒) Let us consider a model I = 〈IR, IP , ιext, ιs, ιl〉 of G. We have to show that there
exists a ≤2-H-morphism from H(G) into H(I). Since I is a model of G, there exists
a mapping ι : V(G) → IR ∪ IP that respects the 5 conditions listed in Def. 3. We
build the mapping π from the nodes of H(G) into the nodes of H(I) as follows:
if h(x) is a node of G, then π(h(x)) = h(ι(x)). It remains to show that π is a
≤2-H-morphism.
1. Let h(x) be a node of x. Let us show that ε(π(h(x))) ≤2 ε(h(x)), i.e. ε(h(x)) ⊆

ε(π(h(x))).
- if x is a blank, then by construction ε(h(x)) = ∅ and is thus a subset of

any other set;
- otherwise, by construction, ε(h(x)) = {x}. It remains only to check that

x is an element of ε(π(h(x))) = ε(h(ι(x))). If x is a plain literal, then
ι(x) = x and the label of h(ι(x)) contains x. If x is an uriref (resp. a
typed literal), ι(x) = ιs(x) (resp. ιl(x)). Then the label of h(ι(x)) also
contains x.

2. Let us now prove that for every hyperarc a = 〈h(s), h(p), h(o)〉 ∈ H(G), there
exists an hyperarc a′ = 〈π(h(s)), π(h(p)), π(h(o))〉 ∈ H(I). If such an hyperarc
exists, it will be easy to check that ε(a′) ≤2 ε(a): all hyperarcs are labelled by
{iext}. Since a = 〈h(s), h(p), h(o)〉 ∈ H(G), then by construction there must
be a triple 〈s, p, o〉 in G. Thus (Def. 3) 〈ι(s), ι(o)〉 ∈ ιext(ι(p)). By construction
of H(I), it contains an hyperarc 〈h(ι(s)), h(ι(p)), h(ι(o))〉. And by construction
of π, this hyperarc is exactly 〈π(h(s)), π(h(p)), π(h(o))〉. ��

(⇐) Now let us consider a ≤2-H-morphism π from H(G) into H(I). We build a mapping
ι : V(G) → IR ∪ IP as follows: for each node h(x) of H(G), consider the node h(y)
of H(I) such that h(y) = π(h(x)). Then ι(x) = y. It remains now to prove that ι
satisfies the 5 conditions of Def. 3. For each node h(x) of H(G), we consider the
node h(y) of H(I) such that h(y) = π(h(x)).

- If x is a plain literal, we must prove that ι(x) = x. By construction, ι(x) = y.
We know that h(x) is labelled by {x}. Since π maps h(x) into h(y), x ∈ ε(h(y))
and thus, by construction of H(I), x = y = ι(x).



RDF Entailment as a Graph Homomorphism 93

- If x is a typed literal, we must prove that ι(x) = ιl(x). By construction,
ι(x) = y. As before, x ∈ ε(h(y)). By construction of H(I), ιl(x) = y = ι(x).

- If x is an uriref, proceed as for typed literals (replacing ιl with ιs).
- If x is a blank, then x is the subject or object of a triple of G. Thus h(x) is

the first or third argument of an hyperarc of H(G). Since π is a H-morphism,
π(h(x) = h(y) is the first or third argument of an hyperarc of H(I). By defi-
nition of ιext, y = ι(x) ∈ IR.

- Let us now prove that, for every triple 〈s, p, o〉 ∈ G, 〈ι(s), ι(o)〉 ∈ ιext(ι(p)).
If 〈xs, xp, xo〉 ∈ G, then, by construction of H(G), there exists an hyper-
arc 〈h(xs), h(xp), h(xo)〉 of H(G). Since π is a H-morphism, the hyperarc
〈π(h(xs)), π(h(xp)), π(h(xo))〉 = 〈h(ys), h(yp), h(yo)〉 is an hyperarc of H(I).
By construction of H(I), 〈ys, yo〉 ∈ ιext(yp), i.e.: 〈ι(xs), ι(xo)〉 ∈ ιext(ι(xp)). ��

Lemma 3 (Isomorphic Interpretation). Let G be an RDF tripleset. Then
there exists an interpretation I of G such that H(I) = H(G).

Proof. By “reverse engineering” the transformation H, we can build from H(G) an
interpretation I such that H(I) = H(G). To each node in H(G) we associate a resource
of IR (note that we impose IP ⊆ IR). For each node x, for each term e ∈ ε(x), we impose
the term e to be interpreted (via ιs or ιl) by the resource associated with x. Finally,
for each hyperarc 〈s, p, o〉 in H(G), we add the pair of resources associated with s and
o to the extension of the resource asssociated with p. It is immediate to chack that, by
applying H to that interpretation, we obtain the H-graph H(G) (or more precisely, the
H-graph isomorphic to it).

Corollary 1. Each RDF tripleset is satisfiable.

Proof. Since there always exists a H-morphism from a graph into itself, we conclude
thanks to Lem. 2 that the isomorphic interpretation of any RDF tripleset G is a model
of G. Thus G is satisfiable.

Theorem 3. Let G and H be two RDF triplesets defined over a set of terms V .
Then G |= H if and only if there is a ≤2-H-morphism from H(H) into H(G).

Proof. We prove both directions of the equivalence.

(⇒) Let us suppose that G |= H . It means that every model of G is also a model of
H . In particular, the isomorphic interpretation I of G (see Lem. 3), being a model
of G, is also a model of H . Thanks to Lem. 2, it means that there exists a ≤2-H-
morphism from H(H) into H(I) = H(G). ��

(⇐) Let us suppose that there exists a ≤2-H-morphism π from H(H) into H(G). We
have to prove that every model of G is also a model of H . Let us consider an
arbitrary model M of G. Thanks to Lem. 2, there exists a ≤2-H-morphism π′ from
H(G) into H(M). We use Lem. 1 to show that π′ ◦ π is a ≤2-H-morphism from
H(H) into H(G). Finally, we conclude (Lem. 2) that M is also a model of H . ��

4.5 Relationships with Multigraphs

This section finishes with this last theorem, asserting the equivalence of M-
morphisms and H-morphisms for RDF simple entailment. Since the proof is



94 J.-F. Baget

immediate, it is left out. It means that we can use indifferently M-graphs or
H-graphs for computing entailments, or for checking if an interpretation is a
model for a tripleset. It is also the final step providing another proof for the
interpolation lemma.

Theorem 4. Let G and H be two RDF triplesets defined over a set of terms
V . Then there is a directed, labelled hypergraph homomorphism from H(H) into
H(G) according to ≤2 if and only if there is a directed, labelled multigraph ho-
momorphism from M(H) into M(G) according to ≤1.

5 Complexity and Algorithms

It is now well known that simple RDF entailment (deciding whether or not
an RDF tripleset simply entails another one) is a NP-complete problem. It has
been proven via the equivalence with conceptual graphs [6, 7] or via a reduction
to graph colouring [2]. Thus checking if an interpretation is a model for an RDF
tripleset is also an NP-complete problem (we have shown here that they were
the same problem). The latter author also provides us with a polynomial case
for simple RDF entailment: when there is no blank node in the entailee H .

We present here links and guidelines allowing to quickly translate results
obtained in other knowledge representation communities (namely conceptual
graphs and constraint programming), thanks to our reformulation of entailment
as a graph homomorphism.

5.1 Constraint Networks and Polynomial Cases

The relationships between homomorphisms, conceptual graphs projection and
constraint satisfaction problems allow to obtain much more interesting polyno-
mial cases. Let us consider here the following equivalences:

1. the RDF tripleset G simply entails the RDF tripleset H
2. there is a ≤1-M-morphism from M(H) into M(G)
3. there is projection from the conceptual graph C(M(H)) into C(M(G))
4. the constraint network N (C(M(H)), C(M(G))) is satisfiable.

We do not have the place here to explicit the transformations involved, though
it should be done in an extended version of this paper. 1) ≡ 2) is proven in this
paper, 2) ≡ 3) is proven in [7], and 3) ≡ 4) is proven in [11]. The interesting
point is that these transformations are polynomial, and that the graphs M(H),
C(M(H)) and N (C(M(H)), C(M(G))) have exactly the same structure. So ev-
ery polynomial case based upon the structure of a constraint network or upon
the structure of the projected conceptual graph immediately translates into a
polynomial case based upon the structure of the entailee in simple RDF.

Both conceptual graphs projection [12] and constraint network satisfiability
[13] have been proven polynomial when the graphs are trees. It follows naturally
that simple RDF entailment is polynomial when the entailee M-graph is a



RDF Entailment as a Graph Homomorphism 95

tree. A lot of work has been produced in the constraint satisfaction community
to generalize this result: more general cases (using hypertree decompositions)
are listed in [14], all can be directly translated to simple RDF entailment.

5.2 Algorithms

Since the Backtrack algorithm used to solve constraint satisfaction problems rely
on the structure of the associated graph, the same algorithm optimizations can
be used for the simple RDF entailment. Some of these optimizations have
been selected in [10] (in the conceptual graph formalism). The main point is
that these optimizations do not require any overhead cost. These algorithms are
considered as very efficient outside the phase transition.

6 Conclusion and Perspectives

We have presented here a reformulation of simple RDF entailment as a graph
homomorphism. The standalone proof of soundness and correctness is used as a
new proof of the interpolation lemma.This proof can be used as a framework to
study reasoning engines for extensions of simple RDF. Though we have shown
that a benefit of our reformulation was to offer the end-user with a graphical
illustration of reasonings, our main interest resides in using the graph structure
for an optimization purpose. The links we establish between RDF entailment,
graph homomorphism, conceptual graphs projection and constraint satisfaction
problems are an important step in that direction.

However, RDF is a language developped for the web. And the specific problem
that will be encountered is the huge size of the data. The rdf web entailment
problem should be presented as follows: given a RDF tripleset (a query) Q, is
there a set of RDF triplesets G1, ..., G2 available on the (semantic) web such
that they entail Q? Though there is no theoretical problem (we have just to
compute whether the merge of G1, ..., G2 entails Q), it is doubtful that it will be
possible to compute the merge of all triplesets available on the web. [15] provides
us with an algorithm that remains sound and complete without merging the
graphs (in conceptual graphs terms, when the target is not in nortmal form).
Moreover, this algorithm is less efficient than the standard backtrack, and do
not benefit effectively from the above mentioned optimizations. This example,
among other, shows that, though RDF entailment can benefit from results
obtained in similar formalisms, its new feature (a language designed for the
web) leads to particular problems that we should take into account.

References

[1] Hayes, P.: RDF Semantics. W3C Recommendation (2004)
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.

[2] ter Horst, H.J.: Extending the RDFS Entailment Lemma. In: Proceedings of the
Third International Semantic Web Conference, ISWC’04. Volume 3298 of LNCS.,
Springer (2004) 77–91



96 J.-F. Baget

[3] Hahn, G., Tardif, C.: Graph homomorphisms: structure and symmetry. In: Graph
Symmetry. Number 497 in NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci. (1997)
107–166

[4] Chein, M., Mugnier, M.L.: Conceptual Graphs: fundamental notions. Revue
d’Intelligence Artificielle 6 (1992) 365–406

[5] Montanari, U.: Networks of Constraints: Fundamental Notions and Application
to Picture Processing. Information Sciences 7 (1974) 95–132

[6] Corby, O., Dieng, R., Hebert, C.: A Conceptual Graph Model for W3C Resource
Description Framework. In: International Conference on Conceptual Structures.
(2000) 468–482

[7] Baget, J.F.: Homomorphismes d’hypergraphes pour la subsomption en
RDF/RDFS. In: 10e conférence sur langages et modèles à objets (LMO). Vol-
ume 10. (2004) 203–216

[8] Genest, D.: Extensions du modèle des graphes conceptuels pour la recherche
d’informations. PhD thesis, Université de Montpellier II (2000)

[9] Hayes, J., Guttiérrez, C.: Bipartite Graphs as Intermediate Model for RDF.
In: Proceedings of the Third International Semantic Web Conference, ISWC’04.
Volume 3298 of LNCS., Springer (2004) 47–61

[10] Baget, J.F.: Simple conceptual graphs revisited: hypergraphs and conjunctive
types for efficient projection algorithms. In: 11th international conference on
conceptual sructures (ICCS). Number 2870 in LNCS, Springer (2003) 195–208

[11] Mugnier, M.L.: Knowledge Representation and Reasonings Based on Graph
Homomorphism. In: 8th International Conference on Conceptual Structures
(ICCS’00). Volume 1867 of LNCS., Springer (2000) 172–192

[12] Mugnier, M.L., Chein, M.: Polynomial algorithms for projection and matching.
In: Selected Papers from AWCG’92. Volume 754 of LNAI., Springer (1993)

[13] Freuder, E.: A sufficient condition for backtrack-free search. Journal of the ACM
29 (1982) 24–32

[14] Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural decomposition
methods. (1999)

[15] Guinaldo, O., Haemmerlé, O.: Knowledge querying in the conceptual graphs
model: the RAP module. In: Proc. of ICCS. 98. LNCS, (Springer) 287–294



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 97 – 111, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

RitroveRAI: A Web Application for Semantic Indexing 
and Hyperlinking of Multimedia News*  

Roberto Basili, Marco Cammisa, and Emanuale Donati 

University of Roma, Tor Vergata, Department of Computer Science, 
Via del Politecnico snc, 00133, Roma 

{basili, cammisa, donati}@info.uniroma2.it 

Abstract. In this paper, a system, RitroveRAI, addressing the general problem 
of enriching a multimedia news stream with semantic metadata is presented. 
News metadata here are explicitly derived from transcribed sentences or 
implicitly expressed into a topical category automatically detected. The 
enrichment process is accomplished by searching the same news expressed by 
different agencies reachable over the Web. Metadata extraction from the 
alternative sources (i.e. Web pages) is similarly applied and finally integration 
of the sources (according to some heuristic of pertinence) is carried out. 
Performance evaluation of the current system prototype has been carried out on 
a large scale. It confirms the viability of the RitroveRAI approach for realistic 
(i.e. 24 hours) applications and continuous monitoring and metadata extraction 
from multimedia news data. 

1   Introduction 

Web services actually tend to offer functional and non-functional requirements and 
capabilities in an agreed, machine-readable format. The target is the support to 
automated service discovery, selection and binding as a native capability of 
middleware and applications. However, major limitations are due to the lack of 
clear and processable semantics. Multimedia data are even more critical as 
semantics often depends on multiple and independent aspects: functional 
information, e.g. data format and processing constraints, application criteria, e.g. 
the different commercial constraints that may be applied, as well as content 
information, e.g. the topics to which a TV program refer or the genre of a song or 
video clip. In particular audio-visual data suffer from the fact that they are 
particularly rich in content and the level of semantic description is not easily 
detected from the different co-operating information (the video content vs. the 
environment sound as well as speaker’s comments) that give rise to a variety of 
abstraction levels. 

Methods of Information Extraction from multimedia data have thus to face specific 
problems in order to support realistic Semantic Web scenarios:  

                                                           
* The research work presented in this paper has been partially funded by the PrestoSpace IST 

Integrated Project, n. IST-FP6-507336. 



98 R. Basili, M. Cammisa, and E. Donati 

− They must capture levels of abstraction able to express content at the visual level 
as well as at the sound (or speech) level 

− Given the richness of the audio-visual information and the usually large size of 
target archives they must be efficient and scalable 

− They should be as much adaptable as possible even in the early development 
phases in order to afford problems of realistic size. In particular, methods of 
machine learning for the construction of the required large knowledge bases and 
rule sets are needed. 

− They must be robust with respect to noise and complexity (often incompleteness) 
of the source data 

For the above reasons, extraction of audio-visual semantic metadata is thus a critical 
problem for a large class of Semantic Web applications. In the PrestoSpace1 project 
(IST Integrated Project, n. IST-FP6-507336)   the problem of preservation of the huge 
archives of European audio-visual providers (i.e. BBC, RAI and INA) through 
systematic digitalisation and restoration techniques has been pursued. In this scenario, 
the need for making digitised data accessible through intelligent information retrieval 
interfaces has been approached by the automation of semantic metadata extraction 
from raw material. Ontological resources are thus also used as a reference model for 
extraction and ontology-based and multilingual retrieval. 

In this paper a system, RitroveRAI, developed for the semantic metadata 
extraction from TV and radio broadcasted news, is presented. It realizes the 
semantic extraction component of the overall PrestoSpace solution to preservation 
and indexing of audio-visual material: it is actually implemented for Italian over the 
data of the RAI TV channel. The RitroveRAI system makes use of human language 
technologies for IE over multimedia data (i.e. speech recognition and grammatical 
analysis of incoming news). News are topically categorised by means of a statistical 
categorizer. IE results are then exploited to find on the Web texts/pages equivalent 
(or weakly equivalent) to source news: this aims to extend the metadata derived 
from news with systematic material available on the aligned Web texts. Finally 
integration of internal (i.e. expressed by the source news) as well as external (as 
found on the Web) information produces the final set of metadata published with 
the digitised news. 

The next section will introduce the overall approach by discussion the architecture 
of the current RitroveRAI prototype. Then advanced aspects like automatic (machine 
learning driven) categorisation of news, enrichment of broadcasted news via Web 
alignment and mining, will be discussed. Finally, performance evaluation results over 
large data sets will be reported to drive the final discussion. 

2   An Approach to Metadata Indexing Based on HLT and the Web 

The source information in RitroveRAI system have a well identifiable topic related to 
the content, i.e. the events and participants to which the reported news refer. Methods 
of extraction can use some visual information (in TV news) but are mainly tight to the 
                                                           
1 URL: http://www.prestospace.org/index.en.html 



 RitroveRAI: A Web Application for Semantic Indexing and Hyperlinking 99 

speaker output. This is captured by a speech recognition system that initiates the 
processing chain. Some preprocessing focuses on the segmentation of source 
programs into individual news relying on special content features like the time span of 
silence intervals, detected changes in the speaker’s voice or program schemes  
(e.g. alternating videos and studio contributions). The approach discussed in this 
paper refers to all the remaining Information Extraction and Web mining steps up to 
the final metadata publishing and browsing facilities. Figure 1 reports the overall 
client-server architecture. 

 

Fig. 1. The RitroveRAI Client-Server Architecture 

The workflow processing is organized around a modular client-server architecture 
coordinated by a glueware module, called the “Process Manager”. A second 
independent server is the Web Spider. It is based on the Google’s API and retrieves all 
the documents published by a reference content provider (i.e. a journal) within a time 
window centered on the day of the news transmission. Finally a linguistic processing 
server, called CHAOS [2,4], makes available grammatical recognition capabilities 
over both transcriptions and Web pages. 

The Information Extraction chain applies first the Intaker module. It collects and 
normalizes the incoming broadcasted news as they are transcribed and segmented by 
the speech recognition tool. The result of the intaking process is the update of news 
and segments into an internal DB structure responsible of supporting all the  
later processing stages. Then, the Categorization module is invoked by the Process 
Manager over the intaken news: it returns the pertinent topical categories (with their 
associated confidences) according to the RAI internal classification scheme. 
Concurrently, the Aligner module selects the candidates equivalent news from those 
extracted by the Web Spider process. This starts from the transcriptions parsed by the 



100 R. Basili, M. Cammisa, and E. Donati 

CHAOS server. Web pages are also parsed2 and indexed according to traditional IR 
models. For each news item, the Alignment process selects the Web pages from a set 
of candidate ones, i.e. those made available by the Web Spider, and create direct 
hyperlinks to them. This also allows to include auxiliary more precise metadata as 
those associated to the aligned news in order to prune the possibly irrelevant 
information3. Whenever internal and external metadata are made available, 
customized browsing (i.e. navigation through a user-specific hypertext built over the 
processed news) is allowed by a specialized Web browsing interface. Queries in 
Natural Language are also supported. 

3   Natural Language Processing of Broadcasted and Web News  

Natural Language processing is required in RitroveRAI for two purposes. First it 
enables the extraction from the source speech transcription of a number of 
phenomena: common nouns, verbs and Named Entities (e.g. person, location and 
organization names). Second, it also derives semantic information from the Web 
aligned news. However, these latter, being them written in plain natural language  
(i.e. not automatically and noisy transcribed) allow the extraction of grammatical 
relations: for example subject or object relation between named entities and verb. 
Notice that this has an impact on the system knowledge about the role played by 
individuals as participants to the target facts of the news.  

Fig 2. The dependency graph of an Italian sentence 

                                                           
2 The parsing process is different in the two cases as automatic transcriptions follow less rigidly 

linguistic well-formedness criteria so that specific grammatical and lexical rules are required. 
3  When mistakes made by the speech recognizer over incoming transcriptions affect the quality 

of the source metadata, external, i.e. Web originated, metadata can be used to validate the 
former and compensate such errors. 



 RitroveRAI: A Web Application for Semantic Indexing and Hyperlinking 101 

Linguistic extraction is carried out by a Natural language parser called CHAOS 
[2,4]. Chaos is a server for modular and lexicalized parsing based on a cascade of 
morphosyntactic recognisers. The main CHAOS modules are: the Tokenizer,  
the morphological analyzer (who identifies the possible morphological interpretation 
of every token), a part of speech tagger, a named entity recognizer, a chunker (who 
collects possibly multiple tokens to form bigger grammatical and unambiguous units 
called chunks), the temporal expressions recognizer, a verb subcategorization 
analyzer (for the recognition of the main verbal dependencies) and a shallow syntactic 
analyzer (for the recognition of remaining and possibly ambiguous dependency, e.g. 
prepositional modifiers of verbs and nouns). 
 
In Fig. 2, as an example, the dependency graph (called XDG) for the Italian sentence  

“Ciampi inizia le consultazioni con i presidenti delle camere”4 

is reported. 

The eXtended Dependency Graph (XDG) formalism, introduced in [4], represents, the 
recognized sentence as a planar graph, whose nodes are constituents and arcs the 
grammatical relationships between them. The constituents are chunks, i.e. kernels of 
verb phrases (VPK), noun phrases (NPK), prepositional phrases (PPK) and adjectival 
phrases (ADJK). Examples of PPK and NPK chunks in Fig. 2 are respectively “con i 
presidenti”5 and “le consultazioni”6. Relations among the constituents represent 
grammatical functions among their syntactic heads: logical subject (lsubj), logical 
objects (lobj), and prepositional modifiers. More technical details on the CHAOS 
parser can be found in [4]. 

3.1   Two Parsing Models for RitroveRAI 

The incoming broadcast news set, hereafter called NI, and the published Web news 
set, hereafter NE, must be distinguished, as introduced above, to apply different 
parsing strategies. 

Several difficulties arise when Chaos is applied to the NI set, due to its noisy 
nature. First, frequent misspellings characterize elements in NI. This is very variable 
depending on the speed, clarity, pronounce of the speaker and by the quality of the 
signal.  

Another problem is that all the misspellings are also correct words of the Italian 
language. This can lead to errors in the named entities extraction, because 
semantically odd entities are also introduced in the text.  

A third problem is the absence of case information in the transcribed text. Most 
technologies for NE extraction are actually based on capitalized words.  

Finally, text segments are generated automatically during the transcription process. 
Speeches are translated into “news units” by using time and intensity rules. When the 
audio signal goes under a specified lower intensity for a sufficient time interval a new 

                                                           
4 “Ciampi starts  the counsels with the presidents of the Chambers”. 
5 “with the presidents”. 
6 “the counsels”. 



102 R. Basili, M. Cammisa, and E. Donati 

segment is initiated. These heuristics are not error free so that multiple news items 
may appear in a segment or, dually, a single news can be split into multiple (but less 
complete) segments. The segmentation process is a special case of the recognition of 
boundaries between distinct textual units in documents. Errors in this phase impact on 
the accuracy of all later processing steps in RitroveRAI. 

CHAOS has been applied over the broadcasted news only to recognize a subset of 
grammatical data as wrong POS tagging is the general case: contexts are not reliable 
enough to trigger POS tagging rules. Here the recognition of basic distinctive 
information to support categorization and Web alignment is carried out. The 
transcription’s parsing model supports shallow parsing including only the tokenizer 
and the morphological analyzer based on gazetteer lookup.  Evaluation of the adopted 
design choice (Section “Performance Evaluation”) confirms that such limited (but 
reliable) information is sufficient most of the times. 

On the other hand, the Chaos full parsing cascade was applied with its full 
functionalities to the aligned Web news, i.e. the set NE. This allowed to extract named 
entities as well as all their verbal relations from the NE set. In this way Named Entities 
of the source news are confirmed (as they also appear in the aligned news found in the 
Web) but their role in the described fact is also captured most of the times. In the 
previous example we would know that (Carlo Azeglio) “Ciampi” (current President of 
the Italian Republic) is the agent initiating the counsels. This results in an higher 
abstraction level in the derivation of content metadata able to match more specific 
queries in future retrieval scenarios. 

3.2   Recognizing Named Entities from Broadcasted News (NEI set) 

Named Entities in the incoming transcribed segments are herefter called internal 
named entities , i.e. NEI. As an example, in the following segment “calling for 
democracy and freedom, the leaders of iraq’s interim government today challenged 
the country’s new national assembly to strive for unity president bush congratulated 
the people of iraq. “it was a hopeful moment”, bush told reporters at the white 
house”, the following  NEI list is derived: “Iraq”, “National Assembly”, “Bush”, 
“White House”. The gazetteers used by CHAOS are here used as a major source of 
information.  

As a segment is to be categorized and then also aligned with other Web pages, it is 
also useful to recognize common nouns in the text. In the above example 
“democracy”, “leaders“, “freedom”, “government”, “country”, “people” and 
“reporters” would be extracted. NEI and other nouns are a surrogate of the segment 
transcription useful for categorization and Web mining. We make use of this 
information to build an efficient search vector for Web retrieval. In order to 
distinguish the different importance of Named Entities and common nouns, we 
modified slightly the usual weighting scheme of the IR platform adopted (i.e. Lucene 
[5]). Common nouns n are given a weight equal to their document frequency (occn) 
(i.e. the default weight in Lucene syntax). Named Entities are instead amplified by a 
factor w, with a resulting weight of w⋅occn. We found that different domains require 
different ratios w. In all our settings w=4 is used.  



 RitroveRAI: A Web Application for Semantic Indexing and Hyperlinking 103 

4   Machine Learning for Broadcasted News Categorization 

Text categorization is a traditional supervised machine learning task. In RitroveRAI a 
the Rocchio model, as a profile based classifier, presented in [3], has been used. 

Given the set of training document iR , classified under the topics Ci (positive 

examples), the set iR  of the documents not belonging to Ci (negative examples) and 

given a document dh and a feature f, the Rocchio model [8,3] defines the weight f  of 
f  in the profile of Ci  as: 

   −=Ω
∈ ∈ih ihRd Rd

h
f

i

h
f

i

i
f

RR
ωγωβ

,0max         (1) 

where ωf
h is the weight of the feature f in the document dh. In formula (1), the 

parameters  and  control the relative impact of positive and negative examples and 
determine the weight of f in the i-th profile. In [8], values =16,  =4 have been first 
used for the categorization of low quality images. These parameters indeed greatly 
depend on the training corpus and different settings of their values produce a 
significant variation in performances. 

Notice that, in Equation (1), features with negative difference between positive and 
negative relevance are set to 0. This is an elegant feature selection method: the 0-
valued features are irrelevant in the similarity estimation. As a result, the remaining 
features are optimally used, i.e. only for classes for which they are selective. In this 
way, the minimal set of truly irrelevant features (giving 0 values for all the classes) 
can be better captured and removed. 

In [3] a modified Rocchio model is presented that makes use of a single parameter 
i as follows: 

   −=Ω
∈ ∈ih ihRd Rd

h
f

i

ih
f

i

i
f

RR
ωγω1

,0max         (2) 

Moreover, a practical method for estimating the suitable values of the i vector has been 
introduced. Each category in fact has its own set of relevant and irrelevant features and 
Eq. (2) depends for each class i on i. Now if we assume the optimal values of these 
parameters can be obtained by estimating their impact on the classification performance, 
nothing prevents us from deriving this estimation independently for each class i. This 
result in a vector of i each one optimising the performance of the classifier over the i-th 
class. The estimation of the i is carried out by a typical cross-validation process. Two 
data set are used: the training set (about 70% of the annotated data) and a validation set 
(about 30% of the remaining data). First the categorizer is trained on the training set, 
where feature weights (ωf

d) are estimated. Then profile vectors Ωf
i for the different 

classes are built by setting the parameters γi to those values optimising accuracy on the 
validation set. The resulting categorizer is then tested on separated test sets. Results on 
the Reuters benchmark are about 85%, close to state-of-art more complex classification 
models ([3]). In Section “Performance Evaluation” the results as measured on the 
transcribed RAI news will be discussed. 



104 R. Basili, M. Cammisa, and E. Donati 

5   Extending Internal Metadata with Web Material  

5.1   Collecting External Evidence from the Web: The NE Set 

In RitroveRAI the task of creating a NE set is achieved by mining several Web sites of 
news providers. Indexed web pages provide external news sets for each provider  
NE

1, NE
2, …, NE

n. Finally, the NE = NE
1∪NE

2∪...∪NE
n is the union of individual sets.  

As a case of study, we considered only the Web site of the Italian newspaper “La 
Repubblica”7. It publishes news categorized by legacy metadata (e.g. a set of 8 
newspaper categories). Moreover, it is refreshed as new articles are available with 
news items published in standard HTML and tagged with date information, e.g. 
“(January, 12, /2003)”. 

A simple spidering process has been developed, based on the Google’s API, to 
retrieve all the documents published in a date. A temporal window is used. It is 
centered in the day of publication of the internal news and its symmetrical width is 
proportional to a parametric time span8. Accordingly, the temporal distance between 
the retrieved news and the source transcribed segment is considered as an inversely 
proportional ranking score. The main criteria is still the IR relevance score extended 
as follows. 

The task of creating a link between elements in NI and Web elements in NE require  
to assess topical relevance and temporal proximity. Notice that the search vector 
extracted for internal news is used as a query for retrieval among the NE set.  

It is to be noticed that the IR engine is first run over a superset of the target Web 
pages in order to get general and reliable statistics for feature weighting (i.e. occn 
scores). Then the ranking function is modeled according to the following properties: 

• Document similarity must be maximized 
• The time distance D between the source segments and the Web page should be 

minimal 
• The (RAI) topical category CR of the segments should be coherent with the 

Repubblica category CW for the Web news item 

A comprehensive scoring model is as follows: 

   
1

),(
),(),(

+
⋅=

D

CCcoh
wssimwsS

WR

        EI NwNs ∈∈ ,         (3) 

where sim is the relevance produced by Lucene, and coh is a static function 
(coherence table) that measures the topical similarity between different categories 
(RAI, CR, and “La Repubblica”, CW, respectively). The role of D promotes the 
alignment of “facts” happened in the same days. The category similarity coh refines 
the score and it is 1 only if the categories are the same, and lower as long as they tend 
to diverge: for example, it is almost 0 between RAI “Sport” and “La Repubblica” 
“Foreign Affair”.  

                                                           
7 http://www.repubblica.it 
8 Currently a time span of 2 days are used. Web pages outside such [–2,2] range are not 

considered for alignment. 



 RitroveRAI: A Web Application for Semantic Indexing and Hyperlinking 105 

Given a segment s, the alignment with a Web candidate w is finally accepted 
whenever the score S(s,w) is above a given acceptance threshold that has to be 
determined experimentally (see Section “Performance Evaluation”). 

5.2   Selecting Named Entities from Web Material: The NEE Set 

The aligned news provide evidence external to a segment able to trigger the extraction 
of more correct named entities as additional metadata. 

The major problem in this phase is that the two source texts have quite different 
extensions. Usually Web data are excerpts of texts published on a newspaper and are 
longer: they discuss a “fact” in a broader way. This “additional” information is a 
suitable enrichment if: 

• Misspellings in the transcriptions prevented the correct recognition of 
named entities that are alternatively found in the Web text; 

• Time constraints in the TV news led to the exclusion of some relevant 
information (e.g. the name of a person entering into the underlying fact 
but not mentioned). 

On the contrary, several aspects lead to consider carefully the external information: 

• Newspaper articles discusses facts and opinions in a lengthy fashion, so 
that other facts and participants can be mentioned even when they are not 
directly related to the transcribed segment. 

• The Web news are not perfectly aligned or time distance D is not  0: in 
this case new found named entities may be misleading. 

The above observation lead us to apply filtering criteria to the acceptance of external 
Named Entities. A simple heuristic, based on a word distance metrics, has been 
developed. 

An external Named Entity nee can be accepted if one of the following occurs: 

• nee is also contained into the transcribed segment, i.e. nee∈NEI; 
• nee is repeated more than m times within the external Web news (appears 

to be central in the fact discussed in the aligned Web news); 
• The named entity nee is close enough to other named entities that are also 

internal named entities, i.e. it exists one or more n∈NEI such that in the 
Web document 

word_dist(nee, n) < v 

where v is a positive threshold. In this case the fact involving external and internal 
named entities is the same. 

6   Publishing and Searching Enriched News 

The publishing modules is responsible for showing the process results to the users, 
presenting them with a personalized profiles. The user logs in into the system 
identifying himself and implicitly declaring a filtering profile. This profile defines the 
categories of interests for the user.  

The browser interface is shown in the following picture: 



106 R. Basili, M. Cammisa, and E. Donati 

 
 

Fig. 3. A snapshot of the RitroveRAI browser 

The left frame presents the entire broadcast news collection, with the ability to 
access to the audio recording. The user can access to the news information selecting 
its hyperlink. All the data associated to the news are shown in the central frame. 

In the upper part of the central frame the transcribed segment is presented. The 
upper link refers to the best “La Repubblica” Web text aligned. The same link is 
shown in the middle of the bottom central frame (as a full URL). 

Categorization is also reported in the bottom central frame as list of categories with 
their corresponding confidence factors (not visible in Fig. 3). The “legacy metadata” 
follow the categorization information, i.e. reporting data like the broadcasted 
segment, the day of recording, the TV channel or the tape IDs. 

Finally, semantic metadata are presented (Fig 3, bottom central frame): one table for 
the internal metadata and one for the external ones. As we discussed before, the internal 
metadata are extracted using NLP over the broadcast news, and the external are 
collected using NLP over the aligned web news. These metadata are used to propose 
links to “related” broadcasted segments: in the right upper and bottom frames links are 
available to the set of less recent and more recent broadcasted news, respectively. These 
links are computed over the metadata and are built at run time according to user profiles. 

7   Performance Evaluation: The RAI TV News 

The RitroveRAI system has been tested on a large set of transcriptions from about one 
year of TV news (July 2003-June 2004). Segments of news have been used as source 



 RitroveRAI: A Web Application for Semantic Indexing and Hyperlinking 107 

information units for metadata extraction. The corpus includes about 20,676 of such 
units. The validation has been carried out for two independent tasks: news 
categorisation and Web alignment. Performances in the two cases have been 
estimated by the standard measures of recall and precision. F-measure as the 
harmonic mean of the two values as well as the Break-even Point (BEP), as the value 
for which recall is equal to precision, are also reported.  

7.1   Evaluation of the RitroveRAI Text Categorization  

The set of manually categorized news (annotated by RAI archivist) includes 1,861 
segments. A split of 80% for training and 20% for testing has been imposed by random 
sampling the data set and balancing the different 26 RAI categories. Categories range 
from news specific classes (like “Economics” and “Foreign Politics”) to more general 
area like “Health”. Each news was assigned to one or more classes, so that 2,328 
assignments were available with an average rate of 1.25 class per news item. News 
items are distributed evenly among categories, so that only 11 categories had more than 
80 members, an amount sufficient for reliable training. Validation has thus been carried 
out in two fashions: first by measuring the selection of the system among all the 26 
classes, and then by restricting the testing to only the 11 reliable classes. Results (as 
BEP points) are reported in Table 1 for the 11 reliable classes.  

Performance of the categorizer are good considering that a small subset of the 
archived material from RAI has been used for training. In particular small data sets 
penalize the categories that are more general (i.e. “Employment/Job”) although 
more specific classes require less information to scale up to reasonable 
performances (e.g. “Sport”, “Life and Religion”). When enough material is 
available the performances confirm the results of benchmarking (e.g. “Politics”). 
Notice how these measures are only based on tokens (bag-of-word modeling) of the 
transcribed news and how this material includes a significant amount of noise. 
Moreover, real-time categorization is ensured by the Rocchio model that, compared 
to more sophisticated text categorization techniques (e.g. Support Vector 
Machines), is much more efficient9  

Table 1. Results (BEP) of the RitroveRAI Text Categorizer 

Category Training Set Size BEP (26) BEP (11) 
Sport 76 0,83 0,72 
Environment 55 0,45 0,56 
Life and Religion 59 0,89 0,79 
Current Events 172 0,45 0,54 
Economics 149 0,60 0,76 
Transportation 48 0,68 0,67 
Foreign Affairs 518 0,75 0,78 
Justice 346 0,61 0,67 
Employment/Job 62 0,55 0,52 
Politics 437 0,80 0,79 
Health 58 0,73 0,46 

                                                           
9  Profile based classification requires a number of scalar products tight to the number of classes 

that is much lower to the number of documents. 



108 R. Basili, M. Cammisa, and E. Donati 

7.2   Evaluation of the RitroveRAI News Alignment 

The validation of the Web alignment capability of RitroveRAI has been carried out on 
a reference set of about 410 news items (i.e. segments in transcriptions) manually 
annotated. The annotation has been added by a team of three archivists with a 
judgment about each of the candidate alignment in four classes: “bad”, “fair”, “good” 
and “very good”. “very good” expresses an exact correspondence between the 
event/fact described in the two documents. As the focus of the Web material can be 
slightly different from the TV news, degrading levels of evaluation express overlaps 
of decreasing size: “good” is a valid correspondence but between a shorter transcribed 
news than the longer Web document with many more facts. “fair” reflects the same 
specific topic (e.g. “Iraki war”) but possibly not the same fact. “bad” refers to clear 
mistakes of the links. In order to study the accuracy of the thresholds imposed to  
Eq. (3) annotators were presented with all the links receiving a score greater than 010.  

In the evaluation we wanted to focus on news transcriptions of reasonable quality, 
i.e. significant segments to accurately measure the linking accuracy. We distinguish 
between “monothematic” and “multithematic” units, i.e. segments reporting just one 
or many more facts, respectively. Multithematic segments are usually due to wrong 
segmentations that groups two or more facts. Annotators found 308 monothematic 
and 102 multithematic segments. Data reported will refer only to the 1,587 alignments 
proposed for the monothematic segments. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30

Fair Good Very Good HeurCover Coverage

 

Fig. 4. Precision and Coverage of the RitroveRAI hyperlinking 

Two performance indexes have been used: precision at the three levels of 
evaluation  and coverage. Precision is the ratio between the number of links that 
received an evaluation equal or better then the level (from “fair” to “very good”) and 
the total number of links proposed by the system. Figure 4 plots the three measures 

                                                           
10 Notice that recall here does not apply: the annotators did not analyse the full “La Repubblica” 

Web site in the target time windows so that the gold standard set of all Web news valid for 
the alignment is not available. 



 RitroveRAI: A Web Application for Semantic Indexing and Hyperlinking 109 

according to the thresholds of acceptance imposed to the IR alignment scores (Eq. 
(3)). As the trends of all the curves suggest, there is a strong correlation between the 
thresholds and the accuracy. As a contrastive measure we computed the coverage as 
the ratio between the number of segments receiving at least one link and the total 
number of monothematic segments (i.e. 308). In Fig. 4 we see that coverage decreases 
smoothly and a kind of breakeven point is reached in the range of 65-75% precision. 
This is a quite good result if compared with standard performance of IR systems. Of 
course the constraints imposed on the alignment (in particular, the dates) are quite 
effective. Moreover, it must be said that not all the segments can be aligned by the 
system as (1) they may be not present on the “La Repubblica” Web site or (2) 
segments can be too short for significantly express a full fact. 

An analysis of the optimal threshold (around 0,03) has been thus carried out. By 
imposing such a threshold we found that the amount of news not receiving any link is 
62 (about 20%). However, among these segments we found 48 segments that are 
receiving only “bad” links. An analysis of about 20 such segments revealed in fact 
that there were no Web pages suitable for the alignment on that date (in the adopted  
source, i.e. “La Repubblica”). TV news may be in fact on local or curiosity 
information and some of them are not even mentioned on newspapers. It is likely that 
all the 48 segments were not to be linked at all. Correctly, a default threshold of 0.03 
would have been prevented all the erroneous links to be proposed. Accordingly, we 
removed those 48 segments from the testing data set (i.e. the 308 monothematic 
segments) obtaining a reduced set of segments (302-48=254). This simulates a system 
with an heuristic threshold that correctly assigns no link to the above 48 candidates. 
Evaluation of such a system would be focused only on the 254 test segments with an 
alternative coverage plot (“Heuristic coverage” in Fig. 4) that is slightly higher than 
the previous. Notice how the precision plots for such a modified system (by imposing 
every threshold 0.03 or higher) do not change for any acceptance rate. 

8   Conclusion and Future Work 

In this paper the RitroveRAI system for the extraction of semantic metadata from 
broadcasted TV and radio news has been presented. Human Language Technologies 
are here exploited to extract from the news transcriptions grammatical and semantic 
information and align them with Web documents. Alignment with these latter well-
formed texts is used to validate the extracted metadata as well as to complete them 
with additional information.  

The result is a metadata repository that supports querying in plain natural language 
(e.g. “Bush commenting Irak elections”) as well as more conceptually motivated 
languages (e.g. comment( Bush:agent,’Irak elections’:theme)). In the originating 
European projects, PrestoSpace, work is in progress to integrate the RitroveRAI 
language processing functionalties with ontology services, like Named Entity 
classification and semantic-driven coreference resolution in texts, made available by 
other partners (the KIM ontology, [11]). As the involved NLP technologies (in 
particular, the CHAOS parser) support text processing in two languages, Italian and 
English, the RitroveRAI system already enables extraction of language-neutral 
semantic metadata and multilingual information access: querying in English can be 
parsed and normalized by CHAOS so that metadata can be searched in a language 
neutral manner for cross-lingual reitrieval. 



110 R. Basili, M. Cammisa, and E. Donati 

Experimental work presented in this paper has been carried out on a significant 
scale (hundreds of segments and thousands of links) and demonstrates viability for 
large scale processing. The client-server Web architecture of the system is currently 
under testing to process TV broadcasted by RAI, daily. Categorization, although 
trained over a limited test set, is currently running with an acceptable accuracy. More 
importantly, the Web alignment method proposed reaches high level accuracy. This 
opens more space for the extraction of deeper phenomena from Web, like event 
descriptions with recognition and role assignment to participant of the detected 
events.  

Open problems refer to the improvements needed to deal with noisy input, i.e. 
wrong news segmentation. All the current RitroveRAI processing is based on the 
strict assumption that segmentation is provided as a form of preprocessing. After 
alignment however, more semantic information is available to the system for some 
analysis of odd segments (e.g. too short or too long): algorithms for a posteriori 
merging and splitting can thus be made available. This task is close to automatic  
segmentation of long documents as carried out in text summarization ([1], [10] or 
[12]). In particular Lexical Chains ([1]) and Latent Semantic Analysis ([8],[6]) can be 
here applied either to the TV segments or to their alignments on the Web. Integration 
of these two (independent) information sources will capitalize further the alignment to 
improve segment detection as well as all the subsequent processing steps. 

The browsing capabilities of the RitroveRAI system are already supporting natural 
language querying and user specific Web browsing (as in Fig. 3). Moreover, as 
mentioned in the introduction, significant portions of the system are adaptive, 
including categorization and Web alignment. This makes RitroveRAI a typical 
example of large scale adaptive Semantic Web application. Its capabilities for IE and 
automatic Web alignment coupled with its browsing and querying modalities are a 
feasibility proof of a new generation of multimedia information brokering systems 
over the Web. 

Acknowledgement 

The authors want to thank RAI, Centro Ricerche ed Innovazione Tecnologica (CRIT) 
of Torino (Italy), and in particular the staff involved in PrestoSpace, Giorgio Dimino, 
Daniele Airola Gnota and Laurent Boch, for having made available the data set for 
training and testing and for the helpful support to the architectural and application 
design choices. 

References 

[1] R. Barzilay, M. Elhadad, Using Lexical Chains for Text Summarization. In the 
Proceedings of the Intelligent Scalable Text Summarization Workshop (ISTS'97), ACL, 
Madrid, 1997. 

[2] Basili, Roberto, Pazienza, Maria Teresa, Zanzotto, Fabio Massimo, Efficient Parsing for 
Information Extraction, Proceedings of the European Conference on Artificial 
Intelligence (ECAI98), Brighton, UK, 1998. 



 RitroveRAI: A Web Application for Semantic Indexing and Hyperlinking 111 

[3] R. Basili, A. Moschitti, M.T. Pazienza, ”NLP-driven IR: Evaluating performance over a 
text classification task”, In Proceeding of the 10th ”International Joint Conference of 
Artificial Intelligence” (IJCAI 2001), August 4th, Seattle, Washington, USA 2001. 

[4] Basili R., F.M. Zanzotto, Parsing Engineering and Empirical Robustness, 8 (2/3) 97120, 
Journal of Language Engineering, Cambridge University Press, 2002 

[5] F.Y.Y. Choi, P. Wiemer-Hastings and J. Moore. "Latent semantic analysis for text 
segmentation". In Proceedings of the 6th Conference on Empirical Methods in Natural 
Language Processing, pp. 109- 117, 2001 

[6] Vasileios Hatzivassiloglou, Judith Klavans, and Eleazar Eskin. 1999. Detecting text 
similarity over short passages: Exploring linguistic feature combinations via machine 
learning. 

[7] Otis Gospodnetic. 2003. Advanced Text Indexing with Lucene. http://lucene.apache.org 
[8] David J. Ittner and Lewis, David D. and David D. Ahn, Text categorization of low quality 

images, Proceedings of SDAIR-95, 4th Annual Symposium on Document Analysis and 
Information Retrieval, 1995, Las Vegas, US, 301—315. 

[9] Landauer, T. K., Foltz, P. W., & Laham, D., Introduction to Latent Semantic Analysis. 
Discourse Processes, 25, 259-284, (1998). 

[10] Daniel Marcu. 1999. The automatic construction of large-scale corpora for 
summarization research. In Proceedings of SIGIR 99. 

[11] Borislav Popov, Atanas Kiryakov, Damyan Ognyanoff, Dimitar Manov, Angel Kirilov, 
Miroslav Goranov. KIM – Semantic Annotation Platform. 2nd International Semantic 
Web Conference (ISWC2003), Florida, USA, 2003. 

[12] Hongyan Jing. 2002. Using hidden Markov modeling to decompose human-written 
summaries. Computational Linguistics, 28(4):527–543 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 112 – 126, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Querying Ontologies:  
A Controlled English Interface for End-Users 

Abraham Bernstein, Esther Kaufmann, Anne Göhring, and Christoph Kiefer 

University of Zurich, Department of Informatics,  
     Winterthurerstrasse 190, 8057 Zurich, Switzerland 

{bernstein, kaufmann, goehring, kiefer}@ifi.unizh.ch, 
http://www.ifi.unizh.ch/ddis 

Abstract. The semantic web presents the vision of a distributed, dynamically 
growing knowledge base founded on formal logic. Common users, however, 
seem to have problems even with the simplest Boolean expressions. As queries 
from web search engines show, the great majority of users simply do not use 
Boolean expressions. So how can we help users to query a web of logic that 
they do not seem to understand? We address this problem by presenting a 
natural language interface to semantic web querying. The interface allows 
formulating queries in Attempto Controlled English (ACE), a subset of natural 
English. Each ACE query is translated into a discourse representation structure 
– a variant of the language of first-order logic – that is then translated into an 
N3-based semantic web querying language using an ontology-based rewriting 
framework. As the validation shows, our approach offers great potential for 
bridging the gap between the logic-based semantic web and its real-world users, 
since it allows users to query the semantic web without having to learn an 
unfamiliar formal language. Furthermore, we found that users liked our 
approach and designed good queries resulting in a very good retrieval 
performance (100% precision and 90% recall). 

1   Introduction 

The semantic web presents the vision of a dynamically growing knowledge base that 
should allow users to draw on and combine distributed information sources specified 
in languages based on formal logic. Common users, however, were shown to have 
problems even with the simplest Boolean expressions; the use of the description logic 
formalism underlying the semantic web is beyond their understanding. Experience in 
information retrieval, for example, demonstrates that users are better at understanding 
graphical query interfaces than simple Boolean queries [1]. As queries from web 
search engines reveal, the great majority of users simply do not use Boolean 
expressions. Bowen and colleagues even show that people (CS students) who are 
trained in formulating queries in a logic-based formalism (SQL in their case) are 
usually inept in composing correct queries in realistically-sized databases rather than 
the small toy examples used in database classes [2]. So how can we bridge the gap 
between the (description) logic-based semantic web and real-world users, who are at 
least ill at ease and, oftentimes, unable to use formal logic concepts?  

We address this problem by presenting a natural language interface to the 
semantic web. In its current form the interface provides users with a controlled natural 



 Querying Ontologies: A Controlled English Interface for End-Users 113 

language interface to formulate queries. The controlled natural language used, 
Attempto Controlled English (ACE) [3, 4], is an unambiguous subset of English, 
which is translated automatically into the N3-style1 triple-based semantic web query 
language PQL [5] (which can easily be mapped to query languages such as SquishQL 
[6]). It provides the users with an almost natural language interface to the semantic 
web. As experience with controlled languages has shown, they are much easier to 
learn by end-users than formal languages like logic and are sufficient for querying 
knowledge bases [7]. We, therefore, believe that the approach presented here has 
great potential in bridging the gap between the semantic web and its end-users as well 
as becoming a major enabler for the growth of the semantic web. 

 

 

Fig. 1. Overall data flow of the controlled English query interface 

The rest of this paper closely follows the data flow of the query interface (Fig. 1). 
Section 2 introduces Attempto Controlled English (ACE) and the Attempto Parsing 
Engine (APE). APE translates ACE texts into a discourse representation structure 
(DRS), a variant of the language of first-order logic introduced by Kamp and Reyle 
[8]. Section 3 describes the rewriting framework that translates the DRS to the 
semantic web query language. The translation is based on a rewriting grammar, which 
was generated using both an OWL-based domain model and a query language 
specification. The queries are evaluated by a standard query engine not discussed in 
this paper. Note that we used APE as a black-box component, which uses extended 
DRSs as internal representations. This allows us to exchange it with another NLP 
parser should the need arise. Therefore, we did not attempt a direct translation from 
ACE to N3. In section 4 we provide three evaluations of the approach. We close with 
a discussion of the current limitations as well as related and future work. 

2   Attempto Controlled English as a Query Language 

Our query interface automatically processes queries expressed in Attempto Controlled 
English (ACE), a controlled natural language originally designed for requirements 
specifications and knowledge representation [3, 4]. ACE is a subset of English 
meaning that each ACE sentence is correct English, but not vice-versa. ACE's 

                                                           
1 More information about N3 can be found at http://www.w3.org/DesignIssues/Notation3 

Query 
in ACE 

APE 
(Attempto 

Parsing 
Engine) 

Query 
in DRS 

Rewriting 
Framework 

Query in 
Sem. Web 

QL  

Query 
Engine 

Query 
Response 

Prolog Prolog Java 

Domain Model (OWL) 

Query Language Spec. 
(annotated grammar) 

Rewriting 
Rule 

Generation 

Rewriting 
Grammar



114 A. Bernstein et al. 

grammar is specified by a small set of construction and interpretation rules. The 
construction rules allow users to build simple sentences (e.g., “John sells books.”), 
composite sentences (e.g., “If John sells books and John's business does not fail then 
he is content.”), and queries (e.g., “Which books does John sell?”). The interpretation 
rules eliminate syntactic and semantic ambiguities, for which natural languages are 
highly notorious, hereby also reducing the computational complexity of processing 
ACE sentences. As such, ACE avoids the major disadvantages of full natural 
language processing, while maintaining the ease of use for end-users and allowing the 
translation of all ACE sentences to first-order logic.  

Though ACE appears completely natural, it is in fact a formal language and its 
small set of construction and interpretation rules must be learned. As an example, 
consider the sentence “A man sees a girl with a telescope.” In full English this 
sentence is ambiguous since the prepositional phrase “with a telescope” can either 
modify the verb phrase “sees”, leading to the interpretation that the man has the 
telescope, or the noun phrase “a girl”, meaning that the girl has the telescope. In ACE, 
however, the sentence is unambiguous since an interpretation rule limits the meaning 
to the first alternative “sees with a telescope”.  

DRS First-order Logic 
A B  
customer(A) 
book(B) 
buy(A, B) 

∃ A B : customer(A) ∧ book(B) ∧ buy(A, B) 

Fig. 2. DRS and first-order logic representation of “A customer buys a book.” 

The Attempto Parsing Engine (APE) – implemented in Prolog as a Definite Clause 
Grammar – translates a possibly multi-sentence ACE text into a discourse 
representation structure (DRS) that logically represents the information of the text 
[8]. DRSs are a powerful means to adequately capture linguistic phenomena, for 
instance anaphoric references. A DRS consists of discourse referents, i.e., quantified 
variables representing the objects of a discourse, and of conditions for the discourse 
referents. The conditions can be logical atoms or complex conditions built from other 
DRSs and logical connectors (negation, disjunction, and implication). As an example, 
the translation of the sentence “A customer buys a book.” is shown in its typical box-
styled DRS representation in Fig. 2 on the left. The two discourse referents, A and B, 
are shown at the top and the three conditions derived from the sentence are listed 
below. Fig. 2 shows on the right the first-order logic formula equivalent to the DRS.2 

3   The Rewriting Framework: From DRSs to Queries 

The next (and central) step in our natural language semantic web interface is the 
rewriting of the APE generated DRSs into a semantic web query language (an 
extension and modification of [9]). To that end we generated a DRS-to-QL rewriting 
                                                           
2  To emphasize the principle of the translation we radically simplified the DRSs in all 

examples. Real DRSs are much more complex to adequately represent a wide range of 
linguistic phenomena. 



 Querying Ontologies: A Controlled English Interface for End-Users 115 

grammar using an ontology-based domain-model (in OWL) and a query language 
specification (cf. Fig. 1). This section will first succinctly introduce the exemplary 
domain ontology – the MIT Process Handbook [10] – which will provide the 
underlying examples throughout the text. Then, it will introduce the rewriting rule 
generation and the rewriting framework, which has both ontology specific as well as 
general vocabulary rules.  

3.1   An Example Ontology: MIT Process Handbook 

As an example ontology we chose the MIT Process Handbook [10] which describes 
organizational processes. The Process Handbook treats a real-world domain that 
everybody can relate to, has a large number of instances (>5000), and has been used 
in a number of semantic web projects. Each process (object) of the ontology enters a 
variety of relationships to attributes, sub-processes, exceptions, etc., and has a 
detailed textual description (cf. Fig. 3).  

  Entity

has-specialization

has-part is-connected-by

is-anticipated-by
is-avoided-by

is-detected-by
is-resolved-by

has-exception causes

has-part

has-part

is-connected-to

requires

is-achieved-by

uses-mechanism

Port

Exception
Task

Resource

Commitment

propagates

h
a
s-

p
o
rt

 

Fig. 3. The Process Handbook Meta-model 

 

Full-text and Keywords N3-style PQL-Query3 
“Find all processes that sell 
books over the internet.” 
 
Keywords: 
“sell book internet” 

?process   <#name>  “*sell*” , 
                    “*book*” ; 
           <#has-mechanism> ?mechanism .  
?mechanism ?var “*internet*” .  
?var       <#subpropertyof> <#attribute> . 

Fig. 4. An example full-text query with its corresponding keywords and derived N3-style  
PQL query 

The process query language (PQL) presented in [5] allows to pose queries, which 
are then evaluated against the process ontology. PQL essentially allows the 
composition of (process) ontology fragments that result in a query-by-example style 
                                                           
3  For the syntax of the triple queries we slightly extended the N3-syntax to allow for substring 

matching. The literal “book” matches any other literal “book.” The literal “*book*” matches 
any other literal, which contains the substring “book.”  



116 A. Bernstein et al. 

specification of the sought-after processes. It can be mapped straightforwardly to any 
triple-based semantic web query language such as SquishQL [6]. Consequently, none 
of our findings are limited to the Process Handbook and PQL. 

PQL supports two major statement types: the first one queries for the subject 
and/or the predicate of a given property; the second doesn’t make any assumptions 
about the property but does (mostly) assume that the object is a literal.4 Fig. 4 shows 
an example full-text query and its corresponding triple-based query.  

3.2   The Rewriting Rule Generation and Framework 

In order to translate the DRSs generated by APE into triples and N3-style PQL 
queries, we developed rewriting rules for the DRS structures. Each linguistic structure 
is first matched against a set of ontology-model specific keyword rules that – when 
they apply – result in a constraint between objects (i.e., a query statement with a  
fixed property).  

Translation
Rules

Ontology-Model
Specific

Keywords Rules

General
Vocabulary

Rules

Rules for
Complex

Sentences

Rules for Simple
Sentences

Entity Keywords
Rules

Relation
Keywords Rules

Rules for
Relative

Sentences

Rules for
Coordinated
Sentences

Rules for
Adjunct

Structures

Rules for
Complement
Structures

Rules for
Adverbs

Rules for
Prepositional

Phrases

Rules for Noun
Phrases

Rules for Verb
Phrases

0

1

2

3

4

5 6

7

8

9

10

?process <#name> "*show*" . ?process <#HAS-MECHANISM> ?mechanism .

?mechanism ?var "*internet*" .

?var <#subpropertyof> <#attribute> .

?process <#HAS-PORT> ?port .

 

Fig. 5. The translation rules grammar (numbers are referred to in the text) 

If none of these rules applies, then a set of general vocabulary rules is tried, 
typically resulting in the comparison with a literal value (i.e., a query statement 
without a known property). This structure is reflected in Fig 5., which provides a 
graphical overview of the most important rules of the translation grammar. To further 
explain this approach we will now discuss each of these two rule types referring to the 
rules by their numbers in Fig. 5. 

3.2.1   Ontology-Model Specific Keyword Rules 

The ontology-model specific keyword rules apply if one of the keywords of the 
ontology – including its morphological or syntactic variants – appears in the DRS to 
                                                           
4 Note that we follow the subject–property–object designation of triples throughout the paper. 



 Querying Ontologies: A Controlled English Interface for End-Users 117 

be translated. For example, the expression “has a port” in the query “Which process 
has a port?” is identified as the ontology-model property HAS-PORT and, hence, 
translated into the triple-based PQL query in Ex. 1 (firing rules  and  in Fig. 5). 

ACE: Which process has a port? 

DRS N3-style PQL Query 
A B C 
query(A, which) 
object(A, process, object) 
object(B, port, object) 
predicate(C, state, have, A, B) 

?process  <#has-port>  ?port . 

Ex. 1. Transformation of “Which process has a port?” 

A limitation of this approach is the choice of the vocabulary when building the 
ontology. In some cases we, therefore, had to include synonyms of the ontology-
keywords in the rewriting rules.5 

3.2.2   General Vocabulary Rules 

Elements of the DRS not handled by the ontology-model specific keyword rules are 
passed to the general-vocabulary rules (  in Fig 5.). These rules distinguish between 
simple and complex sentences. Simple sentences don’t contain embedded relative 
sentences or a coordination of sentences (using connectors such as “and,” “or,” etc.) 
whereas complex sentences consist of more than one sentence.  

Simple Sentences Rules. If a simple sentence is identified (  in Fig. 5) the 
framework differentiates between complement and adjunct clauses. Complements 
correspond to the mandatory elements of a sentence (also called arguments). Adjuncts 
comprise elements of a sentence that are not required by the sentence’s main verb. 
Consider the sentence: “Which service shows the campus restaurants over the 
internet?” The main verb “shows” calls for the arguments “which service” and “the 
campus restaurants”. The prepositional phrase “over the internet” provides additional, 
non-mandatory information to the sentence. The motivation for this distinction in our 
framework derives from the idea that complements contribute more pivotal 
information to a sentence’s meaning than adjunctive structures. Exploiting this aspect 
for query formulation, we mirror the syntactic structure of an ACE sentence in the 
query using the ontology model. 

ACE: Which service shows the campus restaurants? 

DRS N3-style PQL Query 
A B C 
query(A, which) 
object(A, service, object) 
predicate(B, event, show, A, C) 
object(C, 'campus restaurant', object) 

?process <#name> “*show*” . 
 

Ex. 2. Transformation of the sentence’s main verb “show” 

                                                           
5 We intend to extend our framework with automated keyword expansion using WordNet. 



118 A. Bernstein et al. 

Complement Structures Rules. Complements consist of verb phrases, noun phrases, 
prepositional phrases, and adjective phrases. They are interpreted as simple literal 
values. For example, the verb “show” in the above query “Which service shows the 
campus restaurants?” is represented in the DRS as “predicate(C,event,show,B,E)”. It 
is treated as a literal value and translated as shown in Ex. 2 (firing rules  and  in 
Fig. 5). 

ACE: Which service shows the menus of the campus restaurants? 

DRS N3-style PQL Query 
A B C D 
query(A, which) 
object(A, service, object) 
predicate(B, event, show, A, C) 
object(C, menu, object) 
relation(C, menu, of, D) 
object(D, ‘campus restaurant’, object) 

?process  <#name>  “*show*” , 
                   “*menu*” , 
                   “*campus*” , 
                   “*restaurant*” . 

Ex. 3. Transformation of “Which service shows the menus of the campus restaurants?” 

In ACE any noun phrase can furthermore be coordinated (e.g., menus and drinks), 
modified by adjectives (e.g., the different restaurants), of-prepositional phrases (e.g., 
the menus of the restaurants), and possessive elements (e.g., the restaurants’ menus). 
These modifiers are also treated as literal values. Ex. 3 shows a simple sentence 
consisting of a verb and two complements with a modifying of-prepositional phrase in 
the object complement (firing rules  and ). Note that the rewriting framework 
splits the compound “campus restaurants” into its constituents to improve recall. 

Adjunct Structures Rules. If a simple sentence consists of complement elements as 
well as adjunct elements, the resulting query inherits this linguistic differentiation. 
Consider the query “Which service shows the menus of the campus restaurants over the 
internet?”. Here, the prepositional phrase “over the internet” indicates that the menus are 
shown using the internet as an instrument, which is noted in the sentence’s DRS. As 
instruments, or rather their synonym “mechanisms”, are included in the Process 
Handbook ontology-model as the HAS-MECHANISM property, we can translate the 
phrase “over the internet” into the PQL query in Ex. 4 (firing rules , , and ). 

ACE: Which service shows the menus of the campus restaurants over the internet? 

DRS N3-style PQL Query 
A B C D E 
query(A, which) 
object(A, service, object) 
predicate(B, event, show, A, C) 
object(C, menu, object) 
relation(C, menu, of, D) 
object(D, 'campus restaurant', object) 
object(E, internet, object) 
modifier(B, location, over, E) 

?process  <#has-mechanism> ?mechanism . 
?mechanism ?var “*internet*” . 

?var  <#subpropertyof>  <#attribute>6 . 

Ex. 4. Transformation of the prepositional phrase “over the internet” 

                                                           
6  The subproperty statement ensures that ?var is only unified to an attribute property preventing 

the unification with a structure property.  



 Querying Ontologies: A Controlled English Interface for End-Users 119 

Complex Sentences Rules. Similar to adjunct structures, complex sentences initiate a 
search in the ontology-model for corresponding relationships indicating that the 
nested syntactic structures of ACE queries are used to phrase structured queries. 
Complex sentences are composed of more than one sentence. In the sentence “Which 
service provides all available pizza couriers that are in the city?” the compound “pizza 
couriers” is modified by a relative sentence turning the simple sentence “Which 
service provides all available pizza couriers?” into a complex sentence. The complex 
syntactic structure is exploited in our translation framework resulting in a query that 
searches for corresponding relationships in the ontology (rules  and ) as shown in 
Ex. 5. 

We emphasize the linguistic difference between the main sentence and the 
embedded relative sentence by searching for the relative sentence’s literal values not 
only in the specific attribute “Name” of the process’ subparts but in all attributes of 
the subparts. The query becomes less restrictive in order to improve recall. 

ACE: Which service provides all available pizza couriers that are in the city? 

DRS N3-style PQL Query 
A B C D E 
query(A, which) 
object(A, service, object) 
object(B, 'pizza delivery', object) 
predicate(C, event, provide, A, B) 
object(D, city, object) 
predicate(E, state, be, B) 
modifier(E, location, in, D) 

?process  <#name> “*provide*” , 
                   “*pizza*” , 
                   “*courier*” . 
?process  <#has-part> ?part . 
?part ?var “*city*” . 
?var  <#subpropertyof>  <#attribute> . 

Ex. 5. Transformation of “Which service provides all available pizza couriers that are …” 

If sentences are coordinated by conjunction (and) or disjunction (or) the result is 
again a complex sentence. An example is “Which service provides all available pizza 
couriers over the internet and which service takes orders 24-hours-a-day?” Each 
coordinated sentence is translated into a separate set of query statements according to 
the simple sentences rules ( ). In addition, the conjunction “and” triggers the 
translation rules for complex sentences ( ) which ensure that the overall sentence is 
translated into one cohesive query.  

3.2.3   Post Processing Rules 
At the end of the rewriting procedure the framework applies some post processing 
rules priorizing the fired rewriting rules or simplifying the resulting query. For 
example: If the search in the ontology-model results in no corresponding 
relationships, then the structure is simplified by treating the modifiers as literals. The 
following example illustrates the simplification of the modifier “24 hours a day” in 
the sentence “Which pizza courier takes orders 24 hours a day?”. 
 

Query according to general vocabulary rules: 
?process  <#has-part>  ?part . 
?part ?var “*24 hours a day*” . 
?var  <#subpropertyof> <#attribute> .  

 

Simplified query according to the post processing rules: 
?process ?var “*24 hours a day*” . 
?var  <#subpropertyof> <#attribute> .  



120 A. Bernstein et al. 

4   Validation 

For the implementation of the validation prototype we combined Prolog and Java 
components, as APE and the rewriting framework are programmed in SICStus Prolog, 
and the user interface and the query engine are programmed in Java (see Fig. 1). 
Currently, ACE queries are entered into the user interface and then passed to APE 
using the Jasper Java-to-Prolog bridge. The resulting DRSs are forwarded to the 
rewriting framework that generates the semantic web query language queries. These 
are then evaluated by the query engine that passes the result back to the user interface 
(Fig. 6).  

 

Fig. 6. The user interface of the query engine showing an ACE query, its corresponding N3-
style PQL representation, and the results from the database matching the query 

We chose this mixed-programming language approach as we used APE as a black-
box (indeed we did not make any changes to its source code) and found that the 
prolog-style data-structures generated by APE where easiest processed in a rewriting 
framework using the same language. 

Using the prototype we validated our approach in three ways. First we tried to 
generate correct translations for real-world queries. Next, we confronted users with 
tasks in which they had to retrieve answers from a semantic web database and 
measured the users’ performance as well as utilized a standardized usability test to 
assess the ease of usage compared to using a formal query language. Additionally, we 
measured precision and recall of the resulting answers. Last, we compared the 
retrieval performance of our framework to two different keyword-based retrieval 
approaches using an exemplary query. 

4.1   Validation of the Rewriting Framework with Real-World Queries 

To ensure the correct translation of real-world queries we asked masters students to 
phrase queries, which search for web services that would be of interest to them. We 
also asked them to enter the queries in a query-by-example-style form. Fig. 7 shows a 
selection of these queries sorted by increasing syntactic complexity. We received 50 
queries, reformulated them in ACE, and ran them through our query interface. All 
reformulations were very simple (such as adding articles/determiners or using relative 
sentences instead of certain types of connectors). The system translated all queries 
correctly taking an average processing time of about 2 seconds (on a standard PC with 
a 2 GHz Celeron processor and 512 MB RAM).  



 Querying Ontologies: A Controlled English Interface for End-Users 121 

Which service provides a shoe cleaning service? 
Which service helps with the classes and the exams? 
Which service provides the summaries of the different courses for free over the web? 
Which service provides an internet streaming server that streams the requested tracks over 

the internet? 
Which service provides a car renting and uses a web interface that allows a keyword search? 
Which service takes the groceries orders via a website and delivers the food within 24 hours?  
Where does somebody enrol to a university and choose the courses and get a personal 

university scheduler? 
Which internet page shows the movies that are on in the city and provides a seat booking? 
Where does somebody enter some hardware components and the service returns a list which 

has a sorting by price? 
Which service provides the songs of the different artists and the customers pick the desired 

songs over the internet? 

Fig. 7. A selection of real-world ACE queries for which the query interface generated correct 
N3-style PQL queries 

4.2   Usability and Performance Evaluation in a Retrieval Task 

We also wanted to evaluate the interface’s usability in a concrete usability task. To 
that end we used the NLP database interface evaluation tasks defined by [11], in 
which 1770 queries are defined to be run on three different databases. We translated 
the databases into OWL to make it accessible from our query processor. We then 
randomly chose 30 questions of varying complexity and asked 20 users to compose 
queries both using our system as well as a simplified version of SQL. As a 
preparation, the subjects, whom we recruited from the computer science and computer 
linguistics departments, read a 2-page instruction on how to construct correct ACE 
sentences and a ½ page refresher on SQL. 

We found that users where significantly faster in writing the ACE queries than the 
SQL queries (t-test with p = 2.84E-05). Using the standardized SUS-test [12] for 
usability, we found that ACE performed significantly better than SQL in the SUS test 
questions “I found the various functions of ACE were well integrated”, “I think there 
was too much inconsistency in ACE”, and “I would imagine that most people would 
learn to use ACE very quickly” (at p = 2.8%, 0.4%, and 4.1%). Furthermore, people 
overall preferred ACE over SQL, barely missing significance at the 5% level (with a 
t-test result of 5.6%). None of the questions in which SQL performed better on 
average yielded significant results. 

Note that these results are influenced by the subject pool, which is composed of 
people who are very familiar with both computers and formalized languages. 
Experiences with logic-based query languages suggest that the average population 
will experience more problems with a language like SQL and even perform worse 
than the computer and logic educated subjects we had [1, 2]. Consequently, we have 
reason to believe that the general population will have an even larger affinity towards 
ACE, but will also have to climb a slightly steeper learning curve to learn it. 

To evaluate the retrieval performance of the overall system we executed the 30 
queries formulated in ACE by the users and partly corrected to valid ACE sentences 
on the Mooney Natural Language Learning Data [11]. The retrieved answers achieved 
a precision of 100% and a recall of 90%.  

The performed retrieval task highlights that subjects with no previous familiarity 
with ACE can translate real-world queries to correct ACE queries (faster than to SQL), 
which in turn are processed correctly by our rewriting system resulting in a very good 
retrieval performance. 



122 A. Bernstein et al. 

4.3   Exemplary Validation with a Complicated Query Sentence  

We also executed a number of highly complex queries and compared their retrieval 
performance with two keyword-based retrieval approaches: one using a TFIDF-style 
ranking [13], the other one searching for the conjunction of keywords. Both of those 
approaches have a proven track record of being suitable for end-users. We then hand-
coded the database to find the correct results for the natural language queries.  

For the non-trivial query presented in Ex. 6 the database contained four correct 
answers. Our NLP query interface found three correct answers, missing one. The 
TFIDF-ranking found the correct answers at the 2nd, 35th, 47th, and 183rd positions, 
which provides an overall better recall than our approach but at the cost of an abysmal 
precision. The simple keyword matcher returned no answers as the conjunction of all 
keywords overconstrained the query. This example indicates that our approach – while 
maintaining natural language simplicity – provides a performance akin to logic-based 
retrieval engines that usually outperform precision and recall of keyword engines.  

Summarizing our evaluation results, we have found that ACE can correctly process 
real-word queries, which are slightly reformulated from students’ textual descriptions.  
Using the standardized usability tests we also found that people prefer ACE-querying 
over SQL, even though most of the subjects had no ACE but good SQL knowledge 
before the usability task. Executing the ACE queries with our framework and 
comparing the retrieved answers with the results of [11], we achieved a very good 
retrieval performance. Last, a non-trivial exemplary query indicated that ACE-queries 
also have the potential to be used to compose complex queries that are easily 
understood by users. 

ACE: Which sales process informs its customers over the internet and avoids the unwanted 
solicitations with an opt-out list? 

DRS PQL 
A B C D E F G H 
query(A, which) 
object(A, sales_process, object) 
object(B, customer, person) 
predicate(C, event, inform, A, B) 
object(D, internet, object) 
modifier(C, instrument, over, D) 
object(E, solicitation, object) 
property(F, unwanted, E) 
predicate(G, event, avoid, A, E) 
object(H, opt_out_list, object) 
modifier(G, instrument, with, H) 

?process  <#name>  “*sale*” ; 
          <#has-part> ?part . 
?part  ?varpart  “*inform*” . 
?varpart  <#subpropertyof>  <#attribute> . 
?part  ?varpart  “*customer*” . 
?varpart  <#subpropertyof>  <#attribute> . 
?part  <#uses-mechanism>  ?mechanism . 
?mechanism  ?varmech  “*internet*” . 
?varmech  <#subpropertyof>  <#attribute> . 
?part  <#has-exception>  ?exception . 
?exception  ?varex  “*unwanted*” . 
?varex  <#subpropertyof>  <#attribute> . 
?exception  ?varex  “*solicitation*” . 
?varex  <#subpropertyof>  <#attribute> . 
?exception  <#is-avoided-by>  ?handler . 
?handler  ?varhand  “*opt-out*” . 
?varhand  <#subpropertyof>  <#attribute> . 
?handler  ?varhand  “*list*” . 
?varhand  <#subpropertyof>  <#attribute> . 

Ex. 6. Transformation of a complex query “Which sales process informs its customers over the 
internet and avoids the unwanted solicitations with an opt-out list?” 



 Querying Ontologies: A Controlled English Interface for End-Users 123 

5   Limitations of Our Approach and Future Research 

We can think of three limitations to the work presented in this paper. First, the use of 
a controlled language imposes a cost on the user since the language has to be learned. 
Users might be discouraged from employing a language they have to learn, but 
experience with ACE – and with other controlled languages such as Boeing 
Simplified English [14] – has shown that learning a controlled language to phrase 
statements and queries is much easier than learning logic, and takes only a couple of 
days for the basics and two weeks for full proficiency, which is beyond what users 
need to write queries. As our evaluation above shows, educated users (i.e., members 
of a computer science or computer linguistics department) were able to use ACE 
querying reasonably well after reading a 2-page explanatory text. Furthermore, some 
researchers are currently developing query interfaces that will help people to write 
correct controlled English sentences by guiding them as they write [15]. Last and 
most importantly, Malhotra [7] has shown that users tend to use a limited language 
when querying a knowledge base as opposed to conversing with other people 
indicating that the limitation might not be as grave. Similar results have recently been 
found by Dittenbach et al. [16] through the implementation of a multilingual natural 
language interface to a real web-based tourism platform. They show that most natural 
language queries are formulated in a simple manner and don’t consist of complex 
sentence constructs even when users are neither limited by a conventional search 
interface nor narrowed by a restricted query language. 

Second, our current prototype requires some manual adaptation of the rewrite rules 
when using it with a new ontology or new knowledge base. Given our experience 
with hand-adaptation, we found that most of the time an inspection of the meta-model 
was sufficient. Motivated by the work of Cimiano [17] we believe that the rules can 
be automatically generated based on the ontology model and intend to investigate this 
avenue in future work.  

Last, the validations shown in this paper are slightly limited by the choice and size 
of the subject pool from among computer scientists/linguists. We, therefore, intend to 
extend the evaluation to more subjects with different backgrounds and compare our 
system’s performance with other semantic-web query interfaces allowing us to 
investigate how people’s retrieval performance and affinity to different tools is related 
to their background. 

6   Related Work 

We hardly found any other application of controlled natural language querying se-
mantic web content. The most closely related work we encountered is the GAPP 
project [18], a question-answering system developed for querying the Foundational 
Model of Anatomy (FMA) knowledge base. GAPP takes natural language questions as 
input and translates them into the structured query language StruQL, a database 
language designed for querying graphs. The system then returns the results of a query 
as an XML document. Similar to our interface GAPP analyses English questions and 
divides them into the three elements Subject, Relationship, and Object. Along with 
pattern-matching and word-combination techniques, which resemble our ontology-
model specific keywords rules, GAPP’s parser exploits the syntactic structures in 



124 A. Bernstein et al. 

order to generate the appropriate structured queries. The results of the evaluation, 
where the generation of the correct query was considered to be a correct response, 
show that GAPP provides an intuitive and convenient way for anatomists to browse 
the FMA knowledge base. The approach differs from ours in that its query 
construction and, therefore, its overall application are highly restricted to one 
semantically constrained domain. Furthermore, their model doesn’t use a full-fledged 
rewriting grammar but seems to be limited to a set of domain-specific user-defined 
pattern matching rules. Another project addressing a similar task is the MKBEEM 
project [19]. In contrast to our approach it focuses, largely, on adding multilinguality 
to the process of automated translation and interpretation of natural language  
user requests. 

We also found that work on natural language interfaces to data bases (not 
ontologized knowledge bases) has largely tapered off since the 80’s [20], even though 
the need for them has become increasingly acute. Accordingly, a few approaches in 
the area of database interfaces have emerged recently [21-23]. Among them the most 
closely related approach is the PRECISE project [24] that proposes a natural language 
interface to relational databases. PRECISE uses a data-base augmented tokenization of 
a query’s parse tree to generate the most likely corresponding SQL statement. It is, 
consequently, limited to a sublanguage of English, i.e., the language defined by the 
subject area of the database. In contrast, our approach limits the possible language 
constructs and not the subject domain. Our interface will not return any useful 
answers when none can be found in the queried ontology. It will, however, be able to 
generate an appropriate triple-based statement. We hope to be able to include an 
empirical comparison between these two approaches in our future work. 

7   Conclusions 

People’s familiarity with natural language might be the key to simplify their 
interaction with ontologies. Our approach provides exactly such a natural language 
interface. Following Malhotra’s [7] and Dittenbach et al.’s [16] findings, which state 
that using a subset of English is sufficient to query knowledge bases, we could forgo 
the need for a full natural language processing machinery avoiding all the 
computational and linguistic complexities involved with such an endeavor. The result 
is a simple but adaptive approach to controlled English querying of the semantic web 
– a potentially important component for bridging the gap between real-world users 
and the logic-based underpinnings of the semantic web. 

Acknowledgements 

The authors would like to thank Norbert Fuchs and his Attempto team for providing 
APE, the MIT Process Handbook project for making available the data on which the 
evaluation is based, Ray Mooney and his group for having generously supplied the 
databases, English questions, and corresponding queries to us, and the anonymous 
reviewers for their helpful comments. This work was partially supported by the Swiss 
National Science Foundation (200021-100149/1). 



 Querying Ontologies: A Controlled English Interface for End-Users 125 

References 

1. Spoerri, A.: InfoCrystal: A Visual Tool for Information Retrieval Management. Second 
International Conference on Information and Knowledge Management. Washington, D.C. 
(1993) 11-20 

2. Bowen, P.L., Chang, C.-J.A., Rohde, F.H.: Non-Length Based Query Challenges: An Initial 
Taxonomy. Fourteenth Annual Workshop on Information Technologies and Systems 
(WITS 2004). Washington, D.C. (2004) 74-79 

3. Fuchs, N.E., et al.: Attempto Controlled English (ACE). (2003) 
http://www.ifi.unizh.ch/attempto 

4. Fuchs, N.E., et al.: Extended Discourse Representation Structures in Attempto Controlled 
English. Technical Report IfI-2004. University of Zurich, Zurich (2004)  

5. Klein, M., Bernstein, A.: Towards High-Precision Service Retrieval. IEEE Internet 
Computing 8/1 (2004) 30-36 

6. Miller, L., Seaborne, A., Reggiori, A.: Three Implementations of SquishQL, a Simple RDF 
Query Language. The International Semantic Web Conference (ISWC2002). Sardinia, Italy 
(2002) 423-435 

7. Malhotra, A.: Design Criteria for a Knowledge-based English Language System for 
Management: An Experimental Analysis. Ph.D. MIT Sloan School of Management, 
Cambridge, MA (1975) 

8. Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Modeltheoretic Semantics 
of Natural Language. Kluwer, Dordrecht Boston London (1993) 

9. Bernstein, A., et al.: Talking to the Semantic Web: A Controlled English Query Interface 
for Ontologies. Fourteenth Annual Workshop on Information Technologies and Systems 
(WITS 2004). Washington, D.C. (2004) 212-217 

10. Malone, T.W., et al.: Tools for Inventing Organizations: Toward a Handbook of 
Organizational Processes. Management Science 45/3 (1999) 425-443 

11. Tang, L.R., Mooney, R.J.: Using Multiple Clause Constructors in Inductive Logic 
Programming for Semantic Parsing. 12th European Conference on Machine Learning 
(ECML-2001). Freiburg, Germany (2001) 466-477 

12. Brooke, J.: SUS - A "quick and dirty" Usability Scale. In: Jordan, P.W., et al., Editors: 
Usability Evaluation in Industry. Taylor & Francis, London (1996)  

13. Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill 
computer science series. McGraw-Hill, New York (1983) 

14. Wojcik, R.H.: Personal Communication. Richard H. Wojcik is Manager of the Boing 
Simplified English Project, (2004)  

15. Schwitter, R., Tilbrook, M.: Dynamic Semantics at Work. International Workshop on Logic 
and Engineering of Natural Language Semantics. Kanazawa, Japan (2004) 49-60 

16. Dittenbach, M., Merkl, D., Berger, H.: A Natural Language Query Interface for Tourism 
Information. 10th International Conference on Information Technologies in Tourism 
(ENTER 2003). Helsinki, Finland (2003) 152-162 

17. Cimiano, P.: ORAKEL: A Natural Language Interface to an F-Logic Knowledge Base. 9th 
International Conference on Applications of Natural Language to Information Systems 
(NLDB 2004). Salford, UK (2004) 401-406 

18. Distelhorst, G., et al.: A Prototype Natural Language Interface to a Large Complex 
Knowledge Base, the Foundational Model of Anatomy. American Medical Informatics 
Association Annual Fall Symposium. Philadelphia, PA (2003) 200-204 

19. MKBEEM: Multilingual Knowledge Based European Electronic Market Place. (2005) 
http://mkbeem.elibel.tm.fr/ 

20. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural Language Interfaces to Databases 
- An Introduction. Natural Language Engineering 1/1 (1995) 29-81 



126 A. Bernstein et al. 

21. Guarino, N., Masolo, C., Vetere, G.: OntoSeek: Content-Based Access to the Web. IEEE 
Intelligent Systems 14/3 (1999) 70-80 

22. Andreason, T.: An Approach to Knowledge-based Query Evaluation. Fuzzy Sets and 
Systems 140/1 (2003) 75-91 

23. Minock, M.: A Phrasal Approach to Natural Language Interfaces over Databases. Umeå 
Techreport UMINF-05.09. University of Umeå, Umeå (2005)  

24. Popescu, A.-M., Etzioni, O., Kautz, H.: Towards a Theory of Natural Language Interfaces 
to Databases. 8th International Conference on Intelligent User Interfaces. Miami, FL (2003) 
149-157 

 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 127 – 141, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Semantic Browsing of Digital Collections  

Trevor Collins, Paul Mulholland, and Zdenek Zdrahal  

Knowledge Media Institute, The Open University, UK 
{t.d.collins, p.mulholland, z.zdrahal}@open.ac.uk 

Abstract. Visiting museums is an increasingly popular pastime. Studies have 
shown that visitors can draw on their museum experience, long after their visit, 
to learn new things in practical situations. Rather than viewing a visit as a 
single learning event, we are interested in ways of extending the experience to 
allow visitors to access online resources tailored to their interests. Museums 
typically have extensive archives that can be made available online, the 
challenge is to match these resources to the visitor’s interests and present them 
in a manner that facilitates exploration and engages the visitor. We propose the 
use of knowledge level resource descriptions to identify relevant resources and 
create structured presentations. A system that embodies this approach, which is 
in use in a UK museum, is presented and the applicability of the approach to the 
broader semantic web is discussed.  

1   Introduction 

This paper presents an approach that exploits the use of semantics to create and 
present online digital collections for museum visitors to explore after their visit. 
Learning from museums is an example of what has been referred to as “free-choice 
learning”[1]. Other examples include learning “when watching television, reading a 
newspaper, talking with friends, attending a play, or surfing the internet” [1]. 
Characteristically, the learning that occurs is a product of how we choose to spend our 
playtime rather than the product of a formal education or job activity. As noted in [2] 
“play is not just mindless entertainment, but an essential way of engaging with and 
learning about our world and ourselves - for adults as well as children.”   

1.1   Background  

In a survey of visitors to a museum web site Kravchyna and Hastings [3] found that 
57% of respondents visited a museum’s web site both before and after visiting the 
museum. Yet, other than the hours of business, admission price and travel advice, 
little information is tailored to the pre- or post-visit reader. For someone who has 
never visited the museum, this essential information is very valuable, but for those 
who have already been, additional information can be made available that enables the 
visitor to build on their museum experience and in doing so encourage return visits. 
Falk and Dierking [1] reported finding extensive evidence that showed how visitors 
are able to draw on their museum experience, long after their visit, to construct new 
knowledge when they come across applicable situations in their everyday lives. 



128 T. Collins, P. Mulholland, and Z. Zdrahal 

Rather than considering the museum visit as a one off event, the web offers an 
opportunity for visitors to continue learning when they get home [4].  

1.2   Search  

Rose and Levinson [5] proposed a hierarchical framework for classifying the goals of 
search engine users. They suggested that the purpose of an internet search can be 
broadly categorized as either ‘navigational,’ ‘resource’ or ‘informational’. A 
navigational search is to locate to a known web site. Resource searches are used to 
obtain a resource available on the web. The purpose of informational searches is to 
learn something new by reading or viewing web pages. Across three samples of 
approximately 500 Alta Vista queries an average of 13.50% where categorized as 
navigational, 24.57% as resource, and 61.93% as informational. Although the 
navigational goal is least common, it is the best supported by traditional search 
engines [6].  

To support exploratory informational searches several researchers have 
investigated the use of categories for presenting search results [7], [8]. Dumais, 
Cutrell and Chen [7] found in a series of four experimental studies, each involving 
between 18 and 20 people, that category interfaces were more effective than list 
interfaces. From a two month longitudinal study of sixteen users’ search behaviors, 
Kaki [8] found categories were more beneficial that lists when more than one result 
was sought.  

Guha, McCool and Miller [9] make the case that informational searches can 
significantly exploit the semantic web. Specifically, they showed how semantics can 
be used to augment the results of traditional information retrieval search techniques 
and to improve the text retrieval part of a search engine by identifying the context of 
the concepts denoted in the search phrase. We are particularly interested in 
identifying information related to a museum visitor’s interests that can be drawn 
together to form a collection of resources for them to explore when they return home.   

1.3   Collections and Narratives  

An organized collection of objects forms a narrative that expresses relationships 
across the included items [10]. For example, a curated exhibition of paintings 
constitutes a narrative that expresses a story across the selected works. Here we are 
interested in forming a digital collection from a set of resources (according to the 
knowledge level description of those resources) and creating a series of hypertext 
presentations to support the reader’s exploration of the resources in the collection. 
Exploring a collection involves the active interpretation of the included objects and 
the discovery of relationships between them.  

Several systems for generating narratives have been developed recently in the 
cultural heritage domain. For example, Geurts, Bocconi, van Ossenbruggen and 
Hardman [11] present an ontology-driven approach for producing multimedia 
presentations. For a given query (such as ‘life and work of Rembrandt’), presentation 
 
 



 Semantic Browsing of Digital Collections 129 

genre (such as ‘biographies’ or ‘curriculum vitae’) and presentation medium (such as 
‘screen’ or ‘paper’), a multimedia presentation is created through a two step process. 
A semantic graph, produced in response to the user query, is first of all transformed 
into a structured progression according to the chosen genre. The media items that 
represent the concepts identified in the structured progression are then retrieved to 
produce a multimedia presentation in the chosen medium. Within the Artequakt 
system [12] information extraction procedures are used to populate a knowledge base. 
Facts in the knowledge base are then used to fill in a predefined presentation template 
to produce a narrative. For example, information regarding an artist’s place and date 
of birth and date of death can be used to complete the opening sections of a 
biographical template.  

Rather than building a coherent narrative from relevant facts (taken from a 
semantic graph or information extraction procedures) we are interested in building 
collections out of units that are meaningful in their own right, that is, the resources 
being used are lexia [13]. Examples include textual story passages, meaningful video 
clips and paintings. This avoids the problem of creating low-level narrative 
coherence, but raises the challenge of ensuring coherence across a collection of 
resources. The approach taken in response is to ensure the relationships between the 
included resources are clear and transparent to the user. The Topia [14] and Noadster 
[15] systems apply a concept lattice clustering approach to hierarchically group 
components that share characteristics. In the Topia system this is applied to group 
media components in order to generate hypermedia presentations. Similarly, we are 
interested in creating structured presentations that identify groups of related resources 
and show the relationships between resources in an online collection.  

1.4   Summary and Overview  

In summary, we are interested in applying semantic web technologies to support free-
choice learning. We believe the semantic web offers an opportunity for museums to 
extend their visitors’ museum experience in a rewarding manner that can be used to 
encourage future museum visits.   

The following section explains the ontologies we use for describing heritage 
resources and our approach for retrieving and presenting resources related to a given 
set of concepts. Section 3 describes how these approaches were put together to form 
the Bletchley Park Text system, which is now in daily use at Bletchley Park, a 
museum in the UK. Several examples of how the system is being used to explore a 
collection of resources are given in Section 4. The limitations of our approach and its 
potential application across the semantic web are discussed in Section 5. Section 6 
summarizes what we consider to be the primary costs and benefits of adopting a 
semantic approach to support the exploration of digital collections.  

2   Approach  

We can explain the approach we took by first describing the context of the work, the 
ontologies used to represent the museum resources, and the method used to represent  
 



130 T. Collins, P. Mulholland, and Z. Zdrahal 

the key information taken from the tour guides’ presentation. We then describe how a  
set of resources are retrieved to produce a collection of related resources, and how 
these are organized into structured presentations to support the exploration of the 
relationships, which are used to connect concepts across the resource archive and 
form groups within the visitor’s collected set of resources.  

2.1   Bletchley Park Museum  

This work has been carried out in collaboration with Bletchley Park Museum. The 
Park was the headquarters of the British Government Code and Cipher School during 
the Second World War. The Park was closed in 1945 and did not become a museum 
until the early 1990s after decades of secrecy. Since then the museum has been 
piecing together much of its hidden history. Several of the original buildings are still 
there and a number of them have been restored. The museum includes a range of 
exhibits that seek to explain the life of the people that worked there, the significance 
of the work they carried out, and how this pioneering work shaped modern computing 
and communication technologies.  

2.2   Representing Resources  

Bletchley Park Trust provided us with a set of transcripts of interviews with people 
that worked in the Park during the Second World War and a set of historical 
accounts of the activities related to the work of Bletchley Park for each month 
during the war. The knowledge level description of these resources was created 
using three distinct ontologies: the CIDOC Conceptual Reference Model (CRM), a 
Story and Narrative ontology (created as part of the Story Fountain system [16]), 
and a Bletchley Park domain ontology. CIDOC is the International Committee for 
Documentation of the International Council of Museums. Their CRM is a high-
level ontology for describing cultural heritage objects and events, and is currently 
being considered as a potential ISO standard [17]. The story and narrative ontology 
was used to represent the historical accounts and first person interviews that make 
up a significant portion of the archive. The story and narrative ontology follows 
structuralist theories of narrative in distinguishing between a story (i.e. the 
conceptualization of what is told) and a narrative (i.e. how that story is told and 
what media is used) [18].  

An example of the type of metadata used to describe a story is given in Figure 1. A 
story is represented as having any number of central actors (i.e. the main people or 
groups in the story), existents (i.e. the main physical objects), themes and events. 
Each event is described as having actors, existents, locations and a time specification. 
Depending on the type of event, existing properties were specialized or additional 
properties added. For example, an interview event had an interviewer and 
interviewee, and a creation event had a creator and an object of creation. Currently, 
the archive contains over 400 stories, which refer to over 1,700 distinct concepts, 
these include approximately: 450 people, 250 groups, 500 places, 200 physical 
objects, 300 conceptual objects and 50 work roles.  



 Semantic Browsing of Digital Collections 131 

Sample resource: 

Margot McNeely and Diana Lauder interview 

My name is Margot McNeely; I was 17 and a half a schoolgirl in Burnham when I 
decided to volunteer for the WRNS that was in 1944. I took my school certificate and 
done some basic training then had lots of interviews. I don’t know how they chose us, 
we were sent down here not knowing what we were going to be doing. … 

OCML knowledge model: 

(def-instance margot-mcneely-interview story 
     ((describes-event mmc-event) 
      (describes-existent bombe) 
      (has-associated-narrative margot-mcneely-narrative) 
      (has-central-actor margot-mcneely) 
      (has-theme life-and-work-in-bletchley-park))) 

(def-instance mmc-event bletchley-park-life-experience 
     ((has-actor margot-mcneely wrns) 
      (has-billeting-location woburn-abbey crawley-grange) 
      (has-work-location hut-11) 
      (has-working-object bombe) 
      (has-working-role bombe-operator p5) 
      (is-described-in-story margot-mcneely-interview))) 

(def-instance margot-mcneely-narrative cipher-digital-narrative 
     ((has-associated-story-object margot-mcneely-interview) 
      (has-uri "http:// … "))) 

 

Fig. 1. An extract from a sample resource and an example of the type of metadata used to 
describe it 

2.3   Representing the Museum Tour Experience  

While visiting the Park visitors are given a guided tour of the grounds and about told 
the history of the Park. A knowledge level description of the key facts given in the 
tour was stored as a set of fact triples in the knowledge base. These facts are not 
necessarily mentioned in the interviews or historical accounts, but provide useful 
background knowledge that is helpful when reading the resources.  

Within educational hypertext, the concepts of vertical and horizontal navigation are 
used to describe the types of links within a hypertext [19]. Vertical navigation refers 
to traversing the hierarchical structure of a hypertext from parent to child and child to 
parent, whereas horizontal navigation links associated pages across the content 
hierarchy. Horizontal navigation is particularly beneficial within educational 
hypertext for referring the reader to related examples, counter examples, and sources 
of related information.   



132 T. Collins, P. Mulholland, and Z. Zdrahal 

In our approach the fact triples are used to produce horizontal links that highlight 
relationships between groups of resources. For example, during the tour of 
Bletchley Park visitors are told that Alan Turing was the head of Hut 8. This is 
represented by a fact triple where ‘Alan Turing’ is an instance of a person, ‘was 
head of’ is a relation, and ‘Hut 8’ is an instance of a place within Bletchley Park. 
This additional fact is then used to provide a horizontal link between groups of 
resources relating to Alan Turing and groups relating to Hut 8. These horizontal 
links provide a navigational aid and serve to reinforce the story of Bletchley Park 
told by the tour guides.  

2.4   Retrieving Related Resources  

The visitor to the museum can identify any class, slot or instance as a concept of 
interest. For example, they may be interested in Alan Turing (an instance of a 
person), the places where people lived referred to as billeting locations, (an 
example of a slot), or a broader interest in decryption machines (an example of a 
class of machine). For a given query such as ‘Alan Turing, billeting locations and 
decryption machines’ the relevant stories are those where the knowledge level 
description refers to the instance Alan Turing, the slot billeting location, or any 
instance of the class ‘decryption machine’ (such as the Bombe or Colossus). 
Logical OR is used to identify all of the related stories. The combined set is referred 
to as the visitor’s collection.  

2.5   Identifying Connections Between Concepts  

Connections can be found when they exist between any pair of concepts (i.e. 
instances, slots or classes) by applying a path finding algorithm. The algorithm 
connects concepts in the archive using the slot values in each story event. For 
example, if one story explains that Alan Turing invented the Bombe, represented by 
an event of type ‘birth’ with a value of Alan Turing in the ‘has-actor’ slot and a 
value of Bombe in the ‘has-recipient’ slot, then this would constitute a connection 
between Alan Turing and the Bombe decryption machine as explained in that story.  

For connections involving more than one story, common slot values are used to 
connect them. For example, to connect Alan Turing and Block G (one of the 
locations within Bletchley Park) two stories are required, one story describes that 
Alan Turing invented the Bombe and another explains that the Bombe machines 
were used in Block G. In terms of the knowledge level description, the first story 
includes an event of type ‘birth’ that identifies Alan Turing as the value of the ‘has-
actor’ slot and the Bombe machine as the value of the ‘has-recipient’ slot, the 
second story includes an event of type ‘bletchley park life experience’ with a value 
of Bombe in the ‘has working object’ slot and a value of ‘Block G’ in the ‘has work 
location’ slot.   

Within the archive there are over 1,700 concepts, and all concept pairs can be 
connected within a maximum of seven stories. The most common path length 
involves just three stories.  

 



 Semantic Browsing of Digital Collections 133 

2.6   Identifying Categories Within a Collection  

To group stories in a collection, categories are formed according to the most 
frequently used slot-value pairs (see Table 1). Two forms of categories are produced: 
a flat list of categories and a hierarchical list of categories. A flat list is simply a set of 
categories ordered by frequency, such as ‘has actor Alan Turing (three stories), has 
actor Winston Churchill (two stories), has actor John Tiltman (two stories), has actor 
Frank Birch (one story), and billeting location Woburn Abbey (one story)’. The same 
story can be included in multiple categories. To form a hierarchy of categories the 
same approach is used recursively within each category, down to a minimum category 
size. In the example given in Table 1, the category formed for ‘has actor Alan Turing’ 
contains three stories (i.e. story 1, 4 and 5), and within this category a sub-category 
can be formed containing the two stories that include ‘has actor Winston Churchill’ 
(i.e. story 1 and 4). The nested category includes stories that contain all of the parent 
slot-value pairs (i.e. ‘has actor Alan Turing’ AND ‘has actor Winston Churchill’).  

Table 1. An example of the type of frequency data used to form a set of categories within a 
collection of stories. In this case the most common category would contain the stories that 
describe the activities of Alan Turing.  

Slot-value pairs Stories (an illustrative sample of five) 
Slot Value Story 1 Story 2 Story 3 Story 4 Story 5 

Frequency 

has
actor

Alan
Turing 

Y N N Y Y 3 

has
actor

Winston 
Churchill 

Y N N Y N 2 

has
actor

John
Tiltman 

N N Y N Y 2 

has
actor

Frank 
Birch 

N Y N N N 1 

billeting 
location 

Woburn 
Abbey 

N Y N N N 1 

 

3   Bletchley Park Text  

The knowledge level description of the resources and tour experience were developed 
using the Apollo knowledge modeling application [20]. The resulting knowledge model 
was exported as OCML [21] and placed on a Lisp server. A reasoning engine written in 
Lisp was used to produce story collections for any given set of concepts, generate 
pathways connecting concepts, and identify categories within a story collection.  

Museum visitors express their interests using SMS text messages. Around the 
museum additional labels have been posted in locations and on exhibits to identify 
concepts of interest. One or more messages can be sent by a visitor, which are 
automatically downloaded from a mobile phone and stored in a database using 
commercially available text messaging software (i.e. SMS Demon available from 
www.dload.com.au). When a visitor enters their mobile phone number to log onto the 



134 T. Collins, P. Mulholland, and Z. Zdrahal 

web site, the concepts identified in their messages are used to query the knowledge 
model and identify a collection of related stories. Alternative mobile technologies for 
recording the visitor’s interests, such as Radio Frequency Identification (‘RFID’) tags 
and readers, and location tracking Personal Digital Assistants (‘PDAs’) were also 
considered. However, the cost to the museum of providing and maintaining these 
technologies and the effort involved for the visitor to learn how to use them was 
prohibitive for our purposes.  

Bletchley Park Text was built using the Story Fountain system [16]. Story Fountain 
was designed to support the investigation of questions and topics that require the 
accumulation, association or triangulation of information across a story archive. The 
underlying architecture of the Story Fountain is shown in Figure 2 along with the 
addition of the mobile phone service used to create the Bletchley Park Text 
application. An Apache web server coordinates the delivery of the site and uses the 
ModPython and ModLisp modules to access the presentation module (i.e. Python) 
and the knowledge module (i.e. the OCML knowledge model).  

Server Client

Mobile phone
(SMS Demon)

Database

Knowledge model

Python

Lisp &
OCML

Apache

HTTP:
HTMLModLisp

ModPython

HTTP: XML

ODBC

OCML

MySQL

OCML

ODBC

 

Fig. 2. The system architecture of the Bletchley Park Text application 

Following a series of pilot trials the text application has been in daily use by 
visitors to Bletchley Park since May 2005.  

4   Examples  

After sending a text message the visitor can access the web site by entering their mobile 
phone number (see Figure 3, left). Six areas are available for the visitor to explore: 
stories, connections, categories, hierarchy, spotlight and modify (Figure 3, right). The 
first five present the collection of stories in different formats, and the sixth enables the 
visitor to change their selected set of concepts and thereby modify their story collection.   



 Semantic Browsing of Digital Collections 135 

The ‘stories’ area presents all of the related stories from the archive (see Figure 4, 
left). In the five presentation areas each story is represented as a preview containing 
the title, an image (if available) and the first few lines of text (if available). The visitor 
can view any single story by clicking on its title (see Figure 4, right). The ‘stories’ 
area initially presents the collection as a single set, which the user can reduce by 
choosing one or more of their concepts as a filter. For example, by selecting Alan 
Turing as a filter concept only the stories relating to Alan Turing will be displayed 
(see Figure 5, left).  

 

 

Fig. 3. The Bletchley Park Text login page (left), and the home page (right) 

 

Fig. 4. The ‘stories’ area showing all of the stories in the archive related to the visitor’s chosen set 
of concepts (left), and a subset of the stories relating to a specific concept, Alan Turing (right)  



136 T. Collins, P. Mulholland, and Z. Zdrahal 

The ‘connections’ area allows the visitor to chose two of their concepts as start and 
end nodes, and presents a connection extracted from the knowledge model (see  
Figure 5, right). The first two of the visitor’s concepts are used initially by default.  
 

 

Fig. 5. An example of an interview story being displayed in the stories area (left), and an 
example of a pathway using two stories to link Alan Turing to Block G shown in the 
‘connections’ area (right)  

 

Fig. 6. Examples of the ‘categories’ (left) and ‘hierarchy’ (right) areas showing the use of the 
‘Additional facts’ box to provide horizontal links between categories of stories  



 Semantic Browsing of Digital Collections 137 

Along with a preview of the stories used in the connection the semantics from the 
knowledge model are transformed to produce a natural language description of each 
part of the connection.  

The additional facts, used to represent the key information from the visitor’s tour 
experience, are applied to produce horizontal links in the ‘categories’, hierarchy’ and 
‘spotlight’ presentation areas. The ‘category’ area shows the visitor’s story collection 
organized in a list of up to 12 categories (see Figure 6, left). The ‘hierarchy’ shows 
the same collection in a hierarchically organized list of categories (see Figure 6, 
right). These categories are formed in a bottom-up fashion from the resources 
retrieved by the visitor’s chosen concepts. Forming groups within a collection of 
resources based on the underlying semantics enables the visitor to see how the 
resources can be organized and highlights distinctions between the resources in 
separate groups.  

The ‘spotlight’ area separates out the list of categories into two sets (see Figure 7). 
One set contains the five most frequent categories that explicitly mention the visitor’s 
chosen concepts. The other contains the five most frequent categories that do not 
mention any of the visitor’s concepts. Although these categories may overlap those 
shown in the ‘categories’ area, the distinction between the directly and indirectly 
related categories emphasizes the relationship between the concepts used to identify 
the collection and those closely related according to the knowledge level descriptions. 
The spotlight metaphor is used here to convey a sense that the visitor’s set of concepts 
illuminate a section of the online archive. Choosing concepts in the indirectly related 
set of categories will slowly move the spotlight to a nearby section. Conversely, 
choosing a set of completely unrelated concepts will make the spotlight jump to an 
entirely new section of the archive.   

 

Fig. 7. The ‘spotlight’ area showing sets of categories directly and indirectly related to the 
visitor’s chosen concepts (left). Directly related categories are shown in the focus of the torch 
beam, indirectly related categories are shown to the side of the torch beam (right detail).  



138 T. Collins, P. Mulholland, and Z. Zdrahal 

 

Fig. 8. The ‘modify’ area where the visitor can edit their chosen set of concepts (left). When 
the visitor finishes editing their concepts and selects the ‘Use these concepts’ button, they are 
taken back to the home page with a new story collection (right).  

Finally, the ‘modify’ area allows the visitor to edit their set of concepts (Figure 8, 
left). Five components make up the modify page. The current set of concepts is listed 
in an editable text box at the top left hand corner of the page. The related concepts  
(i.e. those shown on the edge of the spotlight) are listed below the current concepts. 
These are followed by a list of additional facts related to the current set of concepts  
(i.e. those displayed in the categories, hierarchy and spotlight areas). At the bottom 
left hand corner of the page is a menu listing all of the visitor’s previous sets of 
concepts. The right hand side of the page shows an ordered list of over 500 concepts. 
All concept labels are displayed as hyperlinks. Clicking on a label (in the related 
concept, additional fact or the larger list of concepts) will add it to the set displayed in 
the chosen set of concepts text box. Once a new set of concepts has been chosen, 
clicking on the ‘Use these subjects’ button will use these concepts to create a new 
collection and the visitor will be returned to the home page to begin the exploration 
process again (Figure 8, right).  

5   Discussion  

The content of the Bletchley Park Text system is primarily text with illustrative 
pictures, but the approach is applicable to any media type. Within the current system a 
single content source and knowledge model is used. However, providing the 



 Semantic Browsing of Digital Collections 139 

ontologies are used consistently to describe the resources there is no reason why the 
content and knowledge model could not be distributed. The Apollo tool used to 
develop the knowledge model can also export models using the standard RDF and 
XML syntaxes. The OCML syntax was used in our case because it was directly 
compatible with a Lisp-based reasoning engine, which offered us a fast and efficient 
means for retrieving and organizing the resources.  

Currently, the Bletchley Park Text system presents the shortest path connecting 
any pair of concepts. However, we have also been exploring ways of presenting 
alternative pathways. The choice of connections in a pathway could be biased towards 
or away from the visitor’s current set of concepts. Including the visitor’s concepts 
may highlight the connections between their chosen set of concepts, whereas 
excluding them would bring the visitor in contact with related but yet unconsidered 
concepts. Another possibility is to use the pathways as a means to construct time-
ordered sequences of events. For example, introducing a particular person the work 
they carried out at Bletchley Park and where they went afterwards.   

The category based presentations currently show the most frequently occurring 
categories within the visitor’s collection. Revealing the complete set of categories 
within any given collection would provide a more flexible means for exploring the 
resources. However, this may also provide the visitor with too much information. One 
solution being considered is to enable the user to select which slots and values are 
used, or not used, to form categories.  

A pilot study involving a group of 35 high school pupils and their teachers was 
carried out in September 2004 [22]. All of the pupils used their mobile phones to send 
messages, 20 of them chose to follow up their visit by signing onto the Bletchley Park 
Text web site. Six of the students were asked to write an essay after their visit and a 
follow-up interview was carried out with this group. In both the essays and interview 
the pupils clearly demonstrated that they had drawn on the resources available from 
the web site, and several of the pupils indicated that they wanted to continue to use 
the site. As noted earlier, the Bletchley Park Text system is now available to all 
visitors, and we are currently monitoring the messages received and the changes 
visitors make to their concepts. Further evaluation studies are being planned to 
explore visitors’ use of the web site and alternate forms of presentation.  

6   Conclusion  

This paper has explained our approach for using semantics to create structured 
presentations of personalized collections. The Bletchley Park Text system uses this 
approach to produce a web site where visitors can read historical accounts and 
interviews with the people that worked at Bletchley Park.   

The cost in effort of providing this (or similar) sites is primarily the annotation of 
the resources. Identifying and digitizing appropriate content is a relatively small task 
compared to the development of the knowledge level description. Although 
considerable advances are being made in the automatic annotation of text resources 
(as illustrated by the Artequakt system [12]), developing an accurate knowledge 
model is a difficult and critical aspect of this approach. However, the benefits are 
clear. The automated identification of pathways connecting concepts and the 



140 T. Collins, P. Mulholland, and Z. Zdrahal 

formation of meaningful categories, as used in the Bletchley Park Text system, are 
currently not possible without the use of knowledge level descriptions. Furthermore, 
once produced, the knowledge model can be used to provide a range of services, not 
just for museum visitors but also museum staff.  

The majority of the existing approaches for searching the web have focused on the 
retrieval of single pages. This form of presentation fails to support the exploration and 
analysis of web resources. By exploiting the semantics of online resources (such as 
museum archives) the semantic web is creating an opportunity for us to support 
people’s playful explorations in ways that highlight the connections across web 
resources and categories within collections of resources.  

References  

1. Falk, J.H. and L.D. Dierking, Learning from museums: Visitor experiences and the making 
of meaning. American Association for State and Local History, ed. R. Rodgers. 2000, 
Walnut Creek, CA: AltaMira Press. 272.  

2.  Gaver, B., Designing for Homo Ludens, in i3 magazine. 2002. p. 2-6.  
3. Kravchyna, V. and S.K. Hastings, Information Value of Museum Web Sites. Fisrt 

Monday, 2002. 7(2).  
4.  Anani, N. Enhancing the Heritage Experience. in Museums and the Web. 2005. Toronto, 

Canada: Archives & Museum Informatics.  
5. Rose, D.E. and B. Levinson. Understanding User Goals in Web Search. in WWW. 2004. 

New York, USA: ACM Press.  
6. Yee, K.-P., et al. Faceted Metadata for Image Search Browsing. in CHI. 2003. Fort 

Lauderdale, Florida, USA: ACM Press.  
7. Dumais, S., E. Cutrell, and H. Chen. Optimizing Search by Showing Results in Context. in 

SIGCHI. 2001. Seattle, WA, USA: ACM Press.  
8.  Kaki, M. Findex: Search Result Categories Help Users when Document Ranking Fails. in 

CHI. 2005. Portland, Oregon, USA: ACM Press.  
9. Guha, R., R. McCool, and E. Miller. Semantic Search. in WWW. 2003. Budapest, 

Hungary: ACM Press.  
10. Pearce, S.M., On collecting: An investigation into collecting in the European tradition. 

1995, London: Routledge.  
11. Geurts, J., et al. Ontology-driven Discourse: From Semantic Graphs to Multimedia 

Presentations. in International Semantic Web Conference. 2003. Florida, USA: Springer 
Verlag.  

12. Alani, H., et al., Automatic Ontology-Based Knowledge Extraction from Web Documents. 
IEEE Intelligent Systems, 2003. 18(1): p. 14-21.  

13. Landow, G., Hypertext: The Convergence of Contemporary Critical theory and 
Technology. 1992: The John Hopkins University Press, Baltimore, USA.  

14. Rutledge, L., et al. Finding the Story - Broader Applicability of Semantics and Discourse 
for Hypermedia Generation. in Hypertext. 2003. Nottingham, UK.: ACM Press.  

15. Rutledge, L., J.v. Ossenbruggen, and L. Hardman. Making PDF Presentable. in WWW. 
2005. Chiba, Japan: ACM Press.  

16. Mulholland, P., T. Collins, and Z. Zdrahal. Story Fountain: Intelligent support for story 
research and exploration. in International Conference on Intelligent User Interfaces. 2004. 
Madeira, Portugal.: ACM Press.  

17. CIDOC Conceptual Reference Model. Available from: http://zeus.ics.forth.gr/cidoc/  



 Semantic Browsing of Digital Collections 141 

18.  Chatman, S., Story and Discourse: Narrative structure in fiction and film. 1980, New 
York: Cornell University Press.  

19. Brusilovsky, P. and R. Rizzo. Map-Based Horizontal Navigation in Educational Hypertext. 
in Hypertext. 2002. College Park, Maryland, USA.: ACM Press.  

20. Apollo Knowledge Modelling Application. Available from: http://apollo.open.ac.uk  
21. OCML: Ontological Conceptual Modelling Language. Available from: http://kmi.open. 

ac.uk/projects/ocml/  
22. Mulholland, P., T. Collins, and Z. Zdrahal. Spotlight Browsing of Resource Archives. in 

Hypertext. 2005. Salzburg, Austria: ACM Press.  



Decentralized Case-Based Reasoning
for the Semantic Web

Mathieu d’Aquin, Jean Lieber, and Amedeo Napoli

LORIA (INRIA Lorraine, CNRS, Nancy Universities),
Campus scientifique, BP 239,

54 506 Vandœuvre-lès-Nancy, France
{daquin, lieber, napoli}@loria.fr

Abstract. Decentralized case-based reasoning (DzCBR) is a reasoning frame-
work that addresses the problem of adaptive reasoning in a multi-ontology environ-
ment. It is a case-based reasoning (CBR) approach which relies on contextualized
ontologies in the C-OWL formalism for the representation of domain knowledge
and adaptation knowledge. A context in C-OWL is used to represent a particular
viewpoint, containing the knowledge needed to solve a particular local problem.
Semantic relations between contexts and the associated reasoning mechanisms al-
low the CBR process in a particular viewpoint to reuse and share information about
the problem and the already found solutions in the other viewpoints.

1 Introduction

This paper presents a research work on the application of case-based reasoning (CBR,
see e.g. [1, 2]) within the semantic Web technologies and principles. CBR is a type
of analogical reasoning in which problem-solving is based on the adaptation of the
solutions of similar problems, already solved and stored in a case base. In particular,
knowledge-intensive CBR (KI-CBR [3]) relies on a knowledge base including domain
knowledge and, as well, knowledge units exploited for the retrieval and adaptation op-
erations of CBR.

Ontologies are at the heart of semantic Web technologies and OWL is the standard
language for representing ontologies [4]. An ontology is used for the conceptualization
of a particular domain and for knowledge exchange. The OWL language allows the
use of deductive reasoning mechanisms, such as classification and instantiation. In this
paper, we want to show that the classical deductive reasoning made in the semantic
Web technologies may be completed and enhanced with KI-CBR that may take advan-
tage of domain ontologies and provide an operationalization for reasoning by analogy.
Moreover, the representation of the knowledge used for adaptation in CBR (adaptation
knowledge) must be integrated within ontologies.

Usually, the adaptation knowledge is dependent on the application context. For ex-
ample, a Web service applying CBR for advising customers on computer sales will
consider a male customer as similar to a female customer. However, in a case-based
Web service dedicated to fashion advises, a male and a female customers have to be
considered as dissimilar. In other terms, the knowledge for CBR is dependent on the
considered viewpoint, i.e. on the type of problem that the system has to solve.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 142–155, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Decentralized Case-Based Reasoning for the Semantic Web 143

C-OWL (for context-OWL) is a formalism that has been recently proposed [5] for
the representation of mappings between several OWL ontologies for the purpose of
ontology alignment. A local ontology in C-OWL is considered as a context, having
its own language and its own interpretation. Mappings are made of bridge rules that
express semantic relations between classes, properties and individuals of the local on-
tologies. In this way, aligning ontologies using C-OWL allows the coordinated use of
these ontologies, keeping the knowledge contained in each of them in its local context.
Moreover, beyond ontology alignment, C-OWL can be used for representing modular
ontologies, combining different viewpoints on the same domain, and this is how we use
it hereafter.

In this paper, we propose DzCBR (decentralized case-based reasoning), a KI-CBR
mechanism that exploits the decentralized knowledge represented in a C-OWL contex-
tualized ontology. Each context of a contextualized ontology is used for representing a
particular viewpoint, containing the domain knowledge and the adaptation knowledge
needed for solving a particular type of problem. Several DzCBR processes are then dis-
tributed among these viewpoints, each one being carried out locally in a context and
relying on local knowledge. Collaboration between these multiple local processes is
implemented thanks to C-OWL bridge rules and to the associated reasoning mecha-
nisms. In this way, decentralized problem-solving is based both on local knowledge,
for a particular viewpoint, and on the combination of several viewpoints. DzCBR is
a new paradigm that we have designed and that we currently use in an application in
oncology. The roots of decentralized reasoning can be found in pattern recognition and
distributed artificial intelligence [6], and we have extended this approach within the C-
OWL formalism, to design DzCBR and to enhance problem-solving capabilities for the
semantic Web.

The next section presents a motivating application of DzCBR in the domain of on-
cology. In the section 3, CBR and its integration in the semantic Web framework are
detailed. A short introduction to C-OWL follows in section 4. The section 5 details the
knowledge and reasoning models of DzCBR, and how problem-solving is carried out
by combining several decentralized viewpoints represented by C-OWL contexts. An ex-
ample of a DzCBR process applied to a breast cancer treatment problem is presented in
section 6. Finally, the related work is discussed in section 7, and the section 8 concludes
the paper.

2 Motivating Application: Adaptation Within Multiple Viewpoints
in Oncology

Oncology is a complex domain where several specialties, e.g. chemotherapy, surgery
and radiotherapy, are involved in several treatment phases. In most cases, the adequate
therapeutic decision is given according to a protocol that associates standard patient
characteristics with a recommended treatment. Even if it is designed to take into account
the majority of the medical cases, a protocol does not cover all the situations. Decisions
concerning patients out of the protocol are elaborated within a multi-disciplinary ex-
pert committee, and rely on the adaptation of the solutions provided by the protocol
for similar cases. Specialties in oncology organize their background knowledge and



144 M. d’Aquin, J. Lieber, and A. Napoli

past experiences in different ways. Indeed, a protocol is structured according to the
oncology specialties and, during a meeting of an expert committee, each expert from
each specialty supplies a personal view on the solution as a part of a collective so-
lution. For each specialty, a particular type of treatment is requested, in a particular
treatment phase, and the patient characteristics used to find the solution change from
one specialty to another. Thus, oncology specialties provide different viewpoints on
oncology, and these viewpoints are related to each other. Information about a prob-
lem, e.g. finding a therapeutic decision for a patient, can be shared across specialties,
and decisions taken in a particular specialty may influence decisions taken in another
one.

A protocol contains the standard knowledge for decision making in oncology. As a
standard Web formalism for knowledge representation and exchange, OWL is a well-
suited language for Furthermore, reasoning mechanisms associated with OWL, such as
classification and instantiation, may be used to provide intelligent access to this knowl-
edge, for the purpose of decision support in oncology. In the perspective of decision
support for out of the protocol cases, a KI-CBR mechanism relying on a formalized
protocol may be applied. In this way, the knowledge used by expert committees is rep-
resented and operationalized in the form of adaptation knowledge to become sharable
and reusable. Knowledge representation and reasoning have to take into account the
multiple viewpoints involved in the decision, corresponding to oncology specialties. C-
OWL provides a formalism for representing several alternative representations of the
domain and for relating these local representations to each other. Thus, domain knowl-
edge (contained in a protocol) as well as adaptation knowledge are represented within
contextualized ontologies in C-OWL. A KI-CBR mechanism may be used with profit
for exploiting such decentralized knowledge. The framework of DzCBR is proposed
here for this purpose.

3 Case-Based Reasoning with OWL

3.1 Principles of Case-Based Reasoning

A case is a problem solving episode usually represented by a problem pb and a solution
Sol(pb) of pb. A case base is a (usually structured) set of cases, called source cases. A
source case is denoted by (srce, Sol(srce)). CBR consists in solving a target prob-
lem, denoted by tgt, thanks to the case base. The classical CBR process relies on two
steps, retrieval and adaptation. Retrieval aims at finding a source problem srce in the
case base that is considered to be similar to tgt. The role of the adaptation task is to
adapt the solution of srce, Sol(srce), in order to build Sol(tgt), a solution of tgt.
Then, the solution Sol(tgt) is tested, repaired, and, if necessary, memorized for future
reuse.

In knowledge intensive CBR (KI-CBR, see e.g. [3, 7, 8]), the CBR process relies on
a formalized model of domain knowledge. This model may contain, for example, an
ontology of the application domain, and can be used to organize the case base for case
retrieval. KI-CBR may also include some knowledge for adaptation, as explained in the
following.



Decentralized Case-Based Reasoning for the Semantic Web 145

3.2 Reformulations: An Approach for Representing Adaptation Knowledge

Reformulations are basic elements for modeling adaptation knowledge for CBR [9]. A
reformulation is a pair (r,Ar) where r is a relation between problems and Ar is an
adaptation function: if r relates srce to tgt –denoted by “srce r tgt”– then any
solution Sol(srce) of srce can be adapted into a solution Sol(tgt) of tgt thanks to
the adaptation functionAr –denoted by “Sol(srce) Ar Sol(tgt)”.

In the reformulation model, retrieval consists of finding a similarity path relat-
ing srce to tgt, i.e. a composition of relations rk, introducing intermediate prob-
lems pbk between the source and the target problems. Every rk relation is linked
by a reformulation to an adaptation function Ark

. Thus, the sequence of adaptation
functions following the similarity path may be reified in an adaptation path (see
figure 1).

�� �� �� �� ��

Fig. 1. A similarity path from srce to tgt (first line) and the corresponding adaptation path
(second line)

The model of reformulations is a general framework for representing adaptation
knowledge. The operations corresponding to problem relations rk and adaptation func-
tions Ark

have to be designed for a particular application. Generally, these operations
rely on transformation operations such as specialization, generalization and substitu-
tion, that allow the creation of the pbk problems for building the similarity path and
of the Sol(pbk) solutions for the adaptation path: relations of the form pb1 r pb2 and
adaptation like Sol(pb1) Ar Sol(pb2) correspond to applications of such transforma-
tions.

Moreover, the reformulation framework follows the principle of adaptation-guided
retrieval [10]. A CBR system using adaptation-guided retrieval retrieves the source
cases whose solution is adaptable, i.e. for which adaptation knowledge is available.
According to this principle, similarity paths provide a kind of symbolic reification of
similarity between problems, allowing the case-based reasoner to build understandable
explanation of the results.

3.3 A Brief Introduction to OWL

OWL is the standard formalism for the representation of ontologies for the semantic
Web. In OWL, the knowledge about a domain is represented within an ontology. An
OWL ontology contains definitions of classes, properties and individuals from the rep-
resented domain. An individual corresponds to an object. A property denotes a binary
relation between objects. A class represents a set of objects. Formally, the semantics of



146 M. d’Aquin, J. Lieber, and A. Napoli

an OWL ontology is given by an interpretation I = (∆I , ·I), where ∆I is a non empty
set called the interpretation domain, and ·I is the interpretation function. This function
maps a class C into a subset CI of the interpretation domain ∆I , a property p into a
subset pI of ∆I ×∆I , and an individual a to an element aI of ∆I .

An OWL ontology O is defined by a set of axioms and a set of assertions. Classes
are introduced through the use of axioms of the form1 C � D , C and D being two
classes. C � D is satisfied by an interpretation I if CI ⊆ DI . C ≡ D is a notation for
C � D and D � C. Assertions are used to introduce individuals. The two possible types
of assertions are C(a) and p(a,b), C being a class, a and b two individuals, and p a
property. C(a) is satisfied by an interpretation I if aI ∈ CI and p(a,b) is satisfied by
I if (aI , bI) ∈ pI . I is a model of O if it satisfies all the axioms and assertions defining
O. OWL provides constructors for building complex classes and complex properties.
For example, a class conjunction, C � D, is interpreted as an intersection (CI ∩ DI),
and the existential quantifier, ∃p.C, represents the set (∃p.C)I of the objects being in
relation with at least one object from CI by the property p. The syntax and semantics
of all the OWL constructors can be found in [4], but only some of them are used in the
examples of this paper.

3.4 CBR Within OWL Ontologies

In OWL, problems and solutions are represented as instances of the Problem and
Solution classes. The link between a problem pb and its solution Sol(pb) is mate-
rialized by a property called hasSolution. OWL axioms are used to relate Problem
and Solution to classes of the domain knowledge. For example, in the application
for breast cancer treatment, the Patient and Treatment classes correspond respec-
tively to the Problem and Solution classes, and thus, the two axioms Patient �
Problem and Treatment � Solution are added to the ontology. Furthermore, the
hasSolution property relates patients to the recommended treatments. Problem rela-
tions, adaptation functions and reformulations are also formalized in OWL. The specific
underlying mechanisms are made by Web services implementing transformation opera-
tions like specialization, generalization and property substitution on OWL individuals.

Given two classes C and D, the subsumption test in OWL is defined by C is subsumed
by D (C is more specific than D) if, for every model I of O, CI ⊆ DI . Based on the
subsumption test, classification consists of finding for a class C, the most specific classes
in the ontology subsuming C, and the most general classes subsumed by C. Classification
organizes the classes of the ontology in a hierarchy. Regarding CBR, the class hierarchy
is used as a structure for the case base, where a class represents an index for a source
problem. Every index is considered as an abstraction of a source problem, containing
the relevant part of the information leading to a particular solution.

Instance checking tests whether an individual a is an instance of a class C, i.e.
if for every model I of O, aI ∈ CI . It supports the instantiation reasoning service
that consists of finding the most specific classes of an individual. It is used during the
retrieval step of CBR for finding index classes of source problems. A source prob-

1 In this paper, we use the description logic way of writing expressions instead of the RDF/XML
syntax and of the abstract syntax of OWL.



Decentralized Case-Based Reasoning for the Semantic Web 147

lem srce is an instance of its index class idx(srce), and its solution Sol(srce) is
considered to be reusable for any problem pb that is an instance of idx(srce), i.e.
Sol(srce) can be reused to solve tgt whenever tgt is recognized as an instance of
idx(srce).

Instantiation is used to infer new pieces of information about an individual on the
basis of its class membership, and of constraints contained in class definitions. For ex-
ample, if an individual named bob is an instance of the class Man, if Man is declared
to be more specific than Human (Man � Human), and if the capability of intelligence
is associated with humans (Human � ∃capability.Intelligence), then, bob has
to be capable of intelligence. The information known about bob is automatically com-
pleted, thanks to constraints inherited from Human. This reasoning service has proved
to be useful for CBR in [7], where it is called instance completion. Particularly, it
is used in the problem elaboration operation, to extend the available information on
the target problem with respect to the domain knowledge. Moreover, since a particu-
lar index idx(srce) may lead to a particular solution Sol(srce), this solution can
be directly attached to the index class through a problem-solution axiom of the form:
I � ∃hasSolution.S. This means that, based on instance completion, any instance
of the index class I is related to an object of the solution class S by the hasSolution
property.

4 An Introduction to C-OWL

4.1 C-OWL: Contextualizing Ontologies

C-OWL is an extension of OWL for representing contextualized (or contextual) ontolo-
gies [5]. Contextualized ontologies are local representations of a domain, named con-
texts, that are semantically related with other contexts thanks to mappings. The original
motivation for C-OWL is the alignment and coordinated use of ontologies made for
different purposes. In our framework, C-OWL is used as a way to formalize and im-
plement several alternative representations of the domain that we call viewpoints. In
C-OWL, the knowledge about a domain is contained in a set of contexts. Each context
Oi is an OWL ontology, with its own language and its own interpretation. Mappings
are expressed by bridge rules. A bridge rule from Oi to Oj is a way to declare a cor-
respondence between the interpretation domains of these two contexts. On the basis of
these correspondences, a part of the knowledge contained in Oi can be interpreted and
reused in Oj .

Formally, a C-OWL context space contains a set of contexts {Oi}i ∈ I
, I being a set

of indexes for contexts. The indexes of I are used to prefix the expressions, associating
an expression to the context in which it is defined. For example, i:C, i:∃p.C, i:a,
i:C � D and i:C(a) are expressions of the local language of Oi.

The semantics of a context space is given by a distributed interpretation I that con-
tains an interpretation Ii for each i ∈ I . Each Ii is composed of a local interpretation
domain ∆Ii and a local interpretation function ·Ii . A context is interpreted with the
corresponding local interpretation, i.e. an axiom or an assertion of Oi is satisfied by I
if it is satisfied by Ii.



148 M. d’Aquin, J. Lieber, and A. Napoli

A mapping Mij is a set of bridge rules from Oi to Oj . There are different types
of bridge rules, occurring between classes, individuals or properties of two contexts.
We are only interested here in some particular forms. An into rule is a bridge rule of

the form i:C
�−−→ j:D, where i:C and j:D are classes respectively from Oi and Oj .

This type of rule means that the class i:C of Oi is considered, from the viewpoint of

Oj , as more specific than the class j:D [11]. The onto rule i:C
�−−→ j:D means that

Oj considers the class i:C to be more general than j:D. Bridge rules are directional: a

bridge rule from Oi to Oj is considered in the viewpoint of Oj , and so, i:C
�−−→ j:D

is not equivalent to j:D
�−−→ i:C.

Formally, the distributed interpretation I of a context space is associated with a set
of domain relations. A domain relation rij ⊆ ∆Ii ×∆Ij states, for each object of ∆Ii ,
the object of ∆Ij it corresponds to. The notation rij(CIi) denotes the interpretation
of the class i:C of Oi as considered in the interpretation domain of Oj . Then, the

semantics of a bridge rule is given with respect to domain relations: I satisfies i:C
�−−→

j:D if rij(CIi) ⊆ DIj and I satisfies i:C
�−−→ j:D if rij(CIi) ⊇ DIj .

Another form of bridge rules is used to specify a correspondence between individ-
uals. i:a

≡−−→ j:b means that the individual i:a in Oi corresponds to the individual
j:b in Oj . Formally, I satisfies i:a

≡−−→ j:b if rij(aIi) = bIj .

4.2 Global and Local Reasoning with C-OWL

Local reasoning services in C-OWL are the standard OWL reasoning services, per-
formed in a particular context, without taking into account the bridge rules. A global
reasoning service uses bridge rules to infer statements in a context using knowledge
from the other contexts. [11] presents an extension of the standard tableau algorithm
for the computation of the global subsumption test. Global subsumption uses the prin-
ciple of subsumption propagation which, in its simplest form, can be expressed as:

if the mappingMij contains i:A
�−−→ j:C and i:B

�−−→ j:D

then I satisfies i:A � B implies that I satisfies j:C � D.

Intuitively, this means that subsumption in a particular context can be inferred from
subsumption in another context thanks to bridge rules.

Similarly, we consider here a global instance checking based on an instantiation
propagation rule:

ifMij contains i:C
�−−→ j:D and i:a

≡−−→ j:b

then I satisfies i:C(a) implies that I satisfies j:D(b).

Instantiation is extended in order to use global instance checking. Based on bridge rules,
information known about an individual in a particular context can be completed using
inferences made in other contexts.



Decentralized Case-Based Reasoning for the Semantic Web 149

5 Decentralized Case-Based Reasoning with C-OWL

5.1 CBR and Contextualized Knowledge

Using C-OWL for DzCBR, a context is used to represent a particular viewpoint on
the domain. A global target problem is represented as a set {i:tgt}i of local tar-
get problems, with a problem i:tgt in each context Oi. In addition, a bridge rule
i:tgt

≡−−→ j:tgt is declared for each Oi and Oj of the context space, i.e. i:tgt in
Oi is viewed as j:tgt in Oj .

A context Oi includes knowledge and cases that are used to find a local solution
i:Sol(tgt) for the local problem i:tgt. Thus, a local problem i:pb is solved by a
solution i:Sol(pb) inside the context Oi. The adaptation knowledge used for solving
a local problem i:tgt is also represented within the context Oi. Local reformulations
i:(r,Ar) are the basic adaptation knowledge units for solving i:tgt in the Oi context.

In a context Oi, there is a class hierarchy where a class represents the index of a
source problem to be reused. An index i:idx(srce) is an abstraction of the i:srce
problem, retaining the relevant information according to the viewpoint of the Oi con-
text, i.e. i:Sol(srce) can be reused to solve i:tgt whenever i:tgt is an instance of
i:idx(srce) (in accordance with the solving schema described in the section 3.4).

Then, in Oi, the instantiation reasoning service is used in a localized retrieval pro-
cess for finding the index i:idx(srce) of the source problem i:srce to be reused.
More precisely, the retrieval process consists of finding a similarity path between the
target problem i:tgt and the index i:idx(srce) that is composed of relations defined
in Oi:

i:srce
isa−→ i:idx(srce)

isa←− i:pb1 i:r1 . . . i:rq i:tgt

where the “isa” arrows mean “is an instance of”. In addition, a localized adaptation
process has to build an associated adaptation path using reformulations and adaptation
functions defined in Oi for building i:Sol(tgt). Using contextualized knowledge and
cases, the CBR process is then “contained” in a context. A detailed example of this
localized CBR process is given at the end of the next section.

5.2 Combining Viewpoints Thanks to Bridge Rules

Decentralized artificial intelligence, as defined by [6], is concerned with the activity of
autonomous intelligent agents that coexist and may collaborate with other agents, each
of them having its own goals and its own knowledge. In the same way, the DzCBR
mechanism is:

1. local to a context in the sense that it is carried out in each context, not in a central-
ized manner,

2. collaborative in the sense that it relies on knowledge sharing between contexts.

In the following, we present an example of a DzCBR process that is distributed
among contexts and that takes advantage of this distribution for building a global solu-
tion for a target problem.



150 M. d’Aquin, J. Lieber, and A. Napoli

Let us introduce three contexts named O1, O2 and O3, where a source problem is
represented by its index class, and each association between a problem and its solution
is represented by a problem-solution axiom. For example, the expression
1:I1 ≡ Problem � ∃p1.C1 defines a source problem in the context O1, and
1:I1 � ∃hasSolution.S1 associates an instance of the solution class 1:S1 to an
instance of the problem class 1:I1. In the same way, the source problems 2:I2 and
3:I3 are respectively defined in the contexts O2 and O3, together with their problem-
solution axioms (1st and 2nd lines of the figure 2). Bridge rules have been declared
between the three local target problems 1:tgt, 2:tgt and 3:tgt, making precise the
fact that these local problems are three views about a single problem (3rd line of the
figure 2). Moreover, bridge rules between classes indicate the subsumption constraints
between the contexts (4th line of the figure 2). Finally, a set of assertions is given for the
three local target problems (5th, 6th and 7th lines of figure 2).

O1 O2 O3

≡ � ∃ . ≡ � ∃ . � ∃ . ≡ � ∃ .
� ∃ . � ∃ . � ∃ .

≡−−→ ≡−−→ ≡−−→
∃ .

�−−→ ∃ . ∃ .
�−−→ ∃ . ∃ .

�−−→
∃ .

( ) ( ) ( )
( )
( , )
∃ . ( )

∃ . ( )
∃ . ( ) ∃ . ( )

∃ . ( ) ∃ . ( )

Fig. 2. A DzCBR example. 1st and 2nd lines define some source problems. 3rd and 4th lines de-
scribe mappings associated with the contexts. 5th to 7th lines describe the target problem. 8th to
11th lines show 6 DzCBR inference steps.

When the DzCBR process is run in each context, the three local target problems
1:tgt, 2:tgt, and 3:tgt are instantiated in their respective contexts.

Dz1. In the O2 context, 2:tgt is recognized as an instance of the class 2:∃p21.C21.

Dz2. The bridge rules 2:∃p21.C21 �−−→ 1:∃p1.C1 and 2:tgt
≡−−→ 1:tgt allow the

completion of the instance 1:tgt. 1:tgt is recognized as an instance of the class
1:∃p1.C1, and thus of the class 1:I1.

Dz3. Through the problem-solution axiom, a solution 1:S1 is associated with 1:tgt,
that in turn becomes an instance of the class 1:∃hasSolution.S1.

Dz4. The instance completion process is run through the bridge rule

1:∃hasSolution.S1 �−−→ 2:∃p23.C23, and the local target problem 2:tgt is
recognized as an instance of the class 2:∃p23.C23.

Dz5. As it is explained below, let us assume that the CBR process in the context O2

builds a solution that is an instance of 2:S22 and that is associated with 2:tgt.
2:tgt becomes an instance of 2:∃hasSolution.S22 in O2.



Decentralized Case-Based Reasoning for the Semantic Web 151

Dz6.Finally, based on the bridge rule 2:∃hasSolution.S22 �−−→ 3:∃hasSolution.S32,
it can be inferred in O3 that 3:tgt is an instance of 3:∃hasSolution.S32.

The solution of the target problem, represented by the three local target problems 1:tgt,
2:tgt, and 3:tgt, is a set of local solutions, represented as instances of 1:S1, 2:S22,
and 3:S32, that have been built in a decentralized way.

Relying on this example, two main operations may be distinguished in the DzCBR
process:

(i) localized CBR that applies local knowledge for building a solution to the local
problem i:tgt. The steps Dz3. and Dz5. are examples of such a local operation
in DzCBR, respectively carried out in O1 and O2.

(ii) case completion represents the collaborative part of DzCBR. It is based on bridge
rules and completes the local target case –either the problem or the solution part–
thanks to knowledge sharing with the other contexts. The steps Dz2., Dz4. and Dz6.
are examples of this collaboration, using bridge rules for combining viewpoints.

These two operations are run in each context, until no more inferences can be drawn.
The solution set {i:Sol(tgt)}i is then delivered.

Details of the localized CBR Process Dz5. The O2 context contains a reformula-
tion of the form 2:(r,Ar) that is used in the localized CBR operation in this context
(see figure 3). During the retrieval step, the 2:r relation creates an intermediary prob-
lem 2:pb1 from 2:tgt such that the difference between these two individuals lies in
the fact that 2:pb1 is an instance of 2:∃p22.C22, whereas 2:tgt is an instance of
2:∃p23.C23. Thus, 2:pb1 is recognized as an instance of 2:I2, and is associated with
a solution 2:Sol(pb1) from 2:S21, as stated by the problem-solution axiom in O2.
The 2:Ar adaptation function is used in the adaptation step for creating the solution
2:Sol(tgt) from 2:Sol(pb1). 2:Ar is such that the difference between 2:Sol(pb1)
and 2:Sol(tgt) lies in the fact that 2:Sol(pb1) is an instance of 2:S21, whereas
2:Sol(tgt) is an instance of 2:S22. Therefore, 2:Sol(tgt), instance of 2:S22, be-
comes a solution of 2:tgt.

��

��

�� ��
��

Fig. 3. The similarity path and the adaptation path of the localized CBR process in O2

6 An Example of Application to Breast Cancer Treatment

The task of finding the right treatment for a patient ill with breast cancer is supported
by a protocol. This protocol can be seen as a set of rules Cond ⇒ T tt where Cond
is a set of conditions on patients and T tt is a description of the type of treatments



152 M. d’Aquin, J. Lieber, and A. Napoli

recommended for the patients satisfying Cond. Several specialties are involved in this
decision, and the protocol is structured according to these specialties. In breast cancer
treatment, the surgery specialty is mainly concerned with partial or total breast abla-
tion, the chemotherapy specialty is concerned with the administration of drugs useful
to stop or lower the tumor evolution and the radiotherapy specialty treats the patients
by irradiation of the potentially infected zones. The global recommendation combines
the decisions taken in all the specialties. The protocol rules may be directly applied
in 60 to 70 % of the situations (with respect to the characteristics of the patients). In
situations not considered by the protocol, the decision is taken by a multi-disciplinary
expert committee. This committee adapts the protocol rules to find a solution, taking
into account the characteristics of the considered patient.

In our research work, decision support for breast cancer treatment relies on DzCBR,
where a problem is a description of the characteristics of a patient, and a solution is a
treatment proposition. The case base and the domain model rely on a formalized repre-
sentation of the protocol in C-OWL. In the following example, three different contexts,
namely Or, Os, and Oc, standing for the radiotherapy, surgery and chemotherapy view-
points, are considered. These contexts correspond respectively to the O1, O2 and O3

contexts of the example of section 5.2. A protocol rule Cond ⇒ T tt is represented
and implemented as a problem-solution axiom of the form PC � ∃hasSolution.T,
where PC and T are classes respectively representing the Cond and T tt parts of the
protocol rule. For example, Or contains a problem class corresponding to the patients
having a tumor that is smaller than 4cm. For the members of this class, a radiotherapy
of the internal mammary chain is recommended. Therefore, the problem solution axiom
1:I1 � ∃hasSolution.S1 of the preceding example is restated as:

r:Patient� ∃tumorSize.lessThan4cm� ∃hasSolution.IntMamChainRadio

In the same way, Os contains the problem-solution axiom:

s:Patient� ∃hasTumor.(∃size.moreThan4cm) � ∃radiotherapy.IntMamChain
� ∃hasSolution.TotalAblation

meaning that, for patients having a tumor greater than 4cm and for whom a radiother-
apy of the internal mammary chain may be applied, a total ablation of the breast is
recommended. In Oc, the axiom:

c:Patient� ∃lymphNode.infected � ∃hasSolution.PreSurgicalChemo

means that for patients having infected lymph nodes, some cures of chemotherapy should
beapplied before thesurgical treatment in order to prepare thepatient forapartial ablation.

The bridge rules of the example of the section 5.2 are now redefined on the classes
of Or, Os and Oc:

s:∃hasTumor.(∃size.lessThan4cm) �−−→ r:∃tumorSize.lessThan4cm

r:∃hasSolution.IntMamChainRadio �−−→ s:∃radiotherapy.IntMamChain

s:∃hasSolution.TotalAblation �−−→ c:¬∃hasSolution.PreSurgicalChemo



Decentralized Case-Based Reasoning for the Semantic Web 153

The first one allows the surgery context to share the information about the size of the
tumor with the radiotherapy context. Problem-solving in surgery can reuse the solu-
tion found in radiotherapy thanks to the second bridge rule. The third bridge rule ex-
presses that, when a total ablation is recommended, a chemotherapy must not be applied
before surgery.

Moreover, the Os context contains some adaptation knowledge in the form of a re-
formulation s:(r,Ar). The s:r relation holds between an instance of Patient having
a little-sized tumor (less than 4 cm) that covers a large part of the breast (more than
60%) and an instance of Patient having a larger tumor (more than 4cm). In other
terms, a patient with a small tumor in a small breast is considered for surgery to be
similar to a patient having a large tumor. The s:Ar adaptation function simply consists
in a copy of the solution.

The target problem is represented by three local target problems denoted by r:tgt,
s:tgt and c:tgt, that are linked by bridge rules. Each of these individuals is an in-
stance of the patient class, i.e. the assertions r:Patient(tgt), s:Patient(tgt) and
c:Patient(tgt) are stated in the Or, Os and Oc contexts respectively. Moreover,
s:tgt is described as a patient having a small tumor in a small breast, i.e. the as-
sertion s:∃hasTumor.(∃size.lessThan4cm� ∃cover.MoreThan60%)(tgt) is stated
in Os.

The DzCBR process for solving this problem corresponds to the six steps of the sec-
tion 5.2 example. The information about the tumor size is first shared between surgery
and radiotherapy, and so, a radiotherapy of the internal mammary chain is recommended
in Or. In Os, the reformulation s:(r,Ar) is applied, considering s:tgt as similar to a
patient having a large tumor. According to the problem-solution axiom contained in Os,
the solution for a patient with a large tumor is a total ablation. This solution is copied
throughAr for s:tgt. Finally the solution found in surgery, the total ablation, implies
that no chemotherapy has to be applied before surgery. It must be remarked that the
target problem is treated differently in Os and Or. Indeed, it has been considered as a
patient with a small tumor for radiotherapy, whereas it has been considered as a patient
with a large tumor in surgery.

7 Discussion and Related Work

A CBR system based on the reformulation model has been implemented in the form of
a generic Web service manipulating OWL ontologies. This architecture based on Web
services is very helpful in the implementation of localized CBR. For global reasoning in
C-OWL, we are using the system described in [11] that is currently under development.
A complete protocol for breast cancer treatment has also been formalized in C-OWL.
This particular representation was made of 4 contexts, each of them containing be-
tween 50 and 100 classes, and about 50 bridge rules have been described between these
classes. The lesson learned from this experiment is that building and managing mul-
tiple contexts that reflect existing viewpoints in the domain appear to be simpler than
finding and maintaining a consensual representation for these viewpoints all together.
Moreover, even if bridge rules are generally related to domain expertise and have to be



154 M. d’Aquin, J. Lieber, and A. Napoli

built manually, this task can sometimes be semi-automated, on the basis of ontology
alignment techniques.

Considering related work, description logics have been used for KI-CBR in sev-
eral systems (see e.g. [7, 12]). These systems consider a single knowledge model, and
take into account a single way of interpreting and using cases. DzCBR combines sev-
eral viewpoints on the problems and solutions, thanks to multiple inter-related contexts.
Some systems use several views on cases to retrieve several local best cases. Gener-
ally, a single global case is built from these sub-cases. For example, in [13] a choice is
made between cases that are retrieved using different case representations, called per-
spectives. In [14], several agents retrieve local best cases that are assembled in a global
best case thanks to negotiation between agents. Since there is no centralized mecha-
nism in DzCBR, a CBR process is carried out in each context and collaborates with the
other contexts through bridge rules. In this way, among contexts, several local source
cases are retrieved and used independently for adaptation. If one want to apply our ap-
proach to distributed CBR, i.e. problem-solving by several agents with the same set of
goals (by contrast to decentralized CBR), it would be necessary to incorporate in the
reasoning process a mechanism for managing conflicts.

Our interest for a DzCBR process exploiting semantic Web technologies and prin-
ciples has started with the design of a semantic portal for oncology [15]. The goal of
this portal is to give an intelligent access to standard knowledge for a geographically
distributed community of oncologists. There are many other situations, like adaptive
query answering, case-based ontology alignment or flexible Web service invocation,
where CBR would be useful for the semantic Web. Some studies have been interested
in defining markup languages for case representation, on the basis of XML [16] or
RDF [17]. But, to our knowledge, there is no work concerned with the design of CBR
systems in the semantic Web framework. Our aim here is not to build a general theory
concerning the use of CBR in the framework of the semantic Web. However, we hope
that the work presented in this paper will provide a guideline for practitioners to apply
such techniques.

8 Conclusion

In this paper, a KI-CBR mechanism that exploits decentralized knowledge represented
by contextualized ontologies in the C-OWL formalism has been proposed. This frame-
work, called DzCBR, addresses the problem of adaptive reasoning in the multi-ontology
environment of the semantic Web. The process of DzCBR takes advantage of the dis-
tribution of knowledge into multiple contexts and of the semantic relations between
these contexts for solving problems. The motivation for a decentralized KI-CBR system
comes from an application in the multi-disciplinary domain of oncology. Particularly it
has been applied for the problem of breast cancer treatment recommendation. In this ap-
plication, different specialties, like surgery, radiotherapy and chemotherapy, correspond
to several viewpoints that must be taken into account and combined. A viewpoint is im-
plemented as a C-OWL context, and semantic mappings between contexts are used for
collaboration between viewpoints.



Decentralized Case-Based Reasoning for the Semantic Web 155

References

1. Lenz, M., Bartsch-Spörl, B., Burkhard, H.D., Wess, S., eds.: Case-Based Reasoning Tech-
nology: From Foundations to Applications, LNAI 1400. Springer (1998)

2. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Varia-
tions, and System Approaches. Artificial Intelligence Communications 7 (1994) 39–59

3. Aamodt, A.: Knowledge-Intensive Case-Based Reasoning in CREEK. In Funk, P., Gonzàlez-
Calero, P.A., eds.: Proc. of the European Conference on Case-Based Reasoning, ECCBR’04,
Springer (2004) 1–15

4. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-Schneider,
P., Stein, L.A.: OWL Web Ontology Language Reference. W3C Recommendation (2004)

5. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: Contextu-
alizing Ontologies. Journal of Web Semantics 1 (2004) 1–19

6. Demazeau, Y., Müller, J.P.: Decentralized Artificial Intelligence. In Demazeau, Y., Müller,
J.P., eds.: Decentralized A.I. – Proc. of the First European Workshop on Modelling Au-
tonomous Agents in a Multi-Agent World, North-Holland (1989) 3–13

7. Gómez-Albarrán, M., Gonzàles-Calero, P., Dı́az-Agudo, B., Fernàndez-Conde, C.: Mod-
elling the CBR Life Cycle Using Description Logics. In Althoff, K.D., Bergamnn, R., Brant-
ing, L., eds.: Proc. of the International Conference on Case-Based Reasoning, ICCBR’99,
Springer (1999) 147–161

8. Lieber, J., Napoli, A.: Correct and Complete Retrieval for Case-Based Problem-Solving. In
Prade, H., ed.: Proc. of the European Conference on Artificial Intelligence, ECAI’98, John
Wiley & Sons Ltd, Chichester (1998) 68–72

9. Melis, E., Lieber, J., Napoli, A.: Reformulation in Case-Based Reasoning. In Smyth, B., Cun-
ningham, P., eds.: Proc. of the European Workshop on Case-Based Reasoning, EWCBR’98,
Springer (1998) 172–183

10. Smyth, B.: Case-Based Design. PhD. thesis, Trinity College, University of Dublin (1996)
11. Serafini, L., Tamilin, A.: Local Tableaux for Reasoning in Distributed Description Logics.

In Haarslev, V., Moeller, R., eds.: Proc. of the International Workshop on Description Logics,
DL’04. (2004) 100–109

12. Kamp, G., Lange, S., Globig, C.: Related Areas. [1] chapter 13
13. Arcos, J.L., Lopez de Mántaras, R.: Perspectives: a declarative bias mechanism for case

retrieval. In Leake, D.B., Plaza, E., eds.: Proc. of the International Conference on Case-
Based Reasoning, ICCBR’97, Springer (1997) 279–290

14. Nagendra Prassad, M., Lesser, V., Lander, S.: Retrieval and Reasoning in Distributed Case
Bases. Journal of Visual Communication and Image Representation 7 (1996) 74–87

15. d’Aquin, M., Brachais, S., Bouthier, C., Lieber, J., Napoli, A.: Knowledge Editing and Main-
tenance Tools for a Semantic Portal in Oncology. International Journal of Human-Computer
Studies (IJHCS) 62 (2005) 619–638

16. Coyle, L., Doyle, D., Cunningham, P.: Representing Similarity for CBR in XML. In Funk,
P., González Calero, P., eds.: Advances in Case-Based Reasoning (Procs. of the Seventh
European Conference), LNAI 3155, Springer (2004) 119–127

17. Chen, H., Wu, Z.: CaseML: a RDF-based Case Markup Language for Case-based Reasoning
in Semantic Web. In Fuchs, B., Mille, A., eds.: From structured cases to unstructured problem
solving episodes for experience-based assistance. Workshop at ICCBR-2003. (2003)



Finding and Ranking Knowledge on the Semantic Web �

Li Ding, Rong Pan, Tim Finin, Anupam Joshi,
Yun Peng, and Pranam Kolari

Department of Computer Science and Electrical Engineering,
University of Maryland, Baltimore County, Baltimore MD 21250

{dingli1, panrong1, finin, joshi, ypeng, kolari1}@cs.umbc.edu

Abstract. Swoogle helps software agents and knowledge engineers find Seman-
tic Web knowledge encoded in RDF and OWL documents on the Web. Navigat-
ing such a Semantic Web on the Web is difficult due to the paucity of explicit
hyperlinks beyond the namespaces in URIrefs and the few inter-document links
like rdfs:seeAlso and owl:imports. In order to solve this issue, this paper pro-
poses a novel Semantic Web navigation model providing additional navigation
paths through Swoogle’s search services such as the Ontology Dictionary. Using
this model, we have developed algorithms for ranking the importance of Seman-
tic Web objects at three levels of granularity: documents, terms and RDF graphs.
Experiments show that Swoogle outperforms conventional web search engine and
other ontology libraries in finding more ontologies, ranking their importance, and
thus promoting the use and emergence of consensus ontologies.

1 Introduction

As the scale and the impact of the World Wide Web has grown, search engines have
assumed a central role in the Web’s infrastructure. Similarly, the growth of the Seman-
tic Web will also generate a need for specialized search engines that help agents1 find
knowledge encoded in Semantic Web languages such as RDF(S) and OWL. This pa-
per discusses two important aspects of Semantic Web search engines: helping agents
navigate2 the Semantic Web and ranking search results.

The utility of Semantic Web technologies for sharing knowledge among agents has
been widely recognized in many domain applications. However, the Semantic Web it-
self (i.e., the unified RDF graph comprised of many decentralized online knowledge
sources) remains less studied. This paper focuses on the Semantic Web materialized
as a collection of Semantic Web Documents (SWDs)3 because web pages are well
known as the building blocks of the Web.

� Partial support for this research was provided by DARPA contract F30602-00-0591 and by
NSF awards NSF-ITR-IIS-0326460 and NSF-ITR-IDM-0219649.

1 The term agents refers to programs, tools, and human knowledge engineers that might use
Semantic Web knoweledge.

2 The term navigation refers to a process of following a series of links (explicit or implicit) from
an initial starting point to a desired information resource.

3 A Semantic Web document is a web page that serializes an RDF graph using one of the recom-
mended RDF syntax languages, i.e., RDF/XML, N-Triples or N3.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 156–170, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Finding and Ranking Knowledge on the Semantic Web 157

One advantage of the Semantic Web is that people can collaboratively create on-
tologies and build common vocabulary without centralized control. One building block
of Semantic Web ontologies is a Semantic Web Term (SWT)4, which plays the role
of a word in natural languages. SWTs bridge RDF statements with formal semantics
defined in RDF(S) and OWL, and are intended to be reused as universal symbols.

We call an SWD that defines a significant number of SWTs a Semantic Web On-
tology(SWO) to distinguish it from documents that mostly populating and/or asserting
class instances5. The Semantic Web depends on three “meta ontologies” (RDF, RDFS
and OWL) and, according to Swoogle [1], thousands of additional ones developed by
institutions (e.g., CYC, WordNet, DC6, FOAF7, and RSS) and individuals.

These ontologies often overlap by defining terms on similar or the same concepts.
For example, Swoogle finds over 300 distinct SWTs that appear to stand for the ‘per-
son’ concept. This raises interesting issues in finding and comparing Semantic Web
ontologies for knowledge sharing. For example, how can an agent find the most popu-
lar domain ontology (currently FOAF is the best choice) to publish a personal profile?

Conventional web navigation and ranking models are not suitable for the Semantic
Web for two main reasons: (i) they do not differentiate SWDs from the overwhelming
number of other web pages; and (ii) they do not parse and use the internal structure
of SWD and the external semantic links among SWDs. Hence, even Google, one of
the best web search engines, can sometimes perform poorly in finding ontologies. For
example, the FOAF ontology (the most used one for describing a person) is not among
the first ten results when we search Google using the phrase “person ontology”8.

Although we are familiar with surfing on the Web, navigating the Semantic Web
is quite different. We have developed a Semantic Web navigation model based on how
knowledge is published and accessed. To publish content, information providers need
to obtain appropriate domain ontologies by reusing existing ones and/or creating new
ones, and then use them to create instances and make assertions. When accessing knowl-
edge, consumers need to search for instance data and pursue corresponding ontologies
to fully understand the knowledge encoded. Meanwhile, the navigation model should
also acknowledge the context – the Web, which physically hosts RDF graphs in SWDs.
Most existing navigation tools (e.g., HyperDAML9 and Swoop10) employ the URL se-
mantics of the URIref to a RDF resource; however, they cannot answer questions like
“find instances of a given class” or “list all URIs using the same local name person”
due to the limited number of explicit links.

The navigation model supports ranking the ‘data quality’ [2] of Semantic Web
knowledge in terms of common case importance. In particular, this paper focuses on

4 A Semantic Web term is an RDF resource that represents an instance of rdfs:Class (or
rdf:Property) and can be universally referenced by its URI reference (URIref).

5 Since virtually all documents will contain some definitions and instances, the classification
must either be a fuzzy one or depend on a heuristic threshold.

6 Dublin Core Element Set 1.1,http://purl.org/dc/elements/1.1/.
7 Friend Of A Friend ontology, http://xmlns.com/foaf/0.1/.
8 This example is not intended to undermine Google’s value; instead, we argue that the Semantic

Web is quite different from the Web and needs its own navigation and ranking models.
9 http://www.daml.org/2001/04/hyperdaml/

10 http://www.mindswap.org/2004/SWOOP/



158 L. Ding et al.

ranking ontologies at various levels of granularity to promote reusing ontologies. Rank-
ing ontologies at the document level has been widely studied since most ontologies
are published through SWOs. Its common approaches include link-analysis [3, 1] and
semantic-content-analysis [4]. Document level ontology ranking, however, is not
enough. For example, foaf:Person and dc:creator together can describe the author of
a web page, and an ontology containing both of the concepts might not be as good as
the combination of FOAF and DC. Hence, a finer level of granularity (i.e., ranking at
SWT level) is needed especially to encode knowledge using popular terms from mul-
tiple ontologies11, but is seldom investigated in literature. Besides ranking individual
SWTs, agents may also rank inter-term relations (e.g., how frequently a property has
been used to modify the instances of a class). Such an ontology ranking approach is a
special case of ranking sub-graphs of an RDF graph [5, 6].

The remainder of this paper is structured as follows: Section 2 reviews the test-bed
(the Swoogle Semantic Web search engine) and related works on navigating and rank-
ing Semantic Web knowledge. Section 3 introduces the novel Semantic Web navigation
model, which enriches navigation paths and captures surfing behaviors on the Semantic
Web on the Web. Sections 4 and 5 describe and evaluate mechanisms for ranking ontolo-
gies at different levels of granularity, namely document, term and sub-graph. Section 6
concludes that effective navigation support and ranking mechanisms are critical to both
the emergence of common ontologies and the growth of the Semantic Web on the Web.

2 Background and Related Work

2.1 Swoogle

The Swoogle [1] search engine discovers, indexes, and analyzes Semantic Web docu-
ments published on the Web and provides agents with various kinds of search services.
Its architecture, shown in Figure 1, is comprised of four components.

Analysis

Index

Discovery

IR Indexer

Search Services

Semantic Web
metadata

Web
Service

Web
Server

Candidate
URLs

Bounded Web Crawler
Google Crawler

SwoogleBot

SWD Indexer

Ranking

document cache

SWD classifier

human machine

html rdf/xml

…

the Web

Semantic Web
Information flow

Swoogle‘s

web interface

Legends

Fig. 1. Swoogle’s architecture involves four major components.

11 Importing part of ontologies is especially helpful when using large upper ontologies like CYC.



Finding and Ranking Knowledge on the Semantic Web 159

– The Discovery component collects candidate URLs to find and cache SWDs us-
ing four mechanisms: (i) submitted URLs of SWDs and sites; (ii) a web crawler
that explores promising sites; (iii) a customized meta-crawler that discovers likely
URLs using conventional search engines; and (iv) the SwoogleBot Semantic Web
crawler which validates and analyses SWDs to produce new candidates.

– The Indexing component analyzes the discovered SWDs and generates the bulk of
Swoogle’s metadata about the Semantic Web. The metadata not only characterizes
the features associated with individual SWDs and SWTs, but also tracks the rela-
tions among them, e.g., “how SWDs use/define/populate a given SWT” and “how
two SWTs are associated by instantiating ‘rdfs:domain’ relation”.

– The Analysis component analyzes the generated metadata and hosts the modular
ranking mechanisms.

– The Services module provides search services to agents, allowing them to access
the metadata and navigate the Semantic Web. It is highlighted by the “Swoogle
Search” service that searches SWDs using constraints on URLs, the SWTs being
used or defined, etc.; and the “Ontology Dictionary” service that searches ontolo-
gies at the term level and offers more navigational paths.

2.2 Related Work and Motivation

Random Surfing Model and PageRank. The random surfing model underlying the
PageRank [7] algorithm has been widely accepted as the navigation model for the Web.
In this model, the surfer begins by jumping to a random URL. After visiting a page,
he either (i) with probability d12 randomly chooses a link from the page to follow to a
new page; or (ii) with probability 1 − d jumps to another random URL. This model is
essentially a simple random walk modeled by a Markov chain. Based on this surfing
model, the basic PageRank algorithm computes the rank (indicating popularity rather
than relevance) for each web page by iteratively propagating the rank until convergence.

Variations of PageRank. The basic PageRank algorithm is limited by its assumptions
and relaxing them has resulted in several extensions. In Topic-Sensitive PageRank [8],
documents are accessed non-uniformly according to their topics. For Weighted PageR-
ank extensions [9, 10, 11], links are followed non-uniformly according to their popu-
larity. Several link-semantics-aware extensions [12, 13] recognize links with different
meanings and compute a PageRank weighted by the link semantics.

Navigating the Semantic Web. Navigating the Semantic Web is quite different from
navigating the conventional Web. It is currently supported by tools such as browsers
(e.g., HyperDAML and Swoop), ontology libraries (e.g., DAML ontology library13 and
SchemaWeb14), search engines (e.g., Ontaria15 and Swoogle), and crawlers (e.g., scut-
ter16 and SwoogleBot). Most tools only capture navigational paths based on the seman-

12 d is usually a constant except in personalized ranking.
13 http://www.daml.org/ontologies/
14 http://www.schemaweb.info/
15 http://www.w3.org/2004/ontaria/
16 http://rdfweb.org/topic/Scutter



160 L. Ding et al.

tics of URIref. Swoogle, however, supports effective navigation by providing additional
navigational paths among SWDs and SWTs.

Ranking Semantic Web knowledge. Ranking knowledge can be considered as a prob-
lem of evaluating data quality [2, 14] which focuses on data product quality [15]. It has
been studied at various levels of granularity in Semantic Web and database literature.

– Ranking Semantic Web ontologies at the document level has been studied using
both content analysis [16, 4] and link-structure-based analysis [3, 1].

– Ranking knowledge at the instance or object level has been investigated by both
database and Semantic Web researchers, including ranking elements in XML doc-
uments [17]; ranking objects in databases [18] or the Web [19, 11]; and ranking
relevant class-instances in domain specific RDF database [20].

– Ranking knowledge at a sub-graph level has been studied using ontology-based
content analysis [5, 21, 6] in the context of ranking query results in the Semantic
Web, and using context-based trust computation [22, 23].

Ranking Semantic Web ontologies has remained at the document level even though
other granularity levels are applicable. For example, SWTs are a special kind of class
instances and should be ranked differently from normal instances. Doing so enables a
retrieval system to find a set of SWTs drawn from more than one ontologies to cover a
collection of target concepts.

Most link-analysis-based approaches have focused on either a particular domain
(e.g., bibliographic data) or a small set of SWOs. Swoogle is unique in its ambition to
discover and index a substantial fraction of the published SWDs on the Web (currently
over 7× 105 SWDs of which about 1% are SWOs).

3 Semantic Web Navigation Model

In this paper, we consider the Semantic Web materialized on the Web. To navigate such
a Semantic Web, a user cannot simply rely on the URL semantics of URIref due to
three main reasons: (i) the namespace of a URIref at best points to an SWO, but there
are no reverse links pointing back; (ii) although rdfs:seeAlso has been widely used
to interconnect SWDs in FOAF based applications, it seldom works in other SWDs;
(iii) owl:imports does interlink ontologies, but such relations are rare since ontologies
are usually independently developed and distributed. In addition, many practical issues
should be addressed in web-scale Semantic Web data access, such as “how two reach
the SWDs which are not linked by any other SWDs” and “what if the namespace of a
URIref is not an SWD”. It is notable that the intended users of this navigation model
are both software agents, who usually search SWDs for external knowledge and then
retrieve SWOs to fully understand SWDs, and Semantic Web researchers, who mainly
search SWTs and SWOs for publishing their knowledge.

3.1 Overview

The navigation model is specialized for publishing and accessing Semantic Web knowl-
edge as shown in Figure 2. Users can jump into the Semantic Web using conventional



Finding and Ranking Knowledge on the Semantic Web 161

RDF graph
Resource

Web

SWT

SWD

uses

populates defines

officialOnto

isDefinedBy

owl:imports

…

rdfs:seeAlso

rdfs:isDefinedBy

SWO

isUsedBy

isPopulatedBy

rdfs:subClassOf

sameNamespace, sameLocalname

extends

class-property bond1

2

3
4 5

6 7

Term Search

Document Search

& literal

The block arrows link search services to the Semantic Web. Paths 2 and 5 are straightforward since SWTs are referenced

by SWDs/SWOs. Paths 6, 7 and part of 4 are supported by most existing RDF browsers. Paths 1, 3 and the rest of 4 require

global view of the Semantic Web on the Web, and are currently only supported by Swoogle metadata.

Fig. 2. The Semantic Web navigation model

foaf:Person foaf:Agent
rdfs:subClassOf

foaf:mbox

foaf:Person
rdf:type

mailto:finin@umbc.edu

foaf:mbox

rdfs:domain

owl:InverseFunctionalPropertyowl:Class

rdfs:range

owl:Thing
rdf:typerdf:type rdf:type

foaf:Person
rdf:type

http://www.cs.umbc.edu/~finin/foaf.rdf

rdfs:seeAlso

http://www.cs.umbc.edu/~finin/foaf.rdf http://www.cs.umbc.edu/~dingli1/foaf.rdf

http://xmlns.com/foaf/0.1/index.rdf

http://xmlns.com/foaf/0.1/index.rdf http://www.w3.org/2002/07/owl
owl:imports

A user can use Swoogle term search to find SWTs having local name ‘Person’. If she picks SWT foaf:Person, she can jump to

the corresponding SWO http://xmlns.com/foaf/0.1/index.rdf by following path 4 via isDefinedBy, jump to an SWT foaf:mbox

by following path 1 via sameNamespace, or jump to another SWD http://www.cs.umbc.edu/ dingli1/foaf.rdf by following

path 3 via isPopulatedBy. From the FOAF SWO, she can pursue OWL ontology by following path 7 via owl:imports,

jump to SWT rdfs:domain by following path 2 via populates, or jump to SWT foaf:Agent by following path 5 via defines.

For the SWD to the right, she can jump to another SWD http://www.cs.umbc.edu/ finin/foaf.rdf by following path 6 via

rdfs:seeAlso.

Fig. 3. A navigation use-case

Web search (e.g., Google and Yahoo) or Semantic Web search (e.g., Swoogle). Users
can also navigate the Semantic Web within or across the Web and RDF graph via seven
groups of navigational paths. An example is shown in Figure 3.



162 L. Ding et al.

In addition to conventional document search using document properties and/or bag-
of-word model, Swoogle lets users locate Semantic Web knowledge using navigational
paths, e.g., “a personal profile ontology can be located if it defines SWTs like ‘person’,
‘email’ and ‘homepage’ ”. We detail three groups of navigational paths as follows.

3.2 Paths Between SWTs

We concentrate on three of the many interesting navigational paths between SWTs
grouped by path 1 in Figure 2 as follows.

1. sameNamespace and sameLocalname. linking SWTs sharing the same names-
pace is needed because they are not necessarily defined in the document pointed
by the namespace. Linking SWTs sharing the same local name is needed to find
alternative SWTs because the local name part of an SWT usually conveys its
semantics.

2. extends. An SWT t1 extends another SWT t2 when either (i) there exists a triple
(t1, P , t2) where P (e.g., rdfs:subClassOf, owl:inverseOf and owl:complementOf)
connects two classes (or two properties), or (ii)there exists a triple (t1, P , LIST )
where P (e.g., owl:unionOf) connects a class t1 to a rdf:List LIST which has an-
other class t2 as a non-nil member. For example, in Figure 3, foaf:Agent is extended
by foaf:Person because it is closer to the concept ‘person’ and its mobx property
can be inherit. The extends relation is a good indicator for the importance of term
because it implies that the term being extended is commonly accepted and well-
defined but too general for instantiating the intended concept.

3. class-property bond. Although classes and their attributes have been tightly
bonded in frame-based systems, the connections between classes and properties are
loose in the Semantic Web. For example, Dublin Core defines widely used prop-
erties without specifying their domains and ranges. Swoogle links from a class to
its instance properties (i.e., class-property bond) using two sources: (i) rdfs:domain
assertions in SWOs and (ii) instantiation of such bond in class-instances.

3.3 Paths Between SWDs and SWTs

Swoogle maintains three types of navigational paths across SWDs and SWTs: (i) paths
2 and 5 in Figure 2 can be easily extracted from an SWD by analyzing the usage of
SWTs; (ii) paths 3 and 4 are mainly the reverse of paths 2 and 5. Generating such paths
requires the global view of the Semantic Web; and (iii) the officialOnto relation in path
4 links an SWT to an SWO. It is needed by software agents to locate ontologies defining
the encountered SWTs in the absence of explicit import instruction.

1. Swoogle recognizes six types of binary relations between an SWT T in an SWD
D as shown in Table 1. They can be further generalized to three groups namely,
defines, uses and populates. For example, in figure 3, http://xmlns.com/
foaf/0.1/index.rdf defines foaf:Person as class and populates rdfs:domain
as property. An SWD using or populating an SWT indicates that the publisher is
satisfied with the SWT’s definition.



Finding and Ranking Knowledge on the Semantic Web 163

Table 1. Six types of binary relations that can hold between an SWD D and an SWT T

Relation Condition
define-class D has a triple (T , rdf:type, MC) where MC is a sub-class of rdfs:Class.
define-property D has a triple (T , rdf:type, MP) where MP is a sub-class of rdf:Property.
use-class D has a triple ( , P , T ) where the range of P is a sub-class of rdfs:Class, or

D has a triple (T , P , ) where the domain of P is a sub-class of rdfs:Class.
use-property D has a triple ( , P , T ) where the range of P is a sub-class of rdf:Property, or

D has a triple (T , P , ) where the domain of P is a sub-class of rdf:Property.
populate-class D has a triple ( , rdf:type, T ).
populate-property When D has a triple ( , T , ).

Table 2. Heuristics for finding official ontologies, and their performance on 4508 namespaces

Type Percent
The namespace of T ; 59%
the URL of an ontology which is redirected from T ’s namespace
(e.g., http://purl.org/dc/elements/1.1/ is redirected to
http://dublincore.org/2003/03/24/dces);

0.4%

the URL of an ontology which has T ’ namespace as its abso-
lute path, and it is the only one that matches this criteria (e.g.,
http://xmlns.com/foaf/0.1/index.rdf is the official ontology
of http://xmlns.com/foaf/0.1/);

3.4%

N/A, cannot decide 37.2%

2. Swoogle tracks the “official ontology” of an SWT T using heuristics listed in Ta-
ble 2. The ‘percent’ column shows the percentage that the heuristics has been suc-
cessfully applied. It is notable that heuristics 2 and 3 help find some important
official ontologies of DC and FOAF even though they have only improved the per-
formance from 59% to 62.8%.

3.4 Paths Between SWDs

Swoogle also supports well-known navigational paths between SWDs.

1. Although not defined explicitly, the triples populating properties rdfs:isDefinedBy
and rdfs:seeAlso are widely used in linking to web pages or even SWDs. In practice,
many RDF crawlers use rdfs:seeAlso to discover SWDs.

2. Instances of owl:OntologyProperty is explicitly defined to associate two SWOs, and
owl:imports is frequently instantiated far more than the others. Therefore, Swoogle
indexes the usage of the imports17 relation.

3. Inspired by RDF test-case ontology18, we have developed a class wob: RDFDocu-
ment (which asserts that a resource is an SWD) to support explicit ‘hyperlinks’ in

17 An SWO D1 imports another D2 when there is a triple in D1 in form of ( D1, owl:imports,
D2), and so does daml:imports. This relation shows the dependency between ontologies and
is complemented by “officalOnto” relation.

18 http://www.w3.org/2000/10/rdf-tests/rdfcore/testSchema



164 L. Ding et al.

the Semantic Web. A consequent idea is RDF sitemap which let website publish
their SWDs through a special index file19.

4 Ranking Semantic Web Documents

Since RDF graphs are usually accessed at the document level, we simplify the Semantic
Web navigation model by generalizing navigational paths into three types of document
level paths (see below) and then applying link analysis based ranking methods with
‘rational’ surfing behavior.

– An extension (EX) relation holds between two SWDs when one defines a term
using terms defined by another. EX generalizes the defines SWT-SWD relations, the
extends SWT-SWT relations, and the officialOnto SWT-SWD relation. For example,
an SWD d1 EX another SWD d2 when d1 defines a class t1, which is the subclass
of a classt2, and t2’s official ontology is d2.

– A use-term (TM) relation holds between two SWDs when one uses a term defined
by another. TM generalizes the uses and populates SWT-SWD relations, and the
officialOnto SWT-SWD relation. For example, an SWD d1 TM another SWD d2
when d1 uses a resource t as class, and t’s official ontology is d2.

– An import (IM) relation holds when one SWD imports, directly or transitively,
another SWD, and it corresponds to the imports SWD-SWD relation.

4.1 Rational Surfer Model and OntoRank

Swoogle’s OntoRank is based on the rational surfer model which emulates an agent’s
navigation behavior at the document level. Like the random surfer model, an agent
either follows a link in an SWD to another or jumps to a new random SWD with a
constant probability 1 − d. It is ‘rational’ because it emulates agents’ navigation on
the Semantic Web, i.e., agents follow links in a SWD with non-uniform probability
according to link semantics. When encountering an SWD α, agents will(transitively)
import the “official” ontologies that define the classes and properties referenced by α.

Let link(α, l, β) be the semantic link from an SWD α to another SWD β with tag l;
linkto(α) be a set of SWDs link directly to the SWD α; weight(l) be a user specified
navigation preference on semantic links with type l, i.e., TM and EX; OTC(α) be a
set of SWDs that (transitively) IM or EX α as ontology; f(x, y) and wPR(x) be two
intermediate functions.

OntoRank is computed in two steps: (i) iteratively compute the rank, wPR(α), of
each SWD α until it converges (equations 1 and 2); and (ii) transitively pass an SWD’s
rank to all ontologies it imported (equation 3).

wPR(α) = (1− d) + d
∑

x∈linkto(α)

wPR(x) × f(x, α)∑
link(x, ,y)

f(x, y)
(1)

19 http://swoogle.umbc.edu/site.php



Finding and Ranking Knowledge on the Semantic Web 165

Table 3. OntoRank finds more ontologies in each of the 10 queries

Query C1:# SWOs C2:# SWOs Difference
by OntoRank by PageRank (C1-C2)/C2

name 9 6 50.00%
person 10 7 42.86%
title 13 12 8.33%
location 12 6 100.00%
description 11 10 10.00%
date 14 10 40.00%
type 13 11 18.18%
country 9 4 125.00%
address 11 8 37.50%
organization 9 5 80.00%
Average 11.1 7.9 40.51%

f(x, α) =
∑

link(x,l,α)

weight(l) (2)

OntoRank(α) = wPR(α) +
∑

x∈OTC(α)

wPR(x) (3)

4.2 Evaluation: OntoRank vs PageRank

OntoRank is evaluated on a real dataset DS-APRIL collected by Swoogle by April 2005.
DS-APRIL contains 330K SWDs (1.5% are SWOs, 24% are FOAF documents and 60%
are RSS documents) and interlink by 200K document level relations.

The first experiment compares the performance between PageRank and OntoRank
in boosting the rank of SWOs among SWDs, i.e., ranking SWOs higher than normal
SWDs. In this experiment, we first compute both ranks for SWDs in DS-APRIL20; and
then ten popular local-names (according to Swoogle’s statistics) were selected as the
keywords for Swoogle’s document search. The same search result for each query is
ordered by both PageRank and OntoRank respectively. We compared the number of
strict SWO (see definition 1) in the first 20 results in either order. Table 3 shows an
average 40% improvement of OntoRank over PageRank.

Definition 1. ontology ratio
The ontology ratio of an SWD refers to is the fraction of its class-instances being recog-
nized as classes and properties. It is used to identify SWOs among SWDs. For example,
given an SWD defining a class “Color” and populating the class with three class-
instances namely, ‘blue’, ‘green’ and ‘red’, its ontology ratio is 25% since only one
out of the four is defined as class. A document with a high ontology ratio indicates a
preference for adding term definition rather than populating existing terms. According
to Swoogle, an SWD is an ontology document if it has defined at least one term, and it
is called a strict SWO if its ontology ratio exceeds 0.8.

20 Note this PageRank is computed on the same dataset as OntoRank, which is a preprocessed
web of SWDs where no simply hyperlinks but only semantic links are considered.



166 L. Ding et al.

Table 4. Top 10 SWDs according to OntoRank and their PageRank

URL of Ontology Ontology Ratio OntoRank PageRank
http://www.w3.org/2000/01/rdf-schema 94% 1 1
http://www.w3.org/2002/07/owl 86% 2 5
http://www.w3.org/1999/02/22-rdf-syntax-ns 81% 3 6
http://purl.org/dc/elements/1.1 100% 4 3
http://purl.org/rss/1.0/schema.rdf 100% 5 2
http://www.w3.org/2003/01/geo/wgs84 pos 100% 6 10
http://xmlns.com/foaf/0.1/index.rdf 84% 7 4
http://xmlns.com/wot/0.1/index.rdf 100% 8 29
http://www.w3.org/2003/06/sw-vocab-status/ns 75% 9 7
http://www.daml.org/2001/03/daml+oil 96% 10 11

The second experiment studies the best ranked SWDs using both ranking methods. In
table 4, RDFS schema clearly ranks first according to both OntoRank and PageRank.
OWL ranks higher than RDF because it is referred to by many popular ontologies. DC
and FOAF ontologies rank 4th and 5th by PageRank due to their many instance docu-
ments but rank lower by OntoRank due to their narrow domain and fewer references by
other ontologies. An interesting case is the web of trust (WOT) ontology which PageR-
ank ranks only 29th since our data set only contains 280 FOAF documents referencing
it directly. OntoRank ranks it at 8 since it is referenced by the FOAF ontology, greatly
increasing its visibility. We are not expecting OntoRank to be completely different from
PageRank since it is a variation of PageRank. OntoRank is intended to expose more on-
tologies which are important to Semantic Web users in understanding term definition.

5 Ranking for Ontology Dictionary

Ranking ontologies at the term level is also important because SWTs defined in the
same SWO are instantiated in quite different frequency. For example, owl:versionInfo
is far less used than owl:Class. Users, therefore, may want to partition ontologies and
then import a part of an SWO [24, 25]. In addition, users often use SWTs from multiple
ontologies together, e.g., rdfs:seeAlso and dc:title have been frequently used modifying
the instances of foaf:Person.

These observations lead to the “Do It Yourself” strategy i.e., users can customize
ontologies by assembling relevant terms from popular ontologies without importing
them completely. To this end, Swoogle’s Ontology Dictionary helps users to find rele-
vant terms ranked by their popularity, and supports a simple procedure CONSTRUCT-
ONTO for publishing knowledge using class-instances.

CONSTRUCT-ONTO
1. find an appropriate class C
2. find popular properties whose domain is C
3. go back to step 1 if another class is needed



Finding and Ranking Knowledge on the Semantic Web 167

Table 5. Top ten classes with ’person’ as the local name ordered by Swoogle’s TermRank

TermRank Resource URI pop(swd) pop(i) def(swd)
1 http://xmlns.com/foaf/0.1/Person 74589 1260759 17
2 http://xmlns.com/wordnet/1.6/Person 2658 785133 80
3 http://www.aktors.org/ontology/portal#Person 267 3517 6
4 ns1:Person 1 257 935 1
5 ns2:Person 2 277 398 1
6 http://xmlns.com/foaf/0.1/person 217 5607 0
7 http://www.amico.org/vocab#Person 90 90 1
8 http://www.ontoweb.org/ontology/1#Person 32 522 2
9 ns3:Person 3 0 0 1
10 http://description.org/schema/Person 10 10 0
1 ns1 - http://www.w3.org/2000/10/swap/pim/contact#
2 ns2 - http://www.iwi-iuk.org/material/RDF/1.1/Schema/Class/mn#
3 ns3 - http://ebiquity.umbc.edu/v2.1/ontology/person.owl#

5.1 Ranking Semantic Web Terms

Swoogle uses TermRank to sort SWTs by their popularity, which can be simply mea-
sured by the number of SWDs using/populating an SWT. This naive approach, however,
ignores users’ rational behavior in accessing SWDs, i.e., users access SWDs with non-
uniform probability. Therefore, TermRank is computed by totaling each SWD’s contri-
bution (equation 4). For each SWD α, its contribution to each of its SWTs is computed
by splitting its OntoRank proportional to SWTs’ weight TWeight(α, t), which indi-
cates the probability a user will access t when browsing α. TWegiht is the product of
cnt uses(α, t) - t’s popularity within α measured by the number of occurrence of t in
α and |{α|uses(α, t)}| – t’s importance in the Semantic Web measured by the number
of SWDs containing t (see equation 5).

TermRank(t) =
∑

uses(α,t)

OntoRank(α)×TWeight(α,t)∑
uses(α,x) TWeight(α,x) (4)

TWeight(α, t) = cnt uses(α, t)× |{α|uses(α, t)}| (5)

Table 5 lists top ten classes in DS-APRIL having ‘person’ as the local name ordered
by TermRank. For each class, pop(swd) refers to the number of SWDs populating it;
pop(i) refers to the number of its instances; and def(swd) refers to the number of SWDs
defining it. Not surprisingly, foaf:Person is number one. The sixth term is a common
mis-typing of the first one, so it has been well populated without being defined. The
ninth term has apparently made the list by virtue of the high OntoRank score of the
SWO that defines it.

Table 6 lists top ten SWTs in Swoogle’s Ontology Dictionary. The type of an SWT
is either ‘p’ for property or ‘c’ for class. rdfs:comment is ranked higher than dc:title even
though the latter is better populated because the former is referenced by many important
SWDs. Properties are ranked higher than classes since they are less domain specific.



168 L. Ding et al.

Table 6. Top ten terms order by TermRank

TermRank SWT type pop(swd) pop(i)
1 rdf:type p 334810 8174201
2 dc:description p 60427 918644
3 rdfs:label p 12795 197079
4 rdfs:comment p 4626 137267
5 dc:title p 60229 1452612
6 rdf:Property c 4117 52445
7 dcterms:modified p 11881 25321
8 rdfs:seeAlso p 55985 1167786
9 dc:language p 149878 225600
10 dc:type p 9461 54676

5.2 Ranking Class-Property Bonds

A more specific issue directly related to step 2 in CONSTRUCT-ONTO is ranking class-
property bonds (see definition 2), which helps users choose the most popular proper-
ties for a class when they are publishing data with the desire of maximizing the data’s
visibility. For example, when publishing an instance of foaf:Person, we might always
supply a triple that populates the most common property foaf:mbox sha1sum.

Definition 2. A class-property bond (c-p bond) refers to an rdfs:domain relation be-
tween property and class. While c-p bonds can be specified in ontologies in various
ways, e.g., direct association (rdfs:domain) and class-inheritance; we are interested
in finding c-p bonds in class instances characterized by the two-triple graph pattern:
( x, rdf : type, class), ( x, property, ).

To rank c-p bonds, we cannot simply rely on the definition from ontologies because
that does not show how well a c-p bond has been adopted in practice. We evaluate
c-p bonds, therefore, by ranking the subgraph that instantiates c-p bonds, e.g., the
number instance of foaf:person modified by foaf:name. In DS-APRIL, the five highest
ranked properties (by the number of SWDs instantiated c-p bond) of foaf:Person are (i)
foaf:mbox sha1sum (67,136 SWDs), (ii) foaf:nick (62,266), (iii) foaf:weblog (54,341),
(iv) rdfs:seeAlso (47,228), and (v) foaf:name (46,590).

6 Conclusions and Future Work

Swoogle supports two primary use cases: helping human knowledge engineers find
ontologies and terms and serving agents and tools seeking knowledge and data. While
no formal evaluation has yet been done, we offer some observations that address how
well Swoogle meets its goals and informally compare it to the alternatives.

Swoogle’s web-based service has been available since Spring 2004 and has received
several million hits, supporting hundreds of regular users and thousands of casual ones.
Swoogle continuously discovers online SWDs and thus maintains a global view of the
public Semantic Web. The results reported here are based on a dataset (DS-APRIL)



Finding and Ranking Knowledge on the Semantic Web 169

of over 330,000 SWDs and 4,000 SWOs, about half the size of the current collection.
Swoogle has found many more SWDs, most of which are FOAF or RSS documents,
that are excluded from the database to make Swoogle’s dataset balanced and interest-
ing. Swoogle’s ability to search content at various granularity levels and its ranking
mechanisms are novel and promote the emergence of consensus ontologies.

There are three alternatives to Swoogle that can be used to find knowledge on the
Semantic Web: conventional search engines, Semantic Web repositories, and special-
ized RDF data collections. Some conventional search engines index RDF documents
and can be used to find SWDs and SWTs. However, none understands the content be-
ing indexed, recognizes terms as links, or even correctly parses all RDF encodings.
Any ranking done by such systems ignores links between SWDs and their correspond-
ing semantic relationships. Some useful SWD repositories are available (e.g., those at
www.schemaweb.info and rdfdata.org) but require manual submission and have lim-
ited scope. Several crawler-based systems exist that are specialized to particular kinds
of RDF (e.g., FOAF, RSS, DOAP, Creative Commons), but their scope and services
are restricted. Intellidimention has an experimental crawler based system 21 similar to
Swoogle but with abridged coverage.

A formal evaluation of Swoogle’s performance on finding and ranking SWDs and
SWTs would be based, in part, on measuring the precision and recall for a set of queries
against human judgments. This would allow us to compare Swoogle’s performance to
other systems, to evaluate different ranking algorithms and to evaluate the impact of
doing more or less inference. While we intend to carry out such an evaluation, it requires
careful design and significant labor to acquire the necessary human evaluations. User
studies through questionnaires or surveys on Swoogle ranking results are planned to
provide a subjective reference.

By enlarging the test dataset and compensating for biases due to the predominance
of FOAF and RSS documents, we expect to refine our evaluation of Swoogle’s nav-
igation model and ranking algorithms. We are also improving the ranking algorithms
without generalizing the navigation model, motivated by the the success of XML object-
level ranking [17, 11]. We are extending class-property bond ranking to a more general
issue – tracking the provenance of and ranking arbitrary RDF sub-graphs [26]. This
can be used to resolve, for example, a case where multiple RDF triples claim different
values for a person’s homepage (whose cardinality constraint is one).

References

1. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V.C., Sachs,
J.: Swoogle: A search and metadata engine for the semantic web. In: CIKM’04. (2004)

2. Wang, R., Storey, V., Firth, C.: A framework for analysis of data quality research. IEEE
Transactions on Knowledge and Data Engineering 7 (1995) 623–639

3. Patel, C., Supekar, K., Lee, Y., Park, E.K.: OntoKhoj: a semantic web portal for ontology
searching, ranking and classification. In: WIDM’03. (2003) 58–61

4. Alani, H., Brewster, C.: Ontology ranking based on the analysis of concept structures. In:
Proc. of the 3rd International Conference on Knowledge Capture (K-Cap). (2005)

21 http://www.semanticwebsearch.com/



170 L. Ding et al.

5. Stojanovic, N., Studer, R., Stojanovic, L.: An approach for the ranking of query results in
the semantic web. In: ISWC’03. (2003)

6. Anyanwu, K., Maduko, A., Sheth, A.: Semrank: Ranking complex relationship search results
on the semantic web. In: WWW’05. (2005) 117 –127

7. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order
to the web. Technical report, Stanford University (1998)

8. Haveliwala, T.H.: Topic-sensitive pagerank. In: WWW’02. (2002) 517–526
9. Jeh, G., Widom, J.: Scaling personalized web search. In: WWW ’03. (2003) 271–279

10. Xing, W., Ghorbani, A.A.: Weighted pagerank algorithm. In: Proc. of the 2nd Annual
Conference on Communication Networks and Services Research. (2004) 305–314

11. Nie, Z., Zhang, Y., Wen, J.R., Ma, W.Y.: Object-level ranking: Bringing order to web objects.
In: WWW’05. (2005) 567–574

12. Zhuge, H., Zheng, L.: Ranking semantic-linked network. In: WWW’03 Posters. (2003)
13. Baeza-Yates, R., Davis, E.: Web page ranking using link attributes. In: WWW’04 Posters.

(2004) 328–329
14. Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological foundations. Com-

munications of the ACM 39 (1996) 86–95
15. Kanh, B.K., Strong, D.M., Wang, R.Y.: Information quality benchmarks: Product and service

performance. Communications of the ACM 45 (2002) 184–192
16. Supekar, K., Patel, C., Lee, Y.: Characterizing quality of knowledge on semantic web. In:

Proc. of 7th International Florida Artificial Intelligence Research Society Conf. (2002)
17. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: ranked keyword search over

XML documents. In: SIGMOD’03. (2003) 16–27
18. Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: Authority-based keyword

search in databases. In: VLDB’04. (2004) 564 – 575
19. Xi, W., Zhang, B., Chen, Z., Lu, Y., Yan, S., Ma, W.Y., Fox, E.A.: Link fusion: A unified link

analysis framework for multi-type interrelated data objects. In: WWW’04. (2004) 319–327
20. Rocha, C., Schwabe, D., Aragao, M.P.: A hybrid approach for searching in the semantic web.

In: WWW’04. (2004) 374–383
21. Aleman-Meza, B., Halaschek, C., Arpinar, I.B., Sheth, A.: Context-aware semantic associa-

tion ranking. In: SWDB’03. (2003) 33–50
22. Bizer, C.: Semantic web trust and security resource guide. (http://www.wiwiss.fu-

berlin.de/suhl/bizer/SWTSGuide/ (last accessed 08-11-05))
23. Ding, L., Kolari, P., Finin, T., Joshi, A., Peng, Y., Yesha, Y.: On homeland security and the

semantic web: A provenance and trust aware inference framework. In: Proceedings of the
AAAI Spring Symposium on AI Technologies for Homeland Security. (2005)

24. Volz, R., Oberle, D., Maedche, A.: Towards a modularized semantic web. In: Proceedings
of the ECAI’02 Workshop on Ontologies and Semantic Interoperability. (2002)

25. Grau, B.C., Parsia, B., Sirin, E.: Working with multiple ontologies on the semantic web. In:
ISWC’04. (2004)

26. Ding, L., Finin, T., Peng, Y., da Silva, P.P., McGuinness, D.L.: Tracking rdf graph provenance
using rdf molecules. Technical Report TR-05-06, UMBC (2005)



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 171 – 185, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Choreography in IRS-III – Coping with Heterogeneous 
Interaction Patterns in Web Services 

John Domingue, Stefania Galizia, and Liliana Cabral 

Knowledge Media Institute, The Open University, Milton Keynes, UK 
{J.B.Domingue, S.Galizia, L.S.Cabral}@open.ac.uk 

Abstract. In this paper we describe how we handle heterogeneity in web 
service interaction through a choreography mechanism that we have developed 
for IRS-III. IRS-III is a framework and platform for developing semantic web 
services which utilizes the WSMO ontology. The overall design of our 
choreography framework is based on: the use of ontologies and state, IRS-III 
playing the role of a broker, differentiating between communication direction 
and which actor has the initiative, having representations which can be 
executed, a formal semantics, and the ability to suspend communication. Our 
framework has a full implementation which we illustrate through an example 
application. 

1   Introduction 

Web services provide a mechanism to connect applications regardless of the 
underlying software/hardware platform and their location. From an Information 
Technology (IT) perspective the key features of web services are that, a) they are 
based on standard XML based protocols which can run over the internet and b) the 
descriptions of a web service are distinct from the actual implementation. From a 
business perspective one key feature is that web services can be viewed as 
implementations of business services. Commercial organizations can thus use web 
services technology to expose elements of their business processes. For example, 
Amazon Web Services  allows software developers to directly access their technology 
platform and product data [1].  

Interest in web service technology is high. Many of the major IT vendors (e.g. 
Microsoft, IBM, SAP) now provide web service based solutions. Moreover, current 
predictions indicate that the market for web service based solutions will be worth $2.9 
billion in 2006 growing to $6.2 billion by 2008 [13].  

The web service community is now beginning to accept that the majority of the 
current problems associated with web services are related to the fact that all of the 
technologies are based on syntactic descriptions such as WSDL [25] and UDDI [21]. 
Because syntactic level descriptions are not amenable to computer based 
interpretation, all of the tasks associated with creating applications from web service 
based components are carried out manually. Requiring IT specialists to discover, 
compose and deploy web services manually is time-consuming, costly and error-
prone. Moreover, as stated by Larry Ellison: 



172 J. Domingue, S. Galizia, and L. Cabral 

“Semantic differences remain the primary roadblock to smooth 
application integration, one which Web Services alone won't 
overcome….When I pass customer data across [the Web] in a 
certain format using a Web services interface, the receiving 
program has to know what that format is. You have to agree on 
what the business objects look like.” [8] 

 
The most significant task when connecting software components together is not the 

plumbing (the data and control flow) but coping with the semantic differences. Two 
main types of communication mismatches can occur. The first is that the data can 
have different underlying representations. For example, one web service may 
represent an address as a number followed by a street name and town, whereas 
another may represent an address as a number followed by a postal code. The second 
type of mismatch is related to interaction. Each web service will have a specific 
interaction pattern related to how the underlying processes are implemented. For 
example, one web service may require credit card details (e.g. card number, card 
expiry date) to be sent one at a time whereas another may require that all details are 
sent in a single message.  

In this paper we describe how we cope with heterogeneous web service interaction 
patterns in the context of IRS-III [7]. IRS-III is a framework and implemented 
infrastructure which supports the creation of semantic web service based applications. 
IRS-III has been used to teach semantic web services in a number of tutorials [19] and 
is currently being deployed in a number of application areas in the context of the DIP 
[6] project. Following the WSMO [17] framework we use the term choreography to 
denote the IRS-III component which deals with web service interaction. Our primary 
contributions which we describe in this paper include: a set of design principles for 
choreography, a formal definition of choreography based on abstract state machines, a 
well founded set of ontology based choreography specific primitives and a full 
implementation. 

The rest of this paper is structured as follows: in the following section we describe 
related work, then we present an overview of IRS-III framework. The section 4 
describes the choreography within IRS-III outlining the design principles, our formal 
model, the main primitives and the execution. In section 5 we describe an example 
application and the final section concludes the paper. 

2   Related Work 

The existing approaches describing the communication among web services propose 
different definitions of choreography, and some of them do not clearly distinguish 
between choreography and message exchange pattern defininitions. 

A message exchange pattern (MEP) is a syntactic template that represents a model 
for the exchange of messages between web services; a choreography should also 
describe patterns semantically. However, some approaches view choreography as the 
composition of atomic MEPs [23], without the support of semantics.  Actually, the 
only standard choreography definition, available on the W3C glossary [24], states 
simply that choreography concerns the interaction of services with their users.  



 Choreography in IRS-III – Coping with Heterogeneous Interaction Patterns 173 

However, the requirements emerging from e-Business necessitate that web services 
exchange information at the semantic level. Thus, the choreography of a semantic 
web service should include a communication protocol specification, which represents 
service interactions at a semantic level.  

The Web Service Choreography Description Language (WS-CDL) provides the 
choreography representation from a global point of view [12]. According to this 
vision, the choreography describes the behaviour observable from an external point of 
view, emphasizing the collaboration of parties, where the communication progresses 
only when jointly agreed ordering rules are satisfied. Furthermore, the model depicted 
by the WS-CDL working group describes the choreography at three levels of 
abstraction: abstract, portable and concrete [22]. An abstract choreography definition 
will contain descriptions of the data types used and the conditions under which a 
given message is sent. A portable choreography includes descriptions of the physical 
structure of the information exchanged and of the technologies used. A concrete 
choreography extends a portable description including destination URLs, and specific 
rules, such as information about digital certificates to be used for securing messages. 
When creating a choreography, the chosen level of abstraction would depend on the 
current context (e.g. the type of organization it was designed for) and the level of 
reusability and extendibility required.  

Another global approach is presented by Dijman and Dumas [5]. They depict both 
static and dynamic aspects of the global communication among heterogeneous web 
services using Petri Nets.  

The main current approaches to representing web service communication at a 
semantic level are proposed by the WSMO [17] and OWL-S [16] working groups.  

A web service description within WSMO contains an interface definition. An 
interface includes a definition of orchestration – how a composite web service 
invokes subsidiary web services - and a choreography. WSMO adopts, furthermore, 
the Abstract State Machine (ASM) formalism to model the behavioral aspects of the 
communication. 

In contrast OWL-S does not provide an explicit definition of choreography but 
instead focuses on a process based description of how complex web services invoke 
atomic web services.  

Within IRS-III, our viewpoint is based on the WSMO approach, which is different 
from the global approaches described above, as it represents the choreography of a 
single web service.  That is, we describe how one web service talks to one other. 

We strictly keep to the WSMO vision, in fact, by separating the orchestration and 
choreography concepts, WSMO emphasizes the difference between communication 
and cooperation among web services.  

There are also other choreography descriptions that follow the WSMO approach, 
for instance, Arroyo and Duke propose a Conceptual Model for a Semantic 
Choreography Engine (SOPHIE) [2], where they aim to separate in a clear-cut way 
the syntactic and the semantic level and adopt the ASM formalism to model the 
communication. 

In the rest of this paper we give a detailed description of choreography in IRS-III. 



174 J. Domingue, S. Galizia, and L. Cabral 

3   IRS-III Overview 

The IRS project has the overall aim of supporting the automated or semi-automated 
construction of semantically enhanced systems over the internet. IRS-I [4] supported 
the creation of knowledge intensive systems structured according to the UPML 
framework [9] and IRS-II [15] integrated the UPML framework with web service 
technologies. Within IRS-III we have now incorporated and extended the WSMO 
ontology [17].  

IRS-III has three main classes of features which distinguish it from other work on 
semantic web services.  

Firstly, it supports one-click publishing of ‘standard’ program code. In other words, 
it automatically transforms programming code (currently we support Java and Lisp 
environments) into a web service, by automatically creating an appropriate wrapper.  
Hence, it is very easy to make existing standalone software available on the net, as 
web services.  

Secondly, by extending the WSMO goal and web service concepts, clients of IRS-
III can directly invoke web services via goals - that is IRS-III supports capability-
driven service invocation.  

Finally, IRS-III services are web service compatible – standard web services can be 
trivially published through the IRS-III. 

The main components of the IRS-III architecture are the IRS-III Server, the IRS-III 
Publisher and the IRS-III Client, which communicate through the SOAP protocol. 
The IRS-III server holds descriptions of Semantic Web Services at two different 
levels. A knowledge level description is stored currently represented internally in 
OCML [14], an Ontolingua-derived language which provides both the expressive 
power to express task specifications and service competencies, as well as the 
operational support to reason about these. 

Publishing with IRS-III entails associating a specific web service with a WSMO 
web service description. When a web service is published in IRS-III all of the 
information necessary to call the service, the host, port and path are stored within the 
choreography associated with the web service.  

The IRS publishing platform is furthermore responsible for the actual invocation of 
a web service; additionally, it automatically generates wrappers which turn standalone 
code into a web service. The platform also copes with the syntactic level differences 
between the various web service platforms e.g. AXIS and Apache. 

IRS-III was designed for ease of use, in fact a key feature of IRS-III is that web 
service invocation is capability driven. The IRS-III Client supports this by providing a 
goal-centric invocation mechanism. An IRS-III user simply asks for a goal to be 
solved and the IRS-III broker locates an appropriate web service semantic description 
and then invokes the underlying deployed web service. 

In the rest of the paper we will use the terms “IRS” and “IRS-III” interchangeably. 

4   IRS-III Choreography Model 

A choreography is described in IRS-III by a grounding declaration and a set of 
guarded transitions. The grounding specifies the conceptual representation of the 



 Choreography in IRS-III – Coping with Heterogeneous Interaction Patterns 175 

operations involved in the invocation of a Web Service and their mapping to the 
implementation level. More specifically, the grounding definitions include 
operation-name, input-roles-soap-binding, output-role-soap-

binding. The guarded transitions are the set of rules, which represent the interaction 
between IRS-III and the Web Service on behalf of an IRS client. They are applied 
when executing the choreography. This model is executed at a semantic level when 
IRS-III receives a request to achieve a goal. 

In the rest of this section we list the main design principles which motivate our 
choreography model. 

4.1   Design Principles 

Ontology Based. Ontologies form a central pillar of the semantic web. Founding our 
choreography descriptions on ontologies means that we can refer to relevant domain 
dependent concepts or relations within guarded transitions.  

IRS as a Broker. As we mentioned earlier the IRS acts as a broker for capability 
based invocation. A client sends a request to achieve a goal and the IRS finds, 
composes and invokes the appropriate web services. The choreography to the IRS is 
thereby fixed. We assume that IRS clients are able to formulate their request as a goal 
instance. This means that we only require choreographies between the IRS and the 
deployed web services. Our choreography descriptions are therefore written from the 
perspective of IRS as a client of the web service.  

The Predominance of State.  Our overall view is that any message sent by IRS to a 
web service will depend on its current state, which will include a representation of the 
messages received during the current conversation.  

Given the above we decided to adopt the Abstract State Machine (ASMs) model 
[3] to represent IRS choreography. Additionally, ASMs are also used within WSMO 
[18] which is the ontology adopted within IRS-III. A further reason for using ASMs is 
that they combine mathematical rigor with a practical execution model to represent 
message exchange patterns. 

By representing ASM as rules, the sequence of operations and the message pattern 
instantiations are generated through the evaluation of conditions. A condition is a 
generic statement on the current situation, for instance, that an error has occurred. The 
executive part of the guarded transitions (after ‘then’) updates the state. 
The general form of a guarded transition is given below: 
  

“if currentstate = s  ∧  Cond  then currentstate = s1 ” 
 

Open. The major components of IRS-III are semantic web services represented 
within the IRS-III framework. This feature enables the main functionalities of the IRS 
to be redefined to suit specific requirements. Following this the IRS choreography 
engine is itself a semantic web service.  

Communication Representation. We have chosen to classify the communication in 
IRS choreography according to two dimensions, following the system-client 
cooperation model proposed in KADS [11], namely: 



176 J. Domingue, S. Galizia, and L. Cabral 

• The initiative in the communication, and 
• The direction of the communication. 

The initiative expresses which actor, either IRS or the web service, is responsible for 
starting the communication, while the direction represents the communication route, 
which can be from the system to the client or vice-versa. 

The reason for preferring this communication model is that in this way we can 
verify at every state which actor has initiative. Initiative is associated with the actors 
who in some sense have control of the conversation. For example, only actors with 
initiative are allowed to start a conversation or update data previously sent.  

A message exchange event is a kind of transfer task, an elementary executed 
operation by an actor during a conversation. 

From the IRS perspective, and according to Greef and Breuker’s communication 
representation, we consider six kinds of events: obtain, present, provide, receive, 
obtain-initiative, present-initiative. When the IRS does not have the initiative, receive 
and provide messages are used. Conversely, obtain and present events occur when the 
IRS is in control of the conversation. Obtain-initiative and present-initiative allow the 
initiative to be transferred. For detailed event descriptions see [10].   

When a client, that can also be a web service, invokes the IRS, in order to achieve 
a goal, the choreography engine runs.  We depict a simple invocation goal scenario 
below, underlining the events involved during choreography execution. 

Figure 1 depicts the event sequence for this typical goal driven web service 
invocation scenario. 

 

Fig. 1. A typical sequence of choreography events occurring during goal based web service 
invocation in IRS-III  

The client initiates the communication with IRS by requesting that a goal be 
achieved. Within our model this corresponds to receive and obtain-initiative events as 
the client delegates initiative to the IRS to invoke the required service. During a 
second phase the IRS invokes a web service which returns a response. In this phase 
the IRS has the initiative and therefore the occurring events are present and obtain.  

Ability to Suspend Communication.  There will be some situations where it is 
necessary to suspend the current dialog and resume it later. For example, either the IRS 
or the web service may not have some required data or a web service may go offline. 

Executable Semantic Descriptions. The semantic representations of choreography 
should be executable directly or should be able to be compiled to a runnable 
representation. Our underlying modelling language OCML [14] is operational. 
Additionally, extensions within the IRS allow us to attach OCML functions to 



 Choreography in IRS-III – Coping with Heterogeneous Interaction Patterns 177 

deployed web services. This means that within a guarded transition one can refer to 
external data, for example, to “today's exchange rate”. 

Formalization. A formal semantics allows us to reason about the choreography 
descriptions which is useful if we want to automatically compose web services. For this 
reason, we adopt ASMs and our formal model is described in the following section. 

Easy to use. If we want our system to be used widely, it is important that the 
components are easy to use. For this purpose we have defined a relatively small set of 
choreography specific primitives. 

4.2   Formal Definition 

Our abstract model of choreography is represented by four main entities: events, 
states, conditions, and guarded transitions.  
We perform the IRS-III choreography through the tuple TCSE ,,, , where  

• E is a finite set of events;  
• S the (possibly infinite) set of states;  
• C the (possibly infinite) set of conditions; 
• T represents the (possibly infinite) set of the conditional guarded transitions. 

The events that can occur are: {obtain, present, provide, receive, obtain-initiative, 
present-initiative} [10]. Every event maps to an operation during the conversation 
viewed from the IRS perspective. 

The states are the possible message exchange pattern instantiations. A state si ∈ S 
at a given conversation step Ti, is represented by a set of instances. It contains a 
constant subset, the web service host, port, location, that is invariant whenever the 
same web service is invoked, and the event instantiation, dependent on the event that 
occurred at step Ti.     

The web service host, port and location are defined during the IRS publishing 
process – see section 3.1. 

A condition c ∈ C depicts a situation occurring during the conversation.  
The guarded transitions, according with WSMO definition [18], express changes of 

states by means of rules: 

A guarded transition t ∈ T, is a function  ( ) SSt
E

C →2 ,: , that associates a couple (s, 

{c1, .., cj,) to s’, where s and s’ ∈ S,  and  every ck  (1   k   i) ∈  C.  
A guarded transition updates the communication state by an event e∈ E. 

4.3   Choreography Primitives 

We have defined a set of choreography specific primitives which can be used in guarded 
transitions. Our primitives provide an easy to use interface to control a conversation 
between the IRS and a web service. Developers are also able to include any relation 
defined with the imported ontologies within guarded transition specifications.  

Init-choreography. Initializes the state of the choreography. This primitive runs 
before a web service is invoked by IRS-III. At this step the IRS has the initiative and 
it is ready to start the communication.    



178 J. Domingue, S. Galizia, and L. Cabral 

Send-message. Calls a specific operation in the Web service. If no inputs are 
explicitly given IRS obtains the input values from the original goal invocation.  

The type of event which occurs with send-message is “present” since the IRS holds 
the initiative and the communication direction is from the IRS to the web service (see 
figure 1).  

Send-suspend. Suspends the communication between IRS and the web service, 
without stopping the choreography executions. This action will occur, for example, 
when the IRS lacks some data required by a web service. Executing this primitive  
suspends the dialog and stores the current state so that communication can be resumed 
later. The event associated to send-suspend is “present” since communication 
direction is from the IRS to the web service and the IRS has (and keeps) the initiative.    

Received-suspend. The communication is suspended by the web service, when for 
some reason it is not able to respond to an invocation. As with send-suspend the 
choreography execution is put on hold. The web service is free to resume the dialog 
when conditions allow. The event occurring here is “receive”, because the web 
service has taken the initiative from IRS and the communication direction is from the 
web service to IRS.  

Figure 2 shows all events which occur when a web service suspends 
communication. Initially IRS has initiative, but it is handed over to the web service 
which suspend the communication through the event “receive”. When the web service 
resumes the dialog the associated event is “receive” again, because the web service 
has the initiative. 

 

Fig. 2. The occurring choreography events if the web service suspends the communication 

Received-message. Contains the result of a successful send-message for a specific 
operation.  In the general case the trigged event is “obtain” as shown in figure 1. If 
however the web service had previously suspended the communication it will be 
“receive” (see figure 2). In the both situations the message direction is from the web 
service to the IRS, but in the former one, IRS has the initiative, and in the latter the 
web service has control of the dialog.  

Received-error. If the execution of a web service causes an error to occur then the 
received-error primitive is used. The parameters of received-error include the error 



 Choreography in IRS-III – Coping with Heterogeneous Interaction Patterns 179 

message and the type of error which occurred. In a fashion similar to received-
message, described above, the event taking place is either “obtain” (see figure 1), or 
“receive” (see figure 2).  

End-choreography. Stops the choreography. No other guarded transitions will be 
executed. 

4.4   Choreography Execution 

IRS uses a forward-chaining-rule engine to execute a choreography. This means the 
rules belonging to a choreography are fired according to the state. 

Within the IRS there is an internal method which selects one guarded transition 
when two or more are selected.  

One important feature of the execution environment of IRS is that it allows the 
scope of the choreography to be defined for the set of ontologies involved in the Web 
Service description. 

The IRS server carries out inferences at an ontological level. During 
communication with a web service the ontological level descriptions need to be 
mapped to the XML based representations used by the specific web service invoked. 
We provide two mechanisms which map a) from the ontological level to XML 
(lower) and b) from XML to the ontological level (lift).  

Lift. Lifts an XML string into an ontological construct, represented in OCML. A 
generic version of this relation is defined within the IRS ontology. SWS developers 
are free to overwrite this relation inline with the relationship between the results of 
web service calls and the ontologies used. The lift primitive has the following input 
parameters: class-name, web-service-class, xml-string and produces an 
instance of class-name as output. The semantic developer can thus customize 
how XML is parsed according the classes within the underlying ontology and the 
particular web services selected. In order to cope with XML based input the lift 
primitive utilizes an inbuilt SAX based XML parser. 

Lower. Lowers the ontological construct to XML. The input parameters to lower are:  
instance-name and a class web-service. The output is xml-string. As for the 
lift primitive the XML generated can be customized according to classes within the 
ontology and the web service class. For example, the XML generated for instances of 
a person class may include a full name for one web service and only a family name 
for another. 

5   Virtual Travel Agency Example 

Our example application is based on the WSMO Virtual Travel Agency (VTA) 
application [20]. The overall scenario is to provide a portal where clients can ask for 
train tickets between any two cities in Europe specifying a departure time and date. 
The portal maintains a profile for regular users which contains personal preferences. 

Our implementation of the VTA includes four web services which can book tickets 
for specific countries (e.g. Austria, France) and two which can book tickets for 
travellers with particular profiles (e.g. students and business people). In the rest of this 
description we will focus on one particular web service – the train ticket service for 
Germany - and describe its choreography.  



180 J. Domingue, S. Galizia, and L. Cabral 

German-buy-train-ticket-service-choreography 
grounding:  
 
  normal 
   book-german-train-journey 
      has-person "sexpr” 
      has-departure-station "sexpr" 
      has-destination-station "sexpr" 
      has-date-and-time "sexpr" 
   "string" 
 
  first-class-upgrade 
    book-first-class-upgrade-german-train-journey 
    ….. 
                    
  standard-class 
    book-standard-class-german-train-journey 
    ….. 
                   
  acknowledge-error 
   acknowledge-error-message 
      has-acknowledgement "int" 
   "string" 
    
guarded-transitions: 
 
  start  
    init-choreography 
  then 
    send-message 'normal 
     
  accept-first-class-upgrade 
    received-message normal ?result 
    upgrade-class ?result 
    operation-input normal has-person ?person 
    accept-upgrade ?person ?accept-upgrade 
  then 
    send-message 'first-class-upgrade 
    end-choreography 
 
 date-error-transition 
   received-error normal ?error-message ?error-type 
   date-format-error ?error-type 
 then 
   send-message-with-new-input-role-pairs 
      'acknowledge-error (has-acknowledgement 0) 
   end-choreography 

      
If the traveller booking the train ticket is a gold card member the German train 

ticket service offers a free upgrade to first class. Travellers can state that they 
automatically accept these offers within their profile. The choreography definitions 
below enable the IRS to interact with the web service so that the correct types of 



 Choreography in IRS-III – Coping with Heterogeneous Interaction Patterns 181 

bookings are made. The choreography starts with the guarded transition containing 
init-choreography and it ends with the end-choreography execution. 

The choreography contains two components. The first is a grounding which maps 
between semantic operations and the implementation level. Above we show the full 
grounding for the normal and acknowledge-error operations and only partial 
definitions for the other operations. After the operation name the next part of the 
grounding shows the name of the implementing component. In this case it is the name 
of the Lisp function within the Lisp publishing platform. For a standard web service it 
would be the name of the operation within the WSDL file and for a Java 
implementation it would be the name of the Java class and method.  The soap 
bindings for the inputs and output are then specified.  

The second part of the choreography contains the set of guarded transitions. Above 
we show three guarded transitions. Start initializes the choreography session and then 
invokes the deployed service by sending the message associated with the normal 
operation. Send-message is a choreography specific relation which takes the values of 
the input roles from the associated goal instance, transforms the values to an XML 
representation (using a relation called lower), and then invokes the web service. 
Accept-first-class-upgrade uses the choreography specific received-

message relation. Responses from a web service invocation are first transformed into 
an ontological representation, using the relation lift, and then asserted as (received-
message <operation-name> <lifted-invocation-response>). The following 
expressions in the condition check whether the result of the invocation is an offer of an 
upgrade and whether the traveller’s profile states that s/he automatically accepts 
upgrades. The executive part of the guarded transition sends a message for the first-
class-upgrade operation and ends the choreography.  

The final guarded transition shown, date-error-transition, handles errors. If 
invoking a web service causes an error then an instance of the relation received-
error is created. The signature of this relation is <operation> <error-message> 
<error-type>. Error-type is an instance of a subclass of the invocation-
error class. The condition for this guarded transition checks to see if the error is a 
date format error. When this is the case the acknowledge-error operation is 
invoked. Note that because the input-role name and value (has-acknowledgement 
and 0) are not present in the original goal invocation they are provided here. Hence 
the use of the relation send-message-with-new-input-role-pairs.  

Every guarded transition execution updates the choreography state. 
 
German-buy-train-ticket-service-publisher-
information 
web-service-host: "137.108.24.227" 
web-service-port: 3001 
web-service-location: "/soap" 
 

Once the semantic descriptions have been created we ‘publish’ the web service 
through a simple dialog where we state the URL of the appropriate publishing 
platform. The definition created for the german-train-ticket-service is shown 
above.  Host, port and location represent also the invariant part of choreography state 
when a given web service is invoked. 



182 J. Domingue, S. Galizia, and L. Cabral 

Before running a set of guarded transitions the IRS creates a new ontology which 
inherits from the ontology in which the web service is defined. All new assertions are 
made within the new ontology which is deleted after the choreography completes 
(with end-choreography). This allows the IRS to cope with simultaneous goal 
driven web service requests. Additionally, the ontology is used to capture the current 
state of a choreography run when a suspend primitive is invoked. 

  

Fig. 3. A screen snapshot showing the VTA running on IRS-III 

Figure 3 shows a screen snapshot of the VTA application running in IRS-III. The 
bottom right of the figure contains three windows. The Invocation Client (with title 
“Achieve Goal”) provides a dialog where the client has specified the input role values 
for the buy-train-ticket-goal (Christoph wants to travel from Frankfurt to 
Berlin at 14:20:30 on the 5th April 2005). Below the Response window shows the final 
result – Christoph has a first class booking on the German rail system at 14:47 for 31 
Euros.  Behind the Invocation Client and Response window we can see the IRS-III 



 Choreography in IRS-III – Coping with Heterogeneous Interaction Patterns 183 

Browser/Editor. The top part displays a list of the goals, web services and mediators 
defined within the wsmo-use-case ontology. The bottom part shows a detailed 
description of buy-train-ticket-goal, where every item, classes, relations and 
instances, can be inspected by clicking on it. 

The main window (titled “IRS Visualizer”) is a simple visualization system which 
displays the interactions between the IRS server and the published web services. The 
top left pane within the visualization (with the label “IRS Server”) shows the goal 
based requests received by the server and the web service invocation requests sent.  

The portion of the interaction history shown contains a call to the universal-
time-buy-train-ticket-mediation-service, a mediation service which 
converts  the date from (30 20 14 5 4 2005) into 3321696030 format. The german-
buy-train-ticket-service is called twice. The first call with the implementation 
component identifier book-german-train-germany results in the response GOLD-
CARD-UPGRADE. This call corresponds to the invocation with the start guarded 
transition. The second call with the implementation component identifier book-
first-class-upgrade-german-train-journey results in the response shown 
in the Response window. The second call corresponds to the invocation associated 
with the accept-first-class-upgrade guarded transition. 

The pane on the top right of the visualizer (labelled “Universal-Time-Buy-Train-
Ticket-Mediation-Service”) shows that the mediation service was called twice. As 
mentioned earlier, during the web service selection process the IRS evaluates the 
logical expression within the assumption slot of a web service’s capability. If the 
logical expression evaluates to true the corresponding web service is deemed to be 
selected. Before evaluating the expression the IRS runs the web service’s associated 
mediators to transform the values within the invoked goal instance. The date and time 
mediation service is run twice because both the German and Austrian rail services 
within our application use a universal date and time format.  

The pane of the bottom left of the visualizer (labelled “German-Buy-Train-Ticket-
Service”) shows that two invocations were made to the german-buy-train-
ticket-service. The first with the component identifier book-german-train-
germany and the second invocation with book-first-class-upgrade-german-
train-journey. Within the Lisp publishing platform these correspond to a Lisp 
function name. As mentioned earlier for a standard web service the identifier would 
correspond to a WSDL operation. 

6   Conclusions and Future Work 

Enabling heterogeneous software components, available on the internet, to be 
integrated is a primary aim for research in the area of semantic web services. In this 
paper we have described how IRS-III is able to handle heterogeneity related to web 
service interaction patterns through a choreography.  

The choreography execution occurs in IRS-III from the client perspective, that is to 
say, to carry out a web service invocation, the IRS executes the choreography as well 
as a requester client. 

Our underlying design principles are based on the use of ontologies and state, the 
IRS acting as a broker for capability based invocation, the dimensions of initiative 



184 J. Domingue, S. Galizia, and L. Cabral 

and communication direction, the provision of a formal description, and semantic 
descriptions which are realised within simple-to-use constructs that can be executed.  

We have shown through a detailed example how choreographies can be defined 
and executed with little effort with our framework. As mentioned earlier a key 
element of our design is that the choreography component of IRS-III is itself a 
semantic web service allowing developers to easily replace our choreography 
execution engine with another if desired. 

We have recently used our platform and the choreography execution in various 
tutorials: at the European Semantic Web Conference (ESWC 2005), the International 
Conference on Web Engineering (ICWE2005), and the Knowledge Web Summer 
School (SSSW 2005) and we will continue to evaluate the framework at the European 
Conference on Web Services (ECOWS 2005) and at this year's International Semantic 
Web Conference (ISWC 2005). 

Additionally, we are currently deploying an IRS-III based application within an e-
Government demonstrator in the context of the DIP project.  

In relation to future work we plan to semi-automatically generate client 
choreographies from the choreography descriptions of WSMO-compliant web services. 

The IRS-III browser/editor and publishing platforms are currently available at 
http://kmi.open.ac.uk/projects/irs/. We periodically release executable versions of the 
server for specific usage contexts. 

Acknowledgements 

This work is supported by DIP (Data, Information and Process Integration with 
Semantic Web Services) (EU FP6 - 507483) and AKT (Advanced Knowledge 
Technologies) (UK EPSRC GR/N15764/01) projects. 

References 

1. Amazon (2005). Web Services (Available at http://www.amazon.com/gp/browse. 
html/104-6906496-9857523?%5Fencoding=UTF8&node=3435361).  

2. S. Arroyo, S. and A., Duke (2005). SOPHIE - A Conceptual Model for a Semantic 
Choreography Framework. In proceedings of the Workshop on Semantic and Dynamic 
Web Processes (SDWP 2005). Orlando, Florida, USA, July 2005. 

3. Börger, E. (1998). High Level System Design and Analysis Using Abstract State 
Machines. In proceedings of the International Workshop on Current Trends in Applied 
Formal Method: Applied Formal Methods, p.1-43, October 1998. 

4. Crubezy, M., Motta, E., Lu, W. and Musen, M. (2002). Configuring Online Problem-
Solving Resources with the Internet Reasoning Service. IEEE Intelligent Systems 2002.  

5. Dijkman, R. and Dumas, M. (2004). Service-Oriented Design: A Multi-Viewpoint 
Approach. International Journal of Cooperative Information Systems 13(4): 337-368, 
2004. 

6. DIP (2005). The DIP Project. http://dip.semanticweb.org/. 
7. Domingue, J., Cabral, L., Hakimpour, F., Sell, D. and Motta, E. (2004). IRS III: A 

Platform and Infrastructure for Creating WSMO-based Semantic Web Services. In 
proceedings of the Workshop on WSMO Implementations (WIW 2004) Frankfurt, 
Germany. CEUR Workshop Proceedings, ISSN 1613-0073 II. 



 Choreography in IRS-III – Coping with Heterogeneous Interaction Patterns 185 

8. Ellison, L. (2002). Looking Toward the Next Phase for Web Services. (Available at 
http://webservicesadvisor.com/doc/09586).  

9. Fensel, D. and Motta, E. (2001). Structured Development of Problem Solving Methods. 
IEEE Transactions on Knowledge and Data Engineering, Vol. 13(6). 913-932.  

10. Galizia, S. and Domingue, J. (2004). Towards a Choreography for IRS-III. In proceedings 
of the Workshop on WSMO Implementations (WIW 2004) Frankfurt, Germany, 
September 29-30, 2004, CEUR Workshop Proceedings, ISSN 1613-0073. (Available at 
http://CEUR-WS.org/Vol-113/paper7.pdf).  

11. Greef, H. P. and Breuker, J. A. (1992). Analysing system-user cooperation in KADS. 
Knowledge Acquisition, 4:89–108, 1992. 

12. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T. and Lafon, Y. (Eds) (2004). Web 
Service Choreography Description Language Version 1.0. W3C Working Draft 17 
December 2004. (Available at http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/). 

13. Kerner, S. M. (2004). Web Services Market to Explode (Available at 
http://www.internetnews.com/dev-news/article.php/3413161) 

14. Motta, E. (1998). An Overview of the OCML Modelling Language. In proceedings of the  
8th Workshop on Knowledge Engineering Methods and Languages (KEML '98).  

15. Motta, E., Domingue, J., Cabral, L. and Gaspari, M. (2003). IRS-II: A Framework and 
Infrastructure for Semantic Web Services. In proceeding of the 2nd International Semantic 
Web Conference (ISWC2003). Sundial Resort, Sanibel Island, Florida, USA.  LNCS 2870, 
pp. 306–318. 

16. OWL-S Working Group  (2004).  OWL-S: Semantic Markup for Web Services (Available 
at http://www.daml.org/services/owl-s/1.1/overview/). 

17. Roman, D., Lausen, H. and Keller, U. (Eds) (2005). The Web Service Modeling Ontology 
WSMO, final version 1.1. WSMO Final Draft D2, 2005.  

18. Roman, D., Sciluna, D. and Feier, C. (Eds) (2005). Ontology -based Choreography and 
Orchestration of WSMO Services. Final Draft D14.   

19. Stollberg, M. and Arroyo, S. (2005). WSMO Tutorial. WSMO Deliverable (Available at 
http://www.wsmo.org/TR/d17/) 

20. Stollberg, M. and Lara, R. (Eds) (2004). D3.3 v0.1 WSMO Use Case: Virtual Travel 
Agency.  

21. UDDI (2003). UDDI Spec Technical Committee Specification v. 3.0, 
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm 

22. W3C [a] (2004). Web services choreography model overview. W3C Working Draft 24 
March 2004 (Available at http://www.w3.org/TR/2004/WD-ws-chor-model-20040324). 

23. W3C [b] (2004). Web Services Architecture. W3C Working Draft 11 February 2004 
(Available at http://www.w3.org/TR/ws-arch/). 

24. W3C [c] (2004). Web Services Glossary. W3C Working Group Note. 11 February 2004 
(Available at http://www.w3.org/TR/ws-gloss/). 

25. WSDL (2001). Web Services Description Language (WSDL) 1.1, 
 http://www.w3.org/TR/2001/NOTE-wsdl-20010315. 



Bootstrapping Ontology Alignment Methods
with APFEL

Marc Ehrig1, Steffen Staab2, and York Sure1

1 Institute AIFB, University of Karlsruhe
2 ISWeb, University of Koblenz-Landau

Abstract. Ontology alignment is a prerequisite in order to allow for interop-
eration between different ontologies and many alignment strategies have been
proposed to facilitate the alignment task by (semi-)automatic means. Due to
the complexity of the alignment task, manually defined methods for (semi-
)automatic alignment rarely constitute an optimal configuration of substrategies
from which they have been built. In fact, scrutinizing current ontology align-
ment methods, one may recognize that most are not optimized for given on-
tologies. Some few include machine learning for automating the task, but their
optimization by machine learning means is mostly restricted to the extensional
definition of ontology concepts. With APFEL (Alignment Process Feature Es-
timation and Learning) we present a machine learning approach that explores
the user validation of initial alignments for optimizing alignment methods. The
methods are based on extensional and intensional ontology definitions. Core to
APFEL is the idea of a generic alignment process, the steps of which may be
represented explicitly. APFEL then generates new hypotheses for what might be
useful features and similarity assessments and weights them by machine learn-
ing approaches. APFEL compares favorably in our experiments to competing
approaches.

1 Introduction

Semantic alignment between ontologies is a necessary precondition to establish inter-
operability between agents or services using different ontologies. Thus, in recent years
different methods for automatic ontology alignment have been proposed to deal with
this challenge. Thereby, the proposed methods were constricted to one of two differ-
ent paradigms: Either, (i), proposals would include a manually predefined automatic
method for proposing alignments, which would be used in the actual alignment process
(cf. [10, 12, 19]). They typically consist of a number of substrategies such as finding
similar labels. Or, (ii), proposals would learn an automatic alignment method based on
instance representations, e.g. bag-of-word models of documents (cf. [1, 7]).

Both paradigms suffer from drawbacks. The first paradigm suffers from the problem
that it is impossible, even for an expert knowledge engineer, to predict what strategy of
aligning entities is most successful for a given pair of ontologies. Furthermore, it is
rather difficult to combine the multiple different substrategies to behave optimally. This
is especially the case with increasing complexity of ontology languages or increasing

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 186–200, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Bootstrapping Ontology Alignment Methods with APFEL 187

amounts of domain specific conventions, which should also be included for optimal
performance. The second paradigm is often hurt by the lack of instances or instance
descriptions, because not in every case an ontology has many instances and in many
cases instances exist only for some part of the ontology. Knowledge encoded in the
intensional descriptions of concepts and relations is only marginally exploited this way.

Hence, there remains the need to automatically combine multiple diverse and com-
plementary alignment strategies of all indicators, i.e. extensional (like similar instances)
and intensional (like the same position in a taxonomy) descriptions, in order to pro-
duce comprehensive, effective and efficient semi-automatic alignment methods. Such
methods need to be flexible to cope with different strategies for various application sce-
narios, e.g. by using parameters. We call them “Parameterizable Alignment Methods”
(PAM).

We have developed a bootstrapping approach for acquiring the parameters that drive
such a PAM. We call our approach APFEL for “Alignment Process Feature Estimation
and Learning”. The learnt PAM may be applied to ontologies of specific domains, but
also for on-the-fly alignment of arbitrary ontologies.

Bootstrapping with APFEL

APFEL is based on four major considerations. First, at the level of executing the align-
ment method, APFEL is based on the general observation that alignment methods like
QOM [10] or PROMPT [19] may be mapped onto a generic alignment process (cf. Sec-
tion 3). Major steps of this generic process include:

1. Feature Engineering, i.e. select small (also domain-specific) excerpts of the overall
ontology definition to describe a specific entity (e.g., the label ‘Daimler’ to
describe the concept o1:Daimler).

2. Search Step Selection, i.e. choose two entities from the two ontologies to compare
(e.g., o1:Daimler and o2:Mercedes).

3. Similarity Assessment, i.e. indicate a similarity for a given description of two enti-
ties (e.g., simillabel(o1:Daimler,o2:Mercedes)=0).

4. Similarity Aggregation, i.e. aggregate multiple similarity assessments for one pair
of entities into a single measure (e.g., simil(o1:Daimler,o2:Mercedes)=0.5).

5. Interpretation, i.e. use all aggregated numbers, some threshold and some interpreta-
tion strategy to propose the equality for the selected entity pairs (align
(o1:Daimler)=‘⊥’).

6. Iteration, i.e. as the similarity of one entity pair influences the similarity of neigh-
boring entity pairs, the equality is propagated through the ontologies (e.g., it may
lead to a new simil(o1:Daimler,o2:Mercedes)=0.85, subsequently resulting
in align(o1:Daimler)=o2:Mercedes).

Second, at the meta level of representing an alignment method, APFEL parameter-
izes each of these steps by maintaining a declarative representation of features engi-
neered QF , similarity assessments QS for the features, a weighting scheme QW for the
aggregation of such similarity assessments and a threshold QT to feed into the interpre-



188 M. Ehrig, S. Staab, and Y. Sure

tation strategy (see Section 4.1).1 In principle APFEL can be applied to every approach
based on the presented generic process.

Third, such a declarative representation, e.g. of QOM or PROMPT, can be given to
a parameterizable alignment method, PAM. In fact, we initialize PAM with the repre-
sentation of a QOM-like strategy, PAM(QOM), before some initial alignments of two
given ontologies are generated through it. The alignments are then handed over to the
user for validation (cf. Section 4.2).

Fourth, APFEL generates hypotheses of useful features HF for a domain-specific
pair of ontologies and proposes similarity assessments HS for these hypotheses (cf. Sec-
tion 4.3). APFEL uses the validated initial alignments for machine learning the weighting
scheme. The aggregation scheme recurs to all feature/similarity combinations under con-
sideration, which are represented by DF := QF ∪HF and DS := QS ∪HS . Finally, it
outputs the weighting scheme DW and the threshold it has learned DT (cf. Section 4.4).

The APFEL process is summarized in Figure 2 and will be explained in detail in
Section 4. The result of APFEL is a representation of an alignment scheme. The scheme
then has been optimized by machine learning to consider the indicators initially used for
bootstrapping as well as the newly generated domain/ontology-specific indicators. Thus,
it may integrate indicators working at the level of intensional and extensional ontology
descriptions to result in a comprehensive improved alignment method (cf. Section 4.5).

The paper is structured as follows. In the next section we will explain the founda-
tions for our approach, ontologies and alignments. In Section 3 we describe all steps
of the general alignment process in detail. Section 4 illustrates our APFEL approach.
In the subsequent Section 5, we evaluate APFEL against various alignment methods, in
particular QOM. Before we conclude, we contrast APFEL with further approaches.

2 Foundations
2.1 Ontology

The following short definition describes an ontology structure as used here. In the un-
derstanding of this paper an ontology consists of both schema and instantiating data.

An ontology O is defined through the following tuple:

O := (C, HC , RC , HR, I, RI , ιC , ιR, A)

Concepts C of the schema are arranged in a subsumption hierarchy HC . Relations RC

exist between pairs of concepts. Relations can also be arranged in a hierarchy HR.
(Meta-)Data is constituted by instances I of specific concepts. Theses instances are
interconnected by relational instances RI . Instances and relational instances are con-
nected to concepts resp. relations by the instantiations ιC resp. ιR. Additionally one can
define axioms A which can be used to infer knowledge from already existing knowl-
edge. An extended definition can be found in [20]. Common languages to represent
ontologies are RDF(S) or OWL, though one should note that each language offers dif-
ferent modeling primitives.

1 Unlike done in QOM [10], we do not vary the search step selection, as QOM was about the
trade-off between efficiency and effectiveness and in this paper we focus on effectiveness
alone. Further, we do not vary iteration strategies to limit the exploration space.



Bootstrapping Ontology Alignment Methods with APFEL 189

The following fragment of an automobile ontology
O :=({automobile, luxury, . . .}, {. . .},{speed(automobile, INTEGER), . . .},
{. . .}, {. . .}, {. . .}, {. . .}, {. . .}, {. . .})

can be represented in OWL as shown in Example 1.

<owl:Class rdf:about=‘‘auto:automobile’’/>
<owl:Class rdf:about=‘‘auto:luxury’’/>
<owl:DatatypeProperty rdf:about=‘‘auto:speed’’>
<rdfs:domain rdf:resource =‘‘auto:automobile’’/>
<rdfs:range rdf:resource=‘‘xsd#INTEGER’’/>

</owl:DatatypeProperty>

Example 1. Domain Ontology

2.2 Alignment

We here define our use of the term “alignment” similarly to [15]: Given two arbitrary
ontologies O1 and O2, aligning one ontology with another means that for each entity
e ∈ E (concept C, relation RC , or instance I) in ontology O1, we try to find a corre-
sponding entity, which has the same intended meaning, in ontology O2. The result are
alignments between pairs of entities of the two ontologies. Semantically the alignment
returns two entities linked by an identity relation.

Definition 1. We define an ontology alignment function, align, based on the vocabu-
lary, E , of all terms e ∈ E and the set of possible ontologies,O, as a partial function:

align : E × O ×O ⇀ E ,
with ∀e ∈ EO1(∃f ∈ EO2 : align(e, O1, O2) = f ∨ align(e, O1, O2) = ⊥).

We write EO1 if all e ∈ E are from ontology O1. Any entity can either be aligned to
exactly one other entity or none.

Apart from one-to-one alignment as investigated in this paper one entity often has to be
aligned to a complex composite such as a concatenation of terms (first and last name)
or an entity with restrictions (a sports-car is a car going faster than 250 km/h). We refer
to [4, 6] for first thoughts on complex alignments. Alignment of axioms has to the best
of our knowledge not been a topic of research yet.

3 General Alignment Process

We briefly introduce our definition of the generic alignment process that subsumes
all the alignment approaches we are aware of (e.g. PROMPT [19], GLUE [7], QOM

Search Step
Selection

Similarity
Assessment

Similarity
Aggregation

Iteration

2 3 4
6

Feature
Engineering

Inter-
pretation

1 5Input Output
Search Step
Selection

Similarity
Assessment

Similarity
Aggregation

Iteration

2 3 4
6

Feature
Engineering

Inter-
pretation

1 5InputInput OutputOutput

Fig. 1. General Alignment Process in PAM



190 M. Ehrig, S. Staab, and Y. Sure

[10, 11]). This subsumption makes our work a meta-framework valid for many ontol-
ogy alignment approaches. In this section, we only focus on the definition to the extent
that is necessary to understand how APFEL operates on the steps of the generic process.
Figure 1 illustrates the six main steps of the generic alignment process. As input, two
ontologies are given which are to be aligned. The steps are illustrated through examples
where necessary.

1. Feature engineering selects only parts of an ontology definition in order to de-
scribe a specific entity. Implicitly, [12] made a similar observation. For instance,
alignment of entities may be based only on a subset of all RDFS primitives in the
ontology. A feature may be as simple as the label of an entity, or it may include
intensional structural descriptions such as super- or sub-concepts for concepts (a
sports car being a subconcept of car) , or domain and range for relations.
Instance features may be instantiated attributes. Further, we use extensional de-
scriptions.

<rdf:Description rdf:about=‘‘o1:Daimler’’>
<rdf:type rdf:resource=‘‘auto:automobile’’>
<rdf:type rdf:resource=‘‘auto:luxury’’>
<auto:speed rdf:resource=‘‘auto:fast’’>

</rdf:Description>

Example 2. Fragment of the First Example Ontology

<rdf:Description rdf:about=‘‘o2:Mercedes’’>
<rdf:type rdf:resource=‘‘auto:automobile’’>
<auto:speed rdf:resource=‘‘auto:fast’’>

</rdf:Description>

Example 3. Fragment of the Second Example Ontology

In our Examples 2 and 3 we have fragments of two different ontologies, one de-
scribing the instance Daimler and one describing Mercedes. Both
o1:Daimler and o2:Mercedes have a generic ontology feature called type.
The values of this feature are (i), automobile and luxury, and, (ii),
automobile, respectively.

Often ontology alignment has to be performed in a specific application of one
domain. For these scenarios domain-specific features provide excess value for the
alignment process. Returning to our example, the relation speed is not a general
ontology feature, but a feature which is defined in the automobile domain, e.g.
in a domain ontology. Thus it will be important for correctly and only aligning
o1:Daimler and o2:Mercedes.

2. Selection of Next Search Steps. The derivation of ontology alignments takes place
in a search space of candidate pairs. This step may choose to compute the similarity
of a restricted subset of candidate concepts pairs {(e, f)|e ∈ EO1 , f ∈ EO2} and
to ignore others. For the running example we simply select every possible entity
pair as an alignment candidate. In our example this means we will continue the
comparison of o1:Daimler and o2:Mercedes.



Bootstrapping Ontology Alignment Methods with APFEL 191

3. Similarity Assessment determines similarity values of candidate pairs. We need
heuristic ways for comparing objects i.e. similarity functions such as on strings
[16], object sets [3], checks for inclusion or inequality, rather than exact logical
identity. The result lies within a range between 0 and 1. In our example we use
a similarity function based on the instantiated results, i.e. we check whether the
two concept sets, parent concepts of o1:Daimler (automobile and luxury)
and parent concepts of o2:Mercedes (only automobile), are the same. In the
given case this is true to a certain degree, effectively returning a similarity value of
0.5. The corresponding feature/similarity assessment (FS2) is represented in Table
1 together with a second feature/similarity assessment (FS1) based on the similar-
ity of labels. For APFEL we refer to them as QF /QS assessments. According to
the classification by [8] the feature/similarity combinations may be referred to as
rule-based alignment approaches.

Table 1. Informal and Formal Feature/Similarity Assessment

FS1: if labels are the same, the entities are also the same to a certain degree
FS2: if parent concepts are the same, the instances are also the same to a certain degree

Comparing No. Feature QF Similarity QS

Entities FS1 (label,X1) string similarity(X1, X2)
Instances FS2 (parent,X1) set equality(X1, X2)

4. Similarity Aggregation. In general, there may be several similarity values for a can-
didate pair of entities (e, f ) from two ontologies O1, O2, e.g. one for the similarity
of their labels and one for the similarity of their relationship to other terms. These
different similarity values for one candidate pair must be aggregated into a single
aggregated similarity value. This may be achieved through a simple averaging step,
but also through complex aggregation functions using weighting schemes QW . For
the example we only have to result of the parent concept comparison which leads
to: simil(o1:Daimler,o2:Mercedes)=0.5.

5. Interpretation uses the aggregated similarity values to align entities from O1 and
O2. Some mechanisms here are e.g. to use thresholds QT for similarity [19], to
perform relaxation labelling [7], or to combine structural and similarity criteria.
simil(o1:Daimler,o2:Mercedes)=0.5≥0.5 leads to align(o1:Daimler)=
o2:Mercedes. Semi-automatic approaches may present the entities and the align-
ment confidence to the user and let the user decide.

6. Iteration. Several algorithms perform an iteration (see also similarity flooding [17])
over the whole process in order to bootstrap the amount of structural knowledge.
Iteration may stop when no new alignments are proposed, or if a predefined number
of iterations has been reached. Note that in a subsequent iteration one or several of
steps 1 through 5 may be skipped, because all features might already be available
in the appropriate format or because some similarity computation might only be
required in the first round. We use the intermediate results of step 5 and feed them
again into the process and stop after a predefined number of iterations.



192 M. Ehrig, S. Staab, and Y. Sure

Parameterized
Alignment Method 

PAM
(QF,QS,QW,QT)

User
Validation

Feature/Similarity
Combinations

(DF, DS)

Ontologies
(O1, O2)

Generation of 
Feature/Similarity

Hypotheses (H F, HS)

Generation
Of Initial

Alignments

Initial
Alignments

AI

Validated
Alignments

AV

x
Training:

Feature/Similarity
Weighting Scheme

and Threshold
Fixing (DW, DT)

Representation
Optimized

Alignment Method
(DF, DS, DW, DT)Parameterized

Alignment Method 
PAM

(QF,QS,QW,QT)

User
Validation

User
Validation

Feature/Similarity
Combinations

(DF, DS)

Ontologies
(O1, O2)
Ontologies
(O1, O2)

Generation of 
Feature/Similarity

Hypotheses (H F, HS)

Generation
Of Initial

Alignments

Initial
Alignments

AI

Initial
Alignments

AI

Validated
Alignments

AV

x

Validated
Alignments

AV

xx
Training:

Feature/Similarity
Weighting Scheme

and Threshold
Fixing (DW, DT)

Representation
Optimized

Alignment Method
(DF, DS, DW, DT)

Fig. 2. Detailed Process in APFEL

4 APFEL

In this section it is explained how APFEL works to optimize a given parameterizable
alignment method (cf. Figure 2). Data structures are illustrated through white boxes and
process steps through colored boxes. We will describe first the data structures, then the
process steps. Finally, we show how the PAM resulting from APFEL is applied.

4.1 Data Structures

We here describe the data structures on which APFEL operates. APFEL requires two
ontologies O1 and O2 as inputs to its processing. Either these are the ontologies for
which the further alignment process will be optimized directly. Or, they exemplarily
represent a type or domain which requires an optimized alignment method.

Core to APFEL is the representation of the generic alignment process. Relevant data
structures for representation include:

(i) QF : features engineered (e.g. label, instances, domain), (ii) QS : similarity as-
sessments corresponding to the features of QF (e.g. equality, subsumption), (iii) QW :
weighting scheme for an aggregation of feature-similarity assessments (e.g. weighted
averaging), and (iv) QT : interpretation strategy (e.g. alignments occur if similarity is
above the fixed threshold).

Such a declarative representation can be given to a parameterizable alignment
method, PAM, for execution. In fact, we can initialize PAM with a representation of
different strategies. Thus, an initial alignment function, aligninit, may be defined by
aligninit:=PAM(PROMPT) or aligninit:=PAM(QOM).

Then, APFEL uses user validations AV of the initial proposals of aligninit. In gen-
eral, the described input does not explicitly require an ontology engineer. The two on-
tologies, an arbitrary (predefined) alignment method, and the validation of the initial
alignments may be processed by a typical (domain) user as well, as long as she under-
stands the meaning of the aligned entities.

The output of APFEL is an improved alignment method, alignoptim, defined
as alignoptim:=PAM(APFEL(O1, O2, QF , QS , QW , QT , AV )). Parameters character-
izing APFEL(O1, O2, QF , QS , QW , QT , AV ) constitute the tuple (DF , DS , DW , DT ).

Through the optimization step alignment results may change: the re-
sult of aligninit(o1:Daimler, O1, O2) might be ‘⊥’ and the result of
alignoptim(o1:Daimler, O1, O2) might be o2:Mercedes.



Bootstrapping Ontology Alignment Methods with APFEL 193

Table 2. Initial Alignments Returned for Validation

Entity 1 Entity 2 Confidence User Grade

car car 0.95 to be rated
auto automobile 0.8 to be rated

wheel tire 0.6 to be rated
speed hasSpeed 0.6 to be rated
driver gear 0.2 to be rated

4.2 Generation and Validation of Initial Alignments

Machine learning as used in this paper requires training examples. The assistance in
their creation is necessary as in a typical ontology alignment setting there are only
a small number of really plausible alignments available compared to the large num-
ber of candidates, which might be possible a priori. Presenting every candidate for
validation makes the process tiring and inefficient for the human user. Therefore, we
use an existing parametrization as input to the Parameterizable Alignment Method,
e.g. aligninit=PAM(QOM) to create the initial alignments AI for the given ontolo-
gies. As these results are only preliminary, PAM does not have to use very sophis-
ticated processes: very basic features and similarities (e.g. label similarity) combined
with a naı̈ve simple averaging and fixed threshold are sufficient in most cases. Resulting
proposed pairs are stored starting with the highest probability alignments as shown in
Table 2.

This allows the domain user to easily validate the initial alignments and thus gen-
erate correct training data AV . She does not need to understand the complex ontology
concepts i.e. does not need to be an ontology engineer, but has to understand the mean-
ings of the aligned entities. If the user further knows additional alignments she can
add these alignments to the validated list. Obviously the quality of the later machine
learning step depends on the quality and quantity of the validated alignments at this
point.

4.3 Generation of Feature/Similarity Hypotheses

As mentioned in the introduction it becomes difficult for the human user to decide which
features and similarity heuristics make sense in indicating an alignment of two entities.
Our approach therefore generates these feature/similarity combinations automatically.

The basis of the feature/similarity combinations is given by an arbitrary alignment
method such as PAM(QOM) with which we have achieved good results.

Further, from the two given ontologies APFEL extracts additional features HF by
examining the ontologies for overlapping features. “Overlapping” means that they occur
in both ontologies. Currently this implies the same identifier, but very similar features
can also be used. These might be additional features from the ontology model such as
OWL primitives or special XML datatypes. But at this point also domain-specific fea-
tures are integrated into the alignment process such as auto:licensenumber from
an upper-level automobile ontology. The features are then combined in a combinato-
rial way with a generic set of predefined similarity assessments including similarity



194 M. Ehrig, S. Staab, and Y. Sure

{
extras
licensenumber

}
×

{
equality
inclusion

}
⇒

Comparing No. Feature HF Similarity HS

Cars FS1 (extras,X1) set equality(X1, X2)
Cars FS2 (extras,X1) subset(X1, X2)
Cars FS3 (license no.,X1) equality(X1, X2)
Cars FS4 (license no.,X1) substring(X1, X2)

Fig. 3. Generation of Additional Hypotheses

measures for, e.g., equality, string similarity, or set inclusion. Thus, APFEL derives
similarity assessments HS for features HF .

Figure 3 illustrates this process for generating hypotheses for feature/similarity
combinations. In the given example two domain attributes extras and license
number are compared using the equality and the inclusion similarity. All fea-
ture/similarity combinations are added for now. Some feature/similarity combinations
will not be useful, e.g. FS4, checking whether one license number is a substring of an-
other. However, in the subsequent training step machine learning will be used to pick
out those which actually improve alignment results.

From the feature/similarity combinations of (QF , QS) and of the extracted hypothe-
ses (HF , HS) we derive an extended collection of feature/similarity combinations (DF ,
DS) with DF := QF ∪HF and DS := QS ∪HS .

4.4 Training

After determining the classification of two entities of being aligned or not (AV ), all
validated alignment pairs are processed with the previously automatically generated
collection of features and similarities. From each FS set a numerical value is returned
which is saved together with the entity pair as shown in Table 3. Further the user vali-
dation is added to the table.

We can now apply machine learning algorithms to the automatically generated fea-
tures DF and similarities DS using the example training alignments AV . More specif-
ically, the numerical values of all feature/similarity combinations are the input for the
algorithm. The classification of being aligned or not represents the output. Different ma-
chine learning techniques for classification (e.g. decision tree learner, neural networks,

Table 3. Training Data for Machine Learning (including user validation and value returned by
each feature/similarity combination FSi)

Entity1 Entity2 FS1 FS2 FS3 FS4 User Grade

car car 1.0 1.0 0.8 0.0 1
auto automobile 0.7 1.0 0.7 0.0 1

wheel tire 0.0 1.0 0.8 0.0 0
speed hasSpeed 0.7 0.0 0.0 1.0 1
driver gear 0.2 0.0 0.0 0.0 0



Bootstrapping Ontology Alignment Methods with APFEL 195

or support vector machines) assign an optimal internal weighting DW and threshold
DT scheme. However, the number of training alignments and feature/similarity combi-
nations need to correlate to return meaningful results. Machine learning methods like
C4.5 further capture relevance values for feature/similarity combinations. If they do not
have any (or only marginal) relevance they are given a weight of zero and can thus be
omitted. In a decision tree they simply are not present.

From this we finally receive the most important feature/similarity combinations
(features DF and similarity DS) and the weighting DW and threshold DT thereof. With
this we can set up the final ontology alignment method which we call alignoptim:=
PAM(APFEL(O1, O2, QF , QS , QW , QT , AV )). Depending on the complexity of the
alignment problem it might be necessary to repeat the step of test data generation (based
on the improved alignment method) and training, especially if the initial method was
very simple.

4.5 Application in Alignment Process

The final system is parameterized with DF , DS , DW , and DT . It allows for fully or
semi-automatic alignment of two ontologies — and further uses domain-specific op-
timization of the alignment system. If training data represented general ontologies,
the system can be applied to any pair of ontologies for aligning, not only the do-
main of training ontologies. Depending on the weighting and threshold scheme this
may also include an explanation facility which provides evidence why two entities are
aligned.

5 Evaluation

5.1 Implementation

The presented approach has been implemented as part of the FOAM framework of
ontology alignment and mapping2. It is based on Java using the capabilities of the
KAON2-framework [14], which can handle OWL-DL ontologies.

5.2 Evaluation Approach

This paper mainly focuses on an approach to create a method for the alignment of two
ontologies. The quality of neither the learning process APFEL itself nor the alignment
method PAM can be evaluated directly. Therefore, we evaluate the quality of alignments
returned by the learned process. They are compared to the manually created alignment
process QOM, which has shown very good results in previous experiments [10]. Addi-
tionally we evaluated the effect of different numbers of training examples.

5.3 Measures

We use standard information retrieval metrics to assess the approaches (cf. [5]):

2 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam



196 M. Ehrig, S. Staab, and Y. Sure

Precision p = #correct found alignments
#found alignments

Recall r = #correct found alignments
#existing alignments

F-Measure f1 = 2pr
p+r

We consider the f-measure as most relevant for our evaluation since it balances well
precision and recall. If the focus were laid more onto precision or recall, as may be
necessary for specific use cases, slight changes would be necessary in the parameters of
the learning step, but this does not jeopardize the general APFEL process.

5.4 Training and Test Data Sets

We here present two of the different scenarios which have been used to evaluate the
machine-learning approach.

The first scenario represents the case where we want to align two ontologies based
on general ontology features. We want to prove that a good algorithm for aligning very
different ontologies can be learned. We rely on eight different ontology pairs and their re-
spective correct alignments as training data. The data has been provided for the alignment
contest I3Con3. Students created two test ontologies with the objective to represent the
content of two independent travel websites about Russia for evaluation. The ontologies
have approximately 400 entities each, including concepts (region, river,. . . ), re-
lations (has capital, has mouth,. . . ), and instances (Moscow, Black Sea,. . . ).
The gold standard of 160 possible alignments was assigned by the students manually.

In the second scenario we want to optimize the ontology alignment process for one
specific domain. This usage scenario is directly taken from the Bibster application, a
peer-to-peer system to exchange bibliographic metadata [13]. Thus, we do not use gen-
eral training data as in the previous scenario, but data from the same ontology domain.
For the evaluation the used training alignments are excluded. We have only one ontol-
ogy, but want to identify equal entities (duplicates) within it. In terms of the problem
structure this scenario doesn’t differ from a scenario where we want to find equal ob-
jects in two ontologies. In this scenario, the two ontologies describe bibliographical
entities, such as articles, books, theses, etc. and their respective authors,
editors, or involved organizations. For the 2100 entities, 275 duplicates have
been manually identified by a domain expert.

One should be aware that the correct alignments are also always subjective to a
certain degree. Humans normally do not agree on alignments either, often only to 60%,
thus making an evaluation result of 100% an unrealistic goal. Further, it is not possible
to compare the absolute evaluation results of the two data sets with each other, as the
sets differ considerably. For evaluation only the different strategies’ results within one
set are expressive and may be interpreted.

5.5 Evaluation Strategies

We pursue seven strategies for evaluating the two scenarios.

3 http://www.atl.external.lmco.com/projects/ontology/i3con.html



Bootstrapping Ontology Alignment Methods with APFEL 197

Table 4. Results of the Evaluation

Scenario Strategy (#/name) No. of FS Precision Recall F-Measure

Russia

1 Only Labels 1 0.990 0.335 0.501
2 QOM 25 0.618 0.596 0.607
3a Decision Tree Learner 20 1 0.826 0.475 0.603
3b 50 1 0.819 0.471 0.598
3c 150 7 0.723 0.591 0.650
4 Neural Net 150 7 0.777 0.485 0.597
5 Support Vector Machine 150 8 0.509 0.572 0.539

Bibliographic

1 Only Labels 1 0.909 0.073 0.135
2 QOM 25 0.279 0.397 0.328
3a Decision Tree Learner 20 1 0.047 0.280 0.080
3b 50 2 0.456 0.246 0.318
3c 150 7 0.630 0.375 0.470
4 Neural Net 150 7 0.542 0.359 0.432
5 Support Vector Machine 150 6 0.515 0.289 0.370

– The first strategy simply aligns based on the equality of labels. This is a strategy
used for example in the original PROMPT tool [19].

– The second strategy applies a variety of general ontology alignment feature/
similarity combinations and an aggregation thereof (QOM). They have been ex-
clusively created by an ontology engineer understanding the domain of knowledge
modeling with ontologies. Further, the combinations were assigned manual weights
and an optimized threshold (see [10]).

– The remaining strategies represent the APFEL approach. The third strategy uses a
C4.5 (J4.8 in Weka) decision tree learner. We took a varying number of 20, 50, and
150 training examples from the correct alignments to further investigate the effect
of different quantities of training examples. Half of the examples were positives and
half were negatives. For all machine learning approaches we use the well-known
WEKA machine learning environment4.

– The next strategy uses a neural net based on 150 examples.
– And the last strategy was to train a support vector machine, with 150 examples.

5.6 Results and Lessons Learned

From several evaluation runs we have obtained the results in Table 4. Although the
precision of an approach based on labels only is very high, the very low recall level
leads to a low overall f-measure, which is our key evaluation value. Thus, our key
competitor in this evaluation, QOM, receives a lot better f-measure with its semantically
rich feature/similarity combinations.

To investigate the effectiveness of APFEL, we have first tested the different strate-
gies against each other (with 150 training examples for the different learning methods).
In both scenarios the decision tree learner returns results better than the two other ma-
chine learning approaches, i.e. neural nets and support vector machines, the decision
tree learner delivers the best f-measure. The margin on improvement as compared to

4 http://www.cs.waikato.ac.nz/ ml/weka/



198 M. Ehrig, S. Staab, and Y. Sure

QOM in the Russia scenario (4.3 percentage points) and in the Bibliography scenario
(14.2 percentage points) is both times very good. Alignments for the Russia scenario
are identified precisely. Similarly as in the manual approach labels were given a
very high rate, but surprisingly domain and range differentiate concepts better than
the obvious sub-classes. In the bibliographic scenario the alignment method can
make extensive use of the learned domain-specific features e.g. it identifies the attribute
last name as being highly relevant to find identical authors and rates it higher than
e.g. the middle initial. Finally, the lower number of feature/similarity combi-
nations (maximum of eight for machine learning vs. 25 for QOM) leads even to an
increase in efficiency compared to QOM.

Second, we have considered the learning rate (see 3a-3c in Table 4). Quality in-
creases with the number of training examples rising, somewhat leveling off at a good
value. Unfortunately due to the complex structures of ontologies with many possible
feature/heuristics combinations, a high absolute number of training examples is re-
quired to fully capture their semantic value for alignment. In the research domain of
ontology alignment with its current lack of real big examples this is a challenge. How-
ever, once learned it can be transferred to ontology alignment problems in the same
domain/ontology model without further learning effort.

To sum up, APFEL generates an alignment method which is competitive with the
latest existing ontology alignment methods. However, it is important to apply the correct
machine learner and a sufficient amount of training data.

6 Related Work

In [8] schema matching approaches for the database community are split into rule-based
and learning-based techniques. In this paper we have shown how to apply learning tech-
niques on-top of a rule-based approach. To contrast our approach we use their classifica-
tion in the following.

The tools PROMPT and AnchorPROMPT [19] use the similarity of labels and to
a certain extent the structure of ontologies, creating alignment rules thereof. The con-
crete algorithm is set through the tool developers manually. Adaptations to new on-
tological constructs or even domain-specific features can not be incorporated. In their
tool ONION [18] the authors use rules and inferencing to execute alignments, but the
inferencing is again based on initially manually assigned alignments or simple similar-
ities. An interesting field of future research are complex alignments, which we do not
consider yet in this paper. These cover alignments e.g. based on the concatenation of
two fields such as “first name” and “last name” to “name” (cf. COMA[6]). [2] finally
present an approach for semantic alignment based on SAT-solvers. In their approach an
alignment can only be created if there are no inherent semantic rules restricting this,
thus making it an approach based on exact semantics rather than on heuristics as in our
work. Nevertheless in all these works one faces the difficulty to predict which strategy
of aligning entities is most successful for a given pair of ontologies. The optimization
strategy APFEL pointed out in this paper could enhance these existing approaches.

[7] use machine learning in their approach GLUE. From all ontology alignment ap-
proaches their work is closest to APFEL. However, their learning component is restricted



Bootstrapping Ontology Alignment Methods with APFEL 199

on concept classifiers for instances based on instance descriptions, i.e. the textual con-
tent of web pages, or their naming. From these two learned concept classifiers they derive
whether concepts in two schemas correspond to each other, whereas our approach focuses
on learning parameters for a general alignment process. The GLUE machine learning
approach suits a scenario with extensive textual instance descriptions, but may not suit
a scenario focused more onto ontology structures. Further, relations or instances can not
be directly aligned with GLUE. The additional relaxation labeling, which takes the on-
tological structures into account, is again based solely on manually encoded predefined
rules. Finally, in [9] the same authors introduce the notion of the use of domain specific
attributes, thus restricting their work on databases. However, the inclusion of domain
typical structures has not been topic of their work while it is provided by APFEL.

7 Conclusion

High-quality semantic alignment between ontologies is a necessary precondition to estab-
lish interoperability between agents or services using different ontologies. Recent work
suffers from the problem that it is impossible to predict which strategy of aligning entities
is most successful, given an often semantically and structurally rich domain ontology.

Thus, we have developed a method called APFEL (“Alignment Process Feature
Engineering and Learning”) that applies machine learning for creating an alignment
method that produces a better quality than an initial alignment strategy it starts with.

The involvement of users happens in two phases. Initially, users provide domain
ontologies and a simple general alignment method for getting started. During the pro-
cess, users need to evaluate the generated initial alignments. However, there is no re-
quirement for ontology engineers being involved. I.e., users without specific knowledge
about ontology engineering are able to use our approach.

APFEL iteratively bootstraps a new alignment method which is optimized for the
input ontologies. This process has been presented in detail on the preceding pages.
The resulting alignment method can then be used to automatically align ontologies,
depending on the training set-up either general arbitrary ontologies or domain-specific
ones. From the evaluation results we have obtained, we see that our initial hypothesis of
using machine learning to gain a better alignment approach was fulfilled. The machine
learned process outperforms the various manual approaches.

Acknowledgements. Research reported in this paper has been partially financed by
the EU in the IST projects SEKT (IST-2003-506826), SWAP (IST-2001-34103), and
KnowledgeWeb (EU IST-2003-507482).

References

1. R. Agrawal and R. Srikant. On integrating catalogs. In Proceedings of the Tenth International
Conference on the World Wide Web (WWW-10), pages 603–612. ACM Press, 2001.

2. P. Bouquet, B. Magnini, L. Serafini, and S. Zanobini. A SAT-based algorithm for context
matching. In Proc. of the Fourth International and Interdisciplinary Conference on Modeling
and Using Context (CONTEXT’2003), Stanford University (CA, USA), June 2003. Springer.



200 M. Ehrig, S. Staab, and Y. Sure

3. T. Cox and M. Cox. Multidimensional Scaling. Chapman and Hall, 1994.
4. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: discovering complex

semantic matches between database schemas. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, pages 383–394, Paris, France, June 2004.

5. H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations. In Proceed-
ings of the Second International Workshop on Web Databases (German Informatics Society),
2002.

6. H.-H. Do and E. Rahm. COMA - a system for flexible combination of schema matching
approaches. In Proceedings of the 28th VLDB Conference, Hong Kong, China, 2002.

7. A. Doan, P. Domingos, and A. Halevy. Learning to match the schemas of data sources: A
multistrategy approach. VLDB Journal, 50:279–301, 2003.

8. A. Doan and A. Y. Halevy. Semantic-integration research in the database community. AI
Magazine, pages 83–94, March 2005.

9. A. Doan, Y., Lu, Y. Lee, and J. Han. Object matching for data integration: A profile-based
approach. In Proceedings of the IJCAI-03 Workshop on Information Integration on the Web,
Acapulco, Mexico, August 2003.

10. M. Ehrig and S. Staab. QOM - quick ontology mapping. In F. van Harmelen, S. McIlraith, and
D. Plexousakis, editors, Proceedings of the Third International Semantic Web Conference
(ISWC2004), LNCS, pages 683–696, Hiroshima, Japan, 2004. Springer.

11. M. Ehrig and Y. Sure. Ontology mapping - an integrated approach. In Proceedings of the
First European Semantic Web Symposium, ESWS 2004, volume 3053 of Lecture Notes in
Computer Science, pages 76–91, Heraklion, Greece, May 2004. Springer Verlag.

12. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in owl-lite. In Proceed-
ings of the 16th European Conference on Artificial Intelligence (ECAI2004), pages 333–337,
Valencia, Spain, August 2004.

13. P. Haase et al. Bibster - a semantics-based bibliographic peer-to-peer system. In F. van
Harmelen, S. McIlraith, and D. Plexousakis, editors, Proceedings of the Third International
Semantic Web Conference (ISWC2004), LNCS, pages 122–136, Hiroshima, Japan, 2004.
Springer.

14. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ-description logic to disjunctive datalog
programs. In Proceedings of Ninth International Conference on Knowledge Representation
and Reasoning 2004, pages 152–162, Whistler, Canada, June 2004.

15. M. Klein. Combining and relating ontologies: an analysis of problems and solutions. In
A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt, and M. Uschold, editors, Workshop on
Ontologies and Information Sharing, IJCAI01, Seattle, USA, 2001.

16. I. V. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Cybernetics and Control Theory, 1966.

17. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In Proceedings of the 18th International
Conference on Data Engineering (ICDE’02), page 117. IEEE Computer Society, 2002.

18. P. Mitra, G. Wiederhold, and M. Kersten. A graph-oriented model for articulation of ontology
interdependencies. In Proceedings of the Conference on Extending Database Technology
2000 (EDBT’2000), volume 1777, pages 86+, Konstanz, Germany, 2000.

19. N. F. Noy and M. A. Musen. The PROMPT suite: interactive tools for ontology merging and
mapping. International Journal of Human-Computer Studies, 59(6):983–1024, 2003.

20. G. Stumme et al. The Karlsruhe view on ontologies. Technical report, University of Karl-
sruhe, Institute AIFB, 2003.



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 201 – 215, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Strategy for Automated Meaning Negotiation  
in Distributed Information Retrieval 

Vadim Ermolayev1, Natalya Keberle1, Wolf-Ekkehard Matzke2,  
and Vladimir Vladimirov1 

1 Dept of IT, Zaporozhye National Univ., Ukraine 
eva,kenga,vvlad@zsu.zp.ua 

2 Cadence Design Systems, GmbH, Feldkirchen, Germany 
wolf@cadence.com 

Abstract. The paper reports on the development of the formal framework to 
design strategies for multi-issue non-symmetric meaning negotiations among 
software agents in a distributed information retrieval system. The advancements 
of the framework are the following. A resulting strategy compares the contexts 
of two background domain theories not concept by concept, but the whole 
context to the other context by accounting the relationships among concepts, the 
properties, the constraints over properties, and the available instances. It 
contains the mechanisms for measuring contextual similarity through assessing 
propositional substitutions and to provide argumentation through generating 
extra contexts. It uses presuppositions for choosing the best similarity 
hypotheses and to make the mutual concession to the common sense 
monotonic. It provides the means to evaluate the possible eagerness to concede 
through semantic commitments and related notions of knowledgeability and 
degree of reputation. 

1   Introduction 

Information systems in Distributed Information Retrieval are characterized by the fact 
that Information Resource Providers (IRPs) and Users who pose queries form an 
Open System in the sense that: 

− Semantic heterogeneity: The IRPs are legally and physically autonomous and do 
not care about establishing the common set of concepts describing their resources. 
A User’s background theory of a domain may as well have various semantic 
discrepancies with the ontologies describing involved information resources.  

− Resource changes without notice: IRPs normally do not notify other IRP-s and 
users about the changes in their resources because they may not even know about 
these IRP-s and Users. The changes may occur at any time and affect both resource 
semantics and the terms of use. 

An information retrieval system in the mentioned settings should be intelligent in 
the following aspects. Firstly, it needs to accumulate the common knowledge 
describing the involved IRPs with their resources and its users with their individual 
terminological preferences in a uniform and coherent way. Secondly, it should pro-
actively cope with the dynamic changes or reconfigurations of its collection of 



202 V. Ermolayev et al. 

registered resources affecting both semantics and the conditions of resource usage. 
And, thirdly, it should pro-actively conduct distributed information retrieval by 
keeping an eye on how different participants of the team obey their commitments to 
the collaboration convention while performing their parts of the query posed by a 
user. Normally it is achieved through striking a sort of a contract deal and monitoring 
contract execution. 

In the humans’ world mentioned aspects of collaborative intelligent behavior are 
often arranged through various sorts of negotiation. Hence, if a framework for 
automating negotiations among autonomous software components in an open 
information retrieval system is elaborated we’ll make a substantial advancement 
towards solving the abovementioned problems inferred by semantic heterogeneity and 
dynamic changes of a resource. We’ll denote negotiating intelligent software 
components in an information retrieval system as actors. Actors are naturally 
implemented by software agents and play different roles. These roles in a system with 
a centralized or de-centralized mediator are at least:  

− a User (an agent assisting a human user to formulate his or her queries and to 
process the results of these queries) – hereafter referred to as Q 

− a Mediator (an agent or a multi-agent system which, in compliance with [1],  
provides services to Users through arranging the performance of their queries by 
available and matching IRPs) – hereafter referred to as M 

− An IRP (which is often an agent wrapping the Information Resource (IR) and 
processing queries to this IR if contracted by M) – hereafter referred to as P 

It should be noted that Q, M, and Ps take part in two different types of negotiations 
in this scenario. Negotiations are focused on two aspects: on concept meaning and on 
the (commercial or contract) terms of the information delivery like the price, the 
terms of use, the deadline. A variety of papers provide extensive results on 
negotiation mechanisms dealing with the commercial aspects, e.g. [2], [3], [4]. 
However, negotiations on the meaning of concepts are not covered well enough in the 
literature. In this paper we intend to make this white spot narrower. 

The reminder of the paper is structured as follows. Section 2 outlines the 
conceptual framework for negotiations we use in our research. Section 3 describes the 
example we use to illustrate our framework throughout the paper and introduces the 
formal notation for knowledge representation. Section 4 contains the high-level 
description of the proposed strategy for automated multi-issue meaning negotiation. 
Sections 5, 6, and 7 provide more detailed elaboration of the aspects of argumentation 
through propositional substitutions and contexts, making presuppositions, measuring 
semantic similarity of concepts respectively. Section 8 denotes semantic commitment 
and discusses the problem of concession in negotiation. Section 9 briefly outlines the 
related work. Section 10 summarizes the results and outlines our future work.  

2   Interactions and Negotiations 

“… perhaps the most fundamental and powerful mechanism for 
managing inter-agent dependencies at run-time is negotiation — the 
process by which a group of agents comes to a mutually acceptable 
agreement on some matter.” (c.f. [3]). 



 A Strategy for Automated Meaning Negotiation in Distributed Information Retrieval 203 

Negotiation type and, therefore, the corresponding negotiation mechanism is 
determined by the goal, the protocol, the negotiation set, and the strategies of the 
participants [4].  

A protocol defines the rules of encounter commonly accepted by all negotiating 
parties. Different protocols are applicable to different negotiation encounters which 
may be symmetric or non-symmetric and have different number of parties: one-to-one 
encounters, one-to-many encounters, and many-to-many encounters. It is evident that 
one-to-one protocols are easier to implement and require less communication 
overhead. That is why it is rational (though not always possible) to substitute more 
complex encounters by the sequences of one-to-one negotiations. 

Symmetric negotiation settings occur when the parties of the encounter do not 
differ neither formally, for example by their role or in the terms of Game Theory by 
their part of the payoff matrix, nor informally – by their capability to influence the 
process, for example by their reputation. In our domain symmetric negotiations may 
occur among the peer-agents in a decentralized mediator (e.g., [5]). Non-symmetric 
negotiations are more common in practice because their settings reflect real life more 
adequately. Indeed, even in information retrieval a) an agent within a centralized 
mediator (e.g., [6]) has different roles in its negotiations with IR providing agents, b) 
the roles of different parties are also different – a user, a mediator, an IR provider, c) 
the abilities of different parties to influence the process of negotiation differ as well – 
a mediator agent should be more conservative in its concessions on the meaning of 
concepts (Section 8).  Of course, the mechanisms for non-symmetric encounters, 
though more realistic, are more difficult to implement and subsume symmetric ones 
as singular cases. 

A negotiation set stands for the matter or the matters on which the parties try to 
agree. Negotiations may be single issue and multi issue according to the number of 
these matters. In the real world settings different matters in multi-issue negotiations 
are rarely independent. Hence, a multi-issue negotiation mechanism should be 
capable to account mentioned dependencies among the items in the negotiation set. 

A negotiation strategy stands for the set of internal agent’s rules it uses to pursue 
the goal of the encounter. Negotiation goal is often described in the terms of a deal 
stricken on the successful accomplishment of the encounter.  

In our domain the goal of the meaning negotiation is to find the match between the 
contexts (negotiation set) of the background domain theories of the parties in order to 
align the domain ontology, and ensure that all parties commit to this common 
ontology in their subsequent interactions. A deal means a joint agreement and a 
commitment on the negotiated context and on the mapping of the concepts of the 
parties to the agreed concept. 

In this paper we leave aside the discussion of the possible negotiation protocols 
and concentrate on the elaboration of the formal framework to design agents’ 
strategies for multi-issue, non-symmetric meaning negotiation, provided that the 
agents play the aforementioned roles in a distributed information retrieval system. 

3   Illustrative Example 

Let’s consider the following query submitted by a user agent Q to mediator agent M: 
“Please retrieve all short papers by Ermolayev published in LNCS series”. The 
conceptual graph for this query is presented in Fig. 1a. We implicitly assume here that  



204 V. Ermolayev et al. 

 

Relationships:  
- subclass of        
- is part of         
- other (has) 
- is instance of 

Series

Full Paper
 No of pages > 6

 

Paper
  No of citations 

  No of pages 

Journal Issue Proceedings

Short Paper 
  No of pages < 7 

 

Article 

Publisher

Publication

Author 

1

* 

*

* 
*

* 

1
*

a) Conceptual graph of the example query 

b) User’s background ontology
     (fragment) 

Short Paper

Paper 

Author =”Ermolayev” 

Proceedings 

Series =”LNCS”

No of pages < 7 

Ermolayev

LNCS

 

Fig. 1. Example query and corresponding background domain theory 

 

Short Paper 

Paper

Author =”Ermolayev” 

Proceedings 

Series =”LNCS”

No of pages < 7

Conf or W-shop Paper 
??? 

U
???

Poster

Published Paper 
??? 

Author =”Ermolayev” 
???

Proceedings
Book 

Publisher 
Series

???

=”LNCS”

???

???

???

Missing knowledge

Extra knowledge

???

 
??? 

Q M 

 

Fig. 2. Searching for the semantic match between Q and M 

the corresponding background domain theory Q of Q is the one given in graphical 
notation in Fig. 1b. Following the approach of [7] we’ll encode Q using the extended 
formalism of the Type Theory (TT) [8]: 

Q | ShortPaper : s (concept (type) ShortPaper is in the abstract type of sorts s) 
Q | Paper : s (concept Paper is in the abstract type of sorts s) 
Q | Author : s (concept Author is in the abstract type of sorts s) 

Q | Proceedings : s (concept Proceedings is in the abstract type of sorts s) 
Q | Series : s (concept Proceedings is in the abstract type of sorts s) 
Q | ShortPaper.NoOfPages : a (property NoOfPages of the concept ShortPaper is in 

the abstract type of properties a ) 
Q | ShortPaper < Paper : s (concept ShortPaper is subsumed by the concept Paper)  
Q |  (N < 7) : ShortPaper.NoOfPages  p (proposition (N < 7) applied to the property 

NoOfPages of the concept ShortPaper holds true – i.e. is in the abstract type of 
propositions p)  



 A Strategy for Automated Meaning Negotiation in Distributed Information Retrieval 205 

Q | Datatype(N, Integer) : Paper.NoOfPages  p (proposition Datatype(N, Integer) 
applied to the property NoOfPages of the concept Paper holds true – i.e. is in the abstract 
type of propositions p) 

Q | has(P, Author) : Paper  p  (as above) 
Q | is_part_of(P, Proceedings) : Paper  p (as above) 
Q | published_in(R, Series) : Proceedings  p(as above) 
Q | Ermolayev : Author (Instance Ermolayev is of type Author) 
Q | LNCS : Series (Instance LNCS  is of type Series) 

This context of Q is submitted to M as the negotiation set. M will try to match it to 
his domain theory M as graphically outlined in Fig. 2. The task for our paper is to 
develop the formal framework for the strategy of negotiations between Q and M 
which will allow them to automatically make this match as precise as possible. The 
specificity of our settings is that: 

− Background theories Q and M are not necessarily taxonomies – different types of 
semantic relationships should be accounted. This may imply various types of 
dependencies between the elements of the negotiation set. 

− Background theories Q and M may be poor with instances. This may imply the 
necessity to use several kinds of semantic similarity metrices (not only instance 
similarity which proved to be quite precise [9] in comparing ontologies which are 
rich with instances). 

− Background theories Q and M can not be disjoint in the sense that there will 
certainly be at least a partial match between them. The reason for this constraint is 
that normally a query is posed to the resources in the particular domain and the 
semantic discrepancies are at most surmountable. 

− The cardinality of Q and M is moderate enough to allow NP-complete processing 
algorithms be acceptable. This actually means the constraint on M only because a 
query and its underlying domain theory are normally not bulky. 

4   A Strategy for Meaning Negotiation 

For simplicity reasons we’ll further on consider that meaning negotiation occurs 
between two parties (one to one negotiation) – a query submitter Q and a mediator M 
agents. We shall build the framework for designing strategies for meaning 
negotiations trying to provide a mechanism to find the context of a concept in M 
closest to the context of a concept in Q of a query submitted by Q. As M and Q are 
further on formalized as the sets of TT statements we shall build up our definition on 
the notion of a context given in [7]: 

Definition 1 (Context): The context Cc of a concept c ∈  is the union of the set i of 
TT statements iγ ∈  which are the assumptions over c and the set j of TT 

statements jγ ∈  which may be explicitly inferred from {  | c : s}U  i  using the 

rules of the type system [7]: 

jiccC U== . (1) 



206 V. Ermolayev et al. 

To design such a negotiation strategy over Q we need to address the following 
problems:  

− Which of the parties starts first? 
− How to generate argumentation on the semantic discrepancies between Q and M? 
− How to ensure that the ratio of these semantic discrepancies is monotonically 

decreasing in negotiation rounds? 
− How to assess if the current level of these semantic discrepancies is sufficient to 

strike the deal? 
− How to detect that the movement to the perfect match (no discrepancies) between 

Q and M is no longer possible? 

Negotiations are evidently the series of mutually beneficial concessions. In the 
context of meaning negotiation we also need to denote what a concession is and how 
to compute the minimal effective concession.  

Which of the parties starts first? The answer to this question in our settings is 
straightforward – the one who initiates negotiation by submitting a query makes the  
1-st cry. 

Argumentation on the semantic discrepancies and concession. We first need to 
denote how to formalize and to measure the semantic discrepancies between two 
contexts Q and M and then proceed with argumentation. It is natural to denote 
semantic discrepancies between two ontological contexts by means of the 
appropriately defined semantic distance SD, which is obviously a kind of a mapping 

: Q M× →SD R (R is the set of real numbers).  Suppose this mapping is defined 

(Section 5), then efficient argumentation should contain the set of presuppositions PR 
over Q and M which, if applied to Q, decreases SD. Some of the concepts, concept 
properties, or propositions expressing relationships from Q may have no analogy in 

M (or M in Q). We shall call these elements of  ( Q or M) orphans. Local 
semantic distance SDo between an orphan and  evidently has the maximal possible 
value. Argumentation on orphans should provide the counter-party with the 
information on the possible or anticipated context Co to check it over his background 
domain theory and, possibly, find some extra context o to bridge the gap. If context 

o  is found it extends the context of the party ( Q or M).  We shall say that a party 

concedes on the orphan o if o o ≠ ∅C I , i.e., if some of the arguments from Co were 

accepted to o . Of course it is rational to make the smallest concession possible in a 

round because the acceptance of (the part of) Co may induce the contradictions with 
another portions of , which may result in harmonization overheads and, which is 
even more important, violate some of the collective commitments on the elements of 

. From the other hand the concession should be sound enough for not to concede on 
the next negotiation round. Details are provided in Section 7.  

How to make negotiation converging to a deal? We shall formulate the answer 
in the terms of the semantic distance SD between the contexts Q and M. Negotiation 
will converge to a deal if SD will be monotonically decreasing from round to round. 
A deal may be stricken between the parties if: 

− No orphans are left in  
− The difference in SD in the current round and of the previous round equals to 0 or 

is less than the commonly agreed threshold  



 A Strategy for Automated Meaning Negotiation in Distributed Information Retrieval 207 

How to detect that further negotiation is useless? Negotiation is useless when all 
the parties have exhausted their argumentation and the deal is not stricken. In our 
settings this means that the orphans are still present in , but there were no 
concessions in the two subsequent rounds. In this case the deal is impossible and the 
negotiation should result in failure. Practically this means that the party which 
submitted a query needs to reformulate it in the terms which are more coherent to the 
common ontology, or to give up. 

5   Argumentation Using Propositional Substitutions and Contexts  

Let C be the set of concepts in Q: { }ic=C . Evidently there may be several 

hypotheses on concept equivalence for each concept ci. We’ll denote the set of 

hypotheses on concept equivalence as: 
1

n

i
i

H
=

=U , where n is the number of concepts 

defined in Q, Hi is the set of hypotheses on the equivalence of ci to the concepts  
of M.  

 

Book 

Chapter 

Published Paper 
  No of citations 
  No of pages 

Journal 

Issue 

Edited Collection 

Monograph 

Proceedings 

Conf or W-shop Paper Poster 

Journal Article 

Publisher 

Publication Documentation 

Tech Report 

Editor Author 

1 

* * 
1 

* 

* 

* 

1 

* 

* 

* 
* 

* 
* 

Ermolayev                                  Guarino

               Keberle    Vladimirov 

Relationships:  - subclass of,         - is part of,          - other (has, published in), 
   - instance of  

Fig. 3. Background domain theory M of M 

Q provides a certain portion of facts on each ci which is communicated by Q to M. 
For our example the portion of facts on the concept ShortPaper : s in TT notation is 
as follows: 

Q | ShortPaper : s  
Q | ShortPaper.NoOfPages : a 
Q | ShortPaper < Paper : s 
Q |  (N < 7) : ShortPaper.NoOfPages  p 



208 V. Ermolayev et al. 

M will try to apply this context to M (Fig. 3) and form hypotheses on the 
equivalence of ci to the concepts of M. While forming these hypotheses M will 
exploit different applicable kinds of similarity measurement (Section 6) and, 
particularly, will try propositional substitutions for context similarity assessment.  

Let: 

 1{ ,..., }
i i

Q n Qc c
γ γΓ = be the context of ci in Q 

− :
Q Mi kh c c≡←→ be a hypothesis on the equivalence of ci and ck, Q |  ci: s, 

M | ck: s  

We’ll say that jγ ′ is the propositional substitution of 
i

j Q c
γ ∈ Γ if it is obtained by 

the substitution of ci by ck in jγ . We’ll say that the similarity asset of jγ ′ to the 

evaluation of the context similarity sj of jγ ′  equals to 1 if M | jγ ′ , otherwise sj=0. 

We’ll then compute the context similarity of ci and ck as 
1

1 m

C j
j

Sim s
m =

= . If computed 

SimC < 1 M may provide Q with some context 
k

M c
Γ to allow Q to make its 

hypotheses and assessments on the next negotiation round. The soundness of the 
hypothesis h may then be assessed by the overall similarity Simh of ci and ck. We’ll 
compute Simh as the average of the measured similarities in frame of h.  

For our example some of the hypotheses, contexts and similarity assessments 
generated by M are as follows: 

Hypothesis: AuthorQ →←≡  AuthorM, Assessment: Simh= 0.625 
Instance similarity: 
Ermolayev : AuthorQ 

Ermolayev : AuthorM; Guarino : AuthorM; Keberle : AuthorM; Vladimirov : AuthorM; 
AuthorQ  AuthorM, SimI = 0.25 
Lexical similarity: 
AuthorQ  AuthorM, SimL= 1.0 

Hypothesis: ProceedingsQ →←≡  ProceedingsM, Assessment: Simh= 1 
Lexical similarity: 
ProceedingsQ  ProceedingsM, SimL = 1.0 

Hypothesis: ShortPaperQ →←≡ PublishedPaperM, Assessment: Simh= 0.3 
Lexical similarity: 
ShortPaperQ  PublishedPaperM, SimL= 0.3 
Propositional substitutions: 

M | ¬ ((N < 7) : PublishedPaperM.NoOfPages  p), Simh = 0 – orphan constraint 
M | ¬ (PublishedPaperM < PaperQ : s), Sim = 0 – orphan subsumption 
M |  (Datatype(N, Integer) : PublishedPaperM.NoOfPages  p), Sim = 1 

Context: 
M | PublishedPaperM < PublicationM : s 

M | JournalArticleM < PublishedPaperM : s 

M | ChapterM < PublishedPaperM : s 

M | ConfOrW-shopPaperM < PublishedPaperM : s 

M | PosterM < PublishedPaperM : s 

M |  has(P, AuthorM) : PublishedPaperM  p 
M | Datatype(N, Integer) : PublishedPaperM.NoOfPages  p 



 A Strategy for Automated Meaning Negotiation in Distributed Information Retrieval 209 

Hypothesis: ShortPaperQ →←≡ ConfOrW-shopPaperM, Assessment: Simh= 0.3 
Lexical similarity: 
ShortPaperQ  ConfOrW-shopPaperM, SimL= 0,2 
Propositional substitutions: 

M | ¬ ((N < 7) : ConfOrW-shopPaperM.NoOfPages  p), Sim = 0 – orphan constraint 
M | ¬ ( ConfOrW-shopPaperM < PaperQ : s), Sim = 0 – orphan subsumption 
M |  (Datatype(N, Integer) : ConfOrW-shopPaperM.NoOfPages  p), Sim = 1 

ShortPaperQ  ConfOrW-shopPaperM, SimC= 0,3 
Context: 

M |  ConfOrW-shopPaperM < PublishedPaperM : s 

M |  has(P, AuthorM) : ConfOrW-shopPaperM  p 
M |  is_part_of(P, ProceedingsM) : ConfOrW-shopPaperM  p 

Hypothesis: ShortPaperQ →←≡ PosterM, Assessment: Simh= 0,6 
Lexical similarity: 
ShortPaperQ  PosterM, SimL= 0 
Propositional substitutions: 

M |  ((N < 7) : ConfOrW-shopPaperM.NoOfPages  p), Sim = 1  
M | ¬ ( PosterM < PaperQ : s), Sim = 0 – orphan subsumption 
M |  (Datatype(N, Integer) : PosterM.NoOfPages  p), Sim = 1 

ShortPaperQ  PosterM, SimC= 0.6 
Context: 

M |  PosterM < PublishedPaperM : s 

M |  has(P, AuthorM) : PosterM  p 
M |  is_part_of(P, ProceedingsM) : PosterM  p 

Hypothesis: PaperQ →←≡ PublishedPaperM, Assessment: Simh= 0 
Lexical similarity: 
PaperQ  PublishedPaper, SimL= 0,5 
Propositional substitutions: 

M | ¬  (is_part_of(P, ProceedingsQ) : PublishedPaper  p), Sim = 0 – orphan 
meronymy 

M | ¬  (has(P, AuthorQ) : PublishedPaperM  p), Sim = 0 – orphan relationship 
PaperQ  PublishedPaperM, SimC=0 
Context: 

M | PublishedPaperM < PublicationM : s 

M | JournalArticleM < PublishedPaperM : s 

M | ChapterM < PublishedPaperM : s 

M | ConfOrW-shopPaperM < PublishedPaperM : s 

M | PosterM < PublishedPaperM : s 

… 

Hypothesis: SeriesQ →←≡  ∅ , Assessment: Simh= 0 –  missing knowledge in M 
We shall measure the semantic distance Di between ci and M as follows: 

1 max( )
j

i
i h

H
SD Sim= − . (2) 

We may now compute the overall semantic distance between Q and M as follows: 

1

n

i
i

SD
=

=SD . (3) 



210 V. Ermolayev et al. 

6   Presuppositions 

Extending the approach of [7] we’ll make presuppositions on the equivalence of the 
concepts according to the measured Simh values. We’ll then revise the propositional 
substitutions for other concept hypothesis and re-compute the corresponding Simh 
values. In result the presupposition set PR may be extended as well. Let 

1

n

i
i

PR
=

=PR U , where PRi is the set of presuppositions on the equivalence of ci. The 

rule for PR formation is as follows: 

(1) Set up the similarity threshold minSim for accepting a hypothesis as the 
presupposition  
(2) For each Hi: 

− Choose the hypothesis h with the highest Simh value and add it to PRi as pr iff its 
Simh value is over minSim 

− Revise propositional substitutions for H with respect to pr and re-assess Simh 
values  

(3) Repeat (2) until at least one pr is added to H  
(4) For PRi delete all pr except the one with the highest Simh value 

After PR is formed we may also drop all the hypotheses in each Hi except the one 
with the highest Simh value. The difference in SDb before and SDa after the formation 
of PR will show us the efficiency of the formed PR:  =  ( - ) /b a bEPR SD SD SD . 

For the presented fragment of our example SDb = 2.775.  Presuppositions 
(minSim=0.5) with the highest Simh values are:  

ProceedingsQ  Proceedings, Simh= 1 and AuthorQ  Author, Simh = 0.625. 

By revising propositional substitutions we obtain the following changes in Sim 
values:  

PaperQ →←≡ PublishedPaper, Simh= 1 (both propositional orphans are eliminated) 
PaperQ  PublishedPaper, Simh= 1  may now be added to PR 

ShortPaperQ →←≡ Poster, Simh= 1 (subsumption orphan is eliminated) 
ShortPaperQ  Poster, Simh= 1 may now be added to PR 

ShortPaperQ →←≡ ConfOrW-shopPaper, Simh= 0.6 (subsumption orphan is eliminated) 
ShortPaperQ  ConfOrW-shopPaper, Simh= 0.6 may now be added to PR. 

After PR is formed  SDa = 1.375 and EPR = 1.4/2.775 = 0.505. 

7   Concept Similarity 

As it was mentioned before a negotiation set represented by the context of a 
background domain theory Q can not be treated as a well-defined rich ontology. 
Hence, we need to make all the efforts possible to assess its similarity to M (which is 
rather rich) through analyzing all facets of its semantics. We may achieve it only by 
following the advice of Weisberg [10]:  



 A Strategy for Automated Meaning Negotiation in Distributed Information Retrieval 211 

“... I would contend that analysts frequently should not seek a single 
measure and will never find a perfect measure. Different measures exist 
because there are different concepts to measure ... It is time to stop 
acting embarrassed about the supposed surplus of measures and instead 
make fullest possible use of their diversity.”  

The reminder of this section outlines the variety of similarity measures which we 
consider to be applicable for computing semantic distances in presuppositions. Most 
of these measures are widely used in ontology alignment [17].   

Instance Similarity. The rationale behind the instance similarity is that similar 
concepts have similar instances. Let D be the domain, A and B be the concepts in D. A 
is similar to B if ∅≠∩ BA II , where AI  and BI  are the sets of instances of D and 

{ }: , _ ( , )A k kI i k instance of i A= ∀ . We’ll follow the approach of [9] and measure 

Instance Similarity by symmetric Jaccard coefficient: 

( )
( , )

( )
A B

I
A B

P I I
Sim A B

P I I
= I

U
,  (4) 

where )(IP  is the probability that a randomly chosen instance of D belongs to I. 

Context or Feature Similarity. The rationale behind the contextual similarity is 
that similar concepts have similar contexts. These contexts may be understood as 
feature sets. Similarity between feature sets may be measured for example by means 
of Tversky metrics [11]. However, Tversky metrics works only if there is a well 
defined and a commonly accepted feature set. This is not true in our case. Therefore 
we shall measure Context Similarity in frame of a hypothesis h through assessing the 
propositional substitutions as shown in Section 5: If si are the similarity assessments 
of the respective propositional substitutions jγ ′ , then: 

1

1 m

C j
j

Sim s
m =

= . (5) 

Datatype and Measurement Similarity. It seems rational to consider that similar 
concepts have similar properties. However, the problem of determining similarity 
among properties has the same complexity as measuring the similarity of concepts. 
Another observation is that the set of properties of a concept is the part of its feature 
set. Hence, it is worth trying to measure Property Similarity by a Context Similarity 
metrics. The peculiarity of a property is that there are different types of them: domain 
properties and referential (slot) properties. While a slot property is the matter 
reflecting the relationship to another concept (property), a domain property reflects 
that a concept has the feature which: 

− Has a certain datatype (like a colour, a weight, an age, a string…) 
− Is measured in certain (standard) units (like an RGB vector, a kilogram, a year, an 

integer, …) 
− Has certain constraints on its values expressed as logical formulas, like: 

)30()90( >∧≤ ageweight   



212 V. Ermolayev et al. 

For example, if concept A (a ShortPaper) has property a having integer datatype and 
is measured in the NoOfPages and concept B (a Poster) has property b having integer 
datatype and is measured in the NoOfPages, a and b may be considered similar and, this 
fact may increase the similarity between A and B. The ratio of ASim  in frame of the 

hypothesis A →←≡ B will be increased if a and b have the same constraints. For 
example, )7( <a  and )7( <b for a ShortPaper and a Poster respectively. 

As far as Property similarity measurement is also based on the propositional 
substitutions we do not distinguish SimC and SimA in the discussion of the example in 
Section 5. 

Lexical Similarity. Considering concepts with the same names (or the same 
lexical roots) may of course lead to confusion. However, the same root in names may 
be a good hint in finding a perfect match in a pair of concepts from different contexts 
like Q and M. Human experience says that this heuristics works if supported by 
other evidence (like instance similarity for AuthorQ and AuthorM or effective 

presuppositions based on the acceptance of ProceedingsQ →←≡  ProceedingsM 
hypothesis in our example). We use the following lexical measure SimL. Let RA, RB be 
the sets of roots of the words which constitute the name of concept A and B 
respectively, then: 

A B
L

A B

R R
Sim

R R
=

I

U
. (6) 

In our example SimL of the concepts Paper and PublishedPaper equals to 0.5. 
Technically it is quite simple to build the sets of roots as far as the words which 
constitute a concept name often have capitalized first letters.   

8   Concession and Reputation 

What is concession with respect to a concepts’ meaning in a multi-issue (i.e., multi-
concept) negotiation? We’ll denote this concession in the terms of concept similarity 
and satisfiability of the logical formulae describing the background theories of 
negotiating parties. Let: M be an actor in an information retrieval system, { }iN=ù  

be the set of its peers with whom M has agreed on the similarity of the concept A 
from its M to their concepts Bi from respective 

iN in previous negotiations. We 

denote Semantic Commitment of M with respect to A as the set of hypotheses 

{ }, ( , )A A i i iH h A B Sim≡= = ←→  accepted by M as his beliefs. The strength of this 

Semantic Commitment may be assessed by:  

A i
i

S Sim= . (7) 

When Q and M detect an orphan A in their negotiation a concession on A means the 
extension of  with A A ≠ ∅C I  by one of the parties (Section 4). Adopting this 

new portion of  for a party, say M, may force him to drop some of hX,i in his 



 A Strategy for Automated Meaning Negotiation in Distributed Information Retrieval 213 

Semantic Commitments with respect to the concepts X related to A. It is rational to 
consider that the party having less strong commitments (7) on the concepts related to 
A should concede.   

A more knowledgeable party, having stronger Semantic Commitments may and is 
actually forced to concede less, i.e., require that the difference in similarity between 
its initial context and the agreed context is less than of the other party. Concessions of 
a more knowledgeable party will affect more commitments of the other parties which 
should of course be re-negotiated. It is therefore clear that negotiation strategy while 
determining the concession should:  

− Avoid conceding on the concepts associated with strong Semantic Commitments 
− If it is not possible to avoid concession, and there are  alternative concepts to 

concede on – concede on the concept having Semantic Commitment of lower 
strength SA  

And, finally, the reputation of a party may be assessed by evaluating the extent to 
which its knowledge is really consensual. It is natural to consider a party more 
reputable if its overall strength of Semantic Commitments M

A
A

S=S is greater than 

the SN of another party. In our example it is evident that SQ < SM. Hence, it will be 
difficult for Q to convince M to accept the knowledge about Series concept (Fig. 2). 

9   Discussion 

The paper reports on the formal framework to design strategies for software agents 
engaged in multi-issue non-symmetric meaning negotiation. These agents are thought 
to be the actors in distributed information retrieval system based on centralized (e.g.,  
[6], [13]) or de-centralized (e.g., [5]) mediator architecture with centralized, 
decentralized or hybrid ontology representation (please refer to [14] for a survey). In 
understanding the nature and the conceptual foundation of negotiation among 
software agents we base our work on the results from DAI and eCommerce domains. 
We adopt the theoretical basics of [2], [3] and build our conceptual framework on it. 
While designing a strategy for automated multi-issue meaning negotiation we address 
the aspects typical to a negotiation strategy in a more general sense (Section4). 
Speaking in terms of the Game Theoretical approach such a strategy should ideally 
lead to a deal in a reasonably small no of rounds and, if adopted by all negotiation 
parties, be in Nash equilibrium. Though it is not formally proved that the proposed 
strategy will be in the Nash equilibrium with similar strategy of another party, it 
seems to look like that according to the monotonic nature of similarity measures, the 
rules for forming presuppositions and concessions. 

In the presented framework we used and extended various contributions of other 
authors in: measuring concept similarity [15], [9], [12], [11], using logical formulae to 
approximate semantic discrepancies [16], using Type Theory for formalizing 
argumentation [8], making presuppositions [7]. Sound experimental results of the 
colleges evaluating these basic contributions allow us to believe that our evaluation 
planned for the near future will bring positive results.    



214 V. Ermolayev et al. 

The advancements of the presented framework are as follows. It results in a 
strategy which compares the contexts of two background domain theories not 
concept by concept, but the whole context to the other context by accounting the 
relationships among concepts, the properties, the constraints over properties, and 
the available instances. The mechanisms for measuring contextual similarity 
through assessing propositional substitutions and to provide argumentation through 
generating extra contexts are also new. One more novelty of our framework is the 
use of presuppositions for choosing the best similarity hypotheses and to make 
concession to common sense monotonic. The means for evaluating the possible 
eagerness to concede through semantic commitments and related notions of 
knowledgeability and the degree of reputation to our knowledge also have not been 
reported before.   

10   Concluding Remarks 

As Tom Gruber said in one of his recent interviews:  

“I find it critical to remember that every ontology is a treaty – a social 
agreement – among people with some common motive in sharing.”1 

This view may definitely be applied also onto the artificial agents acting on behalf 
of their human owners. In this paper we have reported on the formal framework 
which provides strategies to gain such a social agreement automatically among 
software agents in an open system. These agents, as mentioned in Section 3, also have 
some common motive in sharing, though the semantics of their individual beliefs or 
background theories of the domain may well have surmountable discrepancies. We 
design multi-concept meaning negotiation strategies for software agents in distributed 
information retrieval which allow dealing on the common sense of a negotiated 
context and may be implemented in a software. Providing means to agree on the set of 
matters with respect to their semantics for autonomous intelligent components of an 
open software system is quite important. Such means will facilitate to making mutual 
understanding and collaborative work in such software systems more sound and 
effective.   

Our plans for future work are to experiment with the prototype strategies based 
on the presented framework for multi-agent system in the successor of the 
RACING2 project (distributed information retrieval). We also consider the 
implementation and the experimentation with such strategies in the frame of PSI3 
project. PSI objective is to prototype a multi-agent system which simulates dynamic 
engineering design processes and assists human designers in their cooperative work 
on a design project.  

                                                           
1  Interview for the Official Quarterly Bulletin of AIS Special Interest Group on Semantic Web 

and Information Systems, Volume 1, Issue 3, 2004. 
2  RACING: Rational Agent Coalitions for Intelligent Information Retrieval on the Net,  

URL: http://www.zsu.zp.ua/racing. 
3  PSI: Productivity Simulation Initiative. Cadence Design Systems, GmbH.  



 A Strategy for Automated Meaning Negotiation in Distributed Information Retrieval 215 

References 

1. Wiederhold, G.: Mediators in the Architecture of Future Information Systems. IEEE 
Computer, 25(3) (1992) 38–49 

2. Lomuscio, R., Wooldridge, M., Jennings, N. R.: A Classification Scheme for Negotiation 
in Electronic Commerce" In: Dignum, F. and Sierra C. (eds.) Agent-Mediated Electronic 
Commerce: A European Perspective. Springer Verlag, Berlin Heidelberg, New York 
(2000), 19–33 

3. Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., Sierra, C., Wooldridge, M.:  
Automated Negotiation: Prospects, Methods and Challenges. Int. J. of Group Decision and 
Negotiation 10(2) (2001) 199-215 

4. Beam, C., Segev, A.: Automated Negotiations: A Survey of the State of the Art. CITM 
Working Paper 96-WP-1022 (1997). URL: http://haas.berkeley.edu/~citm/wp-1022-
summary.html 

5. Zhang H., Bruce Kroft W., Levine B., Lesser V.: A Multi-agent Approach for Peer-to-
Peer-based Information Retrieval Systems. In: Proc. AAMAS'04, July 19-23, 2004, New 
York, New York, USA 

6. Ermolayev, V., Keberle, N., Kononenko, O., Plaksin, S., Terziyan, V.: Towards a 
framework for agent-enabled semantic web service composition. Int. J. of Web Services 
Research, 1(3) (2004) 63-87 

7. Beun R.-J., van Eijk R.M., Prüst H.: Ontological Feedback in Multiagent Systems. In: 
Proc. AAMAS'04, July 19-23, 2004, New York, New York, USA 

8. Luo Z.: Computation and Reasoning: A Type Theory for Computer Science. Int. Series of 
Monographs on Computer Science. Clarendon Press, Oxford (1994) 

9. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to Match Ontologies on the 
Semantic Web. Int. J. Very Large Data Bases, 12(4) (2003) 303-319 

10. Weisberg, H.F.: American Political Science Review 68 (1974) 1638-1655 
11. Tversky, A.: Features of Similarity. Psychological Review  84(4) (1977) 327-352 
12. Bouquet, P., Magnini, B., Serafini, L., Zanobini, S.: A SAT-based Algorithm for Context 

Matching. Dept of Information and Communication Technology, Univ of Trento, T.R. # 
DIT-03-005, Jan. 2003 

13. Bergamaschi, S., Castano, S., De Capitani di Vimercati, S., Montanari, S. Vincini, M.: An 
Intelligent Approach to Information Integration. In: Proc. Int. Conf. on Formal Ontology 
in Information Systems (FOIS-98), June, 1998. 

14. Wache, H. et al.: Ontology-Based Integration of Information - A Survey of Existing 
Approaches. In: Gomez-Perez, A.,  Gruninger, M., Stuckenschmidt, H., Uschold, M. (eds.) 
Proc. of the IJCAI-01 Workshop on Ontologies and Information Sharing, Seattle, USA, 
August 4-5 (2001) 108-118 

15. Lin, D.: An Information-Theoretic Definition of Similarity. In: Proc. Int. Conf. on 
Machine Learning (1998) 

16. Aleksovski, Z., ten Kate, W., van Harmelen, F.: Semantic Coordination: a New 
Approximation Method and its Application in the Music Domain. In: Proc. ISWC-04 
workshop on Meaning Coordination and Negotiation, 8 Nov.2004, Hiroshima, Japan 
(2004) 

17. Euzenat, J. et al.: State of the Art on Ontology Alignment. KnowledgeWeb project 
deliverable D2.2.3, v.1.2. August 2, 2004. URL:  http://knowledgeweb.semanticweb.org/ 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 216 – 231, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

On Applying the AGM Theory to DLs and OWL 

Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou 

Institute of Computer Science, FO.R.T.H.  
P.O. Box 1385, GR 71110, Heraklion, Greece 

{fgeo, dp, antoniou}@ics.forth.gr 

Abstract. It is generally acknowledged that any Knowledge Base (KB) should 
be able to adapt itself to new information received. This problem has been ex-
tensively studied in the field of belief change, the dominating approach being 
the AGM theory. This theory set the standard for determining the rationality of 
a given belief change mechanism but was placed in a certain context which 
makes it inapplicable to logics used in the Semantic Web, such as Description 
Logics (DLs) and OWL. We believe the Semantic Web community would 
benefit from the application of the AGM theory to such logics. This paper is a 
preliminary study towards the feasibility of this application. Our approach 
raises interesting theoretical challenges and has an important practical impact 
too, given the central role that DLs and OWL play in the Semantic Web. 

1   Introduction 

One of the crucial tasks towards the realization of the vision of the Semantic Web is 
the encoding of human knowledge in special structures (ontologies), using certain 
formal encodings (representation languages), such as DLs [3] and OWL [5]. Simply 
encoding the knowledge is not enough though; knowledge needs to be updated as 
well. There are several reasons for that: a piece of knowledge that was previously un-
known, classified or otherwise unavailable may have become known; or a mistake 
may have occurred in the conceptualization of the domain or during the input; or the 
domain itself may have changed. In all these cases the ontology needs to be updated 
to accommodate the change. Even the development of an ontology is a highly itera-
tive revision process, in which the ontology passes through several revising steps be-
fore reaching its “final” version. 

For all the above reasons, developing an automatic, consistent and rational updat-
ing method for ontologies is a task of great interest to the Semantic Web community. 
Despite this fact, the problem of ontology updating has been generally disregarded in 
the relevant literature [13]. In the current paper, we view this problem as a special 
case of the general problem of belief change (also known as belief revision) [8], 
which deals with the updating of a KB in the face of new information. 

The problem of belief change has been extensively studied in the literature, result-
ing in several interesting results, the most important approach being the work by Al-
chourron, Gärdenfors and Makinson (AGM for short) in [1], known as the AGM the-
ory. In that paper, the authors did not attempt to introduce a new algorithm for belief 
change; instead, they proposed certain rationality constraints (known as the AGM pos-
tulates) which should be satisfied by any rational belief change algorithm, thus setting 



 On Applying the AGM Theory to DLs and OWL 217 

the foundations for future research on the subject. The importance of the AGM theory 
lies in the fact that these postulates were accepted by most researchers as an appropri-
ate condition to determine the rationality of a certain belief change operator. 

Unfortunately, the AGM theory is based on assumptions [1] that generally fail for 
DLs and OWL [7]; thus, the AGM theory cannot be directly applied to the Semantic 
Web. Moreover, to the authors’ knowledge, there has been no attempt towards a gen-
eral standard of rationality for belief change operators, in the AGM pattern, for sev-
eral logics outside the AGM framework (such as the logics used in the Semantic 
Web). One possible way to address this issue would be to introduce several different, 
language-specific postulates that take into account the peculiarities of each language. 

In this work, we opt for a more general approach. We believe that the concept of 
rationality is largely independent of the underlying knowledge representation scheme, 
despite the different properties of each language. Thus, it may be possible to use any 
condition determining the rationality of a belief change operator in several different 
contexts; this avoids the problem of “reinventing the wheel” for each different logic. 

Given the appeal of the AGM model in the belief change literature, we believe that 
dropping the AGM assumptions and using the theory in a more general context is a rea-
sonable initial choice. Some people may disagree on whether the AGM theory is the 
best choice for the Semantic Web; only future research can uncover the strengths and 
weaknesses of this method, as well as of its alternatives. This paper focuses on the 
AGM theory of contraction [1], by determining whether this theory can be successfully 
generalized to apply to DLs and OWL. This is the first step towards evaluating the fea-
sibility of applying the AGM theory in the context of the Semantic Web. 

The idea of using the intuitions behind the AGM theory to develop a more general 
version was initially pursued by the authors in [6], [7], where this generalization was 
defined and its properties were studied; the use of belief change techniques to address 
the problem of ontology updating has also been independently considered in [12], 
[13], [16]. Such techniques could be useful in automating the third phase of ontology 
evolution (as defined in [17]), under which the change(s) to be made in the ontology 
in response to a certain need are determined (Semantics of Change phase). 

In the current paper, we extend the work presented in [7]; we study the feasibility 
of applying the generalized AGM theory of contraction to DLs and OWL, develop 
conditions under which (the generalized version of) the AGM theory can (or cannot) 
be applied to DLs and show that the approach fails for OWL. Our focus lies on the 
theoretical aspects of our approach; practical issues, like implementation, or applica-
tions of our method to specific languages are given less weight. Throughout this pa-
per, for uniformity purposes, we will use the term KB to refer to ontologies  
as well. 

2   Preliminaries 

2.1   Description Logics (DLs) and the Web Ontology Language (OWL) 

The term Description Logics [3] refers to a family of knowledge representation lan-
guages, heavily used in the Semantic Web [4]. In DLs, classes are used to represent 
basic concepts, roles to represent basic binary relations between objects and individu-
als to represent objects. Those primitive notions can be combined using certain  



218 G. Flouris, D. Plexousakis, and G. Antoniou 

operators (such as ¬, , ∃ etc) to produce more complex terms. Finally, connectives 
are used to represent relationships between terms, such as inclusion ( ), disjointness 
(disj) and others. Each such relationship is called an axiom. Axioms dealing with 
classes and roles form the Tbox, while axioms dealing with individuals form the Abox. 
The operators and connectives that a certain DL admits determine the type and com-
plexity of the available axioms, which, in turn, determine the expressive power and 
the reasoning complexity of the DL. Reasoning in DLs is based on standard model-
theoretic semantics. For more details on DLs and their semantics, see [3]. In the fol-
lowing, the term DL Knowledge Base (DL KB) will refer to a set of general Tbox 
and/or Abox axioms representing knowledge regarding a domain of interest. 

The Web Ontology Language [5], known as OWL, is a knowledge representation 
language that is expected to play an important role in the future of the Semantic Web, 
as it has become a W3C Recommendation. OWL comes in three flavors (or species), 
namely OWL Full, OWL DL and OWL Lite, with varying degree of expressive power 
and reasoning complexity. In OWL, knowledge is represented using an RDF-like syn-
tax. OWL contains several features allowing the representation of complex relation-
ships between classes, roles and objects in a pattern very similar to the one used in 
DLs; this close relationship was verified in [10], where OWL DL and OWL Lite (with 
their secondary annotation features removed) were shown equivalent to the DLs 
SHOIN+(D) and SHIF+(D) respectively. On the other hand, OWL Full provides a 
more complete integration with RDF, containing features not normally allowed in 
DLs; furthermore, its inference problem is undecidable [10]. For more details on 
OWL and the differences between OWL Full, OWL DL and OWL Lite, refer to [5]. 

2.2   The AGM Theory and Its Generalization 

The problem of belief change deals with the updating of a KB in the face of new, pos-
sibly contradictory, information. Undoubtedly, the most influential work in the area of 
belief change is the work by AGM [1]. In that paper, three fundamental operations of 
belief change were defined, namely expansion, revision and contraction, as well as a 
set of rationality postulates that should apply to each of the above operations. 

In the current paper, we restrict our attention to the operation of contraction (de-
noted by ‘−’) which refers to the consistent removal of a piece of information from a 
KB when this information is no longer believed. Contraction was chosen for our ini-
tial approach because, according to AGM, it is the most fundamental among the three 
belief change operators [1], [8]. Indeed, the theoretical importance of contraction has 
been accepted by most researchers, even though revision (which refers to consistent 
addition of information) is more often used in practical applications. 

AGM used several assumptions when formulating their theory. Under these as-
sumptions, a logic is a pair <L,Cn>, where L is a set containing all the expressions of 
the logic and Cn is a consequence operator that satisfies the Tarskian axioms (itera-
tion, inclusion, monotony). Using this consequence operator, we can define the impli-
cation relation as: K X  Cn(X)⊆Cn(K). This is the only assumption that was kept 
during the generalization of the AGM theory in [7]; AGM additionally assumed that 
the logic is closed under the standard operators (¬, ∧, etc); they also assumed that the 



 On Applying the AGM Theory to DLs and OWL 219 

consequence operator includes classical tautological implication, it is compact and it 
satisfies the “rule of introduction of disjunctions in the premises”. 

It is easy to see that many AGM assumptions fail for DLs and OWL. For example, 
a DL is not necessarily closed under the usual operators (¬, ∧, etc); DL axioms are of 
equational form (e.g., A B C), so the negation of an axiom cannot be defined in 
general. Furthermore, many DLs are not compact. The same holds for OWL, as well 
as for many other families of knowledge representation languages [7]. On the other 
hand, our more general framework engulfs DLs, since, for any given DL, we can take 
L to be the set of all axioms that can be formed in this DL and Cn(X) the set of all 
implications of a set of axioms X⊆L under the standard model-theoretic semantics of 
DLs [3]. Similar facts hold for OWL. 

Regarding the operation of contraction, AGM assumed that a KB is a set of proposi-
tions of the underlying logic (say K⊆L) which is closed under logical consequence (i.e., 
K=Cn(K)), also called a theory. Any single expression x∈L of the logic can be con-
tracted from the KB. The operation of contraction can be formalized as a function map-
ping the pair (K, x) to a new KB K′ (denoted by K′=K−x). In [7], the definition of the 
contraction operator was slightly extended to include cases where both operands are sets 
of expressions of the underlying logic (i.e., K′=K−X, for K,X⊆L).  

The above assumptions allow any binary operator to be a “contraction” operator, 
which, of course, should not be the case; for this reason, AGM introduced several re-
strictions on the result of a contraction operation. First of all, the result should be a 
theory itself. As already stated, contraction is an operation that is used to remove 
knowledge from a KB; thus the result should not contain any new, previously un-
known, information. Moreover, contraction is supposed to return a new KB such that 
the contracted expression is no longer believed or implied. Finally, the result should 
be syntax-independent and should remove as little information from the KB as possi-
ble, in accordance with the Principle of Minimal Change [8]. The above intuitions 
were formalized in a set of six postulates, the basic AGM postulates for contraction; 
these are omitted due to lack of space, but can be found in [1]. 

As shown by the above analysis, the intuitions that led to the development of the 
AGM postulates are independent of the underlying knowledge representation language. 
On the other hand, the formulation of the AGM postulates themselves depends on the 
AGM assumptions (see [1]). For this reason, in [7], each AGM postulate was reformu-
lated in such a way as to be applicable to all logics in our more general framework, 
while preserving the original intuition that led to its definition. The resulting postulates 
can be found in the following list, where the naming and numbering of each postulate 
corresponds to the original AGM naming and numbering [7]: 

(K−1) Closure:   Cn(K−X)=K−X 
(K−2) Inclusion:   K−X⊆Cn(K) 
(K−3) Vacuity:   If X Cn(K), then K−X=Cn(K) 
(K−4) Success:   If X Cn(∅), then X Cn(K−X) 
(K−5) Preservation:  If Cn(X)=Cn(Y), then K−X=K−Y 
(K−6) Recovery:   K⊆Cn((K−X)∪X) 



220 G. Flouris, D. Plexousakis, and G. Antoniou 

Unfortunately, it soon became clear that not all logics in our wide framework can 
admit a contraction operator that satisfies the (generalized) AGM postulates. Fol-
lowing this observation, we defined a logic to be AGM-compliant iff a contraction 
operator that satisfies the generalized AGM postulates can be defined in the given 
logic. This class of logics was characterized using the following proposition [7]: 
Proposition 1. A logic <L,Cn> is AGM-compliant iff for all sets K, X⊆L such that 
Cn(∅) Cn(X) Cn(K) there is a Z⊆L such that Cn(Z) Cn(K) and Cn(X∪Z)=Cn(K). 

With the above postulates, we have succeeded in developing a generalized version 
of the AGM theory for contraction. The generalized AGM postulates can be used in 
all logics in our framework; however, for a non-AGM-compliant logic, such an option 
does not make much sense, as no contraction operator satisfying the postulates  
(K−1)-(K−6) can be defined. Proposition 1 is the tool that allows us to determine 
whether this is the case or not. 

3   Conditions for AGM-Compliance 

3.1   General Intuition and Main Results 

In the following, we will refer to a DL as a pair <L,Cn>, where L is the set that con-
tains all the axioms that can be defined in this DL and Cn is the consequence operator 
under the standard model-theoretic semantics of DLs [3]. Initially, we will consider 
DLs that allow for the top concept  and the connective  (applicable to concept 
terms, at least), plus an arbitrary number of other connectives and/or operators.  

Our approach is based on the following observation: take two sets of DL axioms of 
the form K={A }, X={B } such that Cn(∅) Cn(X) Cn(K). Set Z={A B}; Z 
is a good candidate for the set Z required by proposition 1, since Cn(Z)⊆Cn(K) and 
Cn(X∪Z)=Cn(K). There is a catch though: proposition 1 requires that Cn(Z) Cn(K); 
in the above approach sometimes it so happens that Cn(Z)=Cn(K). For example, if 
K={A } and X={¬A ∃R.A ∀R. } for some role R, then it holds that 
Cn(∅) Cn(X) Cn(K). If we take Z as above, we get Z={A ¬A ∃R.A ∀R. }, 
which is equivalent to K={A }, so Cn(Z)=Cn(K). Thus, the constructed Z does not 
satisfy the conditions set by proposition 1 (example provided by Thomas Studer, per-
sonal communication). To deal with this problem, the idea must be somehow refined 
in order to guarantee that Cn(Z) Cn(K) will hold in all cases. This refinement is de-
scribed and proved in a more general setting in the following lemma: 

Lemma 1. Consider the sets of axioms K={Aj  | j∈J} and X={B }. If 
Cn(∅) Cn(X) Cn(K) and there is an interpretation I such that BI=∅, then there is a 
set Z such that Cn(Z) Cn(K) and Cn(X∪Z)=Cn(K). 

Proof. Set Z={Aj B | j∈J} and assume that Z K. Then Z X. By the hypothesis, 
there is an interpretation I such that BI=∅; for this interpretation, Z is obviously satis-
fied, while X is not. This is a contradiction, so Z K. On the other hand, K Z; thus, 
Cn(Z) Cn(K). The relation Cn(X∪Z)=Cn(K) is obvious by the transitivity  
of .                                                                                                                               



 On Applying the AGM Theory to DLs and OWL 221 

Lemma 1 guarantees the existence of the set Z required by proposition 1, but only for 
sets K, X of a special form. This might cause one to believe that it is of limited use; 
on the contrary, lemma 1 forms the backbone of our theory. Before showing that, we 
will show that the prerequisites of proposition 1 need to be checked for only a subset 
of all the possible (K,X) pairs: 

Lemma 2. Consider a logic <L,Cn> and two sets K, X⊆L, such that 
Cn(∅) Cn(X) Cn(K). If there are sets K′, X′⊆L such that Cn(K′)=Cn(K), 
Cn(∅) Cn(X′)⊆Cn(X) and a Z⊆L such that Cn(Z) Cn(K′), Cn(X′∪Z)=Cn(K′), then 
Cn(Z) Cn(K) and Cn(X∪Z)=Cn(K). 

Proof. Obviously Cn(Z) Cn(K). Since Cn(X′)⊆Cn(X) Cn(K) we can conclude that 
Cn(X∪Z)⊇Cn(X′∪Z)=Cn(K′), so Cn(X∪Z)=Cn(K).                                                   

Now consider any two sets of axioms K, X⊆L of the underlying DL, such that 
Cn(∅) Cn(X) Cn(K). If K and X are of the form required by lemma 1, then we are 
done; lemma 1 allows us to find a set Z that satisfies the requirements of proposition 1 
for an AGM-compliant logic. If, on the other hand, K or X are not of the desired form, 
lemma 2 shows the way; all we need is to find two sets K′, X′ of the desired form 
such that Cn(K′)=Cn(K) and Cn(∅) Cn(X′)⊆Cn(X). Then, lemma 1 can be applied 
for K′, X′ and the resulting set Z can be propagated to K, X using lemma 2. These 
ideas lead to the main result of this section: 

Theorem 1. Consider a DL <L,Cn>, such that: 

• For all K⊆L there is a K′⊆L such that K′={Aj  | j∈J} and Cn(K)=Cn(K′) 
• For all X⊆L there is a X′⊆L such that X′={B }, there is an interpretation I such 

that BI=∅ and Cn(∅) Cn(X′)⊆Cn(X) 
Then this DL is AGM-compliant. 

The important question is, in which DLs do the sets K′, X′ required by theorem 1 
exist? With the aid of table 1, it can be shown that several very expressive DLs allow 
transformations resulting in these K′, X′. Table 1 shows how each of the axiom types 
commonly used in DLs can be equivalently rewritten in the form A . Using this ta-
ble, we can generate K′, X′ as required by theorem 1 as follows: for K′, replace each 
axiom of K with its equivalent in the second column; for X′, select one non-
tautological axiom of X, replace it with its equivalent from table 1 (say B ) and set 
X′={∀ R.B }. 

All the transformations in table 1 can be shown using model-theoretic arguments. 
Moreover, K′ as defined above obviously fulfills the requirements of theorem 1. For 
X′, notice that the axiom selected from X is non-tautological, so there is an interpreta-
tion for which BI≠ I; for this interpretation, it holds that (∀ R.B)I=∅. Furthermore, 
X {B } {∀ R.B } and Cn(X′)≠Cn(∅), so X′ is of the desired form as well. 

Table 1 shows that the necessary transformations are possible for axioms involving 
concepts, roles and even individuals. Thus, our results apply also to DL KBs that con-
tain a non-empty Abox. In table 1, A, B refer to concept terms, R, S refer to role terms 
and a, b refer to individuals. All operators subscripted by ⋅R (in the third column)  



222 G. Flouris, D. Plexousakis, and G. Antoniou 

apply to role terms; the other operators apply to concept terms or individuals, depend-
ing on the context. Likewise, connectives apply to concepts, roles or individuals, de-
pending on the context. The symbol R refers to the top role, i.e., the role connecting 
every individual to every individual and the connective \  stands for non-proper-
inclusion. The symbols ¬ and ∃ refer to full (rather than atomic) negation and full 
(rather than limited) existential quantification respectively. 

The above analysis shows that, if the DL under question contains the operators 
necessary for the transformations of table 1, then it is AGM-compliant. The required 
operators are the constant  and the connective  for the basic case (lemma 1), the 
operators of table 1 for the transformation of K plus the operator ∀ and the constant 

R for the transformation of X. Notice that there is a certain amount of redundancy in 
table 1; by eliminating this redundancy the following corollary can be shown: 

Corollary 1. A DL containing the constants , R, the operators ¬, , ∀, ¬R, R, 
{…}, the concept connective  plus any connectives from table 1 is AGM-compliant. 

Table 1. Transforming axioms into the form A  
 

Axiom Equivalent axiom of the proper form Required operators 

A B ¬A B  ¬,  

R S ∀(R ¬S).  ,∀,¬R, R 

A B ∃ R.(A ¬B)  ¬, ,∃, R 

R S ∃ R.∃(R ¬S).  ∃, R,¬R, R 

A≅B (¬A B)  (A ¬B)  ¬, ,  

R≅S ∀(R ¬S).   ∀(S ¬R).  , ,∀,¬R, R 

A B ∃ R.[(A ¬B)  (B ¬A)]  ¬, , ,∃, R 

R S ∃ R.∃[(¬R S)  (¬S R)].  ∃, R,¬R, R, R 

A B (¬A B)  ∃ R.(B ¬A)  ¬, , ,∃, R 

R S ∀(R ¬S).   ∃ R.∃(S ¬R).  , ,∃,∀, R,¬R, R 

A\ B ∀ R.∃ R.(A ¬B)  ∀ R.(¬B A)  ¬, , ,∃,∀, R 

R\ S ∀ R.∃ R.∃(R ¬S).   ∀ R.∀(S ¬R).  , ,∃,∀, R,¬R, R 

disj(A,B) ¬A ¬B  ¬,  

disj(R,S) ∀(R S).  ,∀, R 

A(a) ¬{a} A  ¬, ,{…} 

R(a,b) ∃R.{b} ¬{a}  ¬, ,∃,{…} 

a=b ¬{a} {b}  ¬, ,{…} 

a≠b ¬{a} ¬{b}  ¬, ,{…} 



 On Applying the AGM Theory to DLs and OWL 223 

3.2   Discussion 

Notice that corollary 1 provides one possible application of theorem 1; the family of 
DLs described by corollary 1 is not the only AGM-compliant one. There are several 
reasons for that: first of all, the transformations we propose are probably not the only 
possible ones. Other transformations for K and X would possibly generate a different 
set of operators required for AGM-compliance. 

For example, an alternative for the transformation of X is to take X′={∀R.B } 
for a “fresh” role name R instead of X′={∀ R.B }. The validity of this alternative 
can be easily shown using model-theoretic arguments. Notice that this requires a fresh 
role name, so the logic must admit an infinite number of role names. Additionally, 
this alternative transformation introduces roles which are completely irrelevant to the 
original KB and the contracted expression; the introduction of new, irrelevant roles 
during each contraction operation may appear irrational for some applications, despite 
the fact that it results to an AGM-compliant operation. 

Additionally, corollary 1 gives a minimal set of operators that are needed to guar-
antee AGM-compliance. Any additional operators do not bar AGM-compliance (no-
tice however that any additional connectives might). Thus, all logics that contain 
more operators than the DL described in corollary 1 are AGM-compliant too. 

Furthermore, some of the operators could be replaced by others; for example the 
combination {¬, ∀} is equivalent to the combination {¬, ∃}. Similar facts hold for 
other operators as well. Moreover, the constants  and R could be removed from 
the minimal required set of operators, because they can be replaced by A ¬A and 
R ¬R respectively. Of course, this requires that there is at least one concept (A) 
and at least one role (R) in the namespace of the logic, but this is hardly an  
assumption. 

As it is clear by theorem 1, the operators we need to guarantee AGM-compliance 
are just those that are required to produce the sets K′, X′; for example, if we are inter-
ested in DL KBs without an Abox, then the operator {…} is not necessary, i.e., it 
could be removed from the minimal set of operators required for AGM-compliance. 
Similarly, certain logics disallow certain connectives or certain uses of ones. Such re-
strictions might affect (i.e., reduce) the required minimal operator set (by allowing 
simpler transformations). Furthermore, in some DLs it might be the case that for all 
concept terms B there is an interpretation I such that BI=∅; if this is the case, then the 
last transformation for X (∀ R.B ) is not necessary and we could set X′={B }. 

In theorem 1 we state that the DL under question must allow for concept hierar-
chies (connective ). This is a reasonable assumption, since most interesting DLs 
do satisfy it. However, it turns out that it is also an unnecessary one. To show that, 
we will use the concept of equivalence of logics with respect to AGM-compliance 
that appeared in [6], where it was shown that equivalent logics have the same status 
as far as AGM-compliance is concerned. Now, using model-theoretic arguments, 
we can show the following equivalences: {A } ⇔ {A≅ } ⇔ {¬∀ R.A } ⇔ 
{¬∀ R.A } ⇔ {¬∀ R.A } ⇔ {A\ } ⇔ {disj( ,¬A)}. These equiva-
lences are all definable using the minimal set of operators of corollary 1. Using  
 



224 G. Flouris, D. Plexousakis, and G. Antoniou 

these transformations and proposition 5 in [6], we can show that a DL that contains 
the operators required by corollary 1 plus any of the usual concept connectives (≅, 

, , , \ , disj(.,.)), but not , is equivalent to a similar DL that contains the 
same operators and connectives as well as the connective . The latter logic (which 
includes ) is AGM-compliant by corollary 1; thus the original logic (which does 
not include ) is AGM-compliant too (since the two logics are equivalent). This ar-
gumentation shows that the existence of concept hierarchies in the DL under ques-
tion is not mandatory for corollary 1 to be applicable; any of the usual concept con-
nectives would do. 

The AGM-compliance of a certain family of DLs is the primary result of this sec-
tion; however, the constructive proof employed in theorem 1 has the secondary effect 
of suggesting one possible contraction operator that satisfies the generalized AGM 
postulates. Indeed, if Cn(∅) Cn(X) Cn(K), the principal case in an AGM-compliant 
contraction operation, then by setting K−X=Cn(Z), where Z is the set constructed in 
the proof of lemma 1, we get an AGM-compliant result for the contraction. This set Z 
can be constructed in linear time on the number of axioms in K, X (this is obvious; 
see the proof of lemma 1). We can complete the definition of the contraction operator 
for the non-principal cases as follows: if Cn(X) Cn(K), then (K−3) leaves us little 
choice: K−X=Cn(K); if Cn(X)=Cn(∅) then (K−6) implies K−X=Cn(K); finally, if 
Cn(K)=Cn(∅) or Cn(K)=Cn(X), then K−X=Cn(∅) is a valid choice. These results can 
be computed in constant time. Thus, given an oracle that solves the reasoning problem 
of the underlying DL in constant time, the result of this contraction operator can be 
computed in linear time on the number of axioms in K, X. So, the computational bot-
tleneck of the above contraction operator is the inference problem of the underlying 
DL. However, the semantic properties of this operator have not been studied; this is 
reserved for future work. 

Many of the required operators of corollary 1 are standard in most interesting 
DLs. One exception is the operator {…}, which is common in many DLs, but could 
not be classified as “standard”. Fortunately, this operator is not necessary for AGM-
compliance if we assume an empty Abox in the DL under question. A more impor-
tant problem is posed by the role operators (¬R, R, R), which do not appear in 
most DLs. These operators are required when role connectives are admitted and for 
the transformation of X, unless we use the alternative transformation with the fresh 
role name. Thus, role operators are not necessary if axioms involving roles are not 
allowed in the DL under question and an alternative transformation for X  
is available. 

One last (but certainly not least) observation that can be made is that theorem 1 
and its various corollaries do not provide a complete characterization of AGM-
compliant DLs. However, it looks like this characterization is close to being com-
plete: all the AGM-compliant DLs that we have considered fall into one of the 
theorem’s innumerable variations and corollaries; those who don’t, eventually 
turn out to be non-AGM-compliant (see the next sections for some examples). It 
is part of our future work to determine whether this pattern is simply coincidental 
or not. 



 On Applying the AGM Theory to DLs and OWL 225 

4   Conditions for Non-AGM-Compliance 

Unfortunately, many DLs are not AGM-compliant; to show that, we will initially 
show the following simple lemma, which is applicable in any logic: 

Lemma 3. Consider a logic <L,Cn> and a set K⊆L. Set X={x∈L | Cn({x}) Cn(K)}. 
If Cn(∅) Cn(X) Cn(K) then <L,Cn> is not AGM-compliant. 

Proof. Take any set Z⊆L such that Cn(Z) Cn(K). Then, obviously Z⊆X, so 
Cn(X∪Z)=Cn(X) Cn(K). Thus, we can find no Z⊆L as required by proposition 1 for 
the sets K,X⊆L, which proves that <L,Cn> is not AGM-compliant.                            

Lemma 3 states that, if a logic contains a belief which cannot be deduced by all its 
proper consequences combined, then this logic is not AGM-compliant. Unfortunately, 
this is the case for many DLs that admit axioms between role terms but forbid the use 
of operators ¬R, R. Indeed, the axiom R S implies ∃R.A ∃S.A, (≤2R) (≤2S), etc, 
but sometimes all such implications combined do not imply R S, as shown below: 

Theorem 2. Consider a DL with the following properties: 

• The DL admits at least two role names (say R, S) and one concept name (say A) 
• The DL admits at least one of the operators ∀, ∃, (≥n), (≤n), for at least some n 
• The DL admits any (or none) of the operators ¬, , , −, , , {…} 
• The DL admits only the connective  applicable to both concepts and roles 
Then this DL is not AGM-compliant. 

Sketch of Proof. Set K={R S}, X={x∈L | Cn({x}) Cn(K)}, as in lemma 3.  
We define two interpretations I, I′, as follows:  

I= I′={a1,a2,b1,b2,c} 
BI=BI′=∅ for all concepts B 
yI=yI′=c for all individuals y 
R0

I=R0
I′=∅ for all roles R0, other than R, S 

RI=RI′={(a1,b1), (b1,a1), (a2,b2), (b2,a2)} 
SI={(a1,b1), (b1,a1), (a2,b2), (b2,a2)} 
SI′={(a1,b2), (b2,a1), (a2,b1), (b1,a2)} 

Notice that the two interpretations differ only in the interpretation of the role S. An 
easy induction on the number of operators of a concept term C shows that CI=CI′ for 
all C in all DLs considered by the hypothesis. Thus, any axiom involving concept 
terms is satisfied by I iff it is satisfied by I′. Using induction, we can also show that all 
axioms in X that involve role terms are actually tautological. 

Thus, I satisfies K (obviously), so it satisfies X (because K X); since I satisfies  
X, I′ satisfies X (by the results above), but K is not satisfied by I′ (obviously). Thus 
Cn(X) Cn(K). To complete the proof, we need to show that Cn(X)≠Cn(∅); this fol-
lows from the fact that at least one of the operators ∀, ∃, (≥n), (≤n) (for some n) exists 
in the DL. The above, combined with lemma 3, conclude the proof.                            



226 G. Flouris, D. Plexousakis, and G. Antoniou 

The above negative result persists if the DL under question admits ≅ (applicable to 
both concepts and roles) instead of , or if it admits both connectives; the proof is 
identicsal. The same result can be shown (using the same proof) if we add transitive 
roles (the axiom Trans(.)), axioms with individuals, functional-only roles and/or 
qualified number restrictions. This analysis uncovers a rule of thumb regarding 
DLs: if theorem 1 cannot be applied, then there is good chance that lemma 3 will be 
applicable for a set of the form {R S} or {R≅S} (for any two roles R, S). This pro-
vides a simple test to determine whether a DL is AGM-compliant, applicable to 
many DLs. 

5   A Case Study: OWL 

5.1   OWL DL and OWL Lite Without Annotation Features 

One of the corollaries of theorem 2 is that OWL DL and OWL Lite without annota-
tion features are not AGM-compliant. To show this, we will use the result of [10] 
that identifies OWL DL and OWL Lite (without annotations) as equivalent to 
SHOIN+(D) and SHIF+(D) respectively. SHOIN+(D) is a very expressive DL allow-
ing for the following operators: , , , , ¬, {…}, −, ∃, ∀, (≥n), (≤n). In addition, 
it allows a datatype theory (D), which is a mapping from a set of datatypes to a set 
of values plus a mapping from data values to their denotation (see [10] for details). 
To make datatypes useful, the logic also allows datatype (or concrete) roles, which 
are binary relationships between individuals and data values, as well as the opera-
tors ∃, ∀, (≥n), (≤n), {…} for datatype roles and data values. The axioms allowed in 
this logic are concept, role and datatype role hierarchies; individual inclusion, 
equality and inequality; role transitivity (for object roles only); and a new concept 
existence axiom (see [10]). SHIF+(D) is just SHOIN+(D) without the {…} construc-
tor and with the at-least and at-most constructors limited to 0 and 1. SHOIN+(D) 
and SHIF+(D) can be shown non-AGM-compliant, so OWL DL and OWL Lite are 
not AGM-compliant either: 

Corollary 2. SHOIN+(D) and SHIF+(D) are not AGM-compliant. 

Proof. The only difference from the proof of theorem 2 is the existence of datatypes; 
to remedy this problem, augment the interpretations with a datatype domain ( D

I, D
I′) 

and map all datatype roles to the empty set. The rest of the proof is identical.             

5.2   OWL with Annotation Features 

But what if annotation features are included? Does this make the situation any better? 
Unfortunately not: the annotation features are meant to be read by humans, so they 
carry no special meaning for the system (they imply nothing) and the same negative 
results apply here. There is one exception though: the owl:imports annotation feature 
carries some meaning for the parser, making it substantially different from the other 
annotation constructs. More specifically, owl:imports is a meta-logical annotation 
property forcing the parser to include another KB (ontology) in the current KB. In ef-
fect, the axiom owl:imports(O) has exactly the same implications as O itself. One may 



 On Applying the AGM Theory to DLs and OWL 227 

believe that owl:imports does not add anything new to the language in terms of ex-
pressiveness, because owl:imports(O) can be replaced by the axioms of O themselves.  

Unfortunately, there is one problem with this approach: owl:imports must be re-
placed dynamically at the time when the consequences of a certain KB are calcu-
lated (at “run-time”). However, the naïve approach above replaces owl:imports 
statically, thus losing the connection between our ontology and O. This would work 
nicely until O is changed; if O is somehow revised, then the correct, dynamic ap-
proach should replace owl:imports with the axioms of the new O, while the static 
approach would leave our KB with the axioms of the old O. Notice that this would 
not be an issue if we could somehow guarantee that O would remain static and un-
changed; however, given the dynamic nature of the Web, such an assumption would 
be highly unrealistic. 

Therefore, the axiom owl:imports(O) is not equivalent to O; rephrasing this fact 
in the terminology of this paper, we conclude that, for K={owl:imports(O)}, it 
holds that Cn(K)=Cn(O)∪K and Cn(O) Cn(K), thus making lemma 3 applicable 
for K. Since owl:imports is allowed in all three flavors of OWL, we conclude that 
OWL Full, OWL DL and OWL Lite (with annotation features) are non-AGM-
compliant. Furthermore, this analysis shows that any fragment of OWL that con-
tains the owl:imports construct and at least one other non-tautological expression is 
non-AGM-compliant. 

6   Discussion and Directions for Future Work 

6.1   Application to DLs in the Literature 

Our study was kept at a fairly abstract level; we did not focus on any specific DL but 
dealt with the DL family as a whole, including DLs that have not yet been considered 
in the literature. This approach allows our results to be of use to researchers who de-
velop new DLs; if the focus is on developing a DL that can be rationally updated, then 
AGM-compliance should be a desirable feature of the new DL, along with high ex-
pressive power, low reasoning complexity etc. 

However, theorems 1 and 2 can be applied to several DLs that have already been 
considered in the literature as well. We provide an indicative (but not necessarily 
complete) list of DLs for which a definite answer regarding AGM-compliance can be 
given. For a definition of the logics below, refer to [2], [3], [5], [10], [11], [14]. 

The following DLs can be shown to be non-AGM-compliant: SH, SHI, SHIN, 
SHOIN, SHOIN(D), SHOIN+, SHOIN+(D), SHIQ, SHIF, SHIF(D), SHIF+, SHIF+(D); 
all these logics admit role hierarchies, so these results are actually corollaries of theo-
rem 2. For similar reasons, adding role hierarchies to the AL family leads to non-
AGM-compliance; that is, FL0 and FL− with role axioms and all DLs between ALH 
and ALHCIOQ are non-AGM-compliant. This family includes several logics, such as 
ALHE, ALHNC, etc. None of the three flavors of OWL is AGM-compliant if the 
owl:imports axiom is included; OWL DL and OWL Lite without their annotation fea-
tures are non-AGM-compliant either. These facts were proven in section 5. 

The addition of role operators to the AL family results in some AGM-compliant 
DLs, such as ALCO¬, , , ALC¬, ,  with empty Abox, ALCO(¬),  and ALCO(¬), ,  



228 G. Flouris, D. Plexousakis, and G. Antoniou 

with no axioms involving role terms and ALC(¬),  and ALC(¬), ,  with empty Abox 
and no axioms involving role terms. AGM-compliance persists if we add more opera-
tors (but not new axiom types) to any of the above logics; for example, all DLs with 
more operators than ALC¬, ,  and no Abox (such as ALB) are AGM-compliant. 

If we have an infinite pool of role names, we can use the alternative transformation 
introduced in section 3.2 to produce X′; this makes ALC (and all languages with more 
operators than ALC) AGM-compliant, provided that no axioms involving role terms 
are included and that the Abox is empty. Similarly, all languages with more operators 
than ALCO are AGM-compliant if they do not allow axioms involving roles. 

As shown by the above results, it is the absence of role operators (role intersection, 
union and complement) that bars AGM-compliance in most cases. For this reason, we 
highly encourage research on DLs that admit these operators due to their nice behav-
ior with respect to updates. Unfortunately, very few logics with role operators have 
been studied in the literature (notable exceptions being [11], [14]), so the computa-
tional overhead caused by such operators is largely unknown. 

6.2   Role Operators, Negation, the Levi Identity and Ontology Revision 

An additional advantage of the use of role operators (especially R) is the fact that 
they allow the definition of an axiom’s negation. The negation of A B is A B, but 
most logics do not allow axioms with the connective . However, A B is equivalent 
to ∃ R.(A ¬B)  (see table 1), so the negation of A B can be defined indirectly 
using R; similar facts hold for other axiom types as well. This concept can be ex-
tended to finite sets of axioms by noticing that the set X={Aj Bj | j∈J} is equivalent 
to { j∈J(Aj ¬Bj) }, which is a singular set, so it has a negation,  
as above. 

It must be emphasized at this point that not all AGM-compliant DLs are closed 
with respect to axiom negation. The negation of a set of axioms in an AGM-
compliant logic, when available, is a very important concept, because it allows us to 
use the Levi identity: K+X=Cn((K−¬X)∪X) to produce a revision operator from a 
given contraction operator [8]. This identity says that, in order to revise a KB with 
some set of axioms X, we can first contract ¬X and then add X. The contraction op-
eration is needed to guarantee that no inconsistency will arise when X is added to the 
new KB. 

Therefore, for these logics, the problem of ontology revision can be solved in-
directly through the problem of contraction, which is studied in this paper; this 
way, the definition of a rational contraction operator is of dual significance. As 
future work, we are planning to study the problem of revision more thoroughly. 
Due to the above facts, a related issue is the refinement of the proposed contrac-
tion operator for AGM-compliant DLs, to produce an operator that will be based 
on semantic rather than syntactic considerations, in addition to being AGM-
compliant. 

6.3   Evaluation of AGM-Compliance 

The purpose of this paper is to evaluate the usefulness of applying the AGM theory to 
DLs and OWL. As the above analysis indicates, OWL does not support the AGM 



 On Applying the AGM Theory to DLs and OWL 229 

postulates, so the approach is not useful for OWL ontologies. Regarding DLs, the 
situation is much better: there are certain DLs in which an AGM-compliant contrac-
tion operator can be defined, as well as several non-AGM-compliant DLs. Our results 
do not currently provide a complete characterization of AGM-compliance for DLs; 
this is an important goal for our future work. 

The AGM theory has always been the most influential approach to the problem of 
belief change, because it properly captures common intuition regarding the concept 
of rationality and it has several interesting theoretical properties [8]. However, our 
results showed that there are certain problems regarding its application to certain 
DLs, for the operation of contraction. On the other hand, as we showed in [6], all lo-
gics <L,Cn> admit a contraction operator that satisfies (K−1)-(K−5), i.e., all AGM 
postulates except the recovery postulate. Coincidentally, the only seriously debated 
AGM postulate is the postulate of recovery, as some works (e.g., [9]) state that 
(K−6) is counter-intuitive; for a thorough examination on the theoretical implications 
of using (K−6) see [15]. It is generally acceptable however that the recovery postu-
late cannot be dropped unless replaced by some other constraint that would somehow 
express the Principle of Minimal Change. Given the negative results appearing in 
this paper and the above facts, we believe it is useful to work on a “replacement” of 
the recovery postulate, or on some approximation of it, that would properly capture 
the Principle of Minimal Change in addition to being applicable to non-AGM-
compliant DLs.  

As far as AGM-compliant DLs are concerned, we believe that research on ontol-
ogy change should use the feature of AGM-compliance, thus taking advantage of 
the numerous results that appeared in the literature on belief change and the AGM 
theory during the past 20 years. For this reason, we plan to continue our research on 
the application of the AGM theory to the DLs that support it. In this respect, notice 
that AGM-compliance simply guarantees the existence of a contraction operator 
that satisfies the basic AGM postulates for contraction; one of our future goals is to 
determine the relation of AGM-compliance to other results related to the AGM the-
ory, such as the various representation theorems [8], the supplementary AGM pos-
tulates [1] etc. 

7   Conclusion 

The AGM theory is a mature and widely accepted model for belief change with 
several applications; a further application of this theory in DLs will hopefully indi-
cate rational methods for updating such logics. This paper partly evaluated the ap-
plicability and usefulness of this approach by determining whether contracting a 
DL KB using the AGM model is possible for certain DLs and by providing a 
roadmap allowing one to check AGM-compliance for DLs not covered by this 
work. We also described one possible AGM-compliant contraction operator for the 
DLs that were found to allow one and showed that OWL is incompatible with the 
AGM theory. 

We are hoping that our work will help in uncovering the limitations of the AGM 
theory with respect to DLs, by verifying the applicability of the method in certain 



230 G. Flouris, D. Plexousakis, and G. Antoniou 

DLs and forcing us to consider alternative approaches in others. DLs and OWL have 
an important role to play in the design of the Semantic Web [4], so our research has 
the potential to find applications in ontology evolution and merging 
and,consequently, in the automation of the task of ontology maintenance on the  
Semantic Web. 

Acknowledgments 

The authors would like to thank Thomas Studer for his example in section 3.1, which 
resolved a long-standing issue. 

References 

1. Alchourron, C., Gärdenfors, P., Makinson, D.: On the Logic of Theory Change: Partial 
Meet Contraction and Revision Functions. Journal of Symbolic Logic 50 (1985) 510-530 

2. Baader, F., Sattler, U.: An Overview of Tableau Algorithms for Description Logics. Studia 
Logica 69 (2001) 5-40 

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge Univer-
sity Press (2002) 

4. Baader, F., Horrocks, I., Sattler, U.: Description Logics as Ontology Languages for the 
Semantic Web. In Hutter, D., Stephan, W. (eds.): Festschrift in honor of Jörg Siekmann, 
Lecture Notes in Artificial Intelligence, Springer-Verlag (2003) 

5. Dean, D., Schreiber, G., Bechhofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., 
McGuiness, D., Patel-Schneider, P., Stein, L.A.: OWL Web Ontology Language Refer-
ence. W3C Recommendation (2004). Available at URL: http://www.w3.org/TR/owl-ref/ 

6. Flouris, G., Plexousakis, D., Antoniou, G.: AGM Postulates in Arbitrary Logics: Initial 
Results and Applications. Technical Report FORTH-ICS/TR-336, April 2004 

7. Flouris, G., Plexousakis, D., Antoniou, G.: Generalizing the AGM Postulates: Preliminary 
Results and Applications. In Proceedings of the 10th International Workshop on Non-
Monotonic Reasoning (2004) 171-179 

8. Gärdenfors, P.: Belief Revision: An Introduction. In Gärdenfors, P., (ed.) Belief Revision, 
Cambridge University Press (1992) 1-20 

9. Hansson, S. O.: Knowledge-level Analysis of Belief Base Operations. Artificial Intelli-
gence 82 (1996) 215-235 

10. Horrocks, I., Patel-Schneider, P.: Reducing OWL Entailment to Description Logic Satisfi-
ability. Journal of Web Semantics, 1(4) (2004) 345-357 

11. Hustadt, U., Schmidt, R.A.: Issues of Decidability for Description Logics in the Frame-
work of Resolution. In Automated Deduction in Classical and Non-Classical Logics, vol. 
1761, LNAI, Springer, (2000) 191-205 

12. Kang, S.H., Lau, S.K.: Ontology Revision Using the Concept of Belief Revision. In Pro-
ceedings of the 8th International Conference on Knowledge-Based Intelligent Information 
and Engineering Systems (2004) 8-15 

13. Lee, K., Meyer, T.: A Classification of Ontology Modification. In Proceedings of the 17th 
Australian Joint Conference on Artificial Intelligence (2004) 248-258, Cairns, Australia 

14. Lutz, C., Sattler, U.: Mary Likes All Cats. In Proceedings of the 2000 International Work-
shop in Description Logics (2000) 213-226 



 On Applying the AGM Theory to DLs and OWL 231 

15. Makinson, D.: On the Status of the Postulate of Recovery in the Logic of Theory Change. 
Journal of Philosophical Logic 16 (1987) 383-394 

16. Meyer, T., Lee, K., Booth, R.: Knowledge Integration for Description Logics. In Proceed-
ings of the 7th International Symposium on Logical Formalizations of Commonsense Rea-
soning (2005) 

17. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-driven Ontology Evolution 
Management. In Proceedings of the 13th International Conference on Knowledge Engi-
neering and Knowledge Management, vol. 2473, LNCS, Springer-Verlag, (2002) 285-300 



A General Diagnosis Method for Ontologies

Gerhard Friedrich and Kostyantyn Shchekotykhin

Universitaet Klagenfurt, Universitaetsstrasse 65,
9020 Klagenfurt, Austria, Europe

firstname.lastname@ifit.uni-klu.ac.at

Abstract. The effective debugging of ontologies is an important prerequisite
for their successful application and impact on the semantic web. The heart of
this debugging process is the diagnosis of faulty knowledge bases. In this paper
we define general concepts for the diagnosis of ontologies. Based on these con-
cepts, we provide correct and complete algorithms for the computation of min-
imal diagnoses of knowledge bases. These concepts and algorithms are broadly
applicable since they are independent of a particular variant of an underlying
logic (with monotonic semantics) and independent of a particular reasoning sys-
tem. The practical feasibility of our method is shown by extensive test
evaluations.

1 Introduction

Ontologies are playing a key role for the successful implementation of the Semantic
Web. Various languages for the specification of ontologies were proposed. The W3C
Web Ontology working group has developed OWL [1] which is currently the language
of choice for expressing Semantic Web ontologies. In fact OWL consists of three lan-
guages of increasing expressive power: OWL Lite, OWL DL and OWL Full. For the
two decidable languages OWL Lite and OWL DL the strong relation to description log-
ics was shown in [2]. OWL Lite and OWL DL are basically very expressive description
logics built upon RDF Schema. Based on these methods efficient reasoning services for
OWL Lite can be provided by systems like RACER [3].

Hand in hand with the increase of applications of ontologies and their growing
size, the support of ontology development becomes an important issue for a broad and
successful technology adoption. In the development phase of ontologies, testing and
debugging is a major activity. Testing validates if the actual knowledge base matches the
intended meaning of the knowledge engineer. In case of errors, the knowledge engineer
has to debug the knowledge base. In this debugging process, the knowledge base must
be diagnosed and changed such that all test cases are successfully passed. Consequently,
the diagnosis process has to identify sets of axioms (preferable minimal sets) which
should be changed in order to match the requirements expressed in tests.

In order to support the debugging process current work focuses on the identification
of sets of axioms which are responsible for an incoherent (rsp. inconsistent) knowledge
base [4, 5]. We enhance current techniques in several lines.

First, we will provide a general definition of the diagnosis problem employing a
broadly accepted theory of diagnosis. On the bases of this theory we introduce test

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 232–246, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A General Diagnosis Method for Ontologies 233

cases which allow the knowledge engineer to formulate application specific require-
ments. Furthermore, this general theory of diagnosis allows the diagnosis of incoherent
and inconsistent knowledge bases which comprise both terminological and assertional
axioms. Second, we will show that concepts introduced in [4] are special cases of the
proposed diagnosis theory. In addition, we argue that the concept of minimal diagnoses
should be preferred over cores, if the goal is to find minimal changes of the knowledge
base. Third, we provide correct and complete algorithms for the computation of mini-
mal diagnoses. These algorithms are independent of a particular variant of a logic with
monotonic semantics and work with arbitrary reasoning systems. Forth, we evaluate our
algorithms employing standard test libraries showing the feasibility of our methods.

The reminder of the paper is organized as follows: In order to make the paper self
contained Section 2 provides a brief introduction to the main concepts of description
logic. Section 3 presents an introductory example for the diagnosis of ontologies. The
basic concepts and properties of our approach are introduced in Section 4. Section 5 de-
scribes the algorithms for the computation of minimal diagnoses and minimal conflicts,
followed by the presentation of our evaluation results in Section 6. The paper closes
with a discussion of related work.

2 Description Logics

Since the underlying knowledge representation method of ontologies in the Semantic
Web is based on description logics we introduce briefly the main concepts. For our in-
vestigation we employ the usual definition of description logics as defined in [6, 7]. A
knowledge base comprises two components a TBox (terminology T ) and a ABox (A).
The TBox defines the terminology whereas the Abox contains assertions about named
individuals in terms of a vocabulary defined in the TBox. The vocabulary consists of
concepts, denoting sets of individuals, and roles, denoting binary relationships between
individuals. These concepts and roles may be either atomic or complex. Complex de-
scriptions are obtained by employing description operators. The language of descrip-
tions is defined recursively by starting from a schema S = (CN ,RN , IN ) of disjoint
sets of names for concepts, roles, and individuals. Typical operators for the construction
of complex descriptions are C �D (disjunction), C �D (conjunction), ¬C (negation),
∀R.C (concept value restriction), and ∃R.C (concept exists restriction), where C and
D are concept descriptions and R ∈ RN .

Knowledge bases are defined by a finite set of assertions. Assertions regarding the
TBox are called terminological axioms. Assertions regarding the ABox are called asser-
tional axioms. Terminological axioms are expressed by C � D (Generalized Concept
Inclusion) which corresponds to the logical implication. Let a, b ∈ IN be individual
names then C(a) and R(a, b) are assertional axioms.

Concepts (rsp. roles) can be regarded as unary (rsp. binary) predicates. Roughly
speaking description logics can be seen as fragments of first-order predicate logic (with-
out considering transitive closure or special fixpoint semantics). These fragments are
specifically designed to assure decidability or favorable computational costs.

The semantics of description terms are usually given denotationally using an inter-
pretation I = 〈∆I , (·)I〉, where ∆I is a domain (non-empty universe) of values, and



234 G. Friedrich and K. Shchekotykhin

(·)I a mapping from concept descriptions to subsets of the domain, and from role de-
scriptions to sets of 2-tuples over the domain. The mapping also associates with every
individual name in IN some value in ∆I .

An interpretation I is a model of a knowledge base iff it satisfies all terminological
axioms and assertional axioms. A knowledge base is satisfiable iff there exists a model.

A description E is coherent w.r.t. a TBox T , if there exists a model I of T such that
EI 
= ∅. A TBox is incoherent iff there exists an incoherent concept or role.

3 Example

For the debugging of a knowledge base KB , we distinguish two basic operations. The
first operation is the deletion of axioms and the second operation deals with the addi-
tion of axioms. Changes of axioms can be viewed as combined add/delete operations.
Diagnosis deals with the first operation, i.e. the identification of axioms which must be
changed (deleted) whereas repair deals with the addition of appropriate axioms.

Knowledge bases are designed in order to provide reasoning services. In classical
logical systems such reasoning services assume a satisfiable knowledge base. Conse-
quently, restoring consistency of unsatisfiable knowledge bases is a major goal in de-
bugging. In addition, the coherence of knowledge bases may be required.

Furthermore, knowledge bases may be tested by employing test cases. These test
cases are formulated by the knowledge engineer and define requirements for the knowl-
edge base. A test case is a set of test axioms. For example, we may exploit assertional
axioms to validate a knowledge base. In the configuration domain we may test the
knowledge base if a set of requirements (a set of key components) leads to an intended
configuration which assures certain properties.

Let us assume we test the following knowledge base KBE which is a variant of the
example provided by [4].

ax 1 : A1 � ¬A �A2 �A3 ax 2 : A2 � ¬D �A4

ax 3 : A3 � A4 �A5 ax 4 : A4 � ∀s.F � C
ax 5 : A5 � ∃s.¬F ax 6 : A6 � A4 �D

In addition, we define a background theory BE = {A6(w), A1(u), s(u, v)} which
is considered as correct.

In the following we assume that the knowledge engineer formulates requirements
(test axioms). The goal of the diagnosis process is to find subsets of axioms which must
be changed such that all requirements (test cases) can be met. We will characterize these
sets of axioms by minimal (irreducible) sets. Of course the knowledge engineer may de-
cide to change supersets of these minimal sets, e.g. because the knowledge base should
reflect the mental model of the knowledge engineer as close as possible. However, the
incorporation of mental models for generating diagnoses and repairs is out of the scope
of this paper. Therefore, we use symbols in our example that have no predefined in-
tended interpretation. The intended interpretation is solely defined by the knowledge
base and the test cases.

Let us assume we require a coherent knowledge base (Requirement 1). In our exam-
ple the knowledge base is incoherent (i.e. A1 and A3 are incoherent). The irreducible set



A General Diagnosis Method for Ontologies 235

of axioms which preserves the incoherence of the knowledge base is 〈ax3, ax4, ax5〉1
(i.e. A3 is incoherent). It follows that at least one of these axioms must be changed in
order to fulfill Requirement 1.

If we in addition require that KBE∪BE is consistent with the assertional test axiom
¬C(w) (Requirement 2) then an additional irreducible set of axioms of the knowledge
base which is unsatisfiable with the test axiom is 〈ax4, ax6〉. Similar to the previous
case, one of these axioms must be changed. In order to achieve satisfiability and coher-
ence with minimal changes, we have to change at least either axiom ax4 or the axioms
[ax3, ax6] or [ax5, ax6].

Let us assume Requirement 3 says that F (v) must be unsatisfiable with KBE∪BE .
In case where we consider ax4 to be faulty, then it is possible to fulfill all the require-
ments, i.e. we can delete ax4 and find an extension of KBE to satisfy all requirements
including Requirement 3. A trivial extension to satisfy Requirement 3 is to add ¬F (v)
to KBE .

However, in the cases where we consider either [ax3, ax6] or [ax5, ax6] to be
changed then all 3 requirements could not be satisfied since KBE∪BE− [ax3, ax6] |=
F (v) and also KBE ∪ BE − [ax5, ax6] |= F (v). In order to satisfy Requirement
3 in addition to Requirements 1 and 2 one of the axioms in 〈ax1, ax2, ax4〉 and in
〈ax1, ax3, ax4〉 must be changed. Consequently, the minimal change in order to sat-
isfy all requirements is to replace ax4 (e.g. by A4 � ∀s.¬F � ¬C). All other minimal
changes involve at least 3 axioms, e.g. [ax1, ax3, ax6].

In the next section we will develop a general theory for the diagnosis of logic-based
ontologies.

4 Diagnosis of Ontologies

The goal of the diagnosis process is to identify those axioms which cause faults. Such
axioms are considered as the cause of faults iff the knowledge base without these axioms
is not faulty. What is regarded as fault depends on properties defined by the knowledge
engineer. In knowledge bases which are based on logical descriptions usually satisfiabil-
ity is a necessary property. In addition the knowledge engineer may specify a test case
by a set of axioms. In the following we regard these axioms as correct. Of course the
formulation of these test cases is restricted by the expressive power of the underlying
language.

Let the set of test cases TST be partitioned in 4 disjoint sets TC+, TC−, TI+,
and TI−. We can distinguish four different scenarios for testing.

1. KB ∪ e+ consistent, ∀e+ ∈ TC+

2. KB ∪ e− inconsistent, ∀e− ∈ TC−

3. KB |= ne−, ∀ne− ∈ TI−

4. KB 
|= ne+, ∀ne+ ∈ TI+

1 According to the terminology used in model-based diagnosis such a set is called a conflict set.
For denoting conflict sets (rsp. diagnoses) we use the notation 〈. . .〉 (rsp. [. . .]) employed in
model-based diagnosis.



236 G. Friedrich and K. Shchekotykhin

By exploiting negation the third case is equivalent to the second by checking if
KB ∪¬ne− is unsatisfiable. Likewise, the forth case can be reduced to the first case by
checking if KB ∪ ¬ne+ is satisfiable. Therefore, (without limiting the generality) we
will consider only cases 1 and 2.

Please note that requiring coherence of a knowledge base corresponds to the speci-
fication of appropriate test axioms. Formulated in predicate logic this means we require
{{∃X : C(X)}|C ∈ CN} as a set of test axioms contained in TC+. For presentation
purposes we refer to this set of axioms by ax co. For the coherence of roles (e.g. for DLs
with role constructors) ax ro is {{∃X, Y : r(X, Y )}|r ∈ RN}.

In the following we will extend the approach of diagnosing configuration knowl-
edge bases presented in [8] to logical knowledge bases. In addition, we will allow the
definition of a background theory (represented as a set of axioms) which is considered
to be correct. One reason for the introduction of a background theory is, that during
the debugging process, the knowledge engineer may define some axioms as correct and
therefore these axioms should not be included in any diagnoses.

Definition 1. KB-Diagnosis Problem: A KB-Diagnosis Problem (Diagnosis Problem
for a Knowledge Base) is a tuple (KB, B, TC+, TC−) where KB is a knowledge
base, B a background theory, TC+ is a set of positive and TC− a set of negative test
cases. The test cases are given as sets of logical sentences. We assume that each test
case on its own is consistent.

The principle idea of the following definition is to find a set of axioms of the knowledge
base which must be changed (respectively deleted) and, eventually, some axioms must
be added such that all test cases are satisfied.

Definition 2. KB-Diagnosis: A KB-Diagnosis for a KB-Diagnosis Problem (KB, B,
TC+, TC−) is a set S ⊆ KB of sentences such that there exists an extension EX ,
where EX is a set of logical sentences added to the knowledge base, such that

1. (KB − S) ∪B ∪ EX ∪ e+ consistent ∀e+ ∈ TC+

2. (KB − S) ∪B ∪ EX ∪ e− inconsistent ∀e− ∈ TC−

Note, that an extension may be needed to achieve inconsistency with the test cases of
TC−. If we assume that we are interested in minimal changes of the existing axioms
(i.e. it is more likely that an axiom is correct than it is incorrect) then we are especially
interested in minimal (irreducible) diagnoses. In addition, these minimal diagnoses are
exploited to characterize the set of all diagnoses.

Definition 3. Minimal KB-Diagnosis: A KB-Diagnosis S for a KB-Diagnosis Problem
(KB, B, TC+, TC−) is minimal iff there is no proper subset S′ ⊂ S s.t. S′ is a
diagnosis.

Definition 4. Minimum cardinality KB-Diagnosis: A KB-Diagnosis S for a KB-
Diagnosis Problem (KB, B, TC+, TC−) is a minimum cardinality diagnosis iff there
is no diagnosis S′ s.t. |S′| < |S|.

In the following we assume the monotonic semantics of standard logic. A diagnosis
will always exist under the (reasonable) condition that background theory, positive test



A General Diagnosis Method for Ontologies 237

cases, and negative test cases do not interfere with each other. The following proposition
allows us to characterize diagnoses without the extension EX . The idea is to use the
negative examples to define this extension.

Proposition 1. Given a KB-Diagnosis Problem (KB, B,TC+,TC−), a diagnosis S
for (KB, B,TC+,TC−) exists iff ∀e+ ∈ TC+ : e+ ∪ B ∪

∧
e−∈TC−(¬e−) is con-

sistent.

From here on, we refer to the conjunction of all negated negative test cases as NE, i.e.
NE =

∧
e−∈TC−(¬e−).

Corollary 1. S is a diagnosis for (KB, B,TC+,TC−) iff ∀e+ ∈ TC+ : (KB −
S) ∪B ∪ e+ ∪NE is consistent.

Example: Let TC+
E = {{¬C(w)} ∪ ax co} and TC−

E = {{F (v)}}. The minimal
diagnoses of (KBE , BE ,TC+

E ,TC−
E) are [ax4], [ax1, ax3, ax6], [ax1, ax5, ax6],

and [ax2, ax3, ax6].
As a consequence, every superset of a minimal diagnosis is a diagnosis. Therefore,

the set of all diagnoses is characterized by the set of minimal diagnoses, i.e. at least the
elements of a minimal diagnosis must be changed.

In order to compute minimal diagnoses we exploit the concept of conflict sets.

Definition 5. Conflict Set: A conflict set CS for (KB, B,TC+,TC−) is a set of ele-
ments of the knowledge base CS ⊆ KB such that ∃e+ ∈ TC+ : CS ∪B ∪ e+ ∪NE
is inconsistent.

Definition 6. Minimal Conflict Set: A conflict set CS for (KB, B,TC+,TC−) is
minimal iff there is no proper subset CS′ ⊂ CS s.t. CS′ is a conflict.

Example: The minimal conflict sets for (KBE, BE ,TC+
E ,TC−

E) are 〈ax3, ax4,
ax5〉, 〈ax4, ax6〉, 〈ax1, ax2, ax4〉, and 〈ax1, ax3, ax4〉.

The following proposition (which follows from results of [9]) shows the relation
between minimal conflict sets and minimal diagnoses. It is based on the observation
that at least one element from each minimal conflict must be changed.

Proposition 2. Provided that there exists a diagnosis for (KB, B,TC+,TC−). S is
a minimal diagnosis for (KB, B,TC+,TC−) iff S is a minimal hitting set for the set
of all minimal conflict sets of (KB, B,TC+,TC−).

For the debugging of incoherent TBoxes without test cases and background theory [4]
introduces the concept of minimal incoherence-preserving sub-TBox (MIPS) which cor-
responds to the concept of conflict sets (see [9]) of model-based diagnosis.

Definition 7. Minimal incoherence-preserving sub-TBox [4]: Let T be an incoherent
TBox. A TBox T ′ ⊆ T is a minimal incoherence-preserving sub-TBox (MIPS) of T if
T ′ is incoherent, and every sub-TBox T ′′ ⊂ T ′ is coherent.



238 G. Friedrich and K. Shchekotykhin

Let TC+
MIPS = ax co ∪ ax ro.

Proposition 3. Let T be the TBox of a knowledge base KB. M is a MIPS of T iff M
is minimal conflict set of (T , ∅,TC+

MIPS , ∅).

Based on the concept of MIPS [4] defines the concept of cores. Cores are sets of axioms
occurring in several of these incoherent TBoxes. The rational is that the more MIPS
such a core belongs to, the more likely its axioms will be the cause of contradictions.
Similar ideas (however with a different intention) were formulated in [10].

Definition 8. MIPS-Core [4]: Let T be a TBox. A non-empty intersection of n different
MIPS of the MIPS of T (with n ≥ 1) is called a MIPS-core of arity n for T .

Under the assumption that the correctness of axioms is more likely than their faultiness,
we are interested in minimal diagnoses with a small cardinality. These minimal diag-
noses define minimal sets of axioms to be changed. Unfortunately elements of cores
with maximal arity may not be included in such diagnoses.

Remark 1. Let CORE be a core of T with maximal arity. Let MINDIAG be the set of
minimal cardinality diagnoses of (T , ∅,TC+

MIPS , ∅). It could be the case that CORE
does not contain any element of any minimal cardinality diagnosis, i.e. CORE∩Si = ∅
for all Si ∈ MINDIAG .

Example: Consider the minimal conflict sets C1:〈a, d〉, C2:〈b, e〉, C3:〈c, f〉, C4:〈a, x〉,
C5:〈b, x〉, and C6:〈c, x〉. The arity of core {x} is 3 (maximal). All other cores have a
lower arity than 3. However, the set of minimal cardinality diagnoses is {[a, b, c]}. x is
only contained in minimal diagnoses with cardinality 4, e.g. [x, d, e, f ].
Consequently, cores may point to axioms which need not be changed. In order to dis-
cover a minimal number of axioms which must be changed, we therefore propose the
computation of minimal diagnoses. Of course the knowledge engineer might decide to
change additional axioms based on her design goals (e.g. readability of the knowledge
base).

5 Computing Minimal Diagnoses

For the computation of minimal diagnoses one of our major design goal is general-
ity of our methods. In particular, our only prerequisite is a reasoning system which
correctly outputs consistent (rsp. inconsistent) if a set of sentences is consistent (rsp.
inconsistent). Consequently, we neither employ any restriction regarding the variant of
a knowledge representation language (based on the standard monotonic semantics) nor
restrictions on the knowledge bases (e.g. acyclic).

The principle idea of our approach is to employ Reiter’s Hitting Set (HS) algorithm
[9] for the computation of a HS-tree. However, this algorithm has the drawback that
it degrades rapidly if the underlying reasoning system does not output minimal con-
flict sets. In the worst case some minimal diagnoses may be missed as pointed out by
[11] who proposed a DAG-variant of the original algorithm. However, the DAG-variant
does not solve the computational problems in case a reasoning system does not output



A General Diagnosis Method for Ontologies 239

minimal conflict sets (or close approximations of them). Therefore, we apply methods
proposed in [12] to compute minimal conflict sets which allow us to use the original
(and simpler) variant of Reiter’s diagnosis methods.

For the computation of the HS-tree we employ a labeling that is similar to the origi-
nal HS-tree. See Figure 1 for the HS-tree of our example. Nodes are labeled either by a
minimal conflict set or by consistent (

√
). Closed branches are marked by×. If a node n

is labeled by a minimal conflict set CS(n) then for each s ∈ CS(n), edges are leading
away from n which are labeled by s. The set of edge labels on the path leading from
the root to node n is referred to as H(n). If there does not exist a conflict set, the root is
labeled by consistent. A node n must be labeled by a minimal conflict set CS if there
exists a minimal conflict set CS s.t. CS ∩H(n) = ∅, otherwise this node is labeled by
consistent.

The HS-tree is computed as follows by the application of pruning rules. The result
is a pruned HS-tree which contains also closed branches. The HS-tree is a directed tree
from the root to the leaves.

– If no diagnosis exists stop with exception. I.e. there is a e+ ∈ TC+ s.t. e+∪B∪NE
is inconsistent.

– Generate the HS-tree in breath-first order, level by level.
– Try to generate a minimal conflict set CS for the root node. Label the root with this

conflict set, if such a conflict set exists. Otherwise, label the root with consistent.
In this case return no fault was discovered.

– If a node n′ (other than the root) has to be labeled:

1. If a node n is labeled by consistent and H(n) ⊆ H(n′) close n′, no successors
are generated.

2. If node n has been generated and H(n) = H(n′) then close n′.
3. If there exists a node n labeled by CS(n) s.t. CS(n) ∩H(n′) = ∅ then reuse

CS(n) to label n′.
4. Otherwise try to generate a minimal conflict set CS(n′) for n′ s.t. CS(n′) ∩

H(n′) = ∅. Label n′ with this conflict set, if such a conflict set exists. Other-
wise, label n′ with consistent.

The leaf nodes of such a pruned HS-tree are either closed nodes or nodes labeled
with consistent. Let n be a node labeled with consistent then H(n) is a minimal diagno-
sis. Since the HS-tree is computed in breath-first order, minimal diagnoses are generated
with increasing cardinality. Consequently, for the generation of all minimum cardinality
diagnoses only the first level of the HS-tree has to be generated, where a node is labeled
with consistent.

For the generation of minimal conflict sets we employ a simplified variant of
QUICKXPLAIN [12] (i.e. no preferences are considered). QUICKXPLAIN takes as
inputs two sets of sentences. The first set is a knowledge base (KB) and the second set
is a background theory (B). If the knowledge base joined with the background theory
is consistent QUICKXPLAIN outputs consistent. If the background theory is inconsis-
tent the output is ∅. Otherwise, the output is a minimal conflict set CS ⊆ KB (w.r.t. a
background theory). QUICKXPLAIN operates on a divide and conquer strategy where



240 G. Friedrich and K. Shchekotykhin

ax1 ax2ax4

<ax3,ax4,ax5>
C

<ax1,ax2,ax4>
C

<ax3,ax4,ax5>
R

<ax4,ax6>
C

ax3

ax
4 ax

6

ax4

<ax4,ax6>
R

ax
5

ax
4 ax

6

<ax4,ax6>
R

ax3

ax
4 ax

6

ax4

<ax4,ax6>
R

ax5

ax
4 ax

6

<ax1,ax3,ax4>
C

ax1 ax3
ax4

Fig. 1. HS-tree for the example given in Section 3. Closed branches are marked with ×. Com-
puted minimal conflict sets are marked with C. Reused minimal conflict sets are marked with R.
Consistent nodes are marked with

√
.

a sequence of calls to a consistency checker is performed in order to minimize the con-
flict sets. If this divide and conquer strategy splits the knowledge base in half, QUICK-
XPLAIN needs log2(n/k) + 2k calls in the best case and 2k · log2(n/k) + 2k in the
worst case where k is the length of the minimal conflict and n is the number of axioms
in the knowledge base.

In order to generate a minimal conflict set for a node n, we have to check if there
exists an e+ ∈ TC+ s.t. (KB−H(n))∪B∪e+∪NE is inconsistent (i.e. KB−H(n)
contains a conflict set). For the calls to QUICKXPLAIN KB −H(n) plays the role of
the knowledge base and B ∪ e+ ∪ NE is considered as background theory. Note that
an e+ which is consistent with (KB −H(n)) ∪B ∪NE need not be reconsidered for
any successor n′ of n since H(n) ⊂ H(n′). Therefore, we store for each node n all e+

which were found to be consistent with (KB −H(n)) ∪ B ∪ NE in the set CE(n).
For the generation of a label for n′ we only need to check if there is an e+ ∈ {TC+ −
∪m∈predecessor(n′)CE(m)} which is inconsistent with (KB − H(n′)) ∪ B ∪ NE.
The correctness and completeness of the generation of minimal diagnoses follows by
the correctness and completeness of the HS-tree algorithm, QUICKXPLAIN, and the
consistency checker.

Many factors are influencing the execution time of computing minimal diagnoses.
The critical task of computing minimal conflict sets is dominated by the costs of con-
sistency checking which strongly depend on the knowledge representation language as
well as the actual content of the knowledge base. Finding a minimal diagnosis corre-
sponds to a depth first construction of the HS-tree and therefore |MD| + 1 calls to
QUICKXPLAIN are needed where |MD| is the cardinality of this minimal diagnosis.



A General Diagnosis Method for Ontologies 241

However, we can construct cases where even the number of minimum cardinality di-
agnoses grows exponential in the problem size. Therefore, in practice the problem is
simplified.

Diagnosis and conflict generation is exploited to guide further discrimination and
repair actions. Therefore, only a set of leading diagnoses is generated which is a trade
off between computational costs and further costs for diagnoses discrimination. Such
actions may comprise additional tests, validation of axioms, and incremental repair. The
definition of leading diagnoses is problem specific, e.g. a subset of minimal cardinality
diagnoses. If necessary, the knowledge engineer can interrupt the generation of minimal
diagnoses at any time and exploit the minimal conflicts and (partial) diagnoses found
so far for further actions [13].

The execution time strongly depends on the actual diagnosis problem. In particu-
lar, computing minimal diagnoses (i.e. the HS-tree construction) significantly depends
on the cardinality of the minimal diagnoses, the cardinality of minimal conflict sets,
their reuse for constructing the HS-tree, and the actual costs of consistency checking.
We therefore conducted various experiments in order to evaluate the execution time
behavior for frequently used test ontologies.

6 Evaluation

The algorithms described above are implemented in JAVA (Version 1.5.01). For the
consistency (coherence) checks we employed RACER (Version 1.7.23). The tests were
performed on a PC (Intel Pentium M 1.8 GHz) with 1 GB RAM. The operating system
was Windows XP Prof SP2. The results of our tests are depicted in Table 1. For these
tests we employed the test knowledge bases bike2 to bike9, bcs3, galen, and galen3
provided at RACER’s download site.2

For each test we randomly altered the knowledge bases. The result of each single
alteration is an incoherent knowledge base. In order to introduce an incoherency we
randomly picked two concepts where one concept subsumes the other (exploiting the
taxonomy). In a next step, axioms which define these concepts were extended such
that disjointness of these two concepts is enforced. An incoherent concept is the result.
Consequently, every alteration will introduce at least one conflict set. However, since
the introduction of these conflict sets is randomly performed there might be more but
also less minimal conflict sets than the number of alterations.

The diagnosis task is to find minimal diagnoses in order to restore coherence. We
did not provide a background theory and negative test cases because this corresponds
just to additional axioms for consistency checks. The number of axioms (ax) for each
knowledge base (including alterations) is stated in Table 1.

In order to provide realistic test cases from an application point of view we define
a set of leading diagnoses. This set of leading diagnoses comprises the set of minimum
cardinality (MC) diagnoses where we consider at most 10 diagnoses.

Note that in the worst case even the output of a single minimal conflict supports fur-
ther actions for localizing faulty axioms. However, the generation of additional (mini-
mal) diagnoses reduces the costs of actions for diagnoses discrimination and repair.

2 http://racer-systems.com/products/download/index.phtml



242 G. Friedrich and K. Shchekotykhin

Table 1. Test results for diagnosing faulty knowledge bases. Columns are: number of axioms
contained in minimum cardinality diagnoses (|D|), number of minimum cardinality diagnoses (#
D, at most 10), number of minimal conflict sets computed (# C), cardinality of smallest minimal
conflict set (min|C|), cardinality of largest minimal conflict set (max|C|), number of QUICKX-
PLAIN calls (QX), number of coherence checks (# CH), total time for discovering the first mini-
mum cardinality diagnosis (FDT), total time for discovering the first minimal conflict set (FCT),
total time for performing coherence checks (COT), total time for computing leading diagnoses
(TT). Time is measured in seconds.

KB |D| # D # C min |C| max |C| QX # CH FDT FCT COT TT

bike2 min 3 6 4 2 6 10 134 23 7,1 27,4 35
154 ax avg 3,7 8,7 5 2,1 4 13,7 181 47,5 8,3 44,2 55

max 4 10 7 2 4 17 284 61,4 10,1 62,3 77
bike3 min 4 10 4 3 3 14 120 16,3 3,4 16,2 19
109 ax avg 4,5 9,2 5,6 2,6 3 14,9 164 22,4 3,4 25,5 29

max 4 6 7 2 3 13 202 22,4 4,3 31,7 37
bike4 min 3 10 4 3 4 14 162 52,3 12,5 53,1 58
166 ax avg 3,6 9,6 5,9 2,6 5 15,5 244 71,1 12,1 76,7 84

max 4 10 8 3 10 18 358 83,3 13,4 104 115
bike5 min 1 1 3 3 4 4 131 40,6 20,1 56 60
184 ax avg 2,6 5,9 4,6 2,9 3,9 10,5 193 79,8 22 97,4 105

max 3 7 6 3 4 13 247 90,7 21,6 135 145
bike6 min 1 1 3 3 4 4 137 54,3 26,3 75 80
207 ax avg 3 7 5,1 2,8 4 12,1 220 108,5 25,3 127 135

max 3 7 6 3 4 13 263 111,2 25,5 160 171
bike7 min 1 2 2 3 3 4 84 12,6 11,6 23,1 25
162 ax avg 2,9 8,3 3,6 2,8 3 11,9 151 40 12,2 49,9 54

max 3 8 5 2 3 13 186 57,3 12,9 67,7 73
bike8 min 2 4 3 2 3 7 104 33,7 17 50,4 54
185 ax avg 3,2 8,9 4 2,7 3 12,9 172 59,7 17 72,7 79

max 4 10 5 3 3 15 216 89,9 16,3 91,5 99
bike9 min 1 1 3 3 4 4 127 50,1 23,3 72,8 78
215 ax avg 3,1 7,2 4,9 2,7 4 12,1 211 116,2 27,1 131 140

max 4 10 5 3 4 15 218 242,6 28,5 243 253
bcs3 min 3 4 4 2 3 8 118 16,3 1 15,5 18
432 ax avg 3,4 7,1 5,7 2 17,1 12,9 276 46,7 1 51,4 61

max 4 10 9 2 51 19 968 251,7 1,2 232 269
galen min 2 2 3 2 2 5 86 95,8 30,4 65,4 104
3963 ax avg 2,3 3,1 3,2 2 2 6,4 104 172,4 41 125 227

max 3 8 3 2 2 11 116 223,6 39,8 234 366
galen3 min 1 1 2 2 2 3 53 60 49,6 38,2 105
3927 ax avg 2,2 3,6 3 2 2 6,6 94,7 157 34,4 93,2 203

max 4 10 4 2 2 14 150 452,1 40,3 421 489

We therefore not only measured the total time for computing leading diagnoses (TT)
and the total time for performing coherence checks (COT) but also the total time for
discovering the first minimal conflict (FCT) and the first minimum cardinality diagnosis
(FDT). Time is measured in seconds. In addition to time information we reported the



A General Diagnosis Method for Ontologies 243

number of axioms contained in minimum cardinality diagnoses (|D|), the number of
minimum cardinality diagnoses (# D, at most 10), the number of QUICKXPLAIN calls
(QX), the number of coherence checks (# CH), and the number of minimal conflicts (#
C) computed by the algorithm in order to compute the leading diagnoses for each test
case. Since the cardinality of the minimal conflict sets defines the branching of the HS-
tree we reported the minimum cardinality (min|C|) as well as the maximum cardinality
(max|C|) of these conflict sets.

For each knowledge base we performed 30 tests. Each test corresponds to 4 random
alterations (i.e. 8 changes) in order to evaluate the algorithms for multiple failure sce-
narios. Table 1 shows the average values of the test results as well as the data for the
test case with minimum TT and maximum TT. Note, that for these special test cases the
data values may lie above or below the average case.

The algorithm correctly computes the necessary conflicts. As expected each min-
imal conflict contains two changed axioms (beside others). All computed diagnoses
are correct minimum cardinality diagnoses. Furthermore we empirically checked the
completeness of the set of minimum cardinality diagnoses. As expected, the execution
time greatly depends on the number and costs of the consistency checks. The costs of
consistency checks not only depend on the number of axioms but on the content of
a knowledge base. E.g. let us compare the maximum time cases of bike9 and bcs3.
Although bcs3 is two times larger than bike9 and we require roughly 4 times more
coherence checks (# CH) for bcs3 the time spent for these checks (COT) is almost
the same.

As mentioned in the previous section the execution time for finding minimal di-
agnoses depends on the actual diagnosis problem. E.g. knowledge bases with many
failures result in deep HS-trees whereas knowledge bases with many dependencies be-
tween the axioms result in high cardinality minimal conflict sets. These conflict sets
cause broad HS-trees. The generation of conflicts and diagnoses shows no irregularity
except for the knowledge base bcs3, where the cardinality of the minimal conflicts may
become large, i.e. there are many axioms contributing to an incoherence because of the
high cyclical complexity. As expected the overall execution time increases. However,
discovering the first minimal conflict takes approximately a second for bcs3. Note, that
the output of minimal conflict sets is already a valuable help for debugging the knowl-
edge base. Even for the galen knowledge bases (approximately 4000 axioms) comput-
ing the first minimal conflict set takes not longer than 50 seconds.

In addition, we can observe that in the average, discovering the first minimum cardi-
nality diagnosis requires roughly 80% of the total execution time. Therefore, spending
some additional computational resources after the discovery of the first minimum car-
dinality diagnosis may be appropriate. At this stage the reuse of minimal conflict sets
saves computational costs significantly.

The execution time behavior of the proposed method can be regarded as very satisfy-
ing given the size of the knowledge bases. Without such a support, debugging becomes
a very time consuming activity (e.g. locating multiple faults in hundreds or even thou-
sands of axioms). Consequently, our tests show the practical applicability and utility of
the proposed methods.



244 G. Friedrich and K. Shchekotykhin

The integration of the consistency checker and QUICKXPLAIN is a source for
improvements. If a consistency checker efficiently returns a set of axioms (i.e. a con-
flict, not necessarily minimal) involved in the generation of an inconsistency (incoher-
ence) then this helps QUICKXPLAIN to reduce the number of consistency (coherence)
checks. We recommend to implement this feature in consistency (coherence) checkers.

7 Related Work

Diagnosis is strongly related to the generation of explanations. In the description logic
community the work on explanations was pioneered by [14] and further enhanced for
tableaux-based systems [15]. The intention of this work is to provide the basis for “nat-
ural” explanations of subsumption inferences. In particular, their goal is to derive a
sequence of rule applications (i.e. proof fragments) which serve as a basis for natural
explanations. Our approach is different since we compute minimal diagnoses which
can be regarded as sources for unwanted behavior. We think that the work in the area
of generating understandable proofs can be excellently integrated in a diagnosis frame-
work for the explanations of conflicts (e.g. why a set of axioms is inconsistent).

In the area of description logics, the work by [4] is most closely related to our meth-
ods. However, we generalize and unify their concepts with concepts of the theory of
diagnosis. Compared to our approach [4] require unfoldableALC-TBoxes. Their com-
putation methods are based on the construction of tableaus where formulas are labeled.
This label holds the information which axioms are relevant for the closure of branches.
In contrast to this approach, our proposal works for arbitrary reasoners. However, pro-
vided that the label generation is not too expensive, we can explore this label for limiting
the number of consistency (coherence) checks in order to speed up the computation.

In the work of [5] simple debugging cues are proposed which are integrated in an
ontology development environment based on Pellet (open-source OWL DL reasoner).
The main focus of their work is to improve the interaction between the knowledge en-
gineer and the ontology development systems by debugging features. Regarding diag-
nosis our approach adds functionality, since we provided a clear definition of diagnosis
(which allows the incorporation of test cases) and the correct and complete computation
of multi-fault diagnoses.

Additional important work on improving the quality of ontologies is performed by
[16] and [17]. The basic idea of these approaches is to find general rules and guidelines
which assess the quality of ontologies. Furthermore, properties are expressed which
specify conditions which must hold for error free ontologies. Some of these conditions
may be formulated as test cases, but there are conditions which require reasoning about
the terminology. This is beyond the expressive power of most ontology languages and
therefore cannot be specified as tests. However, one possible extension which could be
investigated is to generate a logical description of an ontology and to apply the general
diagnosis approach to this description.

Since our method deals with the diagnosis of descriptions, the work on model-based
diagnosis of hardware designs [13, 18] and software [19] shows some similarities. How-
ever, the fundamental difference is that these approaches have to generate a (logical)
model of the description whereas in our domain we can exploit the descriptions directly.



A General Diagnosis Method for Ontologies 245

8 Conclusions

In this paper we have proposed a general diagnosis theory for a broad range of ontology
description languages. These concepts allow the formulation of test cases and the diag-
nosis of arbitrary knowledge bases containing terminological and assertional axioms.
Minimal diagnoses identify minimal changes of the knowledge base such that the re-
quirements specified by test cases can be met. We have provided algorithms which are
correct and complete regarding the generation of all minimal diagnoses. Our methods
are broadly applicable since they operate with arbitrary reasoning frameworks which
provide consistency (coherence) checks. The practical feasibility of our method was
shown by extensive test evaluations.

Acknowledgments

We thank anonymous referees for valuable remarks. The research project is funded
partly by grants from the Austrian Research Promotion Agency, Programm Line FIT-IT
Semantic Systems (www.fit-it.at), Project AllRight, Contract 809261 and the European
Union, Project WS-Diamond, Contract 516933.

References

1. Bechhofer, S., Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-Scheider, P.,
Stein, L.: OWL Web Ontology Language Reference. W3C Recommendation, available at
http://www.w3.org/TR/2004/REC-owl-ref-20040210/. (2004)

2. Horrocks, I., Patel-Schneider, P.: Reducing OWL entailment to description logic satisfiabil-
ity. J. of Web Semantics 1 (2004) 345–357

3. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge bases: A
practical case study. In: Proc. IJCAI 01, Seattle, WA, USA (2001) 161–168

4. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of description
logic terminologies. In: Proc. IJCAI 03, Acapulco, Mexico (2003) 355–362

5. Parsion, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: WWW 2005, Chiba,
Japan, ACM (2005)

6. Borgida, A.: On the relative expressive power of description logics and predicate calculus.
Artificial Intelligence 82 (1996) 353–367

7. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., eds.: The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press (2003)

8. Felfernig, A., Friedrich, G., Jannach, D., Stumptner, M.: Consistency-based diagnosis of
configuration knowledge bases. Artificial Intelligence 152 (2004)

9. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 23 (1987) 57–95
10. Saraswat, V.A., de Kleer, J., Raiman, O.: Critical Reasoning. In: Proc. IJCAI 93. (1993)

18–23
11. Greiner, R., Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in Reiter’s theory

of diagnosis. Artificial Intelligence 41 (1989) 79–88
12. Junker, U.: QUICKXPLAIN: Preferred explanations and relaxations for over-constrained

problems. In: Proc. AAAI 04, San Jose, CA, USA (2004) 167–172



246 G. Friedrich and K. Shchekotykhin

13. Friedrich, G., Stumptner, M., Wotawa, F.: Model-based diagnosis of hardware designs. Ar-
tificial Intelligence 111 (1999) 3–39

14. McGuinness, D.: Explaining Reasoning in Description Logics. PhD thesis, Department of
Computer Science, Rutgers University (1996)

15. Borgida, A., Franconi, E., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F.: Explaining
ALC subsumption. In: International Workshop on Description Logics, CEUR Workshop
Proc. (CEUR-WS.org). Volume 22. (1999)

16. Guarino, N., Welty, C.: Evaluating Ontological Decisions with Ontoclean. Communications
of the ACM 45 (2002) 61–65

17. Gómez-Pérez, A., Suárez-Figueroa, M.C.: Results of Taxonomic Evaluation of RDF(S) and
DAML+OIL ontologies using RDF(S) and DAML+OIL Validation Tools and Ontology Plat-
forms import services. In: Proceedings of the 2nd International Workshop on Evaluation of
Ontology-based Tools, CEUR Workshop Proc. (CEUR-WS.org). Volume 87. (2003)

18. Wotawa, F.: Debugging VHDL designs: Introducing multiple models and first empirical
results. Applied Intelligence 21 (2004) 159–172

19. Chen, R., Wotawa, F.: Exploiting alias information to fault localization for Java programs.
In: International Conference on Computational Intelligence for Modelling Control and Au-
tomation (CIMCA2004), Gold Coast, Australia (2004)



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 247 – 261, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Graph-Based Inferences in a Semantic Web Server for 
the Cartography of Competencies in a Telecom Valley 

Fabien Gandon, Olivier Corby, Alain Giboin, Nicolas Gronnier, and Cecile Guigard 

INRIA, ACACIA, 2004 rt des Luciole, BP93, 06902 Sophia Antipolis, France 
Fabien.Gandon@sophia.inria.fr  
http://www-sop.inria.fr/acacia/ 

Abstract. We introduce an experience in building a public semantic web server 
maintaining annotations about the actors of a Telecom Valley. We then focus 
on an example of inference used in building one type of cartography of the 
competences of the economic actors of the Telecom Valley. We detailed how 
this inference exploits the graph model of the semantic web using ontology-
based metrics and conceptual clustering. We prove the characteristics of theses 
metrics and inferences and we give the associated interpretations. 

1   Semantic Annotation of Competencies  

In knowledge-based solutions, user interfaces have the tricky role of bridging the gap 
between complex knowledge representations underlying collective applications and 
focused views tuned to day-to-day uses. For this reason, we believe that interface 
design and knowledge representation must be tackled in parallel. In this paper, we 
describe and analyze an experience in simulating the inferences done by economists 
and management researchers in building a cartography of the competences of the 
economic actors of a region. The implementation is now part of a public semantic 
web server maintaining annotations about the actors of a telecom valley. This paper 
will explain how we designed such an inference using ontology-based metrics defined 
above the graph structure of the semantic web annotations statements, but before we 
go in such details we need to introduce the overall project: the Knowledge 
management Platform (KmP1) of the Telecom Valley of Sophia Antipolis2. 

The goal of KmP was the elaboration of a public repository supporting three 
application scenarios: (1) promoting the Scientific Park of Sophia Antipolis and its 
international development by providing the local institutions with a pertinent and up-
to-date snapshot of the park. (2) facilitating partnerships between different industrial 
firms of the park. (3) facilitating collaboration on projects between industrial partners 
and the different research institutes. This platform is available online3 and relies on a 
semantic web server publicly available for all the actors of the value chain of the 
Telecom Valley of Sophia Antipolis. The steering committee of KmP is composed of 
eleven pilot companies involved in the specifications of the application and the 
                                                           
1 http://www-sop.inria.fr/acacia/soft/kmp.html 
2 http://www.sophia-antipolis.org/index1.htm 
3 http://beghin.inria.fr/ 



248 F. Gandon et al. 

population of the ontologies: Amadeus, Philips Semiconductors, France Telecom, 
Hewlett Packard, IBM, Atos Origin, Transiciel, Elan IT, Qwam System and Cross 
Systems. 

KmP is a real world experiment on the design and usages of a customizable 
semantic web server to generate up-to-date views of the telecom valley and assist the 
management of competencies at the level of the organizations (companies, research 
institute and labs, clubs, associations, government agencies, schools and universities, 
etc.). This platform aims at increasing the portfolio of competences of the 
technological pole of Sophia Antipolis by helping companies, research labs and 
institutions express their interests and needs in a common space in order to foster 
synergies and partnerships. The platform implements a public knowledge 
management solution at the scale of the telecom valley based on a shared repository 
and a common language to describe and compare the needs and the resources of all 
the organizations. 

Ontologies were built from models provided by domain experts [Lazaric & 
Thomas, 2005] and end-users: models of competencies, models of the telecom 
domains (networks, computer science, etc.), task models, value chain of the telecom 
valley, etc. The implementation merges the frameworks of the semantic web (RDF, 
RDFS), the classic web (HTML, CSS, SVG) and the structured web (XML, XSLT) to 
integrate data coming from very different sources, allow queries from different 
viewpoints, adapt content to users, analyze, group, infer and render indicators of the 
Telecom Valley situation. KMP relies on the integration of multiple components: 
databases for back-end persistence, web servers with JSP and servlets to provide front 
ends, and the CORESE semantic web server [Corby et al, 2004] to provide semantic 
web processing capabilities. Databases are used to store the different ontologies (e.g. 
ontology of technologies, of actions, of deliverables, of markets, of cooperation, etc.), 
the models (e.g. value chain of a telecom valley), and the users' data (e.g. descriptions 
of firms, research centers, competences, projects, etc.). Direct accesses and 
modifications of ontologies and other data are managed directly at the database level. 
Wrappers extract the relevant and authorized data from the databases and export them 
in RDF/S to feed CORESE as needed. 

The platform integrates contributions coming from whole the Telecom Valley: 

• several ontologies are populated and validated by multiple actors using interviews 
and brainstorming sessions animated by the local government administration4. 

• several sources of data are integrated: models provided by practitioners and 
researchers in management, descriptions of firms using industrial and economic 
markets vocabulary, description of research institutes using academic terms, etc. 

The whole system relies on RDF, RDFS, and production rules [Corby et al, 2004] 
to describe the models and actors of the Telecom Valley. Exploiting this semantics 
the platform is able to: 

• apply rules to enrich the different contributions and bridge the different 
viewpoints allowing a broad variety of queries and analysis to be run e.g. a set of 
rules generalize and group identical competences detailed in the profiles of the 
actors to provide statistics to researchers in management; 

                                                           
4 http://www.telecom-valley.fr/index.php4?lang=ang 



 Graph-Based Inferences in a Semantic Web Server 249 

• exploit underlying models to propose graphic views of the Telecom Valley using 
XSLT to produce SVG rendering and combining on-the-fly models defined by 
the economists with data entered by the different actors; e.g. figure 1 shows an 
SVG interface to browse the value chain of the Telecom Valley and obtain 
statistics on the exchanges by clicking on the arrows. To each arrow is attached a 
query that CORESE solves against the RDF/S annotations of the Telecom Valley. 
For instance the screenshots shows statistics on the exchanges between two 
segments of the value chain (8b and 6a) and the distribution of these exchanges 
over the disjoint sub-classes of exchanges. 

• apply complex query constructors to find partners, build consortiums, extract 
indicators, build statistics, sort and group results, find approximate answers, etc. 

• apply clustering algorithms and produce graphic representations in SVG to allow 
institutional and industrial actors to get abstract views of the cartography of 
competences in the Telecom Valley; 

 

Fig. 1. SVG view of exchanges on the value chain of the Telecom Valley of Sophia Antipolis 

In this article we focus on one inference supported by the graph models underlying 
this semantic web repository: an ontology-based conceptual clustering providing a 
customizable and up-to-date cartography of competences available in the telecom 
valley. Section 2 briefly introduces an extract of the domain models and the users' 
requirements. Section 3 details the inferences underlying this representation, in 
particular the ontology-based metrics exploiting the semantic web graph structures. 
Section 4 concludes with the evaluation of this representation. 

2   Model-Based Automated Cartography of Competencies 

The first requirement and scenario of KmP is "to acquire and give a broader 
visibility of the community of the technological pole". As part of its answers, the 



250 F. Gandon et al. 

platform provides a dynamic up-to-date cartography of the competencies available 
in the technological pole and grouped in clusters.  

In KmP, the overall design methodology was oriented toward use and users. We 
relied on participatory design involving end-users, domain experts, information 
management experts and knowledge modeling experts. A large part of the 
specifications relied on mock-ups of interfaces built from the visual representations 
the users are used to. In particular, figure 2 shows a draft made by users when making 
explicit their notion of competences; it shows what they called a "readable 
representation of the clusters of competencies in the technological pole". 

The first consequence of such a readability requirement is a set of expressivity 
requirements on the ontology. The current model used in the project relies on an 
ontology that consists of more than a thousand concept types and a hundred relations. 
Central to the modeling is the concept of "competence" used by the organizations 
when describing their profiles or the profile of the partners they are looking for. The 
model proposed by researchers in management and economics [Lazaric & Thomas, 
2005] uses four facets to describe a competence and each facet is formalized in a part 
of the ontology. For instance, the competence "designing microchips for the 3G 
mobile market using GSM, GPRS and UMTS" is decomposed into four elements: an 
action (design); a deliverable (microchip); a market (3G mobile technology); a set of 
resources (GSM, GPRS, UMTS).  

Market : SI Market : IT Applications

Clusters (groups of 
bubbles) represent 
complementary 
competencies i.e. 
similar from 
technology stand 
point

Bubbles (circles) 
represent similar 
competences ; their 
size represent their 
frequency

Market : Telecoms

Market : SI Market : IT Applications

Clusters (groups of 
bubbles) represent 
complementary 
competencies i.e. 
similar from 
technology stand 
point

Bubbles (circles) 
represent similar 
competences ; their 
size represent their 
frequency

Market : Telecoms

 

Fig. 2. Draft of a representation of clusters of competences 

The second consequence of the readability requirement is the ability to simulate the 
inferences mobilized by the users when building this representation. The branch or the 
level of the ontology used to describe the situation is not always the same as the one 
used to display inference results. For instance, different users (e.g. industrialists vs. 
economists) may enter and use knowledge at different levels. In simple cases, we use 
rules close to Horn clauses to bridge these gaps. For the inferences behind the 
representation in Figure 2, the algorithm is much more complex and is a matter of 
conceptual clustering usually performed by economy and management analysts: 



 Graph-Based Inferences in a Semantic Web Server 251 

1. Analysts chose a market to which the analysis will be limited; all sub-types of this 
market will be considered, all ancestors or siblings will be discarded. 

2. In this market, analysts group competences according to the similarity of their 
resources; a competence may have several resources (e.g. java, c, c++, project 
management) and one is chosen as the most representative (e.g. programming). 
This first grouping represents a cluster. 

3. In each cluster, analysts group competences according to the similarity of their 
action (e.g. design) to form bubbles. 

On the one hand we use ontology-based modeling to provide meaningful and 
dynamic representations (clusters as core competences of the technological pole)  
and on the other hand we need ontology-based inferences to automate this clustering 
(clusters as emergent structures in knowledge analysis). Questions associated to this 
problem include: what are the inferences underlying this representation? How can 
they be linked to semantic web models of the valley? How can we ensure that the 
clustering will be meaningful to the users? 

In literature, the work on the formal side of the semantic web is largely influenced 
by the fact that logic-based languages are the most frequently used implementation 
formalisms. However, entailment is not the only product one should expect from a 
knowledge-based system, and the conceptual structures of the semantic Web can 
support a broad variety of inferences that goes far beyond logical deduction evening 
its simplest forms (RDF/S). Let us take the example of the class hierarchy which is 
considered to be the backbone of the RDFS schemata. The interpretation of the 
subsumption link is that the extension of a concept type (e.g. laptop) is a subset of the 
extension of another concept type (e.g. computer). What this logical implication hides 
is a graph structure that links the concept types through their genus and differentia. 
The graph structure of the semantic web formalisms supports inferences that go far 
beyond the set inclusion. The rest of this article shows how we designed such 
inferences to recreate the representation drafted in Figure 2 and how this specific 
example illustrates the richness of the underlying graph model of the semantic web. 

3   Semantic Metrics to Visualize Knowledge 

3.1   Semantic Metrics on the Ontological Space 

The idea of evaluating conceptual relatedness from semantic networks representation 
dates back to the early works on simulating the humans’ semantic memory [Quillian, 
1968] [Collins & Loftus, 1975]. Relatedness of two concepts can take many forms for 
instance, functional complementarity (e.g. nail and hammer) or functional similarity 
(e.g. hammer and screwdriver). The latter example belongs to the family of semantic 
similarities where the relatedness of concepts is based on the definitional features they 
share (e.g. both the hammer and the screwdriver are hand tools). The natural structure 
supporting semantic similarities reasoning is the concept type hierarchy where 
subsumption links group types according to the characteristic they share. When 
applied to a semantic network using only subsumption links, the relatedness 
calculated by a spreading algorithm gives a form of semantic distance e.g. the early 
system of [Rada et al., 1989] defined a distance counting the minimum number of 
edges between two types.  



252 F. Gandon et al. 

We can identify two main trends in defining a semantic distance over a type 
hierarchy: (1) the approaches that include additional external information in the 
distance, e.g. statistics on the use of a concept; see for instance [Resnik, 1995] [Jiang 
& Conrath, 1997] (2) the approaches trying to rely solely on the structure of the 
hierarchy to tune the behavior of the distances [Rada et al., 1989][Wu & Palmer, 
1994]. Including external information implies additional costs to acquire relevant and 
up-to-date information and furthermore, this information has to be available. Thus in 
a first approach we followed the second trend. 

In the domain of Conceptual Graphs [Sowa, 1984], where the graph structure of 
knowledge representation is a core feature, a use for such a distance is to propose a 
non binary projection, i.e. a similarity S:C² [0,1] where 1 is the perfect match and 0 
the absolute mismatch. We used the CORESE platform provided by [Corby et al, 
2004] to build our system. It is provided with an implementation of a depth-attenuated 
distance allowing approximate search. The distance between a concept and its father 
is given in (1):   

))((

2
1

))(,(
tfatherdepth

tfathertdist =  (1) 

where depth(t) is the depth of t in the ontology i.e. the number of edges on the shortest 
path from t to the root. In the rest of the article we will only consider tree structures 
(not latices in general) and therefore there will be one and only one directed path 
between a concept and one of its ancestors; thus the distance is:  

1)(1)(2)),((21 2121 2

1

2

1

2

1
),( −−− −−= tdepthtdepthttLCSTdepthttdist  (2) 

where LCST(t1,t2) is the least common supertype of the two concept types t1 and t2. 

3.2   Ontological Granularity and Detail Level 

The representation in Figure 2 shows that the way market analysts usually group the 
competences correspond to what is called a monothetic clustering algorithm i.e. the 
different features of the competence are not combined in one distance but considered 
sequentially: first they chose the market sector they will limit their analysis to; second 
they chose the level of details at which the competences are to be grouped based on 
the resources they mobilize and form clusters; finally they chose a level of details for 
the actions and in each of the clusters previously obtained they group competences by 
types of actions to form bubbles in the clusters. 

Limiting the competences to a given market sector is directly done by using the 
graph projection algorithm provided by CORESE: when one projects a query graph 
with a given market sector, by subsumption, only those competences with this market 
sector or a subtype of it will be retrieved.  However the two other features (resources 
and action) require the ability to cluster competencies and to control the level of 
details of this clustering. The field of Data Clustering [Jain et al., 1999] studied this 
problem in great details and the typical structure built to control clustering details is a 
dendrogram: cutting a dendrogram at a given height provides a clustering at a 
corresponding granularity. 



 Graph-Based Inferences in a Semantic Web Server 253 

We already have a tree structure (the hierarchy of concepts) and a similarity 
measure (semantic similarities). However, the construction of a dendrogram relies on 
an ultrametric and the similarity measure defined between the classes does not 
comply with the definition of an ultrametric. Indeed, an ultrametric is a metric which 
satisfies a strengthened version of the triangle inequality: 

dist(t1,t2) ≤ max(dist(t1,t'), dist(t2,t'))    for any t' 

Figure 3 gives a counter example where the distance defined in (2) violates this 
inequality. 

 thing

cardocument 

notereport 

technical report activity report 

1 1

0.5 0.5

0.25 0.25 

t1="technical report" 
t2="car" 
dist(t1,t2)=2,75 
t'="document" 
dist(t1,t')=0,75 and dist(t2,t')=2  
dist(t1,t2)≤ Max(dist(t1,t'), dist(t2,t')) 

 

Fig. 3. Counter example the metric defined in (2) to be an ultrametric 

The problem we then considered was a transformation of the ontological distance 
that would provide an ultrametric and transform the ontological tree into a 
dendrogram used to propose different levels of details in clustering the semantic 
annotations on competencies. A simple transformation would be to use a maximal 
distance that would only depend on the least common supertype of the two types 
compared: 

)),((

),(
21

21

21 2

1
))(,((max),(

ttLCSTdepth

ttLCSTt
MH tSTtdistttdist ==

<∀

 (3) 

where ST(t) is the supertype of t. 
As shown in Figure 4, this transformation provides a dendrogram with levels of 

clustering that directly correspond to the levels of the ontology and therefore brings 
no added value compared to the direct use of the ontology depth to control the level  
of detail. In order to provide  the  users with a better precision in choosing the level of  

 

A B C

D 

H I 

G F

E

M N 

L K 

J 

1 1 1 

.25 

.5.5 .5 .5.5 

.25 .25.25.25 
.25

.5

1

Ontology Dendrogram 

Instances
0

A B C D H IGFE M N L K J

 

 Fig. 4. Simple transformation using depth of LCST 



254 F. Gandon et al. 

details we needed a criterion to differentiate the classes and order their clustering. The 
distance given in (4) takes into account the depth of the hierarchy below the least 
common supertype. 

( )( ) 2121
),(

21  when ),(,max),(
21

ttttLCSTstdistttdist
ttLCSTst

CH ≠=
≤∀

 

2121  when 0),( ttttdistCH ==  
(4) 

where st ≤ LCST(t1,t2) means that st is a subtype of the least common supertype of  
t1 and t2. 

Doing so, it allows us to differentiate between classes that already gather a number 
of levels of details and classes with a shallow set of descendants. Figure 5 shows the 
result of this transformation using the same initial ontology as Figure 4; we see a new 
level appeared that differentiates the classes L and E based on the level of details they 
already gather. 

 

A B C

D 

H I 

G F

E

M N 

L K 

J 

1 1 1 

.25 

.5 .5 .5 .5.5 

.25 .25.25.25 
A B C D H IGFE M N L K J

.25
.5

.75

1.75

Instances
0

Ontology Dendrogram 

 

Fig. 5. Improved transformation using depth of descendants 

To be precise, distMH takes its values in (5): 

{ }00;
2
1 ∪<≤= DnE nMH

 (5) 

where D is the maximal depth of the ontology. 
Therefore the maximum number of levels in the dendrogram of distMH is 

Card(EMH)=d+1 . In comparison, distCH takes its values in (6): 

{ }00;
2

1 ∪<≤≤=
=

DnmE
n

mi
iCH

 (6) 

Thus, at a given depth d the maximum number of levels is recursively defined by 
NL (d) = NL(d-1) + d because an additional depth possibly adds one more arc to any 
path from the root. Since NL(0)=1, we can deduce that: 

( )
1

22

²
1

2

1
1)()(

1

++=++=+==
=

DDDD
nDNLECard

D

n
CH

 (7) 

Therefore, for a given maximal depth D we have 

( ) 1D since 01
222

²
)()( >>−=−=− D

DDD
ECardECard MHCH

 (8) 



 Graph-Based Inferences in a Semantic Web Server 255 

Thus distCH generates more levels than distMH and the difference is upper-bounded 
by the square of D. Now we need to prove that distCH is an ultrametric: 

(a) By definition distCH(t,t) =0   see (4) 
(b) Let us show that distCH(t1,t2) = distCH(t2,t1)  

( )( ) ( )( ) ),(),(,max),(,max),( 1212
),(

21
),(

21
1221

ttdistttLCSTstdistttLCSTstdistttdist CH
ttLCSTstttLCSTst

CH ===
≤∀≤∀

  

This is because LCST(t1,t2)=LCST(t2,t1) i.e. the least common supertype of t1 and 
t2 is also the least common supertype of t2 and t1.  

(c) Let us show that distCH (t1,t2) = 0  t1=t2 : if t1≠t2 we have 
( )( ) ( ) ( ) 0),(,),(,),(,max),( 21221121

),(
21

21

>+≥=
≤∀

ttLCSTtdistttLCSTtdistttLCSTstdistttdist
ttLCSTst

CH
 

So the only way to have distCH(t1,t2) =0 is when t1=t2 
(d) Let us show that ∀t' distCH(t1,t2) ≤ max(distCH(t1,t'), distCH(t2,t'))  (strengthened 

triangle inequality) 
If t1=t2 then distCH(t1,t2) =0 and the inequality is verified. 
If t' ≤ t1 and t1 ≤ t2 and t' ≤ t2 then 

( )( ) ( )( )),(,max),'(,max),'( 21
),(

2
),'(

2
212

ttLCSTstdistttLCSTstdistttdist
ttLCSTstttLCSTst

CH ≤∀≤∀
==  

since if t' ≤ t1 then LCST(t',t2)=LCST(t1,t2) or more generally the least common 
supertype for t1 and t2 is the same as the one of the subtypes of t1 and t2 since we 
are in a tree. 
If t' ≤ t2 and t2≤ t1 and t'≤ t1 the same reasoning applies mutatis mutandis. 
If t1 ≤ t2  and t' ≤ t2 then LCST(t',t2)=t2 and LCST(t1,t2) =t2 so  distCH(t2,t')= 
distCH(t1,t2). If t2≤ t1 and t'≤ t1 the reasoning is, mutatis mutandis, the same. 
If t'≤ t2 and t'≤ t1 then LCST(t1,t2) ≤ LCST(t',t1) or LCST(t1,t2) ≤ LCST(t',t2) 
otherwise we would have LCST(t1,t2)>LCST(t',t1) and LCST(t1,t2)>LCST(t',t2) and 
since t1≠ t2, t' ≤ t2 and t' ≤ t1, it would require t' or one of its ancestors to have two 
fathers which is impossible in a tree. So if LCST(t1,t2) ≤ LCST(t',t1) then 
distCH(t1,t2) ≤ distCH(t1,t') since {st ; st ≤ LCST(t1,t2)} ⊂ {st ; st≤ LCST(t',t1)}. 
Likewise if  LCST(t1,t2) ≤ LCST(t',t2) then distCH(t1,t2) ≤ distCH(t2,t') since {st ; 
st≤LCST(t1,t2)} ⊂ {st ; st≤ LCST(t',t2)}. Thus, in both cases the inequality is 
verified. Therefore, we covered all the cases and distCH is an ultrametric that can 
be used to produce a range of levels of details exploitable in widgets for 
interfaces. 

The maximal distance distMax between two sister classes of depth d in an ontology of 
maximal depth D is 

DddDd

dD

d

dD

i
id

D

di

i

Max Dddist
2
1

2
1

2
1

1
2

1

2
1

2
1

1

2
1

2
1

2
1

2
1

),( 222

2

1

1

0
1

1

−=−=
−

×=== −+−−

+−

+

+−

=
−

−=

The minimal distance between two sister classes of depth d is distMin(d)= 1/2 d-1. 
Therefore distMax(d+1)< distMin(d) i.e. the clustering of classes respects the ontology 
hierarchy and a class cannot be clustered before its descendants. However between 
two sister classes, the children of a shallow class will be grouped before the children 
of a class with a deep descendant hierarchy. Finally since the clustering follows the 



256 F. Gandon et al. 

class hierarchy, a name can be given to every cluster Cl and it is very important to 
produce a meaningful clustering: Name(Cl) = Name (LCST({t ; type t ∈ Cl})) 

3.3   Ontology-Based Queries to Form Clusters 

Using our transformation of an ontological distance into an ultrametric, we create two 
dendrograms respectively for the ontology of resources and the ontology of actions. 
Each dendrogram supports a widget (e.g. scrollbar) allowing the user to chose a 
clustering levels detail respectively for resources and actions. 

To choose a level to cut the dendrograms amounts to select a number of classes 
that can be used to differentiate competences during the clustering: every class visible 
at this level may be used to describe a competence. Therefore the two levels of detail 
chosen for resources and actions result in two sets of classes of resources and actions 
that have to be considered. Based on these sets and the market sector the user chose, 
we generate all the combinations of queries that cover all the combinations of 
resources and actions; thus each one of these queries corresponds to a potential 
bubble, and the bubble will be shown if there is at least one answer to this query. To 
consider a competence once and only once, the queries exclude the subclasses that 
have not been collapsed i.e. the subclasses that are above the detail level and for 
which there will be a dedicated query. Each query is submitted to the CORESE search 
engine to retrieve and count instances of competences falling in the corresponding 
bubble. 

As we mentioned, there might be several resources for a competence and the 
analyst chooses the most representative one. For each competence, this inference is 
simulated by considering the classes of resources available at the chosen level of 
details and by sorting them according to the number of instances of resources they 
cover for this competence. For instance if a competence uses java, c, c++, and 
project management as resources and the level of details include classes like 
management theory, programming language and mathematic models, these classes 
will be sorted as follows: programming language (3 instances), management theory 
(1 instance), mathematic models (0 instance). Therefore the most representative 
resource type picked will be programming language and this competence will be 
counted in a cluster on programming language. This process is illustrated in  
figure 6. 

 

A B C D H IGFE M NLKJ

.25 
.5 

.75 

1.75 

0 
competence

resource 
picked 

 

Fig. 6. Choosing the most representative resource 



 Graph-Based Inferences in a Semantic Web Server 257 

The final result is a list of bubbles grouped in clusters. The last problem is the 
display of these bubbles and clusters in an intelligent and intelligible fashion. 

3.4   Conceptual Classification and Spatial Grouping 

Users are interested in two aspects when comparing clusters: their size and the type 
of resource they use. They combined these two dimensions to obtain what they 
called a "radar view" of the technological pole that they draft in Figure 2. The radar 
view uses angular coordinates: the angle is derived from the place of the resource 
classes in the ontology and the radius from the size of the cluster. Figure 7 shows 
two opposite approaches in using the ontology for angular positions: a top-down 
division where the children equally share the angle allocated to their parent (left 
part of the figure); a bottom-up merging where leaves equally share the available 
angle and parents 'inherit' the sum of the angles of their children (right part of  
the figure). 

 

Fig. 7. Using the ontology for angular positions 

Here the initial angle was 180°. On the left (top-down division) it was divided into 
three for the first level of children (60° each) and then the first and last thirds were 
respectively divided into two (30°) and three (20°) for the second descendants. On the 
right (bottom-up merging), the 180° were divided into 6 for the leaves of the tree (30° 
each) then the nodes of the first level are respectively allocated angles of 60°, 30° and 
90°. The top-down division maintains the equality between brothers and favors the 
structure of the upper modules while the bottom-up merging maintains the equality 
between leaves and favors the detailed branches. 

In our case the top-down division was more interesting since it divides the space 
equally between the main domains of resources and, as shown in Figure 8, the 
ontology is much more detailed in some parts (e.g. the computer resources) than in 
some others (e.g. management resources). On such an ontology, bottom-up merging 
would bias the view while the top-down division applied on 360° in Figure 8 
maintains an equal angle for brothers; this is used to have an egalitarian positioning 
of the clusters based on their representative resource. Figure 9 shows the result of 
this approach applied to the list of clusters obtained with the inference previously 
described: the angular position is given by the place of the representative resource 
in the ontology, and the radius corresponds to the size of the cluster. As a result we 
can see that the activity of the technological pole is primarily focused in a given 
sector on which Figure 10 provides a partial zoom. 

 



258 F. Gandon et al. 

 

Fig. 8. Top-down division of the ontology applied on 360° 

 

Fig. 9. Radar view of the clusters on 180° 

 

Fig. 10. Zoom on the Radar view in figure 8 



 Graph-Based Inferences in a Semantic Web Server 259 

4   Evaluation and Conclusions 

The two types of evaluations were carried out: (1) usability and ergonomics; (2) 
complexity and real time. The usability and ergonomic evaluation triggered several 
evolutions of the interfaces (including two major reengineering) and some tests are 
still being carried out using different techniques (thinking aloud, video analysis, 
questionnaires, etc.). We are currently carrying out the second iteration of the 
usability and ergonomics studies. Needs for redesign have already been recorded, for 
instance: (a) a need to provide simple widgets to select the levels of details (b) a need 
to use statistics on the instances instead of the ontology, to calculate the angular 
position, thus accounting for the effective use of concepts rather than a theoretical 
importance (c) a need to have an idea of the time it will take to compute a clustering 
view. One of the major points is that the acceptance of KmP was so effective that we 
are now moving from a group of 20 pilot user companies to a park of 70 user 
companies and more and more public research centers are describing themselves, 
while the project is entering an industrialization phase. We also abstracted a 
methodology to involve users and keep them involved in the design of an ontology-
based application [Giboin et al, 2005]. 

Concerning complexity and real time, there are two phases in the inference we 
detailed here: the initialization of the dendrograms and tree of angles (which is done 
once) and the calculation of the clusters and their position (which is done each time a 
user submits a query). The complexity of the algorithm for the initialization of the 
dendrograms and tree of angles breaks down as follows, where n and m are the 
number of classes respectively in the ontologies of resources and actions: 

• Parsing the schema to build the tree: O(n+m) 
• Initializing the depth and angular distribution: O(n+m) 
• Sorting the dendrogram: O(n×log(n)+ m×log(m)) 

The size of the set of queries produced to build the clusters depends on the level of 
details chosen by the users. For two levels of details n' and m' respectively chosen in 
the dendrograms of resources and actions we have to solve n'×m' queries and so the 
worse case is n*m queries. We carried out a number of real time tests using a small 
configuration (Pentium 4 M / 1.7GHz / 512 Mo running MS Windows): 

• The average minimum time (for n'=1 and m'=1 and thus 1 query/potential 
cluster) is 86 milliseconds. 

• The average maximum time (n'=596 and m'=118 thus 70 328 
queries/potential clusters) is 11 minutes. 

• The average typical time (n'=109 and m'= 9 thus 981 queries/potential 
clusters) is 9 298 milliseconds i.e. roughly 9 seconds. 

The notion of typical query is due to the fact that the level of details used by users 
of the radar view is much lower than the level of details provided by the ontology and 
used by the end-user companies to describe themselves. For instance when market 
analysts are interested in activities of the telecom valley that involve programming in 
general, they do not want to differentiate between java, c++, c#, etc. 

Figure 11 shows the behavior of the response time against the level of details 
provided by the possible combinations of n' and m' and Figure 12 shows the behavior 



260 F. Gandon et al. 

of the response time against the actual value of n'×m' that is to say the number of 
generated queries. The linear regression of Figure 12 approximately corresponds to 
y= x× 8.42+89.24 and it has two very useful applications: (a) it provides a very 
simple and rapid way to foresee and warn the users about the time a clustering request 
will take to be solved before they actually submit it, and (b) it predicts the level of 
details above which it is better to rely on a reporting functionality that prepares a set 
of views in batch mode at night rather than relying on a real-time calculation; 
typically above 15 seconds of response time i.e. above n'×m'=2000 in our case. 

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12

Detail Level

Ti
m

e 
in

 M
ill

is
ec

o
nd

s

 

Fig. 11. Response time against detail level 

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120 140 160 180
Number of queries

T
im

e 
in

 m
ill

is
ec

on
ds

 

Fig. 12. Response time against number of queries 

KmP now includes a set of views and analysis tools as the radar view we detailed 
in this article. This semantic Web portal provides indicators for institutional 
organizations to understand the landscape of the technological pole, and for actors to 
find opportunities, niches, partners, etc. By detailing the work done on one RDFS-
based graph inference, we showed how the graph structure of semantic web 
formalisms can be exploited in new inferences to support intelligent interfaces in 
bridging the gap between the complexity of these underlying conceptual models and 
the ergonomic constraints of end-users' interfaces and daily concerns. The inferences 
at play here can be reused to support other functionalities and of course other 
inferences exist on these graph structures; in fact the algorithm has already been 
reused to produce other clustering view such as the identification of competency 
poles. Here, we proved the characteristics of the metrics and inferences we proposed 
and we illustrated the interpretation that can be associated to their results. In parallel 
we are conducting an experiment to evaluate and compare these simulated metrics 
with the ones humans naturally use in handling information [Gandon et al., 2005]. 



 Graph-Based Inferences in a Semantic Web Server 261 

References 

[Collins & Loftus, 1975] Collins, A., Loftus, E., A Spreading Activation Theory of Semantic 
Processing. Psychological Review, vol. 82, pp. 407-428, 1975 

[Corby et al, 2004] Corby, O., Dieng-Kuntz, R., Faron-Zucker, C., Querying the Semantic Web 
with the Corese Search Engine, In Proc. of European Conference on Artificial Intelligence, 
IOS Press, pp.705-709, 2004 

[Gandon et al., 2005] Gandon F., Corby O., Dieng-Kuntz R., Giboin A., Proximité 
Conceptuelle et Distances de Graphes, To be published in Proc. Raisonner le Web 
Sémantique avec des Graphes, Nice, Journée thématique de la plate-forme AFIA, Nice, 
2005 

[Giboin et al, 2005] Giboin A., Gandon F., Gronnier N., Guigard C., Corby, O., Comment ne 
pas perdre de vue les usage(r)s dans la construction d’une application à base d’ontologies ? 
Retour d’expérience sur le projet KmP, To be published in Proc. Ingénierie des 
Connaissances, plate-forme AFIA, p133-144, 2005 

[Jain et al., 1999] Jain, A.K., Murty, M.N., and Flynn, P.J. (1999): Data Clustering: A Review, 
ACM Computing Surveys, Vol 31, No. 3, 264-323. 

[Jiang & Conrath, 1997] Jiang, J., Conrath, D., Semantic Similarity based on Corpus Statistics 
and Lexical Taxonomy. In Proc. of International Conference on Research in Computational 
Linguistics, Taiwan, 1997 

[Lazaric & Thomas, 2005] Lazaric N., Thomas C., "The coordination and codification of 
knowledge inside a network, or the building of an 'epistemic community': The 'Telecom 
Valley' case study" in “Reading the Dynamics of a Knowledge Economy », to be published 
in 2005 by Edward Elgar Publishing. 

[Quillian, 1968] Quillian, M.R., Semantic Memory, in: M. Minsky (Ed.), Semantic Information 
Processing, M.I.T. Press, Cambridge, 1968. 

[Rada et al., 1989] Rada, R., Mili, H., Bicknell, E., Blettner, M., Development and Application 
of a Metric on Semantic Nets, IEEE Transaction on Systems, Man, and Cybernetics, vol. 
19(1), pp. 17-30, 1989. 

[Resnik, 1995] Resnik, P., Semantic Similarity in a Taxonomy: An Information-Based Measure 
and its Applications to Problems of Ambiguity in Natural Language. In Journal of Artificial 
Intelligence Research, vol 11, pp. 95-130, 1995 

[Sowa, 1984] Sowa., J.F., Conceptual structures: Information Processing in Mind and 
Machine. Addison-Wesley, Reading, Massachusetts, 1984 

 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 262 – 276, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Ontology Design Patterns for Semantic Web Content 

Aldo Gangemi 

Laboratory for Applied Ontology, ISTC-CNR, Rome, Italy 
a.gangemi@istc.cnr.it 

Abstract. The paper presents a framework for introducing design patterns that 
facilitate or improve the techniques used during ontology lifecycle. Some dis-
tinctions are drawn between kinds of ontology design patterns. Some content-
oriented patterns are presented in order to illustrate their utility at different de-
grees of abstraction, and how they can be specialized or composed. The pro-
posed framework and the initial set of patterns are designed in order to function 
as a pipeline connecting domain modelling, user requirements, and ontology-
driven tasks/queries to be executed. 

1   Introduction 

Throughout experiences in ontology engineering projects1  at the Laboratory for 
Applied Ontology (LOA) , typical conceptual patterns have emerged out of different 
domains, for different tasks, and while working with experts having heterogeneous 
backgrounds. For example, a simple participation pattern (including objects taking 
part in events) emerges in domain ontologies as different as enterprise models [11], 
legal norms [30], sofware management [17], biochemical pathways [9], and fishery 
techniques [10]. Other, more complex patterns have also emerged in the same 
disparate domains: the role<->task pattern, the information<->realization pattern, 
the description<->situation pattern, the design<->object pattern, the attribute 
parametrization pattern, etc.  

Those emerging patterns are extremely useful in order to acquire, develop, and 
refine the ontologies from either experts or documents. Often it’s even the case that a 
community of expertise develops its own conceptual pattern, usually of an informal 
                                                           
1  For example, in the projects IKF: http://www.ikfproject.com/About.htm,  
 FOS: http://www.fao.org/agris/aos/, and WonderWeb: http://wonderweb.semanticweb.org. 
 http://www.loa-cnr.it 2

  http://dolce.semanticweb.org 

2,

3

3

The lifecycle of ontologies over the Semantic Web involves different techniques, 
ranging from manual to automatic building, refinement, merging, mapping, annota-
tion, etc. Each  technique involves the specification of core concepts for the popula-
tion of an ontology, or for its annotation, manipulation, or management 
[7][9][10][11][14][19]. For example, an OWL ontology of gene expression for bioin-
formatics can be manually built by encoding experts’ conceptual patterns [20], or can 
be automatically learnt e.g. out of a textual corpus by encoding natural language pat-
terns, then refined according to conceptual patterns provided by experts [3], and fi-
nally annotated with meta-level concepts for e.g. confidence measurement, argumen-
tation, etc. 



 Ontology Design Patterns for Semantic Web Content 263 

diagrammatic sort, which can be reengineered as a specialization of the mentioned 
patterns, for the sake of an ontology project. In some situations, experts do not grasp 
the utility of ontologies until they realize that an ontology can encode effectively a 
domain conceptual pattern. Once experts realize it, they usually start discussions on 
how to improve their own rational procedures by means of ontology engineering 
techniques! 

Following this evidence, for two years a set of conceptual patterns has been used 
for practical, domain ontology design while still being based on a full-fledged, richly 
axiomatic ontology (currently DOLCE and its extension                 
s  [14][15]). A major attention has been devoted to patterns that are expressible in 
OWL [18], and are therefore easily applicable to the Semantic Web community. 

Independently, in 2004 the W3C has started a working group on Semantic Web 
Best Practices and Deployment, including a task force on Ontology Engineering 
Patterns (OEP) [21], which has produced some interesting OWL design patterns that 
are close, from the logical viewpoint, to some of the ontology design patterns that the 
LOA has been developing. 

In this paper a notion of pattern for ontology design is firstly introduced, 
contrasting it to other sibling notions. Then a template to present ontology design 
patterns that are usable to assist or improve Semantic Web ontology engineering is 
sketched, focusing on patterns that can be encoded in OWL(DL). Some distinctions 
are drawn between patterns oriented to individuals, to classes or properties, to logical 
primitives, and to argumentation. Some content-oriented patterns are discussed in 
order to illustrate that notion at different degrees of abstraction, and how they can be 
composed. Finally, some conclusions are provided. 

2   Some Bits of History 

The term “pattern” appears in English in the 14th century and derives from Middle 
Latin “patronus” (meaning “patron”, and, metonymically, “exemplar”, something 
proposed for imitation).  As Webster’s puts it, a pattern has a set of senses that show a 
reasonable degree of similarity (see my italics): «a) a form or model proposed for imi-
tation, b) something designed or used as a model for making things, c) a model for 
making a mold, d) an artistic, musical, literary, or mechanical design or form, e) a 
natural or chance configuration, etc., and, f) a discernible coherent system based on 
the intended interrelationship of component parts». 

In the seventies, the architect and mathematician Christopher Alexander introduced 
the term “design pattern” for shared guidelines that help solve design problems. In [1] 
he argues that a good design can be achieved by means of a set of rules that are 
“packaged” in the form of patterns, such as “courtyards which live”, “windows 
place”, or “entrance room”. Design patterns are assumed as archetypal solutions to 
design problems in a certain context. 

Taking seriously the architectural metaphor, the notion has been eagerly endorsed 
by software engineering [2][6][13], where it is used as a general term for formatted 
guidelines in software reuse, and, more recently, has also appeared in requirements 
                                                           
 Cf. Online Etymology Dictionary: http://www.etymonline.com) 

4

 In software engineering, formal approaches to design patterns, based on dedicated ontologies, 
are being investigated, e.g. in so-called semantic middleware [17]. 

4

5

5



264 A. Gangemi 

analysis, conceptual modelling, and ontology engineering [12][20][21][24][29]. 
Traditional desing patterns appear more like a collection of shortcuts and suggestions 
related to a class of context-bound problems and success stories. In recent work, there 
seems to be a tendency towards a more formal encoding of design patterns (notably in 
[2][12][13][19]). [24] also addresses the issue of ontology design patterns for the 
Semantic Web, taking a foundational approach that is complementary with that 
presented here. 

2.1   The Elements of a Design Pattern from Software to Ontology Engineering 

For space reasons, a review of the existing literature, and how this proposal differs 
from it, is not attempted here. Instead, the typical structure of design patterns in soft-
ware engineering is presented, and contrasted with typical patterns in ontology engi-
neering and with the so-called content patterns. 

The mainstream approach in Software Engineering (SE) patterns is to use a 
template that can be similar to the following one (adapted from [22]), used to address 
a problem of form design in user interfaces: 

 

Slot Value 

Type UI form 

Examples •  Tax forms 
•  Job application forms 
•  Ordering merchandise through a catalog 

Context The user has to provide preformatted information, usually short (non-
narrative) answers to questions 

Problem How should the artifact indicate what kind of information should be 
supplied, and the extent of it? 

Forces •  The user needs to know what kind of information to provide. 
•  It should be clear what the user is supposed to read, and what to fill 

in. 
•  The user needs to know what is required, and what is optional. 
•  Users almost never read directions. 
•  Users generally do not enjoy supplying information this way, and are 

satisfied by efficiency, clarity, and a lack of mistakes. 

Solution Provide appropriate “blanks” to be filled in, which clearly and cor-
rectly indicate what information should be provided.  Visually indicate 
those editable blanks consistently, such as with subtle changes in back-
ground color, so that a user can see at a glance what needs to be filled in. 
Label them with clear, short labels that use terminology familiar to the 
user; place the labels as close to the blanks as is reasonable. Arrange them 
all in an order that makes sense semantically, rather than simply grouping 
things by visual appearance 



 Ontology Design Patterns for Semantic Web Content 265 

The slots used here follow quite closely those suggested by Alexander: given an 
artifact type, the pattern provides examples of it, its context, the problem addressed by 
the pattern, the involved “forces” (requirements and constraints), and a solution. 

In ontology engineering, the nature of the artifact (ontologies) requires a more 
formal presentation of patterns.5 For example, the pattern for “classes as property 
values” [16] produced by the OEP task force [21] can be sketched as follows (only an 
excerpt of the pattern is shown here): 

Slot Value 

General 
issue 

It is often convenient to put a class (e.g., Animal) as a property value 
(e.g., topic or book subject) when building an ontology. While OWL Full 
and RDF Schema do not put any restriction on using classes as property 
values, in OWL DL and OWL Lite most properties cannot have classes 
as their values. 

Use case 
example 

Suppose we have a set of books about animals, and a catalog of these 
books.  We want to annotate each catalog entry with its subject, which is 
a particular species or class of animal that the book is about. Further, we 
want to be able to infer that a book about African lions is also a book 
about lions. For example, when retrieving all books about lions from a 
repository, we want books that are annotated as books about African 
lions to be included in the results. 

Notation In all the figures below, ovals represent classes and rectangles represent 
individuals. The orange color signifies classes or individuals that are 
specific to a particular approach. Green arrows with green labels are 
OWL annotation properties. We use N3 syntax to represent the exam-
ples. 

Approaches Approach 1: Use classes directly as property values 
In the first approach, we can simply use classes from the subject hierar-
chy as values for properties (in our example, as values for the dc:subject 
property). We can define a class Book to represent all books. 

Consideratio-
ns 

 •  The resulting ontology is compatible with RDF Schema and OWL 
Full, but it is outside OWL DL and OWL Lite. 

 •   This approach is probably the most succinct and intuitive among all the 
approaches proposed here. 

 •  Applications using this representation can directly access the informa-
tion needed to infer that Lion (the subject of the LionsLifeIn-
ThePrideBook individual) is a subclass of Animal and that Afri-
canLion (the subject of the TheAfricanLionBook individual) is a sub-
class of Lion. 

OWL code 
(N3 syntax) 

default:BookAboutAnimals 
      a       owl:Class ; 
      rdfs:subClassOf owl:Thing ; 
      rdfs:subClassOf 
              [ a       owl:Class ; 
                owl:unionOf ([ a       owl:Restriction ; 



266 A. Gangemi 

Slot Value 

                             owl:onProperty dc:subject ; 
                            owl:someValuesFrom default:Animal 
                          ] [ a       owl:Restriction ; 
                            owl:onProperty dc:subject ; 
                            owl:someValuesFrom 
                                    [ a       owl:Restriction ; 
                                      owl:hasValue default:Animal ; 
                                      owl:onProperty rdfs:subClassOf] ]) ] 

 
As evidenced from the examples, an ontology engineering pattern includes some 

formal encoding, due to the nature of ontological artifacts. OEP slots seem to “merge” 
some SE slots: examples and context are merged in the “use case”, while the slot 
“forces” is missing, except for some “considerations” related to the “solution” slot 
(called “approach” in OEP). 

In this paper, a step towards the encoding of conceptual, rather than logical design 
patterns, is made. In other words, while OEP is proposing patterns for solving design 
problems for OWL, independently of a particular conceptualization, this paper 
proposes patterns for solving (in OWL or another logical language) design problems 
for the domain classes and properties that populate an ontology, therefore addressing 
content problems.  

3   Conceptual Ontology Design Patterns 

3.1   Generic Use Cases 

The first move towards conceptual ontology design patterns requires the notion of a 
“Generic Use Case” (GUC), i.e. a generalization of use cases that can be provided as 
examples for an issue of domain modelling. Differently from the “artifact type” slot in 
SE patterns and from the “issue” slot in OEP patterns, a GUC should be the expres-
sion of a recurrent issue in many domain modelling projects, independently of the 
particular logical language adopted. For example, this is a partial list of the recurrent 
questions that arise in the modelling practice during an ontology project: 

 

• Who does what, when and where? 
• Which objects take part in a certain event? 
• What are the parts of something? 
• What’s an object made of? 
• What’s the place of something? 
• What’s the time frame of something? 
• What technique, method, practice is being used? 
• Which tasks should be executed in order to achieve a certain goal? 
• Does this behaviour conform to a certain rule? 
• What’s the function of that artifact? 
• How is that object built? 



 Ontology Design Patterns for Semantic Web Content 267 

• What’s the design of that artifact? 
• How did that phenomenon happen? 
• What’s your role in that transaction? 
• What that information is about? How is it realized? 
• What argumentation model are you adopting for negotiating an agreement? 
• What’s the degree of confidence that you give to this axiom? 

Being generic at the use case level allows us to decouple, or to refactor the design 
problems of a use case, by composing different GUCs. Ideally, a library of GUCs 
should include a hierarchy from the most generic to the most specific ones, and from 
the “purest” (like most of the examples above) to the most articulated and applied 
ones (e.g.: “what protein is involved in the Jack/Stat biochemical pathway?”). 

 The intuition underlying GUC hierarchies is based on a methodological 
observation: ontologies must be built out of domain tasks that can be captured by 
means of competency questions [11]. A competency question is a typical query that an 
expert might want to submit to a knowledge base of its target domain, for a certain 
task. In principle, an accurate domain ontology should specify all and only the 
conceptualizations required in order to answer all the competency questions 
formulated by, or acquired from, experts. 

A GUC can thus be seen as the preliminary motivation to build the pipeline 
connecting modelling requirements, expected queries (semantic services), and 
ontology population. Following the distinction between tasks, problem-solving 
methods, and ontologies that underlies recent architectures for Semantic Web 
Services [26], GUCs can be used to access at a macroscopic level (partly similar to 
“use-case diagrams” in UML) the profile (or registries) for a service, the available 
ontology design patterns (see next section), as well as existing ontologies and 
knowledge bases. GUC taxonomy is not addressed here for space reasons. 

3.2   Features of Conceptual Ontology Design Patterns 

A GUC cannot do much as a guideline, unless we are able to find formal patterns that 
encode it. A formal pattern that encodes a GUC is called here a Conceptual (or Con-
tent) Ontology Design Pattern (CODeP).  

CODePs are characterized here in a twofold way. Firstly, through an intuitive set 
of features that a CODeP should have; secondly, through a minimal semantic 
characterization, and its formal encoding, with the help of some examples. 

• A CODeP is a template to represent, and possibly solve, a modelling problem. 
• A CODeP “extracts” a fragment of either a foundational [14] or core [8] ontology, 

which constitutes its background. For example, a connected path of two relations 
and three classes (Ax ∧ By ∧ Cz ∧ Rxy ∧ Syz) can be extracted because of its do-
main relevance. Thus, a CODeP lives in a reference ontology, which provides its 
taxonomic and axiomatic context. A CODeP is axiomatized according to the frag-
ment it extracts. Since it depends on its background, a CODeP inherits the axioma-
tization (and the related reasoning service) that is already in place.  

• Mapping and composition of patterns require a reference ontology, in order to check 
the consistency of the composition, or to compare the sets of axioms that are to be 
mapped. Operations on CODePs depend on operations on the reference ontologies. 
However, for a pattern user, these operations should be (almost) invisible. 



268 A. Gangemi 

• A CODeP can be represented in any ontology representation language whatsoever 
(depending on its reference ontology), but its intuitive and compact visualization 
seems an essential requirement. It requires a critical size, so that its diagrammatical 
visulization is aesthetically acceptable and easily memorizable. 

• A CODeP can be an element in a partial order, where the ordering relation requires 
that at least one of the classes or relations in the pattern is specialized. A hierarchy 
of CODePs can be built by specializing or generalizing some of the elements (either 
classes or relations). For example, the participation pattern can be specialized to the 
taking part in a public enterprise pattern. 

• A CODeP should be intuitively exemplified, and should catch relevant, “core” no-
tions of a domain. Independently of the generality at which a CODeP is singled out, 
it must contain the central notions that “make rational thinking move” for an expert 
in a given domain for a given task.  

• A CODeP can be often built from informal or simplified schemata used by domain 
experts, together with the support of other reusable CODePs or reference ontolo-
gies, and a methodology for domain ontology analysis. Typically, experts sponta-
neously develop schemata to improve their business, and to store relevant know-
how. These schemata can be reengineered with appropriate methods  
(e.g. [10]). 

• A CODeP can/should be used to describe a “best practice” of modelling. 
• A CODeP can be similar to a database schema, but a pattern is defined wrt to a ref-

erence ontology, and has a general character, independent of system design. 

4   Examples of CODePs 

4.1   Some Foundational and Core Patterns 

Some examples of CODePs are shown here, but many others have been built or are 
being investigated. Due to space restrictions, the presentation is necessarily sketchy. 

As proposed in the previous section, a CODeP emerges out of an existing or 
dedicated reference ontology (or ontologies), since it needs a context that facilitates 
its use, mapping, specialization, and composition.   

 

 

Fig. 1. The basic DOLCE design pattern: participation at spatio-temporal location 



 Ontology Design Patterns for Semantic Web Content 269 

A first, basic example (Fig. 1) is provided by the participation pattern, extracted 
from the DOLCE [14] foundational ontology, developed within the WonderWeb 
Project [5]. It consists of a “participant-in” relation between objects and events, and 
assumes a time indexing for it. Time indexing is provided by the temporal location of 
the event at a time interval, while the respective spatial location at a space region is 
provided by the participating object.  

Some inferences are automatically drawn when composing the participation 
CODeP with the part CODeP (not shown here, see [14]). For example, if an object 
constantly participates in an event, a temporary part of that object (a part that can be 
detached), will simply participate in that event, because we cannot be sure that the 
part will be a part at all times the whole participates. For example, we cannot infer for 
each member of a gang that she participated in a crime, just because she is a member. 

An alternative CODeP (Fig. 2) for time-indexed participation can be given by 
reifying the participation relation (in OWL a ternary relation cannot be expressed 
conveniently). The reified participation pattern features a kind of “situation” (see next 
example), called time-indexed-participation, which is a setting for exactly one object, 
one event, and one time interval. This simple reification pattern can be made as 
complex as needed, by adding parameters, more participants, places, etc. 

A third, more complex example, is the Role<->Task CODeP (Fig. 3). This CODeP is 
based on an extension of DOLCE, called D&S (Descriptions and Situations) [9][15], 
partly developed within the Metokis Project [4]. D&S provides a vocabulary and an 
axiomatization to type-reified [27] classes and relations (“concepts” and “descriptions”), 
and to token-reified [27] tuples (“situations”; for a semantics of D&S, see [28]).  

 

Fig. 2. A pattern for reification of time-indexed relations (in this case, participation): a 
situation (like time-indexed participation) is a setting for an event, the entities participating in 
that event, and the time interval at which the event occurs 

In practice, the Role<->Task pattern allows the expression, in OWL(DL), of the 
temporary roles that objects can play, and of the tasks that events/actions allow to 
execute. The reified relation specifying roles and tasks is a description, the reified 
tuple that satisfies the relation for certain individual objects and events is called 
situation. Roles can have assigned tasks as modal targets. This CODeP is very 
expressive, and can be specialized in many domains, solving design issues that are 
quite hard without reification. For example, the assignments of tasks to role-players in 
a workflow can be easily expressed, as well as plan models [28]. 



270 A. Gangemi 

 

Fig. 3. A pattern for roles and tasks defined by descriptions and executed within situations 

By composing the Role<->Task pattern with the Collection<->Role pattern (not 
shown here), and specializing such composition to the domain of material design, we 
obtain the so-called Design<->Artifact CODeP (Fig. 4). This pattern is very 
expressive and quite complex. Starting from Role<->Task, and Collection<->Role, 
and specializing objects to material artifacts, descriptions to designs, situations to 
design materialization, and substituting tasks with functions, we can conceive of a 
functional unification relation holding between a design model and a material artifact. 
The internal axiomatization operates by unifying the collection of “relevant” 
components (“proper parts”) of the material artifact within a “collection”, where each 
component plays a functional role defined by the design model.  

 

 

Fig. 4. A pattern for talking about relations between design models and material artifacts 

The design materialization keeps together the actual physical components of an 
individual material artifact. This CODeP can be easily specialized for manufacturing, 
commercial warehouses, etc.  

The previous CODePs are foundational. An example of a core CODeP is instead 
provided here with reference to the NCI ontology of cancer research and treatment 
[23] (Fig. 5). It specializes the foundational Role<->Task CODeP (Fig. 3). 



 Ontology Design Patterns for Semantic Web Content 271 

 

Fig. 5. A core pattern for chemotherapy, specializing the Role<->Task CODeP 

4.2   How to Introduce a CODeP 

A template can be used to annotate CODePs, to share them in pre-formatted docu-
ments, to contextualize them appropriately, etc. Here the following frame is proposed, 
and presented through the previous example from the NCI ontology [23]: 

 

Slot Value 

Generic use 
case (GUC) 

Chemicals playing roles in biological processes for chemotherapy. 

Local use 
case(s) 

Various chemical agents, mostly drugs, are used to control 
biological processes within a chemotherapeutical treatment. 
When talking about drugs and processes, there is a network of 
senses implying a dependence on roles and functions (or tasks) 
within a clinical treatment.  
Intended meanings include the possible functional roles played by 
certain substances, as well as the actual administration of 
amounts of drugs for controlling actually occurring biological 
processes. Therefore, both class- and instance-variables are 
present in the maximal relation for this pattern. 

Logic 
addressed 

OWL, DL species 

Reference 
ontologies 

DOLCE-Lite-Plus, NCI Ontology 



272 A. Gangemi 

Slot Value 

Specialized 
CODeP 

Role<->Task 

Composed 
CODePs 

Time-Indexed-Participation, Concept<->Description, Description<-
>Situation 

Formal 
relation 

rChemical_or_Drug_Plays_Role_in_Biological_Process( , ,x,y,t,
c1,c2,d,s), where (x) is a chemical agent class, (y) is a 
biological process class, t is a time interval, c1 and c2 are two 
reified intensional concepts, d is a reified intensional relation, and 
s is a reified extensional relation. 

Sensitive 
axioms 

rChemical_or_Drug_Plays_Role_in_Biological_Process( , ) =df 
∀x,y,t( (x) ∧ (y) ∧ participates-in(x,y,t) ∧ Chemical-Agent(x) ∧ 
Biological-Process(y) ∧ Time-Interval(t)) ↔ ∃c1,c2,d(CF(x,c1,t) ∧ 
MT(c1,c2) ∧ CF(y,c2,t) ∧ DF(d,c1) ∧ DF(d,c2) ∧ ∀s(SAT(s,d)) ↔ 
(SETF(s,x) ∧ SETF(s,y) ∧ SETF(s,t)) 

Explanation Since OWL(DL) does not support relations with >2 arity, reification 
is required. The Description<->Situation pattern provides typing 
for such reification.  
Since OWL(DL) does not support classes in variable position, we 
need reification for class-variables. The Concept<->Description 
pattern provides typing for such reification. 
Similarly, since participation is time-indexed, we need the time-
indexed-participation pattern, which is here composed with the 
previous two patterns (time indexing appears in the setting of the 
general treatment situation). 

OWL(DL) 
encoding 
(abstract 
syntax) 

Class(Chemical_Plays_Role_in_Bio_Process complete 
 Description 
 restriction(defines someValuesFrom(Chemical-Agent)) 
 restriction(defines someValuesFrom(Biological-Task))) 
Class(Chemical-Agent complete 
 Role 
 restriction(defined-by 
someValuesFrom(Chemical_Plays_Role_in_Bio_Process)) 
 restriction(classifies allValuesFrom(Substance)) 
 restriction(modal-target someValuesFrom(Biological-Task))) 
Class(Biological-Task complete 
Task 
 restriction(classifies allValuesFrom(Biological-Process)) 
 restriction(modal-target-of someValuesFrom(Chemical-Agent))) 
Class(Chemical-in-Biological-Process_Situation complete 



 Ontology Design Patterns for Semantic Web Content 273 

Slot Value 

 Situation 
 restriction(satisfies 
someValuesFrom(Chemical_Plays_Role_in_Bio_Process)) 
 restriction(setting-for someValuesFrom(Substance)) 
 restriction(setting-for someValuesFrom(Biological-Process)) 
 restriction(setting-for someValuesFrom(Time-Interval))) 

Class 
diagram 

 

 

 

 
The CODeP frame consists of: 

• Two slots for the generic use case, and the local use cases, which includes a de-
scription of context, problem, and constraints/requirements. 

• Two slots for the addressed logic, and the reference ontologies used as a back-
ground for the pattern. 

• Two slots for -if any- the specialized pattern and the composed patterns.  
• Two slots for the maximal relation that encodes the case space, and its intended 

axiomatization: a full first-order logic with meta-level is assumed here, but the slot 
can be empty without affecting the functionality of a CODeP frame. 

• Two slots for explanation of the approach, and its encoding in the logic of choice. 
• A last slot for a class diagram that visually reproduces the approach. 

 
The frame for introducing CODePs can be easily encoded in XSD or in richer 
frameworks, like semantic web services (e.g. [25]) or knowledge content objects [26], 
for optimal exploitation within Semantic Web technologies. The high reusability of 
CODePs and their formal and pragmatic nature make them suitable not only for 
isolated ontology engineering practices, but ideally in distributed, collaborative 
environments like intranets, the Web or the Grid. 

CODePs can also be used to generate intuitive, friendly UIs, which can present the 
user with only the relevant pattern diagram, avoiding the awkward, entangled graphs 
currently visualized for medium-to-large ontologies. 

5   Conclusions 

Conceptual Ontology Design Patterns (CODePs) have been introduced as a useful 
resource and design method for engineering ontology content over the Semantic Web. 
CODePs are distinguished from architectural, software engineering, and logic-
oriented design patterns, and a template has been proposed to describe, visualize, and 
make operations over them. 



274 A. Gangemi 

The advantages of CODePs for ontology lifecycle over the Semantic Web are 
straightforward: firstly, patterns make ontology design easier for both knowledge 
engineers and domain experts (imagine having a menu of pre-built, formally 
consistent components, pro-actively suggested to the modeller); secondly, patterned 
design makes it easier ontology integration - perhaps the most difficult problem in 
ontology engineering. For example, the time-indexed participation presented in this 
paper requires non-trivial knowledge engineering ability to be optimally represented 
and adapted to a use case: a CODeP within an appropriate ontology management tool 
can greatly facilitate such representation.  

The CODeP examples and the related frame and methods introduced in this paper 
have been applied for two years (some of them even before) in several administration, 
business and industrial projects, e.g. in fishery information systems [10], insurance 
CRM, biomedical ontology integration [9], anti-money-laundering systems for banks 
[30], service-level agreements for information systems, biomolecular ontology 
learning [3], legal norms formalization, and management of digital content [26]. 

Current work focuses on building a tool that assists development, discussion, 
retrieval, and interchange of CODePs over the Semantic Web, and towards 
establishing the model-theoretical and operational foundations of CODeP 
manipulation and reasoning. In particular, for CODePs to be a real advantage in 
ontology lifecycle, the following functionalities will be available: 

• Categorization of CODePs, based either on the use cases they support, or on the 
concepts they encode. 

• Pattern-matching algorithms for retrieving the pattern that best fits a set of 
requirements, e.g. from a natural language specification, or from a draft ontology. 

• Support for specialization and composition of CODePs. A CODeP p1 specializes 
another p2 when at least one of the classes or properties from p2 is a sub-class or a 
sub-property of some class resp. property from p1, while the remainder of the 
CODeP is identical. A CODeP p1 expands p2 when p1 contains p2, while adding 
some other class, property, or axiom. A CODeP p1 composes p2 and p3 when p1 
contains both p2 and p3. The formal semantics of these operations is ensured by the 
underlying (reference) ontology for the patterns, and will be given in an extended 
version of this paper. 

• Interfacing of CODePs for visualization, discussion, and knowledge-base creation 

• A rich set of metadata for CODeP manipulation and exploitation within 
applications. 

References 

1. Alexander, C.: The Timeless way of building. Oxford University Press, New York (1979).  
2. Baker, N., A. Bazan, G. Chevenier, Z. Kovacs, T Le Flour, J-M Le Goff, R. McClatchey,    

S. Murray: Design Patterns for Description-Driven Systems.  
3. Ciaramita, M., Gangemi, A., Ratsch, E., Rojas, I., Saric, J.: Unsupervised Learning of Se-

mantic Relations between Concepts of a Molecular Biology Ontology. To appear in the 
proceedings of the Nineteenth IJCAI, Edimburgh, Scotland (2005). 

4. EU FP6 Metokis Project: http://metokis.salzburgresearch.at 
5. EU FP5 WonderWeb Project: http://wonderweb.semanticweb.org  



 Ontology Design Patterns for Semantic Web Content 275 

6. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.:  Design Patterns:  Elements of Reus-
able Object-Oriented Software.  Addison-Wesley, Reading, MA (1995). 

7. Gangemi, A., Navigli, R., Velardi, P.: ML: The OntoWordNet Project: extension and 
axiomatisation of conceptual relations in WordNet. International Conference on Ontolo-
gies,  Databases and Applications of SEmantics (ODBASE 2003), Catania, (Italy), (2003).  

8. Gangemi, A., Borgo, S. (eds.): Proceedings of the EKAW*04 Workshop on Core Ontolo-
gies in Ontology Engineering. Available from:  
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-118/ (2004). 

9. Gangemi, A., Catenacci, C., Battaglia, M.: Inflammation Ontology Design Pattern: an Ex-
ercise in Building a Core Biomedical Ontology with Descriptions and Situations.D.M. 
Pisanelli (ed.) Ontologies in Medicine, IOS Press, Amsterdam (2004).  

10. Gangemi, A., F. Fisseha, J. Keizer, J. Lehmann, A. Liang, I. Pettman, M. Sini, M. Taconet: 
A Core Ontology of Fishery and its Use in the FOS Project, in [8] (2004). 

11. Gruninger, M., and Fox, M.S.: The Role of Competency Questions in Enterprise Engineer-
ing. Proceedings of the IFIP WG5.7 Workshop on Benchmarking - Theory and Practice, 
Trondheim, Norway (1994). 

12. Guizzardi, G., Wagner, G., Guarino, N., van Sinderen, M.: An Ontologically Well-
Founded Profile for UML Conceptual Models. A. Persson, J. Stirna (eds.) Advanced In-
formation Systems Engineering, Proceedings of16th CAiSE Conference, Riga, Springer 
(2004). 

13. Maplesden, D., Hosking, J.G. and Grundy, J.C.: Design Pattern Modelling and Instantia-
tion using DPML, Proceedings of the Tools Pacific 2002, Sydney, CRPIT Press (2002). 

14. Masolo, C., A. Gangemi, N. Guarino, A. Oltramari and L. Schneider: WonderWeb Deliv-
erable D18: The WonderWeb Library of Foundational Ontologies (2004). 

15. Masolo, C., L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi and N. Guarino: 
Social Roles and their Descriptions. Procedings of the Ninth International Conference on 
the Principles  of Knowledge Representation and Reasoning, Whistler (2004). 

16. Noy, N.: Representing Classes As Property Values on the Semantic Web. W3C Note,  
http://www.w3.org/2001/sw/BestPractices/OEP/ClassesAsValues-20050405/ (2005). 

17. Oberle, D., Mika, P., Gangemi, A., Sabou, M.: Foundations for service ontologies:  Align-
ing OWL-S to DOLCE. Staab S and Patel-Schneider P (eds.), Proceedings of the World 
Wide Web Conference (WWW2004), Semantic Web Track, (2004).  

18. OWL Web Ontology Language Overview, D. L. McGuinness and F. van Harmelen, Edi-
tors, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-owl-
features-20040210/ (2004). 

19. Rector, A.L., Rogers, J.: Patterns, Properties and Minimizing Commitment: Reconstruc-
tion of the GALEN Upper Ontology in OWL, in [8] (2004). 

20. Reich, J.R.:  Ontological Design Patterns: Modelling the Metadata of Molecular Biological 
Ontologies, Information and Knowledge.  In DEXA 2000 (2000). 

21. Semantic Web Best Practices and Deployment Working Group, Task Force on Ontology 
Engineering Patterns. Description of work, archives, W3C Notes and recommendations 
available from http://www.w3.org/2001/sw/BestPractices/OEP/ (2004-5). 

22. Tidwell, J.: COMMON GROUND: A Pattern Language for Human-Computer Interface 
Design. http://www.mit.edu/%7Ejtidwell/interaction_patterns.html (1999). 

23. Golbeck, J., G. Fragoso, F. Hartel, J. Hendler, B. Parsia,  J. Oberthaler:  The national can-
cer institute's thesaurus and ontology.  Journal of Web Semantics, 1(1), (2003). 

24. Svatek V.: Design Patterns for Semantic Web Ontologies: Motivation and Discussion. In: 
7th Conference on Business Information Systems, Pozna  (2004). 



276 A. Gangemi 

25. Motta, E., Domingue, J., Cabral, L., Gaspari, M. (2003) IRS-II: A Framework and Infra-
structure for Semantic Web Services. 2nd International Semantic Web Conference 
(ISWC2003) 20-23 October 2003, Sundial Resort, Sanibel Island, Florida, USA (2003). 

26. Behrent, W., Gangemi, A., Maass, W., Westenthaler, R.: Towards an Ontology-based Dis-
tributed Architecture for Paid Content. To appear in A. Gomez-Perez (ed.), Proceedings of 
the Second European Semantic Web Conference, Heraklion, Greece (2005). 

27. Galton, A.: Reified Temporal Theories and How To Unreify Them. Proceedings of the In-
ternational Joint Conference on Artificial Intelligence (IJCAI), 1991. 

28. Gangemi, A., Borgo, S., Catenacci, C., Lehmann, J.: Task Taxonomies for Knowledge 
Content. Deliverable D07 of the Metokis Project. Available at http://www.loa-cnr.it. 

29. Soshnikov, D.: Ontological Design Patterns in Distributed Frame Hierarchy. In Proceed-
ings of the 5th International Workshop on Computer Science and Information Technolo-
gies, Ufa, Russia, 2003.  

30. Gangemi A, Pisanelli DM, Steve G,: An Ontological Framework to Represent Norm Dy-
namics. In R Winkels (ed.), Proceedings of the 2001 Jurix Conference, Workshop on Le-
gal Ontologies, University of Amsterdam, 2001.  



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 277 – 292, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Guidelines for Benchmarking the Performance  
of Ontology Management APIs 

Raúl García-Castro and Asunción Gómez-Pérez 

Ontology Engineering Group, Laboratorio de Inteligencia Artificial, 
Facultad de Informática, Universidad Politécnica de Madrid, Spain 

{rgarcia, asun}@fi.upm.es 

Abstract. Ontology tools performance and scalability are critical to both the 
growth of the Semantic Web and the establishment of these tools in the 
industry. In this paper, we present briefly the benchmarking methodology used 
to improve the performance and the scalability of ontology development tools. 
We focus on the definition of the infrastructure for evaluating the performance 
of these tools’ ontology management APIs in terms of its execution efficiency. 
We also present the results of applying the methodology for evaluating the API 
of the WebODE ontology engineering workbench. 

1   Introduction 

The lack of mechanisms to evaluate ontology tools is an obstacle to their use in 
companies. Performance is one of the critical requirements requested for ontology 
tools and the scalability of these tools is a primary need.  

To the best of our knowledge, no one has evaluated ontology development tools 
according to their performance. Some general evaluation frameworks for ontology 
tools have been proposed by: Duineveld et al. [1], the deliverable 1.3 of the OntoWeb 
project [2] and Lambrix et al. [3]; and the EON workshops series [4, 5, 6] focus on 
the evaluation of ontology tools but they have not dealt with their performance yet.  

The evaluation of the performance of ontology development tools is tightly related 
to the evaluation of their scalability. To this end, the tools must be evaluated 
according to different workloads, paying special attention to the effect of high 
workloads on the tool performance. Magkanaraki et al. [7] and Tempich and Volz [8] 
performed structural analyses of ontologies in order to define these workloads. 
Workload generators such as OntoGenerator [2] and the Univ-Bench Artificial data 
generator [9] produce ontologies for performing experiments in an automatic way and 
according to some parameters. 

In this paper, we present an approach and a realization of a benchmarking 
methodology with regard to the performance and the scalability of ontology 
development tools. The advantage of using a benchmarking methodology rather than 
an evaluation one is that developers will be able to obtain both a continuous 
improvement in their tools and the best practices that are performed in the area, 
supporting the industrial applicability of ontology tools. 

As we will see in the next section, experimentation is a key part of any 
benchmarking methodology. This paper presents a general infrastructure to evaluate 



278 R. García-Castro and A. Gómez-Pérez 

the performance and the scalability of ontology development tools by assessing the 
performance of the methods of their ontology management APIs in terms of their 
execution efficiency. 

It also presents the results of applying the proposed infrastructure for evaluating 
the performance and the scalability of the ontology management API of the WebODE 
ontology engineering workbench. WebODE [10] provides services for editing and 
browsing ontologies, for importing and exporting ontologies to classical and semantic 
web languages, for evaluating ontologies, for mapping ontologies, etc. As we need a 
tool for generating ontologies in WebODE’s knowledge model, we have developed 
the WebODE Workload Generator that generates synthetic WebODE ontologies 
according to a predefined structure and to a load factor. 

The contents of this paper are the following: Section 2 presents the benchmarking 
methodology for ontology tools. According to this methodology, Section 3 presents 
the benchmarking goal and the metrics to be used for evaluating the performance of 
the ontology management APIs of ontology development tools; Section 4 presents a 
detailed definition of the infrastructure needed for evaluating the performance of these 
APIs and an explanation of how this infrastructure was instantiated for evaluating 
WebODE’s API. Sections 5 and 6 present the evaluation of WebODE’s API and the 
analysis of the results of this evaluation, respectively. Finally, Section 7 presents the 
conclusions obtained and the related future work. 

Out of the scope of this paper are other evaluation criteria like stability, usability, 
interoperability, etc. as well as the evaluation of the performance of other ontology 
development tool functionalities such as user interfaces, reasoning capabilities when 
dealing with complex queries, or ontology validators. 

2   Benchmarking Methodology for Ontology Tools 

In the last decades, the word benchmarking has become relevant within the business 
management community. One of the definitions widely known was given by 
Spendolini [11] who defines benchmarking as a continuous, systematic process for 
evaluating the products, services, and work processes of organisations that are 
recognised as representing best practices for the purpose of organisational 
improvement. 

The Software Engineering community does not have a common benchmarking 
definition. Some authors, like Kitchenham [12], consider benchmarking as a software 
evaluation method. For her, benchmarking is the process of running a number of 
standard tests using a number of alternative tools/methods and assessing the relative 
performance of the tools in those tests. Other authors, like Wohlin et al. [13], adopt 
the business benchmarking definition, defining benchmarking as a continuous 
improvement process that strives to be the best of the best through the comparison of 
similar processes in different contexts. 

This section summarizes the benchmarking methodology developed by the authors 
in the Knowledge Web Network of Excellence [14]. The benchmarking methodology 
provides a set of guidelines to follow in benchmarking activities over ontology tools. 
This methodology adopts and extends methodologies of different areas such as 
business community benchmarking, experimental software engineering and software 
measurement as described in [14]. 



 Guidelines for Benchmarking the Performance of Ontology Management APIs 279 

At the time of writing this paper, this methodology is being used in Knowledge 
Web for benchmarking the interoperability of ontology development tools. 

Fig. 1 shows the main phases of the benchmarking methodology for ontology tools, 
which is composed of a benchmarking iteration that is repeated forever. 

 

Fig. 1. Knowledge Web benchmarking methodology [14] 

Each benchmarking iteration is composed of three phases (Plan, Experiment and 
Improve) and ends with a Recalibration task: 

• Plan phase. Its main goal is to produce a document with a detailed proposal for 
benchmarking. It will be used as a reference document during the benchmarking, 
and should include all the relevant information about it: its goal, benefits and 
costs; the tool (and its functionalities) to be evaluated; the metrics to be used to 
evaluate these functionalities; and the people involved in the benchmarking. The 
last tasks of this phase are related to the search of other organisations that want to 
participate in the benchmarking with other tools, and to the agreement on the 
benchmarking proposal (both with the organisation management and with the 
other organisations) and on the benchmarking planning. 

• Experiment phase. In this phase, the organisations must define and execute the 
evaluation experiments for each of the tools that participate on the benchmarking. 
The evaluation results must be compiled and analysed, determining the practices 
that lead to these results and identifying which of them can be considered as best 
practices. 

• Improve phase. The first task of this phase comprises the writing of the 
benchmarking report, and this must include: a summary of the process followed, 
the results and the conclusions of the experimentation, recommendations for 
improving the tools, and the best practices found during the experimentation. The 
benchmarking results must be communicated to the participant organisations and 
finally, in several improvement cycles, the tool developers should perform the 
necessary changes to improve their tools and monitor this improvement. 

While the three phases mentioned before are devoted to the improvement of the tools, 
the goal of the Recalibration task is to improve the benchmarking process itself using 
the lessons learnt while performing it. 



280 R. García-Castro and A. Gómez-Pérez 

3   Plan Phase 

In this section we present the most relevant tasks from the Plan phase of the 
methodology. We will focus on those related to the identification of the benchmarking 
goals, the tool functionalities and the metrics; as these are the ones that influence the 
experimentation.  

In order to evaluate the performance of ontology development tools, we make the 
assumption that these tools provide an ontology management API with methods to 
insert, update, remove, and query ontology components.  

Therefore, our goal in the benchmarking is to improve the performance of the 
methods provided by the ontology management APIs of the ontology 
development tools. 

For identifying the tool functionalities and metrics to be considered in the 
benchmarking, we have followed the Goal/Question/Metric (GQM) paradigm [15]. 
The idea beyond this is that any software measurement activity should be preceded by 
the identification of a software engineering goal, which leads to questions and that in 
turn lead to actual metrics. The questions and metrics derived from our goal are 
presented in Fig. 2. These questions and metrics show that the tool functionalities that 
are relevant in the benchmarking are the methods of the ontology management APIs, 
and that the metric to use is the execution time of the methods over incremental load 
states. After performing the experiments, the analysis of their results will provide 
answers to these questions. 

 

Fig. 2. Questions and metrics obtained through the GQM approach 

4   Experiment Phase 

This section presents the infrastructure needed when defining and executing 
experiments to evaluate the performance of the ontology management APIs of 
ontology development tools. We also identify the variables that influence the 
execution time of the methods and, in consequence, the evaluation results. 

The evaluation infrastructure contains the different modules needed to achieve 
the benchmarking goal. Fig. 3 presents the main modules and the arrows represent the 
information flow between them.  



 Guidelines for Benchmarking the Performance of Ontology Management APIs 281 

These modules are described in the next sections, showing the main decisions 
taken regarding their design and implementation and giving examples according to 
the instantiation of the infrastructure for the WebODE ontology engineering 
workbench. In order to have a portable infrastructure, we have implemented it in Java, 
using only standard libraries and with no graphical components.  

 

Fig. 3. Evaluation infrastructure 

4.1   Performance Benchmark Suite 

The Performance Benchmark Suite is a Java library that provides methods for 
executing each of the benchmarks that compose the benchmark suite. This benchmark 
suite should be developed taking into account the desirable properties of a benchmark 
suite [16, 17, 18, 19], that is, accessibility, affordability, simplicity, representativity, 
portability, scalability, robustness, and consensus. 

In order to perform an evaluation of the complete system, every method in the 
ontology management API is present in the benchmark suite. For each of these 
methods, different benchmarks have been defined according to the changes in the 
methods’ parameters that affect the performance. 

The execution of the benchmarks is parameterised accordant with the parameter 
number of executions (N), which defines the number of consecutive executions of a 
method in a single benchmark whose execution times are measured. Moreover, the 
method is executed a certain number of times before starting the measurement so as to 
stabilise the ontology development tool. 

 

Fig. 4. Benchmarks defined for the method insertConcept 



282 R. García-Castro and A. Gómez-Pérez 

A benchmark executes just one method N times consecutively and stores in a text 
file the wall clock times elapsed in the method executions. The other operation 
performed by a benchmark is to restore the load state of the tool in case it changes 
during the benchmark execution. 

In the case of WebODE, its ontology management API is composed of 72 
methods. From these methods, according to the different variations in their input 
parameters, we defined 128 benchmarks1.  

For example, Fig. 4 shows the two benchmarks defined for the method 
insertConcept parameterized following the number of executions (N). 

4.2   Workload Generator 

The Workload Generator is a Java library that generates synthetic ontologies 
accordant with a predefined structure and to a load factor to insert them into the 
ontology development tool. The workload present in the ontology development tool 
must allow running the benchmarks with no errors and with different load factors. 

The structure of the workload has been defined according to the execution needs of 
the benchmarks in order to run their methods a certain number of times (N) with no 
errors. For example, if a benchmark inserts one concept in N ontologies, these N 
ontologies must be present in the tool for a correct execution of the benchmark. 
Therefore, the execution needs of all the benchmarks in the benchmark suite define all 
the ontology components that must exist in the ontology development tool in order to 
execute every benchmark with no errors. 

To define the workload independently of the number of executions of a method in 
a benchmark (N), we use a new parameter that defines the size of the ontology data. 
This is named the load factor (X) of the ontology development tool. With this load 
factor, we can define workloads of arbitrary size, but it must be taken into account 
that to execute the benchmark with no errors the load factor must be greater or equal 
to the number of executions of a method in a benchmark. 

Hence, the workload used when executing all the benchmarks has the same 
structure as the execution needs of all the benchmarks but is parameterised to a load 
factor instead of to the number of executions of a method in a benchmark. 

Table 1. Execution needs of the benchmarks whose methods insert and remove concepts 

Benchmark Operation Execution needs 
benchmark1_1_08 Inserts N concepts in an ontology 1 ontology 
benchmark1_1_09 Inserts a concept in N ontologies N ontologies 
benchmark1_3_20 Removes N concepts from an ontology 1 ontology with N concepts 
benchmark1_3_21 Removes a concept from N ontologies N ontologies with one concept 

Table 2. Execution needs of the benchmarks shown in Table 1 

Benchmarks Execution needs 
benchmark1_1_08, benchmark1_1_09, 
benchmark1_3_20, and benchmark1_1_21 

1 ontology with N concepts and  
N ontologies with1 concept 

                                                           
1 http://kw.dia.fi.upm.es/wpbs/WPBS_benchmark_list.html 



 Guidelines for Benchmarking the Performance of Ontology Management APIs 283 

In the case of WebODE, Table 1 shows the execution needs of each of the four 
benchmarks whose methods insert and remove concepts in an ontology, being N the 
number of times that the method is executed. Table 2 shows the execution needs for 
executing the four benchmarks abovementioned with no errors. 

4.3   Benchmark Suite Executor 

The Benchmark Suite Executor is a Java application that controls the automatic 
execution of both the Workload Generator and the Performance Benchmark Suite. 

This module defines the values of the variables that influence the evaluation: the one 
related to the infrastructure, that is, the ontology development tool’s load factor (X); and 
the execution parameter of the benchmarks, that is, the number of executions (N). 

The Benchmark Suite Executor guarantees that the load present in the ontology 
development tool allows executing the benchmarks with no errors (e.g. if a 
benchmark deletes concepts, these concepts must exist in the tool). 

During the evaluation, the Benchmark Suite Executor performs two steps: 

1. To prepare the system for the evaluation. It uses the Workload Generator for 
generating ontologies according to the load factor, and inserts them into the tool. 

2. To execute the benchmark suite. It executes all the benchmarks that compose 
the benchmark suite. Each benchmark first stabilises the system by executing its 
corresponding method an arbitrary number of times, and then executes the 
method N more times, measuring the execution time. These N measurements of 
the execution time of the method are stored in a text file in the Measurement  
Data Library. 

4.4   Measurement Data Library 

The Measurement Data Library stores the results of the different benchmark 
executions. As the benchmarks provide their results in a text file, we do not propose a 
specific implementation for the Measurement Data Library. 

 

Fig. 5. Structure of the Measurement Data Library 

The files with the results are stored in a hierarchical directory tree to be accessed 
easily. The structure of the tree, shown in Fig. 5, is the following: 



284 R. García-Castro and A. Gómez-Pérez 

• A first level with the number of the evaluation (XX). 
• A second level with the ontology development tool’s load factor (YYYY). 
• A third level with the number of executions of the benchmark (ZZZ). 

4.5   Statistical Analyser 

Any statistical tool can be used for analysing the results of the benchmarking. 
Nevertheless, a tool capable of automating parts of the analysis process, like report 
and graph generation, would facilitate the analysis of the results to a large extent. 

As can be seen in Fig. 6, from the results of a benchmark stored in the 
Measurement Data Library, we can obtain different information that can be used to 
evaluate the ontology development tools: 

• Graphs that show the behaviour of the execution times.  
• Statistical values worked out from the measurements.  

 

Fig. 6. Different information that can be extracted from the results 

4.6   Variables that Influence the Execution Time 

According to this evaluation infrastructure, there will be different variables that 
influence the execution time of a method. Some of them will be related to the features 
of the computer where the evaluation is performed (hardware configuration, software 
configuration and computer load) and one will be related to the infrastructure 



 Guidelines for Benchmarking the Performance of Ontology Management APIs 285 

proposed (the load of the ontology development tool). To compare the results of two 
benchmarks, they must be executed under the same conditions. The definitions of 
these variables are the following: 

• Hardware configuration. It is the configuration of the hardware of the computer 
where the ontology development tool is running.  

• Software configuration. It is the configuration of the operating system and of 
the software needed to execute the ontology development tool.  

• Computer load. It is the load that affects the computer where the ontology 
development tool is running.  

• Ontology development tool load. It is the amount of ontology data that the 
ontology development tool stores.  

5   Evaluating WebODE’s Ontology Management API 

The Experiment phase of the benchmarking methodology comprises the evaluation of 
the tool once the evaluation infrastructure has been defined and implemented. 
According to the infrastructure presented in section 4, we defined the benchmark suite 
and implemented the necessary modules regarding WebODE and its ontology 
management API, and we performed the evaluation on WebODE. 

From the different variables that affect the evaluation, we only considered changes 
in the tool’s load variable, to know its effect in WebODE’s performance. The other 
three variables took fixed values during the evaluation so they did not affect the 
execution times. Furthermore, to avoid other non-controlled variables that may affect 
the results, the computer used for the evaluation was isolated: it had neither network 
connection nor user interaction. Then, we defined the values that these variables took 
during the evaluation: 

• Hardware configuration. The computer was a Pentium 4 2.4 Ghz monoprocessor 
with 256 Mb. of memory. 

• Software configuration. Each software’s default configuration was used: 
Windows 2000 Professional Service Pack 4; SUN Java 1.4.2_03; Oracle version 
8.1.7.0.0 (the Oracle instance’s memory configuration was changed to: Shared 
pool 30 Mb., Buffer cache 80 Mb., Large pool 600 Kb., and Java pool 32 Kb.); 
Minerva version 1 build 4; and WebODE version 2 build 8. 

• Computer load. This load was the corresponding to the computer just powered 
on, with only the programs and services needed to run the benchmarks. 

• Ontology development tool load. The benchmark suite was executed ten times 
with the following load factors: (X=500, 1000, 1500, 2000, 2500, 3000, 3500, 
4000, 4500, and 5000). As with a load factor of 5000 we obtained enough data to 
determine the methods’ performance, the benchmarks have not been executed 
with higher load factors. 

When running all the benchmarks in the benchmark suite: 

• The method was first executed 100 times to stabilise the system before taking 
measures and to avoid unexpected behaviours in WebODE’s initialisation. 



286 R. García-Castro and A. Gómez-Pérez 

• The number of executions (N) of a method in a benchmark was 400. With the 
aim of checking that 400 executions is a valid sample size, we have run several 
benchmarks with higher and lower number of executions and we have confirmed 
that the results obtained are virtually equivalent. We have not used a higher 
sample because the slightest precision improvement would mean a much higher 
duration of the benchmark suite execution. 

After executing the 128 benchmarks of the benchmark suite with the 10 different 
load factors, we obtained 1280 text files, each with 400 measurements. 

The source code of the infrastructure implemented for WebODE is published in a 
public web page2, so anyone should be able to replicate the experiments and to 
achieve the same conclusions. The web page also contains the results obtained in this 
evaluation and all the statistical values and graphs worked out from them. 

6   Analysis of the Evaluation Results 

We have regarded the results of executing the benchmark suite with the maximum 
load factor used (X=5000) to be able to clearly differentiate the execution times. 
When analysing the effect of WebODE’s load in the execution times of the methods, 
we have considered the results of executing the benchmark suite from a minimum 
load state (X=500) to a maximum load state (X=5000). In every case, we have 
considered a number of executions (N) of 400. 

A first rough analysis of the results of the benchmark suite execution showed two 
main characteristics: 

• Observing the graphs of the execution times measured in a benchmark, we saw 
that execution times are mainly constant. This can be seen in Fig. 7 that shows 
the execution times of running the method removeConcept 400 times with a load 
factor of 5000 in benchmark1_3_20.  

• After running normality tests over the measurements, we confirmed that the 
distributions of the measurements were non-normal. Therefore, we could not rely 
on usual values such as mean and standard deviation for describing them and thus 
we used robust statistical values like the median, the upper and lower quartiles, 
and the interquartile range (upper minus lower quartile). 

 

Fig. 7. Execution times of removeConcept in benchmark1_3_20  

                                                           
2 http://kw.dia.fi.upm.es/wpbs/ 



 Guidelines for Benchmarking the Performance of Ontology Management APIs 287 

The next sections show the specific metrics used for analysing the performance of 
the methods and the conclusions obtained from the execution results, that answer the 
questions previously stated in Fig. 2. 

6.1   Metric for the Execution Time 

The metric used for describing the execution time of a method in a benchmark has 
been the median of the execution times of the method in a benchmark execution. 

Fig. 8 shows the histogram of the medians of the execution times of all the API 
methods. These medians range from 0 to 1051 milliseconds, with a group of values 
higher than the rest. The medians in this group belong to 12 benchmarks that execute 
8 methods (as different benchmarks have been defined for each method). These 8 
methods, with a median execution time higher than 800 ms, have been selected for the 
improvement recommendations. The rest of the median execution times of the 
methods are lower than 511 ms, being most of them around 100 ms. 

Bearing in mind the kind of operation that the methods carry out (inserting, 
updating, removing, or selecting an ontology component), we did not find significant 
differences between the performances of each kind of method.  

Taking into account what kind of element of the knowledge model (concepts, 
instances, class attributes, instance attributes, etc.) a method manages, in the slowest 
group almost every method that manages relations between concepts are present. 
Methods that manage instance attributes also have high execution times, and the rest 
of the methods behave similarly; the methods that stand out are those that manage 
imported terms and references since they are the ones with lower execution times. 

 

Fig. 8. Histogram of the medians of the execution times 

6.2   Metric for the Variability of the Execution Time 

The metric used for describing the variability of the execution time of a method in a 
benchmark has been the interquartile range (IQR) of the execution times of the 
method in a benchmark execution. 

Fig. 9 shows the histogram of the IQRs of the execution times. Almost every 
method has an IQR from 0 to 11 ms, which is a low spread considering that the 
granularity of the measurements is 10 milliseconds. The only exceptions are the three 
methods shown in the figure. The method getAvailableOntologies has been selected 
for the improvement recommendations because of its atypical IQR value. 



288 R. García-Castro and A. Gómez-Pérez 

 

Fig. 9. Histogram of the interquartile ranges of the execution times 

6.3   Metric for the Anomalies in the Execution Time 

The metric used for describing the anomalies in the execution time of a method in a 
benchmark has been the percentage of outliers in the execution times of the method 
in a benchmark execution. 

The traditional method for calculating the outliers is to consider as potential outlier 
values the measurements beyond the upper and lower quartiles and to add and 
subtract respectively 1.5 times the interquartile range [20]. As the Java method used 
for measuring time (java.lang.System.currentTimeMillis()) in the Windows platform 
has a precision of tens of milliseconds, in the results we frequently encountered 
interquartile ranges of zero milliseconds. This made us consider as outliers every 
determination that differed from the median. With the objective of fixing this 
precision fault, we have augmented the interquartile range when calculating the 
outliers to include half the minimal granularity (5 milliseconds) in both boundaries. 

Fig. 10 shows the histogram of the percentage of outliers in the execution times of 
the methods. Most of the benchmarks range from 0 to 3.75% of outliers. These values 
confirm the lack of anomalies except the peaks in the execution times that can be seen 
in the graphs. The only two methods to emphasize, shown in the figure, have been 
selected for the improvement recommendations. 

 

Fig. 10. Histogram of the percentage of outliers of the execution times 



 Guidelines for Benchmarking the Performance of Ontology Management APIs 289 

6.4   Effect of Changes in the Parameters of a Method 

To analyse if changes in the parameters of a method affect the method performance, 
we compared the medians of the execution times of the benchmarks that use the same 
method. 

The performance of 21 methods varies when its input parameters are changed, but 
this variation is lower than 60 milliseconds except in the five methods shown in  
Fig. 11, that have been selected for the improvement recommendations. Fig. 11 also 
shows the comparison of the execution times of the method insertConcept in 
benchmark1_1_08 and in benchmark1_1_09. 

 

Fig. 11. Execution times of insertConcept in benchmark1_1_08 and benchmark1_1_09 

6.5   Effect of Changes in WebODE’s Load 

To analyse the effect of WebODE’s load in the execution times of the methods, we 
studied the medians of the execution times of the methods from a minimum load state 
(X=500) to a maximum load state (X=5000). We estimated the function that these 
medians define by simple linear regression and considered its slope in order to 
examine the relationship between the load and the execution time of the methods. 

 

Fig. 12. Evolution of the execution times when increasing WebODE’s load 

Fig. 12 shows, for every benchmark, the functions defined by the median execution 
times with the different load factors. The slopes of the functions range from 0 to 0.1 



290 R. García-Castro and A. Gómez-Pérez 

except in 8 methods. The 8 methods whose execution times are higher than the rest 
are also the methods whose performance is more influenced by the load, and have 
been selected for the improvement recommendations. 

6.6   Improvement Recommendations 

From the analysis of the results, we produced a report stating the recommendations to 
improve WebODE’s performance. These recommendations include the methods of 
the WebODE ontology management API identified in the previous sections. 

Table 3 shows a summary of the improvement recommendations with 12 of the 72 
WebODE’s API methods included in them, and the reasons for their inclusion. 

Table 3. Methods in the improvement recommendations 

 Execution 
time >  
800 ms 

Interquartile 
range >  
150 ms 

Outlier 
values > 
3.75% 

Execution time 
variation >  
60 ms 

Slope when 
increasing load 
> 0.1 

removeTermRelation X    X 
getInheritedTermRelations X    X 
insertConcept X   X X 
insertRelationInstance X   X X 
openOntology X  X  X 
getAdHocTermRelations X    X 
getTermRelations X    X 
getAvailableOntologies X X   X 
addValueToClassAttribute   X   
insertConstant    X  
updateSynonym    X  
getInstances    X  

7   Conclusions and Future Work 

In this paper we provide an overview of the benchmarking methodology for ontology 
tools developed by the authors in Knowledge Web. We define some guidelines when 
using this methodology to improve the performance and the scalability of ontology 
development tools by evaluating the performance of their ontology management 
APIs’ methods. 

To support the experimentation tasks of the methodology, we provide a detailed 
definition of an infrastructure for evaluating the performance and the scalability of 
ontology development tools’ ontology management APIs. We have instantiated this 
infrastructure for evaluating the ontology management API of the WebODE ontology 
engineering workbench and the results obtained after the evaluation provide us with 
precise information on WebODE’s performance. 

The evaluation infrastructure can be instantiated for evaluating other ontology 
development tools that provide ontology management APIs. Taking as a starting point 
the methods of the ontology management API of a certain tool, the following tasks 
should be performed: 



 Guidelines for Benchmarking the Performance of Ontology Management APIs 291 

• Benchmarks that evaluate these methods should be defined, and the Performance 
Benchmark Suite module should be implemented for executing them. 

• The Workload Generator should also be implemented to generate workload 
according to these methods’ needs. 

• The rest of the modules (Benchmark Suite Executor, Measurement Data Library 
and Statistical Analyser) already instantiated for WebODE could be used for 
another tool with minimal or no changes. 

To obtain all the benefits of the benchmarking, like the extraction of best practices, 
other ontology development tools should participate in it. In this case, there are other 
tasks of the methodology that should be considered and that are not covered by this 
paper such as the search of other organisations and tools for participating in the 
benchmarking, the planning of the benchmarking, and the improvement on the tools. 
To perform a benchmarking like this, the evaluation infrastructure must be the same 
for every tool. Therefore: 

• The Workload Generator should be modified in order to generate workloads 
independent of the tool, and thus the same workload can be used for every tool. 

• The Performance Benchmark Suite should be modified to include only the 
methods common to all the tools or to use a common ontology management API 
such as OKBC [21]. 

Although the benchmark suite execution is automatic, the evaluation infrastructure 
would benefit significantly if some automatic analysis and summary of the results 
could be carried out, as there are plenty of them.  

The WebODE Workload Generator could be improved and could generate 
ontologies with other structure or characteristics. In consequence, this module could 
be employed in other kind of evaluations and, thanks to the WebODE export services 
to different formats and languages (like RDF(S) or OWL); these ontologies could be 
used in evaluations performed over other tools, not just over WebODE. 

Acknowledgments 

This work is partially supported by a FPI grant from the Spanish Ministry of 
Education (BES-2005-8024), by the IST project Knowledge Web (IST-2004-507482) 
and by the CICYT project Infraestructura tecnológica de servicios semánticos para la 
web semántica (TIN2004-02660). Thanks to Rosario Plaza for reviewing the grammar 
of this paper. 

References 

1. A.J. Duineveld, R. Stoter, M.R. Weiden, B. Kenepa, and V.R. Benjamins. Wondertools? a 
comparative study of ontological engineering tools. In Proceedings of the 12th 
International Workshop on Knowledge Acquisition, Modeling and Management 
(KAW'99), Banff, Canada, 1999. Kluwer Academic Publishers. 

2. Ontoweb deliverable 1.3: A survey on ontology tools. Technical report, IST OntoWeb 
Thematic Network, May 2002. 



292 R. García-Castro and A. Gómez-Pérez 

3. P. Lambrix, M. Habbouche, and M. Pérez. Evaluation of ontology development tools for 
bioinformatics. Bioinformatics, 19(12):1564-1571, 2003. 

4. J. Angele and Y. Sure (eds.). Proceedings of the 1st International Workshop on Evaluation 
of Ontology-based Tools (EON2002), Sigüenza, Spain, September 2002. 

5. Y. Sure and O. Corcho (eds.). Proceedings of the 2nd International Workshop on 
Evaluation of Ontology-based Tools (EON2003), Florida, USA, October 2003. 

6. Y. Sure, O. Corcho, J. Euzenat, T. Hughes (eds.). Proceedings of the 3rd International 
Workshop on Evaluation of Ontology-based Tools (EON2004), Hiroshima, Japan, 
November 2004. 

7. A. Magkanaraki, S. Alexaki, V. Christophides, and D. Plexousakis. Benchmarking RDF 
schemas for the semantic web. In Proceedings of the First International Semantic Web 
Conference, pages 132–146. Springer-Verlag, 2002. 

8. C. Tempich and R. Volz. Towards a benchmark for semantic web reasoners - an analysis 
of the DAML ontology library. In Proc. of the 2nd International Workshop on Evaluation 
of Ontology-based Tools (EON2003), Florida, USA, October 2003. 

9. Y. Guo, Z. Pan, and J. Heflin. An evaluation of knowledge base systems for large OWL 
datasets. In Proceedings of the 3rd International Semantic Web Conference (ISWC2004), 
pages 274.288, Hiroshima, Japan, November 2004. 

10. J.C. Arpírez, O. Corcho, M. Fernández-López, A. Gómez-Pérez. WebODE in a nutshell. 
AI Magazine. 24(3), Fall 2003, pp. 37-47. 

11. M. Spendolini. The Benchmarking Book. AMACOM, New York, NY, 1992. 
12. B. Kitchenham. DESMET: A method for evaluating software engineering methods and 

tools. Technical Report TR96-09, Department of Computer Science, University of Keele, 
Stanfordshire, UK, 1996. 

13. C. Wohlin, A. Aurum, H. Petersson, F. Shull, and M. Ciolkowski. Software inspection 
benchmarking - a qualitative and quantitative comparative opportunity. In Proceedings of 
8th International Software Metrics Symposium. 118-130, 2002. 

14. R. García-Castro, D. Maynard, H. Wache, D. Foxvog, and R. González-Cabero. D2.1.4 
Specification of a methodology, general criteria and benchmark suites for benchmarking 
ontology tools. Technical report, Knowledge Web, December 2004. 

15. V.R. Basili, G. Caldiera, D.H. Rombach. The Goal Question Metric Approach. 
Encyclopedia of Software Engineering, 2 Volume Set Willey, pp 528-532, 1994. 

16. J.M. Bull, L.A. Smith, M.D. Westhead, D.S. Henty, R.A. Davey. A Methodology for 
Benchmarking Java Grande Applications. EPCC, June 1999. 

17. B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B. Yanamula, R. Brucks, E. Huh. 
DynBench: A Dynamic Benchmark Suite for Distributed Real-Time Systems. IPDPS 
Workshop on Embedded HPC Systems and Applications. S. Juan, Puerto Rico, 1999. 

18. S. Sim, S. Easterbrook, and R. Holt. Using benchmarking to advance research: A 
challenge to software engineering. In Proceedings of the 25th International Conference on 
Software Engineering (ICSE'03), pages 74-83, Portland, OR, 2003. 

19. F. Stefani, D. Macii, A. Moschitta, and D. Petri. FFT benchmarking for digital signal 
processing technologies. In 17th IMEKOWorld Congress, Dubrovnik, June 2003. 

20. W. Mendenhall and T. Sincich. Statistics for Engineering and the Sciences, 4th Edition. 
Englewood Cliffs, NJ. Prentice Hall, 1995. 

21. V.K. Chaudhri, A. Farquhar, R. Fikes, P.D. Karp, J.P. Rice. The Generic Frame Protocol 
2.0. Technical Report, Stanford University, 1997. 



Semantically Rich Recommendations in Social Networks
for Sharing, Exchanging and Ranking Semantic Context

Stefania Ghita, Wolfgang Nejdl, and Raluca Paiu

L3S Research Center, University of Hanover,
Deutscher Pavillon, Expo Plaza 1, 30539 Hanover, Germany

{ghita, nejdl, paiu}@l3s.de

Abstract. Recommender algorithms have been quite successfully employed in a
variety of scenarios from filtering applications to recommendations of movies and
books at Amazon.com. However, all these algorithms focus on single item recom-
mendations and do not consider any more complex recommendation structures.
This paper explores how semantically rich complex recommendation structures,
represented as RDF graphs, can be exchanged and shared in a distributed social
network. After presenting a motivating scenario we define several annotation on-
tologies we use in order to describe context information on the user’s desktop and
show how our ranking algorithm can exploit this information. We discuss how so-
cial distributed networks and interest groups are specified using extended FOAF
vocabulary, and how members of these interest groups share semantically rich
recommendations in such a network. These recommendations transport shared
context as well as ranking information, described in annotation ontologies. We
propose an algorithm to compute these rankings which exploits available context
information and show how rankings are influenced by the context received from
other users as well as by the reputation of the members of the social network with
whom the context is exchanged.

1 Introduction

This paper explores how we can use communication in social networks to share and
extend context information and how semantically rich recommendations between mem-
bers of interest groups in such settings can be realized. We will build upon FOAF net-
works, which describe personal and group information, based on the FOAF vocabulary
to describe friends, groups and interests. We will focus on how to share context in such
a network, how to use these shared metadata to connect the information of different
peers in the social network and how to use it for social recommendations.

The next section describes a motivating scenario that shows how context and rank-
ings are exchanged inside a research group. Section 3 discusses how to describe con-
texts and their corresponding metadata by means of appropriate ontologies and how to
use these metadata for extended desktop search with appropriate ranking of search re-
sults. Section 4 describes how we exchange context and importance information among
the members of an interest group defined through an extended FOAF vocabulary intro-
duced in section 4.1. Section 4.3 presents the algorithm used for the rank computation,
together with the results we get after applying the algorithm on a user’s context meta-
data before and after she receives additional resources and context from another group

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 293–307, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



294 S. Ghita, W. Nejdl, and R. Paiu

member. We discuss the influence of user trust upon ranking results and comment the
results of some experiments. Section 5 gives an overview of related work. We then
conclude and sketch some future research issues.

2 Motivating Scenario

As our motivating scenario, let us consider our L3S Research Group context and within
this group, Bob and Alice as two members who exchange information. One important
task in a research group is exchanging and sharing knowledge, which we will focus
upon in this paper. Unfortunately, the most widely used infrastructure for this purpose,
email, is poorly suited to support this exchange. When we exchange documents by
email, no context is shared (for example which are the interesting follow-up papers, or
which are the interesting references for a paper) and any comments about the documents
that are included in the email are lost as soon as the attached documents are stored in
some directory.

The following example shows how such a sharing scenario can be supported in a
more efficient manner. We assume that Bob mails Alice a document which he sent to
the DELOS Workshop, with the title ”I know I stored it somewhere - Contextual In-
formation and Ranking on Our Desktop”. Bob is one of the authors and therefore he
already has all the important context for this paper including the cited papers stored on
his computer. In this first email, Alice will therefore not only receive the paper but also
its immediate context relevant for the research group, containing information about all
papers that are referenced in the DELOS paper, information about important authors
for this topic or which conferences are relevant. In other words, whenever we send
a paper, the metadata associated to that paper will also be sent. From the five refer-
ences included, Alice decides that ”ObjectRank: Authority-Based Keyword Search in
Databases” and ”Activity Based Metadata for Semantic Desktop Search” are of particu-
lar interest for her and she sends back an email to Bob requiring additional information
about those. As an answer, she receives from Bob the context information associated
with these papers, containing the references that Bob has already downloaded. So the
context information will be exchanged progressively, from the immediate context to the
more distant one.

Figures 1 and 2 present the context created on Alice’s desktop as result of her meta-
data exchange with Bob. Figure 1 contains only the cites relationship among the various
resources, while in Figure 2 we represent additional relationships, like presented at,
downloaded from, author, or same session. Note that the context networks created on
the users’ desktop are not separated, but just visualized separately in these figures.

By examining the context graph in figure 2, we see that all the papers labeled from
G to Q were presented at different WWW Conferences, in different years, and all were
downloaded from the ACM Portal. Papers A, C and K all share the same author, Bob,
and have been downloaded from the L3S Publication page. Similarly, the publication
labeled B and the other two papers which were presented at the same session at the
VLDB conference were downloaded from the VLDB web site.

All this information is taken into account when computing the importance of the
resources on Alice’s desktop. For example, when computing the importance of the



Semantically Rich Recommendations in Social Networks 295

Fig. 1. Publications Context Example - Part 1

Fig. 2. Publications Context Example - Part 2

conferences, the WWW Conference will be more important than other conferences,
since Alice already has a lot of important publications which have been presented there.
The number of papers from the same author Alice has already downloaded also influ-
ences how important she considers that author. This means that certain authors are more
important than others, based on the publications used and cited in the L3S Research



296 S. Ghita, W. Nejdl, and R. Paiu

Group, as well as on general citation information about these authors. The fact that Al-
ice knows Bob and Bob is one of the authors of three publications Alice has on her
desktop influences the importance of Bob’s publications and of course, Bob’s impor-
tance as author. So he will be definitely more important to Alice than other authors not
known to her.

In order to be able to compute the rankings of their documents Alice and Bob have to
build a context around the resources they have stored on their desktops. The next section
presents in more detail how this context information is created and then describes how
this context can be used in computing rankings of search results on the desktop.

3 Representing Context and Importance

3.1 Representing Context

Generally speaking, context information describes all aspects important for a certain
situation: ideas, facts, persons, publications, and many more. Context information in-
cludes all relevant relationships as well as interaction history. Current desktop search
prototypes fall short of utilizing any desktop specific information, especially context
information, and just use full text index search. In our scenario we clearly need to use
additional context information, and specifically want to exploit the following contexts:

CiteSeer context. The most important aspects we want to record from the CiteSeer
context are the publications we are viewing or downloading and how these publications
are connected to other publications. Important parts of the available context information
are the authors of these publications, the conferences in which they were presented or
the year when they were published and even more, the publications which cite them or
are cited by them. We want to keep track whether we saved a certain publication on our
own desktop in order to be able to find it later and we want to receive suggestions about
papers that might be interesting in the same or overlapping contexts.

CiteSeer provides four additional types of links that can be followed after identify-
ing a paper. The most expressive in our case would be the ones that refer to the related
documents from co-citations and the papers that appear on the same web site.

Browsing and Desktop context. Browser caches include all information about user’s
browsing behavior, which are useful both for finding relevant results, and for provid-
ing additional context for results. In our scenario, when we search for a document we
downloaded from the CiteSeer repository, we do not only want to retrieve the specific
document, but also all the referenced and referring papers which we downloaded on
that occasion as well.

In general, we view documents stored from emails and from web sites as our per-
sonal digital library, which holds the papers we are interested in, plus all relevant con-
textual information. When we store documents, we can then retrieve them efficiently
and restore the original context we built up when storing these documents. Personal-
ized search and ranking on the desktop takes this contextual information into account
as well as the preferences implicit in this information. [6] discusses how people tend
to associate things to certain contexts. So far, however, search infrastructures neither
collect nor use this contextual information.



Semantically Rich Recommendations in Social Networks 297

Scenario specific annotation ontologies. Figure 3 presents our current prototype on-
tology, used for implementing our motivating scenario. It specifies context metadata
for the CiteSeer context, files and web pages, together with the relations among them
(described in more detail in [2]). Conceptually, the elements in the rectangles represent
classes, circles represent class attributes. We use classes whenever we want to attach
importance / rank on entities, attributes otherwise.

Fig. 3. Context ontology for our prototype

For the browsing and desktop context, we annotate each page with additional infor-
mation about its basic properties (URL, access date, etc), as well as more complex ones
such as in- and out-going links browsed [2]. The user’s behavior as the pages or publica-
tions he browsed or downloaded provide useful additional information. Files, which are
stored from web pages, reside in certain directories, which in turn can include other di-
rectories. The creation or change date of a file together with the number of accesses are
some other important indicators which have to be taken into account when describing
the desktop context. An extended publication ontology makes use of additional knowl-
edge about how CiteSeer pages are connected and what they represent. Publications are
referenced by other publications and can cite others, they can have a publication date /
year associated with them, as well as a conference or journal. Publications have authors
and are stored as documents on the desktop.

Other ontologies describe contexts like conferences, including reviewers, papers,
meetings, authors, or private contexts like birthdays, including persons, locations, etc.

3.2 Representing Importance

In addition to the information which resources are included in a specific context, we
also want to know how important or valuable these resources are. We therefore have to
develop a mechanism which allows us to express this information and use it for ranking
search results.



298 S. Ghita, W. Nejdl, and R. Paiu

Authority transfer annotations. Annotation ontologies describe all aspects and rela-
tionships among resources which influence the ranking. The identity of the authors,
for example, influences our opinion of documents so “author” should be represented
explicitly as a class in our publication ontology. We then have to specify how these
aspects influence each other’s importance.

ObjectRank [1] has introduced the notion of authority transfer schema graphs,
which extend schemas similar to the ontologies previously described, by adding weights
and edges in order to express how importance propagates among the entities and re-
sources inside the ontology. These weights and edges represent the authority transfer
annotations, which extend our context ontologies with the information we need to com-
pute ranks for all instances of the classes defined in the context ontologies.1

Fig. 4. Authority transfer annotations, including external ranking sources

Figure 4 depicts our context ontology plus its authority transfer annotations. The
ontology representing our browsing and desktop context says that a visited web page is
important if we arrived at the current one from an important page, if the file under which
it is stored is important, or if the date when the page was visited is important. For the
CiteSeer context, publications transfer part of their authority to other papers they cite,
to their authors, to the files under which they are stored, and to the year when the paper
was published. As we can see, citing important papers doesn’t make a paper important.
As suggested in [1], every edge from the schema graph is split into two edges, one for
each direction. This is motivated by the observation that authority potentially flows in
both directions and not only in the direction that appears in the schema - if we know
that a particular person is important, we also want to have all emails we receive from
this person ranked higher. The final ObjectRank value for each resource is calculated
based on the PageRank formula.

1 In contrast to ObjectRank, we do not compute a keyword-specific ranking, but a global one.



Semantically Rich Recommendations in Social Networks 299

Personalized Preferences and Ranking. Different authority transfer weights express
different preferences of the user, translating into personalized ranking. The important
requirement for doing this successfully is that we include in a user ontology all con-
cepts, which influence our ranking function. For example, if we view a publication
important because it was written by an author important to us, we have to represent that
in our context ontology.

4 Sharing Context and Importance

4.1 Interest Groups

Interest groups in our context are specialized social networks that have a stated common
interest which connects the members of the group. One important reason for creating
interest groups resides in increasing the efficiency of the information flow inside that
group. All members of the same interest group share the same domain of interest and
the social relationships are woven around this type of information sharing. They are
all possibly part of the same professional group, just as we described in the motivating
scenario, Alice and Bob being in the same research group, the L3S Research Group.

We chose to represent interest groups based on an extension of FOAF in order to
describe the social network of participants and we will describe all contexts as RDF
metadata, as presented in [2]. Being based on RDF, FOAF inherits some of its benefits,
like the ease of aggregating and harvesting it, or combining it with other vocabularies,
thus allowing us to capture a rich set of metadata. The basic FOAF vocabulary itself
is pretty simple, pragmatic and designed to allow simultaneous deployment and exten-
sion. It is identified by the namespace URI ’http://xmlns.com/foaf/0.1/’ and described
in more detail at the FOAF project page [9].

FOAF terms represent information which can be grouped in the following five
broad categories: FOAF Basics, Personal Information, Online Accounts/ IM, Projects
and Groups, Documents and Images. The most important for us is the Projects and
Groups category, which allows us to talk about groups and group membership among
others. Groups are represented with the aid of the foaf:Group class, which represents
a collection of individual agents. The foaf:member property allows us to explicitly
express the membership of agents to a group. Since the foaf:Person class is a sub-
class of the foaf:Agent class, persons can also be members of a group. One can spec-
ify the interests of the group members by using specific properties, like foaf:interest,
foaf:topic interest, or foaf:topic, even though it is not yet clear how to use them
correctly.

A notable omission in the basic FOAF vocabulary is the inability to express any-
thing related to information sharing in a group. Even though being in a group or social
network usually means that we want to share information within this social network,
there is no vocabulary to express this in FOAF. The assumption we make in this pa-
per is that people belonging to a common interest group will share a specific set of
metadata. In our scenario these are the contextual metadata defined by appropriate an-
notation ontologies, as discussed in the previous section. When members of an interest
group express that they want to share a certain set of metadata, they will agree on an



300 S. Ghita, W. Nejdl, and R. Paiu

appropriate ontology defining this set. We therefore suggest to extend the FOAF vocab-
ulary with a new property foaf:shared context which takes as its value the annotation
ontology describing the metadata to be shared. Based on this, the FOAF description of
the L3S Research interest group and its members Bob and Alice as presented in our
motivating scenario looks as follows:

<foaf : Group >
< foaf : name > L3SResearchGroup < /foaf : name >
<foaf : member >

< foaf : Person >
< foaf : name > Alice < /foaf : name >
< foaf : homepage rdf : resource = ”http : //www.l3s.de/ ∼ alice”/ >

< /foaf : Person >
< /foaf : member >
<foaf : member >

<foaf : Person >
< foaf : name > Bob < /foaf : name >
< foaf : homepage rdf : resource = ”http : //www.l3s.de/ ∼ bob”/ >

< /foaf : Person >
< /foaf : member >
< foaf : shared context
rdf : resource = http : //www.l3s.de/isearch/citeseerContext.rdf/ >
< foaf : shared context
rdf : resource=http : //www.l3s.de/isearch/browsingDesktopContext.rdf/>

< /foaf : Group >

4.2 Exchanging Context Within Interest Groups

Sharing context in an interest group is useful and necessary because not only do we
want to publish our own work but we also want to find out about additional new re-
sources related to our work and get suggestions about possible further developments
in that area. Recommendation then means suggesting additional related information to
given items. In our motivating scenario, we have as interest group a set of researchers,
and a set of ontologies defining which metadata are shared between them. The contex-
tual metadata corresponding to those ontologies as discussed in section 3 represent the
context information we have available on our desktop.

These context metadata are generated locally by a set of metadata generators [2],
which record user actions as well as interactions and information exchanges between
members of a group. These metadata generators create RDF annotation files for each
resource whose context they describe, so for each relevant resource on the desktop (e.g.
a specific publication) we will have this additional RDF information available.

For the experiments described in this paper, we have implemented a metadata gen-
erator, which deals with publications, and crawls one’s desktop in order to identify
and annotate all papers saved as PDF files. For each identified paper, it extracts the
title and tries to match it with an entry into the CiteSeer publications database. If it
finds an entry, the application builds up an annotation file, containing information from



Semantically Rich Recommendations in Social Networks 301

the database about the title of the paper, the authors, publication year, conference and
other CiteSeer references to publications. All annotation files corresponding to papers
are then merged in order to construct the RDF graph of publications existing on one’s
desktop.

In our scenario, whenever Bob sends a publication to Alice, who is member of
the same interest group, he wants to attach the appropriate context information, i.e.
the publication context we have discussed in the scenario. A second (email) helper
application therefore checks who is the recipient of the email, which group she belongs
to, and therefore which context information/ metadata to attach. On Alice’s side, the
helper application has to integrate the newly received annotation files into the existing
publication graph.

4.3 Sharing Importance

Ranking of Resources - General Algorithm. In our distributed scenario, each user has
his own contextual network / context metadata graph and for each node in this network
the appropriate ranking as computed by the algorithm described in section 3.2. The
computation of rankings on one’s desktop is based on the link structure of the resources
as specified by the defined ontologies and the corresponding metadata. When sharing
information within the group / network we exchange not only contexts but also rankings.
So exchanging context information has also an impact on the ranking of results of the
desktop search. These values are then recomputed according to the rankings received
together with the context from other persons.

Ranking of resources is calculated based on the PageRank formula:

r = dAr + (1− d)e (1)

applying the random surfer model and including all nodes in the base set. Parameter d in
the equation represents the dampening factor and is usually considered to be 0.85. The
random jump to an arbitrary resource from the data graph is modeled by the vector e.
A is the adjacency matrix which connects all available instances of the existing context
ontology on one’s desktop. The weights of the links between the instances correspond
to the weights specified in the authority transfer annotation ontology. Thus, when in-
stantiating the authority transfer annotation ontology for the resources existing on the
users’ desktop, the corresponding matrix A will have elements which can be either 0, if
there is no edge between the corresponding entities in the data graph, or they have the
value of the weight assigned to the edge determined by these entities, in the authority
transfer annotation ontology, divided by the number of outgoing links of the same type.
According to the formula, a random surfer follows one of the outgoing links of the cur-
rent page, with the probability specified by d, and with a probability of (1-d), he jumps
to a randomly selected page from the web graph. The r vector in the equation stores the
ranks of all resources in the data graph. These rankings are computed iteratively until a
certain threshold is reached.

To make these details clear, let us look at the following example: we consider
the authority transfer annotation ontology for a publication ontology, as depicted in
Figure 5 and then instantiate it. A subset of this data graph is shown in Figure 6.



302 S. Ghita, W. Nejdl, and R. Paiu

Fig. 5. Authority transfer annotation ontology for a publication ontology

Fig. 6. Data Graph

Table 1. The A matrix

A =





Y.Ma . . . V LDB
Y ingMa − − − 0.2 0.2 − − − − −
Kleinberg − − − − − 0.2 0.2 − − −
Balmin − − − − − − − 0.2 − −
P 0.25 − − − 0.23 − − − 0.1 −
Q 0.25 − − − − − − − 0.1 −
J − 0.25 − − 0.23 − − 0.7 0.1 −
H − 0.25 − − − − − − 0.1 −
B − − 0.5 − 0.23 − − − − 0.4
WWW − − − 0.1 0.1 0.1 0.1 − − −
V LDB − − − − − − − 0.1 − −





The instantiation of our matrix A from Equation 1 is depicted in Table 1:
According to Figure 6, the authors transfer 0.5 units of importance divided by the

number of “authors” links, to their own publications (Wei-Ying Ma to publications P,
Q, Kleinberg to H and J and Balmin to B). Publications transfer 0.7 units of impor-
tance divided by the number of “cites” links to other papers they cite, 0.1 units to the
conferences where they were accepted and 0.2 units of importance divided by the num-
ber of “author” links to their authors. Since the papers can be presented to only one
conference, the 0.1 units of importance remain undivided.



Semantically Rich Recommendations in Social Networks 303

The values in the matrix are grouped in blocks, formed by considering the cartesian
products Author × Author, Author × Publication, etc. The elements from one block
can be either 0, if there is no edge between the corresponding entities in the data graph,
or they have the value of the weight assigned to the edge between the entities which
determine the block, from the authority transfer annotation ontology.

The e vector, modeling the random jump in the PageRank formula, contains an entry
for each resource appearing in the data graph. In the original PageRank/ ObjectRank
formula, the probability of reaching a certain resource through a random jump is evenly
distributed among the resources, and therefore, the e vector has only 1 values:

e = (1 1 1 1 1 1 1 1 1 1)T (2)

Ranking of Resources on Alice’s Desktop. We computed the ranking values for the
resources existing on Alice’s desktop (see Figure 1 for the labels of resources). The re-
sults are presented in Table 2. Note that these values represent Alice’s personal rankings
according to the context existing around her resources and are not necessarily related to
external sources of ranking like CiteSeer or Google.

How Ranks Change When Bob Sends Something. After receiving via email the
context existing on Bob’s desktop, as we described in Section 2, Alice’s ranks change
as presented in Table 3. By comparing the values in the two tables, we can see that some
of the rankings increase, because existing resources are referenced by the newer ones.
For example, the rank of the ”ObjectRank” paper, labeled B, increases from 0.295982
to 0.301975 since it is now referenced by the paper labeled A. As a consequence, all
the rankings for the resources which have an incoming link from B will increase. This
process of rank propagation is an iterative one, according to the links in the data graph,
and continues until the rank difference between two iterations is less than a certain
threshold. Alice receives not only context from Bob, but also resources, so that she will
also have rank values for these new resources.

The context which is received from other members of the interest group is used for
building the user’s own context, which means that it is also taken into account when
creating the adjacency matrix A. In order to include the rankings of other users into
the computation of the user’s own ranking, we work on the vector e, which models the
random jump. So, if a resource is highly ranked according to the received rankings and
the user wants to take this into account, she will have to assign a higher value for the
corresponding element in the vector which simulates the random jump.

Of course, even if two users exchange all of their context metadata, they still will
not have the same rankings, as local usage information such as number of accesses
etc., which influences rankings, always stays local and is not exchanged. Note that in
our data graph, group members usually appear as instances of authors or as senders of
emails [2], so we can use their rank as one possible indicator of their trustworthiness.

How Alice’s Trust in Bob Influences the Rankings. Even inside an interest group,
we have to take into account different reputations. If somebody, whom I trust and who
is important for me, sends his recommendations, I want his suggestions to be higher
ranked than the ones received from a more untrusted person. These different reputations
can be represented by influencing the dampening factor. The higher the trustworthiness



304 S. Ghita, W. Nejdl, and R. Paiu

Table 2. Alice’s personal rank values

Resource Rank
B 0.295982
G 0.260644
J 0.260644
S 0.248796
R 0.248796
T 0.244728
P 0.185268

SIGIR 0.181705
WWW 0.176995
Balmin 0.175207

Brin 0.172292
Kleinberg 0.172292

Riedl 0.171261
Vogt 0.171261
Cai 0.170888
Q 0.170745

VLDB 0.162604
W. Y. Ma 0.159406

Table 3. Alice’s personal ranking values after
receiving context information from Bob

Resource Rank Resource Rank
B 0.301975 P 0.181859
E 0.297845 K 0.178391
G 0.287298 Bob 0.175816
I 0.253764 Teevan 0.175459

WWW 0.245065 Brin 0.174496
S 0.244723 Widom 0.171624
R 0.244723 Riedl 0.170860
N 0.242694 Vogt 0.170860
M 0.242694 Rocha 0.170683
L 0.242694 Quan 0.170683
O 0.242694 Guha 0.170683
F 0.242280 Rose 0.170683
T 0.240779 Cai 0.170521
J 0.232862 Q 0.167610
C 0.228117 SIGCHI 0.162730
A 0.210174 INTERACT 0.160311
H 0.200576 W. Y. Ma 0.159224
D 0.191779 Balmin 0.158563

SIGIR 0.189280 VLDB 0.154282
Dumais 0.186942 ESWC 0.152771

Kleinberg 0.186882 DELOS 0.152553

of someone in my interest group, who sends me her own context and rankings, the
higher should be the probability to reach the resources in that set.

In our example, we considered there is only one user Alice exchanges context with.
In the previous table, Table 3, the rankings are computed as if Alice is fully trusting
Bob, so that she does not make any difference between the resources she already has
and the ones she receives from him. This translates into a vector e having all elements 1.
If Alice doesn’t trust Bob 100%, she will have to bias the PageRank on her resources,
that is assign values less than 1 to the elements in the e vector corresponding to the
resources coming from Bob. This means that the probability of reaching the resources
she receives from Bob through a random jump is less than the probability of jumping
to one of her own resources. In our experiments we computed Alice’s rankings for
different levels of trust she has for Bob, and the results are presented in Table 4. A
detailed study about the influence of different trust distributions upon the ranking of
resources is presented in [3].

As we would expect, the rankings decrease, as trust decreases. Originally highly
ranked resources still have a high rank and for example paper B in the case of a trust
biasing rank computation of 90% or 70% even acquires a higher rank than before the
resource exchange takes place. That is because for these resources Alice already has her
own ratings and they will increase due to the fact that they are referenced by some of
the received resources. For the newly received resources, (Teevan, Dumais, etc.) for a
trust level of 1%, the rankings are quite small compared to the rankings of the originally



Semantically Rich Recommendations in Social Networks 305

Table 4. Alice’s ranking values after receiving context information from Bob for different
trust levels

Resource Label PageRank
90% Trust 70% Trust 50% Trust 30% Trust 10% Trust 1% Trust

B 0.300138 0.296501 0.292864 0.289226 0.285589 0.283952
G 0.286867 0.286448 0.286029 0.285610 0.285191 0.285003
J 0.232428 0.231741 0.231054 0.230366 0.229679 0.229370
S 0.244652 0.244613 0.244574 0.244534 0.244495 0.244477
R 0.244652 0.244613 0.244574 0.244534 0.244495 0.244477
T 0.240721 0.240683 0.240644 0.240606 0.240567 0.240550
P 0.181833 0.181793 0.181754 0.181714 0.181674 0.181656
SIGIR 0.188384 0.186783 0.185181 0.183579 0.181978 0.181257
WWW 0.238370 0.225374 0.212379 0.199383 0.186388 0.180540
Balmin 0.158504 0.158401 0.158298 0.158195 0.158092 0.158046
Brin 0.174403 0.174367 0.174332 0.174296 0.174261 0.174245
Kleinberg 0.185509 0.182843 0.180177 0.177511 0.174845 0.173645
Riedl 0.170800 0.170796 0.170793 0.170790 0.170786 0.170785
Vogt 0.170800 0.170796 0.170793 0.170790 0.170786 0.170785
Cai 0.170465 0.170461 0.170458 0.170455 0.170452 0.170450
Q 0.167588 0.167551 0.167514 0.167478 0.167441 0.167425
VLDB 0.154252 0.154201 0.154149 0.154098 0.154046 0.154023
W. Y. Ma 0.159220 0.159222 0.159218 0.159216 0.159214 0.159213

existing ones. The probability of jumping to one of these resources is 0.01, in contrast
to the probability of 1.0 of executing a random jump to the ones Alice already has on
her desktop.

5 Related Work

[4] presents a class of model-based recommendation algorithms for creating a top-N
list of recommendations. In their approach, they first determine the similarities between
the various items and then use them to identify the set of items to be recommended.
[4] also addresses the key steps of this class of algorithms: which are the methods used
to compute the similarity between items and which are the methods used to combine
these similarities, in order to compute the similarity between a basket of items and a
candidate recommender item. Opposed to this, in our approach the recommended items
are based on user preferences and explicit context information.

Tapestry [5] is a recommender system which, in a sense, is similar to our approach.
Tapestry is an e-mail filtering system, designed to filter e-mails received from mailing
lists and newsgroup postings. Each user can write a comment / annotation about each
email message and share these annotations with a group of users. A user can then filter
these email messages by writing queries on these annotations. Though Tapestry allows
individual users to benefit from annotations made by other users, the system requires an
individual user to write complicated queries. We extend the idea in Tapestry by anno-
tating not only emails but other resources on the user’s desktop. In addition, exchange
of annotations is handled (semi-) automatically.

The first system that generated automated recommendations was the GroupLens
system [8]. The system, like in our case, provides users with personalized recommen-
dations by identifying a neighborhood of similar users and recommending the articles
that this group of users finds interesting.



306 S. Ghita, W. Nejdl, and R. Paiu

The most interesting work for recommendation infrastructures, which does not re-
quire a central recommender server is PocketLens, [7]. The paper discusses on how to
preserve privacy in such an infrastructure. In contrast to our work, they do not exploit
semantic connections between items, such as we have for citation relationships.

Compared to the usual recommender systems, including the commercial ones such
as Amazon.com, which usually suggest single items, we have the potential to make
semantically rich suggestions that are represented as parts of a semantic network which
we exchange. Additionally we also provide to the user information about other users’
rankings. While most recommender systems define groups by relying on the overlap
among preferred items, we rely on an explicit group membership denotation based on
FOAF metadata.

6 Conclusions and Future Work

FOAF is a nice vocabulary to describe social networks, but most of the current appli-
cations are centered around describing social networks and not how to use them. This
paper explores how to build upon FOAF and rich semantic web metadata to exchange
and recommend context information and resources in a social network. These contex-
tual metadata are described by appropriate annotation ontologies, and are exchanged
within FOAF groups as specified by the group members. The exchange of metadata
is done by means of additional attachments for each document exchanged via email,
extending email exchange from pure document exchange to an exchange of both docu-
ment and relevant context information. We presented how the computation of ranking is
accomplished and how this computation is influenced by the context exchange as well
as by the reputation of persons involved in the exchange process.

There are quite a few interesting issues to be investigated in future work, includ-
ing privacy and security issues. This is especially important if we exploit peer-to-peer
infrastructures instead of email attachments to implement a knowledge sharing infras-
tructure as described in this paper. It is also worthy to note that the ranking we compute
for different resources can be compared to the ratings which are used in recommender
systems. We can therefore not only share resources which are semantically connected
to the ones we are exchanging, but also resources which are ranked / rated highly by
peers in our community. An additional interesting aspect is to explore dynamic social
networks, where groups are not statically defined from the beginning but dynamically
based on the exchange of context metadata. In this case users can initially choose which
pieces of metadata information they want to append to a document for certain recipi-
ents, and common exchange patterns then determine common interest groups and allow
automatic exchange of metadata based on these previous interactions.

Acknowledgements

We want to thank Andrei Damian for his contribution to the publication metadata gen-
erator and Paul Chirita for many good discussions on topics related to this paper.



Semantically Rich Recommendations in Social Networks 307

References

1. A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: Authority-based keyword
search in databases. In VLDB, Toronto, September 2004.

2. P. Chirita, R. Gavriloaie, S. Ghita, W. Nejdl, and R. Paiu. Activity based metadata for semantic
desktop search. In Proceedings of the 2nd European Semantic Web Conference, Crete, May
2005.

3. A. Damian, W. Nejdl, and R. Paiu. Peer-sensitive objectrank-valuing contextual information
in social networks. In L3S Technical Report, 2005.

4. M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. In ACM Trans-
actions on Information Systems, January 2004.

5. D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collabarative filtering to weave an
information tapestry. In ACM Press, December 1992.

6. Teevan J., Alvarado C., Ackerman M. S., and Karger D. R. The perfect search engine is not
enough: A study of orienteering behavior in directed search. In CHI, Vienna, April 2004.

7. B. N. Miller, J. A. Konstan, and J. Riedl. Pocketlens: Toward a personal recommender system.
ACM Trans. Inf. Syst., 22(3):437–476, 2004.

8. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open architecture
for collaborative filtering of netnews. In CSCW ’94: Proceedings of the 1994 ACM conference
on Computer supported cooperative work, pages 175–186. ACM Press, 1994.

9. The foaf project. http://www.foaf-project.org/.



On Partial Encryption of RDF-Graphs

Mark Giereth

Institute for Intelligent Systems, University of Stuttgart,
70569 Stuttgart, Germany

giereth@iis.uni-stuttgart.de

Abstract. In this paper a method for Partial RDF Encryption (PRE) is
proposed in which sensitive data in an RDF-graph is encrypted for a set
of recipients while all non-sensitive data remain publicly readable. The
result is an RDF-compliant self-describing graph containing encrypted
data, encryption metadata, and plaintext data. For the representation
of encrypted data and encryption metadata, the XML-Encryption and
XML-Signature recommendations are used. The proposed method allows
for fine-grained encryption of arbitrary subjects, predicates, objects and
subgraphs of an RDF-graph. An XML vocabulary for specifying encryp-
tion policies is introduced.

1 Introduction

Giving information a well-defined meaning is on one hand the basis for intel-
ligent applications in an emerging Semantic Web, but on the other hand can
have profound consequences when considering privacy, security, and intellectual
property rights issues. In the Semantic Web vision agents automatically gather
and merge semantically annotated data, infer new data and re-use the data in
different contexts [6]. However seemingly harmless pieces of data could reveal a
lot of information when combined with others. In the Semantic Web there will
also be the need of integrating data which is sensitive in some contexts.

Therefore, methods for specifying who is allowed to use which data are im-
portant in the next step towards the Semantic Web. There are two approaches
to achieve this. The first is to specify access rights, to control the data access and
to secure the communication channel when the data is transferred. The second
attempt is to use cryptographic methods to protect the sensitive data itself.

There has been a considerable amount of work about access control for the
Web [4, 26]. However, all these approaches need trustworthy infrastructures for
specifying and controlling the data access. If sensitive data is stored in (poten-
tially) insecure environments, such as public web-spaces, shared desktop systems,
mobile devices, etc. the only way to do this is to locally encrypt the data before
uploading or storing it. The ability to merge distributed data and to re-use the
data have been important design aspects for the Semantic Web. From that per-
spective, partial encryption – where only the sensitive data are encrypted while
all other data remain publicly readable – is desirable.

A common practice for encrypting sensitive data in an RDF-graph is to cut
the data from the original graph, store the data in a separate file, encrypt the file

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 308–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



On Partial Encryption of RDF-Graphs 309

and finally link the encrypted file to the original graph [12]. This approach has
some shortcomings: (1) the original RDF-graph is separated into different physi-
cal resources, (2) the encrypted files are not RDF-compliant and therefore could
not be consistently processed by common RDF frameworks, (3) the linking has
to be done manually, and (4) no rules are given for re-integrating the data into
the RDF-graph after decryption. Another practice for encrypting RDF-graphs is
to serialize them in XML and to use XML-Encryption [13] and XML-Signature
[14] based security frameworks. One problem with this approach, is the struc-
tural difference between the tree-based XML Information Set data model [11]
and the graph-based RDF Abstract Syntax data model [16]. Another problem
is that this approach only allows to handle XML serializations of RDF-graphs.

To address these problems, we propose a method for partial RDF encryp-
tion (PRE) which allows for fine-grained encryption of arbitrary fragments of
an RDF-graph without creating additional resources. Both encrypted data and
plaintext data are represented in a single RDF-compliant model together with
the metadata describing the encryption parameters. PRE uses the XML-Encryp-
tion and XML-Signature standards to represent the encryption metadata.

The rest of this paper is organized as follows. In the next section a brief
introduction to RDF-graphs is given. Section 3 gives an overview of the partial
encryption process for RDF-graphs. The subsequent sections look at important
realization aspects: encryption and decryption of RDF fragments (section 4),
description of graph transformations necessary to keep encrypted graphs RDF-
compliant (section 5), a graph-pattern based method for dynamic selection frag-
ments to be encrypted and a notion of encryption policies (section 6). The last
section summarizes and gives an outlook to future work. In the appendix the
namespaces used in the examples are listed.

2 Triple Sets and Graphs

RDF is an assertional language. Each assertion declares that certain information
about a resource is true. An assertion is modeled as a 〈s, p, o〉-triple where s
(subject) identifies the resource the assertion is about, p (predicate) is a property
of the resource, and o (object) is the value of p. A triple is an element of (U ∪
B) × U × (U ∪ B ∪ L), where U denotes the set of URIs [5], B denotes the set
of blank node identifiers, and L denotes the set of RDF literals [16]. A triple set
can be interpreted as a Directed Labeled Graph (DLG) with the subjects and
objects as nodes and node labels, the triples as arcs, and the predicates as arc
labels ( s

p−→ o ). A subgraph is a subset of the corresponding triple set. In this
paper the term RDF-graph is used as a synonym for the term triple set. A triple
set (or any subset) can be serialized in different languages, such as RDF/XML,
N-Triples, N3, etc. The result is a sequence of words over an alphabet defined
by the particular RDF serialization language.

A DLG encodes two different types of information: structural information and
label information. Encrypting structural information means to hide the topology
of the graph, whereas encrypting the label information means to hide individual



310 M. Giereth

node and arc values. With regard to RDF-graphs, label information is encoded
by the URI-references and literals of subjects, predicates and objects. Structural
information is encoded in terms of triples. It should be noted that blank nodes
only provide structural information but no label information.

RDF-graphs can be interpreted as restricted DLGs having the following prop-
erties: (1) structural and label information of nodes are both encoded in terms of
URI-references and literals – changing a node label also changes the structure of
the graph; (2) node labels can be distributed over several triples. Thus, changing a
node label can cause several triples of an RDF-graph to be changed; (3) all nodes
are connected by at least on arc – there are no isolated nodes. Thus, the encryption
of a triple, can cause the encryption of the connected subject and object nodes if
they are only connected by that triple; (4) RDF makes the constraint, that subject
and predicate labels have to be URIs. Encrypted labels are not words of the URI
language. Therefore, encrypted labels have to be represented as objects which can
have arbitrary literal values. As a consequence, graph transformations have to be
performed in order to keep an encrypted graph RDF-compliant.

The following three encryption types for RDF-graphs can be distinguished:
(1) encryption of subjects and objects (= encryption of node labels) (2) en-
cryption of predicates (= encryption of arc labels) (3) encryption of triples
(= encryption of nodes, arcs and subgraphs. An arc is represented by a sin-
gle triple, a node by a set of triples having the node label either as subject or
object, and a subgraph can be any subset of a triple set).

3 Partial RDF Encryption

Partial RDF Encryption (PRE) is a transaction which is composed of the six
steps showed in Fig. 1. We will briefly describe each step.

1. Fragment Selection: The first step is the selection of the RDF fragments
to be encrypted. RDF fragments can either be subjects, predicates, objects,
or triples. The selected fragments are called encryption fragments and the
remaining fragments are called plaintext fragments. Selection can be done,
for example, by explicitly enumerating the encryption fragments (static se-
lection), by specifying selection patterns which check specific properties (dy-
namic selection), by random selection, etc. This step is described in more
detail in section 6.

2. Encryption: In this step, each encryption fragment is serialized and en-
crypted. The result of this step is a data structure containing both, encrypted
data and encryption metadata. We will call this structure an Encryption
Container (EC). An encryption container can be serialized and represented
as literal value. This step is described in more detail in section 4.

3. Encryption Transformations: All encryption fragments are replaced by
their corresponding encryption containers. The result is a single self-
describing RDF-compliant graph containing three different kinds of compo-
nents: (1) encrypted data, (2) encryption metadata and (3) plaintext frag-
ments. In order to fulfill RDF well-formedness constraints – in particular



On Partial Encryption of RDF-Graphs 311

Fig. 1. Partial Encryption Process

the constraint that literals are only allowed as the object of a triple – graph
transformations have to be performed. This step is described in more detail
in section 5.

4. Encryption Container Identification: Encryption containers and en-
cryption metadata are identified and extracted. This can be done by using
an RDF query language.

5. Decryption: In this step, the encryption containers are decrypted according
to the parameters specified in the encryption metadata. If a receiver does
not have an appropriate decryption key, the decryption fails.

6. Decryption Transformations: The last step is the re-construction of the
RDF-graph by replacing the encryption containers with the corresponding
decrypted values. Graph transformations have to be performed which are
inverse to the encryption transformations in step three. If a recipient has
the keys to decrypt all encryption containers, then the re-constructed RDF-
graph is identical to original RDF-graph. In the case that keys are missing,
there will be remaining encryption containers in the RDF-graph.

4 Encryption of RDF Fragments

A cryptosystem can formally be described as a tuple (P, C, K, E, D), where P
is a set of plaintexts, C is a set of ciphers, K is a set of keys, E = {ek : k ∈ K}



312 M. Giereth

is a family of encryption functions ek : P → C and D = {dk : k ∈ K} is a
family of decryption functions dk : C → P . For all ke ∈ K there is a kd ∈ K so
that dkd

(eke(p)) = p holds for all p ∈ P . A cryptosystem is called symmetric if
ke = kd. It is called asymmetric if ke 
= kd. Examples of symmetric cryptosystems
are Triple-DES [20] and AES [21]. An example of an asymmetric cryptosystem
is RSA [24].

4.1 Encryption Schemes

For secure key transport and in consideration of performance, plaintexts are
usually encrypted by using a session-key scheme which combines symmetric and
asymmetric encryption (Fig. 2). The sender encrypts a plaintext m using a sym-
metric encryption function f parameterized with a randomly generated session
key k. The result is a cipher cm. To transmit the session key to the recipient in
a secure way, k is encrypted with an asymmetric encryption function g parame-
terized by the public key pub of the recipient. The result is a cipher ck. Then the
ciphers cm and ck are transmitted. The recipient recovers the session key k by
decrypting ck using the decryption function g−1 parameterized with its private
key priv. Finally, the recipient computes the plaintext m from cm using f−1

parameterized with k.

Fig. 2. Session-Key Scheme

We can extend the above session-key scheme to be able to encrypt a set of
messages for a set of recipients. Let M = {m1, . . . , mm} be a non-empty set of
messages to be encrypted, P = {pub1, . . . , pubn} be a non-empty set of public
keys, and Pi ⊆ P be a non-empty set of public keys representing the recipients
of message mi ∈ M . For each message mi a new session key ki is generated.
mi is encrypted using the symmetric function f paramerized by ki. Then ki is
encrypted |Pi|-times using the asymmetric functions g parameterized by pubi ∈
Pi (Fig. 3). The encryption of M takes |M | symmetric and

∑|M|
i=1 |Pi| ≤ |M | · |P |

asymmetric encryption function calls.
For each message, the extended session-key scheme creates a set of key ci-

phers ck1 , . . . , ckn of which at the most one can be correctly decrypted using a
given private key. A naive approach would be to decrypt sequentially each key
cipher and to check the integrity of the decrypted values. Providing additional
information about the public keys used for encryption (such as finger prints,
certificate serial number, etc.) helps to identify the corresponding private key in
advance. Thus, key information is an important class of encryption metadata.



On Partial Encryption of RDF-Graphs 313

Fig. 3. Extended Session-Key Scheme

4.2 Digests

When using cryptosystems, a method to ensure the data integrity is needed. A
common approach for this problem, is to use one-way hash functions, for example
SHA-1 [19] or MD5 [23]. A hash or digest is a sequence of bytes that represents
the input in a unique way and usually is smaller than the input. The sender
computes the digest dm of a message m using a one-way hash function h. Both,
the digest dm and the cipher cm are transferred to the recipient. The recipient
decrypts the cipher (let m′ be the decrypted cipher) and computes the digest
dm′ = h(m′). If dm′ = dm then m′ = m holds.

An important idea in PRE is using hash values for merging RDF-graphs,
similar to the inverse functional property mbox sha1sum defined in the FOAF
vocabulary [9]. mbox sha1sum contains the digest of an email to prevent publish-
ing the email but to allow for merging based on the email. Partially encrypted
fragments of an RDF-graph can be used for merging, if they (1) are object frag-
ments, are inverse functional, and provide a direct hash value and (2) are subject
fragments and provide a direct hash value.

There are cases in which it is not secure to use direct hash values. For example
when the range of a property only contains few values. When using a direct hash
for a 4-digit bank account PIN, it takes less than 1000 tests to know the correct
PIN by comparing the hash values. In this case a randomization of the value
before computing the digest is necessary. Randomized hash values provide a
higher security. They still can be used for testing the data integrity but cannot
be used for merging. So it is a trade-off between security and data integration.

For the representation of randomized values, we use a simple XML-based
method. The original fragment serialization is embedded as the content of a
FragmentValue element and can be retrieved using a simple XPath expression.
FragmentValue is a child of RandomizedValue which contains randomly generated
bytes as text. The structure is described by the following schema fragment.

<xs:complexType name=’RandomizedValue’ mixed=’true’>

<xs:choice><xs:element name=’FragmentValue’ type=’xs:string’/></xs:choice>

</xs:complexType>

4.3 Encryption Metadata

To allow for a abstract definition of the encryption process, encryption metadata
has to be specified, such as the encryption algorithms and their parameters, the
computed hash values, key information for public key identification, canonical-
ization methods, transformation to be performed, etc. The encryption metadata



314 M. Giereth

is stored together with the ciphers in a single data structure – the Encryption
Container (EC). There are different approaches to integrate encryption con-
tainers into RDF-graphs. We take the approach of serializing the encryption
containers into XML and including the serializations as XML literals.

Fig. 4. Overall Encryption Container Structure

The general EC structure is shown in Fig.4. The key ciphers ck1 , . . . , ckn are
each stored in an EncryptedKey slot and the message cipher cm is stored in
an EncryptedData slot. Both, EncryptedKey and Encrypted Data have a sim-
ilar structure. The XML-Encryption recommendation [13] provides a detailed
description about the structure. The EncryptionMethod slot specifies the en-
cryption algorithm. Each algorithm has a unique URI (cf. [13]). The KeyInfo
slot provides information about the key used for encrypting the cipher. When
using the extended session-key scheme, the KeyInfo slot inside EncryptedData
contains a sequence of EncryptedKey slots, whereas the KeyInfo slot inside En-
cryptedKey contains information about the public key, for example a certificate
or a certificate reference. The CipherData slot stores the concrete cipher value
computed by the encryption function as Base64 encoded string. The Encryp-
tionProperties slot contains additional information such as the digest value, the
digest algorithm, data type information, the language used for serializing the
data, etc.

Example 1: Alice has annotated the resource http://www.xy.de/alice.htm in
RDF. To access the resource, a username and password is needed. Alice wants to
store the access data together with other annotations in the same RDF-graph, so
that only Bob and Chris can read the access data while all other annotations are
publicly readable. Alice has the X.509 certificates of Bob and Chris and wants to
encrypt the following RDF triples. AES (with 128-bit key size), RSA and SHA-1
is to be used.

<http://www.xy.de/alice.htm> <http://xy.de/schema#username> "alice" .

<http://www.xy.de/alice.htm> <http://xy.de/schema#password> "secret" .

First, the triples are serialized using an RDF language (N-Triples [15] in this ex-
ample). Second, the SHA-1 digest is computed. Then, the data is AES encrypted



On Partial Encryption of RDF-Graphs 315

(in CBC mode) with a generated 128-bit session key k. Then k is RSA encrypted
twice using the RSA public keys contained in the X.509 certificates of Bob and
Chris. Finally, the ciphers, the digest, the certificate, and the algorithm names
and parameters are combined in an encryption container. An XML-Encryption
and XML-Signature conforming serialization looks like:

<xenc:EncryptedData>

<xenc:EncryptionMethod Algorithm="&xenc;#aes128-cbc"/>

<ds:KeyInfo>

<xenc:EncryptedKey>

<xenc:EncryptionMethod Algorithm="&xenc;#rsa-1_5"/>

<ds:KeyInfo>

<ds:X509Data>

<ds:X509Certificate>MIICQjCCAasCBE...</ds:X509Certificate>

</ds:X509Data>

</ds:KeyInfo>

<xenc:CipherData>

<xenc:CipherValue>rrOC4FYSNogKsi...</xenc:CipherValue>

</xenc:CipherData>

</xenc:EncryptedKey>

<xenc:EncryptedKey>encrypted key of Chris...</xenc:EncryptedKey>

</ds:KeyInfo>

<xenc:CipherData>

<xenc:CipherValue>37++haErMYLidG...</xenc:CipherValue>

</xenc:CipherData>

<xenc:EncryptionProperties>

<xenc:EncryptionProperty>

<ds:DigestMethod Algorithm="&ds;#sha1"/>

<ds:DigestValue>/84Cdz6BdYd6kY9zSa6sT1IjLoo=</ds:DigestValue>

</xenc:EncryptionProperty>

</xenc:EncryptionProperties>

</xenc:EncryptedData>

5 Transformations

Since in RDF only the objects can represent literal values, encrypted subjects
and predicates cannot directly be replaced by their corresponding encryption
container serializations. Instead, graph transformations have to be performed.
An overview of the transformations for integrating the encrypted content is given
in Fig. 5 (literals containing the encryption container serialization are marked
with a ’lock’ icon). We will briefly describe each transformation.

1. Subject Transformation: In order to encrypt a subject S, a new triple
〈B, renc:encNLabel, ECS〉 is added to the graph. ECS contains the XML
serialization of the encryption container of S. All references to S are re-
placed by references to B. Therefore all triples containing S either as object
or subject have to be changed.



316 M. Giereth

Fig. 5. Subject, Object and Predicate Transformations

Fig. 6. Triple-Set Transformation

2. Object Transformation: Objects could directly be replaced by their encryp-
tion container serializations. But this would also change the datatype into
rdf:XMLLiteral. Therefore, a blank node is introduced which replaces the
original object node. A new triple 〈B, renc:encNLabel, ECO〉 is added to
the graph. ECO contains the XML serialization of the encryption container
of O including the original datatype information. All references to O have
to be replaced by references to B.

3. Predicate Transformation: Since in RDF only URI references are allowed as
predicates, blank nodes cannot be used for bridging between arcs and their
encrypted label data. Instead a RDF reification [18] based approach is used.
The transformation is carried out in three steps. First, the predicate P of the
original triple t is replaced by the URI reference renc:encPredicate. Second,
a new reification quad is added for identifying t. Finally, a new property
renc:encPLabel = ECP is added to the reification quad stating that the real
predicate of t is encrypted in ECP .

4. Triple-Set Transformation: The encryption of a non-empty triple set Tenc =
{ti, . . . , ti+m} takes the following steps. First, Tenc is serialized into a string s



On Partial Encryption of RDF-Graphs 317

using an RDF serialization language. Second, an encryption container ECT

is constructed containing the encrypted string s together with the encryp-
tion metadata. Third, a new triple 〈B, renc:encTriples, ECT 〉 is added to
the graph. Finally, all triples in Tenc are removed from the graph. The trans-
formation for triple sets are showed in figure 6.

5.1 Handling of Blank Nodes

The described transformations can be directly applied to RDF-graphs that do
not contain blank nodes (ground graphs). As noted earlier, a blank node identi-
fier is not regarded as node label and thus cannot be encrypted. However blank
nodes may be contained in triple sets that are to be encrypted. Blank node iden-
tifiers have to be unique in one RDF-graph. They are not required to be globally
unique and may be changed to some internal representation by RDF frameworks.
In order to be able to encrypt triples containing blank nodes, additional infor-
mation is needed to uniquely identify the blank nodes after decryption, since
their identifiers might have changed.

Fig. 7. Graph Transformations for Blank Nodes

Therefore, a unique UUID [17] is generated for each blank node contained in a
triple to be encrypted. The UUID is assigned to the blank node as URI value of
the renc:assignedURI property. The blank nodes of the triples to be encrypted
are then replaced by the generated URIs. During decryption, the generated URIs
are used for identifying the original blank nodes. Blank nodes can occur as the
subject of a triple, as the object of a triple or both. Fig. 7 gives an overview and
shows the corresponding transformations.

Example 2: Alice wants to encrypt the foaf:knows relation between her and
Bob expressed by triple tenc. Since persons have no adequate URI representation,
blank nodes are used for bundling properties about the person which are the



318 M. Giereth

email addresses in this example. Fig. 8 shows the result of the encryption. The
triple tenc is removed. Three new triples are added: two triples for identifying
the blank nodes (t1 and t2) and one triple containing the encrypted data (t3).
The blank node identifiers for B1 and B2 are replaced by the generated UUIDs
(uri1 and uri2) before the encryption. During decryption the t3 is decrypted,
parsed, and removed. Let Tdec denote the decrypted triples. In a second step, the
objects of all triples having an renc:assignedURI predicate are tested against the
subject and object URIs of the triples in Tdec. If a correspondence is detected
(the object of t1 with uri1 and the object of t2 with uri2), the URI references
are replaced by the corresponding blank nodes and the identification triples (t1,
t2) are removed.

Fig. 8. Blank Node Example

6 Encryption Policies

Encryption policies for RDF-graphs define which fragments to encrypt and how
to encrypt them. The PRE Policy Language (PRE-PL) uses a graph pattern
based approach that allows for dynamic selection of encryption fragments. PRE-
PL uses the RDQL [25, 2] query language. The result of a query can be inter-
preted as a set of fragments which are instances of the same ’category’ defined
by the search pattern. Each category is encrypted in the same way (the same
keys, algorithms, etc.). RDQL mainly defines a list of triple patterns which are
mapped to concrete triples in an RDF-graph. A triple pattern generally has the
form

TriplePattern ::= ’(’ (Var|URI) (Var|URI) (Var|Const) ’)’

where Var are variables, URI are URI references and Const are URI references or
(typed) literals. The result of a query is a set of bindings, in which the variables
are bound to concrete RDF items (subjects, predicates or objects).



On Partial Encryption of RDF-Graphs 319

RDQL has been adapted in a way that it returns a set of triples bound
to each triple pattern instead of returning variable bindings. Based on the or-
dered triple pattern sequence, the encryption fragments are identified by us-
ing the markers s, p, o, or t. The marker s (p, o) will cause the encryption
of the subjects (predicates, objects) of the bound triple set. The marker t will
cause the encryption of each triple in the set. This mechanism allows the en-
cryption of fragments which are not bound to variables, e.g. named values.
Additionally, it has to be specified how to encrypt the selected fragments, i.e.
which encryption method, keys, parameters, etc. to use. PRE-PL is described
in more detail in on the RDF Encryption Project site [3]. We will give a short
example here.

Example 3: The rule ,,encrypt the email addresses of all persons” using Triple-
DES as block cipher algorithm and the RSA keys provided in the certificates of
Bob and Alice can be formulated in PRE-PL as follows:

<pre:PREPolicy>

<ds:KeyInfo>

<ds:X509Data id="alice">...</ds:X509Data>

<ds:X509Data id="bob">...</ds:X509Data>

</ds:KeyInfo>

<pl:DefaultEncryptionScheme>

<pl:Symmetric>

<xenc:EncryptionMethod Algorithm="xenc:tripledes-cbc"/>

</pl:Symmetric>

<pl:Asymmetric>

<xenc:EncryptionMethod Algorithm="xenc:rsa-1 5"/>

</pl:Asymmetric>

<pl:Digest type="pl:directDigest">

<ds:DigestMethod Algorithm="ds:sha1"/>

</pl:Digest>

<pl:RDFLanguage name="pl:N-Triples"/>

<pl:DefaultKeys><pl:KeyRef id="alice"/></pl:DefaultKeys>

</pl:DefaultEncryptionScheme>

<pl:GraphPattern>

<pl:TriplePattern subj="?x" pred="rdf:type" obj="foaf:Person"/>

<pl:TriplePattern subj="?x" pred="foaf:mbox" obj="?y">

<pl:Encryption target="o"><KeyRef id="bob"/></pl:Encryption>

</pl:TriplePattern>

</pl:GraphPattern>

</pl:PREPolicy>

Each PREPolicy has a KeyInfo section for key definition. Each child element pro-
vides key material which is referenced in the GraphPattern sections. Note, that
the external keys can be referenced using the XML-Signature reference mech-
anism [14]. Each PRE policy also defines one DefaultEncryptionScheme section
which defines the default encryption parameters: the symmetric and asymmetric
algorithms, the digest algorithm and additional randomization, the RDF serial-



320 M. Giereth

ization language for triples and the default keys for each fragment. Additional
encryption schemes can be defined which can be referenced in Encryption el-
ements. Each GraphPattern section has a list of triple patterns and optional
constraints which are mapped to an RDQL query. For each TriplePattern it
can be defined how to encrypt the bound fragments. In the above example, the
object of the second triple pattern (the email address) is encrypted using the
default encryption scheme and the additional key with the ID ’bob’.

7 Conclusions and Future Work

A method to partially encrypt RDF-graphs has been presented. It differs from
other approaches in that the result is a single self-describing RDF-compliant
graph containing both, encrypted data and plaintext data. The method al-
lows for fine-grained encryption of subjects, objects, predicates and subgraphs
of RDF-graphs. Encrypted fragments are included as XML literals which are
represented using the XML-Encryption [13] and XML-Signature [14] recommen-
dations. Graph transformations necessary to keep the encrypted RDF-graph
well-formed have been described. The proposed method is adoptable for dif-
ferent algorithms and processing rules by using encryption metadata. We have
motivated the usage of randomized digests for high-sensitive data (such as credit
card number, passwords, etc.) and direct digests for low-sensitive data (such as
email, phone number, etc.) in order to allow a trade-off between security and
application integration needs. We have also introduced the idea of encryption
policies for RDF and the PRE-PL policy language which uses RDQL queries
for dynamic selection of encryption fragments. In future work we will integrate
SPARQL [22] concepts, such as optional pattern matching, in PRE-PL. A pro-
totypical implementation of PRE, PRE4J [3], is available under LGPL for the
Jena Framework [2].

PRE heavily relies on a public key infrastructure or on a web of trust. There
are RDF vocabularies, such as the Semantic Web Publishing Vocabulary [10, 7]
or the WOT Vocabulary [8], for integrating certificates into the Semantic Web
and in particular into FOAF [9] profiles. Therefore, it is planned to extend
FOAF enabled browsers, such as the Foafscape browser [1], to be able to use the
certificates provided in profiles.

As with all partial encryption methods, encrypted data has a certain con-
text which can be used for ’guessing’ the corresponding plaintext data. Semantic
Web applications also typically make use of ontologies. An ontology formulates
a strict conceptual scheme about a domain containing the relevant classes, in-
stances, properties, data types, cardinalities, etc. This information can be used
for attacks or even inferring encrypted content. Property definitions for example
can dramatically reduce the search space for ’guessing’ the plaintexts and can
be used for systematically checking the hash value provided in the encryption
container. Concerning the confidentiality of encrypted data, it is also crucial to
know if the data to be encrypted is inferable. This topic has not been evaluated
in detail, yet.



On Partial Encryption of RDF-Graphs 321

References

1. Foafscape Project Homepage. http://foafscape.berlios.de.
2. Jena Semantic Web Framework. http://jena.sourceforge.net.
3. RDF Encryption Project Homepage. http://rdfenc.berlios.de.
4. L. Bauer, M. Schneider, and E. Felten. A general and flexible access-control sys-

tem for the web. In Proceedings of the 11th USENIX Security Symposium, San
Francisco, CA, Aug 2002.

5. T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2396 – Uniform Resource
Identifiers (URI): Generic Syntax. IETF, August 1998. http://www.isi.edu/in-
notes/rfc2396.txt.

6. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, pages 34–43, May 2001.

7. C. Bizer, R. Cyganiak, O. Maresch, and T. Gauss. TriQL.P - Trust Architecture.
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQLP/.

8. D. Brickley. WOT RDF Vocabulary, 2002. http://xmlns.com/wot/0.1/.
9. D. Brickley and L. Miller. FOAF Vocabulary Specification, 2005.

http://xmlns.com/foaf/0.1/.
10. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named Graphs, Provenance and

Trust. Technical report, HP Laboratories Bristol, 2004. HPL-2004-57R1.
11. J. Cowan and R. Tobin, editors. XML Information Set (Second Edition). W3C

Recommendation, February 2004. http://www.w3.org/TR/xml-infoset/.
12. E. Dumbill. PGP Encrypting FOAF Files, 2002.

http://usefulinc.com/foaf/encryptingFoafFiles.
13. D. Eastlake and J. Reagle, editors. XML Encryption Syntax and Processing. W3C

Recommendation, December 2002. http://www.w3.org/TR/xmlenc-core/.
14. D. Eastlake, J. Reagle, and D. Solo, editors. XML-Signature Syntax and Processing.

W3C, February 2002. http://www.w3.org/TR/xmldsig-core/.
15. J. Grant and D. Beckett, editors. RDF Test Cases. W3C Recommendation,

http://www.w3.org/TR/rdf-testcases/, February 2004.
16. G. Klyne and J. Carroll, editors. Resource Description Framework (RDF): Con-

cepts and Abstract Syntax. W3C Recommendation, http://www.w3.org/TR/rdf-
concepts/, February 2004.

17. P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN
Namespace, July 2005.

18. F. Manola and E. Miller, editors. RDF Primer. W3C Recommendation,
http://www.w3.org/TR/rdf-primer/, February 2004.

19. National Institute of Standards and Technology (NIST). Secure Hash Standard
(SHA-1). Technical report, April 1995. http://www.itl.nist.gov/fipspubs/fip180-
1.htm.

20. National Institute of Standards and Technology (NIST). Data Encryption Stan-
dard (DES). Technical report, October 1999.
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

21. National Institute of Standards and Technology (NIST). Advanced
Encryption Standard (AES). Technical report, November 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

22. E. Prud’hommeaux and A. Seaborne, editors. SPARQL Query Language for RDF.
W3C Working Draft, October 2004. http://www.w3.org/TR/rdf-sparql-query/.

23. R. Rivest. The MD5 Message-Digest Algorithm, RFC 1321. Technical report, April
1992. http://www.faqs.org/rfcs/rfc1321.html.



322 M. Giereth

24. R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM 21,2, 1978.

25. A. Seaborne, editor. RDQL - A Query Language for RDF. W3C Member
Submission, January 2004. http://www.w3.org/Submission/2004/SUBM-RDQL-
20040109/.

26. D. Weitzner, J. Hendler, T. Berners-Lee, and D. Connolly. Creating a policy-
aware web: Discretionary, rule-based access for the world wide web. Hershey, PA
(forthcoming), 2004.

Appendix: Namespaces

Prefix Namespace
ds http://www.w3.org/2000/09/xmldsig#
foaf http://xmlns.com/foaf/0.1/
pl http://rdfenc.berlios.de/pre-pl#
renc http://rdfenc.berlios.de/pre#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
xenc http://www.w3.org/2001/04/xmlenc#
xs http://www.w3.org/2001/XMLSchema



Seven Bottlenecks to Workflow Reuse and
Repurposing

Antoon Goderis, Ulrike Sattler, Phillip Lord, and Carole Goble

School of Computer Science, University of Manchester, UK
{goderis, carole, sattler, plord}@cs.man.ac.uk

Abstract. To date on-line processes (i.e. workflows) built in e-Science
have been the result of collaborative team efforts. As more of these work-
flows are built, scientists start sharing and reusing stand-alone composi-
tions of services, or workflow fragments. They repurpose an existing work-
flowor workflow fragment by finding one that is close enough to be the basis
of a new workflow for a different purpose, and making small changes to it.
Such a “workflow by example” approach complements the popular view in
the SemanticWebServices literature that on-line processes are constructed
automatically from scratch, and could help bootstrap the Web of Science.
Based on a comparison of e-Science middleware projects, this paper identi-
fies seven bottlenecks to scalable reuse and repurposing. We include some
thoughts on the applicability of using OWL for two bottlenecks: workflow
fragment discovery and the ranking of fragments.

1 Towards a Web of Science

As more scientific resources become available on the World Wide Web, scientists
increasingly rely on Web technology for performing in silico (i.e. computerised)
experiments. With the publication of scientific resources as Web and Grid ser-
vices, scientists aremaking a shift from traditionally copying andpasting their data
through a sequence of Web pages offering those resources, to the creation and use
of distributed processes for experiment design, data analysis and knowledge dis-
covery. Research councils in various countries have set out to build a global infras-
tructure to support this under the banner of e-Science. e-Science translates the no-
tion of virtual organisations into a customised Grid middleware layer for scientists,
thereby aiming to increase collaboration within and between scientific fields [1].
Workflow techniques are an important part of in silico experimentation, poten-
tially allowing the e-Scientist to describe and enact their experimental processes in
a structured, repeatable and verifiable way. For example, the myGrid
(www.mygrid.org.uk) workbench, a set of components to build workflows in bioin-
formatics, currently allows access to over thirteen hundred distributed services
and has produced over a hundred workflows, some of which orchestrate up to fifty
services. These resources have been developed by users and service providers dis-
tributed throughout the global biology community. Figure 1 shows an example of
a myGrid workflow which gathers information about genetic sequences in support
of research on Williams Beuren syndrome (WBS) [2].

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 323–337, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



324 A. Goderis et al.

Fig. 1. Part of a myGrid workflow to annotate genetic sequences as presented by the
myGrid Taverna workbench. The diagram shows the typical fanning out behaviour of
a bioinformatics pipeline, producing lots of data from a limited number of inputs (the
left and right boxes) based on a set of distributed services (the middle boxes).

We are now witnessing how scientists have started reusing and propagating
in silico experiments as commodities and “know-how” in their own right. To
cater for the reuse of in silico experiments on the scale of the Web of Science
[3], the e-Science infrastructure will need to expand its current handling of the
workflow life cycle. The goal of this paper is to investigate how reuse and re-
purposing of in silico experiments would work. We see reuse and repurposing
as a way of bootstrapping the Web of Science by stimulating the dynamics of
sharing and reusing experimental components in the scientific community. Sec-
tion 2 highlights the benefits of workflow reuse, distinguishes between workflow
reuse and repurposing, and analyses the relationship with related work. Section
3 goes bottom up, showcasing different types of reuse based on case studies from
e-Science middleware projects. From this survey, we obtain the following seven
bottlenecks to reuse and repurposing, which are presented in Section 4. For bot-
tlenecks 5 and 7, we consider how reasoning over ontologies in the Web Ontology
Language (OWL) [4] could widen them.

1. Restrictions on service availability
2. Rigidity of service and workflow language definitions
3. Intellectual property rights on workflows
4. Workflow interoperability
5. Lack of a comprehensive discovery model
6. The process knowledge acquisition bottleneck
7. Lack of workflow fragment rankings

The bottlenecks belong to two broad categories. First, some bottlenecks hinder
establishing a critical mass for bootstrapping the Web of Science. Bottlenecks 1-4
identify reasons why we do not have as many workflows available for reuse as we
might expect. Provided that this set of bottlenecks can be suitable addressed, the
available pool of workflows then still needs to be easily searchable and adaptable.
Bottlenecks 5-7 identify barriers that keep people from effectively processing the
available workflow knowledge.

Bottlenecks 4-7 are closely related to challenges for the Semantic Web, cited
in [5] and marked up in italics below. In particular, to maximise the available



Seven Bottlenecks to Workflow Reuse and Repurposing 325

base of workflows, one would need to resolve workflow language interoperabil-
ity issues. Workflow interoperability in essence seeks to interoperate different
conceptualisations of control flow, a special case of reconciling different con-
ceptualisations of a domain. The tradeoff in Knowledge Representation between
expressivity and tractability relates to the current lack of a comprehensive model
for discovering fragments. The building and populating of a comprehensive model
is subject to the process knowledge acquisition bottleneck. Finally, to fully exploit
the resulting model and its contents, the reuse infrastructure should support un-
predictable use of knowledge, e.g. through rankings for fragments dependent on
a user’s context.

2 Reuse and Repurposing in e-Science

e-Scientists are driven by a desire to set up and run in silico experiments which
complement the work done in the laboratory. As more workflows are built, sci-
entists start sharing and reusing stand-alone compositions of services, or work-
flow fragments, within and between research projects. As a result, scientists are
adopting a “workflow by example” style of workflow construction by reusing and
repurposing existing experience. This complements the vision that experiments
could be composed automatically, e.g. the Robot Scientist [6].

2.1 Why Workflow Reuse?

Workflow reuse in e-Science is intrinsically linked to a desire that workflows be
shared and reused by the community as best practice scientific protocols or know-
how. It has the potential to: reduce workflow authoring time (less re-inventing
the wheel); improve quality through shared workflow development (two heads
are better than one, or leveraging the expertise of previous users); and improve
experimental provenance at the process level through reuse of established and
validated workflows (analogous to using proven algorithms or practices rather
than inventing a new, and potentially error-prone, one yourself). Concretely, the
research group who produced the Williams’ syndrome workflow [2] have already
seen a dramatic drop in workflow authoring time through the ability to repurpose
workflow fragments from previous experiments.

A workflow fragment is a piece of an experimental description that is a co-
herent sub-workflow that makes sense to a domain specialist. It is a snippet of
workflow code written in a workflow orchestration language which typically car-
ries annotation to facilitate its discovery. Each fragment forms a useful resource
in its own right and is identified at publication time.

2.2 Reuse and Repurposing

We distinguish between reuse, where workflows and workflow fragments created
by one user might be used as is, and repurposing, where they are used as a
starting point by others.



326 A. Goderis et al.

– A user will reuse a workflow or workflow fragment that fits their purpose
and could be customised with different parameter settings or data inputs to
solve their particular scientific problem.

– A user will repurpose a workflow or workflow fragment by finding one that
is close enough to be the basis of a new workflow for a different purpose and
making small changes to its structure to fit it to its new purpose.

Repurposing requires techniques to provide a user with suggestions as to what are
the relevant pieces of workflow for their experiment, like “Based on the services
and structure of your workflow, it looks like you are building a gene annotation
pipeline. Other users have found this collection of fragments useful for that.”
The techniques work off a knowledge base of existing workflows (either a central
registry or a peer to peer setting). The end result, a repurposed workflow, is
contributed back to the pool of available know-how.

Of the workflows produced by the projects surveyed in Section 3, many model
simple pipelines like the one in Figure 1 but some also model complex concurrent
control flows. Based on frequent interaction with domain scientists, we adopt the
working hypothesis that a scientist thinks about her workflow primarily as data
flow, transforming scientific data sets, and ignores what might be going on under
the hood in terms of complex control flow. As a result, a scientist is interested
in making queries that involve discovery of fragments based on data, services,
and at most involve simple ordering, choice points and loops. We have collected
a set of practical reuse and repurposing queries Q1-Q7 for domain scientists.
The use of semantics seems relevant to solve queries Q1-Q5; we revisit them in
Sections 4.5 and 4.7. For reasons of scope we leave aside Q6 and Q7 in this paper.

Q1 Given a data point, service, fragment or workflow, where has this item been
used before?

Q2 Show the common data, services, and compositions of services and data
between two workflows or fragments.

Q3 Given a set of data points, services, or fragments, have these been connected
up in an existing base of workflows? If not, what are the closest available
alternatives for doing so? How do these alternatives rank?

Q4 As more workflows become available, fragments are reused and repurposed
in a variety of workflows. How can one systematically keep track of these
interrelationships?

Q5 Since the design and implementation of a workflow can extend over long
periods of time (months, even years), one might want to store even partially
described workflows. Which are the available workflows in progress?

Q6 Show the differences between two workflow versions.
Q7 Show the evolution of a workflow over time.

Conversely, an advanced workflow developer typically implements complex dis-
tributed processes involving concurrency and has little affinity with scientific
jargon. Developers might also ask queries like the above, but these would not
involve jargon. In those cases where developers build complex control flows, they
typically work by example, and as such might issue queries for examples of im-



Seven Bottlenecks to Workflow Reuse and Repurposing 327

plemented complex flows. Typically there would be interaction between the two
user roles during workflow construction, as part of a collaborative effort.

2.3 Repurposing, Discovery and Composition

How does repurposing relate to service discovery and composition? We answer
this by first outlining the different aspects of the service life cycle and then char-
acterising repurposing in these terms. Web-enabled services, whether published
as Web, Grid or peer to peer services can be described by means of their input
and output, and/or based on their behaviour, e.g. via pre- and postconditions or
Finite State Automata [7]. Based on such descriptions, services can be discov-
ered, composed, configured, verified, simulated, invoked and monitored. Of these,
discovery and composition are the most relevant for repurposing.

– Discovery is the process of finding, ranking and selecting existing services.
Discovery can be exact or inexact, and operates over descriptions of atomic
or composite services which consist of atomic services.

– Composition is the process of combining services into a new working assem-
bly. It is performed either manually, semi-automatically or automatically.
Composition typically combines service discovery with service integration.
If either activity involves manual intervention from a human, composition
becomes non-automated.

Mapping repurposing to this classification yields the following distinctive set of
features:

Workflow fragments, not services on the Web. Workflow fragments or-
chestrate services located on the Web. Fragments are not Web-enabled ser-
vices, however, in the sense that they can be readily invoked over the Web.
Instead they require a workflow engine for execution. At an abstract level,
fragments can be regarded as composite services, which means some of the
formal language machinery being developed for Web-enabled services is still
applicable.

Behavioural service descriptions. Fragments are snippets of code published
in a workflow language which typically carry annotation to facilitate their
discovery. Fragments can describe sophisticated forms of control flow between
services.

Design level discovery over composite services. In general, the literature
on discovering composite services/ processes is investigating discovery at
three levels. For each level, an example of queries is shown for which tech-
niques are available.
Design level discovery. Scientists may ask questions that comprise simple

structural elements, such as relating to parts of a process, e.g. [8], or
loops and choice points e.g. [9], whereas developers may pose queries
relating to complex control flow, such as dealing with constraints on
messaging behaviour e.g. [10] or distributed execution models [11].



328 A. Goderis et al.

Enactment level discovery. For instance, based on feedback on the behaviour
of particular components during the run of a process, a user may select
a new, similar process that is more likely to achieve the stated goal [12].

Post-enactment level discovery. Process languages sometimes allow for great
flexibility in the execution path a user can choose. Several authors con-
sider process mining, which seeks to discover from the enactment data
of workflow runs, which path users actually follow in practice e.g. [13].

With respect to fragment discovery, we are only concerned with design level
discovery in order to retrieve snippets of workflow code.

Exact and inexact discovery. Lacking a sufficient set of answers based on
exact discovery, repurposing techniques can progress to inexact discovery
techniques, which find the closest available alternatives (for a human to
then look at). Sections 4.5 and 4.7 discuss some available options based on
OWL. A distinctive feature of repurposing techniques is the inclusion of a
measure of integration effort in the rankings of returned fragments.

Semi-automatic composition. Composition combines service discovery and
service integration. Repurposing a workflow based on workflow fragments re-
lies on automated support for the discovery part, which generates clues as to
what would be the best fragments for a human to consider based on the ex-
isting workflows. The actual integration part is left up to the workflow devel-
oper. Hence a newly repurposed workflow is the result of semi-automatic com-
position. Repurposing techniques in this sense are to be seen as composition-
oriented discovery techniques and sit in between automated discovery and au-
tomated composition. We draw on the observation made in [14] that scientists
in general are reluctant to relinquish control over the construction of their ex-
periments. We aim to support scientists’ activities, not replace them.

2.4 Abstract and Concrete Workflows

Various authors in the scientific workflow literature use the notion of abstract and
concrete workflows [15]. The notion is useful for repurposing as it helps to create
a view over aspects of a workflow that either a domain scientist or a developer
are interested in. Abstract workflows capture a layer of process description that
abstracts away from the task and behaviour of a concrete workflow. The kinds of
abstraction performed are a modelling decision and depend on the application.
Generally speaking, abstractions can generalise over:

1. Workflow and service parameters (task, parameters, data, component ser-
vices): these abstract workflows have also been called workflow templates [15].
Templates are un-invocable, un-parameterised workflows whose services are
unbound to a specific end point.

2. Control constructs: such abstract workflows can be organised based on work-
flow patterns [16] and distributed execution models [11].

3. Domain specificity: abstract workflows like these focus on capturing problem-
solvingbehaviourandare the subjectofProblem-SolvingMethods research [12].



Seven Bottlenecks to Workflow Reuse and Repurposing 329

The distinction between abstract and concrete workflows is useful for at least
three types of applications. Firstly, abstract workflows can guide the configu-
ration of generic pieces of workflow into concrete workflows. The end result is
a concrete workflow like the one depicted on Figure 1. Secondly, the notion of
abstract workflows is useful for dynamic bindings for scheduling and planning,
where service availability changes frequently and one queries for run-time instan-
tiations of service classes. Thirdly, one can use the abstract-concrete distinction
to support queries for repurposing. In particular, the first type of abstraction
layer, over workflow parameters can be used to support queries Q1-Q5 (see [17]
for details). The second type of abstraction layer, over control constructs, serves
to answer developer’s queries for complex control flow.

3 Scientific Workflow Reuse in Practice

After defining reuse and repurposing and contrasting it with related work, we now
take a bottom up approach. We ask the question how far off we are at the current
time from a Web of Science enabled by reuse and repurposing. As more scientists
start to construct workflows, opportunities for cross-fertilisation are likely to arise.
We present the results of a survey on how reuse and repurposing occurs in practice.

3.1 Case Studies in Workflow Fragment Reuse

We take a cross-section of middleware projects from the e-Science programme in
the United Kingdom, which was the first of its kind [1]. To collect case studies of
reuse, we have collaborated with biologists and developers in the myGrid project
and interviewed core developers from the UK-based InforSense (the commercial
collaborator of the DiscoveryNet e-Science project [18]), Geodise [19], Triana [20]
and Sedna projects. We also interviewed people from the USA-based Kepler
project [21]. The following case studies arose from the interviews.1

– In myGrid, around 200 users have built 100 workflows from over 1300 ser-
vices. Workflow fragments have been repurposed between different research
groups in Manchester, Newcastle and Liverpool investigating Williams’ syn-
drome [2], Graves’ disease [22] and Trypanosomiasis (sleeping sickness) in
cattle, respectively (see Figure 2). New reuse of fragments from the Williams
workflow is planned to support research on the Aspergillus fungus.

– In Triana, the GEO power spectrum, a small composition of Java classes
aimed at the direct detection of gravitational waves, has been shared between
different research groups in the same department at Cardiff University.

– Clients of InforSense, a commercial enterprise, have been building scientific
workflows for several years. They exchange and extend workflows based on
corporate intranet servers and e-mail lists. Given that these workflows are
based on proprietary technology and often contain trade secrets, sharing
with external parties has been very limited.

1 The survey form is available from www.cs.man.ac.uk/∼goderisa/surveyform.pdf



330 A. Goderis et al.

– The Kepler project so far has around 30 users which have built 10 workflows
from a registry of 20 services. They have seen the redeployment of GRASS
services for geospatial data management developed in one project (SEEK) to
form a new pipeline for another project (GEON). This redeployment required
a slight adaptation of the control flow.

– Geodise relies on the Matlab software environment for the orchestration of
local Matlab functions which wrap distributed Grid resources. It offers access
to some 150 functions, based on which 10 workflows were built to date. It
reuses both configurations and assemblies of Matlab functions (i.e. scripts)
described by various authors.

– The Sedna project at University College London has built a compute in-
tensive workflow for chemistry, generating up to 1200 service instances con-
currently. No reuse of this workflow has occurred. Sedna is notable as it is
the only project in our sample to use BPEL (Business Process Execution
Language), which is considered a de facto standard for business workflows.

3.2 Three Kinds of Workflow Reuse

From these use cases, three categories of workflow reuse surfaced, which are
based on the person doing the reuse: reuse by third parties who the workflow
author never met, reuse by collaborators, and personal reuse.

Reuse by third parties. Third-party reuse is the kind of reuse envisaged by
the e-Science vision for inter-disciplinary scientific collaboration. None of the
interviewees could report reuse of this kind.

Reuse by collaborators. Scientists are typically part of a research group and
various research projects, inside of which they exchange knowledge. Fig-
ure 2 shows the reuse of fragments between research groups active in the
same project (from Graves to Williams), as well as reuse between affiliated
research projects (from Williams to Trypanosomiasis). The Williams bioin-
formaticians were keen to extend their workflow with a protein annotation
pipeline, as well as to introduce microarray analysis functionality. In turn,
the Williams workflow itself became the subject of reuse for the Trypanoso-
miasis workflow, in particular the microarray analysis and gene prediction
fragments shown on the figure. In case of the microarray fragment, in effect
one sees the emergence of workflow fragment propagation.

Personal reuse. Building large workflows can be a lengthy process, sometimes
taking years of time. This results in different versions of workflow specifica-
tions that co-exist in one location. Manually keeping track of the relation-
ships is a challenging task, so versioning support is required. Versioning can
be seen as a case of “personal reuse”. In the case of the Graves workflow, the
workflow took more than a year to create. During the process of building it,
56 bits of workflow were created, most of which are overlapping versions and
used in one shape or other in the other versions. The largest of these bits
contains 45 elements, not counting the links between the data and services.



Seven Bottlenecks to Workflow Reuse and Repurposing 331

Microarray analysis

Protein annotation

SNP design

Graves’ disease

Versioning

project
Intra

Protein annotation

Microarray analysis

Gene prediction

DNA sequence comparison

Microarray analysis

Trypanosomiasis

Gene prediction

Inter project

Williams’ syndrome

Aspergillus

Gene prediction

DNA sequence comparison

project
Inter

Fig. 2. Different types of workflow reuse illustrated by a scenario from bioinformatics

The picture for the bioinformatics use case in Figure 2 does not do justice to
the difficulty it took to reuse the various fragments. Discovery of fragment func-
tionality happened by word of mouth, and comparing and integrating fragments
took extensive discussions between the workflow authors. Repurposing the work-
flow to investigate a different species meant the structure had to be adapted:
certain services had to be replaced (for example, some gene prediction services
are species-specific), others removed and still others added.

One can conclude that reuse and manual repurposing of workflows and frag-
ments of workflows is already happening. It is clear however that reuse becomes
harder as the conceptual and physical distance between parties increases. If reuse
and repurposing is to happen on a wide scale, a large set of workflows where
people can draw from is key. In addition, detailed documentation and ways to
search and compare the documentation of different workflows are needed. All of
the above middleware projects offer a search mechanism to look for available ser-
vices; none however allow for the possibility to compare workflows descriptions.

4 Seven Bottlenecks to Reuse and Repurposing

Based on the comparison of e-Science middleware projects, we can identify seven
bottlenecks to scalable reuse and repurposing. The bottlenecks belong to two
broad groups: those preventing the collection of a large pool of workflows, and
those that prevent discovery of workflow fragments in that available pool of



332 A. Goderis et al.

knowledge. Identifying and addressing the first group is critical to establishing a
Web of Science: without a substantial pool of workflows, there cannot be a Web
of Science as there will be no scientific components to annotate and query for.

4.1 Restrictions on Service Availability

Restrictions on the availability of services (as a workflow’s building blocks) cre-
ates a bottleneck for workflow creation and availability. First, domain users have
strong opinions about the particular services that they wish to use. For them to
be willing to create workflows, they need to have access to their favourite tools
and databases from within the workflow environment. If these are not avail-
able as services accessible within the workflow environment, they will use other
technologies. All workflow projects except Sedna offer access to types of ser-
vices which are other than plain Web services. Second, service availability is also
hampered by issues of authentication, authorisation, accounting and licensing.
Third, the incorporation of local services in a workflow, be it as local compo-
nents or Web services deployed behind a firewall, render a service unavailable
for third parties. Repurposed workflows will need to replace those local services,
unless they are either (i) Web-enabled upon publishing, (ii) made available for
download in a public repository, or (iii) their functionality is made part of the
workflow specification.

4.2 Rigidity of Service and Workflow Language Definitions

Services on the Web typically are outside the control of a workflow developer. The
presented service interface defines the limit to which one can reuse the service: if
the service interface does not support particular functionality, even though the
underlying implementation of the service may, it is out of a developer’s reach.
This is a standard problem in object-oriented programming, where the solution
has been to design objects with reuse in mind by providing rich interfaces.

Workflow specifications can be hard to reuse too, depending on the avail-
able support for workflow evolution and adaptation in the language. Workflows
change as a result of (i) continuous process improvement, (ii) adaptations to
changes in the workflow’s environment, and (iii) customisation of a workflow to
the needs of a specific case [23]. The workflow evolution literature typically con-
siders (i) and (ii), and where (iii) is studied this is done from the perspective of a
single organisation, and does not consider unpredictable reuse by third parties.

4.3 Intellectual Property Rights on Workflows

Scientists invest a lot of time in building workflows and are often hesitant to
release workflows without formal Intellectual Property Rights agreements. We
have seen this with the Williams, Graves and InforSense workflows. Science has
dealt with this problem before in the context of sharing experimental data. Sci-
entists can publish in a journal when they release their data in public databases,



Seven Bottlenecks to Workflow Reuse and Repurposing 333

with the inclusion of metadata. The submitted data is then anonymised to the
extent that it is of no use for the direct competition or an embargo is imposed
over the data, to ensure the original authors enough time to exploit the data.
Authors of in silico experiments might publish their workflows in the same way.

4.4 Workflow Interoperability

The saying “The nice thing about standards is that you can choose” also holds for
scientific workflow languages. Each of the projects in the survey uses its own lan-
guage for orchestrating resources. This diversity reflects the different demands of
the application areas and computer skills of users. For repurposing, it is desirable
to have access to as wide a pool of workflows as possible. Libraries of workflow
patterns for control flow [16] have been developed and used to compare commer-
cial workflow software for business processes. To our knowledge, this work has
not been applied to compare and inform interoperation between scientific work-
flow systems. Also, these patterns do not address how combinations of patterns
result into distributed execution models. In particular, developers would want to
know how such models compare and can be combined. Kepler for instance have
built workflows for environmental modelling that combines different distributed
execution models (called “Directors” [11]) in one specification.

4.5 Lack of a Comprehensive Discovery Model

Designing representations for in silico experiments that can capture what is
being done, why, and what has been tried before but failed, is a big challenge.
Here we focus on the kind of information needed in such a representation to
support discovery of fragments.

We have noted in Section 2.4 that different abstraction layers can be used to
discover workflow fragments. Our hypothesis is that workflow fragment discovery
requires the use of control flow constructs. How rich the control flow query
support should be depends on the envisaged user (as explained in Section 2.2).

Unfortunately no one formalism can be expected to support all the desired
control flow queries. We reflect on whether the Web Ontology Language OWL
[4] could be used for searching workflow fragments. We consider this expressive
Description Logic (DL) because of: (i) it being a standardised KR language; (ii)
the support it offers for classifying a large collection of instances, e.g. workflow
fragments; (iii) the potential to describe and query for workflows at a level of ab-
straction suited for a domain scientist through query languages; (iv) the support
for representing incomplete workflows. OWL should be well suited to formulate
data flow queries pertaining to inputs and outputs of services. DL ontologies in
general are limited to modelling simple control flow constructs, however. Other
formalisms provide a better fit for querying for complex control flow (e.g. process
algebras). Though ideally one would like to be able to combine complex data
flow queries with complex control flow queries, given the complexity of the task,
we will first try to combine the outcome of querying different formalisms and
present this in a uniform manner to the user.



334 A. Goderis et al.

Could we use OWL annotation to answer the data flow queries Q1-Q5 of
Section 2.2? Various authors have experimented before with service discovery
using DL reasoning, typically based on the OWL-S upper ontology ServiceProfile
section, e.g. [24] or the Web Service Modeling Ontology (WSMO) Capability de-
scriptions, e.g. [25]. We, however, are dealing with the discovery of workflow frag-
ments, and the difference between atomic services and workflows indeed makes a
difference to the discovery task. In service discovery, ServiceProfile or Capability
descriptions are used, which do not include control flow information and thus
cannot be considered for workflow discovery purposes. Even though detailed con-
trol flow information clearly is present in OWL-S and WSMO ontologies through
the ServiceModel and Orchestration descriptions, respectively, these parts of the
ontologies are neither intended nor (to our knowledge) currently used to support
discovery. We are now designing a workflow ontology which uses service order-
ings, conditionals and loops to represent and query workflow fragments. So far,
based on OWL Lite (using hasSuccessor, hasDirectSuccessor and partOf
roles, the last two of which are transitive), we can retrieve workflows based on
Q1-Q2 for fragments in the Williams workflow (more detail can be found in [17]).

4.6 The Process Knowledge Acquisition Bottleneck

The question is then how to get annotations for workflows based on such a
model. Scientists are reluctant to manually populate any model of an experi-
ment. Techniques to address the process knowledge acquisition bottleneck are
therefore needed. With respect to populating that part of the experimental model
that supports repurposing, techniques from service ontology learning and auto-
mated service annotation are promising. One could extend such work to address
the identification and classification of workflow fragments, by taking into account
the structure of fragments when applying the machine learning techniques. Tech-
niques from Web page usability mining also promise to assist in capturing the
behaviour of scientists as they construct a workflow, make mistakes and then
take corrective actions.

4.7 Lack of Workflow Fragment Rankings

Once workflows and annotations based on the workflow model are created, one
can query these for relevant fragments (Q3). As workflow fragment discovery is
about retrieving those fragments that are “close enough” to a user’s context,
the notion of rankings and similarity is inherently present. Fragment rankings
are the result of applying a series of metrics to workflow annotations based on
a query mechanism. Challenges lie ahead in both developing suitable metrics for
workflow similarity and generating rankings based on these metrics with query
mechanisms.

Domain-dependent metrics relate processes on domain-specific issues. For
instance, the choice of gene prediction fragments in Figure 2 depends on what
species one is interested in. Given the evolutionary similarity between human and
cattle, the prediction techniques used for these species (present in the Williams



Seven Bottlenecks to Workflow Reuse and Repurposing 335

and Trypanosomiasis workflows) are more closely related to each other than to
the techniques needed for the Aspergillus fungus. Domain-independent metrics,
on the other hand, work over features such as data and control flow, calculating
for instance how many services are to be moved, removed, added, replaced,
merged or split to relate different fragments. This in effect would provide a
measure of the integration effort involved to transform one piece of workflow
into another.

In case one would like to produce rankings based on OWL ontologies, a
mechanism will be needed to measure (dis-)similarity between fragment repre-
sentations. For descriptions in OWL (Lite and DL), we need to retrieve those
cases where two fragments are similar but happen to fall outside a strict sub-
sumption relationship, e.g. the structure of two fragments is the same, except
there are two services which are not in a subsumption relationship.

Three approaches have been proposed over the years to deal with the no-
tion of similarity in DLs. The first is feature-based, and builds on the analogy
of DL concepts and roles as pieces of conceptual knowledge, where some of the
pieces (features) can be shuffled around. Feature-based approaches and imple-
mentations relying on structural algorithms have been developed for FL− in
using shared roles and role values for matching, and by counting shared parent
concepts [26]. In [27] a structural algorithm based on abduction and contraction
is presented for a fragment of ALC. A tableaux algorithm for abduction and
contraction based matching in ALN is presented in [28]. This approach stays
within the first-order logic paradigm. Two alternative approaches for similarity
in DL bring in elements from other paradigms, thereby creating a hybrid for-
malism. The vector-based approach adopts normalised vectors and the cosine
measure from information retrieval, e.g. [29], whereas the probability-based ap-
proach tries to merge Bayesian inference with DL reasoning, e.g. [30]. The theory
and practical implications of these alternative approaches are less understood.

We have tried to apply the feature-based approach for ranking fragments
but, so far, have been unable to, given the expressive constructs used in our
workflow ontology (details in [17]). If no abduction algorithm for OWL Lite can
be devised, approximation [31] might offer a way out by simplifying the ontology
in a non trivial way to the level of expressivity the abduction algorithm can
handle. Another option is to stay within OWL Lite and devise query relaxation
strategies for a query manager, treating the reasoner as a black box.

5 Conclusions

The vision for the Web of Science fits well with the vision for the Semantic
Web [3]. We see reuse and repurposing as a way of bootstrapping the Web
of Science by stimulating the dynamics of sharing and reuse of experimental
components in the scientific community. In this paper we investigated what it
would mean for scientific problem-solving knowledge, captured in workflows, to
be found and adapted, i.e. repurposed. We presented evidence that e-Science
is an area where workflows are already actively shared, reused and repurposed.



336 A. Goderis et al.

We identified seven bottlenecks for repurposing and related some of these to
challenges for the Semantic Web. We considered whether two of the identified
bottlenecks, workflow fragment discovery and the ranking of fragments, can be
tackled by reasoning based on OWL. We found that the existing OWL-based
service description frameworks and querying technology would need extending
for doing so. In light of the evidence of reuse, we believe that e-Science offers
an appealing test bed for further experiments with Semantic Web discovery
technology.

Acknowledgements

This work is supported by the UK e-Science programme EPSRC GR/ R67743.
The authors would like to acknowledge the myGrid team. Hannah Tipney devel-
oped the Williams’ syndrome workflow and is supported by The Wellcome Foun-
dation (G/R:1061183). We thank the survey interviewees for their contribution:
Chris Wroe, Mark Greenwood and Peter Li (myGrid), Ilkay Altintas (Kepler),
Vasa Curcin (InforSense), Ian Wang (Triana), Colin Puleston (Geodise) and Ben
Butchart (Sedna). Sean Bechhofer provided useful comments on an earlier draft.

References

1. T. Hey and A. Trefethen. The uk e-science core program and the grid. In Int.
Conf. on Computational Science, volume 1, pages 3–21, 2002.

2. R. Stevens, H. Tipney, C. Wroe, et al. Exploring Williams Beuren Syndrome Using
myGrid. Bioinformatics, 20:303–310, 2004.

3. J. Hendler. Science and the semantic web. Science, January 23 2003.
4. I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF

to OWL: the making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

5. F. van Harmelen. How the semantic web will change kr: challenges and opportu-
nities for a new research agenda. The Knowl. Eng. Review, 17(1), 2002.

6. R. King, K. Whelan, F. Jones, et al. Functional genomic hypothesis generation
and experimentation by a robot scientist. Nature, 427(6971), 2004.

7. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-services: a look behind the
curtain. In 22nd Symposium on Principles of database systems PODS, 2003.

8. C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A suite of daml+oil
ontologies to describe bioinformatics web services and data. Intl. J. of Cooperative
Information Systems, 12(2):197–224, 2003.

9. D. Berardi, G. De Giacomo, M. Lenzerini, M. Mecella, and D. Calvanese. Synthesis
of underspecified composite e-services based on automated reasoning. In 2nd Int.
Conf. on Service Oriented Computing ICSOC, pages 105–114, 2004.

10. A. Wombacher, P. Fankhauser, B. Mahleko, et al. Matchmaking for business pro-
cesses based on choreographies. Int. J. of Web Services, 1(4), 2004.

11. E. Lee. Overview of the ptolemy project. Technical Memorandum UCB/ERL
M03/25, University of California, Berkeley, July 2 2003.

12. Annette ten Teije, Frank van Harmelen, and Bob Wielinga. Configuration of web
services as parametric design. In EKAW’04, 2004.



Seven Bottlenecks to Workflow Reuse and Repurposing 337

13. W. van der Aalst, A. Weijters, and L. Maruster. Workflow mining: Discovering
process models from event logs. IEEE TKDE, 16(9):1128–1142, 2004.

14. P. Lord, S. Bechhofer, M. Wilkinson, et al. Applying semantic web services to
bioinformatics: Experiences gained, lessons learnt. In ISWC, 2004.

15. E. Deelman, J. Blythe, Y. Gil, et al. Mapping abstract complex workflows onto
grid environments. Journal of Grid Computing, 1(1), 2003.

16. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

17. A. Goderis, U. Sattler, and C. Goble. Applying descriptions logics for workflow
reuse and repurposing. In DL workshop 2005.

18. S. Al Sairaf, F. S. Emmanouil, M. Ghanem, et al. The design of discovery net:
Towards open grid services for knowledge discovery. Int. J. of High Performance
Computing Applications, 2003.

19. F. Tao, L. Chen, N. Shadbolt, et al. Semantic web based content enrichment and
knowledge reuse in e-science. In CoopIS/DOA/ODBASE, pages 654–669, 2004.

20. S. Majithia, D. Walker, and W. Gray. Automated web service composition using
semantic web technologies. In Int.l Conf. on Autonomic Computing, 2004.

21. I. Altintas, C. Berkley, E. Jaeger, et al. Kepler: An extensible system for design and
execution of scientific workflows. In 16th Intl. Conf. on Scientific and Statistical
Database Management(SSDBM), 2004.

22. P. Li, K. Hayward, C. Jennings, et al. Association of variations in I kappa B-epsilon
with Graves’ disease using classical methodologies and myGrid methodologies. In
UK e-Science All Hands Meeting, 2004.

23. G. Joeris and O. Herzog. Managing evolving workflow specifications. In 3rd Int.
Conf. on Cooperative Information Systems (CoopIS98), pages 310–319, 1998.

24. K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discovery,
interaction and composition of semantic web services. Web Semantics: Science,
Services and Agents on the WWW, 1(1):27–46, 2003.

25. U. Keller, R. Lara, A. Polleres, et al. Wsmo web service discovery. WSML Working
Draft D5.1 v0.1, University of Innsbruck, 2004.

26. S. Bechhofer and C. Goble. Classification Based Navigation and Retrieval for
Picture Archives. In IFIP WG2.6 Conference on Data Semantics, DS8, 1999.

27. A. Cali, D. Calvanese, S. Colucci, et al. A description logic based approach for
matching user profiles. In DL workshop 2004.

28. S. Colucci, T. Di Noia, E. Di Sciascio, et al. A uniform tableaux-based approach
to concept abduction and contraction in aln. In DL workshop 2004.

29. C. Meghini, F. Sebastiani, U. Straccia, and C. Thanos. A model of ir based on a
terminological logic. In 116th ACM SIGIR, pages 298 – 307, 1993.

30. D. Koller, A. Levy, and A. Pfeffer. P-classic: A tractable probabilistic description
logic. In AAAI 1997, pages 390–397, Rhode Island, August.

31. S. Brandt, R. Küsters, and A.-Y. Turhan. Approximation and difference in de-
scription logics. In KR2002, pages 203–214, San Francisco, USA, 2002.



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 338 – 352, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

On Logical Consequence for Collections of  
OWL Documents 

Yuanbo Guo and Jeff Heflin 

Computer Science & Engineering Dept.,  
Lehigh University, Bethlehem, PA18015, USA 
{yug2, heflin}@cse.lehigh.edu 

Abstract. In this paper, we investigate the (in)dependence among OWL docu-
ments with respect to the logical consequence when they are combined, in par-
ticular the inference of concept and role assertions about individuals. On the 
one hand, we present a systematic approach to identifying those documents that 
affect the inference of a given fact. On the other hand, we consider ways for fast 
detection of independence. First, we demonstrate several special cases in which 
two documents are independent of each other. Secondly, we introduce an algo-
rithm for checking the independence in the general case. In addition, we de-
scribe two applications in which the above results have allowed us to develop 
novel approaches to overcome some difficulties in reasoning with large scale 
OWL data. Both applications demonstrate the usefulness of this work for im-
proving the scalability of a practical Semantic Web system that relies on the 
reasoning about individuals. 

1   Introduction 

To fully exploit the power of the Semantic Web, it is crucial to reason, in an efficient 
and scalable way, with its data, e.g., those described in the OWL language [4]. Repre-
sentative OWL reasoners of today such as FaCT [12] and Racer [9], implemented 
upon the most advanced reasoning mechanisms, have seen some successful applica-
tions. However, the scalability of those systems is still far from satisfactory in the 
context of the Semantic Web, which represents much larger problem sizes than those 
traditionally found in artificial intelligence. For instance, as Haarslev and Möller [10] 
pointed out, the scale of data that Racer could appropriately handle is still rather lim-
ited (only up to 30,000 individuals in their experimental setting) given non-naïve on-
tologies and instances. Hence, a great challenge remains in order to implement a prac-
tical Semantic Web system that is capable of reasoning on large scale data. 

In this paper, we investigate a specific issue in this regard. We consider the situa-
tion when a system needs to reason over a large collection of OWL documents in or-
der to answer queries against them. If scalability was not an issue, we could load the 
entire set of documents into a contemporary OWL reasoner and then issue queries in a 
normal fashion. However, this will not work in practice considering the large number 
of documents the system has to deal with. For instance, practical reasons such as 
memory limitations might simply prevent the system from processing a document col-
lection in its entirety.



 On Logical Consequence for Collections of OWL Documents 339 

This work explores ways for improving the scalability of the system in performing 
the above kind of task. Note, here we assume we have access to a powerful OWL rea-
soner and we are not concerned with the implementation or optimization of the rea-
soner per se. Instead, we consider how large problems that cannot typically be solved 
by the reasoner can be reduced into problems that can be solved. 

Specifically, we have the following considerations. First, given a set of documents, 
it might be the case that, only a subset of the documents is needed in order for a spe-
cific statement to be true. In other words, we do not need to combine the whole set 
and perform expensive reasoning on it in order to guarantee a correct inference with 
respect to that statement.  Furthermore, if we could show that a set of documents, 
when combined, would not form any conclusions that are not supported by any of the 
documents individually, then we may adopt a divide-and-conquer approach for the re-
lated reasoning tasks on those documents. 

The above considerations have led us to research on what we call dependence and 
independence relationships among OWL documents. Now that the notions apply to 
general logical knowledge bases, we define them in general as follows: 

Def. 1.1. Let K be the set of knowledge bases {K1,…,Kn} (n>1). The members of K 

are logically dependent on each other with respect to a sentence  iff K is a minimal 

set such that K . 

Def. 1.2. Let K be the set of knowledge bases {K1,…,Kn} (n>1). The members of K 

are logically independent of each other iff for every sentence , there are no mem-

bers of K that are logically dependent on each other with respect to . 

What we shall look into in this work is the logical (in)dependence relationships 
among OWL documents with respect to OWL assertions. Here, we refer to an OWL 
document as an RDF/XML-syntax document that conforms to the specification by the 
OWL reference [4: Section 2]. In addition, to clarify the meaning of “K ” in the 
above definitions when applied to OWL, we say a set of OWL documents entail an 
assertion  iff  is entailed by the union of the imports closure1 of every document in 
the set. Note that this is different from the notion of entailment defined in ongoing re-
search on distributed description logics [2], which focuses on preventing the propa-
gation of inconsistency. 

This work will focus on OWL Lite and OWL DL, the two decidable sublanguages 
of OWL. Since OWL Lite and OWL DL are logically equivalent to DL SHIF(D) and 
DL SHOIN(D) respectively [13], throughout the discussion, we will regard an OWL 
document as a description logic (DL) knowledge base consisting of a TBox T (equiva-
lent to the parse result of the ontology) and an ABox A (equivalent to the parse result 
of the instance data committing to the ontology). We use (T, A) to denote such a 
knowledge base. To facilitate the discussion, we shall use the following terms, which 
are not conventionally used in the literature: 
                                                           
1  Imports closure of an OWL document is the information in the document unioned with the in-

formation in the imports closure of documents that are imported by that document [19]. 



340 Y. Guo and J. Heflin 

An OWL DL knowledge base (resp. an OWL DL TBox, an OWL DL ABox) is the 
result of parsing an OWL DL document (resp. the ontology part of an OWL DL 
document, the instance data part of an OWL DL document) into a DL knowledge 
base (resp. a DL TBox, a DL ABox). Similarly for OWL Lite knowledge base, OWL 
Lite TBox, and OWL Lite ABox. In the subsequent discussion, for brevity, “DL” 
will be omitted without confusion. 

As a final remark, as the first step of the work, we consider OWL documents that 
commit to a common ontology. Additionally, we will concentrate on ABox reasoning, 
in particular the inference of concept assertions and role assertions. This is motivated 
by the expectation that the instance data will greatly outnumber the ontologies on the 
Semantic Web. 

2   Identifying the Logical Dependence 

In this section, we examine the dependence relationship among OWL documents. 
Specifically, we attempt to define a systematic way to identify what documents, when 
combined together, may affect the inference of a specific assertion.  We base our ap-
proach on the identification of the relevant assertion set to a given assertion, as de-
fined below. Again, we first define the notions in general. Then, we give a specific 
account of the notions for ABox assertions. 

Def. 2.1. A set S of sentences is a relevant sentence set to the logical entailment of a 

sentence , denoted Rel(S, ), iff S  . 

Def. 2.2. A set S of sentences is a minimal relevant sentence set to the logical entail-

ment of a sentence , denoted MinRel(S, ), iff S is a minimal set such that Rel 

(S, ). 

Def. 2.3. Given a consistent TBox T, a set S of ABox assertions is a relevant ABox as-
sertion set to the logical entailment of an ABox assertion , denoted RelT (S, ), iff 

<T,S>  . 

Def. 2.4. Given a consistent TBox T, a set S of ABox assertions is a minimal relevant 
ABox assertion set to the logical entailment of an ABox assertion , denoted MinRelT 

(S, ), iff S is a minimal set such that RelT (S, ). 

Now we are able to establish a relationship between relevance and dependence for 
OWL knowledge bases with the same TBox, i.e., they commit to the same ontology. 

Proposition 2.1. Let K be the set of OWL knowledge bases K1=(T, A1),…, Kn=(T, An)
(n>1), wherein T  is consistent. The members of K are logically dependent on each 
other with respect to an ABox assertion  iff K is a minimal set such that there exist 

1,…, m such that MinRelT ({ 1,…, m}, ) and for every i (i=1,…,m) there exists Aj 

(j=1,…,n) such that i Aj. 

The above proposition, in effect, indicates a way of determining the dependence 
among a set of OWL knowledge bases with respect to a given assertion, i.e., by look-



 On Logical Consequence for Collections of OWL Documents 341 

ing for relevant assertion sets to that assertion. Therefore, the remaining question is 
how to identify those relevant sets. We begin by identifying a set of inference rules 
for an OWL Lite knowledge base, as shown below. 

R1) If A then A`  

R2) If T   C1 Cn C and A`a:C1,…,a:Cn, then A`a:C 

R3) If T  R1 R2 and A`<a,b>:R1 then A`<a,b>:R2 

R4) If T  U1 U2 and A`<a,v>:U1 then A`<a,v>:U2 

R5) If A`<a,b>:R then A` <b,a>:R- 

R6) For R  R+, if A`<a,b>:R and <b,c>:R then A` <a,c>:R 

R7) If A`<a,b>:R and b:C then A` a: R.C 

R8) If A`<a,v>:U and v D then A` a: U.D 

R9) If A`a: R.C and <a,b>:R then A`b:C 

R10) If A`<a,b>:R then A`a: 1R

R11) If A`<a,v>:U then A`a: 1U

R12) If A`a: 1R, <a,b1>:R, and <a,b2>:R then A` b1=b2 

R13) If A`a=b then A`b=a 

R14) If A`a=b and a:C (resp. <a,c>:R, <c,a>:R, a=c) then A`b:C (resp. 
<b,c>:R, <c,b>:R, b=c) 

R15) If v1= v2 and A`<a,v1>:U then A`<a,v2>:U 

We have defined the above rules by referring to the work of Royer and Quantz [20, 
21] with several extensions and adaptations. They described a generic approach to de-
riving, via Sequent Calculus, complete inference rules for description logics. They 
also provided the result for a specific description logic, which is generally more ex-
pressive than OWL Lite if we ignore datatypes and equality. We extend those rules by 
taking into account datatypes and equality2. Moreover, we handle the inference in-
volving subsumption differently. They provided over 100 rules for subsumption. We 
chose not to include them since our focus is on ABox assertions and those rules 
greatly complicate the derivation of the relationship we are looking for. Instead, we 
remedy the absence of those subsumption rules by relying on the entailment of the 
TBox, as Rules 2 to 4 show. From the implementation point of view, this means we 
resort to the reasoner for checking subsumptions. We consider this as a reasonable 
method especially when the application involves a large amount of instance data over 
a relatively small number of ontologies. 

As some other remarks, in defining the rules we only consider a consistent knowl-
edge base.3 Also, for simplicity we assume no untyped data values in the knowledge 
                                                           
2  OWL supports the expression of equality. Also the language does not make the unique names 

assumption. 
3  These rules may easily be extended to support the inconsistent case and then we consider they 

could potentially be exploited for other kinds of tasks such as debugging inconsistencies. 
However, that is beyond the interest of this paper. 



342 Y. Guo and J. Heflin 

base. In addition, we rely upon the reasoner to reason about the data values such as de-
ciding if they belong to a specific datatype and their equality (refer to Rules 8 and 15). 
Moreover, in the rules and also the subsequent discussion, we assume that every asser-
tion a:C1 Cn is represented as a:C1,…,a:Cn. Finally, our rule set is incomplete for 
OWL DL, which additionally supports oneOf. As Royer and Quantz pointed out, taking 
account of enumerated classes would greatly complicate the resultant rule set. Thus they 
did not give a complete set of rules with respect to reasoning about enumerated classes, 
and neither did we. We leave this as an open issue. 

The above rule set may not be suitable for implementing a practical reasoner due 
to its special handling of TBox related inferences. However, these natural deduc-
tion-style inference rules can facilitate the identification of the relevant assertion 
sets to a given assertion, as shown in Proposition 2.2. The proposition is obvious by 
following the rule firing relations (refer to the right column for the corresponding 
rules). 

Proposition 2.2. In OWL Lite, given a consistent TBox T, a consistent set S of ABox 
assertions, and a concept or role assertion , RelT (S, ) iff S is at least one of the fol-
lowing sets: 

For any : 
 {  }                            (R1) 

If  is a:C: 
 S1 Sn wherein RelT (S1, a:C1), …, RelT (Sn, a:Cn), T  C1 Cn C (R2) 
 S1 S2  wherein RelT (S1, b: R.C), RelT (S2, <b,a>:R)        (R9) 
 S1 S2  wherein RelT (S1, a=b), RelT (S2, b:C)           

 (R14) 
If  is a: R.C: 
 S1 S2  wherein RelT (S1, <a,b>:R), RelT (S2, b:C)          (R7)  

If  is a: U.D: 
 S wherein RelT (S, <a,v>:U), v D               (R8) 

If  is a: 1R: 
 S wherein RelT (S, <a,b>:R)                  (R10) 

If  is a: 1U): 
 S wherein RelT (S, <a,v>:U)                  (R11) 

If  is <a,b>:R: 
 S wherein RelT (S,  <a,b>:T), T   T R              (R3) 
 S wherein RelT (S, <b,a>:R-)                  (R5) 
 S1 S2 

wherein RelT (S1, <a,c>:R), RelT (S2, <c,b>:R), R R+       (R6) 
 S1 S2 

wherein RelT (S1, a=c), RelT (S2, <c,b>:R), or           (R14) 
     RelT (S1, b=c), RelT (S2, <a,c>:R)             (R14) 
If  is <a,v>:U: 
 S wherein RelT (S,  <a,v>:V }, T   V U             (R4) 
 S wherein RelT (S, <a,w>:U), v=w               (R15) 



 On Logical Consequence for Collections of OWL Documents 343 

If  is a=b: 
 S1 S2 S3                         

wherein RelT (S1, c: 1R), RelT (S2, <c,a>:R), RelT (S2, <c,b>:R)   (R12) 
 S wherein RelT (S, b=a)                    (R13) 
 S1 S2 wherein RelT (S1, c=a), RelT (S2, c=b)           (R14) 

Since determining MinRelT is straightforward given the information of RelT, Propo-
sitions 2.1 and 2.2 have rendered us a systematic way of identifying the dependent 
knowledge base set with respect to a specific assertion. Next, we show an application 
of the approach. 

Application I 

In another work [8], we aim at developing a query answering system for a repository 
of OWL documents. One important functionality of the system is to answer a user’s 
query about the minimal subsets of documents in the repository that entail a specific 
assertion. Currently we only consider queries about concept instances on OWL Lite 
documents. In order to improve query time, the system performs preprocessing of the 
documents during loading and records which new assertion is entailed by which 
minimal subsets of documents. To that end, it enumerates the subsets of the docu-
ments in the order of their sizes, i.e. single document first, and then the combinations 
of two documents, and so on, and performs reasoning on those consistent combina-
tions in sequence. 

Obviously, processing the document combinations in this fashion is inefficient since 
the potential number of combinations the system has to handle increases exponentially 
in the number of documents. Given Propositions 2.1 and 2.2, we are able to employ a 
different strategy: we perform reasoning on the whole union of the documents immedi-
ately after processing every individual document. Then for each inferred concept asser-
tion  from the union, we directly identify, according to those propositions, the minimal 
document sets (containing more than one document) that entail , in other words, the 
sets of documents that are dependent on each other with respect to .

Although an efficient implementation of the propositions is still a remaining issue, 
we consider that, with a proper mechanism for indexing and searching the assertions, 
the complexity of identifying the dependent subsets among a collection of documents 
will be no more than that of performing reasoning on the union of the entire set. Thus, 
we can expect prominent performance improvement in cases where new assertions 
that are entailed by more than one document are relatively few.

To give readers a flavor of this, we introduce an initial evaluation---the system is 
still under development. We used 100 small OWL Lite documents (committing to the 
same ontology). These documents are adaptations from the test data of the Lehigh 
University Benchmark [7], which simulates a realistic domain. We conducted reason-
ing on the union of the entire document set. Then, we tried to identify the dependent 
subsets of documents with respect to each of the concept assertions entailed by the 
union. As a result, we pinpointed 43 subsets each containing two documents from 16 
assertions, which were new entailments by the union than the individual documents.
Note, in this case, none of those assertions captured 3 or more documents. This is a 



344 Y. Guo and J. Heflin 

significant improvement considering that, before the strategy is adopted, the system 
had to handle the level of 2100 document combinations in order to completely find 
those subsets. 

3   Detecting the Logical Independence – Special Cases 

Hereafter, we will switch our focus to the detection of independence. Unlike depend-
ence, the notion of independence is not defined with respect to a specific statement. 
Instead, we are interested in more general relationships such as independence with re-
spect to all ABox assertions of certain forms. The result in the previous section pro-
vides an indirect way for determining this kind of independence between a set of 
OWL knowledge bases K, i.e., by showing that, for every applicable assertion, there 
are no members of K that are mutually dependent with respect to that assertion. How-
ever, this is obviously a very inefficient approach since we have to enumerate and test 
all possible assertions. In the following two sections, we explore some faster ways. 
We begin with special cases, in which we demonstrate that, under certain conditions, 
two OWL documents are independent of each other with respect to the assertions of 
specific forms.

First, we introduce the following notation: 
Ind(K): The set of individual names in the OWL knowledge base K. 

The following theorem reveals the independence relationship between two OWL 
knowledge bases with disjoint sets of individual names. 

Theorem 3.1. Let K1=(T, A1) and K2=(T, A2) be two OWL knowledge bases. If 

Ind(K1) Ind(K2)= , then K1 and K2 are logically independent of each other with re-

spect to any concept assertion, role assertion, or equality assertion4. 

Proof. Let K=(T, A1 A2). This is equivalent to proving that for every assertion  be-
ing any form of a:C, <a,b>:R, <a,v>:U or a=b, K   iff either K1   or K2  . 

(<=) It is trivially true because OWL is monotonic. 
(=>) Since K  , every model I of K satisfies  (1). If either K1 or K2 is inconsis-

tent, since everything can be deduced from an inconsistent knowledge base, the theo-
rem is proved. In case both K1 and K2 are consistent, suppose K1   and K2   (2). 
Then there must exist a model I1 = ( I1,· I1) (resp. I2 = ( I2,· I2)) of K1 (resp. K2) that 
does not satisfy . We assume that I1 and I2 are disjoint (3). We could make the as-
sumption because if that is not the case, we can always replace I1 with another inter-
pretation I1’ such that 1) I1’ and I2 are disjoint, and 2) every domain object in I1’ 
has a counterpart in I1

 and stands in the same place in ·I1’ as its counterpart does in 
·I1, and vice versa. 

Now define an interpretation I=( I,·I) for K wherein, 
 I = I1 I2 
 For every concept C, CI = CI1 CI2 

                                                           
4  This does not hold for inequality. For instance, if T claims the concepts C1 and C2 as disjoint 

whereas A1 and A2 assert a:C1 and b:C2 respectively, then we can infer that a b from the un-
ion of K1 and K2. 



 On Logical Consequence for Collections of OWL Documents 345 

 For every (object and datatype) role R, RI = RI1 RI2 
 For every individual a:5 

If a Ind(A1), aI = aI1; otherwise, aI = aI2 

 For every data value v, vI = vD 
 The concrete domain D

I= D
I1= D

I2 

Next we prove that I is a model of K. As it has been shown that OWL DL entail-
ment is reducible to DL SHOIN(D) satisfiability [13], we will show that I is a model 
of K based on the semantics of SHOIN(D) (cf. Fig. 3 of [13]).6 

First, it is straightforward to show from the definition of I that I satisfies the se-
mantics relating to atomic concept, datatype, role, individual, data value, inverse role, 
top/bottom concept, disjunction, oneOf, concept inclusion, and role inclusion. For ex-
ample, 

(C1 C2)I = (C1 C2)I
1 (C1 C2)I

2 = (C1
I1 C2

I1) (C1
I2 C2

I2)
= (C1

I1 C1
I2) (C2

I1 C2
I2) = C1

I C2
I 

Moreover, based on the definition of I plus the assumption (3), we can show that I
satisfies the semantics relating to conjunction, negation, retrictions, and  transitive 
role. For instance, 

( R.C)I = ( R.C)I1 ( R.C)I2 

= {x| y.<x,y> RI1 and y CI1} {x| y.<x,y> RI2 and y CI2} 
=via (3)= {x| y.<x,y> RI1 RI2 and y CI1 CI2} 

= {x| y.<x,y> RI and y CI } 

Lastly, for every ABox assertion  in K, we can show I satisfies  based on the 
definition of I and the fact that  is originally from either K1 or K2 and thus either I1 

or I2 satisfies . For example, if a:C is from K1 and therefore satisfied by I1, then   
aI=aI1. Since aI1 CI1 and CI1 CI, aI CI. Thus I satisfies a:C. 

So far, we can conclude that I is a model of K. Next we show I however does not 
satisfy . If  is of the form a:C, according to the definition of I, aI equals to either 
aI1 or aI2. Since neither I1 nor I2 satisfies , aI1 CI1 and aI2 CI2. In addition, given 
the assumption of (3), we have aI1 CI2 and aI2 CI1. Hence, aI CI1 CI2 and thus aI

CI, which means I does not satisfy . With similar arguments, we can show that I 
does not satisfy  of the form <a,b>:R, <a,v>:U or a=b either. 

In conclusion, I is a model of K but I does not satisfy . This is contradictory to 
(1), which means assumption (2) does not hold. Therefore, either K1   or K2  . 

The theorem below considers the independence between OWL knowledge bases in 
terms of deriving inconsistency. 

Theorem 3.2. Under the same precondition of Theorem 3.1, K is inconsistent iff ei-
ther K1 or K2 is inconsistent. 
                                                           
5 Note that for every enumerated class {o1,…, on}, since Ind(K1) and Ind(K2) are disjoint, o1,…, 

on could not occur in both knowledge bases. 
6  For simplicity, we ignore the translation of OWL DL into SHOIN(D) since it maintains the 

satisfaction of theorem’s precondition. 



346 Y. Guo and J. Heflin 

Proof. Again the (<=) part is obvious. (=>) That K is inconsistent means K has no 
models. Suppose both K1 and K2 are consistent and thus have a model respectively, 
we could find a model I for K as we do in the proof of Theorem 3.1. Therefore, K1 
and K2 could not be both consistent. 

Corollary 3.1. Theorem 3.1 (and also Theorem 3.2) still holds if every individual 
a Ind(A1)  Ind(A2) appears only in those assertions shared by A1 and A 2. 

Proof. (<=) It is trivially true again. (=>) Define K2’=(T, A2’) by removing from A2 all 
the assertions that are also in A1. In this way, K1 K2’ still equals to K, but Ind(K1) and 
Ind(K2’) become disjoint. Therefore according to Theorem 3.1, for every ABox asser-
tion  except the inequality assertion, K   implies either K1   or K2’  . Since K2 
subsumes K2’, based on monotonicity, we have K   implies either K 1   or  
K2  . In a similar fashion, we can prove the cases for Theorem 3.2. 

Next, we will consider a different situation by removing the disjointness require-
ment on individual names while imposing another restriction: we look at OWL docu-
ments that contain only RDF(S) [23] features. We look at the RDF(S) fragment of 
OWL considering oftentimes applications do not need the full expressivity of OWL 
and the fact that RDF-style documents occupy a considerable portion of the Semantic 
Web we have seen so far. 

Theorem 3.3. Let K1=(T, A1) and K2=(T, A2) be two OWL knowledge bases. If both 
knowledge bases are limited to the RDF(S) fragment, then K1 and K2 are logically in-
dependent of each other with respect to any assertion  of the form of a:C  
or <a,b>:p. 

Proof. It is equivalent to proving that K1 K2   iff either K1   or K2  .(<=) 
Once again it is obvious. (=>) Table 3.1 illustrates how we can transfer an RDF(S) 
statement into a FOL rule. As can be seen, if a knowledge base contains only FOL 
rules mapping to RDF(S) statements, it will fit into Horn Logic. This means we could 
apply a simple forward chaining reasoning on that knowledge base (in this case 
K1 K2) to get a sound and complete inferencing. 

Table 3.1. Correspondence between OWL and DL and between DL and FOL (RDF(S) frag-
ment) [22] 

OWL Fact/Axiom DL Syntax FOL Rule 
a type C a:C C(a) 

a P b <a,b>:P P(a,b) 
rdfs:subclassOf C1 C2 x.C1(x) C2(x) 

rdfs:subpropertyOf P1 P2 x,y.P1(x,y) P2(x,y) 
rdfs:domain P-.C x,y.P(x,y) C(x) 

rdfs:range P.C x,y.P(x,y) C(y) 

Furthermore, since every rule presented in the above table has only one antecedent, 
any proof tree generated on the knowledge base actually reduces to a chain-like struc-
ture, starting from a fact in the input till the goal fact. In other words, no proof trees 



 On Logical Consequence for Collections of OWL Documents 347 

for a new fact involve more than one fact from the input: for two input facts to be 
used in a proof, there must be a step in the proof that involves two facts that are re-
spectively either the input facts themselves or facts derived from the input facts. 
However, this is impossible given the above mentioned structure of the proof tree. 
Thus the theorem is proved. 

Application II 

Next, we will show an application of the above results. In yet another work [7], we 
are conducting benchmarks of OWL knowledge base systems with respect to queries 
upon the instance data. To facilitate evaluating the query completeness and soundness 
of the systems under test, we intended to use Racer to generate the answer set as a ba-
sis for comparison. However, a big problem was that Racer at the current stage is in-
capable of handling the dataset used in the benchmark in our experimental environ-
ment. The smallest dataset used in the benchmark consists of 15 OWL documents. 
However, as shown in [11], due to Racer has to perform consistency check before an-
swering queries, it could only load up to 5 of the documents (9555 individuals). 

Nevertheless, we were able to overcome this problem by virtue of Corollary 3.1. In 
the benchmark, a dataset consists of multiple OWL Lite documents that commit to the 
same ontology (also in OWL Lite). We have found out that these documents meet the 
precondition in Corollary 3.1 with a handful of exceptions7. Furthermore, by focusing 
on those exceptional assertions we have figured out without difficulty that they will not 
lead to any inferences or inconsistencies across multiple documents. Therefore, we 
could conclude that these documents are independent of each other with respect to the 
kind of inference we need, i.e., concept and role instance retrieval. This means we could 
let Racer do such reasoning on one document from the test set at a time and still guaran-
tee a sound and complete inference by taking the union of the results on every individ-
ual document later on. In this way, we have found a solution the above problem. 

4   Detecting the Logical Independence – The General Case 

In the previous section, we introduced several ways of quickly detecting the inde-
pendence of OWL knowledge bases in some special cases. Now we look at the gen-
eral case, i.e., for arbitrary knowledge bases. We have realized that this is a challeng-
ing task. Here we present our initial results. The algorithm below is responsible for 
checking the independence between two OWL knowledge bases. 

1 procedure CHECK-INDEPENDENCE(K1, K2) 
2 input: OWL knowledge bases K1=(T, A1) and K2=(T, A2) 
3 output: indicate if K1 and K2 are independent with 
 respect to any concept assertion or role assertion 

4 begin 
5  I:= Ind(A1)  Ind(A2); //overlap in individual names 
6  if I =  then return true; 
                                                           
7  These documents have few overlap in individual names because they are dedicated to the de-

scription of different organizations (i.e. academic departments) and their affiliated persons. 



348 Y. Guo and J. Heflin 

7  if CHECK-AND-REALIZE(A1)=false then return true; 
8  if CHECK-AND-REALIZE(A2)=false then return true; 
9  O := { a:C  A1 A2 | a  I } {<a,b>:R  A1 A2 | a  I or b  I }

{ a:C A1 A2 | b I. <a,b>:R  A1 A2 or <b,a>:R  A1 A2 }; 
10 AO1 := A1 O; //Combine A1 and O 
11 if CHECK-AND-REALIZE(AO1)=false then return false; 
12 if new assertions have been added to AO1 then return 

false; 
13 AO2 := A2 O; //Combine A2 and O 
14 repeat 11-12 for AO2; 
15 return true; 
16end 
17procedure CHECK-AND-REALIZE (A) 
18 Check consistency of A; 
19 if A is inconsistent then return false; 
20 Perform ABox reasoning on A and update A accordingly, 

i.e., 
A = A 

{a:C | A  a:C and C is among the most specific con-
cepts that a is an instance of} 
{<a,b>:R | A  <a,b>:R and R is among the most spe-
cific roles that <a,b> is an instance of}; 

21 return true; 
22end 

Fig. 4.1 illustrates the key operations in the algorithm. 

 

Fig. 4.1. Illustration of the algorithm CHECK-INDEPENDENCE. For instance, if R1 is a transi-
tive role, the algorithm will detect a new inference in AO1 and thus determine that K1 and K2 are 
not independent. 

  { o1:C1, 
o2:C2,  
o3:C3,  
<o2, o1>:R1,  
<o2, o3>:R2 } 

  { o1:C1,  
o4:C2, 
o5:C3,  
<o1, o4>:R1, 
<o4, o5>:R3 } 

A1 (after realization) A2 (after realization)
{ o1} 

I
  { o1:C1, 

o2:C2, 
o4:C2, 
<o2, o1>:R1, 
<o1, o4>:R1 } 

O

  { o1:C1, 
o2:C2,  
o3:C3,  
o4:C2, 
<o2, o1>:R1,  
<o2, o3>:R2,  
<o1, o4>:R1 } 

  { o1:C1,  
o2:C2, 
o4:C2, 
o5:C3,  
<o1, o4>:R1, 
<o4, o5>:R3, 
<o2, o1>:R1 } 

AO2(before realization)AO1(before realization)



 On Logical Consequence for Collections of OWL Documents 349 

Proposition 4.1. CHECK-INDEPENDENCE is sound and complete in determining 
the independence of two OWL knowledge bases K1=(T, A1) and K2=(T, A2), wherein 
T is inconsistent, with respect to the logical entailment of any concept assertion or 
role assertion. 

Proof (sketch). The algorithm returns true when both knowledge bases do not overlap 
in individual names, which is supported by Theorem 3.1. (Lines 5-6)  In case the 
overlap does exist, the algorithm conducts reasoning on A1 and A2 respectively (Lines 
7-8). If either ABox is found inconsistent, K1 and K2 are obviously independent since 
any assertion can be entailed by the single inconsistent knowledge base. If both 
ABoxes are consistent, the algorithm performs the realization on each of them and up-
dates them accordingly. Next it calculates O and combines it with A1 and A2 respec-
tively (Lines 10-14). If either AO1 or AO2 is found inconsistent, we can immediately 
decide that K1 and K2 are not independent (with respect to any assertion). Otherwise, we 
check if there are any new inferences in AO1 and AO2. All the concept assertions and 
role assertions that have one or more individuals from I are contained in O. Hence A1\O 
and A2\O are disjoint in individual names, and according to Theorem 3.1, A1\O and 
A2\O are independent. Therefore, if both K1 and K2 are necessary for the inference of a 
concept or role assertion (and thus are dependent), there have to be some new inferences 
of concept or role assertion in either AO1 or AO2. This can be justified by considering 
the inference rules described in Section 28. We can assume that the reasoning is carried 
out by applying those rules. After the reasoning is done on A1 and A2, no more rules are 
applicable to each ABox. Then, by virtue of the forward chaining style of the rules, we 
can show that, suppose new inferences occur after combining A1 and A2, there must 
first be some inferences (of concept or role assertions) that involve the assertions in O. 

The advantage of the above algorithm lies in that, in case two knowledge bases are 
independent, it allows us to skip the reasoning on the combination of both knowledge 
bases by doing extra reasoning on two smaller ABoxes (i.e. AO1 and AO2 in the al-
gorithm). This is practically useful, for example, when the reasoning performance de-
grades significant as the size of the knowledge base increases. 

5   Related Work 

Logical reasoning is usually complex and expensive. Tons of effort has been made to 
speed up the reasoning, especially for a large knowledge base. Among this is the re-
search on relevance, i.e., the study of what is the relevant part of the knowledge base 
to a given reasoning task, e.g., a query. Most of the work is oriented towards a spe-
cific logical formalism, reasoning task (e.g. entailment, diagnosis, or abduction), and 
application domain. As a result, a variety of notions of (ir)relevance have emerged, 
under different names such as (ir)relevance, (in)dependence, irredundancy, influence-
ability, novelty, separability, and interactivity [6, 17, 14, 15]. 
                                                           
8  Although the rule set given in Section 2 is incomplete for OWL DL, it does not influence the 

proof here since we can assume the generation of a complete rule set via applying a similar 
approach to that used in Section 2. 



350 Y. Guo and J. Heflin 

We compare several of those notions that appeared similar to the (in)dependence 
we defined in this paper. Darwiche [3] and Lang et al. [14] study the notion of condi-
tional independence between propositions. Although they use the same term, their no-
tion of independence is different from ours. The conditional independence they con-
sider is the logical counterpart to probabilistic independence. Therefore, informally 
speaking, they look at such a relationship between two sets of propositions X and Y 
that, given some prior information (i.e., the condition), the addition of information 
about X (i.e., the truth values for the propositions in X) will not lead to the conclusion 
of any new information about Y. Levesque [16] and Lang et al. [14] introduce a notion 
of formula separability, which roughly is a relationship between a set S of sentences 
with respect to a specific sentence  such that every member of S can entail  indi-
vidually. If we apply this concept to a set S of knowledge bases with respect to the en-
tailment of a statement a, it would become a relationship that says the members of S 
are separable because every one of them entails a. We believe that this is unrelated to 
the independence relationship we defined, but we plan to look at this more closely in 
the future. 

In the DL literature, Tsarkov and Horrocks [22] discuss the use of the relevant in-
formation in a TBox to compute a subsumption with respect to that TBox. They de-
fine relevance as the transitive closure of the following depends relation: A concept or 
role expression depends on every concept or role that occurs in it, and a concept or 
role C depends on a concept or role D if D occurs in the definition of C. In addition, a 
concept C depends on every general conception inclusion in the TBox. Unlike their 
work, we focus on the relevance between ABoxes and ABox assertions. Therefore, 
both works are complementary to each other. 

Elhaik and Rousset [5] work on identifying the relevant subpart of an ABox (rela-
tive to a fixed TBox) to an update, i.e., those facts that may lead to new entailments 
together with the newly added fact. Among other differences, their work requires all 
the entailments to be explicitly recorded in the ABox (they encode and store the 
ABox using a database), moreover, they deal with a rather restricted DL language 
called core-CLASSIC with the constructors , , nR , nR and (on atomic concept 
only). 

Amir and McIlraith’s work on partition-based logical reasoning [1] provides algo-
rithms for reasoning with partitions of related logical axioms in propositional and 
first-order logic. Like our work in Section 2, they are concerned with reasoning on 
multiple knowledge bases with overlap in content. However, they are concerned with 
the overlap in predicates (or propositions) while we look at the overlap in individual 
names. 

McGuinness and Borgida’s approach [18] to the explanation of DL reasoning also 
bases on the use of the natural deduction-style inference rules. Since we have obvi-
ously different goals, we face different issues. They work on offering understandable 
and efficient explanations of subsumption reasoning based on the rules while we de-
rive the dependence relationship between OWL documents in terms of individual rea-
soning and try to use only a small portion of the rules without those for subsumption. 

Distributed Description Logics [2] extends the formalism of DL with the ability to 
handle complex mappings between domains via the use of so-called bridge rules. Al-
though its semantics is different from that of tradition DL, it could be possible that the 
future results of this research turn out to be useful to our work. 



 On Logical Consequence for Collections of OWL Documents 351 

6   Conclusion and Future Work 

Scalability is crucial for the success of the Semantic Web. Great effort has been made 
on the development of scalable reasoning mechanisms. In this work, we have as-
sumed the use of the reasoner as a black box and taken a different perspective to in-
vestigate how to improve the performance of a system that requires reasoning with 
large scale data. We studied the (in)dependence relationships among OWL documents 
with respect to the logical consequence of their collections. For most of the work, we 
have focused on documents that commit to a common ontology, and the inference 
about concept assertions and role assertions. First, we described a way of identifying 
those documents that are necessary for the inference of a given assertion. We intro-
duced a notion of relevant ABox assertion set to a given ABox assertion and a sys-
tematic approach to identify those sets. Secondly, we revealed two special cases in 
which two documents are independent of each other with respect to the entailment of 
assertions of specific forms: when they contain disjoint sets of individual names; and 
when they contain only RDF(S) statements. Finally, we introduced an algorithm for 
automatically detecting the independence in the general case. To the best of our 
knowledge, no prior work has been done to examine OWL documents (or DL knowl-
edge bases) against the relationships of (in)dependence as defined in this paper. 

We also described two applications wherein we have developed novel approaches 
using the above results to solve specific problems. In the first application, we exploit 
the dependence to help pinpoint from a repository of documents the minimal subsets 
that have caused the inference of a specific assertion. In the other, we harness the in-
dependence to overcome a problem in using the reasoner against large OWL instance 
data. Both examples demonstrate the potential use of this work in improving the scal-
ability of a Semantic Web system which relies on the reasoning about individuals. 

For future work, we intend to extend all the work to the OWL DL language, and to 
the case in which documents commit to different ontologies. Also, we plan to further 
improve the algorithm for detecting the independence. At the same time, we intend to 
implement the approaches in different applications wherein we will conduct empirical 
evaluations. 

Acknowledgement 

This material is based upon work supported by the National Science Foundation un-
der Grant No. IIS-0346963. 

References 

1. Amir, E. and McIlraith, S. Partition-Based Logical Reasoning for First-Order and Proposi-
tional Theories, Artificial Intelligence journal, 2003. 

2. Borgida, A and Serafini, L. Distributed Description Logics - Assimilating Information 
from Peer Sources. Journal of Data Semantics (1), 2003. 

3. Darwiche, A. A logical notion of conditional independence: properties and applications. 
Artificial Intelligence 97 (1-2) (1997) 45–82. 



352 Y. Guo and J. Heflin 

4. Dean, M. and Schreiber, G. (Eds). OWL Web Ontology Language Reference, W3C 
Recommendation 10 February 2004. http://www.w3.org/TR/2004/REC-owl-ref-20040210/ 

5. Elhaik, Q. and Rousset, M-C. Making an ABox persistent. In Proc. of the 1998 Descrip-
tion Logic Workshop (DL’98). 

6. Greiner, R., Pearl, J., Subramanian, D. (Eds.), Artificial Intelligence 97 (1–2) (1997), Spe-
cial Issue on Relevance. 

7. Guo, Y., Pan, Z., and Heflin, J. An Evaluation of Knowledge Base Systems for Large 
OWL Datasets. In Proc. of the 3rd International Semantic Web Conference (ISWC2004). 

8. Guo, Y. and Heflin, J. An Initial Investigation into Querying an Untrustworthy and Incon-
sistent Web. In ISWC2004 Workshop on Trust, Security and Reputation on the Semantic 
Web. 

9. Haarslev, V. and Möller, R. Racer: A Core Inference Engine for the Semantic Web. In 
Workshop on Evaluation on Ontology-based Tools, ISWC2003. 

10. Haarslev, V. and Möller, R. Optimization Techniques for Retrieving Resources Described 
in OWL/RDF Documents: First Results. In Proc. of Ninth International Conference on the 
Principles of Knowledge Representation and Reasoning (KR2004). 

11. Haarslev, V., Möller, R., and Wessel, M. Querying the Semantic Web with Racer + nRQL. 
In Proc. of the Workshop on Description Logics 2004 (ADL2004). 

12. Horrocks, I. The FaCT System. In Automated Reasoning with Analytic Tableaux and Re-
lated Methods International Conference (Tableaux’98). 

13. Horrocks, I. and Patel-Schneider, P. F. Reducing OWL entailment to description logic sat-
isfiability. J. of Web Semantics, 1(4):345-357, 2004. 

14. Lang, J., Liberatore, P., and Marquis, P. Conditional independence in propositional logic. 
Artificial Intelligence Journal, Volume 141(1), October 2002, pp79–121. 

15. Lang, J., Liberatore, P., and Marquis, P. Propositional independence: formula-variable in-
dependence and forgetting, Journal of Artificial Intelligence Research 18(2003) 391-443. 

16. Levesque, H. A completeness result for reasoning with incomplete knowledge bases. In 
Proc. of KR-98, Sixth International Conference on Principles of Knowledge Representa-
tion and Reasoning, 1998. 

17. Levy, A.Y., Fikes, R.E., and Sagiv, Y. Speeding up inferences using relevance reasoning: 
a formalism and algorithms. Artificial Intelligence 97 (1-2) (1997) 83-136. 

18. McGuinness, D.L. and Borgida, A. Explaining Subsumption in Description Logics. In 
Proc. of the 14th International Joint Conference on Artificial Intelligence, 1995. 

19. Patel-Schneider, P.F. (Eds). OWL Web Ontology Language Semantics and Abstract Syn-
tax. http://www.w3.org/TR/owl-semantics/ 

20. Royer, V. and Quantz, J.J. Deriving Inference Rules for Terminological Logics. In Proc. of 
Logics in AI, European Workshop (JELIA’92). 

21. Royer, V. and Quantz, J.J. Deriving Inference Rules for Description Logics: a Rewriting 
Approach into Sequent Calculi. KIT REPORT 111, Dec. 1993. 

22. Tsarkov, D. and Horrocks, I. DL reasoner vs. first-order prover. In Proc. of the 2003 De-
scription Logic Workshop (DL2003). 

23. W3C RDF. Resource Description Framework (RDF). http://www.w3.org/RDF/ 



A Framework for Handling Inconsistency in
Changing Ontologies

Peter Haase1, Frank van Harmelen2, Zhisheng Huang2, Heiner Stuckenschmidt2,
and York Sure1

1 Institute AIFB, University of Karlsruhe, Germany
{haase, sure}@aifb.uni-karlsruhe.de

2 Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
{frankh, huang, heiner}@cs.vu.nl

Abstract. One of the major problems of large scale, distributed and evolving on-
tologies is the potential introduction of inconsistencies. In this paper we survey
four different approaches to handling inconsistency in DL-based ontologies: con-
sistent ontology evolution, repairing inconsistencies, reasoning in the presence of
inconsistencies and multi-version reasoning. We present a common formal ba-
sis for all of them, and use this common basis to compare these approaches. We
discuss the different requirements for each of these methods, the conditions un-
der which each of them is applicable, the knowledge requirements of the various
methods, and the different usage scenarios to which they would apply.

1 Introduction

Ontologies in real-world applications are typically not static entities, they evolve over
time. One of the major problems of evolving ontologies is the potential introduction
of inconsistencies as a result of applying changes. Previous related work includes the
definition of evolution strategies to handle inconsistencies for evolving ontologies in a
centralized setting (cf. [14]) and for the handling of ontology changes in a distributed
setting (cf. [9]). However, such approaches rely on different assumptions, including
different ontology models (in particular they do not consider DL-based ontologies), use
different notions for ontology change and inconsistency and typically cover a specific
use case.

When dealing with changing ontologies we found four major use cases which re-
quire methods for dealing with inconsistencies. First, changing an initially consistent
ontology potentially introduces inconsistencies. This typically occurs in settings where
one is in control of changes and needs support for maintaining consistency during evo-
lution. Second, re-using ontologies in open settings such as the Web might include the
retrieval of inconsistent ontologies that should be fixed before usage. While these use
cases typically occur during the development of ontologies, handling of inconsisten-
cies is also relevant during runtime of ontology-based applications as illustrated in the
following. Third, in some cases consistency cannot be guaranteed at all and inconsisten-
cies cannot be repaired, still one wants to derive meaningful answers when reasoning.
Often this is the case when schema-level and instance-level of ontologies are evolved
separately without synchronizing the changes continuously. Fourth, when applying an

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 353–367, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



354 P. Haase et al.

ontology one faces the challenge to decide whether the usage of other, e.g. newer, ver-
sions of this ontology might lead to inconsistencies in an application, or, in other words,
whether the versions are compatible with respect to certain aspects. While the former
use cases typically occur during the development of ontologies, the latter ones illustrate
the handling of inconsistencies during the runtime of ontology-based applications.

In this paper we define a framework for combining currently separate methods for
inconsistency-handling in changing ontologies. This framework is based on formally
defined notions including ontology change and inconsistency for DL-based ontologies,
thus being in line with the state-of-the-art representation formalism for ontologies OWL
[10]. To meet the requirements of the above mentioned use cases our framework con-
sists of the following main components: consistent ontology evolution guarantees the
continuous consistency of ontologies in the presence of changes by applying evolu-
tion strategies; repairing inconsistencies fixes ontologies that are already inconsistent;
reasoning with inconsistent ontologies returns meaningful query results for queries to
inconsistent ontologies; finally, multi-version reasoning considers not only the latest
version of an ontology, but all previous versions as well to deal with inconsistencies
that arise from the interaction of the ontology with its environment in terms of instance
data and applications.

Core decisions which had to be taken during the definition of our framework include
syntactic vs. semantic definitions for ontology changes, functional vs. non-functional
notion of change, language dependent vs. language independent definitions and whether
one only considers logical properties or also other forms like structural, data, etc.

The main benefit of our framework consists of the identification of typical kinds
of problems one actually has when having to deal with inconsistent ontologies and the
provision of methods and implementations to deal with the problems. The framework
has been implemented (to large extents) as part of the EU project SEKT1.

The paper is structured as follows. In the next Section 2 we present a general
overview of the framework and describe the core decisions which had to be taken dur-
ing the design of our framework. In Section 3 we describe basic definitions underlying
the framework such as the notion of ontology change. The following Section 4 then
describes on top of these definitions each of the components for handling of incon-
sistencies in detail. We compare the different approaches to help identifying which
component can be applied in which situation. Before concluding we present related
work.

2 General Overview

The study of ontology change management covers a very broad spectrum [11,9,14]. It
encompasses methods and techniques necessary to support modifications to ontologies.
One important aspect that must be dealt with in a comprehensive treatment of ontol-
ogy change is handling of inconsistencies. While we may distinguish various forms of
inconsistencies (c.f. [2], in this work, we consider ontologies as logical theories. We
therefore focus on logical inconsistencies in ontologies. We discuss four different ap-
proaches to ontology change, and the different implications each of these has for the
management of inconsistencies arising from the changing ontologies:

1 http://www.sekt-project.com/



A Framework for Handling Inconsistency in Changing Ontologies 355

Consistent Ontology Evolution is the process of managing ontology changes by pre-
serving the consistency of the ontology with respect to a given notion of consistency.
The consistency of an ontology is defined in terms of consistency conditions, or invari-
ants that must be satisfied by the ontology.

Repairing Inconsistencies involves a process of diagnosis and repair: first the cause
(or: a set of potential causes) of the inconsistency needs to be determined, which can
subsequently be repaired.

Reasoning with Inconsistent Ontologies does not try to avoid or repair the inconsis-
tency (as in the previous two approaches), but simply tries to “live with it” by trying to
return meaningful answers to queries, even though the ontology is inconsistent.

Ontology Versioning manages the relations between different versions of an ontol-
ogy, and a notion of compatibility with such versions. One such compatability relation
is inconsistency: even though two versions of an ontology may each be consistent in
themselves, they might derive some opposite conclusions, and would then be mutually
inconsistent.

In order to find a common ground for these different approaches to dealing with
inconsistencies in changing ontologies, a number of choices have to be made concerning
this common ground. We outline the most important of these choices here.

Syntactic or semantic. An obvious essential question is what we count as a change in
an ontology? Do we count every syntactic modification to an ontology, or only those
syntactic modifications that affect the semantics of the ontology. A simple example to
illustrate the difference is to consider the ontology (using DL syntax, c.f. Section 3):

C1 � C2, C1(x), C2(x)

Removing the third statement is clearly a syntactic change, but not a semantic one (the
set of models of the ontology does not change, since the removed statement is also
implied by the remaining two). This choice boils down to that of defining an ontology
as a set of axioms (a syntactic object), or as a set of models (a semantic object, typically
captured by finite set of axioms). In this paper, we have chosen to define an ontology as
a set of axioms, allowing us to capture any syntactic modification to an ontology. We
consider the syntactic approach most suitable as the same logical theory can be encoded
by different sets of axioms that have different computational properties that are also
important in applications (e.g. many ontologies that are formally in OWL-Full can be
rephrased into an equivalent ontology in OWL-DL). The syntactic approach enables us
to distinguish between these two encodings. This choice is in line with other studies of
changing ontologies, e.g. [9,11,14].

Language dependent vs. language independent. A second important choice is the re-
striction of our definitions to a specific ontology language. It is now commonly accepted
that any ontology language should have its foundation on logic. While the approaches
we present are in general applicable to any ontology language based on a (monotonic)
logic, we pay special attention to the OWL ontology language. As the OWL ontol-
ogy language has been standardized by the W3C consortium, we will adhere to the
underlying OWL ontology model. In particular, we consider the language OWL-DL
(which includes sublanguages such as OWL-Lite). OWL-DL is a syntactic variant of
the SHOIN (D) description logic [5]. In the following we will therefore use the more
compact, traditional description logic syntax.



356 P. Haase et al.

Functional or non-functional change. A final important decision is whether we regard
ontology change as a deterministic or non-deterministic operation: does any operation
on an ontology result in a single well-defined result, or in a set of possible outcomes.
Our earlier choice for a syntactic view of ontology change makes it plausible to limit
change to a deterministic, functional operation.

3 Basic Definitions

This section describes the basic definitions which involve ontology change and incon-
sistency processing. Some of these basic definitions may be so obvious or well-known
that they may be considered to be trivial. Those terminologies are usually found under
different contexts and theories with different meanings and implications. In this paper,
we would like to provide a unique framework to define those definitions formally, which
can serve as a solid foundation for the theory of ontology change to avoid unnecessary
ambiguities on the definitions and minimize the disagreement among the researchers.

In general, an ontology language can be considered to be a set that is generated by a
set of syntactic rules. Namely, an ontology can be viewed as a formula set, alternatively
called axioms, which involves a set of vocabulary.

Definition 1 (Ontology). We use a datatype theory D, a set of concept names NC , sets
of abstract and concrete individuals NIa and NIc , respectively, and sets of abstract and
concrete role names NRa and NRc , respectively.

The set of SHOIN (D) concepts is defined by the following syntactic rules, where
A is an atomic concept, R is an abstract role, S is an abstract simple role, T(i) are
concrete roles, d is a concrete domain predicate, ai and ci are abstract and concrete
individuals, respectively, and n is a non-negative integer:

C → A | ¬C | C1 � C2 | C1 � C2 | ∃R.C | ∀R.C | ≥ n S | ≤ n S | {a1, . . . , an}
| ≥ n T | ≤ n T | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D |  | ⊥

D → d | {c1, . . . , cn}

A SHOIN (D) ontology O is a finite set of axioms of the form2: concept inclusion
axioms C � D, transitivity axioms Trans(R), role inclusion axioms R � S and T � U ,
concept assertions C(a), role assertions R(a, b), individual (in)equalities a ≈ b, and
a 
≈ b, respectively.

The semantics of the SHOIN (D) description logic is defined via a model-theoretic
semantics, which explicates the relationship between the language syntax and the model
of a domain: An interpretation I = ("I , ·I) consists of a domain set "I , disjoint from
the datatype domain "I

D, and an interpretation function ·I , which maps from individ-
uals, concepts and roles to elements of the domain, subsets of the domain and binary
relations on the domain, respectively3. An interpretation I satisfies an ontology O, if it
satisfies each axiom in O. Axioms thus result in semantic conditions on the interpreta-
tions. Consequently, contradicting axioms will allow no possible interpretations. This
leads us to the definition of a consistent ontology:

2 For the direct model-theoretic semantics of SHOIN (D) we refer the reader to [6].
3 For a complete definition of the interpretation, we refer the reader to [5].



A Framework for Handling Inconsistency in Changing Ontologies 357

Definition 2 (Consistent Ontology). An ontology O is consistent iff O is satisfiable,
i.e. if O has a model.

To be able to define queries against ontologies, we rely on the notion of entailment:

Definition 3 (Entailment). Given a logical language L, an entailment |= states a re-
lation between an ontology O and an axiom α ∈ L. Namely, an entailment is a set of
pairs 〈O, α〉. We use O |= α to denote that the ontology O entails the axiom α. Alterna-
tively, we say that α is a consequence of the ontology O under the entailment relation
|=. The entailment relation is said to be a standard one iff α always holds in any model
in which the ontology O holds, i.e., for any model M , M |= O ⇒M |= α.

Usually we use |= and |≈ to denote a standard entailment and a non-standard entail-
ment respectively if it does not cause any ambiguity. A standard entailment is explo-
sive, namely, any formula is a consequence of an inconsistent ontology. Namely, if an
ontology O is not consistent, then for any axiom α, O |= α.

A general goal of the approaches proposed in this paper is to obtain consistent query
answers. Thus, we have the following definitions.

Definition 4 (Query). A query with respect to an entailment relation |= is a pair of an
ontology O and an axiom α, written ’O |= α?’.

Definition 5 (Query Answer). An answer to a query ’O |= α?’ is a value in the set
{true, false} as O |= α and O 
|= α respectively.

When we talk about inconsistency, we usually assume that the existence of a negation
operator ¬ which can be used to denote the negation of an axiom4.

Definition 6 (Consistent Query Answer). For an ontology O and an entailment rela-
tion |≈, an answer ’O |≈ α’ is said to be consistent if O 
|≈ ¬α.

Proposition 1 (Consistent Ontology and Consistent Query Answer). For a consis-
tent ontology O, its query answer is always consistent under a standard entailment.
Namely, the consequence set {α : O |= α} is consistent.

To be able to deal with inconsistent ontologies, the following two definitions are useful:

Definition 7 (Maximal consistent subontology). An ontology O′ is a maximal consis-
tent subontology of O, if O′ ⊆ O and O′ is consistent and every O′′ with O′ ⊂ O′′ ⊆ O
is inconsistent.

Intuitively, this definition states that no axiom from O can be added to O′ without losing
consistency. In general, there may be many maximal consistent subontologies O′.

Definition 8 (Minimal inconsistent subontology). An ontology O′ is a minimal incon-
sistent subontology of O, if O′ ⊆ O and O′ is inconsistent and every O′′ with O′′ ⊂ O′

is consistent.

4 In the considered description logic, there exists no universal negation operator. However, nega-
tion can be simulated, e.g. to express the negation of the role assertion ¬R(a, b) we can write
¬(∃R.{b})(a).



358 P. Haase et al.

Finally, we formalize changes to ontologies. As we have argued in the previous
section, in the paper we will focus on functional ontology changes. Thus, we have:

Definition 9 (Ontology Change Operation). An ontology change operation oco is a
function oco : O → O.

There might exist many different ontology change operations. In this paper, we will not
discuss a list of possible ontology changes. Instead, we consider the two atomic change
operations of adding and removing axioms. Other change operations can be defined in
terms of those two atomic change operations with different sequences of the executions.
The semantics of the sequence is the chaining of the corresponding functions: For some
atomic change operations oco1, ..., ocon we can define ococomposite(x) = ocon ◦ ... ◦
oco1(x) := ocon(...(oco1))(x).

As we have argued in the previous sections, in this paper, we consider only func-
tional and syntactic-based change operations. Accordingly we define the semantics of
the change operations: O+̇α := O ∪ {α} and O−̇α := O \ {α}.

4 Handling Inconsistencies of Changing Ontologies

In Section 2 we have already presented a general overview of the different strategies
for handling the problem of inconsistencies in changing ontologies. In the following,
we describe these different strategies in terms of the notions introduced in the previous
section and provide a comparison.

4.1 Consistent Ontology Evolution

The goal of consistent ontology evolution is to maintain the consistency of ontology in
the presence of changes. There are strong forms of guaranteeing consistency that strictly
forbid change operations that can lead to an inconsistent ontology. A radical approach is
to forbid the use of logical operators that potentially introduce inconsistency (i.e. nega-
tion, but also other constructs). The drawback is a substantial loss of expressive power.
The strategy that we consider here is to define a semantics of change that ensures con-
sistency by (1) detecting potential inconsistencies caused by changes and (2) generating
additional changes for a transition into another consistent state [2]. We can summarize
the approach of consistent ontology evolution as follows: For a consistent ontology O
and a change operation oco, the task of consistent ontology evolution is to generate a
change operation oco′ such that O′ = oco′(oco(O)) results in a consistent ontology O′.

Please note that because of the monotonicity of the considered logic, an ontology
can only become logically inconsistent by adding axioms: If a set of axioms is satisfi-
able, it will still be satisfiable when any axiom is deleted. Therefore, we only need to
check the consistency for ontology change operations that add axioms to the ontology.

Effectively, if O ∪ {α} is inconsistent, in order to keep the resulting ontology con-
sistent some of the axioms in the ontology O have to be removed. In this sense, the
add-operation and the remove-operation are similar to the belief revision operation and
the belief contraction operation in the theories of belief revision [1].

In the following, we will present strategies to ensure logical consistency. The goal of
these strategies is to determine a set of axioms to remove to obtain a logically consistent
ontology with “minimal impact” on the existing ontology, e.g. based on Definition 7 of a



A Framework for Handling Inconsistency in Changing Ontologies 359

maximal consistent subontology. The main idea is that we start out with the inconsistent
ontology O ∪ {α} and iteratively remove axioms until we obtain a consistent ontology.
Here, it is important how we determine which axioms should be removed. This can be
realized using a selection function. The quality of the selection function is critical for
two reasons: First, as we have potentially have to search all possible subsets of axioms
in O for a maximal consistent ontology, we need to prune the search space by trying
to find the relevant axioms that cause the inconsistency. Second, we need to make sure
that we remove the dispensible axioms.

The first problem of finding the axioms that cause the inconsistency can be tar-
geted by considering that there must be some “connection” between these problematic
axioms. We formalize this notion with the following definition.

Definition 10 (Connectedness). A connection relation C is a set of axiom pairs,
namely, C ⊆ L × L.

A very simple, but useful connection is that of the direct structural connection relation:

Definition 11 (Direct Structural Connection). Two axioms α and β are directly struc-
turally connected – denoted with connected(α, β) –, if there exists an ontology entity
e ∈ NC ∪NIa ∪NIc ∪NRa ∪NRc that occurs in both α and β.

In the following, we present an algorithm (c.f. Algorithm 1) for finding (at least) one
maximal consistent subontology using the definition of structural connectedness (c.f.
Definition 11): We maintain a set of possible candidate subontologies Ω, which initially
contains only O ∪ {α}, i.e. the consistent ontology O before the change and the added
axiom α. In every iteration, we generate a new set of candidate ontologies by removing
one axiom β1 from each candidate ontology that is structurally connected with α or an
already removed axiom (in O \ O′), until at least one of the candidate ontologies is a
consistent subontology.

The properties of the algorithm (efficiency, completeness) will depend on the prop-
erties of the connectedness relation. The above definition of structural connectedness
provides good heuristics to efficiently find a maximal consistent subontology, but is
not complete for the case where axioms causing an inconsistency are not structurally
connected at all.

Algorithm 1. Determine consistent subontology for adding axiom α to ontology O

Ω := {O ∪ {α}}
repeat

Ω′ := ∅
for all O′ ∈ Ω do

for all β1 ∈ O′ \ {α} do
if there is a β2 ∈ ({α} ∪ (O \ O′)) such that connected(β1, β2) then

Ω′ := Ω′ ∪ {O′ \ {β1}}
end if

end for
end for
Ω := Ω′

until there exists an O′ ∈ Ω such that O′ is consistent



360 P. Haase et al.

Example 1. We will now show how Algorithm 1 can be used to maintain consistency.
As a running example, we will consider a simple ontology modelling a small research
domain, consisting of the following axioms:
O1 = {Employee � Person, Student � Person, PhDStudent � Student,
Employee � ¬Student,5 PhDStudent(peter)}.

Now consider a change operation oco1 that adds the axiom α = PhDStudent �
Employee. oco1(O1) results in an inconsistent ontology.

Algorithm 1 starts with O1 +̇α as element of the set of potential ontologies. In the
first iteration, a set of new potential ontologies is created by removing one of the axioms
that are structurally connected with the α. These axioms are: PhDStudent(peter),
Employee � ¬Student, PhDStudent � Student and Employee � Person.

The removal of either PhDStudent(peter), PhDStudent � Student or
Employee � ¬Student will result in a maximal consistent subontology. For the deci-
sion which axiom should be removed from the ontology, one can rely on further back-
ground information indicating the relevance of the axioms, or on interaction with the
user. For the following examples, we assume that the resulting ontology O2 is created
by removing the axiom Student � ¬Employee, i.e. O2 = O1 +̇ PhDStudent �
Employee −̇ Student � ¬Employee.

4.2 Repairing Inconsistencies

The most straightforward approach to inconsistencies is to repair them when they are
detected [13]. Repairing an inconsistency actually consists of two tasks: Locating In-
consistencies and Resolving Inconsistency. The task of repairing inconsistencies can
thus be defined as: For an inconsistent ontology O we generate a change operation oco
such that O′ = oco(O) results in a consistent ontology O′.

Locating Inconsistencies As a first step, the source of the inconsistency has to be de-
tected. Normally, the source is a set axioms that when being part of the model at the
same time make it inconsistent.

An algorithm to find a subontology which leads to an unsatisfiable concept (adopted
from [13]) can use similar ideas like those for consistent ontology evolution. The main
difference is that the latter assumes that the intended minimal inconsistent ontologies
would contain an added axiom α, whereas the former has no such requirement but
starting with an unsatisfiable concept C for the connection checking6. Algorithm 2
uses the increment-reduction strategy to find a minimal subontology for an unsatisfiable
concept. Namely, the algorithm finds a subset of the ontology in which the concept is
unsatisfiable first, then reduces the redundant axioms from the subset.

Based on those detected subsets for all unsatisfiable concepts, we can find minimal
subsets of the ontology O which leads to all unsatisfiable concepts[13]. That can be
used for knowledge workers to repair the ontology to avoid all unsatisfiable concepts.

5 Stating that employees cannot be students.
6 In order to do so, we extend the directly structral connection relation on concept sets, so that

we can say something like an axiom β is connected with a concept c, i.e., connected(β, C).
It is easy to see that it does not change the definition.



A Framework for Handling Inconsistency in Changing Ontologies 361

Algorithm 2. Localize a minimal subset of O in which a concept C is unsatisfiable
Ω := ∅
repeat

for all β1 ∈ O \ Ω do
if there is a β2 ∈ Ω such that connected(β1, β2) or connected(β1, c) then

Ω := Ω ∪ {β1}
end if

end for
until c is unsatisfiable in Ω
for all β ∈ Ω do

if c is unsatisfiable in Ω − {β} then
Ω := Ω − {β}

end if
end for

Resolving Inconsistency Once the source of an inconsistency has been found, the con-
flict between the identified set of axioms has be to resolved. This task again is difficult,
because in most cases there is no unique way of resolving a conflict but a set of al-
ternatives. Often, there are no logical criteria selecting the best resolution. A common
approach is to let the user resolve the conflict after it has been located.

Example 2. We again use the running example introduced in Example 1. Assume that
we start out with the inconsistent ontology O3 = {Employee � Person, Student �
Person, PhDStudent � Student, Employee � ¬Student, PhDStudent �
Employee, PhDStudent(peter)}.

In this example the concept PhDStudent is unsatisfiable. Starting with this un-
satisfiable concept the algorithm finds the connected set O31 = {PhDStudent �
Student, PhDStudent � Employee, PhDStudent(peter)}. The concept
PhDStudent is still safisfiable in O31. Extending O31 with the connection relation the
algorithm gets O3. Reducing the redundant axioms, the algorithm finds the set O32 =
{PhDStudent � Student, Employee � ¬Student, PhDStudent � Employee}.
Since PhdStudent is the only unsatisfiable concept in this example, the knowledge
workers can focus on the set O32 to repair O3.

The approach proposed in this subsection is similar those in diagnosis[12]. There
is a relativly well studied method for diagnosis, with a straightforward definitions: di-
agnosis is the smallest set of axioms that need to be removed to make the ontology
consistent. These diagnoses can be calculated relatively easily on the basis of the mini-
mal inconsistent subontologies. So, this covers the two parts of localizing and repairing
inconsistencies (repairing an incoherent model by removing the minimal diagnoses).

4.3 Reasoning with Inconsistent Ontologies

In some cases it is unavoidable to live with inconsistencies, if consistency cannot be
guaranteed and inconsistencies cannot be repaired. Nevertheless, there is still a need to
reason about ontologies in order to support information access and integration of new
information. We can summarize the task of reasoning with inconsistent ontologies: For
a possibly inconsistent ontology O and a query q, the task of inconsistency reasoning is
to return a meaningful query answer.



362 P. Haase et al.

As shown above, the standard entailment is explosive, namely, any formula is a
logical consequence of an inconsistent ontology. Therefore, conclusions drawn from
an inconsistent ontology by classical inference may be completely meaningless. For
an inconsistency reasoner it is expected that is able to return meaningful answers to
queries, given an inconsistent ontology. In the case of a consistent ontology O, classi-
cal reasoning is sound, i.e., a formula φ deduced from O holds in every model of O.
This definition is not preferable for an inconsistent ontology O as every formula is a
consequence of O using a standard entailment |=. However, often only a small part of
O has been incorrectly constructed or modelled, while the remainder of O is correct.
Therefore, we propose the following definition of meaningfulness:

Definition 12 (Meaningfulness). A query answer to a query O |≈ α? is meaningful iff
the following two conditions are satisfied:

1. soundness: the answer is a consequence of a consistent subontology of O under the
standard entailment |=,

2. consistency: the answer is a consistent query answer under the entailment |≈.

Algorithm 3. Linear extension strategy for the evaluation of query O |≈ α

Ω := ∅
repeat

Ω′ := {β1 ∈ O \ Ω : there exists a β2 ∈ Ω ∪ {α} such that connected(β1, β2)}
if Ω′ = ∅ then

return O 	|≈ α
end if
Ω := Ω ∪ Ω′

if Ω inconsistent then
Ω′′ := maximal consistent subontology(Ω)
if Ω′′ |= α then

return O |≈ α
else return O 	|≈ α

end if
end if

until Ω |= α
return O |≈ α

The general strategy for processing inconsistent ontologies is: given a connec-
tion/relevance relation (c.f. Definition 10), we select some consistent subontology from
an inconsistent ontology. Then we apply standard reasoning on the selected subontol-
ogy to find meaningful answers. If a satisfying answer cannot be found, the relevance
degree of the selection function is made less restrictive thereby extending the consis-
tent subontology for further reasoning. If an inconsistent subset is selected, we call the
over-determined processing(ODP)[8]. One of the ODP strategies is to find the set of
the maximal consistent subontologies of the selected set. If there exist contradictory
answers from those maximal consistent subontologies, the algorithm will return ’un-
known’. A linear extension strategy with an ODP for the evaluation of a query ’O |≈ α?’
is described in Algorithm 3. We can prove the following property[8]:



A Framework for Handling Inconsistency in Changing Ontologies 363

Proposition 2 (Meaningfulness of Linear Extension Strategy). The answers which
are obtained by the linear extension strategy are meaningful.

Example 3. Consider the inconsistent ontology O3 = {Employee � Person,
Student � Person, PhDStudent � Student, PhDStudent � Employee,
Employee � ¬Student, PhDStudent(peter)}.

Assume now we wanted to ask the query O3. |≈ Student(peter)?. Using stan-
dard entailment we would obtain no meaningful answer, as both Student(peter) and
¬Student(peter) are entailed by the ontology. By the linear extension on the con-
nection relation with Student(peter), the algorithm will construct the ontology Ω =
{PhDStudent(peter), PhDStudent � Employee, PhDStudent � Student}.
This ontology Ω is consistent, and Ω |= α. Thus, the algorithm concludes that
O3 |≈ Student(peter).

4.4 Multi-version Reasoning

Multi-version reasoning is an approach that tries to cope with possible inconsistencies
in changing ontologies by considering not only the latest version of an ontology, but
all previous versions as well. This approach mostly applies in cases where the problem
is not so much an inconsistency in the ontology itself, but inconsistencies that arise
from the interaction of the ontology with its environment in terms of instance data
and applications. We consider the sequence of ontologies O1 ≺ · · · ≺ On where the
ordering relation is defined as:

Oi ≺ Oj ⇔ ∃ococomposite : ococomposite(Oi) = Oj

Intuitively, On is the current version of the ontology. O1, · · · , On−1 are older ver-
sions of the same ontology that have been created from the respective previous ontology
in terms of a composite change action. We can assume that each of the ontologies is
consistent. Further, we assume that an application expresses its requirements for com-
patibility as an expectation α, for which there is an ontology Oi in the sequence such
that Oi ∪ {α} is consistent.

Based on these assumptions, the task of ensuring consistency reduces to the task
of finding the right version Oi of the ontology in the sequence of versions. This task
requires the ability to determine the satisfiability of certain expressions across the dif-
ferent versions of the ontology. This can be done using an extension of the ontology
language called L+ with the operator PreviousVersionφ, which is read as ’φ holds
in the previous version’, the operator AllPriorVersionsφ, which is read as ’φ holds
in all prior versions’, and the operator SomePriorVersionφ, which is read as ’φ
holds in some prior versions’.

Using these basic operators, we can define a rich set of query operators for asking
specific questions about specific versions of the ontology and relations between them.
In the case where On ∪ {α} is inconsistent, we can for example check whether the
previous version can be used (PreviousVersionα) and whether there is a version
at all that can be used instead (SomePriorVersionα). For the formal semantics of
these operators we refer the reader to [7].

Example 4. Consider we have an ordered relation of ontologies O1 ≺ O2, using the
ontologies from Example 1. Now assume a compatibility criteria that has to fulfilled



364 P. Haase et al.

for compatibility: α = Employee(peter), i.e. a knowledge base in which Peter is
an employee. The latest version O2 is compatible with the compatibility criteria α as
O2 ∪ {α} is consistent. However, O1 does not meet the compatibility requirements, as
O1∪{α} is inconsistent (It still contained the axiom stating the disjointness of students
and employees). In fact, it holds that AllPriorVersions¬Employee(peter).

5 Comparison and Evaluation

We are going to compare the four approaches dealing with inconsistency, and make an
evaluation on them. By the evaluation, we want to suggest several guidelines for system
developers to know under which circumstance which approach is more appropriate.

5.1 Different Functionality

A first major difference that is revealed by the formal analysis in the previous section
is the fact that the different methods for dealing with inconsistent ontologies actually
have very different functionality (their input/output-relations are rather different). Con-
sequently, they solve rather different tasks, and are suited for different use-cases. The
situation is summarised in Table 1.

Table 1. Comparison of Approaches

Approach Applied At Input Output

Consistent Evolution Development Consistent Ontology, Change Consistent Ontology
Inconsistency Repair Development Inconsistent Ontology Consistent Ontology
Inconsistency Reasoning Runtime Consistent Ontology, Query Meaningful answer
Multi-version reasoning Runtime Versions of Ontologies, Query Consistent Answer

Dependence on query. First, this table shows that two of the methods depend on which
user-query is given to the ontology (reasoning with inconsistency and multi-version
reasoning). Consequently, these two methods are only applicable at runtime, when a
user interacts with the ontology. The other two methods (ontology evolution and in-
consistency repair) are independent of user-queries, and can thus already be applied at
ontology development time.

Known or unknown change. The two methods that are applicable at ontology devel-
opment time are actually very similar (as is apparent from sections 4.1 and 4.2). A
crucial difference is that the first of these (ontology evolution) requires knowledge of
the change that caused the ontology to become inconsistent: algorithm 1 requires the
change α to be known, which is not the case with 2. This is clearly a restriction on
the applicability of ontology evolution, which comes in exchange for the benefit of a
simpler algorithm.

Known or unknown history. The two query-dependent approaches also differ in their
respective input-requirements: multi-version reasoning requires a history of ontology-
versions to be available, which is a very strong demand, often not feasible in many
settings, in particular in combination with its runtime usage.



A Framework for Handling Inconsistency in Changing Ontologies 365

5.2 Other Aspects

Heuristics. Another difference between the various approaches is the extent to which
they employ heuristics: in reasoning with inconsistency, one heuristically chooses a
consistent subontology that is good enough to answer the query (it need not be minimal,
just small enough to be consistent, and large enough to answer the query). In contract,
both Evolution and Repair aim at the smallest impact on the inconsistent ontology.

Efficiency. Finally, one would expect the various approaches to differ drastically in
their computational efficiency. Some observations can be made immediately: the Evo-
lutionary approach exploits the knowledge about the cause of the inconsistency, and
can therefore be more efficient then Repair, which does not have access to this informa-
tion. However, the cost of all of the algorithms described in this paper are dominated by
untractable operations such as checking the unsatisfiability of a concept or the inconsis-
tency of an entire ontology. Consequently, worst-case complexity analysis is not going
to tell us anything interesting here. Instead, work will have to be done on average-case
complexity analysis and experiments with realistic datasets to gain more insight into
the relevative costs of each of the approaches.

Knowledge Requirements. Finally, the approaches differ in the knowledge that is re-
quired to operate them:

– the repair approach requires the ontology developers to have sufficient domain
knowledge to decide which part of the ontology should be removed to recover con-
sistency. On the other hand, once done, it needs no additional expertise from the
ontology users.

– Reasoning with inconsistencies on the other hand emposes no knowledge require-
ments on the developers, but requires some (weak) knowledge from the users to
determine whether a query answer is acceptable.

– Ontology versioning places again a heavy knowledge requirement on the user in
order to decide which version is most suitable for their application.

6 Related Work

The evolution of ontologies has been addressed by different researchers by defining
change operations and change representations for ontology languages. Change opera-
tions have been proposed for specific ontology languages. In particular change oper-
ations have been defined for OKBC, OWL [9] and for the KAON ontology language
[14]. All approaches distinguish between atomic and complex changes. Different ways
of representing ontological changes have been proposed: besides the obvious represen-
tation as a change log that contains a sequence of operations, authors have proposed to
represent changes in terms of mappings between two versions of an ontology [11].

The problem of preserving integrity in the case of changes is also present for on-
tology evolution. On the one hand the problem is harder here as ontologies are often
encoded using a logical language where changes can quickly lead to logical inconsis-
tency that cannot directly be determined by looking at the change operation. On the
other hand, there are logical reasoners that can be used to detect inconsistencies both
within the ontology and with respect to instance data. As this kind of reasoning is often



366 P. Haase et al.

costly, heuristic approaches for determining inconsistencies have been proposed [9,15].
While deciding whether an ontology is consistent or not can easily be done using exist-
ing technologies, repairing inconsistencies in ontologies is an open problem although
there is some preliminary work on diagnosing the reasons for an inconsistency which
is prerequisite for a successful repair [13].

The problem of compatibility with applications that use an ontology has received
little attention so far. The problem is that the impact of a change in the ontology on the
function of the system is hard to predict and strongly depends on the application that
uses the ontology. Part of the problem is the fact that ontologies are often not just used as
a fixed structure but as the basis for deductive reasoning. The functionality of the system
often depends on the result of this deduction process and unwanted behavior can occur
as a result of changes in the ontology. Some attempts have been made to characterize
change and evolution multiple versions on a semantic level [3,4]. This work provides
the basis for analyzing compatibility which currently is an open problem.

7 Conclusion

Unlike work in traditional knowledge engineering, knowledge intensive applications on
the Web will not be able to ignore the issue of inconsistent knowledge in general, and of
inconsistent ontologies in particular. This has been recognised in various contributions
to the literature that propose different ways of dealing with inconsistent ontologies.
These approaches differ both in the machinery they use, and in the way they propose to
deal with inconsistent ontologies, ranging from avoiding inconsistencies, to diagnosing
and repairing the inconsistencies, to trying to reason in the presence of the inconsisten-
cies, and to tracking the inconsistencies over the development history of an ontology.

In this paper, we have rephrased four existing approaches to dealing with inconsis-
tent ontologies in terms of a set of elementary definitions. This allowed us to compare
these rather different approaches on an equal footing. This comparison revealed among
other things that what originally seemed to be different approaches to the same problem
(namely dealing with inconsistent ontologies) are actually solutions that apply in very
different settings: at ontology-development time or at ontology-use time, and requir-
ing different pieces of information (the cause of the inconsistency, or the history of the
ontology changes). For the respective approaches, we provide implementations,
which are available at http://www.aifb.uni-karlsruhe.de/WBS/pha/
owlevolution/.

Acknowledgements. Research reported in this paper has been partially financed by EU
in the IST projects SEKT (EU IST-2003-506826) and Knowledge Web (EU IST-2003-
507482).

References

1. Giorgos Flouris. Belief change in arbitrary logics. In HDMS, 2004.
2. P. Haase and L. Stojanovic. Consistent evolution of OWL ontologies. In Proceedings of the

Second European Semantic Web Conference, Heraklion, Greece, 2005, MAY 2005.
3. J. Heflin. Towards the Semantic Web: Knowledge Representation in a Dynamic, Distributed

Environment. Phd thesis, University of Maryland, 2001.



A Framework for Handling Inconsistency in Changing Ontologies 367

4. J. Heflin and J. Z. Pan. A model theoretic semantics for ontology versioning. In Third
International Semantic Web Conference, pages 62–76, Hiroshima, Japan, 2004. Springer.

5. I. Horrocks and P. F. Patel-Schneider. Reducing OWL Entailment to Description Logic Sat-
isfiability. Journal of Web Semantics, 1(4), 2004.

6. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive Description
Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

7. Z. Huang and H. Stuckenschmidt. Reasoning with multiversion ontologies: a temporal logic
approach. In Proceedings of the 2005 International Semantic Web Conference (ISWC’05),
2005.

8. Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontologies. In
Proceedings of the International Joint Conference on Artificial Intelligence(IJCAI’05), pages
254–259, 2005.

9. M. Klein. Change Management for Distributed Ontologies. Phd thesis, Vrije Universiteit
Amsterdam, 2004.

10. D. McGuinness and F. van Harmelen. OWL Web Ontology Language. Recommendation,
W3C, 2004. http://www.w3.org/TR/owl-features/.

11. N.F. Noy and M.A. Musen. The prompt suite: Interactive tools for ontology merging and
mapping. International Journal of Human-Computer Studies, 59(6):983–1024, 2003.

12. R. Reiter. A theory of diagnosis from first principles. Artif. Intelligence, 32(1):57–95, 1987.
13. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of descrip-

tion logic terminologies. In Proceedings of the International Joint Conference on Artificial
Intelligence - IJCAI’03, Acapulco, Mexico, 2003. Morgan Kaufmann.

14. L. Stojanovic. Methods and Tools for Ontology Evolution. Phd thesis, University of Karl-
sruhe, 2004.

15. H. Stuckenschmidt and M. Klein. Integrity and change in modular ontologies. In Proceed-
ings of the International Joint Conference on Artificial Intelligence - IJCAI’03, Acapulco,
Mexico, 2003. Morgan Kaufmann.



Preferential Reasoning on a Web of Trust

Stijn Heymans, Davy Van Nieuwenborgh�, and Dirk Vermeir��

Dept. of Computer Science, Vrije Universiteit Brussel, VUB
Pleinlaan 2, B1050 Brussels, Belgium

{sheymans, dvnieuwe, dvermeir}@vub.ac.be

Abstract. We introduce a framework, based on logic programming, for prefer-
ential reasoning with agents on the Semantic Web. Initially, we encode the knowl-
edge of an agent as a logic program equipped with call literals. Such call literals
enable the agent to pose yes/no queries to arbitrary knowledge sources on the
Semantic Web, without conditions on, e.g., the representation language of those
sources. As conflicts may arise from reasoning with different knowledge sources,
we use the extended answer set semantics, which can provide different strate-
gies for solving those conflicts. Allowing, in addition, for an agent to express its
preference for the satisfaction of certain rules over others, we can then induce a
preference order on those strategies. However, since it is natural for an agent to
believe its own knowledge (encoded in the program) but consider some sources
more reliable than others, it can alternatively express preferences on call literals.
Finally, we show how an agent can learn preferences on call literals if it is part of
a web of trusted agents.

1 Introduction

The current WWW is a gigantic pool of data, where one can easily imagine two web
sites saying the opposite. Human users are capable of deciding which sources they find
trustworthy or not (irrespective of the fact whether they actually are or not). Semantic
Web software agents [18] on the other hand would have an equally vast amount of data
at their disposition, but a far more difficult time differentiating between good and bad
information.

In this paper, we will gradually build a (abstract) software agent, i.e. an entity on
a web of trust that can reason with a diverse pool of (possibly mutually inconsistent)
knowledge sources. The basic underlying reasoning framework we use for such an agent
is answer set programming (ASP) [13,3], a logic programming paradigm with a stable
model semantics for negation as failure. A logic program corresponds to knowledge one
wishes to represent, or, more specifically, to an encoding of a particular problem, e.g.
a planning problem [24,9]; the answer sets of the program then provide its intentional
knowledge, or the solutions of the encoded problem, e.g. a plan for a planning problem.

� Supported by the FWO.
�� This work was partially funded by the Information Society Technologies programme of the

European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 368–382, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Preferential Reasoning on a Web of Trust 369

A traditional logic program has a limited view on the world; it restricts itself to its
own knowledge and does not allow calls to external sources. In a first phase, to construct
suitable Semantic Web agents, we thus introduce call literals in rules, e.g., a rule tr1 :
¬train ← geo1 .300km(brussels ,madrid), where geo1 .300km(brussels ,madrid) is
a call literal and ¬train a normal literal. The rule reads “if according to the geo1 on-
tology Brussels is more than 300 km away from Madrid, one should not go by train”.
The word “ontology” is slightly misleading, since geo1 can be anything: an OWL DL
[4] knowledge base, an SQL database, RDF data, another agent, anything. In order to
establish a suitable semantics for such call literals, we associate with each call literal in
a program an instance of a decision problem, e.g., satisfiability checking in OWL DL,
checking whether a tuple is in the database, . . . An evaluation function then assigns true
or false to the call literal, depending on the corresponding instance. Technically, pro-
grams with calls are a subclass of logic programs with generalized quantifiers QC [10],
where a generalized quantifier QC checks whether a relation defined by the program
is in a class of structures C. In the proposed setting, every call literal corresponds to a
class of structures C that is a singleton set containing some literal if the instance of the
decision problem associated with that call literal returns true.

In contrast with approaches as in [5,17,25,23,19] where one attempts to reduce
reasoning in description logics (DLs) [2] to logic programming or approaches biased
more towards the integration of description logics and logic programming reasoning
[8,29,11], the proposed framework does not restrict itself to DLs, knowledge can be
represented in any language with associated reasoning procedures; agents that want to
use the knowledge only have to know how to call those procedures.

Besides making calls to sources, agents have to be able to cope with conflicts, e.g.,
add to the above train rule that if Brussels and Madrid are not divided by water, one
should take the train: tr2 : train ← not geo2 .dividedwater(brussels ,madrid). If the
call to geo1 returns true, claiming that Brussels is indeed more than 300 km away from
Madrid, and that the call to geo2 returns false (and is thus faulty), this leads to a conflict
since tr1 deduces ¬train and tr2 deduces train . The normal answer set semantics has
no answer sets for this program, which is not feasible on the Semantic Web – we do not
want an agent to stay indecisive on different contradicting sources. The extended answer
set semantics and its notion of defeat loosens up the normal answer set semantics by
allowing rules to remain unsatisfied provided there is a competing rule (i.e. a rule with
opposite head) that is applied (both the head and body are true). The above program
results then in the two extended answer sets {train} and {¬train}, representing the
possible alternatives for the conflict, where tr1 , respectively tr2 , is defeated.

The agent can then choose among those possible solutions based on a preference
on the satisfaction of rules, e.g., tr1 < tr2 , indicates that the agent prefers to sat-
isfy tr1 over tr2 . This preference naturally induces an order on its extended answer
sets:{¬train} � {train}. A wide variety of applications of agents with preferences are
imaginable, e.g. to guide service discovery on mobile devices [31].

In the context of the Semantic Web, a preference on call literals seems more natural
than an order on the agent’s own rules: an agent generally assumes its own rules are
correct, whereas the uncertain part, and hence the part that may introduce conflicts, are
the external calls. Based on criteria such as authority or reliability the agent can then



370 S. Heymans, D. Van Nieuwenborgh , and D. Vermeir

express its preference for certain calls. Furthermore, we show a translation of an order
on call literals to an order on the rules of the agents.

What if the agent does not know which calls are more reliable than others; can it
still make an educated guess regarding its preferences? The web of trust [14,16,15,28,7]
provides an architecture on which preferential reasoning for agents without (or with
incomplete) preferences can be realized.

In [28], a web of trust is essentially a graph of agents where edges have a weight in
[0, 1], indicating the amount of trust an agent has in its direct neighbors. Moreover, every
user can have a belief, a number in [0, 1], in logical statements. The merged belief in a
logical statement, i.e. taking into account the beliefs in that statement of trusted agents,
can be computed in a large number of ways, e.g., one can demand that the amount of
trust between users is at most the minimal trust weight on a path between them or that
the further away an agent is, the lower the trust in that agent should be [16]. In the
TRELLIS system [14] users rate information sources and, assuming different users rate
common sources, TRELLIS rates sources averaging over the ratings of different users.

Relating this to our approach, the beliefs in statements correspond to preferences
on call literals. Furthermore, in order to construct agents on top of any web of trust, we
do not presuppose any conditions on the trust metric, i.e. the method to calculate the
merged trust given a web of trust, but one: it must be possible to associate with every
agent a sequence of trusted agents ordered according to trustworthiness. Given, for
each agent, such an ordered sequence, we then complete the preferences of an agent by
considering its own preferences and adding further preferences according to its trusted
agents.

The remainder of the paper is organized as follows. In Section 2, we define the
preferred answer set semantics. Section 3 extends the preferred answer set semantics
with the possibility to define call literals and their accompanying calls. In Section 4, we
define a preference order on literals and a method for constructing this order based on a
web of trust. Finally, Section 5 contains conclusions and directions for further research.
Due to space restrictions, proofs have been omitted but can be found in [20].

2 Preliminaries: Preferred Answer Set Programming

We introduce the extended answer set semantics as in [30]. A literal is an atom a or a
classically negated atom ¬a; an extended literal is a literal l or a literal preceded with
the negation as failure symbol not: not l. A program is a finite set of rules α← β where
α, the head, is a set of literals with |α| ≤ 1, i.e. α is empty or a singleton, and β, the
body, is a finite set of extended literals. We usually denote a rule as a ← β or ← β, and
we call the latter a constraint. The positive part of the body is β+ = {l | l ∈ β, l literal},
the negative part is β− = {l | not l ∈ β}, e.g. for β = {a, not ¬b, not c}, we have that
β+ = {a} and β− = {¬b, c}. For a set of literals α, not α = {not a | a ∈ α}, and
α∗ = α ∪ not α.

The Herbrand Base BP of a program P is the set of all atoms that can be formed
using the language of P . Let LP be the set of literals that can be formed with P , i.e.
LP = BP ∪ ¬BP . For a set X of literals, we take ¬X = {¬l | l ∈ X} where ¬¬a is
a; X is consistent if X ∩ ¬X = ∅. An interpretation I of P is any consistent subset of



Preferential Reasoning on a Web of Trust 371

LP . For a literal l, we write I |= l, if l ∈ I , which extends for extended literals not l
to I |= not l if I 
|= l. In general, for a set of extended literals X , I |= X if I |= x for
every extended literal x ∈ X . A rule r : a ← β is satisfied w.r.t. I , denoted I |= r, if
I |= a whenever I |= β, i.e. r is applied whenever it is applicable. A constraint ← β
is satisfied w.r.t. I if I 
|= β. The set of satisfied rules in P w.r.t. I is the reduct PI .

For a program P without negation as failure, an interpretation I is a model of P if
I satisfies every rule in P , i.e. PI = P ; it is an answer set of P if it is a minimal model
of P , i.e. there is no model J of P such that J ⊂ I . For programs P containing not,
the GL-reduct w.r.t. an interpretation I is P I , where P I contains α ← β+ for α ← β
in P and β− ∩ I = ∅. I is an answer set of P if I is an answer set of P I . A rule
a ← β is defeated w.r.t. I if there is a competing rule ¬a ← γ that is applied w.r.t. I ,
i.e. {¬a} ∪ γ ⊆ I . An extended answer set I of a program P is an answer set of PI

such that all rules in P \PI are defeated.
Consider a program P indicating that one wants to take the train (t1), that if the

distance to the destination is more than 300 km, one does not want to take the train (t2),
and that the distance is actually more than 300 km (t3).

t1 : train ← t2 : ¬train ← 300km
t3 : 300km ←

This program no answer sets and two extended answer sets M1 = {300km, train} and
M2 = {300km,¬train}: there is no competing rule for t3 such that it must be satisfied
and every extended answer set must contain 300km . The rule t2 is not satisfied in M1

(the body is true while the head is not), but it is defeated since the competing rule t1 is
applied in M1. In M2, t1 is defeated by the applied t2.

Resolving conflicts by defeating rules thus leads to different alternative extended
answer sets. Usually however, a user may have some particular preferences on the satis-
faction of the rules. As in [30], we impose a strict partial order1 < on the rules in P , indi-
cating these preferences, which results in an ordered logic program (OLP) 〈P, <〉.This
preferential ordering will induce an ordering� among the possible alternative extended
answer sets as follows: for interpretations M and N of P , M is “more preferred”
than N , denoted M � N , if ∀r2 ∈ PN \PM · ∃r1 ∈ PM \PN · r1 < r2. Intuitively,
for every rule that is satisfied by N and not by M , and which thus appears to be a coun-
terexample for M being better than N , there is a better rule that is satisfied by M and
not by N , i.e. M can counter the counterexample of N . We have that M is “strictly
better” than N , M � N , if M � N and not N � M . An extended answer set is a
preferred answer set of 〈P, <〉 if it is minimal w.r.t. � among the extended answer sets.

Considering the extended answer sets for the train example, we have that
PM1 = {t1, t3} and PM2 = {t2, t3}. If we prefer going by train over not going by train,
i.e. t1 < t2, we have that M1 � M2 since for every rule in PM2 \PM1 = {t2}, there is a
better one in PM2 \PM1 = {t1}. Since M2 
� M1, we have that M1 � M2, making M1

the only preferred answer set of the program.
For reference later on in the paper, we briefly restate the complexity results from

[30] for the preferred answer set semantics. Checking whether a program has an ex-
tended answer set containing a particular literal is NP-complete, while checking whether

1 A strict partial order on X is an anti-reflexive and transitive relation on X.



372 S. Heymans, D. Van Nieuwenborgh , and D. Vermeir

an ordered program has a preferred answer set containing a particular literal is ΣP
2 -

complete. Recall that NP represents the problems that are nondeterministically decid-
able in polynomial time, while ΣP

2 is NPNP, i.e. the problems that are nondeterministi-
cally decidable in polynomial time using an NP oracle, where an NP oracle is a subrou-
tine capable of solving NP problems in unit time. For an arbitrary complexity class C,
the class PC represents those problems that are deterministically decidable in polyno-
mial time with an oracle for problems in C. Finally, we mention the complexity class
EXPTIME (NEXPTIME) of problems deterministically (nondeterministically) decidable
in exponential time. A language L is called complete for a complexity class C if both
L is in C and L is hard for C. Showing that L is hard is normally done by reducing a
known complete decision problem to a decision problem in L. More on complexity in
general can be found in, e.g., [27].

3 Preferred Answer Set Programming with Calls

We extend preferred answer set programming with call literals. Take, for example, a
program with facts declaring kine to be a movie theater, pizzi and ilpast restaurants,
and times 8 P.M. and 10 P.M.

movies(kine) ← time(8pm) ←
rest(pizzi) ← time(10pm) ←
rest(ilpast)←

We have a rule p that produces a plan for a night out to a restaurant Rest and a movie
theater Movies at respective times Time1 and Time2 .

p : plan(Rest : rest, T ime1 : time, Movies : movies, T ime2 : time)←
Rest.res(T ime1), geo.near(Rest, Movies), T ime1 
= T ime2,

not otherpl(Rest, T ime1, Movies, T ime2)

The call literal Rest .res(Time1 ) represents a query to a restaurant’s knowledge to
check whether one can reserve at a time. The call literal, geo.near(Rest ,Movies),
queries some knowledge source geo in order to ensure that the restaurant and the movie
theater are located in each other’s vicinity. The inequality T ime1 
= T ime2 expresses
that dinner time must be different from the movie’s time. We used syntactic sugar for
typing arguments, e.g. Rest : rest indicates that the variable Rest is of type rest . For-
mally, we define a rule with typing p(T : t , x) ← β as the rule p(T , x) ← t(T ), β.
The extended literal not otherpl(Rest ,Time1 ,Movies,Time2 ) ensures that there is
only one plan in each result: o1 : otherpl(Resta, T ime1a, Moviesa, T ime2a)←
plan(Restb, T ime1b, Moviesb, T ime2b), Resta 
= Restb, and similar o2, o3, and o4,
with inequalities on the Time and Movies variables.

Furthermore, we want a classification of theaters that screen romantic movies. We
query two repositories that are able to verify whether a movie theater has romantic
movies programmed: moviedb1 .roman(Movies) and moviedb2 .roman(Movies).



Preferential Reasoning on a Web of Trust 373

r1 : roman(Movies : movies) ← moviedb1 .roman(Movies)
r2 : ¬roman(Movies : movies) ← not moviedb1 .roman(Movies)
r3 : roman(Movies : movies) ← moviedb2 .roman(Movies)
r4 : ¬roman(Movies : movies) ← not moviedb2 .roman(Movies)

Finally, the night out might be a date or not (rule d, where a rule of the form a ∨ ¬a ←
is shorthand for the rules a ← not ¬a and ¬a ← not a), and we have a constraint
indicating that a plan for a date should involve a movie theater where romantic movies
are screened:

d : date ∨ ¬date ←
c : ← plan(Rest ,Time1 ,Movies,Time2 ), date,¬roman(Movies)

In the following, we assume, as is usual in logic programming, that programs are
grounded: each variable is replaced by all possible constants. In the presence of call
literals, we further generalize this such that every word starting with a capital letter is
replaced by all possible constants. The rule p thus yields, among others,

plan(pizzi, 8pm, kine, 10pm)←
pizzi.res(8pm), geo.near(pizzi, kine), not otherpl(pizzi, 8pm, kine, 10pm)

We grounded the words Rest and Time1 in Rest .res(Time1 ) by pizzi and 8pm re-
spectively. Additionally, grounding takes into account inequalities and subsequently
removes them from the rules: Time1 and Time2 are grounded by different constants.
Grounding does not care for semantics, e.g., the literal 8pm.res(kine) is a valid, albeit
nonsensical, grounding for Rest .res(Time1 ).

Syntactically, a ground program with calls does not differ from a ground program
without calls: a literal is only a call literal if it is explicitly associated with a particular
instance of a decision problem.

Definition 1. A call semantics for a program R is a mapping σ : CR ⊆ LR → Inst
from a designated set of call literals CR in R to instances Inst of decision problems D.

We relate every instance in Inst to its decision problem by a mapping d : Inst → D
such that d(Inst) = D. A call semantics is well-defined if every decision problem
d ∈ D is decidable and has an associated complexity comp(d).The call complexity
comp(σ) of a well-defined σ is the complexity class

⋃
{comp(d) | d ∈ D}.For the

grounding R of the above program, we define the call literals CR = {pizzi .res(8pm),
pizzi .res(10pm), ilpast .res(8pm), ilpast .res(10pm), geo.near(pizzi , kine), geo.
near(ilpast , kine),moviedb1 .roman(kine),moviedb2 .roman(kine)}, with σ as in
Table 1. Thus, e.g., σ(pizzi .res(8pm)) is an instance of instance checking for OWL
DL ontologies, σ(moviedb1 .roman(kine)) is an instance of the problem that involves
checking whether there is an answer set of a program containing a certain literal, and,
σ(geo.near(pizzi , kine)) is some other unspecified instance of a decidable problem.
Assuming the complexity of the latter is polynomial, we have, with the NEXPTIME

complexity for instance checking in OWL DL [22] and NP complexity for the answer
set programming problem [6], that comp(σ) = NEXPTIME∪NP∪ P = NEXPTIME. The
particular dot notation (Rest .res(Time)) has thus no particular meaning in itself, apart



374 S. Heymans, D. Van Nieuwenborgh , and D. Vermeir

Table 1. Call Semantics σ

σ(pizzi .res(8pm)) = ‘is res(8pm) in model of OWL DL ontology pizzi ’
σ(pizzi .res(10pm)) = ‘is res(10pm) in model of OWL DL ontology pizzi ’
σ(ilpast .res(8pm)) = ‘is res(8pm) in model of OWL DL ontology ilpast’

σ(ilpast .res(10pm)) = ‘is res(10pm) in model of OWL DL ontology ilpast’
σ(geo.near(pizzi , kine))= ‘is pizzi near kine according to geo DB’

σ(geo.near(ilpast , kine))= ‘is ilpast near kine according to geo DB’
σ(moviedb1 .roman(kine)) = ‘exists answer set of moviedb1 containing roman(kine)’
σ(moviedb2 .roman(kine)) = ‘exists answer set of moviedb2 containing roman(kine)’

from hinting that it might be a call of res to the object Rest . The identification of call
literals and their semantics is the responsibility of the call semantics only.

In the following, we assume all call semantics are well-defined, and thus have an as-
sociated call complexity. Evaluating call literals amounts to evaluating the correspond-
ing instance of the decision problem.

Definition 2. Let σ be a call semantics for a program R. The evaluation of σ is a
mapping evalσ : CR ∪ not CR → {true, false} such that, for a call literal l, evalσ(l) =
true if σ(l) evaluates to true and evalσ(l) = false if σ(l) evaluates to false. For a
not l ∈ not CR, we define evalσ(not l) = ¬evalσ(l). For a set of extended call literals
X , evalσ(X) = {evalσ(l) | l ∈ X}.

Definition 3. A program with calls (LPC) is a pair P = 〈R, σ〉 where R is a program
and σ is a call semantics for R.

The semantics of LPCs is defined by a reduction to the extended answer set semantics for
programs without calls. For a LPC 〈R, σ〉, we evaluate all call literals in R by means of
σ. Since all call literals are interpreted as instances of decidable decision problems, such
an evaluation returns either true or false for each call literal. Similar to the GL-reduct,
the call-free reduct is then the original program R with call literals removed according
to their evaluation: a call literal in the body that evaluates to false amounts to the removal
of the rule since the rule can never contribute to an answer set; if a call literal in the body
evaluates to true, one just removes it from the body. The same reasoning applies to call
literals in the head. If such a call literal is true, the rule is automatically satisfied and one
can omit it, otherwise, the call literal is removed from the head.

Definition 4. The call-free reduct σP of a LPC P = 〈R, σ : CR → Inst〉 are the
rules (α\C∗R) ← (β\C∗R) where α ← β ∈ R and

∧
evalσ(β ∩ C∗R) = true and∨

evalσ(α ∩ C∗R) = false.2

For the call semantics from Table 1, assume the evaluation of σ is as in Table 2. One
can thus reserve at both 8 P.M. and 10 P.M. in pizzi, while only at 8 P.M. in ilpast.
Furthermore, pizzi is near the movie theater, and ilpast is not. According to moviedb1 ,
kine features romantic movies, contradicting moviedb2 . The call-free reduct of the
example contains, among others, rules

2 If a set X is empty, we assume X = true and X = false.



Preferential Reasoning on a Web of Trust 375

Table 2. Evaluation of σ

evalσ(pizzi .res(8pm)) = true evalσ(geo.near(pizzi , kine)) = true
evalσ(pizzi .res(10pm)) = true evalσ(geo.near(ilpast , kine)) = false
evalσ(ilpast .res(8pm)) = true evalσ(moviedb1 .roman(kine)) = true

evalσ(ilpast .res(10pm)) = false evalσ(moviedb2 .roman(kine)) = false

plan(pizzi , 8pm, kine, 10pm) ← not otherpl(pizzi , 8pm, kine, 10pm)
plan(pizzi , 10pm, kine, 8pm) ← not otherpl(pizzi , 10pm, kine, 8pm)

originating from rule p, and rules roman(kine) ← and ¬roman(kine) ← , originating
from, respectively, r1 and r4.

Definition 5. An interpretation of a LPC P = 〈R, σ〉 is an interpretation of σP . An
interpretation M of P is an extended answer set of P if M is an extended answer set
of σP .

We have 6 different extended answer sets of the example LPC:

M1 ={plan(pizzi , 8pm, kine, 10pm), date, roman(kine)}
M2 ={plan(pizzi , 8pm, kine, 10pm),¬date, roman(kine)}
M3 ={plan(pizzi , 8pm, kine, 10pm),¬date,¬roman(kine)}
M4 ={plan(pizzi , 10pm, kine, 8pm), date, roman(kine)}
M5 ={plan(pizzi , 10pm, kine, 8pm),¬date, roman(kine)}
M6 ={plan(pizzi , 10pm, kine, 8pm),¬date,¬roman(kine)}

For the two possible plans – pizza at 8, movie at 10, or vice versa – the night out may
be a date or not. If it is a date, one defeats ¬date ← by the applied rule date ← .
Furthermore, by constraint c, we need to have roman(kine) if date is in the answer
set, which requires defeating ¬roman(kine) ← by roman(kine) ← . Consequently,
although two different sources (moviedb1 and moviedb2 ) yield contradictory informa-
tion regarding the romantic nature of movies at a movie theater, a situation bound to
occur frequently on the Semantic Web, the extended answer set semantics solves this
by allowing for both solutions to coexist. The particular defeat mechanism makes sure
this happens in a sensible way: a rule can be left unsatisfied if there is a competing
applied rule.

Adding calls to programs, or, from a different perspective, wrapping different rea-
soners together using a logic program, amounts to reasoning that is not much worse
than its worst call to a reasoner. It can be done in Pcomp(σ) ∪ NP: either in polynomial
time with an oracle of complexity the call complexity of the call semantics or in NP.

Theorem 1. Let P = 〈R, σ〉 be a LPC and l a literal in R that is not a call literal.
Checking whether there is an extended answer set of P containing l is in Pcomp(σ) ∪ NP.

Given the NEXPTIME call complexity for the night out example, checking whether there
is an extended answer set containing a literal is in PNEXPTIME ∪ NP = PNEXPTIME , i.e. it
can be done in polynomial time with an oracle in NEXPTIME (corresponding to the
complexity of OWL DL instance checking).



376 S. Heymans, D. Van Nieuwenborgh , and D. Vermeir

Theorem 2. Let P = 〈R, σ〉 be a LPC and l a literal in R that is not a call literal.
Checking whether there is an extended answer set of P containing l is (comp(σ)∪NP)-
hard.

Approaches where input from the program can be send to the external source are not
expressible in this framework, e.g. in [11] atoms calculated in the program can influence
reasoning in a DL knowledge base (semantically, by adding them to the DL knowledge
base). Our approach does allow for parametrized calls to sources, but the parameters
must be known at compile-time before starting the computation of the answer set.

The extended answer set semantics enables resolution of conflicts. However, usu-
ally, some resolutions are more preferred than others. E.g., a particular user preference
is that one rather has a quiet night out instead of a stressful date: ¬date ← < date ← .
Moreover, not being on a date, there is no need to endure Hollywood’s romantic ideals3:

roman(kine) ← moviedb1 .roman(kine)
roman(kine) ← moviedb2 .roman(kine)
¬roman(kine) ← not moviedb1 .roman(kine)
¬roman(kine) ← not moviedb2 .roman(kine)

The preference between rules in the LPC, induces a natural preference relation on the
rules in the call-free reduct: ¬roman(kine) ← < roman(kine) ← . Formally, for
an order < on the rules in a LPC P = 〈R, σ : CR → Inst〉, we define, for rules
r1 : (α1 \C∗R)← (β1 \C∗R) ∈ σP and r2 : (α2 \C∗R) ← (β2 \C∗R) ∈ σP ,

r1
σ<r2 iff α1 ← β1 < α2 ← β2 .

Definition 6. An ordered program with calls (OLPC) is a pair P = 〈R, <〉 where R
is a LPC and < is a strict partial order on the rules in R. An extended answer set of
P is an extended answer set of R. An extended answer set of P is preferred if it is a
preferred answer set of the OLP 〈σR, σ<〉.
Note that 〈σR, σ<〉 is indeed an OLP, more specifically, σ< is a strict partial order on
the rules in σR. The OLPC 〈R, <〉 defining the night out example, yields the preferred
answer sets M3 and M6, corresponding to the preference for nights out devoid of date
and romantic movie. The complexity of reasoning with OLPCs again mostly depends
on the call complexity.

Theorem 3. Let P = 〈R, <〉 be an OLPC and l a literal in R that is not a call literal.
Checking whether there is a preferred answer set of P containing l is in Pcomp(σ) ∪ΣP

2 .

Theorem 4. Let P = 〈R, <〉 be an OLPC and l a literal in R that is not a call literal.
Checking whether there is a preferred answer set of P containing l is (comp(σ)∪ΣP

2 )-
hard.

Even though the night out example did not feature it, the heads of rules may contain
calls as well. This allows a form of ontology alignment in the sense that one can en-
force that ontologies should agree on some facts. E.g., moviedb2 .roman(kine) ←

3 The notation in modules indicates that all rules in one module, divided by a horizontal line,
are more preferred than all the rules in the module above.



Preferential Reasoning on a Web of Trust 377

moviedb1 .roman(kine) enforces that if kine is a theater screening romantic movies
according to moviedb1 then moviedb2 should agree. Calls in the heads of rules can,
however, always be replaced by their negation in the body.

Theorem 5. Let 〈R, σ〉 be a LPC with a ← β ∈ R and a call literal a . Then, M
is an extended answer set of 〈R, σ〉 iff M is an extended answer set of 〈R′, σ〉 where
R′ = (R\{a ← β}) ∪ { ← not a, β}.
A similar theorem does not hold for heads that are not call literals: a ← has the
extended answer set {a}while its shifted version ← not a has no extended answer sets
(one cannot motivate a since there no rules with a in the head, although the constraint
demands the presence of a).

4 Preferential Reasoning on a Web of Trust

Often, the user has its particular knowledge, in the form of a program, and a sense of which
calls he believes more than other calls, e.g. because (part of) one source of information is
more reliable than (part of) another one. Take the LPC 〈S, σ〉 with S the program4

stock(lmby) ← buy(S ) ← ft .buy(S ),nyt .buy(S )
stock(wtww) ← ¬buy(S ) ← not pdh.buy(S )

with a call semantics σ(ft .buy(lmby)) = ‘buy stock lmby according to Financial Times’
and similarly for the grounded call literals involving nyt (New York Times) and pdh
(analyst Paul D’Hoore) with the stock wtww . Assume the evaluation of σ is as follows

evalσ(ft .buy(lmby)) = false evalσ(nyt .buy(wtww)) = true
evalσ(ft .buy(wtww)) = true evalσ(pdh.buy(lmby)) = false

evalσ(nyt .buy(lmby)) = true evalσ(pdh.buy(wtww)) = false

such that both the Financial Times and Paul D’Hoore discourage buying lmby , the
Financial Times suggests buying wtww , while Paul would not buy wtww , and the New
York Times suggests buying both stocks. The call-free reduct of this LPC is then

s1 : stock(lmby) ← bf : buy(wtww) ←
s2 : stock(wtww) ← bp1 : ¬buy(lmby) ←

bp2 : ¬buy(wtww) ←

such that we have two extended answer sets

N1 ={stock(lmby), stock(wtww),¬buy(lmby), buy(wtww)}
N2 ={stock(lmby), stock(wtww),¬buy(lmby),¬buy(wtww)}

where bf defeats bp2 , and bp2 defeats bf respectively, corresponding to the two strategies
of resolving the conflicts caused by bf and bp2 . In order to deduce the most preferred
answer, we allow the user to express its belief in certain calls:

{not pdh.buy(lmby),not pdh.buy(wtww)} <

{ft .buy(lmby), ft .buy(wtww),nyt .buy(lmby),nyt .buy(wtww)} ,

4 As usual, we identify the program with its grounding.



378 S. Heymans, D. Van Nieuwenborgh , and D. Vermeir

which signifies that every extended call literal in the set on the left-hand side of <
is more believed than any extended call literal in the set on the right-hand side, i.e.
the opinion of Paul D’Hoore is valued more than the opinion of the Financial Times
or the New York Times. Intuitively, this order on calls induces an order on rules.
E.g. take the ground rules b1 : buy(wtww) ← ft .buy(wtww),nyt .buy(wtww) and
b2 : ¬buy(wtww) ← not pdh.buy(wtww). We can order those rules based on the or-
der on the call literals: we consider b2 more preferred than b1 since for every extended
call literal in the body of b1 that is not in the body of b2 we have a more believed ex-
tended call literal in the body of b2 that is not in the body of b1. Put otherwise, for
every call that b1 needs to make in order to deduce buy(wtww) and that b2 does not
make to deduce ¬buy(wtww), b2 makes a more credible call that b1 does not make.
The order on extended call literals thus induces the order b2 < b1, and a similar order-
ing for the grounding with lmby , which in turn leads to the order ¬buy(wtww) ← <
buy(wtww) ← in the call-free reduct. Consequently, the example LPOC has the pre-
ferred answer set N2. Things get more complicated, however, if we replace, e.g., b1 by
b1
1 : buy(wtww) ← tmp and b2

1 : tmp ← ft .buy(wtww),nyt .buy(wtww). Obviously,
one still prefers b2 over b1

1, but, now, a direct comparison based on the order on the call
literals in their respective bodies does not makes sense. Instead, we look at the trace of
both bodies, i.e. those extended call literals that must be evaluated as true in order to
make the extended literals in the body true. The trace of a set of extended literals thus
identifies those calls that are responsible for the truth of those literals in an extended
answer set, and on which we can base the induced order on rules.

Definition 7. Let 〈R, σ〉 be a LPC with call literals CR, c ∈ C∗R, and l ∈ L∗
R\C∗R. Then

c ∈ tr(l) iff for every evaluation evalσ of σ: if M is an extended answer set of 〈R, σ〉
(w.r.t. evalσ) such that M |= l, then evalσ(c) = true.

Furthermore, tr(c) = {c} and tr(β) =
⋃
{tr(b) | b ∈ β}.

The trace of tmp is then tr(tmp) = {ft.buy(wtww), nyt.buy(wtww)}, i.e. in order
make tmp true one needs the truth of the call literals in tr(tmp). The trace of the body
of b2 is {not pdh.buy(wtww)}. Such that, based on those traces and the order on the
call literals, we can deduce that b2 is more preferred than b1

1.

Definition 8. A program with ordered calls (LPOC) is a pair P = 〈R,≺〉 where R is
a LPC with call literals CR and≺ is a strict partial order on the (extended) call literals
in C∗R. An extended answer set of P is an extended answer set of R. An extended answer
set of P is preferred if it is a preferred answer set of the OLPC 〈R, <〉, where, for
conflicting rules r1 : a ← β1 and r2 : ¬a ← β2 in R, r1 ≤ r2 iff ∀c ∈ tr(β2)\tr(β1) ·
∃c′ ∈ tr(β1)\tr(β2)·c ≺ c′, and, for arbitrary rules r, s ∈ R, r < s iff r ≤∗ s∧s 
≤∗ r
where ≤∗ is the transitive closure of ≤.

The preference order < is a strict partial order such that 〈R, <〉 is indeed a LPOC.
Note that one can immediately reduce an order on knowledge sources – knowledge

source Σ1 has more authority than Σ2 – to an order on extended call literals by group-
ing call literals concerning the same sources together, as we did in the stock example.
An order on extended call literals instead of on sources allows for a finer granularity as
it makes it possible to prefer sources for certain types of knowledge while preferring



Preferential Reasoning on a Web of Trust 379

others for other types of knowledge: calls to the sports paper L’Equipe regarding ten-
nis could be considered more reliable than tennis-related calls to Le Monde, while the
opposite may be true for political subjects.

A Semantic Web agent may not always have preferences on the sources it is rea-
soning with, but if there is a network of agents it trusts available, it can easily learn
preferences from those trusted agents. We model the Semantic Web as a pair 〈K,A〉
where K is a set of knowledge sources K and A = (V, E) is a directed graph with
agents V and edges E between them. Each agent in V is defined as a LPOC, i.e. an
agent has reasoning capabilities through a logic program with calls and can express
preferences on its calls. Denote with R(A) the sequence of agents that are reachable
from A via a path in E, and assume R(A) is ordered according to the trust A has in
them. Thus R(A) is a sequence of agents A1, A2, . . ., such that each Ai is trusted more
by A than Ai+1 is. We thus assume that the agent resides on a web of trust, with a
suitable trust metric that allows for the construction of R(A) for every agent A.

For our convenience, we identify the set of sources K with the set of all instances
of decidable decision problems d that have an associated complexity comp(d). E.g., the
identification of a particular description logic knowledge base Σ ∈ K includes the set
of all satisfiability checking problems w.r.t. Σ.

Take an agent A = 〈P,≺〉 with P a simplified version of the stock example,
b1 : buy ← ft .buy,nyt .buy , and b2 : ¬buy ← not pdh.buy , with call literals ft .buy ,
nyt .buy , and pdh.buy , evaluated as true, true, and false respectively. We assume that
the agent has no preference on the two extended answer sets {buy} and {¬buy} of this
program, i.e. ≺ is empty, such that both extended answer sets are preferred. Due to the
empty preference, the agent has to choose between 2 equally preferred, but contradict-
ing, strategies. Assuming the agent is part of network of agents it trusts, it can try to find
out what the trusted agents think of its call literals. E.g., assume that agent A is con-
nected to agents A1 = 〈P1,≺1〉, A2 = 〈P2,≺2〉, and A3 = 〈P3,≺3〉 with preferences
defined as follows:

not pdh.buy ≺1 ft .buy not pdh.buy ≺3 nyt .buy
lat .buy ≺1 ft .buy ft .buy ≺3 lat .buy
ft .buy ≺2 not pdh.buy

Thus, agent A1 prefers Paul D’Hoore’s advice as well as the Los Angeles Times’s ad-
vice over that of the Financial Times, agent A2 holds an opposite view and prefers the
Financial Times over Paul D’Hoore, and agent A3 prefers Paul’s advice over the New
York Times’s and has more believe in the Financial Times than in the Los Angeles
Times. We do not specify the programs of those agents since we are only interested to
learn preferences for agent A from the preferences its trusted agents have – for A it
does not matter how the trusted agents deploy those preferences.

In order to let agent A construct its preferences based on this web of agents, we as-
sume its reachable agents are ranked according to trustworthiness: R(A) = A1, A2, A3,
such that A1 is the agent that A trusts the most and A3 the agent that it trusts the least.
Considering the preference of A1, A only retains not pdh.buy ≺1 ft .buy: combining
this preference with A’s own preference, a strict partial order on the call literals of P
can be constructed. The other preference of A1 involves lat .buy which is of no concern
to agent A since it is not a call literal in P .



380 S. Heymans, D. Van Nieuwenborgh , and D. Vermeir

Moving to agent A2, second in the line of trust, A ignores ≺2: it contradicts the
order already constructed in A with the more trusted agent A1. Finally, A ignores the
preference in ≺3 involving lat .buy , but it updates its preference with not pdh.buy ≺3

nyt .buy . This results in an updated agent A′ = 〈P,≺′〉 with not pdh.buy ≺′ ft .buy ,
and not pdh.buy ≺′ nyt .buy . This order on call literals induces then the order b2 < b1

such that {¬buy} is the preferred answer set of the updated agent A′.

Definition 9. For an agent A = 〈P,≺〉 in A, let R(A) = 〈P1,≺1〉, 〈P2,≺2〉, . . . The
updated agent of A is A′ = 〈P,≺′〉 where ≺′= (≺ ∪

⋃
i=1 Bi)∗ with

1. Bi ⊆≺i,
2. ∀c1 ≺i c2 ∈ Bi · c1, c2 ∈ C∗P ,
3. (≺ ∪

⋃i
j=1 Bj)∗ is a strict partial order,

4. Bi is a maximal set satisfying 1., 2., and 3.

Intuitively, the agent updates its own preference≺ with maximal subsets of preferences
of trusted agents, and this according to the order of trust. Condition 2. ensures that only
preferences on call literals of the agent’s own program P are considered, and condi-
tion 3. ensures that only those preferences of ≺i are retained that, when added to the
accumulated preference and transitively closing the result, one still has a strict partial
order. The latter only amounts to checking irreflexivity since transitivity is entailed by
taking the transitive closure. Condition 4. forces≺′ to consider as much preferences as
possible from each preference≺i.

The updated ≺′ is a strict partial order on call literals such that the updated agent
A′ is a LPOC, and we can compute preferred answer sets of an agent by computing the
preferred answer set of its updated version that takes into account the web of trust.

Definition 10. Let A be an agent in A. The preferred answer set of A is the preferred
answer set of the updated A′.

In order to be able to compute the updated agent for an agent A, we assume that R(A)
is finite. Since the Semantic Web with software agents is finite this sounds like a reason-
able restriction. However, due to the sheer amount of envisaged agents on the Semantic
Web, it is unlikely that feasible reasoning with all connected agents is possible. A pos-
sible strategy in overcoming this problem is to add a bound on the number of trusted
agents in the sequence R(A).

In considering an agent as a logic program, we neglected a lot of the machinery
involved in agent definitions. E.g., in the IMPACT System [1] an agent consists of
two parts: software code and a semantic wrapper consisting of a message manager,
an action module, and a meta-knowledge module. In [12], the theory and implemen-
tation of the action module is described, with, among others, code call atoms that are
able to call software, and agent programs that express the choices for actions. E.g.,
O(send note(Person)) ← Do(run audit(Person)), indicates that if one is executing
the audit run, one is obliged to send a note. Conflict resolution in [12] amounts to allow-
ing defeat of the meta-rule “if Oα then Doα”, which says that if action α is obliged then
one should execute it. This type of behavior can be simulated under our extended answer
set semantics by introducing the ordered rules Do(α) ← O(α) <¬Do(α) ← O(α),



Preferential Reasoning on a Web of Trust 381

thus minimizing defeat of the meta-rule. Moreover, our preference relation between
rules allows for more fine-grained types of conflict resolution as showed in this section.

5 Conclusions and Directions for Further Research

We devised and discussed a logic programming based framework for agents on the
Semantic Web, where agents are capable of expressing preferences on the rules or on
the call literals in their knowledge. Those preferences enabled the resolution of conflicts
with the most preferred solution. In case an agent has no preferences but is part of a web
of trusted agents, we showed how the agent can replenish its own preferences based on
the preferences of trusted agents.

The preferred answer set semantics from Section 2, i.e. without calls, was imple-
mented by the OLPS solver [26], available at http://tinf2.vub.ac.be/olp/.
For a given OLPC, i.e. a program with calls and an order on those rules, different plug-
ins are envisaged to be written, depending on the type of desired calls. Such a plug-in’s
main task would be to execute the decision problem associated with a particular call,
e.g. check the satisfiability of a concept with the FACT [21] DL reasoner, and subse-
quently calculate the call-free reduct and the reduced order on this reduct, which are
then to be fed to OLPS.

References

1. K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, and V. S. Subrahmanian. IMPACT: In-
teractive Maryland Platform for Agents Collaborating Together. IEEE Intelligent Systems,
14(2):64–72, 1999.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook. Cambridge University Press, 2003.

3. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, 2003.

4. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider, and L. A. Stein. OWL Web Ontology Language Reference, 2004.

5. K. Van Belleghem, M. Denecker, and D. De Schreye. A Strong Correspondence between
DLs and Open Logic Programming. In Proc. of ICLP’97, pages 346–360, 1997.

6. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of
Logic Programming. ACM Comput. Surv., 33(3):374–425, 2001.

7. L. Ding, L. Zhou, and T. Finin. Trust Based Knowledge Outsourcing for Semantic Web
Agents. In Proc. of the 2003 IEEE/WIC International Conference on Web Intelligence, 2003.

8. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog and
Description Logics. J. of Intell. and Cooperative Information Systems, 10:227–252, 1998.

9. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under Incomplete Knowl-
edge. In Proc. of CL 2000, volume 1861 of LNCS, pages 807–821. Springer, 2000.

10. T. Eiter, G. Gottlob, and H. Veith. Modular Logic Programming and Generalized Quantifiers.
In Proc. of LPNMR, pages 290–309, 1997.

11. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set Program-
ming with DLs for the Semantic Web. In Proc. of KR 2004, pages 141–151, 2004.

12. T. Eiter, V. S. Subrahmanian, and G. Pick. Heterogeneous Active Agents, I: Semantics. Artif.
Intell., 108(1-2):179–255, 1999.



382 S. Heymans, D. Van Nieuwenborgh , and D. Vermeir

13. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Proc.
of ICLP’88, pages 1070–1080, Cambridge, Massachusetts, 1988. MIT Press.

14. Y. Gil and V. Ratnakar. Trusting Information Sources One Citizen at a Time. In Proc. of
International Semantic Web Conference (ISWC 2002), pages 162–176, 2002.

15. J. Golbeck and J. Hendler. Inferring Reputation on the Semantic Web. In Proc. of WWW
2004. ACM, 2004.

16. J. Golbeck, B. Parsia, and J. Hendler. Trust Networks on the Semantic Web. In Proc. of
Cooperative Intelligent Agents 2003, 2003.

17. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logic. In Proc. of WWW 2003, pages 48–57, 2003.

18. James Hendler. Agents and the Semantic Web. IEEE Intelligent Systems Journal, 16(2),
2001.

19. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Nonmonotonic Ontological and Rule-
based Reasoning with Extended Conceptual Logic Programs. In Proc. of ESWC 2005, num-
ber 3532 in LNCS, pages 392–407. Springer, 2005.

20. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Preferential Reasoning on a Web
of Trust. Technical report, Vrije Universiteit Brussel, Dept. of Computer Science, 2005.
http://tinf2.vub.ac.be/˜{}sheymans/tech/aspc-tech.ps.gz.

21. I. Horrocks. The FaCT system. In Proc. of Tableaux’98, number 1397, pages 307–312.
Springer-Verlag, 1998.

22. I. Horrocks and P. Patel-Schneider. Reducing OWL Entailment to Description Logic Satisfi-
ability. J. of Web Semantics, 1(4):345–357, 2004.

23. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Description Logic to Disjunctive
Datalog Programs. FZI-Report 1-8-11/03, Forschungszentrum Informatik (FZI), 2003.

24. V. Lifschitz. Answer Set Programming and Plan Generation. Journal of Artificial Intelli-
gence, 138(1-2):39–54, 2002.

25. B. Motik, R. Volz, and A. Maedche. Optimizing Query Answering in Description Logics
using disjunctive deductive databases. In Proc. of KRDB’03, pages 39–50, 2003.

26. D. Van Nieuwenborgh, S. Heymans, and D. Vermeir. An Ordered Logic Program Solver. In
Proc. of PADL 2005, number 3350 in LNCS, pages 128–142. Springer, 2005.

27. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
28. M. Richardson, R. Agrawal, and P. Domingos. Trust Management for the Semantic Web. In

Proc. of ISWC 2003, pages 351–368. Springer-Verlag, 2003.
29. R. Rosati. Towards Expressive KR Systems Integrating Datalog and Description Logics:

Preliminary Report. In Proc. of DL’99, pages 160–164, 1999.
30. D. Van Nieuwenborgh and D. Vermeir. Preferred Answer Sets for Ordered Logic Programs.

In Proc. of JELIA 2002, volume 2424 of LNAI, pages 432–443. Springer, 2002.
31. Matthias Wagner, Thorsten Liebig, Olaf Noppens, Steffen Balzer, and Wolfgang Kellerer.

Towards Semantic-based Service Discovery on Tiny Mobile Devices.



Resolution-Based Approximate Reasoning
for OWL DL�

Pascal Hitzler and Denny Vrandečić

AIFB, Universität Karlsruhe, Germany
{hitzler, vrandecic}@aifb.uni-karlsruhe.de

Abstract. We propose a new technique for approximate ABox rea-
soning with OWL DL ontologies. Essentially, we obtain substantially
improved reasoning performance by disregarding non-Horn features of
OWL DL. Our approach comes as a side-product of recent research
results concerning a new transformation of OWL DL ontologies into
negation-free disjunctive datalog [1, 2, 3, 4], and rests on the idea of per-
forming standard resolution over disjunctive rules by treating them as
if they were non-disjunctive ones. We analyse our reasoning approach
by means of non-monotonic reasoning techniques, and present an imple-
mentation, called Screech.

1 Introduction

Knowledge representation and reasoning on the Semantic Web is done by means
of ontologies. While the quest for suitable ontology languages is still ongoing,
OWL [5] has been established as a core standard. It comes in three flavours,
as OWL Full, OWL DL and OWL Lite, where OWL Full contains OWL DL,
which in turn contains OWL Lite. The latter two coincide semantically with
certain description logics [6] and can thus be considered fragments of first-order
predicate logic.

OWL ontologies can be understood to consist of two parts, one intensional,
the other extensional. In description logics terminology, the intensional part con-
sists of a TBox and an RBox, and contains knowledge about concepts (called
classes) and the complex relations between them (called roles). The extensional
part consists of an ABox, and contains knowledge about entities and how they
relate to the classes and roles from the intensional part. For the Semantic Web,
TBox and RBox shall provide background vocabulary, while (annotated) web-
pages etc. constitute ABoxes which are interlinked with intensional knowledge.
The Semantic Web thus envisions a distributed knowledge source, built from
OWL ontologies and intertwining the knowledge like the World Wide Web in-
terconnects websites.
� The authors acknowledge support by the German Federal Ministry of Education and

Research (BMBF) under the SmartWeb project, and by the European Commission
under contract IST-2003-506826 SEKT and under the KnowledgeWeb Network of
Excellence. The expressed content is the view of the authors but not necessarily the
view of any of the projects as a whole.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 383–397, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



384 P. Hitzler and D. Vrandečić

With an estimated 25 million active websites today and correspondingly more
webpages, it is apparent that reasoning on the Semantic Web will have to deal
with very large ABoxes. Complexity of ABox reasoning — also called data com-
plexity — thus measures complexity in terms of ABox size only, while considering
the intensional part of the ontology to be of constant size. For the different OWL
variants, data complexity is at least NP-hard, which indicates that it will not
scale well in general [7]. Methods are therefore being sought to cope with large
ABoxes in an approximate manner.

The approach which we propose is based on the fact that data complex-
ity is polynomial for non-disjunctive datalog. We utilise recent research results
[1, 2, 3, 4] which allow the transformation of OWL DL ontologies into disjunc-
tive datalog. Rather than doing (expensive) exact reasoning over the resulting
disjunctive datalog knowledge base, we do approximate reasoning by treating
disjunctive rules as if they were non-disjunctive ones. The resulting reasoning
procedure is complete, but may be unsound in cases. Its data complexity is
polynomial. We are also able to give a characterization of the resulting ap-
proximate inference by means of standard methods from logic programming
semantics.

This paper is structured as follows. In Section 2, we first discuss the general
rationale behind approximate reasoning, and how it relates to other reasoning
frameworks. We then recall formal terminology and notation for OWL DL, and
shortly review datalog and SLD-resolution. Then, in Section 4, we explain how
OWL DL ontologies can be transformed into disjunctive datalog. In Section 5
we introduce the new approximate SLD-resolution procedure which we propose.
The presentation of our implementation Screech in Section 6 is followed by an
Example in Section 7, and an experimental evaluation in Section 8. We conclude
and discuss future work in Section 9.

2 Non-classical Reasoning — Common Grounds

The sophisticated reasoning tasks required when dealing with expressive knowl-
edge representation languages like those based on description logics are known to
be of high computational complexity. In the face of ever increasing data quan-
tities to be processed, new methods are needed to obtain usable systems. As
the high computational complexity of the reasoning tasks is unavoidable, the
method of choice for obtaining scalable systems is to use approximate reasoning
techniques. In a nutshell, approximate reasoning rests on the idea of decreas-
ing the complexity of a problem by imposing controlled changes on either the
language used or the inference operation used for the deduction. The resulting
lower complexity and consequent speed-up thus comes at the price of unsound-
ness or incompleteness (or both), but in a controlled and well-understood manner
which allows to assess the quality of the deduction made by the approximate rea-
soner. So-called anytime algorithms develop the idea a bit further and guarantee
convergence to exact answers given enough time, while providing approximate
results during the reasoning process.



Resolution-Based Approximate Reasoning for OWL DL 385

Fig. 1. Semantic view on approximate reasoning

A semantic perspective on approximate reasoning is depicted in Figure 1.
When a theory is being considered, classical reasoning may be of high com-
putational complexity and thus be unsuitable for time-critical tasks. By taking
different models into account than the classical ones, the complexity of reasoning
can be reduced. The resulting approximate inference may be incomplete or un-
sound with respect to classical inference, but in a controlled and well-understood
manner, which makes the inferences suitable for further use.

Similar situations occur in the context of other sophisticated reasoning tech-
niques. For non-monotonic reasoning, for example, a subset of the classical mod-
els is usually considered, which is selected by means of e.g. additional syntax
constructs or by redefining the semantics of existing ones. Non-monotonic rea-
soning thus allows to arrive at conclusions which cannot be derived using classical
reasoning: It is complete, but unsound, and can be described as supraclassical [8].
The rationale in this case is to model aspects of human commonsense reasoning
like jumping to conclusions, again in a controlled and well-understood manner.
Complexity considerations are often treated as secondary in this context.

Paraconsistent reasoning — or reasoning with inconsistency — can be ap-
proached from a similar perspective. While inconsistent knowledge bases have
no classical models, paraconsistent reasoning strives to identify suitable models
to be assigned to the knowledge base nevertheless, in order to allow the infer-
ence of meaningful consequences. As such, paraconsistent reasoning is sound, but
incomplete with respect to classical logic, and can thus be termed subclassical.

Table 1 summarizes our discussion. While the table can certainly be extended
further taking other forms of reasoning into account, we restrict ourselves to the
mentioned examples, as the main goal of this paper is to present an approxi-
mate reasoning method for OWL DL, and not a comparative theory of reasoning

Table 1. Comparision of non-classical reasoning approaches

reasoning approach focus models taken into account typical complexity
classical all classical models high
non-monotonic commonsense some classical models very high
paraconsistent inconsistency more than the classical models high
approximate performance variable low



386 P. Hitzler and D. Vrandečić

approaches. We have included this discussion because it explains the general ra-
tionale behind our approximate reasoning method, and will help us in analyzing
it. Indeed, in all reasoning paradigms mentioned, it is important to obtain a clear
understanding of the inference relation computed. This can be done by semantic
analyses, i.e. by characterizations of the models taken into account. From the
general perspective described in this section, it will later come as no surprise to
the reader that we will analyze our approximate reasoning methods by means
of standard techniques from non-monotonic reasoning. Indeed, in our particular
case the models taken into account for approximate reasoning will turn out to
be a subset of the classical models, as in non-monotonic reasoning.

3 Preliminaries

3.1 OWL DL Syntax and Semantics

OWL DL is a syntactic variant of the SHOIN (D) description logic [9]. Hence,
although several XML and RDF syntaxes for OWL DL exist, it will be convenient
to use the traditional description logic notation since it is more compact, and
we recall the notation below. For the correspondence between this notation and
various OWL DL syntaxes, see [9].

We indeed assume that the reader is familiar with OWL and thus with
SHOIN (D), as space restrictions forbid to reintroduce them, but recall that
SHOIN (D) supports reasoning with concrete datatypes, such as strings or inte-
gers [10]. Recall also that the description logic syntax for concepts in SHOIN (D)
is defined as follows, where A is an atomic concept, R is an abstract role, S is
an abstract simple role, T(i) are concrete roles, d is a concrete domain predi-
cate, ai and ci are abstract and concrete individuals, respectively, and n is a
non-negative integer:

C → A | ¬C | C1 � C2 | C1 � C2 | ∃R.C | ∀R.C | ≥ n S | ≤ n S | {a1, . . . , an} |
| ≥ n T | ≤ n T | ∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

The SHIQ(D) description logic is obtained from SHOIN (D) by disallowing
nominal concepts of the form {a1, . . . , an} and {c1, . . . , cn}, and by allowing qual-
ified number restrictions of the form ≥ n S.C and ≤ n S.C, for C a SHIQ(D)
concept and S a simple role.

As description logics, SHOIN (D), i.e. OWL DL, and SHIQ(D) inherit
their semantics from first-order logic by the standard translations known e.g.
from [11], which we do not repeat here.

3.2 Datalog and SLD-Resolution

A (definite or negation-free) disjunctive logic program P consists of a finite set
of clauses or rules of the form

∀x1 . . .∀xn.(H1 ∨ · · · ∨Hm ← A1 ∧ · · · ∧Ak),



Resolution-Based Approximate Reasoning for OWL DL 387

commonly written as

H1 ∨ · · · ∨Hm ← A1, . . . , Ak,

where x1, . . . , xn are exactly all variables occuring in H1 ∨ · · · ∨ Hm ← A1 ∧
· · · ∧ Ak, and all Hi and Aj are atoms over some given first-order language
Σ. The disjunction H1 ∨ · · · ∨Hm is called the rule head, and the conjunction
A1 ∧ · · · ∧ Ak is called the rule body. The set of all ground instances of atoms
defined over Σ is called the Herbrand base of P and is denoted by BP . The set
of all ground instances of rules in P is denoted by ground(P ). A rule is said to
be non-disjunctive if m = 1. It is called a fact if k = 0. We abstract from the
order of the atoms in the heads respectively bodies; it is not important for our
results. A disjunctive logic program is called a (disjunctive) datalog program if
it does not contain function symbols.

Note that we do not consider logic programs to come with one specific se-
mantics. Some people for example associate datalog with the minimal model
semantics only. For our treatment, datalog and logic programs are defined via
syntax only. We do not specify a specific semantics because in the following
we will discuss different semantics for logic programs in their relation to proof
procedures. One of the semantics we will consider is the semantics coming from
interpreting logic programs as a set of first order formulas, and in this case we
use |= to denote entailment in classical first-order predicate logic.

SLD-resolution (see e.g. [12]) is an efficient top-down query-answering tech-
nique for programs consisting of non-disjunctive rules, and has been imple-
mented and successfully applied in standard Prolog systems.1 In this framework,
a ground atom can be derived from a program if and only if it is true in the least
(and thus in all) Herbrand models of the program.

In the following, we mean by a conjunctive query simply a conjunction B1 ∧
· · ·∧Bn of atoms. The query is called ground if it does not contain any variables.

Given a conjunctive query B1∧· · ·∧Bn, an SLD-resolution step on the atom
Bi with a non-disjunctive rule H ← A1, . . . , Ak produces a conjunctive query

B1θ ∧ · · · ∧Bi−1θ ∧A1θ ∧ · · · ∧Akθ ∧Bi+1θ ∧ · · · ∧Bnθ

where θ is the most general unifier of Bi and H . An SLD-refutation of a con-
junctive query B1 ∧ · · · ∧Bn in a non-disjunctive program P is a finite sequence
of conjunctive queries Q0, . . . , Qn, where (i) Q0 = B1 ∧ · · · ∧ Bn, (ii) each Qi

with i > 0 is obtained from Qi−1 by an SLD-resolution step with some rule from
P on some literal Bi, and (iii) Qn = �, i.e. the conjunctive query Qn does not
contain any literals. If an SLD-refutation of B1 ∧ · · · ∧Bn in P exists, we write
P % B1 ∧ · · · ∧Bn.

One of the fundamental results in logic programming states that A ∈ BP can
be proven by SLD-resolution if and only if A is a logical consequence of P , i.e.
if and only if A is true in the least Herbrand model of P :

1 Like SWI or XSB Prolog, http://www.swi-prolog.org, http://xsb.sourceforge.net.



388 P. Hitzler and D. Vrandečić

Theorem 1 ([12]). For a ground conjunctive query B1 ∧ · · · ∧ Bn and a non-
disjunctive program P , P % B1 ∧ · · · ∧ Bn if and only if P |= B1 ∧ · · · ∧ Bn. In
other words, entailment of ground conjunctive queries under SLD-resolution is
entailment in predicate logic.

SLD-resolution also allows to derive answers to non-ground queries: For a con-
junctive (and not necessarily ground) query Q there exist an SLD-refutation if
and only if P |= ∃x1 . . .∃xn.Q, where x1, . . . , xn are the variables occuring in
Q. By keeping track of the most general unifiers used in the process, it is also
possible to obtain bindings for (some of) the xi in the form of (answer) substitu-
tions θ, such that P |= ∃y1 . . .∃yk(Qθ), where the yi are exactly those variables
occurring in Qθ. In order to keep our exhibition focused, we will only deal with
ground queries.

4 Reducing OWL DL Knowledge Bases to Disjunctive
Datalog Programs

We utilise recent research results about the transformation of OWL DL ontolo-
gies into disjunctive datalog, and perform approximate reasoning by transform-
ing the disjunctive database into a non-disjunctive one. The transformation is
based on the fact that OWL DL is a subset of first-order logic. OWL axioms can
thus be translated directly into logical formulas and transformed into clausal
form using any of the standard algorithms. The resulting clauses can be repre-
sented as disjunctive datalog rules which do not contain negation.

Note, however, that due to possible skolemization steps in the clausal form
translation, the resulting datalog rules may contain function symbols. In general,
datalog with function symbols is undecidable, but since we obtain the datalog
program by a translation from OWL DL, which is decidable, inferencing over
the resulting program must be decidable. Standard datalog engines, however, do
in general not terminate in the presence of function symbols. To cope with this
problem, a sophisticated method has been presented in [2, 3] which allows to get
rid of the function symbols without loosing ABox consequences. As a result, we
obtain a function- and negation-free disjunctive datalog program, which can be
dealt with using standard techniques.

There is one other catch: The approach presented in [2, 3] does not yet allow
to deal with nominals, i.e. it supports only SHIQ(D) instead of SHOIN (D)
(the latter is the description logic coinciding with OWL DL). We remark that
to date — and to the best of our knowledge — no reasoning algorithms for
SHOIN (D) have been implemented. We will return to a possible treatment of
nominals in our approach later.

The translation algorithm is schematically depicted in Figure 2. It transforms
a SHIQ(D) knowledge base KB into a disjunctive datalog program DD(KB).
The steps of the algorithm are as follows. (1) Transitivity axioms are removed
by adding axioms of a form similar to ∀S.C � ∀S.(∀S.C) for transitive roles S.
(2) The knowledge base is translated into clausal form by standard transforma-
tions based on first-order predicate logic. This introduces function symbols due



Resolution-Based Approximate Reasoning for OWL DL 389

SHIQ(D)

KB

Elimination of

Transitivity

Axioms

Translation

into Clauses

Saturation

by Basic

Superposition

Elimination of

Function

Symbols

Conversion to

Disjunctive

Datalog

Disjunctive

Program

DD(KB)

Fig. 2. Algorithm for Reducing SHIQ(D) to Datalog Programs

to necessary skolemization steps. (3) The TBox of the knowledge base is par-
tially saturated by adding logical consequences. This is the crucial step of the
algorithm. (4) The saturation from step (3) now allows to remove all function
symbols which were introduced in step (2). Some additional axioms are added to
ensure that the algorithm remains sound and complete. (5) The knowledge base
is translated into disjunctive datalog clauses; this step is now straightforward.

It shall be noted that the details of the crucial step (3) are very sophisticated.
They guarantee that the removal of function symbols in step (4) is at all possible.
Step (3) is of exponential complexity, however for the ABox reasoning task which
we focus on in this paper, Step (3) can in principle be performed offline, as this
step is independent of the ABox – but note that this offline computation may
still be difficult if the TBox is large, which is a seperate issue and deserves further
in-depth studies which are outside the scope of this paper. A full presentation
of the translation with correctness proofs is technically involved and lengthy,
and space restrictions forbid to go into further detail; we refer the interested
reader to [2, 3]. In [1] full proofs are given which show amongst other things
that KB is unsatisfiable if and only if DD(KB) is unsatisfiable. This suffices for
reasoning over KB as reasoning tasks can be transformed into unsatisfiability
checks.

5 Approximate Resolution

While approximate reasoning methods for propositional and first-order logic have
been proposed (see e.g. [13, 14, 15, 16, 17, 18]), they have hardly been applied in
the context of Semantic Web technologies. The few exceptions are reported e.g.
in [19, 20, 21] — to the best of our knowledge, this list is exhaustive. The success
of the approaches is mixed. [21] reports on an analysis indicating that straight-
forward adaptations of methods proposed by [14] do not suffice. [20] reports good
results but is not an approximate reasoning method in the more narrow sense
as the reasoning performed is exact, and thus does not address the complexity
problems underlying OWL DL reasoning. [19] deals with approximating queries,
while we focus on ABox reasoning. We will now present a novel approach based
on the translation of OWL DL to disjunctive datalog, as presented earlier.

5.1 Approximate SLD-Resolution

Having obtained the translated knowledge base in the form of a disjunctive
datalog program, ABox reasoning remains NP-hard, and thus untractable. If the
datalog program is non-disjunctive, though, reasoning is polynomial in the size of



390 P. Hitzler and D. Vrandečić

the ABox. We therefore propose the following approximate reasoning technique
in order to facilitate this insight. Given a conjunctive query B1 ∧ · · · ∧ Bn,
an approximate SLD-resolution step on the atom Bi with a disjunctive rule
H1 ∨ · · · ∨Hm ← A1, . . . , Ak is a conjunctive query

B1θ ∧ · · · ∧Bi−1θ ∧A1θ ∧ · · · ∧Akθ ∧Bi+1θ ∧ · · · ∧Bnθ

such that θ is the most general unifier of Bi and some Hj . Approximate SLD-
refutation is defined analogously to SLD-refutation, where approximate SLD-
resolution steps are used instead of (usual) SLD-resolution steps.

It is necessary to pursue the question what notion of entailment underlies
the approximate reasoning technique we propose. Following the spirit of the
obervations from Section 2, we want to identify the set of models which underly
the inference relation provided by approximate SLD-resolution. For this purpose,
we need the following notion, which is derived from standard notions in non-
monotonic reasoning over logic programs.

Definition 1 (cf. [22, 23, 24]). A model M of a disjunctive program P is called
well-supported if there exists a function l : BP → N such that for each A ∈ M
there exists a rule A ∨H1 ∨ · · · ∨Hm ← A1, . . . , Ak in ground(P ) with M |= Ai

and l(A) > l(Ai) for all i and k.

Definition 1 is a straightforward adaptation of the notion of well-supported model
for non-disjunctive programs, as given in [23]. For non-disjunctive (and negation-
free) programs, the well-supported models are exactly the minimal ones, but this
is not in general the case for disjunctive programs: Just consider the program
consisting of the single rule p∨ q ←. Then {p, q} is a well-supported model, but
is not minimal.

Lifted appropriately to (non-disjunctive) programs with negation, the well-
supported models coincide with the well-known stable models. This was shown in
[23] and studied in-depth in [24, 25]. Stable models [26] provide the base for the
most popular non-monotonic reasoning paradigm called Answer Set Program-
ming, of which the two most prominent implementations are Dlv and Smodels
[27, 28]. Our results thus stand within this well-established tradition.

It is apparent that A ∈ BP is entailed by a (disjunctive) program P by
approximate SLD-resolution if and only if it is true in at least one well-supported
model of P . This is called brave reasoning with well-supported models. A formal
proof of the following proposition is omitted for space restrictions.

Proposition 1. Entailment of ground conjunctive queries under approximate
SLD-resolution is brave reasoning with well-supported models.

As an example, consider the (propositional) program consisting of the two rules
p ∨ q ← and r ← p ∧ q. Its minimal models are {q} and {p}, so r is not bravely
entailed by reasoning with minimal models. However all of {q}, {p}, {p, q} and
{p, q, r} are well-supported models, so r is bravely entailed by reasoning with
well-supported models.



Resolution-Based Approximate Reasoning for OWL DL 391

There is an alternative way of formalizing approximate SLD-resolution using
a modified notion of split program [29]. Given a rule

H1 ∨ · · · ∨Hm ← A1, . . . , Ak,

the derived split rules are defined as:

H1 ← A1, . . . , Ak . . . Hm ← A1, . . . , Ak.

For a given disjunctive program P its split program P ′ is defined as the collection
of all split rules derived from rules in P . Approximate SLD-resolution on P is
obviously identical to SLD-resolution over P ′.

Minimal models are well-supported, as can be seen from the following result
which was obtained along the lines of research laid out in [24, 25].

Theorem 2 ([30]). Let P be a disjunctive program. Then a model M of P is a
minimal model of P if and only if there exists a function l : BP → N such that
for each A which is true in M there exists a rule A∨H1∨· · ·∨Hm ← A1, . . . , Ak

in ground(P ) with M |= Ai, M 
|= Hk and l(A) > l(Ai) for all i and k.

We hence have the following result, noting that P |= Q for any ground con-
junctive query Q and program P if and only if Q is true in all minimal models
of P .

Proposition 2. Let P be a (possibly disjunctive) program and Q be a ground
conjunctive query with P |= Q. Then there exists an approximate SLD-refutation
for Q.

We remark that for negation-free disjunctive programs minimal models again
coincide with answer sets [26], as in the currently evolving Answer Set Program-
ming Systems, as already mentioned.

5.2 Approximate Resolution for OWL DL

Our proposal is based on the idea of converting a given OWL DL knowledge
base into a function-free definite disjunctive logic program, and then to apply
approximate resolution for ABox reasoning.

In order to be able to deal with all of OWL DL, we need to add a pre-
processing step to get rid of nominals, i.e. we need to compile SHOIN (D)
ontologies to SHIQ(D). We can do this by Language Weakening as follows: For
every occurrence of {o1, . . . , on}, where n ∈ N and the oi are abstract or con-
crete individuals, replace {o1, . . . , on} by some new concept name D, and add
ABox assertions D(o1), . . . , D(on) to the knowledge base. Note that the trans-
formation just given does in general not yield a logically equivalent knowledge
base, so some information is lost in the process. Putting all the pieces together,
we propose the following subsequent steps for approximate ABox reasoning for
OWL DL.



392 P. Hitzler and D. Vrandečić

1. Apply Language Weakening as just mentioned in order to obtain a SHIQ(D)
knowledge base.

2. Apply transformations as in Section 4 in order to obtain a negation-free
disjunctive datalog program.

3. Apply approximate SLD-resolution for query-answering.

The first two steps can be considered to be preprocessing steps for setting up
the intensional part of the database. ABox reasoning is then done in the last step.
From our discussions, we can conclude the following properties of approximate
ABox reasoning for SHIQ(D).

– It is complete with respect to first-order predicate logic semantics.
– It is sound and complete wrt. brave reasoning with well-supported models.
– Data complexity of our approach is polynomial.

6 Screech OWL

A preliminary implementation of our approach is available as the Screech OWL
approximate reasoner.2 It is part of the KAON2 OWL tools.3

KAON24 is the KArlsruhe ONtology framework, which includes a fast OWL
reasoner based on the transformation algorithms mentioned in Section 4, and also
includes many other features helpful to work with ontologies. Among the KAON2
OWL tools, deo performs the language weakening step described in Section 5.2
in order to obtain a SHIQ(D) knowledge base. As KAON2 implements the
sophisticated translation algorithms described in Section 4, we can convert an
OWL ontology into a disjunctive datalog program, e.g. by using the dlpconvert
KAON2 OWL tool with the -x switch.

Screech then accesses the results of the translation through the KAON2
API, creates the corresponding split programs and serialises them as Horn logic
programs in Edinburgh Prolog syntax. The result can be fed to any Prolog
interpreter — or other logic programming engine —, which in turn can be used
to perform ABox reasoning and inferencing over the knowledge base.

For completeness, we need to mention that in general support for concrete do-
mains and other features like integrity constraints is not necessarily implemented
in off-the-shelf logic programming systems. In these cases, concrete domains etc.
cannot be used. The KAON2 OWL tool ded,3 for example, performs a language
weakening step by removing all concrete domains, and may come in handy in
such situations.

7 An Example

We demonstrate our approach by means of a simple OWL DL ontology. It con-
tains only a class hierarchy and an ABox, and no roles, but this will suffice to
display the main issues.
2 http://logic.aifb.uni-karlsruhe.de/screech
3 http://www.aifb.uni-karlsruhe.de/WBS/dvr/owltools
4 http://kaon2.semanticweb.org



Resolution-Based Approximate Reasoning for OWL DL 393

serbian � croatian � european

eucitizen � european

german � french � beneluxian � eucitizen

beneluxian ≡ luxembourgian � dutch� belgian

serbian(ljiljana) serbian(nenad) german(pascal) french(julien)

croatian(boris) german(markus) german(stephan) croatian(denny)

indian(sudhir) belgian(saartje) german(rudi) german(york)

Fig. 3. Example ontology

The ontology is shown in Figure 3, and its intended meaning is self-explanatory.
Note that the fourth line,

beneluxian ≡ luxembourgian � dutch � belgian,

translates into the four clauses

luxembourgian(x) ∨ dutch(x) ∨ belgian(x) ← beneluxian(x), (1)
beneluxian(x) ← luxembourgian(x),
beneluxian(x) ← dutch,

and beneluxian(x) ← belgian(x).

Thus, our approach changes the ontology by treating the disjunctions in
line (1) as conjunctions. This change affects the soundness of the reasoning
procedure. However, most of the ABox consequences which can be derived by
approximate SLD-resolution are still correct. Indeed, there are only two derivable
facts which do not follow from the knowledge base by classical reasoning, namely

dutch(saartje) and luxemburgian(saartje).

All other derivable facts are correct.
Screech translates the ontology from Figure 3 into the Prolog program

listed in Figure 4. As standard implementations of SLD-resolution do not use
fair selection functions and also use depth-first search for higher efficiency, they
may sometimes fail to produce answers because they run into infinite branches of
the search tree. This occurs, for example, when using SWI-Prolog5. A reordering
of the clauses may improve the results, but does not solve the problem entirely.
More satisfactory performance can be obtained by using SLD-resolution with
tabling, as implemented e.g. in the XSB Prolog system6. In this case, all desired
consequences can be derived.

5 http://www.swi-prolog.org/
6 http://xsb.sourceforge.net



394 P. Hitzler and D. Vrandečić

serbian(ljiljana). serbian(nenad). german(pascal). french(julien).

croatian(boris). german(markus). german(stephan). croatian(denny).

indian(sudhir). belgian(saartje). german(rudi). german(york).

european(X) :- serbian(X).

european(X) :- croatian(X).

european(X) :- eucitizen(X).

eucitizen(X) :- german(X).

eucitizen(X) :- french(X).

eucitizen(X) :- beneluxian(X).

beneluxian(X) :- luxembourgian(X).

beneluxian(X) :- dutch(X).

beneluxian(X) :- belgian(X).

dutch(X) :- beneluxian(X).

luxembourgian(X) :- beneluxian(X).

belgian(X) :- beneluxian(X).

Fig. 4. Example Screech output

8 Experiments and Evaluation

An approximate reasoning procedure needs to be evaluated on real data from
practical applications. Handcrafted examples are of only limited use as the ap-
plicability of approximate methods depends on the structure inherent in the
experimental data.

For our evaluation we have performed experiments with the OWL DL version
of the GALEN Upper Ontology,7 as it appears to be sufficiently natural and real-
istic. As it is a TBox ontology only, we populated GALEN’s 175 classes randomly
with 500 individuals.8 GALEN does not contain nominals or concrete domains.
GALEN has 673 axioms (the population added another 500). The TBox trans-
lation to disjunctive datalog took about 2300 ms, after which we obtained 2687
disjunctive datalog rules containing 267 disjunctions within 133 rules. Among
these were 152 integrity constraints (i.e. rules with empty head), which we re-
moved for our experiment as they led to inconsistency of the database.9 After
splitting disjunctive rules, we arrived at 2802 Horn rules.

We then randomly selected classes and queried for their extension using the
KAON2 datalog engine, both for processing the disjunctive datalog program and
for the split program. Some of the typical results are listed in Table 2, which
indicates a significant speed-up of more than 40% on average, while the vast ma-
jority of the retrieved answers is correct. Note that we obtain significant speed-up
although the KAON2 datalog engine is not optimized for Horn programs, but
rather tuned to efficient performance on definite disjunctive datalog.

7 http://www.cs.man.ac.uk/∼rector/ontologies/simple-top-bio/
8 Using the pop KAON2 OWL tool.
9 This is an expected effect. Removal of the integrity constraints does not destroy

completeness of the approximate reasoning procedure.



Resolution-Based Approximate Reasoning for OWL DL 395

Table 2. Performance comparison for instance retrieval using disjunctive datalog (DD)
vs. the corresponding split program (SPLIT), on the KAON2 datalog engine. Instances
indicates the number of instances retrieved using DD versus SPLIT, e.g. class Multi-
ple contained 9 individuals, while the split program allowed to retrieve 13 (i.e. the 9
correct individuals plus 4 incorrect ones). The full name of the class in the last row is
Biological object that has left right symmetry.

Time (DD) Time (SPLIT) Instances Class Name
11036 ms 6489 ms 154/154 Biological object
11026 ms 5959 ms 9/9 Specified set
11006 ms 6219 ms 9/13 Multiple
11015 ms 5898 ms 16/16 Probe structural part of heart
11036 ms 7711 ms 4/4 Human red blood cell mature
11055 ms 5949 ms 24/58 Biological object that. . .

The times were obtained with initial Java VM memory set to 256 MByte. Un-
der memory restrictions, the speed-up is more significant, which is probably caused
by the necessity to allocate additional memory for the DD reasoning task. Corre-
sponding figures are given in Table 3. Our experiments also indicate thatScreech
may be useful when hardware is limited, for example in portable devices.

9 Conclusions and Further Work

In a nutshell, our proposedprocedure approximates reasoning bydisregarding non-
Horn features of OWL DL ontologies. We argue that this is a reasonable approach
to approximate reasoning with OWL DL in particular because many of the cur-
rently existing ontologies rarely use language constructs that do not fall into the
Horn fragment of OWL DL [31]. So it can be projected that even in the future these
constructs will play a minor role and thus should be the first to be tempered with
in order to gain tractable reasoning.

Our approach provides ABox reasoning with polynomial time complexity.
While it is complete, it is also unsound with respect to first-order logic. We have
shown, however, that the inference underlying our approach can be characterized
using standard methods from the area of non-monotonic reasoning. We have also
presented our implementation Screech, and verified the usefulness of our
approach by means of experiments.

Table 3. Performance comparison as in Table 2, but with 128 MByte intial memory

Time (DD) Time (SPLIT) Instances Class Name
32997 ms 4817 ms 154/154 Biological object
33028 ms 4947 ms 9/9 Specified set
32927 ms 4987 ms 9/13 Multiple
32977 ms 4957 ms 16/16 Probe structural part of heart
32987 ms 7350 ms 4/4 Human red blood cell mature
32947 ms 4796 ms 24/58 Biological object that. . .



396 P. Hitzler and D. Vrandečić

The checking whether a conjunctive query is a predicate logic consequence of a
(negation-free) disjunctive logic programP amounts to checkingwhether the query
is valid in all minimal models of P , i.e. corresponds to cautious reasoning with
minimal models. Theorem 2 suggests how an anytime algorithm for this might be
obtained: After performing approximate SLD-resolution, it remains to be checked
whether there is any (ground instance of a) rule used in the refutation of the query,
which has an atomA in its head besides the one used in the refutation and such that
A is (cautiously) entailed by the program. Such an algorithm might then first find a
brave proof of a query, and then substantiate this proof by subsequent calculations.
Our approach may also be useful for the quick derivation of possible answers to a
query,whichmaythenbeused for efficientguidanceof the searchwithina soundand
complete OWL reasoner. These and other issues are currently under investigation.

Acknowledgement. We are grateful for discussions with Boris Motik about his and
our work.

References

1. Hustadt, U., Motik, B., Sattler, U.: Reasoning for Description Logics around SHIQ
in a Resolution Framework. Technical Report 3-8-04/04, FZI, Karlsruhe, Germany
(2004) http://www.fzi.de/wim/publikationen.php?id=1172.

2. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ− Description Logic to Disjunc-
tive Datalog Programs. In:Proc. of the 9th Conference on Knowledge Representation
and Reasoning (KR2004), AAAI Press (2004)

3. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics with a concrete
domain in the framework of resolution. In de Mántaras, R.L., Saitta, L., eds.: Pro-
ceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004, in-
cluding Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain,
August 22-27, 2004, IOS Press (2004) 353–357

4. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In: Pro-
ceedings of the 3rd International Semantic Web Conference (ISWC2004), Hiroshima,
Japan, November 2004. (2004) To appear.

5. W3C: Web ontology language (OWL). www.w3.org/2004/OWL/ (2004)
6. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The

Description Logic Handbook. Cambridge University Press (2003)
7. Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive

description logics. InKaelbling, L.P., Saffiotti,A., eds.: Proceedings of theNineteenth
International JointConference onArtificial Intelligence,Edinburgh, Scotland. (2005)
466–471

8. Makinson, D.: Bridges from Classical to Nonmonotonic Logic. Volume 5 of Texts in
Computing. King’s College Publications, London (2005)

9. Horrocks, I., Patel-Schneider, P.F.: A Proposal for an OWL Rules Language. In:
Proc. of the Thirteenth Int’l World Wide Web Conf.(WWW 2004), ACM (2004)

10. Lutz, C.: Description Logics with Concrete Domains — A Survey. In: Advances in
Modal Logics. Volume 4., King’s College Publications (2003)

11. Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Very Expressive Descrip-
tion Logics. Logic Journal of the IGPL 8 (2000) 239–263

12. Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1988)



Resolution-Based Approximate Reasoning for OWL DL 397

13. Selman, B., Kautz, H.A.: Knowledge compilation using Horn approximations. In:
Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-91).
(1991) 904–909

14. Schaerf,M.,Cadoli,M.: Tractable reasoningviaapproximation. Artificial Intelligence
74 (1995) 249–310

15. Dalal, M.: Anytime clausal reasoning. Annals of Mathematics and Artificial Intelli-
gence 22 (1998) 297–318

16. Cadoli, M., Scarcello, F.: Semantical and computational aspects of Horn approxima-
tions. Artificial Intelligence 119 (2000)

17. van Harmelen, F., ten Teije, A.: Describing problem solving methods using anytime
performance profiles. In: Proceedings of ECAI’00, Berlin (2000) 181–186

18. Groot, P., ten Teije, A., van Harmelen, F.: Towards a structured analysis of approx-
imate problem solving: a case study in classification. In: Proceedings of the Ninth
International Conference on Principles of Knowledge Representation and Reasoning
(KR’04), Whistler, Colorado (2004)

19. Stuckenschmidt, H., van Harmelen, F.: Approximating terminological queries. In
Larsen, H., et al, eds.: Proc. of the 4th International Conference on Flexible Query
Answering Systems (FQAS)’02). Advances in Soft Computing, Springer (2002)

20. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: DL reasoning with
large numbers of individuals. In: Proceedings of the International Workshop on De-
scription Logics, DL2004, Whistler, Canada. (2004) 31–40

21. Groot,P., Stuckenschmidt,H.,Wache,H.: Approximatingdescription logic classifica-
tion for semantic web reasoning. In Gómez-Pérez, A., Euzenat, J., eds.: The Seman-
tic Web: Research and Applications, Second European Semantic Web Conference,
ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005, Proceedings. Volume
3532 of Lecture Notes in Computer Science., Springer (2005) 318–332

22. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In
Minker, J., ed.: Foundations of Deductive Databases and Logic Programming. Mor-
gan Kaufmann, Los Altos, CA (1988) 89–148

23. Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal
of Methods of Logic in Computer Science 1 (1994) 51–60

24. Hitzler, P., Wendt, M.: A uniform approach to logic programming semantics. Theory
and Practice of Logic Programming 5 (2005) 123–159

25. Hitzler, P.: Towards a systematic account of different semantics for logic programs.
Journal of Logic and Computation 15 (2005) 391–404

26. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9 (1991) 365–385

27. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for
nonmonotonic reasoning. In Dix, J., et al, eds.: Proceedings of the 4th International
Conference on Logic Programming andNonmonotonic Reasoning (LPNMR’97).Vol-
ume 1265 of Lecture Notes in Artificial Intelligence., Springer, Berlin (1997)

28. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model
semantics. Artificial Intelligence 138 (2002) 181–234

29. Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic
programs and deductive databases. Journal of Automated Reasoning 13 (1994)
145–172

30. Knorr, M.: Level mapping characterizations for quantitative and disjunctive logic
programs. Bachelor’s Thesis, Department of Computer Science, Technische Univer-
sität Dresden, Germany (2003)

31. Volz, R.: Web Ontology Reasoning with Logic Databases. PhD thesis, AIFB, Uni-
versity of Karlsruhe (2004)



Reasoning with Multi-version Ontologies:
A Temporal Logic Approach

Zhisheng Huang and Heiner Stuckenschmidt

AI Department, Vrije Universiteit Amsterdam, The Netherlands
{huang, heiner}@cs.vu.nl

Abstract. In this paper we propose a framework for reasoning with
multi-version ontology, in which a temporal logic is developed to serve
as its semantic foundation. We show that the temporal logic approach
can provide a solid semantic foundation which can support various re-
quirements on multi-version ontology reasoning. We have implemented
the prototype of MORE (Multi-version Ontology REasoner), which is
based on the proposed framework. We have tested MORE with several
realistic ontologies. In this paper, we also discuss the implementation
issues and report the experiments with MORE.

1 Introduction

When an ontology is changed, the ontology developers may want to keep the
older versions of the ontology. Although maintaining multi-version ontologies
increases the resource cost, it is still very useful because of the following benefits:

– Change Recovery. For ontology developers, the latest version of an ontol-
ogy is usually less stable than the previous ones, because the new changes
have been introduced on it, and those changes and their consequences have
not yet been fully recognized and evaluated. Maintaining the previous ver-
sions of the ontology would allow the possibilities for the developers to with-
draw or adjust the changes to avoid unintended impacts.

– Compatibility. Ontology users may still want to use an earlier version
of the ontology despite the new changes, because they may consider the
functionalities of the earlier version of the ontology are sufficient for their
needs. Furthermore, multi-version ontologies may have different resource re-
quirement. Ontology users may prefer an earlier version with less resource
requirement to a newer version with higher resource requirement.

The list above is not complete. We are going to discuss more benefits in the next
section. Those benefits can justify to some extent that multi-version ontologyman-
agement and reasoning systems are really useful. The change recovery requires that
the system provides a facility to evaluate the consequences raising from ontology
changes and a tool to compare multi-versions of the ontology. Selecting a compat-
ible version needs a system that can support a query language for reasoning on a
selected version of the ontology. This requires a query language which can express

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 398–412, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Reasoning with Multi-version Ontologies 399

the temporal aspects of the ontology changes. Intuitivelymultiple versions of an on-
tology can be considered as a temporal sequence of change actions on an ontology.
That serves as our departure point in this paper. In this paper we will investigate
how temporal logics serve as the semantic foundation ofmulti-version ontology rea-
soning. We propose a framework of reasoning with multi-version ontologies which
is based on a temporal logic approach. We will show that the temporal logic can
provide a solid semantic foundation which serve as an extended query language
to detect the ontology changes and their consequences. We have implemented the
prototype of MORE (Multi-version Ontology REasoner), which extends existing
systems for querying Description Logic Ontologies with temporal operators that
support the maintenance of multiple versions of the same ontology. We discuss the
implementation of the MORE prototype and report the preliminary experiences
with applying MORE to realistic ontologies.

This paper is organized as follows: Section 2 provides a brief survey on ontology
evolution and versioning. Section 3 discusses the problem of multi-version ontol-
ogy reasoning. Section 4 presents a temporal logic for reasoning with multi-version
ontologies. Section 5 shows how the proposed temporal logic can serve as a query
language for reasoning with multi-version ontologies. Section 6 discusses the im-
plementation issues of MORE and reports the experiments with MORE. Section
7 discusses related work, further work, and concludes the paper.

2 Solved and Open Problems in Ontology Evolution

Database schema evolution is an important area related to the problem of ontol-
ogy evolution. In the following, we summarize some of the basic requirements for
schema evolution andversioning that have been stated in connectionwith the prob-
lem of schema evolution for object orienteddatabases that aremost relevant for the
problem of ontology evolution.

Evolvability. The basic requirement in connection with schema evolution is the
availability of a suitable apparatus for evolving the schema in terms of change
operations and a structure for representing changes.

Integrity. An important aspect of schema evolution is to preserve the integrity of
the database during change. Syntactic conflicts may occur for example due to
multiply defined attribute names in the same class . Further, semantic conflicts
can appear if changes to the schemabreak up referential integrity or if the mod-
ification of an integrity constraints makes it in compatible with another one.

Compatibility. The literature mentions two aspects of compatibility: downward
compatibility means that systems that were based on the old version of the
schema can still use the database after the evolution. Upward compatibility
means that system that are built on top of the new schema can still access the
old data.

In principle, the issues discussed above are also relevant for the problem of ontology
evolution. In the following, we summarize recent work that addressed the different
aspects mentioned above for the special case of ontologies.



400 Z. Huang and H. Stuckenschmidt

Evolvability. The evolvability of ontologies has been addressed by different re-
searchers by defining change operations and change representations for on-
tology languages. Change operations have been proposed for specific ontol-
ogy languages. In particular change operations have been defined for OKBC,
OWL [12] and for the KAON ontology language [15]. All approaches distin-
guish between atom and complex changes. Different ways of representing on-
tological changes have been proposed: besides the obvious representation as
a change log that contains a sequence of operations, authors have proposed
to represent changes in terms of mappings between two versions of the same
ontology [13].

Integrity. The problem of preserving integrity in the case of changes is also
present for ontology evolution. On the one hand the problem is harder here as
ontologies are often encodedusing a logical languagewhere changes canquickly
lead to logical inconsistency that cannot directly be determined by looking at
the change operation. On the other hand, there are logical reasoners that can
be used to detect inconsistencies both within the ontology and with respect to
instance data. As this kind of reasoning is often costly, heuristic approaches
for determining inconsistencies have been proposed [16, 12]. While deciding
whether an ontology is consistent or not can easily be done using existing tech-
nologies, repairing inconsistencies in ontologies is an open problem although
there is some preliminary work on diagnosing the reasons for an inconsistency
which is prerequisite for a successful repair [14].

Compatibility. The problem of compatibility with applications that use an on-
tology has received little attention so far. The problem is that the impact of
a change in the ontology on the function of the system is hard to predict and
strongly depends on the application that uses the ontology. Part of the prob-
lem is the fact that ontologies are often not just used as a fixed structure but
as the basis for deductive reasoning. The functionality of the system often de-
pends on the result of this deduction process and unwanted behavior can oc-
cur as a result of changes in the ontology. Some attempts have been made to
characterize change and evolution multiple versions on a semantic level [10, 9].
This work provides the basis for analyzing compatibility which currently is an
open problem.

We conclude that at the current state of research the problem of defining the ba-
sic apparatus for performing ontology evolution in terms of change operations and
representation of changes is understood. Open questions with respect to ontology
evolution mainly concern the problem of dealing with integrity problems and with
ensuring compatibility of the ontology with existing applications. The basic prob-
lem that has to address in the context of both of these topic lies in the logical na-
ture of many ontology specifications. We therefore need methods that work a the
semantic level and are aware of logical implications caused by changes. The for-
mal characterization of ontology evolution provided by Heflin is a step in the right
direction, but it does not provide any concrete methods for supporting evolution
that are necessary to resolve existing problems with respect to dealing with incon-
sistency or determining compatibility.



Reasoning with Multi-version Ontologies 401

3 Multi-version Management: An Open Problem

The aim of this work is to provide basic support for solving the open problems in
ontology evolution, in particular with respect to the problem of compatibility to
existing applications. As argued above, in order to support compatibility an anal-
ysis of changes on a syntactic and structural level is not sufficient as the function
of applications often depends on the result of reasoning processes.

Our goal is to provide ontology managers and users with a tool that helps to
detect effects of changes in ontologies and select versionsbased on their propoerties.
Another more ambitious goal for the future is to also provide support for predicting
such effects before the ontology has actually been changed [7]. In this section, we
introduce the general idea of providing tool support for this purpose and identify
relevant use cases for the technology.

3.1 Application Scenarios

The development of our method is based on the assumption that different versions
of an ontology are managed on a central server. In a commercial setting, ontologies
are normally created and maintained on a development server. Stable versions of
the ontology are moved to a production server which publishes the corresponding
models and therefore plays the role of the central server. Further Compatangelo
et al propose a blackboard architecture [5] that also allows the centralized man-
agement of different ontology versions in distributed environments and makes our
approach applicable also in the distributed setting. Based on this general assump-
tion, there are a number of quite relevant application scenarios for the versionman-
agement technology sketched above. In the following, we provide a number of use
cases for Multi-version Reasoning including typical relevant questions about the
relation between statements in different versions of an ontology.

Semantic Change Log. The ontology provider wants to inform the users of the
ontology about changes in the new version. The idea is that the new version of
the ontology is added to the system which automatically computes all changes
with respect to a certain facts. A typical case would be that all subsumption
relations are checked. The system outputs a list of obsolete subsumption rela-
tions and a list of new subsumption relations.

Version Selection. The user needs an ontology with particular properties for his
application.Hewants to knowwhich version of ontology fits his specific require-
ments best. For this purpose, the user defines a number of statements that he
wants to hold. The systems identifies the latest version of the ontology in which
the required statements hold.

Evolution Planning. Based on customer feedback and requests, the ontology
provider wants to determine useful and harmful changes to plan the future
evolution of the ontology. In particular this includes determining necessary
changes that will make it possible to derive certain wanted statements and
the analysis of different development choices using defeasible reasoning
techniques.



402 Z. Huang and H. Stuckenschmidt

3.2 The General Approach

The different use cases described above have quite different requirements with re-
spect to inferences that have to be supported. The common feature of all use cases,
however, is that they require to reason in the individual ontologies and about the
whole set of versions and their relations to each other. While there are existing
tools for reasoning with ontologies (i.e. Description Logic Reasoners), being able
to reason about different versions is an open issue. In our approach, we mainly ad-
dress this issue of reasoning about the set of all versions. We do this based on the
notion of a version space. A version space is a graph in which different versions of
the same ontology form the nodes. Edges represent change operations that led to
a new version. We use modal logic to make statements about version spaces, in-
terpreting each version of the ontology as a possible world and change operations
the accessibility relation. Queries about a concrete set of versions can now be for-
mulated as a formula in modal logics and model checking techniques can be used
to determine whether the version space at hand has the properties specified in the
query. In order to determine the facts that hold in a particular world, we use an
existing reasoner to derive statements implied by a certain version of the ontology.

The choice of the concrete approach and in particular, the concrete logic to
be used to reason about the version space strongly depends on the requirements of
the use case. When we look at the three use cases mentioned above, we can see that
they have quite different requirements with respect to the expressive power of the
query language. The semantic change log only need a very simple logic enabling us
to compare differentworlds and the statements that hold in each of them.Aswewill
see below, this can be done using a simple temporal logic. Version selection requires
explicit references to possible worlds that represent certain versions. This kind of
expressiveness is provided by hybrid modal logics [2]. In contrast to the other use
cases, evaluation planning requires explicit representations of change operations
in the logical language. This requirement is met by dynamic logics [8] that would
be appropriate for this use case.

In the remainder of this paper, we discuss a concrete implementation of the gen-
eral approach outlined above. This concrete implementation addresses the first of
the use cases, namely the semantic change log and makes a number of simplifying
assumptions in terms of the structure of the version space and the types of state-
ments about an ontology that can be used in queries about the version space. These
simplifying assumptions are not general limitations of the approachbut address the
practical needs of our work in the context of the SEKT Project. In future work, we
will extend the MORE system to also meet the requirements of the other use cases.

4 A Temporal Logic for Multi-version Ontology Reasoning

Temporal logics can be classified as two main classes with respect to two differ-
ent time models: linear time model and branching time model. The linear time
logics which express properties over a single sequence of states. This view is suit-
able for the retrospective approach to multi-ontology reasoning where we assume



Reasoning with Multi-version Ontologies 403

a sequence of versions. Branching time logics express properties across different se-
quences of states. This feature would be needed for the prospective approachwhere
we consider different possible sequences of changes in the future. The linear tem-
poral logic LTL is a typical temporal logic for modeling linear time, whereas the
computation tree logic CTL is a typical one for modeling branching time [3, 4].

Temporal logics are often future-oriented, because their operators are designed
to be ones which involve the future states. Typical operators are: the operator
Futureφ which states that ’φ holds sometimes in the future with respect to the
current state’, and the operatorAlwaysfφ which states that ’φ always holds in the
future with respect to the current state’, and the operator φUntilψ which states
that ’φ always holds in the future until ψ holds’. For a discrete time model, the op-
erator Nextφ is introduced to state that φ holds at the next state with respect to
the current state. For the retrospective reasoning, we only need a temporal logic
that only talks about the past. Namely, it is one which can be used to compare
the current state with some previous states in the past. It is natural to design the
following past-oriented operators, which correspond with the counterparts of the
future oriented temporal operators respectively:

– the previous operator states that a factφ holds just one state before the current
state the current state.

– the sometimes-in-the past operator states that a fact φ holds sometimes in the
past with respect to the current state.

– the always-in-the-past operator states that φ holds always in the past with re-
spect to the current state.

In this paper, we use a linear temporal logic, denoted as LTLm, which actually is
a restricted linear temporal logic LTL to past-oriented temporal operators.

4.1 Version Spaces and Temporal Models

In the following, we will define the formal semantics for the temporal operators by
introducing an entailment relation between a semantic model (i.e., multi-version
ontologies) and a temporal formula. We consider a version of an ontology to be a
state in the semantic model. We do not restrict ontology specifications to a partic-
ular language (although OWL and its description logics are the languages we have
in mind). In general, an ontology language can be considered to be a set of formulas
that is generated by a set of syntactic rules in a logical language L.

We consider multi-versions of an ontology as a sequence of ontologies which are
connected each other via change operations. Each of these ontologies has a unique
name. This is different from the work in [10], in which an ontology is considered
as one which contains the set of other ontologies which are backwards compatible
with. We have the following definition.

Definition 1 (Version Space). A version space S over an ontology set Os is a
set of ontology pairs, namely, S ⊆ Os×Os.

We use version spaces as a semantic model for our temporal logic, restricting our
investigation to version spaces that present a linear sequence of ontologies:



404 Z. Huang and H. Stuckenschmidt

Definition 2 (Linear Version Space). A linear version space S on an ontology
set Os is a version space which is a finite sequence of ontologies

S = {〈o1, o2〉, 〈o2, o3〉, · · · , 〈on−1, on〉}

such that i 
= j ⇒ oi 
= oj . Alternatively we write the sequence S as follows:

S = (o1, o2, · · · , on)

We use S(i) to refer the i th ontology oi in the space. For a version space S =
(o1, o2, · · · , on), We call the first ontology S(1) in the space the initial version of
the version space, and the last ontology S(n) the latest version of the version space
respectively.

We introduce an ordering≺S with respect to a version space S as follows:

Definition 3 (Ordering on Version Space). o ≺S o′ iff o occurs prior to o′ in
the sequence S, i.e., S = (· · · , o, · · · , o′, · · · ).

It is easy to see that the prior version relation ≺S is a linear ordering.

4.2 Syntax and Semantics of LTLm

The Language L+ for the temporal logic LTLm can be defined as an extension
to the ontology languageL with Boolean operators and the temporal operators as
follows:

q ∈ L ⇒ q ∈ L+
φ ∈ L+ ⇒ ¬φ ∈ L+
φ, ψ ∈ L+ ⇒ φ ∧ ψ ∈ L+
φ ∈ L+ ⇒ PreviousVersionφ ∈ L+
φ ∈ L+ ⇒ AllPriorVersionsφ ∈ L+
φ, ψ ∈ L+ ⇒ φSinceψ ∈ L+

Where the negation¬ and the conjunction ∧must be new symbols that do not ap-
pear in the languageL to avoid the ambiguities.Define the disjunction∨, the impli-
cation→, and the bi-conditional↔ in terms of the conjunction and the negation as
usual. Define⊥ as a contradictory φ∧¬φ and as a tautology φ∨¬φ respectively.

Using these basic operators, we can define some addition operators useful for
reasoning about multiple versions. We define the SomePriorVersion operator in
terms of the AllPriorVersions operator as

SomePriorVersionφ =df ¬AllPriorVersions¬φ

The always-in-the-pastAllPriorVersionsoperator is onewhichdoes not consider
the current state. We can define a strong always-in-the-pastAllVersions operator
as

AllVersionsφ =df φ ∧AllPriorVersionsφ,

which states that ’φ always holds in the past including the current state’.



Reasoning with Multi-version Ontologies 405

Let S be a version space on an ontology set Os, and o be an ontology in the set
Os, we extend the entailment relation for the extended languageL+ as follows:

S, o |= q iff o |= q, for q ∈ L.
S, o |= ¬φ iff S, o 
|= φ.
S, o |= φ ∧ ψ iff S, o |= φ, ψ.
S, o |= PreviousVersionφ iff 〈o′, o〉 ∈ S such that S, o′ |= φ.
S, o |= AllPriorVersionsφ iff for any o′ such that o′ ≺S o, S, o′ |= φ.
S, o |= φSinceψ iff ∃(o1 . . . oi)(〈o1, o2〉, . . . , 〈oi−1, oi〉 ∈ S and oi =o)

such thatS, oj |= φ for 1 ≤ j ≤ i and S, o1 |= ψ.

For a linear version space S, we are in particular interested in the entailment rela-
tion with respect to its latest version of the ontology S(n) in the version space S.
We use S |= φ to denote that S, S(n) |= φ. Model checking has been proved to be
an efficient approach for the evaluation of temporal logic formulas [4]. In the imple-
mentation of MORE, we are going to use the standard model checking algorithm
for evaluating a query in the temporal logic LTLm. Therefore, we do not need a
complete axiomatization for the logic LTLm in this paper.

5 LTLm as aQueryLanguage

There are two types of queries: reasoning queries and retrieval queries. The former
concerns with an answer either ’yes’ or ’no’, and the latter concerns an answer with
a particular value, like a set of individuals which satisfy the query formula. Namely,
the evaluation of a reasoning query is a decision problem, whereas the evaluation of
a retrieval query is a search problem. In this section, we are going to discuss how we
canuse the proposed temporal logic to support both reasoning queries and retrieval
queries.

5.1 Reasoning Queries

Using the LTLm logic we can formulate reasoning queries over a sequence of on-
tologies that correspond to the typical questions mentioned in Section 3.

Areall facts still derivable? This question canbeanswered for individual facts using
reasoning queries. In particular, we can use the query φ ∧ PreviousVersionφ to
determine for facts φ derivable from the previous version whether they still hold
in the current version. The same can be done for older versions by chaining the
PreviousVersion operator or by using the operatorAllVersions to ask whether
formulas was always true in past versions and is still true in the current one
(AllVersionsφ).

What facts are not derivable anymore? In a similarway,we can askwhether certain
facts are not true in the new version any more. This is of particular use for making



406 Z. Huang and H. Stuckenschmidt

sure that unwanted consequences have been excluded in the new version. The cor-
responding query is ¬φ ∧ PreviousVersionφ. Using the AllPriorVersions op-
erator, we can also ask whether a fact that was always true in previous versions is
not true anymore.

What facts are newly derivable from the new version? Reasoning queries can also
be used to determine whether a fact is new in the current version. As this is true if it
is not true in the previous version, we can use the following query for checking this
φ ∧ ¬PreviousVersionφ. We can also check whether a new fact never holded in
previous versions using the following query φ ∧ ¬SomePriorVersionφ.

What is the last version that can be used to derive certain facts? Using reasoning
querieswe can checkwhether a fact holds in a particular version.As versions are ar-
ranged in a linear order, we can move to a particular version using the
PreviousVersion operator. The query PreviousVersionPreviousVersionφ
for instance checks whether φ was true in the version before the previous one. The
query φSinceψ states that φ always holds since ψ holds in a prior version.

A drawbackof reasoningqueries lies in the fact, that they can only check a prop-
erty for a certain specific fact. When managing a different versions of a large ontol-
ogy, the user will often not be interested in a particular fact, but ask about changes
in general. This specific functionality is provided by retrieval queries.

5.2 Retrieval Queries

Many Description Logic Reasoners support so-called retrieval queries that return
a set of concept names that satisfy a certain condition. For example, a children con-
cept c′ of a concept c, written child(c, c′), is defined as onewhich is subsumed by the
concept c, and there exists no other concepts between them. Namely,

child(c, c′) =df c′ � c∧ 
 ∃c′′(c′ � c′′ ∧ c′′ � c ∧ c′′ 
= c ∧ c′′ 
= c′).

Thus, the set of new/obsolete/invariant children concepts of a concept on an ontol-
ogy o in the version space S is defined as follows

newChildren(S, o, c) =df {c′|S, o |= child(c, c′)∧¬PreviousVersion child(c, c′)}.

obsoleteChildren(S, o, c) =df {c′|S, o |= ¬child(c, c′)∧PreviousVersion child(c, c′)}.

invariantChildren(S, o, c) =df {c′|S, o |= child(c, c′)∧PreviousVersion child(c, c′)}.

The same definitions can be extended into the cases like parent concepts, ancestor
concepts, descendant concept and equivalent concepts. Those query supports are
sufficient to evaluate the consequences of the ontology changes and the differences
among multi-version ontologies. We will discuss more details in the section about
the tests on MORE.



Reasoning with Multi-version Ontologies 407

5.3 Making Version-Numbers Explicit

Temporal logics allowus to talk about temporal aspects without reference to a par-
ticular time point. For reasoning with multi-version ontologies, we can also talk
about temporal aspects without mentioning a particular version name. We know
that each state in the temporal logic actually corresponds with a version of the on-
tology. It is not difficult to translate temporal statements into a statement which
refers to an explicit version number. Here are two approaches for it: relative version
numbering and absolute version numbering.

Relative version numbering. The proposed temporal logic is designed to be
one for past-oriented. Therefore, it is quite natural to design a version numbering
which is relative to the current ontology in the version space. We use the formula
Version0φ to denote that the property holds in the current version. Namely, we
refer to the current version as the version 0 in the version space, and other states
are used to refer to a version relative to the current version, written as Version−i

as follows:

Version0φ =df φ.

Version(−i)φ =df PreviousVersion(Version(1−i)φ).

The formula Version−iφ can be read as ’the property φ holds in the previous i-th
version’.

Absolute version numbering. Given a version space S with n ontologies on it,
i.e., |S| = n − 1. For the latest version o = S(n), it is well reasonable to call the
i-th ontology S(i) in the version space the version i of S, denoted as Versioni,S .
Namely, we can use the formula Versioni,Sφ to denote that the property φ holds
in the version i in the version space S. Thus, we can define the absolute version
statement in terms of a relative version statement as follows:

Version(i,S)φ =df Version(i−n)φ.

Explicit version numbering provides the basis for more concrete retrieval queries.
In particular, we now have the opportunity to compare the children of a concept c in
two specific ontologies i and j in the version space S. The corresponding definitions
are the following:

newChildren(S, c)i,j =df {c′|S |= Version(i,S) child(c, c′)∧¬Version(j,S) child(c, c′)}.

obsoleteChildren(S, c)i,j =df {c′|S |=¬Version(i,S) child(c, c′)∧Version(j,S) child(c, c′)}.

invariantChildren(S, c)i,j =df {c′|S |= Version(i,S) child(c, c′)∧Version(j,S) child(c, c′)}.

Again, thesamecanbedone forotherpredicates likeparent-,ancestorordescendant
concepts.



408 Z. Huang and H. Stuckenschmidt

6 Implementation ofMORE

We implemented a prototypical reasoner for multi-versionontologies calledMORE
basedon theapproachdescribedabove.The system is implementedas an intelligent
interface between an application and state-of-the art description logic reasoners
(compare Fig.1) and provides server-side functionality in terms of an XML-based
interface for uploading different versions of an ontology and posing queries to these
versions. Requests to the server are analyzed by the main control component that
also transforms queries into the underlying temporal logic queries if necessary. The
main control element also interacts with the ontology repository and ensures that
the reasoning components are provided with the necessary information and coor-
dinates the information flow between the reasoning components. The actual rea-
soning is done by model checking components for testing temporal logic formulas
that uses the results of an external description logic reasoner for answering queries
about derivable acts in a certain version.

Fig. 1. Architecture of MORE

The MORE prototype is implemented in Prolog and uses the XDIG interface
[11], an extended DIG description logic interface for Prolog1. MORE is designed
to be a simple API for a general reasoner with multi-version ontologies. It sup-
ports extended DIG requests from other ontology applications or other ontology
and metadata management systems and supports multiple ontology languages, in-
cluding OWL and DIG [1]2. This means that MORE can be used as an interface
to any description logic reasoner as it supports the functionality of the underlying
reasoner by just passing requests on and provides reasoning functionalities across
versions if needed. Therefore, the implementation of MORE will be independent
of those particular applications or systems. A prototype of MORE is available for
download at the website: http://wasp.cs.vu.nl/sekt/more.

1 http://wasp.cs.vu.nl/sekt/dig
2 http://dl.kr.org/dig/



Reasoning with Multi-version Ontologies 409

6.1 Experiments with MORE

We have tested the current implementation of the MORE system on different ver-
sions of real life ontologies fromdifferentdomains. In the following,webriefly report
experiments we performed on detecting changes in the concept hierarchy of the fol-
lowing two ontologies.

The OPJK Ontology. The OPJK Ontology (Ontology of Professional Judicial
Knowledge) is a legal Ontology that has been developed in the SEKT project3 to
support the content-based retrieval of legal documents[3]. We used five different
versions of the ontology from different stages of the development process. Each of
these version contains about 80 concepts and 60 relations.

The BiosSAIL Ontology. The BioSAIL Ontology which was developed within the
BioSTORM project4. It has been used in earlier experiments on change manage-
ment reported in [12]. The complete data set consists of almost 20 different versions
of the ontology. We take three versions of the BioSAIL ontology for the tests re-
ported below. Each version of BioSAIL ontology has about 180 classes and around
70 properties.

Thosetwoontologieshavebeentestedwithdifferenttemporal reasoningqueries.
Weconcentratedonretrievalqueriesaboutthestructureoftheconcepthierarchy. In
particular, we used retrieval queries with explicit version numbering as introduced
in section5.3. InFig.2we showthe results for thequeries about thenewandobsolete
child, parent, ancestor, and descendant relations in the concept hierarchy.

It has to be noted that the result are not the result of a syntactic analysis of the
concept hierarchy, but rely on description logic reasoning. This means that we also
detect cases where changes in the definition of a concept lead to new concept re-
lations that are only implicit in the Ontology. The results of these queries can be
found at http://wasp.cs.vu.nl/sekt/more/test/. In a semantic change log, of
course, the concrete changesbetween theversionswill be represented.Weaggregate
the results due to space limitations. What we can immediately see from these num-
bers alone is that the versions become more stable over time. Especially in the case
of the legal ontology, the number of changes from one version to the other becomes
significantly lower over time. This can be seen as a sign of maturity.

Besides this change log functionality, arbitrary temporal queries using the oper-
ators introduced in this paper can be formulated and executed. The only limitation
is the interfacetotheunderlyingDLreasoner, thatcurrently isonly implementedfor
queries about the concept hierarchy.This can easily be extended to any functional-
ity provided by the RACER system [6]. A list of the template queries for temporal
reasoning queries are available at the MORE testbed, which can be downloaded
from the MORE website. The average time cost for each temporal reasoning query
is about 7 seconds for the OPJK Ontology and 3 seconds for the BioSAIL ontology
on a PC with 2Ghz CPU 512 MB memory under Windows 2000.

3 http://www.sekt-project.com/
4 http://smi-web.stanford.edu/projects/biostorm/



410 Z. Huang and H. Stuckenschmidt

Results for the BioSAIL Ontology
Version(from) Version(to) NC OC NP OP NA OA ND OD Total
BioSAILv16 BioSAILv20 136 10 123 49 228 104 227 32 909
BioSAILv20 BioSAILv21 54 1 42 21 193 32 192 1 536

Results for the OPJK Ontology
Version(from) Version(to) NC OC NP OP NA OA ND OD Total
ontoRDF ontoRDF2 82 25 53 10 141 16 141 74 542
ontoRDF2 ontoRDF3 82 17 49 13 144 17 144 21 487
ontoRDF3 oblk 49 43 36 20 70 20 54 85 377
oblk opjk 4 7 2 1 8 6 8 18 54

NC = New Children concept relation, OC = Obsolete Children concept relation, NP =
New Parent concept relation, OP = Obsolete Parent concept relation, NA = New Ances-
tor concept relation, OA = Obsolete Ancestor concept relation, ND = New Descendant
concept relation, and OD = Obsolete Descendant concept relation.

Fig. 2. MORE Tests on Concept Relations

7 Discussion and Conclusions

In this paper, we discussed the integrated management of multiple versions of the
same ontology as an open problem with respect to ontology change management.
We proposed an approach for multi-version management that is based on the idea
of using temporal logic for reasoning about commonalities and differences between
differentversions.For thispurpose,wedefine the logicLTLm thatconsists ofopera-
tors for reasoningaboutderivable statements indifferentversions.Weshowthat the
logic can be used to formulate typical reasoning and retrieval queries that occur in
the context ofmanagingmultiple versions.Wehave implementedaprototypical im-
plementation of the logic in terms of a reasoning infrastructure for ontology-based
systems and successfully tested it on real ontologies.

Different from most previous work on ontology evolution and change manage-
ment our approach is completely based on the formal semantics of the ontologies
under consideration. This means that our approach is able to detect all implica-
tions of a syntactic change. In previous work, this could only be done partially in
terms of ontologies if changes and heuristics that were able to predict some, but not
all consequences of a change. Other than previous work on changes at the semantic
level which were purely theoretical,we have shown that out approach can be imple-
mented on top of existing reasoners and is able to provide answers in a reasonable
amount of time. In order to be able to handle large ontologies with thousands of
concepts, we have to think about optimization strategies. Existing work on model
checking has shown that these methods scale up to very large problem sets if opti-
mized in the right way. This makes us optimistic about the issue of scalability.

Oneof the reasons for the efficiencyof the approach is the restriction to the retro-
spective approach, that only considers past versions. This restriction makes linear
time logics sufficient for our purposes. A major challenge is the extension of our ap-
proach with the prospective approach that would allow us to reason about future



Reasoning with Multi-version Ontologies 411

versions of ontologies. This direction of work is challenging, because it requires a
careful analysis of a minimal set of change operators and their consequences. There
are proposals for sets of change operators, but these operators have never been an-
alyzed form the perspective of dynamic temporal logic. The other problem is that
taking the prospective approach means moving from linear to branching time logic
which has a serious impact on complexity and scalability of the approach.

Acknowledgements. We want to thank Pompeu Casanovas and Nuria Casellas
Caralt for providing the OPJK ontology, and thank Michel Klein for providing the
BiosSAILOntology for the tests.Thework reported in this paperwas partially sup-
ported by the EU-funded SEKT project(IST-506826).

References

1. SeanBechhofer,RalfMöller, andPeterCrowther. TheDIGdescription logic interface.
In International Workshop on Description Logics (DL2003). Rome, September 2003.

2. P. Blackburn and M. Tzakova. Hybrid languages and temporal logic. Logic Journal
of the IGPL, 7(1):27–54, 1999.

3. V.R. Benjamins P. Casanovas, J. Contreras, J. M. López-Cobo, and L. Lemus. Iuris-
ervice: An intelligent frequently asked questions system to assist newly appointed
judges. In V.R. Benjamins et al, editor, Law and the Semantic Web, pages 205–522.
Springer-Verlag, London, Berlin, 2005.

4. Edmund M. Clarke, OrnaGrumberg, and Doron A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts, 1999.

5. E. Compatangelo, W. Vasconcelos, and B. Scharlau. Managing ontology versions
with a distributed blackboard architecture. In Proceedings of the 24th Int Conf. of
the British Computer Societys Specialist Group on Artificial Intelligence (AI2004).
Springer-Verlag, 2004.

6. Volker Haarslev and Ralf Möller. Description of the racer system and its applications.
In Proceedings of the International Workshop onDescription Logics (DL-2001), pages
132–141. Stanford, USA, August 2001.

7. PeterHaase,FrankvanHarmelen,ZhishengHuang,HeinerStuckenschmidt,andYork
Sure. A framework for handling inconsistency in changing ontologies. In Proceedings
of ISWC2005, 2005.

8. D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Handbook of Philo-
sophical Logic Volume II — Extensions of Classical Logic, pages 497–604. D. Reidel
Publishing Company: Dordrecht, The Netherlands, 1984.

9. J. Heflin and J. Hendler. Dynamic ontologies on the web. In Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence (AAAI-2000), pages 443–449.
AAAI/MIT Press, Menlo Park, CA., 2000.

10. J. Heflin and Z. Pan. A model theoretic semantics for ontology versioning. In Pro-
ceedings of ISWC2004, pages 62–76, Hiroshima, Japan, 2004. Springer.

11. Zhisheng Huang and Cees Visser. Extended DIG description logic interface support
for PROLOG. Deliverable D3.4.1.2, SEKT, 2004.

12. M. Klein. Change Management for Distributed Ontologies. Phd thesis, Vrije Univer-
siteit Amsterdam, 2004.

13. N.F. Noy and M.A. Musen. The prompt suite: Interactive tools for ontology merging
and mapping. International Journal of Human-Computer Studies, 59(6):983–1024,
2003.



412 Z. Huang and H. Stuckenschmidt

14. S. Schlobach and R.Cornet. Non-standard reasoning services for the debugging of de-
scription logic terminologies. In Proceedings of IJCAI2003, Acapulco, Mexico, 2003.
Morgan Kaufmann.

15. L. Stojanovic. Methods and Tools for Ontology Evolution. Phd thesis, University of
Karlsruhe, 2003.

16. H. Stuckenschmidt and M. Klein. Integrity and change in modular ontologies. In
Proceedings of IJCAI2003, Acapulco, Mexico, 2003. Morgan Kaufmann.



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 413 – 430, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Piggy Bank: Experience the Semantic Web  
Inside Your Web Browser  

David Huynh
1
, Stefano Mazzocchi

2
, and David Karger

1
 

1 
MIT Computer Science and Artificial Intelligence Laboratory, 

The Stata Center, Building 32, 32 Vassar Street, Cambridge, MA 02139, USA 
{dfhuynh, karger}@csail.mit.edu 

2 
MIT Digital Libraries Research Group,  

77 Massachusetts Ave., Cambridge, MA 02139, USA 
stefanom@mit.edu  

Abstract. The Semantic Web Initiative envisions a Web wherein information is 
offered free of presentation, allowing more effective exchange and mixing across 
web sites and across web pages. But without substantial Semantic Web content, 
few tools will be written to consume it; without many such tools, there is little 
appeal to publish Semantic Web content.  

To break this chicken-and-egg problem, thus enabling more flexible 
informa-tion access, we have created a web browser extension called Piggy 
Bankthat lets users make use of Semantic Web content within Web content as 
users browse the Web. Wherever Semantic Web content is not available, Piggy 
Bank can invoke screenscrapers to re-structure information within web pages 
into Semantic Web format. Through the use of Semantic Web technologies, 
Piggy Bank provides direct, immediate benefits to users in their use of the 
existing Web. Thus, the ex-istence of even just a few Semantic Web-enabled 
sites or a few scrapers already benefits users. Piggy Bank thereby offers an easy, 
incremental upgrade path to users without requiring a wholesale adoption of the 
Semantic Web’s vision. 

To further improve this Semantic Web experience, we have created Semantic 
Bank, a web server application that lets Piggy Bank users share the Semantic 
Web information they have collected, enabling collaborative efforts to build 
so-phisticated Semantic Web information repositories through simple, 
everyday’s use of Piggy Bank. 

1   Introduction  

The World Wide Web has liberated information from its physical containers—books, 
journals, magazines, newspapers, etc. No longer physically bound, information can 
flow faster and more independently, leading to tremendous progress in information 
usage.  

But just as the earliest automobiles looked like horse carriages, reflecting outdated 
assump-tions about the way they would be used, information resources on the Web still 
resemble their physical predecessors. Although much information is already in 
structured form inside databases on the Web, such information is still flattened out for 



414 D. Huynh, S. Mazzocchi, and D. Karger 

presentation, segmented into “pages,” and aggregated into separate “sites.” Anyone 
wishing to retain a piece of that information (originally a structured database record) 
must instead bookmark the entire containing page and continuously repeat the effort of 
locating that piece within the page. To collect several items spread across multiple sites 
together, one must bookmark all of the corresponding containing pages. But such 
actions record only the pages’URLs, not the items’structures. Though bookmarked, 
these items cannot be viewed together or organized by whichever properties they  
might share. 

Search engines were invented to break down web sites’barriers, letting users query 
the whole Web rather than multiple sites separately. However, as search engines 
cannot access to the struc-tured databases within web sites, they can only offer 
unstructured, text-based search. So while each site (e.g., epicurious.com) can offer 
sophisticated structured browsing and searching experi-ence, that experience ends at 
the boundary of the site, beyond which the structures of the data within that site  
is lost. 

In parallel, screenscrapers were invented to extract fragments within web pages 
(e.g., weather forecasts, stockquotes, and news article summaries) and re-purpose them 
in personalized ways. However, until now, there is no system in which different 
screenscrapers can pool their efforts together to create a richer, multi-domained 
information environment for the user.  

On the publishing front, individuals wishing to share structured information through 
the Web must think in terms of a substantial publication process in which their 
information must be care-fully organized and formatted for reading and browsing by 
others. While Web logs, or blogs, enable lightweight authoring and have become 
tremendously popular, they support only unstruc-tured content. As an example of their 
limitation, one cannot blog a list of recipes and support rich browsing experience based 
on the contained ingredients. 

The Semantic Web [22] holds out a different vision, that of information laid bare so 
that it can be collected, manipulated, and annotated independent of its location or 
presentation format-ting. While the Semantic Web promises much more effective 
access to information, it has faced a chicken-and-egg problem getting off the ground. 
Without substantial quantities of data avail-able in Semantic Web form, users cannot 
benefit from tools that work directly with information rather than pages, and Semantic 
Web-based software agents have little data to show their useful-ness. Without such 
tools and agents, people continue to seek information using the existing web browsers. 
As such, content providers see no immediate benefit in offering information natively in 
Semantic Web form. 

1.1   Approach  

In this paper, we propose Piggy Bank, a toolintegrated into the contemporary web 
browser that lets Web users extract individual information items from within web pages 
and save them in Semantic Web format (RDF [20]), replete with metadata. Piggy Bank 
then lets users make use of these items right inside the same web browser. These items, 
collected from different sites, can now be browsed, searched, sorted, and organized 



 Piggy Bank: Experience the Semantic Web Inside Your Web Browser 415 

together, regardless of their origins and types. Piggy Bank’s use of Semantic Web 
technologies offers direct, immediate benefits to Web users in their everyday’s use of 
the existing Web while incurring little cost on them. 

By extending the current web browser rather than replacing it, we have taken an 
incremen-tal deployment path. Piggy Bank does not degrade the user’s experience of 
the Web, but it can improve their experience on RDF-enabled web sites. As a 
consequence, we expect that more web sites will see value in publishing RDF as more 
users adopt Piggy Bank. On sites that do not publish RDF, Piggy Bank can invoke 
screenscrapers to re-structure information within their web pages into RDF. Our 
two-prong approach lets users enjoy however few or many RDF-enabled sites on the 
Web while still improving their experience on the scrapable sites. This solution is thus 
not subject to the chicken-and-egg problem that the Semantic Web has been facing. 

To take our users’Semantic Web experience further, we have created Semantic 
Bank, a com-munal repository of RDF to which a community of Piggy Bank users can 
contribute to share the information they have collected. Through Semantic Bank, we 
introduce a mechanism for light-weight structured information publishing and envision 
collaborative scenarios made possible by this mechanism. 

Together, Piggy Bank and Semantic Bank pave an easy, incremental path for 
ordinary Web users to migrate to the Semantic Web while still remaining in the comfort 
zone of their current Web browsing experience.  

2   User Experience  

First, we describe our system in terms of how a user, Alice, might experience it for the 
task of collecting information on a particular topic. Then we extend the experience 
further to include how she shares her collected information with her research group.  

2.1   Collecting Information  

Alice searches several web sites that archive scientific publications (Figure 1). The 
Piggy Bankextension in Alice’s web browser shows a “data coin” icon in the status 
bar for each site, indicat-ing that it can retrieve the same information items in a 
“purer” form. Alice clicks on that icon to collect the “pure” information from each 
web site. In Figure 2, Piggy Bank shows the information items it has collected from 
one of the sites, right inside the same browser window. Using Piggy Bank’s browsing 
facilities, Alice pinpoints a few items of interest and clicks the corresponding “Save” 
buttons to save them locally. She can also tag an item with one or more keywords, 
e.g., the topic of her search, to help her find it later. The “tag completion” dropdown 
suggests previously used tags that Alice can pick from. She can also tag or save 
several items together. 

Alice then browses to several RSS-enabled sites from which she follows the same 
steps to collect the news articles relevant to her research. She also ‘googles’to discover 
resources that those publication-specific sites do not offer. She browses to each 
promising search result and uses Piggy Bank to tag that web page with keywords 
(Figure 3). 



416 D. Huynh, S. Mazzocchi, and D. Karger 

After saving and tagging several publications, RSS news articles, and web pages, 
Alice browses to the local information repository called “My Piggy Bank” where her 
saved data resides (Figure 4). She clicks on a keyword she has used to tag the collected 
items (Figure 4) and views them together regardless of their types and origins (Figure 
5). She can sort them all together by date to understand the overall progress made in her 
research topic over time, regardless of how the literature is spread across the Web.  

Now that the information items Alice needs are all on her computer, rather than 
being spread across different web sites, it is easier for her to manage and organize 
them to suit her needs and preferences. Throughout this scenario, Alice does not need 
to perform any copy-and-paste opera-tion, or re-type any piece of data. All she has to 
do is click “Save” on the items she cared about and/or assign keywords to them. She 
does not have to switch to a different application—all inter-actions are carried out 
within her web browser which she is already familiar with. Furthermore, since the 
data she collected is saved in RDF, Alice accumulates Semantic Web information 
simply by using a tool that improves her use of Web information in her everyday’s 
work. 

2.2   Sharing Information  

Alice does not work alone and her literature search is of value to her colleagues as 
well. Alice has registered for an account with the her research group’s Semantic 
Bank, which hosts data published by her colleagues1 With one click on the “Publish” 
button for each item, Alice publishes information to the Semantic Bank. She can also 
publish the several items she is currently seeing using the “Publish All” button. She 
simply publishes the information in pure form without having to author any 
presentation for it.  

Alice then directs her web browser to the Semantic Bank and browses the 
information on it much like she browses her Piggy Bank, i.e., by tags, by types, by any 
other properties in the information, but also by the contributors of the information. She 
sifts through the information her colleagues have published, refining to only those 
items she finds relevant, and then clicks on the “data coin” icon to collect them back 
into her own Piggy Bank.  

Bob, one of Alice’s colleagues, later browses the Semantic Bank and finds the items 
Alice has published. Bob searches for the same topic on his own, tags his findings with 
the same tags Alice has used, and publishes them to the bank. When Alice returns to the 
bank, she finds items Bob has published together with her own items as they are tagged 
the same way. Thus, through Semantic Bank, Alice and Bob can collaborate 
asynchronously and work independently from each other.  

3   Design  

Having illustrated the user experience, we now describe the logical design of our 
system—Piggy Bank and Semantic Bank—as well as their dynamics.  

                                                           
1 To see a live Semantic Bank, visit http://simile.mit.edu/bank/.  



 Piggy Bank: Experience the Semantic Web Inside Your Web Browser 417 

 

Fig. 2. Piggy Bank shows the “pure” information items retrieved from ACM.org. These itemscan 
be re.ned further to the desired ones, which can then be saved locally and tagged with keywords 
for more effective retrieval in the future. 



418 D. Huynh, S. Mazzocchi, and D. Karger 

 

Fig. 3. Like del.icio.us, Piggy Bank allows each web page to be tagged with keywords. 
How-ever, this same tagging mechanism also works for “pure” information items and is 
indiscriminate against levels of granularity of the information being tagged. 

 

Fig. 4. Saved information items reside in “My Piggy Bank.” The user can start browsing them in 
several ways, increasing the chances of re-finding information. 



 Piggy Bank: Experience the Semantic Web Inside Your Web Browser 419 

 

Fig. 5. All locally saved information can be browsed together regardless of each item’s type and 
original source. Items can be published to Semantic Banks for sharing with other people. 

3.1   Collect  

Core in Piggy Bank is the idea of collecting structured information from various web 
pages and web sites, motivated by the need to re-purpose such information on the client 
side in order to cater to the individual user’s needs and preferences. We consider two 
strategies for collecting structured information: with and without help from the Web 
content publishers. If the publisher of a web page or web site can be convinced to link 
the served HTML to the same information in RDF format, then Piggy Bank can just 
retrieve that RDF. If the publisher cannot be persuaded to serve RDF, then Piggy Bank 
can employ screenscrapers that attempt to extract and re-structure information encoded 
in the served HTML. 

By addressing both cases, we give Web content publishers a chance to serve RDF 
data the way they want while still enabling Web content consumers to take matter into 
their own hands if the content they want is not served in RDF. This solution gives 
consumers benefits even when there are still few web sites that serve RDF. At the same 
time, we believe that it might give pro-ducers incentive to serve RDF in order to control 
how their data is received by Piggy Bank users, as well as to offer competitive 
advantage over other web sites. 



420 D. Huynh, S. Mazzocchi, and D. Karger 

In order to achieve a comprehensible presentation of the collected RDF data, we 
show the data as a collection of “items” rather than as a graph. We consider an item to 
be any RDF resource annotated with rdf:type statements, together with its property 
values. This notion of an item also helps explain how much of the RDF data is 
concerned when the user performs an operation on an item.  

3.2   Save  

Information items retrieved from each source are stored in a temporary database that is 
gar-bage-collected if not used for some time and reconstructed when needed. When the 
user saves a retrieved item, we copy it from the temporary database that contains it to 
the permanent “My Piggy Bank” database. 

In a possible alternative implementation, retrieved items are automatically saved 
into the permanent database, but only those explicitly “saved” are flagged. This 
implementation is space-intensive. As yet another alternative, saving only 
“bookmarks” the retrieved items, and their data is re-retrieved whenever needed. This 
second alternative is time-intensive, and although this ap-proach means “saved” items 
will always be up to date, it also means they can be lost. Our choice of implementation 
strikes a balance. 

3.3   Organize  

Piggy Bank allows the user to tag each information item with several keywords, 
thereby fitting it simultaneously into several organizational schemes. For example, a 
photograph can be tagged both as “sepia” and “portrait”, as it fits into both the “effect” 
organizational scheme (among “black & white,” “vivid,” etc.) and the “topic” scheme 
(among “landscape,” “still life,” etc.). Tagging has been explored previously as an 
alternative to folder hierarchies, which incur an over-head in creation and maintenance 
as well as disallow the co-existence of several organizational schemes on the same data 
([37, 38, 42]). 

We support tagging through typing with dropdown completion suggestions. We 
expect that such interaction is lightweight enough to induce the use of the feature. As 
we will discuss further in a later section, we model tags as RDF resources named by 
URIs with keyword labels. Our sup-port for tagging is the first step toward full-fledged 
user-friendly RDF editing. 

3.3   View  

Having extracted “pure” information from presentation, Piggy Bank must put 
presentation back on the information before presenting it to the user. As we aim to let 
users collect any kind of information they deem useful, we cannot know ahead of time 
which domains and ontologies the collected information will be in. In the absence of 
that knowledge, we render each informa-tion item generically as a table of 
property/values pairs. However, we envision improvements to Piggy Bank that let users 
incorporate on-demand templates for viewing the retrieved information items. 

3.4   Browse/Search  

In the absence of knowledge about the domains of the collected information, it is also 
hard to provide browsing support over that information, especially when it is 



 Piggy Bank: Experience the Semantic Web Inside Your Web Browser 421 

heterogeneous, containing information in several ontologies. As these information 
items are faceted in nature—having sev-eral facets (properties) by which they can be 
perceived—we offer a faceted browsing interface (e.g., [41], [43]) by which the user 
can refine a collection items down to a desired subset. Figure 5 shows three 
facets—date, relevance, and type—by which the 53 items can be refined further. 

Regardless of which conceptual model we offer users to browse and find the items 
they want, we still keep the Web’s navigation paradigm, serving information in pages 
named by URLs. Us-ers can bookmark the pages served by Piggy Bank just like they 
can any web page. They can use the Back and Forward buttons of their web browsers to 
traverse their navigation histories, just like they can while browsing the Web. 

Note that we have only criticized the packaging of information into web pages and 
web sites in the cases where the user does not have control over that packaging process. 
Using Piggy Bank, the user can save information locally in RDF, and in doing so, has 
gained much more say in how that information is packaged up for browsing. It is true 
that the user is possibly constrained by Piggy Bank’s user interface, but Piggy Bank is 
one single piece of software on the user’s local machine, which can be updated, 
improved, configured, and personalized. On the other hand, it is much harder to have 
any say on how information from several web sites is packaged up for browsing by 
each site.  

3.5   Share  

Having let users collect Web information in Semantic Web form and save it for 
themselves, we next consider how to enable them to share that information with one 
another. We again apply our philosophy of lightweight interactions in this matter. 
When the user explicitly publishes an item, its properties (the RDF subgraph starting at 
that item and stopping at non-bnodes) are sent to the Semantic Banks that the user has 
subscribed to. The user does not have fine-grained control over which RDF statements 
get sent (but the items being handled are already of possibly much finer granularity 
compared to full webpages). This design choice sacrifices fine-grained control in or-der 
to support publishing with only a single-click. Thus, we make our tools appealing to the 
“lazy altruists”, those who are willing to help out others if it means little or no cost to 
themselves. 

Items published by members of a Semantic Bank get mixed together, but each item 
is marked with those who have contributed it. This bit of provenance information 
allows information items to be faceted by their contributors. It also helps other 
members trace back to the contributor(s) of each item, perhaps to request for more 
information. In the future, it can be used to filter informa-tion for only items that come 
from trusted contributors. 

3.6   Collaborate  

When an item is published to a Semantic Bank, tags assigned to it are carried along. As 
a conse-quence, the bank’s members pool together not only the information items they 
have collected but also their organization schemes applied on those items. 

The technique of pooling together keywords has recently gained popularity through 
services such as del.icio.us [6], Flickr [25], and CiteULike [4] as a means for a 
community to collab-oratively build over time a taxonomy for the data they share. This 
strategy avoids the upfront cost for agreeing upon a taxonomy when, perhaps, the 



422 D. Huynh, S. Mazzocchi, and D. Karger 

nature of the information to be collected and its use are not yet known. It allows the 
taxonomy to emerge and change dynamically as the information is accumulated. The 
products of this strategy have been termed folk taxonomies, or folksonomies. 

Another beneficial feature of this strategy is that the collaborative effect may not be 
inten-tional, but rather accidental. A user might use keywords for his/her own 
organization purpose, or to help his/her friends find the information s/he shares. 
Nevertheless, his/her keywords automati-cally help bring out the patterns on the entire 
data pool. Our one-click support for publishing also enables this sort of folksonomy 
construction, intentional or accidental, through Piggy Bank users’ wishes to share data. 

While a taxonomy captures names of things, an ontology captures concepts and 
relation-ships. We would like to explore the use of RDF to grow not just folksonomies, 
but also folk-sologies (folk ontologies). For this purpose, we model tags not as text 
keywords, but as RDF re-sources named by URIs with keywords as their labels, so that 
it is possible to annotate them. For example, one might tag a number of dessert recipes 
with “durian”

tag 
then tag the “durian”

tag 
itself with “fruit”

tag
. Likewise, the user might 

tag several vacation trip offers as “South-East Asia”
tag 

and then tag “South-East Asia”
tag 

with “location”
tag

. It is now possible to create a relationship between “fruit”
tag 

and 

“location”
tag 

to say that things tagged as “fruit”
tag 

“can be found at”
rel 

things tagged with 

“location”
tag

. (Arbitrary relationship authoring is not yet supported in Piggy Bank’s 

user interface.)  
By modelling tags not as text keywords but as RDF resources, we also improve on 

the ways folksonomiescan be grown. In existing implementations of text 
keyword-based tagging, if two users use the same keyword, the items they tag are 
“collapsed” under the same branch of the taxonomy. This behavior is undesirable when 
the two users actually meant different things by the same keyword (e.g., “apple” the 
fruit and “apple” the computer company). Conversely, if two us-ers use two different 
keywords to mean the same thing, the items they tag are not “collapsed” and hence fall 
under different branches of the taxonomy (e.g., “big apple” and “new york”). These 
two cases illustrate the limitation in the use of syntactic collision for grouping tagged 
items. By modeling tags as RDF resources with keyword labels, we add a layer of 
indirection that removes this limitation. It is now possible to separate two tags sharing 
the same keyword label by adding annotations between them, to say that one tag is 
OWL:differentFrom another tag. Similarly, an OWL:sameAs predicate can be added 
between two tags with different labels. 

In Piggy Bank and Semantic Bank, when two different tags with the same label are 
encoun-tered, the user interface “collapse” their items together by default. Though the 
user interface cur-rently behaves just like a text keyword-based implementation, the 
data model allows for improve-ments to be made once we know how to offer these 
powerful capabilities in a user-friendly way. 

3.7   Extend  

We support easy and safe installation of scrapers through the use of RDF. A scraper can 
be described in RDF just like any other piece of information. To install a scraper in 
Piggy Bank, the user only needs to save its metadata into his/her Piggy Bank, just like 
she would any other information item, and then “activates” it (Figure 6). In activation,  



 Piggy Bank: Experience the Semantic Web Inside Your Web Browser 423 

 

Fig. 6. Installation of a scraper involves saving its metadata and then activating it to indicate that 
it is trusted to be used within the system 

Piggy Bank adds an assertion to the scraper’s metadata, saying that it is “trusted” to be 
used by the system. (This kind of as-sertion is always removed from data collected 
from websites, so that saving a scraper does not inadvertently make it “trusted”.) 

4   Implementation  

In this section, we discuss briefly the implementation of our software, keeping in mind 
the logical design we needed to support as discussed in the previous section.  

4.1   Piggy Bank  

First, since a core requirement for Piggy Bank is seamless integration with the web 
browser, we chose to implement Piggy Bank as an extension to the web browser rather 
than as a stand-alone application (cf. Haystack [39]). This choice trades rich user 
interface interactions available in desktop-based applications for lightweight 
interactions available within the web browser. This tradeoff lets users experience the 
benefits of Semantic Web technologies without much cost.  

Second, to leverage the many Java-based RDF access and storage libraries in 
existence, we chose to implement Piggy Bank inside the Firefox browser [7], as we had  



424 D. Huynh, S. Mazzocchi, and D. Karger 

 
 

Fig. 7. Piggy Bank’s architecture—a web server within the web browser. The embedded 
Java-based web server resolves queries, fetches data from several backend databases, and 
generates a DHTML [34]-based user interface on-the-fly using a templating engine. It also 
processes HTTP POSTs to respond to Save, Tag, and Publish commands. Chrome additions to 
the Firefox browser detect document loading events, invoke scrapers’Javascript code on 
document DOMs [24], and provide XUL [29]-based UIs for interacting with the extension. An 
XPCOM [30] component called nsIPiggyBank written in Javascript provides a bridge over to 
Piggy Bank’s Java code. 

found a way to integrate these Java-based RDF libraries into Firefox. By selecting Java 
as Piggy Bank’s core implementation language, we also opened ourselves up to a 
plethora of other Java libraries for other functionalities, such as for parsing RSS feeds 
[21] (using Informa [11]) and for indexing the textual content of the information items 
(using Lucene [3]).  



 Piggy Bank: Experience the Semantic Web Inside Your Web Browser 425 

In order to make the act of collecting information items as lightweight as possible, 
first, we make use of a status-bar icon to indicate that a web page is scrapable, and 
second, we support collecting through a single-click on that same icon. Piggy Bank 
uses any combination of the fol-lowing three methods for collection: 

• Links from the current web page to Web resources in RDF/XML [19], N3 
[18], or RSS [21] formats are retrieved and their targets parsed into RDF.  

• Available and applicable XSL transformations [31] are applied on the current 
web page’s DOM [24].  

• Available and applicable Javascript code is run on the current web page’s 
DOM, retrieving other web pages to process if necessary.  

Once the user clicks on the data coin icon, we need to present the collected information 
items to him/her. As mentioned above, we wanted to keep the Web’s navigation 
paradigm by allow-ing the user to browse collected information as web pages named by 
URLs. This design choice required Piggy Bank to generate its user interface as 
DHTML [34]. Since Piggy Bank must gen-erate its DHTML-based user interface 
on-the-flybased on data dynamically collected and saved, we decided to make use of a 
servlet capable of generating DHTML

2
. 

This design turns Piggy Bank into a 3-tier Java-based web server application, 
replete with (RDF) database backend, templating engine, and DHTML frontend, all 
embedded within the Firefox web browser (Figure 7).  

In fact, Piggy Bank has several databases: a permanent “My Piggy Bank” database 
for stor-ing saved information and several temporary databases, each created to hold 
information col-lected from a different source. The Save command causes data to be 
copied from a temporary database to the permanent database. Commands such as Save, 
Tag, and Publish are implemented as HTTP POSTs, sent from the generated 
DHTML-based user interface back to the embedded web server. Tag completion 
suggestions are supported in the same manner. 

4.2   Semantic Bank  

Semantic Bank shares a very similar architecture to the Java part of Piggy Bank. They 
both make use of the same servlet that serves their DHTML-based faceted browsing user 
interface. They make use of several profiles for segregating data models. Semantic Bank 
gives each of its subscribed members a different profile for persisting data while it keeps 
another profile where “published” information from all members gets mixed together.  

Semantic Bank listens to HTTP POSTs sent by a user’s piggy bank to upload his/her 
data. All of the uploaded data goes into that user’s profile on the Semantic Bank, and 
those items marked as public are copied to the common profile. Each published item is 
also linked to one or more members of the semantic bank who have contributed that item.  

5   Related Work  

We will now take a trip back in history to the birth of the World Wide Web, and witness 
that even at that time, adhoc solutions were already suggested to combat the highly 
flexible but still constraining information model of the Web.  
                                                           
2 The DHTML-based faceted browsing engine of Piggy Bank is Longwell version 2.0. Longwell 

1.0 was written by Mark Butler and the Simile team.  



426 D. Huynh, S. Mazzocchi, and D. Karger 

5.1   Consumption  

When the number of web sites started to accumulate, directories of web sites (e.g., 
Yahoo! [32]) were compiled to give an overview of the Web. When the number of sites 
continued to grow, search engines were invented to offer a way to query over all sites 
simultaneously, substantially reducing concerns about the physical location of 
information, thereby letting users experience the Web as a whole rather than as loosely 
connected parts. Capable of liberating web pages from within web sites, search engines 
still cannot liberate individual information items (e.g., a single phone number) from 
within their containing pages. Furthermore, because these third-party search engines do 
not have direct access into databases embedded within web sites, they cannot support 
structured queries based on the schemas in these databases but must resolve to index the 
data already rendered into HTML by the web sites.  

Another invention in the early days of the Web was web portals which provided 
personaliz-able homepages (e.g., My Netscape [14]). A user of a portal would choose 
which kinds of infor-mation to go on his/her portal homepage, and in doing so, aggregate 
information in his/her own taste. Such an aggregation is a one-time costly effort that 
generates only one dynamic view of information, while aggregation through Piggy Bank 
happens by lightweight interactions, gener-ating many dynamic views of information 
through the act of browsing. During the evolution of the web portal, the need for keeping 
aggregated news articles up-to-date led to the invention of RSS (originally Rich Site 
Summary) [21] that could encode the content of a web site chronologi-cally, facilitating 
the aggregation of parts of different sites by date. RSS was the first effort to fur-ther 
reduce the granularity of the information consumption on the web that achieved 
widespread adoption. RSS feeds are now used by web sites to publish streams of 
chronologically ordered information for users do consume. RSS was also the first 
example of a pure-content format, firmly separating the concern of data production and 
data consumption and allowing innovative user interfaces to exist (e.g., [16]). 

Also early in the history of the World Wide Web came screenscrapers—client-side 
programs that extract information from within web pages (e.g., stockquotes, weather 
forecasts) in order to re-render them in some manners customized to the needs of 
individual users. The news aggregators (e.g., [8]) juxtaposed fragments ripped out from 
various news web sites together to make up a customized “front page” for each user 
according to his/her news taste. More recently, client-side tools such as Greasemonkey 
[9] and Chickenfoot [33] let advanced users themselves prescribe manipulations on 
elements within web pages, so to automate tedious tasks or to customize their Web 
experience. Additions to web browsers such as Hunter-Gatherer [40] and Net Snippets 
[15] let users bookmark fragments within web pages, and Annotea [36] supports 
annotation on such fragments. 

Piggy Bank adopts the scraping strategy but at a platform level and also introduces 
the use of RDF as a common data model wherein results from different scrapers can be 
mixed, thus allow-ing for a unified experience over data scraped from different sources 
by different scrapers. Piggy Bank is capable of storing more than just XPaths [28] 
pointing to information items as Hunter-Gatherer [40], and it allows users to extract 
data rather than annotate documents as Annotea [36] does. Piggy Bank does not rely on 
heuristics to re-structure information as Thresher [35] does, but rather requires people 
write easily distributable scraping code. It is possible to make use of Thresher [35] as a 
scraper writing tool. 



 Piggy Bank: Experience the Semantic Web Inside Your Web Browser 427 

5.2   Production  

On the production side, HTTP [10] natively supports posting of data to a URL, though 
it leaves the syntax and semantic of that data as well as how the data is used to the web 
server at that URL. Web sites have been employing this mechanism to support 
lightweight authoring activities, such as providing registration information, rating a 
product, filling out an online purchase order, signing guestbooks, and posting short 
comments.  

A more sophisticated form of publishing is Web logs, or blogs. Originally written by 
tech-savvy authors in text editors (e.g., [1]), blogs have morphed into automated 
personal content management systems used by tech-unsavvy people mostly as online 
journals or for organizing short articles chronologically. Using RSS technology, blog 
posts from several authors can be extracted and re-aggregated to form “planets”.  

Unlike blog planets, wikis [27] pool content from several authors together by 
making them collaborate on the editing of shared documents. This form of 
collaborative, incremental author-ing, while strongly criticized for its self-regulating 
nature and generally very low barrier to entry [5], has been proven incredibly prolific in 
the creation of content and at the same time very popu-lar. (Wikipedia [26] is visited 
more often than the New York Times. [2]) 

The effectiveness of socially scalable solutions is also evident in the more recent 
social book-marking services (e.g., del.icio.us [6]) where content authoring is 
extremely lightweight (assign-ing keywords) but the benefit of such authoring effort is 
amplified when the information is pooled together, giving rise to overall patterns that 
no one user’s data can show. 

6   Conclusion  

In adopting Piggy Bank, users immediately gain flexibility in the ways they use existing 
Web information without ever leaving their familiar web browser. Through the use of 
Piggy Bank, as they consume Web information, they automatically produce Semantic 
Web information. Through Semantic Bank, as they publish, the information they have 
collected merges together smoothly, giving rise to higher-ordered patterns and 
structures. This, we believe, is how the Semantic Web might emerge from the Web. In 
this section, we discuss how the rest of the story might go.  

6.1   Scraping the Web  

Our story is about empowering Web users, giving them control over the information 
that they encounter. Even in the cases where the web sites do not publish Semantic Web 
information di-rectly, users can still extract the data using scrapers. By releasing a 
platform on which scrapers can be easily installed and used, and they can contribute 
their results to a common data model, we have introduced a means for users to integrate 
information from multiple sources on the Web at their own choosing. 

In this new “scraping ecosystem,” there are the end-users who want to extract 
Semantic Web information, scraper writers who know how to do so, and the publishers 



428 D. Huynh, S. Mazzocchi, and D. Karger 

who want to remain in control of their information. We expect that many scraper 
writers will turn their creativity and expertise at scraping as many sites as they can so to 
liberate the information within.  

The explosion of scrapers raises a few questions. Will there be a market where 
scrapers for the same site compete on the quality of data they produce? Will there be an 
explosion of several ontologies for describing the same domain? How can a user find 
the “best” scraper for a site? Which kinds of site will be more susceptible to scraping?  

As a possible scenario, a centralized service could host the metadata of scrapers in 
order to support easy or automatic discovery of scrapers for end-users while allowing 
scraper writers to coordinate their work. Such a centralized service, however, is a single 
point of failure and a single target for attack. An alternative is some form of 
peer-to-peer scraper-sharing network.  

6.2   Information Wants to Be Free  

Our system goes beyond just collecting Semantic Web information but also enables 
users to publish the collected information back out to the Web. We expect that the ease 
with which publishing can be done will encourage people to publish more. This 
behavior raises a few questions. How can we build our system to encourage observance 
of copyright laws? How will publishers adapt to this new publishing mechanism? How 
will copyright laws adapt to the fine-grained nature of the information being 
redistributed? Is a Semantic Bank responsible for checking for copyright infringement 
of information published to it? Will scraper writers be held responsible for illegal use of 
the information their scrapers produce on a massive scale? 

In order to remain in control of their information, one might expect publishers to 
publish Semantic Web information themselves so to eliminate the need for scraping 
their sites. They might include copyright information into every item they publish and 
hold Piggy Bank and Semantic Bank responsible for keeping that information intact as 
the items are moved about.  

Perhaps it is in the interest of publishers to publish Semantic Web information not 
only to retain copyright over their information but also to offer advantages over their 
competitors. They can claim to publish richer, purer, more standard-compliant, more 
up-to-date, more coherent, more reliable data that is more usable, more mixable, more 
trustable. They can offer searching and browsing services directly on their web sites 
that are more sophisticated than what Piggy Bank can offer. They can even take 
advantage of this new publishing mechanism to spread their advertisements  
more easily.  

Acknowledgements  

This work is conducted by the Simile Project, a collaborative effort between the MIT 
Librar-ies, the Haystack group at MIT CSAIL, and the World Wide Web Consortium. 
We would like to thank Eric Miller, Rob Miller, MacKenzie Smith, Vineet Sinha, the 
Simile group, the User Interface Design group, and the Haystack group for trying out 
Piggy Bank and for their valuable feedbacks on this work. Last but not least, we are in 
debt to Ben Hyde for having infected us with the idea of a “scraping ecosystem.” 



 Piggy Bank: Experience the Semantic Web Inside Your Web Browser 429 

References 

[1] 9101 -- /News. 
[2] http://www.w3.org/History/19921103-hypertext/hypertext/WWW/News/9201.html. 
[3] Alexa Web Search - Top 500. 
[4] http://www.alexa.com/site/ds/top_sites?ts_mode=lang&lang=en. 
[5] Apache Lucene. http://lucene.apache.org/. 
[6] CiteULike: A free online service to organise your academic papers 
[7] http://www.citeulike.org/. 
[8] Criticism of Wikipedia. http://en.wikipedia.org/wiki/Criticism_of_Wikipedia. 
[9] del.icio.us. http://del.icio.us/. 

[10] Firefox - Rediscover the web. http://www.mozilla.org/products/firefox/. 
[11] Google News. http://news.google.com/. 
[12] Greasemonkey. http://greasemonkey.mozdev.org/. 
[13] HTTP - Hypertext Transfer Protocol Overview. http://www.w3.org/Protocols/. 
[14] Informa: RSS Library for Java. http://informa.sourceforge.net/. 
[15] Jetty Java HTTP Servlet Server. http://jetty.mortbay.org/jetty/. 
[16] LiveConnect Index. http://www.mozilla.org/js/liveconnect/. 
[17] My Netscape. http://my.netscape.com/. 
[18] Net Snippets. http://www.netsnippets.com/. 
[19] NewsMap. http://www.marumushi.com/apps/newsmap/newsmap.cfm. 
[20] openRDF.org - home of Sesame. http://www.openrdf.org/. 
[21] Primer - Getting into the semantic web and RDF using N3. 
[22] http://www.w3.org/2000/10/swap/Primer.html. 
[23] RDF/XML Syntax Specifications (Revised). http://www.w3.org/TR/rdf-syntax-grammar/. 
[24] Resource Description Framework (RDF) / W3C Semantic Web Activity. 
[25] http://www.w3.org/RDF/. 
[26] RSS 2.0 Specifications. http://blogs.law.harvard.edu/tech/rss. 
[27] Semantic Web project. http://www.w3.org/2001/sw/. 
[28] Velocity. http://jakarta.apache.org/velocity/. 
[29] W3C Document Object Model. http://www.w3.org/DOM/. 
[30] Welcome to Flickr - Photo Sharing. http://flickr.com/. 
[31] Wikipedia. http://www.wikipedia.org/. 
[32] Wiki Wiki Web. http://c2.com/cgi/wiki?WikiWikiWeb. 
[33] XML Path Language (XPath). http://www.w3.org/TR/xpath. 
[34] XML User Interface Language (XUL) Project. http://www.mozilla.org/projects/xul/. 
[35] XPCOM. http://www.mozilla.org/projects/xpcom/. 
[36] XSL Transformations (XSLT). http://www.w3.org/TR/xslt. 
[37] Yahoo!. http://www.yahoo.com/. 
[38] Bolin, M., M. Webber, P. Rha, T. Wilson, and R. Miller. Automation and Customization of 

Rendered Web Pages. Submitted to UIST 2005. 
[39] Goodman, D. Dynamic HTML: The Definitive Reference. 2nd. O’Reilly & Associates, 

Inc., 2002. 
[40] Hogue, A. and D. Karger. Thresher: Automating the Unwrapping of Semantic Content 

from the World Wide Web. In Proc. WWW 2005. 
[41] Kahan, J., Koivunen, M., E. Prud’Hommeaux and R. Swick. Annotea: An Open RDF 

Infrastructure for Shared Web Annotations. In Proc. WWW 2001. 
[42] Lansdale, M. The Psychology of Personal Information Management. Applied Ergonomics 

19(1), 55–66, 1988. 



430 D. Huynh, S. Mazzocchi, and D. Karger 

[43] Malone, T. How Do People Organize Their Desks? Implications for the Design of Office 
Information Systems. ACM Transactions on Office Information Systems 1(1), 99–112, 
1983. 

[44] Quan, D. and D. Karger. How to Make a Semantic Web Browser. In Proc. WWW 2004. 
[45] schraefel, m.c., Y. Zhu, D. Modjeska, D. Wigdor, and S. Zhao. Hunter Gatherer: 

Interaction Support for the Creation and Management of Within-Web-Page Collections. In 
Proc. WWW 2002. 

[46] Sinha, V. and D. Karger. Magnet: Supporting Navigation in Semistructured Data 
Environments. In Proc. SIGMOD 2005. 

[47] Whittaker, S. and C. Sidner. Email Overload: Exploring Personal Information 
Management of Email. In Proc. SIGCHI 1996. 

[48] Yee, P., K. Swearingen, K. Li, and M. Hearst. Faceted Metadata for Image Search and 
Browsing. In Proc. CHI 2003. 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 431 – 445, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

BRAHMS: A WorkBench RDF Store and  
High Performance Memory System for Semantic 

Association Discovery* 

Maciej Janik and Krys Kochut 

Large Scale Distributed Information Systems (LSDIS) Lab, 
Department of Computer Science, University of Georgia, 

415 Boyd Graduate Studies Research Center, Athens, GA 30602-7404  
{janik, kochut}@cs.uga.edu 

Abstract. Discovery of semantic associations in Semantic Web ontologies is 
an important task in various analytical activities. Several query languages and 
storage systems have been designed and implemented for storage and 
retrieval of information in RDF ontologies. However, they are inadequate for 
semantic association discovery. In this paper we present the design and 
implementation of BRAHMS, an efficient RDF storage system, specifically 
designed to support fast semantic association discovery in large RDF bases. 
We present memory usage and timing results of several tests performed with 
BRAHMS and compare them to similar tests performed using Jena, Sesame, 
and Redland, three of the well-known RDF storage systems. Our results show 
that BRAHMS handles basic association discovery well, while the RDF query 
languages and even the low-level APIs in the other three tested systems are 
not suitable for the implementation of semantic association discovery 
algorithms. 

1   Introduction 

Semantic Web ontologies are envisioned to represent knowledge bases containing 
millions of entities [26] interconnected with relationships. The relationships form the 
foundation of the Semantic Web [28] and enable the discovery and interpretation of 
semantic associations existing between entities in the ontology. Although, it is known 
that searching for simple paths in graphs is NP-complete [16], there is a great need for 
software tools that allow searching for relationship paths in a reasonable time, 
especially if the paths are of a limited length. 

A semantic association path connecting two entities, as defined in [5], is a 
sequence of meaningful relationships connecting the two entities. The semantic 
association describes how the two entities relate to each other. We also say that two 
entities are semantically related to each other if a semantic association path exists 
                                                           
*  This research has been supported by the National Science Foundation Grant No. IIS-0325464 

entitled “SemDIS: Discovering Complex Relationships in the Semantic Web”. 



432 M. Janik and K. Kochut 

between them. Query languages that are available for RDF bases [20] allow the 
specification of certain patterns of semantic associations between entities as well as 
expressing various restrictions on the relationships participating in associations. 
However, they are not designed for the discovery of semantic associations [4]. The 
main problem is that in the semantic association discovery neither the length of the 
association path nor the relations included in it or their directionality are known a 
priori. These features of the semantic association discovery make the current high-
level RDF query languages not suitable for this purpose, as the path expressions that 
they can create specify relationships of fixed length and directionality. 

A possible solution to this problem is in the creation of graph-based algorithms that 
utilize API-level graph primitives, such as the fast computation of a node 
neighborhood. Several RDF storage base implementations have been described in the 
literature and a number of such implementations are available on the Web. All of 
them include high-level query languages such as RQL [13], RDQL [22], SquishQL 
[17], and SPARQL [29]. However, only a few of them have a lower-level API 
suitable to operate directly on the internal graph representation structures. 
Implementations providing such a low-level API include Jena [15], Sesame [8] and 
Redland [7]. Unfortunately, all of them have certain drawbacks and limitations when 
it comes to discovering longer semantic associations in large ontologies.  

In order to overcome some of the limitations of the current RDF store 
implementations, we have created BRAHMS – a workBench Rdf store And High 
performance Memory System, which provides a suitable basis for the implementation 
and testing of semantic association discovery algorithms. 

2   Motivation 

Imagine an analyst investigating how a person X is may be related to a person Y, 
based on the facts that are stated in an RDF description base. Such requirement 
routinely occurs in examples such as Anti-money Laundering [23], Threat 
Assessment [27] and Risk Assessment. Such work requires discovering association 
paths existing between these two people, represented as resources in the RDF base. 
The semantic associations are usually of unknown and variable length, and the 
relations that connect the intermediate resources can be of any directionality. Non-
directionality is a necessary requirement, as the two resources may not be linked by 
a directed path, but they may be connected by a path that includes inverse relations, 
representing potentially vital information about the semantic linkage existing between 
the resources in question. The discovered association paths should be built from 
instance resources, as they represent facts in knowledge base. Literal values and 
schema types represent important and valuable information for understanding the 
meaning of the path, but in this case they should not be included as the building 
blocks of the path itself. 

The discovery of short (2-3 relations) association paths is quite fast even in larger 
RDF graphs, due to the limited search space. Obviously, it is not the case when it 
comes to finding longer paths in large graphs. The searches may take a much longer 
time, or be simply infeasible, as searching for simple paths in graphs is NP-Complete. 



 BRAHMS: A WorkBench RDF Store and High Performance Memory System 433 

On the other hand, applications such as the anti-money laundering systems [14] 
search for and favor longer semantic associations while operating on large datasets. 
Our own experience shows that with a highly optimized implementation, searching 
for longer semantic associations, even in bigger graphs, may be done in almost  
real time. 

One of the possible solutions is to use a system that keeps the whole graph 
structure in main memory, since accessing the disk-based or remote databases slows 
the search process to an unacceptable level. Therefore, an RDF store must have a 
memory efficient data representation that leaves enough space for the operation of 
search algorithms. Currently available RDF data stores are not suitable for association 
discovery due to their unacceptable performance and high memory requirements. 
During our own work on the semantic discovery project [24], we have created the 
following list of necessary features needed for the fast semantic association discovery 
in large graphs. These include the ability to: 

− search for associations of variable length and unspecified directionality, 
− work on large RDF graphs in main memory with leaving a sufficient amount of 

memory for the operation of the search algorithms, 
− limit traversal paths to instance resources only (or only to schema level resources), 
− produce the results within a reasonable time (on the order of a few minutes), and 
− allow a fast start-up of the system by utilizing a pre-loaded RDF storage image. 

The above set of requirements was the main motivating factor in creating our own 
RDF storage system, BRAHMS. 

BRAHMS has been already used successfully in the Insider Threat project [2], 
which proved its value as an RDF storage system offering the necessary foundation 
for the implementation of fast semantic associations discovery algorithms. In this 
paper, we describe the design of BRAHMS and present its performance results in 
comparison to a few of the other available RDF store implementations. 

3   RDF Storage Systems and Query Languages 

3.1   RDF Query Languages in Association Discovery 

Presently available RDF/OWL query languages do not directly support association 
discovery. Languages such as RQL, RDQL, and SquishQL offer support for path 
expressions but even though it is possible to specify a template search pattern of 
resources and relations connecting them, they are not suitable for semantic association 
discovery. The main problem is that the created path expressions can match only 
paths of a fixed length and of specified directionality of participating relations. Let us 
demonstrate it on the example of finding all paths of length up to two relations 
between two resources, startURI and endure, using the RDQL query language: 

SELECT ?startURI, ?property_1, ?endURI 
FROM (?startURI ?property_1 ?endURI) 

SELECT ?startURI, ?property_1, ?endURI 
FROM (?endURI ?property_1 ?start) 



434 M. Janik and K. Kochut 

SELECT ?startURI, ?property_1, ?x, ?property_2, ?endURI 
FROM (?startURI ?property_1 ?x)(?x ?property_2 ?endURI) 
WHERE ?startURI ne ?x && ?endURI ne ?x 

SELECT ?startURI, ?property_1, ?x, ?property_2, ?endURI 
FROM (?startURI ?property_1 ?x)(?endURI ?property_2 ?x) 
WHERE ?startURI ne ?x && ?endURI ne ?x 

SELECT ?startURI, ?property_1, ?x, ?property_2, ?endURI 
FROM (?x ?property_1 ?startURI)(?x ?property_2 ?endURI) 
WHERE ?startURI ne ?x && ?endURI ne ?x 

SELECT ?startURI, ?property_1, ?x, ?property_2, ?endURI 
FROM (?x ?property_1 ?startURI)(?endURI ?property_2 ?x) 
WHERE ?startURI ne ?x && ?endURI ne ?x 

The above queries represent the following patterns to be matched: 

[startURI  –-property_1->  endURI] 
[startURI  <–property_1--  endURI] 
[startURI  –-property_1->  x  –-property_2->  endURI] 
[startURI  –-property_1->  x  <–property_2--  endURI] 
[startURI  <–property_1--  x  -–property_2->  endURI] 
[startURI  <–property_1--  x  <–property_2--  endURI] 

As shown above, six different queries are required to find all paths of length at most 
two that connect two selected resources. As the path length increases, the number of 
the required queries grows exponentially, due to non-directionality of relationships. 
Additionally, because we search for simple paths, each query must have conditions, 
which guarantee that each resource appears only once in a given path. As a result, 
even though it is possible to discover semantic associations using the current RDF 
query languages, it is prohibitively expensive. 

3.2   Review of Existing RDF Storage Systems 

There are already many existing and widely used RDF storage systems. In this paper, 
we evaluate Jena, Sesame, and Redland from the point of view of their suitability to 
the semantic association discovery. The three systems are arguably the most popular 
ones today. In addition, each one of them has an API for direct RDF querying on the 
storage or model. As discussed previously, such an API is necessary for implementing 
association discovery algorithms, because higher-level languages are unsuitable for 
expressing path queries of unknown length and directionality. 

Jena (version 2.1) [12] is an RDF/OWL storage and querying engine (RDQL) 
implemented in Java. It can store graphs in main memory and in a database. The 
storage is organized in a triple-centric way. To get the neighborhood of a node, we 
have to use a general method for finding all triples that satisfy a given pattern. For 
neighborhood triples, the node plays the role of either a subject or an object. Due to 
the available indexing of triples, such searches are performed fast. Unfortunately, the 
in-memory implementation of the data graph requires large amounts of memory. 

 



 BRAHMS: A WorkBench RDF Store and High Performance Memory System 435 

Redland (version 1.0.0) [21] is an RDF storage and querying engine implemented 
in C. It can store graphs in main memory, databases, and files. This RDF storage 
system is also triple-centered, but in the available ‘hashes’ memory-model, suitable 
indexes can be constructed to enable a fast computation of the node neighborhood. 
Surprisingly, the neighborhood search is slower than in the Java implementations of 
the two other storage systems and the memory consumption for the ‘memory-hashes’ 
is also very high. For our tests, we had to patch Redland to optimize its speed with 
two indexes in order to get a fast lookup of nodes pointing to and pointed by a 
specific resource. The patch was done according to the suggestions from the author of 
Redland [6]. In this way, we have avoided full table scans for each node 
neighborhood search, which was present in the original version of Redland. 

Sesame (version 1.1) [25] is an RDF/OWL storage and querying engine (SeRQL) 
implemented in Java. It can store graphs in main memory, databases and in files. Only 
this RDF store has an available node-centric organization, where the neighborhood a 
given node can be directly extracted. The clear architecture of this system makes it 
easy to understand and use. Unfortunately, the in-memory implementation of the 
graph/model requires a large amount of memory, which in turn does not leave much 
space available for the search algorithms to operate on larger knowledge bases. 

4   BRAHMS 

BRAHMS has been designed to be a fast main memory-based storage system for 
RDF, capable of storing large description bases and serving as a base for efficient 
implementation of semantic association discovery algorithms. The first consequence 
of our design decisions was to make the description base read-only. BRAHMS has 
not been designed for modifications of RDF bases, but only for querying them. An 
updated BRAHMS storage image must be recreated from an updated RDF/RDFS 
description base. Such an approach allows us to optimize the memory usage, and to 
use specialized data structures and also to create all of the indexes only once. 

The memory usage restriction required us to use a compact representation of the 
triples, nodes, their values, and storing only the most necessary structural data. On the 
other hand, the speed requirement demanded creating indexes for fast access and 
search. Taking into consideration the semantic association discovery algorithms that 
would be implemented using BRAHMS and the memory size limitations, we have 
created only the hash tables for matching string URIs with resource nodes as well as 
basic node-centric indexes that can be used to implement more complex queries and 
algorithms. The triples of instance resources are indexed as follows: 

− subject  object, predicate 
− object  subject, predicate 
− predicate  subject, object. 

These indexes are needed for a fast retrieval of node neighborhoods, as well as 
searching for and merging of neighborhoods during the semantic association 
discovery process. 

Another design decision was to separate the instance resources, properties, literals 
and classes as they represent different pieces of information. Literals, properties and 
schema type resources are kept in separate memory structures with their own, similar 
indexes. 



436 M. Janik and K. Kochut 

The final design decision addresses the optimization of the startup time. Some of 
the most time consuming operations while working on RDF data stored in main 
memory are the loading and parsing of the RDF file, together with the creation of 
suitable indexes. BRAHMS uses the Raptor RDF parser [19] for the initial load of the 
RDF file into the internal memory structures. The file load and the construction of 
indexes can be done only once and the created structures can be written to disk as a 
memory image of the internal representation for the future use. This requires that the 
internal memory structures do not use direct memory addresses, as those cannot be 
preserved in an image file. As an added bonus, this allows us to easily coalesce the 
memory image fragments into one compact memory block. 

BRAHMS has been implemented in C++. All data is stored in a logically 
contiguous memory block and all internal references are made relative to the origin of 
the memory space. Each resource, class, property and literal is identified by a unique 
numeric identifier in its group. To minimize the memory usage, the internal data 
stores operate on these identifiers, keeping their string values in separate tables. 
BRAHMS uses the following types of internal data stores: 

− the list of triples that contain only numerical identification of resources, properties, 
classes or literals together with indexes for fast access to them, 

− the list of resources, properties, classes and literals that match ID with proper 
label/URI, and 

− the list of resource values (URIs) and literal values. 

5   Experiment Design 

In our tests, we have compared our own system, BRAHMS, with the three RDF 
storage systems discussed previously: Jena 2.1 (Java), Sesame 1.1 (Java) and Redland 
1.0.0 (C). 

5.1   Tested Functions and Algorithms 

We have selected the depth-first search and the bi-directional breadth-first exhaustive 
search algorithms for our tests, since many of the semantic association search 
methods are based on either of the two basic algorithms. As a result, the performance 
of these two algorithms offers a good insight into how a variety of other related 
semantic search algorithms would perform when implemented on the tested RDF 
storage systems. 

We have performed the following three tests on each of the compared RDF stores: 

− loading a dataset into memory, in order to estimate the memory consumption and 
the required load time, 

− executing a basic depth-first search (DFS) algorithm in order to find semantic 
associations up to a given (fixed) length; DFS requires very little memory, as it is 
restricted by the maximum length of the association path, 

− executing a bi-directional breadth-first search (bi-BFS) utilizing a trie 
representation of the search structures in order to find semantic associations up to 
given (fixed) length; this algorithm uses an exponential amount of memory as a 
function of the path length. 



 BRAHMS: A WorkBench RDF Store and High Performance Memory System 437 

All of the above tests have been performed on the main memory storage 
implementations. The bi-directional breadth-first search is an algorithm that 
searches for the association paths by growing path frontiers from both endpoints of 
the search. A join of the two frontiers is performed at each step to find the  
complete paths.  

5.2   Data Sets 

In all of the tests, we have used both synthetic and real-life datasets. These included: 

− SWETO (Semantic Web Testbed Ontology) [3] which is a dataset that contains 
real-world information about publications in computer science, including authors 
and co-authors, conferences, and journals. We have used two sets in our tests:  
− a small set of 14Mb, containing 187,507 statements, 55,876 unique resources 

with the average node degree of 2.16 in the biggest connected component; this 
dataset was used in our semantic association ranking experiments [11]. 

− a big set of 255Mb, containing 3,196,692 statements, 813,479 unique resources 
and the average node degree of 3.90 in the biggest connected component. 

− a small synthetic dataset, generated to include three ontologies (business, sports, 
and entertainment); 14Mb in size, containing 104,891 statements, 29,825 unique 
resources and the average node degree of 3.86 in the biggest component, and 

− a big synthetic set, generated as Univ(50, 0) using the Lehigh University 
Benchmark [10], 556Mb in size, containing 6,888,642 statements, 1,082,818 
unique resources and the average node degree of 6.09. 

We did not use TAP [9] for testing purposes, because the number of entities in it is 
relatively low in comparison to SWETO and, what is more important, very few of the 
entities are linked by longer semantic association paths. Although this dataset 
represents an important knowledge base of facts and entities, its low connectivity 
makes it unsuitable for testing of discovering longer semantic associations. 

5.3   Endpoint Resources 

We have used the following resources as the endpoints in the depth-first search and 
bi-directional breadth-first search algorithm tests, as presented in Table 1. 

When using the small SWETO knowledge base, we chose the same endpoints that 
were used for the on-line demo of association ranking. We have used the same 
endpoints when using the big version of SWETO in order to demonstrate the 
difference in the number of possible paths between the same resources as the size of 
the knowledge base increases. 

For tests on the small synthetic graph, the sample endpoints were taken from [18]. 
The big synthetic graph was created as Univ(50,0) using the Lehigh University 

Benchmark, exactly as presented by the authors in their paper. Two professors from 
two distant universities were chosen as the endpoints. Our choice was random, but in 
most of the resources we have tested, we were able to find connections to all other 
resources in the graph using paths of length six or seven. 

 



438 M. Janik and K. Kochut 

Table 1. Datasets and endpoint resources 

Data set Start resource End resource 
Small 
SWETO 

http://lsdis.cs.uga.edu/proj/ 
semdis/testbed/#SWEET_215003 
Chee-Keng Yap 

http://lsdis.cs.uga.edu/proj/ 
semdis/testbed/ 
#SWEET_949653 
Ravi Ramamoorthi 

Big SWETO http://lsdis.cs.uga.edu/proj/ 
semdis/testbed/#SWEET_215003 
Chee-Keng Yap 

http://lsdis.cs.uga.edu/proj/ 
semdis/testbed/ 
#SWEET_949653 
Ravi Ramamoorthi 

Small 
synthetic 

http://lsdis.cs.uga.edu/semdis/ 
sports/Athlete_7271 

http://lsdis.cs.uga.edu/semdis/ 
business/Spokesperson_7611 

Big 
synthetic 
Univ(50, 0) 

http://www.Department0. 
University0.edu/FullProfessor0 

http://www.Department0. 
University49.edu/ 
FullProfessor0 

5.4   Test System Environment 

All of the tests were performed on a dual-processor computer system with the 
following configuration: 

− 2 Intel(R) Xeon(TM) CPUs running at 3.06GHz; 4Gb memory (3Gb available for a 
single user process); 220GB of hard disk available 

− Red Hat 9.0 Enterprise Linux operating system, 
− Java SDK 1.4.1_02; 1800Mb of maximum heap size for loading the bigger data 

sets and 512Mb of maximum heap size for loading the smaller data sets, 
− gcc (GCC) 3.2.2 20030222 (Red Hat Linux 3.2.2-5), C/C++ code compiled with 

the ‘–O6’ optimization flag. 

6   Experiment Results 

In the performed tests, we have concentrated both on the speed and on the memory 
requirements. The memory requirements of the tested systems varied greatly, and the 
amount of the free memory available for the search algorithms after the data set has 
been loaded strongly influenced the choice of the search algorithm. The memory 
efficient but slow DFS, could be used with all storage implementations, as its memory 
requirements were very small. The bi-directional BFS was much faster, but it had 
high (exponential) memory requirements. 

In the first experiment, we measured the time needed for each system to parse the 
RDF file and load its contents into memory. This value represents the time needed for 
a cold start. In addition, we measured the amount of memory needed to load each of 
the datasets. This showed how compact the memory representation was and which 
search algorithm was applicable for each of the test data sets. 



 BRAHMS: A WorkBench RDF Store and High Performance Memory System 439 

6.1   RDF Data Load Tests 

In this experiment, we measured the time needed to load an RDF file to memory and 
initialize the system. The time was measured using the time system call under Unix.  

The results are shown in Fig. 1. 

 

Fig. 1. RDF file initial load time 

Two different loads were performed in Redland and in BRAHMS: 

− “Redland no IDX” represents the unmodified Redland, without the additional 
indexes.  

− “Redland IDX” stands for the patched Redland with two additional indexes: 
subject to predicate, object and object to predicate, subject. 

− “BRAHMS initial” is the time needed by BRAHMS to parse and load the RDF 
file, create the indexes, and save the memory image file containing the internal data 
structures to disk.  

− “BRAHMS load image” stands for BRAHMS utilizing a previously created 
memory image file.  

Only one load operation was performed in Jena and Sesame.  
As expected, for the smaller datasets the differences are not that significant, and the 

data load operation taking even twenty seconds is still acceptable. However, 
significant differences are evident for the bigger datasets, where the load times are on 
the order of magnitude longer. 

This is the reason why we have decided for BRAHMS to be able to create and load 
a memory image of the internal data structures. Parsing the RDF file and creating the 
indexes is performed only once, and all of the subsequent experiments require only a 
very fast load of the previously prepared memory image file. 



440 M. Janik and K. Kochut 

6.2   Memory Usage Tests 

Along with measuring the time needed to load the datasets into memory, we also 
measured the memory usage of each tested system. The results are shown in Fig. 2. 

 

Fig. 2. Memory usage for loading an RDF file 

The memory requirements for the smaller datasets are insignificant for all the tested 
RDF stores, as they occupy only a small fraction of the available memory. For the big 
datasets, this becomes an important issue. The loaded datasets can occupy hundreds 
of megabytes or even gigabytes of memory. Some systems have almost reached the 
hard memory limits in the test computer system. Such high memory usage does not 
leave much runtime space for any faster algorithms relying on large workspaces. 

The restrictions placed on the size of the used data structures allow BRAHMS to 
use much less memory than required by the other tested systems. This allows 
BRAHMS to load larger datasets for experiments and still have sufficient memory 
available for running search algorithms. 

6.3   Semantic Association Search Tests 

In this section, we present the timing results from running DFS and bi-BFS 
algorithms on different datasets using Jena, Sesame, Redland and BRAHMS. 

For our tests, we have used Redland patched with the additional indexes in order to 
reach the speeds comparable to the other tested systems. BRAHMS tests used the 
memory image file that was created prior to the timing experiments. 

Search on Small SWETO Dataset. Using the small SWETO, we tested both the 
classic DFS and the bi-BFS algorithms. Because it is a relatively small dataset, it is 
still feasible to perform the DFS and obtain the results within an acceptable time. 



 BRAHMS: A WorkBench RDF Store and High Performance Memory System 441 

The results include the time used only for running the algorithms. The time needed 
to load the data file to memory (or the memory image in case of BRAHMS) has been 
excluded. 

 

Fig. 3. Timing results from DFS and bi-BFS on small SWETO 

As shown in Fig. 3, DFS is significantly slower than the bi-BFS. The differences were 
up to a few orders or magnitude, but this came with high memory requirements for bi-
BFS. On the smaller or less connected datasets, the differences may be not as 
significant (seconds or a few minutes), which may be acceptable for the analyst. On 
the bigger or highly connected datasets, the DFS and related algorithms may be 
unacceptable. 

Search on Small Synthetic Dataset. This synthetically generated dataset has a 
normal distribution of node degrees, which differs from the real-life SWETO. 
Although the average node degree is similar and the size of the dataset resembles the 
size of the small SWETO dataset, the number of located paths is much higher. 

In this and further experiments, we have used only the bi-BFS, as it is a much 
faster algorithm. The timing results produced by DFS would be unacceptable and take 
in excess of several hours. The results are shown in Fig. 4. 

Opposite to the small SWETO, the number of discovered paths grows into millions 
as the path length exceeds 10. Still, all of the tested RDF stores can compute the paths 
in a reasonably short time without facing the memory limitation problems. This 
situation changes drastically for the bigger datasets. 

Search on Big Datasets. The path search algorithms tests using the big datasets were 
limited to paths of length up to 10. Even with this maximum length, the number of all 



442 M. Janik and K. Kochut 

located simple paths between the two selected entities has grown above tens of 
millions. The search for longer paths caused the expansion of the search space beyond 
the available memory, in most cases. 

 

Fig. 4. Timing results from bidirectional BFS on small synthetic dataset 

Using the big SWETO dataset, we were able to perform the search only using 
BRAHMS. The other systems have run out of memory during the search, and were 
even not able to discover paths of length six or seven. The results are presented in 
Table 2. 

The synthetic dataset Univ(50, 0) required a smaller memory for the search than 
the big SWETO for association paths up to length 10. Sesame was able to 
successfully run the bi-BFS search and produce results, but the computation time was 
much longer than that of BRAHMS. The results are shown in Fig. 5. 

The modified Redland could not load this dataset into memory and consequently 
no associations could be discovered in the Univ(50, 0) dataset. These could be still 
computed using the database storage model, but that resulted in much higher run 
times (not reported here). 

Jena was able to load this dataset to memory, but due to the high memory usage, no 
associations could be discovered using bi-BFS. The system did not allow allocating 
enough of the additional memory. 

Table 2. bi-BFS results using BRAHMS on the big SWETO dataset 

Association length [relations] 6 7 8 9 10 
BRAHMS execution [sec] 0.1 0.1 0.8 1.1 66.4 

Number of found paths 202 202 214,778 214,778 46,641,867 



 BRAHMS: A WorkBench RDF Store and High Performance Memory System 443 

 

Fig. 5. Timing results from bi-BFS on Univ(50, 0) dataset 

7   Conclusions and Future Work 

In this paper we presented BRAHMS, the storage system for RDF, and its 
applicability for fast discovery of semantic associations in relatively large 
description bases. We compared its capabilities with three other, publicly available 
RDF/OWL storage systems, both in terms of speed and memory requirements. Even 
for smaller data sets, BRAHMS was able to compute semantic associations faster 
than the other RDF stores, using the same search algorithms. Longer semantic 
associations in bigger graphs could not be computed in a reasonable amount of time 
by the other systems due to their high memory requirements, while BRAHMS has 
been able to produce results and in within an acceptable time. This shows that 
semantic association discovery can become a reality, even on relatively large RDF 
data sets. 

The discovery of semantic associations is still difficult for the presently available 
RDF query languages. Some of them support path expressions, but they are limited to 
paths of known length and defined relationship directionality.  

In the near future, we plan to experiment with a variety of semantic association 
discovery algorithms, utilizing a language for defining regular paths, similar to [1]. 
The regular expressions defined over the RDF resources and types (including 
subsumption and class hierarchy) will enable us to define the association paths of 
interesting patterns and significantly restrict the search space of the semantic 
association discovery. Further development of semantic association search algorithms 
and their improvements may lead to a new perspective for knowledge discovery and 
searching in the Semantic Web. 



444 M. Janik and K. Kochut 

Acknowledgements 

We would like to thank Matt Perry for his synthetic graph generator and many other 
members of the LSDIS lab for their feedback and valuable comments on the design 
and usage of BRAHMS. 

References 

1. Abiteboul, S. and Vianu, V., Regular Path Queries with Constraints. in 16th ACM 
Symposium on Principles of Database Systems, (Tuscon, Arizona, USA, 1997). 

2. Aleman-Meza, B., Burns, P., Eavenson, M., Palaniswami, D. and Sheth, A., An 
Ontological Approach to the Document Access Problem of Insider Threat. in IEEE 
International Conference on Intelligence and Security Informatics (ISI-2005), (Atlanta, 
Georgia, USA, 2005). 

3. Aleman-Meza, B., Halaschek, C., Sheth, A., Arpinar, I.B. and Sannapareddy, G., SWETO: 
Large-Scale Semantic Web Test-bed. in 16th International Conference on Software 
Engineering and Knowledge Engineering (SEKE2004): Workshop on Ontology in Action, 
(Banff, Canada, 2004). 

4. Angles, R. and Gutierrez, C., Querying RDF Data from a Graph Database Perspective. in 
2nd. European Semantic Web Conference (ESWC2005), (Heraklion, Greece, 2005). 

5. Anyanwu, K. and Sheth, A., r-Queries: Enabling Querying for Semantic Associations on 
the Semantic Web. in The Twelfth International World Wide Web Conference, (Budapest, 
Hungary, 2003). 

6. Beckett, D. Creating additional storage hashes, 2003, redland-dev - Redland development 
mailing list. 

7. Beckett, D., The Design and Implementation of the Redland RDF Application Framework. 
in Tenth International World Wide Web Conference, (Hong Kong, 2001), ACM. 

8. Broekstra, J., Kampman, A. and Harmelen, F.v., Sesame: A Generic Architecture for 
Storing and Querying RDF and RDF Schema. in International Semantic Web Conference 
2002, (Sardinia, Italy, 2002). 

9. Guha, R.V. and McCool, R. The tap knowledge base. 
10. Guo, Y., Pan, Z. and Heflin, J., An Evaluation of Knowledge Base Systems for Large 

OWL Datasets. in Third International Semantic Web Conference, (Hiroshima, Japan, 
2004), Spinger, 274-288. 

11. Halaschek, C., Aleman-Meza, B., Arpinar, I.B. and Sheth, A.P., Discovering and Ranking 
Semantic Associations over a Large RDF Metabase. in 30th International Conference on 
Very Large Data Bases, (Toronto, Canada, 2004). 

12. Jena. http://www.hpl.hp.com/semweb/jena.htm. 
13. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D. and Scholl, M., RQL: A 

Declarative Query Language for RDF. in The Eleventh International World Wide Web 
Conference, (Honolulu, Hawaii, USA, 2002), ACM. 

14. Krebs, V. Mapping Networks of Terrorist Cells. Connections, 24 (3). 43-52. 
15. McBride, B., Jena: Implementing the RDF Model and Syntax Specification. in Tenth 

International World Wide Web Conference: Semantic Web Workshop, (Hong Kong, 2001). 
16. Mendelzon, A.O. and Wood, P.T., Finding Regular Simple Paths In Graph Databases. in 

15th Conference on Very Large Databases, (Amsterdam, The Netherlands, 1989), Morgan 
Kaufman pubs. (Los Altos CA). 

17. Miller, L., Seaborne, A. and Reggiori, A., Three Implementations of SquishQL, a Simple 
RDF Query Language. in First International Semantic Web Conference on The Semantic 
Web, (Sardinia, Italy, 2002), Springer-Verlag, 423 - 435. 



 BRAHMS: A WorkBench RDF Store and High Performance Memory System 445 

18. Milnor, W.H., Ramakrishnan, C., Perry, M., Sheth, A.P., Miller, J.A. and Kochut, K.J., 
Discovering Informative Subgraphs in RDF Graphs - Preliminary Results (submitted to). 
in 4th International Semantic Web Conference (ISWC 2005), (Galway, Ireland, 2005). 

19. Raptor. http://librdf.org/raptor/. 
20. RDF. http://www.w3.org/RDF/. 
21. Redland. http://librdf.org/. 
22. Seaborne, A. RDQL - A Query Language for RDF, 2004. 
23. Semagix. Anti-Money Laundering - CIRAS. 

http://www.semagix.com/solutions_ciras.html. 
24. Semantic Discovery: Discovering Complex Relationships in Semantic Web. 

http://lsdis.cs.uga.edu/Projects/SemDis/. 
25. Sesame. http://www.openrdf.org/. 
26. Sheth, A., From Semantic Search & Integration to Analytics. in Dagstuhl Seminar 

Proceedings 04391, (Dagstuhl, Germany, 2005). 
27. Sheth, A., Aleman-Meza, B., Arpinar, I.B., Halaschek, C., Ramakrishnan, C., Bertram, C., 

Warke, Y., Avant, D., Arpinar, F.S., Anyanwu, K. and Kochut, K. Semantic Association 
Identification and Knowledge Discovery for National Security Applications. Journal of 
Database Management. 

28. Sheth, A., Arpinar, B. and Kashyap, V. Relationships at the Heart of Semantic Web: 
Modeling, Discovering and Exploiting Complex Semantic Relationships. in Nikravesh, 
M., Azvin, B., Yager, R. and Zadeh, L.A. eds. Enhancing the Power of the Internet Studies 
in Fuzziness and Soft Computing, Springer-Verlag, 2003. 

29. SPARQL. Query Language for RDF. Prud'hommeaux, E. and Seaborne, A. eds., 2005. 
 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 446 – 460, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Template-Based Markup Tool for Semantic  
Web Content 

Brian Kettler, James Starz, William Miller, and Peter Haglich 

ISX Corporation, 4301 N. Fairfax Drive, Suite 370, Arlington VA 22203 USA 
{bkettler, jstarz, wmiller, phaglich}@isx.com 

Abstract. The Intelligence Community, among others, is increasingly using 
document metadata to improve document search and discovery on intranets and 
extranets. Document markup is still often incomplete, inconsistent, incorrect, 
and limited to keywords via HTML and XML tags. OWL promises to bring 
semantics to this markup to improve its machine understandability. A usable 
markup tool is becoming a barrier to the more widespread use of OWL markup 
in operational settings. This paper describes some of our attempts at building 
markup tools, lessons learned, and our latest markup tool, the Semantic Markup 
Tool (SMT). SMT uses automatic text extractors and templates to hide 
ontological complexity from end users and helps them quickly specify events 
and relationships of interest in the document. SMT automatically generates 
correct and consistent OWL markup. This comes at a cost to expressivity. We 
are evaluating SMT on several pilot semantic web efforts. 

1   Introduction 

The Intelligence Community (IC), among others, is increasingly using document 
metadata to improve document search and discovery on intranets and extranets.1 
Document markup is still often incomplete, inconsistent, incorrect, and limited to 
keywords via HTML and XML tags. This can lead to poor search performance, even 
if the search tool has the ability to search structured metadata.2 Tools to date have 
focused on metadata annotation by authors at document production time. Some (e.g., 
In.vision’s Xpress Author [6]) integrate with MS Word and other popular document 
editing tools to create metadata during the document creation, review, and 
dissemination process. More recent IC efforts have focused on post-production 
markup in which a user other than the author creates markup, perhaps leveraging the 
output of an automated document classification tool. These tools tend to focus on 
pulling out known keywords (e.g., the names of countries), mapping them to terms in 
a controlled vocabulary (e.g., the ISO 3166 country codes), and then outputting 
matched terms as tags (e.g., in XML or HTML) in (or associated with) the original 
document. This is a ripe application area for markup in the Web Ontology Language 
                                                           
1  This paper uses the terms “web” to refer to unclassified and classified intranets and extranets 

(as well as the World Wide Web). 
2  Google and similar search engines are still the predominant tools in operational use although 

extensions to these are the subject of advanced technology pilot projects. 



 A Template-Based Markup Tool for Semantic Web Content 447 

(OWL) [11], which can capture the semantics of terms used in markup – including 
markup of content and the relationships within – and bridge diverse metadata 
vocabularies across the production community. 

This paper describes our latest markup tool, the Semantic Markup Tool (SMT), 
which was developed for use on an IC pilot effort and applied on several other projects 
employing semantic web technology. The SMT has benefited from lessons learned in 
developing and using previous versions, some of which are also described in this paper. 
The SMT employs an innovative combination of automated text extraction technology 
(using a variety of commercial products), manual markup through a form-based 
interface, and the use of markup templates which hide ontological complexity from end 
users. The SMT outputs correct and consistent OWL markup that feeds other semantic 
web tools for content exploitation by machines and humans 

A usable markup tool is becoming a barrier to the more widespread use of OWL 
markup in operational settings. The SMT explores a particular point in the tradeoff 
space between usability and expressivity. We are evaluating SMT on several pilot 
semantic web efforts. This paper also describes related and future work. 

2   Motivation and Requirements 

Metadata markup can improve information retrieval and discovery. Metadata needs to 
be done consistently: e.g., by using controlled vocabularies that are machine-
interpretable. Metadata using HTML or XML tag sets can often be ambiguous, as the 
meaning of the tag is often built into the software that creates or exploits the tags. 
Although they can require significant effort to configure and maintain, automatic text 
extraction tools, such as Lockheed’s AeroSwarm/AeroText [10], can pull out entities 
from the text and classify them according to a vocabulary. Some can also extract 
simple relationships (values for entity attributes, etc.). These tools are still limited by 
the state of the art in natural language processing in their understanding of the text 
and are thus unable to capture more complex relationships. The output of these tools 
can be automatically converted markup in HTML, XML, or even OWL. 

In a previous IC project we were involved with, we helped build a manual tool for 
the capturing of more complex relationships in a document and representing them in 
automatically generated OWL markup.3 This tool allowed a user (a subject matter 
expert) to add facts, represented in OWL, to a document using a form-based interface. 
This tool automatically generated OWL (in the RDF serialization) that was then 
combined with OWL-encoded assertions (statements) from multiple documents (and 
databases translated automatically into OWL) into a logically centralized Knowledge 
Base, which could then be queried and browsed by users through web-based tools.  

A user could say almost anything about a document that the ontologies supported. 
Users could pick classes and properties of interest from one or more OWL ontologies 
presented in tree. The number of “root” classes and properties was in the hundreds. 
This made it hard for a user unfamiliar with the ontology to determine which classes 
and properties might be appropriate. Even a user familiar with the ontology would 
have to find those few classes and properties pertinent to the current document. A text 
                                                           
3 The original version of this was based on the pioneering work resulting in U. Maryland’s 

SHOE Knowledge Annotator [3]. 



448 B. Kettler et al. 

search capability4 would have been helpful in finding classes and properties in the 
ontology, but that would have been highly sensitive to how those were named by the 
original ontology author(s). 

Often a user would desire to represent a fact involving multiple classes and 
properties: e.g., Bob Smith and Fred Jones attended a meeting in San Francisco, CA. 
The user would need to determine the following: 

• Bob Smith and Fred Jones should be instances of class Person (or a 
subclass of Person). 

• Their names should be represented as values for attributes (datatype 
properties) firstName and lastName of these instances. 

• A meeting is represented as an instance of class MeetingEvent (or one of 
its subclasses). 

• Attendance is represented by the property hasParticipant (defined for 
class Event and its subclasses). 

• A meeting’s location is represented as an instance, linked to an Event via 
property hasLocation. 

The class instances (which we term “Knowledge Objects” after they are stored in our 
persistent repository) and properties involved are shown in Figure 1. 

Bob Smith
(class Person)

Meeting
2003-01-02.1 
(class Meeting

Event)

Fred Jones
(class Person)

San Francisco,
CA, USA

(class City)
hasParticipant

hasLocation

“Fred” “Jones”

firstName lastName

 

Fig. 1. An “Idiom” for Representing Knowledge Objects (Class Instances) for a Meeting 

This is only one of the ways in which the above fact could be represented. Other 
ontologies would have different representations. Using the previous markup tool, this 
fact could take quite a while to enter, despite having pick lists, etc. for selecting 
classes and properties. Representing multiple facts in a document could take hours. 
The point is that having a user learn these ontology-specific “idioms” or patterns for 
representing facts burdens the markup process (even when the markup tool is 
handling the encoding into OWL/RDF/XML). Furthermore, the user is not insulated 
from the “raw” ontologies and thus potentially has to relearn these idioms when 
ontologies change.  

                                                           
4 Such as Stanford’s Protégé tool provides [11]. 



 A Template-Based Markup Tool for Semantic Web Content 449 

Thus while the previous markup tool provided great flexibility, we could not find 
many users willing to pay the price in effort to use it. This was especially true in IC 
organizations dealing with large volumes of highly varied, unstructured content (e.g., 
web and text documents) to process. The SMT’s design, described in the following 
section, is an attempt to explore another point in the flexibility-usability tradeoff space.  

Another lesson learned from our prior experience is the need to provide immediate 
added value to the user doing the markup, who may or may not be the document 
author. Although many of the users doing markup will also benefit from the markup 
later on (e.g., via using newly enabled search capabilities), there must also be some 
more immediate benefit. One technique investigated for SMT is the automated 
production of a document summary, which is often required for intelligence product 
publication, from the user’s input. This is described in more detail in Section 3.3.  

A major shift in our philosophy of markup has been to view markup as not 
replacing a document’s content (even just its textual – versus multimedia – content), 
but rather providing a semantically grounded “index” entry for the document (in 
addition to any text indices for the document). The markup in a document will 
provide additional information – represented using one or more OWL ontologies – 
through which to find that document through higher precision, semantically grounded 
search. A user can then drilldown to the document’s text to see its content that has not 
been modeled. An “index” here is stored in a knowledge base and contains multiple 
such entries. This index is unlike a book’s index in that the former can itself be used 
to answer some queries, as well as located information. Thus the SMT is focused on 
support the manual markup of just a few key facts per document. 

To summarize the motivation for SMT, our previous work has led us to a point 
where we are focused on automated markup for the generation of high volume, low 
“fidelity” assertions; more usable but less flexible tools for manual markup of key 
facts; and support for document search with some inferencing and question-answering 
potential via a “meaningful” index aggregated from these assertions. How the SMT 
does this is the subject of the next section. 

3   The Semantic Markup Tool 

This section presents additional details on the Semantic Markup Tool (SMT), the IC 
application in which it is embedded, and some initial results. 

3.1   The Application Context 

The IC application has the wider goal of providing web users (analysts and 
warfighters) with improved search and discovery capabilities by integrating 
techniques for keyword search (a la Google), metadata search, and retrieval of 
knowledge objects, assertions collected from facts in OWL markup of documents and 
data sources. The application collects and processes web documents (in HTML) to (1) 
extract and normalize (administrative) metadata (e.g., author, producing organization, 
date published, etc.), (2) convert the HTML to text, and (3) index the document’s 
content by its keywords and ontologically described entities and relationships. Figure 
2 shows this process and the components involved. 



450 B. Kettler et al. 

The entities and relationships will be described in OWL markup that references 
OWL ontologies. Because of the projected volume of web documents to process, a 
major requirement for a markup tool was the minimization of human effort required. 
The initial concept of operations was that most documents would be processed 
through an automatic extractor to capture entities and simple relationships from the 
text. Only a fraction of documents would be augmented with manual markup to 
describe more complex relationships beyond the capabilities of text extractors to find. 
The application uses a web service wrapping one or more commercial text extractors.  

Text Extractor
Web Service

(TEWS)
(wraps COTS

extractors)

Semantic
Markup

Tool
(SMT)

Normalized
Text & 

Metadata

KOR (KB)

Machine &
Human

Exploitation
Tools

Reference
Data Source

Web
Document

Ontologies
(OWL)

Markup
Templates

Ingest &
Normalization
Mechanisms

Metadata
Vocabs.

OWL Markup
for Entities

OWL Markup
from 

Templates

Template
Authoring &
Validation

Tools

SMT
User
SMT
User

Template
Author

Template
Author

Document
Author

Document
Author ConsumerConsumer

OWL Markup
for Data

 

Fig. 2. Functional application architecture in which SMT is embedded 

The Semantic Markup Tool (SMT) supports the markup of OWL documents by 
subject matter experts (SME’s). It uses a hybrid manual-automatic approach to 
markup of document content in OWL. Steps include: 

1. A document is ingested from the web. This document can be in HTML and 
several other types. The document is converted to text. Metadata in the 
document (e.g., in HTML tags) extracted and normalized (e.g., dates, country 
codes, etc are converted to a canonical format). Statistical categorizers assign 
topic codes) to the document if necessary. The document is indexed by its 
keywords using a commercial text indexer. 

2. A document is then processed by the commercial text extractors, wrapped by 
the Text Extractor Web Service (TEWS).5 The TEWS returns a list of 
entities (e.g., “Prime Minister Berlusconi”, “Italy”), entity types (classes in 
an OWL ontology: e.g., Person, Country), and entity offsets with the 

                                                           
5 This service was developed by another IC organization, which hosts it for multiple clients 

(including our application). 



 A Template-Based Markup Tool for Semantic Web Content 451 

document. The TEWS also extracts some relationships (e.g., for an event) 
and returns entity offsets within the original document text. The TEWS 
outputs OWL markup describing the entities and relationships extracted.  

3. The SMT receives a queue of ingested and normalized along with the OWL 
markup of any entities and relationships automatically extracted. The OWL 
markup produced automatically by the TEWS is automatically saved for 
storage in a knowledge base, the KOR (Knowledge Object Repository). This 
markup is higher volume (i.e., more assertions) than that produced through 
manual markup via the SMT, but is generally of lower quality and accuracy.  
The latter is due to errors made in the extraction of entities and their 
classification by type (ontology class). 

4. An SMT user can then select a document and one or more markup templates 
(Section 3.2). Markup templates are used to describe events and other 
complex entities of interest mentioned in the document. The SMT can 
recommend markup templates to the user based on the entities extracted 
from the document. The types (ontology classes) for these entities are 
matched to the types of classes specified as legal values for template slots in 
a template’s definition. 

5. A user fills out (“instantiates”) a markup template using entities from the 
TEWS, values he supplies, etc. The SMT’s graphical user interface provides 
several ways to fill in templates (see Section 3.3). Uses may also choose to 
augment or change the type classification of one or more entities made by 
the TEWS. 

6. Once a template is filled in, a user can save it. This causes OWL markup to 
be automatically generated. Currently this markup is not stored within the 
original web document but rather logically linked to the original web 
document through metadata (including the source document’s URL) a we 
save on a per-assertion basis (via RDF’s reification mechanism).6 

A number of OWL-aware semantic web applications can process the OWL markup 
generated by the SMT. In our application, this markup is stored in the Knowledge 
Object Repository (KOR) for later exploitation by humans (via visualization, 
navigation, and query tools) and machine agents. The KOR is built on top of the 
Sesame triple store [2] and is one of the tools in ISX’s Semantic Object Web 
framework [8]. 

Additional tools (such as Stanford’s Protégé tool [12]) are used to author and 
validate the ontologies used. This markup can then be loaded into a knowledge base, 
such as our Knowledge Object Repository (KOR). Facts from the markup will be 
integrated with existing knowledge loaded from reference data sources (whose data 
has been converted to OWL). The KOR can be exploited by visualization, browsing, 
and navigation tools for human use and by software agents for knowledge discovery 
and other applications.  

3.2   Markup Templates 

As mentioned previously, the SMT’s predecessors presented users with the 
complexity of all the classes and properties in a set of ontologies to use. Providing a 
                                                           
6 In our IC environment, we are not allow to modify the source web documents. 



452 B. Kettler et al. 

usable interface for quickly visualizing, navigating, and selecting classes and 
properties from large, graph-structured ontologies proved difficult.  

An innovation in the SMT was the use of markup templates to hide ontological 
complexity from users. For example, a user describes a meeting event by picking the 
class Meeting and selecting and filling out (allowable) properties. The values of 
properties could be literals (e.g., numbers and strings) or entities that in turn could have 
their own properties. This also makes document markup easier and faster. Markup 
templates can be viewed as somewhat analogous to database forms and database views, 
which serve to hide the complexity of multiple underlying database tables from a user 
entering data or performing queries. A database view can span multiple tables, much as 
a template can span multiple classes in one or more ontologies. 

The use of templates comes at a cost of limiting the kinds of facts that can be 
expressed about the document. For example, to describe reports of meetings, a 
Meeting template might be defined with slots for participant, location, topic, start 
date, end date, etc. An SMT user fills out a slot by supplying a value, ideally by 
selecting one or more entities automatically extracted from the document by the 
TEWS. These slots are the only things a user can say about the meeting, for example. 
This is the expressivity limitation that is due to our approach of shielding a user from 
the full complexity of the OWL ontologies. If the user wishes to specify the weather 
during the meeting, he can either bring up a weather template (if available) or utilized 
a “power user” features that lets him add a single assertion (specified using terms 
from one or more ontologies) about one or more entities.  

The SMT generates OWL markup from the filled in template, which, when loaded 
in the KOR, will result in a knowledge object (KO) of type (ontology class) Meeting. 
Other KO’s may also be created. From a meeting template, for example, KO’s and the 
links between them – including those shown in Figure 1 – are created.7 

Template definitions thus contain the mappings from instances (KOs) and slots to 
classes and properties in one or more OWL ontologies. Thus if an SMT user supplies 
a value for participant (e.g., “Fred Jones”), a KO for that participant will be specified 
in the markup sent to the KOR. The KO will have properties that correspond to the 
slot values: e.g., filling slot Location with entity “San Francisco” will result in the KO 
for the meeting being linked to the KO for SanFrancisco (an instance of class City) 
via the property hasLocation.  

Templates can also contain metadata (template author, version, etc.) and 
constraints. The latter can be used to populate and validate a template. Implicit 
constraints come from the ontologies referenced. For example, the ontology might 
specify that the property hasLocation (corresponding to slot Location) can only have 
a single value of type Location. Explicit constraints can state a relationship that must 
hold between the user-supplied values for slots: e.g., value for slot Start Date must be 
less than value for slot End Date.  

                                                           
7  KO’s for cities and countries, for example, will likely already exist in the KOR.  In this case, 

a collection of heuristic matching techniques are used to match KO’s asserted in the newly 
created markup with those already in the KOR.  We term this process “co-reference 
resolution” between KO’s.  This involves comparing KO’s potentially populated from 
multiple documents (and reference data sources).  Entities within a single document are co-
referenced using by the TEWS using synonym lists, anaphoric binding techniques from 
linguistics, etc. 



 A Template-Based Markup Tool for Semantic Web Content 453 

Template definitions are stored as XML files and validated using an XML schema. 
These can be created and edited by trained subject matter experts using XML 
authoring tools or ISX’s DTV tool.8 We envision templates being created for 
individual production organizations, communities of interest, and community-wide 
use. Such templates can be used to enforce markup standards such as required 
document metadata, etc. 

3.3   Semantic Markup Tool User Interface 

Figure 3 shows the SMT’s graphical user interface (GUI) in the midst of markup by a 
user for a test document (and test markup template) about a meeting between Italian 
PM Silvio Berlusconi and U.S. envoy James Baker on January 19, 2004. The upper 
right-hand (Document) pane shows the document with the entities extracted by the 
TEWS underlined (entities applicable to the selected slot are shown in red). A user 
can quickly check the output of the TEWS. The user can mouse-over an entity is to 
view its type (ontology class), shown as a tool tip. He can change its type or even 
designate a selection of text as an entity in the event the TEWS missed it. Thus, the 
user can optionally correct the output of the TEWS. 

After reading the document, the user next selects a markup template. The SMT can 
recommend templates to the user based on the entities the TEWS found. These 
recommendations are presented in relevance-ranked order. The user can also choose a 
template that is not recommended. We anticipate that there will be about a dozen 
templates a user might use on a regular basis. Each template would have about 5-10 
slots. This is in contrast to the direct use of the ontologies in which the user might 
have to select from among hundreds of classes and properties.  

The template is displayed in the left-hand (Template) pane: e.g., a template for a 
Meeting. When a template comes up, the SMT tries to fill in as many of the 
template’s slots as it can to reduce the burden on the user. For a given slot, the SMT 
matches its value type – an ontology class specified in the template definition – to the 
types (ontology classes) of entities from the TEWS. For example, for the slot 
Participant (of the Meeting template) can be filled by entities of type (class) Person 
or Organization extracted from the document such as “James Baker”, “President 
Bush”, “Prime Minister Berlusconi”. If only one entity and appropriate type for a slot 
is found, the SMT fills it in as the default value for slot Participant (a lightning bolt 
icon is displayed next to the slot to indicate this). In the example, multiple entities 
could fill the Participant slot, so the SMT lists those (and only those) entities in a 
pull-down menu for value for slot Participant and the user can select from among 
these (or supply an alternative value by designating another entity in the document as 
a location).  

For some slots (e.g., Event Title), the user can type in values directly. The SMT can 
validate these values generally: e.g., flag a non-date value entered for one of the Date 
slots. Some slots are required (designated by a “*”). Users can select “Unknown” for 
a value. Some slots can have multiple values (as specified in the template definition). 
In the example shown, slot Participant can have multiple instantiations (the user 
clicks on the + to add additional ones), each with a different value (i.e., a facility).  
                                                           
8 The DIONE Template Versioning Tool (DTV) supports the authoring and automatic 

validation of templates against changing ontologies. ISX developed DTV as part of the 
ontology versioning work with Lehigh University for DARPA’s DAML Program. 



454 B. Kettler et al. 

 

Fig. 3. Semantic Markup Tool’s Main Graphical User Interface 

The SMT tries to apply additional rules to fill in slots automatically. These 
include constraints specified in templates. For example, the Meeting template has the 
constraint mentioned above that the value for slot Start Date must be earlier than the 
value for slot End Date. Assume there are 3 date entities extracted from the 
document: “1/17/2004”, “1/18/2004”, and “1/19/2004”. If the user selects 1/19/2004 
from the pull-down menu for the value of slot Start Date, then the pull-down menu for 
the value of slot End Date will default to “1/19/2004” (since “1/17/2004” and 
“1/18/2004” are earlier than “1/19/2004” and hence invalid for End Date given the 
constraint). By managing the contents of pull-down menus and populating default 
values, the SMT tries to minimize user effort required to populate the template. More 
sophisticated business rules for computing default values and validating values filled 
in could be implemented. We are investigating the use of SWRL [5] for representing 
such rules, perhaps using the Jess [15] engine to execute them. 

A user can fill in slots directly from the document view by right clicking on an 
entity. The SMT displays a list of slots that that entity could fill. For example, right 
clicking on the entity “James Baker” would list slots Sponsor and Facilitator as 
alternatives that could be filled by that entity. The SMT has no special domain (or 
linguistic) knowledge built in to allow it to determine that this entity might be more 
likely the value of slot Facilitator rather than slot Sponsor or vice versa. In some 
cases, the TEWS can apply linguistic rules to determine from the text describing an 
event (e.g., a Bombing) who the victim, perpetrator, etc. are. When such knowledge is 
available, the SMT can leverage it to automatically fill in one or more slots. Thus as 
text extractors improve, the SMT can leverage the improvements to populate more of 
the template automatically. 



 A Template-Based Markup Tool for Semantic Web Content 455 

As a template is populated, the lower right-hand (Template Text summary) pane 
shows a stylized English text with placeholders corresponding to some of the 
template’s slots. As slots are filled in, the text is fleshed out. A user can edit the 
sentences directly by typing into the sentence pane. A user can also fill in slots from 
this pane by right clicking on a slot name and selecting a value.  

This provides a third alternative way (counting the template and document panes) 
by which a user can populate a template. We believe giving users these choices will 
allow them to use whichever method proves the easiest or fastest for them. The user 
can hide an unused pane, for example, if he finds it distracting. The sentences 
generated are stored with the document metadata as a summary to be used later (e.g., 
displayed in list of documents, etc.).  

The user can instantiate multiple templates for a document. For example, the 
document might describe a meeting and a bombing, requiring two kinds of templates 
to mark up both events. Each template is shown on a separate tab panel. The user can 
easily switch between these tabs to go back and forth between filling out templates.  

Some templates may be linked: i.e., the value of one template may determine the 
values in another template. For example, a Meeting template has slot Location. A user 
can link a Location Detail template to that slot to describe additional properties about 
the location besides just its name (e.g., perhaps its address, lat/lon, etc.). These 
additional properties are slots in the Location Detail template.  

Once the user fills in the template(s), the SMT generates OWL markup using 
information from the template definition(s), which links slots to ontology properties, 
etc. The OWL markup generated can be quite sophisticated. This operation is hidden 
from the user. OWL markup from the TEWS (or another extractor) for entities is also 
saved. This is tagged as non-user-validated (versus markup specified through an  
SMT template). 

For most uses, we anticipate the user will open a document, choose a template 
from a small set of frequently used templates, fill in a few slots (in addition to those 
the SMT auto-populates from the TEWS), and save the result.  

The SMT is implemented in C# in Microsoft’s .NET environment using 
Infragistics’ GUI components. 

3.4   Applications and Results 

On several projects, we have demonstrated that the SMT can produce markup quickly 
that is more consistent, correct, and complete than our previous methods. Templates 
can enforce slot entry, helping to ensure the markup generated will be complete. The 
SMT can validate slots against constraints and business rules, helping to improve 
correctness. The entities a user puts in a slot must match the slot definition in type. 
The output of OWL is handled automatically, reducing the potential for syntactic 
errors, etc. Organizational and community standards can be embodied in markup 
templates to improve consistency of markup across users and organizations, 
respectively. 

A trained SMT user can mark up most documents in well under a minute by filling 
in a template. In fact, in many cases the limiting factor on using the SMT tends to be 
the time for the user to read the actual document. The SMT has been vetted with 
several intelligence analysts, and their feedback incorporated into its design. 



456 B. Kettler et al. 

4   Related Work 

Markup tools differ in the information they aim to capture (administrative and/or 
content metadata), their output language (e.g., HTML, XML, OWL, etc), and the 
level of automation provided. Several tools are embedded with common user 
applications to create markup as a by-product of authoring. These include 
Teknowledge’s prototype MS PowerPoint-based tool (Briefing Associate) and MS 
Word-based tool (Semantic Word) from DARPA’s DAML program that produce 
OWL markup [16]. Adobe’s XMP uses RDF and metadata templates for metadata 
markup [1]. In.vision’s Xpress Author for Word product integrates with MS Word to 
generate (XML) markup automatically [6]. XML publishing tools such as Arbortext’s 
products also support metadata capture.  

Table 1 compares several tools that use ontologies to generate markup.9  The 
table was populated primarily based on documentation found at the various web 
sites. In some cases (e.g., OntoMat, Protégé, and SMORE) the tools were installed 
and run. Thus we apologize in advance for any inadvertent misrepresentation of the 
tools. The reader should refer to the web sites for the latest features. The tools 
include: (ISX), KIM (OntoText) [9], Melita (U. Sheffield) [3], MnM (Open Univ. ) 
[13], OntoMat-Annotizer (U. Karlsruhe) [17], Protégé (Stanford) ) [12], Semantic 
Word (Teknowledge) [16], SMORE (U.Maryland) [20], and SMT (ISX).  

The table shows 3 sets of features including Input Parameters (unshaded rows at 
top), User Interface (shaded rows in middle), and Output (unshaded rows at 
bottom). 

Most of these tools mark up web pages using OWL or RDF Schema ontologies. 
About half are Java-based. Some support the creation of ontologies on the fly during 
markup, including the finding and reuse of existing web ontologies. Some pull 
instances from a knowledge base (KB). Most allow either form-based specification of 
assertions (triples) and many support drag-and-drop from the document’s text (and/or 
selecting text then selecting a class or property). Most support domain and range 
validation on assertions. About half interface with a text extractor to automatically 
find named entities in the text that can be used in assertions. Several tools (e.g., MnM 
and Melita) use learning techniques to improve automatic extraction/annotation. The 
tools differ in how OWL markup (typically containing individuals and their 
relationships) is output or stored. 

Only 3 tools support templates, which facilitate the entry of assertions and can 
hide ontological complexity from end users. Protégé’s templates are really custom 
forms that support the easy entry of property values for single (versus multiple) 
individuals. Templates can, as previously discussed, limit what can be expressed in 
the markup generated. To our knowledge, the SMT provides a unique combination 
of features including template-based markup leveraging the output of an automatic 
entity extractor, several GUI markup “modes”, and maturity beyond “research-
ware”. 

See, for example, [14] for another comparison of semantic annotation tools. 

                                                           
9 Most of these were listed on http://annotation.semanticweb.org/tools/. 



 A Template-Based Markup Tool for Semantic Web Content 457 

Table 1. Comparison of Related Markup Tools 

Tool 
 

Feature 

KIM Melita          MnM OntoMat 
Annotizer 
(V0.8) 

Protégé 
(w/ Custom 
Forms) 

Semantic 
Word 

SMORE SMT 

Version / 
Status / 
Availability 

Plug-in 
(Free for 
Research) 

Limited 
Distrib. 

2.1 Open 
Source 

V0.8 (Free) 3.1 Open 
Source 

1.0 Alpha 
(free) 

V5.0 (free) V1.0 
Prototype 
(GOTS) 

Platform MS IE 
Plug-in & 
Server 

Java Client 
& Server 

Java Java Java Visual Basic 
plug-in to 
Word, Java 

Java MS .NET 
(C#) 
Application 

Object of 
Markup 

web page web page web page web page any (doc not 
visible) 

MS word 
doc 

web page web page 

Kind of 
Ontologies 
Supported? 

KIM Ont. 
(RDFS) 

yes but 
kind?? 

RDF, 
DAML+OIL 

OWL  OWL OWL OWL OWL 
 

Ontology 
Creation 
Supported? 

no no no yes yes no yes no 

Ontology 
Web Search 
Capability? 

no no no no no no yes no 

Templates 
Supported? 

no no no no yes (forms) yes no yes 

Instance KB 
Access? 

yes no yes no yes no no no 

Pre-
population of 
Assertions or 
Slots? 

entities 
from Text 
Extractor 
(GATE) 

entities 
from Text 
Extractor 
(Amil-care) 

entities from 
Text 
Extractor 
(various) 

no no entities from 
Text 
Extractor  
 

no entities & 
relationships 
from Text 
Extractor  
(various) 

Entry/Editing 
modes 

only auto-
generated 
(named) 
entity 
annotations 
supported 

text entity 
select; 

select/click 
text 

form, doc 
text 
drag/drop, 
OWL 
editing 

form, 
copy/paste, 
wizards 

doc text 
select/click 

doc text 
drag/drop or 
select/click; 
triple 
formats 

form, doc 
text  
drag/drop, 
text entity 

Constraint 
Checking of 
Assertions or 
Slots? 

N/A N/A yes (domain 
& range) 

yes (domain 
& range) 

yes (domain 
& range) 

yes (domain 
& range) 

yes (domain 
& range) 

yes 

Content of 
Markup 
Generated 

individuals 
& doc 
metadata 

individuals individuals, 
& 
relationships 

classes,  
individuals, 
relationships 

classes,  
individuals, 
relationships 

individuals 
& 
relationships 

classes,  
individuals, 
relationships 

individuals, 
relationships 

Expressivity 
of Markup 

all classes 
in the 
ontology 

all classes 
in the 
ontology 

all classes & 
props in the 
ontology 

all classes & 
props in the 
ontology 

all classes & 
props in the 
ontology 
(without 
forms) 

all classes & 
props in the 
ontology 

all classes & 
props.  in 
the ontology 

limited to 
classes & 
props in 
templates 

Format of 
Markup 

output 
stored in 
KB 

OWL XML, RFD, 
DAML+OIL 

OWL 
(embedded 
in HTML) 

OWL MS Word 
file or XML 

OWL OWL (in 
separate 
doc) 

Other 
Features 

 system 
learns 
annotation 
rules 

KB 
population; 
learning to 
extract 

 many plug-
ins provide 
additional 
functionality 

markup 
within MS 
Word 

supports 
HTML 
editing 

generates 
doc 
summary 
text 

  

5   Future Work 

We are investigating the SMT in a number of other semantic web applications. For 
our primary IC application, SMT has not yet entered operational use, however. This is 
primarily due to a recent change of program direction to explore how far fully 
automated (yet “lower grade”) markup can take us, given the high volume of 
documents that must be processed. Another issue to be resolved is organizational and 
concerns who in the current production workflow will be responsible for doing any 
manual markup (presumably on a high-value subset of those documents).  



458 B. Kettler et al. 

Other applications being investigated for SMT include the CAST project for an IC 
organization to provide tools for analysts that allow them to capture complex 
relationships in documents (via OWL) and use those relationships to organize the 
documents around their task context: e.g., current set of analysis tasks and 
hypotheses. The AFRL Effects-Based Operations-Center of Gravity Analysis 
(EBO/COG-A) project is planning to use the SMT to extract from documents 
information about the interrelationships of complex target systems to aid military 
planners. We have proposed using the SMT markup templates for querying a 
knowledge base of markup as well. 

Proposed enhancements to the SMT include more sophisticated automation to 
select template and populate slots; integration of the SMT with a knowledge base to 
assist in template population and reasoning; a richer language (e.g., SWRL (Horrocks 
et al. 2004)) to express constraints; and numerous usability enhancements. We are 
working to handle additional document types without having to convert them to text 
first (e.g., HTML documents).  

We have begun to extend the SMT to handle the markup of images. In this version 
of the SMT, the TEWS-extracted text entities are instead image “primitives” extracted 
by feature extractors (perhaps with assistance from human photo/imagery analysts): 
e.g., Image X contains a truck, road, security fence, and 4 persons. The SMT could 
then be used to instantiate a template by filling in slots with these extracted features: 
e.g., a template for an arms delivery event. The template would assign roles (via slots) 
to the components of the image: e.g., arms dealer, truck driver, security goon, and 
arms recipient. A template could markup several related images to show different 
temporal slices of an event. The OWL generated from the template would support 
image retrieval, real-time monitoring, and other applications.10 

6   Conclusions 

This paper has presented the SMT, a template-based tool for the markup of SMT 
documents. The SMT provides a hybrid manual-automatic markup tool for the rapid 
use specification of relationships in the document content in addition to the entities 
extracted automatically. Via templates, the SMT generates OWL markup that is more 
complete and consistent than previous methods. The SMT has been vetted with 
several intelligence analysts and is being used on a several pilot applications.  

The XML-based representation of templates is general purpose. Template hide 
ontological complexity from end users, enable automation (using constraints and 
rules), and generate correct and complete OWL markup. End users, leveraging the 
output of an automated text extractor such as the TEWS, can fill in templates quickly. 
In addition to OWL markup (using the RDF/XML serialization), the SMT could be 
easily modified to generate XML markup. Additional tools to support the easy 
authoring and validation of templates (against evolving ontologies) have been 
developed.  

The machine-understandable OWL markup generated by the SMT can be exploited 
by a growing set of semantic web tools and applications to provide improved search, 
discovery, and knowledge management capabilities. Providing users with usable tools 

                                                           
10 There are several other tools that image markup: e.g., PhotoStuff [12]. 



 A Template-Based Markup Tool for Semantic Web Content 459 

for human augmentation of semantic markup and with incentives to use them – both 
in direct value-added functionality from the markup tools themselves and from 
exploitation tools to be used later – will be essential for the semantic web to move 
towards widespread adoption. 

Acknowledgments  

The authors wish to thank the IC sponsors of this work. Much of this work was done 
under a subcontract to ISX Corporation from Computer Sciences Corporation (CSC). 
Dr. Joseph Rockmore of Cyladian Technology Consulting provided valuable inputs 
into the design, as did Gary Edwards, Mark Hoffman, and Joe Roberts of ISX 
Corporation. Previous versions of the SMT were funded by DARPA under the 
DARPA Agent Markup Language (DAML) and benefited from the insights of Dr. 
James Hendler, Mr. Murray Burke, and Dr. Mark Greaves. Dr. Greaves has sponsored 
the work on the DIONE project which has supported the SMT work through the 
development of template authoring and validation/versioning tools (among others). 
Several of those versions were developed by NGIT. Dr. Jeff Heflin (now at Lehigh 
University) developed the SHOE Knowledge Annotator which was one of the first 
ontology markup-based tools for the Web, as part of the pre-DAML work done by the 
University of Maryland under the direction of Dr. James Hendler. 

References 

1. Abobe, Inc. Extensible Metadata Platform (XMP). 
http://www.adobe.com/products/xmp/main.html. 

2. Broekstra, J. et al., 2002.  Sesame: A generic architecture for storing and querying RDF 
and RDF schema. In The Semantic Web - ISWC 2002, volume 2342 of Lecture Notes in 
Computer Science, Springer Verlag. 

3. Dingli, A. (University of Sheffield). Melita. 
http://www.dcs.shef.ac.uk/~alexiei/WebSite/University/Melita/index.htm 

4. Heflin, J., and Hendler, J., 2000. Dynamic Ontologies on the Web. In Proceedings of 
American Association for Artificial Intelligence Conference (AAAI-2000). Menlo Park, 
Calif.: AAAI Press. 

5. Horrocks, I. et al., 2003.   SWRL: A Semantic Web Rule Language Combining OWL and 
RuleML. World Wide Web Consortium Submission, 19 November 2003. 
http://www.daml.org/2003/11/swrl/ 

6. In.vision Research. Xpres Author for Word. http://www.invisionresearch.com/xpress.htm 
7. Kalyanpur, A. et al., 2004.  Hypermedia Inspired Ontology Engineering Environment: 

SWOOP.  In Proceedings of the International Semantic Web Conference (ISWC). 
8. Kettler, B. et al., 2003. The Semantic Object Web: An Object-Centric Approach to 

Knowledge Management and Exploitation on the Semantic Web. ISX Corporation 
Whitepaper. Presented as a poster at the 2nd International Semantic Web Conference. 
http://www.semanticobjectweb.isx.com 

9. Kiryakov, A. et al. (Ontotext).  KIM Semantic Annotation Platform, 
http://www.ontotext.com/kim 

10. Lockheed Martin, AeroSWARM 
http://ubot.lockheedmartin.com/ubot/hotdaml/aeroswarm.html 



460 B. Kettler et al. 

11. McGuinness, D. and van Harmelen, F. 2004. Web Ontology Language (OWL) Overview. 
World Wide Web Consortium Recommendation, 10 February 2004. 
http://www.w3.org/TR/owl-features/ 

12. Noy, N.F., M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A. Musen, 2001.  
Creating Semantic Web Contents with Protege-2000. IEEE Intelligent Systems 16(2):60-
71.  http://protege.stanford.edu 

13. Open University. MnM. http://kmi.open.ac.uk/projects/akt/MnM/ 
14. Reeve, L. and H. Han, 2005. Survey of Semantic Annotation Platforms.  In 2005 ACM 

Symposium on Applied Computing. 
15. Sandia National Labs. Java Expert Systems Shell (JESS). 

http://herzberg.ca.sandia.gov/jess/ 
16. Tallis, M. et al., 2001. The briefing associate: A role for cots applications in the semantic 

web. In Semantic Web Working Symposium (SWWS), Stanford, California, USA. 
http://mr.teknowledge.com/daml/software.htm 

17. Univ. of Karlsruhe. OntoMat-Annotizer. http://annotation.semanticweb.org/ontomat.html 
18. Univ. of Maryland at Baltimore County.  Swangler. 

http://swangle.projects.semwebcentral.org/ 
19. Univ. of Maryland at College Park (MINDSWAP Lab). PhotoStuff. 

http://www.mindswap.org/2003/PhotoStuff/ 
20. Univ. of Maryland at College Park (MINDSWAP Lab). SMORE. 

http://www.mindswap.org/2005/SMORE/ 
 



Representing Web Service Policies in OWL-DL

Vladimir Kolovski1, Bijan Parsia2, Yarden Katz2, and James Hendler2

1 Maryland Information and Network Dynamics Laboratory Lab,
University of Maryland , College Park , MD 20740

2 Dept. of Computer Science, University of Maryland, College Park, MD 20742
{kolovski, hendler}@cs.umd.edu, bparsia@isr.umd.edu, yarden@umd.edu

Abstract. Recently, there have been a number of proposals for lan-
guages for expressing web service constraints and capabilities, with WS-
Policy and WSPL leading the way. The proposed languages, although
relatively inexpressive, suffer from a lack of formal semantics. In this
paper, we provide a mapping of WS-Policy to the description logic frag-
ment species of the Web Ontology Language (OWL-DL), and describe
how standard OWL-DL reasoners can be used to check policy confor-
mance and perform an array of policy analysis tasks. OWL-DL is much
more expressive than WS-Policy and thus provides a framework for ex-
ploring richer policy languages.

1 Introduction

To provide for a robust development and operational environment, web services
are described using machine-readable metadata. This metadata serves several
purposes, one of them being describing the capabilities and requirements of a
service – often called the service policy. Recently, there have been many different
web service policy language proposals, all of them describing languages with
varying degrees of expressivity and complexity [17, 4, 1]. However, with most
current proposals it is difficult to determine their expressivity and computational
properties as most lack formal semantics. One characteristic of the proposed
languages is that they involve policy assertions and combinations of assertions.
For example, a policy might assert that a particular service requires some form
of reliable messaging or security, or it may require both reliable messaging and
security. Several industrial proposals (e.g., WS-Policy [17] and Features and
Properties [4]) appear to restrict them to a kind of propositional logic with policy
assertions being atomic propositions and the combinations being conjunction and
disjunction. By mapping the policy language constructs into a logic (e.g., some
variant of first order logic) we can acquire a clear semantics for the languages,
as well as a good sense of the computational aspects.

Additionally, if we can map the policy languages into a standardized logic, we
can benefit from the tools and general expertise one expects to come with a reason-
ablypopular standard.Bymapping twopolicy languages into the samebackground
formalism,wewill be able toprovide somemeasure of interoperabilitybetweenpoli-
cies written in distinct languages. If we are smart in our mapping, we should also be
able use pre-existing reasoners for the standardized logic to do policy processing.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 461–475, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



462 V. Kolovski et al.

Our language of choice is the Web Ontology Language, OWL [2], and the
Resource Description Framework, RDF [11]. Both RDF and OWL are strict
subsets of first order logic, with the subspecies OWL-DL being a very expressive
yet decidable subset. OWL-DL builds on the rich tradition of description logics
where the tradeoff between computational complexity and logical expressivity
has been precisely and extensively mapped out and practical, reasonably scalable
reasoning algorithms and systems have been developed.

In this paper, we have translated one of the policy languages, WS-Policy,
to OWL-DL. WS-Policy is being developed by IBM, Microsoft, BEA, and other
major web services vendors and is generally considered to be the policy language
with the most momentum. Our approach maps policies to OWL-DL classes. With
this, we are able to use our OWL-DL reasoner, Pellet [15] as a policy processor
with analysis services that go far beyond what is usually offered. We also tackle
another policy-related proposal, Features and Properties, and describe how its
boolean predicates can also be translated to OWL-DL. In our evaluation section,
we demonstrate how generic OWL-DL reasoners can easily handle processing
moderately sized policies.

2 WS-Policy Overview

WS-Policy provides a general purpose model and syntax to describe the policies
of a Web service. It specifies a base set of constructs that can be used and
extended by other Web service specifications to describe a broad range of service
requirements and capabilities. WS-Policy’s scope is limited to allowing endpoints
to specify requirements and capabilities needed for establishing a connection. Its
goal is not be used as a language for expressing more complex, application-
specific policies that take effect after the connection is established.

For this purpose, WS-Policy introduces a simple and extensible grammar
for expressing policies and a processing model to interpret them. A policy, as
defined in the specification is composed from a combination of assertions and
alternatives.

An assertion is the basic, atomic unit of a policy. For example, an assertion
could declare that the message should be encrypted. The actual definitions and
meaning of the assertions are domain-dependent and not defined in WS-Policy.
An assertion is defined by a unique Qualified Name, and can be a simple string
or a complex object with many sub elements and attributes. A set of assertions
can be termed an alternative.

A policy is built up using assertions and nested combinations of the operators
wsp:All, wsp:ExactlyOne, and the attribute wsp:Optional. This policy syntax
is used to describe acceptable combinations of assertions for a given Web service
invocation.

2.1 Mapping WS-Policy Operators to OWL

In this section, we describe our mapping of the WS-Policy constructs from a
normal form policy expression into OWL expressions. A policy in a normal form



Representing Web Service Policies in OWL-DL 463

is a straightforward XML Infoset representation, enumerating each of its alterna-
tives that in turn enumerate each of its assertions. Following is a schema outline
for the normal form of a policy expression:

<wsp: Policy>
<wsp:ExactlyOne>

[ <wsp:All> [<Assertion> </Assertion>]* </wsp:All> ]*
</wsp:ExactlyOne>

</wsp:Policy>

Listing 1. Normal form of a policy expression

Policy expressions can also be represented in more compact forms, using ad-
ditional operators such as wsp:Optional, however as shown in [17] the policy ex-
pressions can all be expanded to normal form. Therefore we only provide a map-
ping of the constructs used in a normal form policy expression: wsp:ExactlyOne
and wsp:All.

First, we map policy assertions directly into OWL-DL classes (which corre-
spond to atomic propositions). Though WS-Policy assertions often have some
discernible substructure, it is not key to their logical status in WS-Policy. Or
rather, that substructure is idiosyncratic to the assertion set, rather than being
a feature of the background formalism. So a general WS-Policy engine must be
adapted to deal with their structure, if it is to do so. The WS-Policy specification
asserts: ”Assertions indicate domain-specific (e.g., security, transactions) seman-
tics and are expected to be defined in separate, domain-specific specifications.”

It seems unfortunate that each domain-specific specification comes with its
own domain specific syntax. If we are to capture the semantics of each assertion
language, we must separately map each assertion language into OWL. We do
provide a general strategy for mapping WS-Policy assertions in the next section.

Mapping wsp:All to an OWL construct is straightforward because wsp:All
means that all of the policy assertions enclosed by this operator have to be
satisfied in order for communication to be initiated between the endpoints. Thus,
it is a logical conjunction and can be represented as an OWL intersection. Each
of the members of the intersection is a policy assertion, and the resulting class
expression is a custom-made policy class that expresses the same semantics as
the WS-Policy one.

Handling wsp:ExactlyOnemight be trickier, depending on the interpretation
of the operator. There are two possible interpretations:

– wsp:ExactlyOne means that a policy is supported by a requester if and
only if the requester supports at least one of the alternatives in the policy.
In the previous version of WS-Policy there was a wsp:OneOrMore construct
capturing this meaning. In such case, the wsp:ExactlyOne is an inclusive
OR , and can be mapped using owl:unionOf.

– wsp:ExactlyOnemeans that only one, not more, of the alternatives should be
supported in order for the requester to support the policy. This is supported



464 V. Kolovski et al.

by [17], where it is stated that although policy alternatives are meant to be
mutually exclusive, it cannot be decided in general whether or not more than
one alternative can be supported at the same time. Our translation covers
this more complicated case.

Wsp:ExactlyOne can be translated to OWL in the following way: for n different
policy assertions, expressed as OWL classes themselves, wsp:ExactlyOne is the
class expression consisting of the members of each separate policy class that do
not also belong to another policy class. In OWL terms, it is the union of all
of the classes with the complement of their pair-wise intersections. Because of
the pair-wise intersections there is a quadratic increase in the size of the OWL
construct that is used as a mapping for wsp:ExactlyOne.

Table 1. Mapping of WS-Policy Constructs to OWL

WS-Policy Construct OWL Expression
Wsp:All (policies A and B) owl:intersectionOf(A B)

Wsp:ExactlyOne intersectionOf(
(policies A and B) complementOf(intersectionOf(A B))

unionOf(A B)
)

To more compactly express complex policies, WS-Policy allows nesting of
operators. To convert a policy from a compact to a normal form, the proper-
ties of wsp:ExactlyOne and wsp:All can be used. If we are to show that our
translation correctly captures the meaning of wsp:ExactlyOne and wsp:All,
we need to prove that the mappings from Table 1. have the same properties
as the WS-Policy operators. wsp:ExactlyOne and wsp:All have the following
properties: commutativity, associativity, idempotency and distributivity. It can
be easily shown that our mappings, which are essentially a logical conjunction
and explicit disjunction, also satisfy these properties.

2.2 Mapping Policy Assertions to OWL

In this section we provide a mapping for the building blocks of a policy ex-
pression, the policy assertions. Our proposal for mapping assertions is first
to create a base class for every general policy assertion, e.g., wsp:Language,
wsp:TextEncoding,wsse:BinarySecurityToken would be mapped to OWL classes
BaseLanguage, BaseTextEncoding, BaseBinarySecurityToken. A WS-Policy
assertion in normal form consists of attributes and elements. We describe how
these are handled separately:

– for attributes, we create a datatype property representing that attribute
and use the owl:hasValue restriction on that property to create a new class
corresponding to the assertion.



Representing Web Service Policies in OWL-DL 465

– for elements, we create separate classes for all of the elements contained in
the policy assertion. Then, the specific assertion class is created by placing
owl:allValuesFrom restrictions on properties that relate the base assertion
class with the generated classes for the elements.

In order to illustrate the approach, consider the following assertion:

<wsse:Integrity wsp:Preference="100">
<wsse:Algorithm Type="wsse:AlgCanonicalization"

URI="http://www.w3.org/Signature/xml-exc-c14n"/>
</wsse:Integrity>

The translation of this assertion would produce two classes, Integrity1 and
Algorithm1, shown below:

Table 2. Translation of Example Policy Assertion

Integrity1 ≡ ((∀ hasAlgorithm. Algorithm1) ∩ (=1 hasAlgorithm.Algorithm1) ∩
(∃hasPreference.100) ∩ BaseIntegrity)

Algorithm1 ≡ ((=1 hasType.{”wsse:AlgCanonicalization”}) ∩
(=1 hasURI.{”http://www.w3.org/Signature/xml-exc-c14n”}) ∩
BaseAlgorithm)

Having this information in hand, we developed an XSL script1 that takes a
WS-Policy expression in normal form and produces valid OWL-DL. For demon-
strative purposes, we translated a subset of WS-PolicyAssertions using the ap-
proach specified above.

2.3 WS-Policy Merge and Intersection

In this section, we discuss the possibility of expressing Merge and Intersection.
Merge is the process of combining sub-policies together to form a single policy.

This operation is needed because a policy might be specified in a distributed
way, having its fragments defined in separate files. It is necessary to combine all
these policy fragments together to form a single merged policy which could be
processed further.

Merge works on policies already converted to normal form. The merged policy
is a Cartesian product of the alternatives in the first policy and the alternatives in
the second policy. There is a straightforward way of doing the Merge operation
in OWL-DL. First, we translate each of the input policies into OWL-DL as
described above. Then, the merged policy is simply the intersection of the input
policies. Thus, Merge also maps cleanly onto OWL-DL. An outline of the proof
is shown in Appendix 1.
1 http://www.mindswap.org/2005/services-policies/wsp2owl.xsl



466 V. Kolovski et al.

The goal of WS-Policy is to allow endpoints to specify requirements for start-
ing a web service interaction. To achieve this goal, the Intersection operation
compares two Web services policies for common alternatives. Interaction is pos-
sible only when both of the endpoints agree on at least one policy alternative.

Like in Merge, the process of coming up with an intersection is carried out in a
cross product fashion, comparing each alternative from the first policy with every
alterantive from the other one. However, in the case of Intersection, if the two
alternatives that are being combined do not agree on the same vocabulary, then
they combined alternative is not added to the new policy. A vocabulary of an
alternative is simply defined as the set of QNames of the assertions in that
alternative.

Intersection cannot be mapped into a single OWL construct, however using
our OWL mappings of the policy assertions it is not difficult to rule out the
incompatible alternatives. If the policy assertions are mapped to classes, then to
check whether two alternatives are equal, we need to see whether the assertions
in the two alternatives are derived from the same base clases. Specifically, evey
assertion in the first alternative needs to be derived from the same base class with
some assertions from the second alternative, and vice-versa, for the alternatives
to be compatible.

3 Policy Processing

One of our arguments for expressing policies using OWL was the ability to reason
about policy containment - whether the requirements for supporting one policy
are a subset of the requirements for another. That would allow us to be more
flexible in determining whether a particular requestor supports a policy, in the
cases where the requestor supports a superset of the requirements established
by the policy.

In general, we get the following inferences out of the box:

1. policy inclusion ( if x meets policy A then it also meets policy B; a.k.a., A
rdfs:subClassOf B);

2. policy equivalence (A owl:equivalentTo B);
3. policy incompatibility (if x meets policy A then it cannot meet policy B;

a.k.a, A owl:disjointWith B);
4. policy incoherence (nothing can meet policy A; a.k.a., A is unsatisfiable)
5. policy conformance (x meets policy A; a.k.a, x rdf:type A)

One futher reasoning service supported by Pellet, and integrated with Swoop
[10], is explanations for inconsistencies [14], which can be used to help debug
policy incompatibility, incoherence, and the like. As we add further explanation
capability to our systems, this debugging power will grow.

Thus we see that with a fairly simple mapping, we can use an off the shelf
OWL reasoner as a policy engine and analysis tool, and an off-the-shelf OWL
editor as a policy development and integration environment. OWL editors can
also be used to develop domain specific assertion languages (essentially, domain



Representing Web Service Policies in OWL-DL 467

Ontologies) with a uniform syntax and well specified semantics. We can also
experiment with extensions to WS-Policy, by using more expressive constructs
from OWL at the policy language, as well as the assertion language, level. We
can experiment with extensions before having to write a yet another processor
for them. Of course, if it turns out that we really want to restrict ourselves to a
very inexpressive subset, then we may still want to build specific reasoners and
processors that are tuned for that sublanguage. But there again, our tools can
help us. Pellet does expressivity analysis of ontologies, so can help determine
what logic we are really using and the price of extensions.

Furthermore, ontology development techniques can be useful for policy devel-
opment as well. Most human generate ontology develop iteratively, with special-
izations added to the class tree over time. Similarly, we can build up our policies
from more general ones. A general policy could be very restrictive, setting tough
guidelines for all of a companies policies.

If we have a similar style mapping for another policy language, we will be
able to do policy analysis and integration across policy languages. We have taken
the first steps in this direction with providing a translation of the Features and
Properties compositors.

However, some care must be taken given the open world semantics of OWL.
For example, an OWL reasoner does not assume that because it cannot prove
that x conforms to policy A, that x does not conform to policy A. It is unclear
what the WS-Policy authors intend, though a closed world assumption is not
unlikely. However, even if there is a closed world assumption on WS-Policies, we
can handle at least some of those cases by adding explicit disjoint statements
at translation time. In the following section, we delve into the issue of open vs.
closed world semantics.

4 The Semantics of Policies

Many of the current web policy languages do not have a formal semantics, leav-
ing the meaning of certain language constructs unclear. The WS-Policy language
provides for a good example. In our translation of WS-Policy documents into
OWL, we assume, of course, OWL’s open world semantics. Under this assump-
tion, the failure to prove an assertion leaves us with no conclusion about the
assertion’s truth or falsity. That is, in light of incomplete knowledge, some state-
ments about policies simply remain unknown. By contrast, in the closed world
assumption the failure to prove an assertion φ leads to the conclusion that ¬φ
is the case.

While the open world assumption was made for OWL ontologies, and the
choice can certainly be justified2, it seems that WS-Policy operates under closed
world assumption. The Intersection operation in WS-Policy, which is used to
2 The idea behind the open world assumption is that if an assertion is not made in

your knowledge base, you should not infer that it is false, because the assertion might
still be made in some other ontology on the Web. Thus, the open world assumption
is more “web like.”



468 V. Kolovski et al.

determine the policy on which both endpoints agree, does not include those
alternatives that have no matching assertions. In other words, if the provider
has an assertions indicating support of a specific functionality, and the requester
is missing that assertions in his policy, then they are not compatible with each
other.

Let us contrast open and closed world assumptions. Suppose that a policy is
devised to express the constraints for gaining web access. A person fulfills the
requirement for web access if he or she are either a registered user or a guest
user. The policy can be expressed in OWL as follows:

Table 3. Web Access Policy class definition

WebAccessPolicy � Policy

WebAccessPolicy ≡ (RegisteredUser � GuestUser)

� ¬(RegisteredUser � GuestUser)

It is easy to see what kind of individual will fail to belong to
WebAccessPolicy. Since our definition of this class corresponds to the WS-Policy
ExactlyOne operator, its members must be instances of either GuestUser or
RegisteredUser, but not both. However, as a consequence of OWL’s open world
semantics, it is not enough for an individual i to simply belong to GuestUser
or RegisteredUser (and not to both) for i to satisfy the second conjunct of the
WebAccessPolicy class definition. Rather, in the case that i : RegisteredUser,
it must also be provable that i : ¬GuestUser, and vice versa.

Contrast this with a translation of the above policy into a closed world lan-
guage, such as Prolog, given below.3

not(X, Y) :- \+ X ; \+ Y.
policy(X) :- webAccessPolicy(X).
webAccessPolicy(X) :- (guestUser(X) ; registeredUser(X)),

not(guestUser(X), registeredUser(X)).

Unlike in the OWL case, the knowledge base consisting of the assertions
{guestUser(bob), regularUser(john)}will be sufficient to conclude that both
webPolicyAccess(bob) and webPolicyAccess(john). Since it is not provable
that guestUser(john) and regularUser(bob) (which would disqualify both
from our policy), we simply assume that they are not such. This constitutes the
closed world assumption. The behavior of this example might be more reason-
able than its OWL counterpart, depending on the specific policy and associated
knowledge base.

4.1 Bridging Open and Closed Assumptions

It would be desirable to have a way to ’turn on’ the closed world effect as needed
in our own policies, depending on the specific application, without committing to
3 Note that in Prolog, ; stands for disjunction, \+ for negation, and , for conjunction.



Representing Web Service Policies in OWL-DL 469

it across the board (which Prolog does.) Furthermore, there are cases where the
open world effect can force us to model our policies unnaturally. These counter
intuitive results of open world semantics for policy developers can be handled
with a closed world mechanism. Consider the following example:

A research lab in College Park uses OWL to specify its policies. In the re-
search lab, there are two types of employees: senior employees and non-senior
(regular) employees, both subclassed from the Employee class. A senior employee
is modelled as a kind of regular employee. Every employee has been specified
a set of rights for use of devices in the lab. While senior employees are able to
delegate rights to use certain devices, regular employees cannot. For example,
a senior employee might delegate the right to use the conference room printer
to a regular employee. Now consider two individuals, Evren who is a regular
employee, and Ryu who is a senior one. If we specify that Ryu delegates the
right to Evren to use the conference room printer, there is no harm done since
Ryu is a Senior Employee. However, if we specify that Evren delegates the right
to use the, say, conference printer to Ryu, we would expect a contradiction since
regular employees are not able to delegate rights. However, because of the open
world assumption, the fact that Evren is delegating rights, and isn’t defined to
be a non-senior employee, allows the OWL reasoner to infer that Evren is a
senior employee. This is the opposite of what the policy writer had in mind.
The undesirable consequence is illustrated below.

Table 4. Undesirable consequence of OWA for policy modelling

Policy definition
DelegationConfPrinter � Delegation

DelegationConfPrinter ≡ ∃delegationGiver.SeniorEmployee
� ∃delegationType.RightToUseDevices

RightToUseConfPrinter � RightToUseDevices

Knowledge base
evren : RegularEmployee

ryu : SeniorEmployee

badOWA : DelegationConfPrinter

delegationGiver(badOWA, evren)

delegationReceiver(badOWA, ryu)

The above policy, paired with the shown knowledge base, will yield the in-
ference that Evren is of type SeniorEmployee. A possible fix for the problem
would be to make SeniorEmployee and RegularEmployee disjoint, though this
would break the perfectly correct modeller’s intuition that: (1) the two kinds
of employees should share the superclass Employee, and (2) a senior employee
is a regular employee plus some privileges, captured by making the former of a
subclass of the latter.

A better solution that would allow us to keep the current class hierarchy
intact is to use a default rule. Essentially, we’d like to enforce that any individual



470 V. Kolovski et al.

who is not already known to be a senior employee does not have delegation
rights. The individual ryu in the above knowledge base clearly does not fall in
this category, being asserted to be a senior employee. The modal operators K
and A, discussed as an extension for the description logic ALC in [3], allow us
to express this constraint as a sentence in the knowledge base.4 The K operator
can be read as what is “known” to be the case, while the A operator can be
read as a “default assumption”:

KEmployee � ¬ASeniorEmployee � ¬Delegation
Which can be read as “If one is known to be an employee, but is not already
a senior employee, then one does not have the ability to delegate rights.” Note
that the use of K and A here introduces a closed world assumption with respect
to the rule. If it is only asserted that evren is an Employee for example, then by
default he is not a SeniorEmployee, preventing us from errorneously inferring
that he is one.

5 WSDL

In addition to WS-Policy, we explored another proposal, Features and Proper-
ties [4] that has also been put forth as a candidate for describing web service
policies. Integrating WSDL 2.0 with Features and Properties produced a frame-
work that allows users to specify web service capabilities and requirements in the
service description, with expressiveness similar to WS-Policy. The framework in
question is based on three concepts, Features, Properties and Compositors.
Simply put, a Feature represents a piece of functionality, identified by a URI. An
example of a Feature would be encryption. Properties are the parameters of a
Feature, also identifiable by a URI. For an encryption Feature, Property might
be the algorithm used, part of message encrypted, etc. Compositors are used
for combining multiple Features and Properties. There are four Compositors
defined in the proposal:

1. all : this compositor specifies that a service invocation MUST comply with
all the children elements

2. choice: specifies that a service invocation MUST comply with exactly one of
the possibly many children elements

3. one-or-more: specifies that a service invocation MUST comply with at least
one of the possibly many children elements

4. zero-or-more: specifies that a service invocation MAY comply with one or
more of the children elements

The compositors in WSDL do provide more options than WS-Policy, however
they too can be mapped to OWL, as shown in the following table:

4 Two similar solutions are possible using these operators. The K operator can also be
used to formulate an equivalent constraint in the form of a query. Another alternative
is to use a default rule; we refer the reader to [3] for the details of both alternatives.



Representing Web Service Policies in OWL-DL 471

Table 5. Mapping of Features and Properties Compositors to OWL

WSDL Compositor OWL Expression

all (policies A and B) owl:intersectionOf(A B)

choice intersectionOf(
(policies A and B) complementOf(intersectionOf(A B))

unionOf(A B))

one-or-more owl:unionOf

zero-or-more means optional, not mapped to any OWL expressions

6 Evaluation

One of the benefits of expressing policies in OWL is the possibility of using an off-
the-shelf OWL reasoner as a policy engine and analysis tool. In this section, we
show that currently available DL reasoners can easily process moderately-sized
policies. For the purpose of our evaluation, we have selected three reasoners,
Pellet [15], FaCT [8] and Racer [6]. We also created a random policy generator,
a script that creates policy assertions and specific policy classes and individuals
that have the structure of a WS-Policy in OWL form. The translation of the
synthetic WS-Policies to OWL-DL took neglibile time ( <0.3 sec) using the
XSLT mentioned above.

Table 6 summarizes the results of classifying these policy ontologies with the
reasoners.

Table 6. Classifying Policy ontologies using off-the-shelf DL reasoners

Policy Size
(assertions, policies) Pellet (sec.) Racer (sec.) FaCT (sec.)

(100,10) 0.81 0.91 1.03
(100,20) 1.00 1.32 1.20
(200,20) 1.53 1.45 1.55
(200,40) 2.17 1.75 2.30

(1000,100) 15.54 22.32 16.22

Every policy in the test samples contains multiple (at most 8) alternatives,
and each alternative has multiple assertions, thus the samples represent rea-
sonably complex policies. Even in a case with 200 assertions and 40 policies,
all of the reasoners performed well (around 2 sec.) The evaluation supports
our claim that OWL Reasoners are more than ready to be used as policy
processing tools.



472 V. Kolovski et al.

7 Related Work

To the best of our knowledge, there have been no previous attempts of express-
ing WS-Policy in OWL. There have been, however, numerous proposals for web
service policy languages based on XML or OWL. The main difference between
our work and related policy languages is the level of expressivity - WS-Policy is
focused on those aspects of a service required to establish a connection between
endpoints and it does not require a great deal of expresivitiy. Most of the lan-
guages discussed in this section on the other hand, have a bigger scope of being
able to specify high-level, application-specific, heterogeneous policies.

First, we look at XML-based policy languages. The Web Services Policy Lan-
guage [1], developed at Sun Microsystems, is suitable for specifying a wide range
of policies, including authorization, quality-of-service, quality-of protection, re-
liable messaging, privacy, and application-specific service options. WSPL is of
particular interest in several respects. It supports merging two policies, result-
ing in a single policy that satisfies the requirements of both, assuming such a
policy exists. Policies can be based on comparisons other than equality, allowing
policies to depend on fine-grained attributes such as time of day, cost, or net-
work subnet address. By using standard data types and functions for expressing
policy parameters, a standard policy engine can support any policy. The syntax
is a strict subset of the OASIS eXtensible Access Control Markup Language
(XACML [5]) Standard.

In essence, a WSPL policy is a sequence of one or more rules, where each
rule represents an acceptable alternative. A rule contains a number of predicates,
which correspond to policy assertions in WS-Policy. All of the predicates need
to be satisfied for the rule to be satisfied. However, only one of the rules can be
satisfied for the policy to be satisfied. A WSPL Policy on an operator level is in
Disjunctive Normal Form, thus expressible in OWL-DL.

WSPL defines a standard language for use in specifying predicates that con-
strain domain-specified vocabulary items. Each predicate places a constraint on
the value of an Attribute. Possible constraints are: equals, greater than, greater
than or equal to, less than, less than or equal to, setequals and subset. Unfor-
tunately , the OWL datatyping formalism is not expressive enough to gener-
ally represent datatype predicates such as the ones mentioned. There has been
a recent proposal of an extension to OWL-DL, caled OWL-E [13] which adds
datatype group-based class constructors to allow the use of datatype expressions
in class restrictions. OWL-E is interesting because it adds much more datatype
expressiveness and it is still decidable.

The Platform for Privacy Preferences Project (P3P [12]) enables Web sites
to express their privacy practices in a standard XML-based format that can be
retrieved automatically and interpreted easily by user agents. Similar to what we
hav edone with WS-Policy, there has been a number of attempts to use an RDF
or OWL schema to describe the semantics of P3P. According to [18], there exists
a data-centric relational semantics for P3P in which a P3P policy is modeled as
a relational database, that further allows to express P3P using RDF. However, it
is important to take note that modal logical statements can be made about data



Representing Web Service Policies in OWL-DL 473

types in the P3P schema. This issue is investigated in detail by Hogben [7], which
provides a complete OWL schema that captures the semantics of P3P. Having
P3P modelled in OWL allows the authors to perform syntactic and semantic
validation on the policies.

Moving to OWL-based systems, Rei [9] is a policy specification language
based on a combination of OWL-Lite, logic-like variables and rules. It allows
users to develop declarative policies over domain specific ontologies in RDF,
DAML+OIL and OWL. Rei allows policies to be specified as constraints over
allowable and obligated actions on resources in the environment. A distinguishing
feature of Rei is that it includes specifications for speech acts for remote policy
management and policy analysis specifications like what-if analysis and use-case
management.

KaOS Policy and Domain Services [16] use ontology concepts encoded in
OWL to build policies. These policies constrain allowable actions performed by
actors which might be clients or agents. The KAoS Policy Service distinguishes
between authorizations and obligations. The applicability of the policy is de-
fined by a class of situations which definition can contain components specifying
required history, state and currently undertaken action.

8 Conclusion and Future Work

In this section we provide a summary of our contributions and possible future
directions:
1. By providing a mapping for the formalism of WS-Policy we have shown that

it is an expressive subset of OWL-DL
2. Currently available OWL reasoners perform reasonably well as policy pro-

cessors, without any modification, and we have preliminary empirical results
to show for it.

3. OWL-DL provides an interesting framework for exploring richer policy lan-
guages with minimal implementation cost. An interesting direction would be
integration of our policy mapping with OWL-S profiles, which seems like a
natural next step.

4. In the cases when OWL is not suitable, we have clear extensions we can add
to address these issues. We covered the K operator and OWL with datatype
predicates in this paper.

5. Finally, since other policy languages (WSDL, WSPL) also seem to be subsets
of (a slightly extended) OWL, OWL-DL seems to be the right language for
specifying policies in general.

Acknowledgements

This work was completed with funding from Fujitsu Laboratories of America-
College Park, Lockheed Martin Advanced Technology Laboratory, NTT Corp.,
Kevric Corp., SAIC, National Science Foundation, National Geospatial-
Intelligence Agency, DARPA, US Army Research Laboratory, NIST, and other
DoD sources.



474 V. Kolovski et al.

References

1. A. H. Anderson. An introduction to the web services policy language. In Fifth
IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY’04), 2004.

2. M. Dean and G. Schreiber. Owl web ontology language reference w3c recommen-
dation., feb 2004.

3. F. M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge and
negation as failure. ACM Transactions on Computational Logic, pages 1529–3785,
2001.

4. J. D. et al. Wsdl annotation proposal.
http://lists.oasis-open.org/archives/wsrm/200403/msg00082.html.

5. S. Godik and T. Moses. Oasis extensible access control markup language (xacml)
version 1.1. oasis committee specification, July 2003.

6. V. Haarslev and R. Mller. Racer: A core inference engine for the semantic web.
Proceedings of the 2nd International Workshop on Evaluation of Ontology-based
Tools, 2003.

7. G. Hogben. Describing the p3p base data schema using owl. In A WWW2005
Workshop on Policy Management for the Web, 2005.

8. I. Horrocks. The fact system. http://www.cs.man.ac.uk/ horrocks/FaCT/.
9. L. e. a. Kagal. A policy language for a pervasive computing environment. In IEEE

4th International Workshop on Policies for Distributed Systems and Networks,
June 2003.

10. A. Kalyanpur, B. Parsia, and J. Hendler. A tool for working with web ontologies.
In In Proceedings of the International Journal on Semantic Web and Information
Systems, Vol. 1, No. 1, Jan - March, 2005.

11. O. Lassila and R. Swick. Resource description framework (rdf) model and syntax
specification, February 1999.

12. P3P. Platform for Privacy Preferences Project. http://www.w3.org/P3P/.
13. J. Z. Pan and I. Horrocks. Owl-e: Extending owl with expressive datatype expres-

sions. Technical report, Victoria University of Manchester, 2004.
14. B. Parsia, E. Sirin, and A. Kalyanpur. Debugging owl ontologies. In The 14th

International World Wide Web Conference (WWW2005), Chiba, Japan, May 2005.
15. Pellet. Pellet - owl dl reasoner, 2003. http://www.mindswap.org/2003/pellet.
16. A. Uszokand and J. Bradshaw. Kaos policies for web services. In W3C Workshop

on Constraints and Capabilities for Web Servies, October 2004.
17. WS-Policy. Web services policy framework (ws-policy).

http://www-106.ibm.com/developerworks/library/specification/ws-polfram/.
18. T. Yu, N. Li, and A. Anton. A formal semantics for p3p. In ACM Workshop on

Secure Web Services, October 2004.

9 Appendix

Theorem 1. Merge between two policies, as defined in WS-Policy, is equivalent
to the conjunction of the OWL translations of the two policies.

Proof : Consider two policies, P1 and P2 in normal form:
P1 = ExactlyOne(A1, A2, A3, ... An)
P2 = ExactlyOne(B1, B2, B3, ... Bn)



Representing Web Service Policies in OWL-DL 475

Then, their translations to OWL would have the following form:
O1 = (A1 ∪A2 ∪A3 ∪ ...∪An)

⋂
¬((A1 ∩A2)∪ (A1 ∩A3)∪ ...∪ (An−1 ∩An))

O2 = (B1 ∪B2 ∪B3 ∪ ...∪Bn)
⋂
¬((B1 ∩B2)∪ (B1 ∩B3)∪ ...∪ (Bn−1 ∩Bn))

A merged policy can be mapped to the following OWL expression,
P1 merge P2 = ((A1 ∩B1) ∪ (A1 ∩B2) ∪ ... ∪ (An ∩Bm))

⋂

¬((A1 ∩B1 ∩A1 ∩B2)∪ (A1 ∩B1 ∩A1 ∩B3)∪ ...∪ (An ∩Bm−1 ∩An ∩Bm)).

We are going to show that (O1 ∩ O2) ⇔ (P1 merge P2). The proof follows the
divide and conquer approach - we first split up both of the expressions in two
disjoint parts, then show that the subexpressions are equivalent.

For the first part,
((A1 ∩B1) ∪ (A1 ∩B2) ∪ ... ∪ (An ∩Bm))⇔
(A1 ∪A2 ∪A3 ∪ ... ∪An) ∩ (B1 ∪B2 ∪B3 ∪ ... ∪Bn)
holds because ∩ distributes over ∪.
After eliminating ¬, the second part is to prove that

((A1 ∩B1 ∩A1 ∩B2)∪ (A1 ∩B1 ∩A1 ∩B3)∪ ...∪ (An ∩Bm−1 ∩An ∩Bm)) (1)

is equivalent to:

((A1 ∩A2)∪ (A1 ∩A3)∪ ...∪ (An−1 ∩An))∩ ((B1 ∩B2)∪ ...∪ (Bn−1 ∩Bn)) (2)

After applying distributive law, (2) can be written in DNF as well:

((A1∩A2∩B1∩B2)∪(A1∩A2∩B1∩B3)∪...∪(An−1∩An∩B(m−1)∩Bm)) (3)

Having both of the expressions in DNF, we can easily show that each disjunct
from (1) can be expressed using a combination of disjuncts in (3), and vice-versa.
Having (1) ⊆ (3) and (3) ⊆ (1) means that (1) = (3), thus these subexpressions
are equivalent,too. Having proven that the corresponding subexpressions are
equivalent, we conclude that (O1 ∩O2) ⇔ (P1 merge P2).Q.E.D



Information Modeling for End to End
Composition of Semantic Web Services

Arun Kumar, Biplav Srivastava, and Sumit Mittal

IBM India Research Laboratory,
Block 1, IIT Campus, Hauz Khas, New Delhi 110016, India

{kkarun, sbiplav, sumittal}@in.ibm.com

Abstract. One of the main goals of the semantic web services effort is
to enable automated composition of web services. An end-to-end view
of the service composition process involves automation of composite ser-
vice creation, development of executable workflows and deployment on
an execution environment. However, the main focus in literature has
been on the initial part of formally representing web service capabilities
and reasoning about their composition using AI techniques. Based upon
our experience in building an end-to-end composition tool for applica-
tion integration, we bring out issues that have an impact on information
modeling aspects of the composition process. In this paper, we present
approaches for solving problems relating to scalability and manageabil-
ity of service descriptions and data flow construction for operationalizing
the composed services.

1 Introduction

In many industrial applications such as mobile telephony, service providers face
intense competition. In response, they need to continually develop compelling
applications (e.g., movie recommendation system) to attract and retain end-
users, with quick time-to-market. Much of this service/application development
is currently done manually in an ad hoc manner, without standard frameworks
or libraries, thus resulting in poor reuse of software assets. When a new service
is needed, the desired capability is informally specified and then, an application
developer must create this capability using component services available in-house
or from known vendors. A component-oriented software development approach to
application integration where each software is wrapped as a web service would
offer substantial benefits in creating new services by leveraging web services
composition.

Web services composition involves concepts from the AI domain as well as
software engineering/programming domain. When viewed as a program, input
and output parameters become important whereas when viewed as an action,
the preconditions and effects become dominant [19]. However, most of the work
in semantic web services community has focused on the AI approach of formally
representing web service capabilities in ontologies like OWL-S [15], and rea-
soning about their composition using goal-oriented inferencing techniques from

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 476–490, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Information Modeling for End to End Composition 477

planning[11]. An end-to-end view of web service composition starting from new
service specification to an executing instance of the composed service is missing.
To address this view, we have developed a prototype of a tool for facilitating new
service creation and application integration for telecom service providers [1].

Our solution takes an end to end view and synergistically combines the AI
approach of reasoning about web services functionality based on their precon-
ditions and effects, and the distributed programming approach of selecting in-
stances to optimize end-to-end runtime metrics, currently adopted by semantic
web community and the industry, respectively. The solution drives the composi-
tion process right from specification of the business process in OWL-S, through
creation of desired functionality using planning techniques into an abstract plan
(workflow), through generation of a deployable workflow by selection and bind-
ing of appropriate service instances (specified using WSDL1), to finally deploying
and running the composite service (specified using BPEL [5]).

The web service modeling efforts in the semantic web community, however,
fall short of expectations of real world applications. During the course of our
prototype development, we ran into several important modeling issues. We find
that existing OWL-S service support is insufficient for the end-to-end compo-
sition vision because (a) the modeling does not allow for best knowledge engi-
neering practices of modularity, conciseness and generality and (b) composed
web services cannot be automatically operationalized due to lack of contextual
information associated with input and output parameters.

A few alternative formalisms have been proposed to address OWL-S defi-
ciencies but they focus more on foundational frameworks to overcome represen-
tational weaknesses [14, 21] rather than address ways for efficient, automatic,
end-to-end composition. In this paper, we investigate information modeling is-
sues for end-to-end composition of web services and propose related pragmatic
extensions to OWL-S. Most specifically, our contributions through this work are:

– We differentiate web service types from service instances. This helps in or-
ganizing the expected thousands of web services into categories, allows the
scaling of OWL-S ontology for inferencing and permits systematic treatment
of non-functional requirements.

– We define support for context to disambiguate intended meanings of input
and output (i/o) parameters. In other words, we introduce semantics for i/o
parameters to construct the data flow after the control flow has been worked
out by planning.

Representation and reasoning go hand-in-hand in any application. While we
mainly focus on information modeling when using contingent planning for web
service composition, we clarify at the outset that the proposed solution is also
applicable if a different planner or a more complex planning formalism were to
be used. More details of planning is given in the related works.

The rest of the paper is organized as follows. Section 2 describes a motivating
scenario, highlighting the problems that surface while using OWL-S for end-to-
1 http://www.w3.org/TR/wsdl



478 A. Kumar, B. Srivastava, and S. Mittal

end composition. Section 3 discusses the issue of scaling of services ontology.
Section 4 deals with generation of data flow to operationalize the composite
service. Section 5 briefly describes our implementation. Section 6 gives some
related work and Section 7 concludes the paper.

2 A Motivating Scenario

Suppose a telco wishes to offer its telecom and IT infrastructure to enterprise
clients, by creating and deploying services that would enable automation of the
client’s business processes. An example of such a business process is a simple Cus-
tomer Order Management System for a FlowerDelivery service. Assume that the
registry of available services in the telco’s infrastructure consists of a Directory
service, one or more flower selling services - FreshFlowerShop service, Fragrant-
FlowerShop service, etc., multiple credit card services such as VisaCard service,
MasterCard service etc. and a Dispatch service. Figure 1 shows the ≺Inputs,
Outputs, Preconditions, Effects' (IOPEs) of these services.

The figure also shows a feasible plan for the new service obtainable with an
AI planner. The plan consists of invocations to directory service for obtaining

New Service Requirement
Name: FlowerDeliveryService
Input: PersonName, PersonName, FlowerName, NumOfFlowers, CreditCard
Output: OrderReceipt, DeliveryReceipt
Precon: PersonName notNulla, PersonName notNull, NumOfFlowers <= 1000,

FlowerName oneOf FLOWERLIST, CreditCard hasBalance
Effect: Packet deliveredTo PersonName, OrderReceipt sentTo PersonName,

DeliveryReceipt sentTo PersonName, CreditCard debited

Services in Registry
Name: FreshFlowerShop Service Name: Directory Service
Input: Address, Address, FlowerName, NumOfFlowers Input: Name
Output:OrderReceipt, Packet, Amount Output: Address
Precon:Address available, Address available, Precon: Name notNull

FlowerName oneOf FLOWERLIST,
NumOfFlowers <= 1500

Effect: OrderReceipt sentTo Address, Effect: Address available
Amount available, Packet available

Name: FragrantFlowerShop Service Name: VisaCard Service
Input: Address, Address, FlowerName, NumOfFlowers Input: Amount, CreditCard
Output:OrderReceipt, Packet, Amount Output: Authorization
Precon:Address available, Address available, Precon: Amount available,

FlowerName oneOf FLOWERLIST, CreditCard hasBalance
NumOfFlowers <= 1200

Effect: OrderReceipt sentTo Address, Effect: CreditCard debited,
Amount available, Packet available Authorization available

Name: CheapFlowerShop Service Name: Dispatch Service
Input: Address, Address, ItemCode, NumOfItems Input: Authorization, Address, Address, Packet
Output:Acknowledgment, Packet, Charges Output: DeliveryReceipt
Precon:Address available, ItemCode oneOf ITEMLIST, Precon: Authorization available, Address available,

Address available, NumOfItems <= 100 Address available, Packet available
Effect: Acknowledgment sentTo Address, Effect: DeliveryReceipt sentTo Address,

Amount available, Packet available Packet deliveredTo Address

A plan for FlowerDelivery Service
// I is for input and O is for output
Step 1: Directory Service1(I:N1, O:A1)

Directory Service2(I:N2, O:A2)
Step 2: FreshFlowerShop Service(I:A3, I:A4, I:FN, I:NUM, O:ORCPT, O:PKT, O:AMT)
Step 3: VisaCard Service(I:AMT, I:CC, O:AUTH)
Step 4: Dispatch Service(I:AUTH, I:A5, I:A6, I:PKT, O:DRCPT)

a
The string in boldface is the predicate and the associated strings are its parameters

Fig. 1. The FlowerDelivery Service composition scenario



Information Modeling for End to End Composition 479

addresses of the sender and the recipient. This is followed by invocation to one of
the flower shop services for obtaining desired flowers. An order receipt is sent to
the sender. Pricing details are passed on to the credit card payment gateway and
on successful authorization, shipping details and the flower packet are handed
over to the dispatch service for delivery. A delivery receipt is now sent to the
sender. In generating an end-to-end deployable plan for this scenario, we faced
the modeling problems listed below.

Service Types Vs Instances: The scenario described above has multiple flower
shop services. These services can offer different kinds of flower packages (e.g.
bouquets, decoration styles etc.), but essentially they are all flower shops. This
fact can be very useful for efficient representation of such services. Unfortunately,
OWL-S does not capture the notion of service types. Each OWL-S description
currently pertains to a single instance of a service.

There are several drawbacks with this approach. First, given the require-
ments of the new FlowerDelivery service as shown in Figure 1, the composition
tool needs to consider and evaluate each and every instance of such FlowerShop
kind of service available. This seriously affects the performance and scalability
of the composer (planner) since there may be hundreds of such FlowerShop ser-
vice instances available whereas for obtaining a feasible functional composition,
different instances of similar kinds of services need not be considered.

The second drawback of the current approach is related to standardization.
Since there is nothing common defined for similar services, a composition tool
cannot infer anything about the degree of similarity or dissimilarity of these
services. In our scenario, each of the FlowerShop services have different profiles
even though their underlying process model may be the same. In Figure 1 the
FreshFlowershop Service has a different profile than that of CheapFlowerShop
Service. We can try to rectify this by adding some relations in the ontology such
as OrderReceipt isEquivalentTo Acknowledgment, but it does not always work
as in the case of FlowerName and ItemCode. Since the profile model is used to
advertise a service, these two would appear as different kinds of services.

The third drawback relates to the service grounding part. Since grounding is
specific to each service instance, a composition taking that into account is less
likely to be stable - changes at the level of individual service instance operation
take place much more frequently than those at the level of service functionality.
The composition becomes prone to small implementation changes made to the
service instance. For example, if the VisaCard Service originally supported 64-
bit encryption protocol (specified in its grounding, not shown in figure) then the
plan in Figure 1 may break if VisaCard service upgrades to 128-bit encryption.

Support for Data Flow Construction: When we seek to operationalize com-
posed plans, we are in fact generating programs. A program contains the speci-
fication of both its control flow (the dependence among activities) and the data
flow (the dependence among data manipulations). Planning techniques can be
used to easily generate the control flow for the composite service given the pre-



480 A. Kumar, B. Srivastava, and S. Mittal

condition and effect information for available service types, but generating the
complete data flow needs reasoning with contexts of inputs and outputs.

For the full composition, data flow has to be produced between dependent
services to make the plan executable. In Figure 1, the FreshFlowerShop Service
accepts two addresses - one of these addresses is that of the sender and the
other is that of the recipient. Even if this distinction of their semantics is not
necessary for generating the control flow, it could be important for the data
flow. Specifically, the two addresses can have different meanings and different
data (message) types. In the FlowerDelivery scenario, to determine the relation
between input/output of component services, we must (automatically) figure out
things such as the following:

DF1: CreditCard information from the user goes directly to the VisaCard
Service.

DF2: distinguish the semantics of the two Address inputs each to the Fresh-
FlowerShop Service and the DispatchService.

DF3: map the Address outputs from invocation of the two DirectoryService
instances to the Address inputs of both the FreshFlowerShop Service as well as
the DispatchService.

DF4: DeliveryReceipt from DispatchService and OrderReceipt from Fresh-
FlowerShop Service together constitute the output for the user.

In programming languages this issue is resolved by specifying an ordering among
the parameters of a function or procedure. A human developer could then look
at the language specification and specify the parameters accordingly. However,
in the web service composition scenario, software programs cannot automatically
derive and interpret semantics of all parameters just from the available ordering.
The context for the inputs and outputs need to be made explicit. One provision to
model the semantics associated with the input/output parameters is by creating
new concepts in the domain ontology. But this will make the ontology large and
brittle. The latter consequence is well understood in knowledge engineering[18]
and that is the reason very specific terms are not recommended in an ontology.

In the following two sections, we will look into these modeling issues more
closely and propose approaches for resolving them.

3 Scaling Services Ontology

In order to work with large collections of web services – categorizing them, sup-
porting multiple views [10], standardization and for stable functional composi-
tions – we need to support web service types that are described independent of in-
dividual web service instances. The approach of separating type definitions from
instance definitions has been used successfully in data models for distributed
systems management [13] and has various modeling benefits. In this section, we
first delve into the classification of services into types and instances, then look
at the support for this classification in OWL-S and finally discuss the issue of
modeling non functional service capabilities.



Information Modeling for End to End Composition 481

3.1 Classifying Services into Types and Instances

Our proposal raises the question of what kind of relationship a web service type
has with its various instances. A web service type captures the core function-
ality of a class of web services. Individual instances belonging to that class of
services must adhere to the basic type definition but may be allowed to offer
minor variations under some constraints. An important desiderata is that any
composition which is produced with the web service type should be still valid
when any of its web service instance is selected. This is ensured if the precondi-
tion of a web service type is more specific than precondition of its instances and
its effect is more general than effect of any of its instances. We can summarize
the relationship as:

If Sinstance is of Stype ,

1. S
type
precondition

� Sinstance
precondition

and

2. S
type
effect

� Sinstance
effect

The above relationship states that the precondition of the service type entails the
precondition of the service instance so that the latter is satisfied whenever the
former is. For effects, the reverse is true. With this, given a web service request R,
when the request matches a service type (R �� Stype), the relationship between
R and the web service instances would be:

1. Rprecondition �� S
type
precondition

⇒ (∀Sinstance: Stype) Rprecondition �� Sinstance
precondition

and

2. Reffect �� S
type
effect

⇒ (∀Sinstance: Stype) Reffect �� Sinstance
effect

According to it, if a request R matches a web service type, where matching can
be exact or defined over a range as in [16], all the instances of the web service type
will also match. While this relationship would guarantee that compositions are
valid when the abstract plan is concretized, it can be overly restrictive because
the precondition of the web service type is required to be more specific than all
its instances. We will call this as the strict relation. To relax the restriction, we
use the insight that eventually each web service type referred in the abstract
plan will be instantiated by only one web service instance. Therefore, as long as
we could guarantee that if a request R matches a web service type, some but at
least one instance of the web service type will also match, the abstract will be
successfully concretized and the composition will succeed. That is,

1. Rprecondition �� S
type
precondition

⇒ (∃Sinstance−i: Stype) Rprecondition �� S
instance−i
precondition

and

2. Reffect �� S
type
effect

⇒ (∃Sinstance−j : Stype) Reffect �� S
instance−j
effect

and

3. instance-i = instance-j

The decision of whether to follow the strict or relaxed relationship during domain
modeling is one of balancing tradeoffs. With the former, the abstract plans can
be automatically concretized because all its service instances are guaranteed to



482 A. Kumar, B. Srivastava, and S. Mittal

preserve composition. With the latter, a service type has to be more specific
than at least one of its instance and this would simplify building of the services
ontology (e.g., more instances for a type). During the concretization of abstract
plan, all instances might need to be explored for say, optimality. In that case,
additional constraints will have to be checked for instances whose preconditions
are more specific than that of their type. Checking these additional constraints
may require the intervention of a developer.

We adopt the relaxed relation above as the guideline for our domain model-
ing. In Figure 2, FlowerShopService type captures the category of flower shop
services whose instances are Fresh, Fragrant and Cheap Flower shop services.
The preconditions of FlowerShopService type is the same as Fresh and Fragrant
service instances (disregarding the non-functional requirement of NumOfFlow-
ers, see below) but different from precondition of Cheap Flower service which
has a restriction on ItemCode.

New Service Requirement
Name: FlowerDeliveryService
Input: PersonName (From), PersonName (To), FlowerName,

NumOfFlowers, CreditCard
Output: OrderReceipt, DeliveryReceipt
Precon: PersonName (From) notNull, PersonName (To) notNull,

CreditCard hasBalance, FlowerName oneOf FLOWERLIST,
NumOfFlowers <= 1000

Effect: Packet deliveredTo PersonName, OrderReceipt sentTo PersonName,
DeliveryReceipt sentTo PersonName, CreditCard debited

Service Types in Registry
Name: FlowerShop Service Type Name: Directory Service Type
Input: Address (From), Address (To), Input: Name

FlowerName, NumOfFlowers
Output:OrderReceipt, Packet, Amount Output: Address
Precon:Address (From) available, Address (To) available Precon: Name notNull

FlowerName oneOf FLOWERLIST
Effect: OrderReceipt sentTo Address (From), Effect: Address available

Amount available, Packet available

Name: Dispatch Service Type Name: CreditCard Service Type
Input: Authorization, Address (From), Address (To), Packet Input: Amount, CreditCard
Output:DeliveryReceipt Output: Authorization
Precon:Authorization available, Address (From), Precon: Amount available,

Address (To) available, Packet available CreditCard hasBalance
Effect: DeliveryReceipt sentTo Address (From), Effect: CreditCard debited,

Packet deliveredTo Address (To) Authorization available

Service Instances in Registry
— Same as the services in Registry of Figure 1 —

A logical Plan for FlowerDelivery Service
// I is for input and O is for output
Step 1: Directory Service Type(I:N1, O:A1)

Directory Service Type(I:N2, O:A2)
Step 2: FlowerShop Service Type(I:A3, I:A4, I:FN, I:NUM,

O:ORCPT, O:PKT, O:AMT)
Step 3: CreditCard Service Type (I:AMT, I:CC, O:AUTH)
Step 4: Dispatch Service Type (I:AUTH, I:A5, I:A6, I:PKT, O:DRCPT)

Fig. 2. Proposed modeling for FlowerDelivery scenario with svc. types, roles & NFCs

3.2 Support for Service Types

As previously noted, currently OWL-S is designed to model a single web service
instance [15]. It consists of a ServiceProfile that describes the interface of the
service, a ServiceModel that describes the details of its operation and a Ser-
viceGrounding that provides information about interoperation with that service
using messages.



Information Modeling for End to End Composition 483

ServiceType

Service

ServiceProfileType

ServiceModelType

ServiceProfile

ServiceGrounding

anInstanceOf

anInstanceOf

presents

presents
supports

describedBy

Fig. 3. Modified OWL-S upper ontology

We propose to separate the representation of web service type definitions
from instance definitions. This means that the OWL-S upper ontology needs
enhancements to have a ServiceType class hierarchy in addition to the Service
hierarchy (see Fig. 3). The ServiceProfile model of the current OWL-S Service
hierarchy is essentially a type definition and can be moved to the ServiceType
hierarchy. The ServiceProfile of an instance will now point to the corresponding
ServiceProfileType for structure, and contain the actual values of the Inputs,
Outputs, Preconditions and Effects (IOPE) parameters applicable for that ser-
vice instance.

ServiceGrounding is a concept that applies to instances rather than types
and can stay as it is. ServiceModel should ideally be encapsulated inside the
service interface and not exposed to the external world. Making the model vis-
ible outside the service is useful only if it describes the conversational aspect of
the web service that would be needed to interoperate with it. In such a case,
it should be included in the ServiceType hierarchy since a common conversa-
tion model should be applicable to all instances of a service type. In other
words, we propose to have an ontology for service types that consists of Ser-
viceProfileType and ServiceModelType model. This would be in addition to an
ontology for service instances that consists of a ServiceProfile and a Service-
Grounding.

With this representation, a new kind of service can be specified in the ontol-
ogy by adding an object of type serviceType, without having to create an actual
running instance first. This is not possible in the current OWL-S ontology. Cre-
ating an object of ServiceType would include defining the parameters in its
profile by populating the ServiceProfileType model, and describing the conver-
sation model by populating the ServiceModelType model. Each actual running
instance of this web service would be represented by an object of type Service
and include a reference to its ServiceType object. Its ServiceProfile model would
contain the actual values of the parameters listed in the corresponding Service-
ProfileType.

3.3 Modeling Non Functional Service Capabilities

The functional capability (FC) of a web service describes its core functionality.
It is expressed through IOPEs that capture the transformation performed by
this service. The non-functional capabilities (NFCs), on the other hand, help



484 A. Kumar, B. Srivastava, and S. Mittal

in characterizing the service further by capturing its optional features, such as
cost, QoS etc. OWL-S has provision to represent NFCs through profile attributes
which may contain parameters other than the functional IOPEs.

Since NFCs inherently capture properties of service instances (and not of
types), they are not needed during functional composition. In contrast, FCs
form the core of the functional composition process. NFCs play an important
role during selection of appropriate service instances in order to meet the end-
user requirements. The current OWL-S only deals with service instances and
therefore all the functional as well as non-functional attributes are in the Servi-
ceProfile. In our modified OWL-S upper ontology (presented in Figure 3), the
FCs get represented in ServiceProfileType. The ServiceProfile of an instance
inherits these FCs from the ServiceProfileType and adds the NFCs to it.

In some domains it may be desirable to model certain service features as
mandatory for all instances of a service type. In military applications, for exam-
ple, it may be necessary to make all service instances secure. For such domains,
it seems logical to model NFCs such as security in the service type itself. These
non-functional capabilities now form a part of the core functionality. They are
included in ServiceProfileTypes and are utilized in selecting service types during
the logical composition phase.

Table 1 shows the NFCs for the FlowerShop service instances. Note that
NumOfFlowers is not modeled in FlowerShopService type in Figure 2, as opposed
to Figure 1 where it is included as a part of precondition of the services. The
NumOfFlowers requirement in the desired composite service was for ≺ 1000 and
this would be ensured while picking instances.

Table 1. Representing Instances for FlowerShop Services

Instance Name Security Level Response Time Max #Flowers
FreshFlowerShopService Restricted 70 sec 1500
FragrantFlowerShopService Confidential 240 sec 1200
CheapFlowerShopService Public 30 sec 100

4 Generation of Data Flow

One of the main differences between knowledge engineering and programming,
as described in [18]2, is that while logic sentences in the former tend to be self-
contained, the statements in a program depend heavily on surrounding context.
To operationalize the workflow of the composite service, we need support for in-
corporating context with IO parameters of component web services. One option
is to introduce specific terms in the domain ontology, one for each possible con-
cept and each valid context. However, this makes the ontology large and brittle.
The consequence of this is well understood in knowledge engineering [18] and
that is the reason very specific terms are not recommended in an ontology.
2 Chapter 8, Page 222.



Information Modeling for End to End Composition 485

The semantics of each input/output parameter can be expressed along two
dimensions. The first one specifies the meaning of the parameter as intended by
the service designer. For instance, the designer of FreshFlowerShop Service could
designate one Address parameter as the From address and the other one as the
To address. The second dimension is dictated by the composition of which this
service becomes a component. If in a composition, the input parameter Name
to the Directory Service is assigned the label From, the output Address should
be assigned the same label.

4.1 Context Resolution Using Roles

We seek to solve the problem of context resolution by explicitly encoding the
context for inputs and outputs using the notion of roles. A role is a term that
qualifies a concept. That is, for any concept ϕ, (ψ ϕ) specifies that the role
played by ϕ is ψ. Roles are optionally specified on the inputs and outputs by
the service developer. They come from a separate ontology, and are structured
and standardized in a domain similar to concepts. Figure 4 shows a sample
role ontology for roles that could be played during categorizing offerings, item
transfer and expertise lookup. Depending on need, a parameter can have either
one, multiple or no specific roles. In Figure 2, the user assigns the roles of From
and To to the two input addresses in the input specification.

Fig. 4. Sample Role Ontology

In [8], the authors give an extensive coverage of how context is handled in
knowledge representation in AI. Their solution is to explicitly model context as
a resource and they introduce terms to specify lifting rules so that propositions
could be generalized across contexts to serve their data aggregation application.
In comparison to the roles, the context of [8] means that if ist(ci, ϕ), the proposi-
tion ϕ is true in context ci. The two usages can be combined - for example, ist(ci,
ψ ϕ) means that the proposition ϕ has the role ψ in the context ci. Currently
OWL-S does not support the notion of roles for service representation.

A key motivation for defining roles is that they should be generic in nature.
If a role can be attached with multiple concepts, it reduces brittleness in the
ontology by eliminating the need for specific terms. Introduction of roles, how-
ever, requires the developer to define the roles played by the input and output
parameters in her specification of the service.



486 A. Kumar, B. Srivastava, and S. Mittal

4.2 Role Propagation

Roles can be propagated so that input or output or both can be associated with
new roles in the presence of roles coming from requirement specification and/or
those of other services. New roles can be acquired while matching a specification
with a service instance or from the input to the output of a service and vice-
versa. When a role can or cannot be propagated will be specified by the service
modeler for a service using some rule language like SWRL. Some rules are given
in Figure 5. Rule 1 says that a role from the specification can be propagated to
input of an instance. In Figure 2, using this rule, the roles From and To from
the requirements specification are transferred to the corresponding inputs of the
Directory service instances. Rule 2 says that roles can be propagated from the
input to the output of a service. In our scenario, using this rule, the role of
input From or To to the Directory service is carried to its output. Rule 3 says
that role can be propagated from the output of one service instance to input of
a successor, if the successor does not have roles assigned for its inputs. Rule 4
says that if the inputs (or outputs) of a service has parameters of the same type
(with no roles assigned), no role is propagated. This is because having the same
parameter type introduces ambiguity for propagation. For example, if roles were
not assigned to the two Address inputs of the FlowerShop Service by the service
developer, no role for them can be inferred automatically from the composition.

Given service S with inputs I and outputs O

1. IF ψinstance
I

= {} and ψ
spec
I

�= {}
THEN ψinstance

I
= ψ

spec
I

2. IF ψO = {} and ψI �= {}
THEN ψO = ψI

3. IF ψ
next−instance
I

= {} and ψ
prev−instance
O

�= {}

THENψ
next−instance
I

= ψ
prev−instance
O

4. IF ((∃Ii, Ij , i �= j s.t. I
type
i

= I
type
j

) ∨

(∃ Oi, Oj , i �= j s.t. O
type
i

= O
type
j

)

THEN do not propagate

Fig. 5. Some rules for role propagation

The rules cannot be generic because role propagation should depend on the
way the service processes its inputs to generate outputs, something best known
to the service developer. Therefore, we advocate that rules be provided on a per
service basis, taking into account the way service has been implemented.

4.3 Data Flow Construction Using Roles

Going back to the data flow problems raised in Section 2, credit card and receipts
can be deduced from the IO data types of the services in the composition. For
address, the role propagation rules can be used with Directory Service to auto-
matically deduce the data flow as follows. Rule 1 will associate different roles



Information Modeling for End to End Composition 487

From and To to the two directory Service instances and Rule 2 will propagate
them to the outputs. Now, using the roles on outputs of Directory Services, the
data flow with the next services - FlowerShop Service and Dispatch Service - is
found by simple role alignment.

Assigning roles has two benefits - on the one hand, role disambiguates be-
tween multiple instances of the same concept in a service profile thus clarifying
the intended usage of the concept in the service. On the other hand, it enables
the creation of a context using which the data flow from other service to this
service. Association of roles with parameters of a web service also provides an
extra dimension for matching requirements. A match-making tool would try to
search services for which the input parameters have roles that fit the description
of the requirement.

4.4 Discussion

In [8], the authors point out that while the aim of a context mechanism is to
qualify information, in the semantic web, the mechanism should additionally be
able to handle its large scale and distributedness, i.e., the mechanism should
yet be easy to inference with and easy to use. They argue that the best way to
approach a context mechanism is by focusing on the needs of a specific applica-
tion, and they focus on data integration. In this section, we presented roles as a
pragmatic approach for resolving ambiguities during service composition.

However, there are other kinds of situations where roles are not sufficient. To il-
lustrate, in situationDF3mentioned inSection2, thedataflowcouldbeconstructed
using roles under the assumption that an output from a service is unconstrained.
For example, the solution assumed that an output can serve as input for more than
one service later in the plan. Modeling of such assumptions is not handled. Full au-
tomation of data flow construction needs full support for contextual reasoning.

5 Implementation

We have implemented a prototype tool that allows end to end composition of
web services [1]. The composition is basically done in two stages:

1. Logical Composition: This phase provides functional composition of ser-
vice types to create new functionality that is currently not available.

2. Physical Composition: This phase enables the selection of component ser-
vice instances based on non-functional (e.g. QoS) requirements, that would
then be bound together for deploying the newly created composite service.

In the absence of tools to support our modified OWL-S ontology (introduced
in Section 3), we used the current OWL-S Profile model to represent the ser-
vice types. The combination of SNOBASE3 and PSME [6] was used as registry
for service type definitions. The logical phase uses service types for creation of
3 http://www.alphaworks.ibm.com/tech/snobase



488 A. Kumar, B. Srivastava, and S. Mittal

abstract composition(s) delivering the desired functionality. Once an abstract
composition is obtained then the physical phase uses a registry of web service
instances to select appropriate instances satisfying the user’s non-functional re-
quirements. We used Web Service Matchmaking Engine (WSME) [7] as a service
instances registry to contain Web Service Description Language (WSDL) spec-
ifications for each advertised service along with its non-functional capabilities.
The tool produces deployable and executable composite service represented in
BPEL language.

We have implemented a Role Ontology for the flower shop scenario and mod-
ified our OWL-S service descriptions to incorporate role information along with
each input/output parameter. The roles help in guiding the data flow construc-
tion as discussed.

6 Related Work

Information modeling for end-to-end web services composition is challenging.
The composition problem poses challenge to existing planning methods in rep-
resentation of complex actions, handling of richly typed messages, dynamic ob-
ject creation and specification of multi-partner interactions [20]. We are using
limited contingent planning for generating the control flow during web service
composition [12, 1]. Contingent planning (CP) deals with planning for domain
with incomplete knowledge and sensing. In the case of web services, the value
of all logical terms may not be known in the initial state but they can be found
at the runtime using sensing actions. Our planner can also take input about se-
lective conditions from the user and then uses it to efficiently focus search. But
the modeling solutions are applicable independent of the form of planning used.

Many authors have raised issues about OWL-S. For example, [14] gives a
list of problems with OWL-S: conceptual ambiguity (e.g., what is a service?),
poor axiomatization (there is no firm concept or relation hierarchy and several
relations take placeholders in the domain or range), loose design (support for
multiple views is needed at different levels of granularity), and narrow scope on
information systems which does not make distinction with real world objects and
events. However, it does not deal with scalability, service quality and assessment
which is essential for end to end composition.

The end-user requirements for the composite service, like that of any soft-
ware program, can consist of functional as well as non-functional requirements.
The non-functional attributes relate to performance, reliability and other user-
acceptance issues. [4] describes how such requirements can be qualitatively ar-
ranged as goal structures and used to design systems. Their framework allows
treating requirements as potentially conflicting or synergistic goals to achieve
during the software development process. A middleware for composing web ser-
vices with QoS in mind is presented in [22]. We characterize how to model
non-functional capabilities for the composition process.

Our solution regarding generation of data-flow is related to [9] which de-
scribes an environment for building reusable ontologies based on the concept of



Information Modeling for End to End Composition 489

roles. This work informally defines role as a characteristic that a basic domain
concept exhibits in a context. We can use their tool to build role ontology in
parallel with the domain ontology. Our solution is in the spirit of [3] where a
formal framework was proposed for data integration based on dynamic logic. An
alternative proposal to OWL-S is the SESMA [17] model which directly handles
inputs and outputs. Here, a notion of conversation data set is introduced to hold
the input and output variables with values, and these could be evaluated as part
of reasoning with the service’s preconditions and effects.

Problem of data flow analysis in programs has been studied extensively in
the compiler domain. Gathering knowledge of how data flows in a program is
conceptualized using the life-cycle and scope of variables [2]. Analyzing the data
flow should be differentiated from generation of the flow itself. The former arises
when component modules have already been integrated and bounded using vari-
ables. The latter presents itself while the developer is trying to integrate the
modules, and is therefore the harder issue to resolve.

7 Conclusion

Current efforts in the world of semantic web services focus on formally represent-
ing service capabilities and on reasoning about composition of services using AI
techniques. We presented several issues that arise when we view the composition
of web services from an end-to-end perspective. Concretely, we delved into the
aspects related to scaling of service ontologies and support for generation of data
flow information to operationalize a composite workflow. We discussed the need
for separating service type from service instances and introduced the notion of
roles to help disambiguate the semantics of IO parameters. We showed that the
proposed guidelines are helpful in an end-to-end composition scenario.

References

1. V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal, and B. Sri-
vastava. A Service Creation Environment based on End to End Composition of
Web Services. In Proceedings of the 14th International World Wide Conference,
May 2005.

2. A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

3. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Daniele Nardi, and
Riccardo Rosati. Description logic framework for information integration. In Prin-
ciples of Knowledge Representation and Reasoning, pages 2–13, 1998.

4. L. Chung and B. A. Nixon. Dealing with Non-Functional Requirements: Three
Experimental Studies of a Process-Oriented Approach. In International Conference
on Software Engineering, pages 25–37, 1995.

5. F. Curbera et al. Business Process Execution Language for Web Services.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/, 2002.

6. P. Doshi, R. Goodwin, R. Akkiraju, and S. Roeder. Parameterized Semantic Match-
making for Workflow Composition. Technical Report RC23133, March 2004.



490 A. Kumar, B. Srivastava, and S. Mittal

7. C. Facciorusso, S. Field, R. Hauser, Y. Hoffner, R. Humbel, R. Pawlitzek,
W. Rjaibi, and C. Siminitz. A Web Services Matchmaking Engine for Web Services.
In Proc. 4th Intl. Conf. on e-Commerce and Web technologies, Sep. 2003.

8. R. Guha, R. McCool, and R. Fikes. Contexts for the Semantic Web. In Proceedings
of the International Semantic Web Conference, 2004.

9. K. Kozaki, Y. Kitamura, M. Ikeda, and R. Mizoguchi. Hozo: An Environment for
Building/Using Ontologies Based on a Fundamental Consideration of “Role” and
“Relationship”. In 13th Int. Conf. on Knowledge Engg. and Knowledge Manage-
ment, 2002.

10. R. Lara, H. Lausen, S. Arroyo, J. de Bruijn, and D. Fensel. Semantic Web Services:
Description Requirements and Current Technologies. In International Workshop
on Electronic Commerce, Agents, and Semantic Web Services, September 2003.

11. S. McIlraith, T. C. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent
Systems, Special Issue on the Semantic Web., 16(2):46–53, March/April 2001.

12. A. Mediratta and B. Srivastava. User-driven search control in contingent planning
and an application. In IBM Research Report, 2005.

13. Common Information Model (CIM) Metrics Model, Version 2.7. Distributed
Management Task Force, http://www.dmtf.org/standards/documents/CIM/
DSP0141.pdf, June 2003.

14. P. Mika, D. Oberle, A. Gangemi, and M. Sabou. Foundations for Service Ontologies:
Aligning OWL-S to DOLCE. In Proceedings of the 13th International World Wide
Web Conference, 2004.

15. OWL Services Coalition. OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/ owl-s/1.0/owl-s.html, Nov. 2003.

16. M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic matching of
web services capabilities. In Proceedings of the First International Semantic Web
Conference, LNCS 2342, pages 333–347. Springer-Verlag, 2002.

17. J. Peer. Semantic service markup with SESMA - language specification, version
0.7. In http://elektra.mcm.unisg.ch/pbwsc/docs/sesma 0.7.pdf, 2004.

18. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach (First Ed.).
Prentice Hall Publication, ISBN: 0131038052., 1995.

19. Marta Sabou, Debbie Richards, and Sander van Splunter. An Experience Report on
using DAML-S. In Proceedings of 12th International World Wide Web Conference,
(WWW), May 2003.

20. B. Srivastava and J. Koehler. Web Service Composition - Current Solutions and
Open Problems. ICAPS 2003 Workshop on Planning for Web Services, 2003.

21. WSMO. Web Services Modeling Ontology. http://www.wsmo.org, 2004.
22. L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-

Aware Middleware for Web Services Composition. In IEEE Transactions on Soft-
ware Engineering, pages 311–327, 2004.



Searching Dynamic Communities with Personal Indexes

Alexander Löser1, Christoph Tempich3, Bastian Quilitz1, Wolf-Tilo Balke2,
Steffen Staab4, and Wolfgang Nejdl2

1 CIS,University of Technology Berlin, Einsteinufer 17, 10587 Berlin, Germany
{aloeser, baqui}@cs.tu-berlin.de

2 L3S, University of Hannover, 30167 Hannover, Germany
balke, nejdl@l3s.de

3 AIFB, University of Karlsruhe 76128 Karlsruhe, Germany
tempich@aifb.uni-karlsruhe.de

4 ISWeb, University of Koblenz Landau 56016 Koblenz, Germany
staab@uni-koblenz.de

Abstract. Often the challenge of finding relevant information is reduced to find
the ’right’ people who will answer our question. In this paper we present innova-
tive algorithms called INGA (Interest-based Node Grouping Algorithms) which
integrate personal routing indices into semantic query processing to boost perfor-
mance. Similar to social networks peers in INGA cooperate to efficiently route
queries for documents along adaptive shortcut-based overlays using only local,
but semantically well chosen information. We propose active and passive short-
cut creation strategies for index building and a novel algorithm to select the most
promising content providers depending on each peer index with respect to the
individual query. We quantify the benefit of our indexing strategy by extensive
performance experiments in the SWAP simulation infrastructure. While obtain-
ing high recall values compared to other state-of-the-art algorithms, we show that
INGA improves recall and reduces the number of messages significantly.

1 Introduction

Finding relevant information from a heterogeneous set of information resources is a
longstanding problem in computing. In everyday life we observe that there are success-
ful strategies for finding relevant information in a social network of people. Studies
of social networks show that the challenge of finding relevant information may be re-
duced to find the ’right’ people. ‘The right people’ generally are the ones who either
have the desired piece of information and can directly provide the relevant content or
the ones who can recommend ‘the right people’. Milgram’s [15] and Kleinberg’s [12]
experiments illustrated that people with only local knowledge of the network (i.e. their
immediate acquaintances) were quite successful at constructing acquaintance chains of
short length, leading to ’small world’ networks. In such a network, a query is forwarded
along that outgoing link which takes it ’closest’ to the destination. We observe that such
mechanisms in social networks work although

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 491–505, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



492 A. Löser et al.

– people may not always be available to respond to requests,
– people may shift their interests and attention,
– people may not have exactly the ‘right’ knowledge, but only knowledge which is

semantically close.

I.e., the real-world social network is highly dynamic with regard to availability of peers
and with regard to expertise about topics and it needs semantic similarity in order to
determine ‘the right person’.

Inspired by these observations and focussed by the requirements of semantic search
in the setting of distributed autonomous information sources, we have conceived INGA
a novel peer-to-peer algorithm where each peer plays the role of a person in a social
network. In INGA , facts are stored and managed locally on each peer constituting the
‘topical knowledge’ of the peer. A peer responds to a query be providing an answer
matching the query or by forwarding the query to what he deems to be the most ap-
propriate peers. For the purpose of determining the most appropriate peers, each peer
maintains a personal semantic shortcut index. The index is created and maintained in
our highly dynamic setting in a lazy manner, i.e. by analyzing the queries that are initi-
ated by users of the peer-to-peer network and that happen to pass through the peer.

The personal semantic shortcut index maintained at each peer reflects that a peer
may play the following four different roles for the other peers in the network (in de-
creasing order of utility):

– The best peers to query are always those that already have answered the query or
a semantically similar query in the past successfully. We call such peers content
providers.

– If no content providers are known, peers are queried that have issued semantically
similar queries in the past. The assumption is that this peer has been successful in
getting matching answers and now we can directly learn from him about suitable
content providers. We call such peers recommenders.

– If we do not know either of the above we query peers that have established a good
social network to other persons over a variety of general domains. Such peers form
a bootstrapping network.

– If we fail to discover any of the above we fall back to the default layer of neigh-
boring peers. To avoid overfitting to peers already known we occasionally select
random peers for a query. We call this the default network.

Seen from a local perspective, each peer maintains in its index information about some
peers, about what roles these peers play for which topic and how useful they were in the
past. Seen from a global perspective, each of the four roles results in a network layer of
peers that is independent from the other layers.

1.1 Related Work

The first approaches for efficient indexing in P2P architectures were central indices, that
have to transmit either meta data about the available content to central indexing peers,
like e.g. GlOSS [9] or Napster. One of today’s main technique for indexing P2P systems
are so-called distributed hash tables (DHTs),(e.g. [1] or see [4] for a survey) that without



Searching Dynamic Communities with Personal Indexes 493

need of a central index allows to route queries with certain keys to particular peers
containing the desired data. But to provide this functionality all new content in the
network has to be published at the node for the respective key, if new data on a peer
arrives or a new peer joins the network. And in case that a peer leaves the network
the information about its content has to be unpublished. Recent research in [14] shows
that due to the publishing/unpublishing overhead, DHTs lack efficiency when highly
replicated items are requested and in practical settings perform even worse than flooding
approaches degrading further if network churn is introduced.

While the visualization of keys and objects in the same name space used in struc-
tured overlays provides an elegant clean solution to routing within logarithmical bounds
it comes at the significant cost of destroying the locality of the content: Content at a
user’s desktop is co-located with other relevant items, structured overlays destroy this
locality meaning that enhanced opportunities for browsing and pre-fetching are lost
[11]. Unstructured networks, such as Gnutella, keep this locality, since a query is for-
warded to randomly picked neighbors. To bound the number of hops it can travel, each
query is tagged with a maximum number of hops (TTL). In addition Gnutella em-
ploys a duplicate detection mechanism, so that peers do not forward queries that they
have already previously forwarded. To improve the efficiency of Gnutella routing in-
dices local index information are first introduced by [8]. This indexing strategy locally
stores information about specific queries and what peers were successfully queried in
the past. Edutella [16] combines a super-peer network with routing indices and an ef-
ficient broadcast. While its routing approach is efficient, especially when churn is high
its performance suffers from (de-)registering complex semantics in the distributed in-
dices. [18] first considers the semantics of the query to exploit interest-based locality in
a static network. They use shortcuts that are generated after each successful query and
are used to further requests, hence they are comparable to content provider shortcuts.
However their search strategy differs from ours, since they only follow a shortcut if it
matches exact with a query, else they use a flooding approach. To update the index they
use a LRU strategy. Similar, [5] uses a local routing index for content provider shortcuts
for the specific scenario of top k retrieval in P2P networks. Local indices are maintained
in a static super-peer network. Their index policy considers temporal locality, each in-
dex entry has a certain time to live after which the shortcut has to be reestablished
for the next query on that topic. REMINDIN [19] used a routing table storing con-
tent provider shortcuts and a relaxation based routing strategy. The approach was only
designed for a static setting without any index size limitation, an assumption that is
not realistic.

1.2 Contributions and Paper Organisation

In this paper, we propose an improved shortcut selection strategy able to identify and
group peers with similar interests efficiently in a dynamic setting. To our best knowl-
edge, this is the first approach simulating volatile shortcut networks without any static
peers. To adapt to the dynamics of the networks and to bound the local index we
present an index update policy combining temporal, semantic and community local-
ity. We show, that by indexing shortcuts linking only to a small fraction of peers we
perform like an ’unlimited’ index. To further boost performance and enhance recall in a



494 A. Löser et al.

dynamic setting we introduce in INGA two additional types of overlays, namely recom-
mender and bootstrapping overlays. We have built a network simulator and conducted
extensive experiments under realistic conditions. Results show that INGA outperforms
other state-of-the-art approaches significantly.

We describe the infrastructure to maintain the index and the semantic similarity
function to select peers in section 2. Section 3 shows the index structure and update
strategy for each type of shortcut. Section 4 presents our dynamic routing model. Sec-
tion 5 describes our simulation methodology and the results of our simulations.

2 Basic Building Blocks of an INGA Peer

Our peer selection strategies described in section 3 are implementation independent.
For evaluation purposes, though we use the SWAP infrastructure [10]. We recall that
it provides all standard peer-to-peer functionality such as information sharing, search-
ing and publishing of resources. Specifically it comprises the following main building
blocks:

– The network component’s task is to provide core network functionality, such as
maintaining network connections to other peers and to provide a unique peer iden-
tifer (PID).

– Similar to file sharing networks each peer may publish all resources from its lo-
cal content database, so other peers can discover them by its requests (this also
applies to resources downloaded from other peers). All information is wrapped as
RDF statements and stored in an RDF repository 1. Additionally to local meta data
(MMusen isOrganizerOf ISWC2005) each resource is assigned a topic (ISWC2005
isTypeOf SemanticWebConference) and hierarchical information about the topics is
stored (SemanticWebConference subTopicOf Conference). The topics a peer stores
resources for are subsequently referred to as the peers own topics. Note, that our
algorithm does not require a shared topic hierarchy, although it is advantageous for
it (cf. 2).

– For successful queries (own queries or those of other peers), which returned at
least one match, the shortcut management component extracts information about
answering and forwarding peers to create, update or remove shortcuts in the local
shortcut index. Contrary to related approaches, such as DHTs, INGA peers only
index ’egoistically’, i.e. shortcuts on topics they requested themselves.

– The routing logic selects ’most suitable’ peers to forward a query to, for all own
queries or queries forwarded from remote peers. The selection depends on the
knowledge a peer has already acquired for the specific query and the similarity
between the query and locally stored shortcuts.

For simplicity throughout this paper we will assume peers not to be malicious (i.e. they
do not intentionally return false shortcuts); strategies for identifying malicious peers in
overlay networks are e.g. given in [6].

1 http://www.openrdf.org/



Searching Dynamic Communities with Personal Indexes 495

Query and Result Messages. We use a simple query message model which is simi-
lar to the structure of a Gnutella query message. Each query message is a quadruple:
QM(q, b, mp, qid) where q is a SERQL query (cf. footnote 1). We support any SERQL
queries, however for routing purposes only the topic information is used. From a query
for all SemanticWebConferences organized by MMusen, only SemanticWebConference
is utilized for routing. b is the bootstrapping capability of the querying peer to allow
the creation of bootstrapping shortcuts, mp the message path for each query message
containing the unique PIDs of all peers, which have already received the query, to avoid
duplicated query messages, and qid a unique query ID to ensure that a peer does not
respond to a query it has already answered. Unique query IDs in INGA are computed
by using a random number generator that has sufficiently high probability of generating
unique numbers. A result message is a tuple: RM(r, mp, qid) where r represents the
answer to the query. We just consider results which exactly match the query. Besides the
message path mp is copied to the answer message to allow the creation of recommender
and content provider shortcuts.

Semantic Similarity Function. In case the peers in the network share a common topic
hierarchy our routing algorithm uses not only exact index hits, but also exploits the
semantic similarity between a query and an indexed shortcut. We define the similarity
function between a query q and a shortcut sc, which are both given by query terms in the
same topic hierarchy as sim : q×sc→ [0; 1]. Such similarity metrics are often domain
specific and depend on the query semantics. In our implementation we use a similarity
metric for topic hierarchies proposed by [13] (but of course any other suitable similarity
can be used):

simTopic(q, sc) =

{
e−αl · eβh−e−βh

eβh+e−βh if q 
= sc

1 otherwise
(1)

where l is the length of the shortest path between q and sc in the graph spanned by the
sub topic relation and h is the minimal level in the topic hierarchy of either q or sc.
α and β are parameters scaling the contribution of shortest path length l and depth h,
respectively. Based on the benchmark data set given in [13], we chose α = 0.2 and
β = 0.6 as optimal values.

3 Building and Maintaining of the Index

Each peer is connected to a set of other peers in the network via uni-directional short-
cuts. Hence, each peer can locally select all other peers it wants to be linked to. How-
ever, due to limited local resources and each peer’s specific interests, peers only main-
tain a bounded index of shortcuts . The decision of replacing a shortcut from the index,
i.e. promoting new peers as shortcut acquaintances, depends on the history of the re-
sponses to previous requests issued by each peer. We now will propose index building
and update strategies for each shortcut type that efficiently limit the index size to only
the most useful shortcuts for each local peer. Following the social metaphors in section
1, we generally distinguish between four types of shortcuts.



496 A. Löser et al.

2

3

5

?

Route by 
Flooding

Content Provider 
Shortcut

(a) Content provider shortcut creation

2

4

8

?

Route by 
Flooding

Recommender
Shortcut

Content Provider
Shortcut

(b) Recommender shortcut creation

Fig. 1. Topic specific shortcut creation

3.1 Content Provider Layer

The design of the content provider shortcut overlay departs from existing work as pub-
lished by [18], [19], or [7] and exploits the simple, yet powerful principle of interest-
based locality. That means if a content provider peer has a particular piece of content
that a peer is interested in, it can be considered very likely that the content provider will
also have other interesting items for that peer.

Discovery and Creation. When a peer joins the system, it may not have any information
about the interest of other peers. It first attempts to receive answers for its queries by
exploiting lower layers of the INGA peer network, e.g. by flooding. The lookup returns
a set of peers that store documents for the topic of the query. These peers are potential
candidates to be added to the content provider shortcut list. Each time the querying peer
receives an answer from a remote peer, content provider shortcuts sc to new remote
peers are added to the list in the form: sc(topic, pid, query hits,’c’, update), where topic
is the query terms taken from the query message, pid is the unique identifier of the
answering peer, query hits is the number of returned statements, ’c’ is the type of content
provider shortcuts and update is the time, when the shortcut was created or the last time,
when the shortcut was used successful. The content provider shortcut list will grow with
each submitted query until the maximum number of content provider peers is reached.
Subsequent queries of the local peer or of a remote peer are matched against the topic
column of the content provider shortcut list. If a peer cannot find suitable shortcuts in
the list, it issues a lookup through lower layers, and repeats the process for adding new
shortcuts. Consider figure 1(a). Peer 2 discovers shortcuts for the topic /Education/UML
by flooding the default network with a maximum number of hops (TTL) of three hops
and creates two content provider shortcuts to peer 3 and peer 5.

3.2 Recommender Layer

Very active peers issue many successful queries and produce many shortcuts. If a remote
peer issues many queries that are similar to one’s own interests, it will be beneficial to
establish links to this peer. The reason is that, if a remote peer has established a shortcut
to an interesting content provider, it is likely that this peer will issue other queries



Searching Dynamic Communities with Personal Indexes 497

on related topics that one will be interested in, too. Such recommender shortcuts thus
represent a new kind of links in the semantic overlay structure. If a peer can not directly
determine a content provider peer for a given query, it can always forward the query to
the best matching recommender.

Creation by controlled listening. To foster the learning process of recommender short-
cuts, especially for new peers in the network, we consider the incoming queries that are
routed through ones peer. A recommender shortcut sc(topic,pid,query hits maxsim,r,
update) is created, where topic is the set of query terms from the query message. The
pid for a respective shortcut is extracted from the query message as the ID of the query-
ing peer. Since we will get no information about the number of results retrieved for the
query, we set the number of queryhits to 1. Finally r indicates the type of the shortcut
for passive recommender shortcut and update is the time, when the shortcut was created
or the last time, when the shortcut was used successfully. Consider again Figure 1(b).
Peer 2 issues the query /Top/Education/UML. Peer 8 creates a shortcut to peer 2 since
this query was routed through peer 8.

3.3 Content Provider and Recommender Index

We assume that each peer may only store a limited amount of shortcuts, hence only
knows a limited set of topic specific neighbors it can route a query to. If the local index
size is reached a peer has to decide, which shortcut should be deleted from the index. For
each shortcut in the index we compute a rank based on the following types of localities:

Semantic locality. We measure the maximum semantic similarity maxsim between
the topic of a shortcut and the topics represented by the local content of a peer
according to equation 1. Hence, we retain a shortcut about topic t to a remote peer,
if t is close to our own interests.

LRU locality. To adapt to changes in the content and interests we use a LRU replace-
ment policy [2]. Shortcuts that have been used recently receive a higher rank. Each
local shortcut is marked with a time stamp when it was created. The time stamp
will be updated, if the shortcut will be used successful by the local peer. There is
thus an ’oldest’ and ’latest’ shortcut. The value update ∈ [0..1] is calculated as
difference between the shortcuts time stamp and the ’oldest’ time stamp divided by
the difference between the ’latest’ and the ’oldest’.

Community locality. We measure how close a shortcut leads us to a document. Con-
tent provider shortcuts, marked with a c, provide a one hop distance, we set type =
1. Recommender shortcuts, marked with a r require at least two hops to reach a
peer with relevant documents, we set type = 0.5.

We weight the localities and compute the index relevance according to equation 2.

relevance =
a ∗maxsim + b ∗ type + c ∗ update

a + b + c
(2)

Shortcuts with the highest relevance are ranked at the top of the index, while peers with
a lower relevance are deleted from the index.



498 A. Löser et al.

3.4 Bootstrapping Layer

Bootstrapping shortcuts link to peers that have established many shortcuts for different
query topics to a lot of remote peers. We determine the bootstrapping capability by
analyzing the in-degree and out-degree of a peer. We use the out-degree as a measure
of how successful a peer discovers other peers by querying. To weight the out-degree,
we measure the amount of distinct sources a peer receives queries from. We use the
in-degree as a measure, that such a peer may share prestigious shortcuts with a high
availability. By routing a query along bootstrapping shortcuts, we foster the probability
to find a matching shortcut for a query and avoid the drawbacks of having to select peers
randomly, e.g. by flooding.

Discovery and Update. Each incoming query that is stored in our index includes the
bootstrapping information of the querying peer. While a peer is online it continually
updates its bootstrapping index based on incoming queries and stores bootstrapping
shortcuts in the form sc(pid, bo), where pid is the PID of the querying peer and bo its
bootstrapping capability. Once an initial set of bootstrapping nodes is found, a peer may
route its queries to the nodes with the highest bo value. One calculates its bo value using
equation 3

Bo = (1 + |outdegree|)× (1 + |indegree|) (3)

where out-degree is the number of distinct remote peers one’s knows. To compute an
approximation of the in-degree without any central server we count the number of dis-
tinct peers that send a query via one’s peer. To do this from the message path of indexed
recommender shortcuts we scrutinize the pen-ultimate peers. The number of distinct
pen-ultimate peers denotes one’s in degree. To avoid zero values we limited the mini-
mum for both values to one.

3.5 Default Network Layer

When a new peer enters the network, it has not yet stored any specific shortcuts in its
index. Default network shortcuts connect each peer p to a set of other peers (p’s neigh-
bors) chosen at random, as in typical Gnutella-like networks (e.g. using rendezvous
techniques).

4 Dynamic Shortcut Selection

The basic principle of shortcuts consists of dynamically adapting the topology of the
P2P network so that the peers that share common interests spontaneously form well-
connected semantic communities. It has been shown that users are generally interested
in only some specific types of content. Therefore being part of a community that shares
common interests is likely to increase search efficiency and success rate. To optimize
the overall message traffic we will now propose a dynamic shortcut selection strategy,
where each peer selects only a certain number k of most promising shortcuts for query
forwarding. Then we will evaluate our approach against related approaches.



Searching Dynamic Communities with Personal Indexes 499

4.1 Overview

INGA consists of several steps executed locally and across the network when recom-
mending peers for a query and retrieving or returning results. Consider a query posed
to the P2P network. Necessary steps are:

Across the network:Recommending. Whenever a peer receives a query message, it
first extracts meta-information about the querying peer and updates its bootstrap-
ping and recommender index if needed. Then our forwarding strategy is invoked to
select a set of k peers which appear most promising to answer the query success-
fully. Finally the original query message is forwarded to these k peers.

Across the network: Answering Queries. When a peer receives a query, it will try to
answer the query with local content. We only return non-empty, exact results and
route them directly to the querying peer. If the maximum number of hops is not yet
reached, the query is forwarded to a set of peers selected as above.

Locally: Receiving Results. On the arrival of result items a querying peer analyzes the
message path and the respective number of results to create or update local content
provider and recommender shortcuts.

4.2 Selecting Best Matching Shortcuts

The task of the INGA shortcut selection algorithm is to determine best matching can-
didates to which a query should be forwarded. We rely on forwarding strategies, de-
pending on the local knowledge for the topic of the query a peer has acquired yet in its
index:

– We only forward a query via its k best matching shortcuts.
– We try to select content and recommender shortcuts before selecting bootstrapping

and default network shortcuts.
– To avoid overfitting and accommodate a little volatility (especially in the form of

new joining peers), queries are also randomly forwarded to some peers.

The following algorithm shows the basic peer selection procedure:The algorithm works
as follows: in step 1 we select k peers from content or recommender shortcuts that match
the topic of the query with the highest similarity. To avoid forwarding queries along
shortcuts with only low similarity we introduce a minimum similarity threshold tgreedy .

Algorithm 1. Dynamic
Require: Query q, int k, int tGreedy

Ensure: TTLq < maxTTL
1: s← TopGreedy(q,Content/RecommenderShortcuts,(k,tGreedy )
2: if (|s| < k) then
3: s ← s + TopBoot(BootstrappingShortcuts,(k − |s|))
4: end if
5: s ← RandomFill(s,defaultNetworkShortcuts,f,k)
6: Return s.



500 A. Löser et al.

Algorithm 2. TopGreedy
Require: Query q, Set QueryDependentShortcuts, int k, int tgreedy

1: topShortcuts ← {}
2: s tmp ← QueryDependentShortcuts
3: while (s tmp is not empty) ∧ (k > 0) do
4: Next ← maxSimTopic(q, s tmp)
5: if simTopic (q,Next) > tgreedy then
6: s tmp ← s tmp − (Next)
7: if (Next routes not to a peer in topShortcuts) then
8: topShortcuts ← topShortcuts + Next
9: k ← k − 1

10: end if
11: else
12: break
13: end if
14: end while
15: Return topShortcuts

If found less then k shortcuts we select the top bootstrapping shortcuts (step 3). Finally
we fill the up remaining shortcuts randomly from the default network and return the set
of selected shortcuts. The algorithm terminates if the query has reached its maximum
number of hops. We will now show all subroutines for shortcut selection in more details.
Algorithm TopGreedy allows for selecting the top peers above a similarity threshold.
The algorithm browses trough the index of all topic dependent shortcuts (step 3) and
identifies the most similar matching shortcuts for a query (step 4) above tgreedy (step
5). If two shortcuts have the same similarity, we choose the shortcut with the higher
query hits value. The algorithm carefully selects the top-k peers for a query by avoiding
different shortcuts with overlapping peers step (7-8).2 The TopBoot Algorithm (omitted
here due to space restrictions) works similar to the TopGreedy Algorithm, but selects the
best peers with highest known bootstrapping capability. It also avoids overlapping peers
within the set of selected shortcuts. The task of algorithm RandomFill is twofold: if the
other subroutines fail to discover k peers for a query, it fills up remaining peers until k is
reached (step 12-14). The second task of the algorithm is to contribute some randomly
chosen peers to the selected set of k peers to avoid overfitting of the selection process
as known from simulated annealing techniques. In step 2 the algorithm determines if
new peers should be added to the already selected set, or if peers have to be exchanged.
Depending on the probability f in step 6-7 the algorithm exchanges already selected
peers with randomly chosen ones.

5 Experimental Evaluation

Open Directory (DMOZ) as real world data set. We simulated our approach with three
different data sets 3 with similar results. Trough space limitations we only show the

2 Due to limited space details have been omitted.
3 The data sets are available at http : //ontoware.org/projects/swapsim/.



Searching Dynamic Communities with Personal Indexes 501

Algorithm 3. RandomFill
Require: Set preSelected, Set defaultNetWorkShortcuts, int f, int k
1: Set postSelected ← {}
2: if ( k−|preSelected|

k
< f ) then

3: while (preSelected is not empty) do
4: Next ← next(preSelected)
5: preSelected ← preSelected − (Next)
6: if (rand(0,1) > f ) then
7: postSelected ← postSelected + Next
8: end if
9: end while

10: end if
11: k ← k − |postselected|
12: while k > 0 do
13: postSelected ← postSelected + next(defaultNetworkShortcuts)
14: k ← k − 1
15: end while
16: Return postSelected

results of the open directory DMOZ.org data set. It consists of realistic data about the
content distribution among persons within a large community. For the topic distribution
we select the 1657 topics in the first three levels of the DMOZ hierarchy that have one
or more editors assigned to them . We represent one editor by one peer and assume
that peers that are interested in a topic also store resources for this topic. We observed
that editors are distributed with a heavily tailored Zipf popularity over the topics: 755
topics have 1 editor; 333 topics have 2 editors; 204 topics have 3 editors; . . . ; 44 topics
have 6 editors; . . . ;14 topics have 10 editors ;1 topic has 32 editors. Furthermore some
editors are interested in more than one topic. Again we observed a heavily tailored Zipf
distribution: 991 editors only have one topic; 295 two topics; 128 three topics; ... one
editor has 18 topics; one editor 20 topics and one editor has 22 topics.

Query Distribution. Queries are generated in the experiments by instantiating the
blueprint (∗; isT ypeOf ; topic), with topics arbitrarily chosen from the set of topics
that had at least one document. We generated 30000 queries, uniformly distributed over
the 1657 different topics. We distribute the queries uniformly over the peers, hence each
peer may issue a query to any topic and each topic is requested with the same proba-
bility. We choose a uniform query distribution instead of a ZIPF-distribution, which is
typically observed in file sharing networks [17]. This simulates the worst case scenario,
where we do not take advantage of often repeated queries for popular topics.

Gnutella style network. The simulation is initialized with a network topology which re-
sembles the small world properties of file sharing networks4. We simulated 1024 peers.
In the simulation, peers were chosen randomly and they were given a randomly se-
lected query to question the remote peers in the network. The peers decide on the basis
of their local short cut which remote peers to send the query to. Each peer uses INGA to

4 We used the Colt library http://nicewww.cern.ch/∼hoschek/colt/



502 A. Löser et al.

select up to pmax = 2 peers to send the query to. Each query was forwarded until the
maximal number of hops hmax = 6 was reached.

Volatile network and interest shifts. We implemented the dynamic network model ob-
served for Gnutella networks of [17] in our simulation: 60% of the peers have a avail-
ability of less than 20%, while 20% of the peers are available between 20 and 60% and
20 % are available more than 60%. Hence only a small fraction of peers is available
more than half of the simulation time, while the majority of the peers is only online a
fraction of the simulation time. Users’ interest may change over time, e.g. to account
for different search goals [3]. To simulate the effect of changing interests in the net-
work, after 15 queries, equal to ca. 15.000 queries over all peers, each peer will ask for
a completely different set of topics.

Evaluation Measures. We measure the search efficiency using the following metrics:

– Recall is a standard measure in information retrieval. In our setting, it describes the
proportion between all relevant documents in peer network and the retrieved ones.

– Messages represent the required search costs per query that can be used to indi-
rectly justify the system scalability.

– Message Gain compares the recall per message, hence the proportion of messages
with respect to to the achieved recall.

5.1 Comparing INGA with State-of-the-Art Approaches

As a baseline we compare INGA with an index size of 40 entries against the interest
based locality strategy (IBL) of [18] with an LRU strategy and an index size of 40
entries, the naive algorithm of Gnutella (Naive) and REMINDIN [19].

INGA outperforms in terms of messages and message gain. Figure 2(a) shows the recall
in contrast of the maximum possible recall in a dynamic network. After only 15 queries
INGA nearly doubles the recall of the naive approach and drastically outperforms IBL.
Since INGA and REMINDIN use similar strategies for creating shortcuts both archive
a similar recall. However, after introducing new topics in the network, INGA ’s out-
performs REMINDIN due to its optimized index for a dynamic network. Figure 3(b)
shows the number of messages. Due to bootstrapping peers, that focus queries to a frac-
tion of peers in the network, INGA outperforms and halves the messages in contrast to
a naive approach. In contrast to REMINDIN INGA reduces the number of messages
from about 85 to 58 messages. Figure 3(b) shows, that in terms of message gain INGA
outperforms all approaches dramatically. Due to its improved indexing and shortcut
selection strategy INGA nearly doubles the message gain of REMINDIN.

Each layer contributes. Figure 3(a) shows the message gain of the different layers.
Only using content provider shortcuts (Content-40) performs poorly, a combination of
content and recommender shortcuts raise the message gain (Content Recommender-
40) and finally the introduction of bootstrapping peers (INGA-40) additionally boosts
INGA performance.



Searching Dynamic Communities with Personal Indexes 503

0

0,05

0,1

0,15

0,2

0,25

0,3

0 5000 10000 15000 20000 25000 30000

 Queries

R
e
c
a
ll

INGA-40 IBL LRU-40 Naive Remindin

(a) Recall: Related Approaches

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

Queries

M
e

s
s
a

g
e

s

INGA-40 IBL LRU-40 Naive Remindin

(b) Messages: Related Approaches

Fig. 2. Comparison Recall and Message: Dynamic Network 1024 Peers, 6 Hops, k=2

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000

Queries

M
e

s
s
a

g
e

 G
a

in

Content-40 Content-Recommender-40 INGA-40 Default

(a) Message Gain: Layers

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000

Queries

M
e

s
s
a

g
e

 G
a

in
 

INGA-40 IBS LRU-40 Naive Remindin

(b) Message Gain: Related Approaches

Fig. 3. Message Gain: Dynamic Network 1024 Peers, 6 Hops, k=2

5.2 Setting Optimal Index Size and Weights

Limiting index size performs similar to an unlimited index. We conducted experiments
with an unlimited index size and a maximum size of 100, 40, 20 shortcut entries. Figure
4(a) shows that an index size of 100 entries performs as good as an unlimited index while
an index of 40 entries still is a reasonable tradeoff between size and routing efficiency.

Combined weighting is ideal, community weight outperforms. To determine an opti-
mal weighting of the parameter (a, b, c) of the index policy, we conducted experiments
where we only consider the similarity locality (a = 10, b = 0, c = 0) , where we
only consider the community locality (with a = 0, b = 10, c = 0), where we only
consider the LRU-Locality (a = 0, b = 0, c = 10) and an ’optimal’ combination
(a = 3, b = 6, c = 1). [18] proposes a LRU strategy to update the index. We found
out that there are better strategies. Figure 4(b) shows a similarity and LRU strategy,
both perform worse and are alone not capable to adopt to the dynamics of the net-
work and the changing interests of each peer. The community locality raises the mes-
sage gain, even after changing the interests of each peer, while the combined strategy
performs best.



504 A. Löser et al.

0

0,001

0,002

0,003

0,004

0,005

0 5000 10000 15000 20000 25000 30000

Queries

M
e

s
s
a

g
e

 G
a

in

INGA-100 INGA-20 INGA-40 INGA-All

(a) Size

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

0,0045

0,005

0 5000 10000 15000 20000 25000 30000

Queries

M
e

s
s
a

g
e

 G
a

in

Community-40 Semantic-40 LRU-40 INGA-40

(b) Weights

Fig. 4. Index Behavior: Dynamic Network 1024 Peers, 6 Hops, k=2

6 Summary and Outlook

To our best knowledge we presented the first semantic query routing algorithm in a
fully decentralized setting without any super peers. The novel design principle of our
approach lies in the dynamic adaptation of the network topology, driven by the history
of successful or semantically similar queries. This is memorized by using bounded local
shortcut indexes storing semantically labelled shortcuts and a dynamic shortcut selec-
tion strategy, which forwards queries to a community of peers that are likely to best an-
swer queries. Shortcuts connect peers that share similar interests and thus spontaneously
form semantic communities. The clustering of peers within semantically communities
drastically improves the overall performance of our algorithm even in a highly volatile
setting, while our index policy keeps the shortcuts to the ’right’ peers, that provide facts
to the core interests of a requesting peer.

An interesting additional problem is the generalization of our approach for a net-
work with individual semantics on each peer. Peers within the same community may
share its facts and possibly agree on a common set of semantics. Such a community
search engine would enable flexible and efficient wide area knowledge sharing applica-
tions without the maintenance of central indexing servers or a static semantic structure.

Acknowledgement. Research reported in this paper has been partially financed by EU in the IST
project SEKT (IST-2003-506826) and EU IST ASG. Alexander Löser was generously funded by
the German Research Society, Berlin-Brandenburg School in Distributed Information Systems
(DFG grant GRK 316/3).

References

1. K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and T. van Pelt. GridVine: Building Internet-
Scale Semantic Overlay Networks. In 3rd. International Semantic Web Conference (ISWC),
Hiroshima, Japan, 2004.

2. A. V. Aho, P. J. Denning, and J. D. Ullman. Principles of optimal page replacement. J. ACM,
18(1):80-93, 1971.



Searching Dynamic Communities with Personal Indexes 505

3. J. Allan. Incremental relevance feedback for information filtering. In SIGIR ’96: Proceedings
of the 19th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 270-278, New York, NY, USA, 1996. ACM Press.

4. S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content distribution
technologies. ACM Comput. Surv., 36(4):335-371, 2004.

5. W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive distributed top-k retrieval in
peer-to-peer networks. In 21st International Conference on Data Engineering (ICDE), Tokyo,
Japan, 2005.

6. T. Condie, S. Kamvar, and H. Garcia-Molina. Adaptive Peer-to-Peer Topologies. In Int. Conf.
on Peer-to-Peer Computing (P2P), Zurich, Switzerland, 2004.

7. B. Cooper. Guiding queries to information sources with InfoBeacons. In ACM/IFIP/USENIX
5th International Middleware Conference, Toronto, 2004.

8. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In International
Conference on Distributed Computing Systems, july 2002.

9. L. Gravano and H. Garc´ýa-Molina. Generalizing GlOSS to vector-space databases and bro-
ker hierarchies. In International Conference on Very Large Databases, VLDB, pages 78-89,
1995.

10. P. Haase et al. Bibster - a semantics-based bibliographic peer-to-peer system. In Proc. of the
3rd International Semantic Web Conference, Japan. Springer, 2004.

11. P. J. Keleher, B. Bhattacharjee, and B. D. Silaghi. Are virtualized overlay networks too much
of a good thing? In IPTPS ’01: Revised Papers from the First International Workshop on
Peer-to-Peer Systems, pages 225-231. Springer-Verlag, 2002.

12. J. Kleinberg. Navigation in a small world. Nature, 406, 2000.
13. Y. Li, Z. Bandar, and D. McLean. An Approach for messuring semantic similarity between

words using semantic multiple information sources. In IEEE Transactions on Knowledge and
Data Engineering, volume 15, 2003.

14. B. Loo, J. Hellerstein, R. Huebsch, S. Shenker, and I. Stoica. Enhancing p2p file-sharing with
an internet-scale query processor. In In Proc. of Int. Conf. on Very Large Databases (VLDB),
Toronto, 2004.

15. 15. S. Milgram. The small world problem. Psychology Today, 67(1), 1967.
16. W. Nejdl, M. Wolpers, W. Siberski, A. L¨oser, I. Bruckhorst, M. Schlosser, and C. Schmitz.

Super-Peer-Based Routing and Clustering Strategies for RDF-Based Peer-To-Peer Networks.
In 12th International World Wide Web Conference, Budapest, Hungary, May 2003.

17. S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer file
sharing systems. Multimedia Systems, 9(2), 2003.

18. K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Content Location Using Interest
Based Locality in Peer-to-Peer System. In Infocom. IEEE, 2003.

19. C. Tempich, S. Staab, and A. Wranik. REMINDIN:Semantic Query Routing in Peer-to-Peer
Networks based on Social Metaphers. In Proceedings of the 13th WWW Conference New
York. ACM, 2004.



RUL: A Declarative Update Language for RDF�

M. Magiridou1, S. Sahtouris2, V. Christophides2, and M. Koubarakis1

1 Dept. of Electronic and Computer Engineering,
Technical University of Crete GR73100 Chania, Greece

{magiridou, manolis}@intelligence.tuc.gr
2 Institute of Computer Science FORTH,

Vassilika Vouton P.O. 1385 Heraclion, Greece
{saxtouri, christop}@ics.forth.gr

Abstract. We propose a declarative update language for RDF graphs
which is based on the paradigms of query and view languages RQL and
RVL. Our language, called RUL, ensures that the execution of the update
primitives on nodes and arcs neither violates the semantics of the RDF
model nor the semantics of the given RDFS schema. In addition, RUL
supports fine-grained updates at the class and property instance level,
set-oriented updates with a deterministic semantics and takes benefit of
the full expressive power of RQL for restricting the range of variables to
nodes and arcs of RDF graphs.

1 Introduction

Semantic Web applications are striving nowdays for managing changes of per-
sistent resource descriptions created according to RDFS schemata [1,2]. The
majority of ontology-based authoring and annotation tools [3] requires first to
manually edit the resource descriptions and thereafter reloading them into an
RDF Store from scratch. This approach offers rather limited functionality espe-
cially in the case of deletions and modifications. To overcome these limitations,
some RDF Stores [4] have implemented suitable update APIs [5,6,7,8]. However,
forcing developers to code in advance all possible updates of resource descrip-
tions (using these APIs) is not a viable solution for dynamic Semantic Web
applications employing non trivial RDFS schemata. In this context, designing a
declarative update language offering complete (i.e., all valid RDF changes should
be specifiable by one or by a sequence of update primitives from a minimal set)
and sound (i.e., every primitive is guaranteed to maintain consistency of resource
descriptions w.r.t. the employed RDFS schemata) primitives is a challenging is-
sue.

In this paper, we propose a declarative update language for RDF graphs
which is based on the paradigms of query and view languages RQL [9] and
RVL [10]. Our language, called RUL, ensures that the execution of the update
primitives on nodes and arcs neither violates the semantics of the RDF model
(e.g., insert a property as an instance of a class) nor the semantics of a specific

� Supported in part by European project OntoGrid - http://www.ontogrid.net.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 506–521, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



RUL: A Declarative Update Language for RDF 507

RDFS schema (e.g., modify the subject of a property with a resource not clas-
sified under its domain class). This main design choice has been made in order
to take into account the fact that updates are fairly destructive operations and
change the state of an RDF graph. Thus, type safety for updates is even more
important than type safety for queries. The more errors we can catch at compile
time the less costly runtime checks (and possibly expensive rollbacks) we need.
The rest of RULs design choices concern (a) the granularity of the supported up-
date primitives; (b) the deterministic or not behavior of the executed sequences
of update statements; and (c) the smooth integration with an underlying RDF/S
query language. To the best of our knowledge, RUL is the first declarative lan-
guage supporting fine-grained updates at the class and property instance level,
has a deterministic semantics for set-oriented updates and takes benefit of the
full expressive power of RQL for restricting the range of variables to nodes and
arcs of RDF data graphs. However, our design can be also immediately trans-
ferred to other RDF query languages (e.g., RDQL [11], or SPARQL [12]) offering
less expressive pattern matching capabilities [13].

None of the RDF update languages proposed so far [14,15] supports the
aforementioned functionality. The most interesting proposal is MEL that has
been developed in the framework of QEL and it is based on Datalog [14]. MEL
primitive commands consist of a statement specification and an optional query
constraint, declared as a QEL query. The granularity of the operations follows
a subgraph-centered approach but consistency of updates w.r.t the employed
RDFS schemata is not respected. Furthermore, no formal semantics or detailed
behavior description have been given for MEL. The rdfDB Query Language [15]
supports SQL-like updates (insert and delete) by following a statement-centered
approach and does not integrate smoothly with the query language. In fact, the
update operations can affect only specific statements without variables and thus
their execution semantics is trivial.

From knowledge representation languages in the semantic data modelling
tradition, Telos [16] is probably the closest to RDF. Telos has inspired the RDF
data model behind the query language RQL and the hybrid framework of [17].
Work on update languages for Telos is reported in [16,18,19] However, the state-
ments UNTELL and RETELL discussed in these papers concentrate on the
temporal features of Telos and pay no attention to the many issues regarding
update side-effects as discussed in this paper.

The rest of the paper is organized as follows. Section 2 introduces the syntax
of RUL in an incremental, informal way by giving examples and intuitive ex-
planations while Section 3 clarifies RULs formal semantics and in particular its
deterministic behavior for set-oriented updates. Our conclusions as well as some
challenges for future work are given in Section 4.

2 The Syntax of RUL

RUL can be used to express updates to RDF graphs i.e., insertions, deletions
and modifications of nodes and arcs. We consider an RDF graph to follow the



508 M. Magiridou et al.

Paper

xsd:dateTime

xsd:stringxsd:string xsd:string

publishedOn

abstract

keyw
ord tit

le

Rejected
Paper

Accepted
Paper

xsd:float

ra
nk

ing

xsd:stringxsd:string

Person

firs
tName

Reviewer
lastNam

e

Organization
worksIn

Editor

 Committee

reviews

Author

editedBy

ha
sC

ha
ir

PCMember

Chair

SPCMember OCMember

Organizing
Committee

 Program
Committee

 SeniorProgram
Committee

Event

xsd:string

Workshop

xsd:string

topic
location

colocated
With

Conference

Proceedings

isP
ublishedIn

xsd:dateTime

xsd:string

publicationDate

bookTitle

writes

rejectedByacceptedBy

isOrganizedBy

hasSPC

hasPC

sponsors

submittedTo

ns: www.ex.org//conf-schema.rdf#
xsd: http://www.w3.org/2001/XMLSchema

subClassOf /
subPropertyOf

property

hasProceedings
hasCommittee

ha
sM

em
be

r

isResponsibleFor

Fig. 1. RDF Schema in graphical form for the conference organization example

formal model for RDF proposed in [20]. The main constraints this model imposes
to RDF Semantics [21] can be summarized as follows: the domain and range of
properties should always be defined, both of these declarations have to be unique
and class and property definitions have to be complete.

In this section, we present the syntax of RUL in an incremental, informal
way by giving examples and intuitive explanations based on the RDF schema
of Figure 1 dealing with the organization of scientific conferences, and Figure 2
where the effects and side-effects of each operation are analyzed in detail. Section
3 presents the formal semantics of RUL.

We assume that the vocabularies used in the RDF graphs have been defined
using RDF Schema. RUL does not deal with schema updates. We also do not
deal with blank nodes, containers, collections or reification in this paper.

2.1 Updating Class Instances

Instances of classes can be updated using the INSERT, DELETE or MODIFY state-
ments. The syntax of the INSERT statement is as follows:

INSERT QualClassName(ResourceExp)

[FROM VariableBinding] [WHERE Filtering] [USING NAMESPACE NamespaceDefs]

The INSERT operation introduces new nodes in an RDF graph and classifies
them, or inserts new classification links for existing nodes. The expression



RUL: A Declarative Update Language for RDF 509

ResourceExp denotes a node and can be a constant URI or a variable. In the
former case, ResourceExp determines a unique graph node, while in the latter,
the clause FROM determines the bindings of this variable (i.e., a set of nodes)
as in RQL. The expression QualClassName denotes the class to which the new
nodes will become instances or to which the new classification links from existing
nodes will be created.

The clause WHERE gives as usual the filtering conditions for the variables
bindings introduced in the clause FROM. The clause USING NAMESPACE gives a
list of namespaces that disambiguate the use of names in the other clauses.
The clauses FROM, WHERE and USING NAMESPACE are optional. In the rest of this
paper, we show the USING NAMESPACE clause when we are presenting the syntax
of RUL but avoid any namespace information in the examples for reasons of
brevity (i.e., all the names employed in the examples are unique and they are
defined in the schema namespace ns of Figure 1).

As in RQL, RUL distinguish between direct and indirect instances of a class
C or property P (equivalently, between direct and indirect instantiation links).
A resource node r is a direct instance of class C if it has been introduced in
the graph by an appropriate update statement. A resource node r is an indirect
instance of class C if r is a direct instance of a subclass of C. The definition
is similar for properties. An RDF graph has no redundancies with respect to
instantiation if there is no instance of a class or a property that is both a direct
and an indirect instance. All the update operations defined below result in RDF
graphs with no redundancies with respect to instantiation.

The effects and side-effects of an INSERT operation with the above syntax are
presented graphically in Figure 2(I). If node ResourceExp exists in the graph and
it is classified under a superclass of QualClassName (Case (I.1) in Figure 2), the
effect of INSERT is that a new classification link is inserted between ResourceExp
and QualClassName. In this case, the operation has the side-effect that the
prior classification link is deleted (since it is implied by the new classification
link). On the other hand, if ResourceExp exists in the graph and it is classified
under a subclass of QualClassName (Case (I.3) where D is a subclass of C),
the INSERT operation has no effects. Obviously, if the node exists as a direct
instance of QualClassName, the operation has no effects too. Finally, if node
ResourceExp exists in the graph and it is classified under a class which is not
related through a subclass relation to QualClassName (Case (I.2)), the result is
a multi-classified node (&d1 is classified both under B and D classes) without any
side-effects.

Example 1. Make the resource with URI http://www.ex.org/paper1.pdf an
instance of the class AcceptedPaper:

INSERT AcceptedPaper(&http://www.ex.org/paper1.pdf)

paper1.pdf is not already an instance of class AcceptedPaper or one of its
subclasses (if it had any). In other words, the execution of an INSERT operation
leaves us with an RDF graph with no redundancies with respect to instantiation.



510 M. Magiridou et al.

C
 l 

a 
s 

s 
  I

 n
 s

 t 
a 

n 
c 

e 
s

C
 l 

a 
s 

s 
  I

 n
 s

 t 
a 

n 
c 

e 
s

P 
r 

o 
p 

e 
r 

t y
   

I 
n 

s 
t a

 n
 c

 e
 s

I n s e r t D e l e t e M o d i f y

A C

&a1 &b1 &d1

I.1  INSERT B(&a1)
I.2  INSERT B(&d1)
I.3  INSERT C(&d1)

(1)
(1)

(2)

D

A

D

B

C

P1

P2

&c1 &d1

P1

E

D

C

B

A

P1

P3P2

&c1 &e2
P1 P2 P3

(5)

(5)(4)

(6)

A

D

B

C

P1

P2

&c1
&d1

P2

V.11  DELETE P2(X, &d1)

&a1 P1

A

C

E

D

B

P1

P4

P3

P2

&c1
P1 P3

P4 P4(8)
(8)

(8)

A B

&a1

MODIFY A(X <- Y)
FROM A{X}, B{Y}

&b2

A B

&a1

&a3

&b1

&b2

P1

VI.12  MODIFY P1(X, Y <- &b3)

(12)

(12)(12)

(12)

P1
P1

P1

&b1
(4)

&c2
(7)

&e2

P1 P2
(9)

IV.9    INSERT P2(X, &d1)
IV.10  INSERT P1(&c1, &d1)

II.4  DELETE B(&b1)
II.5  DELETE rdf:Resource(&c2)
II.6  DELETE A(&c1)

P1

X
B

&d1X
X (5)

&c2X

X

X

(4)X

&a1

P2&b1

(7)
X

&c1

III.7  MODIFY C(&c1 <- &c2)
III.8  MODIFY E(&e1 <- &e2)

X
X

&e1

(8)X &b1X

&b1

&b3
&b2

X X

X

X
&b3
P1

&a2

(11) &d2(11)
P1P2

&a1

Fig. 2. RUL operations effects and side-effects

Example 2. Classify as reviewers all members of the OC of ISWC05:

INSERT Reviewer(X)

FROM {Y}isOrganizedBy.hasMember{X;OCMember}

WHERE Y = &http://www.iswc05.org

The above example demonstrates the use of variables in the INSERT clause and
the use of RQL path expressions for navigating RDF graphs in the FROM clause.
More precisely, variable X will be range restricted to instances of class OCMember
involved in the OrganizingCommittee of the ISWC05 Event. This update op-
eration will multiply classify OCMember instances under the class Reviewer.

The syntax of the DELETE operation is as follows:

DELETE QualClassName(ResourceExp)

[FROM VariableBinding] [WHERE Filtering] [USING NAMESPACE NamespaceDefs]

The DELETE operation deletes classification links and possibly nodes from
an RDF graph (Figure 2 (II)). The expression ResourceExp, which denotes the
node from which the classification link to be deleted originates, can be a URI or
a variable. The effect of the DELETE operation is to remove the direct or indirect
classification link of ResourceExp to class QualClassName and replace it by the
link of ResourceExp to all the immediate super-classes of QualClassName if
any (e.g., in Figure 2(II.4), &b1 is now classified under class A). If ResourceExp
is multi-classified (e.g., &c1 in Figure 2(II.6)), then the classification link of
ResourceExp to QualClassName is deleted without being replaced by another.
Finally, if QualClassName is the top of the class hierarchy rdf:Resource, the
effect is the deletion of ResourceExp node along with all its classification links
(Figure 2(II.5)).



RUL: A Declarative Update Language for RDF 511

It should be stressed that, all classification links that are added by a DELETE
operation must take the semantics of INSERT into account, so that the resulting
RDF graph remains without redundancies.

The side effects of DELETE in any of the above cases are caused by the changes
in the classification of a node. To be more specific, all property arcs emanating
from the note denoted by ResourceExp that have as domain (or range) a class, to
which ResourceExp is no longer an instance, are also deleted. These side-effects
are necessary to keep the graph consistent, since ResourceExp does no longer
belong to the declared classification. To illustrate these, consider the properties
P1 and P3 in Figure 2(II), which are deleted when the respective classification
links are removed (statements (II.4) and (II.6)).
Example 3. Delete all papers submitted by the PC chair(s) of ISWC05:

DELETE Paper(X)

FROM {Y}writes{X}, {Z;Conference}hasPC.hasChair{Y}

WHERE Z=&http://www.iswc05.org

The above DELETE operation will be effective only if the node bindings of vari-
able X are classified under the class ns:Paper or one of its subclasses (e.g.,
AcceptedPaper). It is worth noticing that these nodes will still be present in the
output RDF graph of the previous update operation, but only as instances of
the top class rdf:Resource (since ns:Paper has no other superclasses).

Finally, the syntax of the MODIFY operation is:

MODIFY QualClassName(OldResourceExp <- NewResourceExp)

[FROM VariableBinding] [WHERE Filtering] [USING NAMESPACE NamespaceDefs]

The expressions OldResourceExp and NewResourceExp can be constants or
variables as in other statements. The arrow <- has the meaning of an as-
signment operation. The MODIFY operation is not a sequence of DELETE and
INSERT. The effect of the MODIFY operation (Figure 2(III)) is to completely
remove the node(s) denoted by OldResourceExp and then insert the node(s)
denoted by NewResourceExp as an instance of QualClassName. The insertion
of NewResourceExp has the same semantics as the INSERT operation presented
earlier (see cases III.7 and III.8). The first side effect of MODIFY is that all prop-
erties emanating from (or ending at) the resource denoted by OldResourceExp
are completely removed. The other side effect is that the previously removed
properties became now properties emanating from (or ending at) the resource
denoted by NewResourceExp (e.g., in Case III.8, property arc P4 which ends at
&e1, is removed, while another property arc P4 which ends at &e2, is inserted).
Example 4. The information that paper1.pdf is an accepted paper is incorrect.
The correct information is that paper101.pdf has been accepted.

MODIFY AcceptedPaper(&http://www.ex.org/paper1.pdf <- &http://www.ex.org/

paper101.pdf)

If paper1.pdf had title “The language SQL”, we could equivalently write:

MODIFY AcceptedPaper(X <- &http://www.ex.org/paper101.pdf)

FROM {X}title{Y}

WHERE Y="The language SQL"



512 M. Magiridou et al.

2.2 Updating Property Instances

The INSERT, DELETE and MODIFY statements can also be used to update the
properties of resources i.e., arcs in an RDF graph. The syntax of the INSERT
statement in this case is as follows:

INSERT QualPropertyName(SubjectExp, ObjectExp)

[FROM VariableBinding] [WHERE Filtering] [USING NAMESPACE NamespaceDefs]

The above INSERT operation adds to resource node SubjectExp a new property
arc that is an instance of property QualPropertyName and has value ObjectExp.
SubjectExp and ObjectExp can be constants or variables with bindings deter-
mined in the FROM clause. In both cases RQL typing rules for triples must be
respected: SubjectExp must evaluate to a URI, instance of the domain of prop-
erty QualPropertyName, and ObjectExp must evaluate to a URI or literal value
instance of the range of property QualPropertyName.

We now detail the semantics of this operation by referring to Figure 2(IV).
The variable X, that has not been given a range, should be assumed to range
over all nodes shown in the figure. As in the case of resources, if a property
arc from SubjectExp to ObjectExp exists and it is an instance of a super-
property of QualPropertyName (Figure 2(IV.9)), then the operation’s effect is
the deletion of the instantiation link of the arc and the introduction of a new
link to QualPropertyName (e.g., the arc from &c1 to &d1 becomes an instance of
property P2). However, when SubjectExp and ObjectExp are not instances of
the domain and range of QualPropertyName this operation has no effect (e.g.,
P1 between &a1 and &d1 is not affected by the insertion IV.9). If the property arc
exists as an instance of a subproperty of QualPropertyName (Figure 2 (IV.10)),
then the operation has also no effect. It is obvious that there are no side-effects
in this operation.

Example 5. Make “IR” a keyword of paper http://www.ex.org/paper1.pdf.

INSERT keyword(&http://www.ex.org/paper1.pdf, "IR")

Example 6. Make Oracle a sponsor of every database conference.

INSERT sponsors(&http://www.oracle.com, X)

FROM {X;Conference}topic{Y}

WHERE Y like "*database*"

Example 7. Make editors of the proceedings of ISWC05 the chair(s) of the PC
and the chair(s) of the OC.

INSERT editedBy(X,Y)

FROM {Q}hasProceedings{X}, {Q}@P.hasChair{Y},

WHERE Q = &http://www.iswc05.org and (@P=isOrganizedBy or @P=hasPC)

This example demonstrates the use of schema querying in the FROM clause of
RUL. Variables prefixed by @ are RQL property variables implicitly restricted
to range over the set of all data properties.



RUL: A Declarative Update Language for RDF 513

The syntax of the DELETE operation is as follows:

DELETE QualPropertyName(SubjectExp, ObjectExp)

[FROM VariableBinding] [WHERE Filtering] [USING NAMESPACE NamespaceDefs]

As in the case of resources, the DELETE operation (Figure 2(V)) removes essen-
tially the instantiation link between QualPropertyName and the property arc
from SubjectExp to ObjectExp (e.g., the arc from &c1 to &d1 is not anymore
an instance of P2) and inserts a link from the arc to the super-property of
QualPropertyName (e.g., the arc from &c1 to &c2 becomes an instance of P1),
as we discussed in the property INSERT operation. If the arc is not an instance of
QualPropertyName (e.g. the arc from &a1 to &d1 not classified under P2), then
the operation has no effect. This update operation has also no side-effects.

Example 8. Delete keyword “IR” from paper http://www.ex.org/paper2.pdf:

DELETE keyword(&http://www.ex.org/paper2.pdf, "IR")

Example 9. Remove assigned papers on web services from reviewer Smith:

DELETE reviews(&http://www.uni-ex.edu/~smith, X)

FROM {X}paperKeyword{Y}

WHERE Y like "*web services*"

Example 10. Delete all sponsors of ISWC05:

DELETE sponsors(X, &http://www.iswc05.org)

FROM Organization{X}

The syntax of the MODIFY operation is:

MODIFY QualPropertyName([OldSubjectExp <-] NewSubjectExp,

[OldObjectExp <-] NewObjectExp)

[FROM VariableBinding] [WHERE Filtering] [USING NAMESPACE NamespaceDefs]

As we can see in Figure 2(VI), the effect of the operation is to delete the arc
between the resources denoted by the OldSubjectExp and OldObjectExp and
insert a new arc from NewSubjectExp to NewObjectExp (e.g., the arc between
&a1 and &b1 is removed and a new arc between &a1 and &b3 is inserted). If
OldSubjectExp (resp. OldObjectExp) or NewSubjectExp (resp. NewObjectExp)
is not an instance of a class in the domain (resp. range) of QualPropertyName,
the operation has no effect. If the arc from NewSubjectExp to NewLObjectExp
already exists and it is an instance of QualPropertyName, it is not inserted (e.g.,
the arc between &a2 and &b3), so that redundancies are avoided, as we discussed
in the property INSERT operation. No other arcs are affected as a side-effect of
the above operation.

Example 11. Change the keyword “IR” to “Information Retrieval” in the papers
where this keyword appears:

MODIFY keyword(X, "IR" <- "Information Retrieval")

FROM Paper{X}



514 M. Magiridou et al.

Example 12. Make the publication date of every accepted paper to be the same
as the publication date of the proceedings where it is published:

MODIFY publishedOn(Y, Z <- X)

FROM {Y;AcceptedPaper}isPublishedIn.publicationDate{X},{Y}publishedOn{Z}

The above examples demonstrate the modification of a property’s object. The
following example illustrates a case where the subject of a property is updated.

Example 13. Pass all the reviews to be done by Prof. Smith to his Ph.D. student
Jones:

MODIFY reviews(&http://www.ex.org/~smith <- &http://www.ex.org/~jones, Y)

FROM Paper{Y}

Example 14. The information “Oracle sponsors WWW 2005” in our graph is
incorrect. The correct information is “Google sponsors ISWC 2005”.

MODIFY sponsors(&http://www.oracle.com <- &http://www.google.com,

&http://www.www05.org <- &http://www.iswc05.org)

This example demonstrates the change of both subject and object of a property.
We close this section by pointing out that it is a design choice of RUL to have

one syntax for updates of instantiation links (unary predicates) and a different
syntax for updates of property arcs (binary predicates) to remind the user of the
different semantics of these operations (i.e., we do not believe that a uniform
syntax based on triples and rdf:type would be appropriate for RUL).

2.3 More Expressive Updates

The syntax of RUL presented above allows us to express two kinds of updates:
primitive ones where a node or arc of an RDF graph is inserted or deleted (with
appropriate side-effects), and set-oriented ones where an atomic update of the
same kind (e.g., an insertion) is performed repeatedly for all resource tuples
calculated by evaluating the FROM and WHERE clauses of an INSERT, DELETE or
MODIFY statement. Of course, by writing multiple RUL statements, we can also
express sequences of such updates. In this section, we extend the above syntax to
be able to express sequences of primitive updates inside a single RUL statement,
and show with examples why such an extension is a useful feature of RUL. A
discussion of the problems involved and how they can be addressed effectively is
postponed until Section 3.3.

The first extension that we propose is to allow multiple atomic formulas, in
an INSERT, DELETE or MODIFY clause. In this way, we can express sequences of
primitive updates of the same kind.

Example 15. Make resource &http://www.ex.org/paper3.pdf authored by
Smith an instance of class Paper.

INSERT Paper(&http://www.ex.org/paper3.pdf),

writes(&http://www.uni-ex.edu/~smith, &http://www.ex.org/paper3.pdf)



RUL: A Declarative Update Language for RDF 515

Note that even in sequences of primitive insertions as in the above example, the
order of execution of each individual update does matter (we cannot insert a
property writes for resource paper3.pdf before we make it an instance of the
range of writes). This is in direct contrast with updates in relational languages
[22,23] where order does not matter in sequences of updates of the same kind.
Thus, the order of execution for update statements with multiple predicates is
from left to right and the comma operator signifies sequence.

Example 16. Reject all papers with ranking less than 4, and add the SPC mem-
ber responsible for the paper as the person who made the final recommendation.

INSERT RejectedPaper(X), rejectedBy(X,Y)

FROM {X;Paper}ranking{Z},

{X}submittedTo.hasSPC.hasMember{Y;SPCMember}, {Y}isResponsibleFor{X}

WHERE Z < 4

This example shows clearly why the proposed enhancement of the RUL syntax
is useful. In this case additions to the graph come “in pairs”; thus, the example
is impossible to express without variables and sequencing.

Apart from sequences of updates of the same kind, RUL can also express se-
quences of updates of different kinds. This is done by allowing multiple INSERT,
DELETE or MODIFY clauses before the FROM clause of an update statement.

Example 17. Form the Program Committee of ISWC06 by taking the set of
all PC members of ISWC05 except those that reviewed less than 5 papers for
ISWC05, and adding to this set the members of the OC of ISWC05.

INSERT hasPCMember(&http://www.iswc06.org#pc, X)

DELETE hasPCMember(&http://www.iswc06.org#pc, Y)

INSERT hasPCMember(&http://www.iswc06.org#pc, Z)

FROM {W}hasPCMember{X}, {W}hasPCMember{Y},

{W}hasOCMember{Z}

WHERE W = &http://www.iswc05.org#pc

and count(SELECT Q FROM {Y}reviews{Q}, {Q}submittedTo{W}) <5

This last extension to the syntax of RUL also allow us to express updates with
effects that depend on the order of execution of the primitive updates captured
by the clauses INSERT, DELETE or MODIFY (e.g., in Example 17, all the Program
Committee members of ISWC05 have to be made Program Committee members
for ISWC06 before those of them that reviewed less than 5 papers for ISWC05
are deleted). The order of execution for multiple update clauses in an RUL
update statement is from top to bottom. Thus, update clauses with multiple
predicates can be trivially translated into sequences of update statements with
a single predicate. We will discuss these issues in detail in Section 3.3 where the
semantics of set-oriented updates are discussed in every detail.

2.4 Safety

The presence of variables in RUL statements forces us to impose an easily veri-
fiable syntactic notion of safety as in relational updates [22]. An RUL statement



516 M. Magiridou et al.

is safe if all the variables appearing in INSERT, DELETE or MODIFY clauses also
appear in the FROM clause of the statement. Thus, if an RUL statement is safe,
no new values can be inserted in the graph except the ones present in the update
statement itself.
Example 18. Let us revisit Example 11. If the user writes the unsafe statement

MODIFY keyword(X, "IR" <- "Information Retrieval")

an RUL compiler can easily translate this into the safe statement of Example 11
since domain(keyword)=Paper. This is one of the benefits of adopting the RQL
typing framework [9].

3 The Semantics of RUL

In this section we give a formal semantics to RUL. We start by defining the
concepts of RDF that we need using the formal model introduced in [9]. The
important contribution of [9] is the introduction of a rich type system for RDF
and RDFS that has been proved valuable in the implementation of RQL. Because
RUL updates are destructive operations that change the state of an RDF graph,
type safety for RUL updates is even more important than type safety for RQL
queries. The more errors we can catch at compile time, the less costly runtime
checks (and possibly expensive rollbacks) we will need.

We start by defining the concepts of RDF graph and RDFS graph. We slightly
modify the definitions of [9] to cover only the concepts of RDF used in this paper
(we do not deal with blank nodes, containers, collections or reification).

Let LT be the set of XML Schema data types that can be used in RDF. Let
T be the set of types in the RDF/S type system defined in [9]. Let V alues(T )
be the set that includes all typed literals with types from T and all URIs.

Definition 1. An RDFS graph is a 6-tuple S = (V S, ES, C, P,≺, Θ, Λ) where
V S is a set of nodes, ES ⊆ V ×V is a set of edges, C is a set of class names, P is
a set of property names, ≺ is a partial order on C∪P , Θ : V S∪ES → C∪P is a
function mapping nodes to classes and edges to properties, and Λ : V S∪ES → T
is a typing function that returns the type of each node or edge.

Definition 2. An RDF graph over the RDFS graph (V S, ES, C, P,≺, Θ, Λ) is a
quadruple G = (V, E, ν, λ) where V is a set of nodes, E ⊆ V ×V is a set of edges,
ν : V → V alues(T ) is a value function that assigns a value from V alues(T ) to
each node in V and λ : V ∪E → 2C∪P ∪LT is a typing function which satisfies
the following: (i) For each node a in V , λ returns a set of class or data type
names c ∈ C ∪ LT such that ν(a) belongs to the interpretation of each c. (ii)
For each edge (a, b) ∈ E, λ returns a property name p ∈ P such that (ν(a), ν(b))
belongs to the interpretation of p.

Note that λ contains all classes (resp. properties) that a node (resp. property
arc) is an instance of directly or indirectly.

Let Query be the set of queries that can be expressed in RQL and Tuple
the set of tuples of arbitrary arity formed by elements of V alues(T ). We assume



RUL: A Declarative Update Language for RDF 517

that the function E : Query×Graph→ Tuple gives the semantics of RQL query
evaluation as defined in [9]. If q is an RQL query and G is an input RDF graph
then the answer to query q is the set of tuples E(q, G).

Let Graph be the set of all possible RDF graphs and Update be the set of
all possible updates that can be expressed in RUL. The semantics of RUL state-
ments are captured by the semantic function A : Update × Graph → Graph.
When an update u is applied to a graph G ∈ Graph and appropriate precon-
ditions are satisfied, u affects a set of nodes and arcs of G and produces a new
graph given by A(u, G).

An RUL update is called primitive if it is of the form INSERT c(i), DELETE c(i),
INSERT p(i, i), DELETE p(i, j) where c is a class, p is a property and i, j are URIs.
If τ and τ ′ are two updates then their composition is a complex update denoted
by τ ; τ ′. The semantics of composition are given by the equation A(τ ; τ ′, G) =
A(τ ′,A(τ, G)). Composition is an associative operation thus A(τ1; · · · ; τn, G) =
A(τn,A(. . . ,A(τ1, G))).

3.1 The Semantics of INSERT

Let G = (V, E, ν, λ) be an RDF graph over the RDFS graph (V S, ES, C, P,≺
, Θ, Λ). The effect of update INSERT c(i) in G is captured by A(INSERT c(i), G) =
(V ′, E, ν′, λ′) where V ′, ν′, λ′ are defined as follows. If there is no node a ∈ V
with ν(a) = i then V ′ = V ∪ {a0} where a0 is a brand new node symbol.
Additionally, ν′ extends ν such that ν′(a0) = i and λ′ extends λ such that
λ′(a0) = {c}. On the other hand, if there is a node a ∈ V with ν(a) = i then
V ′ = V and ν′ is the same as ν. In this case, if c ∈ λ(a) then λ′ = λ. If c 
∈ λ(a)
but there exist classes c1, . . . , ck ∈ λ(a) such that c ≺ c1, . . . , c ≺ ck then λ′ is the
same as λ with the exception that λ′(a) = (λ(a) \ {c1, . . . , ck})∪{c}. Otherwise,
λ′ is the same as λ with the exception that λ′(a) = λ(a) ∪ {c}.

The preconditions for the execution of the primitive update INSERT p(i1, i2)
in G is that i1 is a URI and instance of domain(p), and i2 is a URI or literal and
instance of range(p). The effect of this update is captured by A(INSERT p(i1, i2),
G) = (V ′, E′, ν′, λ′) where V ′, E′, ν′ and λ′ are defined as follows. If i2 is a literal
of type t and there is no a ∈ V such that ν(a) = i2 then V ′ = V ∪ {a0} where
a0 is a brand new node symbol such that ν′(a0) = i2 and λ′(a0) = t (function
ν′ is identical to ν for all other values in its domain). Otherwise, V ′ = V and
ν′ = ν. Now let a1, a2 ∈ V ′ be nodes such that ν(a1) = i1 and ν(a2) = i2. If
p ∈ λ((a1, a2)) then E′ = E and λ′ = λ. If p 
∈ λ((a1, a2)) but there are properties
p1, . . . , pk ∈ λ((a1, a2)) such that p ≺ p1, . . . , p ≺ pk then E′ = E and λ′ is the
same as λ with the exception that λ′((a1, a2)) = (λ((a1, a2))\{p1, . . . , pk})∪{p}.
Otherwise, E′ = E ∪ {(a1, a2)} and λ′ is the same as λ with the exception that
λ′((a1, a2)) = λ((a1, a2)) ∪ {p}.

The semantics of INSERT statements with multiple predicates in the INSERT
clause can now be defined using composition as follows:

A(INSERT c1(i1), . . . , cn(in), p1(j1, j1
′), . . . , pm(jm, jm

′), D) =
A(INSERT c1(i1); · · · ; INSERT c1(ik); INSERTp1(j1, j1

′); · · · ; INSERTpm(jm, jm
′), D).



518 M. Magiridou et al.

3.2 The Semantics of DELETE

Let G = (V, E, ν, λ) be an RDF graph over the RDFS graph (V S, ES, C, P,≺
, Θ, Λ). The precondition for the execution of the primitive update DELETE c(i)
in G is that i is an instance of class c. The effect of this update is captured by
A(DELETE c(i), G) = (V ′, E′, ν, λ′) where V ′, E′, λ′ are defined as follows. Let
a ∈ V be the node with ν(a) = i. If c = rdf:Resource then V ′ = V \ {a}
otherwise V ′ = V .

If c ∈ λ(a) then let C1 be the set {c1 : c1 ( c∧c1 ∈ λ(a)}. Then λ′ is the same
as λ with the exception that λ′(a) = λ(a) \ C1. In addition, E′ = E \ ({(a, b) :
λ((a, b)) = p ∧ (∃c1 ∈ C1)domain(p) = c1} ∪ {(b, a) : λ((b, a)) = p ∧ (∃c1 ∈
C1)range(p) = c1}).

If c 
∈ λ(a) but there is a class c′ such that c′ ≺ c and c′ ∈ λ(a) then λ′ is the
same as λ with the exception that λ′(a) = (λ(a) \ C1) ∪ C2 where C1 = {c1 ∈
λ(a) : c′ ( c1 ( c} and C2 = {c2 ∈ λ(a) : c ≺ c2 ∧ ¬(∃c3)(c ≺ c3 ≺ c2)}. In
addition, E′ = E \ ({(a, b) : λ((a, b)) = p∧(∃c1 ∈ C1)domain(p) = c1}∪{(b, a) :
λ((b, a)) = p ∧ (∃c1 ∈ C1)range(p) = c1}).

In a similar way, one can define the semantics of DELETE for the case of
properties. The semantics of DELETE statements with multiple predicates can
then be easily defined as in the case of INSERT using composition. Finally, the
semantics of MODIFY can also be defined similarly and are omitted.

3.3 Set-Oriented Updates

The syntax of RUL allows us to express set-oriented updates using variables in
the INSERT, DELETE or MODIFY clause as we showed with examples in Section 2.

The semantics of update statements with a single INSERT, DELETE or MODIFY
clause with variables can easily be defined using the operation of composition
and function E that formalizes the evaluation of RQL queries. For example,

A(INSERT c(x) FROM b(x) WHERE f(x), D) = A(INSERT c(i1); · · · ; INSERT c(ik), D)

where i1, . . . , ik are URIs such that E(SELECT x FROM b(x) WHERE f(x), D) =
{(i1), . . . , (ik)}. The semantics can be given similarly if we have a predicate
p(x, y) in the INSERT clause. The same holds for statements with a single DELETE
clause with variables. The case of MODIFY is slightly more involved: the order of
execution of the actions involved is as it was explained in Section 2.

The situation becomes more complex when we consider multiple predicates
in an INSERT, DELETE or MODIFY clause, or multiple INSERT, DELETE or MODIFY
clauses in a single update statement. Obviously, clause order matters in this
case as we have already demonstrated in Example 15 where we consider multiple
updates of the same kind without variables. The following examples illustrate
the issues involved when multiple updates of different kinds are allowed.

Example 19. Let us assume an RDFS schema with two classes A and B and an
RDF graph with a single node with URI i1 that is an instance of class A (so
class B has no instances). Let us now consider the following statements:



RUL: A Declarative Update Language for RDF 519

(1) DELETE B(X) INSERT B(X) (2) INSERT B(X) DELETE B(X)

FROM A{X} FROM A{X}

The effect of Statement (2) is to leave class B in the same state (i.e., with no
instances) while Statement (1) forces i1 to become an instance of B as well.

There is also a deeper issue regarding the order of execution for the different
tuples of values of the variables that satisfy the FROM and WHERE clauses.

Example 20. Let us revisit the above example and introduce a new class C in
the schema, and a second resource node with URI i2 that is an instance of class
C. Let us now consider the following statement:
DELETE B(X) INSERT B(Y)

FROM A{X}, C{Y}

WHERE X != Y

The set of tuples satisfying the FROM and WHERE clause are (i1,i2),(i2,i1).
The following orders of execution are possible for the DELETE-INSERT block:
DELETE B(i1); DELETE B(i2); INSERT B(i2); INSERT B(i1)

DELETE B(i1); INSERT B(i2); DELETE B(i2); INSERT B(i1)

DELETE B(i2); INSERT B(i1); DELETE B(i1); INSERT B(i2)

These different orders result in different states of the graph. In the first case
class B ends up with instances i1, i2, in the second case it has instance i1, and
in the third case it has instance i2.

It is possible to give non-deterministic semantics to RUL that allow all of
the above executions. In this case A must be allowed to be a relation i.e., a
subset of Update × Graph × Graph. Non-deterministic update languages have
been considered in the past for other data models e.g., by Abiteboul and Vianu
for the relational model [22,23]. For practical reasons we have chosen to avoid
non-determinism in RUL.

We solve the dilemma of examples such as the above by adopting a semantics
similar to the one proposed in [24] where a procedural language with a for each
iterator for deductive database updates is proposed. Let U1, . . . , Un be INSERT
or DELETE. The semantics of updates with multiple INSERT or DELETE clauses
with variables is captured by the following:

A(U1 c1(x1) · · ·Un cn(xn) FROM b(x1, . . . , xn) WHERE f(x1, . . . , xn), D) =
A(U1 c1(i11); · · · ; U1 c1(ik1); · · · ; Un cn(i1n); · · · ; Un cn(ikn), D)

where i11, . . . , i
1
n, . . . , ik1 , . . . , i

k
n are URIs such that

E(SELECT x1, . . . , xn FROM b(x1, . . . , xn) WHERE f(x1, . . . , xn), D) =
{(i11, . . . , i1n), . . . , (ik1 , . . . , i

k
n)}.

In other words, the FROM and WHERE clauses are evaluated first to compute a
set of valid bindings. Then, each one of the INSERT or DELETE statements is
executed in turn for all elements of the set of bindings. The semantics can be
given similarly if multiple class or property predicates are allowed in the INSERT
or DELETE clauses. Since update clauses with multiple predicates are trivially
translated into sequences of update statements with a single predicate then our
semantics cover this case as well.



520 M. Magiridou et al.

4 Conclusions

We have presented an expressive declarative language for updating RDF graphs
while ensuring that insertion/deletion/modification of nodes and arcs violates
the semantics neither of the RDF model nor of the specific RDFS schema. More
precisely, we have carefully designed the effects and side-effects of each RUL
operation to always result in a consistent state of the updated graph. There is
an ongoing implementation of RUL using the existing ICS-FORTH RQL code
base. In future work, we plan to precisely characterize the expressive power of
the language we have developed (in the spirit of [22,23]) and consider schema
updates and schema evolution. Our work on RUL should be considered as a first
necessary step towards this direction.

References

1. Das, A., Wu, W., McGuinness, D.: Industrial Strength Ontology Management. In:
The Emerging Semantic Web. (IOS Press)

2. May, W., J. Alferes, F.B.: Towards Generic Query, Update, and Event Languages
for the Semantic Web. In: Proc. 2nd PPSWR. (2004)

3. Perez, A.G.: A Survey on Ontology Tools. Deliverable 1.3 IST Project OntoWeb
(2002)

4. Magkanaraki, A., Karvounarakis, G., Christophides, V., Plexousakis, D., Anh, T.:
Ontology Storage and Querying. ICS-FORTH Technical Report No 308 (2002)

5. Seaborne, A.: An RDF NetAPI. In: Proc. 1st ISWC. (2002) 399–403
6. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture

for Storing and Querying RDF and RDF Schema. In: Proc. 1st ISWC. (2002)
7. Oberle, D., Volz, R., Motik, B., Staab, S.: KAON Server Prototype. Deliverable

6, IST Project WonderWeb (2002)
8. Sarkar, S., Ellis, H.: Five Update Operations for RDF. Rensselaer at Hartford

Technical Report, RH-DOES-TR 03-04 (2003)
9. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:

RQL: A declarative query language for RDF. In: Proc. 11th WWW. (2002)
10. Magkanaraki, A., Tannen, V., Christophides, V., Plexousakis, D.: Viewing the

Semantic Web Through RVL Lenses. In: Proc. 2nd ISWC. (2003)
11. Seaborn, A.: RDQL - A Query Language for RDF.

(http://www.w3.org/Submission/RDQL)
12. Clark, K.: SPARQL Protocol for RDF. http://monkeyfist.com/kendall/sparql-

protocol/ (2004)
13. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A Comparison of RDF Query

Languages. In: Proc. 3rd ISWC. (2004) 502–517
14. Nejdl, W., Siberski, W., Simon, B., Tane, J.: Towards a Modification Exchange

Language for Distributed RDF Repositories. In: Proc. 1st ISWC. (2002) 236–249
15. Guha, R.V.: Rdfdb ql. (http://www.guha.com/rdfdb/query.html)
16. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing

Knowledge about Information Systems. ACM Transactions on Information Sys-
tems 8 (1990) 325–362

17. Nejdl, W., Dhraief, H., Wolpers, M.: O-Telos-RDF: a Resource Description Format
with Enhanced Meta-Modeling Functionalities Based on O-telos. (In: Workshop
on Knowledge Markup and Semantic Annotation at the 1st K-CAP)



RUL: A Declarative Update Language for RDF 521

18. Koubarakis, M., Mylopoulos, J., Stanley, M., Jarke, M.: Telos: Features and For-
malization. Technical Report KRR-TR-89-4, Dept. of Computer Science, Univer-
sity of Toronto (1989)

19. Plexousakis, D.: Semantical and Ontological Considerations in Telos: a Language
for Knowledge Representation. Computational Intelligence 9 (1993) 41–72

20. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The
ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. In: Proc.
2nd SemWeb. (2001)

21. Hayes, P.: RDF Semantics. http://www.w3.org/TR/rdf-mt/ (2004)
22. Abiteboul, S., Vianu, V.: A Transcation Language Complete for Database Update

and Specification. In: Proc. 6th PODS. (1987) 260–268
23. Abiteboul, S., Vianu, V.: Procedural and Declarative Database Update Languages.

In: Proc. 7th PODS. (1988) 240–250
24. Wallace, M.: Compiling Integrity Checking Into Update Procedures. In: Proc. 12th

IJCAI. (1991) 903–908



Ontologies Are Us: A Unified Model
of Social Networks and Semantics

Peter Mika

Vrije Universiteit, Amsterdam,
1081HV Amsterdam, The Netherlands

pmika@cs.vu.nl

Abstract. In our work we extend the traditional bipartite model of on-
tologies with the social dimension, leading to a tripartite model of actors,
concepts and instances. We demonstrate the application of this represen-
tation by showing how community-based semantics emerges from this
model through a process of graph transformation. We illustrate ontology
emergence by two case studies, an analysis of a large scale folksonomy
system and a novel method for the extraction of community-based on-
tologies from Web pages.

1 Introduction

According to the most cited definition of the Semantic Web literature, an ontol-
ogy is an explicit specification of the conceptualization of a domain [1]. Guarino
clarifies Gruber’s definition by adding that the AI usage of the term refers to
“an engineering artifact, constituted by a specific vocabulary used to describe a
certain reality, plus a set of explicit assumptions regarding the intended meaning
of the vocabulary words” [2]. An ontology is thus engineered by -but often for-
members of a domain by explicating a reality as a set of agreed upon terms and
logically-founded constraints on their use.

Conceiving ontologies as engineering artifacts allows us to objectify them,
separate them from their original social context of creation and transfer them
across the domain. Problems arise with this simplistic view, however, if we
consider the temporal extent of knowledge. As the original community evolves
through members leaving and entering or their commitments changing, a new
consensus may shape up invalidating the knowledge codified in the ontology.

To address the problem of ontology drift, several authors have suggested emer-
gent semantics as a solution [3]. The expectation is that the individual interac-
tions of a large number of rational agents would lead to global effects that could
be observed as semantics. Ontologies would thus become an emergent effect of
the system as opposed to a fixed, limited contract of the majority. While the idea
quickly caught on due to the promise of a more scalable and easily maintainable
Semantic Web, the agreement so far only extends to the basic conditions under
which emergence would take place. The vision is a community of self-organizing,
autonomous, networked and localized agents co-operating in dynamic, open en-
vironments, each organizing knowledge (e.g. document instances) according to a

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 522–536, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Ontologies Are Us: A Unified Model of Social Networks and Semantics 523

self-established ontology, establishing connections and negotiating meaning only
when it becomes necessary for co-operation. Beyond the reasonable belief that
individual actions in such a semantic-social network would lead to ontology emer-
gence, there is a lack of an abstract model of such a system that could also explain
the process of emergence. Thus there appears to be a large conceptual gap in the
literature between the vision and the details of implementations of various seman-
tic architectures based on P2P, Grid, MAS and web technology.

In this paper, we take a step back and formulate a generic, abstract model
of semantic-social networks (Section 2), which we will call the Actor-Concept-
Instance model of ontologies. This model is built on an implicit (albeit crucial)
realization of emergent semantics, namely that meaning is necessarily dependent
on a community of agents. Inspired by social tagging mechanisms, we represent
semantic-social networks in the form of a tripartite graph of person, concept and
instance associations, extending the traditional concept of ontologies (concepts
and instances) with the social dimension. We will show how lightweight ontolo-
gies of concepts and social networks of persons emerge from this model through
simple graph transformations. In Section 3 we will demonstrate these effects
based on two independent, large scale datasets. In Section 4, we evaluate one of
our emergent ontologies (the result of a social-network based ontology extrac-
tion process) against the results of the traditional method of ontology extraction
based on co-occurrence. Lastly, we conclude by a summary and a discussion of
future work in Section 5.

2 A Tripartite Model of Ontologies

While expert systems designed for centralized, controlled environments benefit
greatly from the increasing expressivity of ontology languages such as OWL, es-
pecially in domains that lend naturally to formalization such as engineering and
medicine, lightweight ontologies expressed in RDF(S) have spread and caught
on in the loosely controlled, distributed environment of the Web [4].

The tendency towards lightweight, easily accessible mechanism for ontol-
ogy and metadata creation is best evidenced by the recent appearance of folk-
sonomies. Folksonomy (from folk and taxonomy) is a neologism for a practice
of collaborative categorization using freely chosen keywords. Folksonomies (also
called social tagging mechanisms) have been implemented in a number of on-
line knowledge sharing environments since the idea was first adopted by social
bookmarking site del.icio.us in 2004.

The idea of a folksonomy is to allow the users to describe a set of shared
objects with a set of keywords of their own choice. What the objects are de-
pends on the goal of the site: while bookmarks are the object of classification in
del.icio.us, photos are shared in Flickr, scientific publications are tagged in Ci-
teULike, while 43Things allows users to share their goals and plans (e.g. to travel
or loose weight) by annotating their descriptions with keywords and connecting
users with similar pursuits1.
1 del.icio.us, www.flickr.com, www.citeulike.org, www.43things.com



524 P. Mika

It is important to note that in terms of knowledge representation, the set of
these keywords cannot even be considered as vocabularies, the simplest possible
form of an ontology on the continuous scale of Smith and Welty [6]. First, the
set of words is not fixed. In fact, the users form no explicit agreement at all
about the use of words, not even in the form of incremental, need-based, local
and temporary agreements suggested by the research on emergent semantics [3].
Yet, the basic conditions of emergent semantics are given and as we will show
there is semantics emerging at the scale of these systems. Second, although we
use the term concept in the following, it is clear that there is no one-to-one
correspondence between concepts and keywords. It is not always possible for the
users to express a complex concept with a single keyword and thus they may
use more than one tag to express the concept association that the item brings
up in them. Lastly, the instances of folksonomies are instances only in the sense
of classification.

In order to model networks of folksonomies at an abstract level, we will
represent such a system as a tripartite graph with hyperedges. The set of vertices
is partitioned into the three (possibly empty) disjoint sets A = {a1, . . . , ak},
C = {c1, . . . , cl}, I = {i1, . . . , im} corresponding the set of actors (users), the
set of concepts (tags, keywords) and the set of objects annotated (bookmarks,
photos etc.) In effect, we extend the traditional bipartite model of ontologies
(concepts and instances) by incorporating actors in the model.

In a social tagging system, users tag objects with concepts, creating ternary
associations between the user, the concept and the object. Thus the folksonomy
is defined by a set of annotations T ⊆ A×C×I. Such a network is most naturally
represented as hypergraph with ternary edges, where each edge represents the
fact that a given actor associated a certain instance with a certain concept. In
particular, we define the representing hypergraph of a folksonomy T as a (simple)
tripartite hypergraph H(T ) = 〈V, E〉 where V = A ∪ C ∪ I, E =

{
{a, c, i} |

(a, c, i) ∈ T
}
.

Tripartite graphs and hyperedges are rather cumbersome to work with. How-
ever, we can reduce such a hypergraph into three bipartite graphs (also called
two-mode graphs) with regular edges. These three graphs model the associations
between actors and concepts (graph AC), concepts and objects (graph CO) and
actors and instances (graph AI). For example, the AC valued bipartite graph is
defined as follows:

AC = 〈A × C, Eac〉, Eac = {(a, c) | ∃i ∈ I : (a, c, i) ∈ E}, w : E → N, ∀e =
(a, c) ∈ Eac, w(e) := |{i : (a, c, i) ∈ E)}|

In words, the bipartite graph AC links the persons to the concepts that they
have used for tagging at least one object. Each link is weighted by the number
of times the person has used that concept as a tag. This kind of graph is known
in the social network analysis literature as an affiliation network [7], linking peo-
ple to affiliations with weights corresponding to the strength of the affiliation. An



Ontologies Are Us: A Unified Model of Social Networks and Semantics 525

affiliation network can be used to generate two simple, weighted graphs (one-
mode networks) showing the similarities between actors and events, respectively.
(At this point it is recommended to dichotomize the graph by applying some
threshold.)

The process of folding a bipartite graph (the extraction of a one-mode net-
work) can be most easily understood by looking at the matrix form of the
graph. Let’s denote this matrix as B = {bij}. As discussed before, bij = 1 if
actor ai is affiliated with concept cj . We define a new matrix S = {sij}, where
sij =

∑k
x=1 bixbxj . In matrix notation S = BB′. This matrix, known as the co-

affiliation matrix, defines a social network that connects people based on shared
affiliations. In our case the links are between people who have used the same
concepts with weights showing the number of concepts they have used in com-
mon. The dual matrix, O = B′B is a similar graph showing the association of
concepts, weighted by the number of people who have used both concepts as
tags. Note that in both graphs the diagonal of the corresponding matrices con-
tains the counts of how many concepts or persons a given person or concept was
affiliated with in the bipartite graph. We can use these values to normalize the
association weights (e.g. by calculating the Jaccard-coefficient) and then filtering
again based on the relative weights. In case of the S social network, for example,
this means that we have taken into account the relative importance of the link
between persons.

In summary, the AC graph, the affiliation network of people and concepts
can be folded into two graphs: a social network of users based on overlapping
sets of objects and a lightweight ontology of concepts based on overlapping sets
of communities. Thus in this simple model, social networks and semantics are
just flip-sides of the same coin: the original bipartite graph contains all the
information to generate these networks, while it is not possible to re-generate
the original graph from them.

The other two bipartite graphs that we derived from the original tripartite
model can also be folded into one-mode networks in a similar fashion. In partic-
ular, the CI graph leads to another semantic network, where the links between
terms are weighted by the number of instances that are tagged with both terms.
This type of semantic network is a much more familiar kind: it mimics the basic
method applied in text mining, where terms are commonly associated by their
co-occurrence in documents. The AI graph results in another social network of
persons, where the weight of a pair is given by the number of items they have
both tagged. We also get a network of instances, with associations showing the
number of people who have tagged a given pair of instances.

In the following we focus our attention to the two lightweight ontologies
based on overlapping communities (Oac) and overlapping sets of instances (Oci).
2 The analysis of the emergent social networks is outside the scope of the current
paper.

2 Recall that Oac = B′B, where B = {bij} with bij = 1 if actor ai is affiliated with
concept cj ; and Oci = D′D, where D = {dpq} with dpq = 1 if concept cp is used to
tag the instance iq.



526 P. Mika

2.1 Ontology Enrichment

The community-based lightweight ontology Oac that we extract from the affil-
iation network is rather peculiar from a knowledge representation perspective.
Unlike the manually constructed thesauri known in the Semantic Web literature
(such as Wordnet [8]), it more closely resembles the association thesauri stud-
ied in linguistics. An example is the Edinburgh Associative Thesaurus (EAT)3,
which was collected in 1973 via an experiment using a group of university stu-
dents as subjects [9]. The experiment consisted of handing a list of words to
students who were instructed to write down against each stimulus word the first
word it made them think of, working as quickly as possible. The obtained words
were used in a next round of the experiment. (The cycle was repeated three
times, by then the number of different responses was so large that they could
not all be re-used as stimuli.)

Our associative ontology is similar to the EAT in that the weights of the links
between terms are expressed as the number of people who make that association.
The difference is that in the EAT collection, people are prompted explicitly to
create links between concepts, while we deduce such links by observing tagging
behavior. More importantly, however, both methods have the crucial property
that the result clearly depends on the community of people who take part in
experiment. The method of ontology engineering is particularly revealing, be-
cause once the initial set of words is selected there is only one parameter to the
process: the population chosen. (In particular, the knowledge engineer has no
other role than handing out questionnaires and collecting the responses.) Some
of the results are likely to hold for other communities (like the overwhelming
reaction of saying Noah when hearing the word ark), but many of the aggre-
gated associations are driven by the collective mind set of the subjects of the
experiment. A collective mindset that is likely shaped by the well-known law
of community formation: interaction creates similarity, while similarity creates
interaction.

We can not only repeat the experiments with different communities, but
given some information about the social structure of the community, we could
also extract local ontologies by limiting our tripartite ontology to the associations
of a certain sub-community of actors. Note that this is the principle of locality
in action, one of the expected hallmarks of emergent semantics [3]. We will
demonstrate this effect in Section 3.2 where we extract an ontology of research
topics in the Semantic Web domain.

In modern terms, the EAT is an emergent ontology based on empirical data.
Unlike ontologies that are meant to codify fixed agreements, all graphs that we
derive are also emergent in the sense of evolving dynamically with the Actor-
Concept-Instance network. Changes in the original network can occur in a num-
ber of ways. Users may join or leave the community, changing the set of actors.
The focus of the community may shift, affecting the set of items tagged and the
concepts used. Last, the understanding and use of terms may change, reflecting
in the set of associations between concepts and instances created by the users.
3 Consult the EAT online at http://www.eat.rl.ac.uk/



Ontologies Are Us: A Unified Model of Social Networks and Semantics 527

Although our association networks are very simple ontological structures,
there are several opportunities of enriching them with additional semantics. We
start by observing that a significant drawback of the EAT is the heterogeneity
of terms. Our emergent ontologies will also likely to contain a diverse mixture of
specific and generic terms, i.e. terms that we can unambiguously place in a clearly
defined context (e.g. instances such as Peter) and terms that can occur in multi-
ple contexts of use (e.g. war). From a network view, general words are therefore
more likely to bridge different clusters of words, while specific terms are expected
to exhibit a dense clustering in their neighborhood. This suggest an opportu-
nity to distinguish between these two categories by computing the clustering
coefficient, the (local) betweenness centrality or the network constraint on our
terms[7,10]. These well-known ego-network measures of Social Network Analysis
are readily available in popular network analysis packages such as Pajek[11] and
UCINET[12]. Based on the same observation, we also expect that clustering al-
gorithms can help us in finding synonym sets of the more specific terms. There is
a wide range of clustering algorithms available in the above mentioned network
analysis packages, based on different definitions of cohesiveness.

We may also extract broader/narrower term relations typical of thesauri
using set theory. In an ideal situation, we would say that Concept A is a super-
concept of Concept B if the set of entities (persons or items) classified under B
is a subset of the entities under A (B ⊆ A � A ∩ B = B). We might also add
the criterium that the set of A should be significantly larger then the set of B,
i.e. |B|/|A| < k for some value of k. In principle, such an ordering allows us to
define a Galois lattice using the subset relation. In practice, such a lattice would
be very sparse (considering the number of entities and the number of possible
subsets over them), so we will approximate this method by looking for near-
perfect overlaps, i.e. |A ∩ B|/|B| < n for some value of n. Finding appropriate
values for the k, n parameters of the model is the task of the researcher.

The reader should note that the meaning of these broader/narrower relations
are very different, depending on whether we analyze the Oci or the Oac ontology.
In the first case, the interpretation is that all (or most) of the items classified
under the narrower term also appear under the broader term. In other words,
what we extract is a classification hierarchy. In the second case, the meaning
is that all the persons associated with the narrower term are also associated
with the broader term. In other words, we extract a hierarchy based on sub-
community relationships.

3 Case Studies

In the following, we demonstrate the broad applicability of the Actor-Concept-
Instance model of ontologies by looking at two different semantic social networks.
Our first data set comes from an existing web-based social bookmarking tool
called del.icio.us (Section 3.1), while the second case is built on synthetic data
obtained by using web mining techniques (Section 3.2). We will show how the
abstract model applies to the particular cases and demonstrate our method of
ontology emergence based on the graph transformation described above.



528 P. Mika

3.1 Ontology Emergence in del.icio.us

According to the definition of author Joshua Schachter, del.icio.us is a social
bookmarking tool. Much like the similar functions of browsers, del.icio.us allows
users to manage a personal collection of links to web sites and describe those
links with one or more keywords. Unlike stand-alone tools, del.icio.us is a web-
based system that allows users to share bookmarks with each other. Bookmarks
can be browsed by user, by keywords (tags) or by a combination of both crite-
ria. Further, the user interface encourages exchange by showing how bookmarks
are linked together via users and tags. In terms of the Actor-Concept-Instance
model, registered users of del.icio.us are the actors who create or remove asso-
ciations between terms and webpages (instances) by adding or deleting book-
marks.

From the perspective of studying emergence, del.icio.us is remarkable for
the dynamics of its user base. The young, technologically aware community
gathering around the site closely follows the latest news and trends in web
technology as well as the evolving vocabulary of the field. Beyond technol-
ogy, del.icio.us users also post bookmarks related to current topics in poli-
tics, media, business and entertainment. The emphasis on timeliness is rein-
forced by listing bookmarks in a backward-chronological order as it is typical for
blogs.

Fig. 1. The del.icio.us tags associated
through co-occurrence on items and the
clusters emerging

Table 1. The five main clusters of in-
terest based on the Concept-Object net-
work

travel cote, provence, villa, azur,
mas, holiday, vacation,
tourism, france, heritage

business venture capital, enterprise,
up, start, venture, news-
paper, capital, Segev, pi-
tango, vc

free time procrastination, info, ad-
vice, gtd, life, notes, plan-
ning, daily, reading, forums

sex hot, to, street, pictures, on,
photos, free, celeb, adult,
lesbian

web design design, designer, webde-
sign, premium, logo, logos,
dreamweaver, templates,
best, good

The process of annotation is made as easy as possible. A single textbox
allows users to enter a set of words without any recommendations made by



Ontologies Are Us: A Unified Model of Social Networks and Semantics 529

the system. On the downside, this means that synonyms are common in the
folksonomy, e.g. ”semanticweb”, ”semweb” are different keywords. Ambiguity is
also present, since users often pick overly general terms to describe items (such as
”web”, ”tool” and other popular terms). Further, users often make the mistake
to enter key phrases instead of keywords (e.g. ”Bill Clinton”), where the words
are subsequently parsed as separate tags (”Bill” and ”Clinton”); or they escape
the one-word-only limitation by concatenating words. Case sensitivity and the
use of punctuation marks further pollute the del.icio.us namespace. However, at
the scale of system (over 30 thousand registered users in December, 2004) the
imperfections of tagging are reduced to an acceptable level. On the plus side,
users benefit from instant gratification in the form of linkage to other relevant,
timely, socially-ranked posts.

del.icio.us exposes tagging data in the form of RSS feeds, which we have
collected using a focused RDF crawler. The crawler was initialized with the single
most popular tag (”web”) and have traversed the RSS network in a breadth-first-
search manner, following links to tags mentioned in the descriptions of items.
The sample data that we collected - over a million triples of RDF - was stored
using the Sesame storage and query facility [13]. The sample represents 51852
unique annotations of 30790 URLs, by 10198 persons using 29476 unique tags. 4

Next, we have generated both the Actor-Concept and Concept-Instance
graphs. In order to scale down the dataset (without loosing much information)
and to avoid strong associations with a low support we have filtered out those
entities that had only a minimal number of connections, i.e. those tags that had
less than ten items classified under them and those persons who have used less
than five concepts.

Subsequently, we have extracted the above mentioned two kinds of ontolo-
gies by folding these graphs using the network analysis package Pajek. As a
reminder, the first ontology (Oac) is based on actors sharing concepts as inter-
ests, i.e. the associations reflect overlapping communities of interests, while the
second network (Oci) reflects the co-occurrence of tags on items. We have filtered
the networks based on the absolute strength of associations. Next, we applied
geometric normalization to the resulting graphs and filtered edges again based
on the relative strength of the associations. We have chosen the thresholds in
such a way to obtain networks of equal size (438 concepts). Figure 1 shows a high
level view of the Oci graph, Figure 2 shows a detailed view of the Oac graph.

The results show clear evidence of emerging semantics in both cases, but the
networks we obtain still show very different pictures. With an equal number of
vertices, the densities of the two networks are quite different (0.01 for the Oci

network, 0.006 for the Oac network), and so is the amount of clustering present
(the average clustering coefficients are 0.2 and 0.03, respectively).

The selection of concepts in the two networks is also very different: only 64
concepts are present in both networks of the total of 438 nodes in each graph.

4 This is a sample of the complete data set because the RSS feeds expose only the
latest thirty items for each tag. Futher, we stopped crawling after reaching this size.
To our knowledge this is still the largest ontology annotation data set ever studied.



530 P. Mika

(A sample is included in Table 2.) A closer look reveals that the concepts within
the clusters of the first network are often very specialized terms, while those
in between the clusters are overly general terms. A look at the terms with the
lowest clustering and highest betweenness centrality confirms this hypothesis.
The top five terms with highest betweenness are up, cool, hot, in, to. Noticeable
also is that the terms with the highest clustering and lowest network constraint
are those related to sex. As mentioned before, the second network shows much
less clustering: overly general and overly specific terms are both missing.

Table 2. Terms starting with ”A” or ”a” in the two lightweight ontologies generated
from the del.icio.us network

Oci */GoogleHacks, 0, 04, 1, 2, 2005, 3g, a, A, a9, Aaron Mankovski, actona, actors,
adult, aduva, advice, ajax, all, Allegrini, america, an, and, angeles, apparel, Apple,
as, assembly, attempt, attention, attention.xml, aviv, axml, azur

Oac .net, 3d, 43folders, academic, accessibility, acronym, actionscript, activism, ad,
ads, adsense, advertising, advice, advisories, adwords, agile, ajax, amazon, amer-
ica, analysis, and, Apache, apache, api, app, apple, application, architecture,
archive, Art, art, articles, asia, astronomy, atlas, Audio

Fig. 2. Detail view of the del.icio.us tags associated
through users: a 3-neighborhood of the term ontol-
ogy. Note that the term sematic is correctly associ-
ated, despite the obvious typo.

Table 3. Broader/narrower
term relations in the technol-
ogy domain, based on sub-
communities in del.icio.us

Broader Narrower
rss atom
cmyk rgb
cell umts, wcdma, ev-do
phone cell
ajax json
xml xslt
rdf owl
flickr gmail, picasa
ruby rails
mac iphoto
java j2ee
google gds
search a9, engine
linux ubuntu, gnome
flash actionscript
flickr lickr, photoset
javascript xmlhttprequest,

dom, sarissa



Ontologies Are Us: A Unified Model of Social Networks and Semantics 531

The clue to the different qualities of these networks lies in the difference in the
way associations are created between the concepts. In the first case, there exist
a strong association between concepts if they share a large percentage of items,
independent of the number of users interested in them and regardless if these
associations were added by the same users or not. The resulting distribution of
association weights shows a very slow decline, the average weight is fairly high.
In the second case, there is a strong association in the network if two concepts
share a large fraction of the users among them, independent of the number of
instances associated with them and regardless whether these terms were added to
the same instances or not. The resulting weight distribution shows a very steep
decline, the average weight is fairly low.

This suggest that the first network (Oci) is more appropriate for concept min-
ing. In fact, a λ-set analysis performed with UCINET on a slightly larger network
of 751 concepts resulted in meaningful clusters of specific terms, representing var-
ious domains of interests in the del.icio.us community. At a level of λ = 20, we
found 5 cohesive groups of concepts that we identified as interests related to travel,
business, free time, porn and web design (see Figure 1 and Table 1).

However, the Oci semantic network ignores the relevance of the individual con-
cepts from the user perspective and as such it gives an inaccurate picture of the
community.Concepts related to sex, for example, get amisleadingly high centrality
in the network due to the specificity and extent of the vocabulary used to describe
sex-related sites. On the other hand, the more evenly distributed community-based
network (Oac) contains concepts that are actually important to del.icio.us users.
These concepts almost all come from the computer domain, the apparent core in-
terest of users. The strength of links between the concepts are also a more accurate
representation of reality as they are not biased by the actual number of items that
have been tagged with them.

The ignorance of the item-based extractionmethod towards thenumber ofusers
also makes it problematic to extract taxonomic relations.Namely, many of the rela-
tionswe extracted are based on thewordusage of a small number of users, and in the
worst case a single user.TheConcept-Actor ontology yieldsmuchmore easily inter-
pretable results, shown in Figure 3. As discussed before, these are sub-community
relations: the community associated with a narrower term is a sub-community of
the community associated with the broader term. Nevertheless, even here we find
anassociation createdby a single storymarkedbya large number of users.This sug-
gests an improvement to our original method, namely filtering out concepts that
have only a limited number of items or persons associated to them. We take this
into account as we move on to generalize our method to community-based ontology
extraction from Web pages.

We conclude by noting the potential application of the results to improving
del.icio.us itself, e.g. by offering search and navigation based on broader/narrower
terms. Considering the dynamics of the community and the extent of neologism,
the ontologies emerging from folksonomies such as del.icio.us also have a large po-
tential for enriching established, but slowly evolving linguistic ontologies such as
Wordnet [8].



532 P. Mika

3.2 Community-Based Ontology Extraction from Web Pages

Folksonomies such as del.icio.us are effective, because they attract sizeable sub-
communities of users pursuing similar interests. Nevertheless, the community of
del.icio.us is still a niche compared to the general web population, just as the num-
ber of web sites tagged is only a fraction of the number of pages on the Web.

We would like to show in the following that even without explicitly assigned
tags, it is possible to extend the idea of community-based ontology extraction to
the Web. Let’s suppose that we have a selected a community, whose members will
play the role of Actors in our model, and we have prepared a list of terms whose
associations we are interested in. The instances of our model are the pages of the
Web. Further, we assume that a web page is tagged by a concept if the concept
occurs on the page.

Based on these assumptions, the Concept-Instance ontology is straightforward
to create: we can use a search engine to obtain page counts for all pairs of concepts
and then normalize by their separate page counts. This is the basic co-occurrence
analysis method of text mining.

Generating the Actor-Concept ontology requires another broad assumption.
We will say that there is an association between a concept, a person and a web
page if the name of the person and the label of the concept co-occur on the page.
This association represents a weaker commitment than in the case of folksonomies,
because it is not guaranteed that the association is made by the person. Nonethe-
less, we can now generate the bipartite graph of persons and concepts by measuring
the association using page counts from the search engine.

First, we measure the association between a person (e.g. ”Peter Mika”) and a
concept (e.g. ”Semantic Web”) by submitting a boolean query combining the two
terms (e.g. ”Peter Mika” AND ”Semantic Web”). We normalize the result with
the number of pages where the concept occurs. We then repeat this with the same
concept and the names of all other members of the target community. We calculate
the mean strength of association with the concept of ”Semantic Web”. Lastly, we
associate those members of the community with this concept whose association
strength is at least one standard deviation higher than the mean. (Note that this is
a slightly more sophisticated method of filtering than a general threshold.) We can
now fold the bipartite graph of actors and concepts to obtain the Oac ontology.

Our method of community-based ontology extraction have been implemented
as part of the Flink system. The system is a web-based presentation of the social
networks and research interests of Semantic Web researchers5. The community of
researchers represented in Flink includes all authors, programcommittee members
and organizers of all past international Semantic Web events from 2001, altogether
607 persons. The system extracts the social network of researchers as described in
[14] and associates them with research topics using the search engine Google.

Flink can also be used to perform co-occurrence analysis and generate the Oci

ontology. We improve the basic method by adding the disambiguation term
5 Flink itself uses Semantic Web technology and is the winner of the Se-

mantic Web Challenge of 2004. See http://flink.semanticweb.org and
http://challenge.semanticweb.org



Ontologies Are Us: A Unified Model of Social Networks and Semantics 533

”Semantic Web” OR ontology to the queries sent to the search engine, limiting the
items returned to those relating to the Semantic Web.

The resulting ontological structures are not included here due to limitations
of space, but we strongly encourage the reader to consult them online6. To make
the networks comparable, we have included only the 100 strongest associations in
each network. Again, we see a significant difference in the set of concepts remaining
in the networks. Namely, from the original 60 terms (selected manually from the
proceedings of the ISWC events), the method of text mining found the strongest
associationsbetween more general terms. Specific concepts related to the Semantic
Web seem to float to the periphery and are misplaced in general. For example, the
term FOAF is related to XML and OWL-S, technologies not directly related to
FOAF. Annotation is related to alignment and databases. The term ontology is
associated, among others, with HTML, XML and databases, concepts not directly
related to the understanding of ontologies in the Semantic Web community.

The Oac association network represents a clear improvement in these respects.
The method found correct associations between domain specific concepts. For ex-
ample, the term FOAF is linked here to Redland and Sesame, the triple stores
preferred by FOAF developers for their scalability. Terms related to ontology lan-
guages (OWL, RDF, OIL, DAML+OIL, ontology languages etc.) are correctly
clustered together, just as the technologies related to ontology storage (query lan-
guages, triple stores), with terms related to ontology development (OilEd, On-
toEdit, ontology development) connecting the two clusters. More general technolo-
gies are also placed correctly in context, i.e. corresponding to the way they are used
in the Semantic Web. For example, NLP is tied to the notions of annotation and
ontology learning.

The difference in the node sets can be explained in a similar way as in the case
of del.icio.us: the Oci network ignores the overall relevance of these concepts to the
Semantic Web community. Considering the associations, we believe that there is
another effect in play. By querying the associations of persons first and then linking
concepts through overlapping communities, we simulate the effect of first asking
the members of the community to associate themselves with certain research in-
terests and then relating these interests through overlapping communities. Over-
lapping communities turn out to be a stronger link than overlapping sets of web
pages. A possible explanation is that even after including the disambiguating term
in the query, the search engine still suffers from knowing too much, blurring away
community-specific interpretations.

4 Evaluation

In absence of a golden standard, evaluating the results of ontology learning or on-
tology mapping is a difficult task: inevitably, it requires consulting the community
or communities whose conceptualizations are being learned or mapped. In order to
evaluate our results, we have thus approached in email 61 researchers active in the
Semantic Web domain, most of whom are members of the ISWC community and

6 http://www.cs.vu.nl/~pmika/research/iswc2005/



534 P. Mika

many of them are in the graph-theoretical core of the community7. The single ques-
tion we asked was In terms of the associations between the concepts, which ontology
of Semantic Web related concepts do you consider more accurate? Lacking a yard-
stick, there is no principled correct answer to this question that we expected to re-
ceive. Instead, we were interested to find out if there is a majority opinion emerging
as an answer and if yes, which of the two ontologies (produced by the two different
methods) would that majority accept as more accurate.

Many respondents expressed difficulty in answering the question due to the (in-
tentional) lack of further explanations or instructions, e.g. what the associations
mean, but also due to the very different node sets of the two semantic networks.
Nonetheless, out of the 33 respondents only three persons were not willing to ex-
press any preference (even if a slight one) for one network or the other. 23 respon-
dents were members of the ISWC community and 15 of them belong to the core of
the community.

Table 4. Results for the comparison
of the community-based (Oac)and item-
based (Oci) ontology extraction methods

N Oac Oci Ratio Sign.
All 30 22 8 73.3% 0.0055
ISWC 23 18 5 78.3% 0.0040
ISWC-core 15 13 2 86.7% 0.0032

The distribution of the answers for
the various subgroups are summarized in
Table 4. First, taking all responses into
account, we can conclude that the par-
ticipants consider the Oac network as a
more accurate representation of associa-
tions between the concepts than the Oci

network (the result is significant at a level
of p = 0.01). The majority vote becomes
even stronger if we consider only the members of the ISWC community, i.e. the
persons whose name has been used to extract the semantic network. Thus as a sec-
ond finding we can also conclude that the Oac network is considered more accurate
particularly by those whose names were used in the extraction process. The results
become even more conclusive if we only consider the votes from the core members of
the community. Based on this finding and assuming a continuum, we can state that
the Oac network better reflects the conceptualizations of those closer to the core of
the community.Combined together, our findings confirmthat theOac network bet-
ter reflects the conceptualizations of those involved in Semantic Web research, and
this holds especially for those most actively involved in Semantic Web research.

5 Conclusions and Future Work

The Semantic Web is a web for machines, but the process of creating and main-
taining it is a social one. Although machines are helpful in manipulating symbols
according to pre-defined rules, only the users of the Semantic Web have the
necessary interpretive and associative capability for creating and maintaining on-
tologies. Ontology creation necessitates a social presence as it requires an actor to

7 We performed a categorical core/periphery analysis with correlation optimization us-
ing UCINET 6 based on the connected part of the Flink social network data (N=528),
available at http://prauw.cs.vu.nl:8080/flink/graph. The results show a clear
C/P structure with 63 persons in the core and 465 persons on the periphery.



Ontologies Are Us: A Unified Model of Social Networks and Semantics 535

reliably predict how other members of the community would interpret the symbols
of an ontology based on their limited description. With incorporating the notion
of semantics into the web architecture, we have thus made the users of the system
a critical part of the design.

We have argued elsewhere for a three layeredview of the Semantic Web, namely
the layer of communities and their relations, the layer of semantics (ontologies and
their relations) and the layer of content items and their relations (the hypertext
Web) [15]. In this paperwehave formalized this viewas a tripartitemodel of ontolo-
gies with three different classes of nodes (actors, concepts, and instances) and hy-
peredges representing the commitment of a user in terms of classifying an instance
as belonging to a certain concept. We have shown the usefulness of this model by
generating two kinds of association networks: the well-known co-occurrence net-
work of ontology learning and a novel semantic network based on community rela-
tionships. Among the future work is the study of the two emerging social networks,
based on object and concept overlaps.

The general advantage of the incorporation of the social context into the repre-
sentation of ontologies is the possibility of studying emergence from user actions.
Emergent semantics is likely to best complementwell-established, but slowly evolv-
ing ontologies suchasWordNet [8],which lack theassociative component.8 Wehave
also compared the two networks based on object and person overlap and noted the
advantage of the second network: the possibility to extract semantics pertinent to
a sub-community of the user network. In some sense, this is the opposite of mining
general knowledge from search engines as in the work of Cimiano et al. or Etzioni
et al. [16,17]. In comparison to these systems, our community-based ontology ex-
traction has a great potential in extracting ontologies that more closely match the
conceptualization of a particular community. For example, when trying to find as-
sociations between concepts used by the Web Services community, it is natural to
consider only the associations created (explicitly or implicitly) by those involved
in developing Web Services. As we have shown, using this method the resulting
ontology is more likely to be accepted as accurate by the community itself.

It seems that ontologies are us: inseparable from the context of the community
in which they are created and used. A greater acknowledgement of this state -by
incorporating the link between actors and concepts into the model of ontologies-
have only benefits to bring in terms of more meaningful and easily maintainable
conceptual structures. While we are only at the beginning of realizing these bene-
fits, there is a clear magic as we see semantics emerge from the individual actions
of a community at work.

8 For example, according to WordNet the distance of the terms Noah and ark is quite
large: their closest common ancestor in the hypernymtree is object, physical object. Yet,
theEdinburghmaster’s students overwhelmingly associate the termNoah with ark and
vice versa. The association is so strong in fact (78 and 79 percent of all terms mentioned
in response, respectively) that it is safe to say that in the mind of the students these
terms are solely defined by each other, in the context of the biblical story of Noah’s
ark.



536 P. Mika

References

1. Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. In Guarino, N., Poli, R., eds.: Formal Ontology in Conceptual Analysis and
Knowledge Representation, Deventer, The Netherlands, Kluwer Academic Publish-
ers (1993)

2. Guarino, N.: Formal Ontology in Information Systems. IOS Press (1998)
3. Aberer, K., Cudré-Mauroux, P., Ouksel, A.M., Catarci, T., Hacid, M.S., Illarra-

mendi, A., Kashyap, V., Mecella, M., Mena, E., Neuhold, E.J., Troyer, O.D., Risse,
T., Scannapieco, M., Saltor, F., de Santis, L., Spaccapietra, S., Staab, S., Studer,
R.: Emergent Semantics Principles and Issues. In: Database Systems for Advanced
Applications 9th International Conference, DASFAA 2004. Volume 2973 of LNCS.
(2004) 25–38

4. Mika, P., Akkermans, H.: Towards a New Synthesis of Ontology Technology and
Knowledge Management. Knowledge Engineering Review (To appear.)

5. van Elst, L., Abecker, A.: Ontologies for information management: balancing for-
mality, stability, and sharing scope. Expert Systems with Applications 23 (2002)
357–366

6. Smith, B., Welty, C.: Ontology: Towards a new synthesis. In: Formal Ontology in
Information Systems, Ongunquit, Maine, ACM Press (2001) iii–x

7. Wasserman, S., Faust, K., Iacobucci, D., Granovetter, M.: Social Network Analysis:
Methods and Applications. Cambridge University Press (1994)

8. Fellbaum, C., ed.: WordNet - An electronic lexical database. MIT Press (1998)
9. Kiss, G., Armstrong, C., Milroy, R., Piper, J.: An associative thesaurus of English

and its computer analysis. Edinburgh University Press (1973)
10. Burt, R.S.: Structural Holes: The Social Structure of Competition. Harvard Univer-

sity Press (1995)
11. Batagelj, V., Mrvar, A.: Pajek - Program for Large Network Analysis. Connections

21 (1998) 47–57
12. Borgatti, S., Everett, M., Freeman, L.: Ucinet for Windows: Software for Social Net-

work Analysis. (Harvard: Analytic Technologies)
13. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: An Architecture for Storing

and Querying RDF and RDF Schema. In: Proceedings of the First International
Semantic Web Conference (ISWC 2002). Number 2342 in Lecture Notes in Computer
Science (LNCS), Springer-Verlag (2002) 54–68

14. Mika, P.: Social Networks and the Semantic Web: An Experiment in Online Social
Network Analysis. In: Proceedings of the IEEE/WIC/ACM International Confer-
ence on Web Intelligence, Beijing, China (2004)

15. Mika, P.: Social Networks and the Semantic Web: The Next Challenge. IEEE Intel-
ligent Systems 20 (2005)

16. Cimiano, P., Handschuh, S., Staab, S.: Towards the Self-Annotating Web. In: Pro-
ceedings of the 13th International World Wide Web Conference, New York, USA
(2004) 462–471

17. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.M., Shaked, T., Soder-
land, S., Weld, D.S., Yates, A.: Web Scale Information Extraction in KnowItAll
(Preliminary Results). In: Proceedings of the 13th International World Wide Web
Conference, New York, USA (2004) 100–111



OMEN: A Probabilistic Ontology Mapping Tool

Prasenjit Mitra1, Natasha F. Noy2, and Anuj Rattan Jaiswal1

1 The Pennsylvania State University, University Park, PA 16802, U.S.A.
{pmitra, ajaiswal}@ist.psu.edu

http://www.psu.edu/
2 Stanford University, Stanford, CA 94305, U.S.A.

noy@smi.stanford.edu

http://smi.stanford.edu/

Abstract. Most existing ontology mapping tools are inexact. Inexact
ontology mapping rules, if not rectified, result in imprecision in the ap-
plications that use them. We describe a framework to probabilistically
improve existing ontology mappings using a Bayesian Network. Omen,
an Ontology Mapping ENhancer, is based on a set of meta-rules that cap-
tures the influence of the ontology structure and the existing matches to
match nodes that are neighbours to matched nodes in the two ontolo-
gies. We have implemented a protype ontology matcher that can either
map concepts across two input ontologies or enhance existing matches
between ontology concepts. Preliminary experiments demonstrate that
Omen enhances existing ontology mappings in our test cases.

1 Introduction

Information sources, even those from the same domain, are heterogenous in na-
ture. The semantics of the information in one source differs from that of the other.
In order to enable interoperation among heterogenous information sources or to
compose information from multiple sources, we often need to establish mappings
among database schemas and among ontologies. These mappings capture the se-
mantic correspondence between the schemas or the concepts in the ontologies.

Several problems arise when an expert entrusted with matching two ontolo-
gies constructs the semantic mappings between them. First, the expert needs
automatic or semi-automatic means for establishing the mappings. Often, the
schemas or ontologies are quite large. Manually establishing the mappings among
large ontologies is prohibitively expensive or downright impossible due to the
sheer number of entities that the expert needs to match. Thus, an expert needs an
automated ontology matching tool. However, automatic tools often use heuristics
and may be imprecise. The expert would like to specify, along with each map-
ping, the amount of uncertainty associated with it. Second, precise mappings
may not even exist. Even a human expert may be able to come up only with
approximate mappings. In particular, the expert may not be able to come up
with precise mappings if the expert has incomplete information about class def-
initions. Therefore, we introduce probabilistic mappings that map each pair

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 537–547, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



538 P. Mitra, N.F. Noy, and A.R. Jaiswal

of concepts from two sources and the mapping between them has an associated
probability.

Our main premise in this work is the following: if we know a mapping be-
tween two concepts from the sources, we can use the mapping to infer mappings
between related concepts. For example, if two properties are equivalent, and so
are their domains, we can infer (with some certainty) that their ranges are equiv-
alent as well. Therefore, we can build a Bayes Net with the concept mappings.
The Bayes Net uses a set of meta-rules that expresses how each mapping affects
other related mappings. We can use existing automatic and semi-automatic tools
to come up with initial probability distributions for mappings. Next, we use this
probability distribution to infer probability distributions for other mappings.

We have implemented a tool, Omen, an Ontology Mapping Enhancer. Omen
uses a Bayes Net to provide probabilistic inference and aids in enhancing existing
ontology mappings by deriving missed matches and invalidating existing false
matches. Preliminary results show that using Omen an expert can enhance the
quality of existing mappings between concepts across ontologies.

The primary contributions of this paper are as follows:

1. We introduce a probabilistic method of enhancing existing ontology map-
pings by using a Bayes Net to represent the influences between potential
concept mappings across ontologies.

2. In Omen, we provide an implemented framework where domain knowledge of
mapping influences can be input easily using simple meta-rules. We demon-
strate the effectiveness of Omen in our preliminary experiments.

To the best of our knowledge, no existing work has extensively used a proba-
bilistic representation of ontology mapping rules and probabilistic inference to
improve the quality of existing ontology mappings.

The rest of the paper is organized as follows. Section 2 contains a description
of the knowledge model used to represent the ontologies and the mapping expres-
sions, In Section 3, we discuss the use of meta-rules to generate new probability
distributions based on existing ones. Section 4 contains a description of how the
Bayes Net that Omen uses is constructed. In Section 5, we briefly outline our
prototype implementation and provide the results of our experiments. Section 6
describes some open issues and scope for future work. In Section 7, we discuss
the related work and conclude the paper in Section 8.

2 Knowledge Model and Mapping Expressions

We assume a simple ontology model (that is more or less similar to RDF Schema
or a subset of OKBC with more commonly used facets). We use the following
components to express ontologies:

Classes. Classes are concepts in a domain, organized in a subclass–superclass
hierarchy with multiple inheritance.



OMEN: A Probabilistic Ontology Mapping Tool 539

Properties. Properties describe attributes of classes (which are primitive val-
ues, such as numbers, strings, etc., and we omit these from mapping con-
sideration) and relationships between classes. Properties have one or more
domains, which are classes to which the property can be attached; and one
or more ranges, which restrict the classes for the values of property.

Given two ontologies, O and O′, a mapping between two concepts, C ∈ O
and C′ ∈ O′, m(C, C′) (C and C′ can be either classes or properties), is one of
the following values:

– = if the concepts are equivalent;
– ⊂ if C is a specialization of C′;
– ⊃ if C′ is a generalization of C;
– ∩ if there is an overlap between C and C′;
– × if C and C′ are not related.

Note, that we may not know the value of the mapping at all. In other words,
if (m(C, C′)) = ×, then we know that they are not related, which is different
from not knowing what their relationship is.

Therefore, for each mapping m(C, C′), we can talk about a probability dis-
tribution over the mapping values {=,⊂,⊃,∩,×}. For each mapping m(C, C′),
the sum of the values in the distribution must be less than or equal to 1. It is
less than one if we do not have complete information about the distribution.

3 Meta-rules for Generating New Probability
Distributions

In this section, we show examples of meta-rules that are used to match the
ontologies and discuss how the algorithm generates new probability distributions
depending upon the existing ones. The algorithm starts the process by initializing
probability distributions for some of the mappings, using the output of various
automatic mapping tools. It then uses a set of meta-rules to derive new mappings
based on existing ones.

3.1 Examples of Meta-rules

Before giving an example of a meta-rule, we describe the notations and short-
hands that we use for brevity. In all the rules for mapping between two ontologies,
O and O′, we use the following:

– all concepts from O have no prime (’); all concepts from O′ have a prime (’);
– upper-case C with or without a subscript is a class;
– lower-case q with or without a subscript is a property;
– P (C1θC2, x) indicates that the probability of the match (C1θC2) is x.



540 P. Mitra, N.F. Noy, and A.R. Jaiswal

The following is an example of a meta-rule to generate a mapping between
classes in the range of a property based on the mapping of the properties them-
selves and their domains. Not included explicitly in the rule (for brevity) is an
assumption that both properties, q and q′, have a single domain and range.

P (Cd = C′
d, x) ∧ P (q = q′, 1)∧

domainOf(q, Cd) ∧ domainOf(q′, C′
d)∧

rangeOf(q, Cr) ∧ rangeOf(q′, C′
r)

⇒ P (Cr = C′
r, x)

Below are some (informal) examples of other metarules:

Mappings between superclasses and all but several siblings: Here we can probably
still say something about the probabilities that the rest of the siblings match
in a pairwise fashion. (If these are later combined with rules producing other
evidence, such an observation will be helpful).

Mappings between a property and domain of a property: Natasha, can you
please fill in what you meant by this

Mapping between properties: If two classes are ranges for matching properties,
then they may match (but probabilities are reduced somewhat compared to the
case when the domains match as well).

Mappings between superclasses and all but one sibling: In this case, we say that
the existing matches between the superclasses and the matched siblings result
in the remaining siblings matching with high probability.

3.2 Combining the Results from Several Rules for the Same
Mapping

Consider a pair of classes, C and C′ (Figure 1). Let us assume that initially we do
not have any probability distribution for m(C, C′). Then a number of meta-rules
affect the probability distribution for m(C, C′). In the example in the figure, the
following rules and mappings affect the result:

– A mapping between superclasses of C and C′; mappings between the siblings
of C and C′. Let’s say we know that P (C0 = C′

0, x), for some x < 1, and
P (C0 ⊂ C′

0, y), for some y < 1, (x + y ≤ 1), and P (C1 = C′
1, 1). We then

use the following rule (we omit the relationships that are obvious from the
figure, such as subclassOf (C, C0) from the rule):

p(C0 =/⊂ C′
0, x) ∧ p(C1 = C′

1, 1)⇒
p(C =/⊂ C′, x)



OMEN: A Probabilistic Ontology Mapping Tool 541

Cd

C

C0

C1

Cd'

C'

C0'

C1'

subclass subclass
q subclass

subclass

q'

Fig. 1. The probability distribution for the mapping between C and C′ is affected by
the mappings between their superclasses, siblings, and domains of the properties q and
q′ for which C and C′ are ranges

– A mapping between properties q and q′ (P (q = q′, 1)) for which C and C′

are ranges respectively, and mappings between domains of q and q′ (P (Cd =
C′

d, z)). We are assuming that both q and q′ have a single domain and range
each.

P (Cd = C′
d, z) ∧ P (q = q′, 1)⇒

P (C = C′, z)

For the moment, let us assume that there are no more influences on the
mapping m(C, C′).

We now need to combine the following three results of the rules above:

1. P (C = C, x)
2. P (C ⊂ C, y)
3. P (C = C′, z)

We also know that x + y ≤ 1. The algorithm must combine probabilitic
influences of different rules and determine the probability distribution of the
matching nodes.

In theory, we could introduce some certainty factor into the rules. However,
an easier solution would be to use probabilities to reflect that. For example, if
the rule is fairly certain, then we simply propagate the initial probability x (as
in the rules above). If the rule is more speculative, we can reduce the probability
in the result of the rule by some factor.

3.3 Eliminating Circular Dependencies

We define a generation of classes in the following way:

1. All subclasses of the same superclass (siblings) belong to the same generation.



542 P. Mitra, N.F. Noy, and A.R. Jaiswal

2. If a class C is a range of property p, then all other classes in the range of p
are in the same generation as C.

In order to make the problem tractable, we use only the rules that link
neighboring generations.

We can now categorize the rules in the following three categories:

Down-flow rules: rules where mapping values for one generation affects the
mappings of the next generation

Up-flow rules: rules where mapping values for one generation affects the map-
pings for the previous generation

Same-generation rules: rules where mapping values for one generation affect
mapping values for the same generation.

Combination rules: any combination of the above.

In order to avoid circular dependencies, we use the following restrictions:

1. In same-generation rules, only the values that were available prior to the
current iteration, can be used in the antecedent of rules. Same-generation
rules that introduce cycles are broken arbitrarily by dropping some edges.

2. Each iteration is either a down-flow iteration or an up-flow iteration. The
only rules that are allowed in a down-flow (up-flow) iteration are down-
flow (up-flow) rules, same-generation rules, and combination rules with only
down-flow (up-flow) rules.

For the rest of this note, we only consider a down-flow iteration.
During a down-flow iteration, a mapping between two classes, m(C, C′) is

affected by the mappings between:

– their superclasses;
– their siblings;
– the properties for which C and C′ are ranges, the domains of these properties,

and other ranges of these properties.

Note that all the examples of the rules in section 3are down-flow, same-
generation, or combination rules (where combination is same-generation and
down-flow). In other words, all these rules can be used in a down-flow iteration.

4 Construction of the Bayesian Network

We construct a Bayes Net to represent the influences and inter-relationships
between ontology matches as described below. We describe the construction of
a down-flow graph, that is a graph constructed using only the down-flow rules,
or same-generation rules. An up-flow graph can be constructed correspondingly.



OMEN: A Probabilistic Ontology Mapping Tool 543

4.1 The BN-Graph

Initially, we construct all possible nodes representing all possible matches across
the two ontologies. That is, if ontology O1 contains n nodes, and ontology O2
contains m nodes, we construct m× n nodes in the Bayes Net graph represent-
ing all possible matches. Each node in the Bayes Net graph represents a unique
match between two concepts in the source ontologies. That is, each node repre-
sents a match from a pair of concepts such that no two concepts in a pair come
from the same ontology and no two nodes represent the same set of concepts.
As is evident, we create a large number of matches that are very unliquely to
exist in practice. We discuss later how we can reduce the number of nodes in the
Bayes Net for large ontologies.

Down-flow edges: The down-flow edges in the graph are constructed as follows.
Let there be parent concepts P1 and P ′

1 such that concepts C1 and C2 are the
children of the parent concepts respectively in the source ontologies. For all
possible quadruple (P1, P2, C1, C2), a directed edge between nodes n1 and n2 is
added to the graph, where node n1 represents the match between P1 and P2 and
node n2 represents the match between C1 and C2.

In the current implementation, we do not add any same-generation edges to
avoid creating cycles. Recall, the graph in a Bayes Net must not contain cycles
and is a DAG. How same-generation information can be introduced in a Bayes
Net is left for future work.

4.2 Apriori Probabilities and Evidence

The ”root” nodes in the BN-Graph, that is nodes that have no parents, must
be provided with a set of apriori probabilities. This set of apriori probabilities is
obtained from the previous matching – the output of a matcher that is input to
Omen. 1 We assume that the previous matching matched the source ontologies
and generated probabilities that model the certainty of all possible candidate
matches (or at least the matches represented by the root nodes in the BN-
Graph). Omen also obtains the evidence to the Bayes Net from the final result
of the previous matcher.

4.3 Meta-rules and Conditional Probability Tables

The meta-rules form the basis for constructing the conditional-probability ta-
bles(CPTs) for each node. The construction of appropriate conditional proba-
bility tables is the hardest and most subjective task in the design of our Bayes
Net . Yet, the accuracy of the CPTs deeply influence the veracity of the results
obtained from any Bayes Net .

The interface to Omen allows external functions to generate and provide the
tool with appropriate CPTs. These functions are called on a per node basis and

1 Recall, that Omen enhances existing ontology matches.



544 P. Mitra, N.F. Noy, and A.R. Jaiswal

passed a neighbourhoods (in the source ontologies) of the two concepts that the
node represents as arguments.

Omen also provides internal functions that generate the CPTs based on
meta-rules and the apriori probabilities. Ideally, the CPTS should not depend
upon the apriori probabilities of the nodes and an expert will indicate how one
match in the Bayes Net influences other matches and also provide the probability
tables expressing such an influence. However, when such an expert is absent, we
have empirically observed that using the apriori probabilities in conjunction
with the meta-rules to generate the CPTs provides better matches than those
obtained by just using the meta-rules.

4.4 Reducing the Number of Nodes

If the source ontologies are very large, the number of nodes in the Bayes Net
being quadratic in the number of nodes in the source ontologies, are extremely
large too. We reduce this number by removing nodes in the Bayes Net that
do not have any parents or children. We observed empirically that there are a
significant number of such nodes.

The Bayes Net that is constructed is a collection of DAGs. Consider a node
present in a DAG none of whose nodes are supplied as evidence. This situation
happens because all the nodes in the DAG represent matches that are deemed
unrealistic by the previous matcher. In absence of a single evidence in the entire
DAG, the Bayes Net cannot perform any inference in that DAG. Therefore, we
can reduce the Bayes Net by removing that DAG from the collection of DAGs
altogether.

If we want to reduce the number of nodes even further, we can adopt the
following policy. Before the Bayes Net is constructed, identify the evidence nodes
— those that are classfied as matches by the previous matcher. Now create a
node in the Bayes Net only for those pairs of nodes such that their distance
from the evidence node is at most k, where k is a small integer (1, 2, 3, ...).
This restriction implies that any node in the Bayes Net represents nodes in the
ontology whose distance from a node (in the ontology) that has been matched
by the previous matcher is at most k.

5 Implementation and Experimentation

Omen uses BNJ, Version 2.0 [1] as its probabilistic inference engine. In the
current implementation, only down-flow meta-rules were used. The experiments
were run on ...

6 Future Work

Up-flow rules: The current implementation takes into account only down-flow
rules. In the future, we intend to perform experiments to determine whether the
system based on up-flow rules outperform one based on down-flow rules and to
identify the scenarios when one outperforms the other.



OMEN: A Probabilistic Ontology Mapping Tool 545

Multiple iterations: We start with some initial set of probability distributions and
use a down-flow iteration to create new probability distributions for mappings.
A case could be made to combine successive passes of down-flow and up-flow
iterations using the down-flow and up-flow meta-rules alternately. Ideally, the
system will perform multiple iterations until it meet some convergence criteria (or
have done some “sufficient” number of iterations). The usefulness of performing
multiple iterations needs to be empirically verified in the future. We also need
to characterize whether the system automatically converges or whether there
needs to be an arbitrary cut-off on the number of passes done. Another issue is
whether the same meta-rules and CPTs be used during mutliple iterations or
should different CPTs be generated for different passes?

Using inferred mappings in rules: We start with a set of mappings that we get
“from the outside” as an initial sample of values. These mappings are set and
we do not alter them. We generate new mappings and posterior probabilities in
the first pass. Should the second pass, the first up-flow pass be performed using
the output of the first pass? Or should it be performed on the original results
and the results of the two independent passes combined to get better results.
Should the evidence provided by the previous matcher be constantly treated as
evidence, or should it be changed depending upon the posterior probabilities
generated by the several iterations of Omen?

Other mappings to consider: For now, all the rules are “symmetric” in the way
we treat generations. For example, the mappings between superclasses and some
of their siblings affect the mapping between the remaining siblings. What if we
have a mapping between two classes, C and C′, some of their subclasses, but
then a subclass of C is mapped to a class in O′ that is not closely related to C′

(definitely not its subclass)?

7 Related Work

Two research directions are related to our work: automatic or semi-automatic
discovery of ontology mappings and the use of uncertainty in knowledge-based
systems.

7.1 Automatic Ontology Mapping

Over the past decade, researchers have actively worked on developing methods
for discovering mappings between ontologies or database schemas. These method
employ a slew of different techniques. For example, Similarity Flooding [8] and
AnchorPrompt [10] algorithms compare graphs representing the ontologies or
schemas, looking for similarities in the graph structure. GLUE [3] is an exam-
ple of a system that employs machine-learning techniques to find mappings.
GLUE uses multiple learners exploiting information in concept instances and
taxonomic structure of ontologies. GLUE uses a probabilistic model to combine



546 P. Mitra, N.F. Noy, and A.R. Jaiswal

results of different learners. Hovy [5] describes a set of heuristics that researcher-
sat ISI/USC used for semi-automatic alignment of domain ontologiesto a large
central ontology. Their techniques are based mainly onlinguistic analysis of con-
cept names and natural-languagedefinitions of concepts. A number of researchers
propose similarity metrics between concepts in different ontologies based on their
relations to other concepts. For example, a similarity metric between concepts in
OWL ontologies developed by Euzenat and Volchev [4] is a weighted combina-
tion of similarities of various features in OWL concept definitions: their labels,
domains and ranges of properties, restrictions on properties (such as cardinality
restrictions), types of concepts, subclasses and superclasses, and so on. Finally,
approaches such as ONION [9] and Prompt [11] use a combination of interactive
specifications of mappings and heuristics to propose potential mappings.

The approach that we describe in this paper is complementary to the tech-
niques for automatic or semi-automatic ontology mapping. Many of the methods
above produced pairs of matching terms with some degree of certainty. We can
use these results as input to our network and run our algorithm to improve the
matches produced by others or to suggest additional matches. In other words,
our work complements and extends the work by other researchers in this area.

7.2 Probabilistic Knowledge-Based Systems

Several researchers have explored the benefits of bringing together Nayes Nets
an knowledge-based systems and ontologies. For instance, Koller and Pfeffer
[7] developed a “probabilistic frame-based system,” which allows annotation of
frames in a knowledge base with a probability model. This probability model
is a Bayes Net representing a distribution over the possible values of slots in a
frame. In another example, Koller and colleagues [6] have proposed probabilistic
extensions to description logics based on Bayesean Networks.

In the context of the Semantic Web, Ding and Peng [2] have proposed proba-
bilistic extensions for OWL. In this model, the OWL language is extended to allow
probabilistic specification of class descriptions. The authors then build a Bayesean
Network based on this specification, which models whether or not an individual
matches a class description and hence belongs to a particular class in the ontology.

Researchers in machine learning have employed probabilistic techniques to find
ontology mappings. For example, the GLUE system mentioned earlier [3], uses a
Bayes classifier as part of its integrated approach. Similarly, Prasad and colleagues
[12] use a Bayesean approach to find mappings between classes based on text docu-
ments classified as exemplars of these classes. These approaches, however, consider
instances of classes in their analysis and not relations between classes, as we do. As
with other approaches to ontology mapping, our work can be viewed as comple-
mentary to the work done by others.

8 Conclusion

We have outlined the design and implementation of Omen, an ontology match
enhancer tool, that improves existing ontology matches based on a probabilistic



OMEN: A Probabilistic Ontology Mapping Tool 547

inference. This tool is dependent upon a set of meta-rules which express the influ-
ences ofmatching nodes on the existence of other matches across concepts in source
ontologies that are located in the proximity of the matching nodes. We described
how we implemented a simple first version of the matching tool and discussed our
preliminary results. We have also outlined several improvements that can be made
to the tool and identified several open questions that if resolved can make the per-
formance of the tool even better.

References

1. Bayesian network tools in java(bnj), version 2.0, July 2004.
2. Z. Ding and Y. Peng. A probabilistic extension to ontology language owl. In

37th Hawaii International Conference On System Sciences (HICSS-37), Big Island,
Hawai, 2004.

3. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between on-
tologies on the semantic web. In The Eleventh International WWW Conference,
Hawaii, US, 2002.

4. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-Lite. In
The 16th European Conference on Artificial Intelligence (ECAI-04), Valencia, Spain,
2004.

5. E. Hovy. Combining and standardizing largescale, practical ontologies for machine
translation and other uses. In The First International Conference on Language Re-
sources and Evaluation (LREC), pages 535–542, Granada, Spain, 1998.

6. D. Koller, A. Levy, and A. Pfeffer. P-Classic: a tractable probabilistic description
logic. In 14th National Conference on Artificial Intelligence (AAAI-97), 1997.

7. D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Fifteenth National
Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin, 1998. AAAI
Press.

8. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In 18th International
Conference on Data Engineering (ICDE-2002), San Jose, California, 2002. IEEE
Computing Society.

9. P. Mitra, G. Wiederhold, and S. Decker. A scalable framework for interoperation of
information sources. In The 1st International Semantic Web Working Symposium
(SWWS’01), Stanford University, Stanford, CA, 2001.

10. N. F.Noy and M. A.Musen. Anchor-PROMPT:Using non-local context for semantic
matching. In Workshop on Ontologies and Information Sharing at the Seventeenth
International Joint Conference on Artificial Intelligence (IJCAI-2001), Seattle, WA,
2001.

11. N. F.Noy andM.A.Musen. ThePROMPTsuite: Interactive tools for ontology merg-
ing and mapping. International Journal of Human-Computer Studies, 59(6):983–
1024, 2003.

12. S. Prasad, Y. Peng, and T. Finin. A tool for mapping between two ontologies using
explicit information. In AAMAS 2002 Workshop on Ontologies and Agent Systems,
Bologna, Italy, 2002.



On the Properties of Metamodeling in OWL

Boris Motik

FZI Research Center for Information Technologies at the University of Karlsruhe,
Karlsruhe, Germany

motik@fzi.de

Abstract. A common practice in conceptual modeling is to separate
the intensional from the extensional model. Although very intuitive, this
approach is inadequate for many complex domains, where the borderline
between the two models is not clear-cut. Therefore, OWL-Full, the most
expressive of the Semantic Web ontology languages, allows combining
the intensional and the extensional model by a feature we refer to as
metamodeling. In this paper, we show that the semantics of metamodel-
ing adopted in OWL-Full leads to undecidability of basic inference prob-
lems, due to free mixing of logical and metalogical symbols. Based on this
result, we propose two alternative semantics for metamodeling: the con-
textual and the HiLog semantics. We show that SHOIQ— a description
logic underlying OWL-DL— extended with metamodeling under either
semantics is decidable. Finally, we show how the latter semantics can be
used in practice to axiomatize the logical interaction between concepts
and metaconcepts.

1 Introduction

A common practice in conceptual modeling is to separate the intensional from
the extensional model of a domain. The intensional model is analogous to a
database schema and it describes the general structure and the regularities of
the world. The extensional model is analogous to a database instance and it
describes a particular state of the world. Such a modeling style has also influenced
the design of the Ontology Web Language (OWL) [14], the W3C standard for
building ontologies in the Semantic Web. Namely, OWL provides concepts and
properties for building the intensional model, and individuals and relationships
among them for building the extensional model.

To better understand this duality, consider the following example, originally
presented in [16]; a similar example may be found in [15]. A natural way to
represent kinship between animal species is to organize them in a hierarchy of
concepts. For example, the concept Bird represents the set of all birds, and the
concept Eagle is a subconcept of Bird , stating that all eagles are birds. This is
an example of intensional knowledge, as it is concerned with defining the general
notions of birds and eagles. Knowledge about concrete animals is represented by
extensional knowledge, e.g. by stating that the individual Harry is an instance
of Eagle . Now the intensional knowledge implies that Harry is an Bird as well.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 548–562, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



On the Properties of Metamodeling in OWL 549

However, one might also make statements about individual species, such as
“eagles are listed in the IUCN Red List1 of endangered species.” Notice an
important distinction: we do not say that each individual eagle is listed in the
Red List, but that the eagle species as a whole is. Hence, we introduce a concept
RedListSpecies , and consider the relationship between RedListSpecies and Eagle .
Making the former a superconcept of the latter is incorrect, as it would imply
that Harry is a RedListSpecies — clearly an undesirable conclusion. It is better
to say that Eagle is a type of RedListSpecies . Thus, RedListSpecies acts as a
metaconcept for Eagle . The style of modeling which provides for metaconcepts
is called metamodeling, and it can be used to build concise models if we precisely
axiomatize the properties of metaconcepts. For example, by stating that “it is
not allowed to hunt the individuals of species listed in the Red List”, we formalize
the logical properties of the metaconcept RedListSpecies , allowing us to deduce
that “it is not allowed to hunt Harry .”

The examples such as the one given above are often dismissed with an ar-
gument that “eagle as a species” and “eagle as a set of all individual eagles”
are not the one and the same thing, and should not be referred to using the
same symbol. Whereas an in-depth philosophical investigation might provide a
more definitive answer, we simply observe that the word “eagle” in most peo-
ple’s minds invokes a notion of a “mighty bird of prey.” The interpretation of
this notion as a concept or as an individual is secondary and is often context-
dependent, so using different symbols for the same intuitive notion makes the
model unnecessarily complex.

Metamodeling is provided in OWL-Full, the most expressive language of the
OWL family. However, its semantics is controversial, mainly because it is non-
standard, and therefore makes realizing practical reasoning systems difficult [5].
Therefore, OWL-DL was conceived as a “well-behaved” subset of OWL-Full by
imposing the following restrictions: (i) the sets of logical and metalogical sym-
bols are strictly separated, (ii) the sets of symbols used as concepts, roles and
individuals are strictly separated, and (iii) restrictions required to yield a decid-
able logic, such as the one on simple roles in number restrictions [7], are enforced.
These restrictions make OWL-DL a syntactical variant of the SHOIN (D) de-
scription logic, which is known to be decidable. This is desirable since, to prac-
tically implement reasoners for expressive logics, advanced optimization tech-
niques are essential, and these are much easier to develop if the logic is decidable
[1–ch. 9].

Since it does not enforce (iii), OWL-Full is trivially undecidable. To obtain a
decidable logic supporting metamodeling, it is natural to ask whether OWL-DL,
extended with metamodeling in the style of OWL-Full, remains decidable. How-
ever, in Section 2 we show that even the basic description logic ALC becomes
undecidable if restrictions (i) and (ii) are not enforced.

We analyze this undecidability result, and show that it is actually due to (i),
that is, to free mixing of logical and metalogical symbols. In a way, metamodeling
in OWL-Full goes beyond its original purpose, and allows the user to tamper with
1 http://www.redlist.org/



550 B. Motik

the semantics of the modeling primitives themselves. Therefore, in Section 3 we
present two alternative semantics for metamodeling: a contextual or π-semantics,
which is essentially first-order, and a HiLog or ν-semantics, which is based on
HiLog [4] — a logic providing a second-order syntax for first-order logic. We show
that, under some technical assumptions, both semantics can be combined with
SHOIQ, a description logic underlying OWL-DL, yielding a decidable fragment
of OWL-Full without increasing the complexity of reasoning. Furthermore, we
present a resolution-based decision procedure for the SHIQ fragment which, we
believe, provides a basis for a practical implementation. Finally, in Section 4 we
discuss the added expressivity of metamodeling on a concrete example. Technical
details from this paper are presented in the technical report [9].

2 Undecidability of Metamodeling in OWL-Full

The semantics of OWL-Full [14] is quite technical, so we introduce ALC-Full—
an extension the basic description logic ALC with metamodeling in the style of
OWL-Full. We use rdf:, rdfs: and owl: for the standard namespace prefixes.

Definition 1. Let V be the vocabulary set consisting of these symbols:

owl:Thing, owl:Nothing, rdf:type, rdfs:subClassOf, owl:sameAs,
owl:differentFrom, owl:complementOf, owl:unionOf1, owl:unionOf2,
owl:intersectionOf1, owl:intersectionOf2, owl:someValuesFrom,
owl:allValuesFrom, owl:onProperty

Let N be the set of names such that V ⊆ N . An ALC-Full knowledge base KB
is a finite set of triples of the form 〈s, p, o〉, where s, p, o ∈ N .

An interpretation I is a triple ("I , ·I ,EXTI), where "I is a non-empty set,
·I : N →"I is a name interpretation function and EXTI : "I → 2


I×
I

is an
extension function. Let CEXTI : "I → 2


I

be the concept extension function
defined as CEXTI(x) = {y | (y, x) ∈ EXTI(rdf:typeI)}. An interpretation I is a
model of KB if it satisfies all conditions from Table 1. KB is satisfiable if and
only if a model of KB exists.

ALC-Full differs from OWL-Full in that: (i) it does not provide concrete
predicates, (ii) it does not include the meta-level resources such as owl:Class,
and (iii) it allows only binary union and intersection. These distinctions are not
relevant for our undecidability proof. We use 〈a�b, p, o〉 as a syntactic shortcut for
〈x, p, o〉, 〈x, owl:unionOf1, a〉 and 〈x, owl:unionOf2, b〉, where x is a fresh name.
We use similar shortcuts for 〈s, p, a � b〉 and for �.

We show the undecidability of ALC-Full by a reduction from the well-known
domino tiling problem [3]. A domino system is a triple D = (D, H, V ), where
D = {D1, . . . , Dn} is a finite set of domino types, and H ⊆ D×D and V ⊆ D×D
are horizontal and vertical compatibility relations, respectively. A D-tiling of an
infinite grid is a function t : N × N → D such that t(0, 0) = D0 and, for all
i, j ∈ N, (t(i, j), t(i, j + 1)) ∈ H and (t(i, j), t(i + 1, j)) ∈ V . For an arbitrary
domino system D, determining whether a D-tiling exists is undecidable [3].



On the Properties of Metamodeling in OWL 551

Table 1. Semantics of ALC-Full

1. 〈s, p, o〉 ∈ KB implies (sI , oI) ∈ EXTI(pI)
2. CEXTI(owl:ThingI) = �I

3. CEXTI(owl:NothingI) = ∅
4. (x, y) ∈ EXTI(rdfs:subClassOf I) implies CEXTI(x) ⊆ CEXTI(y)
5. (x, y) ∈ EXTI(owl:sameAsI) implies x = y

6. (x, y) ∈ EXTI(owl:differentFromI) implies x 	= y
7. (x, y) ∈ EXTI(owl:complementOf I) implies CEXTI(x) = �I \ CEXTI(y)
8. (x, y) ∈ EXTI(owl:unionOf I

1 ) and (x, z) ∈ EXTI(owl:unionOf I
2 ) imply

CEXTI(x) = CEXTI(y) ∪ CEXTI(z)
9. (x, y) ∈ EXTI(owl:intersectionOf I

1 ) and (x, z) ∈ EXTI(owl:intersectionOf I
2 ) imply

CEXTI(x) = CEXTI(y) ∩ CEXTI(z)
10.(x, y) ∈ EXTI(owl:someValuesFromI) and (x, p) ∈ EXTI(owl:onProperty I) imply

CEXTI(x) = {w | (w, z) ∈ EXTI(p) ∧ z ∈ CEXTI(y)}
11.(x, y) ∈ EXTI(owl:allValuesFromI) and (x, p) ∈ EXTI(owl:onProperty I) imply

CEXTI(x) = {w | (w, z) ∈ EXTI(p) → z ∈ CEXTI(y)}

For a domino system D, let KBD be the ALC-Full knowledge base consisting
of triples (1) – (9). Lemma 1 shows that satisfiability of KBD exactly encodes
the problem of deciding whether a D-tiling exists.

〈Di � Dj , rdfs:subClassOf, owl:Nothing〉 for 1 ≤ i < j ≤ n (1)

〈GRID , rdfs:subClassOf, D1 � . . . � Dn〉 (2)

〈NotGRID , owl:complementOf,GRID〉 (3)

〈Di, rdfs:subClassOf, αi〉, 〈αi, owl:onProperty, owl:allValuesFrom〉, (4)

〈αi, owl:allValuesFrom,NotGRID � (Di,d)∈H d〉 for 1 ≤ i ≤ n

〈Di, rdfs:subClassOf, βi〉, 〈βi, owl:onProperty, rdf:type〉, (5)

〈βi, owl:allValuesFrom,NotGRID � (Di,d)∈V d〉 for 1 ≤ i ≤ n

〈GRID , owl:someValuesFrom,GRID〉 (6)

〈GRID , owl:onProperty, owl:allValuesFrom〉 (7)

〈GRID , owl:onProperty, rdf:type〉 (8)

〈GRID, rdfs:subClassOf, owl:allValuesFrom〉 (9)

〈rdf:type, owl:sameAs, owl:onProperty〉 (10)

〈a0,0, rdf:type,GRID � D0〉 (11)

Lemma 1. A D-tiling exists if and only if KBD is satisfiable.

Proof. (⇒) For a D-tiling t, let I be an interpretation depicted in Figure 1, with
CEXTI(GRIDI) = {ai,j} and CEXTI(DI

k) = {ai,j | t(i, j) = Dk}, for i, j ≥ 0
and 1 ≤ k ≤ n. The triples (3) – (5) encode the compatibility relations of D
(including NotGRID into (3) and (4) ensures that compatibility is enforced only
among instances of GRID). Hence, it is easy to see that I is a model of KBD.

(⇐) Let I be a model of KBD. An excerpt of I is shown in Figure 1, in
which a triple 〈s, p, o〉 is represented as an arc pointing from the node s to the



552 B. Motik

Fig. 1. Grid Structure in a Model of KBD

node o, whereas p is encoded by the line type according to the legend. To refer
easily to arcs, we assign them labels ti, hi and vi (these do not correspond to p).
For example, the arc s1 represents the triple 〈a0,0, rdf:type, owl:allValuesFrom〉.
Due to (10), rdf:type and owl:onProperty are synonyms, so s1 also represents the
triple 〈a0,0, owl:onProperty, owl:allValuesFrom〉. By an abuse of notation, we do
not distinguish between the symbols and their interpretations.

Due to (11), a0,0 is linked by t1 to GRID . Due to (6), (7) and (8), a0,0 is
linked to a0,1 and a1,0 through h1 and v1, respectively, and a0,1 and a1,0 are in
the concept extension of GRID by t2 and t3, respectively. Due to (6) and (7),
a1,0 is linked by h2 to a1,1, and by t4 to GRID . Finally, by (9), all ai,j are in
the concept extension of owl:allValuesFrom, that is, all ai,j have an sl arc to it.

Consider now the arcs at the node a1,0. The arc s3 can, due to (10), be read
as 〈a1,0, owl:onProperty, owl:allValuesFrom〉. By applying Item 11 of Table 1 for
x = a1,0 and y = a1,1, we conclude that, if w is in the concept extension of
a1,0 and it is connected via p = owl:allValuesFrom to some z, then z must be
in the concept extension of a1,1. However, we may now set w = a0,0 due to v1,
and z = a0,1 due to h1; this implies that a0,1 is in the concept extension of a1,1,
that is, that a0,1 is connected to a1,1 by v2. Hence, a0,0, a0,1, a1,0 and a1,1 are
arranged in a two-dimensional grid, which continues indefinitely due to (6) – (8).

A node ai,j in I is allowed to have multiple owl:allValuesFrom and rdf:type
successors, and all ai,j need not be distinct, so I need not be a two-dimensional
grid. However, a two-dimensional grid can easily be extracted from I: one can
choose any owl:allValuesFrom successor ai,j+1 and any rdf:type successor ai+1,j

of ai,j , as well as any owl:allValuesFrom successor ai+1,j+1 of ai+1,j . Regardless
of the choices, ai,j+1 is always connected to ai+1,j+1 by rdf:type, so ai,j , ai,j+1,
ai+1,j and ai+1,j+1 are connected in a grid-like manner.

Hence, I contains a two-dimensional infinite grid in which owl:allValuesFrom
are horizontal, and rdf:type are vertical arcs. The triples (1) – (5) ensure that each
grid node is assigned a single domino type corresponding to the compatibility
relations H and V of D, so a D-tiling can easily be constructed from I. ��

Together with [3], Lemma 1 immediately implies the following result:

Theorem 1. Checking satisfiability of an ALC-Full knowledge base KB is un-
decidable.



On the Properties of Metamodeling in OWL 553

3 Two Decidable Approaches to Metamodeling

The proof of Lemma 1 reveals the causes for the undecidability of metamodeling
in OWL-Full. Namely, this logic not only allows treating concepts as individuals,
but it also allows mixing logical and metalogical symbols, and exposes its mod-
eling primitives as individuals. We exploited this in axioms (5) and (6) of KBD,
by stating an existential restriction on owl:allValuesFrom and rdf:type symbols
and thus affecting their semantics. One would easily agree that tampering with
the semantics of the ontology language is hardly desirable in practice, so in this
section we present two alternative semantics for metamodeling.

In the following, we consider the description logic SHOIQ, since it acts as
the logical underpinning of the OWL family of languages. We do not consider
datatypes here for the sake of simplicity. However, in [9] we show that, as long
as datatypes are not subjected to metamodeling, they do not affect our results.
We believe that this is not a practically relevant restriction: treating datatype
individuals as concepts and vice versa will just unnecessarily confuse the users.

3.1 The Syntax and Semantics of SHOIQ with Metamodeling

Definition 2 (Syntax). For Na a set of atomic names, the set of names is
defined as N = Na ∪ {n− |n ∈ N}. For each n ∈ N , let Inv(n) = n− and
Inv(n−) = n. A SHOIQ RBox KBR is a finite set of transitivity axioms
Trans(R) and role inclusion axioms R � S, where R, S ∈ N . As usual, we assume
that R � S ∈ KBR implies Inv(R) � Inv(S) ∈ KBR, and that Trans(R) ∈ KBR
implies Trans(Inv(R)) ∈ KBR. Let �∗ be the reflexive-transitive closure of �.
A name R is simple if for each name S �∗ R, Trans(S) /∈ KBR. A set of
SHOIQ concepts over KBR is inductively defined as follows: each A ∈ N is a
concept and, for R and i names, S a simple name, C and D SHOIQ concepts
and n a non-negative integer, {i}, ¬C, C � D, C � D, ∃R.C, ∀R.C, ≥ n R.C
and ≤ n R.C are also SHOIQ concepts. A SHOIQ TBox KBT is a finite set
of concept inclusion axioms of the form C � D, where C and D are SHOIQ
concepts. A SHOIQ ABox KBA is a finite set of assertions of the form C(a),
R(a, b) or (in)equality axioms of the form a◦b, where ◦ ∈ {≈, 
≈}, C is a SHOIQ
concept, and R, a and b are names. A SHOIQ knowledge base KB is a triple
(KBR,KBT ,KBA). The logic ALCHOIQ is a fragment of SHOIQ without
the transitivity axioms. The logics ALCHIQ and SHIQ are the fragments of
ALCHOIQ and SHOIQ, respectively, without the nominal concepts {i}.

The major difference of Definition 2 to the usual definitions is that the sets
of concept, role and individual names are not disjoint, but are merged into one
set of names. We denote with NKB the subset of those names that occur in KB ,
and with |KB | the size of KB with the numbers coded in unary. We now define
the so-called contextual semantics for SHOIQ.



554 B. Motik

a

Syntax��model ��model

¢I

CI

CI¢I

x x

Fig. 2. π- and ν-models of the Axiom a(a)

Definition 3 (Contextual Semantics). For a SHOIQ knowledge base KB, a
π-interpretation I is a 4-tuple ("I , ·I , CI , RI) where "I is a non-empty domain
set, ·I : N →"I is a name interpretation function, CI : N → 2


I

is an atomic
concept extension function and RI : N → 2


I×
I

is a role extension function.
The function CI is extended to concepts as specified in Table 2, upper left section,
where symbols are interpreted contextually, that is, depending on their syntactic
position. A π-interpretation I is a π-model of KB if it satisfies all conditions
from Table 2, lower left section. The notions of π-satisfiability, π-unsatisfiability
and π-entailment (written |=π) are defined as usual.

The contextual semantics is essentially equivalent to the one from [4] and
to standard first-order semantics. Namely, in a first-order formula, the role of a
symbol can be inferred from the place at which the symbol occurs in a formula,
so the set of constant, function and predicate symbols need not be disjoint. We
use π-semantics mainly as a baseline for a comparison with the HiLog semantics,
defined below. This semantics is more in the spirit of OWL-Full, and is based
on HiLog [4].

Definition 4 (HiLog Semantics). For a SHOIQ knowledge base KB, a ν-
interpretation I is a 4-tuple ("I , ·I , CI , RI) where "I is a non-empty domain
set, ·I : N → "I is a name interpretation function, CI : "I → 2


I

is an
atomic concept extension function, and RI : "I → 2


I×
I

is a role extension
function. The extension of the function CI to concepts and the interpretation
of axioms are specified in Table 2, right section. The notions of ν-satisfiability,
ν-unsatisfiability and ν-entailment (written |=ν) are defined as usual.

To understand the essential difference between these two semantics, consider
the knowledge base KB containing only the axiom a(a), where the symbol a is
used both as an individual and as a concept. A π-model of KB is depicted on the
left-hand side of Figure 2: both the individual interpretation ·I and the concept
interpretation CI are assigned directly to the symbol a. A ν-model of KB is de-
picted on the right-hand side of Figure 2: the individual interpretation ·I assigns
the domain individual x to the symbol a; however, the concept interpretation is
not assigned to a, but to x. We discuss the consequences that such a definition
of semantics has on entailment in Section 4.



On the Properties of Metamodeling in OWL 555

Table 2. Two Semantics for SHOIQ with Metamodeling

π-semantics ν-semantics
Extending CI to concepts

A CI(A) ⊆ �I

{i} {iI}
¬D �I \ CI(D)

D1 � D2 CI(D1) ∩ CI(D2)
D1 � D2 CI(D1) ∪ CI(D2)
∃S.D {x | (x, y) ∈ RI(S) ∧ y ∈ CI(D)
∀S.D {x | (x, y) ∈ RI(S) → y ∈ CI(D)

≤ n S.D {x | �{y | (x, y) ∈ RI(S) ∧ y ∈ CI(D)} ≤ n}
≥ n S.D {x | �{y | (x, y) ∈ RI(S) ∧ y ∈ CI(D)} ≥ n}

Interpretation of axioms
RI(S) = RI(Inv(S))−

S � T RI(S) ⊆ RI(T )
D1 � D2 CI(D1) ⊆ CI(D2)
Trans(S) RI(S)+ ⊆ RI(S)

D(a) aI ∈ CI(D)
S(a, b) (aI , bI) ∈ RI(S)
a ≈ b aI = bI

a 	≈ b aI 	= bI

CI and the interpretation of
axioms are obtained from the
ones for π-semantics by apply-
ing the following changes:

CI(A) � CI(AI)

RI(S) � RI(SI)

RI(T ) � RI(T I)

RI(Inv(S)) � RI(Inv(S)I)

Note: �S is the number of elements in S, S+ is the transitive closure of S,
and S− is the inverse relation of S.

Neither semantics requires different names to be interpreted as different do-
main objects. If this is required, the unique name assumption should be axiom-
atized explicitly, by introducing an axiom ni 
≈ nj for each ni, nj ∈ N , ni 
= nj .

Since the contextual semantics is essentially first-order, it can be decided us-
ing known algorithms, such as [8]. Therefore, we focus on deciding ν-satisfiability.
In Subsection 3.2 we consider ALCHOIQ knowledge bases, in Subsection 3.3 we
discuss the problems introduced by transitivity axioms, and in Subsection 3.4 we
presenta resolution-basedpractical decisionprocedure for theALCHIQ fragment.

3.2 Deciding ν-Satisfiability of ALCHOIQ
An equivalence relation E over a set of names N induces a set or equivalence
classes, so for each equivalence class we may arbitrarily select one representative
name from it. For a name n, let n/E denote the representative name chosen for
the equivalence class of n, and for α an ALCHOIQ concept (axiom), let α/E
denote the concept (axiom) obtained from α by replacing each name n with n/E .
Finally, let KB be an ALCHOIQ knowledge base and E an equivalence relation
over NKB ; then KB/E is the knowledge base obtained from KB by (i) replacing
each axiom α with α/E , and by (ii) appending an axiom ni/E 
≈ nj/E for each
pair of names ni, nj ∈ NKB such that ni/E 
= nj/E .

An algorithm for checking ν-satisfiability of KB can be easily obtained by
non-deterministically guessing an equivalence relation E over NKB , and then by



556 B. Motik

checking π-satisfiability of KB/E . The correctness of the algorithm is demon-
strated by the following lemma:

Lemma 2. An ALCHOIQ knowledge base KB is ν-satisfiable if and only if an
equivalence relation E over NKB exists, such that KB/E is π-satisfiable.

Proof. (⇐) Let E be an equivalence relation over NKB and Iπ a π-model of
KB/E . We construct a ν-interpretation Iν by setting "Iν = "Iπ , nIν = (n/E)Iπ ,
CIν (nIν ) = CIπ (n/E), RIν (nIν ) = RIπ(n/E), for each n ∈ NKB and, finally,
CIν (x) = CIπ (x) and RIν (x) = RIπ(x) for each x ∈ "Iν such that there is
no n ∈ NKB with nIν = x. Due to inequality axioms ni/E 
≈ nj/E , we have
Iπ(ni/E) 
= Iπ(nj/E), so the construction assigns a unique value to CIν (x) and
RIν (x) for each x ∈ "Iν , and Iν is correctly defined. Furthermore, for each
concept X , CIν (X) = CIπ (X/E), so Iν is obviously a ν-model of KB .

(⇒) Let Iν be a ν-model of KB . We define E = {(ni, nj) | ni
Iν = nj

Iν}
and construct a π-interpretation Iπ by setting "Iπ = "Iν , (n/E)Iπ = nIν ,
CIπ (n/E) = CIν (nIν ) and RIπ (n/E) = RIν (nIν ), for each n ∈ NKB . Again, for
each concept X , CIπ (X/E) = CIν (X), so Iπ is a π-model of KB/E . ��

Now Lemma 2 immediately implies the following result:

Theorem 2. Checking ν-satisfiability of an ALCHOIQ knowledge base KB can
be performed in non-deterministic exponential time, assuming numbers are coded
in unary.

Proof. Observe that |NKB | is linear in |KB |, and that each equivalence relation E
is a subset of NKB ×NKB . Hence, the number of possible equivalence relations is
exponential in |KB |. A decision procedure for checking ν-satisfiability of KB can
systematically examine all equivalence relations E and for each one perform a π-
satisfiability check of KB/E . The last step can be performed in non-deterministic
exponential time, since ALCHOIQ is a fragment of C2 — the two-variable first-
order logic with counting, which is decidable in NExpTime assuming numbers are
coded in unary [12]. Hence, the overall algorithm runs in non-deterministic expo-
nential time as well. ��

We briefly compare the results of Theorems 1 and 2. The main feature of
ν-semantics is the reification of concept and role names. However, it is more
like π-semantics and less like OWL-Full semantics in the way it handles the
modeling primitives. In particular, in ν- and π-semantics, these are expressed
as formulae and are not accessible as individuals in the knowledge base. On the
contrary, OWL-Full reifies the modeling primitives as well, and thus allows their
semantics to be altered by the statements in the knowledge base.

3.3 HiLog Semantics and Transitivity

The differences between the algorithms for checking ν- and π-satisfiability are
minor. Since the latter algorithm can easily handle transitive roles, one might ex-
pect the former one to be easily extended to handle transitivity as well. However,
consider the following knowledge base KB :



On the Properties of Metamodeling in OWL 557

 � ≥ 3 S (12)
S ≈ T (13)

Trans(T ) (14)

Notice that KB is a SHOIQ knowledge base: the role S is simple, since it
passes the syntactic criterion specified in Definition 2 (i.e., it is neither tran-
sitive nor it has transitive subroles). However, in any ν-interpretation I, (13)
ensures that SI = T I = α. Furthermore, due to (14), RI(α) is transitive. Effec-
tively, in (12) a transitive role is used in a number restriction, even though S is
syntactically a simple role.

Since equality of role names might be non-trivially entailed by KB , identi-
fying this requires theorem proving itself. This makes a check for simple roles
under ν-semantics difficult, if not impossible. Because allowing transitive roles
in number restrictions leads to undecidability [7], we get the following result:

Proposition 1. Checking ν-satisfiability of a SHOIQ knowledge base KB is
undecidable.

Decidability can be regained by using unique role assumption, requiring sym-
bols used as roles in KB to be interpreted as distinct domain individuals.

Definition 5 (Unique Role Assumption). A SHOIQ knowledge base KB
employs unique role assumption (URA) if it contains an axiom S 
≈ T for each
two distinct names S and T occurring as roles in KB.

If KB employs URA or if it contains neither explicit equality statements nor
number restrictions, role interpretations of different symbols can be assumed
to be independent. Then, simple roles can be checked as usual, and transitiv-
ity axioms of KB can be eliminated by transforming KB into an equisatisfiable
ALCHOIQ knowledge base Ω(KB), as done in [10]. Roughly speaking, a tran-
sitivity axiom Trans(S) is replaced with axioms of the form ∀R.C � ∀S.(∀S.C),
for each R with S �∗ R and C a concept occurring in KB . This transforma-
tion is polynomial, so it does not increase the complexity of reasoning. Hence,
ν-satisfiability of a SHOIQ knowledge base KB employing URA can be deiced
by checking ν-satisfiability of the ALCHOIQ knowledge base Ω(KB).

3.4 A Practical Reasoning Procedure for ALCHIQ
The reasoning procedure from Section 3.2 is worst-case optimal, but is unlikely
to be effective in practice, since it systematically examines exponentially many
equivalence relations. Therefore, we now present a practical, resolution-based
algorithm for ALCHIQ. It is an extension of our algorithm for deciding π-
satisfiability from [10], and extending it to handle nomials is part of our ongoing
work. Using the transformation of transitivity axioms from the previous subsec-
tion, this algorithm can also decide ν-satisfiability of SHIQ knowledge bases.
Due to space constraints, we omit many technical details, which are given in [9].
We assume familiarity with first-order logic and resolution theorem proving.



558 B. Motik

Table 3. ν-semantics by Mapping into First-order Logic

Mapping Concepts to FOL
νy(A, X) = isa(A,X)

νy(¬D, X) = ¬νy(D, X)
νy(D1 � D2, X) = νy(D1, X) ∧ νy(D2, X)
νy(D1 � D2, X) = νy(D1, X) ∨ νy(D2, X)

νy(∀S.D, X) = ∀y : arole(S, X, y) → νx(D, y)
νy(∃S.D, X) = ∃y : arole(S, X, y) ∧ νx(D, y)

νy(≤ n S.D, X) = ∀y1, . . . , yn+1 : arole(S, X, yi) ∧ νx(D, yi) → yi ≈ yj

νy(≥ n S.D, X) = ∃y1, . . . , yn : arole(S, X, yi) ∧ νx(D, yi) ∧ yi 	≈ yj

Mapping Axioms to FOL
ν(D1 � D2) = ∀x : νy(D1, x) → νy(D2, x)

ν(S � T ) = ∀x, y : arole(S, x, y) → arole(T, x, y)
ν(D(a)) = νy(D, a)

ν(S(a, b)) = arole(S, a, b)
ν(a ◦ b) = a ◦ b for ◦ ∈ {≈, 	≈}

Mapping KB to FOL
ν(S) = ∀x, y : arole(S, x, y) ↔ arole(S−, y, x)

ν(KB) = α∈KBR∪KBT ∪KBA
ν(α) ∧ S∈NKB

ν(S)
Notes:
(i): X is a meta variable and is substituted by the actual variable,
(ii): νx is defined as νy by substituting x, xi and νx for y, yi and νy, respectively.

Translation into First-order Logic. Our algorithm is based on resolution, so in
Table 3 we define an operator ν which translates KB into a formula ν(KB)
of first-order logic with equality. As shown by the following lemma, ν(KB) is
first-order satisfiable if and only if KB is ν-satisfiable. Intuitively, for a name n,
isa(n, x) encodes the concept extension of n and arole(n, x, y) encodes the role
extension of n. Therefore, a ν-interpretation Iν of KB can be easily converted
into a first-order interpretation I of ν(KB) and vice versa.

Lemma 3. For an ALCHIQ knowledge base KB, KB is ν-satisfiable if and
only if a first-order model of ν(KB) exists.

Basic Superposition Calculus. We decide first-order satisfiability of ν(KB) by
basic superposition [2] (BS), a clausal calculus optimized for theorem proving
with equality. The calculus is parameterized by a certain term ordering and a
selection function. It consists of resolution and superposition rules, which are
applied only to literals in clauses designated by the chosen parameters. A set
of clauses N is saturated by BS if applying a rule of BS to premises from N
produces an already derived clause. BS is sound and complete: a saturated set
of clauses N is unsatisfiable if and only if it contains the empty clause.

Decision Procedure by BS. In order to apply BS, we transform ν(KB) into the
set of clauses Ξν(KB) using the so-called structural transformation [11], which
ensures that this step is polynomial.



On the Properties of Metamodeling in OWL 559

We now saturate Ξν(KB) by BSDL, where BSDL denotes the BS calculus
parameterized as discussed in [9]. It is possible to show that during such a
saturation, only clauses of a certain syntactic form are derivable, and that the
number of possible derived clauses is exponential in |KB |. Therefore, saturation
by BSDL will terminate after an exponential number of steps. Since BSDL is
sound and complete, it decides satisfiability of Ξν(KB) and, by Lemma 3, ν-
satisfiability of KB . The actual algorithm has to deal with several techical issues,
for which we direct the reader to [9]. Hece we just state our main result:

Theorem 3. For an ALCHIQ knowledge base KB, saturation of Ξν(KB) by
BSDL decides ν-satisfiability of KB and runs in time exponential in |KB |, as-
suming numbers are coded in unary.

4 Expressivity of Metamodeling

We now discuss the benefits of metamodeling in terms of additional consequences
that can be drawn. These results are similar to the ones for HiLog from [4].

It is easy to see that ν-satisfiability is a strictly stronger notion than π-
satisfiability. Consider the following knowledge base2 KB :

Eagle(Harry) (15)
¬Aquila(Harry) (16)
Eagle ≈ Aquila (17)

Under the contextual semantics, the interpretations of the symbols Eagle and
Aquila as concepts and as individuals are independent, so KB is π-satisfiable.
However, KB is ν-unsatisfiable: in each ν-interpretation EagleI = AquilaI = α,
so it cannot be that HarryI ∈ CI(EagleI) and HarryI /∈ CI(AquilaI). For the
other direction, we have the following lemma:

Lemma 4. A ν-satisfiable SHOIQ knowledge base KB is also π-satisfiable.

Proof. Let Iν be a ν-model of an SHOIQ knowledge base KB . We construct a
π-interpretation Iπ as follows: "Iπ = "Iν , nIπ = nIν , CIπ (n) = CIν (nIν ) and
RIπ(n) = RIν (nIν ), for each n ∈ NKB . By a straightforward induction on the
concept structure it can be shown that, for each concept X , CIπ (X) = CIν (X),
so Iπ is a π-model of KB . ��

Furthermore, for a knowledge base with unique name assumption or without
equality (either explicit or implicit, introduced through number restrictions),
π-satisfiability and ν-satisfiability coincide:

Lemma 5. Let KB be an SHOIQ knowledge base such that it employs unique
name assumption, or it contains neither explicit equality statements nor number
restrictions. Then KB is π-satisfiable if and only if it is ν-satisfiable.
2 “Aquila” is the Latin name for “eagle.”



560 B. Motik

Proof. The (⇐) direction follows from Lemma 4. For the (⇒) direction, let
KB be π-satisfiable in some model Iπ. Since KB either employs unique name
assumption or it does not employ equality, without loss of generality, we may
assume that for each ni, nj ∈ N , ni 
= nj implies ni

Iπ 
= nj
Iπ .

We now construct a ν-interpretation Iν as follows: "Iν = "Iπ , nIν = nIπ ,
CIν (nIν ) = CIπ (n) and RIν (nIν ) = RIπ(n), for n ∈ NKB . Furthermore, for all
x ∈ "Iν such that there is no n ∈ NKB with x = nIν , let CIν (x) = RIν (x) = ∅.
Since we can assume that different names of NKB are interpreted as different
elements of "Iν , the construction assigns a unique value to CIν (x) and RIν (x)
for each x ∈ "Iν , so Iν is correctly defined. By a straightforward induction on the
concept structure it can be shown that, for each concept X , CIν (X) = CIπ (X).
Therefore, Iν is a ν-model of KB . ��

To summarize, ν-semantics allows deriving new consequences only if it is
possible to derive that two symbols are equal; for example, from (15) and (17) it
is possible to derive Aquila(Harry). Furthermore, if the unique name assumption
is employed, as it is often the case in practice, ν-semantics does not yield any
additional consequences. This seems to suggest that the benefits of ν-semantics
do not outweigh its drawbacks, namely, the fact that it is non-standard and
that it introduces problems for transitive roles. Moreover, π-semantics might be
sufficient for many practical applications.

However, ν-semantics unlocks its full potential when combined with a lan-
guage more expressive than OWL. For example, by combining ν-semantics with
the Semantic Web Rule Language (SWRL) [6], one can explicitly axiomatize the
semantics of metaconcepts. Consider the example from Section 1. By (18) we
state that Eagle is an RedListSpecies , and by a SWRL rule (19) we state that
instances of species listed in the Red List are not allowed to be hunted. Notice
that in atom S(I) we use the variable S at the position of a predicate. Under
ν-semantics this is equivalent to isa(S, I), but under π-semantics this would not
be possible without leaving the confines of first-order logic. Now from (15), (18)
and (19), we may infer CannotHunt(Harry), so RedListSpecies semantically acts
as a metaconcept of the Eagle concept.

RedListSpecies(Eagle) (18)
RedListSpecies(S) ∧ S(I)→ CannotHunt(I) (19)

To summarize, from the logical perspective, ν-semantics alone does not bring
much, and π-semantics may be sufficient for numerous applications. However,
ν-semantics provides a sound foundation for metamodeling, which, when com-
bined with expressive logical formalisms such as SWRL, allows precisely axiom-
atizing the interaction between concepts and metaconcepts. Thus, we believe
ν-semantics to be very relevant for the future extensions of OWL.

5 Related Work

The definition of ν-satisfiability given in Section 3 is inspired by HiLog [4], a logic
in which general terms are allowed to occur in place of function and predicate



On the Properties of Metamodeling in OWL 561

symbols in formulae. The semantics is defined by interpreting each individual
as a member of the interpretation domain, and by assigning a functional and a
relational interpretation to domain objects. The authors show that HiLog can
be considered “syntactic sugar”, since each HiLog formula can be encoded into
an equisatisfiable first-order formula. The definition of the ν operator in Table 2
closely resembles this encoding. Finally, the authors show that a satisfiable first-
order formula without equality is also satisfiable under HiLog semantics.

In [13], the RDFS Model Theory was criticized for allowing infinite number
of meta-layers. The authors argue that such semantics is inadequate for the Se-
mantic Web because (i) it does not provide adequate support for inferencing, (ii)
it allows defining classes containing themselves, which may lead to paradoxes,
and (iii) by adding classes, one necessarily introduces objects in the interpreta-
tion universe. The authors propose RDFS-FA, a stratified four-level approach,
consisting of the meta-language layer, the language layer, the ontology layer and
the instance layer. In [5] similar arguments were used to criticize the seman-
tics of OWL-Full. We follow the principles of RDFS-FA by strictly separating
the modeling primitives from the ontology and the instance layers. However,
to allow metamodeling, our definition of ν-semantics merges the ontology and
the instance layers into one. Furthermore, we show that (iii) affects the logical
consequences only if equality reasoning is required, which matches well with the
intuition behind metamodeling.

In [16] the authors point out the usefulness of metamodeling in many applica-
tion domains. They propose separation of modeling layers, which are connected
using so-called spanning instances. However, the authors do not consider the
logical consequences of their approach.

6 Conclusion

In this paper we have analyzed the metamodeling features of OWL-Full, the
most expressive of the Semantic Web ontology languages. We have shown that
the style of metamodeling adopted in OWL-Full leads to undecidability of basic
reasoning problems, due to mixing logical and metalogical primitives. In order
to obtain a decidable and expressive language supporting metamodeling, we
have proposed two alternative semantics: the contextual one, which is essen-
tially first-order, and the HiLog one, which is more in the spirit of OWL-Full.
Under certain technical assumptions, both semantics are decidable when com-
bined with the description logic SHOIQ. Furthermore, we have presented a
practical resolution-based decision procedure for reasoning with SHIQ knowl-
edge bases under HiLog semantics, thus obtaining practical support for a logic
with metamodeling whose expressivity is between OWL-Lite and OWL-DL.

We have analyzed the added expressivity of metamodeling and have shown
that the HiLog semantics allows deriving new conclusions only by equality rea-
soning. However, this approach unlocks its full potential if combined with ex-
pressive extensions, such as SWRL, since it allows axiomatizing the logical in-
teraction between concepts and their metaconcepts.



562 B. Motik

In future, we shall attempt to extending the practical decision procedure from
Subsection 3.4 to handle nominals as well, and thus to cover all of OWL-DL.

Acknowledgements

This work was partially funded by the EU IST project DIP 507483. We thank
the anonymous reviewer for valuable comments regarding Subsection 3.2.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, January 2003.

2. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation.
Information and Computation, 121(2):172–192, 1995.

3. R. Berger. The undecidability of the dominoe problem. Memoirs of the American
Mathematical Society, 66, 1966.

4. W. Chen, M. Kifer, and D. S. Warren. HILOG: a foundation for higher-order logic
programming. Journal of Logic Programming, 15(3):187–230, 1993.

5. I. Horrocks and P. F. Patel-Schneider. Three Theses of Representation in the
Semantic Web. In Proc. WWW 2003, pages 39–47. ACM, 2003.

6. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language.
In Proc. WWW 2004. ACM, 2004.

7. I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive
Description Logics. Logic Journal of the IGPL, 8(3):239–263, 2000.

8. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the Descrip-
tion Logic SHIQ. In Proc. CADE 2000, number 1831 in LNAI, pages 482–496.
Springer, 2000.

9. U. Hustadt, B. Motik, and U. Sattler. Reasoning for Description Logics around
SHIQ in a Resolution Framework. Technical Report 3-8-04/04, FZI, Karlsruhe,
Germany, April 2004. http://www.fzi.de/ipe/publikationen.php?id=1172.

10. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Description Logic to
Disjunctive Datalog Programs. In Proc. KR 2004, pages 152–162, Menlo Park,
California, USA, June 2004. AAAI Press.

11. A. Nonnengart and C. Weidenbach. Computing Small Clause Normal Forms. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 6, pages 335–367. Elsevier Science, 2001.

12. L. Pacholski, W. Szwast, and L. Tendera. Complexity Results for First-Order
Two-Variable Logic with Counting. SIAM Journal on Computing, 29(4):1083–
1117, 2000.

13. J. Pan and I. Horrocks. RDFS(FA) and RDF MT: Two Semantics for RDFS. In
Proc. ISWC 2003, number 2870 in LNCS, pages 30–46. Springer, 2003.

14. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language;
Semantics and Abstract Syntax. http://www.w3.org/TR/owl-semantics/, 2002.

15. G. Schreiber. The Web is not well-formed. IEEE Intelligent Systems, 17(2):79–80,
March/April 2002. Contribution to the section “Trends & Controversies: Ontolo-
gies KISSES in Standardization”, edited by S. Staab.

16. C. Welty and D. Ferrucci. What’s in an instance? Technical Report 94-18, Max-
Planck-Institut, 1994. RPI Computer Science.



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 563 – 577, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Bayesian Network Approach to Ontology Mapping 

Rong Pan, Zhongli Ding, Yang Yu, and Yun Peng 

Department of Computer Science and Electrical Engineering, 
University of Maryland, Baltimore County, 

Baltimore, Maryland, USA 
{pan.rong, zding1, yangyu1, ypeng}@umbc.edu 

Abstract. This paper presents our ongoing effort on developing a principled 
methodology for automatic ontology mapping based on BayesOWL, a probabil-
istic framework we developed for modeling uncertainty in semantic web. In this 
approach, the source and target ontologies are first translated into Bayesian 
networks (BN); the concept mapping between the two ontologies are treated as 
evidential reasoning between the two translated BNs. Probabilities needed for 
constructing conditional probability tables (CPT) during translation and for 
measuring semantic similarity during mapping are learned using text classifica-
tion techniques where each concept in an ontology is associated with a set of 
semantically relevant text documents, which are obtained by ontology guided 
web mining. The basic ideas of this approach are validated by positive results 
from computer experiments on two small real-world ontologies.  

1   Introduction 

Uncertainty concerns every aspect of semantic web ontologies. In many applications, 
overlapping between concepts/classes cannot be represented logically by OWL con-
structs. Even if they can, the degree of overlapping is not represented (e.g., how close 
a class A is to its super class B?). A description about an unknown concept or object 
input to an OWL reasoner may be uncertain (e.g., x is an instance of class A and is 
moderately likely to have property p related with class B). In a previous work, we 
have developed a Bayesian network based framework BayesOWL, to address repre-
sentation and reasoning with uncertainty within a single ontology ([5], [6]).  

Uncertainty becomes more prevalent in concept mapping between two ontologies 
where it is often the case that a concept defined in one ontology can only find partial 
matches to one or more concepts in another ontology. Semantic similarities between 
concepts are difficult, if not impossible to be represented logically, but can easily be 
represented probabilistically. This has motivated recent development of ontology 
mapping taking probabilistic approaches (GLUE [7], CAIMAN [11], OntoMapper 
[19], and OMEN [13]) (See [14] for a survey of existing approaches to ontology map-
ping, including those based on logical translation, syntactical and linguistic analysis). 
However, these existing approaches fail to completely address uncertainty in map-
ping. For example, GLUE captures similarity between two concepts onto1:A and 
onto2:B by joint probability distribution P(A, B) obtained by text classification of 
exemplars (semantically relevant text documents) to each concept. Then onto1:A is 
mapped to onto2:C whose similarity to onto1:A, measured by, say their Jaccard coef-



564 R. Pan et al. 

ficients [21] (computed from the joint distribution), passes a threshold and is highest 
among all concepts in onto2. Here, onto1:A is taken as (semantically) equivalent to 
onto2:C, the degree of similarity between them will not be considered in future rea-
soning (e.g., subsumption within onto2). Also ignored are the other concepts that are 
also similar to onto1:A (albeit at smaller degree).  

The work reported in this paper extends BayesOWL in a number of significant 
ways so that uncertainty in ontology mapping can be dealt with properly. As depicted 
in Figure 1 below, this new framework consists of three components: 1) a text classi-
fication based learner to learn from web data the probabilistic ontological information 
within individual ontologies and between concepts in two different ontologies; 2) a 
BayesOWL  module to translate given ontologies (together with the learned uncertain 
information) into BNs; and 3) a concept mapping module which takes a set of learned 
raw similarities as input and finds mappings between concepts from two different 
ontologies based on evidential reasoning across two BNs.  

Before describing the BN Mapping module and the learner in detail (Sections 3 
and 4), we first provide some background information in Section 2. This includes a 
brief summary of BayesOWL, and introductions to Jeffrey’s rule and iterative propor-
tional fitting procedure (IPFP), two techniques used in this work. Methods and results 
of computer experiments with two small ontologies are given in Section 5. The paper 
concludes with discussions and directions of future research in Section 6.  

 

Fig. 1. The framework 

2   Background 

As background, we briefly introduce Jeffrey’s rule, IPFP, and BayesOWL here. 

2.1   Techniques for Updating Probability Distributions  

Two techniques for updating a probability distribution by another distribution used in 
this work are briefly described below.  



 A Bayesian Network Approach to Ontology Mapping 565 

Jeffrey's rule, also known as rule of probability kinematics or J-conditioning, was 
proposed by Richard Jeffrey [9] to revise a probability measure (e.g., a joint distribu-
tion )(xP ) by another probability function (e.g., a prior )( ixQ  in another distribution).  
The rule can be written as follows in this context: if )( ixP , our belief on XX i ∈ , is 
changed to )( ixQ , then the beliefs of other variables XX ij ∈≠   shall be changed to 

===
ix

iiiijj xXQxXxPxQ )()|()(  (2.1) 

if )|( ij xxP  is invariant with respect to )( ixQ .  

Jeffrey’s rule can be used as a mechanism to update a distribution by soft evi-
dence, represented as a distribution such as )( ixQ . The rule then can be written as 

)()|( ii xQsexP = , and (2.2) 

===

===
=≠

i

i

x
iiiij

x
iiiij

jij

xXQxXxP

sexXPxXxP
sexPxQ

)()|(

)|()|(
)|()(

 
 

(2.3) 

Pearl ([16], [17]) has shown that the virtual evidence, a method widely adopted in 
Bayesian network (BN) inference, can be viewed as formally equivalent to the likeli-
hood ratio version of Jeffrey’s rule. This is done by adding a virtual node ive  which 
has iX  as its only parent in the BN, related by likelihood ratio  

)()(

)()(

)|(

)|(
)(

ii

ii

ii

ii
i XPXQ

XQXP

XveP

XveP
XL ==  (2.4) 

when iX  is binary. Soft evidence update (eqs. 2.2 and 2.3) can be realized by BN 
belief update with ive  instantiated to true. It can be shown that )( iXL  for multi-
valued variables can also be calculated from )( ixP  and )( ixQ  [17].  

As will be seen shortly, we use Jeffrey’s rule to propagate probabilistically beliefs on 
variables between two BNs that are translated from two ontologies during mapping. 

IPFP. (Iterative Proportional Fitting Procedure) is a computational procedure that 
updates a given distribution )(0 xQ  to satisfy a set of probability constraints 

)}({ i
i yRR =  where each )( i

i yR is a distribution over XY i ⊆  [10]. Roughly speaking, 
IPFP iterates over constraints in )}({ i

i yR  in cycle, at each iteration, the current distri-
bution is updated by one constraint according to   

)(

)(
)()(

1
1 i

k

i
i

kk
yQ

yR
xQxQ

−
− ⋅=  (2.5) 

It has been proved based on I-divergence geometry  ([4], [22]) that IPFP converges 
to an unique distribution )(* xQ , which 1) satisfies all )( i

i yR  in R, i.e., )(* iyQ  = 
)( i

i yR  for RRi ∈ , and 2) has the smallest Kullback-Leibler distance (or I-divergence) 
to )(0 xQ  among all distributions )(xQ  that satisfy all constraints in R, i.e.,  

=
x xQ

xQ
xQQQI

)(

)(
log)()||(

)0(

*
*

)0(
*  (2.6) 

:



566 R. Pan et al. 

is minimized. )(* xQ  is called I1-projection of )(0 xQ  on R. Bock [1] and Cramer [2] 

extended IPFP to conditional IPFP (CIPFP) to allow constraints with the form of 
conditional probability distributions and proved its convergence. 

If we consider )( iyQ  as soft evidence on a collection of variables iY , then IPFP 

can be considered as another mechanism of processing soft evidence [20]. The differ-
ence between Jeffrey’s rule and IPFP in this regard is that the former requires the 
invariance of domain knowledge (i.e., )|( ij xxP  remains unchanged in )(xQ ) while 

the latter requires minimizing I-divergence which in general destroys the invariance in 
the updated )(* xQ . How to combine these two techniques together when used in 
ontology to BN translation and in concept mapping will be given in Subsection 2.2 
and Section 3.  

2.2   BayesOWL  

BayesOWL ([5], [6]) is a framework which augments and supplements OWL for rep-
resenting and reasoning with uncertainty based on Bayesian networks. This frame-
work provides a set of rules and procedures for direct translation of an OWL ontology 
into a BN structure (a directed acyclic graph or DAG) and a method based on IPFP 
that utilizes available probability constraints about classes and interclass relations in  
constructing the conditional probability tables (CPTs) of the BN. The translated BN, 
which preserves the semantics of the original ontology and is consistent with the 
probabilistic constraints, can support ontology reasoning, both within and across 
ontologies, as Bayesian inferences.  

Structural translation. The general principle underlying the structural translation 
rules is that all classes (specified as “subjects” and “objects” in RDF triples of the 
OWL file) are translated into nodes in BN, and an arc is drawn between two nodes in 
BN if the corresponding two classes are related by a “predicate” in the OWL file, with 
the direction from the superclass to the subclass.  

The model-theoretic semantics of OWL treats the domain as a non-empty collec-
tion of individuals. If class A  represents a concept, the node it is translated to is 
treated as a binary random variable of two states a  and a , and we interpret )( aAP =  
as the prior probability or one’s belief that an arbitrary individual belongs to class A , 
and )|( baP  as the conditional probability that an individual of class B  also belongs 
to class A . Similarly, for )(aP , )|( baP , )|( baP , and )|( baP , we interpret the 
negation as “not belonging to”.  

Control nodes are created during the translation to facilitate modeling relations 
among class nodes that are specified by OWL logical operators, and there is a con-
verging connection from each of the concept nodes involved in this logical relation to 
its specific control node. There are five types of control nodes in total corresponding 
to the five types of logical relations: “and” (owl:intersectionOf), “or” (owl:unionOf), 
“not” (owl:complementOf), “disjoint” (owl:disjointWith), and “same as” 
(owl:equivalentClass). 



 A Bayesian Network Approach to Ontology Mapping 567 

Constructing CPTs. The nodes in the DAG obtained from the structural translation 
step can be divided into two disjoint groups: XR, regular nodes representing concepts 
in ontology, and XC, control nodes for bridging logical relations. The CPT for a con-
trol node in XC can be determined by the logical relation it represents so that when its 
state is “True”, the corresponding logical relation holds among its parent nodes. When 
all the control nodes’ states are set to “True” (denote this situation as CT), all the 
logical relations defined in the original ontology are held in the translated BN. The 
remaining issue is then to construct the CPTs for node in XR so that P(XR|CT), the 
joint distribution of all regular nodes in the subspace of CT, is consistent with all the 
given probabilistic constraints about classes and relations between classes. These 
constraints include, most likely, priors for classes P(C), conditionals P(C|D) for rela-
tions between classes C and D. Several suggestions have been made to encode prob-
ability constraints in semantic web languages (e.g., [6] with OWL, and [8] with RDF). 
These constraints can be obtained from the ontology designers or learned from data 
(an approach that learns these constraints from web is described in Section 4).  

In principle, IPFP can be applied to construct CPTs to satisfy all the given prob-
abilistic constraints. Two difficulties exist. First, as we mentioned earlier, direct ap-
plication of IPFP may destroy the existing interdependencies between variables (i.e., 
the given DAG becomes invalid). Secondly, IPFP is computationally very expensive 
since every entry in the joint distribution of the BN must be updated at each iteration. 
To overcome these difficulties, we developed an algorithm named D-IPFP that de-
composes IPFP so that each iteration only updates a small portion of the BN that are 
directly involved with the chosen constraint, and the update is done only to CPTs 
while keeping the DAG of the network intact [18]. In particular, when each of the 
given constraints involves only one variable iC  and a set of zero or more of its par-

ents iL , (2.5) of IPFP becomes [5] 

≠∀π=π

⋅π=π

−
−

−

ijcQcQ
LcQ

LcQ
cQcQ

jjkjjk

iik

ii
iikiik

)|()|(
)|(

)|(
)|()|(

1

1
1  (2.7) 

The BayesOWL framework can support common ontology reasoning tasks as prob-
abilistic inferences in the translated BN. For example, given a concept description e, it 
can answer queries about concept satisfiability (whether P(e|CT) = 0), about concept 
overlapping (how close e is to a concept C as P(e|C,CT)), and about concept sub-
sumption (find the concept which is most similar to e) by defining some similarity 
measures such as Jaccard coefficient [21]. 

3   Concept Mapping Between Ontologies Using BN Mapping 

It is often the case when attempting to map concept A defined in Ontology 1 to Ontol-
ogy 2, there is no concept in Ontology 2 that is semantically identical to A. Instead, A 
is similar to several concepts in Ontology 2 with different degree of similarity. A 
solution to this so-called one-to-many problem, as suggested by [19] and [7], is to 
map A to the target concept B which is most similar to A by some measure. This sim-
ple approach would not work well because 1) the degree of similarity between A and 
B is not reflected in B and thus will not be considered in reasoning after the mapping; 



568 R. Pan et al. 

2) potential information loss because other similar concepts are ignored in the map-
ping; 3) it cannot handle the situation where A itself is uncertain; and 4) it does not 
work well when more than one concepts need to be mapped. To see the last point, 
consider a situation where concept x defined as intersection of A and B in onto1 is to 
be mapped to onto2. Suppose the most similar concepts to A in onto2 are C and D, 
and those to are B are E and D, it would be difficult to determine which of the three 
(C, D, and E) x should be mapped to.  

These difficulties in ontology mapping can be dealt with properly in our frame-
work. We assume that pair-wise similarity measures are available between any con-
cepts in two ontologies onto1 and onto2 (or between variables in BN1 and BN2, re-
spectively). We take mapping as update on probability distribution of variables in 
BN2 by distributions of variables in BN1 in accordance to the similarity measures 
between these variables. Further inferences (e.g., finding the most probable subsumer 
in onto2 for a concept defined in onto1) can be drawn by Bayesian inference with the 
updated distribution of BN2. We present our approach starting with the basis: 1) a 
notion of probabilistic semantic linkage between a pair of concepts/variables; 2) the  
“1 to n” mapping (one variable in BN1 mapped to multiple similar ones in BN2); and 
3) the “m to n” mappings where multiple variables in BN1 need to be mapped.  

3.1   Pair-Wise Probabilistic Semantic Linkage 

We assume the similarity information between variable A in BN1 and B in BN2 is 
captured by the joint distribution P(A, B). This distribution is in a probability space, 
denoted as 2,1PS , which is related but different from the spaces for  A  and B, denoted 
as 1PS  and 2PS , respectively. Moreover, since this measure is based on the semantic 
similarity intrinsic to the meanings of these two variables, P(A, B) is assumed invari-
ant with respect to changes in 1PS  and 2PS . That is, beliefs on variables in A and B 
may change when evidence is presented but not that of P(A, B) in 2,1PS . 

Probabilistic semantic linkage between A and B, which serves as a basis mapping 
mechanism between similar variables, is defined as  

2,1
,BASL  = < 1PS , 2PS , A,  B, P(A, B)>, 

where A ∈  1PS , and B ∈  2PS , and P(A, B) measures the semantic similarity be-
tween A  and B. Then the influence to B by A via the single linkage 2,1

,BASL  changes 
P(B) to Q(B) by P(A). This update can be viewed as twice applications of Jeffrey’s 
rule across these three spaces, first from 1PS  to 2,1PS , then 2,1PS  to 2PS , as depicted 
in Figure 2 below.  Since A in 1PS  is identical to A in 2,1PS , P(A) in 1PS  becomes soft 
evidence Q(A)  to 2,1PS  by (2.2), the distribution of B in 2,1PS   is updated by (2.3) to   

= A AQABPBQ )()|()( , (3.1) 

Q(B) is then applied as soft evidence from 2,1PS  to node B in 2PS , updating distribu-
tion of other variables C in 2PS  by (2.3) as 

)()|()|()()|()( APABPBCPBQBCPCQ ABB == . (3.2) 



 A Bayesian Network Approach to Ontology Mapping 569 

 

Fig. 2. Mapping concept A to B via semantic linkage 2,1
,BASL  

3.2   Multiple Semantic Linkages 

Usually, A in onto1 may be semantically similar to more than one concept in onto2. 
For, example, if A is fairly similar to B in onto2, it would also be similar to all super 
concepts and also some sub-concepts of B, possibly with different similarity meas-
ures. In other words, mapping A to BN2 amounts mapping it through all semantic 
linkages that initiate from A and end at each similar concept BJ in BN2. Probabilisti-
cally, BN2 can be seen as receiving n soft evidences, one for a linkage from A to BJ 
for each concept BJ in BN2. This requires 1) all similarity measures P(A, BJ) remain 
invariant, and 2) conditional dependencies among variables in BN2 also remain in-
variant. This “1 to n” mapping can be carried out by a process that combines both 
Jeffrey’s rule and IPFP. Like IPFP, this process is iterative over these linkages in a 
cycle until convergence.  

This process can be realized by generalizing Pearl’s virtual evidence approach for 
soft evidence update [15]. In this method of ours, each node BJ is attached a virtual 
evidence node. At iteration step k, if linkage from A to BJ is chosen, then we first 
calculate likelihood )( J

K BL  for virtual evidence node Jve  that will be used to simu-
late soft evidence )( JBQ  by  

)()(

)()(
)(

1

1
J

K
J

JJ
KJ

K BQBQ

BQBQ
BL

−

−= , (3.3) 

and then apply Jeffrey’s rule of (3.1) and (3.2) with the modified likelihood to update 
variable beliefs in BN2. Note that (3.3) is the same as (2.4) except for )(1

J
k BQ − , the 

new distribution obtained at step k-1 is used rather than the initial )( JBP . Also note 
that this process does not explicitly modify the joint distribution of BN2 as the stan-
dard IPFP would do, instead, it modifies the likelihood associated with each virtual 
evidence node Jve  while keep the joint distributions P(A, BJ) and CPT’s in BN2 
unchanged. It can be shown that when the process converges, beliefs on variables in 
BN2 are consistent with all similarity measures P(A, BJ) and P(A), the belief of A in 
BN1. 

Mapping Reduction. Using all n linkages in “1 to n” type of mapping, as described 
above, is computationally very expensive because the IPFP process takes a number of 
iterations to converge, and each iteration involves belief update of BN2, which itself 
is exponential to the size of BN2. The problem gets worse for “m to n” type of map-
ping where what needs to be mapped is a composite concept that is defined as a con-
junction (intersection) of several variables or their negations in BN1.  



570 R. Pan et al. 

Fortunately, satisfying a given probabilistic relation P(A, B) does not always re-
quire the use of a linkage from A to B or even know what the linkage looks like. Sev-
eral probabilistic relations may be satisfied by one linkage. Consider a simple exam-
ple in Figure 3 with variables A and B in BN1, C and D in BN2, and similarity (joint 
probabilities) between every pair as below:  

= 6.01.0
03.0),( ACP , = 42.007.0

18.033.0),( ADP , 

= 54.016.0
03.0),( BCP , = 378.0112.0

162.0348.0),( BDP  

 

 

Fig. 3. Mapping Reduction Example 

However, we do not need to set up linkages for all these relations. As Figure 3 de-
picts, when we have a linkage from A to C, all these relations are satisfied (the other 
three linkages are thus redundant). This is because not only beliefs on C, but also 
beliefs on D are properly updated by the mapping A to C. 

Several experiments with large BNs have shown that only a very small portion of 
all 21 nn ⋅  linkages are needed in satisfying all probability constraints. This, we sus-

pect, is due to the fact that some of these constraints can be derived from others based 
on the probabilistic interdependencies among variables in the two BNs. We are cur-
rently actively working on developing a set of rules that examine the BN structures 
and CPTs so that redundant linkages can be identified and removed.  

4   Learning Probabilities from Web Data 

In this work, we use prior probability distributions P(C) to capture the uncertainty about 
concepts (i.e., how likely an arbitrary individual belongs to class C), conditional distri-
butions P(C|D) for relations between C and D in the same ontology (e.g., how likely an 
arbitrary individual in class D is also in D’s subclass C), and joint probability distribu-
tions P(A,B) for semantic similarity between concepts C and D from different ontolo-
gies. Often these kinds of probabilistic information are not available and are difficult to 
obtain from domain experts. Our solution is to learn these probabilities using text classi-
fication technique ([3], [12]) by associating a concept with a group of sample text 
documents called exemplars. The idea is inspired by those machine learning based se-
mantic integration approaches such as [7], [11], and [19], where the meaning of a con-
cept is implicitly represented by a set of exemplars that are relevant to it. 



 A Bayesian Network Approach to Ontology Mapping 571 

Learning the probabilities for semantic similarity between concepts in two ontolo-
gies is straightforward, assuming we have sufficient exemplars of good quality asso-
ciated with each concept. First, we can build a model (classifier) for each concept in 
Ontology 1 according to the statistical information in that concept’s exemplars using a 
text classifier such as Rainbow1 or Bayesian text classifier dbacl2. Then concepts in 
Ontology 2 are classified into classes of Ontology 1 by feeding their respective exem-
plars into the models of Ontology 1 to obtain a set of probabilistic scores. These 
scores showing the inter-concept similarity in a probability form. Concepts in Ontol-
ogy 1 can be classified in the same way into classes of Ontology 2. This cross-
classification process (Figure 4) helps find a set of raw mappings between Ontology 1 
and Ontology 2. Similarly, we can obtain prior or conditional probabilities related to 
concepts in a single ontology through self-classification with the models learned for 
that ontology.  

 

 

Fig. 4. Cross-classification using Text Classifiers on Web Data 

The quality of these text classification based methods is highly dependent on the 
quality of text exemplars to each concept, which together should well capture the 
meaning of the concept. Two criteria are seen to be crucial in assessing the quality of 
exemplars: each exemplar (at least most of them) should be relevant to the meaning 
of the concept, and that these exemplars together should well cover all aspects of that 
concept. For example, articles on computer games are very relevant to the concept of 
“computer applications”, but they alone hardly cover all computer applications.  

The need to find sufficiently many relevant exemplars for a large number of con-
cepts greatly reduces the attractiveness and applicability of these machine learning 
based approaches. It would be a very time-consuming task for knowledge workers to 
find high quality text exemplars manually, as apparently the case for GLUE [7]. Our 
approach is to use search engines such as Google3 to retrieve text exemplars for each 
concept node automatically from WWW, the richest information resource available 
nowadays. The goal is to search for documents in which the concept is used in its 

                                                           
1 http://www-2.cs.cmu.edu/~mccallum/bow/rainbow 
2 http://www.lbreyer.com/ 
3 http://www.google.com 



572 R. Pan et al. 

intended semantics. The rationale is that the meaning of a concept can be described or 
understood by the way it is used. 

To find out what documents are relevant to a term, one cannot simply use the words 
in the name of the term as keywords to query the search engine. This because a word 
may have multiple meanings (word senses) and a query using only the name of the term 
in attention may return documents related to a meaning different from the intended 
semantics of the term. For example, in an ontology for “food”, a concept named “apple” 
is a subconcept of “fruit”. If one only uses “apple” as the keyword for query, documents 
showing how to make an apple pie and how to use an iPod may both be returned. 
Clearly, the documents using “apple” for its meaning in computer field is irrelevant to 
“apple” as a fruit. Fortunately, since we are dealing with concepts in well defined on-
tologies, the semantics of a term is to a great extent specified by the other terms used in 
defining this concept in the ontology, including names of its super and subconcept 
classes and the properties of this concept and its super classes. This semantic informa-
tion can thus be used to guide the web search with increased relevancy. There are a 
number of ways the semantic information can be used to help search. The simplest one, 
and the one we have experimented so far is to form search query for one concept by 
combining all the terms on the path from root to that concept node in the taxonomy. In 
the “apple” example, the query would then become “food fruit apple”, and documents 
about iPod and Apple computers would not be returned. 

In the experiments, for each concept A, we search the web to obtain two sets of ex-
emplars: UA+ containing exemplars that support (or positively related to) A; and UA-, 
containing exemplars that support the negation of (or negatively related to ) A. Exem-
plars in UA+ are obtained by searching the web for pages that contain A and all names 
of A’s ancestors on the taxonomy, while that for UA- are obtained by search pages that 
contain all names of A’s ancestors but not A.  

With all these documents, we can obtain joint probabilities of A and B by text clas-
sification, similar to what is done in GLUE [7]: applying the classifiers of concepts A 
and B to all text documents in U, and classify them into four categories: UA+B+, UA+B-, 
UA-B+, and UA-B-. Then the joint probabilities can be obtained by counting the items in 
each category, e.g., P(A, B)= |UA+B+| / |U|. If we only search for positive exemplars 
UA+ and UB+, then only conditional probability P(B|A) can be obtained (by applying 
B’s classifier to A’s supportive exemplars to obtain UA+B+ and compute P(B|A) =  
|UA+B+| / |U A+|). The first approach is the one that works for our purpose. 

5   Experiments 

We have performed computer experiments on two small-scale real-world ontologies. 
Our goals are to find how good the learning can be with the exemplars mined from 
the web, and how the uncertainty inference across multiple Bayesian networks could 
help ontology mapping. 

Translating Taxonomies to BNs. We took the Artificial Intelligence sub-domain 
from ACM Topic Taxonomy4 and DMOZ5 (Open Directory) hierarchies and pruned 
                                                           
4 http://www.acm.org/class/1998/ 
5 http://dmoz.org/ 



 A Bayesian Network Approach to Ontology Mapping 573 

some concepts to form two ontologies, both of which have a single root node Artifi-
cial Intelligence. All other concepts in the hierarchies are sub categories of AI. These 
two hierarchies differ in both terminologies and modeling methods. DMOZ catego-
rizes concepts by popularities of web pages to facilitate people’s easy access to these 
pages, while ACM topic hierarchy categorizes concepts from super to sub to structure 
a classification primarily for academics.  

Table 1. Statistics of the expirements 

Taxono-
mies 

# 
Nodes 

Depth Total Exemplar 
size 

Avg. Exem-
plar Size 

# Exemplar Avg. # 
Exp./node 

ACM AI 15 3 19.7 MB 698 KB 24533 1636 
DMOZ AI 25 3 29.2 MB 612 KB 35148 1406 

For every concept, except the root, we obtained exemplars by querying Google as 
described in the previous section. The statistics of these web pages is listed in Table 1. 
We used Bayesian text classifier dbacl to create a model for each non-root concept X 
and obtained the pair-wise conditional probability P(X | Parent(X)). The root nodes 
were assigned a prior probability as (0.5, 0.5).  

Then, using BayesOWL’s translation rules, the two ontologies were translated into 
two BNs as shown in Figure 5. 

Learning uncertainty mappings. Raw mappings P(A, B) were computed for each 
pair of concepts of the two BNs. The similarity between A and B were measured by 
their Jaccard coefficient, computed from the joint probability. Table 2 lists the five 
most similar concepts and five most different concepts in the learning result. The 
top three most similar concepts are actually identical concepts. However, besides 
these three, another pair of identical concepts is not measured as highly related. 
They are /Learning/Connectionism & Neural Net in ACM topic and /Machine 
Learning/Neural Network in DMOZ. Their similarity is only 0.61. We speculate 
this is because the term “connectionism” is not as popular as when ACM topic hier-
archy was constructed, and thus is not used along with “Neural Network” in most 
web pages. 

Inference with BN Mappings. Treating ontology mapping as Bayesian network 
mapping as described here allows us to conduct probabilistic reasoning far beyond 
finding the best concept match. We are currently actively investigating this issue and 
developing related algorithms. To illustrate our point, consider the example of finding 
a description of DMOZ’s /Knowledge Representation/Semantic Web (dmoz.sw) in 
ACM topic. There is no ACM concept that is identical to dmoz.sw, it must be de-
scribed by a composite expression involving multiple ACM concepts. The two most 
semantically similar concepts to dmoz.sw in ACM are /Knowledge Representation 
and Formalism Method/Relation System (acm.rs) and /Knowledge Representation and 
Formalism Method/Semantic Network (acm.sn) with the joint distributions  

 



574 R. Pan et al. 

 

 

Fig. 5. Bayesian network for ACM topics’ AI sub-domain and DMOZ’s AI sub-domain 

=
07.021.0

12.060.0
).,.( rsacmswdmozP  and =

04.025.0

13.058.0
).,.( snacmswdmozP , 

and respective Jaccard coefficients J(dmoz.sw, acm.rs) = 0.64, and J(dmoz.sw, 
acm.sn) = 0.61. 

From the two joint probabilities, we can see that dmoz.sw is not a subconcept of ei-
ther acm.rs or acm.sn, but had a sizable overlap with each of them. From the follow-
ing joint probabilities 

= 6557.00323.0
0498.02612.0).,.( snacmrsacmP , 



 A Bayesian Network Approach to Ontology Mapping 575 

we can see that acm.rs and acm.sn also overlap with each other. Figure 6 illustrates 
the overlap of these three concepts. 

Table 2. Five most similar concepts and most different concepts in the learning result. The root 
concept’s name is omitted. 

ACM topic DMOZ Similarity 
/Knowledge Representation & Formalism Method /Knowledge Representation 0.96 
/Natural Language Processing /Natural Language 0.90 
/Learning /Machine Learning 0.88 
/Learning /Knowledge Representation 0.81 
/Applications & Expert System /Knowledge Representation 0.79 

…… 
/Fuzzy /Learning/Analog 0.03 
/Learning/Induction /Learning/Game 0.02 
/Deduction & Theorem Proving /Programming Language/Declarative 0.02 
/Learning/Induction /Application 0.01 
/Learning/Analogy Agent 0.01 

 

 

Fig. 6. The Venn diagram for dmoz.sw, acm.rs, and acm.sn 

This leads to a conjecture that dmoz.sw may be described in terms of acm.rs and 
acm.sn. To validate this conjecture, we need to have the conditional probability 
P(acm.rs= true, acm.sn = true| dmoz.sw = true). This can be obtained as follows. 

1. Using learned probabilities P(dmoz.sw, acm.rs) and P(dmoz.sw, acm.sn), two se-
mantic linkage were created, from dmoz.sw to acm.rs and to acm.sn, respectively.  

2. Instantiate dmoz.sw as true, and compute the likelihoods for the two virtual evi-
dence nodes associated with acm.rs and acm.sn. 

3. Compute P(acm.rs= true, acm.sn = true| dmoz.sw = true) by any Bayesian network 
inference algorithm with the two virtual evidence nodes set to true.  

In our experiment, this probability was computed to be 0.851. From this we could 
conclude that intersection of acm.rs and acm.sn is the highly probable subsumer of 
dmoz.sw. More detailed analysis may require having the joint distribution of the three 
concept nodes (in two ontologies/BNs) or distribution involving additional relevant 
ACM concepts (with similarity measure lower than those of acm.rs and acm.sn). 
These distributions can be computed in the similar fashion. 



576 R. Pan et al. 

6   Discussion and Future Work 

This paper describes our ongoing research on developing a probabilistic framework 
for automatic ontology mapping. In this framework, ontologies (or parts of them) are 
first translated into Bayesian networks, and then the concept mapping is realized as 
evidential reasoning between the two BNs by Jeffrey’s rule. The probabilities needed 
in both translation and mapping can be obtained by using text classification programs, 
supported by associating to individual concepts relevant text exemplars retrieved from 
the web.  

We are currently actively working on each of these components. In searching for 
relevant exemplars, we are attempting to develop a measure of relevancy so that less 
relevant documents can be removed. We are also investigating how semantic informa-
tion can be utilized to post-process text documents mined from the web so that less 
relevant ones can be identified and excluded. We are expanding the ontology to BN 
translation from taxonomies to include properties, and develop algorithms to support 
common ontology-related reasoning tasks. As for a general BN mapping framework, 
our current focus is on linkage reduction. We are also working on the semantics of 
BN mapping and examining its scalability and applicability. Future work also in-
cludes developing methods to properly deal with inconsistent probability constraints 
in IPFP process.  

Acknowledgement 

This work was supported in part by DARPA contract F30602-97-1-0215 and NSF 
award IIS-0326460. 

References 

1. Bock, H. H. 1989. A Conditional Iterative Proportional Fitting (CIPF) Algorithm with Ap-
plications in the Statistical Analysis of Discrete Spatial Data. Bull. ISI, Contributed Papers 
of 47th Session in Paris, 1: 141-142. 

2. Cramer, E. 2000. Probability Measures with Given Marginals and Conditionals: I-
projections and Conditional Iterative Proportional Fitting. Statistics and Decisions, 18: 
311-329. 

3. Craven, M.; DiPasquo, D.; Freitag, D.; McCallum, A.; Mitchell, T.; Nigam, K.; and 
Slattery, S. 2000. Learning to Construct Knowledge Bases from the World Wide Web. Ar-
tificial Intelligence, 118(1-2): 69-114. 

4. Csiszar, I. February 1975. I-divergence Geometry of Probability Distributions and Mini-
mization Problems. The Annuals of Probability, 3(1): 146-158. 

5. Ding, Z.; Peng, Y.; and Pan, R. November 2004. A Bayesian Approach to Uncertainty 
Modeling in OWL Ontology. In Proceedings of 2004 International Conference on Ad-
vances in Intelligent Systems - Theory and Applications (AISTA2004). Luxembourg-
Kirchberg, Luxembourg. 

6. Ding, Z.; and Peng, Y. January 2004. A Probabilistic Extension to Ontology Language 
OWL. In Proceedings of the 37th Hawaii International Conference on System Sciences 
(HICSS-37). Big Island, Hawaii. 



 A Bayesian Network Approach to Ontology Mapping 577 

7. Doan, A.; Madhavan, J.; Domingos, P.; and Halevy, A. 2004. Ontology Matching: A Ma-
chine Learning Approach. Handbook on Ontologies in Information Systems, S. Staab and 
R. Studer (eds.), Springer-Velag, 2004. Invited paper. P397-416. 

8. Fukushige, Y. October 2004. Representing Probabilistic Knowledge in the Semantic Web. 
Position paper for the W3C Workshop on Semantic Web for Life Sciences. Cambridge, 
MA, USA. 

9. Jeffery, R. 1983. The logic of Decisions 2nd Edition, University of Chicago Press. 
10. Kruithof, R. Telefoonverkeersrekening, De Ingenieur 52, E15-E25, 1937. 
11. Lacher, M.; and Groh, G. May 2001. Facilitating the Exchange of Explicit Knowledge 

through Ontology Mappings. In Proceedings of the 14th International FLAIRS Confer-
ence. Key West, FL, USA. 

12. McCallum, A.; and Nigam, K. 1998. A Comparison of Event Models for Naive Bayes Text 
Classification. AAAI-98 Workshop on “Learning for Text Categorization”. 

13. Mitra, P.; Noy, N. F.; and Jaiswal, A. R. 2004. OMEN: A Probabilistic Ontology Mapping 
Tool. In Workshop on Meaning Coordination and Negotiation at the Third International 
Conference on the Semantic Web (ISWC-2004). Hisroshima, Japan. 

14. Noy, N. 2004. Semantic integration: A survey of ontology-based approaches. SIGMOD 
Record. 

15. Pan, R.; and Peng, Y.;. 2005. A Framework for Bayesian Network Mapping. (Extend Ab-
stract). Accepted by AAAI-05. 

16. Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufman, San Mateo, CA. 

17. Pearl, J. 1990. Jeffery’s rule, passage of experience, and neo-Bayesianism. In H.E. et al. 
Kyburg, Jr., editor, Knowledge Representation and Defeasible Reasoning, pages 245-265. 

18. Peng, Y.; and Ding, Z. July 2005. Modifying Bayesian Networks by Probability Con-
straints. Proceedings of the 24th  Conference on Uncertainty in AI (UAI 2005). Edinburgh, 
Scotland. 

19. Prasad, S.; Peng, Y.; and Finin, T. 2002. A Tool For Mapping Between Two Ontologies 
(Poster), International Semantic Web Conference (ISWC02). 

20. Valtorta, M.; Kim, Y.; and Vomlel, J. 2002. Soft Evidential Update for Probabilistic Mul-
tiagent Systems. International Journal of Approximate Reasoning, 29(1): 71-106. 

21. van Rijsbergen, C. J. 1979. Information Retrieval. London: Butterworths. Second Edition. 
22. Vomlel J. 1999. Methods of Probabilistic Knowledge Integration. PhD thesis, Department 

of Cybernetics, Faculty of Electrical Engineering, Czech Technical University. 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 578 – 592, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Ontology Change Detection Using a Version Log 

Peter Plessers* and Olga De Troyer 

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium 
{Peter.Plessers, Olga.DeTroyer}@vub.ac.be 

Abstract. In this article, we propose a new ontology evolution approach that 
combines a top-down and a bottom-up approach. This means that the manual 
request for changes (top-down) by the ontology engineer is complemented with 
an automatic change detection mechanism (bottom-up). The approach is based 
on keeping track of the different versions of ontology concepts throughout their 
lifetime (called virtual versions). In this way, changes can be defined in terms 
of these virtual versions. 

1   Introduction 

With the emergence of the Semantic Web [1], a new dimension has been added to the 
World Wide Web (WWW). Before, the information and functionality provided on the 
WWW was primarily tailored towards human interpretation, limiting the possibilities 
for machine processing. The Semantic Web has been proposed as an answer to these 
shortcomings by making the semantics of the web content explicit. Two major building 
blocks are used to realize this vision: ontologies as a formal, explicit specification of a 
conceptualization [2], and semantic annotations connecting web content and ontologies 
to enrich the web content with semantic information. Besides containing semantically 
annotated web pages, the Semantic Web is also a true ‘web of ontologies’ meaning that 
ontologies are interconnected, as they are reused and linked to each other. 

The subject of this paper concerns ontology evolution. Evolution is an intrinsic part 
of the Semantic Web: alterations in a particular domain, changes of user requirements 
or corrections of design flaws, they all may induce changes to the corresponding on-
tologies and to semantic annotations. Moreover, changes to one ontology may have 
implications on many depending artifacts (other ontologies, annotations, applications, 
etc. based on the changed ontology) [3]. The manual handling of this evolution proc-
ess of ontologies in a distributed, decentralized environment as the Semantic Web is 
not feasible as it is a too laborious, time intensive and complex process [12]. There-
fore, it is vital that an approach is provided guiding the ontology engineer in this 
complex ontology evolution process. 

To be able to understand the modifications applied to an ontology, the changes 
should be formally represented and captured. This is usually done through an evolu-

                                                           
* This research is partially performed in the context of the e-VRT Advanced Media project 

(funded by the Flemish government) which consists of a joint collaboration between VRT, 
VUB, UG, and IMEC. 



 Ontology Change Detection Using a Version Log 579 

tion log listing all applied changes. Furthermore, the change representation used 
should be sufficient expressive (i.e. able to specify all possible changes to an ontol-
ogy), and should support different levels of granularity (i.e. fine-grained changes (e.g. 
the creation of a single class) opposed to coarse-grained changes (e.g. the movement 
of sibling classes to a different parent)). In current approaches, the evolution log is a 
direct result of the changes requested by the ontology engineer. In this paper, we  
argue that such an approach may lead to a limited evolution log, missing valuable in-
formation. This makes it harder for (other) users and machines to understand and  
interpret the ontology modifications. Therefore, we propose an ontology evolution 
approach combining a top-down and a bottom-up approach. This means that the man-
ual request for changes by ontology engineers (top-down) is complemented with an 
approach of automatic change detection (bottom-up). 

The paper is structured as follows. Section 2 presents an overview of current prac-
tices in the domain of ontology evolution. Section 3 gives a general outline of the on-
tology evolution approach focusing on the different phases of the approach. Section 4 
introduces the version log, which forms the basis of our approach. In the subsequent 
sections, the relevant phases of our approach are elaborated in more detail: section 5 
discusses the Change Request phase, section 6 presents the Change Implementation 
phase, the Change Detection mechanism is given in section 7, while section 8 presents 
the Change Recovery phase. Finally, section 9 discusses the advantages of our ap-
proach and provides conclusions. 

2   Ontology Evolution 

In this section, we give an overview of current practices in the domain of ontology 
evolution. Stojanovic [11] has defined ontology evolution as the timely adaptation of 
an ontology to the arisen changes and the consistent propagation of these changes to 
depending artifacts. In [10] the authors identified a possible evolution process. The 
core phases of this process can be summarized as follows: 

• Change representation: in the context of a change request, the necessary changes 
have to be identified and represented in a suitable format. 

• Semantics of change: changes to an ontology can induce inconsistencies in other 
parts of the ontology or to other depending artifacts. The task of this phase is to 
solve these inconsistencies by requesting new deduced changes. 

• Change propagation: the task of this phase is to bring all dependent artifacts in a 
consistent state by propagating changes to these depending artifacts. 

• Change implementation: this phase is used to inform an ontology engineer about 
all the consequences of a change request, to apply all requested and deduced 
changes and to keep track of all these applied changes in an evolution log. 

To represent changes, they introduced in [6] three levels of abstractions of  
ontology changes for the KAON language. They distinguished: elementary changes 
(modifications to one single ontology entity), composite changes (modifications to the 
direct neighborhood of an ontology entity) and complex changes (modifications to an 
arbitrary set of ontology entities). Also Klein [5] makes a similar taxonomy for the 
OWL language for which he defines both basic and complex change operations. Basic 



580 P. Plessers and O. De Troyer 

change operations are changes to one single ontology entity whereas complex change 
operations are a mechanism for grouping basic change operations together to form a 
logical unit. The set of elementary changes and basic change operations (further 
called basic changes) is exhaustive as it is derived from the underlying ontology  
language; the set of composite changes, complex changes and complex change opera-
tions (further called composite changes) is infinite as new composite changes can al-
ways be defined [5]. The benefit of composite changes is that ontology engineers can 
formulate their change requests at a higher-level of abstraction, corresponding to their 
mental model of the change, instead of forcing them to think in terms of individual 
basic changes. 

In [4] the usefulness of a composite change detection approach was already indi-
cated. They introduced a detection mechanism based on rules and heuristics to detect 
composite changes between two ontology versions (Vold and Vnew). While their ap-
proach is applicable in specific cases, in general, the approach has serious limitations:  

• The approach requires that Vold is still available, because detection rules rely on 
both Vold and Vnew. Unfortunately, when an ontology is modified, the original ver-
sion is often no longer available.  

• Multiple changes to Vold may interfere possibly invalidating defined change detec-
tion rules. Take for example the composite change ‘moveSiblings’ (representing 
the movement of all siblings to a different parent). A detection rule can be formu-
lated checking if all siblings of a parent A in Vold have a new parent B in Vnew. As-
sume that after the move of the siblings, one of the siblings was removed. This 
would mean that the rule, as formulated, no longer applies.  Nevertheless, the 
‘moveSiblings’ change did occur. 

The authors of [4] try to overcome these problems by introducing heuristics to change 
the precise criteria of the rules to approximations. While heuristics may provide the 
ontology engineer with some flexibility in the rule definitions, it is clear that it doesn’t 
offer a bullet-proof solution as it makes the detection process imprecise and unpre-
dictable. 

We argue that, when the ontology engineer solely specifies changes manually, the 
log of changes may be missing valuable information. This is because of the following 
reasons: 

• It is not always trivial for ontology engineers to select the intended composite 
change they want to apply due to the complexity involved. Instead they rely on ba-
sic changes to achieve step by step the desired result, evaluating the progress after 
each step. As a consequence, the intended composite change will not be listed in 
the evolution log. 

• A same ontology modification can be achieved in different ways, using composite 
changes that may differ in level of granularity (and therefore also have different 
semantics) (e.g. ‘moveClasses’ and ‘moveSiblings’). The ontology engineer will 
only select one change, meaning that the others will not be listed in the evolution 
log. 

• Meta-changes (information about changes) are valuable to understand occurred on-
tology modifications as they define the implication of a change. They are, unfortu-



 Ontology Change Detection Using a Version Log 581 

nately, not useful for ontology engineers, as they don’t specify ‘what’ has to 
change. Therefore, they don’t get listed in the log of changes. 

• The number of possible composite changes is infinite. Nevertheless, ontology en-
gineers only use a finite number of these composite changes. If a fixed set of com-
posite changes is defined, this means that users are restricted to this set to under-
stand the occurred modifications, although other composite changes may be more 
appropriate for them. 

3   Overview of the Approach 

In this section, we will give an overview of the different phases of our ontology evo-
lution approach. Some of the phases resemble phases from the evolution process pro-
posed in [10], but the incorporation of a change detection mechanism has influenced 
these phases. The five phases of our approach are: (1) Change Request, (2) Change 
Implementation, (3) Change Detection, (4) Change Recovery and (5) Change Propa-
gation. An overview of the phases is shown in Figure 1. 

 

 

Fig. 1. Five phases of the ontology evolution approach 

 The purpose of the different phases is summarized as follows: 

1. Change Request: In this phase, it is specified which changes need to be applied to 
the ontology. The phase is divided into two steps. In the first step, the ontology en-
gineer specifies the request for change in terms of basic and composite changes. In 
the second step, it is checked whether the ontology remains consistent if the re-
quested change would be applied. If this is not the case, new changes (called de-
duced changes) are added to the change request to solve the inconsistencies. Note 
that this is an iterative process: new deduced changes may result in additional de-
duced changes. The result of this phase is a complete change request specification 
composed of requested and deduced changes that transform an ontology from one 
consistent version into another consistent version. In our example (see Figure 2), 
two change requests are specified: (1) ‘removeSubtype(B, A)’ with deduced change 
‘removePropertyInstantiation(p, I, “abc”)’, and (2) ‘addSubtype(B, C)’. This phase 
is further elaborated in Section 5. 



582 P. Plessers and O. De Troyer 

2. Change Implementation: This phase takes as input the complete change request 
specification of the previous phase, and executes the specified changes on the on-
tology (see Figure 2b+c). We keep track of all changes applied through an evolu-
tion log, i.e. a log that stores all changes applied. A detailed overview of this phase 
is presented in Section 6. 

3. Change Detection: In this phase, it is checked whether other (composite) changes 
(besides the one specified in the change request) or meta-changes occur as a conse-
quence of the ontology modification. This is done by comparing change definitions 
to the modifications kept in a version log (see section 4). The change is added to 
the evolution log, when a combination of modifications of the version log meets 
the definition of that particular change. E.g. for Figure 2c, a composite change 
‘changeSubclassRelation’ can be detected. We discuss this phase in detail in Sec-
tion 7. 

4. Change Recovery: In this phase, the deduced changes from the Change Request 
phase are checked and possibly need to be revised. We clarify this with the exam-
ple. When we specified during change request to remove the subclass relation be-
tween B and A, a deduced change was added to remove the property instantiations 
of p for I to maintain consistency (Figure 2b). When we later on created a new 
subclass relation between B and C, we detected that together both changes form a 
composite change (e.g. changeSubclassRelation) and that the remove of the prop-
erty instantiation p of instance i was unnecessary. Therefore this deduced change 
needs to be revised (see Figure 2d). This results in a new iteration of the evolution 
process. A detailed description of this phase is given in Section 8. 

5. Change Propagation: In this phase, depending artifacts are brought into a consis-
tent state by propagating changes listed in the evolution log to these depending ar-
tifacts. Due to space limitations as well as because the focus of this paper is on the 
change detection aspect, this phase is not further elaborated in this paper. A de-
tailed approach concerning change propagation is described in [7, 8]. 

 

 

Fig. 2. An example illustrating an evolution process 

For this paper, we assume that an ontology is defined in terms of classes, properties 
and individuals. The definition of classes, properties and individuals is specified by 
instantiating either built-in or user-defined properties. We therefore define an ontol-
ogy as a five-tuple O = (C, P, I, PI, D) where: 

  C  is the set of Classes 
  P  is the set of Properties 



 Ontology Change Detection Using a Version Log 583 

  I  is the set of Individuals 
  PI  is the set of Property Instantiations 
  D  is the set of all data values 

A property instantiation pi ∈ PI is a three-tuple pi = (p, s, t) where: 
  p ∈ P    is a property 
  s ∈ C ∨ s ∈ P ∨ s ∈ I  is the source of the property instantiation 
  t ∈ C  ∨ s ∈ P ∨ s ∈ I  ∨ t ∈ D is the target of the property instantiation 

4   Version Log 

Before discussing the different phases of our approach, we first present one of the key 
elements in our ontology evolution approach i.e. the version log. This log keeps track 
of the different versions, called virtual versions, an ontology concept passes during its 
lifetime: starting from the creation of the concept, over its modifications until its  
retirement. Note the difference between the version log and the evolution log: the 
former lists the different versions of the ontology concepts, the latter lists the interpre-
tations of these versions in terms of changes. We use the version log to keep ontolo-
gies consistent; to serve as the basis for the definition of changes; and as source for 
change  detection.  We will first explain the structure and the concepts used in this 
log. The concepts used in this log are defined by means of an ontology, called the ver-
sion ontology, and discussed in detail in subsection 4.1. In subsection 4.2, we intro-
duce the change definition language. The changes, used by ontology engineers to 
specify their change requests, are defined in terms of this language. Change defini-
tions are treated in subsection 4.3. 

4.1   Version Ontology 

The version log captures, for each concept of the ontology, its different versions. Each 
version represents the definition of the concept at a moment in time. For each class, 
property and individual that is created in the ontology, we create an associated in-
stance in the version log. This instance is an instance of the EvolutionConcept class. 
Such an EvolutionConcept instance keeps, besides a reference to the concept in the 
ontology (for which it was created – called the referred concept), a list of past and 
current versions of the referred concept.  

Whenever a change request for a concept in the ontology is executed, a new Ver-
sion instance is added to the associated EvolutionConcept instance, representing the 
new version of the referred concept. Such a Version instance has (1) a transaction 
time property i.e. the moment in time the modification was applied to the ontology 
(hasTransactionTime), (2) a causes (and inverse causedBy) property to express which 
version causes which other versions, reflecting the relation between requested 
changes and deduced changes in the change request, (3) a state property (hasState) to 
reflect the state of the version (pending or confirmed) and (4) optionally (if it exists) 
the ID of the referred concept (hasID). Figure 3 gives an overview.  

To capture a version of a concept, we have to file all its property instantiations that 
together form its definition. To do this independently of the ontology language used, 
we have defined a number of classes and properties to capture the most common on-



584 P. Plessers and O. De Troyer 

tology language constructs (e.g. complement, union and intersection of classes; sym-
metric and transitive characteristics of properties; etc.). We have defined the classes 
IndividualVersion, PropertyVersion and ClassVersion to capture the version of re-
spectively individuals, properties and classes. Because space is limited, we cannot de-
scribe the complete version ontology, therefore we only discuss some parts. The in-
terested reader is referred to the full specification of the version ontology1. 

For an IndividualVersion we specify that the referred individual is an instance of a 
certain EvolutionConcept instance (instanceOf) and capture the user-defined Proper-
tyInstantiations that form the definition of the individual (hasPI). For a PropertyVer-
sion we can specify for the referred property (among other properties) the domain and 
range (hasDomain, hasRange). Also cardinality and value constraints may be speci-
fied (hasConstraint). For a ClassVersion we can specify for the referred class (among 
other properties) a subtype relation (subTypeOf), possible cardinality and value con-
straints (hasConstraint), and an enumeration of individuals (enumerates) that together 
form the definition of the class. 

Note that for the cardinality and value constraints mentioned above, we make a dis-
tinction between global and local constraints, referring to the scope of the constraint. 
Global constraints apply to every instantiation of a given property. Local constraints 
only hold for those instantiations of a given property when used in a particular class. 

 

Fig. 3. The Version concepts of the version ontology 

An extract of an example version log is given below. The extract shows an Evolu-
tionConcept representing the different versions a class ‘Student’. The first version 
represents the initial version of the class. In the second version, we see that the class 
includes a subtype relation. Note that the version log doesn’t specify ‘what’ has 
changed; it only lists the successive versions. 

<EvolutionConcept rdf:ID="fd42cc20"> 
  <refersTo rdf:resource="…/university#Student"/> 
  <hasVersion> 
    <ClassVersion rdf:ID="389a99b0"> 
      <hasTransactionTime>624</hasTransactionTime> 

                                                           
1 See http://wise.vub.ac.be/ontologies/versionontology.owl. 



 Ontology Change Detection Using a Version Log 585 

      <hasState>confirmed</hasState> 
      <hasID>Student</hasID> 
    </ClassVersion> 
  </hasVersion> 
  <hasVersion> 
    <ClassVersion rdf:ID="389a99b1"> 
      <hasTransactionTime>628</hasTransactionTime> 
      <hasState>confirmed</hasState> 
      <hasID>Student</hasID> 
      <subtypeOf rdf:resource="#fd42cc22" /> 
    </ClassVersion> 
  </hasVersion> 
</EvolutionConcept> 

4.2   Change Definition Language (CDL) 

The version log uses an explicit timeline for the different versions. The ‘hasTransac-
tionTime’ sequentially orders all versions across all EvolutionConcepts. Note that 
versions originating from the same change request (i.e. user-specified and deduced 
changes) will have the same transaction time. The order between such versions is de-
fined by the ‘causes’ and ‘causedBy’ properties. As previously mentioned, these 
properties define which version causes which other versions, reflecting the relation 
between requested changes and deduced changes. This information is required to be 
able to undo changes (see Section 8). Figure 4 shows the timeline (TA and TB) for two 
EvolutionConcept instances A and B.  The transaction times of the different versions 
refer to the timeline T. A variable cv refers to the current version of a concept. If n ∈ 
IN specifies the total amount of versions of one EvolutionConcept, than we can use cv 
- a (where a ∈ N, a  n) to refer to the (n – a)th version of that concept. We also define 
a variable cvp (where p ∈ P). This variable takes only those versions into account 
where the instantiation of the given property p was changed; cvp refers to the last one 
of these versions, cvp-1 to the previous one, etc. 
  

 

Fig. 4. Timeline introduced by the version log 

This time aspect allows us to check properties of past versions of ontology con-
cepts [9]. This is done by means of conditions. These conditions are used to formulate 
change definitions (see section 4.3). The conditions are resolved using pattern match-
ing. We use the following syntax to define conditions on versions (Note that V defines 
a set of variables): 

<property>(<source>, <target>, [<version>]) 



586 P. Plessers and O. De Troyer 

where 

− <property> is the property we want to retrieve; 
− <source> is the source of the queried property or a variable that substitutes the 

source. <source>  ∈ C or <source> ∈ P or <source> ∈ I or <source> ∈ V; 
− <target> is the target of the queried property or a variable that substitutes the 

target.  <target> ∈ C or <target> ∈ P or <target> ∈ I or <target> ∈ D or <target> 
∈ V; 

− <version> is a reference to a version using the cv or cvp variable or a variable 
that substitutes the version. Omitting a version reference means we refer to the 
current version of the <target> (cv). <version> ::= cv[<property>][ - <a>] (where 
<a> ∈  IN) or <version> ∈ V. 

We illustrate this with an example. Table 1 shows three versions of an individual i. 
In the first version, i is an instance of ‘Student’. In a second version, i becomes an in-
stance of ‘Researcher’, and in version three i “publishes a first article”. 

 

Table 1. Different versions of an example individual i 

Versions Statements 
1st version instanceOf(i, ‘Student’) 
2nd version instanceOf(i, ‘Researcher’) 
3rd version instanceOf(i, ‘Researcher’) 

publishes(i, ‘article_001’) 

  
The following are two conditions: 

Condition 1: instanceOf(i, 'Researcher', cv - 1) 
Condition 2: instanceOf(i, 'Researcher', cvinstanceOf - 1) 

The first condition allows to check if the individual i ∈ I was an instance of the 
concept 'Researcher' during the previous version of i. The second condition allows to 
check if during the previous version of the ‘instanceOf’ property instantiation, i was 
an instance of ‘Researcher’. The first condition returns ‘true’ (cv - 1 refers to the 2nd 
version), the second one returns ‘false’ (because the cvinstanceOf - 1 refers to 1st version). 

4.3   Change Definitions 

The Change Definition Language introduced in the previous subsection is used to 
specify change definitions. A change is an interpretation of an ontology modification 
i.e. the definition of a change formally specifies the modifications that correspond 
with this change. These change definitions are used in two ways in our approach. 
Firstly, ontology engineers specify their change requests in terms of change defini-
tions. The definition of the change specifies how the ontology has to change (see sec-
tion 5). Secondly, these same change definitions allow detecting other changes (not 
specified during change request). This is possible because we are able to verify 
whether some change definitions are satisfied by the modifications that occurred (see 
section 7). 



 Ontology Change Detection Using a Version Log 587 

Both [5] and [6] distinguish basic and composite changes where composite 
changes are defined in terms of basic and other composite changes (i.e. a functional 
definition). In our approach, we define changes declaratively in terms of changing 
versions. It is exactly this declarative definition of changes that will allow us to detect 
changes based on the versions kept in the version log. 

We make a distinction between changes (i.e. define ‘what’ has changed) and meta-
changes (i.e. define the implications of a change). Changes are further classified into 
basic and composite changes. Basic changes can be expressed as a modification of 
exactly one element of the version log by only imposing conditions on the changing 
element (e.g. createSubtypeOf, deleteHasDomain, etc.). These basic changes are suf-
ficient to express any desirable change. A Composite change is either a modification 
of exactly one element but also imposes conditions on other elements, or a modifica-
tion of more than one element. 

As examples, we define the basic change ‘addDomain’, the composite change 
‘moveUpDomain’ and the meta-change ‘restrictProperty’. 

The basic change ‘addDomain’ adds A as domain of property p. Note that the defi-
nition only expresses a condition on the element that changes (hasDomain of a prop-
erty p). The definition specifies that A is the domain of p in the current version, but 
wasn’t in a previous version. 

∀ p ∈ P, A ∈ C: addDomain(p, A)  
  ¬hasDomain(p, A, cv-1) ∧ 
  hasDomain(p, A, cv) 

The composite change ‘moveUpDomain’ moves the domain of a property p up in 
the hierarchy of classes. So if p has as domain the class A, the domain will be changed 
to a superclass of A. Note that this change expresses an additional condition on the 
subtype relation between A and B. 

∀ p ∈ P, A, B ∈ C: moveUpDomain(p, A, B)  
  hasDomain(p, A, cvhasDomain-1) ∧ 
  ¬hasDomain(p, A, cvhasDomain) ∧ 
  ¬hasDomain(p, B, cvhasDomain-1) ∧ 
  hasDomain(p, B, cvhasDomain) ∧ 
  subtypeOf(A, B, cv) 

As an example of a meta-change, we define the ‘constraintWeakening’ meta-
change indicating a weakening of constraints as a consequence of the change. Differ-
ent modifications to an ontology can lead to a weakening of constraints, e.g. the raise 
of a cardinality constraint or the extension of a value constraint, a change to a subtype 
relation, etc. This means that multiple definitions exist for the ‘constraintWeakening’ 
each reflecting different causes. For this example, we define the ‘constraintWeaken-
ing’ meta-change in the case of a replacement of class B as the domain of property p 
by class A, where A is a superclass of B. This is a weakening of constrains as first 
only instances of class B could instantiate property p, now also individuals of class A 
can. Note that the definition uses the ‘moveUpDomain’ change definition. 

∀ p ∈ P: constraintWeakening(p)  
  ∃ A, B ∈ C: moveUpDomain(p, B, A) 



588 P. Plessers and O. De Troyer 

5   Change Request 

Ontology engineers express their change requests (i.e. ‘what’ has to change) in terms 
of the change definitions (as defined in section 4.3). Applying these changes directly 
to the ontology may cause inconsistencies, meaning that the ontology would no longer 
conform to the constraints imposed by the ontology language used. To avoid this, we 
first process the requested change in the version log. To check if a requested change 
can be applied, the conditions in the change definitions are tested. The conditions in 
the change definition that refer to past versions form a pre-condition that needs to be 
satisfied. If this pre-condition is not satisfied, the requested change cannot be applied 
and the change request will be rejected. Otherwise, the changes are recorded in the 
version log by adding new versions to the EvolutionConcepts referring to the ontol-
ogy concept to be changed so that the new current version satisfies the post-conditions 
in the change definition. The conditions in the change definition that refer to current 
versions form a post-condition. Note that these new versions are marked in the ver-
sion log with the value ‘pending’ for the property ‘hasState’ indicating that they are 
not yet applied to the ontology itself. 

Next, we have to check whether the ontology would remain consistent if we would 
apply these new versions to the ontology itself. The consistency check is based on a 
consistency model i.e. a model that restricts the version ontology so that it conforms 
to the constraints imposed by the ontology language used  (explained in section 5.1). 
If it turns out that the requested change would cause inconsistencies, additional 
changes should be added to the change request to solve these inconsistencies. Note 
that in our approach, it is currently still the responsibility of the ontology engineer to 
specify the additional changes. Keep in mind that the deduction of additional changes 
is an iterative process. Every new deduced change creates a new version in the ver-
sion log, and the consistency check is reapplied. The ‘cause’ and ‘causedBy’ proper-
ties are used to express the causal relation between versions to reflect the causal rela-
tion that exists between requested and deduced changes. 

The result of this phase is a complete change request (consisting of requested and 
deduced changes) that transforms an ontology from a consistent version to another 
consistent version. The actual implementation of the complete change request to the 
ontology is done in the next phase (Change Implementation). 

5.1   Consistency Model 

To check for consistency, we make use of a consistency model. Such a consistency 
model is a formal meta-model that restricts the version ontology so that it is conforms 
to the constraints imposed by the ontology language used. This means that whenever 
the latest version stored in the version log conforms to the consistency model, the re-
quested changes can be applied. Note that different consistency models may exist for 
different ontology languages or different variants of an ontology language (e.g. OWL 
Lite and OWL DL).  

To clarify the consistency model, we give a number of example constraints that 
represent constraints from OWL.  



 Ontology Change Detection Using a Version Log 589 

• In OWL, a subtype relation can only be defined between either two classes (sub-
ClassOf) or two between two properties (subPropertyOf): 

∀ a, b: subTypeOf(a, b)  (a ∈ C ∧ b ∈ C) ∨ 
  (a ∈ P ∧ b ∈ P) 

• In OWL, a property may have a domain and the domain of a property is a class: 

∀ a, b: hasDomain(a, b)  a ∈ P ∧ b ∈ C 
• In OWL DL and Full, the value of a cardinality constraint is a non-negative integer: 

∀ C, v: hasCardinality(C, v)  v ∈ IN ∧ v ≥ 0 
• In OWL Lite however, the previous constraint would not hold as the value of a 

cardinality constraint is in this case restricted to 0 or 1. The previous constraint is 
replaced by the following: 

∀ C, v: hasCardinality(C, v)  v ∈ {0, 1} 

6   Change Implementation 

The objective of this phase is twofold. The first objective of the change implemen-
tation phase is to synchronize the ontology with the latest version of  
EvolutionConcept(s) in the version log, i.e. the requested changes need to be ap-
plied to the ontology. The second objective is to add the changes listed in the 
change request to the evolution log. This log keeps track of all applied changes and 
gives an overview of the complete evolution history of the ontology in terms of 
changes.  

The process of applying changes to the actual ontology is quite simple. The con-
cepts that need to modify (obtained using the refersTo property in the version log) 
just have to be replaced by the current version specified in the version log. To per-
form the synchronization, a mapping between the concepts of the version ontology 
and the elements of the chosen ontology language needs to be provided. Figure 5 
shows an example. 

 

Fig. 5. Example mapping between Version log and an OWL ontology 



590 P. Plessers and O. De Troyer 

7   Change Detection 

After the execution of the previous phases, the version log has been modified, the on-
tology has been synchronized with the version log and the requested changes have 
been added to the evolution log.  The changes specified in the change request are only 
one way to see (interpret) the modification made to the ontology. From all the 
changes defined (by means of change definitions), other definitions  may also be sat-
isfied by the ontology modification and therefore these changes have also occurred. 
To detect these additional changes, we use the following procedure. For each change 
definition specified, we check if its definition is satisfied. As change definitions  are 
given in terms of conditions on the version log, a change definition is satisfied if all 
conditions of its definition are satisfied. The changes, whose definitions are met, are 
subsequently added to the evolution log. Note that this change detection process isn’t 
limited to the ontology owner, but can be performed for all maintainers of artifacts 
depending on the ontology. This makes it possible for maintainers of depending arti-
facts to specify their own set of change definitions, independently of the set of change 
definitions of the ontology owner or other maintainers. 

Notice that this change detection process is particularly flexible i.e. the detection 
process is not dependent on the steps taken to achieve a particular change neither on the 
order of these steps. Figure 6 illustrates this with two situations where both the ‘move-
UpDomain’ change will be detected. In the first situation (1), the domain of property p 
is changed from class B to class A being a superclass of B. This change confirms to the 
definition of ‘moveUpDomain’ (see Section 4.3). In the second situation (2), the domain 
of property p is changed from class B to class A. This change doesn’t conform to the 
definition of ‘moveUpDomain’ as the subtype condition is not met. However, when in a 
next step, the subclass relation between B and A is added, this modification will result in 
the detection of the ‘moveUpDomain’ change as all conditions are now met.  

 

Fig. 6. Two examples illustrating the change detection process 

8   Change Recovery 

We start with an example. Assume for Figure 6(2) an instance i of class B with a 
property instantiation of p. When the domain of property p is changed to class A, the 
ontology would become inconsistent because the property instantiation of p for i is no 
longer valid. To overcome this inconsistency, the change request will be extended 
with an additional change to remove the property instantiation from i. When in the 
next step, the subtype relation is added between B and A, we will detect the ‘move-



 Ontology Change Detection Using a Version Log 591 

UpDomain’ change (see previous section). It becomes now clear that the removing of 
the property instantiation of p from i was not necessary. This example illustrates the 
necessity to be able to recover from deduced changes when detecting changes. 

When a composite change is detected, the change recovery process is as follows: 

1. As presented in section 4.3, the definition of a change is specified in terms of con-
ditions. For each property, possible pre-conditions and post-condition are specified 
in terms of past and current versions. In this first step, from the versions of the ver-
sion log that satisfy the definition of the detected change (in this example ‘move-
UpDomain’), we select those versions that satisfy the conditions in the change 
definition that form the post-condition (Figure 6(2b + c)). 

2. In a second step, all versions that are caused by one of the selected versions are 
undone. In our example, this means undoing the remove of property instantiation p 
for i. This is possible by following the ‘causes’ property from the selected versions 
in the version log. In this way, we undo all deduced changes. Undoing changes is 
trivial as we can easily return to the previous version (found in the version log). 

3. The version log is checked for inconsistencies. If it appears to be consistent, the 
changes will be applied to the ontology. If not, additional changes need to be for-
mulated by the ontology engineer to solve any inconsistency. This step is repeated 
until consistency is reached. Note that this step is similar to the process described 
in section 5. In our example, the ontology is consistent as the property instantiation 
p of individual i became valid by adding the subtype. 

9   Discussion and Conclusions 

The change detection mechanism as presented here has a number of advantages: 

1. Implicitly detection of changes. It is not always easy for ontology engineers to se-
lect the correct, intended composite change that reflects the modifications they 
have in mind. Therefore, they will opt for basic changes to achieve step by step the 
desired result. In the end, they might have applied a composite change, not realiz-
ing they did. The detection mechanism proposed is able to automatically detect 
these implicitly executed composite changes. 

2. Allowing different levels of granularity. Several composite changes, with different 
levels of granularity (and  also different semantics), may result in the same ontol-
ogy modification. Consider for example the composite changes ‘moveClasses’ and 
‘moveSiblings’. ‘moveSiblings’ provides more semantics than ’moveClasses’ (dif-
ference in granularity). The same modification can be achieved using either of 
these changes. When an ontology engineer opts for the ‘moveClasses’ change to 
actually execute a ‘moveSiblings’ change, valuable information is lost because the 
most accurate change is not registered. The change detection mechanism over-
comes this problem, as the more accurate change will be detected. 

3. Meta-changes are automatically detected. Meta-changes are not useful for ontol-
ogy engineers to specify change requests as they don’t define ‘what’ has to change. 
Furthermore, ontology engineers don’t want to be burden with the task of manually 
specifying them. However, these meta-changes are definitely valuable for under-
standing occurred ontology changes. The change detection mechanism is able to 
detect such meta-changes. 



592 P. Plessers and O. De Troyer 

4. Different sets of change definitions. Ontology engineers may use a fix set of com-
posite change definitions to specify their change requests, although an infinite 
number of composite changes may exist. Our approach makes it possible for main-
tainers of depending artifacts to define additional composite change definitions, 
which are more appropriate for their purpose. The occurrence of these additional 
changes can be detected using our change detection mechanism. 

As a conclusion, we summarize the contributions of this paper. We have presented 
a new ontology evolution approach that includes an automatic change detection 
mechanism. The key element of our approach is the version log, which maintains the 
different versions of the ontology concepts. Change definitions as well as the consis-
tency model are defined in terms of this version log. Because the version log is inde-
pendent of the ontology language used, also change definitions are defined independ-
ently of the used ontology language. Different ontology languages are supported by 
defining a proper consistency model and specifying a mapping between the version 
ontology and the ontology language used. 

References 

1. Berners Lee, T., Hendler, J., Lassila, O.: The semantic web: A new form of web content 
that is meaningful to computers will unleash a revolution of new possibilities. Scientific 
American (2001) 5(1) 

2. Gruber, T.: A Translation Approach to Portable Ontology Specifications. Knowledge Ac-
quisition 5(2) (1993) 199-220 

3. Klein, M., Fensel, D.: Ontology versioning for the Semantic Web. In Proceedings of the 
First International Semantic Web Working Symposium (SWWS), Stanford University, 
California, USA (2001) 75-91 

4. Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D.: Ontology versioning and change de-
tection on the web. In 13th International Conference on Knowledge Engineering and 
Knowledge Management (EKAW02), Sigüenza, Spain (2002) 

5. Klein, M.: Change Management for Distributed Ontologies. PhD Thesis (2004) 
6. Maedche, A., Stojanovic, L., Studer, R., Volz, R.: Managing multiple ontologies and on-

tology evolution in OntoLogging. In Proceedings of the Conference on Intelligent Informa-
tion Processing (IIP-2002), Montreal, Canada (2002) 51-63 

7. Maedche, A., Motik, B., Stojanovic, L., Managing multiple and distributed ontologies on 
the Semantic Web. TheVLDB Journal - Special Issue on Semantic Web 12 (2003) 286-302 

8. Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: An Infrastructure for Searching, 
Reusing and Evolving Distributed Ontologies, In Proceedings of the Twelfth International 
World Wide Web Conference (WWW 2003), Budapest, Hungary, ACM (2003) 439-448 

9. Plessers, P., De Troyer, O., Casteleyn, S.: Event-based Modeling of Evolution for Seman-
tic-driven Systems. In Proceedings of the 17th Conference on Advanced Information Sys-
tems Engineering (CAiSE'05), Publ. Springer-Verlag, Porto, Portugal (2005) 

10. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: Userdriven Ontology Evolution 
Management. In Proceeding of the 13th European Conference on Knowledge Engineering 
and Knowledge Management EKAW, Madrid, Spain (2002) 

11. Stojanovic, L.: Methods and Tools for Ontology Evolution. Phd Thesis (2004) 
12. Tallis, M., Gil, Y.: Designing scripts to guide users in modifying knowledge-based sys-

tems. In Proceedings of the 14th National Conference on Artificial Intelligence 
(AAAI/IAAI 1999), Orlando, Florida, USA (1999) 242-249 

 



RelExt: A Tool for Relation Extraction from Text
in Ontology Extension

Alexander Schutz and Paul Buitelaar

German Research Center for Artificial Intelligence (DFKI GmbH),
Language Technology Lab,

Stuhlsatzenhausweg 3,
Saarbrücken, Germany

{aschutz, paulb}@dfki.de

Abstract. Domain ontologies very rarely model verbs as relations holding be-
tween concepts. However, the role of the verb as a central connecting element
between concepts is undeniable. Verbs specify the interaction between the par-
ticipants of some action or event by expressing relations between them. In par-
allel, it can be argued from an ontology engineering point of view that verbs
express a relation between two classes that specify domain and range. The work
described here is concerned with relation extraction for ontology extension along
these lines. We describe a system (RelExt) that is capable of automatically iden-
tifying highly relevant triples (pairs of concepts connected by a relation) over
concepts from an existing ontology. RelExt works by extracting relevant verbs
and their grammatical arguments (i.e. terms) from a domain-specific text collec-
tion and computing corresponding relations through a combination of linguistic
and statistical processing. The paper includes a detailed description of the system
architecture and evaluation results on a constructed benchmark. RelExt has been
developed in the context of the SmartWeb project, which aims at providing in-
telligent information services via mobile broadband devices on the FIFA World
Cup that will be hosted in Germany in 2006. Such services include location based
navigational information as well as question answering in the football domain.

1 Introduction

An investigation of the structure of existing ontologies via the Swoogle ontology search
engine [1] 1 has shown that domain ontologies very occasionally model verbs as rela-
tions holding between their concepts. However, the role of the verb as a central con-
necting element between concepts is undeniable. Verbs specify the interaction between
the participants of some action or event by expressing relations between them.

In parallel, it can be argued from an ontology engineering point of view, that verbs
express a relation between two classes that specify the domain and range of some ac-
tion or event. For instance,consider the following German sentence from the football
domain:

Ballack schiesst das Leder ins Netz.

1 http://swoogle.umbc.edu/

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 593–606, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



594 A. Schutz and P. Buitelaar

(Ballack shoots the ball into the net.)

A valuable contribution for an ontology in the football domain would be that the
verb “schiessen” (to shoot) as a relation holds between the concept FOOTBALLPLAYER,
instantiated as “Ballack”, as domain and the concept BALLOBJECT, instantiated as
“Leder” (“leather, ball”) as range, that is:

Rel:SHOOT (Dom:FOOTBALLPLAYER, Range:BALLOBJECT)

The work described here is concerned with the extension of a football ontology
along these lines, in the context of the SmartWeb 2 project. SmartWeb aims at provid-
ing services accessible via mobile broadband devices in the context of the FIFA World
Cup, which is hosted in Germany in 2006. Such services include location based in-
frastructural information (i.e. “Show me the fastest route to the stadium.”) as well as
question answering in the football domain (i.e. “Who caused the penalty that Ballack
converted?”).

The ontology that was constructed for this purpose consists of the following compo-
nents: the upper model DOLCE [2] as foundational ontology, SUMO [3] for describing
cross-domain concepts, the domain-specific SportEventOntology, which was modelled
by domain experts and is focused mainly on football, and other components such as
the navigation and discourse ontology. As of now 3, the ontology contains 1570 di-
rect classes (concepts) and 487 direct relations. Relations relevant for the football do-
main are mostly properties of some class such as “hasAge”, “hasName”, “atMinute”.
SUMO does model verbal relations between classes, for instance “causes”, “connects”,
“knows” or “shows”, but these are still rather abstract. However, in domain ontologies
relations need to be specified more precisely.

Therefore, in the approach we present here we implemented a system (RelExt) that
is capable of automatically identifying highly relevant triples (pairs of concepts con-
nected by a relation) that can be integrated in an (already existing) ontology. RelExt
works by extracting relevant terms and verbs from a given text collection and computing
relations between them through a combination of linguistic and statistical processing.

The remainder of this document is structured as follows. Section 2 compares our
approach to other ongoing relevant research in relation extraction and ontology learn-
ing in general. In Sect. 3, we give a detailed overview of the components used in the
system, as well as the processing steps undertaken. Section 4 describes the evaluation
strategy and the methods we used for evaluation, and goes on with interpreting our re-
sults. Finally, Sect. 5 points out ideas for further work to be carried out in this direction
and closes with concluding remarks.

2 Related Work

A large collection of methods for ontology learning from text have developed over
recent years as witnessed by the proceedings of various workshops in this area, e.g.

2 http://www.smartweb-projekt.de/
3 July 2005.



RelExt: A Tool for Relation Extraction from Text in Ontology Extension 595

at ECAI 20024, ECAI 20045. Unfortunately, there is not much consensus within the
ontology learning community on the exact task they are concerned with, which makes
a comparison of approaches difficult6.

In order to estimate the state-of-the-art in ontology learning, we first need to establish
the subtasks that together constitute the complex task of ontology development (either
manual or with any level of automatic support). Ontology development is primarily con-
cerned with the definition of concepts and relations between them. In our case this implies
the acquisition of linguistic knowledge about the terms that are used to refer to a specific
concept in text and possible synonyms of these terms. An ontology further consists of a
taxonomy backbone (is-a relation) and other, non-hierarchical relations.

Recent work on relation extraction from text, other than the is-a relation, has been
addressed primarily within the biomedical field as there are very large text collections
readily available (e.g. PubMed7) for this area of research. The goal of this work is to
discover new relationships between known concepts (i.e. symptoms, drugs, diseases) by
analyzing large quantities of biomedical scientific articles (see e.g. [5] [6] [7]).

Most of the work on text mining combines statistical analysis with more or less com-
plex levels of linguistic analysis, e.g. by exploiting syntactic structure and dependencies
for relation extraction as reported for instance by [8], [9] and [10]. Relation extraction
is therefore also very much related to the problem of acquiring selection restrictions for
verb arguments in NLP (compare [11]), as witnessed for instance by the ASIUM system
that enables an integrated acquisition of relations between concepts identified in text and
so-called sub-categorization frames for the verbs that underlie these relations [12].

Relation extraction through text mining for ontology development was introduced in
work on association rules in [13]. Of specific interest to the work described here is also
recent research by Reinberger and Spyns [14], and by Sabou [15], both of which employ
dependency structure for ontology learning.

While Reinberger and Spyns employ mainly statistical methods based on frequency
information over linguistic dependencies (predicate-object, preposition-headnoun) in or-
der to establish relations between entities from a corpus of the biomedical domain, they
are not concerned with labelling the discovered relations, which moves their research
more towards the work proposed by Maedche and Staab [13].

Sabou conducts her research on a corpus of controlled language from Web Service
descriptions, that consists of simple sentence constructions from which ontology frag-
ments can be extracted easily. Unfortunately, the proposed evaluation of Sabou’s system
cannot be performed automatically and needs a lot of manual interference.

3 Approach

Here we describe an approach to relation extraction for ontology extension based on lin-
guistic analysis and a predefined ontology that we intend to extend with relations derived
from predicate argument structure.

4 http://www-sop.inria.fr/acacia/WORKSHOPS/ECAI2002-OLT/
5 http://olp.dfki.de/ecai04/cfp.htm
6 A start towards surveying research in this area has been made by OntoWeb deliverable 1.5 [4].
7 http://www.pubmedcentral.nih.gov/



596 A. Schutz and P. Buitelaar

Fig. 1. System processing architecture

What follows is the description of the corpus we used (3.1) and the system archi-
tecture, including linguistic annotation (3.2), the various stages of statistical processing
and filtering (3.3), and finally, after the identification of relevant terms and relations, the
construction of triples. The processing pipeline is sketched in Fig. 1.

3.1 Corpus Description

We worked on a document collection compiled from the football domain, consisting of
0.5 mio tokens in 1219 documents. 8 The documents comprise minute-by-minute (live-
ticker) reports on football matches from the first and second German division. Figure 2
shows an example document of the corpus.

The benefits of this kind of text compared to the much more detailed match reports are
twofold: Firstly, the sentences are rather concise, which significantly reduces the error
rate of grammatical function assignment of our parser. Secondly, the language used in
the minute-by-minute texts is not as prosaic as the language used in the detailed match
reports, which reduces the amount of (sometimes newly invented) synonyms for domain
specific terms. The average sentence length of the corpus is approximately 13 words.

8 The corpus was compiled from http://www.kicker.de



RelExt: A Tool for Relation Extraction from Text in Ontology Extension 597

Anpfiff
16: Überraschende Führung für Energie Cottbus: Miriuta zirkelt einen Freistoß

über die Bremer Mauer ins rechte obere Toreck.
34: Nach einem öffnenden Zuspiel von Skripnik kommt auf der rechten Seite Stalteri

an den Ball, dringt in den Strafraum ein und überwindet mit einem Rechtsschuss
den herauseilenden Gäste-Keeper Piplica.

...
Schlusspfiff

Kickoff
16: Energie Cottbus surprisingly take the lead: Miriuta curls a freekick over the

Bremen wall into the top corner.
34: From a penetrating pass by Skripnik, Stalteri takes possession on the right

wing, moves into the penalty area and beats the on rushing visitor’s keeper
Piplica with a right footer.

...
Final whistle

Fig. 2. Example document from the corpus

3.2 Linguistic Analysis

For the linguistic annotation, we used the SCHUG-system [16] [17] , which provides a
multi-layered XML-format for a given text, specifying dependency structure along with
grammatical function assignment, phrase structure, part-of-speech and lemmatization
(including decomposition, which is useful in particular for German where compound
nouns are often used). Figure 3 provides an example.

Dependency Structure. As mentioned before in Sect. 1, verbs specify an action or event,
whereas the semantic classes of their syntactic arguments account for the class of partic-
ipants in that event. Exploiting this information could be very useful when it comes to
restricting a relation to hold only between a small set of semantic classes.

On the phrase level, SCHUG is able to provide a detailed analysis of syntactic argu-
ments, which involves decomposition of complex NPs into nominal head, pre- and post
modifier. Considering the whole NP as a candidate term for relation extraction would
introduce data sparseness, and therefore, it is important to normalise a complex NP to
its headnoun. Using only headnouns can be seen as a step towards normalisation, which
eases concept tagging and therefore, broadening coverage.

Named Entity Recognition / Concept Tagging. In order to map instances of foot-
ball players in the corpus to existing ontology class labels, we performed Named En-
tity Recognition (NER), based on gazetteer lists. The gazetteers were automatically gen-
erated from semi-structured documents about football matches in the first and second
German division, containing formal data, such as team lineup, referee names and fur-
ther information about a given match. For instance, if we encountered the string “Oliver
Kahn” 9 (or “Kahn”, or “O. Kahn”), we tagged the tokens with the correct named entity
type, in this case GOALKEEPER. For NER, we distinguished only between 4 different
ontology classes: GOALKEEPER, FOOTBALLPLAYER, TEAM and COACH.

9 A German goalkeeper.



598 A. Schutz and P. Buitelaar

Fig. 3. Analyzed dependency structure for “Ballack schießt das Leder ins Netz.”

Furthermore, a concept tagging step was undertaken, in order to map synonyms for
given terms to the corresponding ontology concepts. For this purpose we used synonyms
that the SportEventOntology specifies for a given concept label in German and English.
For instance, the concept DEFENDER has a synonym list with the following elements:
[DE: Abwehrspieler, Abwehr, Verteidiger] [EN: Defender, Defense, Back, Fullback, De-
fenceman]. We exploited this information also for mapping terms from more specific
subclasses to more general superclasses, i.e. if we encountered the token “Manndecker”
(stopper / DEFENDER), we tagged the token with the more general term/label FOOT-
BALLPLAYER instead, in order to reduce the sparse data problem. Ambiguity in concept
tagging is not really an issue here as we are working with a domain specific corpus and
ontology in which there is mostly a one-to-one mapping between terms and concepts.

3.3 Statistical Processing

In order to identify the most relevant terms and relations for the football domain, it is
necessary to filter out more general terms. As our goal was not only to find single relevant
terms, but highly relevant triples, a single statistical ranking step was not sufficient in
order to produce satisfactory results. In fact, we had to perform several computations
on the extracted data, starting from relevance ranking, and cross-referencing relevant
nouns and verbs with the predicate-argument-pairs, to computing co-occurrence-scores
in order to construct triples that are specifically used in the football domain.

Relevance Measure. In the context of ontology learning, a promising approach is to
select the nominal heads of noun phrases as candidates to be modelled as classes in an
ontology, while verbs (or rather the predicates they express) bear information about the
relationship between two classes. We therefore exploit the rich linguistic information
provided by SCHUG and extracted two lists from the processed corpus. The first list con-
tains lemmatized headnouns, while the second list consists of lemmatized predicates.



RelExt: A Tool for Relation Extraction from Text in Ontology Extension 599

Adopting the methods of [18](chapter 5.3), a χ2 test was used to compute a relevance
ranking, comparing the observed frequencies of headnouns in the domain specific corpus
with the frequencies of the same headnouns in a larger and more general corpus. As a
general corpus, we relied on the British National Corpus (90 mio tokens) for English
texts, and a corpus compiled from Swiss newspapers (9 mio tokens) for German texts.
The same procedure was used to rank the predicates. The formula for χ2 is given below.

χ2 =
∑

i,j

(Oi,j − Ei,j)2

Ei,j
. (1)

However, since we are dealing with 2x2 contingency tables only, it simplifies to

χ2 =
N(O11O22 −O12O21)2

(O11 + O12)(O11 + O21)(O12 + O22)(O21 + O22)
. (2)

where the indices refer to the column and row of the table, O is the observed frequency
and N the sample size.

For instance, the noun “Ball” (ball) occurred 6849 times in our corpus of approx 0.5
mio tokens and only 511 times in the approx 9 mio tokens general corpus, obtaining a
higher χ2-score than “Tor” (goal), which occurred more frequently than “Ball” in our
corpus, due to the squared sums of the mean error.

According to this ranking, we obtained three lists ordered by relevance, one for head-
nouns, a second list for headnouns mapped to ontology class labels, and a third list for
predicates. To illustrate highly relevant terms for the football-domain, Table 1 lists the
top 10 for headnouns and Table 2 gives the top 10 class labels after mapping headnouns
to the ontology. Table 3 displays highly relevant lemmatized verbs used in the football-
domain.

Table 1. χ2-top lemmatized headnouns

Rank χ2-score Headnoun Frequency

1 125245.24 Ball (ball) 6849
2 121888.52 Tor (goal) 7767
3 95003.21 Meter (meters) 5967
4 64157.18 Schuss (shot / drive) 3575
5 57185.76 Eck (corner) 3132
6 45474.96 Strafraum (penalty area) 2298
7 34668.11 Freistoss (freekick) 1752
8 30017.75 Leder (leather / ball) 1561
9 27989.09 Flanke (cross) 1479

10 27414.66 Pfosten (post) 1457

Co-occurrence Measure. After filtering out those elements from the χ2-sorted lists
where the score did not indicate strong relevance for the football-domain, we exam-
ined the dependency structure of the remaining predicates. We considered only those
predicate-argument-pairs for further investigation, where a highly ranked predicate co-
occurred with a highly ranked headnoun. We then ranked the resulting list of predicate-
argument-pairs again by further statistical processing. Assuming a headnoun together
with its grammatical function as one unit, co-occurrence-scores were computed again
with χ2, as described below.



600 A. Schutz and P. Buitelaar

Table 2. Top ontology class labels after NER and concept tagging

Rank Class Label Frequency

1 FOOTBALLPLAYER 28494
2 GOALOBJECT 8188
3 BALLOBJECT 7249
4 GOALKEEPER 6887
5 SHOOT 3578
6 TEAM 2477
7 PENALTYAREA 2298
8 FREEKICK 1752
9 WING 1482

10 POST 1457

Table 3. χ2-top lemmatized predicates

Rank χ2-score Predicate Frequency

1 27167.41 flanken (to cross / to centre) 1373
2 22045.39 klaeren (to clear) 1435
3 21908.37 schiessen (to shot) 1503
4 20439.09 koepfen (to head) 1033
5 16342.99 lassen (to let / to leave) 826
6 9563.41 ziehen (to pull / to drag) 1548
7 9468.57 passen (to pass / to play) 814
8 7752.84 spielen (to play / to pass) 1559
9 7653.68 lenken (to divert) 537

10 7637.45 parieren (to parry / to save) 405

We obtained a ranked (by χ2 -score) list, consisting of predicates paired up with one
of their arguments in a specific grammatical function. A higher score for a predicate-
headnoun-pair with a particular grammatical function means that this headnoun occur-
ring with this particular grammatical function is statistically more likely to appear for
that predicate than the same headnoun in any other grammatical function.

By this computation, we determined the selectional preferences of each predicate,
which are semantic restrictions on syntactic arguments of the grammatical function for
a given predicate and headnoun, and which in turn were used for the construction of
triples. Selectional preferences have been used also in previous research on ontology
learning [19].

Table 4 illustrates some of the selectional preferences for the verb “flanken” (to cross)
and the verb “pruefen” (to try / to test), computed by the χ2-algorithm. We exploited the
computed selectional preferences in order to find the most preferred subjects for a given
verb as well as the most preferably selected direct and indirect objects.

Relation Extraction. The triples were constructed from the selected headnoun-predicate
pairs, where the subject was chosen as the domain of the relation, while the (direct and
indirect) objects as well as the adjuncts defined the range, as shown in Table 5. The steps
undertaken for each verb (in order to combine it with appropriate terms for domain and
range) were as follows:

1. compose a sub-unit consisting of a predicate and a highly ranked OBJ or NP-Head
of PP_ADJUNCT

2. glue a highly ranked SUBJ to the lefthand side of the sub-unit
3. SUBJ + sub-unit constitutes a triple



RelExt: A Tool for Relation Extraction from Text in Ontology Extension 601

Table 4. Selectional preferences for “flanken” (to cross) vs. “pruefen” (to try / to test)

Predicate ARG-CLASS GF χ2

flanken (to cross) FOOTBALLPLAYER SUBJ 25.03
flanken REFEREE SUBJ 0.05

flanken FOOTBALLPLAYER DOBJ 34.77
flanken REFEREE DOBJ 0.01

flanken FOOTBALLPLAYER IOBJ 10.63
flanken REFEREE IOBJ 0.01
pruefen (to try / to test) FOOTBALLPLAYER SUBJ 3.09
pruefen GOALKEEPER SUBJ 0.63

pruefen FOOTBALLPLAYER DOBJ 0.20
pruefen GOALKEEPER DOBJ 20.60

pruefen FOOTBALLPLAYER IOBJ 0.96
pruefen GOALKEEPER IOBJ 7.69

Table 5. Examples of constructed triples

Domain Relation Range

FOOTBALLPLAYER flanken (to cross) FOOTBALLPLAYER

FOOTBALLPLAYER flanken_auf (to cross to) FOOTBALLPLAYER

FOOTBALLPLAYER flanken_zu (to cross to) FOOTBALLPLAYER

FOOTBALLPLAYER pruefen (to test) GOALKEEPER

Our inspections however showed that the huge amount of single occuring predicate-
headnoun-pairs (which unfortunately obtained a high χ2 value) biased the construction
of accurate, relevant triples to a large extent. We therefore introduced a threshold, con-
sidering only those elements for triple construction that co-occured more than once.

4 Evaluation

A big problem for ontology learning efforts is performance evaluation, as performance
in an open set is to be measured. How would one want to measure something that has
been learned, but which is not yet known? Because, if it had been known in the first place,
there would not have been the need for a learning effort.

As of now, various promising proposals have been made for comparing ontologies
on the lexical as well as on the taxonomic level [20], which could be used in order to
evaluate against a gold standard. Still, what happens when something learned shows up
that is not covered by the gold standard? Certainly, these are problems that have to be
addressed as well.

4.1 Benchmark Construction

Nevertheless, we did measure the performance of our system against a gold standard
that we constructed to benchmark different parameters. For this purpose, we split up
the corpus into 4 equally sized sub-corpora of 300 documents, from which we used one
sample for benchmark construction.

From this sample (consisting of 101536 tokens) we generated 192 triples and pre-
sented these to 3 domain experts. It was their task to determine whether a given triple
was an appropriate one for the football domain, or not. We also allowed an “in-between”
rating, to be used if the annotator could not make up his mind. The annotation process was



602 A. Schutz and P. Buitelaar

Fig. 4. WWW evaluation interface

performed via a web-based interface, as shown in Fig. 4. The Kappa-statistic [21], which
was computed in order to determine agreement among the 3 annotators, was found to be
at roughly 27%. As this value was rather low, we additionally considered the per-class
agreement [22] of the annotators, as presented in Table 6. Given reasonable agreement
among the annotators’ judgement on appropriate and not appropriate generated relations,
we constructed two benchmarks. The strict benchmarkGSstrict consists of 26 elements,
containing only those triples which all annotators agreed upon to be appropriate. The
relaxed benchmark GSrelaxed excluded all those triples, which were rated as not appro-
priate by at least one of the domain experts, leading to a set of 38 triples.

Table 6. Per-class agreement among the 3 annotators for evaluation of 192 triples

Judgement Assigned Agreed Disagreed Agr. Ratio

appropriate 202 264 140 65%
undecided 112 50 174 22%
not appropriate 262 300 224 57%

4.2 Experiment

As it was our aim to find relations for the extension of the SmartWeb SportEventOntol-
ogy, we put the following restrictions on generated triples: Firstly, we considered only
those triples, where the terms for domain and range could already be mapped to ontol-
ogy classes. Secondly, we further reduced the sets of triples to be evaluated by removing
items containing auxiliary and modal verbs.



RelExt: A Tool for Relation Extraction from Text in Ontology Extension 603

Setup. Introducing a parametrizable setup option for triple construction, we distin-
guished between two setups which controlled the amount of triples to be generated. Setup
I generated only one triple per verb (namely the best, according to the selectional prefer-
ences for SUBJs, OBJs and NP-heads of PP_ADJUNCTs), while setup II generated all
possible triples (by considering less preferred SUBJs and OBJs for triple composition),
resulting in a set of triples with larger size.

We therefore generated 6 sets of triples, 2 for each of the 3 test corpora. Furthermore,
we introduced a linear order based on the sum of the selectional preferences that were
used in order to compose a given triple.10 This enabled us to rank the triples within a set.

According to the ranking, we constructed 2 samples of different size. The first sample
(A) was scaled exactly to the size of the Gold Standard by considering only the first best
triples, and the second sample (B) simply contained all triples of the set.

As a result, we now obtained highly relevant relations connecting two highly relevant
terms. Some examples are given in Table 5.

Metrics and Results. Various contributions in recent and ongoing work (i.e. [23], [24]
or [25]) are concerned with establishing metrics for quantitative evaluation for ontology
learning. However, as pointed out briefly in the introduction of this section, this effort is
rather difficult. Sabou [23] proposes an evaluation strategy to be carried out over different
stages, addressing issues like extraction performance, ontology building support, domain
coverage and fitness for the task at hand. Therefore, the well-established metrics recall
and precision are employed, and from them, new derived metrics like Lexical Overlap
or Ontological Improvement are proposed to operate on the ontological level. Still, many
of the evaluation stages rely on a manual inspection or consultation of domain experts.

As we are evaluating triples against a gold standard, we decided to use only the classic
metrics recall and precision which are given below, measuring the system’s performance
on the 3 test corpora which were not used for benchmark creation.

Ts reflects the set of triples for a given sample, while GS denotes the set of triples
contained in the benchmark.

recall =
|Ts ∩ GS|
|GS| (3)

precision =
|Ts ∩ GS|
|Ts ∪ GS| (4)

Table 7 and Table 8 display the evaluation results for the 3 test corpora with different
samples, as described in Sect. 4.2.

With respect to the benchmark, recall improves with a larger sample, but precision re-
mains low around 10%. However, an inspection of the false positives showed that some
triples were in fact appropriate 11, although they were not contained in the gold stan-
dard. Clearly, those cases affect particularly the precision score of the evaluation in a
negative manner. In order to account for this situation, Kavalec and Svátek [25] have
proposed an additional notion of posterior precision, to be assessed after inspection and

10 The selectional preferences for verb-OBJ (range) and verb-SUBJ (domain), intuitively.
11 After re-consultation of the annotators.



604 A. Schutz and P. Buitelaar

Table 7. Performance for samples generated with setup I from 3 different test-corpora

Corpus # of Evaluated Recall Precision
Triples a priori a posteriori

percentage true positives percentage true positives
# of 1 38 15.8% 8.6% 6 20.0% 14
Triples 2 38 23.7% 13.4% 9 23.9% 16
= |GS| 3 38 15.8% 8.6% 6 20.0% 14

Average over Samples 18.4% 10.2% 21.3%
# of 1 95 39.5% 12.7% 15 24.6% 29
Triples 2 84 34.2% 11.9% 13 23.9% 26
= ALL 3 92 34.2% 11.1% 13 23.1% 27

Average over Samples 36.0% 11.9% 23.9%

Table 8. Performance for samples generated with setup II from 3 different test-corpora

Corpus # of Evaluated Recall Precision
Triples a priori a posteriori

percentage true positives percentage true positives
# of 1 38 13.2% 7.0% 5 18.3% 13
Triples 2 38 21.1% 11.8% 8 19.1% 13
= |GS| 3 38 15.8% 8.6% 6 15.7% 11

Average over Samples 16.7% 9.1% 17.7%
# of 1 148 44.7% 10.1% 17 20.7% 35
Triples 2 136 42.1% 10.1% 16 20.3% 32
= ALL 3 146 42.1% 9.5% 16 19.6% 33

Average over Samples 43.0% 9.9% 20.2%

re-consultation of a domain expert or ontology engineer. Following their line of research,
triples from the set of false positives which were found to be relevant, were treated as
such, and a recomputation of precision (a posteriori) was performed, leading to a signif-
icant improvement of the value reported as a priori precision. The difference between
prior precision and posterior precision would be a possible way of measuring the amount
of learning.

5 Conclusions and Future Work

In this paper we described an approach for extracting and evaluating highly relevant re-
lations holding between ontology classes in the football domain. In contrast to the ma-
jority of the work carried out in ontology learning, we are concerned with the extraction
of domain specific verbal relations other than is-a. As our approach is directed towards
ontology extension, we rely on an already existing ontology for some domain, in order to
map highly relevant headnouns to concept labels. Given that, we claim our approach to
be robust and easily adjustable to different domains, as the main steps rely on statistical
processing of formerly extracted linguistic information.

We are not (yet) concerned with clustering of extracted relations, which would bring
together different predicates as synonyms for a single more abstract relation label. In this
way, the relation will be defined as an abstraction over individual English or German verb
forms (i.e. predicates).

The RelExt-system is implemented as a modular system, which contributes methods
for the extraction procedure, the various statistical filtering steps and the triple generation.



RelExt: A Tool for Relation Extraction from Text in Ontology Extension 605

Its modular structure allows for easy integration of new methods and composition of
processing steps at will, which we think is very beneficial for tuning efforts.

The evaluation procedure we pursued supplies us with insights into overall system
performance, while the different setups allow conclusions to be drawn about the perfor-
mance of subcomponents of the system. As one further step, we propose the incremental
extension of the gold standard.

An aspect that certainly has to be focussed on is the generation of higher quality
triples, in order to improve precision without lowering recall. This can be done by taking
external linguistic resources into account, i.e. interfacing with WordNet [26] or accessing
information from subcategorization frame lexica for a given verb.

As SCHUG (the linguistic analysis) introduces a lot of ambiguity in grammatical func-
tion assginment (i.e. specifying multiple subjects and/or direct objects per clause), the
work carried out here has a very nice side effect. The computed selectional preferences
can be used in order to support SCHUG when it cannot decide wich grammatical function
to assign to a given phrase, which will in turn produce linguistic annotations of higher
quality.

Acknowledgements

This research has been supported by BMB+F (German Ministry of Education and Re-
search) grant 01 IMD01 A for the SmartWeb project.

References

1. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V.C., Sachs,
J.: Swoogle: A Search and Metadata Engine for the Semantic Web. In: Proceedings of
the Thirteenth ACM Conference on Information and Knowledge Management, ACM Press
(2004)

2. Gangemi, A., Guarino, N., Oltramari, A., Schneider, L.: Sweetening ontologies with dolce.
In: Proceedings of EKAW 2002, Siguenza, Spain (2002)

3. Niles, I., Pease, A.: Towards a standard upper ontology. In: FOIS ’01: Proceedings of the
international conference on Formal Ontology in Information Systems, ACM Press (2001) 2–9

4. Gomez-Perez, A., Manzano-Macho, D.: A survey of ontology learning methods and tech-
niques. deliverable 1.5, ontoweb project (2003)

5. Rindflesch, T., Tanabe, L., Weinstein, J., Hunter, L.: Edgar: Extraction of drugs, genes, and
relations from biomedical literature. In: Pacific Symposium on Biocomputing. (2000)

6. Pustejovsky, J., Castano, J., Zhang, J., Cochran, B., Kotecki, M.: Robust relational parsing
over biomedical literature: Extracting inhibit relations. In: Pacific Symposium on Biocom-
puting. (2002)

7. Vintar, S., Todorovski, L., Sonntag, D., Buitelaar, P.: Evaluating context features for medical
relation mining. In: ECML/PKDD Workshop on Data Mining and Text Mining for Bioinfor-
matics. (2003)

8. Buitelaar, P., Olejnik, D., Sintek, M.: A protégé plug-in for ontology extraction from text
based on linguistic analysis. In: Proceedings of the 1st European Semantic Web Symposium
(ESWS). (2004)



606 A. Schutz and P. Buitelaar

9. Ciramita, M., Gangemi, A., Ratsch, E., Saric, J., Rojas, I.: Unsupervised learning of semantic
relations between concepts of a molecular biology ontology. In: Proceedings of the 19th
International Joint Conference on Artificial Intelligence. (2005) accepted for publication.

10. Gamallo, P., Gonzalez, M., Agustini, A., Lopes, G., de Lima, V.S.: Mapping syntactic depen-
dencies onto semantic relations. In: Proceedings of the ECAI Workshop on Machine Learning
and Natural Language Processing for Ontology Engineering. (2002)

11. Resnik, P.: Selection and information: A class-based approach to lexical relationships (1993)
12. Faure, D., Nedellec, C.: A corpus-based conceptual clustering method for verb frames and

ontology. In Velardi, P., ed.: Proceedings of the LREC Workshop on Adapting lexical and
corpus resources to sublanguages and applications. (1998) 5–12

13. Maedche, A., Staab, S.: Discovering conceptual relations from text. In Horn, W., ed.: Pro-
ceedings of the 14th European Conference on Artificial Intellignece (ECAI’2000). (2000)

14. Reinberger, M.L., Spyns, P.: Discovering knowledge in texts for the learning of DOGMA-
inspired ontologies. In: Proceedings of the ECAI 2004 Workshop on Ontology Learning and
Population. (2004) 19–24

15. Sabou, M.: Extracting ontologies from software documentation: a semi-automatic method
and its evaluation. In: Proceedings of the ECAI-2004 Workshop on Ontology Learning and
Population (ECAI-OLP). (2004)

16. Declerck, T.: A set of tools for integrating linguistic and non-linguistic information. In:
Proceedings of SAAKM (ECAI Workshop). (2002)

17. Buitelaar, P., Declerck, T., Sacaleanu, B., Vintar, S., Raileanu, D., Crispi, C.: A multi-layered,
xml-based approach to the integration of linguistic and semantic annotations. In: Proceed-
ings of EACL 2003 Workshop on Language Technology and the Semantic Web, Budapest,
Hungary (2003)

18. Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. MIT
Press (1999)

19. Faure, D., N’edellec, C.: Asium: Learning subcategorization frames and restrictions of selec-
tion. In Kodratoff, Y., ed.: 10th Conference on Machine Learning (ECML 98) – Workshop
on Text Mining. (1998)

20. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: EKAW ’02: Pro-
ceedings of the 13th International Conference on Knowledge Engineering and Knowledge
Management. Ontologies and the Semantic Web, Springer-Verlag (2002) 251–263

21. Carletta, J.: Assessing agreement on classification tasks: the kappa statistic. Comput. Linguist.
22 (1996) 249–254

22. Poesio, M., Vieira, R.: A corpus-based investigation of definite description use. Comput.
Linguist. 24 (1998) 183–216

23. Sabou M., Wroe C., G.C., G., M.: Learning domain ontologies for web service descriptions:
an experiment in bioinformatics. In: Proceeedings of the 14th International World Wide Web
Conference WWW2005. (2005)

24. Spyns, P., Reinberger, M.L.: Evaluating ontology triples generated automatically from texts.
In: Proceedings of the second European Conference on the Semantic Web, LNCS, Springer
Verlag (2005)

25. Kavalec, M., Svaték, V.: A study on automated relation labelling in ontology learning. In
Buitelaar, P., Cimiano, P., Magnini, B., eds.: Ontology Learning from Text: Methods, Evalu-
ation and Applications. IOS Press (2005) 44–58

26. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 607 – 623, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Containment and Minimization of RDF/S Query Patterns 

Giorgos Serfiotis1,2, Ioanna Koffina1,2, Vassilis Christophides1,2, and Val Tannen3 

1 Institute of Computer Science, Foundation for Research and Technology – Hellas, 
P.O. Box 1385, 71110 Heraklio, Greece 

{koffina, christop}@ics.forth.gr 
2 Department of Computer Science, University of Crete, 

P.O. Box 2208, 71110 Heraklio, Greece 
serfioti@csd.uoc.gr 

3 Department of Computer and Information Science, University of Pennsylvania, 
200 South 33rd Street, Philadelphia, Pennsylvania 

val@cis.upenn.edu 

Abstract. Semantic query optimization (SQO) has been proved to be quite 
useful in various applications (e.g., data integration, graphical query generators, 
caching, etc.) and has been extensively studied for relational, deductive, object, 
and XML databases. However, less attention to SQO has been devoted in the 
context of the Semantic Web. In this paper, we present sound and complete 
algorithms for the containment and minimization of RDF/S query patterns. 
More precisely, we consider two widely used RDF/S query fragments 
supporting pattern matching at the data, but also, at the schema level. To this 
end, we advocate a logic framework for capturing the RDF/S data model and 
semantics and we employ well-established techniques proposed in the relational 
context, in particular, the Chase and Backchase algorithms.  

1   Introduction 
Semantic query optimization (SQO) is the process of increasing the potential for an 
efficient evaluation of queries by using intentional information about the contents of a 
database. The essential idea is to use knowledge (e.g., under the form of integrity 
constraints) about the data to reformulate a query into a more efficient but 
semantically equivalent one. SQO has been proved to be quite useful in various 
applications. For example, when integrating information sources, the composition of 
user queries with publishing views that establish mappings between data sources, 
often results in redundant queries. Moreover, when queries are produced 
automatically – e.g., from graphical query generators in portals – and not from 
humans, they are very likely to be redundant. Redundancy can be eliminated using 
query minimization techniques. Finally, in order to exploit cached query results we 
need to be able to identify query containment. In this way queries can be (partially or 
completely) answered, thus, avoiding costly access to remote data sources. 

SQO has been extensively studied in the context of relational [19], deductive 
[4][6][16], object [11] [8] and, recently, XML databases [9][10][18][24]. However, less 
attention to SQO has been devoted in the context of the Semantic Web. In [1]  
the authors propose a graphical interface that produces on-the-fly minimal RQL  
queries while the user navigates through an RDF/S schema. The key idea to query  



608 G. Serfiotis et al. 

minimization is that when navigating through hierarchies of classes (properties), the 
path expressions get refined by taking into account the subclasses (subproperties) 
currently visited. In [23] the author proposes a graph-based approach for identifying 
RDF/S queries that are subsumed by (i.e., contained in) queries whose results are 
already cached. If a query A, issued on an RDF/S description base DB, subsumes a 
query B, then query B needs not be executed on DB; it can be instead evaluated on the 
cached results of query A. However, both approaches consider only a limited fragment 
of RDF/S queries featuring pattern matching against data graphs (i.e., similar to 
relational queries). 

In this paper, we study SQO for more expressive fragments of patterns supported 
by declarative RDF/S query languages. More precisely, we consider two fragments of 
increasing expressiveness allowing complex pattern matching at the data, but also, at 
the schema level. The main contribution of this work is to present sound and complete 
algorithms for both checking the containment of RDF/S query fragments and 
minimizing them, which generalize previous results [9] for unions of conjunctive 
queries under disjunctive embedded dependencies. The rest of the paper is organized 
as follows: Section 2 introduces the logic framework that allows us to reduce the 
containment and minimization problems to the relational equivalent. Section 3 
presents the two expressive RDF/S query fragments for which our algorithms apply. 
Section 4 and 5 describe the proposed containment and minimization algorithms, 
which are based on the Chase and Backchase (C&B) algorithms as were introduced in 
[8] and extended in [9]. Our conclusions, as well as some challenges for future work, 
are given in Section 6. 

2   From RDF/S to SWLF 

In this section we will present our logic framework, termed Semantic Web Logic 
Framework (SWLF), consisting of six first-order logic (FOL) predicates for capturing 
RDF/S schemas and description bases, as well, as a set of appropriate FOL constraints 
under the form of disjunctive embedded dependencies (DEDs). 

Table 1. FOL predicates for RDF/S 

Predicate Type 
CLASS Set <name: Class> 
PROP Set <domain: Class, name: Property, range: Class> 

C_SUB Set <subC: Class, class: Class> 
P_SUB Set <subP: Property, prop: Property> 
C_EXT Set <class: Class, inst: Resource> 
P_EXT Set <subject: Resource, prop: Property, object: Resource> 

Definition 1. RDF/S schemas and description bases are represented by a set of FOL 
predicates (relations), namely R={CLASS, PROP, C_SUB, P_SUB, C_EXT, P_EXT}. 
Each predicate Ri has a set of attributes Ai, as shown in Table 1, whose domains have 
one of the following types Ti in T, T={Class, Property, Resource}. 

The meaning of these predicates is given below: 



 Containment and Minimization of RDF/S Query Patterns 609 

 

Fig. 1. An RDF/S schema 

The translation of a specific RDF/S schema in SWLF is straightforward: the 
predicates CLASS, PROP, C_SUB and P_SUB get instantiated for every class, 
property and direct subclass/subproperty relationship. For example, some of the facts 
we generate for the RDF/S schema of Fig. 1 are: 

CLASS(Artist), PROP(Artist,creates,Artifact), C_SUB(Painter,Artist), 
P_SUB(paints,creates), P_SUB(sculpts,creates) 

Definition 2. Disjunctive embedded dependencies (DEDs) are FOL formulas of the 
following general form: 

'

1
( ) ( , )

l

i i i
i

x x y x yϕ ϕ
=

∀ → ∨ ∃  

where x , iy are tuples of variables and , i
’ are conjunctions of relational atoms of 

the form R( 1, ..., l) and equality atoms of the form = ’, where 1, ..., l, , ’ 
are variables or constants;  may be the empty conjunction. 

In particular, in order to capture the intended meaning of an RDF/S schema two 
types of constraints are considered in SWLF; for each predicate, many constraints 
existentially quantifying its variables and one constraint universally quantifying them. 
The constraints of the former type provide partial (incomplete) knowledge of the 
RDF/S schema and have the general form: 

' ( )y yϕ∃  (1) 

where y  is a tuple of variables and ’ is a conjunction of one SWLF predicate and 

equalities between the variables of one of the SWLF predicates and constants. This 

− CLASS(c) iff c is a class. 
− PROP(a, p, b) iff p is a property having class a as domain and class b as range. 
− C_SUB(c, a) iff class c is a (direct or not) subclass of class a. 
− P_SUB(q, p) iff property q is a (direct or not) subproperty of property p. 
− C_EXT(c, x) iff resource x is in the proper extent – is a direct instance – of class c. 
− P_EXT(x, p, y) iff the ordered pair (x, y) (formed from resources x, y) is in the 

proper extent – is a direct instance – of property p. 



610 G. Serfiotis et al. 

form is equivalent to ’( y ), where ’ is an SWLF predicate and y  is a tuple of 

constants, and corresponds to the form of the facts generated for an RDF/S schema. 
On the other hand, the constraints of the latter type state which are all the classes, the 
properties and the subsumption relationships, and, thus, provide along with those of 
the previous type a complete knowledge of the RDF/S schema. Their general form is: 

'

1
( ) ( )

l

i
i

x x xϕ ϕ
=

∀ → ∨  (2) 

where x  is a tuple of variables,  is an SWLF predicate and each i
’ is a conjunction 

of equalities between the predicate’s variables and constants. Constraints of this form 
capture also the reflexivity and transitivity of class and property subsumption 
relationships. Table 2 shows the constraints of form (2) introduced for the P_SUB 
predicate given the RDF/S schema of Fig. 1.  

Table 2. Example of constraints introduced for P_SUB given the RDF/S schema of Fig. 1 

Constraint universally quantifying P_SUB’s variables 
∀subP ∀prop (P_SUB(subP, prop) → (subP=“creates” ∧ prop=“creates”) ∨ 
(subP=“paints” ∧ prop=“creates”) ∨ (subP=“paints” ∧ prop=“paints”) ∨ (subP=“sculpts” ∧ 
prop=“creates”) ∨ (subP=“sculpts” ∧ prop=“sculpts”)) 

In order to capture the semantics of the RDF/S data model, i.e., of every RDF/S 
schema and description base, we consider a set of constraints, called Mod.  

Definition 3. Mod is the set of the following disjunction-free DEDs: 

- Every resource in the extent of a class implies the existence of the corresponding 
class: ∀c,x C_EXT(c,x) → CLASS(c) 
- The subclass relationship relates classes:∀c,d C_SUB(c,d) → CLASS(c) ∧ CLASS(d) 
- The domain and range of every property is a class: ∀a,p,b PROP(a,p,b) → 
CLASS(a) ∧ CLASS(b) 
- The domain and range of every property is unique: ∀a,p,b,c,q d PROP(a,p,b) ∧  
PROP(c,q,d) ∧ p=q → a=c ∧ b=d 
- Every statement in the extent of a property implies the existence of the 
corresponding property: ∀x,p,y P_EXT(x,p,y) → ∃c,d PROP(c,p,d) 
- The subproperty relationship relates properties: ∀p,q P_SUB(p,q) → ∃a,b,c,d 
PROP(a,p,b) ∧ PROP(c,q,d) 
- Every class is a subclass of itself: ∀c CLASS(c) → C_SUB(c,c) 
- The subclass relationship is transitive: ∀a,c,e C_SUB(e,c) ∧ C_SUB(c,a) → 
C_SUB(e,a) 
- Every property is a subproperty of itself: ∀c,p,d PROP(c,p,d) → P_SUB(p,p) 
- The subproperty relationship is transitive: ∀p,q,r P_SUB(p,q) ∧ P_SUB(q,r) → 
P_SUB(p,r) 
- A class is both subclass and superclass of itself: ∀a,c C_SUB(a,c) ∧ C_SUB(c,a) → 
a=c 



 Containment and Minimization of RDF/S Query Patterns 611 

- A property is both subproperty and superproperty of itself :∀p,q P_SUB(p,q) ∧ 
P_SUB(q,p) → p=q 
- In a valid RDF description schema the domain (range) of every subproperty is 
subsumed by the domain (range) of its superproperty: ∀a,p,b,c,q,d P_SUB(q,p) ∧ 
PROP(a,p,b) ∧ PROP(c,q,d) → C_SUB(c,a) ∧ C_SUB(d,b) 
- In a valid RDF description base the subject/object resources in every statement are 
(direct or indirect) instances of the property’s domain/range classes: ∀a,p,b,x,y  
PROP(a,p,b) ∧ P_EXT(x,p,y) → ∃c,d C_SUB(c,a) ∧ C_SUB(d,b) ∧ C_EXT(c,x) ∧ 
C_EXT(d,y) 

It should be stressed that, compared to the RDF/S Semantics given in [14], SWLF 
(i) distinguishes between the different RDF/S abstraction layers (data, schema and 
metaschema), (ii) enforces that a property’s domain and range are always defined and 
unique, (iii) does not allow the existence of cycles in the class and property 
hierarchies, (iv) states that the set inclusion of the domain and range are preserved for 
specialized properties and (v) demands that in each statement the subject and object 
resources are (direct or not) instances of the domain and range classes of the property, 
respectively. These additional constraints are employed to reason over queries (and 
not on data as in [14]), clarify the semantics of classes and properties and decrease the 
complexity of RDF/S query containment and minimization.  

In this context, we consider the following two additional sets of constraints 
capturing (partially or completely) the semantics of a particular RDF/S schema: 

Definition 4. RDF is the set of disjunction-free DEDs consisting of Mod and the 
constraints of form (1). 

Definition 5. RDF is the set of DEDs consisting of Mod and the constraints of forms 
(1) and (2). 

Having in mind the FOL predicates R and the aforementioned sets of constraints, 
the formal definitions of an RDF/S description base and a description schema are: 

Definition 6. An RDF/S (description) schema DS in SWLF is an instantiation of the 
relational schema RS={CLASS, PROP, C_SUB, P_SUB} satisfying Mod. 

Definition 7. An RDF/S description base DB in SWLF given a DS is an instantiation 
of the relational schema RB={C_EXT, P_EXT} satisfying Mod. 

3   RDF/S Query Languages’ Fragments 

All RDF/S query languages provide pattern matching facilities against schema and/or 
data graphs. The main difference in their expressiveness is related to their ability to 
support either exact or extended pattern matching by taking into account the 
subsumption relationship of classes and properties defined in an RDF/S schema. 
When only exact matching is supported, patterns of schema-agnostic RDF/S query 
languages (e.g., SPARQL [21]) can be divided into two main fragments: The first 
includes patterns for pure data matching given as input the schema classes and 
properties (i.e., as in relational queries), while the latter includes patterns that 



612 G. Serfiotis et al. 

Table 3. RDF/S query patterns categorization 

Property Patterns Class Patterns 
{X; $C}@P{Y; $D} $C{X; $D} 

{$C}@P{$D} $C{$D} 
{X}@P{Y} $C{X} 

 

{X}^p{Y} ^c{X} 
{X}p{Y} c{X} 

RQLUCQ 

RQLCORE 
{X; c}p{Y; d} c{X; d} 

Table 3 presents the basic RDF/S class and property patterns of RQL (capital 
letters denote variables, and small letters denote constants), as well as introduces the 
fragments that these patterns belong to. With the exception of the RQL distinction 
between exact (denoted with ‘^’) and extended pattern matching for class (^c{X} and 
c{X}) and property ({X}^p{Y} and {X}p{Y}) instances, all the other patterns are 
encountered in the majority of the RDF/S query languages. In this context, the SQO 
algorithms presented in this paper for the two most expressive previous RQL 
fragments [12] can be naturally applied to other RDF/S query languages as long as the 
appropriate translations of their patterns to SWLF are provided. 

In particular, in this paper we focus on unions of RQL conjunctive queries, called 
RQLUCQ, that are defined analogously to unions of relational conjunctive queries; the 
only difference lies to the fact that RQL class/property patterns are used instead of 
simple relational predicates. Indeed, according to the declarative semantics given in 
[15], RQL patterns have the same meaning as conjunctions of relational atoms. 

Definition 8. An RQL conjunctive query is a FOL formula of the following form: 

( ) : ..., ( ),...,i i m nans u E u u u− =  

where u is a tuple of variables or constants, Ei( iu )’s are class/property patterns (see 
Table 3) and um=un’s are equalities between variables and/or constants. Each 

iu involves the variables Xi, $Ci, @Pi, Yi, $Di – where @Pi is a property variable, $Ci 
and $Di are class variables, Xi and Yi are resource variables – or a subset of them.  

Note that RQL conjunctive queries must be safe, i.e., their variables must be range 
restricted as for relational queries [2]. By extending the above formalism, we get the 
following definition. 

Definition 9. RQLUCQ queries have the form: kk
QU  

where Qk’s are RQL conjunctive queries whose heads have the same type. 

Definition 10. RQLCORE is a subset of RQLUCQ including patterns for pure data 
matching (see Table 3). 

arbitrary mix schema and data querying. When both exact and extended matching is 
supported, patterns of schema-aware RDF/S query languages (e.g., RQL [15]) can be 
similarly divided into the previous two fragments while the latter also includes 
patterns for exact matching of schema and data graphs. 



 Containment and Minimization of RDF/S Query Patterns 613 

The complete list of the property patterns for both RQLUCQ and RQLCORE 
fragments is given in the Appendix (class patterns are defined in a similar way). As 
we will see in the sequel, the gain from limiting the expressiveness of RQLUCQ 
queries to RQLCORE is double. First of all, the partial knowledge of the RDF/S schema 
offered from RDF suffices to solve the containment and minimization problems for 
the RQLCORE (i.e., we do not need complete schema information). Additionally, 
considering only the information provided from RDF leads to lower execution costs of 
the containment, equivalence and minimization algorithms, which stems from the fact 
that the involved chase algorithm considers only disjunction-free constraints (see 
Section 4). 

RQLUCQ (RQLCORE) queries can be translated into unions of relational conjunctive 
queries expressed in terms of SWLF (see Appendix for the complete list of property 
pattern translation). The translation is straightforward: given an RQLUCQ (RQLCORE) 
query, class/property patterns get substituted by the corresponding SWLF predicates. 

Example 1. Take a look at the translation of the RQLUCQ query1 retrieving cubists 
who have painted artefacts that are exhibited. 

SELECT X 
FROM {X; Cubist}paints{Y}, {Y}exhibited 

By replacing the constants found in the patterns with variables and adding the 
corresponding equalities we get: 

SELECT X 
FROM {X; $C}@P

1
{Y}, {Y}@P

2
 

WHERE $C=Cubist and @P
1
=paints and @P

2
=exhibited 

Now, the query can be rewritten in SWLF as follows: 

ans(X):- {X; $C}@P
1
{Y}, {Y}@P

2
, $C=Cubist, @P

1
=paints, 

@P
2
=exhibited 

The corresponding SWLF query is produced by employing P_SUB to navigate 
through the subproperties of paints and exhibited, P_EXT to retrieve the direct 
instances of these subproperties, C_SUB to retrieve Cubist’s subclasses and C_EXT 
to retrieve the direct instances of these subclasses. Finally, C_SUB and PROP are 
used to ensure that Cubist is a subclass of paint’s domain. 

ans(x):- PROP(a,p
1
,b), P_SUB(q

1
,p

1
), P_EXT(x,q

1
,y), C_SUB(c,a), 

C_SUB(e,c), C_EXT(e,x), P_SUB(q
2
,p

2
), P_EXT(y,q

2
,z), 

c=“Cubist”, p
1
=“paints”, p

2
=“exhibited” 

4   RQL Query Containment and Equivalence 

For the RQLUCQ and RQLCORE fragments we define containment and equivalence as 
follows: 

Definition 11. An RQLUCQ (RQLCORE) query Q1 is contained in an RQLUCQ 
(RQLCORE) query Q2 (Q1⊆Q2) given an RDF description schema DS iff for every RDF 

                                                           
1 For simplicity, in all RQL queries presented in this paper namespaces are disregarded. 



614 G. Serfiotis et al. 

description base DB conforming to DS, the result of Q1 is contained in that of Q2 
(∀DB Q1(DB)⊆Q2(DB)). 

Definition 12. An RQLUCQ (RQLCORE) query Q1 is equivalent to an RQLUCQ 
(RQLCORE) query Q2 (Q1 Q2) given an RDF description schema DS iff for every RDF 
description base DB conforming to DS, the result of Q1 is equivalent to that of Q2 
(∀DB Q1(DB) Q2(DB)). 

As stated previously, we reduce the RQL query containment and equivalence 
problems to the relational ones under constraints. In this section we introduce the 
chase algorithm and present how it can be employed in our RQLUCQ (RQLCORE) 
containment and equivalence checking. 

4.1   Chase Algorithm 

The core chase consists of a sequential execution of a number of chase steps. For 
example, given the constraint ∀x∀y A(x, y)→B(x) and the query Q(x) :- A(x, y), the 
chase step leads to query Q(x) :- A(x, y), B(x). When no more chase steps can apply 
the chase ends and the query outputted is called the universal plan. 

Unfortunately, the chase with an arbitrary set of DEDs is not guaranteed to 
terminate. However, in [9] the authors introduced a syntactic restriction, namely 
stratified-witness, which ensures termination of the chase under a set of disjunction-
free DEDs. When a set of DEDs respects stratified-witness, no sequence of chase 
steps can force the chase to diverge. Stratified-witness can be extended in order to 
handle constraints that use disjunction, too (see [22] for further details). The key idea 
lies on the splitting of disjunctive constraints into disjunction-free ones and checking 
whether one of the possible combinations of disjunction-free constraints leads to an 
endless execution of chase steps by checking them for stratified-witness. 

In [7] the author proves soundness of the chase-based containment algorithm for 
conjunctive queries under a set of DEDs. In the sequel, we extend this algorithm to 
unions of conjunctive queries: 

Theorem 1. Given two unions of conjunctive queries Q1, Q2 and a set D of DEDs, 
assume that the chase of Q1 with D terminates rendering the universal plan U1. Then, 
Q1 is contained in Q2 under D (Q1⊆DQ2) iff

2 for every i there is a j such that U1i is 
contained in Q2j, i.e., there is a containment mapping from Q2j into U1i. 

Moreover, it is obvious that two queries Q1, Q2 are equivalent under a set D of 
constraints iff Q1⊆DQ2 and Q2⊆DQ1. Therefore, at least one and at most two 
containment checks are needed in order to decide the equivalence of queries under 
constraints. 

4.2   Checking Containment and Equivalence of RQLCORE Queries 

The algorithm for checking whether an RQLCORE query is contained in another is 
based on Theorem 1. It takes as input the two SWLF queries and RDF, which is a set 

                                                           
2 In contrast to [7] and without loss of generality, after each chase step we check the query for 

inconsistencies, i.e. equalities between distinct constants. 



 Containment and Minimization of RDF/S Query Patterns 615 

of DEDs that behaves as if stratified-witness3 was present and, therefore, ensures the 
termination of chase and, thus, soundness of the containment check. 

Example 2. Assume that we want to check the containment of the query retrieving 
people having painted 

SELECT X 
FROM {X}paints 

in the query returning all artists 

SELECT X 
FROM Artist{X} 

The queries are translated, respectively, into SWLF as follows: 
ans(x):-P_SUB(q,p), P_EXT(x,q,y), p=“paints” 

ans(x):-C_SUB(c,a), C_EXT(c,x), a=“Artist” 

By chasing the first query with the basic constraint ∀p∀q P_SUB(q, p) → 
∃a1∃a2∃b1∃b2 PROP(a2, q, b2) ∧ PROP(a1, p, b1) we get the query4: 

ans(x):-P_SUB(q,p), P_EXT(x,q,y), PROP(a
1
,p,b

1
), PROP(a

2
,q,b

2
), 

p=“paints” 

The next chase step involves the first domain/range constraint: 

ans(x):-P_SUB(q,p), P_EXT(x,q,y), PROP(a
1
,p,b

1
), PROP(a

2
,q,b

2
), 

C_SUB(a
2
,a

1
), C_SUB(b

2
,b

1
), p=“paints” 

The following one involves the second domain/range constraint: 

ans(x):-P_SUB(q,p), P_EXT(x,q,y), PROP(a
1
,p,b

1
), PROP(a

2
,q,b

2
), 

C_SUB(a
2
,a

1
), C_SUB(b

2
,b

1
), C_SUB(c,a

2
), C_SUB(d,b

2
), 

C_EXT(c,x), C_EXT(d,y), p=“paints” 

After a number of chase steps we reach the following (incomplete) universal plan: 
ans(x):-P_SUB(q,p), P_EXT(x,q,y), PROP(a

1
,p,b

1
), PROP(a

2
,q,b

2
), 

C_SUB(a
2
,a

1
), C_SUB(b

2
,b

1
), C_SUB(c,a

2
), C_SUB(d,b

2
), 

C_EXT(c,x), C_EXT(d,y), C_SUB(c,a
1
), C_SUB(h,g), C_SUB(c,g), 

p=“paints”, a
1
=h=“Painter”, b

1
=“Painting”, g=“Artist” 

Since there is a containment mapping from the second input query to the chased query 
({c→c, a→g, x→x}), the first query is contained in the second one. 

Using the same algorithm we can prove that the query of Example 1 is contained in 
the first query of Example 2. Having reduced the RQLCORE containment problem to a 
relational one, the equivalence problem gets reduced to the relational one as well. 

4.3   Checking Containment of RQLUCQ Queries 

The same algorithm can be used for checking containment between RQLUCQ queries. 
It takes as input the two SWLF queries and the set of constraints RDF, which ensures 
the termination of chase and, thus, soundness of the containment check. 

                                                           
3 RDF (and RDF) is a set of DEDs not satisfying stratified-witness. However, it does not allow 

the introduction of an infinite number of fresh variables [22]. 
4 The predicates triggering the chase step are underlined while the introduced ones are given in 

bold. 



616 G. Serfiotis et al. 

Example 3. Assume that we want to check the containment of the following query 
retrieving people who have painted artefacts that are exhibited somewhere 

SELECT X 
FROM {X}paints{Y}, {Y}exhibited 

in the query returning people having exclusively painted (i.e., in the proper 
interpretation of paints) something 

SELECT X 
FROM {X}^paints 

The input queries are translated respectively into SWLF as follows: 
ans(x):-P_SUB(q

1
,p

1
), P_EXT(x,q

1
,y), P_SUB(q

2
,p

2
), 

P_EXT(y,q
2
,z), p

1
=“paints”, p

2
=“exhibited” 

and 
ans(x):-P_EXT(x,p,y), p=“paints” 

After a number of chase steps the first query reaches the (incomplete) universal plan5: 
ans(x):- P_SUB(q

1
,p

1
), P_EXT(x,q

1
,y), P_SUB(q

2
,p

2
), 

P_EXT(y,q
2
,z), p

1
=q

1
=“paints”, p

2
=q

2
=“exhibited” 

There is a containment mapping from the second input query to the chased query 
({p→q1, x→x, y→y}). Therefore, the first query is contained in the second one. 

As with RQLCORE, the RQLUCQ equivalence problem is also reduced to the 
relational one. 

In the beginning of this section we have claimed that containment of RQLUCQ 
queries can be checked in presence of RDF. It should be stressed that any restriction 
of RDF, either by employing RDF or by considering the set of constraints that 
excludes from RDF the constraints of form (1), affects the soundness of the 
containment (see [22] for further details). The same stands for the minimization 
algorithm presented in the next section. 

The complexities of both containment (equivalence) algorithms depend on the cost 
of the chase algorithm to reach the universal plan and the cost of the simple 
containment check at the end. In this context, the chase depends on the set of 
constraints considered ( RDF for RQLCORE and RDF for RQLUCQ) and on the size of 
the input queries (in presence or not of union). Note that the chase with disjunction-
free constraints satisfying stratified-witness (or behaving as if satisfying it, like RDF) 
is NP-complete [20]. 

5   RQL Query Minimization 

In this section, we detail how we can minimize RQLUCQ (RQLCORE) queries using the 
backchase algorithm. Furthermore, we highlight how the produced minimal SWLF 
queries can be translated both to schema-aware RDF/S query languages, like RQL, 
and to schema-agnostic languages, like SPARQL. 

Definition 13. Given an RDF description schema DS an RQLUCQ (RQLCORE) query Q 
gets minimized when replaced with a minimal equivalent query SQ (∀DB 
Q(DB)≡SQ(DB)). 

                                                           
5 If we applied all possible chase steps, the constraints would introduce union in the universal plan. 



 Containment and Minimization of RDF/S Query Patterns 617 

A minimal RQLUCQ (RQLCORE) query uses fewer and/or simpler RQL patterns than 
the original query. The intuition is that a class pattern is simpler than a property one; a 
pattern involving proper interpretations (for RQLUCQ) and/or fewer variables is 
simpler than one involving extended interpretations and/or more variables. The above 
hypotheses are made by taking into account that the evaluation of a simpler pattern is 
more efficient that the original one. 

5.1   Backchase Algorithm 

The core algorithm is the backchase, which, given a query’s universal plan, checks all 
its subqueries for minimality and equivalence to the original query using chase. 
According to the following theorem introduced in [9] the backchase is guaranteed to 
find all minimal equivalent subqueries when the chase terminates and, thus, ensures 
completeness of the minimization algorithm. 

Theorem 2 [9]. Given a union of conjunctive queries Q and a set C of DEDs, if the 
chase of Q with C terminates yielding the universal plan of U, all C-minimal 
reformulations of Q are subqueries of U. 

5.2   Minimization of RQLCORE Queries Using Schema Knowledge 

In order to minimize an RQLCORE query the universal plan of the original SWLF 
query and RDF are given as input. Since the chase with RDF terminates, the backchase 
always finds all minimal equivalents of an RQLCORE query. 

Example 4. Assume the following query 
SELECT X 
FROM Cubist{X}, Painter{X} 

which was introduced in Example 3. Its SWLF translation will chase to: 
ans(x):-C_SUB(c

1
,a

1
), C_EXT(c

1
,x), C_SUB(c

2
,a

2
), C_EXT(c

2
,x), 

C_SUB(e,d), a
1
=d=“Painter”, a

2
=e=“Cubist” 

If we examine its subquery retrieving the extended interpretation of Cubist 
ans(x):-C_SUB(c,a), C_EXT(c,x), a=“Cubist” 

we will conclude that it is RDF-minimal and RDF-equivalent to the query given as 
input. Thus, this query will be produced by our minimization algorithm. 

It is worth noticing that RQLCORE queries demonstrate a very interesting and useful 
feature: they have only one minimal equivalent! As we will explain in the next 
subsection, more than one minimal query can occur only by replacing extended 
interpretations with proper ones, which are not supported by RQLCORE. 

5.3   Minimization of RQLUCQ Queries Using Schema Knowledge 

Similarly, minimization of RQLUCQ is always successful since the set of constraints 
employed in this case – RDF – guarantees termination. 

Example 5. Assume the query of Example 4. If considered as an RQLUCQ query, it 
will minimize to the query retrieving the proper interpretation of Cubist 

ans(x):-C_EXT(c,x), c=“Cubist” 



618 G. Serfiotis et al. 

The difference in the minimal query is due to the fact that the backchase has the 
additional knowledge that Cubist has no subclass than itself. As we will see in the 
sequel, unlike RQLCORE, RQLUCQ queries may have more than one minimal 
equivalent. 

Example 6. Assume the query 

SELECT $A, X 
FROM $A{X; Artist} 

and its SWLF translation 

ans(a,x):-C_SUB(c,a), C_SUB(e,c), C_EXT(e,x), c=“Artist” 

If we execute the C&B algorithms, we will find three (!) minimal equivalent queries: 

(1st) ans(a,x):-C_SUB(e,a), C_EXT(e,x), a=“Artist” 

(2nd) ans(a,x):- C_EXT(a,x), a=“Artist” 
  ∪ ans(a,x):-C_EXT(e,x), a=“Artist”, e=“Sculptor” 
  ∪ ans(a,x):-C_SUB(e,c), C_EXT(e,x), a=“Artist”, c=“Painter” 
(3rd) ans(a, x):- C_EXT(a, x), a=“Artist” 
  ∪ ans(a, x):-C_EXT(e, x), a=“Artist”, e=“Sculptor” 
  ∪ ans(a, x):-C_EXT(e, x), a=“Artist”, e=“Painter” 
  ∪ ans(a, x):-C_EXT(e, x), a=“Artist”, e=“Cubist” 

The most interesting minimal queries are the first and third ones. In the first one 
redundancy has been removed without resolving the navigational part occurring from 
traversing the subclass hierarchy of Artist; this is why the extended interpretation of 
Artist is used. On the contrary, in the third minimal query schema information has 
been completely unfolded, introducing a union involving only the proper 
interpretations of Artist’s subclasses. When the former will be executed against an 
RDF/S store, it will still require schema navigation, while the latter contains all 
necessary schema information to retrieve the resources and, thus, it can be used by 
schema-agnostic languages. The second query lies somewhere in the middle; since 
both proper and extended interpretations are used, a part of the schema information 
has been unfolded, while some other has not. This form seems useful when the results 
of some of the constituent conjunctive queries are already cached. 

In general, the number of minimal queries depends on the constraints considered, 
i.e., the size of the RDF/S schema, and the query given as input. As they grow, the 
number of minimal equivalents considerably increases. Every RQLUCQ query has one 
minimal equivalent query where schema information is completely unfolded. This 
means that if the original query does not involve pattern matching at the data level, 
minimization practically answers the original query; the result is a constant query, i.e., 
a query were only equalities appear in the body. Apart from it, there usually exists one 
minimal query where the unfolding has not introduced union and several ones where 
partial unfolding has taken place. 

5.4   Minimization of RQLUCQ Queries by Ignoring Schema Knowledge 

Our minimization technique can, also, be used for minimizing RQL patterns in their 
general form without taking into consideration specific RDF/S schemas [22]; 
therefore the chase in this case considers only Mod. 



 Containment and Minimization of RDF/S Query Patterns 619 

Example 7. Assume the RQLUCQ query 

ans(X, @P, Y):-{X; $C}@P{Y; $D}, cond(X, @P, Y) 

involving the pattern we want to simplify and a dummy predicate cond stating the 
conditioned variables. The equivalent SWLF query is: 

ans(x,p,y):-PROP(a,p,b), P_SUB(q,p), P_EXT(x,q,y), 
C_SUB(c,a), C_SUB(d,b), C_EXT(c,x), C_EXT(d,y), cond(x,p,y) 

If we inspect the universal plan of the query above during backchase, we will reach 
the subquery 

ans(x,p,y):- P_SUB(q,p), P_EXT(x,q,y), cond(x,p,y) 

which is both Mod-minimal and Mod-equivalent. Interestingly, it corresponds to the 
RQLUCQ query 

ans(X, @P, Y):-{X}@P{Y}, cond(X, @P, Y) 

Thus, the pattern {X; $C}@P{Y; $D} gets simplified to pattern {X}@P{Y} when only 
variables X, @P, Y are either conditioned or projected. 

5.5   Backward Translation 

As a matter of fact, in some cases we would like to restore the initial form (i.e., 
RQLUCQ or RQLCORE) of a minimal query expressed in terms of SWLF. In the case of 
RQLCORE the backward translation is simple since only two RQL patterns, in 
particular $C{X} and {X}@P{Y}, may appear in the body of an RQLCORE minimal 
query. On the contrary, the translation becomes somehow more complicated for 
RQLUCQ. Initially, we need to identify simple patterns in the SWLF query and 
combine them in order to form more complex ones. For example, the patterns {X}@P, 
{$C}@P, $C{X} correspond to the RQL pattern {X; $C}@P. For both RQLUCQ and 
RQLCORE minimal queries we have to reduce the number of employed variables and 
replace with constants as many variables as possible by using the equalities between 
the variables and constants. The following example illustrates the backward 
translation of an SWLF query into RQLUCQ. 

Example 8. In the first phase, the first minimal query of Example 6 translates into: 

SELECT $A, X 
FROM $A{X} 
WHERE $A=Artist 

The second phase does not affect the query. Finally, by incorporating the only 
available equality in the FROM and SELECT clauses we get the RQLUCQ query 

SELECT Artist, X 
FROM Artist{X} 

There are two tricky issues regarding the backward translation. Firstly, Mod implies 
the equivalence of the predicates CLASS(c), C_SUB(c, c) and PROP(a, p, b), 
P_SUB(p, p). However, C_SUB(c, c) and P_SUB(p, p) result in redundant processing 
from an RDF/S query engine. Additionally, there is no RQL pattern corresponding to 
P_SUB(p, p). Thus, for these predicates we employ the translations of CLASS(c) – 
i.e., $C – and PROP(a, p, b) – i.e., @P -, respectively. Secondly, although they do not 



620 G. Serfiotis et al. 

belong to the RQLUCQ fragment, the functions domain(@P) and range(@P) should be 
used for some SWLF queries due to the lack of an RQL pattern that would explicitly 
impose a restriction on a property’s domain/range. 

Example 9. Assume the RQLUCQ query of Example 6. The translation of the third 
minimal query into RQL and SPARQL6 is given below. 

SPARQL RQL 
SELECT ?C ?X 
WHERE {{?X rdf:type :Artist . ?C rdf:type rdfs:Class . 
  FILTER ?C = :Artist} 
UNION 
WHERE {{?X rdf:type :Sculptor . ?C rdf:type rdfs:Class . 
  FILTER ?C = :Artist} 
UNION 
WHERE {{?X rdf:type :Painter . ?C rdf:type rdfs:Class . 
  FILTER ?C = :Artist} 
UNION 
WHERE {{?X rdf:type :Cubist . ?C rdf:type rdfs:Class . 
  FILTER ?C = :Artist} 

SELECT Artist, X 
FROM   ^Artist{X} 
UNION 
SELECT Artist, X 
FROM  ^Sculptor{X} 
UNION 
SELECT Artist, X 
FROM   ^Painter{X} 
UNION 
SELECT Artist, X 
FROM   ^Cubist{X} 

The complexities of all the previous minimization algorithms depend on the 
backchase which, in turn, depends on the chase and the simple containment check – 
employed in order to reach the universal plan and check all its subqueries for 
minimality. The full optimization corresponds to an exponential number of NP-
complete problems [20]. 

6   Summary and Future Work 

In this paper we studied SQO of patterns supported by expressive RDF/S query 
languages, like RQL. Nevertheless, our results are valid for less expressive query 
languages, too. In order to deal with the SQO problem, we advocate a logic 
framework that enables to reduce the containment and minimization problems for 
unions of RDF/S conjunctive queries into relational equivalents. 

In particular, the C&B algorithms, which we employed for RDF/S SQO, were 
initially developed in the context of conjunctive queries issued against relational 
schemas and matched (exclusively) against data by taking into account embedded 
dependencies [2] (for capturing key and foreign key constraints, as well as views). In 
our context, we consider unions of conjunctive queries for checking containment and 
minimization of queries built on expressive RDF/S query patterns asking for both 
schema and data matching over class (or property) subsumption hierarchies, and 
constraints under the form of disjunctive embedded dependencies. In contrast to 
relational queries, RDF/S queries usually contain a schema navigational part (e.g., in 
order to obtain the extended instances of a class, we need to consider the instances of all 
its direct and transitive subclasses). Therefore, the goal of RDF/S SQO is twofold: (a) 
the schema navigational part must be pruned as much as possible and (b) redundant data 
access should be eliminated as in the case of traditional SQO in relational databases. In 
conjunction with the aforementioned variation of SQO for the Semantic Web (SW) is 
the fact that the RQLUCQ minimization algorithm always generates a minimal query 
where no further schema querying is needed in order to answer it. 

                                                           
6 For simplicity reasons namespaces’ definitions are disregarded. 



 Containment and Minimization of RDF/S Query Patterns 621 

As a future work we are planning to study SQO of ontology constructs originating 
from more expressive SW languages, such as OWL’s inverse properties as well as 
disjointness of class and property interpretations. Moreover, we plan to study SQO of 
richer RDF/S query fragments involving functions – like domain, range, subclassof, 
subpropertyof and aggregate ones – as well as nested queries. 

Acknowledgements 

We would like to thank Alin Deutsch and Nicola Onose for fruitful discussions on 
relational and XML SQO. 

References 

[1] Nikos Athanasis, Vassilis Christophides, and Dimitris Kotzinos. Generating on the Fly 
Queries for the Semantic Web: The ICS-FORTH Graphical RQL Interface (GRQL). In 
Proceedings of the 3rd International Semantic Web Conference, Japan, 2004. 

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995. 

[3] Tim Bray, Eve Maler, Jean Paoli, and C. M. Sperberg-McQueen. Extensible Markup 
Language (XML) 1.0. W3C Recommendation, 6 October 2000. 

[4] Francois Bry. Query Answering in Information Systems with Integrity Constraints. In 
Proceedings of the 1st Working Conference on Integrity and Internal Control in 
Information Systems: Increasing the confidence in Information Systems, Zurich, 1997. 

[5] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web: A new form of Web 
content that is meaningful to computers will unleash a revolution of new possibilities. 
Scientific American, 17 May 2001. Available at http://www.scientificamerican.com/ 
print_version.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21 

[6] Upen S. Chakravarthy, John Grant, Jack Minker. Logic-Based Approach to Semantic 
Query Optimization. ACM Transactions on Database Systems 15(2): 162-207 (1990) 

[7] Alin Deutsch. XML Query Reformulation over Mixed and Redundant Storage. PhD 
Thesis, University of Pennsylvania, 2002. 

[8] Alin Deutsch, Lucian Popa, and Val Tannen. Physical Data Independence, Constraints 
and Optimization with Universal Plans. In Proceedings of the 25th International 
Conference on Very Large Databases (VLDB), Edinburgh, 1999. 

[9] Alin Deutcsh and Val Tannen. Reformulation of XML Queries and Constraints. In 
Proceedings of the 9th International Conference on Database Theory (ICDT), Italy, 2003. 

[10] Xin Dong, Alon Y. Halevy, and Igor Tatarinov. Containment of Nested XML Queries. In 
Proceedings of  30th International Conference on Very Large Databases (VLDB), 
Toronto, Canada, 2004. 

[11] John Grant, Jarek Gryz, Jack Minker, and Louiqa Raschid. Semantic Query Optimization 
for Object-Databases. In Proceedings of the 13th International Conference on Data 
Engineering, Birmingham U.K, 1997. 

[12] Peter Haase, Jeen Broekstra, Andreas Eberhart, and Raphael Volz. A Comparison of RDF 
Query Languages. In Proceedings of the 3rd International Semantic Web Conference, 
Japan, 2004. 

[13] Frank Van Harmelen and Deborah L. McGuinness. OWL Web Ontology Language 
Overview. W3C Recommendation, 10 February 2004. 

[14] Patrick Hayes. RDF Semantics. W3C Recommendation, 10 February 2004. 



622 G. Serfiotis et al. 

[15] Gregory Karvounarakis, Aimilia Magkanaraki, Sofia Alexaki, Vassilis Christophides, 
Dimitris Plexousakis, Michel Scholl, and Karsten Tolle. Querying the Semantic Web with 
RQL. Computer Networks 42(5): 617-640, 2003. 

[16] Alon Levy and Yehoshua Sagiv. Semantic Query Optimization in Datalog Programs. In 
Proceedings of the 8th International Conference on Data Engineering, Tempe, Arizona 
1992. 

[17] Frank Manola and Eric Miller. RDF Primer. W3C Recommendation, 10 February 2004. 
[18] Gerome Miklau and Dan Suciu. Containment and equivalence for an XPath fragment. In 

Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART symposium on Principles of 
database systems. Madison, Wisconsin, 2002. 

[19] Hwee Hwa Pang, HongJun Lu, and Beng Chin Ooi. An Efficient Semantic Query 
Optimization Algorithm. In Proceedings of the 7th International Conference on Data 
Engineering, Japan, 1991. 

[20] Nicola Onose. Extensions of the Relational Chase. Project Report of End of Studies, 
2005. 

[21] Eric Prud'hommeaux, and Andy Seaborne. SPARQL Query Language for RDF. W3C 
Working Draft, 19 April 2005. 

[22] Giorgos Serfiotis. Optimizing and Reformulating RQL Queries on the Semantic Web. 
Master’s Thesis, University of Crete, 2005. 

[23] Heiner Stuckenschmidt. Similarity-Based Query Caching. In Proceedings of the 6th 
International Conference on Flexible Query Answering Systems, Lyon, 2004. 

[24] Cong Yu and Lucian Popa. Constraint-Based XML Query Rewriting For Data 
Integration. In Proceedings of the ACM SIGMOD International Conference on 
Management of Data, Paris, 2004. 

Appendix: Translations of RQLUCQ(RQLCORE) Patterns into SWLF 

Property Pattern Translation Fragment 
@P   ^@P PROP(a,p,b) 

{X; $C}@P{Y; $D} 
{$C}@P{Y; $D} 
{X; $C}@P{$D} 

PROP(a,p,b), P_SUB(q,p), P_EXT(x,q,y), 
C_SUB(c,a), C_SUB(d,b), C_SUB(e,c), C_SUB(f,d), 
C_EXT(e,x), C_EXT(f,y) 

{X; $C}@P{Y} 
{$C}@P{Y}   {X; $C}@P 

PROP(a,p,b), P_SUB(q,p), P_EXT(x,q,y), 
C_SUB(c,a), C_SUB(e,c), C_EXT(e,x) 

{X}@P{Y; $D} 
{X}@P{$D}   @P{Y; $D} 

PROP(a,p,b), P_SUB(q,p), P_EXT(x,q,y), 
C_SUB(d,b), C_SUB(f,d), C_EXT(f,y) 

{X}@P{Y} {X}@P  @P{Y} P_SUB(q,p), P_EXT(x,q,y) 
{$C}@P{$D}  {$C}^@P{$D} PROP(a,p,b), C_SUB(c,a), C_SUB(d,b) 

{$C}@P   {$C}^@P PROP(a,p,b), C_SUB(c,a) 
@P{$D}   ^@P{$D} PROP(a,p,b), C_SUB(d,b) 

R
Q

L
C

O
R

E  w
hen $C

=c, $D
=d, 

@
P=p 

R
Q

L
U

C
Q  

{X; ^$C}@P{Y; ^$D} PROP(a,p,b), P_SUB(q,p), P_EXT(x,q,y), 
C_SUB(c,a), C_SUB(d,b), C_EXT(c,x), C_EXT(d,y) 

{X; ^$C}@P{Y} 
{X; ^$C}@P 

PROP(a,p,b), P_SUB(q,p), P_EXT(x,q,y), 
C_SUB(c,a), C_EXT(c,x) 

{X}@P{Y; ^$D} 
@P{Y; ^$D} 

PROP(a,p,b), P_SUB(q,p), P_EXT(x,q,y), 
C_SUB(d,b), C_EXT(d,y) 

{X; $C}@P{Y; ^$D} 
{$C}@P{Y; ^$D} 

PROP(a,p,b), P_SUB(q,p), P_EXT(x,q,y), 
C_SUB(c,a), C_SUB(d,b), C_SUB(e,c), C_EXT(e,x), 
C_EXT(d,y) 

{X; ^$C}@P{Y; $D} 
{X; ^$C}@P{$D} 

PROP(a,p,b), P_SUB(q,p), P_EXT(x,q,y), 
C_SUB(c,a), C_SUB(d,b), C_SUB(f,d), C_EXT(c,x), 
C_EXT(f,y) 

R
Q

L
U

C
Q  



 Containment and Minimization of RDF/S Query Patterns 623 

{X; ^$C}^@P{Y; ^$D} PROP(a,p,b),  P_EXT(x,p,y), C_SUB(c,a), 
C_SUB(d,b), C_EXT(c,x), C_EXT(d,y) 

{X; ^$C}^@P{Y} 
{X; ^$C}^@P 

PROP(a,p,b), P_EXT(x,p,y), C_SUB(c,a), 
C_EXT(c,x) 

{X}^@P{Y; ^$D} 
^@P{Y; ^$D} 

PROP(a,p,b), P_EXT(x,p,y), C_SUB(d,b), 
C_EXT(d,y) 

{X; $C}^@P{Y; ^$D} 
{$C}^@P{Y; ^$D} 

PROP(a,p,b), P_EXT(x,p,y), C_SUB(c,a), 
C_SUB(d,b), C_SUB(e,c), C_EXT(e,x), C_EXT(d,y) 

{X; ^$C}^@P{Y; $D} 
{X; ^$C}^@P{$D} 

PROP(a,p,b), P_EXT(x,p,y), C_SUB(c,a), 
C_SUB(d,b), C_SUB(f,d), C_EXT(c,x), C_EXT(f,y) 

{X; $C}^@P{Y; $D} 
{$C}^@P{Y; $D} 
{X; $C}^@P{$D} 

PROP(a,p,b), P_EXT(x,p,y), C_SUB(c,a), 
C_SUB(d,b), C_SUB(e,c), C_SUB(f,d), C_EXT(e,x), 
C_EXT(f,y) 

{X; $C}^@P{Y} 
{$C}^@P{Y}   {X; $C}^@P 

PROP(a,p,b), P_EXT(x,p,y), C_SUB(c,a), 
C_SUB(e,c), C_EXT(e,x) 

{X}^@P{Y; $D} 
{X}^@P{$D}   ^@P{Y; $D} 

PROP(a,p,b), P_EXT(x,p,y), C_SUB(d,b), 
C_SUB(f,d), C_EXT(f,y) 

{X}^@P{Y}  
{X}^@P    ^@P{Y} 

P_EXT(x,p,y) 

 

 

Class Pattern SWLF Translation Fragment 
$C   ^$C CLASS(c) 

$C{$D}   ^$C{$D} C_SUB(d,c) 
$C{X} C_SUB(d,c), C_EXT(d,x) 

$C{X; $D} C_SUB(d,c), C_SUB(e,d), C_EXT(e,x) 

RQLCORE when 
$C=c, $D=d 

RQLUCQ 

^$C{X} C_EXT(d,x) 
^$C{X; $D} C_SUB(d,c), C_SUB(e,d), C_EXT(e,x), C_EXT(c,x) 
$C{X; ^$D} C_SUB(d,c), C_EXT(d,x) 
^$C{X; ^$D} C_SUB(d,c), C_EXT(c,x), C_EXT(d,x) 

RQLUCQ 



A String Metric for Ontology Alignment

Giorgos Stoilos, Giorgos Stamou, and Stefanos Kollias

Department of Electrical and Computer Engineering,
National Technical University of Athens,

Zographou 15780, Greece

Abstract. Ontologies are today a key part of every knowledge based
system. They provide a source of shared and precisely defined terms,
resulting in system interoperability by knowledge sharing and reuse. Un-
fortunately, the variety of ways that a domain can be conceptualized
results in the creation of different ontologies with contradicting or over-
lapping parts. For this reason ontologies need to be brought into mutual
agreement (aligned). One important method for ontology alignment is
the comparison of class and property names of ontologies using string-
distance metrics. Today quite a lot of such metrics exist in literature. But
all of them have been initially developed for different applications and
fields, resulting in poor performance when applied in this new domain.
In the current paper we present a new string metric for the comparison
of names which performs better on the process of ontology alignment as
well as to many other field matching problems.

1 Introduction

It is widely recognized today that ontologies are going to play a key role in the
realization of almost all modern knowledge based application. They have already
been successfully applied in fields like the World Wide Web [1], intelligent multi-
media systems [2] and many more. Ontologies are used in order that distributed
and disparate applications and systems overcome semantic heterogeneity and
enable them interchange knowledge for the completion of more complex tasks.
But, the various ways that different organizations conceptualize a domain or
the fact that they purpose ontologies for different applications, thus modelling
a different perspective of the world or the same but with different constraints
and properties, results in heterogeneous ontologies which still have to be brought
into mutual agreement.

To overcome this heterogeneity, scientist have developed methodologies and
tools for assisting the (still) semi-automatic process of ontology alignment. This
process provides us with semantic correspondences among the entities that ex-
ist within two heterogeneous ontologies. Nowadays, many techniques have been
developed, or borrowed from other fields, in order to discover the semantic cor-
respondences among entities. Among these methods a very popular one is the
comparison of the class and property names of the ontologies using a string dis-
tance metric so as to produce a degree of similarity. Such a technique is referred

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 624–637, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A String Metric for Ontology Alignment 625

to as terminological matching. Even if the core methodology of a platform is not
based on this technique an initial similarity extraction step is usually performed
using this method. This technique is based on the fact that the same concepts
are likely to be modelled using quite similar names. Many platforms that use
such a methodology to compute similarities between ontologies exist in litera-
ture; some examples are, Anchor-PROMPT [3], QOM [4], Cupid [5] and many
more.

Though powerful string metrics exist in literature, and have been used suc-
cessfully in the past, from our experience with the development of a new ontology
alignment platform, they don’t perform well when used in this new demanding
and complex domain. In this paper we present a new string metric which is
created by paying special care to each different characteristic of the process of
ontology alignment, thus leading to a metric with very good performance.

The rest of the paper is organized as follows. In section 2 we review the most
frequently used string metrics found in literature. In section 3 we present the
requirements that the field of ontology alignment introduces and explain why the
usual string metrics fail to satisfy these requirements by giving small examples.
These specifications will guide us during the definition of the new string metric
which is introduced in section 4. In section 5, we present two evaluation experi-
ments and strength our points about the bad behavior of the classical metrics.
In section 6 we integrate our new metric in a new ontology alignment platform
to see its behavior when it is used in a more complete ontology platform and at
last section 7 concludes the paper.

2 Related Work

Today quite a lot of string metrics exist in literature. These string metrics have
been developed and applied in different scientific fields like statistics, for prob-
abilistic record linkage [6], database, for record matching [7], Artificial Intelli-
gence, for supervised learning [8], and Biology, for identifying common molecular
subsequences [9]. In the current paper we have considered the Levenstein [10]
distance, which counts the insertions and deletions needed to match two strings,
the Needleman-Wunsch [11] distance, which assigns a different cost on the edit
operations, the Smith-Waterman [9], which additionally uses an alphabet map-
ping to costs and the Monge-Elkan [7], which uses variable costs depending on
the substring gaps between the words. Moreover we used the Jaro-Winkler [12,6]
similarity, which counts the common characters between two strings even if they
are misplaced by a “short” distance, the Q-Gram [13], which counts the num-
ber of tri-grams shared between the two strings and the sub-string distance [14]
which searches for the largest common substring.

3 Desired Properties

Ontology alignment is a relatively new field in computer science. Thus, none of
the classical string metrics has been created having the properties and charac-



626 G. Stoilos, G. Stamou, and S. Kollias

teristics of this field in mind. Algorithms that are used in ontology alignment
are very complex and contain many features and parameters that can affect the
performance even of commonly accepted and “good” string metrics, when they
are used in this new context. Features like the threshold (the value above which
two pairs are considered identical), or the cardinality of mappings (“one-to-one,
one-to-many” etc.) play a key role in ontology alignment and as we will see the
metrics found in literature sometimes fail to give satisfactory results cause of the
existence of these parameters. Thus, before we define our string metric we think
that it is crucial to state the specifications that we want such a string metric to
fulfill. More precisely we want the new metric to be:

1. Fast: Since ontologies are used in applications that demand processing in
real-time, like the semantic web or intelligent retrieval tasks, the complexity
of the string metric should be very low, leading to a fast matching procedure.

2. Stable: As we aforementioned, one very crucial parameter of ontology align-
ment algorithms is their threshold. When we will demand from alignment
platform to automatically operate on the semantic web their threshold would
probably be fixed at a value considered optimal by their authors. Though
some methods that automatically adjust the threshold during runtime exist
in literature [15] it cannot be proved that they select the optimum value for
threshold each time an alignment is performed. Thus, we demand by the
string metrics to be as “stable” as possible. By “stability” we define the
ability of a string metric to perform almost optimal even if small diverges
from the optimal threshold take place. As we will see all metrics fail to sat-
isfy this crucial property. Even worst, classical metrics are really sensitive
in small changes of the threshold, and while they can provide good results
if the threshold is optimized, this performance can rapidly decrease if we
slightly disturb the value of the threshold.

3. Intelligent: When operating for example in the semantic web context, it
is likely that an ontology be compared to an irrelevant one, but with which
string resemblances occur. In this case we want our metric to identify all the
differences and provide us with correct results. But it is not uncommon the
situation where usual string metrics fail to identify cases where two strings
represent completely different concepts but resemble a lot. Consider for ex-
ample the words “score” and “store”. They represent two completely differ-
ent concepts. Though this is true the Monge-Elkan, Levenstein, SubString,
Needleman-Wunsch, Q-Gram and Jaro-Winkler metrics rate the pair with
a similarity degree of 0.68, 0.8, 0.6, 0.9, 0.57 and 0.88 which are relatively
hight values. In contrast our string metric assigns a value of 0.45.

4. Discriminating: One of the most usual cardinalities requested for align-
ment mappings is the “one-to-one” cardinality. As it is obvious in an “one-
to-one” mapping if a string in a reference ontology is mapped with the same
similarity degree to more than one in the second ontology it is very prob-
able that the algorithm fails to pick the correct pair from the set of pairs.
Hence, we would like from our similarity metric to rarely assign the same
similarity degree when we compare one particular string to several others.



A String Metric for Ontology Alignment 627

Many times during the experiments we faced situations where several runs of
an alignment between two ontologies using the same configuration produced
different precision and recall [16] values cause of this phenomenon.

From the above analysis it is obvious that ontology alignment is indeed a
demanding and delicate process that adds many constraints to the string metrics
used in it.

4 Definition of the String Metric

In the current section we sill introduce the new string metric, using as our guide
the properties and features introduced in the previous section.

The new metric is based on the intuitions presented in [17] about the simi-
larity between two entities. We argue that the similarity among two entities is
related to their commonalities as well as to their differences. Thus, the similarity
should be a function of both these features. This feature also appears, sometimes
implicitly, in other measures as well. For example, in those measures that per-
form string editing, such operation can be considered as a form of difference
counting, while non-editing can be considered as similarity counting. Thus, our
metric is defined by the following equation:

Sim(s1, s2) = Comm(s1, s2)−Diff(s1, s2) + winkler(s1, s2) (1)

where comm(s1, s2) stands for the commonality between s1 and s2, diff(s1, s2)
for the difference and winklerImpr(s1, s2) for the improvement of the result
using the method introduced by Winkler in [6]. We now have to define the
functions of commonality and difference.

The function of commonality is motivated by the substring string metric. In
the substring metric the biggest common substring between two strings is com-
puted. This process is further extended by removing the common substring and
by searching again for the next biggest substring until no one can be identified.
The sum of the lengths of these substrings is then scaled with the length of the
strings. The intuition behind this extension of the substring metric is the follow-
ing. In the field of Computer Science researchers tend to use descriptive names
for their variables or the units that represent real world entities. In other cases
they tend to concatenate words and create new ones. For example in order to rep-
resent the concept of the number of pages of a book it is likely that someone uses
the word “numberOfPages” or someone else might use the word “numPages”. As
one can see these two strings share not one but two common substrings which is
very crucial to identify in order to approximate their real similarity as much as
possible. Moreover, we can now distinguish cases like the above with cases where
the substring “Pages” is shared but the rest of the strings are quite different,
thus satisfying the specification for an intelligent metric. Hence, the function of
commonality is given by the following equation:

Comm(s1, s2) =
2 ∗

∑
i length(maxComSubStringi)
length(s1) + length(s2)

(2)



628 G. Stoilos, G. Stamou, and S. Kollias

As for the difference function, this is based on the length of the unmatched
strings that have resulted from the initial matching step. Moreover, we believe
that difference should play a less important role on the computation of the overall
similarity. Our choice was the Hamacher product [18], which is a parametric
triangular norm. This leads us to the following equation:

Diff(s1, s2) =
uLens1 ∗ uLens2

p + (1 − p) ∗ (uLens1 + uLens2 − uLens1 ∗ uLens2)
(3)

where p ∈ [0,∞), and uLens1, uLens2 represent the length of the unmatched
substring from the initial strings s1 and s2 scaled with the string length, respec-
tively. Observer that the parameter p can be adjusted at will giving a different
importance on the difference factor. From experiments we performed we con-
cluded that a value of 0.6 gives very good results. In Fig. 1 a three dimensional
plot of the Hamacher function is illustrated.

00.20.40.60.81 00.20.40.60.81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Hamacher t-norm curve

As it is obvious from (1), our similarity measure takes values from the interval
[−1, 1]. The majority of string metrics found in literature range over [0, 1], but
other metrics that extend this interval can be found, like the Resnik similarity
[19] for taxonomies.

The incorporation of a difference factor to the overall similarity is the key
feature for the satisfiability of the rest of specifications introduced in section 3.
The dissimilarity stretches the range of our similarity metric over the interval
[−1, 1] performing a somewhat “clean-up” of the crucial space between 0.4 to
0.7, where a threshold can range, by discarding highly dissimilar pairs close to
-1. In other string metrics this interval is cramped with false and true positive
values. This fact makes these metrics very sensitive on the choice of the threshold.
Moreover, this stretching makes it less probable to get same values for a string
when it is compared to a large set of other strings, and thus satisfying the
property of discrimination. At last the complexity of our string is polynomial to
the size of the input strings, satisfying the property of a fast metric.



A String Metric for Ontology Alignment 629

5 Evaluation

We have conducted two kinds of experiments. The first one is about ontology
alignment, where we used a terminological matcher in order to compare the
various string metrics. The second one is performed with classical benchmarks
found in literature for data integration and retrieval [20].

5.1 Ontology Alignment

The ontology test set used to perform the experiments was that of the EON
ontology alignment contest [21,22]. This test set consists of one reference on-
tology (33 classes, 59 properties, 56 individuals and 20 anonymous individuals),
for a bibliographic domain, to be compared with other ontologies. Most of these
ontologies originate from the reference ontology by making some hand made
changes. These changes were for example the extension, or shrinkage of the on-
tology hierarchy, the use of synonyms, foreign names, removal of class properties
and many more. Most of these modifications are devised in order to evaluate
ontology alignment platforms and algorithms, as a whole, that might use other
ontology features, or external sources like multilingual dictionaries or lexicons
as well and not just terminological matching. Thus from the initial test set we
only used those that involved alternations of the strings of classes and prop-
erties, excluding synonyms, foreign languages and randomly generated strings.
Clearly, such occasions cannot be handled by terminological matching and in-
cluding them would not provide us with valuable results. The evaluation sets we
used are the following:

1. 101: In this test set the reference ontology is compared with itself.
2. 204: In this test the reference ontology is compared with a modified one.

These modifications involved naming conventions like the insertion of under-
scores, abbreviations, upper-cased and lower-cased strings.

3. 301,302,303,304: The reference ontology is compared with four real-life
ontologies for bibliographic references found on the web and left unchanged.

Table 1. Precision and Recall of string metrics for various ontology alignment tests

Test String Metrics
Levenstein Sub-String Jaro-Winkler Monge-Elkan Q-Gram Smith-Waterman Needleman-Wunsch Sim
Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec. Pre. Rec.

101 1.0 1.0 1.0 1.0 1.0 1.0 .88 .88 1.0 1.0 .88 .88 1.0 1.0 1.0 1.0
204 .967 .967 .822 .804 .965 .923 .695 .695 .857 .847 .793 .75 .926 .829 .978 .978
301 .8 .786 .872 .786 .81 .557 .833 .737 .872 .786 .511 .754 .857 .786 .9 .786
302 .6 .645 .367 .666 .363 .666 .34 .625 .666 .666 .375 .625 .35 .687 .72 .645
303 .764 .812 .622 .791 .754 .833 .571 .66 .677 .833 .581 .666 .904 .791 .754 .833
304 .972 .947 .8 .96 .923 .947 .776 .776 .972 .947 .789 .789 .972 .947 .972 .947
312 .794 .968 .911 .968 .862 .781 .823 .875 .939 .968 .794 .843 .76 1.0 .911 .968

Pre.=Pecision, Rec.=Recall



630 G. Stoilos, G. Stamou, and S. Kollias

Furthermore, we performed an additional experiment, named 312, aligning the
two ontologies of experiments 301 and 302.

In order to perform the alignment and evaluation experiments we used the
API for ontology alignment introduced by Euzenat [23]. We used the sample
implementations found in the API after performing some slight modifications
on them, in order to include all the metrics and exclude from the alignment
references to external entities. In order to evaluate each metric we have used the
classical measures from the field of information retrieval of precision and recall
[16]. Algorithms to compute precision and recall, given a proposed and a correct
reference alignment, can also be found in the API.

For each metric and for each experiment we were changing the threshold of
the algorithm (the value below which a mapping between strings is discarded) in
order to achieve the highest precision for the highest recall that is possible by a
metric. The reason for giving maximum importance to the recall measure is the
following. Since ontology alignment is likely to stay a semi-automatic process,
human intervention will eventually be needed to complete an alignment. Since
the burden of deleting false identified pairs by a platform is minimal compared
to the burden of traversing two heterogeneous ontologies that might include
thousands of concepts and attributes and identify similar entities, recall is a much
more important measure. Furthermore, the choice of not keeping the threshold
constant is that different metrics have different mathematical properties thus
one optimal threshold for one metric could be a worst for all the others, and vice
versa. The complete set of experiments and the values of precision and recall
using several string metrics is depicted in Table 1, where our metric appears in
the last column.

From Table 1 we can immediately see that the Monge-Elkan and Smith-
Waterman metrics perform worst than any other metric. In experiment 101 we
can see the point made in section 3 about the use of an “one-to-one” map-
ping and the optimistic behavior of some metrics. In all other experiments their
performance is kept in low levels. On the other hand our metric, on average,
performs better compared to the other metrics. It manages to achieve high pre-
cision while retaining recall at high levels. Even in cases where a slightly better
recall was achieved by other measures, the price to pay was a dramatically low
precision, such that in some cases even up to 50 or 40 false positive pairs were
retrieved. For example, Needleman-Wunsch metric achieves a better recall in
experiments 302 and 312 but the precision is so poor that up to 56 and 10 false
negative pairs, respectively, have to be removed later, possibly by human inter-
vention. The same thing happens with Sub-String (Jaro-Winkler) distance, in
experiments 302 and 304 (302), where the price for the slightly better recall are
55 and 18 (56) false positive pairs, respectively.

As we mentioned before, achieving a very high recall is crucial for the process
of creating mappings between ontologies. But at the same time precision must
be kept at high levels since having to discard up to 50 pairs, as it happened in
the experiments when a good recall was achieved for such small ontologies, is
not desired at all. It would be interesting to see in the cases where other metrics



A String Metric for Ontology Alignment 631

achieve better recall but substantially lower precision what happens if we drop
recall at the same level as the one achieved by our metric. Even if this happens
most metrics still achieve substantially low precision. More precisely in 302, for
the same recall, Needleman-Wunsch achieves 0.57 precision, Jaro-Winkler 0.607
and Sub-String 0.62. Only Q-Gram achieves 0.775. At last Sub-String, in 304,
achieves the same precision (0.972), and Needleman-Wunsch in experiment 312,
0.861.

In order to give a more intuitive view of the strength of the new metric,
we have computed the precision and recall for each experiment and for each
experiment for nine different threshold values, ranging from 0.1 to 0.9. Then
we computed the average precision and recall of all experiments for all these
different thresholds and we have created an average precision vs. average recall
chart. This can be depicted in Fig. 2. We have excluded from these charts Monge-
Elkan and Smith-Waterman metrics since their performance is very poor when
applied to our field of interest.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

average precision

av
er

ag
e 

re
ca

ll

Needleman−Wunsch
Levenstein
SubString
Q−Gram
Jaro−Winkler
Sim

Fig. 2. Average Precision vs. Average Recall values

In Fig. 2 we can immediately see that our metric achieves at the same time a
substantially better precision and recall. While other metrics have scored their
best recall when precision is at a very low levels (and subsequently decrease
recall to increase precision), our metric can simultaneously achieve high values
on both these measures.

Additionally, since curves in Fig. 2 are interpolated, we have put “marks” on
each one of these to denote the points where average precision and average recall
is computed for different threshold values. Concerning our string metric we can
identify an area of seven different threshold values where average precision is
increasing while at the same time average recall still stays at high levels. This is
the area where recall ranges from 0.86 to 0.85 while precision ranges from 0.77



632 G. Stoilos, G. Stamou, and S. Kollias

to 0.88. In all the other curves, after the third or forth threshold value (where
average precision vs. recall is at acceptable levels), we can observe a very high
decrease of recall when a higher threshold is set. In other words the area that
our metric achieves a high recall combined with a very high precision is a highly
unstable area for all the other metrics. If not a highly optimal threshold is set
in an ontology platform that uses such a metric, there is a high risk that low
results are obtained.

In order to give a more clear picture on the stability of our metric, in Fig. 3
we present the number of pairs assigned a particular similarity degree in all six
experiments.

0 0.5 1

−20

−15

−10

−5

0

5

10

15
Sim

Similarity Score

P
ai

r 
N

um
be

r

0 0.5 1

−20

−15

−10

−5

0

5

10

15
Levenstein

Similarity Score

P
ai

r 
N

um
be

r

0 0.5 1

−20

−15

−10

−5

0

5

10

15
SubString

Similarity Score

P
ai

r 
N

um
be

r

0 0.5 1

−20

−15

−10

−5

0

5

10

15
Needleman−Wunsch

Similarity Score

P
ai

r 
N

um
be

r

0 0.5 1

−20

−15

−10

−5

0

5

10

15
Q−Gram

Similarity Score

P
ai

r 
N

um
be

r

0 0.5 1

−20

−15

−10

−5

0

5

10

15
Jaro−Winkler

Similarity Score

P
ai

r 
N

um
be

r

Fig. 3. Number of pairs assigned a particular similarity values

From Fig. 3 we can immediately deduce that the Needleman-Wunsch and
Jaro-Winkler metrics are highly instable. Notice how many pairs have been ac-
cumulated within a small interval of the similarity degree axis. Clearly a small
variation in the threshold of an alignment platform that uses one of these metrics
could wreck the performance. Moreover, all the other metrics suffer too by a bad
stability. Observe for example the diagram for the Levenstein distance. Within
the interval of [0.4, 0.6] where, according to Fig. 2, average precision vs. average
recall is at its best levels, the metric retrieves 16 true positives and 79 false neg-
atives. As it is obvious a slight disturbance of the threshold might fetch many of
the false pairs or loose many of the correct ones. Sub-String and Q-Gram metrics
are a bit more stable. Sub-String has the interval of (0.4, 0.6] where 8 true and 46
false positives exist (without including 0.4 where 16 more false positives appear).
Q-Gram, on the other hand, ranks 9 true positives and 44 false negatives within
the interval [0.3, 0.5], where obviously the same problem as before exists.



A String Metric for Ontology Alignment 633

When it comes to our metric its stability is obvious. The highly dissimilar
pairs have too early been discarded close to -1 and the danger of fetching too
many of them if an optimal threshold is not chosen is very small. Into the interval
[0.5, 0.7], only 4 true positives and 17 false positives appear. Thus, with this
property satisfied we can more easily choose a threshold where the maximum
recall strength of the metric is being used and at the same time not worry if
we are at a point where low precision is encountered. At last observe that in
our case, under the interval where the majority of true positives is present, a
very low number of false positives exist, which justifies the results of the high
precision.

5.2 Census and Field Matching

Even though our metric was originally designed for the domain of ontology align-
ment it still is a string metric in the classical sense. Thus we could not resist
but to evaluate it with classical benchmarks found in literature like the ones in
[7,8,24,20]. The list of the datasets used can be found in Table 2 as well as the
number of strings that each dataset includes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average Precision of Other Metrics

A
ve

ra
ge

 P
re

ci
si

on
 o

f S
im

Levenstein
Sub−String
Jaro−Winkler
Monge−Elkan
Q−Gram
Needleman−Wunsch
Smith−Waterman
x=y

Fig. 4. Average Precision of string metrics vs. our metric

Each dataset contains two relations. Each relation contains a number of
strings where each string is compared with all the strings of the other rela-
tion. Each comparison of two strings is assigned a similarity degree. Every entry
for a string contains a key which is purposed for the identification of the cor-
rectness of a pair. In order to evaluate our metric against these datasets we
used the SecondString open-source library [20]. This library contains all these
datasets as well as algorithms to compute the average precision and maximum
F1 measure for each test. The F1 measure is an aggregation of the precision and
recall measures.

In Figs. 4 and 5 we can see two scatter plots. The former is about the average
precision achieved in all experiments by all classical metrics, relative to our



634 G. Stoilos, G. Stamou, and S. Kollias

Table 2. Datasets used in experiments

Name Strings
bird1 377
bird2 982
bird3 98
bird4 719
park 654

restaurant 863
peopleMatch 90

census 841

metric, while the latter one is about the maximum F-measure. As we can see from
these plots our metric performs better in the majority of experiments performed
with the data sets presented in Table 2. Only in five cases in average precision
and equal times in maximum F1 looses with a small difference.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Max F1 of Other Metrics

M
ax

 F
1 

of
 S

im

Levenstein
Sub−String
Jaro−Winkler
Monge−Elkan
Q−Gram
Needleman−Wunsch
Smith−Waterman
x=y

Fig. 5. Maximum F1 of string metrics vs. our metric

At last these experiments also gave us results about the complexity of the
metrics. Our metric comes second, very close to the substring metric, with which
has a large resemblance. Both these metrics are far from competition, relative to
time execution, from the other metrics from which perform about 5 to 20 times
faster when it comes to experiments with big strings to be compared.

6 A Sample Implementation

At last, we have started the integration of the similarity metric in an ontology
alignment platform. This way we can test the behavior of our metric when the



A String Metric for Ontology Alignment 635

aggregation of more than one methods for computing similarity is involved. The
platform features three kinds of matching methods, as described in [14]. These
are the following:

– Terminological Matching: This method is the standard terminological
method, which computes similarities based on the strings of class and prop-
erty names.

– Structural Internal Matching: In this method we refine the similarity
computed by terminological matching, for two classes, by a portion of the
similarities between the names of their properties.

– Structural External Matching: In this method we again refine the sim-
ilarity between two classes by a portion of the similarity computed for the
superclasses of the two classes.

The similarities computed by the above methods are aggregated to produce an
overall similarity. In this aggregation we give more importance to similarities
computed for class and property names, by the terminological method, and less
importance to the other methods.

Table 3. Precision, Recall and fallout for the experiments

Precision Recall F-Measure

101 1.0 1.0 1.0
201 0.926 0.692 0.792
204 0.989 0.978 0.983
222 0.966 0.945 0.955
223 0.956 0.956 0.956
230 0.962 1.0 0.98
301 0.98 0.79 0.874
302 0.857 0.625 0.722
303 0.816 0.83 0.824
304 0.92 0.90 0.915
312 0.967 0.937 0.95

In order to evaluate the sample implementation we have again used the eval-
uation experiments from [21,22]. Additionally to the experiments used for the
evaluation of the string matching method we have included experiments, 201,
222, 223 and 230. The reader is referred to [22] for a detailed description of the
experiments.

In the following table we can see the precision, recall and f-measure achieved
by the sample ontology alignment platform. In all experiments we have used a
fixed threshold, set at value 0.65.

7 Conclusions

Ontology alignment platforms have been benefited a lot by the use of string dis-
tance metrics in order to discover semantic mappings between ontologies. Though



636 G. Stoilos, G. Stamou, and S. Kollias

powerful metrics exist in literature they have been developed and purposed for
different domains and applications. The delicate and demanding features of the
process of ontology alignment, such as speed, threshold, cardinality, or the poten-
tially short size of ontologies can badly affect the performance of classical metrics
which usually are “optimistic”, to the degrees they assign, or accumulate values
close to one another.

These demanding features has led us to the creation of a new string met-
ric taking extra care to satisfy each one of them. Experiments has shown that
the new metric performs better on average by the classical ones, when opti-
mal configurations are used, and can greatly outperform them when no a priory
knowledge for the alignment task is known. Furthermore, experiments with clas-
sical benchmarks for field and census matching has show that our metric is still
very powerful to be used in such domains and for such tasks, too. At last, all
this interestingly good performance comes with a low complexity.

Acknowledgements

This work is supported by the FP6 Network of Excellence EU project Knowledge
Web (IST-2004-507482).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
279 (2001)

2. Benitez, A., Smith, J., Chang, S.F.: Medianet: A multimedia information network
for knowledge representation. Volume 4210., IS&T/SPIE-2000 (2001)

3. Noy, N., Musen, M.: Anchor-prompt: Using non-local context for semantic match-
ing. In: Proc. IJCAI 2001 workshop on ontology and information sharing, Seattle
(WA US). (2001) 63–70

4. Ehrig, M., Staab, S.: Qom - quick ontology mapping. In: Proc. of the 3rd Interna-
tional Semantic Web Conference, Hiroshima (JP). Volume volume 3298 of LNCS.
(2004) 683–697

5. Madhavan, J., Berstein, P., Rahm, E.: Generic schema matching using cupid. In:
Proc. of the 27th VLDB, Roma (IT). (2001) 48–58

6. Winkler, W.: The state record linkage and current research problems. Technical
report, Statistics of Income Division, Internal Revenue Service Publication (1999)

7. Monge, A., Elkan, C.: The field-matching problem: algorithm and applications. In:
Proceedings of the second international Conference on Knowledge Discovery and
Data Mining. (1996)

8. Tejada, S., Knoblock, C.A., Minton, S.: Learning object identification rules for
information integration. Information Systems 26 (2001) 607–633

9. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
Journal of Molecular Biology 147 (1981) 195–197

10. Levenstein, I.: Binary codes capable of correcting deletions, insertions and rever-
sals. Cybernetics and Control Theory (1966)

11. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Molecular Biology 48
(1970) 444–453



A String Metric for Ontology Alignment 637

12. Jaro, M.: Probabilistic linkage of large public health data files (disc. p687-689).
Statistics in Medicine 14 (1995) 491–498

13. Sutinen, E., Tarhio, J.: On using q-gram locations in approximate string matching.
In: ESA ’95: Proceedings of the Third Annual European Symposium on Algorithms,
Springer-Verlag (1995) 327–340

14. Euzenat, J., Le Bach, T., Barrasa, J., Bouquet, P., De Bo, J., Dieng-Kuntz, R.,
Ehrig, M., Hauswirth, M., Jarrar, M., Lara, R., Maynard, D., Napoli, A., Stamou,
G., Stuckenschmidt, H., Shvaiko, P., Tessaris, S., Van Acker, S., Zaihrayeu, I.: State
of the art on ontology alignment. deliverable 2.2.3 (2004)

15. Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In: Proceedings
of the First European Semantic Web Symposium. Volume 3053. (2004) 76–91

16. Do, H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:
Proceedings of the 2nd International Workshop on Web Databases. (2002)

17. Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th Interna-
tional Conf. on Machine Learning, Morgan Kaufmann, San Francisco, CA (1998)
296–304

18. Hamacher, H., Leberling, H., Zimmermann, H.J.: Sensitivity analysis in fuzzy
linear programming. Fuzzy Sets and Systems 1 (1978) 269–281

19. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: Proceedings of the IJCAI-95. (1995) 448–453

20. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string metrics for match-
ing names and records. In: Proc. KDD-2003 Workshop on Data Cleaning and
Object Consolidation. (2003)

21. Euzenat, J.: Evaluating ontology alignment methods. In: Proc. Dagstuhl seminar
on Semantic interoperability and integration, Wadern (DE). (2004) 47–50

22. Sure, Y., Corcho, O., Euzenat, J., Hughes, T., eds.: Proceedings of the 3rd Evalu-
ation of Ontology-based tools (EON). (2004)

23. Euzenat, J.: An api for ontology alignment. In: Proc. 3rd conference on interna-
tional semantic web conference (ISWC), Hiroshima (JP). (2004) 698–712

24. Cohen, W.: Data integration using similarity joins and a word-based information
representation language. ACM Transactions on Information Systems 18 (2000)
288–321



An Ontological Framework for Dynamic Coordination

Valentina Tamma1, Chris van Aart2, Thierry Moyaux1,
Shamimabi Paurobally1, Ben Lithgow-Smith1, and Michael Wooldridge1

1 Dept of Computer Science, University of Liverpool,
Liverpool L69 7ZF, UK

2 Acklin BV,
Taxandriaweg 12b,

5142 PA Waalwijk, The Netherlands

Abstract. Coordination is the process of managing the possible interactions be-
tween activities and processes; a mechanism to handle such interactions is known
as a coordination regime. A successful coordination regime will prevent negative
interactions occurring (e.g., by preventing two processes from simultaneously ac-
cessing a non-shareable resource), and wherever possible will facilitate positive
interactions (e.g., by ensuring that activities are not needlessly duplicated). We
start from the premise that effective coordination mechanisms require the shar-
ing of knowledge about activities, resources and their properties, and hence, that
in a heterogeneous environment, an ontological approach to coordination is ap-
propriate. After surveying recent work on dynamic coordination, we describe an
ontology for coordination that we have developed with the goal of coordinating
semantic web processes. We then present a implementation of our ideas, which
serves as a proof of concept for how this ontology can be used for dynamic co-
ordination. We conclude with a summary of the presented work, illustrate its
relation to the Semantic Web, and provide insights into future extensions.

1 Introduction

Coordination is one of the fundamental problems in systems composed of multiple in-
teracting processes. Such processes will need to coordinate their activities if ever there
is a possibility that these activities may interact with one-another. As an example, imag-
ine two processes making use of a non-shareable resource. If both processes attempt to
use the resource simultaneously, we will naturally have problems - a lost update at best,
perhaps damage to the resource at worst. The processes thus need to coordinate their
activities, to make use of the non-shareable resource. Although such a scenario repre-
sents the best-known type of possible coordination interaction, there are many other less
obvious ways in which coordination may be mutually beneficial. For example, imagine
two e-science processes carrying out some computational task, where both processes
require the results of some intermediate computation; then, it makes sense for them to
adopt a policy of pro-actively exchanging information that may be of use to other pro-
cesses. Here, coordination is not required for the agents to be successful in their tasks,
but there is a global benefit to be gained by adopting this rule.

Coordination in the limited sense of synchronisation (preventing scenarios such
as simultaneous access to a non-shareable resource) has long been a central topic of

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 638–652, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



An Ontological Framework for Dynamic Coordination 639

research in the concurrency community [1]. However, the pre-dominant approach to
handling coordination has been to hard-wire the coordination mechanism into the sys-
tem structure (for example by means of semaphores, monitors, or locks). In more open
systems, where the processes and resources of which the system is comprised are not
known at design time, such an approach is often impossible. In such systems, it may be
desirable to allow the relevant processes to communicate their intentions with respect
to future activities and resource utilisation, and get them to reason about coordination
at run time, with the goal of preventing negative interactions, and facilitating positive
interactions. This is a dynamic approach to coordination, since the coordination re-
quirement is handled at run-time, rather than design time. Note that the communication
implied by this approach requires an agreed common vocabulary for coordination, with
a precise semantics, and hence we have an ontological approach to dynamic coordina-
tion, in short.

Our goal in this paper is to describe such an ontological approach to coordination,
and present our results with respect to a proof-of-concept implementation of the ap-
proach. We begin in the following section with a brief survey of previous work on
coordination, which has been carried out largely within the multi-agent systems com-
munity. In section 3, we give an informal overview of our coordination ontology; the
key concepts, their attributes, and their relationships. In section 4, we present a proof-of-
concept implementation of the ontological approach to coordination, in which multiple
processes detect coordination relationships using a Jess/Protégé implementation of the
ontology. We conclude with some conclusions and pointers to further work.

2 Background

Coordination is perhaps the defining problem in cooperative working. Since much work
on coordination (and in particular, the precursors to our own work) arises from the
multi-agent systems community [2], we will adopt the convention of referring to the
processes which need to coordinate as “agents”. The coordination problem is that of
managing relationships between the activities of agents [3]. Coordination is essential
if the activities that agents engage in can interact in any way. Consider the following
examples.

– You and I both want to leave the room, and so we independently walk towards
the door, which can only fit one of us. I graciously permit you to leave first. In this
example, our activities need to be coordinated because there is a resource (the door)
which we both wish to use, but which can only be used by one person at a time.

– I intend to submit a grant proposal, but in order to do this, I need your signature.
In this case, my activity of sending a grant proposal depends upon your activity
of signing it off – I cannot carry out my activity until yours is completed. In other
words, my activity depends upon yours.

– I obtain a soft copy of a paper from a Web page. I know that this report will be of
interest to you as well. Knowing this, I pro-actively photocopy the report, and give
you a copy. In this case, our activities do not strictly need to be coordinated – since
the report is freely available on a Web page, you could download and print your
own copy. But, by pro-actively printing a copy, I save you time.



640 V. Tamma et al.

Notice that coordination, defined in this way, subsumes the well-known (and widely
studied) concept of synchronisation [1]. Synchronisation is generally concerned with
the rather restricted case of ensuring that processes do not destructively interact with
one another. While solving this problem certainly requires coordination, the concept of
coordination is actually much broader than this. Standard solutions to synchronisation
problems involve hard-wiring coordination regimes into program code. Thus, for exam-
ple, a JAVA method may be flagged as synchronized by a programmer, indicating
that a certain access regime is enforced whenever this method is invoked. However, in
large-scale, dynamic, open systems, of the kind we are concerned within this project,
such hard-wired regimes are too limiting. We ideally want computational processes to
be able to reason about the coordination issues in their system, and resolve these issues
autonomously.

In order to build agents for semantic web applications that can reason about coordi-
nation issues dynamically, we must first identify the possible interaction relationships
that may exist in these applications. Hence, the goal, here, is to derive and formally
define the possible interaction relationships that may exist between activities. There is
some prior work on this topic — von Martial [4] puts forward a high-level typology for
coordination relationships. He suggested that, broadly, relationships between activities
could be either positive or negative. Positive relationships “are all those relationships
between two plans from which some benefit can be derived, for one or both of the
agents plans, by combining them” [5, p. 111]. Such relationships may be requested (I
explicitly ask you for help with my activities) or non-requested (it so happens that by
working together we can achieve a solution that is better for at least one of us, without
making the other any worse off). Von Martial distinguishes three types of non-requested
relationships:

The action equality relationship: We both plan to perform an identical action, and by
recognizing this, one of us can perform the action alone, and so, save the other
effort.

The consequence relationship: The actions in my plan have the side-effect of achieving
one of your goals, relieving thus you of the need to explicitly achieve it.

The favour relationship: Some part of my plan has the side effect of contributing to the
achievement of one of your goals, perhaps by making it easier (e.g., by achieving a
precondition of one of the actions in it).

Another major body of work on this issue is that on Partial Global Planning [6]. The
basic idea of partial global planning is that agents develop and exchange plans of local
activity in order to identify possible interactions (positive or negative). The ideas were
refined in Decker’s subsequent work on Generalised Partial Global Planning (GPGP)
in the TÆMS testbed [7]. GPGP makes use of five techniques for coordinating activi-
ties:

– Updating non-local viewpoints: Agents have only local views of activities, and so,
sharing information can help them achieve broader views. In his TÆMS system,
Decker uses three variations of this policy: communicate no local information, com-
municate all information, or an intermediate level.



An Ontological Framework for Dynamic Coordination 641

– Communicate results: Agents may communicate results in three different ways.
A minimal approach is where agents only communicate results that are essential to
satisfy obligations. Another approach involves sending all results. A third is to send
results to those with an interest in them.

– Handling simple redundancy: Redundancy occurs when efforts are duplicated. This
may be deliberate – an agent may get more than one agent to work on a task because
it wants to ensure the task gets done. However, in general, redundancies indicate
wasted resources, and are therefore to be avoided. The solution adopted in GPGP
is as follows. When redundancy is detected, in the form of multiple agents working
on identical tasks, one agent is selected at random to carry out the task. The results
are then broadcast to other interested agents.

– Handling hard coordination relationships: “Hard” coordination relationships are
essentially the “negative” relationships of von Martial. Hard coordination relation-
ships are thus those that threaten to prevent activities being successfully completed.
Thus a hard relationship occurs when there is a danger of the agents’ actions de-
structively interfering with one another, or preventing each others actions being
carried out. When such relationships are encountered, the activities of agents are
rescheduled to resolve the problem.

– Handling soft coordination relationships: “Soft” coordination relationships include
the “positive” relationships of von Martial. Thus, these relationships include those
that are not “mission critical”, but which may improve overall performance. When
these are encountered, then rescheduling takes place, but with a high degree of “ne-
gotiability”: if rescheduling is not found possible, then the system does not worry
about it too much.

Based on all this body of work, we have designed an ontology for coordination, which
is presented in the next section. Although ontologies for service based computing have
been developed, such as OWL-S [8] and WSMO [9], they mainly focus on describing
the services and their orchestration/composition. We argue that our ontology is comple-
mentary to existing efforts. Coordination is indeed an important aspect of service based
computing, however it addresses the way in which independent, and possibly conflicting
agents choreograph with others. While in efforts like OWL-S and WSMO the interaction
and composition of processes are modelled as a workflow that is determined a priory and
that is executed by a workflow execution component, in agent-based coordination, the
choreography is determined by the exchange of messages among the agents that need to
interact (protocol). However, OWL-S first order logic representation of process theory
based on PSL [18] could be integrated in our ontology, in a future implementation.

3 An Ontology for Coordination

As described above, we define an ontology for coordination. The basic idea is to enable
agents to reason about the relationships of their activities to the activities of other agents.
So, the fundamental purpose of the ontology is to answer the following questions:

– what is a coordinable activity?
– what coordination relationships such activities have to one another?



642 V. Tamma et al.

In the sub-sections that follow, we give an overview of the ontology: the key concepts,
the slots associated with these concepts, the relationships between these concepts, and
axioms. In the interests of comprehensibility, we do not present all the components of the
ontology. Also note that our presentation is informal: we aim to give an overview of the
ontology, rather than present all the low-level technical details. The “definitive” version
of the ontology is maintained using Protégé [10] and is illustrated in in Figure 1.

Fig. 1. The Protégé version of the coordination ontology

3.1 Agents

Our starting concept is Agent. The idea is, obviously enough, that this concept relates to
the agents in the system, i.e., the things that do the actions in the system needing to be
coordinated. For the purposes of the coordination ontology, agents have just one slot: id,
which is a string representation of the unique identifier for the agent (e.g., a URI).

3.2 Processes and Activities

Our next concept is Process. A process is an activity that changes the state of the envi-
ronment in some way. It may be terminating or non-terminating, and be carried out by a
human or other agent, or be a natural (physical) process.

The process concept has two sub-classes: the most important of which is that of a
CoordinableActivity. A coordinable activity is a process that can be managed in such a



An Ontological Framework for Dynamic Coordination 643

way as to be coordinated with other coordinable activities. For example, executing the
process of invoking a web service would be a coordinable activity, in the sense that the
invocation of such a service can be managed so as to coordinate with other invocations.
For example, suppose we have two agents, both of which want to invoke the same web
service, with different parameters. Then, in general, the agents could manage their invo-
cations so as not to interfere with one another.

Not all processes of interest to a system are coordinable – hence we have the NonCo-
ordinableActivity concept. We intend this concept to capture all those processes whose
coordination is not possible by the agents within the system to which a particular knowl-
edge base refers. This will include at least the following two types of process (although
we do not represent these as concepts):

– Natural events: These are physical processes that will take place irrespective of what
any agent in the system does. An extreme example would be the decay of an atom,
caused by essentially random quantum events. Clearly, such processes cannot be
coordinated with other processes: they will take place (or not take place) irrespective
of what the agents in the system do.

– External processes: These are processes – either physical world processes or natural
processes – which are simply outside the control of the system, in that they cannot be
managed by the agents in the system. Notice that such processes may be coordinated
by entities outside the system: the point is, that for the purposes of the system to which
the knowledge base refers, they cannot be coordinated.

Another way of thinking about the distinction between a coordinable and a non-
coordinable activity is that there is always an agent (i.e., a software agent within the
system) associated with a coordinable activity, whereas there is no such agent associated
with a non-coordinable activity.

We think of particular CoordinableActivity as being arranged into an and/or tree hier-
archy of activities, with AtomicActivitys as leaves of the tree. Thus a CoordinableActivity
is composedOf possibly many other Activitys, and may be:

– a ConjunctiveActivity: in this case, it is composed of a number of other activities,
which must all be successfully completed in order for the overall activity to be com-
pleted;

– DisjunctiveActivity: it is composed of a number of other activities, of which at least
one must be successfully completed in order for the overall activity to be completed;
or

– AtomicActivity – in which case the activity is composed of no further activities. (The
set of CoordinableActivitys of which this activity is composed is empty.)

In future work, it may be interesting to compare these notions with those of the OWL-S
model of processes, and one possibility is to attempt to align them in some way [8]1. We
can further identify the following sub-classes of AtomicActivity:

1 The point is that there may be some relation at this point to the process model in OWL-S,
so perhaps an AtomicActivity is a sub-class of an OWL-S process, and similarly for OWL-S
composite processes.



644 V. Tamma et al.

– ConcludedCoordinableActivity: an activity that has taken place in the past, and is
now fully concluded;

– ContinuingCoordinableActivity: this is an activity that is currently in progress;
– ScheduledCoordinableActivity: this is an activity that it is expected will take place,

in the sense that it is scheduled for execution by some agent2;
– SuspendedCoordinableActivity: this is an activity that whose status is undetermined.

Let us briefly consider slots and properties of our concepts. A CoordinableActivity will
have the following slots:

– actor: an Agent, i.e., the agent that intends to carry out, or has carried out this ac-
tivity;

– earliest start date: either a date or null, with a date indicating the earliest date at
which the activity may begin; null indicates that this information is not known;

– latest start date: either a date or null, with a date indicating the latest date at which
the activity may begin; null indicates that this information is not known;

– expected duration: either a natural number, indicating the number of milliseconds
the activity is expected to take, or null indicates an unknown duration;

– latest end date: either a date or null, with a date indicating the latest date at which
the activity may end; null indicates that this information is not known;

– actual start date: either a date or null, with a date indicating the date at which the
activity actually began; null indicates that this information is not known;

– actual end date: either a date or null, with a date indicating the date at which the
activity actually ended; null indicates that this information is not known;

– final status: an enumeration type, either succeeded, failed, or null.

There are a number of axioms that may be introduced at this point. With respect to
Conjunctive and DisjunctiveActivitys, we have the following:

– a ConjunctiveActivity has successfully terminated if all its components have suc-
cessfully terminated;

– a DisjunctiveActvity has successfully terminated if at least one of its components
has successfully terminated.

With respect to the relationship between scheduled activities and their successful com-
pletion, we have the following:

– if an activity is scheduled, then it should have a null actual start date and actual
end date.

– if an activity is concluded, then the final status must be non-null;
– if an activity started before its earliest start date, then it has failed;
– if an activity started after its latest start date, then it has failed.

2 We do not worry about exactly what “scheduled for execution” means: we simply assume that
some agent is expected to carry out the activity, or that the activity appears in some agent’s
plan.



An Ontological Framework for Dynamic Coordination 645

3.3 Resources

Next, we have the Resource concept. The idea of this concept, as we discussed in the
introduction, is that a resource is something that may be required to expedite an activity.
Thus, we have a one-to-many relationship between AtomicActivitys and Resources.
Note that we regard this set as being fixed, for any given activity. The Resource concept
has the following slots:

– viable: a Boolean value, indicating whether the resource is still in a state to be used;
a value of false here would indicate that the resource could not be used by any ac-
tivity (even if these activities Require it). Another simple way to think about viable
is that it indicates whether a resource is “broken” or “working” or not.

– consumable: a Boolean value, which indicates whether the use of the resource will
reduce subsequent availability of the resource in some way; more precisely, whether
the repeated use of the resource in activities would make the resource non-viable.

– shareable: a Boolean value, indicating whether a resource may be used by more
than one agent at any given time.

– cloneable: a Boolean value, indicating whether or not the resource is cloneable (=
true), or unique and not-cloneable (=false). An example of a cloneable resource
would be a dataset or a digital document. An example of a unique resource would
be a physical artefact produced as the output of a particular experiment, or a human
being.

– owner: either an Agent (in which case this is the agent that owns the resource), or
null (in which case the semantics are that the resource may be used by any agent
at no cost). If a resource is owned by an agent, and another agent wishes to use this
resource, then it may be necessary to enter into negotiation over the exploitation of
the resource.

3.4 Interdependencies Between Activities

We now turn to the interrelationships that exist between activities. Our first concept is
that of an Interdependency. The interdependency concept has the following slots:

– source and target: both slots are Activities, the idea being that these are the two
activities which are interdependent.

– isHard: a Boolean value, which indicates whether the relation is “soft” (= false)
or “hard” (= true), with the following semantics:
• a hard relation is one which will materially affect the success or otherwise of

the activities;
• a soft relation is one which may affect the activities, positively or negatively, but

will not affect whether they are successful or not.

Sub-classes of CoordinationRelation are:

– NegativeCoordination: an interaction which, if it occurs, will lead to a reduction in
the quality of the solution or the utility of the participants;



646 V. Tamma et al.

– PositiveCoordination: an interaction which, if it occurs, will lead to an increase in
the utility of the participants or the quality of the solution.

We have a further sub-class of NegativeCoordination: FatalCoordination is a hard coor-
dination relationship which, if it occurs, will inevitably lead to the failure of one or more
of the component activities. Note that instances of FatalCoordination relationships
are always hard. As sub-classes of FatalCoordination, we have:

– MutuallyExclude: an instance of this relationship will exist between two Atomic-
Activitys iff:

1. they both Require some resource r,
2. the actual or scheduled usage of r by both activities overlaps;
3. r is non-shareable.

The idea is thus that these two activities will be mutually exclusive, in the sense that
they cannot possibly both succeed, as they require access to a resource that cannot
be shared.

– ResourceContention: an instance of this relationship will exist between two
AtomicActivitys iff:
1. they both Require some resource r;
2. resource r is consumable.

The idea here is thus that one of the activities (the earlier one) could prevent the
successful completion of the other activity, by depleting it or rendering it unviable.
We do not require that ResourceContention relationships are hard,although, of
course, they could be.

– Disables: one activity will disable another if the occurrence of it will definitively
prevent the occurrence of the other.

Sub-classes of PositiveCoordination are:

– ConditionallyFeeds: in such a coordination, the occurrence of activity A1 will sub-
sequently make possible the occurrence of activity A2, but it is nevertheless possible
that A2 could occur (i.e., the occurrence of A1 is a sufficient but not necessary event
for the occurrence of A2);

– Enables: the occurrence of activity A1 is both necessary and sufficient for the occur-
rence of A2;

– IsSubsumedBy: activity A1 is subsumed by activity A2 if A2 contains all the activities
of A1.;

– Subsumes: the inverse of IsSubsumedBy;
– Favors: an activity A1 favors another activity A2 if its prior occurrence will subse-

quently improve the overall quality of A2. We include this as a “catch all”. This is a
soft relationship.

3.5 Operational Relationships

In order to resolve a coordination relationship between two activities, we may have to
appeal to the operational relationships that exist between the agents that will carry them



An Ontological Framework for Dynamic Coordination 647

out. Intuitively, operational relationships exist between agents that carry out activities,
and by understanding these relationships, it can help to resolve the coordination relation-
ships. The main concept here is OperationalRelationship. This concept has two slots,
both of which are Agents: source and target. Sub-classes of OperationalRelationship
include:

– LegalAuthority: this sub-class indicates that source has legal authority over target
(of course, this begs the question of what “legal authority” means in the context of
semantic web services and processes, but this is outside the scope of our current
work, and is left as a placeholder for the future);

– ContractualAuthority: this indicates that source has contractual authority over
target (i.e., that both agents “belong” to the same organisation, and that in the con-
text of this organisation, source should take precedence over target);

– ProducerConsumer: this indicates that source is the owner of a Resource that is
to be used by target;

– ConsumerProducer: the inverse of ProducerConsumer;
– Peer: two agents that work as peers, i.e., that neither has any authority over the other.

We have developed a prototype as a proof-of-concept for our ontology. The current
state of its development is now presented.

4 Implementation

We have implemented our prototype with the plug-in JessTab 1.1 [11] in Protégé 3.0.
JessTab is a plug-in integrating the inference engine Jess (in its version 6.1p7 [12] in
our case) with Protégé, so that Jess can carry out inferences on the knowledge base in
Protégé. More precisely, JessTab enables Jess to work with a Protégé knowledge base,
i.e., Jess can (i) access the ontology and the instances represented in Protégé, (ii) directly
manipulate these ontology and instances, (iii) infer new facts deduced from these ontol-
ogy and instances, and (iv) perform all the other programming tasks permitted by Jess,
such as calculating or launching Java operations.

In our prototype, we use these capabilities of JessTab in the following way. We first
design an ontology for our agents in OWL [13] using Protégé. For this proof of concept
we restrict our attention to few concepts and types of coordination and we do not imple-
ment the whole ontology described in Section 3. In our implementation, concepts in the
ontology are translated into Jess facts, whilst the coordination strategy is translated into
a set of Jess rules. In our ontology , we create the class Agent, with subclasses Provider,
Requester and Registry, as well as the classes required by these three types of Agents,
i.e., RegistryMemory, Intention and Resource, which are now outlined.

A RegistryMemory is related to an instance of Registry by the property “hasMemory”.
Every instance of RegistryMemory represents either a Requester and one of its Intentions,
or a Provider and one of its capabities and associated Resources.

The second element, Intention, is related to instances of Agent to describe one of
the activities planned by a particular Agent. Besides an Agent, an Intention may also be
linked to a RegistryMemory to enable a Registry to memorize an Agent’s Intention.

The third class is Resource, which contains the name of a resource (we assume this
name is a unique identifier for this resource) and the flag “isShareable”.



648 V. Tamma et al.

After the creation of the classes of this ontology, we populate the ontology with in-
stances. In our example, we instantiate one resource Provider, two resource Requesters
and one Registry. These first two steps related to ontology building do not require JessTab,
but only Protégé. Finally, we add Jess rules to “animate” our instances. These rules imple-
ment the choreography between the instanciated Agents. These three stages are detailed
in the following subsections.

4.1 Classes in the Ontology

As noted, we basically deal with three different classes, namely Provider, Requester and
Registry. Each time a Provider or a Requester registers to a Registry, this Registry records
the information sent by this Provider/Requester by creating a RegistryMemory, which
means that a RegistryMemory is very similar to a Provider/Requester and thus to an Agent
(of course, only from an ontological viewpoint, like everything in this subsection!). To
record a RegistryMemory, Registry has an object property called “hasMemory” listing
instances of RegistryMemory used by this Registry. “hasMemory” is the only property of
interest in a semantic Registry, even if a Registry inherits all the properties of an Agent,
namely “hasName”, “hasCapabilities”, “hasGoals”, “hasIntention” and “hasResource”.

It is worth noting the difference we make between “hasGoals” and “hasIntention”:
in a similar way to the BDI (Belief, Desire and Intention) architecture [14], an agent
desires to achieve its multiple goals, and as a result, this agent selects and adopts the ap-
propriate intention (which is a plan of actions in the BDI architecture). In our ontology,
we translate this in the following way: an Agent has a property “hasGoals” pointing to
several instances of Intention, and one property “hasIntention” pointing to one of these
instances of Intention. This latter Intention represents what current action this Agent cur-
rently tries to achieve. Indeed, this is the main difference between a RegistryMemory and
an Agent: only an Agent has a property “hasIntention”, while both RegistryMemory and
Agent have a property “hasGoals”. A semantic Registry uses the property “hasGoals” to
register in one of its RegistryMemorys what it knows about an Agent’s planned activi-
ties. In other words, there is one RegistryMemory per Agent (normally, this Agent should
be a Requester), and as many properties “hasGoals” per RegistryMemory as the Agent
communicates to the Registry.

Finally, all Agents may have object properties “hasResource” of type Resource, and
“hasCapabilities” of type string. As previously stated, there is one RegistryMemory per
Agent (this Agent should now be a Provider), and as many properties “hasResource” and
“hasCapabilities” per RegistryMemory as the Agent communicates to the Registry.

A Resource describes a resource, such as a CPU, a hard drive, a printer, . . . and
datatype properties “hasCapabilities” of type string, e.g., saving-information, calculat-
ing, printing, etc. In addition, RegistryMemory has two datatype properties “agentName”
and “agentRef” to respectively record the name (which is the string an Agent records in
its datatype property “hasName”) and the address of the agent.

4.2 An Example of Instances for Our Ontology

As a case study, we have implemented a system with four agents, in which “Requester 1”
and “Requester 2” look for the non-shareable resource called “Printer”, while “Provider



An Ontological Framework for Dynamic Coordination 649

Printer” manages this resource. Requester 1 has “intention1”, which describes the fact
that this agent has scheduled to use Printer from the date 5 and for a duration of 10 time
units. Figure 2displays this Requester 1’s intention to use Printer, as well as Requester 2’s.

Requester 2

Requester 1

time

intention24

intention23intention22intention21

intention1

}
0 5 10 15 20

Fig. 2. Gantt chart of Requester 1 and Requester 2’s schedules for Printer

In this figure, we can also see that the property “hasGoals” of Requester 2 points to
four intentions, namely intention21, 22, 23 and 24, and that intention24 is at the same
time as intention21, 22 and 23. We assume that Agent2 has not seen this overlapping in
its own schedule, and the registry should thus detect this clash among Agent2’s goals.
The registry should also detect the clashes between Agent2’s goals and Agent1’s.

4.3 Orchestration Implemented in the Prototype

The Jess program roughly adopts the following four steps. By “roughly”, we mean that
these steps are interlaced in practice, while we are now presenting them sequentially:

– Step 1: The Protégé classes, instances and templates are translated into Jess. This
is performed by the JessTab command (mapclass :THING) that translates the
root node of the Jess ontology, as well as all its children up to the instances, into Jess.
Note that this command is an addition of JessTab to Jess.

– Step 2: Every agent sends (i.e., asserts) a registration message to every registry. This
message contains the description of this agent, one of its capabilities, one of its goals
and one of its resources. The agent sends several messages to register all its capa-
bilities, goals and resources, and can write “none” if it does not have one of these
features.

– Step 3: Every registry receives these messages and saves their content by creating
RegistryMemorys. One RegistryMemory is created for each registering Agent, and
this RegistryMemory is almost a copy of Agent reconstructed from the registration
messages.
In practice, the JessTab commands make-instance and slot-set add in-
stances and slots in the Protégé base, and then mapinstance converts this in-
formation into Jess, so as the consistency is maintained between Jess and Protégé
knowledge bases.

– Step 4: Every semantic Registry detects clashes between non-shareable resources.
Intention21, 22, 23 and 24 in Figure 2 represent the four possible types of clash with
intention1. For example, intention1/intention21 is a conflict in which the beginning
of the time interval represented in intention1 overlaps the end of intention21. This



650 V. Tamma et al.

conflict is characterized by the following conjunction: (i) the starting date requested
by Requester 1 is later (greater) than the starting date requested by Requester 2,
(ii) the starting date requested by Requester 1 is earlier (lower) than the ending date
requested by Requester 2, (iii) the ending date requested by Requester 1 is later
(greater) than the the ending date requested by Requester 2. Notice that (i) and (ii)
mean that Requester 1’s starting date is in the time interval requested by Requester 2,
while (ii) and (iii) mean that Requester 2’s ending date is in the time interval re-
quested by Requester 1.
A separate Jess rule is programmed to detect each of these four possible clashes.
We call *1* the rule detecting the conflict intention1/intention21, *2* for inten-
tion1/intention22, etc.

4.4 Results

The execution trace in JessTab is displayed in Figure 3, in which we can see seven con-
flicts, each one beginning with the name of the rule that detected it followed by some
explanations. For example, the first conflict was detected by the rule *2*, and is thus of

Fig. 3. JessTab detects the conflicts in the schedule of the non-shareable resource

the type intention1/intention22, but this first conflict is not between Requester 1’s inten-
tion1 and Requester 2’s intention22. In fact, this conflict is due to the fact that Requester 2
wants to use Printer both over [1;6] and [0;20], and thus, the former time interval is in-
cluded in the latter while Printer is non-shareable.

Conversely to this, the second clash is between two different requesters. In other
words, inter-agent as well as intra-agent conflicts are detected. We have checked that



An Ontological Framework for Dynamic Coordination 651

it is possible to add more instances of resources, providers, requesters and registries and
JessTab still detects the conflicts.

5 Conclusions

The effectiveness of the Semantic Web relies on enabling technologies that permit the
various components – ontologies, reasoning engines, and agents – to work harmoniously
together. The interactions need to be managed according to a theory that is understood and
agreed upon by all the components (in the paper we loosely referred to these components
as agents). Coordination is the process of managing the possible interactions between
activities and processes. The premise of the work presented in this paper is that effec-
tive coordination requires the sharing of knowledge about activities, resources and their
properties. Typically, this sharing is achieved statically, by hard-coding at design time
the coordination mechanism in the agents. However, in more open systems, where the
processes and resources of which the system is comprised are not known at design time,
such an approach is often impossible. A viable alternative in this type of systems would
be a dynamic approach, in which the coordination requirement is handled at run-time,
rather than design time. Such approach allows the relevant processes to communicate
their intentions with respect to future activities and resource utilisation, and gets them
to “reason” about coordination at run time, with the goal of preventing negative interac-
tions, and facilitating positive interactions. The communication implied by this solution
requires an agreed common vocabulary for coordination, with a precise semantics, that
is, an ontological approach to dynamic coordination.

This paper describes such an ontological approach to coordination, and presents our
results with respect to a proof-of-concept implementation of the approach, in which mul-
tiple processes detect coordination relationships using a Jess/Protégé implementation of
the ontology. This prototype is only intended to show how an inference engine may be
used to perform coordination tasks in Semantic Web Services. In fact, inference engines
have already been being used to check semantic consistency, e.g., Racer [15] both checks
semantic consistency and improves the organization of Protégé knowledge bases.

This work is still at an embryonic stage, the results obtained by the proof-of-concept
implementation are very promising and encourage us to proceed towards the develop-
ment of a representation of coordination mechanisms using Semantic Web rule lan-
guages. One possible implementation strategy consists of representing the rules in SWRL
[16] and using a reasoner such as Vampire [17], to reason about the coordination rules.
This strategy raises a number of research issues, such as whether the choice of rules will
fail to provide a definitive answer due to the undecidability of SWRL. As an improvement
on our prototype, we could:

– Make every agent register to only one registry instead of every possible registry;
– Add other protocols: e.g, some methods of clash resolution, and the update of Reg-

istrys by Agents;
– Add message format: at the moment, we only handle a basic registration message;
– Looking for the maximum size of a semantic registry: how many resources, providers,

and requesters make the semantic registry too slow (in a dynamic environment, un-
like our prototype).



652 V. Tamma et al.

Acknowledgements

The work presented in this paper is partially funded by the FP6 EU project Ontogrid
(FP6-511513). The authors would like to thank Sean Bechofer and Terry Payne for their
insightful comments on this work.

References

1. Ben-Ari, M.: Principles of Concurrent and Distributed Programming. Prentice Hall (1990)
2. Wooldridge, M.: An Introduction to Multiagent Systems. John Wiley & Sons (2002)
3. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM Computing

surveys 26 (1994) 87–119
4. von Martial, F.: Coordinating Plans of Autonomous Agents (LNAI Volume 610). Springer-

Verlag: Berlin, Germany (1992)
5. von Martial, F.: Interactions among autonomous planning agents. In Demazeau, Y., Müller,

J.P., eds.: Decentralized AI — Proceedings of the First European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW-89), Elsevier Science Publishers
B.V.: Amsterdam, The Netherlands (1990) 105–120

6. Durfee, E.H.: Coordination of Distributed Problem Solvers. Kluwer Academic Publishers:
Dordrecht, The Netherlands (1988)

7. Decker, K., Lesser, V.: Designing a family of coordination algorithms. In: Proceedings of
the First International Conference on Multi-Agent Systems (ICMAS-95), San Francisco, CA
(1995) 73–80

8. OWL-S: OWL Semantic Web Services (2004): http://www.daml.org/services/.
9. WSMO: Web Service Modelling Ontology (2004): http://www.wsmo.org.

10. Stanford Medical Informatics: Protégé (2005) http://protege.stanford.edu/ (ac-
cessed 31 March 2005).

11. Eriksson, H.: JessTab (2005) http://www.ida.liu.se/˜her/JessTab/ (accessed
31 March 2005).

12. Friedman-Hill, E.: Jess (2005) http://herzberg.ca.sandia.gov/jess/
13. W.W.W. Consortium: Web site for the specification of OWL (2004) http://www.

w3.org/2004/OWL/.
14. Agent Oriented Software Group: Company web site (2004).
15. Haarslev, V., Möller, R.: Web site for the software Racer (2005) http://www.cs.concordia.ca/

Ehaarslev/racer/download.html
16. SWRL. (http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/)
17. Tsarkov, D., Riazanov, A., Bechofer, S., Horrocks, I.: Using Vampire to reason with OWL. In

McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.: Proc. of the 2004 International Se-
mantic Web Conference (ISWC 2004). Number 3298 in Lecture Notes in Computer Science,
Springer (2004) 471–485

18. PSL, process specification language. (http://www.mel.nist.gov/psl/)



Introducing Autonomic Behaviour
in Semantic Web Agents

Valentina Tamma, Ian Blacoe, Ben Lithgow-Smith, and Michael Wooldridge

Department of Computer Science, University of Liverpool,
Liverpool L69 3BX, United Kingdom

Abstract. This paper presents SERSE – SEmantic Routing SystEm– a distributed
multi-agent system composed of specialised agents that provides robust and ef-
ficient gathering and aggregation of digital content from diverse resources. The
agents composing SERSE use ontological descriptions to search and retrieve se-
mantically annotated knowledge sources, by maintaining a semantic index of the
instances of the annotation ontology. The efficient retrieval is made it possible
through the semantic routing mechanism, that permits to identify the agent in-
dexing the resources requested by a user query without having to maintain a cen-
tral index, and by reducing the number of messages broadcasted to the system.
The system is also capable of exhibiting autonomic behaviour. Autonomic be-
haviour is characterised by self configuration and self healing capabilities, aimed
at permitting the system to manage the failure of one of its agents and ensure
continuous functioning.

1 Introduction

The Semantic Web primarily aims to share knowledge from distributed, dynamic, and
heterogeneous sources, whose content is expressed in a machine-readable format by
means of languages such as RDF [1] and OWL, in a similar way to that in which in-
formation is shared on the World Wide Web. Agents play an integral role in this vision;
they use these machine-readable representations to gather and aggregate knowledge, as
well as to reason in order to manage inconsistencies, and to infer new facts. Together
with their ability to process Semantic Web content, agents contribute features, such as
distribution, autonomy, and social ability, that make them particularly suited to man-
age large, heterogenous, and distributed knowledge bases. In recent years, many tools
have been developed for managing traditional knowledge sources, but such approaches
usually imply a centralised, and static environment where the ultimate control is cen-
tralised. This type of approach does not promise to scale well to the Semantic Web,
which is an open, dynamic, and often chaotic environment.

Distributed, decentralised systems are thought to be a better alternative for scalabil-
ity [2]; their architecture is characterised by system components each with equal roles
and the capability to exchange knowledge and services directly with each other. Peer-
to-peer technology (P2P) such as Edutella [2] or Morpheus [3] is a possible answer to
this quest for decentralisation. P2P systems are networks of peers with equal roles and
capabilities, and recently peer-based management systems have been proposed, which
exploit P2P technology for sharing and retrieving huge amounts of data [4]. However,

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 653–667, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



654 V. Tamma et al.

most approaches are oriented at file sharing, rather than at the management of semanti-
cally enriched content as provided by the Semantic Web. The agent paradigm seems to
offer equally good prospects for the management of semantically annotated content: on
the one hand, agents are intrinsically distributed, and platforms for agent oriented pro-
gramming offer standardised communication protocols and management mechanisms
(for instance, Jade [5]). On the other hand agents can provide “smart”, service-based
support for autonomous semantic web tools, and well-automated discovery mecha-
nisms for advertising and locating resources within an open framework, established
trust and reputation frameworks, and proactive support for fact maintenance [6]. One
way in which the adoption of the agent-oriented paradigm can be beneficial to semantic
web applications is by making them exhibit autonomic behaviour. Autonomic comput-
ing is an emerging branch of software engineering promoting the design and imple-
mentation of self-managing systems, many of which consist of several interacting, au-
tonomous components that in turn comprise large numbers of interacting, autonomous,
self-governing components at the next level down [7]. This type of behaviour is intended
to make it easier to manage the complexity and scalability of complex distributed sys-
tems, such as those to manage Semantic Web content.

In this work we concentrate on the robust and efficient gathering and aggregation of
digital content from diverse resources. We developed a multi-agent system composed
of specialised agents that is able to search and retrieve semantically annotated knowl-
edge sources. In addition to searching for digital content, the semantic information used
to annotate resources is used to explore the addition of autonomic features to the sys-
tem, in order to equip it with self-management and self-healing capabilities, aimed at
permitting the system to manage the failure of one of its agents and ensure continuous
functioning. In this paper we introduce the system SERSE (SEmantic Routing SystEm)
and its main functionalities. This paper extends our previous work in this area [8,9] by
introducing the autonomic behaviour features exhibited by SERSE and by presenting
details of its multi-platform implementation. In the remainder of this paper we describe
the system’s conceptual architecture and the information flow between the system com-
ponents. We examine the two main functionalities offered by the system, namely query
management and autonomic behaviour, and we present a set of experiments aimed at
evaluating the performance for each of these functionalities.1

2 SERSE

SERSE’s primary goal is to enable the semantic retrieval and aggregation of the digital
content of web resources. SERSE is designed as a multi-agent system composed of spe-
cialised agents capable of functioning in a scalable, self-managing, open, and dynamic
fashion. The system requires resources to be semantically annotated according to one or
more ontologies expressed in OWL, and at present is not capable of discovering anno-
tated resources autonomously. For this purpose SERSE relies on the Annotation System
component of Esperonto, that informs it of newly acquired content providing references

1 SERSE was developed as part of the now concluded Esperonto projectIST-2001-34373 whose
aim was to provide a set of tools for performing the transition from the traditional web to the
semantic web [8].



Introducing Autonomic Behaviour in Semantic Web Agents 655

to both the resources and their RDF annotations. The description of the Annotation Sys-
tem is outside the scope of this paper. However, for the purpose of describing SERSE, it
is sufficient to say that annotations are semi-structured representations of information
referencing instances (of one or more concepts in the annotation ontology) that appear
in the content of web resources. 2

The core of the system is represented by a network of specialised agents providing
indexing and routing functionalites, that permit them to efficiently retrieve resources
based on the semantics of their content. Each agent is specialised with respect to a
concept, meaning that it can access the resources whose annotations contain instances
of that concept, and it is only aware of those agents specialised with concepts that are
similar or related to its own. Therefore, the agent network is organised into semantic
neighbourhoods that mirror the structure of the ontology (in terms of the hierarchical
and specific relationships defined in the ontology).

Neighbourhoods are partially overlapping, and this permits the routing mechanism
to find the answer to a query in a limited number of hops, without having to browse
the whole ontology and without having to flood the network with a large number of
messages. Semantic neighbourhoods are automatically determined when the system
receives a notification of new ontological content – received as new concepts are used
to annotate resources. The neighbourhoods are not static but they dynamically change
as the system is required to handle further notification of new ontological content, or if
the ontology is modified (and a new version of the ontology is used in the annotation). In
this way, we have multiple overlapping neighbourhoods, each centred on one concept,
and agents have knowledge only of the agents composing their neighbourhood.

Indexing ontological content consists of creating structures that link resources, iden-
tified through their URLs, to RDF statements describing instances of the concepts in the
ontologies. The routing functionality permits SERSE to route queries to the agents that
are capable of retrieving the resources annotated with the concepts they are specialised
on. SERSE handles queries expressed in RDQL [10] (an RDF query language developed
by HP as part of the Jena toolkit) [11] on any combination of concepts and concepts
properties (including object properties). Complex queries are decomposed into simple
ones, each regarding a single concept. Each simple query is sent to one of the agents
in the network of routers, and the agent consults its index to determine whether it can
answer the query. If the agent cannot answer the query, then it routes the request to
the agent in its neighbourhood that handles the concept closest to the one in the query.
We evaluate similarity between concepts according to the approach proposed by [12].
However, we modified the algorithm so that it exhibits a greedy but less precise behav-
iour, implemented through heuristics, and that provides a higher number of potential
matches. Ehrig and Staab’s approach is aimed at ontology mapping, a process that can
be taken off line and requires high precision in order to establish the correct mappings.
Semantic routing is different in nature: the evaluation of similarity should be sufficiently
precise to determine a new agent to whom the query can be routed, not necessarily the
best agent. In addition, semantic routing is a dynamic process executed on line, and
therefore it requires fast computation in order to minimise the time spent by the user
waiting for an answer. We discuss in more detail the indexing and routing in Section 4,

2 We are currently working at making SERSE a standalone system.







658 V. Tamma et al.

types of messages: they both monitor the result of their outgoing routing messages
(to verify that they do not return an error), and they periodically send heartbeat
messages [7] that “ping” their neighbour. In addition, Router agents periodically
save the state of their content and routing indexes enabling the knowledge to be
recovered following any failure of the agent. Router agents are distributed over
multiple platforms, while the other agents described below are replicated for each
of the platforms.

– Router Platform Agents: They enable the distribution over multiple plat-
forms and provide management services, such as the creation of a new Router
agent, for each agent platform on which the network of routers is distributed. The
Router Platform Agent is also responsible for triggering the dynamic cre-
ation and adjustment of the network of routers upon receipt of the notifications of
new content, as described in Section 5

– Notification Agents: They are the interface between each platform and the
Annotation System of Esperonto, and receive notifications regarding the annotation
of new resources, or the addition of new concepts in the ontology. They decompose
notifications regarding multiple concepts and re-send these atomic notifications into
the Router Agents network as Agent Communication Language messages.

– Interface Agents: They provide a connection between each agent platform
and the software components operating outside the platform, such as the web-based
query interface, by creating a socket interface and passing query and response ob-
jects across it.

– Query Management Agents (QMA): They decompose complex queries,
that involve multiple concepts linked by logical connectives, into atomic queries.
The atomic queries are then sent into the Router Agent network; when the
QMA receives the responses to each query, these are aggregated by re-applying
the logical connectives, thus producing a set of web resources that match the con-
straints expressed in the complex query. During the process duplicate instances are
identified and removed.

– Portal Agents: They act as a gateway into the Router Agent network,
through which all atomic notifications and queries are passed. Each platform in
the system has a Portal Agent, that maintains a list of significant points within
the router system, and send messages into the network by initially routing them to
the most appropriate of these points.

Finally, the other main component of SERSE is the web-based query interface. This
enables the construction of queries using concepts from multiple ontologies, logical
connectives between the concepts, and specification of the values of concept properties.
Responses to queries are displayed as lists of web resources, identified by URLs, that
match query constraints together with the URIs of the instances that annotate them. In
addition, query replies also contain a list of the concepts that are neighbours of each the
responding agents. This enables follow-up queries in which the original query is modi-
fied by changing property values of concepts, exchanging one concept for a similar one,
broadening or narrowing a query by substituting ontological ancestors or descendents
of a concept, etc.



Introducing Autonomic Behaviour in Semantic Web Agents 659

4 Query Management

As mentioned in Section 2, SERSE handles queries specified in RDQL on any combina-
tion of concepts and concept properties (including object properties). Queries are sent
from the local Interface Agent to the local QMA, where they are decomposed into
atomic queries. Query decomposition is achieved by syntactically parsing the query and
identifying blocks that form atomic queries, but preserve the semantics of the original
query.

The QMA sends each atomic query to the local Portal Agent, which forwards
each of them to the most competent Router Agent known to the local Portal
Agent. In the current implementation of SERSE, these agents are those which have
knowledge of the root nodes of each of the ontologies that have been notified to the
system. The purpose of this initial semantic routing is to enter the router network in
the general semantic area of the queried concept improving the efficiency of the routing
process. Although routing first to the root node agents might potentially be perceived
as a bottleneck, these agents are effectively those that are likely to have the smallest
workload from handling queries. In fact, in the domain ontologies used by SERSE, as
well as in most domain ontologies, the majority of the instances are direct instances
of very specific concepts (leaf nodes), whilst root nodes have few (if any) instances.
Therefore, the additional routing effort of these agents is compensated by answering
fewer queries. In addition, any set of significant entry points could become a bottleneck,
and alternatives are constrained by the processing necessary to identify the best entry
point, and message workloads.

Once an atomic query is received by the appropriate Router Agent, it extracts
the query constraints expressed in RDQL, then it consults its content index to check if
it stores the URI of instances of the query concept. Any instances that match the query
contribute to the answer set, which consists of a list of resources that are described by
matching instances, and is returned directly to the QMA that sent out the query. Included
in the query reply is information about the concepts handled by the replying Router
Agent and the agents address which is then used in follow-up queries. This then
enables users to semantically browse from one concept to other closely related concepts,
using knowledge about these relationships held by the Router Agent and revealed
by the original query.

If no instance is referenced in the content index, the query is routed to the semantic
neighbour with the most similar expertise This semantic routing mechanism is designed
to move messages in a series of hops across the network of Router Agents, until
the message is addressed to the Router Agent indexing instances of the concept in
the message.

5 Autonomic Behaviour

SERSE has been designed to autonomously react to a number of events that can affect its
processing. These include the notification of new ontology, but also exceptional events
such as the controlled shut down of an agent. The aim is to have a system that can work
in an open environment, such as the Semantic Web, and that is scalable, robust, and



660 V. Tamma et al.

requires limited human intervention for its functioning. For this reason, SERSE has been
designed as a multi-agent system in which agents can join and leave the system without
having to take (part of) the system off-line, or without degrading the performance of the
system.

Autonomic behaviour in SERSE supervises two main functionalities: dynamic man-
agement of the network of router agents, and failure management.

The management of the router agents consists mainly of the of the operations
to create the network of routers from scratch once the system is notified by the
Notification Agent that a new ontology is available. Failure management con-
sist of the functionalities that enable the system to continue to operate despite the tem-
porary or permanent loss of agents or whole platforms from an existing index network.
Autonomic behaviour is achieved by a number of different mechanisms:

– Creation requests messages: When the Notification Agent in one of the
platforms receives a notification of new annotation ontology, it determines au-
tonomously the root concept(s) and generates a creation request message for each
of these concepts, to be sent to the Router Platform Agent, that in turns,
creates a router agent for each root concept.

– Router network population: The population of the network of routers is triggered
by the notification of new content messages received by SERSE. If the message
notifies instances of a concept for which a router agent has not yet been created,
the Router Platform Agent creates a new Router agent, and each of
the neighbouring router agents affected by this event update their neighbourhood
indices, with the pointers to the new actual neighbours. In this situation, ontology
and implied links are created, in order to fill gaps between the existing routers and
the newly created one.

– Heartbeat monitor: Router Agents monitor the success of messages sent to
neighbours, and record this in their routing index. When messages are unsuccess-
ful the neighbour is first set to a warning level, and if failure continues for a short
time the entry is marked as unavailable. The neighbour will be considered avail-
able again if a message is received from it within a time period, but otherwise will
eventually be removed from the neighbourhood.

– Index backup and backup recovery: Router Agents periodically save their
knowledge to an XML backup file, which enables the recovery of knowledge fol-
lowing the failure of the Router Agent or platform. The knowledge stored in
the file consists of the contents of both the content index and routing index. Re-
covery from failure of a platform is addressed by having the Router Platform
Agent on start-up (following a manual platform re-start) check for saved state
files, and, if any are found, re-creating Router Agents using the stored knowl-
edge. Recovery from the failure of individual Router Agents is addressed by
them contacting the local Router Platform Agent when they shut-down,
and the Router Platform Agent will then use the saved state to re-create
the Router Agent.

– Router Agent shutdown procedure: When Router Agents are subject to a
controlled shut-down of their platform, they immediately save their knowledge to
file, and then contact each of their neighbours to inform them of the shut-down.



Introducing Autonomic Behaviour in Semantic Web Agents 661

This enables the neighbours to reactively adapt their neighbourhood connections
to reflect the loss of neighbour. Recovery from shut-down, like that for failure, is
initially a manual process but once started the Router Platform Agent will
detect the saved-states and restore the Router Agents.

6 Experimental Evaluation

We conducted a number of experiments aimed to analyse the performance of the two
main functionalities provided by the system: query management, and autonomic be-
haviour. In our experiments, we used two ontologies developed as part of the use-cases
of Esperonto, the Fund Finder and the Cultural Tour ontologies for which we had also
the annotated documents storing the instances of the concepts. The Fund Finder is ex-
pressed in OWL-Lite, and it is composed of around 50 concepts (12 of which are root
concepts), and of 118 instances. The Cultural Tour ontology is an RDFS ontology com-
posed of 60 concepts, and has more that 61000 instances.

In order to test the performance of the query management process we measured,
for each ontology, the round-trip reply time for a set of twenty fixed queries, listed in
increasing order of complexity. Figure 5 and Figure 6 illustrate the last query we posed
for each of the ontologies, in order to show the level of complexity of the queries used in
the experiments. The queries were posed to SERSE in sequence, and for each query we
performed 1000 repetitions, in order to guarantee the reliability of the results. Figure 3
shows the response time, averaged over the repetitions, for each of the ontologies. We
have compared these results with those obtained by qurying the static RDF model in
Jena, the response times averaged over 100 repetitions for each query are depicted in
Figure 4.

With respect to the autonomic behaviour exhibited by SERSE, we measured, for
each of the two ontologies, the query response time in two different scenarios. Scenario
1 aims to test how well SERSE copes with the notifications of new content. This was
achieved by creating new Router agents along the route of a query, by means of in-

 0

 100

 200

 300

 400

 500

 600

 2  4  6  8  10  12  14  16  18  20

av
er

ag
e 

tim
e 

in
 m

ill
is

ec
on

ds
 o

ve
r 

10
00

 r
ep

ea
ts

query number

The response time for queries 1 to 20

Fund Finder ontology

 0

 20000

 40000

 60000

 80000

 100000

 120000

 2  4  6  8  10  12  14  16  18  20

av
er

ag
e 

tim
e 

in
 m

ill
is

ec
on

ds
 o

ve
r 

10
00

 r
ep

ea
ts

query number

The response time for queries 1 to 20

Cultural Tour ontology

Fig. 3. SERSE response times in relation to queries about the Fund Finder and Cultural Tour
ontology



662 V. Tamma et al.

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2  4  6  8  10  12  14  16  18  20

av
er

ag
e 

tim
e 

in
 m

ill
is

ec
on

ds
 o

ve
r 

10
0 

re
pe

at
s

query number

The response time for queries 1 to 20

Fun Finder ontology

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 2  4  6  8  10  12  14  16  18  20

av
er

ag
e 

tim
e 

in
 m

ill
is

ec
on

ds
 o

ve
r 

10
0 

re
pe

at
s

query number

The response time for queries 1 to 20

Cultural Tour ontology

Fig. 4. Jena response times in relation to the same queries for each of the two ontologies

SELECT ?x, ?z WHERE
(?x, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Discount>)
(?x, <http://www.blacoe.uk/Fund_Finder.owl#Aims>, ?y)
(?y, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Objective>)
(?y, <http://www.blacoe.uk/Fund_Finder.owl#objectiveName>, "Company_Creation")
(?x, <http://www.blacoe.uk/Fund_Finder.owl#negotiated_by>, ?u)
(?u, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Negotiator_Body>)
(?u, <http://www.blacoe.uk/Fund_Finder.owl#actsForBody>, ?t)
(?t, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#State_Funding_Body>)
(?z, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#subvention>)
(?z, <http://www.blacoe.uk/Fund_Finder.owl#Deadline>, "30-juny-2005")
(?z, <http://www.blacoe.uk/Fund_Finder.owl#Aims>, ?w)
(?w, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Objective>)
(?w, <http://www.blacoe.uk/Fund_Finder.owl#objectiveName>, "Quality")
(?z, <http://www.blacoe.uk/Fund_Finder.owl#hasRelatedRegulation>, ?v)
(?v, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/Fund_Finder.owl#Diari_Oficial_de_la_Generalitat_de_Catalunya>)
(?v, <http://www.blacoe.uk/Fund_Finder.owl#date>, "26/04/1996")

Fig. 5. Query number 20 for the Fund Finder ontology

SELECT ?x, ?z WHERE
(?x, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/tesauro#RelacionExistenciaPersona>)
(?x, <http://www.blacoe.uk/tesauro#referencia>, "500001146")
(?x, <http://www.blacoe.uk/tesauro#entidad_existente>, ?y)
(?y, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/tesauro#Persona>)
(?y, <http://www.blacoe.uk/tesauro#fuente>,

"Nadia Sokolova [Barcelona (CapCom) : Espaa?, ? - Barcelona (CapCom) : Espaa?, ?]")
(?y, <http://www.blacoe.uk/tesauro#autor_anotacion>, "prototipo")
(?z, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/tesauro#RelacionCreacion>)
(?z, <http://www.blacoe.uk/tesauro#estado>, "provisional")
(?z, <http://www.blacoe.uk/tesauro#creacion_relacionada>, ?w)
(?w, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,

<http://www.blacoe.uk/tesauro#ObraLiteraria>)
(?w, <http://www.blacoe.uk/tesauro#tipo_obra_literaria>, "articulo")
(?w, <http://www.blacoe.uk/tesauro#referencia>, "EL PASEO DE ROSALES ")

Fig. 6. Query number 20 for the Cultural Tour ontology



Introducing Autonomic Behaviour in Semantic Web Agents 663

troducing messages notifying the acquisition of new content – that is, of new resources
containing instances of some concept that was not instantiated before. The experiment
was designed to implement the following procedure:

1. Remove all notifications concerning resources containing instances of a concept,
for instance Organisation Applicant in the Fund Finder ontology;

2. Add a new notification for the concept SME, subsumed by Organisation
Applicant;

3. Build SERSE: this consists of starting the Router Platform agent for the
platforms, loading the ontology model and the notifications, and the dynamic gen-
eration of the network of routers from the notifications;

4. Run query no. 1, an atomic query with subject SME;
5. Notify one resource with instances of Organisation Application;
6. Run query no. 2, an atomic query with subject SME;
7. Notify one resource with instances of Company;
8. Run query no. 3, an atomic query with subject SME;

Figure 7 illustrates the relations existing between the concepts in the ontology that
are used in the notifications and queries of Scenario 1. Scenario 2 aims to test how the
system responds to an increase in the workload due to introducing agents in the se-
mantic neighbourhood, and hence to the increase in the number of semantic similarity
(and relatedness) calculations that needs to be performed during the semantic routing
process. The process followed to set up the experiment mirrors the process followed in
Scenario 1, but it uses different parts of the ontologies, and receives notifications related
to five concepts.

Figure 8 shows the response times for the queries posed to the system in both scenar-
ios. The experimental data concerning the round trip response time to different queries
shows that the query management process implemented in SERSE takes a longer time to
answer the queries when compared with Jena. This result is quite predictable because
SERSE adds the overhead of the messages exchanged in order to enable the seman-
tic routing and the system’s self management . However, SERSE is still quite efficient,
keeping the response time generally under the second. In that respect the results ob-
tained are very promising. However, there some anomalies with queries number 14, 15,
18, and 19 in the Cultural Tour ontology. We have identified a number of reasons that
contribute to these anomalies:

Fig. 7. The Fund Finder concepts used in the experiments of Scenario 1



664 V. Tamma et al.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 1  2  3  4  5  6

av
er

ag
e 

tim
e 

in
 m

ill
is

ec
on

ds

query number

The response time for the notification of new resources

SME concept

 30

 35

 40

 45

 50

 55

 60

 65

 70

 1  2  3  4  5  6

av
er

ag
e 

tim
e 

in
 m

ill
is

ec
on

ds

query number

The response time for new agents in the neighbourhood

Diari_Oficial_de_la_Generalitat...

Fig. 8. Response times in relation to the queries in Scenario 1 and Scenario 2

1. Number of instances returned by each atomic query: For each query we match large
sets of instances by URI, and then we match them with the corresponding resources
by URL.

2. The time that RDQL takes to process the RDF model: This time varies considerably,
as it can be seen by the values in Figure 3, and it is proportional to the number of
statements in the RDF model.

3. Large sets of instances and resources returned: the resulting query result messages
are quite large and the transmission time increases.

4. Time necessary to check for duplicates when large number of resources are returned
as results of complex queries.

5. Number of semantic calculations performed: that is the length of the routing path
and the number of neighbours for each of the agents in the path. The effect of the
increase in the number of calculations is, however, negligible, as confirmed by the
experiments for Scenario 1 and Scenario 2.

With respect to the results obtained when testing the autonomic behaviour, we can
see that SERSE is able to dynamically adjust its network of routers in order to cope with
the notification of new content and with the addition of new agents to the neighbour-
hood, without degrading the performance in terms of response time. Figure 8 shows
how the increase in response time remains controlled despite the introduction of new
content and new agents in the neighbourhood.

7 Related Work

Autonomic computing is a new engineering paradigm that aims at building computing
systems that are self managing [7]. Usually, self managing systems are expected to
exhibit four main properties:

1. self configuration: the ability to configure itself according to high level goals;
2. self optimisation: the ability to optimise the use of resources;
3. self healing: the ability to react to the signs of a possible problem, by detecting it,

and, if possible, fixing it;
4. self protection: the ability to defend itself from malicious attacks as well as from

human error.



Introducing Autonomic Behaviour in Semantic Web Agents 665

These characteristics remind of those defining the notion of agency and in [7] the au-
thors claim that “autonomy, proactivity, and goal-directed interactivity with their envi-
ronment are distinguishing characteristics of software agents [13]. Viewing autonomic
elements as agents and autonomic systems as multiagent systems makes it clear that
agent-oriented architectural concepts will be critically important”. Hence, it is not sur-
prising that many notions of autonomic computing are found in multi-agent systems
(MAS) literature. An example is the use of an hearbeat message broadcasted regularly
in a MAS, organised as in peers or as a network, in order to monitor the status of the
other agents [14].

Self healing has been analysed in [15], where the authors present a team of broker
agents, which share global knowledge about the system. This global knowledge is used
to discover that a broker has been disconnected from the rest of the system and to in-
form the other brokers of the event. IBM has developed theABLE agent platform [16]
that reduces the workload of the system administrator by supporting autonomic agents.
Finally, in [17] provide a review of the various architectural issues in autonomic com-
puting.

From the multi-agent literature perspecitve, SERSE can be classified among the co-
operative information agents, such as RETSINA [18], and InfoSleuth [19]. RETSINA is a
matchmaker based information system where collaborative task execution is achieved
through matching service providers and requesters over the web (and more recently,
over the Semantic Web). InfoSleuth explicitly deals and reconciles multiple ontologies
by means of specialised ontology agents that collectively maintain a knowledge base
of the different ontologies used to specify requests, and return ontology information as
requested.

As mentioned in Section 1, P2P systems have been recently used to reduce the
complexity of distributed knowledge management applications. A typical example of
such an application is EDUTELLA [2], a hybrid P2P architecture for sharing metadata,
that implements an RDF-based metadata infrastructure for JXTA [22]. However, the
emphasis is more on RDF repositories of metadata rather than on the representation
of semantic information in possibly heavy-weight ontologies. Some other projects use
“super-peers”, which start the semantic routing process in the right direction.

An aspect of peer-to-peer networks that needs to be especially analysed is scalabil-
ity. The way in which queries are propagated in the network determines how the net-
work itself will scale. Networks where queries are broadcasted to all peers will hardly
scale, unlike those networks implementing intelligent mechanisms for broadcasting the
queries only to those few selected peers that are able to answer the queries. At this end
have been developed several routing protocols that manage distributed indices used to
handle complex queries. Examples of such protocols are CAN [23] and Chord [24].

Other approaches emphasise the use of semantics represented in ontologies. Among
these there is the SWAP project [25]. In SWAP, each node is responsible for a single on-
tology: ontologies might represent different views of a same domain, multiple domains
with overlapping concepts, or might be obtained by partitioning an upper level ontol-
ogy. Knowledge sharing is obtained through ontology mapping and alignment, however
mappings are not dynamically obtained.



666 V. Tamma et al.

More recently, GridVine [28] support complex queries in RDQL, that consist of
triple patterns with more than one bound variable, thus providing the possibility of ask-
ing sophisticated queries, and thus implementing scalable semantic overlay networks.
However, GridVine does not deal with ontology management operations in each of its
peers.

8 Conclusion

In this paper we presented SERSE – SEmantic Routing SystEm– a distributed multi-
agent system composed of specialised agents that provides robust and efficient gath-
ering and aggregation of digital content from diverse resources. The agents compos-
ing SERSE use ontological descriptions to search and retrieve semantically annotated
knowledge sources, by maintaining a semantic index of the instances of the annotation
ontology. The efficient retrieval is made it possible through the semantic routing mech-
anism, that permits to identify the agent indexing the resources requested by a user
query without having to maintain a central index, and by reducing the number of mes-
sages broadcasted to the system. The system is also capable of exhibiting autonomic
behaviour. Autonomic behaviour is characterised by self-management and self-healing
capabilities, aimed at permitting the system to manage the failure of one of its agents
and ensure continuous functioning.

We tested the performance search and retrieval capabilities of the system, and the
experimental data shows that SERSE generates generally maintains the response times
under the second, showing that the overhead produced by the indexing and routing
mechanisms does not impact the system performance. We also tested the autonomic
behaviour, and the experimental results show how the system is able to efficiently self
configure.

Acknowledgements

The authors would like to thank Terry Payne for his comments on this paper.

References

1. Decker, S., et al.: The semantic web: The roles of XML and RDF. IEEE Internet Computing
4 (2000) 63–74

2. Nejdl, W., et al.: EDUTELLA: A p2p networking infrastructure based on rdf. In: Proceedings
of the WWW2002, Honolulu, Hawaii, USA (2002) 604–615

3. The Morpheus website. (http://musiccity.com)
4. Halevy, A., et al.: Schema mediation in peer data management systems. In: Proceedings of

the International Conference on Data Engineering (ICDE03), Bangalore, India (2003)
5. Bellifemine, F., et al.: JADE a white paper. EXP In search of innovation 3 (2003)
6. Tamma, V., Payne, T.: Toward semantic web agents: Agentlink and knowledge web.

AgentLink newsletter 19 (2005)
7. Kephart, J., Chess, D.: The vision of autonomic computing. Computer magazine 36 (2003)

41–51



Introducing Autonomic Behaviour in Semantic Web Agents 667

8. Tamma, V., et al.: SERSE: searching for semantic web content. In: Proceedings of ECAI
2004. (2004)

9. Tamma, V., et al.: SERSE: searching for digital content in esperonto. In: Proceedings of
EKAW 2004. (2004)

10. RDQL (http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/)
11. The Jena website. (http://www.hpl.hp.com/semweb/jena2.htm)
12. Ehrig, M., Staab, S.: QOM quick ontology mapping. Number 3298 in LNCS (2004) 683–697
13. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. Knowledge engineer-

ing review 10 (1995) 115–152
14. Sterritt, R., Bustard, D.: Towards an autonomic computing environment. Proceedings of 14th

International Workshop on Database and Expert Systems Applications, 2003
15. Kumar, S., Cohen, P.: Towards a fault-tolerant multi-agent system architecture. In: Proceed-

ings of Agents 2000.
16. Bigus, J.P., et al.: ABLE: A toolkit for building multiagent autonomic systems. IBM Systems

Journal 41 (2002)
17. McCann, J., Huebscher, M.: Evaluation issues in autonomic computing. International Work-

shop on Agents and Autonomic Computing and Grid Enabled Virtual Organizations (AAC-
GEVO04), Wuhan, China (2004)

18. Sycara, K., et al..: Dynamic service matchmaking among agents in open information sys-
tems. ACM SIGMOD Record. Special Issue on semantic interoperability in global informa-
tion systems (1998)

19. Bayardo, Jr., R., et al.: InfoSleuth: Agent-based semantic integration of information in open
and dynamic environments. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data. Volume 26,2., New York, ACM Press (1997) 195–206

20. Ehrig, M., et al.: The SWAP data and metadata model for semantics-based peer-to-peer
systems. In: Proceedings of MATES-2003. Number 2831 in LNAI, Springer (2003)

21. Castano, S., et al.: Ontology-addressable contents in p2p networks. In: Proc. of WWW’03
1st SemPGRID Workshop. (2003)

22. Project JXTA. (http://www.jxta.org)
23. Ratnasamy, et al.: A scalable, content addressable network. In: Proceedings of ACM SIG-

COMM. (2001)
24. Stoica, I., et al.: Chord: a scalable peer-to-peer lookup service for internet applications. In:

Proceedings of ACM SIGCOMM. (2001)
25. SWAP: Semantic web and peer-to-peer. (http://swap.semanticweb.org)
26. Arumugam, M., et al.: Towards peer-to-peer semantic web: A distributed environment for

sharing semantic knowledge on the web. In: Proceedings of WWW2002, Honolulu, Hawaii,
USA (2002)

27. Lima, T., et al.: Digital library services supporting information integration over the web. In:
Proceedings of WIIW 2001. (2001)

28. Aberer, K., et al.: Gridvine: Building internet-scale semantic overlay networks. Number
3298 in LNCS (2004) 107–121



Combining RDF and Part of OWL with Rules:
Semantics, Decidability, Complexity

Herman J. ter Horst

Philips Research, Eindhoven, The Netherlands
herman.ter.horst@philips.com

Abstract. This paper extends the model theory of RDF with rules,
placing an emphasis on integration with OWL and decidability of entail-
ment. We start from an abstract syntax that views a rule as a pair of
rule graphs which generalize RDF graphs by also allowing rule variables
in subject, predicate and object positions. We include RDFS as well as
a decidable part of OWL that weakens D-entailment and OWL Full.
Classes can be used as instances. Almost all examples in the DAML set
of test rules are covered by our approach.

For a set of rules R, we define a general notion of R-entailment. Ex-
tending earlier results on RDFS and OWL, we prove a general complete-
ness result for R-entailment. This result shows that a restricted form of
application of rules that introduce blank nodes is sufficient to determine
R-entailment. For rules that do not introduce blank nodes, we prove that
R-entailment and R-consistency are decidable and in PSPACE. For rules
that do not introduce blank nodes and that satisfy a bound on the size
of rule bodies, we prove that R-consistency is in P, that R-entailment is
in NP, and that R-entailment is in P if the target RDF graph is ground.

1 Introduction

There is much interest in combining the standard Semantic Web languages RDF
and OWL with facilities for expressing and reasoning with rules. There is not
yet a standard Semantic Web language for rules. The purpose of this paper is to
extend the model theory of RDF [8] with rules, while integrating OWL. We focus
specifically on decidability of entailment and on exploring the computational
complexity of entailment.

It is well known that OWL Full entailment is undecidable and that OWL DL
entailment is decidable and NEXPTIME-complete [9]. OWL DL is integrated
with rules in SWRL [10]. Consistency and entailment for SWRL are undecidable
[10]. OWL DL’s direct model-theoretic semantics [16] has been extended for
SWRL [10]. OWL DL’s RDF-compatible semantics and correspondence theorem
[16] have not been extended to SWRL.

In this paper we present basic definitions of an RDF-compatible semantics
of rules. We combine this semantics with a non-standard semantics involving
the OWL vocabulary, with lower computational complexity than OWL DL, so

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 668–684, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Combining RDF and Part of OWL with Rules 669

that there is greater scope for arriving at a decidable combination of ontolo-
gies and rules. In [11] the pD* semantics was defined as a weakened variant
of OWL Full. In [12] the pD* semantics was extended to apply to a larger
subset of the OWL vocabulary, which includes FunctionalProperty, Inverse-
FunctionalProperty, sameAs, SymmetricProperty, TransitiveProperty, in-
verseOf, equivalentClass, equivalentProperty, hasValue, someValues-
From, allValuesFrom, differentFrom and disjointWith. The pD* semantics
is in line with and extends the ‘if-semantics’ of RDFS [8], and is weaker than
the ‘iff-semantics’ of D-entailment and OWL Full. As an example, the pD* se-
mantics assumes, like RDFS, that if c is a subclass of d, then each instance of
c is an instance of d, but does not assume, like OWL does, that the converse
condition also holds. While classes can be used as instances, fewer entailments
are supported that relate to datatypes or entire classes or properties. The pD*
semantics seems to be sufficient for many applications where an ontology is used
in combination with data relating to instances. There is a complete set of simple
entailment rules for pD* entailment which extend the standard entailment rules
for RDFS; pD* consistency is in P, while pD* entailment is NP-complete, and
in P if the target RDF graph has no blank nodes [12].

The model-theoretic semantics for RDF integrated with rules described in
this paper includes the pD* semantics. We show that the decidability and com-
plexity results for the pD* semantics can be extended to include a large class of
rules. The resulting combination includes meta-modeling expressivity and uses a
simple, uniform framework involving (entailment) rules also for RDFS and part
of OWL. This leads to a relatively low threshold for implementation.

In this paper we describe some of the background to pD* entailment, but
refer to [12] for the underlying model theory. See [12], Sections 1.8 and 5.1, for
an extensive discussion and comparison of the pD* semantics and the semantics
of OWL DL and Full. This paper does not contain complete proofs.1

2 Abstract Syntax, Examples, Overview, Discussion

2.1 Abstract Syntax for Rules

A rule is viewed as a pair of rule graphs; a rule graph is a set of triple patterns2

which generalize RDF triples [13] by also allowing rule variables in subject,
predicate and object positions. If ρ = (ρl, ρr) is a rule, then ρl is called the body
or left-hand side of the rule, and ρr is called the head or right-hand side of the
rule. We impose the common condition that each rule variable in the head of a
rule also appears in the body of the rule. We also require that the body of a rule
cannot contain blank nodes. It should be noted, however, that in an application
of a rule, a rule variable in the body of the rule can be matched with a blank
node in an RDF graph.

1 A version of this paper with complete proofs is available on request.
2 This term is used in the same way by [18].



670 H.J. ter Horst

If the body and the head of a rule ρ are both nonempty, then ρ will be called
a proper rule and will be written informally as: IF ρl THEN ρr.

If the body of a rule ρ is empty, then the rule is viewed as specifying certain
axioms. In this case ρ is called an axiom rule, written as: AXIOMS ρr.

If the head of a rule ρ is empty, then the rule is interpreted as specifying that
a certain pattern of RDF statements should be viewed as inconsistent. In this
case, ρ is called an inconsistency rule, written informally as: NOT ρl. Compare
the standard equivalence of the formulas P ⇒ Q and ¬P ∨Q.

In the following examples we use the N-Triples syntax for RDF [6] for bodies
and heads of rules, writing rule variables for example as ?x.

2.2 Example: Uncle

The well-known uncle example displays a widely-used kind of rule that cannot
be expressed in OWL:

IF ?a ex:hasParent ?b .
?b ex:hasBrother ?c .

THEN ?a ex:hasUncle ?c .

2.3 Example: Entailment for RDFS and OWL

RDFS-entailment [8] is characterized by entailment rules (see Table 1 below),
which can be viewed as being defined by proper rules. Along the same lines,
the pD* semantics [12] involving the OWL vocabulary is characterized by en-
tailment rules, which can also be viewed as being defined by proper rules. The
pD* semantics can be realized by 1 axiom rule, 23 proper rules (none of which
introduces blank nodes; cf. Table 2) and 2 inconsistency rules. We give two
examples, the inconsistency rule for differentFrom and the proper rule for
FunctionalProperty (cf. entailment rule rdfp1, see Table 2):

NOT ?v owl:differentFrom ?w .
?v owl:sameAs ?w .

IF ?p rdf:type owl:FunctionalProperty .
?u ?p ?v .
?u ?p ?w .

THEN ?v owl:sameAs ?w .

2.4 Example: intersectionOf

Although the pD* semantics does not explicitly include unionOf and
intersectionOf, half of OWL’s iff conditions for these constructs are avail-
able in an alternative way, by means of rdfs:subClassOf [12]. For example, the
fact that a class c is contained in the intersection of the classes c1, . . . , cn can be
expressed by saying that c is a subclass of each class cj . The converse condition,
and thereby OWL’s complete semantic condition for intersectionOf, can be
realized by adding a proper rule:



Combining RDF and Part of OWL with Rules 671

IF ?x rdf:type c1 .
. . .
?x rdf:type cn .

THEN ?x rdf:type c .

2.5 Example: disjointProperties

Rules can be used for meta-modeling, for example to extend OWL. OWL’s
disjointWith primitive applies to classes: OWL does not have a similar no-
tion for properties. Such a primitive can be added with an inconsistency rule
and an axiom rule:

NOT ?p ex:disjointProperties ?q .
?a ?p ?b .
?a ?q ?b .

AXIOMS ex:disjointProperties rdfs:domain rdf:Property .
ex:disjointProperties rdfs:range rdf:Property .

2.6 Example: someValuesFrom

The pD* semantics [12] includes the complete iff condition for hasValue from
the OWL semantics [16] (cf. entailment rules rdfp14a and rdfp14bx in Table 2
below), while including an if condition for someValuesFrom and allValuesFrom
(cf. entailment rules rdfp15 and rdfp16 in Table 2). An additional proper rule
can be used to obtain OWL’s complete iff condition for someValuesFrom:3

IF ?v owl:someValuesFrom ?w .
?v owl:onProperty ?p .
?u rdf:type ?v .

THEN ?u ?p b .
b rdf:type ?w .

This rule introduces a new blank node, which is denoted by b.

2.7 Example: Rules for Role-Value-Maps

A role-value-map [1] is a definition of a class in terms of the composite of certain
properties pi and qj :

C = {x : ∀y (x, y) ∈ p1 ◦ . . . ◦ pm ⇒ (x, y) ∈ q1 ◦ . . . ◦ qn}

Role-value-maps arise in a number of applications and are difficult to combine
with description logics. The inclusion ⊆ can be written as: if x ∈ C and (x, y) ∈
p1◦ . . .◦pm, then (x, y) ∈ q1◦ . . .◦qn. It is not difficult to see that this if condition
can be expressed by a proper rule that introduces n− 1 new blank nodes.

3 This proper rule induces entailment rule rdf-svx: see [12], Section 6.



672 H.J. ter Horst

2.8 Example: Airports and Map Points

For the final example we switch to the N3 syntax [2], which can be used to give
a succinct representation of rules that introduce blank nodes. The following rule
(by Mike Dean) from the DAML set of test rules4 states that for each airport
there is a map point with the same location, which is the underlying object of
the airport, and has the appropriate label:

{ ?airport a airport-ont:Airport;
airport-ont:latitude ?lat;
airport-ont:longitude ?lon;
airport-ont:name ?name }

=> { :layer map:object [a map:Point;
map:Location [a map:Location;

map:latitude ?lat; map:longitude ?lon];
map:underlyingObject ?airport;
map:label ?name].}.

This is the original version of the rule, which introduces two blank nodes. See
[10] for an alternative representation of this rule in SWRL, which uses two
someValuesFrom statements.

2.9 Overview and Discussion

In this paper we present basic definitions of an RDF-compatible semantics of
rules and give a model-theoretic definition of R-entailment, which describes in
a mathematical way what it means if a (source) RDF graph S entails a (target)
RDF graph G with respect to a set of rules R. R-entailment is taken to be
an extension of RDFS entailment, extending the meta-modeling capabilities of
RDFS. R-entailment also incorporates pD* entailment [12] and thereby part
of OWL. Most examples in the DAML set of test rules (cf. Example 2.8) are
covered by our approach; in this paper we do not consider the use of arithmetic,
e.g. for conversion of different units. We prove a general completeness result
for R-entailment, which shows that a restricted form of application of rules
that introduce blank nodes is in general sufficient to determine R-entailment.
For rules that do not introduce blank nodes, we prove that R-entailment and
R-consistency are decidable and in PSPACE. For rules that do not introduce
blank nodes and that satisfy a bound on the size of rule bodies, we prove that
R-consistency is in P, that R-entailment is in NP, and that R-entailment is in P
if target RDF graphs do not have blank nodes. These results are proved, as in
[12], by showing that entailment rules can be used to form a partial closure graph
H of the source graph S that is sufficient to decide consistency and entailment,
that is polynomially bounded in size, and that can be computed in polynomial
time if there is a bound on the size of rule bodies. S R-entails a target graph G
if replacements can be made of the blank nodes in G that turn G into a subset
of H ; this can be checked with a non-deterministic guess, which is not needed if
4 http://www.daml.org/2003/06/ruletests/translation-1.n3



Combining RDF and Part of OWL with Rules 673

G does not have blank nodes. S is R-inconsistent if H contains a set of triples
that matches with an inconsistency rule.

The rules considered here are analogous to and simpler than datalog rules;
triple patterns take the place of first-order atoms. Datalog and description logics
do not use blank nodes. The PSPACE complexity of R-entailment for rules that
do not introduce blank nodes compares favorably with the complexity of OWL
DL (NEXPTIME-complete [9]) and datalog (EXPTIME-complete [4]); the latter
results form points of comparison for combination formalisms (cf. Section 5).
The data complexity of pure datalog is P (in fact P-complete [4]). If rules do
not introduce blank nodes, then R-entailment (and R-consistency) with respect
to a fixed set of rules is also in P. This compares favorably with the coNP-
hard data complexity reported for systems that extend a description logic with
datalog rules (see Section 5). The gain in complexity can be ‘understood’ in
part by noting that part of OWL is captured as part of R-entailment with (pD*
entailment) rules by the results of [12].

3 Background

This section summarizes part of the material used from [13] [8] [12].

3.1 URI References, Blank Nodes, Literals

The symbol U denotes the set of URI references, B denotes the set of blank
nodes, i.e. (existentially quantified) variables, and L denotes the set of literals,
i.e. data values such as strings and integers. L is the union of the set Lp of plain
literals and the set Lt of typed literals. A typed literal l consists of a lexical form
s and a datatype URI t: we write l as a pair, l = (s, t). The sets U , B, Lp and Lt

are pairwise disjoint. A vocabulary is a subset of U ∪ L. The symbol T denotes
the set of all RDF terms, i.e. T = U ∪B ∪L. The notion ‘RDF term’ is used in
the same way by [18].

3.2 Generalized RDF Graphs

A generalized RDF graph G [12] is defined to be a subset of the set

U ∪B × U ∪B × U ∪B ∪ L . (1)

The elements (s, p, o) of a generalized RDF graph are called generalized RDF
statements or generalized RDF triples, which consist of a subject, a predicate (or
property) and an object, respectively. We write triples as s p o. RDF graphs [13]
[8] require properties to be URI references; generalized RDF graphs, which also
allow properties to be blank nodes, were introduced in [12] to solve the problem
that the standard set of entailment rules for RDFS [8] is incomplete.

If the projection mappings on the three factor sets of the product set given
in (1) are denoted by πi, the set of RDF terms of a generalized RDF graph G is

T (G) = π1(G) ∪ π2(G) ∪ π3(G).



674 H.J. ter Horst

The set of blank nodes of a generalized RDF graph G is denoted by bl(G) =
T (G) ∩ B. The vocabulary of a generalized RDF graph G is the set V (G) =
T (G) ∩ (U ∪ L). Two generalized RDF graphs G and G′ are equivalent if there
is a bijection f : T (G)→ T (G′) such that f(bl(G)) ⊆ bl(G′), such that f(v) = v
for each v ∈ V (G), and such that s p o ∈ G if and only if f(s) f(p) f(o) ∈ G′.

A generalized RDF graph is ground if it has no blank nodes.
Given a partial function h : B ⇀ T , an instance of a generalized RDF graph

G is the generalized RDF graph Gh obtained from G by replacing the blank
nodes v in G and the domain of h by h(v).

Given a set S of generalized RDF graphs, a merge of S is a generalized RDF
graph that is obtained by replacing the generalized graphs G in S with equivalent
generalized graphs G′ that do not share blank nodes and by taking the union of
these generalized graphs G′. The merge of a set of generalized RDF graphs S is
uniquely defined up to equivalence. A merge of S will be denoted by M(S).

3.3 Simple Interpretations

A simple interpretation [8] I of a vocabulary V is a 6-tuple I =
(RI , PI , EI , SI , LI , LVI), where RI is a nonempty set, called the set of resources,
PI is the set of properties, LVI is the set of literal values, which is a subset of
RI that contains at least all plain literals in V , and where EI , SI and LI are
functions: EI : PI → P(RI×RI), SI : V ∩U → RI ∪PI , LI : V ∩Lt → RI .
Here P(X) denotes the power set of the set X , i.e. the set of all subsets of X .
If I is a simple interpretation of a vocabulary V , then I also denotes a function
with domain V , in the following way. For l ∈ Lp ∩ V , we have I(l) = l ∈ LVI .
For l ∈ Lt ∩ V , I(l) = LI(l). For a ∈ U ∩ V , I(a) = SI(a).

If E = s p o is a ground triple, then a simple interpretation I of a vocabulary
V is said to satisfy E if s, p, o ∈ V, I(p) ∈ PI and (I(s), I(o)) ∈ EI(I(p)). If G is
a ground RDF graph, then I satisfies G if I satisfies each triple E ∈ G.

Given a simple interpretation I and a partial function A : B ⇀ RI , a function
IA is defined that extends I by using A to give an interpretation of blank nodes
in the domain of A. If A(v) is defined for v ∈ B, then IA(v) = A(v). If G
is any generalized RDF graph, then I satisfies G if IA satisfies G for some
function A : bl(G) → RI , i.e. if, for each triple s p o ∈ G, we have IA(p) ∈ PI

and (IA(s), IA(o)) ∈ EI(IA(p)). If I is a simple interpretation and S a set of
generalized RDF graphs, then I satisfies S if I satisfies G for each G in S; it is
not difficult to see that I satisfies S if and only if I satisfies M(S).

3.4 RDFS Entailment and D* Entailment

The notion of D* entailment [11] [12] generalizes RDFS entailment [8] to include
reasoning with datatypes from a given datatype map D [8]. If D contains only
the standard datatype rdf:XMLLiteral, then D* entailment coincides exactly
with RDFS entailment. Table 1 lists a complete set of entailment rules for D*
entailment. In this table, prefixes such as rdf: are omitted from e.g. the URI
rdf:type. These rules consist of the 18 rules defined in [8] for RDFS, with



Combining RDF and Part of OWL with Rules 675

two differences that affect rules rdf2 and rdfs7. Rule rdfs7x corrects an error
overlooked in [8] and [11] (see [12], Section 1.5): it differs from rule rdfs7 in that
it can produce generalized RDF triples with blank nodes in predicate position
when applied to ordinary RDF triples. To handle datatypes, rule rdf2 is replaced
by the more general rule rdf2-D. Use is made of new blank nodes bl, called
surrogate blank nodes, allocated by rule lg (‘literal generalization’) to literals l.
In rule rdfs1, bl is a blank node allocated by rule lg to a plain literal l ∈ Lp.
In rule rdf2-D, bl is a blank node allocated by rule lg to a well-typed D-literal
l: l ∈ L+

D. The only inconsistencies that can arise for the D* semantics are D-
clashes, which generalize XML-clashes [8]: given a datatype map D, a D-clash
is a triple b type Literal, where b is a blank node allocated by rule lg to an
ill-typed D-literal l: l ∈ LD − L+

D.

Table 1. D* entailment rules [12]

If G contains where then add to G
lg v p l l ∈ L v p bl

gl v p bl l ∈ L v p l
rdf1 v p w p type Property
rdf2-D v p l l = (s, a) ∈ L+

D bl type a
rdfs1 v p l l ∈ Lp bl type Literal
rdfs2 p domain u

v p w v type u
rdfs3 p range u

v p w w ∈ U ∪ B w type u
rdfs4a v p w v type Resource
rdfs4b v p w w ∈ U ∪ B w type Resource
rdfs5 v subPropertyOfw

w subPropertyOf u v subPropertyOf u
rdfs6 v type Property v subPropertyOf v
rdfs7x p subPropertyOf q

v p w q ∈ U ∪ B v q w
rdfs8 v type Class v subClassOf Resource
rdfs9 v subClassOfw

u type v u typew
rdfs10 v type Class v subClassOf v
rdfs11 v subClassOfw

w subClassOf u v subClassOf u
rdfs12 v type Container-

MembershipProperty v subPropertyOf member
rdfs13 v type Datatype v subClassOf Literal

D* entailment is weaker than D-entailment [8]. For example, with regard to
the XML Schema datatype xsd:boolean, the three triples a p true, a p false,
b type boolean D-entail the triple a p b, but this is not a D* entailment. It
is possible to ‘recover’ certain missing D-entailments by using meta-modeling
statements. See [12], Section 1.7, for an example that uses the pD* semantics.
It is also possible to use rules and R-entailment for this purpose.



676 H.J. ter Horst

3.5 pD* Entailment

The notion of pD* entailment was introduced in [11] [12] as a variant of OWL
entailment, weakening OWL Full (see Section 1). The 18 D* entailment rules
of Table 1 become complete for pD* entailment by adding the 23 P-entailment
rules of Table 2 [12]. In addition to rule rdfp15, there is a second entailment rule
for someValuesFrom, called rdf-svx (see 2.6 and [12], Section 6) and analogous to
rule rdfp16 for allValuesFrom. This rule introduces a new blank node and can
be added for R-entailment; it is not supported by the pD* semantics because
the proof of decidability given in [12] does not extend to the use of this rule.
For the pD* semantics, in addition to D-clashes, another type of inconsistency
is formed by P-clashes: a P-clash is either a combination of two triples of the
form v differentFrom w, v sameAs w, or a combination of three triples of the
form v disjointWith w, u type v, u type w.

4 Rules and R-Entailment

In this section we define a model-theoretic semantics integrating RDF with rules
and extend the completeness, decidability and complexity results obtained in
[12]. Starting in 4.4, we make the combination with the pD* semantics for OWL
[12]. It is also possible to start from simple entailment or RDFS entailment,
which would simplify some results; for example, P-entailment rules could be
subsumed under R-entailment rules. However, an advantage of the chosen setup
is that a closer connection is obtained to the semantic conditions of OWL.

4.1 Definition (Rule Graph)

In our definition of rules we use a set of rule variables X which is assumed to be
disjoint from the set T of RDF terms: X ∩T = ∅. Rule variables will also briefly
be called variables. A rule graph G is defined to be a set of triple patterns, i.e. a
subset of the product set

U ∪B ∪X × U ∪B ∪X × U ∪B ∪ L ∪X . (2)

Given a rule graph G, we denote the union of the projection mappings πi on the
three factor sets of the product set given in (2), applied to G, by

π(G) = π1(G) ∪ π2(G) ∪ π3(G).

The set of variables of a rule graph G is denoted by var(G) = π(G) ∩ X , the
set of blank nodes of G by bl(G) = π(G) ∩ B, and the vocabulary of G by
V (G) = π(G) ∩ (U ∪ L).

Two kinds of instances of rule graphs are defined, with respect to variables
and with respect to blank nodes. Given a rule graph G and a function ϕ :
var(G) → T , the instance of G with respect to ϕ is the generalized RDF graph
Gϕ obtained from G by replacing the variables v ∈ var(G) by ϕ(v). Similarly,



Combining RDF and Part of OWL with Rules 677

Table 2. P-entailment rules [12]

If G contains where then add to G
rdfp1 p type FunctionalProperty

u p v
u p w v ∈ U ∪ B v sameAsw

rdfp2 p type Inverse-
FunctionalProperty
u p w
v p w u sameAs v

rdfp3 p type SymmetricProperty
v p w w ∈ U ∪ B w p v

rdfp4 p type TransitiveProperty
u p v
v p w u p w

rdfp5a v p w v sameAs v
rdfp5b v p w w ∈ U ∪ B w sameAsw
rdfp6 v sameAsw w ∈ U ∪ B w sameAs v
rdfp7 u sameAs v

v sameAsw u sameAsw
rdfp8ax p inverseOf q

v p w w, q ∈ U ∪ B w q v
rdfp8bx p inverseOf q

v q w w ∈ U ∪ B w p v
rdfp9 v type Class

v sameAsw v subClassOfw
rdfp10 p type Property

p sameAs q p subPropertyOf q
rdfp11 u p v

u sameAs u′

v sameAs v′ u′ ∈ U ∪ B u′ p v′

rdfp12a v equivalentClassw v subClassOfw
rdfp12b v equivalentClassw w ∈ U ∪ B w subClassOf v
rdfp12c v subClassOfw

w subClassOf v v equivalentClassw
rdfp13a v equivalentProperty w v subPropertyOfw
rdfp13b v equivalentProperty w w ∈ U ∪ B w subPropertyOf v
rdfp13c v subPropertyOfw

w subPropertyOf v v equivalentProperty w
rdfp14a v hasValuew

v onProperty p
u p w u type v

rdfp14bx v hasValuew
v onProperty p
u type v p ∈ U ∪ B u p w

rdfp15 v someValuesFromw
v onProperty p
u p x
x typew u type v

rdfp16 v allValuesFromw
v onProperty p
u type v
u p x x ∈ U ∪ B x typew



678 H.J. ter Horst

given a rule graph G and a partial function h : B ⇀ T , the instance of G
with respect to h is the rule graph Gh obtained from G by replacing the blank
nodes v in G and the domain of h by h(v). Given a rule graph G combined with
h : B ⇀ T and ϕ : var(X)→ T , Ghϕ is the instance of Gh with respect to ϕ.

4.2 Definition (Rule)

A rule is defined as a pair of rule graphs ρ = (ρl, ρr) that are not both empty
and that satisfy the conditions var(ρr) ⊆ var(ρl) and bl(ρl) = ∅. If ρ = (ρl, ρr) is
a rule, then ρl is called its left-hand side or body, and ρr is called its right-hand
side or head. Given a rule ρ, the set of variables of ρ is denoted by var(ρ) =
var(ρl), the set of blank nodes of ρ by bl(ρ) = bl(ρr), and the vocabulary of ρ by
V (ρ) = V (ρl)∪V (ρr). If R is a set of rules, then V (R) =

⋃
ρ∈R V (ρ). A rule ρ is

said to introduce blank nodes if bl(ρ) 
= ∅. A rule ρ is called finite if both ρl and
ρr are finite. As was already mentioned in 2.1, a rule ρ is called a proper rule if
ρl and ρr are both nonempty, an axiom rule if ρl = ∅ and an inconsistency rule
if ρr = ∅.

4.3 Definition (Satisfaction)

Given a simple interpretation I (see 3.3) and a partial function Z : X ⇀ RI ,
a function IZ is defined that extends I by setting IZ(v) = Z(v) if Z(v) is
defined for v ∈ X . If, in addition, a partial function A : B ⇀ RI is given, a
function IZA is defined that extends IZ further by setting IZA(v) = A(v) if
A(v) is defined for v ∈ B. If G is any rule graph, I a simple interpretation and
Z : var(G) → RI a function, then IZ is said to satisfy G if there is a function
A : bl(G) → RI such that for each triple pattern s p o ∈ G we have IZA(p) ∈ PI

and (IZA(s), IZA(o)) ∈ EI(IZA(p)).
A simple interpretation I satisfies a rule ρ if I(p) ∈ PI for each p ∈ U that

appears in predicate position in a triple pattern in ρl or ρr, and if I also satisfies
the following conditions:

– If ρ is an axiom rule, then I satisfies ρr.
– If ρ is a proper rule and Z : var(ρ) → RI a function such that IZ satisfies

ρl, then IZ also satisfies ρr.
– If ρ is an inconsistency rule, then there is no function Z : var(ρ)→ RI such

that IZ satisfies ρl.

4.4 Definition (R-Interpretations, R-Entailment)

If R is a set of rules and D a datatype map, an R-interpretation of a vocabulary
V is a pD* interpretation [12] of V ∪ V (R) that satisfies each rule ρ ∈ R.

Given a set of rules R, a set S of generalized RDF graphs is called R-
consistent if there is an R-interpretation that satisfies S.

Given a set of rules R, the set of R-axiomatic triples is the generalized RDF
graph obtained by taking the merge of the generalized RDF graphs ρr where ρ



Combining RDF and Part of OWL with Rules 679

ranges over the axiom rules in R, by adding the triples p type Property for each
p ∈ U appearing in predicate position in a triple pattern in a body or head of a
rule ρ ∈ R, and by adding the triples v type Resource for each v ∈ U ∩ V (R).

Given a set of rules R, an R-clash is a generalized RDF graph that forms
an instance ρlϕ of the body ρl of an inconsistency rule ρ ∈ R for a function
ϕ : var(ρ)→ T .

Table 3. Three R-entailment rules (see 4.5 for the R-entailment rules rdfρ)

If R contains where then add to G

lg-R v p l l ∈ L bl type Resource

rdf2-DR v p l l = (s, a) ∈ L+
D bl type a

rdfs1-R v p l l ∈ Lp bl type Literal

Given a datatype map D and a set of rules R, a set S of generalized RDF
graphs R-entails a generalized RDF graph G if each R-interpretation I that
satisfies S also satisfies G. In this case, we write S |=R G.

4.5 Definition (R-Entailment Rules)

See Table 3 for the definition of the R-entailment rules lg-R, rdf2-DR and rdfs1-
R, given a set of rules R and a datatype map D. In this table the phrase “If R
contains v p l” stands for “If R contains a rule ρ such that ρl or ρr contains the
triple pattern v p l”. These rules are similar to rules lg, rdf2-D, rdfs1: see 3.4.
For each proper rule ρ ∈ R, the R-entailment rules also include an entailment
rule rdfρ, defined in the following way. If a given generalized RDF graph G
contains the triples in the instance ρlϕ of ρl for a function ϕ : var(ρ) → T (G),
where ϕ(x) ∈ U ∪B for each x ∈ (π1(ρr)∪ π2(ρr))∩X , then rdfρ prescribes the
following two steps:

– Replace the rule graph ρr with the instance ρrh of ρr by replacing the blank
nodes b in ρr with blank nodes h(b) that do not appear in G; here h : bl(ρr) →
B is assumed to be an injective function.

– Add the triples in the instance ρrhϕ of ρrh to G.5

4.6 Definition (Partial and Full R-Closures)

The rule system described in this paper is declarative; the entailment rules of
Tables 1 and 2 and the preceding definition can be applied in any order (cf.
Theorem 4.10). However, in order to prove decidability, we consider a special

5 Note, as an example, that the syntactic conditions imposed in Table 2 on the pD*
entailment rules (e.g. the condition v ∈ U ∪ B of rule rdfp1) are realized exactly
by the general syntactic condition of the entailment rules rdfρ that arise from the
corresponding proper rules.



680 H.J. ter Horst

way of applying the entailment rules. Suppose that D is a datatype map, R a set
of rules and G a generalized RDF graph. Suppose that K is a nonempty subset
of the positive integers {1, 2, ...} chosen in such a way that for each container
membership property [8] rdf: i ∈ V (G) ∪ V (R) we have i ∈ K. The partial
R-closure GRK of G is defined in the following way, refining the definitions of
partial D* and pD* closure [12]. In the first step, all RDF, RDFS, D-axiomatic
triples and P-axiomatic triples [12] are added to G, except for the axiomatic
triples that include rdf: i such that i /∈ K. Moreover, the R-axiomatic triples
are added in such a way that G does not contain any blank node that appears
in the merge of the generalized RDF graphs ρr, where ρ ranges over the axiom
rules in R. In the next step, rules lg and lg-R are applied to each triple in G
that contains a literal and to each triple pattern (in a rule in R) that contains
a literal that does not appear in G, in such a way that distinct well-typed D-
literals with the same value are associated with the same surrogate blank node
bl. Then, rules rdf2-D and rdfs1 are applied to each triple in G containing a well-
typed D-literal or a plain literal, respectively. Next, rules rdf2-DR and rdfs1-R
are applied to each triple pattern that appears in a rule in R and that contains
a well-typed D-literal or plain literal that has not yet been handled by rules
rdf2-D and rdfs1, respectively. The generalized RDF graph that has now been
obtained is denoted by G0. The partial R-closure GRK is defined in a recursive
way: GRK =

⋃∞
n=0 Gn. Suppose that Gn has been defined. Then, Gn+1 is the

generalized RDF graph that extends Gn by making all possible applications
to triples in Gn for each of the remaining D* entailment rules, P-entailment
rules and rule lg; moreover, for each entailment rule rdfρ arising from a proper
rule ρ ∈ R, one application is made for each instance ρlϕ of ρl for a function
ϕ : var(ρ)→ T (Gn), where ϕ(x) ∈ U ∪B for each x ∈ (π1(ρr)∪π2(ρr))∩X , such
that ρlϕ ⊆ Gn, and, if ρ introduces blank nodes, such that there is no function
h : bl(ρr) → T (Gn) such that ρrhϕ ⊆ Gn.6 This completes the definition of the
partial closure GRK . Theorem 4.11 shows that this restricted use of proper rules
that introduce blank nodes is in general sufficient to determine R-entailment.
It should be noted that applications of rule lg in the last, recursive step do not
lead to new blank nodes bl. The full R-closure GR of G is defined by taking
GR = GR{1,2,...}.

4.7 Lemma

Let D be a finite datatype map. If R is a finite set of finite rules that do not
introduce blank nodes and G a finite generalized RDF graph, then each partial
R-closure GRK of G is finite for K finite, and of size bounded by a polynomial in
|G|, |K| and

∑
ρ∈R(|ρl|+ |ρr|). If there is a bound on the size of rule bodies (e.g.

if R is fixed), then a partial R-closure of a finite generalized RDF graph G can
be computed in polynomial time, and it is possible to determine in polynomial
time if a finite generalized RDF graph contains an R-clash.

6 For example: for the proper rule for someValuesFrom (see 2.6) no application needs
to be made if (the term matched by) ?u is already ?p-related to a term of type ?w.



Combining RDF and Part of OWL with Rules 681

Proof. This can be proved by refining the proof of Lemma 4.8 in [12]. �

In the remainder of this section D is a given datatype map.

4.8 Definition (R-Herbrand Interpretation)

Given a set of rules R and a generalized RDF graph G, an R-Herbrand interpre-
tation RK(G) is defined in a similar way to a D* Herbrand interpretation SK(G)
(see [12], Definition 4.9). The only difference is that, throughout the definition,
V (Gs) is replaced by V (GR) ∪ V (R), bl(Gs) by bl(GR) and Gs,K by GRK .

4.9 R-Satisfaction Lemma

Let R be a set of rules and G a generalized RDF graph. If the partial R-closure
GRK of G does not contain an R-clash, P-clash or D-clash, then RK(G) is an
R-interpretation that satisfies GRK .

Proof. This can be proved by extending the proofs of the D* and pD* satisfaction
lemmas (Lemmas 4.10 and 5.10 in [12]). �

4.10 Theorem (R-Entailment Lemma)

Let R be a set of rules, S a set of generalized RDF graphs and G a generalized
RDF graph. Then, S |=R G if and only if there is a generalized RDF graph H
that can be derived from M(S) merged with RDF, RDFS, D-axiomatic triples,
P-axiomatic triples and R-axiomatic triples, by application of D* entailment
rules, P-entailment rules and R-entailment rules, and that either contains an
instance of G as a subset or contains an R-clash, P-clash or D-clash.

4.11 Theorem (R-Entailment Lemma: Alternative Statement)

Let R be a set of rules, S a set of generalized RDF graphs and G a generalized
RDF graph. Let H be a partial R-closure M(S)RK of M(S) and suppose that
i ∈ K for each rdf: i ∈ V (G). Then, S |=R G if and only if either H contains
an instance of G as a subset or H contains an R-clash, P-clash or D-clash.

4.12 Corollary

If D is finite, then the R-entailment relation S |=R G between finite sets S of
finite generalized RDF graphs, finite sets R of finite rules that do not introduce
blank nodes, and finite generalized RDF graphs G is decidable and in PSPACE.
If there is a bound on the size of rule bodies, then this problem is in NP, and in
P if G is ground.

4.13 Theorem (R-Consistency Lemma)

Let R be a set of rules, S a set of generalized RDF graphs and H a partial R-
closure of M(S). Then, S is R-consistent if and only if H does not contain an
R-clash, P-clash or D-clash.



682 H.J. ter Horst

4.14 Corollary

If D is finite, then the problem to determine if a finite set of finite generalized
RDF graphs is R-consistent with respect to a finite set R of finite rules that do
not introduce blank nodes is decidable and in PSPACE, and in P if there is a
bound on the size of rule bodies.

Proof. The proof of Theorems 4.10, 4.11 and 4.13 builds further on the proof of
Theorems 5.11, 5.12 and 5.15 of [12]. The proof of the corollaries is based on the
computation of a partial R-closure H = M(S)RK , following the steps described
in Definition 4.6. Lemma 4.7 and its proof show that this computation can be
done in polynomial space and that it can be done in polynomial time if there
is a bound on the size of rule bodies. For Corollary 4.12, a non-deterministic
guess is used of an instance function h such that Gh ⊆ H (by Savitch’s theorem,
NPSPACE=PSPACE); this is not needed if G is ground. �

If R is allowed to vary without restrictions, then R-consistency is NP-hard,
even if only inconsistency rules are used. This can be shown with a transforma-
tion from the standard NP-complete problem conjunctive boolean query.

5 Related Work

SWRL combines ontologies with rules by extending OWL DL with datalog rules,
i.e. function-free Horn rules [10]. Rules may include DL atoms and sameAs and
differentFrom statements; unlike the approaches that will be mentioned next,
in SWRL rules cannot include non-DL atoms. Consistency and entailment for
SWRL are undecidable, by a reduction from the domino problem [10]. For SWRL
a prototype implementation has been described which makes use of first-order
reasoning, necessarily without guarantee of completeness [10].

Several formalisms have been investigated which impose restrictions on the
extension of a description logic with datalog rules in order to obtain decidable
inference problems (cf. 2.9). AL-log [5] allows the addition to rule bodies of
atoms that specify that a constant or variable belongs to a class defined in the DL
ALC. The resulting combination is shown to be decidable and in NEXPTIME by
using a tableau algorithm in combination with constrained SLD-derivation. As
an example, the standard NP-complete problem graph 3-colorability is encoded
with a knowledge base [5], which shows that data complexity of AL-log is coNP-
hard [3]. A similar encoding cannot be used with the approach described in this
paper because it uses the union construct to express that each node in the input
graph belongs to one of three colors (cf. 2.4).

The CARIN approach [14] includes a more powerful description logic
(ALCNR) and has more possibilities allowing concepts and roles in datalog
rules. Much attention is devoted to the “existential entailment problem”: for
two or more Horn rules, it may occur that either the antecedents of one rule are
satisfied or the antecedents of another rule are satisfied, while it is not known
which of these possibilities occurs, so that all possibilities need to be considered,



Combining RDF and Part of OWL with Rules 683

thus increasing the computational complexity. This contrasts with traditional
Horn systems and the approach described in this paper, where the application
of rules can be considered in isolation. In [14], several restrictions are discussed
which guarantee decidability, leading to coNP-complete data complexity, i.e.
complexity of inference in the number of ground facts.

One of these restrictions requires that each variable in a Horn rule appears
in a non-DL-atom in the body of the rule. This “DL-safety” condition is also
used to achieve decidability in [15] and [17], with formalisms that include increas-
ingly expressive DLs. According to [15], DL-safety amounts to the condition that
“the identity of all objects is known”. R-entailment, on the other hand, allows
variables in bodies of rules to be matched with blank nodes.

DLP captures part of OWL DL with datalog rules [7]. Datalog is EXPTIME-
complete [4]. DLP does not include the same expressivity as R-entailment. For
example, sameAs and FunctionalProperty are not supported by DLP. Unlike
the R-semantics, the formalisms mentioned in this section do not include the
full semantics of RDF and meta-modeling capabilities as provided by RDFS.
For example, DLP is restricted to the “DAML+OIL subset of RDFS” [7].

This paper uses a simple, uniform approach which, unlike in e.g. [5], does
not involve a hybrid system that incorporates two distinct reasoning paradigms.
Just like RDF and OWL and unlike [5] [14] [17], this paper does not make a
unique names assumption. To recapitulate, DLP seems to be the approach that
is most similar to R-entailment; compared with other formalisms that combine
ontologies and rules, R-entailment does not include the same expressivity but
leads to improved complexity and adds meta-modeling expressivity.

6 Conclusion

In this paper we have defined a semantic extension of RDF that incorporates
rules. We started from an abstract syntax that considers a rule as a pair of rule
graphs which extend RDF graphs with the possibility to include rule variables.
For a set of rules R, we defined a general notion of R-entailment, which
extends RDFS and its meta-modeling capabilities. R-entailment also extends a
decidable part of OWL that weakens D-entailment and OWL Full. We proved
a general completeness result for R-entailment, which shows that a restricted
form of application of rules that introduce blank nodes is in general sufficient
to determine R-entailment. For rules that do not introduce blank nodes, we
proved that R-entailment and R-consistency are decidable and in PSPACE. For
rules that do not introduce blank nodes and that satisfy a bound on the size of
rule bodies, we proved that R-consistency is in P, that R-entailment is in NP,
and that R-entailment is in P if the target RDF graph is ground.

Acknowledgment. Many thanks to Warner ten Kate, Jan Korst and the anony-
mous reviewers for their useful comments about the manuscript.



684 H.J. ter Horst

References

1. F. Baader et al. (Eds.), The Description Logic Handbook, Cambridge, 2003.
2. T. Berners-Lee, S. Hawke, D. Connolly, Semantic Web Tutorial Using N3, May

2004, http://www.w3.org/2000/10/swap/doc/
3. M. Cadoli, L. Palopoli, M. Lenzerini, Datalog and Description Logics: Expressive

Power, Proceedings of the 6th International Workshop on Database Programming
Languages (DBPL1997), pp. 281-298, 1997.

4. E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and Expressive Power
of Logic Programming, ACM Computing Surveys, 33 (2001) 374-425.

5. F.M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, AL-log: Integrating Datalog and
Description Logics, Journal of Intelligent Information Systems, 10 (1998) 227-252.

6. J. Grant, D. Beckett (Eds.), RDF Test Cases, W3C Recommendation, 10 February
2004, http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/

7. B. Grosof, I. Horrocks, R. Volz, S. Decker, Description Logic Programs: Combin-
ing Logic Programs with Description Logic, Proceedings of the 12th International
Conference on the World Wide Web (WWW2003), pp. 48-57, 2003.

8. P. Hayes (Ed.), RDF Semantics, W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

9. I. Horrocks, P.F. Patel-Schneider, Reducing OWL Entailment to Description Logic
Satisfiability, Journal of Web Semantics 1 (2004) 345-357.

10. I. Horrocks, P.F. Patel-Schneider, S. Bechhofer, D. Tsarkov, OWL Rules: A Pro-
posal and Prototype Implementation, J. Web Semantics 3 (2005) 23-40.

11. H.J. ter Horst, Extending the RDFS Entailment Lemma, Proceedings 3rd Int.
Semantic Web Conference (ISWC2004), Springer LNCS 3298, pp. 77-91, 2004.

12. H.J. ter Horst, Completeness, Decidability and Complexity of Entailment for RDF
Schema and a Semantic Extension Involving the OWL Vocabulary, Revised and
extended version of [11], Journal of Web Semantics 3 (2005) 79-115.

13. G. Klyne, J. Carroll (Eds.), Resource Description Framework (RDF): Con-
cepts and Abstract Syntax, W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

14. A.Y. Levy, M.-C. Rousset, Combining Horn Rules and Description Logics in
CARIN, Artificial Intelligence 104 (1998) 165-209.

15. B. Motik, U. Sattler, R. Studer, Query Answering for OWL-DL with Rules, Journal
of Web Semantics 3 (2005) 41-60.

16. P.F. Patel-Schneider, P. Hayes, I. Horrocks (Eds.), OWL Web Ontology Lan-
guage Semantics and Abstract Syntax, W3C Recommendation, 10 February 2004,
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/

17. R. Rosati, On the Decidability and Complexity of Integrating Ontologies and Rules,
Journal of Web Semantics 3 (2005) 61-73.

18. RDFDataAccessWorkingGroup,W3C,http://www.w3.org/2001/sw/DataAccess/



Benchmarking Database Representations of
RDF/S Stores

Yannis Theoharis1,2, Vassilis Christophides1,2, and Grigoris Karvounarakis3

1 Institute of Computer Science, FORTH, Vassilika Vouton,
P.O.Box 1385, GR 71110

2 Department of Computer Science, University of Crete, P.O.Box 2208, GR 71409,
Heraklion, Greece

{theohari, christop}@ics.forth.gr
3 Department of Computer and Information Science, University of Pennsylvania,

3330 Walnut St., Philadelphia, PA 19104, USA
gkarvoun@cis.upenn.edu

Abstract. In this paper we benchmark three popular database repre-
sentations of RDF/S schemata and data: (a) a schema-aware (i.e., one ta-
ble per RDF/S class or property) with explicit (ISA) or implicit (NOISA)
storage of subsumption relationships, (b) a schema-oblivious (i.e., a sin-
gle table with triples of the form 〈subject-predicate-object〉), using (ID)
or not (URI) identifiers to represent resources and (c) a hybrid of the
schema-aware and schema-oblivious representations (i.e., one table per
RDF/S meta-class by distinguishing also the range type of properties).
Furthermore, we benchmark two common approaches for evaluating tax-
onomic queries either on-the-fly (ISA, NOISA, Hybrid), or by precomput-
ing the transitive closure of subsumption relationships (MatView, URI,
ID). The main conclusion drawn from our experiments is that the evalua-
tion of taxonomic queries is most efficient over RDF/S stores utilizing the
Hybrid and MatView representations. Of the rest, schema-aware represen-
tations (ISA, NOISA) exhibit overall better performance than URI, which
is superior to that of ID, which exhibits the overall worst performance.

1 Introduction

Several RDF stores have been developed during the last five years for support-
ing real-scale Semantic Web applications. They usually rely on (main-memory)
virtual machine implementations or on (object-) relational database technology,
while employing a variety of storage schemes. The most popular database repre-
sentations for shredding RDF/S resource descriptions into relational tables are:
the schema-oblivious (also called generic or vertical), the schema-aware (also
called specific or binary) and a hybrid representation, combining features of the
previous two. In schema-oblivious, a single table is used for storing both RDF/S
schemata and resource descriptions under the form of triples (〈subject-predicate-
object〉). In schema-aware, each property (or class) defined in an RDF/S schema
is represented by a separate table. In hybrid one table per RDF/S meta-class is

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 685–701, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



686 Y. Theoharis, V. Christophides, and G. Karvounarakis

created, namely, for class and property instances with different range values (i.e.,
resource, string, integer, etc.). Several variations (e.g., with explicit or implicit
database representation of subsumption relationships, use of resource URIs vs
IDs, etc.) of these three core storage schemes have also been implemented in
existing RDF stores [2,15,24,4,16,19,22,13] (see [20] for an extensive survey). In
terms of inferring triples from schema information there exist two approaches:
either to precompute them (at compile-time) or to compute them on demand
(at run-time). The schema-oblivious (URI and ID), as well as, approaches using
materialized views (MatView) adopt the former approach, while schema-aware
(ISA and NOISA) and Hybrid adopt the latter. On demand computations can be
performed either in main memory (as in ISA) or in secondary memory (as in
NOISA and Hybrid). All these representations have pros and cons for different
Semantic Web application scenarios, and, thus, benchmarking their performance
is an important, but also a challenging task.

In this paper, we focus on the efficient evaluation of taxonomic RDF/S
queries, retrieving the proper or transitive instances of a particular class or
property. A key point affecting the performance of such queries is the represen-
tation of subsumption relationships and thus, the cost of traversing persistent
class (or property) hierarchies. For this reason, we have developed a synthetic
RDF/S generator, which takes as input the size of the subsumption hierarchies,
the number of classified resources, as well as their distribution under classes or
properties at various levels in the hierarchy and produces RDF/S schemas and
resource descriptions that match these specifications. Then, we have conducted
extensive experiments on the aforementioned RDF/S storage schemes on top
of the object-relational DBMS PostgreSQL. The main conclusion drawn from
these experiments is that the evaluation of taxonomic queries is most efficient
over RDF/S stores utilizing the Hybrid and MatView representations. This result
is especially interesting in the case of Hybrid which is also optimal in terms of
storage space requirements, in contrast with MatView which relies on Transitive
Closure (TC) precomputation over the database instances, that incurs a huge
storage overhead. Of the rest, schema-aware representations (ISA, NOISA) ex-
hibit as expected overall better performance than URI, which is superior to that
of ID, that exhibits the worst performance.

Experimental results reported in [1] and [2] also highlight the performance
gains of the schema-aware representation compared to the schema-oblivious one.
The main reason is that in the former, tuples contain only the property values
involved in a given query, while in the latter, tuples contain both property names
and values and, thus, imply an additional filtering phase on the property name
on a significantly larger table (i.e., extra overhead for schema filtering in all
queries) to locate the tuples actually involved in a query. However, a compara-
tive evaluation of taxonomic queries against different database representations of
subsumption relationships is not provided in any of these studies. Furthermore,
the statistical analysis presented in [14], [21] highlights the structural charac-
teristics of RDF schemata employed by popular or emerging SW applications.
However, these studies do not benchmark intensional (i.e., schema) or extensional



Benchmarking Database Representations of RDF/S Stores 687

(i.e., data) queries formulated against secondary memory-based RDF/S stores.
Moreover, in [5] an extensive benchmarking of intensional taxonomic queries
has been presented for various families of encodings, using real data from the
Open Directory Portal as a testbed. In this paper, we take one step further, by
evaluating both intensional and extensional taxonomic queries against various
synthetic RDF/S schemata and resources descriptions, corresponding to differ-
ent Semantic Web application needs. The goal of the experiments reported in [8]
was to evaluate the trade-off between the materialization of the TC, including
triples that are inferred by the schema, and its run-time computation using a DL
(Description Logic) reasoner. Their main conclusion was that the use of materi-
alized views in a database managed by a DL reasoner leads to increasing result
completeness, while the query response time is considerably low. Furthermore,
authors in [23] worked on the problem of incremental maintenance of material-
ized ontologies using logic reasoners by taking into account the RDF/S model
semantics [11]. They also noted the trade-off between inferencing time, storage
space and access time. Compared to these studies we provide precise formulas
to estimate the storage overhead of the materialized approach.

The remainder of this paper is organized as follows: Section 2 surveys the
main storage schemes adopted by existing RDF/S stores. Moreover, we illustrate
the translation of taxonomic queries against each of the three possible RDF/S
relational representations. Section 3 introduces our synthetic RDF/S generator
based on different distribution modes of resources under the classes of a schema.
Section 4 presents the results of our experimental evaluation using the qualita-
tive and quantitative parameters considered by our RDF/S generator. Finally,
Section 5 concludes our paper and discusses possible future directions in RDF/S
benchmarking.

2 RDF/S Storage Schemes

The three widely used storage schemes for shredding RDF/S resource descrip-
tions into relational tables are:

Schema-oblivious (also called generic or vertical): One ternary relation is used
to store any RDF/S schema or resource description graph. This table con-
tains triples of the form 〈subject-predicate-object〉 where attribute subject
represents a resource that is the source of a property, whose name is given
in attribute predicate, while attribute object represents a destination re-
source or a literal value for this property (see Figure 1). Different properties
of a specific resource are tied together using the same subject URI.

Schema-aware (also called specific or binary): Unlike the previous representa-
tion one table per RDF/S schema property or class is used (see Figure 2).

Hybrid: In this representation (see Figure 3), there is a ternary relation for ev-
ery different property range type and a binary relation for all class instances
(as in schema-aware). On the other hand, property (class) instances with
range values of the same type are stored in the same relation, distinguished
by the property (class) id (as in schema-oblivious).



688 Y. Theoharis, V. Christophides, and G. Karvounarakis

Triples
Subject Predicate Object

(resource URI) (property name) (property value)

Fig. 1. Schema-oblivious representation

Property1 Class1
Subject Object

(resource URI) (property value)
Subject

(resource URI)

... ...
Propertyn Classm

Subject Object
(resource URI) (property value)

Subject
(resource URI)

Fig. 2. Schema-aware representation

Properties with range Resource Class Instances
Subject Predicate Object

(resource URI) (property name) (property value)
Subject Object

(resource URI) (classid)

...
Properties with range integer

Subject Predicate Object
(resource URI) (property name) (property value)

Fig. 3. Hybrid representation

Schema evolution is straightforward in the schema-oblivious approach,
whereas the addition (deletion) of a new property requires the addition (dele-
tion) of a table in the schema-aware approach. On the other hand, the for-
mer approach disregards type information, since all property values are usually
stored as VARCHARs (i.e., strings) in the object attribute, whereas the latter en-
tails a significant overhead when managing a potentially large number of tables
(for voluminous RDF/S schemata). In Hybrid, schema evolution can be easily
supported (as in schema-oblivious), while preserving type information (as in
schema-aware).

The main variations of the schema-aware scheme concern the representation
of subsumption relationships of classes and properties, defined in one or more
RDF/S schemata. The first, called ISA, exploits the object-relational features of
SQL99 [18] for representing subsumption relationships using sub-table definitions
(see subsection 2.1). The second, called NOISA, ignores this feature and stores
RDF/S data using a standard relational representation as depicted in Figure 2.
Furthermore, two variations of the schema-oblivious scheme have been proposed,
which differ in the way they store resources’ URIs. The former, called URI, stores
the URIs in the table holding the triples (usually repeating the same URI, e.g.,
in multiple triples that refer to properties of the same resource), while the latter,
called ID, relies on integer identifiers to represent resources and properties in the
triple table and stores them only once in a separate table (called “instance”).
It should be stressed that the redundancy in the URI representation incurs a
significant storage overhead. On the other hand, the ID representation suffers



Benchmarking Database Representations of RDF/S Stores 689

Table 1. RDF/S storage schemes and systems

RDF/S Stores Schema-aware Hybrid Schema-oblivious

ISA NOISA MatView Hybrid URI ID

RDFSuite[2] X X X
Jena[15,24] X[24] X[15]
Sesame[4] X X
DLDB[16] X
RStar[13] X
KAON[22] X
PARKA[19] X
3Store[9] X

from the need of an additional join operation at the end of every query, in order
to retrieve the actual resource URIs.

Except from the triples which are explicitly defined in an RDF graph, many
other can be inferred by the semantics of the schema (see RDF/S model seman-
tics [11]). Two main approaches have been proposed to address this issue: the a
priori (at compile-time) materialization in the persistent store or the a posteriori
(at run-time) computation of the inferred triples. The former approach avoids
to recomputing TCs for every query, but incurs a storage overhead and makes
data updates harder, while the latter has less storage requirements, although its
scalability is limited by the main memory space that is required for the run-time
TC computations.

Existing RDF/S stores employing either URI or ID, the two schema-oblivious
variations, usually adopt the former (materialized) approach,1 while [16] pro-
poses to store the precomputed triples as materialized views: for each class or
property, a table holds its proper instances while a materialized view holds both
proper and transitive instances. In order to create this view, the table with the
proper instances is “unioned” with the views of its direct subclasses. Hence-
forth, we call this storage scheme MatView. On the other hand, RDF/S stores
employing one of the two variations of the schema-aware, ISA and NOISA, as
well as the Hybrid usually adopt the former (virtual) approach. It is worth notic-
ing that both Hybrid and NOISA employ an internal encoding of subsumption
relationships using interval-based labels of persistent classes and properties [5].
This encoding ensures an efficient evaluation of taxonomic queries in secondary
storage, by transforming costly TC computations into appropriate range queries
and reduces main memory requirements of the TC computation.

Table 1 summarizes the storage schemes implemented by existing RDF/S
stores. Other approaches exist, but they are beyond the scope of our paper. For
example, [6] focuses on how to derive an efficient schema-aware representation
without any a priori knowledge of the employed RDF/S schemata. Although
quite interesting, this work leads to more complex implementations of declarative
query language interpreters running on the top of application-specific RDF/S

1 Although SQL99 [18] defines a syntax for expressing transitive joins the existing
implementations are not efficient [17].



690 Y. Theoharis, V. Christophides, and G. Karvounarakis

stores. Furthermore, in [7], the authors employ the schema-oblivious approach
for building persistent Semantic Web applications on top of existing RDF/S
stores. Finally, native stores like Redland [3] or YARS [10] employ lower level
database techniques to manage RDF/S data such as Hash Tables and B+-trees,
but do not provide full-fledged database functionality.

2.1 Translation of Taxonomic RDF/S Queries

In this subsection, we present the translation of the core RDF/S taxonomic
queries into SQL over the relational schemas considered by the schema-aware
(ISA and NOISA), the Hybrid and the schema-oblivious (URI and ID) represen-
tations illustrated in Figures 1, 2 and 3.

Consider, for instance, the (binary) tree-shaped class hierarchy of Figure 4.
The label of each class is composed of two integers: the end number denotes the
unique classid obtained when traversing the hierarchy in post-order, while the
start is the end number of the leftmost descendant of the class. Then, to find all

  Root

Child_1 Child_2

Child_11 Child_12 Child_21 Child_22

[1, 1]

[1, 3]

[1, 7]

[4, 4] [5, 5]

[4, 6]

[2, 2]

Fig. 4. Example of a labeled RDF/S schema

subclasses of the Root we sim-
ply need to issue a query
with the filtering condition
1 ≤ start, end ≤ 7 (i.e., re-
turning the classes whose la-
bel is included in the inter-
val of the Root). The labels of
classes and properties, as well
as their subsumption relation-
ships are stored into two auxil-
iary tables called SubClass and
SubProperty. In this context,
each extensional taxonomic query issued against the NOISA and Hybrid represen-
tations (i.e., find all transitive instances of the Root) also implies an intensional
query involving a range condition on class or property labels.

In the following we show the SQL translation of taxonomic queries at Root
level (given its label) over our testbed representations:

– Schema-aware NOISA: the SQL translation of our example taxonomic
query in this representation is performed in two phases. First we need to
find all the subclasses of the Root class:

select S.end
from SubClass S
where S.start >= RootStart and S.end <= RootEnd

Next, we need to scan sequentially all the tables holding the instances of the
previously retrieved subclasses, in the order determined by the query plan:

(select URI from Child_11) UNION ALL (select URI from Child_12) UNION ALL
(select URI from Child_1) UNION ALL (select URI from Child_21) UNION ALL
(select URI from Child_22) UNION ALL (select URI from Child_2) UNION ALL
(select URI from Root)



Benchmarking Database Representations of RDF/S Stores 691

Note that, internally, the unique classid (i.e., the post order number) is
used as table name (rather than a string as depicted in Figure 2) and no
elimination of duplicates is required (UNION ALL) to assemble resource URIs.

– Schema-aware ISA: the SQL translation of our example taxonomic query
in this representation is left entirely to the internal implementation of the
PostgreSQL table inheritance feature:

select URI from Root;

where all the tables of the involved subclasses are sequentially scanned.
As a matter of fact, PostgreSQL relies on a special catalog table, called
pg inherits, to store the subsumption relationships of tables defined in an
object-relational schema. This table holds a unique id for each sub-table,
along with the id of its parent table and the number of table occurrences
in the hierarchy (in case of multiple inheritance). Then, a C program uses
this information to compute the sub-tables involved in an SQL query: first,
the tableID is inserted into an empty list; then, the direct children of this
table are found, by performing a selection on pg inherits, and their tableIDs
are appended to the list. This process is repeated recursively for each new
tableID that is appended to the list, until a fixpoint is reached. After that,
PostgreSQL scans all tables in the order in which they appear in the list.

– Hybrid: the SQL translation of our example taxonomic query in this repre-
sentation is simpler, since it requires only one phase for both schema filtering
and instance scanning:

select I.URI
from ClassInstances I
where I.classid >= RootStart and I.classid <= RootEnd;

– Schema-oblivious URI: the SQL translation of our example taxonomic
query in this representation is:

select T.SubjectURI
from Triples T
where T.predicate = ’typeof’ and T.object = ’Root’;

– Schema-oblivious ID: the SQL translation of our example taxonomic query
includes a join operation between the table holding triples and the one hold-
ing resources’ URIs. Below, typeofID stands for the identifier of the property
typeOf:

select I.URI
from Triples T, Instance I
where T.predicate = typeofID and T.ObjectID = RootID and I.ID = T.SubjectID;

– MatView: the SQL translation of our example taxonomic query involves a
simple scan on the materialized view which stores the proper and transitive
instances of the Root class.

select MV.URI
from Mat_View_Root MV;



692 Y. Theoharis, V. Christophides, and G. Karvounarakis

3 Synthetic RDF Data Generation

As we will explain in the sequel, for relatively small schema sizes, the hierarchy
structure (i.e., shape and arity) does not affect the performance of (intensional
or extensional) taxonomic queries; as a matter of fact, their performance only
depends on the number of nodes in the hierarchy. For this reason, our RDF/S
generator produces only binary-tree-shaped subsumption hierarchies rather than
more exotic structures of class or property lattices.

More precisely, the three critical parameters of our generator are (a) the depth
of the tree; (b) the total number of classified resources; and (c) their distribution
mode under nodes at various hierarchy levels. It should be stressed that the tree
depth determines the size of an RDFS schema and therefore the number of tables
we have to create in the two schema-aware representations (i.e., for complete
binary trees 2depth+1− 1 tables). In our benchmark we consider three categories
of schemata, namely, small (up to 4 levels, i.e., 31 nodes), medium (up to 6
levels, i.e., 127 nodes), and large (more than 7 levels). In addition, the number
of resources that we consider in our experiments is 10,000, 100,000 and 1,000,000.

3.1 Distribution of Resources

In average case analysis, we can consider a uniform distribution of resources
under the nodes of the tree-shaped subsumption hierarchy. However, this is not
a realistic assumption for real-life Semantic Web applications. For instance, in
some SW applications, such as Semantic Web Portals [5], leaf classes are highly
populated compared to the intermediate ones while in other applications such
as Knowledge Bases (e.g., the IMDB2 wrapped in RDF/S) some class subtrees
are heavier than others in terms of classified resources. Our RDF/S generator
relies on the zipfian distribution [25] to simulate the classification of resources
in Semantic Web applications.

Definition 1. The distribution of occurrence probabilities of resources under the
schema classes follows the zipfian law:

Zipf(A, i) = A/(iz ∗ h)

where A is the total number of resources to be distributed, i is the rank value
given to each class, N is the total number of classes, z is a skew parameter and
h =

∑N
j=1 1/jz.

After assigning an increasing rank to each class, the probability that a re-
source is classified under a class according to the zipfian distribution essentially
follows a power-law: the number of resources classified under the class with the
1st rank is iz times larger than the class with the ith rank. When z = 0, resources
are uniformly classified, while when z > 0 some classes are more frequently pop-
ulated than others. In this work we consider that z = 1 and thus, a class with
i-th rank, can be populated with A/(i∗h) resources. In a nutshell, our generator
considers the following resource distribution modes:
2 Url: www.imdb.com



Benchmarking Database Representations of RDF/S Stores 693

  Root

Child_1 Child_2

Child_11 Child_12 Child_21 Child_22

(r7, 551 res)

(r5, 772 res)

(r2, 1,930 res)

(r6, 643 res)

(r3, 1,287 res)(r1, 3,861 res) (r4, 965 res)

  Root

Child_1 Child_2

Child_11 Child_12 Child_21 Child_22

(r2 1,930 res)

(r3, 1,287 res)

(r4, 965 res) (r5, 772 res)

(r6, 643 res)

(r7, 551 res)

(r1, 3,861 res)

Fig. 5. Zipfian Distribution favouring leaves vs favouring subtrees

– Uniform distribution of resources to tree classes (z = 0): in this case, resource
distribution is determined only by the total number of schema classes (i.e.,
the tree depth). For instance, with a uniform classification of 10,000 resources
under the seven nodes of our example schema depicted in Figure 4, in the
case of ISA and NOISA we need to insert 10,000/7 = 1428 tuples in each
class instance table, while in Hybrid 10,000 tuples will be inserted into the
single class instance table (Hybrid), 1/7 of which will have the classid of the
Root class as the value of the attribute object, 1/7 of which will have the
classid of the Child 1, etc.

– Zipfian distribution of resources favouring tree leaves (z = 1): in this case,
lower rank values are given to leaf classes while the Root class has the highest
rank. Using this class ranking, the classification of 10,000 resources under
our example schema is illustrated in the left part of Figure 5 (for each class
its rank value and number of classified resources is shown).

– Zipfian distribution of resources favouring sub-trees (z = 1): in this case,
lower rank values are given to the classes of a sub-tree. The generator is
parameterized to take into account the depth of the root class of a sub-
tree. For instance, the lower rank values are given to the classes of the first
(leftmost) sub-tree whose root (Child 1) is located at depth 1 of our example
schema. Using this class ranking, the classification of 10,000 resources under
our example schema is illustrated in the right part of Figure 5 (for each class
its rank value and number of classified resources is shown).

4 Experimental Evaluation

In this section, we present a performance evaluation of taxonomic queries issued
against six relational representations (ISA, NOISA, MatView, Hybrid, URI and ID),
using the synthetic RDF/S schemata and data created by our generator. The
objective of our study is to measure the effect of the schema size in intensional
taxonomic queries, as well as, the effect of resource number and distribution
modes in extensional taxonomic queries. Experiments were carried out on a pc
with a Pentium III 1GHz processor and 256MB of main memory, over Suse Linux
(v9.2) using PostgreSQL (v7.4.6) with Unicode configuration and 10,000 buffers
(8KB each), used for data loading, index creation and querying. Each query was



694 Y. Theoharis, V. Christophides, and G. Karvounarakis

run several times: once, initially, to warm up the database buffers and then nine
more times to get the average execution time of a query.

4.1 Physical Database Schema and Size

First, we loaded tree-shaped schemata of variable depth into the database. In
ISA and NOISA, tables SubClass (or SubProperty) were populated with the
subsumption relationships of the synthetically generated RDFS schema In these
representations, an index on the uri attribute was created for each instance table
of a specific schema class. To speed-up sequential access, each instance table was
clustered according to this index. In Hybrid, a B+-tree index was created on the
classid attribute of the single table that holds the instances of all classes. This
table was clustered according to classid, in order to minimize the I/Os required
when fetching the resources that are classified under a specific class.

Then, we generated various datasets according to the distribution modes
presented in the previous section and load them into the instance tables of each
representation. To compute the physical database size for each representation we
consider that the attribute uri has the type VARCHAR(1000), while classid in
Hybrid has the type int4. Moreover, we took into account the extra storage cost
per tuple due to an internal id of 40 bytes generated by PostgreSQL to identify
the physical location of a tuple within its table (block number, tuple index within
block). PostgreSQL also incurs an overhead of 4 bytes for the storage of strings.
In schema-oblivious, the attribute predicate has the type VARCHAR(20). Table 2
summarizes the size of the database for the three different numbers of resources,
distributed uniformly among the schema classes.

– ISA and NOISA: For each tuple ((1000∗1+4)+40) Bytes = 1KB are needed.
– Hybrid: For each tuple ((1000 ∗ 1 + 4) + 4 + 40) Bytes = 1KB are needed.

Also for each entry of the index constructed on classid, PostgresSQL holds
8 bytes for the ’row pointer’ and 4 bytes for the int4 type of the search
key. Since 12 Bytes are needed per index entry, the expected index size for
10,000 resources is around 12KB. However, PostgreSQL fills, as expected,
each index page until the fill-factor of 70%. As a result, for 10,000 resources
the index size is approximately 1.3 ∗ 12KB = 15.6KB.

– Schema-oblivious: For each tuple (2 ∗ (1000 ∗ 1 + 4) + (20 ∗ 1 + 4)) Bytes
= 2KB are needed.

The following lemma gives a precise measure of the storage overhead of TC
precomputations, in schema-oblivious and MatView.

Lemma 1. Consider a complete-binary tree shaped RDFS schema and uniform
resource distribution. Let d be the depth of the tree and A be the number of triples
explicitly given. Then the number of total triples (those explicitly given and those
inferred due to class or property subsumption) is: totalT riples(A, d) + d ∗A

Proof. Let A be the total number of triples. Then, each class has y = A/2d+1−1
triples. Computing inferred triples for each class in a bottom-up fashion results
in the following total number of triples:



Benchmarking Database Representations of RDF/S Stores 695

TA =
∑d

i=0 2i ∗ (2d+1−i − 1) ∗ y = y ∗ (
∑d

i=0 2d+1 − 2i) = y ∗ ((d + 1) ∗ 2d+1 −∑d
i=0 2i) = y∗((d+1)∗2d+1−(2d+1−1)) = A∗((d+1)∗2d+1/(2d+1−1)−1) + d∗A

�

Lemma 1 presumes a complete, binary-tree-shaped schema. It should be also
stressed that, a zipfian distribution of resources favouring leaves or subtrees
implies that a larger number of resources will be located deeper in the tree.
Since MatView, URI and ID duplicate the resources classified under a class in
the instance tables of all of its superclasses, the storage overhead in these rep-
resentations is more significant in the case of the zipfian than in the case of the
uniform distribution.

Increasing the number of triples during TC precomputation implies a direct
increase of the database size. URI’s storage requirements are obviously d times
larger than without precomputed TCs. On the other hand, ID hold triples of
the type 〈int4, int4, int4〉 and resource URIs are only stored once. Hence, the
storage overhead in ID is significantly smaller than in URI. More precisely, each
triple needs 3 ∗ 4 + 40 = 52 Bytes (vs 2KB in URI).

Finally, in MatView, each view is of type 〈resourceURI, id〉. The aforemen-
tioned storage overhead of this representation can be computed in a similar way
by changing the meaning of A, from ”total number of triples” to ”total number
of resources”.

4.2 The Effect of Schema Size

As we have already explained in Section 2.1, taxonomic queries involve two
filtering phases, an intensional (i.e., at the schema) and an extensional (i.e.,
at the data). During the former, we need to compute all the subclasses of
the root class whose transitive instances need to be retrieved. Recall that, in
NOISA and Hybrid, this computation is performed by a range query on the
classes’ interval-based labels, while in ISA a TC is performed internally on
the structural information of the inheritance table catalog (pg inherits) main-
tained by PostgreSQL. During the extensional filtering phase of a taxonomic
query, schema-aware (both ISA and NOISA) needs to scan a number of (pos-
sibly empty) tables, containing the instances of the schema classes, while all
the other representations need to scan only one (possibly empty) table, regard-
less of the number of the schema classes under which resources are classified.

Table 2. Database size

# of Resources ISA,NOISA,Hybrid URI ID MatView

10,000 10 MB depth ∗ 20 MB � 10-14 MB depth ∗ 10 MB
100,000 100 MB depth ∗ 200 MB � 100-140 MB depth ∗ 100 MB

1,000,000 1 GB depth ∗ 2 GB � 1-1.4 GB depth ∗ 1 GB



696 Y. Theoharis, V. Christophides, and G. Karvounarakis

Fig. 6. Querying an empty database

In order to measure the cost of the
schema filtering in taxonomic queries,
we have executed the same query (i.e.,
transitive instances of the Root class)
against an empty database created ac-
cording to the six possible representa-
tions. As we can see from Figure 6,
in schema-aware the execution time
of taxonomic queries depends on the
size of the schema in terms of number
of classes or properties (and thus on
the depth of our complete binary tree)
while the execution time in the other storage schemes is independent from the
schema size (almost 0 seconds). The extra cost of the schema-aware is due to
the I/O seek time of empty tables.

Moreover, since the physical size of a resource’s URI in ISA and NOISA is
1KB and each PostgreSQL buffer requires 8 KB (out of which only 8,152 Bytes
of them are used - the other 40 Bytes hold block information), only 7 tuples (i.e.,
7 resources) can be stored in one block. Thus, the last block of each table may
contain from 1 up to 7 resources. This factor incurs an extra storage overhead,
which in the worst case (i.e., 511 classes for depth = 8) can be up to 4MB.

4.3 The Effect of Resource Distribution Mode

Recall that, taxonomic queries in Hybrid are evaluated in one phase, where both
schema and data filtering are performed against the single table used to store
all class instances. Then, to find the transitive instances of a specific class (e.g.,
Root) we only need to perform an index scan on the classid (filtering condition
on the labels of the descendant classes) and table clustering on this attribute is
high beneficial for query performance. Hence, as we can see in Figure 7, the exe-
cution time in Hybrid scales linearly with respect to the size of the database (i.e.,
the number of classified resources). Similar behaviour is exhibited by schema-
oblivious and MatView, also evaluating taxonomic queries in one phase due to
the TCs precomputation.

Before further detailing our experimental results, we would like to point out
that ISA and NOISA exhibit the same behavior in terms of all the aforementioned
factors affecting the evaluation of taxonomic queries. They only differ in the
fact that schema filtering (as the first evaluation phase of taxonomic queries in
schema-aware) in ISA is performed in main-memory by PostgreSQL, while in
NOISA it is handled by a separate query. However, for small schema sizes the
main-memory and the persistent processing of the schema filtering phase comes
with almost the same execution cost. For this reason, both representations gave
the same measurements in all experiments and thus we are going to refer to both
of them in the figures below as schema-aware.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

Ti
m

e(
se

c)

# of Clasees

Empty Database

15 31 63 127 255 511

Sch−aware
Other



Benchmarking Database Representations of RDF/S Stores 697

Fig. 7. Root Queries: variable depth and number of uniformly distributed resources

Querying the Root Class: Figure 7 depicts the execution times for a query
requesting the transitive instances of the root class, in the case of the uni-
form distribution, over each representation. The performance figures for the two
zipfian distributions were very similar to Figure 7, thus we conclude that the
distribution mode doesn’t affect execution time of taxonomic queries at the root
class.

It is worth noticing that the schema size affects query evaluation time only in
the case of schema-aware, due to the storage overhead explained previously. As
we can see in Figure 7(a), this overhead, which varies between 0 and 4MB, has a
significant effect for 10,000 resources (i.e., of size 10 MB), while Figures 7(b),(c)
depict that it is not as important for larger numbers of resources, where the
schema-aware representations achieve similar performance to that of Hybrid and
MatView. Furthermore, comparing Hybrid and URI, we can easily observe that
URI exhibits very similar performance to Hybrid in the case of 10,000 resources
(Figure 7(a)), while Hybrid clearly outperforms URI in the other two cases (Fig-
ures 7(b),(c)). The reason for the latter is that the physical size of triples
involved in the query in URI is twice as large as the size of the tuples involved in
the ClassInstances table of Hybrid, thus additional I/O activity is required for
this representation. Regarding ID, in all figures it exhibits the worst performance,
because it requires an extra join to retrieve the actual resource URI. This join is
very costly, given that the number of triples involved is, on average, depth times
larger than the actual triples existing in the RDF graph (Lemma 1). Finally,
MatView is the only representation, between those who precompute TCs, which
achieves good performance, since taxonomic query evaluation only involves a
sequential scan over the corresponding view. However, precomputing the TCs
(also for URI and ID) both incurs a huge storage overhead and also creates the
need for a view-update strategy.

Querying a Middle Level Class: Figure 8 depicts the execution times over
each representation, for a query requesting the transitive instances of a middle
level class, in the case of a zipfian distribution favouring subtrees (note that the
y axis is drawn in logarithmic scale). Clearly, for a small and medium number
of resources, Hybrid and MatView exhibit the overall best performance, while for
a large number of resources schema-aware and MatView outperform all other
representations. Of the rest ID performs better than URI, but they are both far
worse than the previous three representations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

T
im

e(
se

c)

# of Classes

(a) 10,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

 0

 2

 4

 6

 8

 10

 12

 14

T
im

e(
se

c)

# of Classes

(b) 100,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

 0

 50

 100

 150

 200

T
im

e(
se

c)

# of Classes

(c) 1,000,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView



698 Y. Theoharis, V. Christophides, and G. Karvounarakis

Fig. 8. Middle level queries: Zipfian distribution favouring subtrees

Fig. 9. Leaf level queries: Zipfian distribution favouring leaves

In the case of middle level queries we have to access a smaller number of
subclasses, as well as of classified resources, than in the case of querying the root
class. In order to measure the effect of distribution modes in query evaluation
we need to compute the selectivity of the filtering conditions on the instance
tables of each representation. A zipfian distribution favouring subtrees leads to
query selectivity of 35% and 45%, while favouring leaves leads to selectivity
between 45% and 55%3. We should point out that, since in the two zipfians
distributions (favouring subtrees or leaves) the subtrees rooted at a middle
level have different weights (i.e., number of classified resources) we choose in our
experiments to query the heaviest subtrees.

The varying selectivity rapidly affects query evaluation time in Hybrid and
URI. In the case of Hybrid, an index scan is performed on the ClassesInstances
table, using the B+-tree index on the attribute classid where the selectivity is
fairly high, as opposed to the sequential scan required to retrieve the instances
of the root class. As one would expect, the higher the selectivity, the higher is
the benefit of choosing an index scan. On the other hand, when the selectivity
is low, the I/O cost of accessing and using the index may be greater than the
benefit; hence, index scan is efficient in the case of a uniform distribution, while
it incurs an execution overhead in the case of the two zipfian distributions. This
behaviour is reflected in Figure 8(c), where Hybrid exhibits worse performance
than schema-aware and MatView for a large number of resources. Also the index
scan on table Triples in URI uses a B+-tree index on the object attribute. The
overhead of accessing the index in this case is even bigger than in Hybrid, since
the index size in URI (index on a VARCHAR(1000) attribute) is much bigger than

3 On the other hand, a uniform distribution leads to increased selectivity, starting
from 80% for depth = 3 and increasing up to 94% for depth = 8.

0.1

1

10

T
im

e(
se

c)

# of Classes

(a) 10,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

1

10

100

T
im

e(
se

c)

# of Classes

(b) 100,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

10

100

T
im

e(
se

c)

# of Classes

(c) 1,000,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

0.01

0.1

1

T
im

e(
se

c)

# of Classes

(a) 10,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

0.01

0.1

1

10

Ti
m

e(
se

c)

# of Classes

(b) 100,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView

10

100

Ti
m

e(
se

c)

# of Classes

(c) 1,000,000 Resources

15 31 63 127 255 511

Sch−aware
Hybrid

URI
ID

MatView



Benchmarking Database Representations of RDF/S Stores 699

in Hybrid (index on an int4 attribute). As a result, URI exhibits the overall worst
performance. Finally, in the case of ID the query plan produced by PostgreSQL
do not use the index on object, but a sequential scan on table Triples. Hence,
what really affects the evaluation of taxonomic queries in ID is not the distribu-
tion mode, but the depth of the subsumption hierarchy, since the total number
of triples is depth times larger (Lemma 1) than the original one.

Querying Leaves. In this case we have to access only a single class and a
smaller number of classified resources. The former implies no additional I/Os for
the schema-aware representations due to space left at the end of blocks. Hence,
schema-aware exhibits the same (overall best) behaviour as MatView (Figure 9,
note that the y axis is drawn in logarithmic scale). Furthermore, the selectivity
is higher than in the case of queries at middle level, and ranges between 70%
and 85% in the two zipfian distributions.4 (we queried the leaf class with the
largest weight). As a result, the perfomance figures of Hybrid converge with those
of schema-aware and MatView, while URI and ID follow by far.

Due to space limitations, we are not showing the experimental results for the
cases of querying middle level and leaf classes, when resources are distributed
uniformly. However, the results in those cases illustrate the same trends, with
the exception that URI performs better than ID.

5 Summary and Future Work

The main conclusion that can be drawn from our experiments is that Hybrid and
MatView achieve the best performance in terms of query execution times of
taxonomic queries. Both exhibit very similar performance in the cases of small,
medium and large numbers of resources (namely 10,000, 100,000 and 1,000,000,
respectively) and queries on the root or leaf classes, while MatView outperforms
Hybrid in the case of queries on middle level classes.

However, the performance of MatView relies on the duplication of resources in
the instance tables of all superclasses of the class under which they are classified,
which incurs a huge storage overhead. Moreover, MatView comes with the addi-
tional cost of data updates in materialized views, which can be a decisive factor
in applications involving frequent updates (URI and ID also suffer from the same
drawbacks). Unlike MatView, Hybrid achieves competitive performance without
having to precompute TCs, by taking advantage of the encoding of subsumption
hierarchies (the attribute classid) that is stored with the data (resource uri),
enabling to evaluate taxonomic queries in a single phase.

Of the rest, schema-aware representations achieve similar performance to
Hybrid and MatView for medium and large number of resources and queries on
root class. Additionally, schema-aware exhibit the overall best performance in
the case of taxonomic queries at leaf level classes. Furthermore, schema-aware is
better than URI for medium and large number of resources and queries on root,

4 Compared to selectivity ranging between 94% and 99.8% in a uniform distribution.



700 Y. Theoharis, V. Christophides, and G. Karvounarakis

and clearly for queries at middle or leaf level classes. Note that, URI is sensi-
tive to the size of the main-memory used for caching: as this size increases, URI’s
performance improves for larger number of resources. It is worth noticing that
queries in our benchmark were executed against databases that only contained
resources classified under classes. The addition of property-related triples in a
single Triples table, in the case of schema-oblivious representations (URI, ID)
would further degrade the performance of the two schema-oblivious representa-
tions.

Finally, apart from the case of taxonomic queries at middle or leaf level
classes and zipfian resource distribution where ID outperforms URI, ID exhibits
the worst performance, mainly because of the costly join operation it has to
perform, and also suffers from the same drawbacks as MatView and URI (although
the storage overhead is much smaller than in the case of URI).

It should be stressed that the conclusions drawn from our experiments are
also confirmed by the independently conducted benchmarking of XML database
implementations [12], where the combination of document-dependent partition-
ing (as in schema-aware) with the use of interval-based encoding for containment
joins (similar to taxonomic queries) yields superior performance, compared to
document-indepedent (similar to schema-oblivious) approaches. As a next step,
we plan to extend our testbed to other categories of queries involving schema
and data path expressions, that are translated to SQL queries with joins over the
underlying RDBMS. To that end, we need to extend our generator with appropri-
ate distribution modes of properties over (domain or range) classes. Conclusions
of [21] could offer a basis for our attempt to model more sophisticated schema
structures.

References

1. R. Agrawal, A. Somani, and Y. Xu: Storage and Querying of E-Commerce Data.
In Proc. of VLDB 2001.

2. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis: On Storing Volu-
minous RDF Descriptions: The case of Web Portal Catalogs. In Proc. of WebDB’01
(co-located with ACM SIGMOD’01).

3. D. Beckett: Redland RDF Application Framework, 2003.
4. J. Broekstra, A. Kampman and F. van Harmelen: Sesame: A generic Architecture

for Storing and Querying RDF and RDF Schema. In Proc. of the ISWC’02.
5. V. Christophides, M. Scholl, D. Plexousakis., S. Tourtounis: On Labelling Schemes

for the Semantic Web. In Proc. of the 12th Intern. World Wide Web Conference
(WWW’03), 2003.

6. L. Ding, K. Wilkinson, C. Sayers, H. Kuno: Application-Specific Schema Design for
Storing Large RDF Datasets. In Proc. of the PSSS’03, collocated with ISWC’03.

7. M. Gertz, K.-U. Sattler: A Model and Architecture for Conceptualized Data An-
notations. Technical Report CSE-2001-11, Dept. of Computer Science, University
of California, Davis, 2001.

8. Y. Guo, J. Heflin, Z. Pan: Benchmarking DAML+OIL Repositories. In Proc. of
ISWC’03.



Benchmarking Database Representations of RDF/S Stores 701

9. S. Harris, and N. Gibbins: 3Store: Efficient Bulk RDF Storage. In Proc. of 1st
International Workshop on Practical and Scalable Semantic Web Systems 2003.

10. A. Harth, S. Decker: Yet Another RDF Store: Perfect Index Structures for Storing
Semantic Web Data With Contexts. DERI Technical Report, 2004.

11. P. Hayes: RDF Semantics. W3C Working Draft, World-Wide Web Consortium
(W3C), 2003.

12. H. Lu, J. X. Yu, G. Wang, S. Zheng, H. Jiang, G. Yu, A. Zhou: ”What Makes the
Differences: Benchmarking XML Database Implementations”, ACM TOIT, Vol.5,
No.1, Feb’05, p 154–194.

13. L. Ma, Z. Su, Y. Pan, L. Zhang, T. Liu: RStar: An RDF Storage and Query System
for Enterprise Resource Management. In Proc. of the ACM CIKM 2004.

14. A. Magkanaraki et al: Benchmarking RDF schemata for the Semantic Web. In
Proc. of the 1st International Semantic Web Conference (ISWC’02), 2002.

15. B. McBride. Jena: Implementing the RDF Model and Syntax Specification. 2001,
Technical report Hewlett Packard Laboratories.

16. Z. Pan, J. Heflin: DLDB: Extending Relational Databases to Support Semantic
Web Queries. In Proc. of PSSS’03, collocated with ISWC’03.

17. G. Schadow, M. Barnes, and C. McDonald, Representing and querying conceptual
graphs with relational database management systems is possible, In Proc. of AMIA
Symposium 2001:598-602

18. SQL99 Standard, NCITS/ISO/IEC 9075-1 01-Jan-1999 Information Technology -
Database Languages - SQL - Part 1: Framework.

19. K. Stoffel, M. Taylor, J. Hendler: Efficient Management of Very Large Ontologies.
In Proc. of American Association for Artificial Intelligence Conference (AAAI’97),
1997.

20. SWAD-Europe Deliverable 10.2: Mapping Semantic Web Data with RDBMSs.
21. C. Tempich, R. Volz: Towards a benchmark for Semantic Web reasoners - an analy-

sis of the DAML ontology library. In Proc. of The 2nd Int. Workshop on Evaluation
of Ontology-based Tools, EON2003.

22. R. Volz, D. Oberle, B. Motik, S. Staab: KAON SERVER - A Semantic Web Man-
agement System. In Proc. of the Atlantic Web Intelligence Conference (AWIC’03),
2003.

23. R. Volz, S. Staab, B. Motik: Incremental Maintenance of Materialized Ontologies.
Proc. of ODBase’03, 2003.

24. K. Wilkinson, C. Sayers, H. A. Kuno, D. Raynolds: Efficient RDF Storage and
Retrieval in Jena2. In Proc. of SWDB’03 (co-located with VLDB’03).

25. G. K. Zipf: Human Behaviour and the Principle of Least Effort. Addison-Wesley,
Reading, Massachusetts, 1949.



Towards Imaging Large-Scale Ontologies for
Quick Understanding and Analysis�

KeWei Tu, Miao Xiong, Lei Zhang, HaiPing Zhu, Jie Zhang, and Yong Yu

Department of Computer Science and Engineering,
Shanghai JiaoTong University, Shanghai, 200030, P.R. China

{tkw, xiongmiao, zhanglei, zhu, zhangjie, yyu}@apex.sjtu.edu.cn

Abstract. In many practical applications, ontologies tend to be very
large and complicated. In order for users to quickly understand and an-
alyze large-scale ontologies, in this paper we propose a novel ontology
visualization approach, which aims to complement existing approaches
like the hierarchy graph. Specifically, our approach produces a holistic
“imaging” of the ontology which contains a semantic layout of the ontol-
ogy classes. In addition, the distributions of the ontology instances and
instance relations are also depicted in the “imaging”. We introduce at
length the key techniques and algorithms used in our approach. Then
we examine the resulting user interface and find it facilitates tasks like
ontology navigation, ontology retrieval and ontology instance analysis.

1 Introduction

Ontologies play a key role in the Semantic Web. More and more ontologies have
been developed to formalize the conceptualization of a domain. In some appli-
cations, such conceptualization is so large and complicated that the resulting
ontology will contain hundreds to tens of thousands of concepts and relations.
For instance, the OWL version of the National Cancer Institute Ontology [1]
contains more than twenty-seven thousand classes and seventy properties.

In order for users to understand and hence make use of such large-scale
ontologies, there must be effective ways to present ontologies and facilitate user
browsing and searching. Presenting a large ontology in plain text (e.g. XML
files) is obviously unacceptable, as in this way users can learn nothing more
than some individual statements. Almost all ontology engineering tools provide
form-like UI to present interrelated statements together. For example, a typical
“class view” gives an orderly list of the name, description, sub-classes, super-
classes and properties of a certain class. However, such a view only presents to
users a local view of the ontology, leaving users unaware of the ontology’s holistic
content and structure. A widely used ontology visualization approach is to draw
an ontology as a graph (as in [2,3]), with nodes representing classes and edges
representing relations in most cases. In this way, users gain a much larger view of
the ontology and could more conveniently navigate between different ontological
� This work was supported by IBM China Research Lab.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 702–715, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Towards Imaging Large-Scale Ontologies 703

elements. In spite of these advantages, however, for large ontologies users’ visual
field in such an approach is often rather local. This is because when scaling the
whole ontology graph to the screen size, one can often see nothing but a mess of
lines.

An advisable visualization principle is to organize an ontology by its class
hierarchy. Most ontology tools use trees to present the ontology hierarchy, al-
though it is actually a directed acyclic graph (DAG). A hierarchy structure is
a semantic organization of an ontology, so users can gain a holistic sense of an
ontology when looking at the top levels of the hierarchy. In addition, seeking a
certain concept in a hierarchy is much easier, as one can gradually narrow his
searching scope when going deeper in the hierarchy. Apart from these merits,
however, our practical experience shows that there are several shortcomings of
hierarchical visualization.

– Hierarchy can not visualize some important information of an ontology such
as the relations between classes.

– When users go deeper into a hierarchy, it is very easy for them to get lost
and be unable to find the way home to the root.

– There is no semantic organization for sibling classes (i.e. the direct sub-
classes of a certain class). Typically they are listed alphabetically, and when
the list is very long it becomes somewhat unreadable.

– Browsing a hierarchy is kind of inconvenient as it requires sometimes too
many mouse-clicks to expand the nodes.

In this paper we propose a novel visualization approach to attack the de-
ficiencies of current approaches. The main feature of our approach is that it
presents a large-scale ontology by a holistic “imaging” which is semantically
organized for quick understanding of the subject and content of the ontology.
The semantic organization takes into account not only the class hierarchy in-
formation, but also other information such as relations and class similarities.
Easy and friendly browsing and searching functions are provided on top of our
visualization approach.

Another concern for ontology visualization is upon instances. In practice
the number of instances populated in an ontology is often orders of magnitude
larger than the class/relation number. A good visualization approach should
also facilitate the analysis of ontology instances and instance relations. While
most existing approaches do little on this aspect, our approach aims to meet
this request.

It should be noticed that our approach is to complement existing approaches,
instead of replacing them. In other words, our approach aims to facilitate the
quick understanding and analysis of large-scale ontologies, while functions such
as the details display of ontological elements are not provided. So one should use
our approach together with existing approaches to achieve the best efficiency.

The rest of this paper is organized as follows. Section 2 presents the main
techniques and algorithms used in our approach. Section 3 demonstrates the
resulting visualization system by a few user scenarios. Finally we discuss the
related work in section 4 and conclude the paper in section 5.



704 K. Tu et al.

2 Techniques and Algorithms

In this section we present our approach of generating from an ontology its imag-
ing. We use a simple RDF ontology (Figure 1) as the sample ontology throughout
the procedure. Notice that, however, (i) our approach could be applied to other
kinds of ontology as well, such as OWL ontology, and (ii) our approach is spe-
cially designed for large-scale ontology.

Thing

TeacherWomanMan

GrassFlower NonhumanHuman

Plant Animal

StudentSpecialPlant

GirlStudentBoyStudent

Cat

Fig. 1. The sample ontology (only the class hierarchy is shown, while the properties
are omitted)

2.1 Semantic Connection Calculation

While an ontology is mainly composed of a set of classes, we need to lay them
out in an Euclidean space to facilitate visualization. In order for such layout to
be semantically meaningful, we first need to calculate the semantic connections
between the classes.

As we know, a higher semantic similarity implies a stronger semantic con-
nection, so we first calculate the semantic similarities between classes. The most
classic semantic similarity calculation is based on the class hierarchy. For exam-
ple, [4] proposed a formula as follows.

Sim1(c1, c2) =
2×N3

N1 + N2 + 2×N3

where N1 and N2 are the numbers of sub-class relations from c1 and c2 to their
most specific common superclass C, and N3 is the number of sub-class relations
from C to the root of the class hierarchy.

Another kind of similarity calculation is based on the feature of the classes,
such as the parts and attributes. For our sample RDF ontology, the only feature
is the properties of a class. The following formula is proposed by [5].

Sim2(c1, c2) =
‖C1 ∩C2‖

‖C1 ∩ C2‖+ α‖C1 − C2‖+ (1− α)‖C2 − C1‖



Towards Imaging Large-Scale Ontologies 705

where C1 and C2 are the feature sets of c1 and c2, and for our sample ontology
they are the sets of properties of c1 and c2. α is defined as min(N1, N2)/(N1 +
N2).

Besides class similarity, one may agree that the number of relations defined
between two classes also contributes to the semantic connection, because more
relations between two classes implies that they are more relative, and hence have
a stronger semantic connection. This is depicted by the following formula.

Rel(c1, c2) =
1− e−n

1 + e−n

where n is the number of relations between c1 and c2.
In our approach, we take the weighted average of the three above-calculated

values as the final evaluation of the semantic connection. The weights are cus-
tomized by users, so that they can control what information would be presented
in the visualization result. In order to speed up the subsequent processing, we
set a connection threshold and discard those connections that are too weak.
This threshold is also customizable, specifying the compromise between running
speed and result quality.

For our sample ontology, the following table shows a part of the resulting
semantic connections, i.e. those between the Student class and the other classes,
with the threshold set to 0.6.

Student – Teacher : 0.7257
Student – Animal : 0.6333
Student – Human : 0.8214
Student – Man : 0.7175
Student – Woman : 0.7175
Student – BoyStudent: 0.8497
Student – GirlStudent: 0.8497

2.2 Layout

After semantic connections are calculated, we can now lay classes out in a 2D
plane, with strong connections implying small distances and vice versa. There
are several algorithms that can be used to lay out a set of elements based on
their preferred distances, such as Multidimensional Scaling (MDS) [6] and Force
Directed Placement (FDP, also called Spring Embedder) [7]. In our approach we
choose the FDP algorithm, because although it only achieves local optimality of
the layout, it has some fast variations and could be used incrementally.

In standard FDP, elements are first randomly placed. With the forces be-
tween elements defined by their preferred and actual distances, they are moved
according to the combined forces on them, until convergence. To speed up this
procedure, we adopt a preprocessing method proposed in [8] before the standard
FDP.

Figure 2 shows the result of running FDP on our sample ontology. As we
see, classes with strong semantic connections, such as those human classes, are



706 K. Tu et al.

Fig. 2. Sample ontology: the result of FDP

clustered together, while classes with weak connections, such as the plant classes
and the animal classes, are far away from each other.

2.3 SOM

The layout produced by FDP reflects fairly well the semantic organization of the
ontology. However, similar classes are often placed together in a small area, while
there are often large areas with few classes in it. In most cases the class clusters
are more important to users’ understanding of the ontology, but the small space
those clusters occupy make class labelling/annotation very inefficient, or even
impossible. So we try to alleviate this problem by distorting the layout using
Self-Organizing Maps (SOM) [9].

A SOM network is composed of n×n neurons, where n is determined by the
number of classes, so that on average each class will own tens of SOM neurons.
The neurons are first randomly placed in the 2D plane where the FDP layout is.
In training, they will first be gradually organized to form a smooth network (the
self-organizing phase), and then be converged to the positions where the classes
are (the convergence phase).

Figure 3(a) shows the resulting SOM network in the original 2D plane. By
spreading the n × n network to form a grid, we get Figure 3(b), the resulting
layout, where a class is represented by its nearest neuron. We can see in the
resulting layout that classes in clusters tend to occupy much larger space than
before, thus could be labelled clearly.

Notice that for each neuron, we can assign it to its nearest class. In this way
each class would own a set of neurons. In other words, in the resulting layout each
class would occupy an area, in addition to a point, as shown in Figure 3(b). The



Towards Imaging Large-Scale Ontologies 707

(a)

(b)

Fig. 3. Sample ontology: the result of SOM

semantic organization of the ontology is now exactly visualized by the neighbor-
hood of these areas : two neighboring areas implies a strong semantic connection
between the two corresponding classes. For example, in Figure 3(b), Woman
and Man are neighboring because they have a strong semantic connection, while
Woman and Plant are separated by two other classes, which indicates that their
semantic connection is not so strong. One may also find out from the figure that
sometimes this layout can not perfectly visualize the semantic connections: some



708 K. Tu et al.

classes with strong connections are not neighboring. This is inevitable, however,
as we have to display an ontology in a two-dimensional space.

There is another merit of representing a class by an area in addition to a
point: classes can be colored much more clearly. This facilitates our instance
visualization, as in section 2.5.

2.4 Labelling

Although by applying SOM classes tend to occupy much larger space, for large-
scale ontolgies it is still impossible to label all classes when the layout is displayed
in a screen with a limited size. So we have to assess the importance of each class,
and when displaying (a part of) the layout, we label only the most important
classes that fall into the screen. Currently we simply compute the importance
based on the class hierarchy.

Importance(c) = γ1
depth(c) + γ2

∑

ci∈DirectChildren(c)

Importance(ci)

where γ1 and γ2 are two customizable constants in [0, 1] (their default values
are 0.5 and 1 respectively in our system), depth(c) is the depth of c in the class
hierarchy, and DirectChildren(c) is the set of the direct children of c in the
hierarchy. The first part of the formula gives more importance to the classes
higher in the hierarchy, while the second part gives more to the classes with
more descendants.

2.5 Visualizing Instance

In our approach we visualize the distribution of the ontology instances and in-
stance relations.

Fig. 4. Sample ontology: the instance distribution



Towards Imaging Large-Scale Ontologies 709

Fig. 5. Sample ontology: the instance relations (zoomed-in vision)

For ontology instances, we use different colors to represent different instance
numbers of classes. Since a class could be represented by an area, we just fill the
area with the corresponding color. Two modes are provided to count the instance
number of a class. The first mode only takes into account those instances whose
types are explicitly declared as the class, while the second also includes those
that are declared as the instances of the sub-classes of that class. Figure 4 is the
resulting imaging.

For instance relations, we draw a line between two classes to represent a
relation between the instances of the two classes. Like in visualizing the instance
distribution, we use the line color to indicate the number of instance pairs that
have the relation. Notice that here we use the point representation of classes.
Also there are two modes to count the number, based on whether the instances
of a class’s sub-classes should be included into the instances of that class. To
prevent showing too many lines simultaneously, we select only those with the
largest numbers of instance pairs. Figure 5 shows the sample visualization of the
instance relations.

3 User Interface

Now we will review the user interface of our visualization approach under dif-
ferent tasks, i.e. ontology navigation, ontology retrieval and ontology instance
analysis.

3.1 Ontology Navigation

Ontology navigation, i.e. navigating the content of an ontology, is the most basic
task for an ontology visualization tool. For large-scale ontologies, traditional



710 K. Tu et al.

visualization approaches become inefficient, as discussed in section 1. Unlike
those approaches, we present to users a holistic imaging of the ontology. In
the imaging, the placement of classes are semantically arranged according to the
measurements discussed in section 2.1, so that neighboring classes typically have
stronger semantic connections. Such placement may facilitate user understanding
of the ontology.

Since the ontology being visualized may be very large, we present the imaging
with multiple levels-of-detail. In other words, we first present the whole imaging
at low resolution and with only limited information directly labelled, but upon
users’ request partial imagings with more details can be presented, and the more
local an partial imaging is, the more detailed information it will present. In this
way, at first users could see several most important classes of the ontology marked
in the imaging, thus roughly understanding the subject of the ontology. If one
is interested in one of these major classes, by clicking that class or a nearby
area he will get a partial imaging presenting the secondly important classes that
are related to the selected major class, thus he could roughly understand the
related part of the ontology. This procedure could go on until the most detailed
information is presented.

Figure 6 gives an example of this procedure. The ontology visualized is the Se-
mantic Web Technology Evaluation Ontology (SWETO)1, which contains more
than one hundred classes.

When a user is viewing a partial imaging, he could choose to switch to another
partial imaging near the current one. This is useful because that, as the imaging
is semantically organized, based on the current partial imaging the user may
guess the position of a class and wish to seek it in a nearby area. Besides, the
user could also choose to go back to a higher level-of-detail (i.e. with lower
resolution).

We also provide a thumbnail of the imaging to facilitate the navigation. The
area that is currently displayed is highlighted in the thumbnail, so as to help the
user locate himself. Another function of thumbnail is that, by clicking on the
thumbnail the user could switch between different areas conveniently.

Notice that our visualization approach is designed to complement other ap-
proaches instead of replacing them, so we integrate our visualization tool into an
ontology engineering environment, i.e. Orient [10], which provides most kinds
of traditional visualization tools like the form view, tree view and graph view
(Figure 7). Such integration doubtless maximizes the overall navigation utility.
For example, one could first get an overall understanding of the ontology from
our visualization approach, and then scrutinize the formal details of several in-
teresting classes using the traditional views.

3.2 Ontology Retrieval

In some applications, such as semantic annotation, users need to find from an
ontology a class or classes that meet certain conditions. For large-scale ontologies,

1 Available at http://lsdis.cs.uga.edu/Projects/SemDis/sweto/



Towards Imaging Large-Scale Ontologies 711

Fig. 6. Multiple levels of detail

Fig. 7. Integrated into an ontology engineering environment



712 K. Tu et al.

however, the searching process may be quite laborious and time-consuming. So
using ontology visualization to facilitate the searching process is advisable and
useful.

Our visualization approach is intrinsically applicable to searching. First, the
classes are semantically organized in the resulting imaging, so finding a certain
class in it would be easier than in a mere list. Second, the level-of-detail tech-
nique introduced in the previous section enables users to gradually narrow the
searching scope and finally find the target class in the finest level-of-detail. Fig-
ure 6 is exactly an example procedure of searching for the water-related classes
in the SWETO ontology.

Notice that our visualization tool is integrated with a set of traditional on-
tology engineering tools. Using them combinatorially could further facilitate the
searching process. For example, one may have already found a class by the tradi-
tional tools and hence have gotten the class’s position in our imaging, so he could
then find the related classes just by looking into the nearby area of the position.
It is also possible for users to get a set of class candidates by traditional tools
(e.g. an RDF query answerer), then he could map these classes to the imaging
and find the desired one based on their positions.

3.3 Instance Analysis

Facing an ontology with large-scale instances, people are usually at a loss in the
”ocean” of information it provides. However, by “imaging” the distribution of
the ontology instances and instance relations using our visualization approach,
we are able to make quick analysis, at the instance level, about which topics in
the ontology are “hot”, and which classes are more actively inter-connected and
thus strongly associated.

Take for example the imaging of a university ontology shown in Figure 8. In
the areas depicting professors (the upper part), Naval Architecture and Ocean En-
gineering Professor, Mechanical and Power Engineering Professor, Electronics and
Electric Engineering Professor, and Material Science and Engineering Professor are
assigned hotter colors than other professor classes, which means they own more
instances. Analogous situation happens to the student classes (the lower part), as
the classes such as Naval Architecture and Ocean Engineering Student, Mechan-
ical and Power Engineering Student, Electronics and Electric Engineering Student,
and Material Science and Engineering Student are hotter than the others. So users
could quickly infer from the above facts that these engineering-related schools
are of more importance in that university.

Inter-relationship among different classes is another important and interest-
ing factor that can be easily investigated using our visualization approach. For
instance, in the imaging of an online store’s knowledge base of its customers’
purchasing records, by observing the Middle-Aged class one can find that, the
two lines representing the Purchased property connecting the class respectively
to the Classical Literature class and to the Traditional Opera class are more promi-
nent (which means more property instances within) than those Purchased lines
connecting Middle-Aged to Pop Music and to Animation. For the Youth class,



Towards Imaging Large-Scale Ontologies 713

Fig. 8. Instance analysis for a university ontology

the situation is just the opposite. Therefore the store holder can learn from the
imaging how to associate and recommend proper categories of commodities to
the customers of different age. Similarly, other shopping habits among buyers of
different gender, occupation, region, etc., can also be analyzed in our ontology
visualization.

The level-of-detail, searching and overview functions provided by our visual-
ization approach can be used to further enhance the instance analysis process.

4 Related Work

A number of previous work have contributed to the ontology visualization field.
OntoViz[2] targets at the precise visualization of the ontology structure, using
rectangles for classes/instances and lines for relations, while exploring ontology
in OntoViz is somewhat inconvenient. TGVizTab[3] also tries to draw a pre-
cise graph of the ontology with concepts as nodes and relations as edges, and
it employs a spring-embedding algorithm to implement a customizable layout.
Jambalaya[11] displays information in a similar way, but adds in a level-of-detail
feature, allowing users to browse the ontology detail at several levels. In a word,
all these methods try to draw a precise graph of the ontology, so they have a
common drawback that if the ontology is very large, the visualization result will
become unreadable. In contrast, our approach presents a holistic view which is
applicable to large ontologies.

Currently most ontology visualization methods do not well support the anal-
ysis of large-scale instances. Our approach, however, manages to visualize the
distribution of ontology instances and instance relations. There are also some
other ontology visualization methods that aim to integrate instance information



714 K. Tu et al.

into the visualization. The Spectacle system[12] is designed to present a large
number of instances with a simple ontology to users. Each instance is placed
into a cluster based on its class membership. Instances which are members of
multiple classes are placed in overlapping clusters. This visualization provides a
clear and intuitive depiction of the relationships between instances and classes.
Our approach can not visualize the instance overlap like Spectacle, which is the
cost of our choosing to present a holistic view of large-scale ontologies.

The visualization techniques and algorithms that we use in our approach
are also widely employed in other knowledge visualization fields. Infosky[13] is a
system that tries to enable the exploration of large and hierarchically structured
knowledge spaces, and it presents a two-dimensional graphical representation
with variable magnification, much like providing users a real-world telescope.
One of the key algorithms employed in InfoSky is a spring-embedding algorithm,
which is used to cluster documents or document collections. WEBSOM[14] is
developed for visualizing document clusters based on the Self-Organizing Map
(SOM). Similar documents become close to each other on the map, like the books
on the shelves of a well-organized library. Some other systems, like Themescape
by Cartia Inc. and ET-Map[15], also visualize large numbers of documents or
websites using the SOM algorithm.

5 Conclusion and Future Work

In this paper we present a novel ontology visualization approach that aims to
facilitate user understanding and analysis of large-scale ontologies. Specifically,
our approach produces a holistic imaging of the ontology that contains a semantic
layout of the ontology classes, with the distribution of instances and instance
relations also visualized. We scrutinize the resulting user interface and find it
facilitates tasks like ontology navigation, ontology retrieval and ontology instance
analysis.

As the next step, we are planning to conduct a comprehensive user-based
study, so as to better evaluate our approach. In addition, while currently our
system can visualize an ontology with hundreds of classes in minutes, we will
try to further speed up our approach by using more optimization techniques,
especially for the FDP and SOM algorithms, which are the main source of the
time complexity of our approach. We also plan to extend our approach to vi-
sualize ontology evolution. Since both the FDP and the SOM algorithm could
be adapted to run incrementally, it is possible to produce two comparable imag-
ings of the ontology before and after changing, thus highlighting the ontology
changes.

References

1. Available at http://www.mindswap.org/2003/CancerOntology/.
2. Sintek, E.: OntoViz Tab: Visualizing protege ontologies. Available at http://

protege.stanford.edu/plugins/ontoviz/ontoviz.html (2003)



Towards Imaging Large-Scale Ontologies 715

3. Alani, H.: TGVizTab: An ontology visualization extension for protege. In: in
Knowledge Capture 03 - Workshop on Visualizing Information in Knowledge En-
gineering, Sanibel Island, FL (2003)

4. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the
32nd conference on Association for Computational Linguistics, Morristown, NJ,
USA, Association for Computational Linguistics (1994) 133–138

5. Rodŕıguez, M.A., Egenhofer, M.J., Rugg, R.D.: Assessing semantic similarities
among geospatial feature class definitions. In: Interoperating Geographic Informa-
tion Systems (Interop’99). LNCS 1580, Springer-Verlag (1999) 189–202

6. Kruskal, J.B., Wish, M.: Multidimensional Scaling. Beverly Hills and London:
Sage Publications (1984)

7. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Software - Practice and Experience 21 (1991) 1129–1164

8. Mutton, P., Rodgers, P.: Spring embedder preprocessing for www visualization.
In: Proceedings of Information Visualisation 2002 (IV02). (2002)

9. Kohonen, T.: Self-Organizing Maps. Springer (1995)
10. Zhang, L., Yu, Y., Lu, J., Lin, C., Tu, K., Guo, M., Zhang, Z., Xie, G., Su, Z., Pan,

Y.: ORIENT: Integrate ontology engineering into industry tooling environment.
In: Proceedings of the 3rd International Semantic Web Conference (ISWC2004).
(2004)

11. Storey, M.A.D., Noy, N.F., Musen, M.A., Best, C., Fergerson, R.W., Ernst, N.:
Jambalaya: an interactive environment for exploring ontologies. In: International
Conference on Intelligent User Interfaces (IUI). (2002) 239–239

12. Fluit, C., Sabou, M., van Harmelen, F.: Ontology-based information visualization.
In: Proceedings of Information Visualization ’02. (2002)

13. Andrews, K., Kienreich, W., Sabol, V., Becker, J., Droschl, G., Kappe, F., Gran-
itzer, M., Auer, P., Tochtermann, K.: The infosky visual explorer: exploiting hier-
archical structure and document similarities. Information Visualization 1 (2002)
166–181

14. Kaski, S., Honkela, T., Lagus, K., Kohonen, T.: Websom - self-organizing maps of
document collections. Neurocomputing 21 (1998) 101–117

15. Chen, H.C., Schuffels, C., Orwig, R.: Internet categorization and search: A self-
organizing approach. Journal of Visual Communication and Image Representation
7 (1996) 88–102



Automatic Evaluation of Ontologies (AEON)

Johanna Völker, Denny Vrandečić, and York Sure

Institute AIFB, University of Karlsruhe
{voelker, vrandecic, sure}@aifb.uni-karlsruhe.de

Abstract. OntoClean is a unique approach towards the formal evalu-
ation of ontologies, as it analyses the intensional content of concepts.
Although it is well documented in numerous publications, and its im-
portance is widely acknowledged, it is still used rather infrequently due
to the high costs for applying OntoClean, especially on tagging concepts
with the correct meta-properties. In order to facilitate the use of Onto-
Clean and to enable proper evaluation of it in real-world cases, we provide
AEON, a tool which automatically tags concepts with appropriate On-
toClean meta-properties. The implementation can be easily expanded to
check the concepts for other abstract meta-properties, thus providing for
the first time tool support in order to enable intensional ontology evalu-
ation for concepts. Our main idea is using the web as an embodiment of
objective world knowledge, where we search for patterns indicating con-
cepts meta-properties. We get an automatic tagging of the ontology, thus
reducing costs tremendously. Moreover, AEON lowers the risk of having
subjective taggings. As part of the evaluation we report our experiences
from creating a middle-sized OntoClean-tagged reference ontology.

1 Introduction

Providing a shared conceptualization of a domain of interest, ontologies have
become an important means for knowledge interchange and integration. The
raise of the Semantic Web leads to distributed nets of knowledge, and plenty of
reasoning will take place on heterogeneously created ontologies. For reason-
ing algorithms to yield useful results the underlying ontologies need to offer
a high quality. Their wide-spread use leads to an increasing need for domain-
independent methodologies and guidelines for ontology engineering and evalua-
tion.

OntoClean [10] is a well-known methodology for the formal analysis of tax-
onomic relationships based on philosophical notions such as essence, unity or
identity. Several tools supporting the OntoClean methodology have been devel-
oped and integrated into ontology editors such as ODEClean for WebODE [7],
OntoEdit [17] or Protégé [15]. Given a taxonomy of concepts annotated with
respect to a set of meta-properties, all these tools are able to perform an auto-
matic analysis of the taxonomic relationships in order to detect cases of invalid
generalization. Nevertheless, since this annotation has to be done manually, the
evaluation of ontologies according to the OntoClean methodology remains a dif-
ficult and time consuming, thus very expensive task.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 716–731, 2005.
© Springer-Verlag Berlin Heidelberg 2005



Automatic Evaluation of Ontologies (AEON) 717

In order to solve this problem, we have developed an approach for the auto-
matic tagging of concepts with respect to the meta-properties which constitute
the basis for the OntoClean methodology. We provide an implementation of
our approach, AEON1, which makes use of the World Wide Web as the cur-
rently biggest existing source of common sense knowledge. In line with several
approaches such as [4] and [5] we defined a set of domain independent patterns
which can be considered as indicators for or against Rigidity, Identity, Unity and
Dependence of given concepts in an ontology.

In the next section we give a brief introduction to the OntoClean methodol-
ogy, in particular to the core notions of Rigidity, Unity, Dependence and Identity.
Thereafter, we describe our approach to an automatic annotation of concepts
with respect to these meta-properties (section 3). For the evaluation we needed a
tagged ontology. In Section 4 we describe its creation and the problems we faced.
Section 5 presents the evaluation setting and the results of the evaluation. In
section 6 we discuss some related work, before we finally conclude with a short
summary and an outlook to future work (section 7).

2 OntoClean in Theory

We provide a brief introduction to OntoClean, for a more thorough description
refer to [10], for example. In the OntoClean vocabulary, properties are what
is commonly called concepts or classes. Meta-properties are therefore proper-
ties of properties. Within this paper we will use the term meta-property in the
usual OntoClean way, whereas we will refrain from using the term property but
rather stick to the more common term concept. OntoClean consists of two steps:
first every single concept needs to be tagged with occurrences of the core meta-
properties, which are described below. Thus, every concept will have a certain
tagging like +R+U-D+I. We call an ontology with tagged concepts a tagged
ontology (wrt. OntoClean, to be precise). After the tagging, the second step
of OntoClean is to check all subsumption relations of the ontology (also called
Subclass-relations). OntoClean constraints the possible taxonomic relations by
disallowing subsumption relations between specific combinations of tagged con-
cepts. This way, OntoClean provides a unique approach by formally analyzing
the concepts intensional content and their subsumption relationships.

We now briefly present the four main meta-properties and rules which belong
to OntoClean. The four meta-properties are: Rigidity (R), Unity (U), Depen-
dence (D) and Identity (I). They base on philosophical notions dating back to
Aristotle. Here we will offer a short description of these meta-properties.

Rigidity. Rigidity is based on the notion of essence. A concept is essential for
an instance iff it is necessarily an instance of this concept, in all worlds and at
all times. Iff a concept is essential to all of its instances, the concept is called
rigid and is tagged with +R. Iff it is not essential to some instances, it is called
non-rigid, tagged with -R. An anti-rigid concept is one that is not essential to
1 http://ontoware.org/projects/aeon/



718 J. Völker, D. Vrandečić, and Y. Sure

all of its instances. It is tagged ∼R. An example of an anti-rigid concept would
be teacher, as no teacher has always been, nor is necessarily, a teacher, whereas
human is a rigid concept because all humans are necessarily humans and neither
became nor can stop being a human at some time.

Unity. Unity is about “What is part of something and what is not?” This answer
is given by an Unity Criterion (UC), which is true for all parts of an instance
of this concept, and for nothing else. For example, there is an unitiy criterion
for the parts of a human body, as we can say for every human body which parts
belong to it. Concepts carrying an UC have Unity and are tagged +U else -U.

Dependence. A concept C1 is dependent on a concept C2 (and thus tagged
+D), iff for every instance of C1 an instance of C2 must exist. An example
for a dependent concept would be food, as instances of food can only exist if
there is something for which these instances are food. Another way to regard
dependency is to distinguish between intrinsic and extrinsic concepts. Intrinsic
concepts are independent, whereas extrinsic concepts need to be given to an
instance by circumstances or definitions.

Identity. A concept with Identity is one, where the instances can be identified
as being the same at any time and in any world, by virtue of this concept. This
means that the concept carries an Identity Criterion (IC). It is tagged with
+I, and with -I otherwise. It is not important to answer the question of what
this IC is (this may be hard to answer), it is sufficient to know that the concept
carries an IC. For example, the concept human carries an IC, as we are able to
identify someone as being the same or not, even though we may not be able to
say what IC we actually used for that. On the other hand, a concept like red
would be tagged -I, as we cannot tell instances of red apart because of its color.

On a tagged ontology, we can use the existing OntoClean rules to check the
ontology for consistency. Here, we will give only one illustrative example for these
rules. For a full list refer to [11]. As shown in [17] such rules can be formalized
as logical axioms and validated by an inference engine.

∼R can’t subsume +R. Having a concept C subsuming the concept D, with
C tagged ∼R and D tagged +R, would lead to the following inconsistency:
D must always hold true for all of its instances. D, as a subsumed concept,
would always imply C for all of its instances. Therefore there are at least some
instances of C that are necessarily C as they are D. Thus C can not be anti-
rigid, as the tagging says, because this would mean that it is not necessarily true
for any of its instances – which would be a contradiction. The classic example
is student, an anti-rigid concept, subsuming human, a rigid concept, which is
obviously wrong: whereas every student is free to leave the university and stop
being a student, humans cannot stop being humans. As every human would be a
student, according to the example, they never could stop being a student, which
contradicts the previous sentence.



Automatic Evaluation of Ontologies (AEON) 719

3 Approach

Our approach for the automatic assignment of meta-properties according to
the OntoClean methodology is based on three fundamental assumptions. First,
we believe that the nature of concepts is to some degree reflected by human
language and what is said about instances of these concepts in the language
corpus. Because of this, we consider statistics about the occurrences of lexico-
syntactic patterns (see section 3.2) as a feasible means to capture the meta-
properties of ontological concepts. Second, in line with similar approaches by
[9], [14], [16], [3] and [4] we think that using the Web as a corpus is an effective
way of addressing the typical data sparseness problem one encounters when
working with natural language corpora. Finally, from our point of view, the
Web being the biggest source of common-sense knowledge available constitutes
a perfect basis for computational comprehension of human intuition as to the
philosophical notions of essence, unity and identity.

3.1 Architecture and Implementation

In order to evaluate our approach we developed AEON, a tool which matches
lexico-syntactic patterns on the Web to obtain positive and negative evidence
for rigidity, unity, dependence and identity of concepts in an RDFS or OWL
ontology. The architecture of AEON is roughly depicted by figure 1. It consists
of an evaluation component, which is responsible for training and evaluation, a
classifier for mapping given sets of evidence to meta-properties such as +R or
-U, a pattern library and a search engine wrapper.

The pattern library is initialized by means of an XML file containing a
set of abstract patterns for each meta-property (see listing 1.1). Each of these
patterns include a specification of the type of evidence it produces, e.g. negative
evidence for rigidity. Moreover, it contains a declaration of one or more variables
and a set of Web queries which can be instantiated by replacing the regarding

Fig. 1. Architecture of AEON



720 J. Völker, D. Vrandečić, and Y. Sure

variables by the labels of the concepts to be analysed. Finally, a linguistic fil-
ter, i.e. a regular expression over tokens and part-of-speech tags, is defined for
filtering the results obtained by the above mentioned queries (see section 3.3).

Listing 1.1. Negative Evidence for Rigidity (R)

<pattern>
<va r i a b l e name=”x” />
<ev idence type=” f a l s e ” f o r=”R” />
<goog le regex=” i s \ t \w+ no\ t \w+ longe r \ t (DT\w+\t ) ?(NN|NP

|NNS |NPS) x\ t [ ˆ (NN|NP|NNS |NPS) ]”>
<query s t r i n g=” i s no longe r a x” />
<query s t r i n g=” i s no longe r an x” />
<query s t r i n g=” i s no longe r x” />

</google>
</pattern> %

Given a set of instantiated patterns (e.g. ”is no longer a student”) the search
engine wrapper uses the GoogleTMAPI in order to retrieve web pages or snip-
pets, i.e. parts of web pages containing the regarding search string, from the Web.
For normalization purposes (see below) it also queries the web for all occurrences
of the regarding concept, such as ”student” for example.

The linguistic analyser provides methods for tokenization, lemmatizing
and part-of-speech (POS) tagging, which are required for some fundamental
preprocessing of the snippets and HTML pages obtained from the Web and for
an appropriate matching of the linguistic patterns described above. By what we
call Linguistic Filtering we analyse, for example, all those snippets returned by
GoogleTM, which satisfy the query ”is no longer a computer” (cf. listing 1.1). If
the regular expression associated with the query does not match, the particular
snippet is not counted as a hit and thus does not provide any evidence with
respect to the rigidity of computer. This way, we avoid false matches in case of
statements such as ”He is no longer a computer hacker.” or (this would yield false
evidence for the unity of employee) when we find a phrase like ”the computer
of an employee consists of”. Of course, linguistic filtering is also applied in the
normalization process (see above).

Finally, for each pattern i contained in the above mentioned pattern library
the positive or negative evidence evidence(p, i, c) for a concept c having a certain
meta-property p ∈ {R, U, D, I} is given by:

evidence(p, i, c) = q∈Qi
lf(hits(qc))

lf(hits(c)) ,

where Qi is the set of queries associated with pattern i, qc is the instantiation of
query q for concept c, and hits(qc) and hits(c) are the number of hits obtained
for qc or c respectively. lf is a function implementing the linguistic filtering
described above.



Automatic Evaluation of Ontologies (AEON) 721

Given a concept c and the evidence values obtained for all patterns the
decision whether or not a meta-property p applies to c is made by a classifier.
A set of classifiers – one for each meta-property – has been trained on a small
number of examples provided by human annotators (cf. section 5). The manual
effort rests with the creating of a gold standard ontology and classifiers to be
trained on this ontology.

3.2 Patterns

During the last decades, lexico-syntactic patterns have become generally ac-
cepted as an effective means for extracting various types of lexical and ontological
relationships such as hyponymy and meronymy (cf. [13], [2], [12]). Nevertheless,
there has been little if any work on the use of pattern-based approaches towards
the extraction of meta-properties, i.e. properties of concepts or relations. So, we
performed an extensive evaluation of many different pattern candidates before
finally choosing a small subset of particularly promising patterns for the evalua-
tion of our approach. All of these patterns are domain-independent, thus being
well suited for the WWW as a very heterogeneous corpus.

Rigidity. The intuition behind the patterns we defined for Rigidity is the follow-
ing: If any individual can become or stop being a member of a certain class, then
it holds that the membership of this class, e.g. the property being a student, is
not essential for all its individuals. Therefore, we can obtain negative evidence
with respect to Rigidity from the following patterns:

is no longer (a|an)? CONCEPT
became (a|an)? CONCEPT
while being (a|an)? CONCEPT

Unity. As explained in section 2 a concept is tagged with +U if for each of its
instances all parts can be identified and if they share a common Unity Criterion
which holds true for exactly these parts. Because of this, in order to determine
whether a given concept has unity or not we have to find answers to questions
such as ”what is part of an object? and what is not?” or ”under which conditions
is the object a whole?”. If we can answer these questions for at least most of the
instances of the concept, we can take this as positive evidence for Unity.

part of (a|an)? CONCEPT

Moreover, since instances of concepts which are not countable usually do not
carry a unity criterion, we can get positive evidence for Unity by searching for
the following patterns:

(one|two) CONCEPT

Of course, one and two seem to be somewhat arbitrary, but since GoogleTMis
not yet able to process queries containing regular expressions we had to confine
ourselves to what we considered as the most frequent of all possible variations
of this pattern.



722 J. Völker, D. Vrandečić, and Y. Sure

Similarly, negative evidence can be obtained by a pattern which indicates
non-countability of a concept.

amount of CONCEPT

Identity. According to [11] identity is given by the fact that two instances of
a concept are the same iff they have the same parts. This is known as mereo-
logical extensionality and can be expressed by the following patterns providing
positive evidence for Identity:

CONCEPT consists of (two|three) parts

CONCEPT is composed of (two|three) parts

Additional positive evidence for identity can be obtained by the rather
straight-forward pattern:

CONCEPT is identified by

Negative and positive evidence respectively can be obtained by these
merely linguistic patterns checking whether the name of the concept is an ad-
jective or a noun.

Both patterns are matched on the results of GoogleTMqueried for nothing
but the concept name. Please note that linguistic preprocessing as described in
section 3.1 is required to allow this kind of lexico-syntactic pattern matching,
since these patterns assume the text to be an alternate sequence of words and
POS tags. The tags JJ, JJR and JJS indicate an adjective, whereas NN, NP,
NNS and NPS are indicators for a common or proper noun.

(JJ|JJR|JJS) CONCEPT

(NN|NP|NNS|NPS) CONCEPT

Also, countability means that the instances of a concept are obviously iden-
tifiable (or else they would not be countable). Therefore we reuse the same
patterns that we have already used as positive or negative evidence for Unity.

(one|two) CONCEPT

amount of CONCEPT

Dependence. Among the meta-properties Rigidity, Unity, Identity and Depen-
dence we consider Dependence as the most difficult one to learn automatically.
Maybe, this is because of the fact that relational knowledge, i.e. knowledge in-
volving more than one concept, is required in order to detect Dependence. Nev-
ertheless, we tried to capture Dependence of concepts by the following pattern:

cannot be (a|an)? CONCEPT without

Additional Patterns. Due to the flexible architecture of AEON, adding further
patterns is a very easy task. It simply requires the addition of the pattern in
described format to the XML file.

We had some more patterns in mind, but preliminary testing in GoogleTM

revealed often only a small number of hits, which would only lower the efficiency
of the system and not improve the output of the system adequately.



Automatic Evaluation of Ontologies (AEON) 723

3.3 Discussion

The described approach is original, and quite a number of problems were raised.
We solved many of them, but some remain for further research. Both kinds are
described in this section.

Certain patterns could return a lot of inappropriate evidence. Searching for
the fragment ”is no longer a computer” would also return ”is no longer a com-
puter hacker”, which is false evidence about the Rigidity of computers. To solve
this problem we introduced linguistic preprocessing and patterns that recognize
computer not being the subject of the given example. Thus we can get rid of a
lot of false evidence.

The other problem occurs with high level, abstract or seldom used concepts:
they just do not return hits, or return only a small, and thus usually unreliable
number of evidence. However, we do not consider this as a big problem in general,
since this kind of very abstract concepts mostly appear in upper-level ontologies
which are typically smaller and less dynamic than domain ontologies. If we do
not get any hits, the concept will not be part of possible constraint errors. So it
does not really bother the user with wrong warnings but rather simply ignores
this concept.

A much bigger problem is given by the highly ambiguous nature of human
language. So far, our approach does not distinguish between different concepts
which could be meant by the word ”glass”, for example. Whereas the ”glass”
which can be used to drink water certainly has Unity, the ”glass” windows are
made of does not have Unity. Linguistic patterns do not help in this case. We
will try to solve this problem by comparing the context of the word – given
by a GoogleTMsnippet or a Web page – with the semantic neighborhood of the
regarding concept.

Natural language is not as strict and formal as the OntoClean meta-properties.
The best known example is the English verb to be, which can have various mean-
ings based heavily on context, like subsumption, definition or constitution. But
exactly these different meanings play a crucial role within the OntoClean method-
ology. Thus, the translation of the OntoClean definitions of meta-properties to
commonly used language patterns was quite challenging. With the patterns given
in this section we hope to have achieved a good balance between language ambi-
guity, pragmatic indication of meta-properties and number of occurrences for a
wide range of concepts.

The combination of negative and positive evidence right now just happens
by simple subtraction. Maybe more complex combinations will yield even better
results. This is an open issue. So is the difference between Non-, Anti- and Semi-
Rigidity. Right now we just consider Rigidity and Non-Rigidity, but the more
detailed division may lead to an even better evaluation of the ontology.

4 OntoClean in Practice

For the evaluation and training of our automatic methods, we needed a gold
standard tagging of an ontology with the OntoClean meta-properties. Although



724 J. Völker, D. Vrandečić, and Y. Sure

OntoClean is already some years old and appeared in a number of publications,
actual tagged ontologies were found only extremely scarcely. Our best resource
was the example ontology in [11] and some examples in the other publications.
This amounted to about 30-40 tagged concepts. [20] describes the creation of
another ontology evaluated with OntoClean, but this is not publicly available.
To the best of our knowledge there are no further available tagged ontologies.

So we decided to tag an ontology on our own. We wanted a generic, domain-
independent ontology with a not too small number of concepts. This is to ensure
that the experience we gain and the classifiers trained will be most reusable
for further ontologies evaluated with AEON in the future. We chose Proton2, a
freely available upper level ontology developed by OntoText within the European
IST project SEKT3. We merged the System, Top and Upper modules of Proton,
and the merged ontology contained 266 concepts, as diverse as Accident, Alias,
Happening or Woman.

We asked methodology and ontology engineering experts to tag Proton ac-
cording to the OntoClean methodology, because we wanted to base the evaluation
of our own techniques on this human tagging. Most of them told us that based
on their experience with OntoClean the manual tagging of an ontology such as
Proton would take more than one week. Some even considered this as an effort
of one month – which would of course render any evaluation of the ontology far
too expensive to be efficient. Finally, we were able to convince two of them to
create a manual tagging of Proton. The third tagging we used for our evaluation
was done by one of the authors of this paper.

The tagging itself was very strenuous, and often uncertainty arose. Decisions
were debatable and the documentation of OntoClean was open to interpretation.
The experts tagged the ontology in the given time of four to six hours, but they
achieved an agreement far lower than expected (refer to table 2). Concepts simi-
lar to those in the example ontology in [11] were often tagged consistently, but the
agreement on the other concepts was low (close to the baseline given by random
tagging). This suggests that the experts rather worked by analogies (not sur-
prisingly, given the time constraints) to the examples (an approach that is very
common for humans) than by applying the definitions of the meta-properties.

Taking into account that OntoClean is only a method to evaluate the taxo-
nomic relationships of an ontology, these findings point to doubts concerning the
efficiency of manual tagging. Although there are some implementations that sup-
port the tagging with OntoClean meta-properties in existing ontology engineer-
ing environments (refer to section 6), the number of actually tagged ontologies is
obviously far too low. This again points to a discrepancy between the expected
work and the expected benefit of using OntoClean. To turn OntoClean into a
feasible and more often used ontology evaluation method, a far more precise and
yet broader understandable description of OntoClean must become available, or
else an approach for the automatic tagging of concepts must lower the time to

2 http://proton.semanticweb.org
3 http://www.sekt-project.com



Automatic Evaluation of Ontologies (AEON) 725

tag ontologies dramatically. The latter approach requires far less training to the
individual ontology engineer and evaluator.

The upper level ontology DOLCE was created with the principles of Onto-
Clean in mind. WordNet on the other hand was not created with ontological
categories in mind, but rather adhering to linguistic structures. Aligning those
two should reveal numerous errors in WordNet, by OntoClean standards, due to
the different nature of the two. In [8], where this task is described, the authors
say that the alignment of DOLCE and WordNet yielded almost only constraint
violations regarding rigidity and much less on all other meta-properties. Thus it
was essential to get reliable results for rigidity, more than for the other meta-
properties.

Another problem is that tagging an ontology implies further ontological deci-
sions possibly unintended by the ontology creators. Subjective point of views go-
ing further than the ontology is already committed to can be introduced through
the tagging. For example, regarding the concept Dalai Lama we could state this
concept is not rigid: a person is chosen to become the Dalai Lama. Thus a
question of believe becomes relevant: buddhist religion claims that one does not
become the Dalai Lama, but rather that one is the Dalai Lama since birth - or
not. It is not a role a person plays, but rather it is the identity moving from body
to body through the centuries. Simply tagging an ontology therefore reduces its
possible audience by further ontological commitments.

We see that this contradicts to the definition of Rigidity, as there seem to be
possible worlds where the concept is rigid and possible worlds in which it is not.
Our approach dodges this problem by basing the taggings on statistics over a
large corpus instead of an individual or small group’s subjective point of view.

5 Evaluation

As described in section 4 we decided to use the System, Top and Upper module
of the Proton ontology for the evaluation of our approach. The merged ontology
consists of 266 concepts, most of them annotated with a short natural language
description. The list of all concepts together with their descriptions was given
to three human annotators in the following called A1, A2 and A3. All of them
were considered to be experts in using the OntoClean methodology. Nevertheless,
whereas Rigidity, Identity and Dependence were considered by all annotators,
only two of them also assigned Unity labels to some of the concepts. Table 1
shows the number of concepts and their corresponding taggings created by each
of the human annotators. The data sets labelled A1/A2, A1/A3, A2/A3 were
obtained by building the intersection of two of the single data sets. Obviously,
A1/A2/A3, which is the intersection of all three data sets – the set of concepts
which are tagged identically by all human annotators – is extremely sparse.

In order to illustrate how difficult it was for the human annotators to tag
the ontology according to the OntoClean methodology we measured the human
agreement between the data sets. strict means that two taggings were considered
equal only if they were totally identical. relaxed means that − and ∼ were



726 J. Völker, D. Vrandečić, and Y. Sure

Table 1. Tagged Concepts

R U I D
+ - ∼ + - ∼ + - ∼ + - ∼

A1 147 69 50 156 81 29 194 61 11 151 110 3
A2 208 39 0 103 138 3 189 58 0 31 203 13
A3 201 64 0 0 0 0 223 42 0 63 1 0

avg 185.3 57.3 16.7 86.3 73.0 10.7 202.0 53.7 3.7 81.7 104.7 5.3

A1 / A2 122 3 20 77 61 11 134 17 4 23 94 3
A1 / A3 125 27 15 0 0 0 171 18 1 47 1 0
A2 / A3 161 14 0 0 0 0 163 12 0 9 0 0

avg 136.0 14.7 11.7 25.7 20.3 3.7 156.0 15.7 1.7 26.3 31.7 1.0

A1 / A2 / A3 106 2 6 0 0 0 126 8 0 9 0 0

Table 2. Human Agreement

A1 / A2 A1 / A3 A2 / A3 A1 / A2 / A3

relaxed strict relaxed strict relaxed strict relaxed strict
R 58.7% 50.6% 63.0% 57.4% 71.1% 71.1% 46.3% 43.9%
U 61.1% 56.6% N/A N/A N/A N/A N/A N/A
I 66.4% 64.8% 71.7% 71.3% 71.1% 71.1% 54.5% 54.5%

D 48.9% 45.7% 75.0% 75.0% 15.0% 15.0% 15.0% 15.0%
avg 58.8% 54.2% 69.9% 67.9% 52.4% 52.4% 38.6% 37.8%

considered the same. Since our approach so far does not distinguish between
Semi- and Anti-Rigidity, for example, the strict agreement can be neglected for
the following evaluation. As shown by table 2 the average human agreement is
extremely low, which means close to the random baseline and sometimes much
lower than the results we obtained by automatic tagging. Given these figures
indicating the difficulty of this task, we believe any kind of automatic support
could be of great use for formal ontology evaluation.

Baseline. In order to obtain an objective baseline for the evaluation of AEON
which is statistically more meaningful than the human agreement (see table 2)
we computed a random baseline for the F-Measure as follows: Let x be the
overall number of concepts to be tagged, p the number of positive and n = x−p
the number of negative examples. Given a random tagging for all n concepts
we can assume that half of them are tagged as + and how many are tagged
as −. Of course, the fraction of positives within the whole data set tends to
be the same as in each of the randomly chosen subsets S+ and S− of size n

2 .
Therefore, the number of true positives (TP ) and true negatives (TN) is given
by TP = p

x ∗
x
2 = p

2 and FP = (1− p
x) ∗ x

2 = x
2 −

p
2 = x−p

2 = n
2 whereas the false

positives (FP ) and false negatives (FN) can be computed by TN = n
x ∗

x
2 = n

2
and FN = (1− n

x ) ∗ x
2 = x

2 −
n
2 = x−n

2 = p
2 .

Obviously, the Precision P+ for the positive examples (for example, all con-
cepts tagged as +R) is given by P+ = TP/(TP + FP ), whereas the Precision



Automatic Evaluation of Ontologies (AEON) 727

Table 3. Random Baseline (F-Measure)

R U I D
+ - M-avg + - M-avg + - M-avg + - M-avg

A1 52.5 47.2 49.9 54.0 45.3 49.6 59.3 35.1 47.2 53.5 45.9 49.7
A2 62.7 24.0 43.4 45.8 53.6 49.7 60.5 32.0 46.2 20.1 63.6 41.8
A3 60.1 32.6 46.4 N/A N/A N/A 62.7 24.1 43.4 66.3 3.0 34.7

avg 58.4 34.6 46.6 49.9 49.5 49.7 60.8 30.4 45.6 46.6 37.5 42.1

A1 / A2 62.7 24.1 43.4 50.8 49.1 50.0 63.6 20.4 42.0 27.7 61.8 44.7
A1 / A3 60.0 33.5 46.7 N/A N/A N/A 64.3 16.7 40.5 66.2 4.0 35.1
A2 / A3 64.8 13.8 39.3 N/A N/A N/A 65.1 12.1 38.6 66.7 N/A N/A

avg 62.5 23.8 43.1 50.8 49.1 50.0 64.3 16.4 40.4 53.5 32.9 39.9

A1 / A2 / A3 65.0 12.3 38.7 N/A N/A N/A 65.3 10.7 38.0 66.7 N/A N/A

Table 4. Rigidity (Best Results with Linguistic Filtering)

P R F Classifier
+ - + - + - M-avg baseline no LF

A1 59.0 51.4 69.5 40.0 63.8 45.0 54.4 49.9 61.6 RandomForest
A2 86.9 31.8 91.0 23.3 88.9 26.9 57.9 43.4 47.8 ADTree
A3 76.5 23.5 76.1 24.0 76.3 23.8 50.1 46.4 44.8 RandomTree

avg 74.1 35.6 78.9 29.1 76.3 31.9 54.1 46.6 51.4

A1 / A2 91.3 64.3 94.9 50.0 93.1 56.3 74.7 43.4 69.4 ADTree
A1 / A3 78.2 66.7 98.0 12.9 87.0 21.6 54.3 46.7 62.6 DecisionStump
A2 / A3 93.8 11.1 93.8 11.1 93.8 11.1 52.5 39.3 48.2 RandomTree

avg 87.8 47.4 95.6 24.7 91.3 29.7 60.5 43.1 60.1

A1 / A2 / A3 95.5 0.0 100.0 0.0 97.7 0.0 48.9 38.7 48.4 NBTree

for the negative examples can be obtained by P− = TN/(TN +FN). Recall can
be computed by R+ = TP/(TP +FN) and R− = TN/(TN +FP ) respectively.

Given Recall and Precision we can obtain the F-Measure for positive and
negative examples by F+ = 2∗P+∗R+

P++R+
and F− = 2∗P−∗R−

P−+R−
. This leads to an macro-

average F-Measure of F = 1
2 ∗ (F+ + F−), which we consider as a reasonable

baseline for the evaluation of our approach. A detailed overview of the concrete
baselines we determined for all data sets is given by table 3.

Setting. Since we decided to evaluate our system separately for R, U, I and
D, we made 2*7*4=56 experiments (one for each human annotator, each meta-
property, with and without linguistic filtering) using a number of Weka4 classi-
fiers. In order to detect the limitations of our approach and to see what we can
potentially get out of the data we are able to provide, we first tried many differ-
ent types of classifiers, such as Support Vector Machines, Bayesian classifiers and
Decision Trees. Since the latter turned out to perform best we finally decided to
focus on the class of Decision Trees – among them ADTree, RandomForest and
4 http://www.cs.waikato.ac.nz/ml/weka/



728 J. Völker, D. Vrandečić, and Y. Sure

Table 5. Identity (Best Results with Linguistic Filtering)

P R F Classifier
+ - + - + - M-avg baseline no LF

A1 75.0 34.8 84.1 23.2 79.3 27.8 53.6 47.2 49.5 ADTree
A2 79.4 37.5 86.3 26.8 82.7 31.3 57.0 46.2 45.0 ADTree
A3 87.3 55.0 95.8 26.8 91.4 36.1 63.8 43.4 47.9 RandomForest

avg 80.6 42.4 88.7 25.6 84.5 31.7 58.1 45.6 47.5

A1 / A2 87.0 13.3 90.7 10.0 88.8 11.1 50.0 42.0 54.1 RandomTree
A1 / A3 93.0 46.7 95.2 36.8 94.1 41.2 67.7 40.5 50.8 NBTree
A2 / A3 95.7 57.1 98.1 36.4 96.9 44.4 70.7 38.6 48.2 ADTree

avg 91.9 39.0 94.7 27.7 93.3 32.2 62.8 40.4 51.0

A1 / A2 / A3 95.3 66.7 99.2 25.0 97.2 36.4 66.8 38.0 48.5 RandomForest

Table 6. Unity (Best Results with Linguistic Filtering)

P R F Classifier
+ - + - + - M-avg baseline no LF

A1 69.5 49.5 63.6 56.2 66.4 52.6 59.5 49.6 58.8 DecisionStump
A2 43.0 61.2 46.0 58.3 44.4 59.7 52.1 47.7 57.8 ADTree
A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

avg 56.3 55.4 54.8 57.3 55.4 56.2 55.8 48.7 58.3

A1 / A2 57.6 53.6 51.5 59.7 54.4 56.5 55.5 50.0 60.2 ADTree
A1 / A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
A2 / A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

avg 57.6 53.6 51.5 59.7 54.4 56.5 55.5 50.0 60.2

A1 / A2 / A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

J48, for example. The features given to these classifiers were sets of evidences
obtained by all patterns for the regarding meta-property (see section 3.1). Pre-
cision, Recall and F-Measure for both positive and negative examples as well
as the macro-average F-Measure were determined by a 10-fold cross-validation.
Please note that for training and evaluation we only used those concepts which
were annotated in the regarding data set and for which we obtained at least
some evidence. The percentage of tests which failed, because we did not get any
GoogleTMhits for the instantiated patterns was about 20% for rigidity, 5% for
identity and around 10% for unity. Because of this, in many cases the number
of examples we gave to the classifiers was extremely low - especially for the
agreement data sets A1/A2, A1/A3, A2/A3 and A1/A2/A3. The reason why
the results are nevertheless very promising, certainly is the good quality of the
classification features we get by using a pattern-based approach.

Results. One of the main findings of our experiments was that linguistic filtering
really helps in the task of pattern-based ontology evaluation. As shown by tables
4, 5 and 7 without linguistic filtering the baseline for macro-average F-Measure
was missed several times. And especially for Identity we noticed that the results
could be improved by around 30% with the help of linguistic filtering. Another



Automatic Evaluation of Ontologies (AEON) 729

interesting result of the evaluation was that on average our system performed
significantly better on the agreement, i.e. the intersection of two or three data
sets, than on the single data sets. This is probably due to the fact that those
concepts which were tagged identically by at least two of the human annotators
are easier to tag – maybe, because they are less ambiguous.

Table 7. Dependence (Best Results with Linguistic Filtering)

P R F Classifier
+ - + - + - M-avg baseline no LF

A1 68.2 40.9 69.8 39.1 69.0 40.0 54.5 49.7 39.1 RandomTree
A2 30.0 81.5 23.1 86.3 26.1 83.8 55.0 41.8 56.7 RandomForest
A3 100.0 0.0 100.0 0.0 100.0 0.0 50.0 34.7 50.0 ADTree

avg 66.1 40.8 64.3 41.8 65.0 41.3 53.2 42.1 48.6

A1 / A2 45.5 70.0 45.5 70.0 45.5 70.0 57.8 44.7 35.3 ADTree
A1 / A3 100.0 0.0 100.0 0.0 100.0 0.0 50.0 35.1 40.0 ADTree
A2 / A3 100.0 0.0 100.0 0.0 100.0 0.0 50.0 N/A 50.0 ADTree

avg 81.8 23.3 81.8 23.3 81.8 23.3 52.6 39.9 41.8

A1 / A2 / A3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

The overall conclusion we draw from the evaluation of AEON was that despite
the weaknesses of our pattern-based approach (see section 3.3) the first results
are already very promising. Given the small amount of training data we had and
the fact that we used standard Weka classifiers without much parameter tuning
we hope to get even better results in future experiments.

6 Related Work

Applying OntoClean for ontology evaluation has been proposed e.g. for tradi-
tional ontology engineering methodologies such as [6,18]. Checking for the de-
scribed constraint violations after tagging reveals any design errors during the
cyclic engineering of ontologies. There are several OntoClean plug-ins created
for ontology engineering suites to support this, in particular for Protégé [15],
WebODE [1] and OntoEdit [17]. They allow the manual tagging of ontologies,
integrated within the ontology engineering task, and also partially check the
consistencies according to the OntoClean rules described in section 2. As we
have seen in section 4, the biggest problem when applying OntoClean is not
the proper user interface for a manual tagging nor the possibility to check the
ontology for formal taxonomic constraints, but rather the high cost of tagging
itself. This is where the work presented here comes into play. To the best of
our knowledge no other approach is known which automatizes the OntoClean
tagging task as we do. DILIGENT [19] is the only known ontology engineering
methodology right now, that explicitly integrates computational agents to be
actors participating in ontology engineering tasks just like human users. The
integration of our approach into DILIGENT is on our agenda.



730 J. Völker, D. Vrandečić, and Y. Sure

7 Conclusion and Outlook

Despite the fact that ontology evaluation is a critical task for ontology engineer-
ing there currently exist only few approaches. OntoClean is the only known ap-
proach, where the intension of the concepts are taken into account when checking
the taxonomic structure of the ontology. Tagging ontological concepts according
to OntoClean is very expensive as it requires a lot of experts time and knowl-
edge. The approach provided in this paper is giving a helpful hand by enabling
an automatic tagging. Instead of claiming full automatic tagging and evaluation
against OntoClean’s meta-properties, we only take into account the concepts we
are pretty sure of in our tagging and point to potential formal errors in the tax-
onomy at hand. But, such a tagging is only the beginning and a small building
block for a next generation integrated ontology engineering environment. While
the user is creating or evolving an ontology, the system checks the taxonomical
relationships in the background, pointing to possible inconsistencies and likely
errors. For those taggings where the system’s confidence is not that high, sugges-
tions will be given. These suggestions can be substantiated with an explanation
based on the patterns found on the Web, which is much more intuitive than the
formal definition of a meta-property.

The flexible architecture described in section 3 can easily be extended to
check for further constraints, not represented by OntoClean’s rules. For exam-
ple, if we find evidence that human being consists of amount of matter then
we could conclude that there is probably no taxonomic relationship between
both concepts. Mereological relationships may be regarded as well. Due to the
strong usage of GoogleTMand its snippets, we are even able to pinpoint to the
very evidence of why two relationships should or should not exist. This way the
automatic tagger can act as a full agent, who does not just point to errors, but
also explains why a certain change is needed.

With the availability of the software presented in this paper we hope to turn
the usage of OntoClean from a few experts method to a widespread and standard
technique for the intensional ontological analysis for every ontology, raising the
quality of ontologies in common use.

Acknowledgements. Research reported in this paper has been partially fi-
nanced by the EU in the IST-2003-506826 project SEKT (http://www.sekt-
project.com). Special thanks go to Aldo Gangemi and Daniel Oberle for their
time spent on tagging our reference ontology and thus making the evaluation
possible. We thank Andreas Hotho, Philipp Cimiano, Peter Haase, Stephan Bloe-
hdorn and Christoph Tempich for helpful comments and interesting discussions.

References

1. J. C. Arṕırez et al. WebODE: a scalable workbench for ontological engineering. In
Proc. of Int. Conf. on Knowledge Capture (K-CAP), Victoria, Canada, 2001.

2. E. Charniak and M. Berland. Finding parts in very large corpora. In Proc. of the
37th Annual Meeting of the ACL, pages 57–64, 1999.



Automatic Evaluation of Ontologies (AEON) 731

3. P. Cimiano, S. Handschuh, and S. Staab. Towards the self-annotating web. In
Proceedings of the 13th World Wide Web Conference, pages 462–471, 2004.

4. P. Cimiano, G. Ladwig, and S. Staab. Gimme’ the context: Context-driven auto-
matic semantic annotation with c-pankow. In Proc. 14th WWW. ACM, 2005.

5. O. Etzioni et al. Web-scale information extraction in KnowItAll (preliminary re-
sults). In Proc. 13th WWW Conf., pages 100–109, 2004.

6. M. Fernández-López et al. Building a chemical ontology using Methontology and
the Ontology Design Environment. IEEE Int. Systems, 14(1), Jan/Feb 1999.

7. M. Fernández-López and A. Gómez-Pérez. The integration of ontoclean in webode.
In Proc. of the EON2002 Workshop at 13th EKAW, 2002.

8. A. Gangemi et al. Sweetening WordNet with Dolce. AI Magazine, Fall 2003.
9. G. Grefenstette. The WWW as a resource for example-based MT tasks. In Proc.

of ASLIB’99 Translating and the Computer 21, 1999.
10. N. Guarino and C. A. Welty. A formal ontology of properties. In Knowledge

Acquisition, Modeling and Management, pages 97–112, 2000.
11. N. Guarino and C. A. Welty. An overview of OntoClean. In S. Staab and R. Studer,

editors, Handbook on Ontologies in Inf. Sys., pages 151–172. Springer, 2004.
12. U. Hahn and K. Schnattinger. Towards text knowledge engineering. In Proc. of

AAAI’98/IAAI’98, 1998.
13. M. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proc.

14th Int. Conf. on Computational Linguistics, pages 539–545, 1992.
14. F. Keller, M. Lapata, and O. Ourioupina. Using the web to overcome data sparse-

ness. In Proc. of EMNLP-02, pages 230–237, 2002.
15. N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protégé-2000:

Combining interoperability and flexibility. In R. Dieng and O. Corby, editors, Proc.
of the 12th EKAW, LNAI, pages 17–32, Juan-les-Pins, France, 2000. Springer.

16. P. Resnik and N. A. Smith. The Web as a parallel corpus. Computational Linguis-
tics, 29(3):349–380, 2003.

17. Y. Sure, J. Angele, and S. Staab. OntoEdit: Multifaceted inferencing for ontology
engineering. Journal on Data Semantics, LNCS(2800):128–152, 2003.

18. Y. Sure, S. Staab, and R. Studer. Methodology for development and employment of
ontology based knowledge management applications. SIGMOD Rec., 31(4), 2002.

19. C. Tempich et al. An argumentation ontology for distributed, loosely-controlled
and evolving engineering processes of ontologies (DILIGENT). In C. Bussler et al.,
editors, ESWC 2005, LNCS, Heraklion, Crete, Greece, 2005. Springer.

20. C. Welty, R. Mahindru, and J. Chu-Carroll. Evaluating ontology cleaning. In
D. McGuinness and G. Ferguson, editors, AAAI2004. AAAI / MIT Press, 2004.



A Method to Combine Linguistic
Ontology-Mapping Techniques

Willem Robert van Hage1, Sophia Katrenko2, and Guus Schreiber3

1 TNO, Science and Industry,
wrvhage@few.vu.nl

2 Free University Amsterdam, Computer Science
schreiber@cs.vu.nl

3 University of Amsterdam, Informatics Institute
katrenko@science.uva.nl

Abstract. We discuss four linguistic ontology-mapping techniques and
evaluate them on real-life ontologies in the domain of food. Furthermore
we propose a method to combine ontology-mapping techniques with high
Precision and Recall to reduce the necessary amount of manual labor and
computation.

1 Introduction

Ontologies are widely used to provide access to the semantics of data. To pro-
vide integrated access to data annotated with different, yet related, ontologies,
one has to relate these ontologies in some way. This is commonly done by cross-
referencing concepts from these ontologies. In different contexts this practice is
called ontology mapping, schema matching, or meaning negotiation. In the liter-
ature one can find surveys of the widely varying methods of automated ontology
mapping. For instance, in the surveys done by Kalfoglou and Schorlemmer [5];
and Rahm and Bernstein [8]. The latter organized the methods hierarchically.
The ontology-mapping methods we develop in this paper fall in the categories
schema-only based, which means they work on the conceptual part of the on-
tology and not on the annotated individuals and linguistic, since we use the
labels of the concepts. The techniques we use come from the field of information
retrieval (IR).

The work in this paper is done within the scope of the Adaptive Informa-
tion Disclosure (AID) project, which is part of the greater effort of the Dutch
“Virtual Labs for e-Science” project (VL-e) 1. The AID project focusses on facil-
itating access to domain-specific text corpora, in particular articles about food.
When the semantics of data sources or the information needs are of increasing
complexity old-fashioned information-retrieval systems can fail to deliver due to
the following reasons:

1 http://www.vl-e.nl

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 732–744, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Method to Combine Linguistic Ontology-Mapping Techniques 733

– Domain-specific terms can have homonyms in a different domain. For in-
stance, “PGA” stands for “Polyglandular Autoimmune Syndrome” and the
“Professional Golfers’ Association”.

– Synonyms used by different communities can be difficult to relate to each
other. For instance, some refer to “stomach acid” with “Betaine HCl”, others
use “Hydrochloric Acid”.

– Skewed term-frequency distributions can lead to failing weighting schemes.
For instance, the term “cancer” occurs as frequently as some stop words in
the medical MedLine corpus, but it is an important term.

Ontologies pave the way for new techniques to facilitate access to domain-
specific data. Semantic annotation of text resources can help to subdue jar-
gon. [6,10] Obviously accessing annotated data sources is not without problems
of its own. In practice different data sources are often annotated with different
ontologies.2 In order to provide integrated access using multiple ontologies, some
form of ontology mapping needs to be done.

Within AID we focus on food information corpora. This domain–like the
medical domain–struggles with an information overload and jargon issues. For
instance, everyday household terms are intermingled with names of proteins and
other chemical compounds. This complicates the formulation of good search
queries. In this paper we test the applicability of four automated ontology-
mapping techniques on real-life ontologies in the domain of food and assess
their practical use. Specifically we try to map the USDA Nutrient Database for
Standard Reference, release 16 (SR-16) 3 onto the UN FAO AGROVOC the-
saurus (AGROVOC) 4 using that yield RDFS [1] subClassOf relations. The four
techniques we discuss are listed below.

1. Learn subclass relations between concepts from AGROVOC and SR-16 by
querying Google for Hearst patterns. [4]

2. Learn subclass relations by extracting them from Google snippets returned
by the same queries with the help of shallow parsing using the TreeTagger
part-of-speech tagger. [9]

3. Learn subclass relations by extracting them from a semi-structured data
source, the CooksRecipes.com Cooking Dictionary, with MINIPAR [7].

4. Use the Google hits method as a sanity check to filter the dictionary mining
results.

In Section 2 we discuss some related work to give an impression of current
practice in relation extraction. In Section 3 we describe the experimental set-up
we used in which we tested the four mapping techniques. In Section 4 we describe
the four techniques in great detail and discuss the acquired results. In Section 5
we propose a method for applying the techniques in practice and we show how
much manual labor can be saved.
2 We use the term ontologies to include light-weight ontologies such as vocabularies

and thesauri.
3 http://www.nal.usda.gov/fnic/foodcomp/Data/SR16/sr16.html
4 http://www.fao.org/agrovoc



734 W.R. van Hage, S. Katrenko, and G. Schreiber

2 Related Work

Brin proposed a method called Dual Iterative Pattern Relation Extraction
(DIPRE) in his paper from 1998 [2]. He tested the method on part of his Google
corpus–which at the time consisted of about 24 million web pages–to learn pat-
terns that link authors to titles of their books. These patterns were then used
to retrieve author-title relation instances from the same corpus. An example of
such a pattern is the HTML bit: “<li><b>title</b> by author”.

In 1992 Hearst devised a set of lexico-syntactic patterns for domain aspecific
hyponym extraction [4]. His patterns found entrance in many applications such
as Cimiano and Staab’s PANKOW system. [3] The first method we discuss in
this paper is similar to their work.

In their 2004 paper Cimiano and Staab try to accomplish two things. The
first is a instance classification task: to classify geographical entities such as
Amsterdam (City), Atlantic (Ocean), etc. The second is a subclass learning
task: to reconstruct a subclass hierarchy of travel destinations mentioned in the
LonelyPlanet website5. The method they use is the same for both tasks. They
send Hearst patterns describing the relation they want to test to the Google
API and depending on the number of hits Google returns they accept of reject
the relation. For instance, the query “cities such as Amsterdam” yields 992 hits.
Depending on which threshold they put on the number of hits they achieved
Precision between .20 and .35 and Recall somewhere between .15 and .08. The
higher the threshold, the higher the Precision and the lower Recall.

What we want to accomplish is a bit more complicated than either of Cimi-
ano and Staab’s tasks for two reasons. The food domain is less well-defined than
the geographical domain, in which there are exhaustive thesauri such as TGN.
The relations between the concepts are clearly defined. Countries have exactly
one capital. Countries can border each other, etc. In the food domain such con-
sensus does not exist. This means the evidence for relations that can be found
in Google can be expected to be more ambiguous in the food domain than in
the geographical domain.

3 Experimental Set-Up

Our set-up consists of the two thesauri we want to connect, the auxiliary sources
of knowledge we use to learn the mappings from, and a gold-standard mapping
to assess the quality of the learnt relations. In Section 3.3 we discuss the gold
standard and the evaluation measures we use.

3.1 Thesauri

AGROVOC. This is a multi-lingual thesaurus made by the Food and Agricul-
ture Organization of the United Nations (FAO). It consists of roughly 17,000

5 http://lonelyplanet.com/destinations



A Method to Combine Linguistic Ontology-Mapping Techniques 735

Processed

products

Processed

animal

products

Milk

products

Cheese

Meat

products

Bacon

Processed

plant

products

Products

Dairy and

egg

products

Cheese

Blue cheese

Pork

products

Ham

Mozzarella

Fig. 1. excerpts from AGROVOC (left) and SR-16 (right)

concepts and three types of relations derived from the ISO thesaurus standard:
use (preferred term), rt (related term) and bt (broader term). We use a RDFS
version of this thesaurus where the broader term relation is represented with
the RDFS subClassOf relation. The maximum depth of AGROVOC’s subclass
hierarchy is eight. Figure 1 shows an excerpt from AGROVOC. The text boxes
are classes with their names and the arrows stand for subclass relations.

SR-16. This is the Nutrient Database for Standard Reference version 16 (SR-
16) made by the United States Department of Agriculture (USDA), converted
to RDFS and OWL by the AID group. It consists of roughly 6500 concepts and
one relation, RDFS subClassOf. The maximum depth of the subclass hierarchy
of SR-16 is four. Figure 1 shows an excerpt from SR-16.

3.2 Auxiliary Knowledge Sources

We used one general and one domain-specific source. The general source is Google
and the domain-specific source is the CooksRecipes.com’s Cooking Dictionary.

Google. Google 6 is an open domain search engine. At the moment (mid 2005)
Google indexes more than 8 billion pages. The large size of Google allows makes it
possible to use it for statistical comparison of words. Google has a programming
interface called the Google API, that at the moment allows researchers to pose
1000 queries per day.

CooksRecipes.com’s Cooking Dictionary. The CooksRecipes.com Cooking Dic-
tionary provides definitions for ingredients, culinary terms and cooking tech-
niques. It contains 1076 definitions. An example entry is: “Basmati an aged,
aromatic long-grain rice grown in the Himalayan foothills; has a creamy yellow
color, distinctive sweet, nutty aroma and delicate flavor. . . ”
6 http://www.google.com



736 W.R. van Hage, S. Katrenko, and G. Schreiber

3.3 Evaluation Method

In order to do full evaluation of the quality of a mapping between AGROVOC
and SR-16 one would have to assess all possible subclass relations between a
thesaurus of roughly 17,000 and one of around 6500 classes. This sums up to
something of the order of hundreds of millions of possible mapping relations.
With smart pruning of the possible mapping this still would have left us with
more work than time allowed. Therefor we took samples from both thesauri on a
common topic. From SR-16 we took one set of concepts about meats, containing
the parts about beef, pork and poultry (chicken, turkey bacon, ham, etc.). From
AGROVOC we took two sets of concepts, one containing the part about animal
products (minced meat, cheese, leather, etc.), and one containing the part about
food categories (processed foods, instant foods, snack foods, etc.).

For the experiments with Google we created a gold standard mapping by
hand from the set of SR-16 concepts to both sets of AGROVOC concepts. The
size of the mapping from meats to animal products is 31 relations out of 3696
possible relations. The size of the mapping from meats to food categories is 32
relations out of 792 possible relations.

The experiments with the CooksRecipes.com Dictionary yielded few results,
distributed evenly over the thesauri, which made it hard to choose a subset of the
thesaurus that contained a reasonable number of mapping relations. Therefor,
we evaluated only the returned results. This means we are unable to say anything
about Recall of the techniques using the CooksRecipes.com Dictionary.

The measures we used are Precision, Recall and F-Measure as used throughout
the literature.7 The F-Measure we use gives Precision and Recall an equal weight.

Protocol. The protocol we used can be summarized as follows: All concepts are
to be interpreted in their original context. For instance, in AGROVOC chicken is
a subclass of product, which means none of the individuals of the chicken class are
live chickens. Taking this into account chicken is not a subclass of frozen foods,
because some chicken products are never frozen, but chicken is a subclass of
poultry, because all chicken products qualify as poulty.

4 Experiments

4.1 Hearst Patterns and Google Hits

The mapping technique described in this section is approximately the same as
Cimiano and Staab’s “Learning by Googling” method. It derives relations from
Google hit counts on certain queries.

Method

1. Create hypothetical relations between pairs of concepts from both
thesauri. For this experiment we chose to investigate all possible relations

7 http://en.wikipedia.org/wiki/Information Retrieval



A Method to Combine Linguistic Ontology-Mapping Techniques 737

Table 1. Hearst patterns used in this paper

concept1 such as concept2

such concept1 as concept2

concept1 including concept2

concept1 especially concept2

concept1 and other concept2

concept1 or other concept2

from any of the concepts in the predefined set of SR-16 concepts to any
of the concepts in both of the predefined sets of AGROVOC concepts (see
Section 3.3).

2. Construct Google queries containing Hearst patterns for each pair
of concepts. We chose to use the same Hearst patterns as Cimiano and
Staab [3] except the apposition and copula patters, to reduce the number
of Google queries, because these patterns did not yield enough results to be
useful. The patterns are listed in the Table 1. Since we are only interested
in the combined result of all the patterns we can further reduce the number
of queries by putting the patterns in a disjunction. We chose the disjunction
to be as long as possible given the limit Google imposes on the number of
terms in a query (which was 32 at the time).

3. Send the queries to the Google API.
4. Collect the hit counts for all Heart patterns that give evidence

for the existence of a relation. For instance, add the hits on the queries
“milk products such as cheese”, “milk products including cheese”, etc. Since
all these hits give a bit of evidence that cheese is a subclass of milk products.

5. Accept all hypothetical relations that get more hits than a certain
threshold value. Reject all others.

Results. The average number of hits for the mapping to food categories is about
2.5 and to animal products it is about 1.3. Only about 2.5% of the patterns
had one or more hits. The maximum number of hits we found was in the order
of 1000, while Cimiano and Staab find hit counts in the order of 100,000. We
suspect that this is the case because people rarely discuss the ontological aspects
of food, because it is assumed to be common knowledge–everybody knows beef
is a kind of meat–and hence can be left out. Since the total number of hits is so
low we chose not to use a threshold, but to accept all relations that had one or
more hits instead. Precision and Recall are shown in Table 2.

Table 2. Results of the Google hits experiment

Precision Recall F-Measure
to animal products .17 (10/58) .32 (10/31) .22
to food categories .30 (17/56) .53 (17/32) .38



738 W.R. van Hage, S. Katrenko, and G. Schreiber

Discussion. The performance of the PANKOW system of Cimiano and Staab on
geographical data is a Precision of .40 with a Recall of around .20 for instance
classification and a Precision of .22 and a Recall of .16 for subclass extraction.

Overall Recall seems to be less of a problem in the food domain than in the
geographical domain. The decent Recall values can be explained by the large
size of the current Google corpus. On simple matters it is quite exhaustive. Even
though the total hit counts in the food domain are lower than in the geographical
domain it seems that a greater percentage of the relations is mentioned in Google.
Apparently not all LonelyPlanet destinations have been discovered by the general
web public. If you are interested in really high Recall in the field of geography
you can simply look up your relations in the Getty Thesaurus of Geographic
Names (TGN) 8.

Precision of the mapping to animal products seems to be comparable to the
subclass learning task Cimiano and Staab set for themselves. The overall low
Precision can be explained by the fact that when you use Google as a source of
mappings between two thesauri you turn it from one into two mapping problems:
from the thesaurus to Google; and then from Google to the other thesaurus.
That means you have to bridge a vocabulary gap twice and hence introduce
errors twice.

Precision of mapping to food categories using Google hits seems to be compa-
rable to that of instance classification. Mapping to animal products, i.e. mapping
between concepts of similar specificity, appears to be more difficult.

4.2 Hearst Patterns and Google Snippets

The second mapping technique is a modification of the previous technique. In-
stead of deriving relations from Google hit counts we analyze the snippets pre-
sented by Google that summarize the returned documents. We try to improve
performance by shallow parsing the context of the occurrence of the Hearst pat-
tern and remove false hits.

Method

1. Follow step 1 through 3 from the “Hearst patterns and Google
hits” method.

2. Collect all the snippets Google returns. Snippets are the short exerpts
from the web pages that show a bit of the context of the query terms.

3. Extract the patterns. To accomplish this we part-of-speech tag the snip-
pets with TreeTagger and recognize sequences of adjectives and nouns as
concept names. Then we try find all Hearst patterns over the concept names
in the snippets.

4. Discard all patterns that contain concept names that do not ex-
actly match the original concept names. For instance, if the original
pattern looked like “soup such as chicken”, discard the matches on “soup
such as chicken soup”, because these give false evidence for the relation

8 http://www.getty.edu/research/conducting research/vocabularies/tgn



A Method to Combine Linguistic Ontology-Mapping Techniques 739

chicken subClassOf soup. We ignore prefixes to the concept names from the
following list: “other”, “various”, “varied”, “quality”, “high quality”, “fine”,
“some”, and “many”. This unifies concept names such as “meat products”
and “high quality meat products”.

5. Count every remaining occurrence of the pattern as evidence that
the relation holds.

6. Follow step 4 and 5 from the “Hearst patterns and Google hits”
method.

Results. Analysis of the snippets improves Precision while sacrificing Recall.
Overall performance indicated by the F-Measure does not chance much. Shallow
parsing the snippets removed many false hits. For instance, “salads such as
chicken salad” does not lead to chicken subClassOf salad anymore. The exact
Precision and Recall are shown in Table 3.

Table 3. Results of the Google snippets experiment

Precision Recall F-Measure
to animal products .38 (7/18) .22 (7/31) .27
to food categories .50 (12/24) .37 (12/32) .42

Discussion. Even the Precision achieved with mapping to concepts of similar
specificity (to animal products) is comparable to the level PANKOW achieves
for instance classification. The mapping to food categories, which is closer to
the instance classification task, now achieves a higher Precision and Recall than
PANKOW.

As Cimiano and Staab noted downloading the whole documents for analysis
could further improve the results. This might even improve Recall a bit if these
documents contain more good Hearst patterns than those that caused them to
appear in Google’s result set.

4.3 Extraction from a Dictionary

With the third mapping technique we try to exploit the implicit editor’s guide-
lines of a dictionary to achieve an even higher grade of Precision than the Google
Snippets technique described in the previous section. As an example we took a
dictionary that includes terms from both thesauri, the CooksRecipes.com Cook-
ing Dictionary. This dictionary is relatively small compared to the thesauri, but
it covers about the same field as SR-16.

Method

Find regularities in the dictionary that highly correlate with sub-
class relations. We found that the editor of the dictionary often starts a
definition with the superclass of the described concept. The following steps
are tailored to exploit this regularity.



740 W.R. van Hage, S. Katrenko, and G. Schreiber

1. Select all entries describing a concept that literally matches a con-
cept from AGROVOC or SR-16.

2. Parse the entry with MINIPAR.
3. Extract the first head from the parse tree. For instance, the entry of

the concept basmati starts with “an aged, aromatic long-grain rice grown in
. . . ” The first head in this sentence is “rice”.

4. Check if the first head corresponds to a concept in the other the-
saurus If basmati is a concept from AGROVOC, try to find the concept rice
in SR-16 and vice versa.

5. Construct a subclass relation between the concept matching the
entry name and the one matching the first head.

Results. More than half of all the returned relations, even those failing the
check in step 4, are correct subclass relations according to our strict evaluation
protocol. As expected, given the relatively wide scope of the dictionary, step 4
eliminates most of the results. However the mapping relations that are left are
of high quality. The exact results are shown in Table 4.

Table 4. Results of the dictionary extraction experiment

Precision
relations not forming a mapping .53 (477/905)
mapping entire AGROVOC–SR-16 .75 (16/21)

Discussion. We exploited a regularity in the syntax of the data. This yields high
Precision results. Clearly, Recall of this method is dependent on the size of the
dictionary and the overlap between the dictionary and the thesauri.

We noticed that most of the errors could have been filtered out by looking for
evidence on Google. For instance, the entry: “leek a member of the lily family
(Allium porrum); . . . ” would cause our technique to suggest the relation leek
subClassOf member. One query could have removed this false relation from the
result list, because “member such as leek” gives no hits on Google.

4.4 Combination of Google Hits and Dictionary Extraction

The fourth technique is an improvement to the dictionary extraction technique.
We use the Google hits technique to filter false relations out of the list of results
provided by extraction.

Method

1. Follow all the steps of the Dictionary Extraction method. This yields
a list of relations.

2. For each extracted relation follow step 2–5 from the Google hits
method. This filters out all relations for which no evidence can be found
on Google using Hearst patterns.



A Method to Combine Linguistic Ontology-Mapping Techniques 741

Results. Applying the Google hits technique as a sanity check on the extraction
results greatly reduces the number of relations. Precision of this smaller result set
is higher than with both the Google hits and dictionary extraction technique.
Around 63% of the correct results were removed versus 92% of the incorrect
results. The results are shown in Table 5.

Table 5. Results of combining dictionary extraction and Google hits

Precision
relations not forming a mapping .53 (477/905)
after Google hits sanity check .84 (178/210)

mapping entire AGROVOC to SR-16 .75 (16/21)
after Google hits sanity check .94 (15/16)

Discussion. The combination of Google hits and a dictionary gave the best
Precision of the four techniques. Most of the mismatches caused by definitions
that did not exactly fit the regularity that we exploited with the dictionary
extraction technique were removed by applying the Google hits technique. On
the other hand, a substantial portion of the correct results was also removed.

We noticed that most of the incorrect relations that were not removed are
easily recognizable by hand. If the superclass is not directly food related the
relation is usually false. For instance, mayonnaise subClassOf cold. Most rela-
tions to latin names of plants were inverted. For instance, rosmarinus officinalis
subClassOf rosemary. There is another member of the rosemary family, “Rosmar-
inus eriocalix”, so rosmarinus officinalis should be a subclass.

5 Method Proposal

As we discussed in Section 3.3 simply checking all possible relations between
two ontologies is task of quadratic complexity. In theoretical computer science
this might qualify as a polynomial with a low degree, but for a mapping tech-
nique that uses the Google API (which only allows 1000 queries per account per
day) this means it does not scale well. Furthermore, assessing a quadratic num-
ber of relations by hand is often not feasible. Therefor we propose to combine
high Precision techniques and techniques that achieve a high Recall per human
assessment. The method we propose is as follows:

1. Find a small set of high Precision mapping relation as starting
points, preferably distributed evenly over the ontologies. This could
be done with the last two techniques we described or with tools such as
PROMPT 9. Which technique works best depends largely on the naming
conventions used in the ontologies.

2. Manually remove all the incorrect relations. Assessing the results of
the dictionary extraction technique took about one man hour.

9 http://protege.stanford.edu/plugins/prompt/prompt.html



742 W.R. van Hage, S. Katrenko, and G. Schreiber

3. For each correct relation select the concepts surrounding the sub-
ject and object concepts. For instance, if the SR-16 concept cheese (see
Figure 1) was correctly mapped as a subclass of the AGROVOC concept
Milk products, one would select a subclass tree from SR-16 that contains
cheese and a subclass tree from AGROVOC that contains Milk products.
This can be accomplished in the following two steps:
(a) Travel up the subclass hierarchy from the starting point. Go as

far as possible as long as it is still clear what is subsumed by the examined
concept, without having to examine the subtrees of the sibling concepts.
A suitable top concept from SR-16 could be Dairy and egg products be-
cause it is immediate clear to us what is subsumed by this concept with-
out having to look at the Pork products concepts. A suitable top concept
from AGROVOC could be Processed animal products.

(b) Select all subclasses of the two top concepts. Collect the concepts
as two sets.

This could be done using tools such as Triple20 10 or Sesame 11.
4. Find relations between the two sets of concepts returned in the

previous step. This could be done with the Google snippets technique.
5. Manually remove all incorrect relations. The evaluation of the map-

ping between the AGROVOC animal product concepts and the SR-16 meat
concepts took us four man hours. Assessing all the mappings returned by the
previous steps could take days. The higher the applied mapping techniques’
Precision, the less time this step takes.

6. Manually add all omissions. Creating a list of omissions during the as-
sessments of the previous step reduces the amount of work in this step. The
higher the applied mapping techniques’ Recall, the less time this step takes.

This method reduces the search space by eliminating cross-references between
concepts in unrelated parts of the ontologies. For instance, possible relations
between concepts in the part of AGROVOC about legumes and in the part
of SR-16 about poultry would be ignored if step 1 did not yield any relations
between those parts. Hence the number of queries we have to send to Google is
reduced along with the number of necessary manual assessments low.

6 Discussion

We discussed four ontology mapping techniques and evaluated their performance.
There is a clear trade-off between Precision and Recall. The more assumptions we
make the higher Precision gets and the lower Recall. We showed that exploiting
syntactic information by using a part-of-speech tagger can improve Precision of
ontology-mapping methods based on Google hits such as our Google hits method
and possibly PANKOW.

10 http://www.swi-prolog.org/packages/Triple20
11 http://www.openrdf.org



A Method to Combine Linguistic Ontology-Mapping Techniques 743

We showed that in our experiments finding subclass relations to generic con-
cepts such as food categories is easier than mapping concepts that are roughly
equal in specificity. We hypothesize that this is because the former discriminate
more clearly between different interpretations of concepts and are therefor used
more often. For instance, the phrase “chickens such as roosters” is less discrimi-
nating about the meaning of the word “rooster” than “poultry such as roosters”
or “birds such as roosters”.

Furthermore, we introduced a method that extends the PANKOW two-step
method by Cimiano and Staab to decrease the number of necessary Google
queries and the amount of manual work.

Acknowledgements

This paper has benefitted from input from the AID group’s participants: Pieter
Adriaans, Jan van Eijck, Leonie IJzereef, Machiel Jansen, Hap Kolb, Maarten
de Rijke and the authors of this paper. Sophia Katrenko provided the RDFS
and OWL version of SR-16. We want to thank Marco Roos and Scott Mar-
shall from the Micro Array Department of the University of Amsterdam, Michel
Klein at the Computer Science department of the Free University Amsterdam
for valuable discussions, Victor de Boer who organized the Ontology Learning
and Population Workshop at the Human-Computer Studies Laboratory of the
University of Amsterdam and and everybody who attended. Furthermore we
want to thank Thijs de Graaf, Wessel Kraaij and Dolf Trieschnigg at the Signal
Processing group at TNO Science and Industry.

References

1. Dan Brickley and Ramanathan Guha. Resource description framework (RDF)
schema specification 1.0. W3C, March 2000.

2. Sergey Brin. Extracting patterns and relations from the world wide web. In
WebDB Workshop at 6th International Conference on Extending Database Tech-
nology, EDBT’98, 1998.

3. Philipp Cimiano and Steffen Staab. Learning by googling. SIGKDD Explor. Newsl.,
6(2):24–33, 2004.

4. Marti Hearst. Automatic acquisition of hyponyms from large text corpora. In
Proceedings of the 14th International Conference on Computational Linguistics,
1992.

5. Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the state of the
art. The knowledge engineering review, 18(1):1–31, march 2003.

6. Jaap Kamps. Improving retrieval effectiveness by reranking documents based on
controlled vocabulary. In Advances in Information Retrieval: 26th European Con-
ference on IR Research (ECIR), 2004.

7. Dekang Lin. Dependency-based evaluation of minipar. In Proceedings of the Work-
shop on the Evaluation of Parsing Systems, First International Conference on Lan-
guage Resources and Evaluation, Granada, Spain, May 1998.

8. Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. VLDB Journal, 10(4), 2001.



744 W.R. van Hage, S. Katrenko, and G. Schreiber

9. Helmut Schmid. Probabilistic part-of-speech tagging using decision trees. In Proc.
of International Conference on New Methods in Language Processing, 1994.

10. H. Stuckenschmidt, F. van Harmelen, A. de Waard, T. Scerri, R. Bhogal, J. van
Buel, I. Crowlesmith, Ch. Fluit, A. Kampman, J. Broekstra, and E. van Mulligen.
Exploring large document repositories with rdf technology: The dope project. IEEE
Intelligent Systems, 19(3):34–40, 2004.



Debugging OWL-DL Ontologies: A Heuristic Approach

Hai Wang, Matthew Horridge, Alan Rector,
Nick Drummond, and Julian Seidenberg

Department of Computer Science,
The University of Manchester,

Manchester M13 9PL, UK
{hwang, mhorridge, rector, ndrummond, jms}@cs.man.ac.uk

Abstract. After becoming a W3C Recommendation, OWL is becoming increas-
ingly widely accepted and used. However most people still find it difficult to cre-
ate and use OWL ontologies. On major difficulty is “debugging” the ontologies -
discovering why a reasoners has inferred that a class is “unsatisfiable” (inconsis-
tent). Even for people who do understand OWL and the logical meaning of the
underlining description logic, discovering why concepts are unsatisfiable can be
difficult. Most modern tableaux reasoners do not provide any explanation as to
why the classes are unsatisfiable. This paper presents a ‘black boxed’ heuristic
approach based on identifying common errors and inferences.

1 Introduction

One of the advantages of logic based ontology languages, such as OWL, in particular
OWL-DL or OWL-Lite, is that reasoners can be used to compute subsumption rela-
tionships between classes and to identify unsatisfiable (inconsistent) classes. With the
maturation of tableaux algorithm based DL reasoners, such as Racer [11], FaCT [8],
FaCT++ [7] and PELLET [4], it is possible to to perform efficient reasoning on large
ontologies formulated in expressive description logics.

However, when checking satisfiability (consistency) most modern description logic
reasoners can only provide lists of unsatisfiable classes. They offer no further explana-
tion for their unsatisfiability. The process of “debugging” an ontology - i.e. determining
why classes are unsatisfiable - is left for the user. When faced with several unsatisfi-
able classes in a moderately large ontology, even expert ontology engineers can find it
difficult to work out the underlying error. This is a general problem which gets worse
rather than better with improvements in DL reasoners; the more powerful the reasoner
the greater its capacity to make non-obvious inferences.

Debugging an ontology is a non-trivial task because:

– Inferences can be indirect and non-local. Axioms can have wide-ranging effects
which are hard to predict.

– Unsatisfiability propagates. Therefore, a single root error can cause many classes
to be marked as unsatisfiable. Identifying the root error from amongst the mass of
unsatisfiable classes is difficult.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 745–757, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



746 H. Wang et al.

2 A Heuristic Approach to Ontology Debugging

In short, the current state of ontology development environments and reasoning services
within these environments is akin to having a programming language compiler detect
an error in a program, without explaining the location of the error in the source code.

Over the past five years we have presented a series of tutorials, workshops and
post-graduate modules on OWL-DL and its predecessors. Based on our experience, a
list of frequently made errors have been identified as reported in [10]. This catalogue
of common errors has been used in turn to develop a set of heuristics that have been
incorporated into debugging tool for Protégé-OWL [5]. The examples in this paper
are all taken from these tutorials and use the domain of Pizzas used in the introductory
tutorial.

The heuristic debugger treats the tableaux reasoner as a ‘black box’or ‘oracle’. This
‘black box’ approach has the advantage that it is independent of the particular reasoner
used. It works with any DIG [1]compliant reasoner, even ones which have been spe-
cially augmented or adapted. 1

Being independent of the reasoner has advantages even if only as single reasoner is
to be used. Many modern reasoners transform the input ontology in order to optimise
the reasoning process. Although logically equivalent, the internal representation may
bear little resemblance to the ontology as it was constructed by the user. Given such
transformations, even it were possible for the reasoner to ‘explain’ its actions, the ex-
planation in terms of the transformed ontology would be unlikely to be of direct use to
the user. An additional advantage of the ‘black box’ approach is that it is independent
of such transformations.

3 Background

3.1 OWL Overview

OWL [2] is the latest standard in ontology languages, which was developed by members
of the World Wide Web Consortium2 and Description Logic community.

An OWL ontology consists of classes, properties and individuals. Classes are in-
terpreted as sets of objects that represent the individuals in the domain of discourse.
Properties are binary relations that link individuals and are represented as sets of or-
dered pairs that are subsets the cross product of the set of objects.

OWL classes fall into two main categories – named classes and anonymous (un-
named) classes. Anonymous (unnamed) classes are formed from logical descriptions.
They contain the individuals that satisfy the logical description. Anonymous classes
may be sub-divided into restrictions and ‘logical class expressions’. Restrictions act
along properties, describing sets of individuals in terms of the types of relationships
that the individuals participate in.

1 The DIG Interface is a standard DL reasoner communication protocol that sits between DL
based applications and DL reasoners, thereby allowing these applications to communicate with
different third party DL reasoners.

2 http://www.w3.org



Debugging OWL-DL Ontologies: A Heuristic Approach 747

Logical classes are constructed from other classes using the boolean operators AND
(�), OR (�) and NOT (¬).

An important point to note from the point of view of debugging is that OWL allows
the nesting of anonymous class expressions to arbitrary levels. For example, the expres-
sion:
Pizza � ∃ hasTopping (PizzaTopping � ∃ hasIngredient (SpicyIngredient � ∃
hasColour RedColour)) describes the individuals that are pizzas that have pizza top-
pings that have ingredients which are spicy ingredients that are coloured red.

Disjoint Axioms. All OWL classes are assumed to overlap unless it is otherwise stated
that they do not. To specify that two classes do not overlap they must be stated to be dis-
joint with each other using a disjoint axiom. The use (and misuse) of disjoint axioms is
one of the primary causes of unexpected classification results and inconsistencies [10].
Disjoint axioms are ‘inherited’ by their subclasses. For example if Pizza is disjoint
from PizzaTopping then all subclasses of Pizza will be disjoint from all subclasses of
PizzaTopping. This can make debugging difficult for ontologies that have deep taxo-
nomical hierarchies.

Describing Classes. Named OWL classes are described in terms of their named and
anonymous super classes, equivalent classes and disjoint classes. When a restriction is
added to a named class, it manifests itself as an anonymous superclass of the named
class.

For example the named class SpicyPizzaTopping might have a named superclass
called PizzaTopping and also the anonymous super class ∃ hasSpicyIngredient
SpicyIngredient. That is, things that are SpicyPizzaToppings are also PizzaToppings
and things that have at least one SpicyIngredient. We refer to these super classes as
conditions, as they specify the conditions for membership of a given class.

In summary, OWL has three types of class axioms:

– Subclass axioms – These axioms represent necessary conditions.
– Equivalent class axioms – These axioms represent necessary & sufficient condi-

tions.
– Disjoint axioms – These axioms represent additional necessary conditions.

Domain and Range Axioms. OWL also allows ‘global’ axioms to be put on proper-
ties. In particular, the domain and range can be specified for properties. In many other
languages, domain and range are commonly used as constraints that are checked and
generate warnings or errors if violated. Hence domain and range constraints can be used
in inference and are a potential cause of unsatisfiability.

3.2 Unsatisfiable OWL Classes

An OWL class is deemed to be unsatisfiable (inconsistent) if, because of its description,
it cannot possibly have any instances. While there are many different ways in which the
axioms in an ontology can cause a class to be unsatisfiable, the key observation in heuris-
tic debugging is that there are limited number of root causes for the unsatisfiability.

In general, there are three categories of causes.



748 H. Wang et al.

Local unsatisfiability. The combination of directly asserted restrictions and named su-
perclasses are unsatisfiable.

Propagated unsatisfiability. The combination of directly asserted restrictions and
named superclasses would be satisfiable except that some class used in them is
unsatisfiable.

Global unsatisfiability. There is some global constraint, usually a domain or range
constraint, from which along with other information in the ontology it can be in-
ferred that the class is unsatisfiable.

Local unsatisfiability is usually easy to spot. Section 4.5 describes the various rea-
sons that may lead to a class being locally unsatisfiable. Propagated unsatisfiabiity is
more difficult. There are two primary mechanisms for propagation:

Unsatisfiable ancestor classes. All descendant classes of an unsatisfiable class are un-
satisfiable. Therefore unsatisfiability propagates down the subclass hierarchy.

Unsatisfiable fillers of existential restrictions. Any existential (or minimum cardinal-
ity) restriction with an unsatisfiable filler is itself unsatisfiable.

A single error can cause large swathes of the ontology to be unsatisfiable. The key
strategy of the heuristic debugger is to collect all global conditions so that they can be
treated as local.

4 Heuristic Debugging Process

Figure 1 gives a principled view of the heuristic debugging process; in practice this is
optimised.

– Check that the selected class is indeed unsatisfiable
– Determine the basic debugging necessary conditions

OWL Reasoner 

Debuggger 

Check if OWL class is 

inconsistent 

Identify the 

unsatisfiable core 

Determine the basic debugging 

necessary conditions. 

Generate the debugging 

super conditions 

Analyse the most general conflict 

and generate explanation 

Determine the most 

general conflict 

Fig. 1. The debugging process



Debugging OWL-DL Ontologies: A Heuristic Approach 749

– Identify the unsatisfiable core, or smallest set of unsatisfiable subset of the basic
debugging necessary conditions

– Generate the the debugging super conditions, which are the conditions that are
implied by the conditions in the unsatisfiable core.

– Determine the most general conflicting class set based on the unsatisfiable core.
– Analyse the most general conflict in order to produce an explanation of why the

class is unsatisfiable.

Each step is examined in detail below.

4.1 Determining the Basic Debugging Necessary Conditions (BDNC)

As discussed in section 3.1 OWL uses three kinds of class axioms:

– Subclass axioms – necessary conditions.
– Equivalent class axioms – necessary & sufficient conditions.
– Disjoint axioms – necessary conditions.

An OWL class is unsatisfiable if and only if a subset of the above conditions, which
we refer to as the basic debugging necessary conditions is unsatisfiable. The first step
of the debugging process is the generation the ‘basic debugging necessary conditions’.
This is achieved by collecting together the necessary, and necessary & sufficient con-
ditions of the class that is being debugged, and then adding a condition for each class
that the given class is disjoint with, which represents the complement class of each dis-
joint class. For example, suppose the class in question was disjoint with class D. The
condition ¬D would be added to the set of basic debugging necessary conditions.

4.2 Identifying the Unsatisfiable Core

After obtaining the set of basic debugging necessary conditions, they are refined and
reduced to obtain the unsatisfiable core. The unsatisfiable core is the smallest unsat-
isfiable subset of the basic debugging necessary conditions. The unsatisfiable core is
defined as follows:

Definition 1. Let BDNC(C) be the ‘basic debugging necessary conditions’ of a un-
satisfiable Class C. An unsatisfiable core (UC(C)) of the class C is a set of OWL class
descriptions, such that:

1. UC(C) ⊆ BDNC(C)
2. Intersection of all the concepts belonging to UC(C) is unsatisfiable.
3. For every set of class descriptions CD:

CD ⊂ UC(C) ⇒ Intersection of all the concepts belonging to CD is
satisfiable∨CD = ∅

Condition 3 ensures that an unsatisfiable core is the most minimal possible set of
conditions. An unsatisfiable class could have more than one unsatisfiable core, in which
case the first is analysed.



750 H. Wang et al.

Rule 1: Named class rule
(a) IF C1 ∈ DSC(C) ∧ C1 � C2, where C1 is a named OWL class

THEN C2 ∈ DSC(C)
(b) IF C1 ∈ DSC(C) and Disj(C1, C2), where C1 and C2 are named

OWL classes
THEN ¬C2 ∈ DSC(C)

Rule 2: Complement class rule
(a) IF ¬C1 ∈ DSC(C), where C1 is a named OWL class

THEN IF C2 � C1, THEN ¬C2 ∈ DSC(C)
IF C1 ≡ C2, THEN ¬C2 ∈ DSC(C)

(b) IF ¬C1 ∈ DSC(C), where C1 is an anonymous OWL class
THEN NORM(C1) ∈ DSC(C)

Rule 3: Domain/Range rule
(a) IF ∃S.C1 ∈ DSC(C) ∨ ≥ n S ∈ DSC(C) ∨ = n S ∈ DSC(C),

where n > 0, and DOM(S) = C2

THEN C2 ∈ DSC(C)
(b) IF ∃S.C1 ∈ DSC(C) ∨ ≥ n S ∈ DSC(C) ∨ = n S ∈ DSC(C),

and where n > 0, INV (S) = S1 and RAN(S1) = C2

THEN C2 ∈ DSC(C)
(c) IF ∃S.C1 ∈ DSC(C) ∨ ≥ n S ∈ DSC(C) ∨ = n S ∈ DSC(C),

where n > 0, and RAN(S) = C2

THEN ∀S.C2 ∈ DSC(C)
Rule 4: Functional/Inverse functional property

(a) IF ∃S.C1 ∈ DSC(C) or ≥ n S ∈ DSC(C) or = n S ∈ DSC(C),
where n > 0 and S is functional

THEN ≤ 1 S ∈ DSC(C)
(b) IF ∃S.C1 ∈ DSC(C) or ≥ n S ∈ DSC(C) or = n S ∈ DSC(C),

where n > 0 and INV (S) = S1, S1 is inverse functional
THEN ≤ 1 S ∈ DSC(C)

Rule 5: Inverse Rule
IF ∃S.C1 ∈ DSC(C) and INV (S) = S1,
and C2 � C1 and C2 � ∀S1C3

THEN C3 ∈ DSC(C)
Rule 6: Symmetric Rule

IF ∃S.C1 ∈ DSC(C) and S is a symmetric property,
and C2 � C1 and C2 � ∀SC3

THEN C3 ∈ DSC(C)
Rule 7: Transitive Rule

IF ∀S.C1 ∈ DSC(C) and S is a transitive property,
THEN ∀S ∀S.C1 ∈ DSC(C)

Rule 8: Intersection Rule
IF C ∧ C1 ∈ DSC(C),

THEN C ∈ DSC(C) and C1 ∈ DSC(C)
Rule 9: Subproperty Rule

(a) IF ∀S.C1 ∈ DSC(C) and S1 � S, THEN ∀S1.C1 ∈ DSC(C)
(b) IF ≤ nS ∈ DSC(C) and S1 � S, THEN ≤ nS1.C1 ∈ DSC(C)
(c) IF ∃S.C1 ∈ DSC(C) and S1 � S, THEN ∃S1.C1 ∈ DSC(C)
(d) IF ≥ nS ∈ DSC(C) and S1 � S, THEN ≥ nS ∈ DSC(C)

Rule 10: Other inference Rule
IF C1 can be inferred by any subset of UC(C), where C is a named class
THEN C1 ∈ DSC(C)

Fig. 2. Rules for the membership of Debugging Super Conditions (DSC)



Debugging OWL-DL Ontologies: A Heuristic Approach 751

4.3 Generating the Debugging Super Conditions

The unsatisfiable core merely identifies the set of axioms which have resulted in the
inconsistency. However, as described above, the inconsistency may have been caused
by global conditions (section 3.1). The debugging process, therefore, ‘collects’ global
axioms – primarily domain/range and disjoint axioms – and maps them into local ax-
ioms – i.e. sets of necessary conditions. These are the debugging super conditions. The
set of debugging super conditions is expanded by recursive application of the rules in
Figure 2, the most important of which are explained below.

Debugging Super Condition Generation Rules

Named class rule (Rule 1): If an OWL named class C1 is added to the debugging su-
per conditions, all its direct super classes are also added to the debugging super
conditions. For each OWL class C2 which is asserted to be disjoint with C1, ¬C2

will be added to the debugging super conditions.
Complement class rule (Rule 2): If an OWL complement class ¬C1 is added to the

debugging super conditions, it will be converted to negation normal formal (NNF)
so that negations only appear directly before named classes. For example
¬(∀ eats P lant) ≡ ∃ eats ¬Plant. Futhermore, if C1 is a named class, the com-
plement of all the subclasses of C1 will be added. The complement of each neces-
sary & sufficient conditions of C1 will also be added.

Domain/Range axioms (Rule 3): As explained in section 3.1, in OWL, domain re-
strictions act as universal restrictions such that the all individuals to the property is
applied can be inferred to be of the type indicatged by the domain. Therefore, if an
existential (someValuesFrom) restriction acting along the property P is added to
the debugging super conditions, and P has a domain of Cd, then Cd is also added
to the debugging super conditions. (Note that the domain of P might have been
declared as the range of its inverse.)

Functional /Inverse functional property (Rule 4): If an existential restriction
(someValuesFrom) or a hasValue restriction is added to the debugging super con-
ditions, and the property that the restriction acts along is a functional property P 3,
then a ≤ 1 P restriction (max cardinality restriction) is added to the debugging
super conditions.

Intersection Rule (Rule 8): If an OWL class C1 � C2 is added to, then both C1 and
C2 are added to the debugging super conditions.

4.4 Determining the Most General Conflict

Determining the most general conflict is based on a simple observation: If an OWL
class C conflicts with another class D, then then it conflicts with any subclass of D).
Therefore we can can eliminate any classes that are subclasses of other classes already
in the Debugging super conditions.

The most general conflict – MGC(C) – is therefore defined as follows.

3 A functional property implies that an individual may only be related to at most one other
individual via that property.



752 H. Wang et al.

Definition 2. Let DSC(C) to debugging super conditions of the unsatisfiable Class
C. The most general conflict (MGC(C)) of C is a set of OWL class descriptions, such
that:

1. MGC(C) ⊆ DSC(C)
2. Intersection of MGC(C) of all the concepts belonging to is unsatisfiable.
3. ∀ C1 : MGC(C), C2 : MGC(C) , such that C1 � C2 ⇒ C1 = C2

4. � C1 : DSC(C), such that
C2 -MGC(C) and ∃C2 : MGC(C) such that C2 � C1 and
Intersection of all the concepts belonging to MGC(C) ∪{C1} − {C2} is unsatis-
fiable

Condition 3 ensures that no class in MGC(C) is subclass of another class in MGC(C).
Condition 4 ensures that if we replace any class in MGC(C) with one of its superclass
in DSC(C), the intersection of MGC(C) will become satisfiable.

4.5 Analysing the Most General Conflict

Having determined the most general conflict set, the final step is to analyse it to find the
route use of the conflict and provide the explanation to users about the reason these set
of axioms are conflicted. Although there theoretically indefinitely many ways in which
inconsistencies may arise, we have found empirically that most can be boiled down to
a small number of ‘error patterns’ to be checked by the heuristic debugger.

There are two broad classes of reasons that the Most general conflict set can be
unsatisfiable.

– It can contain one or more classes – including restrictions – that are themselves
unsatisfiable

– The intersection of two or more classes could be unsatisfiable.

Each of these cases will be dealt with in turn; the debugger generates suitable error
messages for each case.

Unsatisfiable Superclasses

Existential (someValuesFrom) restriction. There are three common reasons for an
existential restriction to be unsatisfiable:

– Its filler may be unsatisfiable, in which case the filler must be analysed to find
the root cause from which the unsatisfiability propagated. In this case the de-
bugger will suggest that the filler should be the next class to be debugged.

– The filler may be disjoint from the range of the property. In this case the de-
bugger will suggest that the filler and property range should be examined to
determine why they are disjoint.

– The property may have an unsatisfiable domain. In this case the domain class
will have already been added to the debugging super conditions and will there-
fore be found to be the cause of unsatisfiability.



Debugging OWL-DL Ontologies: A Heuristic Approach 753

Universal (allValuesFrom) restriction. A universal restriction alone will never be un-
satisfiable. Since a universal restriction does not imply that anything actually exists,
it can be trivially satisfied. A universal restriction only leads to an inconsistency
when there is a corresponding existential restriction along the same property that
has a filler which is disjoint from the filler of the universal restriction. However,
universal restrictions that are only trivially satisfiable are usually errors. Later ad-
dition of existential restrictions are likely to cause classes to become unsatisfiable.
Therefore, the debugger generates warnings for trivially satisfied restrictions.

Maximum/Minimum/Equality cardinality restriction. In OWL, cardinality restric-
tions do not specify a filler 4. Therefore, the only common situation in which they
themselves can be unsatisfiable is if the restricted property has an unsatisfiable do-
main and the restriction is a minimum cardinality greater than zero restriction. In
this case the domain class will have been added to the debugging super conditions
and will therefore be found to be the cause of unsatisfiability.

Intersection condition. An intersection condition will be unsatisfiable if at least one
of the operand classes is unsatisfiable. All of conditions that represent the operand
classes will have been added to the debugging super conditions and therefore the
cause of unsatisfiability will be found by examining these operand conditions.

Union condition. A union conditions will only be unsatisfiable if all of its operand
classes are unsatisfiable. In this case the debugger will suggest that all of the operand
conditions should be debugged by individually checking them.

Complement condition. If a complement condition is unsatisfiable the operand class
must be equal or be inferred equal to owl:Thing.

hasValue restriction. If a hasValue restriction is unsatisfiable, the filler individual is a
member of an unsatisfiable class or a class disjoint with the range of the property
in question. In this case the debugger will suggest that the class which the filler is a
member of should be debugged.

Contradictory Super Conditions. The second common cause of a class being unsat-
isfiable is that two or more debugging super conditions contradict each other, i.e. their
conjunction is unsatisfiable. This situation can arise for a variety of reasons as described
below. Unless otherwise stated, the debugger generates an explanation for the user.

– The class in question has been asserted to be disjoint with one of its super condi-
tions.

– A universal (allValuesFrom) and an existential (someValuesFrom) that act along
the same property have disjoint fillers. In this case the debugger will suggest that
the intersection of the two fillers should be debugged in order to determine why the
fillers are disjoint from each other.

– A universal (allValuesFrom) has an unsatisfiable filler ( owl:Nothing) which con-
flicts with any existential or minimum cardinality restriction on the same property.

– The super conditions contain a maximum (or equality) cardinality restriction, lim-
iting the number of relationships along property P to n, but there are more than n
disjoint filler classes implied by existential and/or minimum cardinality constraints.

– The super conditions contain two or more cardinality restrictions that act along the
same property but contradict each other. For example,≤ 2P and ≥ 3P .

4 i.e. there are no “qualified cardinality restrictions”.



754 H. Wang et al.

5 Case Study

This section illustrates the use of the debugger with an example taken from an ontology
about pizzas 5. The pizza ontology contains the class hierarchy shown in Figure 3. The
ontology also contains the property hasTopping, which has a domain of Pizza. The
ontology contains the following class axioms:

IceCreamWithChocolateSauce � ∃ hasTopping ChocolateSauce

Pizza � ¬ (∃ hasTopping ¬ PizzaTopping)

Fig. 3. ExampleHierarchy

When the ontology is classified, it is found that the class IceCreamWithChoco-
lateSauce is unsatisfiable. In order to debug this class, the debugger is started and
the class is selected. With the debugger running, the user is lead through the steps
shown in Figure 4. At the end of each debugging step, the debugger presents a tree
of conditions, which represent the conditions that instances of the class being debugged
must fulfil – the parent child relationships in the tree are is-generated-from. For exam-
ple, at the end of the first debugging step depicted in Figure 4, all instances of Ice-
CreamWithChocolateSauce must also be instances of Pizza, which was generated
from ∃ hasTopping ChocolateSauce due to the fact that Pizza is in the domain of the
hasTopping property. Conditions that cause an unsatisfiability are boxed in red, and an
explanation is generated. In this case the conditions ∃ hasTopping ChocolateSauce
and ∀ hasTopping PizzaTopping contradict each other – the explanation being “The
universal restriction means that all relationships along hasTopping must be to individ-
uals that are members of PizzaTopping. However, the existential restriction means that
there must be at least one relationship to an individual from ChocolateSauce, which is
disjoint from PizzaTopping.” After the user has has pressed the Continue button, the de-
bugger suggests that the next step is to determine why PizzaTopping and Chocolate-
Sauce are disjoint from each other. At the end of this final step the debugger explains

5 We typically use the domain of pizzas as it is easily understood but rich enough to illustrate
key principles and common errors [6].



Debugging OWL-DL Ontologies: A Heuristic Approach 755

Fig. 4. DebuggingSteps

that the classes PizzaTopping and ChocolateSauce are disjoint from each other be-
cause PizzaTopping is disjoint with DessertTopping which is an ancestor class of
ChocolateSauce – the explaination being “The two classes ChocolateSauce and Piz-
zaTopping are disjoint from each other. DessertTopping, which is an ancestor class of
ChocolateSauce, has been asserted to be disjoint with PizzaTopping.”

6 Related Work and Conclusions

6.1 Related Work

Work in the area of reasoner explanation is still in its infancy. Other approaches were
discussed at the 3rd International Semantic Web Symposium (ISWC 2004) held in Hi-



756 H. Wang et al.

roshima, Japan, where the Pellet reasoner [4] team’s future work includes the develop-
ment of an explanation mechanism for concept satisfiability. The OWL-Lite ontology
editor OntoTrack [9], is able to generate explanations for subsumption, equivalence and
concept satisfiability using algorithms based on the work of Borgida et. al. in explaining
subsumption in ALC [3]. The OntoTrack team implemented their own tableaux based
explanation generator, which is currently limited to working with unfoldable ALEN¸
ontologies, and generates an explanation corresponding to the stages of the tableaux
algorithm expansion.

6.2 Limitations

As the title of this paper suggests, the debugger is based on heuristics and pattern match-
ing. The debugger cannot determine the root cause of unsatisfiability in every case, and
is therefore not complete. However, we have found that this does not have a serious
impact on the usefulness of the debugger, since in most cases the mistakes made by
ontologists, ranging from students to experts, can be described by a small number of
error patterns that the debugger is adept at spotting.

6.3 Conclusions and Future Work

In this paper we have described a heuristic approach to ontology debugging that uses
a DL Reasoner, treating the reasoner as a ‘black box’. This means that the debugger
is totally reasoner independent, thereby affording the user the benefits of being able
to select a reasoner that is appropriate for their needs. The black box approach also
helps to minimise any potential versioning problems between the debugger and future
advancements in DL reasoners, since the debugger does not need to know the details of
any internal tableaux algorithms, reasoner optimisations or capabilities. The debugger
is useful for beginners constructing small ontologies, through to domain experts and
ontology engineers working with large complex ontologies, as it reduces the amount of
time and frustration involved in tracking down ontological inconsistencies.

Acknowledgements

This work was supported in part by the CO-ODE project funded by the UK Joint In-
formation Services Committee and the HyOntUse Project (GR/S44686) funded by the
UK Engineering and Physical Science Research Council and by 21XS067A from the
National Cancer Institute. Special thanks to all at Stanford Medical Informatics, in par-
ticular Holger Knublauch, for their continued collaboration and to the other members of
the ontologies and metadata group at Manchester for their contributions and critiques.

References

1. Sean Bechhoffer. The dig description logic interface: Dig/1.1. Technical report, The University
Of Manchester, The University Of Manchester, Oxford Road, Manchester M13 9PL, 2003.

2. Sean Bechoffer, Frank van Harmlen, Jim Hendler, Ian Horrocks, Deborah McGuinnes, Peter
Patel-Schneider, and Lynn Andrea Stein. Owl web ontology langauge reference, February
2004.



Debugging OWL-DL Ontologies: A Heuristic Approach 757

3. A Borgida, E Franconi, I Horrocks, D McGuinness, and P Patel-Schneider. Explaining alc
subsumption. In Description Logics, 1999.

4. Bijan Parsia Evren Sirin. Pellet: An owl dl reasoner. In Ralf Moller Volker Haaslev, editor,
Proceedings of the International Workshop on Description Logics (DL2004), June 2004.

5. Alan Rector Holger Knublauch, Mark Musen. Editing description logic ontologies with the
protege-owl plugin. In International Workshop on Description Logics - DL2004, 2004.

6. Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, and Chris Wroe. A
practical guide to building owl ontologies using protégé-owl and the co-ode tools. Available
from http://www.co-ode.org/resources, 2004.

7. Ian Horrocks. Fact++ web site. http://owl.man.ac.uk/factplusplus/.
8. Ian Horrocks. The fact system. In Automated Reasoning with Analytic Tableaux and Related

Methods: International Conference Tableaux’98, pages 307 – 312. Springer-Verlag, May
1998.

9. Thorsten Liebig and Olaf Noppens. Ontotrack: Combining browsing and editing with rea-
soning and explaining for owl lite ontologies. In S.A. McIlraith et al., editor, Proceedings of
the 3rd International Semantic Web Conference (ISWC2004). Springer-Verlag, 2004.

10. Alan L. Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger Knublauch,
Robert Stevens, Hai Wang, and Chris Wroe. Owl pizzas: Practical experience of teaching
owl-dl: Common errors and common patterns. In Proceedings of Engineering Knowledge in
the Age of the Semantic Web, 2004 2004.

11. Ralf Moller Volker Haarslev. Racer system description. In International Joint Conference
on Automated Reasoning, IJCAR 2001, 2001.



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 758 – 772, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Rapid Benchmarking for Semantic Web Knowledge 
Base Systems 

Sui-Yu Wang, Yuanbo Guo, Abir Qasem, and Jeff Heflin 

Computer Science and Engineering Department, Lehigh University, Bethlehem, 
PA 18015, USA 

{syw2, yug2, abq2, heflin}@cse.lehigh.edu 

Abstract. We present a method for rapid development of benchmarks for Se-
mantic Web knowledge base systems. At the core, we have a synthetic data 
generation approach for OWL that is scalable and models the real world data. 
The data-generation algorithm learns from real domain documents and gener-
ates benchmark data based on the extracted properties relevant for benchmark-
ing. We believe that this is important because relative performance of systems 
will vary depending on the structure of the ontology and data used. However, 
due to the novelty of the Semantic Web, we rarely have sufficient data for 
benchmarking. Our approach helps overcome the problem of having insuffi-
cient real world data for benchmarking and allows us to develop benchmarks 
for a variety of domains and applications in a very time efficient manner. Based 
on our method, we have created a new Lehigh BibTeX Benchmark and con-
ducted an experiment on four Semantic Web knowledge base systems. We have 
verified our hypothesis about the need for representative data by comparing the 
experimental result to that of our previous Lehigh University Benchmark. The 
difference in both experiments has demonstrated the influence of ontology and 
data on the capability and performance of the systems and thus the need of us-
ing a representative benchmark for the intended application of the systems. 

1   Introduction 

As the Semantic Web catches on we should expect to see a large growth of Web data 
that has formal semantics and an increasing number of systems that process them. 
Now that OWL is a W3C recommendation it is quite foreseeable that a fair share of 
those data will be marked up in OWL and we will have a variety of tools that will 
process these knowledge bases (KB). We should also see a lot of companies attempt-
ing to adapt the technology but finding it very difficult to choose the right tool.  
Historically this has been the case for various “killer” technologies like databases and 
object oriented systems. Companies have invested millions of dollar in technologies 
that eventually had to be discarded [3]. It would be prudent for us in the Semantic 
Web community to have tools and techniques ready for evaluating these emergent 
systems, so we are not caught off guard and benefit from a proactive strategy. It is 
therefore critical that we explore various approaches for evaluating these KB process-
ing tools in an objective and practical manner.  

Benchmarking has been a powerful tool for evaluation and comparison of com-
puter systems. However, benchmarking of Semantic Web KB systems is challenging 



 Rapid Benchmarking for Semantic Web Knowledge Base Systems 759 

due to a) the wide variety of types and sizes of KBs b) the difference in reasoning 
tasks involved and c) the breadth of the application domains. First, if the data is large, 
scalability and efficiency become crucial issues. Second, the system must provide suf-
ficient reasoning capabilities to support the semantic requirements of the application. 
However, increased reasoning capability usually means an increase in query response 
time as well. An important question is how well existing systems support these con-
flicting requirements. Finally, different domains and their associated applications may 
place emphasis on different requirements. As such, any data that is used in the 
benchmark has to be a good representative of the domain. 

In our previous work [12, 13] we have considered the first two issues. This resulted 
in the Lehigh University Benchmark (LUBM). LUBM is intended to evaluate the per-
formance of OWL repositories with respect to extensional queries over a large dataset 
that commits to a single realistic ontology. It consists of the ontology, customizable 
synthetic data, a set of test queries, and several performance metrics. The main fea-
tures of the benchmark include simulated data for the university domain, and a re-
peatable data set that can be scaled to an arbitrary size. 

In this paper we address the third issue of benchmarking Semantic Web KB sys-
tems with respect to a given domain. The synthetic data generator for LUBM was 
bound to a particular ontology and the data was generated by rules specified a priori 
based on subject matter expert’s knowledge of the domain. To extend the benchmark 
over different domains, we have to be capable of generating synthetic data of different 
ontologies due to insufficient quantities of real data at the current stage of the Seman-
tic Web development. We present a probabilistic model that, given representative data 
of some domain, can capture the properties of the data and generate synthetic data that 
has similar properties. To the best of our knowledge, this is the first work to model 
Semantic Web knowledge bases. 

In our previous LUBM experiment [13] we have evaluated four KB systems for the 
Semantic Web from several different aspects. We evaluated two memory-based sys-
tems (memory-based Sesame and OWLJessKB) and two systems with persistent stor-
age (database-based Sesame and DLDB-OWL). 

To evaluate our new approach, we have created the Lehigh BibTeX Benchmark 
(LBBM) and used this benchmark to evaluate the same systems. We are interested not 
only in testing the systems against the new benchmark but also in seeing the potential 
difference in the performances of the systems between the two benchmarks. 

Finally, to evaluate the performance of the LBBM, we collected a fair amount of 
OWL data, randomly selected a subset from the data, and used the subset as the train-
ing file for the data-generator. The synthetic data, the original data, and two other sets 
of data (one generated completely randomly by only looking into the ontology and 
one generated based on the authors’ knowledge about what the data is like) are com-
pared by using them to benchmark the memory-based Sesame system. The results 
showed that although the synthetic data still performs differently from the original 
data in some queries, the synthetic data always outperforms the completely random 
dataset.  

We believe our approach to data generation for OWL KB system benchmarks has 
three distinct advantages over a more static data generation approach. First, it reduces 
the benchmark development time drastically. Second, it allows the same systems to be 
tested against KBs that commit to different ontologies, because data sets for new  



760 S.-Y. Wang et al. 

ontologies can be quickly generated. A third advantage is more representative bench-
mark data, because it is statistically based on actual data, as opposed to the devel-
oper’s knowledge of the domain. We presented a comparison between benchmarks of 
synthetic data and the real data and showed that the performances are very similar. 

In Section 2 of the paper we describe the new data generation approach in detail 
and discuss its validity. In Section 3 we describe the LBBM experiment and compare 
it to the LUBM. In Section 4 we present the experiment that evaluates our new data 
generation technique. In Section 5 we talk about related work and in Section 6 we 
conclude. 

2   Using a Learned Probabilistic Model to Generate Data 

The main idea behind our approach is to extract properties relevant for benchmarking 
from real world data, and then use them to guide the generation of the synthetic data. 
In this section we first define terminologies and notations that are used in formalizing 
the problem, then describe the property-learning algorithm. Following that we de-
scribe a Monte Carlo algorithm that utilizes the discovered properties to generate syn-
thetic data.  

2.1   Pattern-Extraction Problem 

The property-discovering process is motivated by the desire to solve the problem of 
not having enough real-world data for benchmarking a semantic web KB system. In a 
real-world OWL dataset, there are governing rules behind the generation of the data 
that are not observable from the ontology itself. Some parts of the ontology may be 
used more frequently than others. Take the BibTeX data for example, while assertions 
like each journal paper must have at least one author can be defined in the ontology, 
the probability that a paper has three authors cannot be obtained by simply looking at 
the ontology. We wanted to discover these properties, and use them to synthetically 
generate data that is a legitimate substitute for the real data. This is especially critical 
since we still do not have enough real OWL data on the Web, but at the same time we 
need sufficient and credible data to develop effective benchmarks. 

Given representative actual data of some domain, the probabilistic modeling of the 
data can capture the features important for benchmarking in the data. We tried only to 
capture the statistical features of the data concerning the classes and properties. The 
actual content, or values, of the triples are filled with strings with similar length to 
that of the original file. Such simplification largely reduces the complexity of the tool, 
while preserving the performance of the benchmark using the synthetic data.  

We assume that each individual only belongs to one most specific class. Although 
this is not always true, this assumption is valid for a reasonably large portion of exist-
ing Semantic Web data. In our model, an individual has a probability of being a 
member of a particular class, while a member of a particular class has a probability of 
a particular cardinality for each property. This model differs from the LUBM in that 
the LUBM assumes a minimum/maximum cardinality and an uniform distribution of 
cardinalities, while this new model can be used to simulate more complex real world 
distributions, thus giving the benchmark more power in dealing with different forms 



 Rapid Benchmarking for Semantic Web Knowledge Base Systems 761 

of ontologies/data. We will first introduce the terminology used in the model, then 
present an algorithm that can extract features from the data. 

We first define the predicate type(x,y) to indicate if an individual x is an instance of 
the class y. Let an RDF triple Tp be represented as Tp=(s,p,o), where s, p, o are the 
subject, predicate, and object, respectively. An individual Ind(SID) is then the set of 
RDF triples Ind(SID) = {Tp1, Tp2, …, Tpn} such that for each triple Tpi of the form Tpi 
=(si,pi,oi), si=SID. 

We next define the property pattern, which plays a key role in mining patterns in 
the training data. Let C be the set of classes, P be the set of properties that are defined 
in the ontology and G be [ RDF literals ∪ XML Schema datatypes∪ C ]. A property 
pattern Prop is a 4-tuple Prop =(c, p, g, δProp) where: 1) c ∈ C, 2) p ∈ P, 3) g ∈ G, 
and 4)δProp: a probability distribution function. Also, an RDF triple Tp is said to 
match some property pattern Prop, match(Tp, Prop), iff 
type(si,c)∧ (pi = p)∧ type(oi,g). The probability δProp distribution is then defined as 

δPr op(n) = P( I(match(Tp,Prop)) =
Tp∈Ind (sID )

n |  type(sID ,c),Ind(sID ) ∈ KB) (1) 

where I is an indicator function1, and KB denotes the pool of individuals in the train-
ing file. δProp(n) is then the probability that there are n triples in some individual 
Ind(SID) in the training file KB that matches Prop. δProp (n) is then describing how 
likely for an individual Ind(SID) to have n triples that matches the property pattern 
Prop. 

A property pattern set for a class c, ppSet(c), is the set of property patterns 
ppSet(c) = {Prop1, Prop2, …, Propm},  such that miicci ,...,1, , =∀= . The property 

pattern set denotes all the property patterns we discovered for the individuals of the 
class c, thus is the basis for generating data about class c. When generating an indi-
vidual, the property pattern set determines the kind of contents/triples the individual 
should have. 

The synthetic data generation is divided into two phases, the property-discovering 
phase, and the data generation phase. We now describe the procedure of discovering 
properties in the training data. The knowledge of the algorithm about the training file 
is denoted as Γ, a collection of property pattern sets. The algorithm goes through the 
training data only once. Initially the algorithm has no knowledge about the training 
file, Γ = ∅. As it goes through the data on the basis of individuals, it will either 1) 
create new property pattern set of the class c based on the information/individuals en-
countered so far, if there is no property pattern set of the class c in its knowledge, or 
2) update its current knowledge. Then the collected information determines the fol-
lowing parameters: 1) h, the number of property pattern sets, 2) Γ = {ppSet(c1), 
ppSet(c2), …, ppSet(ch)} such that ci ≠ c j,i ≠ j , 3) a set of values },...,,{ 21 hτττ  , 

where. τ kk=1

j
=1. τ k  is defined to be the proportion of individuals of the class ck. The 

algorithm is shown in Fig 1. 
As the algorithm goes through the data, it will continuously update its knowledge 

about the data, where the knowledge in the form of property pattern sets for different 

                                                           
1 The indicator function has value 1 if the event is true, and zero otherwise. 



762 S.-Y. Wang et al. 

classes, Γ, and the corresponding Count_τ(k), the number of individuals of class ck in 
KB. τ k  is then obtained by normalizing Count_τ(k) at the end of the algorithm. In 

practice, we define an additional function, Count_δProp(n), which can be viewed as a 
histogram, with x-axis being n, and y axis being the number of individuals of the class 
c that matches Prop. δProp(n) is obtained by performing normalization on 
Count_δProp(n) after all data has been processed.  

 
 Initial Condition: Γ = ∅ (h=0)  
 For all individuals Ind(SIDi), i =1, 2, …, u, with triples Tp j = (sij , pij ,oij ) ∈  Ind(SIDi) 

If there are triples in the individual that match property patterns in current knowledge, 
 if ∃Prop=(ck,p,g, δProp) s.t. match(Tpj, Prop): 

Update Prop: check n, the number of triples in current individual Ind(SIDi) 
that matches Prop, then increase the value of Count_δProp (n) by one. 

Else 
Initialize Prop: generate a new instance of property pattern Prop=(ck, p, g, δProp) 
s.t. type(sij,ck )∧  type(oij,g), with Count_δProp (n) =1 where n is the number of triples 

in current individual Ind(SIDi) that matches Prop, zero elsewhere. 
If there is property pattern set of the class ck in current knowledge, ∃ppSet(ck) s.t. 
type(sij ,ck ) : 

ppSet(ck) ← ppSet(ck) ∪ Prop 
Else 

h ← h+1, Γ ← Γ∪ {ppSet(ck)} where ppSet(ck) = {prop} 
Count_τ(k) ← Count_τ(k)+1 

 
 Normalize:  
 For all property patterns: δPr op (i) = Count _δPr op (i) Count _δPr op ( j)

j= 0

∞
,i =1,...,∞ 

 For all i=1,…,h: τ i = Count _ τ(i) Count _ τ ( j)
j=1

h  

Fig. 1. Algorithm Extract for extracting property patterns from training file 

2.2   The Monte Carlo Data Generation Algorithm 

The algorithm presented in this section is capable of generating synthetic data that has 
a structure similar to that of the training data. Inherited from the nature of Monte 
Carlo methods [20], this is a scalable algorithm that can generate files of arbitrary 
sizes that have similar properties to that of the training data. The algorithm will ini-
tialize the “framework” of the synthetic data first, that is, it first generates a set of in-
dividuals and assigns a class to each, then the algorithm goes on to generate the prop-
erties and corresponding vales to each individual. Define Rand(χ) to be a random 
number generator with seed χ that generates random number between [0, 1]. Let the 
function F(x) be the cumulative distribution function of δ: 

F(x) = δ(i)
i= 0

x  (2) 



 Rapid Benchmarking for Semantic Web Knowledge Base Systems 763 

Note that in practice, the range of i such that δ(i) > 0  is finite, that is, δ(i) = 0 

∀i > ε , where ε is some threshold. Let Π = { hπππ ,...,, 21 } be the set of generated 

individuals, where π i is the set of individuals generated according to the distribution 
of the property pattern set ppSet(ci). 

 

Initial conditions: Π = ∅ , i = 1,…,h. 
 
Given the total number of desired individuals λ in the document to be generated, initialize 
the set of individuals according to the desired number of individuals. These individuals 
only have id and classes assigned, without detail of properties and values assigned yet.  
 

For all individuals  
    For all the property patterns Propij(ci, pij, gij) of the class ci 
  Find y such that Rand(χ ij ) = Fij (y)  

Generate y RDF triples according to Propij , if gij∈ C, then randomly select y 
members from π k

, type( π k ,gij), as the objects. Otherwise generate the objects 

such that they are random values of type gij. 

Fig. 2. Algorithm Generate for generating synthetic data 

Note that we skip the details of generating the values of the properties. For bench-
marking purposes, the content itself is less important as long as the generated content 
has similar “features” to the training data. The feature can refer to the length of the 
string, the range of the integer value, etc.  

2.3   Probabilistic Model Versus the Power Law 

Since we are trying to generate data that resembles the real world data, a key question 
is how representative our synthesized data is. The first claim of our tool is its scalabil-
ity. One may argue that real-world data should be self-similar, that is, some complex 
patterns emerge when the size of the data increases. We argue the legitimacy of the 
scalability in the fundamental inapplicability of the power law on our approach. 

The power-law specifies a relationship between two variables such that one is pro-
portion to the power of the other [11]. This law has been shown to hold in many dif-
ferent kinds of network. Take the World-Wide-Web for example, the number of links 
to a certain node can be predicted by the rank2 of the node. However, in a structural 
dataset like OWL, the distribution of the links is often constrained by the type of link 
it is. Take the Bibtex domain for example, although the out- link of the ObjectProp-
erty “editor” of a certain publication may vary over a wide range, most of them have 
1-3 editors. If the power-law applies, then as the size of the file increases, the maxi-
mum number of editors will also increase, without limit, which is clearly not true. No 
matter how big the file size is, the maximum number of authors is unlikely to exceed 
5 people. Still, there could be links where the power law is valid. In the FOAF  

                                                           
2 The index in the order of decreasing measurements (in-degree, out-degree, etc.). 



764 S.-Y. Wang et al. 

domain, the number of acquaintances one has, as the community of FOAF increases, 
could also increase without boundary. In such cases, the data generation is scalable to 
the size of the real world data as long as the training file is a representative subset of 
the real world data. When we say representative subset, we mean when the sample is 
being drawn, we collect all the information about the sample, that is, when an indi-
vidual is being collected to the subset, all the links it has are also taken into the subset.  

3   LBBM: A New Benchmark 

The data generation method described in previous section allows us to rapidly de-
velop a benchmark that is specific to a domain and then conduct experiments based 
on it. We highlight the workflow in the following. First we choose an ontology that 
represents the domain in question. Then we collect sample data and create synthetic 
test data that commits to that ontology by utilizing the new data generation approach. 
We use this approach to generate a new benchmark for the Bibtex domain. At the end 
we compare the LBBM to our previous approach, the LUBM. 

3.1   Lehigh Bibtex Benchmark (LBBM) 

To test drive our approach, we have used it to create a new benchmark named Lehigh 
BibTeX Benchmark (LBBM). We have used the Lehigh University BibTeX ontology 
as our domain definition [18]. This ontology is a modified version of the Bibtex on-
tology 0.1 by MIT [4]. It is important to note our rationale behind choosing this par-
ticular ontology. Tempich and Volz [23] have done some preliminary work towards a 
benchmark for Semantic Web reasoners. Though their benchmark is still under  
construction, they analyze the publicly available ontologies and report them to be 
clustered into three categories: description logic-style, database schema-like, and ter-
minological ontologies.  

The BibTeX ontology is expressed in OWL Lite and consists of 28 classes and 80 
properties, half of which are datatype properties.  According to the classification of 
[23], the ontology is more of a database schema-like ontology. The classes and prop-
erties in the BibTeX ontology used by LBBM correspond to entries and fields in Bib-
TeX respectively.  

We designed test queries as realistic as possible against the benchmark data.  
Moreover, we choose the queries that cover a range of types in terms of input size, se-
lectivity, complexity, required hierarchy information, and required OWL inference. 
We designed twelve test queries in LBBM. A complete list of the queries can be 
found in [24]. Because of the nature of the ontology and the data, most of queries are 
RDF style queries and only one of them assumes OWL inference. 

In order to acquire a suitable set of training data, we take advantage of the fact that 
there are plenty of BibTeX files on the Web, and convert them into OWL format by 
the Java BibTeX to RDF Converter 1.0 developed by the University of Karlsruhe [15] 
and the perl DAML+OIL conversion script by BBN. This resulted in a 2.4 MB OWL 
file which was used as our training data. We then used our tool to identify patterns 
from the training data and generate synthetic benchmark data based on those patterns. 



 Rapid Benchmarking for Semantic Web Knowledge Base Systems 765 

In order to test a system in the benchmark framework, we wrap the system with an 
instantiation of the predefined interface between the benchmark test module and the 
target system. This involves the implementation of Java APIs for operations such as 
loading and query execution.  

Query response time is collected in the way based on the process used in database 
benchmarks [5, 6, 9, 22]. To account for caching, each query is executed for ten times 
consecutively and the average time is computed. The elapsed time is counted from 
when the query is issued till the result set is returned and traversed from the beginning 
to the end. We also measure query completeness and soundness. We do not measure 
them with a coarse distinction of yes or no. Instead, we measure the degree of com-
pleteness as the percentage of the entailed answers that are returned by the system, 
and the degree of soundness as the percentage of the answers returned by the system 
that are actually entailed [13]. 

3.2   An Experiment Using LBBM 

We have conducted an experiment based on LBBM. Although newer systems with 
improved performance had been introduced, for the sake of comparison, we have 
evaluated the same systems as in our previous LUBM experiment, including DLDB-
OWL (04-03-29 release), Sesame (both main memory-based and database-based, 
v1.0), and OWLJessKB (04-02-23 release). First we briefly introduce the reasoning 
features of these systems. 

DLDB-OWL [21] loosely couples a relational database system (MS Access) with a 
description logic reasoning reasoner (FaCT). Sesame [7] is a storing and querying fa-
cility for RDF and RDF Schema (RDFS). Sesame is an incomplete reasoner for OWL 
Lite. We evaluate two implementations of Sesame, i.e., main memory-based and da-
tabase-based. For brevity, we hereinafter refer to them as Sesame-DB and Sesame-
Memory respectively. OWLJessKB [17] is a memory-based reasoning tool for OWL 
implemented as a set of JESS production rules.  

We have tested the above systems against four datasets, the largest one consisting 
of 320 OWL files totaling 189MB and containing over 2,600,000 triples. The test 
queries are expressed in RQL [16], a KIF-like language and JESS and issued to Ses-
ame, DLDB-OWL and OWLJessKB respectively. The experiment is conducted on a 
PC with following environment 1) 1.80GHz Pentium 4 CPU, 2) 256MB of RAM, 3) 
80GB of hard disk, 4) Windows XP Professional OS, and 5) Java SDK 1.4.1, 512MB 
of max heap size. 

 

Fig. 3. Load Time 



766 S.-Y. Wang et al. 

Table 1 shows the load time of each system and the consequent repository sizes of 
DLDB-OWL and Sesame-DB. Fig. 3 depicts how the load time grows as the data size 
increases. It needs to be mentioned that OWLJessKB has failed to load the smallest 
dataset even after we increased the max heap size to 1GB. Consequently we will not 
include OWLJessKB in the subsequent discussion except for query completeness and 
soundness.  

Impressively, Sesame-Memory could load all of the datasets, despite that it nearly 
reached the memory limitations when loading the largest dataset. Furthermore, it is 
the fastest system to load every dataset. As for the two systems with secondary stor-
age, DLDB-OWL could obviously scale better than Sesame-DB. We will return to 
this in next section. 

Fig. 4 compares the selected query response time between DLDB-OWL and Ses-
ame systems. A complete set of results can be found at [24]. Sesame-Memory per-
formed the best in querying too. It was the fastest system in answering the queries 
upon the four of the datasets, with a few exceptions at the largest dataset when its per-
formance went down drastically (e.g. Queries 4, 10, and 12). We believe this was 
caused by frequent page swapping due to main memory limitations. For the other two 
systems, Sesame-DB was faster than DLDB-OWL to answer almost all the queries. 
Furthermore, for most of the queries, Sesame-DB has showed no proportional in-
crease in the response time as the data size grows. 

Table 1. Load time and repository sizes 

 

Next we look at the query completeness and soundness of each system. In order to 
get a flavor of its capability in this aspect, we have tested OWLJessKB on a single file 
extracted from the test dataset. It turned out that all the systems were sound in an-
swering the twelve queries. However, they differed from each other in query com-
pleteness.  

Specifically, all of them could answer Query 1 through Query 9 as well as Query 12 
completely. However, while Sesame and OWLJessKB were complete, DLDB-OWL 



 Rapid Benchmarking for Semantic Web Knowledge Base Systems 767 

could only find partial answers (about 98%) for Query11 since  it does not make infer-
ences about the domain of properties. Moreover, as expected, OWLJessKB was the only 
system that could answer Query10, which requires owl:inverseOf inference.

 

 

Fig. 4. Comparison between different systems for selected queries  

3.3   Comparison to the LUBM Experiment 

As noted, the same systems have previously been evaluated with our other bench-
mark: LUBM. The scales of the datasets used herein are also close to the first four 
datasets in the LUBM experiment respectively. The major difference between the two 
benchmarks lies in the ontology, the data model, and the test queries. We are inter-
ested to see how these have influenced the performance of each system.  

In terms of loading, DLDB-OWL was the system showing the best scalability in 
both experiments. Large scales of data remain a big challenge for OWLJessKB. It 
could load only the smallest dataset in the LUBM experiment after spending much 
longer time than the others. In this experiment, it was still slow in loading and could 
not even handle the smallest dataset. 

In contrast, Sesame systems have performed quite better in this experiment. Ses-
ame-Memory succeeded to load a considerably larger size of data. Sesame-DB still 
faces the scalability problem, but it is much less prominent than in the LUBM ex-
periment. We have considered Sesame’s inability to scale in loading to relate to two 
reasons. One is its use of forward-chaining inference and the overhead of recording 
the dependency among statements. The other reason is the time cost of ID manage-
ment for resources and literals during loading. (Readers are referred to [13] for a  
detailed discussion.). Compared to LUBM, LBBM’s ontology and data are more sim-
plistic and as a result, there are less inferred statements by Sesame during loading. In 
addition, there are fewer unique literals in the data. We think these could account for 
the significant scalability improvement of Sesame. 

It turned out that the difference between both benchmarks have also influenced the 
query performance, especially for Sesame. In the LUBM experiment, Sesame-DB was 
very slow in answering some of the queries (particularily those do not contain a  
specific URI as the subject or object in the statements and have a complex pattern of 
relationships among the individuals concerned). Given the simplicity of the BibTeX 
ontology and the model of the test data, we have not found any appropriate queries 



768 S.-Y. Wang et al. 

representing complex connections between individuals. For the present queries in 
LBBM, Sesame was able to answer them rather quickly.  

The ontology and test data used in our LBBM, although described in OWL lan-
guage, is essentially an RDFS ontology. The case is similar for the test queries. It is 
known that Sesame is developed as an RDF repository. We believe it is more opti-
mized for processing RDF-style data and queries than systems like DLDB-OWL and 
OWLJessKB. The result has clearly showed that Sesame has become a better choice 
than the other two systems for the applications in a similar domain to what our LBBM 
represents. Overall, the experiment has verified that the ontology and instance data 
could make a difference in both the capability and performance of the same system. 
This demonstrates the need for using a benchmark that resembles the domain in which 
the evaluated systems are intended to be applied. 

4   Evaluation of the Data Generation Technique 

We claimed our tool is capable of generating a legitimate substitute to the real data. 
To examine this assumption, we take subsets of the original file, generate synthetic 
data using the subset as the training file, and compare the benchmark result of the 
synthetic file to that of the original file. A subset was derived by randomly selecting 
an individual and taking it along with all neighboring individuals two hops away from 
it into the subset. The definition of neighboring individuals, however, is a tricky ques-
tion. Consider the data as a huge directed graph. The resulting sets of neighbors are 
different when considering neighbors via link direction or just via links. We take both 
subset selection schemes into consideration.  

In additional to the synthetic data and the original data, we also generated two 
other sets of data for comparison. They both use a tool that can parse a given ontol-
ogy, let user specify the kind of triples and the min/max cardinality of that kind of tri-
ple, let user specify min/max number of individuals of a certain class, and generate 
data according to the given parameters in a uniform distribution. The first set of data 
has parameters assigned by a domain expert (based on knowledge about the kinds of 
triples and approximate ratio between different classes of individuals). The second set 
is generated by assigning the parameters according to a series of random numbers.  

The size of the original file is one million. We have subsets of sizes 125, 250, 500, 
1000, 5000, 10000, 20000, and 50000 triples. For each size, we have a subset that in-
cludes directional neighbors and one that includes neighbors regardless of directions. 
These subsets are used as training files to generate a set of synthetic data consisting of 
one million triples. The two data sets generated according to domain knowledge and 
completely randomly also consist of one million triples.  

The system for evaluation is the memory-based Sesame-DB. Eleven queries were 
designed so that the first half of the queries are bound to have results in almost any 
kind of data, while the second part is more likely to have answers for more realistic 
data. The set of queries can be found at [24]. The experiment is conducted on a 
PowerBook G4 with environment as follows: 1) 1.0GHz PowerPC G4 CPU; 2) 
512MB of RAM; 60GB of hard disk; 3) Mac OS X 10.3.9; 4)Java SDK 1.4.2.  

Fig 5. shows the result of the query time verses the size of the training files for se-
lected queries. In the legends, “orig” refers to the result from the original Bibtex data, 



 Rapid Benchmarking for Semantic Web Knowledge Base Systems 769 

“man” refers to the data generated with domain knowledge, “rand” refers to the set of 
data generated completely randomly, “dir” refers to the set of results with training 
files subsetted with direction of the links considered, while “non-dir” refers to those 
that does  not. Other queries have either close-to-zero query time or zero results thus 
are less valuable to present here. In Fig 5. Q5, the performance from the completely 
random dataset is omitted, because it performs so bad that it will flatten out other in-
formation in the graph. The query time for query 5 in the completely random dataset 
is 330493ms.  

Q1

0

200

400

600

800

1000

1200

1400

1600

0 10000 20000 30000 40000 50000 60000

# of triples in sample file

dir
orig
man
rand
non-dir

Q2

0

100

200

300

400

500

600

700

0 10000 20000 30000 40000 50000 60000

# of triples in training file

non-dir
dir
orig
man
rand

 
Q3

-1000

0

1000

2000

3000

4000

5000

6000

0 10000 20000 30000 40000 50000 60000

# of triples in training file

non-dir
dir
orig
man
rand

Q5

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10000 20000 30000 40000 50000 60000

# of triples in training file

non-dir
dir
orig
man

 
Q8

0

50

100

150

200

250

300

350

400

450

500

0 10000 20000 30000 40000 50000 60000

# of triples in training file

non-dir
dir
orig
man
rand

Q10

0

10

20

30

40

50

60

0 10000 20000 30000 40000 50000 60000

# of triples in training file

non-dir
dir
orig
man
rand

 

Fig. 5. Query Time verse different sizes of training file in selected queries 

For Fig 5 Q3, the data from non-directional scheme returns far more results than 
the original file, while the data from directional scheme performs reasonably well. 
This query asks for all InProceedings that have at least one author and one editor. One 
possible explanation is that while almost all InProceedings have at least one author, 
the number of InProceedings having editors are relatively fewer. At the same time, the 
probability that someone is an editor isn’t uniform either: some people are more likely 
to be editors for several publications. In the non-directional selection scheme, as long 
as we selected a publication with editors, or selected someone being editor, the prob-
ability of the data two hops away having the property editor is higher than normal. 

In Fig 5 Q5, the non-directional selection scheme outperforms the directional one. 
The query is asking for people with more than two publications. This might be ex-
plained by that when an individual is selected, it is less likely for the directional 



770 S.-Y. Wang et al. 

scheme to get all the publication from someone because the link’s direction is from 
publication to author/person.  Fig 5 Q8 might be explained similar to that in Q3. This 
query asks for publication with publisher specified. For the non-directional scheme, it 
is likely to select a bunch of individuals from the same source Bibtex file, thus more 
likely than normal to have the attribute publisher.  

From the figures we can see that the benchmark result of the synthetic data given  
representative training data, can be almost identical to the original file at best, and still 
better than completely random data at worst. Furthermore, these results can be 
achieved with a training set of only 10000 triples. The experiment shows that the  
synthetic data generator presented here can be a reasonable substitute for benchmark 
systems if insufficient data is available, or if the user wishes to create a benchmark 
without the pain of collecting a large amount of data.  

Ideally, we would like to repeat the experiment on other ontologies. However, the 
lack of sufficient real-world data had made this impossible. The most likely next can-
didate for such experiments is the FOAF data. However, current available FOAF data 
can only contribute about 60000 triples, which is only a fraction to the size of the cur-
rent experiment. The difference in the magnitude in the size of the two datasets will 
make the comparison meaningless. 

5   Related Work 

The benchmark data generation tries to discover the patterns in the real world data 
and reflect them in the synthetic data generation. Our work is influenced by the asso-
ciation rule mining in the data-mining research [1]. A classic example of association 
rule mining is for the supermarket retailers to try to identify association relationships 
between the items bought in one customer transaction. For example discover if milk is 
often bought together with bread. We take advantage of the structural nature of the 
Semantic Web data. The definition of a transaction is analogous to that of the individ-
ual in our approach, and patterns are found within the transaction/individual.  

There are some other works that exploit similar techniques for the Semantic Web 
but for different purposes from ours. For example, Maedche and Staab [19] have stud-
ied ontology learning for the Semantic Web. They make use of a modification of the 
generalized association rule learning algorithm for discovering properties between 
classes. 

Our work on benchmarking Semantic Web KB systems has emphasized on the 
support of evaluating the systems with respect to large amount of data and extensional 
queries upon the data. This makes our work different from others. For instance, Al-
exaki et al. [2] have developed some benchmark queries for RDF, however, these are 
mostly intensional queries. Some attempts have been done by Elhaik et al [10] and 
Horrocks and Patel-Schneider [14] to benchmark description logic systems. The  
emphasis of this work is to evaluate the reasoning algorithms in terms of the tradeoff 
between expressiveness and tractability in description logic. Our work is not a de-
scription logic benchmark. Moreover, unlike our approach, such benchmark data gen-
eration as used in [10] does not take account of simulating the real world data. Lastly, 
the Web Ontology Working Group provides a set of OWL test cases [8]. They are in-
tended to provide examples for, and clarification of, the normative definition of OWL 



 Rapid Benchmarking for Semantic Web Knowledge Base Systems 771 

and focus on the completeness and soundness with respect to individual features. Dif-
ferent from our benchmarks, they are not suitable for the evaluation of scalability. 

6   Conclusion 

In this paper, we have considered the issue of rapid development of benchmarks for 
Semantic Web knowledge base systems. In our previous work, we have used the Le-
high University Benchmark (LUBM) to evaluate several contemporary systems. 
LUBM is bound to a specific ontology and its data generation is based on statically 
encoded rules. The university ontology that we used in LUBM is categorized as a de-
scription logic-style ontology. The benchmark represents certain classes of Semantic 
Web applications but not all. It is difficult and inefficient if not completely impossible 
to generate benchmarks that will cover the wide variety of Semantic Web applications 
that are possible. In light of this, in this work, we have moved forward by introducing 
a method for generating benchmark data of any chosen domain in a very time effi-
cient manner. We have achieved this by developing a data generation approach that 
does not depend on statically encoded rules. This method constructs a probabilistic 
model that can extract statistical features from real world data that are important for 
benchmarking. A Monte Carlo algorithm is used to generate synthetic data that have 
similar features to that of the real world data based on the model constructed.  Ex-
periments have been conducted to show that the benchmark using the synthetic data 
has a performance very similar to the one that uses real world data at best, and still 
outperforms the data generated without knowledge of the real-world data at worst. We 
have shown that our data generation provides a reasonable substitute for large quan-
tity of real world data. 

We have used this new approach to create another benchmark called Lehigh Bib-
TeX Benchmark (LBBM) within a considerably short period. LBBM is different from 
LUBM in the sense that it represents the use of a database schema-like ontology and 
more RDF-style data and queries. We have used this new benchmark to evaluate two 
main memory-based systems (memory-based Sesame and OWLJessKB) and two sys-
tems with persistent storage (database-based Sesame and DLDB-OWL). They are the 
same systems in our previous LUBM experiment. We compared both experiments 
and pointed out the difference between their results. The experiment has verified that 
the characteristics of ontology and data used in the benchmark can make a difference 
in the evaluation of the systems. We argue this demonstrates the necessity of choosing 
a representative benchmark for the intended application of the systems and thus the 
need for a variety of Semantic Web knowledge base benchmarks. We intend for our 
approach presented herein to play a promotional role in this regard.  

Acknowledgements 

This material is based on work supported by the National Science Foundation under 
account No. IIS-0346963. We thank Paul Koget for suggestions that synthetic data 
generators could be learned from existing data. 



772 S.-Y. Wang et al. 

References 

[1] Agrawal, R. Imielinski, T., and Swamy, A. Mining association rules between sets of items 
in large databases. In Proc, of ACM SIGMOD Intl. Conf. on Management of Data, May 
1993. 

[2] Alexaki, S. et al. On Storing Voluminous RDF Description: The case of Web Portal Cata-
logs. In Proc. of the 4th International Workshop on the Web and Databases, 2001. 

[3] Beall, S and  Hodges, R. Application & Systems Program Development: Software Direc-
tory Columns. Gartner Corporation Technical Report, 1997. 

[4] Bibtex Definition in OWL Version 0.1. http://www.visus.mit.edu/bibtex/0.1/ 
[5] Bitton, D., DeWitt, D., and Turbyfill, C. Benchmarking Database Systems, a Systematic 

Approach. In Proc. of the 9th International Conference on Very Large Data Bases, 1983. 
[6] Bitton, D. and Turbyfill, C. A Retrospective on the Wisconsin Benchmark. In Readings in 

Database Systems, Second Edition, 1994. 
[7] Broekstra, J. and Kampman, A. Sesame: A Generic Architecture for Storing and Query-

ing RDF and RDF Schema. In Proc. of ISWC2002. 
[8] Carroll, J.J. and Roo, J.D. ed. OWL Web Ontology Test Cases. http://www.w3.org/TR/ 

2004/REC-owl-test-20040210/ 
[9] Cattell, R.G.G. An Engineering Database Benchmark. In Readings in Database Systems, 

Second Edition, 1994.  
[10] Elhaik, Q, Rousset, M.C., and Ycart, B. Generating Random Benchmarks for Description 

Logics. In Proc. of DL’ 98. 
[11] Faloutsos M. and Faloutsos, P. and Faloutsos, C.. On Power-law Relationships of the 

Internet Topology. Pages 251-262, SIGCOMM '99 
[12] Guo, Y., Heflin, J., and Pan, Z. Benchmarking DAML+OIL Repositories. In Proc. of 

ISWC2003. 
[13] Guo, Y., Pan, Z. and Heflin, J. LUBM: A Benchmark for OWL Knowledge Base Sys-

tems. In Journal of Web Semantics, Vol 3, Issue 2, 2005 
[14] Horrocks, I. and Patel-Schneider, P. DL Systems Comparison. In Proc. of DL’ 98. 
[15] Java BibTeX-To-RDF Converter. http://www.aifb.uni-karlsruhe.de/WBS/pha/bib/ 
[16] Karvounarakis, G. et al. Querying Community Web Portals. http://www.ics.forth.gr/proj/ 

isst/RDF/RQL/rql.pdf 
[17] Kopena, J.B. and Regli, W.C. DAMLJessKB: A Tool for Reasoning with the Semantic 

Web. In Proc. of ISWC2003. 
[18] Lehigh University Bibtex Ontology. http://www.cse.lehigh.edu/~syw/bib-bench.owl 
[19] Maedche, A and Staab, S. Ontology learning for the semantic web. IEEE Intelligent Sys-

tems, 16(2): 72-79. 2001. 
[20] Manno, I. Introduction to the Monte Carlo Method. Budapest, Hungary: Akadémiai 

Kiadó, 1999. 
[21] Pan, Z. and Heflin, J. DLDB: Extending Relational Databases to Support Semantic Web 

Queries. In Workshop on Practical and Scalable Semantic Systems, ISWC2003.  
[22] Stonebraker, M. et al. The SEQUIOA 2000 Storage Benchmark. In Readings in Database 

Systems, Second Edition. 1994. 
[23] Tempich, C. and Volz, R. Towards a benchmark for Semantic Web reasoners–an analysis 

of the DAML ontology library. In Workshop on Evaluation on Ontology-based Tools, 
ISWC2003.  

[24] Wang, Sui-Yu, Guo, Yuanbo, Qasem, Abir, and Heflin, J. Rapid Benchmaring for Se-
mantic Web Knowledge Base Systems, Technical Report LU-CSE-05-026, Dept. of 
Computer Science and Engineering, Lehigh University, 2005. 



Using Triples for Implementation:
The Triple20 Ontology-Manipulation Tool

Jan Wielemaker1, Guus Schreiber2, and Bob Wielinga1

1 University of Amsterdam, Human Computer Studies (HCS),
Kruislaan 419, NL-1098 VA Amsterdam, The Netherlands

{wielemak, wielinga}@science.uva.nl
2 Free University Amsterdam, Computer Science,

De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands
schreiber@cs.vu.nl

Abstract. Triple20 is a ontology manipulation and visualization tool
for languages built on top of the Semantic-Web RDF triple model. In
this article we explain how a triple-centered design compares to the use
of a separate proprietary internal data model. We show how to deal
with the problems of such a low-level data model and show that it offers
advantages when dealing with inconsistent or incomplete data as well as
for integrating tools.

1 Introduction

Triples are at the very heart of the Semantic Web [1]. RDF, and languages built
on top of it such as OWL [2] are considered exchange languages: they allow ex-
changing knowledge between agents (and humans) on the Semantic Web through
their atomic data model and well-defined semantics. The agents themselves often
employ a data model that follows the design, task and history of the software.
The advantages of a proprietary internal data model are explained in detail by
Noy et al. [3] in the context of the Protégé design.

The main advantage of a proprietary internal data model is that it is neutral
to external developments. Noy et al. [3] state that this enabled their team to
quickly adopt Protégé to the Semantic Web as RDF became a standard. How-
ever, this assumes that all tool components commit to the internal data model
and that this model is sufficiently flexible to accommodate new external devel-
opments. The RDF triple model and the higher level Semantic Web languages
have two attractive properties. Firstly, the triple model is generic enough to
represent anything. Secondly, the languages on top of it gradually increase the
semantic commitment and are extensible to accommodate to almost any domain.
Our hypothesis is that a tool infrastructure using the triple data model at its
core can profit from the shared understanding when using the triple model for
exchange. We also claim that, where the layering of Semantic Web languages
provide different levels of understanding of the same document, the same will
apply for tools operating on the triple model.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 773–785, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



774 J. Wielemaker, G. Schreiber, and B. Wielinga

In this article we describe the design of Triple20, an ontology editor that runs
directly on a triple representation. First we introduce our triple store, followed
by a description on how the model-view-controller design can be extended to
deal with the low level data model. In Sect. 4.1 to Sect. 6.2 we illustrate some
of the Triple20 design decisions and functions, followed by some metrics, related
work and discussion.

2 Core Technology: Triples in Prolog

The core of our technology is Prolog-based. The triple-store is a memory-based
extension to Prolog realising a compact and highly efficient implementation of
rdf/3 [4]. Higher level primitives are defined on top of this using Prolog backward
chaining rather than transformation of data structures. A simple example:

class(Sub, Super) :-

rdf(Sub, rdfs:subClassOf, Super),

rdf(Sub, rdf:type, rdfs:’Class’),

rdf(Super, rdf:type, rdfs:’Class’).

The RDF infrastructure is part of the Open Source SWI-Prolog system1 and
used by many internal and external projects. Higher-order properties can be
expressed easily and efficiently in terms of triples. Object manipulations, such
as defining a class are also easily expressed in terms of adding and/or deleting
triples. Operating on the same triple store, triples not only form a mechanism
for exchange of data, but also for cooperation between tools. Semantic Web
standards ensure consistent interpretation of the triples by independent tools.

3 Design Principles

Most tool infrastructures define a data model that is inspired by the tasks that
have to be performed by the tool. For example, Protégé, defines a flexible meta-
data format for expressing the basic entities managed by Protégé: classes, slots,
etc. The GUI often follows the model-view-controller (MVC) architecture [5].
This design is illustrated in Fig. 1. There are some issues with this design we
would like to highlight.

– All components in the tool set must conform to the same proprietary data
model. This may harm maintainability and complicates integrating tools
designed in another environment.

– Data is translated from/to external (file-)formats while loading/saving
project data. This poses problems if the external format contains information
that cannot be represented by the tool’s data model.

The MVC design pattern is commonly used and successful. In the context of
the Semantic Web, there is an alternative to the proprietary tool data model pro-
vided by the stable RDF triple model. This model was designed as an exchange
1 http://www.swi-prolog.org



Using Triples for Implementation: The Triple20 Ontology-Manipulation Tool 775

Event

Controller

View View

Model changeschanges

modify
UI

modify
DATA

modify
UI

Fig. 1. Model-View-Controller (MVC) design pattern. Controllers modify UI aspects of
a view such as zooming, selection, etc. directly. During editing the controller modifies
the model that in turn informs the views. Typically, the data structures of the Model
are designed with the task of the application in mind.

model, but the very same features that make it good for exchange also make it a
good candidate for the internal tool data model. In particular, the atomic nature
of the model with its standardised semantics ensure the cooperating tools have
a sound basis.

In addition to providing a sound basis, the triple approach deals with some
serious consistency problems related to more high-level data models. All Seman-
tic Web data can be expressed precisely and without loss of information by the
toolset, while each individual tool can deal with the data using its own way to
view the world. For example, it allows an RDFS tool to work flawlessly with
an OWL tool, although with limited understanding of the OWL semantics. Dif-
ferent tools can use different subsets of the triple set, possibly doing different
types of reasoning. The overall semantics of the triple set however is dictated by
stable standards and the atomic nature should minimise interoperability prob-
lems. Considering editing and browsing tools, different tools use different levels
of abstractions, viewing the plain triples, viewing an RDF graph, viewing an
RDFS frame-like representation or an OWL/DL view (Fig. 4, Fig. 5).

Finally, the minimalist data model simplifies general tool operations such as
undo, save/load, client/server interaction protocols, etc.

In the following architecture section, we show how we deal with the low-level
data model in the MVC architecture.

4 Architecture

Using a high-level data model that is inspired by the tasks performed by the tools,
mapping actions to changes in the data model and mapping these changes back
to the UI is relatively straightforward. Using the primitive RDF triple model,
mapping changes to the triple store to the views becomes much harder for two



776 J. Wielemaker, G. Schreiber, and B. Wielinga

reasons. First of all, it is difficult to define concise and efficiently which changes
affect a particular view and second, often considerable reasoning is involved
deducing the visual changes from the triples. For example, adding the triple
below to a SKOS-based [6] thesaurus turns the triple set representing a thesaurus
into a RDFS class hierarchy:2

skos:narrower rdfs:subPropertyOf rdfs:subClassOf .

The widgets providing the ‘view’ have to be consistent with the data. As we
can see from the above the relation between changes to the triple set and changes
to the view can be very indirect. We deal with this problem using transactions
and mediators [7].

Both for journalling, undo management, exception handling and maintaining
the consistency of views, we introduced transactions. A transaction is a sequence
of elementary changes to the triple-base: add, delete and update,3 labeled with an
identifier and optional comments. The comments are used as a human-readable
description of the operation (e.g. “Created class Wine”). Transactions can be
nested. User interaction with a controller causes a transaction to be started,
operations to be performed in the triple-store and finally the transaction to be
committed. If anything unexpected happens during the transaction, the changes
are discarded, providing protection against partial and inconsistent changes by
malfunctioning controllers. A successful transaction results in an event.

Simple widgets whose representation depends on one or more direct prop-
erties of a resource (e.g., a label showing an icon and label-text for a resource)
register themselves as simple representation of this resource. They will be in-
formed if the resource appears in the subject or object of an affected triple or
the rdfs:subPropertyOf hierarchy is modified in the committed transaction.
In most cases this will cause the widget to do a simple refresh.

Complex widgets, such as a hierarchical view, cannot use this schema as they
cannot easily define the changes in the database that will affect them and re-
computing and refreshing the widget is too expensive for interactive use. It is
here that we introduce mediators. A mediator is an arbitrary (Prolog Herbrandt-
)term that is derived from the triple set through a defined function. For example,
the term can be an ordered list of resources that appear as children of a par-
ticular node in the hierarchy which is computed using an OWL reasoner. Wid-
gets register a mediator whenever real-time update is considered too expensive.
The function and its parameters are registered with the updater. The updater
is running in a separate thread of execution, updating all mediators after each
successfully committed transaction. If a mediator is different from the previous
result, the controllers that registered the mediator are notified and will update
using the high-level representation provided by the model term. This approach
has several advantages.
2 Whether this interpretation is correct is not the issue here.
3 The update change can of course be represented as a delete-and-add, but a separate

primitive is more natural, requires less space in the journal and is easier to interpret
while maintaining the view consistency.



Using Triples for Implementation: The Triple20 Ontology-Manipulation Tool 777

Event Controller

View

Triple
Model

simple
changes

modify
DATA

modify
UI

Function I Mediator I

Function N Mediator N

complex
changes

Updater (thread)

Registration &
Scheduling

Fig. 2. Introducing mediators to bridge the level of abstraction between triples and
view. Update is performed in a different thread to avoid locking the UI.

– The UI remains responsive while updating the mediators.
– Updates can be aborted as soon as a new transaction is committed.
– Multiple widgets depending on the same mediator require only one compu-

tation.
– The updater can schedule on the basis of execution time measured last time,

frequency of different results and relation of dependent widgets to the ‘cur-
rent’ widget.4

– One or multiple update threads can exploit multi-cpu (SMP) hardware as
well as schedule updates over multiple threads to ensure likely and cheap
updates are not blocked for a long time by unlikely expensive updates.

4.1 Rules to Define the GUI

The interface is composed of a hierarchy of widgets, most of them representing
one or more resources. We have compound and primitive widgets. Each widget
is responsible for maintaining a consistent view of the triple set as outlined in
the previous section. Triple20 widgets have small granularity. For example, most
resources are represented by an icon and a textual label. This is represented as
a compound widget which controls the icons and displays a primitive widget for
the textual label.

In the conventional OO interface each compound widgets decides which mem-
ber widgets it creates and what their their configuration should be, thus gen-
erating the widget hierarchy starting at the outermost widget, i.e. the toplevel
4 This has not yet been implemented in the current version.



778 J. Wielemaker, G. Schreiber, and B. Wielinga

window. We have modified this model by having context-sensitive rule sets that
are called by widgets to decide on visual aspects as well as define context sen-
sitive menus and perform actions. Rule sets are associated with widget classes.
Rules are evaluated similar to OO methods, but following the part-of hierarchy
of the interface rather than the subclass hierarchy. Once a rule is found, it may
decide to wrap rules of the same name defined on containing widgets similar to
sending messages to a superclass in traditional OO (Fig. 3).

The advantage of this approach is that widget behaviour can inherit from its
containers as well as from the widget class hierarchy. For example, a compound
widget representing a set can offer a delete menu-item as well as the method to
handle deletion to contained widgets without any knowledge of these widgets.

Another example is shown in Fig. 3. In this context, Triple20 is used to view
the results of transforming a XML Schema into RDF. XSD types are created
as subclasses of xsd:Type, a subclass of rdfs:Class.5 Normally, Triple20 does
not show the instances of meta-classes in the hierarchy. As most schemas do not
contain that many types and most types are not defined as a subtype of another
type, expanding all XSD types as instances of the class is useful. The code
fragment refines the rule for child cache/3, a rule which defines the mediator
for generating the children of a node in the hierarchy window (Fig. 5). The
display argument says the rule is defined at the level of display, the outermost
object in the widget part-of hierarchy and therefore acts as a default for the entire
interface. The part argument simply identifies the new rule set. The first rule
says the mediator for expanding a xsd:Type node is the set of resources linked
to it using V rdf:type R, sorted by label name (lsorted(V)). The second rule
simply calls the default behaviour.

:- begin_rules(display, part).

child_cache(R, Cache, rdf_node) :-

rdfs_subclass_of(R, xsd:’Type’),

rdf_cache(lsorted(V), rdf_has(V, rdf:type, R), Cache).

child_cache(R, Cache, Class) :-

super::child_cache(R, Cache, Class).

:- end_rules.

Fig. 3. Redefining the hierarchy expansion for xsd:Type. This rule set can be loaded
without changing anything to the tool.

Rule sets are translated into ordinary Prolog modules using the Prolog pre-
processor.6 They can specify behaviour that is context sensitive. Simple refine-
ment can be achieved loading rules without defining new widgets. More compli-
cated customization is achieved by defining new widgets, often as a refinement
5 That is, schema types are considered classes in a hierarchy of types.
6 Realised using term expansion/2.



Using Triples for Implementation: The Triple20 Ontology-Manipulation Tool 779

of existing ones, and modify the rules used by a particular compound widget to
create its parts.

5 User-Interface Principles

RDF documents can be viewed at different levels. Our tool is not a tool to
support a particular language such as OWL, but to examine and edit arbitrary
RDF documents. It provides several views, each highlighting a particular aspect:

Fig. 4. Triple20 graph diagram. Resources are shown using just their label or as a
frame. Values or properties can be dragged from a frame to the window to expand
them.

– The diagram view (Fig. 4) provides a graph of resources. Resources can be
shown as a label (Noun) or expanded to a frame (cycle). Elements from the
frame can be dragged to the diagram as natural user-controlled mechanism
to expand the graph. This tool simply navigates the RDF graph and works
on any RDF document.

– The hierarchy view (Fig. 5, left window) shows different hierarchies (class,
property, individuals) in a single view. The type of expansion is indicated
using icons. Expansion can be controlled using rules as explained in Sect. 4.1.

– A tabular window (Fig. 5, right window) allows for multiple resource specific
representations. The base system provides an instance view and a class view
on resources.

Editing and browsing are as much as possible integrated in the same interface.
This implies that most widgets building the graphical representation of the data



780 J. Wielemaker, G. Schreiber, and B. Wielinga

Fig. 5. Triple20 main window after a search and select

Fig. 6. Select a resource by typing, in this example server. The style indicates the
status and is updated after each keystroke. Green (here) means there are multiple
resources with this name. Hitting the binocular icon shows all matches in the hierarchy,
allowing the user to select.



Using Triples for Implementation: The Triple20 Ontology-Manipulation Tool 781

are sensitive. Visual feedback of activation and details of the activated resource
are provided. In general both menus and drag-and-drop are provided. Context-
specific rules define the possible operations dropping one resource on another.
Left-drop executes the default operation indicated in the status bar, while right-
drop opens a menu for selecting the operation after the drop. For example, the
default for dropping a resource from one place in a hierarchy on another node
is to move the resource. A right-drop will also offer the option to associate an
additional parent. Rules also provide context-sensitive menus on resources.

Drag-and-drop can generally be used to add or modify properties. Before
one can drop an object it is required to be available on the screen. This is
often impractical and therefore many widgets provide menus to modify or add a
value. This interface allows for typing the value using completion, selecting from
a hierarchy as well as search followed by selection. An example is shown in Fig. 6.

6 Implementation

6.1 The Source of Triples

Our RDF store is actually a quadruple store. The first three fields represent the
RDF triple, while the last identifies the source or sub-graph it is related too. The
source is maintained to be able to handle triples from multiple sources in one
application, modify them and save the correct triples to the correct destination.

Triple20 includes a library of background ontologies, such as RDFS and OWL
as well as some well-known public toplevel ontologies. When a document is loaded
which references to one of these ontologies, the corresponding ontology is loaded
and flagged ‘read-only’, meaning no new triples will be assigned to this source
and it is not allowed to delete triples that are associated to it. This implies that

Fig. 7. Create a new class. The system proposes the file the class will be saved to as
well as the namespace based on the properties of the super class. Both can be changed.



782 J. Wielemaker, G. Schreiber, and B. Wielinga

trying to delete such a triple inside a transaction causes the operation to be
aborted and the other operations inside the transaction to be discarded.

Other documents are initially flagged ‘read-write’ and new triples are associ-
ated to sources based on rules. Actions involving a dialog window normally allow
the user to examine and override the system’s choice, as illustrated in Fig. 7.

Although referring to other documents should be the dominant technique
for reusing material on the Semantic Web, Triple20 allows for moving triples
from one source to another realising reuse through copy, possibly followed by
adjustment to the new context.

6.2 Projects

As an ontology editor, Triple20 is designed to operate in two modes. For sim-
ple browsing and minor editing of relatively small projects it can simply open
(load) a RDF document. It will automatically load referenced documents from
its library, providing access to the document in its context. The ontology can be
edited and saved similar to editing text documents with a word processor.

The above does not scale very well. It requires the relatively slow load and
save from RDF/XML serialization and does not preserve specific settings of
the editor related to the document, such as namespace abbreviations (e.g., rdfs
for http://www.w3.org/2000/01/rdf-schema#), loading of related documents
from locations outside the library, etc. For this reason, Triple20 provides projects.
A project is simply a journal of all actions that can be reloaded by replaying
it. Operations of committed transactions are simply appended to the project
file. For documents that are loaded we save a snapshot with MD5 signature in
the internal quick-load format, providing reliable and fast loading of the same
triple set. The project approach has several advantages for dealing with the
development of large documents.

– There is no need for saving intermediate ‘safety’ copies.
– The commented sequence of transactions allow for reviewing the changes,

both for the author as a change log and for a reviewer that has to authorize
changes for a central copy. We intend to add a mode for ontology mainte-
nance, where each finished transaction will be annotated using the author,
data and a motivation by the author.

7 Scalability

The aim of Triple20 and the underlying RDF store is to support large ontologies
in memory. In-memory storage is much faster than what can be achieved using
a persistent store [4], a requirement to deal with the low-level reasoning at the
triple level. The maximum capacity of the triple store is approximately 40 million
triples on 32-bit hardware and virtually unlimited on 64-bit hardware.

We summarise some figures handling WordNet [8] in RDF. The measurements
are taken on a dual AMD 1600+ machine with 2GB memory running SuSE Linux.



Using Triples for Implementation: The Triple20 Ontology-Manipulation Tool 783

The 5 WordNet files contain a total of 473,626 triples. The results are shown in
Tab. 8. For the last test, a small file is added that defines the wns:hyponymOfprop-
erty as a sub property of rdfs:subClassOf and defines wns:LexicalConcept as
a subclass of rdfs:Class. This reinterprets the WordNet hierarchy as an RDFS
class hierarchy. Note that this work is done by the separate update thread recom-
puting the mediators and thus does not block the UI.

8 Related Work

Protégé [9] is a landmark in the world of ontology editors. We have described
how our design differs in Sect. 3. Where Protégé is primarily designed as an ed-
itor, Triple20 is primarily a browser. To avoid cluttering the view with controls,
Triple20’s widgets concentrate on popup menus, drag-and-drop and direct ma-
nipulation techniques. Protégé has dedicated support for ontology engineering,
which Triple20 lacks.

Table 1. Some figures handling WordNet on a dual AMD 1600+ machine. Loading
time is proportional to the size of the data.

Operation Time (sec)

Load from RDF/XML 65.4
Load from cache 8.4
Re-interpret as class hierarchy 16.3

OntoPlugin [10] is the plugin system of OntoEdit. The integration is not
targeted at the data level, but at the tool level, dealing with integration of init,
exit, menu options, etc. They aim at integrating larger components, making no
commitment on a common data model.

JENA [11] is a Java-based environment for handling RDF data. The empha-
sis in this software lies on the RDF API and on the querying functionality, and
not so much on ontology ontology editing, browsing and manipulation.

Similarly, the Sesame software [12] can be seen as complementary to Triple20,
providing client/server-based access to RDF data repositories. Software for
using our infrastructure and Sesame together is available from the SWI-Prolog
web-site.

KAON [13] is an extensible ontology software environment. The main dif-
ference with Triple20 is that the KAON software is mainly aimed to provide
middleware; the environment focuses on integrating distributed applications.

In [14], Miklós et al. describe how they reuse large ontologies by defining views
using an F-logic based mapping. In a way our mediators, mapping the complex
large triple store in a manageable structure using Prolog can be compared to this,
although their purpose is to map one ontology into another, while our purpose
is to create a manageable structure suitable for driving the visualisation.



784 J. Wielemaker, G. Schreiber, and B. Wielinga

9 Discussion

We believe the main weakness in our infrastructure is Prolog’s poor support for
declarative inferencing. We identify the following problems. Firstly, bad ordering
in conjunctions may lead to poor performance. In another project7 we have found
that dynamic reordering is feasible and efficient. Secondly, frequent recomputation
as well as commonly occurring loops in RDF graphs result in poor performance
and complicated code to avoid loops. We plan to add tabling to SWI-Prolog to
improve on this, in a similar way as tabling is realised in XSB Prolog [15].

We plan to study the possibility of adding external (DL) reasoners to the
infrastructure. The can be handled elegantly as another type of mediator, con-
nected through the SWI-Prolog XDIG [16] interface. We are afraid though that
the communication overhead will be unacceptable for large triple stores.

We have realised a tool architecture that is based directly on the RDF triple
model. The advantage of this approach over the use of a tool oriented interme-
diate model is that any Semantic Web document can be represented precisely
and tools operating on the data can profit from established RDF-based stan-
dards on the same grounds as RDF supports exchange between applications.
With Triple20, we have demonstrated that this design can realise good scalabil-
ity, providing multiple consistent views (triples, graph, OWL) on the same triple
store. Triple20 has been used successfully as a stand-alone ontology editor, as a
component in other applications and as a debugging tool for other applications
running on top of the Prolog triple store.

Software Availability

Triple20 is available under Open Source (LGPL) license from the SWI-Prolog
website.8 SWI-Prolog with graphics runs on MS-Windows, MacOS X and almost
all Unix/Linux versions, supporting both 32- and 64-bit hardware.

Acknowledgements

The Triple20 type-icons are partly taken from and partly inspired by the Protégé
project. This work is partly supported by the Dutch BSIK project MultiMedian.

References

1. Brickley, D., Guha (Eds), R.V.: Resource description framework (RDF) schema
specification 1.0. W3C Recommendation (2000) http://www.w3.org/TR/2000/CR-
rdf-schema-20000327/.

2. Dean, M., Schreiber, A.T., Bechofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,
MacGuinness, D., Patel-Schneider, P., Stein, L.A.: OWL Web Ontology Language
Reference. W3C Recommendation, World Wide Web Consortium (2004) Latest
version: http://www.w3.org/TR/owl-ref/.

7 http://www.swi-prolog.org/packages/SeRQL/
8 http://www.swi-prolog.org/packages/Triple20



Using Triples for Implementation: The Triple20 Ontology-Manipulation Tool 785

3. Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., Musen, M.A.:
Creating Semantic Web contents with protege-2000. IEEE Intelligent Systems 16
(2001) 60–71

4. Wielemaker, J., Schreiber, G., Wielinga, B.: Prolog-based infrastructure for RDF:
performance and scalability. In Fensel, D., Sycara, K., Mylopoulos, J., eds.: The
Semantic Web - Proceedings ISWC’03, Sanibel Island, Florida, Berlin, Germany,
Springer Verlag (2003) 644–658 LNCS 2870.

5. Krasner, G.E., Pope, S.T.: A cookbook for using the model-view-controller user
interface paradigm in smalltalk-80. Technical report, Palo Alto (1988)

6. Miles, A.J.: Owl ontology for thesaurus data. Deliverable, SWAD-Europe (2001)
7. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE

Computer 25 (1992) 38–49
8. Miller, G.: WordNet: A lexical database for english. Comm. ACM 38 (1995)
9. Musen, M.A., Fergerson, R.W., Grosso, W.E., Noy, N.F., Crubézy, M., Gennari,

J.H.: Componentbased support for building knowledge-acquisition systems. In:
Conference on Intelligent Information Processing (IIP 2000), Beijing, China (2000)
http://smi-web.stanford.edu/pubs/SMI Abstracts/SMI-2000-0838.html.

10. Handschuh, S.: OntoPlugins a flexible component framework. Technical report,
University of Karlsruhe (2001)

11. McBride, B.: Jena: Implementing the rdf model and syntax specification. In:
Semantic Web Workshop, WWW 2001. (2001)

12. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: An architecture for storing
and querying rdf and rdf schema. In: Proc. First International Semantic Web
Conference ISWC 2002, Sardinia, Italy. Volume 2342 of LNCS., Springer-Verlag
(2002) 54–68

13. Oberle, D., Volz, R., Motik, B., Staab, S.: An extensible ontology software envi-
ronment. In Staab, S., Studer, R., eds.: Handbook on Ontologies. International
Handbooks on Information Systems. Springer (2004) 311–333

14. Miklos, Z., Neumann, G., Zdun, U., Sintek, M.: Querying semantic
web resources using triple views. In Kalfoglou, Y., Schorlemmer, M.,
Sheth, A., Staab, S., Uschold, M., eds.: Semantic Interoperability and In-
tegration. Number 04391 in Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany (2005)
<http://drops.dagstuhl.de/opus/volltexte/2005/47> [date of citation: 2005-01-
01].

15. Freire, J., Warren, D.S., Sagonas, K., Rao, P., Swift, T.: XSB: A system for effi-
ciently computing well-founded semantics. In: Proceedings of LPNMR 97, Berlin,
Germany, Springer Verlag (1997) 430–440 LNCS 1265.

16. Huang, Z., Visser, C.: An extended dig description logic interface for prolog. De-
liverable, SEKT (2003) http://wasp.cs.vu.nl/sekt/dig/.



A Little Semantic Web Goes a Long Way
in Biology

K. Wolstencroft, A. Brass, I. Horrocks, P. Lord, U. Sattler,
D. Turi, and R. Stevens

School of Computer Science, University of Manchester, UK

Abstract. We show how state-of-the-art Semantic Web technology can
be used in e-Science, in particular, to automate the classification of pro-
teins in biology. We show that the resulting classification was of compara-
ble quality to that performed by a human expert, and how investigations
using the classified data even resulted in the discovery of significant infor-
mation that had previously been overlooked, leading to the identification
of a possible drug-target.

1 Introduction

Semantic Web research has seen impressive strides in the development of lan-
guages, tools, and other infrastructure. In particular, the OWL ontology lan-
guage, the Protégé ontology editor, and OWL reasoning tools such as FaCT++
and Racer are now in widespread use.

In this paper, we report on an application of Semantic Web technology in
the domain of biology, where an OWL ontology and an OWL classification tool
called the Instance Store were used to automate the classification of protein
data. We show that the resulting classification was of comparable quality to one
performed by a human expert, and how investigations using the classified data
even resulted in either the discovery of new information or that which had been
overlooked.

While this example focuses on a particular protein family and a particular
set of model organisms, the technique should be applicable to other protein
families, and to data from any sequenced genome—in fact we believe that similar
techniques should be applicable to a wide range of investigations in biology, and
in e-Science more generally. If this proves to be the case, then Semantic Web
technology is set to have a major impact on e-Science.

Background and Motivation. The volume of genomic data is increasing at a seem-
ingly exponential rate. In particular, high throughput technology has enabled the
generation of large quantities of DNA sequence information. This sequence data,
however, needs further analysis before it is useful to most biologists. This pro-
cess, called annotation, augments the raw DNA sequence, and its derived protein
sequence, with significant quantities of additional information describing its bi-
ological context.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 786–800, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Little Semantic Web Goes a Long Way in Biology 787

One important process during annotation is the classification of proteins
into different families. This is an important step in understanding the molecular
biology of an organism. Attempts to automate this procedure have, however,
not generally matched the gold-standard set by human experts. Human expert
classification has been more accurate because their expertise allows them to
recognise the properties that are sufficient, for example, to place an individual
protein into a specific subfamily class. Automated methods have, in contrast,
often failed to achieve the same level of specificity. Our goal, therefore, was to
improve the precision of automatic protein classification, and bring it up to the
same level as that achieved by human experts.

Overview of Our Technique. Given a set of proteins, each with a (partial) de-
scription of its properties, the objective is to find, for each of these proteins, the
most specific protein family classes of which it is an instance. To describe protein
family classes, we use an OWL-DL ontology; this enables us to specify necessary
and sufficient conditions for a protein to be an instance of a given protein class.
The ontology models the biology community’s view of the current knowledge of
protein classification. We then take protein data derived using standard bioinfor-
matics analysis tools, translate these data into OWL-DL instance descriptions
that use terms from the ontology, and use the Instance Store to classify these
instances.

Empirical Evaluation. We have tested our system using data sets from both
the human and Aspergillus fumigatus (a pathogenic fungus) genomes. We found
that our automatic classification process performed at least as well as a human
expert: it allows a fast and repeatable classification process, and the explicit rep-
resentation of human expert knowledge means that there is a clear and explicit
evidence base for the classification. Moreover, the precise and methodical classi-
fication of the data led to the discovery of new information about these proteins,
including a protein subclass that seems to be specific to pathogenic fungi, and
could thus be an important drug-target for pharmaceutical investigations.

2 Science and Technology

In this section, we describe the biology problem we have tackled and the Semantic
Web technology that we used to achieve an appropriate solution.

2.1 Classifying Proteins

The process of annotation follows the “central dogma” of molecular biology.
In broad outline, this process consists of the following steps: firstly DNA is
sequenced; then genes are identified in this DNA; the DNA is then translated
into a protein sequence; the proteins are then analysed and annotated with
information useful for further biological investigation. As the majority of the
functions of a cell are carried out by proteins, it is those proteins in which most



788 K. Wolstencroft et al.

biologists are interested. Proteins are classified into families that both reflect the
functions they carry out in the cell, as well as often giving clear indications as to
the biological processes in which they are involved. It is this classification, along
with other and diverse kinds of information, which makes up the annotation
of a protein and makes the large data sets manageable, enabling biologists to
perform more thorough investigations.

In the last decade, various steps of this process have been automated, and
thus their speed has increased enormously. Sequencing of whole genomes1 is
now routine. Gene discovery is technically challenging, but responds well to the
increasing availability of CPU cycles. However, this still leaves a large number of
protein sequences—approximately 30 000 in the human genome, a quantity that
is more or less in other species. This quantity is far more than that with which
the individual biologist can cope.

The automation of the annotation process has, however, lagged behind ad-
vances in other parts of this process. To date, automated approaches have proven
to be quicker than human expert annotation, but the level of detail is often re-
duced [26,6]. As a consequence, many protein sequences are not annotated with
the accurate, specific information necessary for bioinformatics analyses. Thus
useful resources for further biological discovery remain untapped.

In this investigation, we have used one protein family, the protein phosphatase
family, as a case study to demonstrate a new, ontology-based method for auto-
mated annotation. This method was designed to combine the speed of automated
annotation with some of the detailed knowledge that experts use in annotation.

Protein phosphatases are a large and varied protein family. Together with
another family, the protein kinases, they are critically involve in controlling the
activity of many other proteins, thereby forming an essential part of the feedback
control mechanism within the cell.

Given this pivotal role, it is perhaps unsurprising that many protein phos-
phatases have been implicated in various diseases of great medical importance,
including diabetes, cancer, and neurodegenerative conditions. Phosphatases are
therefore a major subject of medical and pharmaceutical research.

In general, proteins are relatively modular and comprise of a number of dif-
ferent protein domains. Using a protein sequence, it is often possible to com-
putationally determine the protein domains of which it is composed. For many
protein families, including the protein phosphatases, it is possible to classify
their members based on the protein domains of which they are composed. To
avoid confusion with interpretation domains or the domain of a property, for the
remainder of this paper, we use “p-domain” for protein domain.

The different p-domain composition of proteins suggests the specific function
of a protein. , Individual p-domains, however, often have specific and separate
functions from the protein as a whole. For example, an enzyme will have a
catalytic p-domain that performs the catalysis on the substrate molecule, but it
will also contain structural p-domains and binding p-domains that ensure that
the substrate can interact with the catalytic p-domain. Therefore, a specific
1 A genome is the entirety of DNA in a cell.



A Little Semantic Web Goes a Long Way in Biology 789

combination of p-domains is required for a protein to function correctly. In some
cases, the presence of a certain p-domain is diagnostic for membership in a
particular protein family, i.e., some p-domains only occur in a single protein
family. If a protein contains one of these diagnostic p-domains, it must belong
to that particular family. For example, the protein tyrosine kinase catalytic p-
domain is diagnostic for the tyrosine kinases.

Most protein families are, however, defined by a non-trivial combination of
p-domains. For example, as you descend the hierarchical structure, extra p-
domains (and therefore more specific functional properties) are observed in the
protein class definitions. For example, an R5 phosphatase is a type of classical
receptor tyrosine phosphatase. As a tyrosine phosphatase, it contains at least
one phosphatase catalytic p-domain and, as a receptor tyrosine phosphatase, it
contains a transmembrane region. The R5 type actually contains two catalytic
p-domains and a fibronectin p-domain, identifying it as an instance of even more
specific subclasses.

Identifying the p-domain composition of a protein is, therefore, a first step to-
wards its classification. There are databases describing functional p-domains, for
example, PROSITE [17], SMART [20] and InterPro [23], and these databases
come with specific tools, such as InterProScan, which can report the presence
of these p-domains in a novel protein sequence. Bioinformaticians are, however,
usually required to perform the analysis that places a protein (with its set of
p-domains) into a particular protein family. The whole process of classifying
proteins from a genome can be accomplished with the following steps:

1. Given a genome, we extract DNA gene sequences, which we then translate
into the set of protein sequences. If we are interested in a particular protein
family, we can sub-select sequences containing p-domains diagnostic of that
family.

2. On each of the extracted proteins, we use InterProScan to determine its
p-domain composition.

3. For each of these compositions, we identify the protein family or subfamily
to which it belongs by comparing them to the available biological knowledge.

The final step currently requires the most human analysis and expert knowl-
edge. Manual classification methods are carried out by protein family experts
to interpret these data and use their expert knowledge to classify proteins to a
fine-grained level. To the best of our knowledge, no automated method has yet
been able to replicate this expert level of detail and precision.

2.2 Ontologies and the Instance Store

Ontologies, with their intuitive taxonomic structure and class based semantics,
are widely used in domains like bio- and medical-informatics, where there is a
tradition of establishing taxonomies of terms. The recent W3C recommendation
of OWL2 as the language of choice for web ontologies also underlines the long

2 See http://www.w3.org/2004/OWL/ or [11].



790 K. Wolstencroft et al.

term vision that ontologies will play a central role in the Semantic Web. Most
importantly, as shown in [4], most of the available OWL ontologies can be cap-
tured in OWL-DL—a subset of OWL for which highly optimised Description
Logic [2] reasoners can be used to support ontology design and deployment.

Unfortunately, existing reasoners (and tools), while successful in dealing with
the (relatively small and static) class level information in ontologies, fail when
presented with the large volumes of instance level data often required by realistic
applications, hampering the use of reasoning over ontologies beyond the class
level. The system we have used—the instance Store (iS) [14]—addresses this
problem using a hybrid database/reasoner architecture: a relational database is
used to make instances persistent, while a class level (“TBox” in Description
Logic terms) reasoner is used to infer ontological information about the classes
to which they belong. Moreover, part of this ontological information is also made
persistent in the database. The iS currently only supports a rather limited form
of reasoning about individuals: it takes an ontology (without instances), a set of
axioms asserting class-instance relationships, and answers queries asking for all
the instances of a class description. The classes in both axioms and queries can be
arbitrarily complex OWL-DL descriptions, and a DL reasoner is used to ensure
that all instances (explicit and implicit) of the query concept are returned. In the
remainder of this paper, we use “class-level ontology” for an ontology in which no
instances occur. From a theoretical perspective, this might seem un-interesting;
the iS is, however, able to deal with much larger numbers of individuals than
would be possible using a standard DL reasoner. More importantly, this kind of
reasoning turns out to be useful in a range of applications, in particular those
such as the one presented here where a domain model is used to structure and
classify large data sets.3

There is a long tradition of coupling databases to knowledge representation
systems in order to perform reasoning, most notably the work in [5]. However, in
the iS, we do not use the standard approach of associating a table (or view) with
each class and property. Instead, we have a fixed and relatively simple schema
that is independent of the structure of the ontology and of the instance data.
The iS is, therefore, agnostic about the provenance of data, and uses a new,
dedicated database for each ontology (although the schema is always the same).

The basic functionality of the iS system are illustrated in Figure 1. At start-
up, the initialisemethod is called with a relational database, an OWL-DL class
reasoner such as Racer [9] or Fact++ [30], and a class-levelOWL-DL ontology.The
method creates the schema for the database if needed (i.e., if the iS is new), parses
the ontology, and loads it into the reasoner. To populate the iS, the addAssertion
method is called repeatedly. Each assertion states that an instance (identified by a
URI) belongs to class (which is an arbitraryOWL-DL description). Once the iShas
beenpopulatedwith some—possiblymillions of—instances, it canbe queried using
the retrieve method. A query again consists of an arbitrary (possibly complex)
OWL-DL class description; the result is the set of all instances belonging to the

3 The iS was initially developed for use in a Web Service registry application, where
it was used to classify and retrieve (large numbers of) descriptions of web services.



A Little Semantic Web Goes a Long Way in Biology 791

initialise(database: Database, reasoner: OWLReasoner, ontology: OWLOntology)

addAssertion(instance: URI, class: OWLDescription)

retrieve(query: OWLDescription): Set 〈URI〉

Fig. 1. The iS API

query class, and is returned by retrieve as a set of URIs. The iS uses database
queries to return individuals that are “obviously” instances of the query class, and
to identify those instances where the DL reasoner is needed in order to determine
if they form part of the answer set.

3 Description of the Experiments Undertaken

The method we present could be applicable in general to many protein families,
but to demonstrate the technique and the fine-grained classification possible, we
present the analysis of one family, the protein phosphatases, in the human and As-
pergillus fumigatus genomes.

We have combined automated reasoning techniques [9,14] with elements of a
service-oriented architecture [27,19] to produce a system to automatically extract

Fig. 2. The Ontology Classification System Architecture



792 K. Wolstencroft et al.

and classify the set of protein phosphatase from an organism.4 Figure 2 shows the
components in our protein classification experiment. An OWL class-level ontology
describes the protein phosphatase family, and this ontology is pre-loaded into the
Instance Store. Protein instance data is extracted from the protein set of a genome,
and the p-domain composition is determined using InterProScan. These
p-domain compositions are then translated into OWL descriptions and compared
to the OWL definitions for protein family classes using the Instance Store which,
in turn, uses a DL reasoner (Racer in this case), to classify each such instance. For
each protein class from our ontology, it returns those proteins that can be inferred
to be an instance of this class.

In the remainder of this section, we will describe the relevant components of
this architecture in more detail, and explain the outcomes of this experiment from
a biology perspective. In the next section, we describe the experience gained and
lessons learnt from a computer science perspective.

3.1 The Ontology

In this section, we describe how we capture the expert knowledge for phosphatase
classification in an OWL-DL ontology. All the information used for developing our
ontology comes from peer-reviewed literature from protein phosphatase experts.
The family of human protein phosphatases has been well characterised experimen-
tally, and detailed reviews of the classificationand family composition are available
[1,7,18]. These reviews represent the current community knowledge of the relevant
biology. If, in the future, new subfamilies are discovered, the ontology can easily be
changed to reflect these changes in knowledge; wewill comment on this in Section 4.

Fortunately for this application, there are precise rules,5 based on p-domain
composition, for protein family membership, and we can express these rules as class
definitions in an OWL-DL ontology. The use of an ontology to capture the under-
standing of p-domain composition enables the automation of the final analysis step
which had previously required human intervention, thus allowing for full automa-
tion of the complete process. In biology, the use of ontologies to capture human
knowledge of a particular domain and to answer complex queries is becoming well
established [8,28]. Less well established is the use of reasoning systems for data in-
terpretation. In this study, we present a method which makes use of ontology rea-
soning and illustrates the advantages of such an approach.

The ontology was developed in OWL-DL using the Protégé editor,6 and cur-
rently contains 80 classes and39properties; it is available at(http://www.bioinf.
man.ac.uk/phosphabase/download). Part of the subsumption hierarchy infer-
rred from these descriptions can be seen in the left-hand panel of Figure 3, which
shows the OWL ontology in the Protégé editor.

4 Due to the relatively small test-set used, the case study reported here could have been
carried out using Racer [9] only, i.e., without the iS. However, larger sets of protein
data will necessitate the use of iS or a similar tool.

5 We use “rules” here in a completely informal way.
6 We used Protégé 3.0 with OWL plugin 1.3, build 225.1.



A Little Semantic Web Goes a Long Way in Biology 793

Fig. 3. A screenshot of the phosphatase ontology in the OWL ontology editor Protégé

Moreprecisely, for each class of phosphatase, this ontology containsa (necessary
and sufficient) definition. For this family of proteins, this definition is, inmost cases,
a conjunction of p-domain compositions, i.e., a typical case of a phosphatase class
definition looks as follows, where Xi are p-domains:

If a Y protein contains at least n1 p-domains of type X1 and . . . and at least nm

p-domains of type Xm, then this protein also belongs to class Z.

For example, receptor tyrosine phosphatases contain one or two phosphatase cat-
alytic p-domains, and receptor tyrosine R2B phosphatases contain exactly 2 tyro-
sine phosphatase catalytic p-domains, one transmembrane p-domain, at least one
fibronectin p-domain, and at least one immunoglobulin p-domain. In some cases,
Xi is a disjunction of p-domains. P-domains come with a rather “flat” structure,
i.e., only few p-domains are specialisations of others. Clearly, “counting” state-
ments such as the one above go beyond the expressive power of OWL since they
would require (the OWL equivalent of) qualified cardinality restrictions [10],
whereas OWL only provides unqualified cardinality restrictions through its
restriction(UminCardinality(n))andrestriction(UmaxCardinality(n))
constructs. In contrast, this kind of expressive means was provided byDAML+OIL
[15], i.e.,we couldhavedefined theabovementioned receptor tyrosinephosphatases
using the expression



794 K. Wolstencroft et al.

IntersectionOf(Restriction(contains minCardinality(1) PhCatalDoms)
Restriction(contains maxCardinality(2) PhCatalDoms)

To overcome this problem, we used a well-known work-around.7 For each Xi

that we would have liked to use in a qualified number restriction, we introduced a
subproperty containsX i of contains, and set the range of containsX i to the
class Xi. In addition, we added sub-property assertions so that the hierarchy of
newly introduced properties containsX i reflects the class hierarchy of the classes
Xi used. Unfortunately, this work-around is not always correct. That is, assume
there are two ontologies, one with qualified number restrictions and one that re-
sulted from the application of this work-around. Then there are cases where the
first one implies a subsumption relationship between two classes, whereas the sec-
ond one does not imply this subsumption. Similarly, a class may be unsatisfiable
w.r.t. the first one, but satisfiable w.r.t. the second. We used this work-around be-
lieving that it was correct and, when we learned that it sometimes is not, were quite
surprised—we had “cluttered” our ontology with a large number of new properties
without this guaranteeing the desired effect. However, we then checked that, in the
special case of our experiment, this work-around is indeed correct, even though
we are not going to prove this here. We will comment more on this in Section 4
and 5.

Having captured the expert knowledge in this way, we are left with the problem
of dealing with the potentially very large numbers of protein instances that need to
be classified according to the corresponding ontology. This requirement motivated
our use of the iS.

3.2 The Data Sets

This study focuses on the previously identified and described human phosphatases
[1,24], and the less well characterised A.fumigatus protein phosphatases. The hu-
man phosphatases, having been carefully hand-classified, form a control group for
our automated protein phosphatase classification. Previous classification of hu-
man phosphatases by biological experts provides a substantial test-set for our ap-
proach. If the iS can classify the characterised proteins (at least) as well as human
experts, then this would increase our confidence when using our method on un-
known genomes. The A.fumigatus genome falls between these extremes, and thus
offers a unique insight into the comparison between the automated method and
the manual. The A.fumigatus genome has been sequenced, and annotation is cur-
rently underway by a team of human experts [22]. We have considered 118 human
phosphatases and 45 from A.fumigatus.

Pre-Screening. Isolation of the protein phosphatase sequences from the protein set
of the genome was achieved by screening for diagnostic phosphatase motifs, i.e. for
specific patterns. These are

1. the protein tyrosine phosphatase active site motif H-C-X(5)-R
2. the protein serine/threonine phosphatase motif [LIVMN]-[KR]-G-N-H-E
7 See, e.g., http://www.cs.vu.nl/~guus/public/qcr.html



A Little Semantic Web Goes a Long Way in Biology 795

3. the protein phosphatase C signature motif [LIVMFY]-[LIVMFYA]-[GSAC]-
[LIVM]-[FYC]-D-G-H-[GAV].

TheEMBOSSprogram,PatMatDB [25]wasused toperformthepre-screening
process.Performing an InterProScanoneveryprotein sequence fromthegenome
would also have isolated the protein phosphatase sequences, but each
InterProScan can take several minutes. PatMatDB can screen the whole
genome in the time taken to run one InterProScan, so we decided to use In-
terProScan only for the detailed analysis of each sequence identified as being a
protein phosphatase.

3.3 Queries Asked and Results

The purposes of the human and A.fumigatus studies were different. The human
study was a proof of concept to demonstrate the effectiveness of the automated
method. The A.fumigatus study was more focused towards biological discovery.

For the human phosphatases, we were interested in comparing the automated
classification with the thorough, human expert classification. Therefore, we
browsed the class hierarchy of our phosphatase ontology and, for each class, we
retrieved those proteins for which the iS inferred that this class was the most spe-
cific one. We were also interested in identifying instances that did not fit any of the
ontology class definitions (i.e., whose most specific class was the top class).

For the A.fumigatus phosphatases, we browsed the class hierarchy in a similar
way but, as the phosphatases from this organism were less well characterised, we
were particularly interested in the differences between the human and A.fumigatus
set, i.e., we were interested in finding classes that had instances of the human pro-
teins, but not of the A.fumigatus proteins, and vice versa. All these queries could
be answered easily and quickly using the iS.

The results of this experiment were three-fold. Firstly, we found that the au-
tomated classification of the human protein phosphatases performed as well as
the manual classification by phosphatase experts. Since the same protein instances
were used in the automated and manual studies, we could compare these two clas-
sifications, and it turned out that both classifications put almost all phosphatases
into the same place in the class hierarchy.This evidence shows proof of concept, and
suggests that the automated approach could be used to solve the current annota-
tion bottleneck. Secondly, in the few cases where the automatic and the manual
classification differed, detailed investigations by a domain expert revealed that the
automatic one was actually “more correct”: we discovered two proteins for which
no appropriate class was available, i.e. they were classified by the automatic clas-
sification as instances of the top phosphatases class.

This discovery lead to a modification of the ontology, and thus of the expert
knowledge on proteins. One of these phosphatases was DUSP10 (Dual specificity
phosphatase 10). It was found to contain an extra p-domain, a disintegrin. This
particular p-domain is not found in any other protein phosphatase and poses inter-
esting questions about possible protein functions to the biologists. Our automated
classification method was able to find these mis-classifications because the iS ap-
plied the expert knowledge systematically and consistently.



796 K. Wolstencroft et al.

The automated classification of the A.fumigatus phosphatases revealed large
differences from the human phosphatases. Not only were there fewer individual
proteins, but whole subfamilies were missing. Some of these differences can be at-
tributed to the differences in the two organisms. Many phosphatases in the hu-
man classification were tissue-specific variations of tissue-types that do not occur
in A.fumigatus. Since A.fumigatus is pathogenic to humans, these differences are
important avenues of investigation for potential drug targets. The most interesting
discovery in the A.fumigatus data set was the identification of a novel type of cal-
cineurin phosphatase, i.e., again, a phosphatase that was classified automatically
only as an instance of the top class. Calcineurin is well conserved throughout evo-
lution and performs the same function in all organisms. However, in A.fumigatus,
it contains an extra functional p-domain. Further bioinformatics analyses revealed
that this extra p-domain also occurs in other pathogenic fungus species, but in no
other organisms, suggesting a specific functional role for this extra p-domain. Pre-
vious studies have identified divergences in the mechanism of action of calcineurin
in pathogenic fungi as being linked to virulence, so this protein is an interesting
drug-target for future study.

4 Lessons Learnt

As we have seen, we have successfully used Semantic Web technology in a bioinfor-
matics application.Besides finding newprotein families that are of interest to biolo-
gists,wehave shownthatautomated classification can indeed competewithmanual
classification, and is sometimes even superior. Our approach to automated classifi-
cation combines the advantages of speed of the automated methods and accuracy
of human expert classification, the latter being due to the fact that we captured the
expert knowledge in an OWL ontology. The combination of the two, namely speed
and expert knowledge, provides a quick and efficientmethod for classifyingproteins
on a genomic scale, and offers a solution to the current annotation bottleneck.

Our approach was made possible by the development of state-of-the-art Seman-
tic Web technology, such as the OWL ontology language, the Protégé OWL ontol-
ogy editor, the OWL Instance Store, and the Racer OWL reasoner; this technology
did not emerge overnight, but is based on decades of research in logic-based knowl-
edge representation and reasoning. Although neither Racer nor the iS support all
of OWL-DL,8 these tools proved more than adequate for our experiment.

In contrast, a limitation in the expressive power of OWL-DL did cause con-
siderable problems: the lack of qualified number restrictions (also called qualified
cardinality restrictions). In order to overcome this limitation, we had to employ a
work around and verify that this work around, even though not correct in general,
was correct for our ontology and instance data. This work around introduced a sig-
nificant overhead, and was only possible through a close co-operation between the

8 Racer does not support individual names in complex class descriptions (so-called
nominals—see [16]), and the current version of iS does not support role assertions be-
tween individuals.



A Little Semantic Web Goes a Long Way in Biology 797

biologists and computer scientists. We, therefor, cannot recommend such an ap-
proach in general. Additionally, we observe that, from a theoretical and practical
perspective, this work around should not be necessary since (a) reasoners such as
Racer and Fact [9,13] support qualified number restrictions, (b) for all Description
Logics we are aware of that support (unqualified) number restrictions, the worst-
case complexity of reasoning remains the same when they are extended with quali-
fied number restrictions (see, e.g., [29]), and (c) the latest version of Protégé-OWL
now supports qualified number restrictions. Hence we can, in the future, run simi-
lar experiments without having to resort to this work around, provided that we are
willing to diverge from the current OWL standard.

The ability to run such experiments is of considerable importance since there
is a wealth of unannotated and partially annotated data in the public domain, to
which we plan to apply our approach. New genomes are being sequenced continu-
ally, and some existing genomes have not been annotated to any degree of detail.
Now that the ontology system architecture is in place, new proteins can be quickly
and successfully classified as members of protein phosphatase subfamilies. Devel-
opment of other ontologies, would enable the application of this technique to some
of the 1,000’s of other protein families.

This paper demonstrates a proof of concept for the automated classification of
proteins using automated reasoning technologies. From a study involving a single
protein family and two species, we were able to identify a new protein subclass. As
this class of protein appears tobe specific topathogenic fungi, it is potentially useful
for further pharmaceutical investigations.Automated reasoning over instance data
has therefore enabled us to generate new hypotheses which will require significiant
further laboratory experimentation, which, in turn, will potentially improve our
understanding of protein phosphorylation.

Finally, we would like to point out that the ontology definitions are produced
from expert protein family knowledge. Therefore, they reflect what is currently
known in the research community, and are made explicit in a machine-
understandable format, namely OWL-DL. This has several important
consequences. Firstly, the construction of such an ontology can help in the develop-
ment of a consensus from within the community [3], and even if the community fails
to agree on a single ontology, automated classification could be used to enable “par-
allel” alternative annotations. Secondly, if the community knowledgeof the protein
family changes, the ontology can easily be altered, and the protein instances can
be re-classified accordingly. Lastly, if the definitions are based on what is known,
proteins that do not fit into any of the defined classes are easily identified, making
the discovery of new protein subfamilies possible.

5 Outlook and Future Work

Ourplans for future workaremanifold. Basically,wewant to do more “automated”
biology, but we are thereby pushing the current state-of-art in logic-based knowl-
edge representation, automated reasoning, and Semantic Web technology. Within
this section, we only discuss three of the related issues.



798 K. Wolstencroft et al.

Firstly, we observe that a protein is a sequence of amino acids, and thus se-
quences can be seen as strings over a twenty letter alphabet since there are only
twenty amino acids. In our current ontology, we do not capture this sequence infor-
mation, and thus cannot answer queries related to these sequences. From a biology
perspective, however, queries such as “give me all proteins whose amino acid se-
quence contains an M followed by some arbitrary sub string, which is then followd
by a NEN” would be really valuable. From a computer science perspective, we
could easily express (and query over) these strings using a simple form of concrete
domains, so-called datatypes [21,12]. However, the datatypes currently available
in OWL do not provide predicates that compare a given string with a regular ex-
pression, a comparison that would reflect the above example query.

Secondly, we are currently concerned with a single class of components of an
organism, namely the proteins. In the future, we want to use the available tech-
nology to automate investigations into their interaction, and also represent and
reason about larger structures such as genomes and cells. We could easily model
interactions between proteins using a property interact to make statements such
as “proteins of class X only interact with proteins of class Y”. However, we would
also need to make statements on an instance level such as “this protein instance
interacts with that protein instance”, which is possible in OWL-DL, but goes be-
yond the capabilities of the current iS. We are currently extending the iS to handle
statements of this kind, and we will see if this extension is able to cope with the
large volumes of data that will be needed in biology applications.9

Thirdly,wewill “roll back” thework-aroundweused to copewith the absence of
qualifiednumber restrictions, both in our ontology and in the instance data, instead
using the form of qualified number restrictions provided by Protégé,Racer, and the
iS. This will greatly enhance the interpretability of the current ontology and also
make its extension to other families of proteins more straight-forward.

Acknowledgements. This work was funded by an MRC PhD studentship, the
myGrid e-science project, University of Manchester with the UK e-science pro-
grammeEPSRC grantGR/R67743and the ComparaGRIDproject, BBSRC grant
BBS/B/17131.Preliminary sequence data was obtained fromThe Institute for Ge-
nomic Research website at http://www.tigr.org from Dr Jane Mabey-Gilsenan.
Sequencing of A.fumigatus was funded by the National Institute of Allergy and In-
fectious Disease U01 AI 48830 to David Denning and William Nierman, the Well-
come Trust, and Fondo de Investicagiones Sanitarias.

References

1. A. Alonso, J. Sasin, N. Bottini, I. Friedberg, I. Friedberg, A. Osterman, A. Godzik,
T. Hunter, J. Dixon, and T. Mustelin. Protein tyrosine phosphatases in the human
genome. Cell, 117(6):699–711, 2004.

9 Racer can already handle such statements, but can only deal with a relatively small
number of individuals.



A Little Semantic Web Goes a Long Way in Biology 799

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, 2003.

3. M. Bada, D. Turi, R. McEntire, and R. Stevens. Using Reasoning to Guide Annota-
tion with Gene Ontology Terms in GOAT. SIGMOD Record (special issue on data
engineering for the life sciences), 2004.

4. S. Bechhofer and R. Volz. Patching syntax in OWL ontologies. In Proc. of the 3rd
International Semantic Web Conference (ISWC), 2004.

5. A. Borgida and R. J. Brachman. Loading data into description reasoners. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, pages
217–226, 1993.

6. K. Carter, A. Oka, G. Tamiya, and M. I. Bellgard. Bioinformatics issues for automat-
ing the annotation of genomic sequences. Genome Inform Ser Workshop Genome
Inform, 12:204–11, 2001.

7. P. T. Cohen. Novel protein serine/threonine phosphatases: variety is the spice of life.
Trends Biochem Sci, 22(7):245–51, July 1997.

8. Gene Ontology Consortium. Gene ontology: Tool for the unification of biology. Na-
ture Genetics, 25(1):25–29, 2000.

9. V. Haarslev and R. Möller. RACER system description. In Proceedings of the In-
ternational Joint Conference on Automated Reasoning (IJCAR-01), volume 2083 of
Lecture Notes in Artificial Intelligence, pages 701–705. Springer-Verlag, 2001.

10. B. Hollunder and F. Baader. Qualifying number restrictions in concept languages. In
Proceedings of the Second International Conference on the Principles of Knowledge
Representation and Reasoning (KR-91), pages 335–346, 1991.

11. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics, 1(1),
2003.

12. I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic.
In Proceedings of the Seventeenth International Joint Conference on Artificial Intel-
ligence, 2001.

13. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proceedings
of the Sixth International Conference on the Principles of Knowledge Representation
and Reasoning (KR-98), pages 636–647, 1998.

14. I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The instance store: DL rea-
soning with large numbers of individuals. In Proc. of the 2004 Description
Logic Workshop (DL 2004), 2004. available at CEUR, www.ceur.org, see also
instancestore.man.ac.uk.

15. I. Horrocks, P. Patel-Schneider, and F. van Harmelen. Reviewing the design of
DAML+OIL: An ontology language for the semantic web. In Proc. of the 18th Nat.
Conf. on Artificial Intelligence (AAAI 2002), pages 792–797. AAAI Press, 2002.

16. I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), 2005.

17. N. Hulo, C. J. Sigrist, V. Le Saux, P. S. Langendijk-Genevaux, L. Bordoli, A. Gat-
tiker, E. De Castro, P. Bucher, and A. Bairoch. Recent improvements to the prosite
database. Nucleic Acids Res, 32:134–7, 2004.

18. P. J. Kennelly. Protein phosphatases–a phylogenetic perspective. Chem Rev,
101(8):2291–312, 2001.

19. K. Wolstencroft, P. Lord, L. Tabernero, A. Brass, and R. Stevens. Intelligent classi-
fication of proteins using an ontology. Submitted, 2005.



800 K. Wolstencroft et al.

20. I. Letunic, R. R. Copley, S. Schmidt, F. D. Ciccarelli, T. Doerks, J. Schultz, C. P.
Ponting, and P. Bork. Smart 4.0: towards genomic data integration. Nucleic Acids
Res, 32:142–4, 2004.

21. C. Lutz. Description logics with concrete domains—a survey. In Advances in Modal
Logics Volume 4. World Scientific Publishing Co. Pte. Ltd., 2003.

22. J. E. Mabey, M. J. Anderson, P. F. Giles, C. J. Miller, T. K. Attwood, N. W. Paton,
E. Bornberg-Bauer, G. D. Robson, S. G. Oliver, and D. W. Denning. Cadre: the
central aspergillus data repository. Nucleic Acids Res, 32:401–5, 2004.

23. N. J. Mulder, R. Apweiler, T. K. Attwood, et al. Interpro, progress and status in
2005. Nucleic Acids Res, 33:201–5, 2005.

24. T. Mustelin, T. Vang, and N.Bottini. Protein tyrosine phosphatases and the immune
response. Nat Rev Immunol, 5(1):43–57, January 2005.

25. P. Rice, I. Longden, and A. Bleasby. Emboss: the European molecular biology open
software suite. Trends Genet, 16(6):276–7, June 2000.

26. T. F. Smith and X. Zhang. The challenges of genome sequence annotation or ”the
devil is in the details”. Nat Biotechnol, 15(12):1222–3, 1997.

27. R. Stevens, H. Tipney, C. Wroe, T. Oinn, M. Senger, P. Lord, C. Goble, A. Brass, and
M. Tassabehji. Exploring Williams Beuren Syndrome Using MyGrid. In Bioinfor-
matics, volume 20, pages 303–310, 2004. Intelligent Systems for Molecular Biology
(ISMB) 2004.

28. R. Stevens, C. Wroe, P. Lord, and C. Goble. Ontologies in bioinformatics. In S. Staab
and R. Studer, editors, Handbook on Ontologies, pages 635–657. Springer, 2003.

29. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, 2001. electronically available at
http://www.bth.rwth-aachen.de/ediss/ediss.html.

30. D.Tsarkov and I.Horrocks. Efficient reasoningwith range anddomain constraints. In
Proceedings of the 2004 Description Logic Workshop (DL 2004). CEUR, 2004. Avail-
able from ceur-ws.org.



Provenance-Based Validation of E-Science Experiments

Sylvia C. Wong, Simon Miles, Weijian Fang, Paul Groth, and Luc Moreau

School of Electronics and Computer Science,
University of Southampton, UK

{sw2, sm, wf, pg03r, l.moreau}@ecs.soton.ac.uk

Abstract. E-Science experiments typically involve many distributed services
maintained by different organisations. After an experiment has been executed,
it is useful for a scientist to verify that the execution was performed correctly
or is compatible with some existing experimental criteria or standards. Scientists
may also want to review and verify experiments performed by their colleagues.
There are no exsiting frameworks for validating such experiments in today’s e-
Science systems. Users therefore have to rely on error checking performed by
the services, or adopt other ad hoc methods. This paper introduces a platform-
independent framework for validating workflow executions. The validation relies
on reasoning over the documented provenance of experiment results and semantic
descriptions of services advertised in a registry. This validation process ensures
experiments are performed correctly, and thus results generated are meaningful.
The framework is tested in a bioinformatics application that performs protein
compressibility analysis.

1 Introduction

Very large scale computations are now becoming routinely used as a methodology to un-
dertake scientific research: success stories abound in many domains, including physics
(griphyn.org), bioinformatics (mygrid.org.uk), engineering (geodise.org)
and geographical sciences (earthsystemgrid.org). These large scale computa-
tions, which underpin a scientific process usually referred to as e-Science, are ideal can-
didates for use of Grid technology [1].

E-Science experiments are typically formed by invoking multiple services, whose
compositions are modelled as workflows [2]. Thus, experimental results are obtained
by executing workflows. As part of the scientific process, it is important for scientists
to be able to verify the correctness of their own experiments, or to review the correct-
ness of their peers’ work. Validation ensures results generated from experiments are
meaningful.

Traditionally, program validation has been carried out in two complementary man-
ners. On the one hand, static verification analyses program code before it is executed
and establishes that the program satisfies some properties. These verifications are ex-
tensively researched by the programming language community. Examples include type
inference, escape analysis and model checking. They typically depend on the semantics
of the programming language being analysed. On the other hand, static verification is
complemented by run-time checking, which is carried out when the program executes,
and verifies that data values satisfy constraints, expressed by either types or assertions.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 801–815, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



802 S.C. Wong et al.

Such validation methods suffer from limitations in the context of large e-Science
experiments, potentially carried out in open environments. First, programs (or work-
flows) may not be expressed in languages that analysis tools operate on, or may not be
directly available because they are exposed as services, hereby preventing static anal-
ysis. Second, in general, in open environments, we cannot make the assumption that
services always check that their inputs or outputs match their interface specifications
(if available at all); furthermore, such interfaces may be under-specified (for instance,
many bioinformatics services tend to process and return strings encoding specific bio-
logical sequence data); as a result, no guarantee exists that types will be checked dy-
namically. Third, studies of user practice have shown that rapid development cycles are
being adopted by e-Scientists, in which workflows are frequently modified and tuned
and scientific models are evolved accordingly. As a result, it is important for scientists
to be able to verify that previous experimental results are compatible with recent crite-
ria and requirements. Since these models did not necessarily exist at experiment design
or execution time, it is a necessity to perform such validation after the experiment has
been completed.

The provenance of a piece of data denotes the process by which it is produced.
Provenance-aware applications are applications that record documentation of their ex-
ecution so that the provenance of the data they produce can be obtained and reasoned
over. In this paper, our thesis is that provenance-based validation of experiments allows
us to verify the validity after experiments have been conducted. Specifically, our contri-
butions are: (a) a provenance-based architecture to undertake validation of experiments;
(b) the use of semantic reasoning in undertaking validation of experiments; (c) an im-
plementation of the architecture and its deployment in a bioinformatics application in
order to support a set of use cases. Our experimentation with the system shows that our
approach is tractable and performs efficiently.

The structure of the paper is as follows. Section 2 describes some use cases we
have identified that require experiment validation. Section 3 briefly discusses current
approaches to e-Science experiment validation and explains why it is necessary to per-
form validation after an experiment was executed. Section 4 introduces the proposed
framework for validation of workflow execution. Section 5 then describes how the ar-
chitecture can be applied to the use cases introduced in Section 2. In Section 6, we
discuss how semantic reasoning is essential in properly establishing the validity of ex-
periments. Section 7 then presents results from an implementation of the validation
framework with an e-science application (specifically, the protein compressibility anal-
ysis experiment). The paper finishes with discussion in Section 8 and conclusions in
Section 9.

2 Use Cases

The motivation for this work comes from real problems found by scientists in their
day to day work. Therefore, in this section, we introduce a number of use cases in
the bioinformatics domain where it is necessary to perform some form of validation of
experiments after they have been completed.



Provenance-Based Validation of E-Science Experiments 803

Use Case 1 (Interaction validity, interface level). A biologist, B, performs an exper-
iment on a protein sequence. One stage of this experiment involves generating a pre-
specified number of permutations of that sequence. Later, another biologist, R, judges
the experiment results and considers them to be suspicious. R determines that the num-
ber of permutations specified was an invalid value, e.g. it was negative. �

In this example, we consider that the service provider could have specified a re-
striction for the number of permutations to non-negative integers in the service schema,
since the parameter only makes sense for non-negative integers. However, this does
not guarantee that the service will validate the data against the schema at run-time. In
general, whether validation is carried out at run-time is service specific.

In Use Case 1, B could have entered a negative value for the number of permuta-
tions. In this case, the value is incorrect because it does not conform to the restrictions
and requirements as specified by the interface document of the service. By validating
the experiment using its provenance, R can determine that B entered an invalid value
for the number of permutations, and thus the results generated by the experiment were
not meaningful.

Use Case 2 (Interaction validity, domain level). A bioinformatician, B, downloads a
file containing sequence data from a remote database. B then processes the sequence
using an analysis service. Later, a reviewer, R, suspects that the sequence may have been
a nucleotide sequence but processed by a service that can only analyse meaningfully
amino acid sequences. R determines whether this was the case. �

Nucleotides and amino acids are two separate classes of biological sequences, but
the symbols used in the syntax of nucleotides are a subset of those used for amino
acids. Therefore, it is not always possible to detect which type of sequence is used
by superficially examining the data. The service used in Use Case 2 could require an
amino acid sequence as its input. If a nucleotide sequence was accidentally used rather
than an amino acid sequence, the problem would not be detected at run-time, and the
experiment results would not be meaningful.

Given that many bioinformatics services operate on strings, the biological interpre-
tation of a piece of data is information not directly available from interface specification,
and cannot be easily derived from the data itself. Typically, such additional description
that is useful or of interest to the user has to be made explicit elsewhere. Thus, the in-
teraction in an experiment can be correct according to service interface specifications,
but incorrect according to the domain level understanding of the problem.

Use Case 3 (Ontology revision). A bioinformatician, B, performs an experiment on
a sequence downloaded from a remote database. Later, another bioinformatician, D,
updates the ontology that classifies sequences stored in the database to correct an error
in the previous version. B checks if the experiment is compatible with the new version
of the ontology. �

Ontologies are invaluable in describing domain specific knowledge such as DNA
and RNA sequences are subtypes of nucleotide sequences, as illustrated by the Gene
Ontology [3]. If a service advertises that it accepts nucleotide sequences, we can infer
that the service can also meaningfully process DNA and RNA sequences.



804 S.C. Wong et al.

Similar to Use Case 2, the bioinformatician B in Use Case 3 wants to validate the
interactions in the experiment according to their domain-level characterisation (specifi-
cally, biological sequence types). However, in this use case, the ontology describing the
gene sequences is revised after the experiment has been conducted. Therefore, to ensure
results of the experiment are not affected by this error in the ontology, B validates the
execution against the revised ontology.

Use Case 4 (Conformance to plan). A biologist, B, creates a plan for an experiment
by defining the type of analysis to perform at each stage of the experiment. B then
performs an experiment that is intended to follow the plan. Later another biologist, R,
determines whether each operation performed in the experiment fulfilled an intended
operation in the plan. �

In Use Case 4, the plan defined by B is abstract in nature. To verify whether the
experiment conformed to the original plan, R examines the tasks the services perform.
In other words, R is interested in verifying the properties of the services, not the inter-
actions between the services. This is in contrast to the previous use cases, where the
validation is performed on the types of the data provided and accepted by the services.

Use Case 5 (Patentability of results). A biologist, B, performs an experiment. Later, B
wishes to patent the results. A reviewer, R, checks that no service used in the experiment
has legal restrictions such that the results could not be patented. �

In Use Case 5, R is interested in attributes such as condition of use, legal constraints
and patents. These conditions are (probably) unforeseen by biologist B when he de-
signed and performed the experiment.

3 Current Validation Approaches

Web Services are described by a WSDL interface [4] that specifies the operations they
support, the inputs they expect, and the outputs they produce. The inputs and outputs
of an operation are part of a message and their structure, referred to as interface type,
is commonly specified using XML Schema [5]. In other words, it is the type expected
by the transport layer (i.e., SOAP [6]). It is generally (but not always) the role of the
service provider to publish interface type definitions.

We augment interface types with further descriptions that characterise additional
invariants of interest to the user. For instance, in the previous section, we discussed a
characterisation of data in domain-level terms. OWL-S [7] allows for semantic types
expressed using the OWL ontology to be added to the service profile. Given that the
world is evolving, we consider that several views about an object may co-exist. Hence,
it is permitted to associate several semantic types to a given entity: this is the approach
adopted by myGrid [8], which also relies on the OWL ontology language to give a
classification of biological data. Such descriptions are not restricted to inputs and out-
puts, but can be annotations to service interfaces that identify the functions they per-
form or the resources they rely upon. Such information may be provided by the service
provider, or by a third party, and published in a registry such as the myGrid/Grimoires
registry [9].



Provenance-Based Validation of E-Science Experiments 805

In the introduction, we discussed two commonly used forms of validation: static
and dynamic. Static validation operates on workflow source code. The vast array of
static analyses devised by the programming language community is also applicable to
workflows, such as type inference, escape analysis, etc. Some analysis were conceived
to address problems that are specific to workflows. Examples of these include work-
flow concurrency analysis [10], graph-based partitioning of workflows [11], and model
checking of activity graphs [12]. Yang et al. [13] devise a static analysis to infer work-
flow quality of service. However, the workflow script may not always be available, or it
may be expressed in a language for which we do not have access to a static analyser.

Hence, validation may be performed at run-time. In its simplest form, validation
is service-based. In Web Services, a validating XML parser verifies all XML docu-
ments sent to a service conform to its specified schema. Thus, if all the services used
in a workflow employ validating parsers, the workflow execution is guaranteed to sat-
isfy syntactic types required by services. We note however that many XML parsers
are non-validating by default, such as Apache Axis (ws.apache.org/axis) and
JAXB (java.sun.com/xml/jaxb), because validation is an expensive operation
that affects the performance of web services. Therefore, most XML parsers used by
web services simply check if XML documents are well-formed, and if they can be un-
marshalled into compiled classes.

Other forms of validation and analysis can take place at run-time. The Pegasus
planner is capable of analysing a workflow and re-planning its execution at run-time
so as to make use of existing available resources [14]. Policy languages such as KAoS
are used to perform semantic reasoning and decide if access can be granted to services
as they are being invoked [15].

Service-based validation can only be performed at run-time. However, it is some-
times necessary to validate an experiment after it has been executed. This has been
identified in Use Cases 3 and 5. Third parties, such as reviewers and other scientists,
may want to verify that the results obtained were computed correctly according to some
criteria. These criteria may not be known when the experiment was designed. This is
because as science progresses, criteria evolve. Thus, it is important that previously com-
puted results can be verified according to revised sets of criteria.

4 Provenance-Based Validation Architecture

We propose a provenance-based approach to workflow validation. The provenance of
an experiment contains a record of all service invocations such that the information
is sufficient to reproduce the exact experiment. A provenance-based approach lends
itself easily to third party validation as scientists can share provenance data with other
scientists. Also, as validation criteria evolve, the validation process can be repeated
without re-executing the experiment.

Figure 1 explains our proposed provenance-based semantic validation framework.
Service providers host services on the Grid and advertise them in a registry. Since we
wish to support multi-level descriptions beyond interface types, possibly provided by
third parties, the registry provides support for semantic annotations [9]. An interface
for metadata publication allows for metadata annotations to services, individual opera-



806 S.C. Wong et al.

provenance
store

semantic

registry
annotation

semantic

validator

workflow

enactment engine

provide

advertise invoke

get advertisements

query

service providers

get p−assertions

document
execution

document
execution

services

Fig. 1. Provenance-based validation architecture

tions (within a service), their inputs and outputs; likewise, a query interface caters for
metadata-based discovery.

Users construct workflows for their experiments. The workflow enactment engine
queries the registry for services that provide the tasks requested in the workflow and
calls the appropriate services in the correct order. The services and the workflow enact-
ment engine document the execution of the experiment using a provenance store. We
refer to the provenance of some experimental result as the documentation of the process
that led to that result. Each client and service (collectively, actors) in an experiment can
assert facts about that experiment, called p-assertions (assertions, by an actor, pertain-
ing to provenance). A p-assertion may state either the content of a message sent by one
actor to another, an interaction p-assertion, or the state of an actor when an interaction
took place, an actor state p-assertion. Examples of actor state p-assertions range from
the workflow that is being executed, to the amount of disk and CPU a service used in a
computation [16].

After the experiment is carried out, validation is performed using the algorithm out-
lined in Figure 2. Validation is done on a per activity basis. In this context, activities
are service invocations in the experiment. The list of activities in an experiment is pro-
vided by the provenance store. For each activity, a, the validator computes two values
for comparison — a requirement on the value of some property, R, and the actual value
of that property used in the activity A. The validator then performs semantic reasoning
over A and R to see if A fulfils all the requirements specified in R. If A satisfies R,
then a is deemed to be valid. An experiment is valid when all activities are proved to be
valid.

Figure 3 explains how requirement R and actual value A are calculated for a given
activity a. First, the validator obtains provenance p-assertions for a from the provenance
store. Using this provenance information, the validator fetches services’ advertisements
and semantic annotations from the registry. The user supplies extra information needed
for validation, such as the bioinformatics ontology in Use Case 3 and the legal descrip-
tions in Use Case 5.



Provenance-Based Validation of E-Science Experiments 807

isV alid ← true
for all activities a do

(R, A) ← Compute(a)
isV alid ← isV alid ∧ (A satisfies R)

end for

Fig. 2. Algorithm for provenance-based validation. Requirement R and actual value A are calcu-
lated using the Compute function shown in Figure 3.

Function: Compute requirement R and actual value A
Require: activity a

Retrieve p-assertions from provenance store
Get advertisements from registry
Get user supplied information
R ← Compute requirements
A ← Compute trace

Fig. 3. Algorithm to compute requirement R and actual value A

The type of information to obtain from the provenance store, the registry and the
user depends on the actual validation to be performed. Similarly, the semantic reason-
ing needed to compare requirement R and actual value A also depends on the type of
validation. The next section explains how the semantic validator implements the various
types of validations identified by the use cases using the algorithms introduced in this
section. Section 6 then discusses the semantic reasoning performed.

5 Validation Algorithms for the Use Cases

Figure 3 presented a generic algorithm for computing requirement R and actual value
A of an activity by querying the provenance store and the registry. In this section, we
apply the algorithm in Figure 3 to the use cases in Section 2.

5.1 Interface Level Interaction Validity

Use Case 1 requires the validation of workflow interactions at the interface level. A
workflow is valid if data passed to all activities in the workflow conform to specifica-
tions in their WSDL interface documents, defined in XML schema. Specifically, the
validator validates input XML documents (actual value A) against the schemas (re-
quirement R). For each activity a, R and A are computed according to Figure 4. The
validator queries the provenance store for the service and operation names of activity a.
These names are used to obtain the WSDL document for the activity from the registry.
The provenance store also provides the validator with a copy of the data passed to the
activity in the experiment.



808 S.C. Wong et al.

Retrieve service/operation names of a from provenance store
R ← Get WSDL document for a from registry
A ← Retrieve input to a from provenance store

Fig. 4. Interface-level interaction validation: computing requirement R and actual value A for
activity a

5.2 Domain Level Interaction Validity

To support Use Cases 2 and 3, we validate all interactions in a workflow execution
using domain-level knowledge. For each activity a, we wish to compare the domain-
level types of the data expected by the activity (R) with the actual data used (A). The
domain-level type of the actual data passed to activity a is derived from the output of
preceding operation p. (By preceding, we refer to the service that precedes activity a in
terms of data flow, not time). In the simplest case, an interaction is considered domain-
level valid if A is either the same type or a subtype of R. Figure 5 summarises how the
two values R and A are computed. First, the validator queries the provenance store to
obtain the service and operation names of activity a and preceding activity p. With the
service and operation names, the validator retrieves the metadata attached to the WSDL
message parts from the registry. Specifically, the validator is interested in the metadata
for the output message part of operation p, and the metadata for the input message parts
of the current operation a. The last piece of information the validator requires is the
ontology. This is supplied by the user.

Retrieve service/operation names of a from p-assertions
Retrieve service/operation names of preceding activity p from p-assertions
R ← Get input domain-level type of a from registry
A ← Get output domain-level type of p from registry
Get ontology from user

Fig. 5. Domain-level interaction validation: computing requirement R and actual value A for
activity a

5.3 Activity Validity

To support Use Cases 4 and 5, we verify that the metadata associated with services
conforms to certain criteria. We use the myGrid profile [17] to identify the tasks services
perform. (The myGrid profile is an extension of the OWL-S profile [7]). Likewise, the
profile also specifies databases usage restrictions. Thus, the process of verifying the
activity validity of an experiment involves checking that each activity’s profile satisfies
the requirements specified for it. The requirement can be different for each activity, as
in Use Case 4. In other situations, the requirement can be the same for every activity in
the workflow, such as in Use Case 5.



Provenance-Based Validation of E-Science Experiments 809

An activity is considered to fulfil requirement R if the metadata annotation for the
operation (A) is of the same class or is a subclass of R. Figure 6 shows the algorithm
used for computing the values R and A for activity a. The validator first obtains the
names of the service and operation for activity a from the provenance store. It then
retrieves the semantic annotations of operation a from the registry. The user supplies the
requirement R for the activity. In Use Case 4, R is the original plan of the experiment.
In Use Case 5, R is the set of legal requirements devised according to patenting needs.
Any required ontology is also supplied by the user.

Retrieve service and operation names of a from p-assertions
A ← Get semantic annotation of a from registry
R ← Get requirements from user
Get ontology from user

Fig. 6. Activity validation: computing requirement R and actual value A for activity a

After the validator computed the values R and A, it can verify whether A satisfies
R, as shown in Figure 2. For Use Case 1, verification of satisfaction is performed using
a validating XML parser. For the other use cases, semantic reasoning is required. This
will be explained in the next section.

6 Semantic Reasoning for Validation

All of the algorithms presented in the previous section require some properties (type,
legal restrictions etc.) of multiple entities to be compared. An exact match of types is
inadequate for validation of an experiment, as illustrated in the examples below, and so
semantic reasoning allows our architecture to take full advantage of the relationship be-
tween types encoded in ontologies. In this section, we illustrate some of the reasoning
that can be employed by our validation architecture, with examples taken from a bioin-
formatics application in which we have tested a implementation of our architecture (see
Section 7).

6.1 Validation by Generalisation

The simplest and most commonly required form of reasoning is to compare two types
where one is a super-class of the other.

For example, database D may advertise its download operation as returning RNA
sequences. Analysis service A advertises its analysis operation taking as input nucleotide
sequences. The ontology specifies that both DNA and RNA sequences are subclasses of
Nucleotide sequences. Therefore, the interaction between the download operation D and
analysis service A is valid as the input type of A is a superclass of the output type of D.

Similarly, in Use Case 4, a plan is defined using high-level concepts to describe
the operations to be performed at each stage of the experiment. For example, in the



810 S.C. Wong et al.

experiment plan for our sample bioinformatics application, one of the steps requires
a Compression algorithm. The provenance records that a PPMZ algorithm was used
in the experiment and, in the ontology, PPMZ algorithm is defined as a sub-class of
Compression algorithm. Therefore, the semantic validator can verify that this operation
conforms to the one in the original plan.

6.2 Validation of Inter-parameter Constraints

The same experiment provides cases for more novel forms of semantic description and
reasoning in validation. One service, gcode, in our bioinformatics workflow takes two
parameters: a sequence and a grouping alphabet. The sequence, which may represent
either an amino acid sequence or a nucleotide sequence, is encoded as a sequence of
symbols. The grouping alphabet specifies a set of non-overlapping groups of symbols,
each group having a symbolic name. Service gcode replaces each symbol in the input
sequence with the name of the group to which it belongs, so that the output of the
service is a sequence of group names of the same length as the original sequence.

In order for the workflow to be semantically valid, the symbols used in the input se-
quence of gcode must have the same meaning as those making up groups in the group-
ing alphabet. That is, if the grouping alphabet specifies groups of nucleotides (A, G, C
and T/U) then the input sequence should be a nucleotide sequence, and if the alphabet
specifies groups of amino acids (A, B, C, D, E...) then the input sequence should be an
amino acid sequence.

The ontology contains the concepts Sequence and GroupingAlphabet both of which
are parameterised on the types of their elements, which can be either Nucleotides and
Amino Acids. In the registry, the gcode service is annotated with metadata defining the
semantic types of its input parameters. We wish to advertise the fact that the arguments
used as input parameters to this service must have corresponding BaseTypes: if the
sequence is made up of amino acids, the alphabet should also be. That is, one is a Se-
quence with property hasElementType with target X, the other is is a GroupingAlphabet
with property hasLetterType with target Y and X is equal to Y. Because X and Y effec-
tively denote variables to be instantiated in different ways in different experiments, it is
impossible to express this constraint with OWL alone. Instead we can use technologies
such as the Semantic Web Rule Language [18] or role-value maps [19], with which we
can express that the value of one concept’s property (X) must be equal to the value of
another concept’s property (Y) without giving the type of those values. This mechanism
has also been used to specify configuration policies of registries [20].

The input sequence and the grouping alphabet are provided to gcode by two other
actors, and these interactions are recorded in a provenance store. From the provenance
data, the element type of the input sequence and the letter type of the grouping alphabet
in a particular experiment can be determined.

7 Evaluation

In this section, we present our evaluation of validation framework in satisfying two of
the use cases (Use Case 2 and Use Case 4) in a sample bioinformatics experiment.



Provenance-Based Validation of E-Science Experiments 811

For completeness, we briefly explain the intent of the experiment used in evaluating
our architecture. A more detailed description of this experiment and its workflow can be
found in [21]. The experiment, developed by Klaus-Peter Zauner and Stefan Artmann,
studies the structure of protein sequences by analysing their compressibility. Proteins
are amino acid chains that fold into unique 3D structures. This 3D shape of the protein
determines its function. The structure of protein sequences is of considerable interest
for predicting which sections of the DNA encode for proteins and for predicting and
designing the 3D-shape of proteins. For comparative studies of the structure present
in an amino acid, it is useful to determine their compressibility. This is because com-
pression exploits context-dependent correlations within a sequence. The fraction of its
original length to which a sequence can be losslessly compressed is an indication of the
structure present in the sequence.

For the evaluation, we ran the workflow multiple times and recorded the executions
in the provenance store. Both the provenance store and the registry were implemented
as Web Services (available for download at pasoa.org and grimoires.org re-
spectively). The semantic validation component was implemented in Java and used
Jena 2.1 for reasoning over the ontology. The ontology itself was specified in OWL
and based on the ontology developed by the bioinformatics Grid project, myGrid. Af-
ter a set of workflow runs, each analysing one sample, the provenance store contains
records of interactions between services. Each interaction record contains the invoca-
tion message that occurred in the workflow, which specifies the operation invoked and
data exchanged as arguments. In addition to the message itself, the services record data
links that specify when the output of one service has been used as the input of another
service. Collectively, the data links describe the data flow throughout the experiment.
The full provenance data for one workflow run was approximately 1 MB in size. For the

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60

T
im

e 
(s

ec
on

d)

Number of experiments

Interaction validation
Plan validation

Fig. 7. Evaluation of interaction validity and conformance to plan for an increasing number of
experiments



812 S.C. Wong et al.

evaluation, we deployed the registry on a Windows XP PC with Pentium 4 CPU, 3 GHz,
2 GB RAM, and the provenance store and semantic validator on another Windows XP
PC with Pentium 4 CPU, 1.5 GHz, 2 GB RAM. The PCs were connected by a 100Mb
local ethernet. The results of each experiment is described in further detail below.

Two forms of validation were implemented, corresponding to Use Cases 2 and 4,
implementing the algorithms in Figures 5 and 6 respectively. Given that we intend large
numbers of experiments to be performed, it is critical to that our approach scales well
as the amount of data in the provenance store expands. Therefore, we performed the
validation process on all experiments in the provenance store as we increase the number
of experiments. Figure 7 shows the performance of the semantic validation architecture
as the number of experiments for which provenance documentation is recorded and are
to be validated increases.

7.1 Interaction Validity, Domain Level

In the interaction validity experiment, the type of each output message part in the ex-
periment was compared with the type of the input message part of the succeeding invo-
cations in which it was used. We obtained the names of the input and output message
parts from the provenance store. We then use these names to obtain their domain level
types from the registry. The domain level types are ontology terms. The comparison
is done by checking if the output type is the same class or a subclass of the input
type. Specifically, we use the member functions hasSuperClass and equals of
the OntClass interface in Jena. As can be seen in Figure 7, the time required for
validation increases linearly with respect to the number of experiments. In total, one
test included a total of 452N + 1 Web Service calls to either the provenance store and
registry plus 48N occurrences of reasoning using the ontology, where N is the number
of experiments.

7.2 Conformance to Plan

In the conformance to plan experiment, the planned data flow of each experiment is
expressed using high-level concepts from the ontology to define the operations to be
performed, and the service operations advertised in the registry were annotated with
low-level concepts specifying the exact algorithm used by that operation. The valida-
tor checked that every data link in the provenance store corresponded to one in the
plan. This is achieved by checking that the performed action is the same class or a
subclass of the planned action. As can be seen in Figure 7, the time required for val-
idation increases linearly with respect to the number of experiments. In total, one test
included a total of 260N + 1 Web Service calls to either the provenance store and reg-
istry plus 48N occurrences of reasoning using the ontology, where N is the number of
experiments.

8 Discussion

The myGrid and CombeChem (combechem.org) projects have also worked on the
problems of provenance recording and service description, and adopted RDF-based



Provenance-Based Validation of E-Science Experiments 813

approaches, making ontology-based reasoning a possibility. However, neither iden-
tify the architectural elements required for validation nor provide a generic, domain-
independent way to satisfy use cases such as those presented in this paper.

As our design is dictated by pragmatic considerations, we have adopted a hybrid ap-
proach to information representation. Provenance information is made available by the
provenance store as XML documents. Inside the data structure representing provenance,
we may find assertions, made by some actors. These assertions may be expressed using
semantic web technologies. For instance, the function performed by a service or a de-
scription of its internal state expressed using OWL. In the registry, annotations provided
by third parties may be encoded in the formalism of their choice. We have explicitly ex-
perimented with OWL and RDFS. Therefore, semantic reasoning (based either on OWL
or RDFS technology) only operates on a subset of the provenance representation and
some descriptions published in the registry.

This hybrid approach to representation suits the intensive data processing require-
ments of Grid applications. For roughly 10 days of computation over 100 nodes, we ex-
pect our provenance store to accumulate approximately 10×100×24×60×60×20 =
1, 728, 000, 000 invocations to be described for the provenance of a data set. Selectively
identifying the elements to reason over is therefore essential. All our use cases operate
using the same reasoning pattern, which consists of identifying the provenance of some
data and iterating on all its records. More advanced use cases will result in new pat-
terns of processing. As all possible patterns cannot be anticipated, we allow users to
use declarative specifications of what they expect from computations. Policy languages
such as KAoS [20] are strong contenders for this problem. KAoS positive and nega-
tive obligations allow us to encode what has to occur, or what should not occur. For
example, we can introduce a policy for a transactional system that requires every action
to be committed or rolled back by the end of an experiment. The challenge will be to
integrate the KAoS reasoner (also OWL based) with the potentially large size of the
provenance store.

9 Conclusions

Grid based e-Science experiments typically involve multiple heterogeneous computing
resources across a large, open and distributed network. As the complexity of exper-
iments grows, determining whether results produced are meaningful becomes an in-
creasingly difficult task. In this paper, we studied the problem of validation on such
experiments. Traditionally, program validation is carried out either statically or at run-
time. However, the usefulness of either approach is limited for large scale e-Science
experiments. Static analyses rely on the availability of workflow scripts. These scripts
may not be expressed in languages that analysis tools operate on, or may not be avail-
able because they are exposed as web services. Run-time service-based error checking
is service dependent and users may not have control over its configuration.

We propose an alternative, provenance-based approach to experiment validation.
The provenance of an experiment documents the complete process that led to the results.
As a result, validation is not reliant on the availability of workflow scripts or service
configurations. Moreover, as science progresses, criteria for validation evolve. Using a



814 S.C. Wong et al.

provenance-based approach, the validation process can be repeated without re-running
the experiment. By employing technologies for provenance recording, annotation of
service descriptions and semantic reasoning, we have produced an effective solution to
the validation problem. Algorithms working over the automatically recorded documen-
tation of experiments and utilising the semantic descriptions of experimental services
in registries can test the validity of results to satisfy various domain-independent and
domain-specific use cases.

To demonstrate the viability of our semantic validation architecture, we have dis-
cussed how it can be used with various algorithms and forms of semantic reasoning
to satisfy five use cases. We have also implemented two of the use cases. Performance
tests show our algorithms scale linearly as the amount of provenance documentation
recorded increases.

Acknowledgements

This research is funded in part by the Grimoires (EPSRC Grant GR/S90843/01), my-
Grid (EPSRC Grant GR/R67743/01) and PASOA (EPSRC Grant GR/S67623/01)
projects. The authors would also like to thank Klaus-Peter Zauner and Stefan Artmann
for providing us with the bioinformatics experiment.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual
organizations. International Journal of High Performance Computing Applications 15 (2001)
200–222

2. Gil, Y., Deelman, E., Blythe, J., Kesselman, Tangmunarunkit, H.: Artificial intelligence and
grids: workflow planning and beyond. IEEE Intelligent Systems 19 (2004) 26–33

3. Consortium, T.G.O.: The Gene Ontology (GO) database and informatics resource. Nucleic
Acids Research 32 (2004) 258–261

4. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services description
language (WSDL) 1.1. Technical report, W3C Note, http://www.w3.org/TR/wsdl
(2001)

5. Fallside, D.C., Walmsley, P.: XML schema part 0: Primer second edition. Technical report,
W3C Recommendation, http://www.w3.org/TR/xmlschema-0 (2004)

6. Mitra, N.: SOAP version 1.2 part 0: Primer. Technical report, W3C Recommendation,
http://www.w3.org/TR/soap12-part0 (2004)

7. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara, K.: OWL-
S: Semantic markup for web services. Technical report, W3C Member Submission,
http://www.w3.org/Submission/OWL-S (2004)

8. Wroe, C., Goble, C., Greenwood, M., Lord, P., Miles, S., Papay, J., Payne, T., Moreau, L.:
Automating experiments using semantic data on a bioinformatics grid. IEEE Intelligent
Systems 19 (2004) 48–55

9. Miles, S., Papay, J., Luck, M., Moreau, L.: Towards a protocol for the attachment of metadata
to grid service descriptions and its use in semantic discovery. Scientific Programming 12
(2004) 201–211



Provenance-Based Validation of E-Science Experiments 815

10. Lee, M., Han, D., Shim, J.: Set-based access conflicts analysis of concurrent workflow defi-
nition. In: Proceedings of Third International Symposium on Cooperative Database Systems
and Applications, Beijing, China (2001) 189–196

11. Baresi, L., Maurino, A., Modafferi, S.: Workflow partitioning in mobile information systems.
In: Proceedings of IFIP TC8 Working Conference on Mobile Information Systems (MOBIS
2004), Oslo, Norway, Springer (2004) 93–106

12. Eshuis, R., Wieringa, R.: Verification support for workflow design with uml activity graphs.
In: Proceedings of the 24th International Conference on Software Engineering. (2002) 166–
176

13. Yang, L., Bundy, A., Berry, D., Huczynska, S.: Inferring quality of service properties for grid
applications. In: CS poster, EPSRC e-Science Meeting, Edinburgh, UK, NeSC (2004) static
analysis of workflows.

14. Blythe, J., Deelman, E., Gil, Y.: Planning for workflow construction and maintenance on the
grid. In: ICAPS 2003 workshop on planning for web services. (2003)

15. Uszok, A., Bradshaw, J.M., Jeffers, R.: KAOS: A policy and domain services framework
for grid computing and semantic web services. In Jensen, C., Poslad, S., Dimitrakos, T.,
eds.: Trust Management: Second International Conference (iTrust 2004) Proceedings. Vol-
ume 2995 of Lecture Notes in Computer Science., Oxford, UK, Springer (2004) 16–26

16. Miles, S., Groth, P., Branco, M., , Moreau, L.: The requirements of recording and using
provenance in e-science experiments. Technical report, Electronics and Computer Science,
University of Southampton (2005)

17. Wroe, C., Stevens, R., Goble, C., Roberts, A., Greenwood, M.: A suite of DAML+OIL
ontologies to describe bioinformatics web services and data. nternational Journal of Cooper-
ative Information Systems 12 (2003) 197–224

18. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A se-
mantic web rule language combining OWL and RULEML. Technical report, DARPA Agent
Markup Language (DAML) Program, http://www.daml.org/2003/11/swrl/
(2003)

19. Schmidt-Schauss, M.: Subsumption in KL-ONE is undecidable. In Brachman, R.J.,
Levesque, H.J., Reiter, R., eds.: Proceedings of the 1st International Conference on the
Principles of Knowledge Representation and Reasoning (KR89), Morgan Kaufmann (1989)
421–431

20. Moreau, L., Bradshaw, J., Breedy, M., Bunch, L., Johnson, M., Kulkarni, S., Lott, J., Suri,
N., Uszok, A.: Behavioural specification of grid services with the KAOS policy language.
In: Proceedings of Cluster Computing and Grid (CCGrid), Cardiff, UK (2005)

21. Groth, P., Miles, S., Fang, W., Wong, S.C., Zauner, K.P., Moreau, L.: Recording and using
provenance in a protein compressibility experiment. In: Proceedings of the 14th IEEE In-
ternational Symposium on High Performance Distributed Computing (HPDC-14), NC, USA
(2005)



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 816 – 828, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Semantic Service Integration for Water Resource 
Management 

Ross Ackland1, Kerry Taylor1, Laurent Lefort1, Mark Cameron1, 
and Joel Rahman2 

1 CSIRO, ICT Centre, GPO Box 664, Canberra, ACT 2601, Australia 
{ross.ackland, kerry.taylor, laurent.lefort, 

mark.cameron}@csiro.au 
http://www.ict.csiro.au/ 

2 eWater Cooperative Research Centre, CSIRO Land and Water,  
GPO Box 1666, Canberra ACT, 2601, Australia 

joel.rahman@csiro.au 
http://www.catchment.crc.org.au 

Abstract. Water resource management is becoming increasingly difficult due to 
the interaction of conflicting factors such as environmental sustainability and 
economic constraints. In Australia, the introduction of a water rights manage-
ment framework is an administrative attempt to facilitate the resolution of this 
complex and multi-faceted problem. Policies relating to water allocation and 
trading have already advanced beyond our abilities to monitor, measure, report 
and enforce these policies. Mismanagement of this valued resource can have 
severe damaging long term environmental and economic effects. We believe 
that Semantic Web Services technologies will help decision makers minimise 
the risk of mismanagement. In this paper, we discuss the potential application 
of our dynamic service composition approach and its compatibility with other 
solutions. We identify the benefits for the different categories of users and dis-
cuss how ontologies can help to bridge the gap between specialists and non-
specialists, or specialists focusing on separate aspects of the overall problem. 

1   Introduction 

Water is becoming a highly valued resource not only in Australia but in many coun-
tries around the world. This value is driving the need for improving the efficiency of 
water management practices. In the Australian context, water management is a com-
plex relationship between demand and supply, moderated by water rights trading. 
Intelligent water allocation, extraction and trading are essentially a process of eco-
nomic optimization integrated with hydrologic network modelling. Decisions need to 
be made at both the micro (irrigator on farm) and macro (government policy making) 
levels. Water resource allocation is driven by a variety of environmental, economic 
and social factors, as well as physical constraints of the distribution systems. Deci-
sions on water usage are based on data from information sources that include histori-
cal datasets, policy information, real time data and predictive simulation models that 
need to be executed at the time of decision making and evaluated on an ongoing basis. 

Decisions are made by a variety of stakeholders, each operating on a different time 
horizon (from days to years) at different geographic extents, with different decision 



 Semantic Service Integration for Water Resource Management 817 

making goals and from very different contexts. For example, an individual farmer 
makes decisions about ordering water from a reservoir for extraction from the river in 
a matter of days. A regional water management agency may allocate water to con-
sumptive users within a large catchment on an annual or seasonal timescale. 

In this paper, we examine issues associated with water resource management in 
Australia in the context of allocation and trading. We then look at current information 
systems used by decision makers and the need for improved model data fusion. We 
introduce the need for a framework in which a new class of applications can exist and 
show how semantic technologies are a critical component to this framework in order 
to improve present approaches for linking data and models together. We characterise 
the data management and model integration problem to be addressed within the Aus-
tralian context. We discuss how our approach to service composition can complement 
the existing approaches and identify the potential benefits. 

2   Water Resource Management in Australia 

The Australian climate is dry and highly erratic with long droughts alternating with 
periods of intensive and localized flooding. Additionally, water use has increased 
dramatically over the last two decades due mainly to the increase in irrigated agricul-
ture. Producers are continually planning to avoid losses by protecting themselves 
against drought, as well as capitalising on high rainfall years. Water management is 
defined and regulated by each of the State and Territory Government authorities and 
in most states a licencing system regulates water access and distribution [3]. In most 
cases, a water licence is no absolute, but gives a right to use a specified amount of the 
available resource for a given time and within a given region. Water rights can also be 
withdrawn or altered at any time without any statutory guarantee of compensation. 
Water rights are defined in volumetric terms with several classes of rights. The two 
broad categories of water rights are surface water rights (access to streams and rivers) 
and groundwater rights (access to artesian aquifers). Within these categories water 
rights are classified into several priority classes that entitle the holder access to a 
share of the water available to each class. 

2.1   Water Allocation 

Allocation is the process of establishing and enforcing water demand. Planning for 
both environmental allocation and irrigation demand is undertaken by the relevant 
agencies within each state or territory. Unfortunately there have been a number of 
instances of over allocated systems, where too many licences have been issued for 
consumptive use such that the extraction of the total licenced volume would threaten 
the minimum reserve required for environmental sustainability. These situations are 
not necessarily the result of poor planning but more an indication of the complexity of 
the interaction between economic, social and environmental benefits and costs at 
different levels of geographic scale. 

In an attempt to alleviate the situation of allocation errors, agencies are adopting 
adaptive management practices where they can respond more rapidly to changing 
circumstances such as unpredicted climatic change, new scientific evidence, changing 



818 R. Ackland et al. 

community values and so on. The downside of this approach is that increased gov-
ernment intervention can have an adverse affect on financial investments that rely on 
water allocation. We are currently faced with the difficulty in determining whether the 
environmental allocations are actually achieved, due to the limited measuring and 
reporting that takes place, especially where a distributor provides water to users on a 
commercial basis. 

2.2   Water Trading 

Now that availability of water is becoming increasingly scarce, water trading is 
emerging as a means of efficiently allocating rights. In moving toward free trading of 
water rights, market based solutions for water management will be difficult to imple-
ment. Long term commitment is needed by governments and the private sector and 
the dynamics of a market system for a natural resource such as water include some 
unique difficulties, such as: 

• Long distance trading – losses that occur between original and new loca-
tions; 

• Exchange rate is difficult to calculate due to hydrological differences when 
trading occurs across catchments; 

• Wide variety of transaction costs; 
• The drivers for permanent and temporary water entitlements are different. 

Water trading has been in existence in Australia for some time and tentative steps 
have already been taken with trial systems for interstate water trading [4], [16]. The 
success of these trials has resulted in the creation of water markets now covering 
larger geographic areas and involving a greater number of traders and brokers. 

Water management, in particular allocation and trading, is essentially a process of 
optimization that involves the integration of water balance models, climatic models 
and economic models. Traditionally, the process has comprised the selection and 
development of appropriate modelling tools to support policy development and deci-
sion making processes by water authorities. While the tools themselves may originate 
from different domains (hydrologic and economic) there also exists a broader com-
munity of potential users that could benefit from access to these tools.  

Irrigators and allocators (authorities responsible for establishing and regulating wa-
ter allocation limits) require access to the same information and services although 
they are engaged in addressing problems at differing geographic and temporal scales. 
Allocators need to consider the conflicting interests of the different stakeholders 
which include environmental interests as well as economic [13]. 

Water trading has been available to land holders with water entitlements in the 
Southern NSW and Victorian regions of Australia since the completion of the 
Murray-Darling pilot project1. Watermove2 is one example of an online web based 
water exchange facility operated by Goulburn-Murray Water Authority. An irrigator’s 
decision to trade water will be sensitive to water prices as well as current and future 
farm product prices [18] and seasonal conditions [1]. As the Watermove web site 

                                                           
1 http://www.mdbc.gov.au/naturalresources/watertrade/pilot_watertrade.htm 
2 http://www.watermove.com.au 



 Semantic Service Integration for Water Resource Management 819 

suggests, there are a number of factors a trader should take into account when consid-
ering an offer. These include: seasonal allocation compared with previous seasons, 
water use in current season compared with previous seasons, cost of alternatives. (e.g. 
dairy farmers buying feed), prices paid for temporary water in the region, price trends, 
price volatility, water volumes available, tariff structures and whether any delivery 
charge will apply to water purchased and used. Although the establishment of zones, 
trading rules and exchange rates are fairly static compared with other trading systems 
such as energy and finance, it becomes increasingly difficult to predict outcomes as 
the geographic scale increases. For example, the trading variations occur across zones 
which contain separate tributaries that may impact down stream water balances. Add 
to this unpredictable climatic conditions and the dynamics of the system become 
much more interesting to all parties. To define long term policies for catchment or 
basin level regions, we need appropriate data and predictive models for all types of 
water use that allow analysis at a whole of system level in order to support the next 
round of water reforms. 

It is clear that an environment that can provide requirements based problem ex-
pression, resource discovery, service composition and iterative problem execution, 
will potentially benefit a broad community of users. 

3   Current Approaches in Model and Data Integration 

There has been an increasing emphasis in recent years on providing more integrated 
information services to Australian natural resource managers. However these initia-
tives have typically focused either on data delivery or on simulation modelling and 
rarely on both. These new services have introduced considerable flexibility to their 
consumers, but are still based on relatively rigid models of interaction, and each are 
configured to answer a limited set of questions at very specific spatial and temporal 
scales. 

3.1   Data Services 

Natural resource managers regularly require access to spatial and temporal data, 
which in Australia is held by a variety of organizations in each jurisdiction. This data 
is gradually being made available through online data portals, such as the Victoria 
Water Resource Data Warehouse3. The range of natural resource data available online 
in Australia includes hydrologic data4, climate data5, soils information6 and various 
derivative products, such as Sentinel Hotspots7 used for bushfire detection. CANRI8 
and the NSW Natural Resource Atlas9 are good examples of web based access to 
natural resource datasets available to a broad user community. 

                                                           
3 http://www.vicwaterdata.net 
4 Ibid 
5 http://www.nrm.qld.gov.au/silo/, http://www.bom.gov.au 
6 http://www.asris.csiro.au 
7 http://www.sentinel.csiro.au 
8 http://www.canri.nsw.gov.au 
9 http://www.nratlas.nsw.gov.au 



820 R. Ackland et al. 

While these and other services represent an improvement over previous, more 
manual forms of data provision and exchange, they still suffer from a number of prob-
lems, particularly a lack of integration with models. Many users of data services ex-
pect to use the data as input to models, although often significant and time consuming 
pre-processing must occur before the data can be used. 

Additionally there is increasing need to use real-time data sourced from sensor net-
works that allow monitoring and control of water use. To meet this need, such data 
must be provided dynamically and in a form to support its ready integration with a 
wide variety of other information resources. 

3.2   Model Services 

Predictive modelling is becoming central to natural resource management for pur-
poses such as considering the impacts of a new policy, or performing a priority alloca-
tion of restoration funding in order to achieve a desired outcome. There is a need for 
models to become more accessible, for use by a wide range of stakeholders, and more 
integrative, by including a range of biophysical considerations. Several large model-
ling initiatives have, in recent years, addressed these issues of accessibility and inte-
gration of models developed to match the requirements of different categories of users 
[6], [12]. 

3.3   Model Integration Services 

Model integration frameworks have been designed to facilitate the integration from 
broad scale water quality models10 to complex models examining water allocation 
scenarios in circumstances ranging from ‘what-if’ analyses in public stakeholder 
workshops to seasonal water allocations by legislative authorities. The Catchment 
Modelling Toolkit11 is a suite of environmental modelling products, engineered with 
high level user interfaces delivered through an online community and supported 
through regular training workshops. The toolkit has made its suite of catchment mod-
els available to a wide range of industry stakeholders and consultants. Central to the 
Toolkit is a framework, TIME [14], that supports toolkit model development and 
integration. TIME is based on the Microsoft .NET12 platform and supports the devel-
opment of spatial and temporal models in standard programming languages.  

The Harmon-IT13 project focuses on integrating existing catchment models by de-
fining a standard protocol for communications between models called openMI14. 
Using this approach, wrappers can be created for legacy models, while models under 
active development can have the protocol embedded directly. 

The Dynamic Information Architecture System DIAS15, is designed for the simula-
tion of complex dynamic systems and supports both the development of new models 
and the integration, through wrappers of legacy models. 

                                                           
10 For example, CMSS: http://www.clw.csiro.au/products/cmss 
11 http://www.toolkit.net.au 
12 http://www.microsoft.com/net 
13 www.harmonit.org 
14 http://www.openmi.org 
15 http://www.dis.anl.gov/DIAS 



 Semantic Service Integration for Water Resource Management 821 

RIMIS [7] is a Web Services based system designed to support regional landscape 
managers in posing ‘what if’ questions for catchment-scale salinity and water quality 
problems. RIMIS integrates hydrological, economic and social simulation models and 
is built on an infrastructure that enables distributed data and service coordination 
across organizations. This allows catchment managers to describe their problems and 
scenarios using data and modelling services from participating state government and 
local council organizations. RIMIS uses workflow technologies to provide a solution 
to the problem of obtaining data and coordinating model execution. However, the 
construction of workflows is not based on semantic descriptions of data and services, 
making it a difficult task for domain experts. 

Hydra3 [15] is an older model integration technology which lacked the modern ad-
vantages offered by Web Services for interoperability but attempted to drive model-
data and model-model integration through the use of declarative specifications of 
mapping relationships. This approach to interoperability is now driving much of the 
semantic web services research agenda. 

3.4   Limitations of Current Systems 

Water resources management is dependent on information about water distribution, 
utilization and knowledge of water quality and availability. Improvements in water 
resource management will be driven by our ability to improve access to environ-
mental data integrated with predictive models. Data and models currently exist in 
abundance as isolated self contained systems that make integration across these sys-
tems problematic. Recent advances in environmental sensing technologies provide an 
opportunity to collect information about our environment at much higher spatial and 
temporal resolutions. However, without an underlying framework to facilitate intelli-
gent integration of models and data there will be little benefit gained in generating 
orders of magnitude more data from real time sensor networks. 

Environmental Modelling Frameworks like TIME and OpenMI are an improve-
ment over product-centered integration approaches such as Arc Hydro16, and HEC17, 
but they do not solve all the issues linked to model complexity [11] and component 
interoperability over multiple frameworks [2] for which Web Services with richer 
semantics are seen as a viable option. Semantic technologies will mean that inte-
grated, problem based software applications will no longer need to “hardcode what to 
do with each data item” [17], so that the task of investigating problems and making 
decisions can be placed in the hands of key information users, without the mediation 
of software technologists. 

4   A Framework for Water Resources Monitoring and 
Management 

The Water Resources Observation Network (WRON) is a concept envisioned by 
CSIRO as a distributed network integrating a range of technologies for acquiring, 

                                                           
16 http://www.crwr.utexas.edu/giswr/hydro 
17 http://www.hec.usace.army.mil 



822 R. Ackland et al. 

storing, analyzing, visualizing and interpreting environmental and economic data 
relating to water resource management at a national scale. WRON will require col-
laboration and participation by many agencies and stakeholders within Australia. The 
goal for WRON is to facilitate the development of next generation modelling and 
decision support tools and be able to deliver those tools to a much wider range of 
water resource users utilizing dynamic model-data fusion techniques. Essential to 
WRON will be the efficient and seamless linkage of the following elements: 

• Legacy databases held by various custodians. These are typically spatial da-
tabases such as terrain, soil and land cover datasets, also time series hydro-
metric data (eg: climate, water levels and physio-chemical parameters); 

• Field based sensor networks that measure climatic, in stream, groundwater, 
landscape and ecosystem parameters in real time at much higher resolutions 
(both spatially and temporally) than currently available; 

• Remotely sensed data sources such as soil moisture, soil temperature, 
evapotranspiration, vegetation indexes and land use activities, reported in 
near real time; 

• Predictive models and decision support tools for uncertainty estimation, op-
timization and multi-criterion analysis available as re-useable building 
blocks rather than self contained systems; 

• Computational resources that automatically enable the execution of compute 
intensive applications deployed across the network. 

We identify three categories of users for the WRON. These are: users with an admin-
istrative role in charge of reporting water usage on the basis of the presently available 
data and knowledge; users with an operational role, in charge of day-to-day manage-
ment of some parts of the system; and users with a planning role, preparing decisions 
affecting the future on the basis of ‘what if’ models. 

The common theme among these users is that they are all working within a sce-
nario driven environment where problem expression capabilities would range from 
specification (how much water should I buy/sell today?) through simulation (what is 
the effect on diversion limits if demand increases by 20%), analysis (given current 
climatic conditions, and my usage profile, actions recommended include …), monitor-
ing (I need to know when consumption is exceeding diversion limits) and evolution to 
reiterate the problem definition. Enabling flexible and efficient problem management 
is a key component in translating WRON’s technological underpinnings into domain 
specific problem focused tools that have meaning and impact for users. 

5   Semantic Web Services Composition 

There are many desirable features of current and emerging semantic web tools that 
can provide solutions to the WRON needs, especially those tools developing around 
Semantic Web Services. It is particularly attractive to leverage the high-impact Web 
Services standards together with the emerging descriptive and inferencing capability 
of the Semantic Web. Our work is adopting these tools for resource description, work-
flow enactment, and service interoperability, together with declarative data integration 
technology, to address the WRON needs. In this section we emphasise the need for 



 Semantic Service Integration for Water Resource Management 823 

machine interpretable resource description, and outline how this can be used, together 
with other intelligent technologies, to realise the WRON. 

5.1   Why We Need Formal Resource Descriptions 

In order to support the wide diversity of rich data and processing resources required 
for water resources management, as well as the wide diversity of expected users, it is 
important to have declarative, computationally-interpretable resource descriptions. 

A traditional approach to resource descriptions would have a body of like-minded 
people recognising a common information need to meet and establish a data format 
standard for information exchange. Nowadays, such a format would certainly rely on 
XML. Once a resource can be encoded in a standard format it can also be described 
with external metadata in a fairly simple way following another standard such as 
ANZLIC18 or Dublin Core19. Inevitably, any previous standard for data format encod-
ing or metadata will be either too broad (requiring coverage of areas that are of no 
interest to the current problem) or too narrow (not supporting sufficiently specific 
description for the current problem). Large scale attempts to standardise a common 
information model for frameworks such as the WRON, either in terms of data formats 
or metadata formats, are doomed to fail [17]. They will be expensive and slow and 
will surely hinder development in a multi-party environment that requires infrastruc-
ture development to proceed within widely varying time, budget and goal constraints 
of participating organisations and application needs. 

A computationally interpretable resource description has many advantages in mak-
ing software components more generally applicable over a range of evolving, differ-
ent, flexible resource types. This capability is a much more natural fit with the nature 
of feasible WRON development. For example, the use of hierarchical classifications 
to support discovery of modelling components has been established in the natural 
resources domain [10] and using the added value of OWL20 to support contextually-
based discovery of resources of software modules, has been demonstrated in [9]. 

An important feature of formal resource descriptions is that there is no reason for 
any particular classification to be authoritative: multiple independent or co-dependent 
ontologies may be created to meet community needs as they arise. Software tools to 
navigate, select, and manipulate data may be entirely independent of any particular 
ontology because the ontology itself is manipulated as a data object with well defined 
semantics, amenable to semantic inferencing. 

What can this semantic inferencing offer? Firstly, it offers an advantage for rapid 
ontology design through acquisition and merging of multiple pre-existing ontology 
resources. Information sources containing the standard knowledge shared by special-
ists in their domain of expertise are readily found and can be converted into formal 
domain ontologies. Semantic inferencing assists in the construction of sound and non-
trivial ontologies.  

Secondly, it offers a degree of automation in classification of resources, described 
using ontological terminology. This classification is valuable for software compo-
nents, data types, data models, and structured data sets, including databases. It can 
                                                           
18 http://www.anzlic.org.au 
19 http://dublincore.org 
20 http://www.w3.org/TR/owl-features 



824 R. Ackland et al. 

assist in both resource discovery (through support for classification, browsing and 
querying ontological structures), and resource assembly (through machine assisted 
goal seeking and data type inference). For example, it will be possible for a WRON 
user to describe their problem domain in terms of an ontology, rather than in terms of 
WRON resources. Good resource descriptions will enable the expertise embedded in 
models to be exposed: constraints relating to time, location, and physical parameters 
can be interpreted by software to validate their use in a user problem context. Data 
format translation services will be invoked automatically as necessary. 

Thirdly, it offers some resilience to change in domain applications assembled from 
underlying resources. If the assembly of resources to meet application goals is speci-
fied at a conceptual, abstract level, and machine processable inference can be em-
ployed to ground the specification to concrete resources, then the abstract specifica-
tion will be isolated from many of the changes at the resource level. This is analogous 
to the value gained from interpreters and compilers for high level programming lan-
guages—they enable a machine recompilation step to translate a high level specifica-
tion to work for different platform architectures. 

Fourthly, and perhaps most importantly, semantic inferencing is crucial to avoiding 
death by standardisation. Where community standards can be developed or pre exist 
for data formats and terminology, they are very valuable community assets. But 
where they don’t exist, semantic descriptions, coupled with machine interpretable 
mapping rules and semantic inferencing can be used to relate pre existing WRON 
resources to an application domain model of choice at run time. For example, pro-
vided that a water quality time series dataset description formally identifies that the 
“BOD” element corresponds to “bio chemical oxygen demand” and that it is meas-
ured in “milligrams per litre”, on a “daily timestep”, at a fixed geo-location, the inte-
gration of this information with another biological oxygen demand measurement data 
set, recorded and labelled in a different format, but described in a consistent terminol-
ogy, is straightforward machine processing. Furthermore, appropriate machine gener-
ated metadata (itself amenable to semantic inferencing) should be attached to gener-
ated information products by this method, so that there is also the potential to explain 
any deficiencies or assumptions made in creating the new information for scientific 
scrutiny. 

The need for the WRON computational infrastructure to support heterogeneity in 
data resources is only exacerbated by the desire to provide data access for real time 
sensor networks. Autonomous water quality sensors are themselves an emerging 
technology: their capabilities for measurement parameters vary widely already and 
divergence will continue over time as legacy sensors will co-exist with modern types. 
This makes it very important to capture descriptions of sensor capability and limita-
tion within the computational infrastructure, so that machine reasoning, as before, can 
be used to match sensor data to the requirements of an application problem. 

5.2   How the WRON Might Work 

Our vision for the WRON comprises basic resources, reference ontologies and map-
pings, a problem definition tool, and a sophisticated Web Services based run time 
environment. Basic resources are published to the WRON with Web Service inter-
faces. These resources comprise data as files, databases, sensors, and complex soft-



 Semantic Service Integration for Water Resource Management 825 

ware components embedding expert knowledge such as model algorithms. These 
resources are enriched with extra information as resource descriptions in terms of a 
reference ontology and mappings that permit computational interpretations. For data 
resources such as databases, this description is centred on the data model itself. For 
services exposing software components such as hydrological models, it also provides 
an understanding of the functional meaning to assist the selection of the right model 
and capture knowledge on how to link models from various origins together. This 
approach is workable if and only if resource specific concepts are managed independ-
ently of each other. 

Reference ontologies, like “neutral ontologies” [17], capture domain knowledge in 
a resource independent manner. Basic resources are related to one or more reference 
ontologies through machine interpretable, declarative mappings. Logical languages 
provide a very good basis for this purpose [5], [8] but closer integration with ontology 
languages is still needed. While there may be considerable effort in establishing the 
semantic content, especially to generate large reference ontologies, this activity is 
useful in more than one way. The information collected can also be used to generate 
metadata to document and complete the translation done at the various stages of the 
service composition. That is, much of the metadata for problem specific composed 
services may be produced for free. 

Specification of application problems proceeds through user interaction with the 
resources and ontologies in an “ontology based specification” approach as described 
in the following section. This interaction produces an artefact which we call a prob-
lem definition. Queries expressed in terms of the problem definition are answered in a 
run time environment that dynamically interprets the definition and coordinates ser-
vices to respond with an integrated result. 

5.3   How a User Works with the WRON 

At one level, a user may interact with the WRON in a very traditional way - to use the 
rich resource descriptions to locate web services and data resources to meet their 
needs. A simple application would provide a search based interface for a web user to 
discover datasets based on metadata keywords for example. However, much of the 
perceived benefit for WRON relies on providing the capability to create new re-
sources or services out of the basic resources. These new resources would be avail-
able for reuse just as basic resources are. To describe how this works, we focus on a 
scientific expert WRON user – someone aiming to offer their expertise into the com-
munity through development of a specialist application, perhaps to assist irrigators in 
water allocation decisions.  

We envisage the development of a new application to proceed as follows. A do-
main expert works with a specialist tool (we call it the “Composers Workbench”) to 
browse reference ontologies as sources of knowledge about the target application 
domain concepts. In doing so, the expert selects domain concepts and defines a prob-
lem specification for the application in mind. By virtue of the fact that network re-
sources have been previously linked to reference ontologies, the domain expert is also 
simultaneously selecting an assembly of resources to satisfy the specification. By 
employing rich semantic descriptions to the full, the expert is free to be only as spe-
cific about the exact resource selection as desirable for the problem at hand. The ex-



826 R. Ackland et al. 

pert may supplement the definition with specific calibration or parameter data appro-
priate to the problem. The problem itself will certainly evolve as the expert redefines 
and tests the automatically generated service implementation. When complete, the 
expert may deploy the service composition as a first class resource, the interface of 
which is exposed as yet another web service. The service conceptual description (as 
OWL) and interface (as WSDL), together with a computational implementation of the 
service may be automatically derived from the specification. That is, the service now 
becomes a WRON accessible Web Service resource available to the wider community 
of users. Depending on the application needs, the Web Service may need to be sup-
plemented with a specialist GUI for presentation and user interaction, such as that 
offered by the Catchment Modelling Toolkit for example. 

When using the service, a specific run time query is combined with the abstract 
specification of the service and transformed at run time to an executable workflow. 
We use an automated planner to derive an optimal, executable process specification 
with temporal relationships between component execution derived automatically. 
Declarative constraints on component applicability are interpreted in the context of 
the run time data. The workflow may be generated in a choice of languages, including 
the Web standard BPEL4WS21. A workflow engine is used to orchestrate the calls to 
each individual resource in an asynchronous manner. These workflows may coordi-
nate tens or hundreds of activities, including activities for authorisation, multi data-
base semi joins, translations of data types and units of measurement, data chunking to 
match service capability, computational and data intensive models, and managing 
temporary storage of intermediate results. 

6   Conclusions 

To improve our understanding of the impact of Water Reforms and monitoring the 
state of catchments with a range of multi disciplinary focuses, we need to keep pace 
with the rapidly increasing volume and availability of data and the increasing richness 
and sophistication of models available. Environmental Modelling frameworks are 
now adopting appropriate standards and common software engineering practices 
which will facilitate the move to Web Services. It is for this reason we believe the 
timing is ideal to consider the adoption of Semantic Web technologies. We believe 
the semantic richness required to work on hydrological problems is already expressed 
in “de facto standards” from collaborative projects (Arc Hydro, HydroML22, Har-
monIT, Harmoniqua23, CUAHSI24) and further refined in the work to develop the 
Upper Ontology for Hydrology25 developed at Drexel University and other projects 
such as SWEET26. 

A large part of our work to date has been in building domain-independent infra-
structure tools for ontology engineering, problem definition, query planning, work-

                                                           
21 Developed by Microsoft, IBM, and BEA http://www.oasis-open.org 
22 http://water.usgs.gov/nwis_activities/XML/nwis_hml.htm 
23 http://harmoniqua.wau.nl 
24 http://www.cuahsi.org 
25 http://loki.cae.drexel.edu/~how/upper/2003/12/upper.html 
26 http://sweet.jpl.nasa.gov/ontology 



 Semantic Service Integration for Water Resource Management 827 

flow generation and workflow execution. Prototype versions of our tools now exist 
and the next stage will be the deployment and evaluation of these tools in variety of 
application domains. Our work permits a fine grained approach to service interaction 
whereby process-oriented workflows are automatically generated from declarative 
specifications. This means the resulting workflows may be more complex and better 
optimised than those created from flow-based specification tools. For example, Ora-
cle’s BPEL Designer27, which provides a neat graphical user interface to describe a 
workflow, is inappropriate for editing and maintaining workflows that invoke hun-
dreds of services. We are also developing tools that can assist domain specialists in 
the creation of ontologies from content available in a range of existing formats. Many 
sources of knowledge rich content are presently under exploited and we hope to im-
prove what is often seen as a tedious and timely process. We believe the increased 
level of automation these semantic tools can provide has the potential to significantly 
reduce the effort required in building applications and to enable knowledge specialists 
to effectively build their own applications without the need for the software specialist. 

References 

1. Appels, D., Douglas, R., Dwyer, G.: Responsiveness of Demand for Irrigation. Water: A 
Focus on the Southern Murray-Darling Basin August 2004. http://www.pc.gov.au/ 
research/swp/rdia/rdia.pdf 

2. Argent, Y. R. and Rizzoli, A. E.: Development of Multi-Framework Model Components 
Proceedings of iEMSs 2004, Osnabrück, Germany, 14-17 June 2004. http://www. 
iemss.org/iemss2004/pdf/integratedmodelling/argedeve.pdf 

3. Banks, G.: Water Rights Arrangements in Australia and Overseas. Australian Government 
Productivity Commission Research Paper. ISBN 1-74037-131-3. October 2003. 

4. Bjornlund, H.: Efficient Water Market Mechanisms to Cope with Water Scarcity. Water 
Resources Development, Vol. 19, No. 4, 553–567, December 2003. http://www.utsc. 
utoronto.ca/~02wongwb/Bjornlund%202003.pdf 

5. de Bruijn, Jos., Polleres, Axel.: Towards an Ontology Mapping Specification Language for 
the Semantic Web. DERI Technical Report 2004-06-30 June 2004. http://www.deri.at/ 
publications/techpapers/documents/DERI-TR-2004-06-30.pdf 

6. Bury, H., Durakova, D., Dysarz, T., Eleftheriadou, E., Kochanek, K., Owsinski, J. W., Ra-
pantova, N., Unucka, J.:  Transcat. The State-of-art in European Water Resource Related 
DSS Systems and Methodologies. http://www.transcat-project.net/Deliverables/WP5/DL-
51-02.doc 

7. Cameron, M.A., Corke, B., Taylor, K.L., Walker, G., Watson, B.: Regional Integrated 
Management Information System Proceedings of iEMSs 2002, Lugano, Switzerland,  
24–27 June, 2002. http://www.iemss.org/iemss2002/proceedings/pdf/volume%20uno/ 
304_cameron.pdf  

8. Cameron, M.A., Taylor, K.L.: First-Order Patterns for Information Integration, 5th Interna-
tional Conference on Web Engineering (ICWE 2005), Sydney, Australia, July 27-29, 2005, 
Lecture Notes in Computer Science, Volume 3579, Jul 2005, Pages 173 – 184 

9. Caprotti, O., Dewar, M., Turi, D.: Mathematical Service Matching Using Description 
Logic and OWL. Proceedings 3rd Int’l Conference on Mathematical Knowledge Manage-
ment (MKM’04). Volume 3119 of Lecture Notes in Computer Science, Springer-Verlag 
(2004). 

                                                           
27 http://otn.oracle.com/bpel 



828 R. Ackland et al. 

10. Guariso, G., Tracanella, E., Piroddi, L., Rizzoli, A.: A Web Accessible Environmental 
Model Base: a Tool for Natural Resources Management. Proc MODSIM 97, International 
Congress on Modelling and Simulation, Hobart, Australia, pp 657-662, December 1997. 

11. Harvey, H. Feedback on the OpenMI Architecture reports A & B version 0.6. Water and 
Environmental Management Research Centre. http://www.cen.bris.ac.uk/pgra/dph/ 
publications/2003-05-28-openmi1.pdf 

12. Marston, F., Argent, R., Vertessy, R., Cuddy, S., Rahman, . J. The Status of Catchment 
Modelling in Australia. CSIRO Land and Water Technical Report 02/4 March 2002 
http://www.toolkit.net.au/pdfs/technical200204.pdf 

13. Prasad, A., Khan, S. Synthesis Report Murray-Darling Basin Dialogue on Water and Cli-
mate - River Symposium Brisbane 6 September 2002. http://www.wac.ihe.nl/dialogue/ 
Basin/Murray-Darling/documents/Murray-Darling%20Report.pdf 

14. Rahman, J.M., Seaton, S., Cuddy, S.M.: Making Frameworks More Useable: Using Model 
Introspection and Metadata to Develop Model Processing Tools. Proceedings of iEMSs 
2002, Lugano, Switzerland, 24–27 June, 2002. http://www.iemss.org/iemss2002/ 
proceedings/pdf/volume%20tre/382_rahman.pdf 

15. Taylor, K., Walker, G., Abel D.: A Framework for Model Integration for Spatial Decision 
Support Systems. International Journal of Geographic Information Science, 13(6), pp 533-
555, 1999. 

16. Tisdell, J., Ward, J., Grudzinski, T.: 2002, The development of Water reform in Australia. 
CSIRO Land and Water Technical Report 02/5, May 2002, pp45-47. http://www. 
catchment.crc.org.au/pdfs/technical200205.pdf 

17. Uschold, M.,  Gruninger, M.: Ontologies and Semantics for Seamless Connectivity. 
SIGMOD Record, 33 (4), pp 58-64 December 2004. 

18. Wijedasa, H. A., Malano, H. M., McMahon, T. A., Turral, H. N., Smith, G. S.: Water 
Trading in the Goulburn-Murray Irrigation Scheme. Technical Report 02/9 December 
2002. http://www.gu.edu.au/school/eve/research/watertrading/download/Trading_GM.pdf 



Towards a Killer App for the Semantic Web

Harith Alani, Yannis Kalfoglou, Kieron O’Hara, and Nigel Shadbolt

Intelligence, Agents, Multimedia,
School of Electronics and Computer Science,

University of Southampton, UK
{ha, y.kalfoglou, kmo, nrs}@ecs.soton.ac.uk

Abstract. Killer apps are highly transformative technologies that create new
markets and widespread patterns of behaviour. IT generally, and the Web in par-
ticular, has benefited from killer apps to create new networks of users and in-
crease its value. The Semantic Web community on the other hand is still await-
ing a killer app that proves the superiority of its technologies. There are certain
features that distinguish killer apps from other ordinary applications. This paper
examines those features in the context of the Semantic Web, in the hope that a
better understanding of the characteristics of killer apps might encourage their
consideration when developing Semantic Web applications.

1 Introduction

The Semantic Web (SW) is gaining momentum, as more researchers gravitate towards
it, more of its technologies are being used, and as more standards emerge and are ac-
cepted. There are various visions of where the technology might go, what tasks it might
help with, and how information should be structured and stored for maximum applica-
bility [4][21][30]. What is certainly clear is that no-one who wishes seriously to address
the problems of knowledge management in the twenty-first century can ignore the SW.

In many respects, the growth of the SW mirrors the growth of the World Wide Web
(WWW) in its early stages, as the manifest advantages of its expressivity became clear
to academic users. However, once the original phase of academically-led growth of the
WWW was over, to the surprise of many commentators, the web began its exponential
growth, and its integration with many aspects of ordinary life. Technologies emerged
to enable users to, for example, transfer funds securely from a credit card to a vendor’s
account, download large files with real time video or audio, or find arbitrary websites
on the basis of their content.

Most realistic visions of the SW include a version of this exponential growth. The
SW infrastructure should be put in place to enable such growth. With a clean, scalable
and unconstraining infrastructure, it should be possible for users to undertake all those
tasks that seem to be required for the SW to follow the WWW into the stratosphere, such
as publishing their RDF, converting legacy content, annotating, writing ontologies, etc.

However, that something is possible does not entail that it is inevitable. So the ques-
tion arises of how developers and users might be persuaded to come to the SW. This
type of growth of a network has often been observed in the business literature. Many
technologies depend for their usability on a large number of fellow users; in this context

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 829–843, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



830 H. Alani et al.

Metcalfe’s Law [15] states that the utility of a network is proportional to the square of
the number of users.

Technologies which have this effect are called killer apps. Exactly what is a killer
app is to a large extent in the eye of the beholder; in the WWW context, killer apps might
include the Mosaic browser, Amazon, Google, eBay or Hotmail. Hotmail attracted over
30 million members in less than three years after its 1996 launch; eBay went from
nothing to generating 20% of all person-person package deliveries in the US in less than
2 years. Of course, the WWW was a useful enough technology to make its own way in
the world, but without the killer apps it might not have broken out of the academic/nerdy
ghetto. By extension, it is a hope of the SW community that the SW might take off on
the back of a killer app of its own.

The dramatic development of the WWW brought with it a lot of interest from the
business community, and the phenomenon of killer apps has come under much scrutiny
[10][19]. Attempts have been made to observe the spread of killer apps, and to gener-
alise from such observations; the tight development cycles of WWW technology have
helped such observations.

In this paper, our aim is to consider the potential for development of the SW in the
light of the killer app literature from the business community. Of course, it is impossible
to forecast where the killer app for the SW will come from. But examination of the
literature might provide some pointers as to what properties such an application might
have, and what types of behaviour it might need to encourage.

2 Killer Apps and the Semantic Web

Killer apps emerge in the intersection between technology, society and business. They
are technological in the broad sense of being artificial solutions to perceived problems,
or artificial methods to exploit perceived opportunities (which is not to say that they
need to have been developed specifically with such problems or opportunities in mind).
Mere innovation is not enough. Indeed, a killer app need not be at the cutting edge
of technological development at all. The killer app must meet a need, and be usable
in some context, such as work or leisure or commerce. It must open up some kind of
opportunity to bring together a critical mass of users.

To do this, killer apps have a number of features which have been catalogued by
commentators. In this section, we will examine and reinterpret such features in the
context of the SW. We reiterate that these features may not all be necessary, and they
certainly are not sufficient; however they can act as an interesting framework to our
thought on this topic.

The main point, of course, about a killer app is that it enables a superior level
of service to be provided. And equally clearly, the SW provides an important op-
portunity to do this, as has been argued from the beginning [4]. There are obvious
opportunities for any knowledge-based task or enterprise to improve its performance
once knowledge sources are integrated and more intelligent information processing is
automated.



Towards a Killer App for the Semantic Web 831

2.1 The Bottom Line: Cost vs Benefit

However, merely providing the opportunity is not enough. Cost-benefit analysis is es-
sential [10]. There are several aspects to costs. Obviously, there are financial costs; will
people have to pay for the killer apps on the SW? Maybe not; there are many examples
of totally free Internet applications, such as Web browsers, search engines, and chat
messengers. Such applications often generate large revenues through online advertis-
ing. According to the Interactive Advertising Bureau UK1 and PriceWaterhouseCoop-
ers2, the market size of online advertising in the UK for 2004 was £653.3m, growing
more than 60% in one year. Free products may be very important in this context [19],
and indeed killer apps are often cheaper than comparable alternative products [7].

But such costs are not the only ones incurred. There are also important resource
issues raised by any plan to embrace the SW.

Conversion Cost: As well as investing in technologies of certain kinds, organisations
and people will have to convert much of their legacy data, and structure newly-acquired
data, in particular ways. This immediately requires resources to support the develop-
ment of ontologies, the formatting of data in RDF, the annotation of legacy data, etc.,
not to mention potential costs of exposing data in RDF to the wider world (particularly
where market structures reward secrecy). Furthermore, the costs of developing smart
formalisms that are representationally adequate (the fun bit) are dwarfed by the popu-
lation of informational structures with sufficient knowledge of enough depth to provide
utility in a real-world application [12]. Note also that such a process will require ascent
of some very steep learning curves.

Maintenance Cost: In a very dynamic domain, it may be that ontologies have to be
updated rapidly [20][5]. The properties of ontologies are not as well-understood as they
might be; areas such as mapping ontologies onto others, merging ontologies and updat-
ing ontologies are the focus of major research efforts. It is currently unknown as to how
much such maintenance effort would cost over time.

Organisational Restructuring Costs: Information processing is integrated into an or-
ganisation in subtle ways, and organisations often subconsciously structure themselves
around their information processing models [11], a fact implicitly accepted by the
knowledge engineering community [27]. Surveys of organisations, for example, reveal
that ontologies are used in relatively primitive ways; indeed, in the corporate context,
the term ‘ontology’ is a generic, rarely defined catch-all term. Some are no more than
strict hierarchies, some are more complex structures allowing loops and multiple instan-
tiations, still others are in effect (sometimes multilingual) corporate vocabularies, while
others are complex structures holding metadata [22]. Whatever their level of sophistica-
tion, corporate ontologies support the systematisation of large quantities of knowledge,
far from the traditional AI view of their being highly detailed specifications of well-
ordered domains. Ontologies may refer to an internal view of the organisation (mar-
keting, R&D, human resources, etc) or an external one (types of supplier and supplies,

1 www.iabuk.net
2 http://www.pwc.com/



832 H. Alani et al.

product types, etc). A recent survey showed that only a relatively small number (under
a quarter) of corporate ontologies were derived from industry standards. The big issue
for many firms is not representational adequacy but rather the mechanics of integration
with existing systems [12].

Transaction Costs: On the other hand, it is also true that if the SW does alter informa-
tion gathering and processing costs, then the result will inevitably be some alteration of
firms’ management structures. The result will be leaner firms with fewer management
layers, and possibly different ways of processing, storing and maintaining information.
Such firms may provide opportunities for new SW technologies to explore, and a gap
in the market from which a killer app may emerge.

It has long been argued that the size and structure of firms cannot be explained
simply by the price mechanism in open competitive markets [8]. The allocation of re-
sources is made using two mechanisms - first (between firms and consumers) by dis-
tributed markets and coordinated by price, but also (within firms) by the use of authority
within a hierarchy (i.e. people get ordered to do things). The question then is how this
relates to a firm’s structure - when a firm needs some service, does it procure it from
outside and pay a market price, or does it get it done in-house, using workers under
some contractual obligation, and why?

It is generally thought that such organisational questions are determined by the
transaction costs within a firm [33][34]. The promise of the SW is that many of the
information gathering costs will be ameliorated. The general result of this is likely to
be a continuation of trends that we have seen in economies since the widespread in-
troduction of IT, which is the removal of middle management (“downsizing”), and the
outsourcing of many functions to independent suppliers. In the SW context, of course,
many of those independent suppliers could well be automatic agents, or providers of
web services. If the SW contains enough information about a market, then we might
well expect to see quite transformative conditions, and several market opportunities.
The killer app for the business aspects of the SW may well be something that replaces
the coordinative function of middle management.

But we should add a caveat here: the marginal costs of information gathering will
be ameliorated, but equally there will, as noted above, be possibly hefty sunk costs
up front, as firms buy or develop ontologies, convert legacy data to RDF, lose trade
secrets as they publish material, etc. These initial costs may prove an extensive barrier
to change.

Reducing Costs: Here we see the importance of the increase in size of the user base.
For example, the costs of developing and maintaining ontologies are high, but can be
shared. Lightweight ontologies are likely to become more important [31]; not only are
they cheaper to build and maintain, but they are more likely to be available off the
shelf [22]. Furthermore, they are more likely to be easily understandable, mappable,
maintainable, etc. The development of such lightweight multi-purpose ontologies will
be promoted as the market for them gets bigger.

Similar points can be made about ontology development tools. Better tools to search
for, build or adapt ontologies will spur their use or reuse, and again such tools will ap-
pear with the demand for them. And in such an environment, once an ontology has been



Towards a Killer App for the Semantic Web 833

developed the sunk costs can be offset by licensing the use of that ontology by other
organisations working in that domain. The costs, in such a networked environment, will
come down over the period of use; if a single firm took on the costs of developing and
licensing an ontology for a domain, that firm could also take on the maintenance costs.
Organisations that specialised in ontology maintenance and training for users could
spring up, given sufficient demand for their services.

Increasing Benefit: Similarly to data restructuring; there has to be some discernible
benefit for organisations putting their data in RDF, and these benefits will become more
apparent the more published data in RDF there is. So the issue here, which a killer app
might help with, is that there seems to be little or no advantage for an individual firm in
moving first. A firm that publishes its data in RDF early incurs costs early and takes a
risk, but gets little benefit; and vice versa. Nevertheless, being first in a new market is a
distinct advantage [10][7], but late entrants can also succeed if they outperform existing
services [13] (e.g. Google). So there is a Prisoner’s Dilemma to be sorted out.

Berners-Lee argues that the killer app for the SW is the integration [2]. Once dis-
tributed data sources are integrated, the sky becomes the limit. This of course could
be true, but it will be hard to convince data providers to publish in RDF and join the
SW movement without concrete examples of benefit. This is probably supported by
Berners-Lee suggestion that we need to “Justify on short/medium term gain, not net-
work effect” [3]. Integration alone might not be seen as a gain on its own, especially
when considering costs and privacy issues.

In a survey for business use cases for the SW, researchers of the EU KnowledgeWeb3

emphasised the importance of proper targeting for SW tasks [24] to avoid applying
SW technologies to where they do not offer any clear benefit, which may discourage
industry-wide adoption. The survey concluded that the areas which seem to benefit
more from this sort of technology are data integration and semantic search. It was ar-
gued that these areas could be accommodated with technologies for knowledge extrac-
tion, ontology mapping and ontology development. Similarly, Uschold and Gruninger
[31] argue that ontologies are useful for better information access, knowledge reuse,
semantic-search, and inter-operability. They also list a number of assumptions to be
made to progress towards a fully automated semantic integration of independent data
sources. Fensel et al [14] describe the beneficial role of ontologies in general knowl-
edge management and eCommerce applications. They also list a number of obstacles
that need to be overcome to achieve those benefits, such as scalable ontology mapping,
instantiation, and version control. Other obstacles, such as trust, agent co-ordination,
referential integrity, and robust reasoning have also been discussed [18].

2.2 Leveraging Metcalfe’s Law

The relevance of Metcalfe’s Law, that the utility of a network is proportional to the
square of the number of its members [15], is clear in the context of this examination
of the nature of the costs It is often cited in other contexts as an explanatory variable
for killer apps [10][19][13]. There are two stages to the process of growing a network;

3 http://knowledgeweb.semanticweb.org/



834 H. Alani et al.

first get the network’s growth accelerating, and second preserve the network once it is
in place, in order to create a community of practice (CoP).

Communities of Practice: A CoP [32] is an informal, self selecting, group of people
sharing some work- or leisure-related practice. The CoP that springs up around such a
practice acts as a kind of support network for practitioners. It provides a language (or
informal ontology) for people to communicate with, a corporate memory, and a means
of spreading best practice.

This self-selection, and informality of CoPs, makes a community very hard to de-
velop, because the community is a second-order development. So, we might take the
example of Friend of a Friend (FOAF)4. FOAF is a basic ontology that allows a user to
express simple personal information (email, address, name, etc) as well as information
about people they know. Many SW enthusiasts considered FOAF to be cool and fun and
started publishing their FOAF ontologies. Currently there are millions of FOAF RDF
triples scattered over the Web, perhaps far more than any other type of SW annotations.

Social Network Applications: Surprisingly, there exist many Web applications that
allow users to represent networks of friendships, such as Friendster5, Okrut6, LinkedIn7,
TheFacebook8, SongBuddy9, to name just a few. However, FOAF has simply become
a more convenient form for representing, publishing, and sharing information. Even
though none of the applications above are entirely based on FOAF, some have already
begun reading and exporting FOAF files. FOAF is certainly helping spread RDF, albeit
in a way limited to part of the SW community, and could therefore be regarded as a
facilitator or a medium for possible killer apps that could make use of available FOAF
files and provide some useful service.

Sustaining Network Growth: However, one interesting obstacle in the way of FOAF
creating the nexus of users that will launch the SW is that a network is generally self-
selecting and second order. One obvious benefit of FOAF is that, as a pretty simple
ontology, it provides a relatively painless way of ascending the learning curve for non-
users of SW technology. However, to sustain the network growth, there is still need
to something underlying such networks, some practice, shared goal, or other practical
purpose.

It may well be that a potentially more fruitful approach would be to support exist-
ing communities and try to expand SW use within them, so that little Semantic Webs
emerge from them, as SW technologies and techniques reach saturation point within
them [18]. And because CoP overlap, and converge on various boundary objects and
other linking practices and artefacts [32]. There are many obvious aids to such a devel-
opment strategy; for instance, good-quality ontologies could be hand-crafted for partic-
ular domains. But also, it turns out that a number of the best SW tools at the moment

4 http://www.foaf-project.org/
5 http://www.friendster.com/
6 http://www.orkut.com/
7 https://www.linkedin.com/
8 http://www.thefacebook.com/
9 http://www.songbuddy.com/



Towards a Killer App for the Semantic Web 835

also support this “filling out” technique. For instance CS AKTive Space [28] specifi-
cally enables people to find out about the state of the discipline of computer science
in the UK context; a limited but useful domain. Flink [23] generates FOAF networks
for SW researchers. CS AKTive Space and Flink are winners of the 2003 and 2004
Semantic Web Challenges respectively.

Open Systems and Social Aspects: One other useful aspect of Flink is that it inte-
grates FOAF profiles with ordinary HTML pages, and therefore sets up an explicit link
between the SW and the WWW. Direct interaction with other existing systems increases
the value of a system by acquiring additional value from those systems [19]. One good
example is Protégé, an ontology editor from Stanford [25]. By being open source and
extendable, Protégé allowed many existing systems and tools to be linked or integrated
with it, thus increasing its use and value. For this reason, and for being free, Protégé has
quickly become one of the most popular ontology editing tools available today.

This openness is of course built into the very conception of the SW; the integration
of large quantities of data, and the possibility of inference across them, is where much
of the power stems from. As with the WWW, this does require a major programme of
voluntary publication (e.g. to simply and conveniently compare prices across retailers
over the WWW). The SW would add value (or reduce information processing costs)
still more by allowing agents to do the same thing and more [17].

And as with the WWW, if this process takes off, then more and more vendors would
have to publish their data in RDF, even if they are initially reluctant. The argument in
favour of such coercion is that everyone benefits eventually, and that early movers not
only gain, but force laggards to follow suit.

Privacy and Trust: Transparency and the removal of restrictions to publication are not
undiluted goods. It may be that certain pieces of information benefit some organisations
only as long as they withhold them from public view (trade secrets). Or that issues such
as privacy and anonymity will rear their heads here. Or even that differing intellectual
property regimes and practices will lead to competitive advantage being lost in some
economies.

In particular, integrating large quantities of information across the Internet and rea-
soning across them raises potential problems. Firstly, it is the integration of information
that threatens to allow harmful inference; information is quite often only harmful when
seen in the right (or wrong) context. But the SW is the tool par excellence for doing that.
And secondly, publication of information (e.g. FOAF) in a friendly and local context
can quickly get out of one’s control.

It is often argued that standard data protection legislation is adequate for the new
online contexts, but that policing is the problem. As it stands, traditional restrictions on
the gathering of information are becoming decreasingly relevant as information crosses
borders so easily. More plausible is policing restrictions on how information can be
used once collected.

Furthermore, formalising or externalising knowledge, for example in the creation
of ontologies, can have a number of effects. First of all, knowledge that is codified can
become more ‘leaky’, i.e. it is more likely to leave an organisation. Secondly, it will tend



836 H. Alani et al.

to reduce the competitive advantage, and therefore income, of certain experts. Thirdly,
much depends on whether a consensus exists about the knowledge in the first place.

2.3 Creativity and Risk

Killer app development cannot follow from careful planning alone. As we have noted
already, there is no algorithm for creating a killer app. They tend to emerge from simple
and inventive ideas; they get much of their transformative power by destroying hitherto
reliable income streams for established firms. Christensen [7] points out that most killer
apps are developed by small teams and start-ups. Examples include Google, eBay, and
Amazon, which were all created by a few dedicated individuals. Giant industrial firms
are normally reluctant to support risky projects, because they are generally the ones
profiting from the very income streams that are at risk [10].

However, even though most semantic web applications have so far been built in re-
search labs and small groups and companies, there is clear interest expressed by the big
players as well. So, for example, Hewlett Packard has produced Jena [6], a Java library
for building SW applications, and IBM has developed WebFountain [16], a heavy plat-
form for large scale analysis of textual web documents using natural language analysis
and taxonomies for annotations. Adobe has perhaps gone further than many; Acrobat
v5 now allows users to embed RDF metadata within their PDF documents and to add
annotations from within Web browsers which can be stored and shared via document
servers.

The SW provides a context for killer app development, a context based on the ability
to integrate information from a wide variety of sources and interrogate it. This creates a
number of aspects for the potential for killer apps. First of all, SW technologies might
essentially be expected to enable the retrieval of data in a more efficient way that possi-
ble with the current WWW which is often seen as a large chaotic library.

On the other hand, it may be that the SW might take off in an original and unpre-
dictable direction. The clean infrastructure that the W3C ensures is in place could act
as a platform for imaginative methods of collating and sifting through the giant quanti-
ties of information that is becoming available. This might result in a move away from
the webpage paradigm, away from the distinction between content providers and con-
sumers, as for example with efforts like CS AKTive Space [28], or a move towards a
giant, relatively uniform knowledge base (of the CYC variety) that could cope with all
those complexities of context that foiled traditional AI approaches [1]. The ultimate vi-
sion of the SW that prevails should affect not only the standards developed for it [21],
but also where we might look for killer apps.

2.4 Personalisation

Personalisation has been a common thread in the development of killer apps. Customers
tend to become more loyal to services they can customise to their liking [10]. Many of
today’s killer apps have some level of personalisation; Amazon for example makes
recommendations based on what the customer buys or looks at; Auto Trader10 and

10 http://www.autotrader.co.uk



Towards a Killer App for the Semantic Web 837

Rightmove11 save customers’ searches and notify them via emails when a new result
to their query is available; personalised web services attract more customers (if done
properly!) and provide better tailored services [13].

Personalisation is often the key to providing the higher service quality than the op-
position. The service itself need not be provided in any better ways, but the personalised
aspect gives it the extra that is needed to defeat the alternatives. Such a connection could
be indirect; for example, an Amazon-style recommender system, linked with an adver-
tising platform, could help find alternative revenue streams and therefore drive down
the cost to the consumer.

It goes without saying that personalisation is a hot topic on the SW, as well-annotated
knowledge sources can be matched against RDF statements about individual consumers,
to create recommendations or targeted products. There may well be major advantages
to be had in systems that can feed information discreetly into recommender systems
[26][9].

Nevertheless, it is the personalisation aspect that has much potential for the SW, as
long as the provision of enough information for the system to work interestingly is not
too painful.

2.5 Semantic Web Applications

There have been few sustained attempts to try to promote SW applications. For instance,
the important work of the W3C naturally is focused on the standards that will create
the clean platform that is a necessary but sadly not sufficient condition for the SW to
take off. But one of the most interesting and inspired is the series of Semantic Web
challenges, which we will discuss briefly in the next section.

3 The Semantic Web Challenge

The annual International Semantic Web Challenge12 (SWC), has been a deserved suc-
cess, sparking interest and not a little excitement. It has also served to focus the com-
munity. Applications should “illustrate the possibilities of the Semantic Web. The ap-
plications should integrate, combine, and deduce information from various sources to
assist users in performing specific tasks.” Of course, to the extent that it does focus the
community, the SWC will naturally influence the development of the SW.

Submissions to the SWC have to meet a number of minimum requirements, viz:

– First, the information sources used
• should be geographically distributed,
• should have diverse ownerships (i.e. there is no control of evolution),
• should be heterogeneous (syntactically, structurally, and semantically), and
• should contain real world data, i.e. are more than toy examples.

– Second, it is required that all applications assume an open world, i.e. assume that
the information is never complete.

11 http://www.rightmove.co.uk
12 http://challenge.semanticweb.org/, where the criteria quoted below are to be found.



838 H. Alani et al.

– Finally, the applications should use some formal description of the meaning of the
data.

Secondly, there are desiderata that act as tiebreakers.

– The application uses data sources for other purposes or in another way than origi-
nally intended

– Using the contents of multi-media documents
– Accessibility in multiple languages
– Accessibility via devices other than the PC
– Other applications than pure information retrieval
– Combination of static and dynamic knowledge (e.g. combination of static ontolo-

gies and dynamic work-flows)
– The results should be as accurate as possible (e.g. use a ranking of results according

to validity)
– The application should be scalable (in terms of the amount of data used and in terms

of distributed components working together)

In the light of our discussion above, these are interesting criteria. Many of them are
straightforwardly aimed at ensuring that the characteristic possibilities of the SW are
realised in the applications. For instance, the SW would have little point indeed if it only
worked on toy examples, did not scale, could not work with distributed information
sources, or if it required some kind of closed world to work.

However that may be, what is of interest here is the relation to the SWC criteria and
the literature on killer apps. What the SWC is intended to uncover are new ways of ex-
ploiting information, particularly distributed information, and demonstrating the power
of interrogation. In this respect, the challenge can only raise the profile of the SW, and
help extend its community to more people and organisations. The SWC is an excellent
vehicle for demonstrating where added value may come from. And as we have seen,
increasing the size of the network will bring with it exponentially-increasing benefits.

But the SWC looks unlikely to furnish us with a (prototype of a) killer app, because
the criteria focus on interesting results, rather than on usability, superiority or the al-
teration of old habits. Some of the criteria are slightly double-edged. For example, it is
essential that an application uses a formal description of the meaning of the data. This,
of course, is a deliberate attempt to ensure that one of the most contentious aspects of the
SW (one of the most commonly-cited causes of scepticism about the SW’s prospects) is
incorporated. That is, the use of ontologies to provide understanding of terms in knowl-
edge from heterogeneous sources. However, the way the challenge is constructed means
that what is bound to happen in many if not most applications is that the developers will
create their system with a possibly very painstakingly constructed ontology in mind,
rather than taking the more difficult option of employing a very lightweight system that
could work with arbitrary ontologies. The situation is somewhat similar to the knowledge
engineering Sisyphus challenges, where KE methodologies were tested and compared
by being applied to the same problem. However, as the methodologies were applied by
their developers, the results were less than enlightening; a later attempt to try to measure
how difficult methodologies were to use by non-specialists suffered from an unwilling-
ness of most developers to discover this key fact about their methods [29].



Towards a Killer App for the Semantic Web 839

There is little here to create the genuine community (as opposed to a large net-
work); to promote the idea that users have something of a responsibility not to free
ride, and to publish RDF data. Neither is there much to promote personalisation within
that community. There is little to protect privacy, little to reduce the pain of annotating
legacy data or building ontologies, and, although the focus of the SWC is the results of
information-processing, little to ensure that such processing can integrate into the or-
ganisational workflow. Surprisingly few of the traditional requirements, from a business
perspective, appear in the SWC criteria.

None of this, let us hastily add, is intended as a criticism of the SWC, which has
publicised the SW and drawn a lot of attention to the extra power that it can provide.
Our point is merely that there is a lot more to finding a killer app than producing an
application that does brilliant things.

4 Discussion

Killer apps must provide a higher service quality, and evolve (pretty quickly) into some-
thing perceived as indispensable, conferring benefits on their users without extra costs
or steep learning curves. Individual users should coalesce into a community of practice,
and their old habits should change in accordance with the new possibilities provided
by the app. This is particularly important as the SW is likely to impose new costs on
users in the short term, for example through having to annotate legacy content, develop
ontologies, etc.

As the SW is in a relatively early stage of development, it is not currently clear
exactly what threats and opportunities it provides (and, of course, the future form of the
SW will conversely depend on what applications for it are successful). There has been
some speculation about how the SW will develop, and what extensions of the WWW
will be appropriate or desirable. For instance, consider a recent attempt by Marshall and
Shipman to understand potential development routes for the SW [21], which sets out
three distinct but related visions of the SW.

I SW technology could bring an order and consistent structure to the chaotic Web. So
information access would be assisted by semantic metadata. This vision envisages
that humans will continue to be the chief agents on the SW, but that information
could now be represented and stored in ways to allow its use in situations far beyond
those foreseen by its original authors. In other words, the SW will extend the exist-
ing Web, but exactly how is hard to predict. In order for potential SW Killer Apps
to respond to this vision should, ideally, have the following properties in particular:
• They should help foster communities of users (that is, at some level, users

should want to interact, and share experiences, with others). SW technology is
expected to facilitate knowledge sharing and bringing more people together.

• Users should not feel submerged in a mass, but should retain their individuality
with personalised products. With more machine readable information becom-
ing available (eg FOAF), better personalisation should be feasible.

• Users should be able to bring as much of their legacy content up to date with
relatively painless maintenance techniques. So, for example, applications



840 H. Alani et al.

should be able to leverage comparatively simple ontologies; ontology construc-
tion, merging and selection should be made easier, and we should be able to
move away from handcrafting; annotation methods and interfaces have to be
easy. In all these cases, the existence of a community of interested users will
provide the initial impetus for the user to ascend the learning curve.

II The Web will be turned, in effect, into a globally distributed knowledge base, allow-
ing software agents to collect and reason with information and assist people with
common tasks, such as planning holidays or organising diaries. This vision seems
close to Berners-Lee et al’s SW grand vision [4]. In many ways it is the composi-
tion of the other visions, assuming machine processing and global representation
of knowledge. It is also a vision that will require more from a potential Killer App:
• They should exploit integrated information systems to make inferences that

could not be made before. Showing added value is key to encourage businesses
and content providers to participate in the SW.

• They should help remove the rather painful need to annotate, build ontologies,
etc.

• The new application should fit relatively smoothly into current work or leisure
experiences. Little change in habits is acceptable, assuming some returned ben-
efit, but too much change is a problem!

III The SW will be an infrastructure, made up of representation languages, commu-
nication protocols, access controls and authentication services, for coordinated
sharing of knowledge across particular domain-oriented applications. Information
is used largely for the original purposes of its author, but that much more machine
processing will take place. If this vision prevails, then a prospective SW Killer app
should pay special attention to the following:
• It should not compromise other important aspects of users’ lives, for instance

by threatening privacy to a dangerous degree, either by making inappropriate
surveillance possible, or by facilitating torts such as identity theft.

• Furthermore, if such a vision comes to pass, then the opportunities for killers
apps are all the greater, in that any such standards-driven platform approach
should make it possible for as many applications to flourish on top of it as
possible. Whether such applications will ever be acknowledged as SW apps
rather than general WWW applications is open to debate!

These conditions for each vision of the SW are, of course, necessary yet not suf-
ficient! Furthermore, all of the conditions apply, to some degree, to each of the three
visions.

We have seen that killer apps appear when there are opportunities to make progress
on costs, communities, creativity and personalisation. All new technologies begin with
a handicap in these areas. They impose costs, of retooling, of learning curves and of
business process rescheduling. There is always a chicken and egg problem with the
development of a community of users – the technology of necessity precedes the com-
munity. The risks of creative thought become clearer at the outset; the benefits only
appear later. And the dialectic between personalisation and creating economies of scale
often means that the latter are pursued long before the former. As an added handicap, it
is often the case that the costs are borne disproportionately by early adopters.



Towards a Killer App for the Semantic Web 841

The opportunities of the SW are also therefore counterbalanced by the risks. We
note that we cannot predict where new killers will come from. The transformations
that such applications wreak make the future very different from the present. Hence
we can’t be concretely prescriptive. But the general requirements for killer apps that
emerge from our review of the business/management literature suggest certain routes
for development, in addition to sensible lists of characteristics such as the criteria for
the SW challenges, or the conditions listed at the beginning of this section.

So it is probably uncontroversial to assume that any SW killers will have to provide
(1) a service that is not possible or practical under more traditional technologies, (2) some
clear benefit to developers, data providers, and end users with minimum extra costs, and
(3) an application that becomes indispensable to a user-base much wider than the SW
researchers community. But additionally, research should be focusing on four important
areas. First of all, perhaps most important, the cost issue should be addressed. Either the
potentially large costs of annotating, ontology development, etc, should be mitigated,
or side-stepped by thinking of types of application that can work with minimal non-
automatic annotation, low cognitive overhead, or ontologies that sacrifice expressivity
for simplicity. Secondly, another way of improving the cost/benefit ratio is to increase
benefits, in which case the fostering of user communities looks like a sensible way for-
ward. This means that applications in real-world domains (preferably in areas where the
Internet was already important, such as media/leisure or e-science) look more beneficial
than generic approaches. Thirdly, creativity is important, so radical business models are
more interesting than simply redoing what the WWW already does. And fourthly, per-
sonalisation needs to be addressed, which means that extended user models are required.

When we look at the three visions outlined by Marshall and Shipman, vision III ap-
pears to be the one most amenable to the development of killer apps, in that it envisages
a platform upon which applications sit – the form of such applications is left relatively
open. In contrast, vision I, for example, doesn’t see too much of a change for the WWW
and the way it is used, and so there are fewer opportunities opening up as a result. In-
deed, when we look at vision I, assuming that the SW does improve the navigation of
the chaotic web, it might even be appropriate to say, not that there is a killer app for the
SW, but rather that the SW is the killer app for the WWW. Whereas, with Marshall and
Shipman’s vision III, the vision is of a garden in which a thousand flowers bloom. On
this vision, it is the painstaking, pioneering and often tedious negotiations of standards
that will be key; such standards need to support the right kind of research.

5 Conclusions

Killer apps are very difficult things to monitor. They are hard to describe, yet you know
one when you see one. If you are finding difficulty persuading someone that something
is a killer app, it probably is not! A lot depends on the bootstrapping problem for the
SW – if the SW community is small then the chances of someone coming up with a use
of SW technology that creates a genuinely new use for or way of producing information
are correspondingly small. For it is finding the novelty that is half the battle. There is
unlikely to be much mileage in simply reproducing the ability to do something that is
already possible without the SW. Furthermore, it is likely that a killer app for the SW



842 H. Alani et al.

will exploit SW technology integrally; merely using RDF will not quite do the trick
[30]. The willingness of the producers of already-existing killers to use SW technology,
like Adobe, is encouraging, but again will not necessarily provide the killer app for
the SW. The checklist of criteria for the SWC gives a good list of the essentials for a
genuinely SW application.

This is not simply a matter of terminology. The SW is more than likely to thrive
in certain restricted domains where information processing is important and expensive.
But the ambitions of its pioneers, rightly, go beyond that. For that to happen, killer apps
need to happen. We hope we have given some indication, via our examination of the
business literature, of where we should be looking.

Acknowledgments

This work is supported under the Advanced Knowledge Technologies (AKT) Interdis-
ciplinary Research Collaboration (IRC), which is sponsored by the UK Engineering and
Physical Sciences Research Council under grant number GR/N15764/01. The AKT IRC
comprises the Universities of Aberdeen, Edinburgh, Sheffield, Southampton and the
Open University. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing official policies or endorsements,
either express or implied, of the EPSRC or any other member of the AKT IRC.

References

1. T. Berners-Lee. The semantic web road map. http://www.w3.org/DesignIssues/Semantic.
html, 1998.

2. T. Berners-Lee. Iswc2003 keynote. http://www.w3.org/2003/Talks/1023-iswc-tbl/, 2003.
2nd International Semantic Web Conference (ISWC2003), Florida, USA.

3. T. Berners-Lee. Www2004 keynote. http://www.w3.org/2004/Talks/0519-tbl-keynote/,
2004. 13th Int. World Wide Web Conf., New York.

4. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, May
2001.

5. S. Buckingham-Shum. Contentious, dynamic, information-sparse domains. and ontologies?
IEEE Intelligent Systems, pages 80–81, Jan/Feb 2004.

6. J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson. Jena: Im-
plementing the semantic web recommendations. Technical report, HP Laboratories Bristol,
HPL-2003-146, Dec. 24, 2003.

7. C. M. Christensen. The Innovator’s Dilemma. Harvard Business School Press, 1997.
8. R. Coase. The Nature of the Firm, Economica 1937, reprinted in Oliver E. Williamson

& Sidney G. Winter (eds.) The Nature of the Firm: Origins, Evolution and Development.
Oxford: Oxford University Press, 1991.

9. S. Cox, H. Alani, H. Glaser, and S. Harris. The semantic web as a semantic soup. In Proc.
1st Workshop on Friend of a Friend, Galway, Ireland, 2004.

10. L. Downes and C. Mui. Unleashing the Killer App. MIT Press, Harvard Business School
Press, 2000.

11. K. Eischen. The social impact of informational production: Software development as an
informational practice. Cgirs working paper 2002-1, Center for Global International and
Regional Studies, University of California, Santa Cruz, 2002.



Towards a Killer App for the Semantic Web 843

12. J. Ellman. Corporate ontologies as information interfaces. IEEE Intelligent Systems, pages
79–80, Jan/Feb 2004.

13. P. Evans and T. Wurster. Blown to Bits. Harvard Business School Press, 2000.
14. D. Fensel, C. Bussler, Y. Ding, V. Kartseva, M. Klein, M. Korotkiy, B. Omelayenko, and

R. Siebes. Semantic web application areas. In Proc. 7th Int. Workshop on Applications of
Natural Language to Information Systems (NLDB 2002), Stockholm, Sweden, 2002.

15. G. Gilder. Metcalfe’s law and legacy. Forbes ASAP, 13 September 1993.
16. D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak, A. Tomkins, and J. Zien. How

to build a webfountain: An architecture for very large-scale text analytics. IBM Systems
Journal, 43(1):64–76, 2004.

17. J. Hendler. Agents and the semantic web. IEEE Intelligent Systems, pages 30–37,
March/April 2001.

18. Y. Kalfoglou, H. Alani, M. Schorlemmeret, and C. Walton. On the emergent semantic web
and overlooked issues. In Proc. 3rd Int. Semantic Web Conf. (ISWC), Japan, 2004.

19. K. Kelly. New Rules for the New Economy: 10 Radical Strategies for a Connected World.
Penguin Books, 1998.

20. M. Klein and D. Fensel. Ontology versioning on the semantic web. In Proc. 1st Int. Semantic
Web Working Symp., pages 75–91, Stanford University, CA, USA, 2001.

21. C. Marshall and F. M. Shipman. Which semantic web? In Proc. 14th HyperText Conf.
(HT’03), pages 57–66, Nottingham,UK, 2003. ACM.

22. D. L. McGuinness. Ontologies Come of Age. in D. Fensel, J. Hendler, H. Lieberman, and
W. Wahlster editors. Spinning the Semantic Web: Bringing the World Wide Web to Its Full
Potential, MIT Press, 2002.

23. P. Mika. Social networks and the semantic web: The next challenge. IEEE Intelligent Sys-
tems, 19:82–82, 2005.

24. L. Nixon. Prototypical business use cases. FP6 IST NoE Deliverable D1.1.2, KnowledgeWeb
EU NoE - FP6 507482, Dec. 2004.

25. N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A. Musen. Cre-
ating semantic web contents with protege-2000. IEEE Intelligent Systems, pages 60–71,
March/April 2001.

26. M. C. schraefel, A. Preece, N. Gibbins, S. Harris, and I. Millard. Ghosts in the semantic web
machine? In Proc. 1st Workshop on Friend of a Friend, Social Networking and the Semantic
Web, Galway, Ireland, 2004.

27. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. V. de Velde, and
B. Wielinga. Knowledge Engineering and Management: The CommonKADS Approach. MIT
Press, 1999.

28. N. Shadbolt, m. schraefel, N. Gibbins, and S. Harris. Cs aktive space: or how we stopped
worrying and learned to love the semantic web. In Proc. 2nd Int. SW Conf, Florida, 2003.

29. N. Shadbolt, K. O’Hara, and L. Crow. The experimental evaluation of knowledge acquisition
techniques and methods: history, problems and new directions. International Journal of
Human-Computer Studies, 51:729–755, 1999.

30. M. Uschold. Where are the semantics in the semantic web? AI Magazine, 24(3), 2003.
31. M. Uschold and M. Gruninger. Ontologies and semantics for seamless connectivity. SIG-

MOD Record, 33(4), 2004.
32. E. Wenger. Communities of Practice: Learning, Meaning and Identity. Cambridge University

Press, 1998.
33. O. E. Williamson. Markets and Hierarchies. New York: Free Press, 1975.
34. O. E. Williamson. The Nature of the Firm: Origins, Evolution and Development. Oxford:

Oxford University Press, 1991.



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 844 – 857, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Enterprise Architecture Reference Modeling 
in OWL/RDF  

Dean Allemang, Irene Polikoff, and Ralph Hodgson 

TopQuadrant Inc, 
141 Howard Drive, Beaver Falls, PA 

{dallemang, irene, ralph}@topquadrant.com 

Abstract. This paper describes the design of and the deployment options for the 
Federal Enterprise Architecture Reference Model Ontology (FEA-RMO).   The 
goal of any reference model is to provide a basis or starting point for some de-
sign process. While this is a laudable goal, it poses an immediate problem for 
representation; how can a model be represented in such a way that it can be ex-
tended in certain ways (for application to a particular problem), but not without 
regard to the advice that it gives? Reference models are usually expressed in 
natural language. At their best, such models provide a starting point for design-
ers, and a checklist for their designs, to see that they conform to industry best 
practices. At worst, reference models expressed in natural language become a 
source of busy work; designers do not use the models during the design process, 
instead they spend time after the fact writing up an explanation of how and why 
they are compliant with the reference framework they've never seriously con-
sidered. In this paper, we have used Semantic Web technologies (in particular, 
RDF and OWL) to represent a reference mode for enterprise architecture in the 
US government. The content of the model comes from the recent Federal En-
terprise Architecture Reference Model effort. We use the capability of RDF to 
distribute structured information to allow the reference model to be extended 
(as intended in its design). We use OWL to maintain the consistency of those 
extensions.  The model has been used as the basis for an implementation of an 
FEA registry, a web-based system for managing enterprise architectures based 
on the FEA. The work of representing the FEA as formal ontologies was funded 
in part by GSA.1   

Keywords: Government Sector, Portals, Knowledge Management. 

1   Introduction 

Reference models have been developed for a number of areas, ranging from highly 
technical areas like networking and distributed processing ([10], [11]), social areas 
like library and archiving ([9]) and even culturally focused areas like Cultural Heri-
                                                           
1  We would like to thank Rick Murphy, Enterprise Architect and George Thomas, Chief En-

terprise Architect of the Office of CIO of GSA for their vision, support and contribution to 
the use cases described in this paper. 



 Enterprise Architecture Reference Modeling in OWL/RDF 845 

tage and Museum management ([12]). In all these cases, the reference model repre-
sents some agreement on good practices which, if followed, will provide some spe-
cific value to designers of systems in each of these areas.   

The reference models themselves are not system models; they are blueprints, tem-
plates, or starting points for system design. The intended use of a reference model is 
as an aid for a designer. It gets past the “blank slate” problem of a design from 
scratch, by providing a starting point.  It also provides guidance to the design, so that 
the designer can reuse known and proven solution patterns. . The reference model also 
encourages independent design teams to conform to core principles that will facilitate 
future integration. 

This role of a Reference Model in the design process poses very particular chal-
lenges: a reference model must be represented as a reusable asset, which is not a sys-
tem design in its own right. The engineering of a reference model is therefore a prob-
lem of “design for reuse”. In short, how can a reference model be represented in such 
a way that it simultaneously makes enough design commitments to advise a system 
designer (involved with a system that was not even conceived at the time of reference 
model development), while leaving that same designer enough latitude to customize a 
design to the particular needs of the problem at hand. This kind of engineering prob-
lem is called by the name “domain modeling for asset reuse” [13]. 

In this paper, we will use a particular reference model as a case study.  In response 
to a presidential initiative for e-government, the US federal government has devel-
oped the Federal Enterprise Architecture (FEA, [1]) a reference model for enterprise 
architecture.  The basic idea of the FEA is that each government agency supports 
services, functions, operations and technologies that are not unique to their agency.  
The government as a whole would run more smoothly if all the agencies were to 
“align” their operations.  In 2004, the first full version of the FEA Reference Model 
(FEA RM) was released.  Like other reference models, this is not an enterprise archi-
tecture in itself, but a model to guide enterprise architects in government agencies as 
they create their own, agency-specific, enterprise architectures. Like other reference 
models, it provides design guidance, while allowing for a certain latitude for the spe-
cific agencies. 

Reference models are typically written in natural language, and are presented as 
some form of human-readable document.  The reference models of the FEA are no 
exception.2 This form of presentation has the advantage that the reference models can 
be read by anyone who can read PDF files; but it has the disadvantage that the process 
of reusing the reference model (“alignment”) can only be verified by an interpretation 
process whereby an enterprise architect (or whoever has the job of making the align-
ment) determines what the reference architecture means, and argues for the particular 
alignment of their architecture to the model.  This is a highly ambiguous and subjec-
tive task, and is prone to errors and even misuse.  

A formal representation of a reference model addresses this problem by providing 
an unambiguous (or at least, less ambiguous) representation of the reference model, 

                                                           
2  Some of the FEA models are available in XML as well as in natural language. However, 

XML alone (not being a graph representation) can not describe all the relationships within 
and between the models. RDFS and OWL layered on top of XML provide us with all the 
language constructs needed to represent FEA. 



846 D. Allemang, I. Polikoff, and R. Hodgson 

and allows for the definition of objective criteria for whether an architecture is actu-
ally conformant.   

But a formal representation brings up a new issue: while some value can be gained 
from simple formal representations (e.g., the list of business areas, lines of business, 
and subfunctions found in the Business Reference Model), most reference models 
have more complex structure than simple lists, or even hierarchies.  Furthermore, 
description of how an enterprise architecture aligns with such a reference model ar-
chitecture requires more complex consistency checking than is usual even for a tax-
onomy.  

Fortunately, 2004 also saw the adoption by the W3C of the OWL standard for rep-
resenting ontologies, which are formal models that allow the sort of complexity re-
quired by enterprise architecture reference models.  Furthermore, the OWL standard 
provides a formal semantic for the meaning of these models, which addresses the 
issues of fragility and ambiguity of informal models.  Finally, OWL provides a 
framework for combining ontologies and checking their consistency, thereby provid-
ing the framework for a systematic discipline for determining how well proposed 
architectures match the reference model. 

1.1   Federal Enterprise Architecture 

The FEA has five models:  the Performance Reference Model (PRM), the Business 
Reference Model (BRM), the Service Component Reference Model (SRM), and the 
Technology Reference Model (TRM) and the Data Reference Model (DRM)  Each of 
these is, at its core, a taxonomic structure of enterprise architecture entities.  

The idea of providing a reference model for enterprise architecture is that each 
agency should be able to use the reference model as a starting point for documenting 
its own enterprise architecture. The current draft of the FEA RM contains some ambi-
guity about just how the FEA RM can/may be adapted to apply to a particular 
agency’s enterprise architecture.  By examining the example of the DOD [14] and 
other vanguard agencies who are already applying the FEA RM, we have determined 
that the following types of adaptations to the FEA RM are being done:  

• Some agencies are making extensions to the reference model (describing enti-
ties in more detail than given in the FEA RM) 

• Additions to the model (adding more siblings to an entity in the FEA RM) are 
also being done 

• Finally, some agencies are making deletions (leaving out entities from the 
model) and replacements (leaving an entity out while noting that it is being re-
placed by one or more new entities) 

While each agency has considerable autonomy, there are many benefits to having a 
central reference model to which each agency refers. 

1.2   The FEA RM Ontology 

We have constructed a number of ontologies using the W3C standard Web Ontology 
Language OWL that reflects the structure of the published FEA RM.  Collectively, 
these models make up the FEA RM Ontology, or FEA-RMO for short.  



 Enterprise Architecture Reference Modeling in OWL/RDF 847 

The FEA Reference Model Ontology architecture mirrors that of the FEA RM it-
self [1], that is, the Performance Reference Model (PRM) organizes the overall archi-
tecture, making reference to the other models as needed. The Business Reference 
Model (BRM) draws upon the Service Reference Model (SRM), the Data Reference 
Model (DRM) and the Technical Reference Model (TRM). In section 0, we describe 
how OWL was used to represent the various dependencies of these models upon one 
another, in particular, a recurring design pattern we call the “Class-instance Mirror 
Pattern” that is essential for representing the reference models. 

Performance Reference Model 

The PRM is organized into layers called Measurement Areas, Measurement Cate-
gories and Generic Indicators. 

Business Reference Model 

The BRM is organized into Business Areas, Lines of Business and Subfunctions. 

Service Component Reference Model 

The SRM is organized into Service Domains, Service Types and Components.  

Technology Reference Model 

The TRM is organized into core Service Areas, Service Categories, Service Stan-
dards and Service Specifications.  

FEA Core Ontology 

The FEA-RMO includes a model that is not explicitly called out in the FEA RM, 
where concepts and properties that are common to all the reference models are de-
fined.  This provides modularity to the ontology design that allows for simplified 
maintenance and integration of the models.  

2   Use Cases for FEA-RMO 

We have identified several use cases for FEA-RMO [2], but in this paper we will 
report on those that are supported by the current models and the semantic applications 
we have built around them. Many of the other use cases rely on modifications to gov-
ernment workflow beyond the technical scope of the FEA-RMO pilot.   

2.1   Use Case: FEA Browser 

Actor: Enterprise Architect, system developer, project manager.  Anyone who needs 
to consult the FEA for any purposes.  

Stakeholders: FEA Program Management Office (PMO), Agency that Enterprise 
Architect works for, Agency employees and administrators.  

Goal: Gain better understanding of the FEA, understand how enterprise entities are 
aligned with the FEA RM. 



848 D. Allemang, I. Polikoff, and R. Hodgson 

Precondition:  

A browsing system for the FEA RM.  General purpose modeling tools like SWOOP 
[7] and Protégé [4] can provide some assistance for this purpose.  

Steps: 

1. User selects an entity from one of the reference models (e.g., a Line of Busi-
ness from the BRM) 

2. System displays information about that entity (e.g., quotes from the RM 
documents), and the entities adjacent to it (e.g., the Business Area that is 
comprised of it, the subfunctions that  it is comprised of). 

3. System displays a legend to orient the user in the appropriate RM document. 
4. In the case of agency extensions (see next use case), system displays FEA 

core and agency extension entities separately.  
5. User selects another related entity to browse, or uses a search function to 

search the FEA for a concept of interest. 

Postcondition:  none 

Outcome: 

User viewed and inspected any supported perspectives on the FEA. 

2.2   Use Case: Agency Extension 

Actor: Agency Enterprise Architect designing agency-specific modifications to the 
core FEA RM.  

Stakeholders: FEA PMO, Agency that the Enterprise Architect works for 

Goal: Maintain agency extensions separately from core model, while aligning the 
modifications with the appropriate parts of the model. Make these extensions avail-
able for the Browse use case.  

Precondition:  

Agency has accepted the FEA RM as a starting point for enterprise architecture mod-
eling, and has access to the FEA. 

Steps: 

1. User identifies agency to which extensions belong, and validates identity cre-
dentials.  

2. User selects an element in one of the reference models where a modification 
is to be made. 

3. System provides guidance (based on the current reference model) for exten-
sions, and records the extensions made by the user.  

Postcondition:  

Model and extensions are in a satisfactory state.  The Browse use case is applicable in 
determining this postcondition. 
 



 Enterprise Architecture Reference Modeling in OWL/RDF 849 

Outcome: 

Agency-specific modifications are stored independently (with appropriate access 
protections) of the reference model, but are available for browsing. 

3   Application of Semantic Web Technology 

There are two features of the FEA RM requirements that made RDF(S) and OWL 
Semantic Web technologies particularly appropriate. In fact, these requirements were 
so well suited to these technologies, that had we not used RDF and OWL, we would 
have needed to have invented similar knowledge representation technologies to have 
completed the project.  

There are two other issues for which the current RDF and OWL standards posed 
some problems. 

In this section we outline these features, the ways in which Semantic Web tech-
nologies were particularly well suited as solutions, and the ways in which we were 
able to work around the shortcomings. 

3.1   Issue: Remote Composability 

A major feature of a reference model is that it has been designed as a re-usable object. 
It is useful only inasmuch as it can be added to, changed, or otherwise edited.  This 
makes the design of a reference model different from most engineering design.  

In order to make use of a reference model, its users have to be able to reference any 
part of the model, and relate new items to those parts. This requires a robust system 
for extending and connecting to reference-able entities.  

The match of this requirement to RDF is almost definitional. RDF is a graph-based 
modeling language, in which the identity of nodes and links (the modeling constructs) 
are done using URIs (making them web-worthy). The primitive operation in RDF is 
the graph merge; two graphs are made into one by unifying any references in one 
graph to nodes that are mentioned in the other.  

 

Fig. 1. Human Resources is comprised of several service types 

Human Resources 

Recruiting

Travel Expense Approval 

Training 

Health and Safety 
comprises 



850 D. Allemang, I. Polikoff, and R. Hodgson 

The application of this to a reference model is perfectly straightforward.  The ref-
erence model is expressed as an RDF graph, in which the parts of the model to be 
extended are published (as URIs). Then anyone in the world can express an extension 
to the model, simply by referring to it (importing it), and asserting new triples that 
refer to the nodes in the reference model. 

As an example, the SRM identifies a Service Type for Human Resources, which is 
comprised of several Service Components, like Health and Safety, Recruiting, Train-
ing, etc.  Suppose that the Federal Junket Agency (FJA) wants to add more service 
types here, having to do with how they manage travel.  In terms of RDF triples, this is 
simply a matter of storing new triples, shown in bold in the Figure 1. 

RDF allows the FJA to store the triple (<Travel Expense Approval>  <comprises> 
<Human Resources>) in a separate web page from the FEA RM triples, but have any 
RDF application treat it as appearing at the appropriate part of the SRM. 

3.2   Issue: Inter-model Consistency 

The FEA expresses certain constraints between the various models.  For example, the 
PRM makes use of BRM constructs in a number of ways.  We will take a fairly sim-
ple one as an example. 

The PRM specifies that “[T]he PRM’s Measurement Categories are the same as the 
BRM’s Lines of Business.”  This poses a problem for our second use case.  If we 
simply construct our PRM model according to this rule, then when an agency adds 
new Lines of Business to the BRM, they will not be considered as Measurement 
Categories, and this rule will not be maintained.  We could write a complex procedure 
to maintain the consistency between the models, but this adds a level of maintenance 
complexity that could severely restrict the applicability of the project. 

 



 Enterprise Architecture Reference Modeling in OWL/RDF 851 

Our solution was to allow the OWL3 reasoner to maintain this kind of connection 
between the models.  We modeled the connection using OWL [4, 5], and allowed the 
reasoner to maintain consistency.  In this case, the connection between the models 
was simply a few well-placed subClassOf triples between PRM and BRM entities, as 
shown by the arrow in the diagram above: 

In particular, these subClassOf relations (between the appropriate subclasses of Lines 
of Business and the PRM Measurement Category) imply (according to the formal se-
mantics of OWL) that any Line of Business will also be considered as a Measurement 
Category.  This greatly simplifies maintenance of the models as agencies make changes; 
no special-purpose code is required, simply an OWL-compliant reasoner. 

3.3   Issue: Removal of Triples 

RDF’s data model has been described by the slogan, “anyone can say anything about 
any topic.”  This feature was very well suited for our first issue, but it brings in a 
problem as well; it does not provide a direct way for anyone to gainsay what another 
has said.  In the FEA case, it does not allow an agency to remove or replace triples 
from the core FEA-RMO.   

One solution to this issue would be to simply insist that no agency be permitted to 
remove triples from the FEA-RMO; after all, the FEA RM can’t provide much guid-
ance, if agencies are permitted unrestricted deletions and additions to it.  Neverthe-
less, it seems that the agencies are already reserving the right to remove triples as well 
as add them, so we need to support this capability in our modeling system. 

Our solution to this problem is to introduce a new owl:ObjectProperty of our own 
called “replaces”, that an agency can use to state explicitly that they are not using 
some element from the FEA-RMO.  Returning to the Federal Junket Agency, the 
SRM actually already includes a consideration for Travel; but the FJA wants to re-
place this with a number of travel-related services, as shown below: 

 

Fig. 2. Replacements for the Travel service 

This solution can be made to work, but requires special-purpose code to interpret 
when displaying the agency modified model.  On the other hand, this method does 

                                                           
3  For this simple example, only RDFS reasoning was required; for more involved constraints, 

we required some reasoning from OWL, in particular, the use of inverses, transitive proper-
ties, and elementary reasoning about the owl:hasValue restriction. 

Trip Planning 

comprises 

replaces 

Human Resources 

Travel Entertainment 

Restaurant Advisor 



852 D. Allemang, I. Polikoff, and R. Hodgson 

have the advantage that it forces the agency to be specific about the parts of the FEA-
RMO that it has chosen to ignore.  

3.4   Issue: Individuals as Classes in OWL-DL 

So far, we have only discussed the taxonomic portions of the FEA. There are more parts 
to the FEA, however, which involve referencing the taxonomies in various ways.  For 
the most part, this does not raise any special issues.  However, there is one issue that is 
relevant to modeling in OWL, and in particular, to modeling in OWL-DL.  This is the 
issue that some entities in the taxonomy are occasionally referred to as individuals, and 
occasionally as classes.  This double-usage is not allowed in OWL-DL.  

Fortunately, the W3C is aware of this issue, and the Best Practices Working Group 
has published a Working Draft [3] to address exactly this point.  We have used Pat-
tern 2 from this draft (which we prefer to call the “Class-Instance Mirror pattern”) 
over 200 times in the construction of the FEA-RMO.  

As a simple example, consider once again the Human Resources aspects of the 
FJA.  In the original diagram Human Resources is an instance, and it is related to 
several other instances with the ‘comprises’ property, as already shown in Fig. 1. 
Now suppose that we want to refer to the Class of all service types that comprise 
Human Resources (say, to be used as described in section 0 or 0). We can’t use the 
Human Resources instance; that isn’t the Class of all things that comprise Human 
Resources.   

 

Fig. 3. Restriction onProperty comprises hasValue Human Resources 

Human Resources 

Recruiting

Travel Expense Approval 

Training 

Health and Safety 
comprises 

owl:Restriction

owl:onProperty
owl:hasValue 



 Enterprise Architecture Reference Modeling in OWL/RDF 853 

Fortunately, there is a simple OWL construct that does just this; the (Restriction 
onProperty comprises hasValue Human Resources).  This is shown in Fig. 3.  The 
OWL inference engine will maintain the instances of this class, to be exactly those 
instances which comprise Human Resources.  Since this is maintained by the infer-
ence engine, it will remain consistent even when new service types are added. 

We call this the “Class-Instance Mirror pattern” to highlight the relationship be-
tween the instance (“Human Resources”) and the Class (an anonymous Restric-
tion).This class exists only to provide a handle on the instances related to the instance, 
figuratively providing a “mirror image” of the instance in the Class world. 

The pattern relies on very simple OWL reasoning (the ability to assign values accord-
ing to the owl:hasValue restriction, and the ability to classify instances according to the 
same restriction), so this reasoning can be done quite reliably and efficiently. 

4   Implementation: A Portal for the FEA Registry 

We used these models to produce a web portal that displays the parts of the FEA, and 
allows agencies to make extensions to the FEA-RMO.  The portal is a pilot project; that 
is, while it is fully functional and available on the web [6], it has not been deployed for 
use by enterprise architects in the agencies.  In this section, we will highlight some of its 
functionality as it pertains to the use cases given here and the issues discussed above. 
The system was implemented using the RDF Gateway product from Intellidimension.  

The basic portal is a model-driven web application; every page is generated from in-
formation in the FEA RM (with agency additions, when appropriate).  A sample page 
from the application is shown, along with a fragment of the model that generated it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



854 D. Allemang, I. Polikoff, and R. Hodgson 

The registry portal allows users to browse all parts of the four models, either in the 
core FEA-RMO itself, or with agency extensions.  Each entity in the portal links to 
another place in the model. 
 

Select either FEA 
Ontology or Agency-
Specific Ontologies

Service Specifica-
tions with links to 
more details

Search over all the 
models for concepts 

 

A search capability uses simple regular expression matching, but shows results in 
the context of the model itself. 

Search results 
show FEA path 

 



 Enterprise Architecture Reference Modeling in OWL/RDF 855 

Finally, an agency can make additions or changes to some part of the model and 
review the changes using a number of reports. 

 

 

5   Conclusions and Lessons Learned 

The entire development process for the FEA-RMO took just about three months, from 
project inception to delivery. This suggests to us that it is possible to deliver semantic 
technology solutions in short time frames. A key to this speedy development was a 
good starting point; the published FEA RM, though it was developed and delivered as 
a natural language publication, was highly structured and quite consistent.  This al-
lowed the modeling process to proceed smoothly and with minimal ambiguity.  

Another key to the project’s success was the availability of design patterns to help 
guide model development. We had to document some patterns ourselves [2], but oth-
ers were available from the W3C [3]. As the craft of ontology engineering develops, 
more such patterns will be available, making this process simpler.  

The role of RDF and OWL cannot be overstated here.  RDF as a foundation tech-
nology provided a great deal of the functionality needed to support distribution of the 
models in a coherent and semantically consistent way.   

The role of OWL was a bit more subtle. While the reasoning capabilities of OWL 
were essential in allowing the models to express the appropriate constraints between 
the elements, the actual reasoning capabilities required were considerably less than 



856 D. Allemang, I. Polikoff, and R. Hodgson 

those specified in the OWL standard [4]. In fact, the only reasoning that was needed 
could be achieved with a very simple reasoner that can do RDFS reasoning, combined 
with a-box reasoning on inverses, transitive properties, and owl:hasValue restrictions. 
This reasoning can be handled quite easily by any of several technologies (Rete [15], 
Datalog [16], Prolog [17], etc.), and need not make use of tableaux algorithms. This 
suggests to us that perhaps other reasoning strategies could have considerable appli-
cability in the semantic web.  

Finally, this project suggests a whole area of applicability of semantic web tech-
nologies. The features of the FEA Reference Model that made RDF so appropriate 
(distribution of modifications, the need for modifications to be able to specify just 
what part of the model is being modified) applies to reference models in general, not 
just the FEA RM. We feel that the success of many reference model activities has 
been limited by the weaknesses of the delivery methods (as natural language docu-
ments). If our experience is any indication of the future, Semantic Web technologies 
could well bring a revolution to this field.  

References 

1. Federal Enterprise Architecture, http://www.feapmo.gov/ 
2. Allemang, Hodgson, Polikoff, Federal Reference Model Ontologies (FEA-RMO), White 

Paper, www.topquadrant.com. Feb. 2005. 
3. Rector, A. Representing Specified Values in OWL: "value partitions" and "value sets" (ed) 

http://www.w3.org/TR/swbp-specified-values/ 
4. Patel-Schneider, Hayes, Horrocks (ed). OWL Web Ontology Language Semantics and Ab-

stract Syntax, http://www.w3.org/TR/owl-semantics/ 
5. Brickley, Guha (ed). RDF Vocabulary Description Language 1.0: RDF Schema  

http://www.w3.org/TR/rdf-schema/ 
6. TopQuadrant, Enterprise Architecture, http://www.topquadrant.com/tq_ea_solutions.htm 
7. Aditya Kalyanpur, Bijan Parsia, James Hendler "A Tool for Working with Web Ontolo-

gies," In Proceedings of the International Journal on Semantic Web and Information Sys-
tems, Vol. 1, No. 1, Jan-Mar 2005 

8. J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriksson, N. F. 
Noy, S. W. Tu The Evolution of Protégé: An Environment for Knowledge-Based Systems 
Development. 2002. 

9. Consultative Committee for Space Data Systems. Reference Model for an Open Archival 
Information System (OAIS). (CCSDS 650.0-R-1, Red Book, 1999) (http://ssdoo.gsfc.nasa. 
gov/nost/isoas/ref_model.html). 

10. Zimmerman, H. "OSI reference model - the ISO model of architecture for open systems 
intercommunications, IEEE Transactions on Communications vol. COM-28 pp. 425-432 
April 1980 

11. Reference Model of Open Distributed Processing (RM-ODP). ISO/IEC 10746. 
12. ICOM/CIDOC Documentation Standards Group, CIDOC Conceptual Reference Model, 

http://www.ville-ge.ch/musinfo/cidoc/oomodel/. 
13. Simos, M. "Juggling in Free Fall: Uncertainty Management Aspects of Domain Analysis 

Methods," 512-521. Fifth International Conference on Information Processing and Man-
agement of Uncertainty in Knowledge-Based Systems. Paris, France, July 4-8, 1994. Ber-
lin, Germany: Springer-Verlag, 1995. 

14. Army Enterprise Transformation Guide, http://www.army.mil/aeioo/aetg/activities.htm 



 Enterprise Architecture Reference Modeling in OWL/RDF 857 

15. Charles Forgy, "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match 
Problem", Artificial Intelligence, 19, pp 17-37, 1982 

16. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (and never 
dared to ask). IEEE Transactions on Knowledge and Data Engineering 1(1) (1989) 146-166 

17. K. L. Clark and F. G. McCabe. PROLOG: A Language for Implementing Expert Systems. 
In J. E. Hayes, D. Michie, and Y.-H. Pao, editors, Machine Intelligence, volume 10, pages 
455--470. Ellis Horwood, Chichester, 1982. 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 858 – 871, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

MediaCaddy - Semantic Web Based On-Demand  
Content Navigation System for Entertainment  

Shishir Garg, Amit Goswami, Jérémy Huylebroeck, 
Senthil Jaganathan, and Pramila Mullan 

France Telecom R&D,  801 Gateway Boulevard, Suite 500, South San Francisco, CA, USA  
{shishir.garg, amit.goswami, jeremy.huylebroeck, 

senthil.jagnathan, pramila.mullan}@rd.francetelecom.com 

Abstract. This paper is aimed at documenting the role of Web services and 
specifically Semantic Web Services in serving the needs of the entertainment 
industry by enabling the users to easily research and explore the large volume 
meta-content (content about content e.g. entertainment news, articles, reviews, 
interviews, trailers etc) and eventually leading them to FIND right content 
(Music, Movies TV program etc). In this scenario, semantic web techniques are 
used to not only develop and populate the ontology from different meta-content 
sources, but also to annotate them semantically to provide personalize meta 
content based Search-Find experience for main content. The paper outlines an 
application scenario where this is applied in a demonstrated proof of concept 
and articulates the next steps in the evolution of this architecture.  

1   Overview of the Entertainment Industry  

For the entertainment industry, traditional approaches to delivering meta-content 
about movies, music, TV shows, etc. were through reviews, articles etc that were 
done and published in traditional media such as newspapers, magazines, TV shows, 
etc. These entertainment magazine/new papers have provided extensive Subjective 
analysis of Movies, TV shows, Events and music, hence played a very critical role in 
influencing consumer’s opinion about different types of contents.  In other words, 
Consumer has used these sources to search and find right content for him/her. 

With the introduction of the internet, non-traditional forms of delivering 
entertainment started surfacing.  The third quarter of 2003 in the U.S was the best 
ever for broadband penetration bringing such services as content on-demand and 
mobile multimedia, back from hibernation. 2003 also witnessed the beginning of the 
on-line content explosion and a flood of new, more capable terminals. Users are 
accessing content via their television set top boxes, ISP portals, and smart phones, 
interactively. As of today more than 5000 movies and 2,500,000 songs are available 
online. In the next couple of years this figure is expected to grow in leaps and bounds. 
With such a phenomenal rise in content over IP, a new need for secondary meta-
content related to the movies/music emerged. Initially this was through movie reviews 
or music reviews, etc. published on web portals such as Yahoo, MSN, etc and online 
magazine portals as well as entertainment sales sites such as Netflix.com. 
Amazon.com etc… Most Consumers today get information about media content 



 MediaCaddy - Semantic Web Based On-Demand Content Navigation System 859 

primarily from reviews/articles in entertainment/news magazines, their social network 
of friends (one user recommends a song or movie to a friend) and acquaintances, and 
advertisements. In most of the cases, one or all of the above influence user’s opinion 
about any content she chooses to consume.  In addition, a new breed of customizable 
meta-content portals has emerged, which specifically targets for the entertainment 
industry. Examples of such portals include, Rotten Tomatoes, IMDB, etc. However, 
these services today are typically accessed via portals thereby limiting the interactions 
and access to the information to exchanges between a user and the source for non-PC 
environment.  

Today, Content on demand is finally taking off due to boost in digital TV 
infrastructure and added intelligence in Set Top Boxesby 2008 more than 40 
million set top boxes will have advanced OS and hardware. Interactive Program 
Guides (IPGs) are becoming the entertainment portal for TV viewers, and In-
Stat/MDR expects the worldwide IPG market value to grow to nearly $1 Billion (US) 
by 2008. IPGs will help end-users to find a TV program, movie or sporting event 
from among listings of thousands of available options, and then make it easy for them 
to select the program for viewing, tag it with a reminder for later, or even set up a 
recording to capture the show for time-shifting on a Personal Video Recorder. 

M
o

vi
es

, S
o

n
g

s,
 

E
ve

n
ts

  T
V

 
sh

o
w

s 
et

c

Sea
rc

h 
na

vi
ga

tio
n 

an
d 

pe
rs

on
al

iza
tio

n 

Content On Demand 

Social network

Articles Production notes
BoxOffice dataMovie Details 

(Artists, 
Director, Genre)

Reviews

Entertainment News
Public opinion

Meta-
Content

 

Fig. 1. Conceptual Model of Content Navigation System 

This paper discusses a service concept for a recommendation engine called 
MediaCaddy which leverages semantic web technology to build intelligence in IP 
based content portals for any connected device. It is a recommendation and 
aggregation service built around a self-learning engine, which analyzes a click stream 
generated by user’s interaction and actions with meta-content displayed on UI. This 
meta-content (Music /Movies/ TV reviews/ article/ synopsis/ production notes) is 
accessed from multiple Internet sources and structured as an Ontology using a 



860 S. Garg et al. 

semantic inferencing platform. This provides multiple benefits, both allowing for a 
uniform mechanism for aggregating disparate sources of content, and on the other 
hand, also allowing for complex queries to be executed in a timely and accurate 
manner. The platform allows this information to be accessed via Web Services APIs, 
making integration simpler with multiple devices and UI formats. Another feature that 
sets MediaCaddy apart is its ability to achieve a high level of personalization by 
analyzing content consumption behavior in user’s personal Movie/Music Domain and 
his social network and using this information to generate music and movie 
recommendations. Fig 1 explains conceptual model of MediaCaddy. 

2   Service Opportunities 

It has been proven from business cases of Internet e-commerce vendor Amazon and 
DVD rental portal Netflix [1] as well as TV Guide/PVR service Tivo [2] that simple 
user assistance/ recommendation engines can drive revenues up by 30% and 60% 
respectively.  With the explosion of on-demand content, more intelligent methods can 
be developed to help a user navigate through a content reservoir using a limited 
device such as a remote control. Such an intelligent system will help in increasing 
content consumption via an on-demand application. Traditionally 80% of the 
entertainment industry revenues come from 20% of the content produced. In a typical 
revenue share model, users pay $2 to $4 per film, wherein the content owner takes 
30% to 60% of it and the rest goes to a service provider. The more popular the 
content, the larger the content owner’s revenue share. MediaCaddy thus can be used 
to enable an increase in consumption of lesser known content, where margins are 
higher, hence increasing the service provider’s revenue share. 

Let us look at some real life scenarios. These scenarios explain a user’s interaction 
with the MediaCaddy enabled content guide.  
Assumptions:  

• At least three thousand content titles are available for user to consume. 
• The system knows a user’s content purchase history  
• Every IM buddy of the user has a MediaCaddy enabled VoD service. 

2.1   Pretext: (Traditional Content Guide) 

User is exploring content catalogue offered by his/her on-Demand service provider. 
On Demand System doesn’t know anything about user, hence offers list of content 
categorized either by artists (approximately 5000+) or by Directors (approx 2000+) or 
by Genres (100+). 

2.2   Scenario #1: (Content navigation Guide powered by MediaCaddy) 

Along with traditional categories (Sort by name or Sort by Genre) offered by service 
providers, MediaCaddy offers three more categories. Each of these categories is 
explained in more detail.  

The first category is a single comprehensive listing of recommended content. 
These movies/music tracks are suggested based on past purchase history of user. This 



 MediaCaddy - Semantic Web Based On-Demand Content Navigation System 861 

personalized list of is generated based on Components (Artists, directors, Genre, basic 
keyword based content description, MPAA rating, reviewers which had facilitated 
past purchases etc) of movies/music tracks purchased by the user in the past.  

France Telecom R&D Diffusion of this document is subject to France Telecom authorization
D5 - 08/08/2004

confidential

On click (Matrix Reloaded)

Rated R Sci Fi

Keanu
Reeves Carrie-Anne

Moss

Andy

Wachoswski

My Mood

Click to get Personalized 
recommendation by 

rating 

Click to get Personalized 
recommendation by 
Genre or category 

Click to get Personalized 
recommendation by stars 

Click to get Personalized 
recommendation by director 

 

Fig. 2. Sample User Interface of Content Navigation System 

The second category is a listing of content from a user’s friend circle. This 
category will offer content recommended by the user’s active friends (compiled from 
messenger buddy list) and movies liked by passive buddies (people of similar 
interests, compiled from comprehensive listing of “friends of friends”) 

The third category is a listing of content based on the user’s current mood, 
generated based on interest shown by the user in the current session. The user’s 
interest is captured by analyzing the clicks she made on any of the ontological entities 
displayed in the UI e.g. artist, genre, movie/music, producer, etc. (see Fig. 2).  For 
example, a user comes home and is interested in watching an action movie by either 
Tom Cruise or by Tom Hanks. The movie should also be either a spy thriller or a 
super natural thriller. She starts browsing the catalogue, and based on her interests 
captured by following and analyzing clicks made in the current session, a list of 
movies is offered that fits her interest.  

2.3   Scenario #2: (Content navigation Guide powered by MediaCaddy) 

Once the user selects a movie from one of these four sources (system 
recommendations, social network, mood based or from catalogue), she can get more 
detailed information such as artists, director, category, synopsis, personalized reviews 
by her preferred reviewers (generated based on past performance of reviewers in 
influencing user’s past purchases), recent news items from preferred news sources, 
productions notes, box office results, public consensus etc.  



862 S. Garg et al. 

2.4   Scenario #3: (Content navigation Guide powered by MediaCaddy) 

Upon viewing the details of a selected movie, if the user is not interested in it, she can 
navigate further using any of following mechanisms: 

• The user can request a personalized content list by an artist by clicking on the 
artist’s name from the current screen. 

• The user can request a personalized content list by a director by clicking on the 
director’s name from the current screen. 

• The user can request a personalized content list by a genre/category by clicking on 
the genre/category’s from current screen. 

• The user can request a personalized list of movies by MPAA rating by clicking on 
the MPAA rating from current screen. 

• The user can request a personalized list of movies similar to a particular movie by 
clicking on it. This holds true for other content types as well. 

2.5   Scenario #4: (Content navigation Guide powered by MediaCaddy) 

Once a personalized list of movies is displayed, the user can also request the latest 
news either for the selected artist or director. The user will be offered news items 
from her preferred news sources.  

2.6   Scenario #5: (Content navigation Guide powered by MediaCaddy) 

Once the user consumes the purchased content, she will be given an option to rate that 
content on a scale of one to five. She can also recommend content to her active 
buddies. User participation into the system is encouraged in this manner. 

3   Implementation Architecture 

The following figure provides an overview of the implementation architecture used 
for MediaCaddy development. The development was done completely in a Java and 
J2EE environment, using an open source application server called JOnAS from 
ObjectWeb.org. The components include: 

• Automated meta-content gathering engine: The meta-content gathering engine is a 
series of extraction agents, built as a Classifier Committee, using a combination of 
statistical, probabilistic and knowledge based data to populate the ontology from 
semi-structured and non-structured data sources. Trusted partner data, available in 
structured form is populated into the ontology server directly. 

• Meta-content repository: basically refers to the ontology server (containing an 
ontology representation as well as instance data), which is based on off the shelf 
technology from a third party, and is a core asset used in producing 
recommendations. A REST based Web service API is available to browse the 
ontology and run inference queries on it. The technology is described here [3] 

• Social Network components: These are built using EJBs for the core server with 
business logic built in plain java objects, and is based on a Cosine similarity 
algorithm. The cosine algorithm simply computes the cosine value between two 



 MediaCaddy - Semantic Web Based On-Demand Content Navigation System 863 

vectors of any dimension. The space considered is orthogonal in this 
implementation. These components are not detailed in this paper. 

• MediaCaddy Server: This is the heart of the system. The MediaCaddy server 
performs data transformations across various data types and formats, by defining a 
system wide standard XML format that all components should adhere to. The 
MediaCaddy server is also interfaces with other components of the system 
including user profiling, session management and impulse generation, social 
network, etc. Naturally, the MediaCaddy server also interfaces with the Ontology 
server via the query interfaces provided by the ontology server. For this, the 
MediaCaddy server also defines a Query Management API to standardize the 
interactions with the ontology server.  

Scalability issues discussed in previous projects such as [4] are not addressed.  

 

Fig. 3. MediaCaddy component level view 

4   How Semantic Web Technologies Address the Needs of the 
Entertainment Domain? 

A Semantic web approach to this problem is interesting as the entertainment domain 
offers a vast set of resources that are available, often for free, to be leveraged in 



864 S. Garg et al. 

developing a complex system such as MediaCaddy. In working with commercial 
third-party sources, we are able to use structured data to populate the ontology, while 
the ontology has been completely pre-designed by hand.  

Using a non-semantic, simple XML and XML-Schema based system would limit 
the levels of flexibility we are able to achieve. While XML provides for well formed 
messaging, the more sophisticated Semantic web technologies provide support for 
complex querying and inferencing. Machine readability and automated processing, 
key tenets of the Semantic web world, are key requirements for the MediaCaddy 
platform. Every query made by the user is translated into several system level queries. 
It is not possible to cover the details of the syntax used within the system to describe 
the ontology in this paper. 

By leveraging Web services for their ability to easily integrate multiple 
heterogeneous sources of meta-content and leveraging semantic web technologies to 
semantically annotate the content we are able to empower the users of entertainment 
related meta-content to be able to easily maneuver the wealth of entertainment-related 
information in order to find the information that they are specifically looking for. 
Furthermore, Web services based interfaces enable easier creation of applications that 
can also leverage this wealth of information in unique ways to present to users. One 
other by-product is the ability to seamlessly integrate multiple partners in the 
entertainment value chain. 

The following four sections represent the main components of the MediaCaddy 
system. 

5   Ontological Representation of Personalized Movie Domain 

The subject of ontology is the study of the categories of things that exist or may exist 
in some domain. The product of such a study, called ontology, is a catalog of the types 
of things that are assumed to exist in a domain from the perspective of a person who 
uses a language for the purpose of talking about the domain. The types in the 
ontology represent the predicates, word senses, or concept and relation types of the 
language when used to discuss topics in the domain. An un-interpreted logic imposes 
no constraints on the subject matter or the way the subject may be characterized. By 
itself, logic says nothing about anything, but the combination of logic with an 
ontology provides a language that can express relationships about the entities in the 
domain of interest.  

An ontology is an explicit formal specification for representation of objects, 
concepts and other entities that are assumed to exist in some area of interest and the 
relationships that hold among them. It is a specification of a conceptualization. Since 
the ontology defines concepts and relationships, traversing the ontology allows for 
discovery of relationships that exist between entities, thus enabling an ontology 
inference layer to return deterministic responses to queries.  

In order to ensure success in this experiment, it was important to select a domain 
where the number of entities is stable and relatively small. Also, it is desirable to have 
sufficient existing information about the domain that needs to be modeled using the 
ontology. The entertainment domain fits these requirements well, and the movie 
domain specifically is extremely well suited with a lot of disparate yet structured 
 



 MediaCaddy - Semantic Web Based On-Demand Content Navigation System 865 

sources available that can be used not only as knowledge sources to model the 
ontology but also as sources to populate the entity instances. 

The MediaCaddy ontology defines several entities as discussed in Figure 4. The 
main entities, the movie entity and the user entity, define the relationships that exist 
between these entities and several other entities. The relationships can be categorized 
into the following types: 

• Direct entity-entity relationships: These are the various relationships such as 
movie-review, movie-director, movie-artist, etc. They are defined as explicit 
relationships that help ascertain the unique relationship between these entities. For 
example, the movie-director relationship is defined as “is directed by”, etc. There 
are several user related relationships as well, such as user-artist and user-reviewer, 
that are used extensively within MediaCaddy to personalize the system for the 
user’s needs 

• There are a few entity-same entity relationships as well, that are meant to define 
relationships between similar instances. In the case of users, it is used to define 
affinity between individuals. 

• Multi-hop relationships: These are used to traverse relationships between multiple 
entities and to infer details not obvious without traversing the defined links. For 
example, by traversing the user -> reviewer -> movie graph, additional movie 
instances are revealed than originally anticipated. Such traversals are key to the 
MediaCaddy system. 

Artist

Genre/
Category

Is Directed by

Has review

Is reviewed by

Nth 
preferred

Preferred

Similar

Active 
Buddy

Passive 
Buddy

Has 
seen

Source

Reviewer

Hates

Review

Reviewed by

Director

Reviewing 
source

Nth 
Preferred

Acts in

Nth

Preferred

Nth 
PreferredUser

MPAA rating

Belongs to

Movie

Has

Nth 
Preferred

 

Fig. 4. Movie Ontology 



866 S. Garg et al. 

Ontological relationships between entities are used to infer more information about 
a user profile than is seen explicitly from a user's behavior. Furthermore the system 
constantly captures user activity (Clicks made on UI e.g. Fig 2) which in turn updates 
the user profile. This approach distinguishes MediaCaddy’s semantic ontology 
approach from traditional recommendation systems.  

For a novice user the recommendation made by the system is of generic nature 
(default settings)  but as the usage increases the recommendations are more accurate 
and ontological relationships helps in building a better user profile by inferring 
different types of possible relationships between entity instances. User preferences are 
updated on a timely basis based on usage patterns and the user profile is then built by 
correlating previous patterns with the current pattern. The profile is then reflected 
back in the ontology. 

There are several additional pieces of information stored in the ontology, such as 
content related metadata (e.g. year of release, length, etc.) and other details that are 
not clearly exposed in the metadata described as they are stored as attributes of the 
entities defined.  

6   Content Knowledge Capture (Ontology Building) 

MediaCaddy utilizes a third party component to perform crawling, indexing and 
population of Ontological entities. The third party component crawls through different 
web based content information sources and extracts any movie related information.  
Once extracted, content component objects or entities (artist, director, etc.) are stored 
as ontology entity instances and relationships between different entity instances are 
established. A paper describing the components used can be found in [3]. 

7   User Profile Capture and Analysis 

The Semantic clickstream capture and analysis system analyses the user's navigational 
and content selection inputs, stores them as impulses received from the user and 
processes them into semantic metadata about the end-user. This semantic metadata is 
stored in a domain specific ontology. The ontology represents the user's preferences 
within the domain specified in the ontology, for example, within a movie industry 
ontology the user's preferences could represent the interests the user has established 
based on past impulses and is used for various future interactions of the user. 

The exchange of user data can take place using HTTP protocols, XML based 
protocols or Web services standards based exchanges. 

The system defines a user clickstream analysis component that extracts relevant 
user impulse data and stores this data into a domain specific ontology. This is useful 
for subsequent interactions with the user that may be immediate or deferred.  

The system defines four impulse types: 

• Session related activities 
• Selection impulses 
• Content specific impulses 
• Meta-data related impulses 



 MediaCaddy - Semantic Web Based On-Demand Content Navigation System 867 

These user impulses are then analyzed and aggregated and the user information is 
extracted into the ontology of the user. 

8   Content Navigation Via Semantic Queries 

8.1   Personalized Content Navigation in Movie Domain 

MediaCaddy offers three different types of content navigation methods.  

8.1.1   User Profile Based Navigation 
The user profile section explains how a detailed analysis of the user’s behavior and 
interaction with content ontology,  generates user profile, which is nothing but couple 
of lists of preferred directors, artists, news sources, review sources, reviewers, 
genre/category/keywords, active buddy and passive buddy. These lists will be used 
for personalization of navigation output. To understand personalized content 
navigation, we need to understand entry points in the Content Ontology domain. 
Please see Fig. 5 and Fig. 6 to understand flow of content navigation. 

Artist

Keywords

Director

Rating

Movie

Movie

Movie

Movie

Movie

Movie

Entry 
Point

Keywords
Artist

Director
Rating

Reviewer

News Source

Keywords
Artist

Director
Rating

Reviewer

News Source

Keywords
Artist

Director
Rating

Reviewer

News Source

U
se

r 
P

re
fe

re
n

ce
s

Preferred
Directors

Preferred
Artists

Preferred
Category

Preferred
Reviewers

P
re

fe
rr

ed
N

ew
sS

ou
rc

e

Scoring

Movie

Movie

Movie

Movie

Personalized 
List of Movies

Reviewers

 

Fig. 5. Content navigation based on different entry points of Movie Domain 

The following is a representation of personalized weight for every movie while 
performing navigation by artist, director or genre. 

• (AW) = Weight of artist as a movie component in User’s Movie Ontology  
• (DW) = Weight of Director as a movie component in User’s Movie Ontology  
• (GW) = Weight of Genre as a movie component in User’s Movie Ontology 
• (RW) = Weight of Reviewer as a movie component in User’s Movie Ontology 



868 S. Garg et al. 

• (Ng)  = Number of genres of movie 
• (Na)  = Number of Artists of movie 
• (Nd)  = Number of Directors of movie 
• (Nr)  = Number of Reviewers of movie 
• (MW) = Personalized weight of a movie. 
• N = Index of preferred artist, director, genre, reviewer, review sources and news 

source tables of user’s profile. If entry is not found in table value of N will be zero. 

 

Fig. 6. Content navigation by Artist, Director or Genre 



 MediaCaddy - Semantic Web Based On-Demand Content Navigation System 869 

Personalized Movie Weight (MW) = 
=

=

Nai

i

NiAWi
0

)/( + 

=

=

Ndi

i

NiDWi
0

)/( + 
=

=

Ngi

i

NiGWi
0

)/( +
=

=

Nri

i

NiRWi
0

)/(  

 

(1) 

There are multiple Entry points in Movie knowledge domain graph. Typically one of 
the following will be used to request personalized movie listing. 

1. Artists:  User can request a personalized list of movies, jut by clicking name of any 
of the artist from any of the guide’s screen. Please refer 0 and 0. 

2. Director: User can also request a personalized list of movies, just by clicking name 
of any of the director from any of the guide’s screen. Please refer 0 and 0. 

3. Genre/Keyword/Category: Third entry point in Movie knowledge domain can be 
genre/category/Keyword. User can request a personalized list of movies, just by 
clicking names of any of the category/keyword/Genre. Please refer 0 and 0. 

4. User:  user can also request a simple personalized list of movies based on his user 
profile.  

8.1.2   Mood Based Content Navigation 
Both of the above discussed content navigation methods heavily depend on user’s 
profile, but its very difficult to profile human behavior, hence this one is totally 
independent of user profile. Mood based content navigation method, analyzed user’s 
intentions by monitoring his/her activities in current navigation session and generates 
list of movies based on user’s intentions. Mood based content navigation system has 
following three stages. 

1. Impulse capture: In MediaCaddy, mood is defined as user’s intentions in current 
session. MediaCaddy logs user’s every interaction with system, between login and 
logout (or timeout)  

2. Intelligent knowledge extraction or mood analysis: During this stage, user’s 
interaction with content guide is analyzed and knowledge is extracted. During this 
knowledge extraction process, any of the user’s clicks which were directly or 
indirectly related to any movie domain, are filtered. Once filtered, these clicks 
represent entity instances (name or artist, genre, director or movies) in Movie 
Domain.  

3. Content navigation: All the entity instances filtered during knowledge extraction 
stage become entry points for content navigation in Movie domain ontology. 
Please refer to Fig. 4.In previous example Tom Cruise and Tom Hanks represents 
instances of artist entity, Action and Thriller are instances of genre entity, and Top 
Gun and Forest Gump represents Movie entity instances, these entity instances 
become entry point for Content navigation process. 



870 S. Garg et al. 

9   Findings 

One of the goals of our study was to give some elements in order to compare our 
approach in a future paper with the collaborative filtering based recommendation 
engine, especially since the main goal was to develop a content navigation system. 
We believed that bringing more information to the recommendation engine about all 
the entities would provide more relevant recommendation results. The actual system 
is based on a more semantically rich analysis than just the objects themselves and 
their consumption statistics. Those multiple ontological relationships between entities 
allowed more complex inferring bringing therefore more details about the actual user 
profile, and then the recommendation made to him, than what the user behavior 
tracking component only could capture. The relevance of the recommendation 
allowed to put them at the core of the navigation system instead of using a simple 
catalog browsing. 

The system is designed to leverage the openness of services, thanks to a standards 
based way to describe them, in addition to techniques to map different contextual 
information such as content information or user profiles. 

Nevertheless, a lack of XML usage within the entertainment industry has been 
observed, requiring multiple ways to aggregates the information within the ontology, 
making the architecture and mostly the maintenance of the system more complex. 
Promote the usage of semantic technologies and XML representation in general 
would definitely ease the creation of such a system. 

Secondly, the lack of a common identification of content and related entities such 
as actors, directors, with one or a few generic IDs, makes the mapping of the 
information tricky, sometimes with a high degree of uncertainty. It basically creates 
incorrect recommendations. To minimize this effect, more complexity in the ontology 
creation and traversing had to be used. 

Finally, the implementation of our system didn’t take into consideration at every 
step the need of efficiency and speed. Most of the computation is done every time, 
after a very fast information retrieval from the ontology. We found that caching or 
storing the intermediate computation is possible and would bring more 
responsiveness. For example, intermediate results could be put back into the ontology 
to create more weighted relationships between entities that would be used in the 
traversing, which is in this case optimized. In our case, it is particularly true 
concerning the user related information and relationships. 

10   Next Steps 

A first version of this prototype is completed. For next steps, the entertainment 
industry is vast and consists of many facets that are not represented in this solution 
yet. A next step will be to incorporate additional entity classes to expand the size of 
the ontology. (e.g. different kind of content) and more relationships (e.g. more 
granular information about the content). 

The current system doesn’t use OWL [5]. Enhancing, importing and exporting the 
ontology using the OWL format is a one of the necessary next step to make the 
system more open and easier to maintain in the long run.  



 MediaCaddy - Semantic Web Based On-Demand Content Navigation System 871 

In this goal of making the system more open, use of standards to represent the user 
profile information (in a general meaning) will be studied. Schematic representations 
such as FOAF, OPML or attention.xml [6] are tracks that will be followed to 
understand how to import and also export user related information. 

From a long term perspective, context extraction of a particular piece of 
information is helps indexing this information. Examples of such techniques exist to 
auto categorize web pages for instance, based on the content of the page itself. Similar 
approach would be explored for the entities categorization within the ontology. 

Additionally, the definition of categories needs more analysis. A bottom up 
community approach will definitely be considered. This approach would require more 
analysis and processing of the information. The goal would be to develop automatic, 
and dynamic if possible, system for a particular context. Folksonomy in a specific 
community is an interested manual process to do such a thing as a first step, 
especially for its contextual and distributed effort aspects that reduces the resources 
needed and creates quickly large corpus of valuable information. 

References 

1. Netflix: http://www.netflix.com 
2. Tivo: http://www.tivo.com 
3. A. Sheth and C. Ramakrishnan, "Semantic (Web) Technology in Action": Ontology Driven 

Information Systems for Search, Integration and Analysis, In IEEE Data Engineering 
Bulletin, Special issue on Making the Semantic Web Real, Decmber 2003.  

4. International Multimedia Conference: Multimedia information services enabling: an 
architectural approach: Proceedings of 2001 ACM workshops on Multimedia Pages 18-23 

5. Web Ontology Language (OWL):: http://www.w3.org/2004/OWL/  
6. attention.xml: http://developers.technorati.com/wiki/attentionxml  

 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 872 – 886, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

LKMS – A Legal Knowledge Management System 
Exploiting Semantic Web Technologies 

Luca Gilardoni, Chistian Biasuzzi, Massimo Ferraro, Roberto Fonti, 
and Piercarlo Slavazza 

Quinary - Via Pietrasanta 14 –  20141 Milan – Italy 
{gil,bic,fem,for,slp}@quinary.com 

Abstract. Semantic Web, using formal languages to represent document 
content and providing facilities for aggregating information spread around, can 
improve the functionalities provided nowadays by KM tools. This paper 
describes a Knowledge Management system, targeted at lawyers, which has 
been enhanced using Semantic Web technologies. The system assists lawyers 
during their everyday work, and allows them to manage their information and 
knowledge. A semantic layer has been added to the system, providing 
capabilities that make system usage easier and much more powerful, adding 
new and advanced means for create, share and access knowledge. 

1   Introduction 

After years of hype, there is clear evidence of an up-take of knowledge management 
in corporations. Today, knowledge is recognized as a strategic resource, with major 
key drivers being the need to cut time to market and the fear of missing business 
opportunities in a global market where companies have to cope with new products 
and services. At the same time, there is a general acknowledgement that existing 
technology behind most knowledge management products has somehow reached its 
limits. Current knowledge management systems are indeed still mostly built on top of 
conventional document management systems, without real 'understanding' layers. 
Tools are mostly designed as aids to human centered activities with a set of low level 
tools needing human guidance to deliver results [1]. Albeit relying on web 
technologies, built as intranet portal tools, current state of the art does not really 
leverage the expected potential of the semantic web. To go to the next step, we should 
move towards a architecture and an infrastructure providing a foundation for new 
generation services, semantically aware tools and proactive agents, able to better 
support human actors.  

Technology born to support the development of the Semantic Web may be used to 
build such foundation. Moreover, the 'inside web', that is the web constituted by 
intranets, KM environments, portals, is worth to users as much – and often more – 
than the 'web out there'. If we consider the whole world of professional users within 
corporation – and to some extent even some virtual community build within closed 
spaces – we find out a huge amount of information available. The fact that such 
information is not available to the general public is scarcely relevant, as whenever we 
consider ourselves, we find that, in our space of accessible information, the outer web 



LKMS – A Legal KMS Exploiting Semantic Web Technologies  873 

and inside web often play an equally relevant role. What's even more notable is that 
the relevance is often in our capacity to connect internal information and external one. 
A collaborative environment, such as those currently found behind most intranets, 
could provide a natural place to add semantic capabilities, while the organization 
work which is behind most intranet initiatives provides the economic support and 
impulse to add what's needed – organized information and knowledge – to implement 
the semantic layer. 

The system described in this paper is centered around this assumption. Based on a 
long experience in building advanced knowledge management systems, and derived 
from research made in the framework of the Dot.Kom project ([2]), we built an 
enhanced solution integrating such a semantic layer into an existent KM environment.  

The semantic layer is founded over an ontology repository supporting knowledge 
integration and fusion and acting as the common glue for share and reuse services for 
knowledge management. Ontologies indeed play a key role in the context of the 
Semantic Web: they formalize the knowledge about the concepts related to the 
“world” of interest. Once the proper knowledge framework is defined through 
ontologies, one can identify in documents instances of the concepts described, and 
relations between them. Accordingly, they also play a key role in supporting 
knowledge management tools, making them a bit more ‘knowledge aware’. Semantic 
annotations, whether manually generated, or derived by information extraction 
techniques or other automatic processes, can provide a major framework for 
generating, preserving and sharing knowledge. Annotations provide the basis for 
advanced information retrieval, and for providing proactive services. 

We will describe here a specific vertical solution targeting law firms. The 
described system has already been deployed in a major Italian law firm, and is 
currently a key component of our company offering for the legal market. 

2   Knowledge in the Legal World 

Law is a knowledge-based profession. Since law firms and law departments are 
knowledge-based organisations, knowledge management becomes critical to their 
continuing success. A knowledge management system enables lawyers to work more 
efficiently and to provide legal services quicker than ever before. By creating 
processes to support and facilitate the identification, capture and dissemination of a 
firm’s knowledge, knowledge management systems leverage a law firm collective 
wisdom. 

The legal industry has faced significant pressures in recent years, making 
knowledge management a business imperative. In the age of instant communication, 
lawyers have been forced to find quicker ways to deliver traditional legal services. 
Law firm clients have become very sophisticated buyers of legal services and 
therefore they expect a faster turnaround time.  

Several components of knowledge management, such as precedent libraries or 
work product repositories, already exist in law firms. Innovative law firms however 
are already working to find a more efficient way to work, leveraging the knowledge 
of their experts by delegating work to more junior staff and hence looking for better 
ways to improve knowledge sharing and exploitation processes. 



874 L. Gilardoni et al. 

Work of professionals within a law firm – or a legal department in a corporation - 
ultimately leads to production of documents: acts, contractsor opinions. In this sense 
work processes are document centric. This is one of the reasons why most KM 
solutions targeting law professionals focuses on document management issues. 
However, from the point of view of knowledge building and sharing, what is really 
relevant is the intellectual process carried on to delivery the document.  

The outcome of this process is constrained on one side by the task and the specific 
matter, from the other by contextual knowledge.  

The context should be maintained, because 
it is this contextual knowledge that enables, for 
example, to maintain and revise documents (.. 
this clause was made this way because of that 
law …; if the law is later amended, or a 
different interpretation given by the supreme 
court, that clause has to be revised in future 
contracts and effects on old contracts has to be 
evaluated). Legal documents, moreover, are 
inherently interrelated; and so may be the 
process that leads to them. A contract – legal act binding two or more parties - may be 
designed taking legal opinions into account, and it may be in turn the source of a case 
which leads to production of legal acts discussing it, these in turns taking other 
opinions into account. Legal opinions - written by lawyers on request of customers 
who need advise on some topic - are also based in turn on decisions taken in courts on 
specific cases. Being able to keep track of context hence results to be of paramount 
importance.  

The context is given as well by the work process. Lawyers, as many other 
professionals, are compelled by the need to share knowledge and competencies. 
Findings derived by analysis of a court sentence have to be somehow saved for usage 
by other members of the firm. Too many times people end up redoing the same work 
as the guy next door in the office. Even a search made against a database looking for 
specific cases may be reused in similar cases.  

The more a law firm tends to specialize in specific sector, which is often the case, 
the more sharing this kind of knowledge gives the competitive advantage. Specific 
law firm knowledge is so relevant that the area of practice a law firm is specialized in 
highly qualifies the firm. A primary concern and a major activity directly functional 
to the primary process is therefore to keep this background knowledge up to date 
through knowledge maintenance processes. 

One way to share this knowledge is by similarity, which is often the approach 
taken by case based reasoning systems, which sometimes work rather reasonably. 
Point is that current tools reason by similarity at the textual level, which may work 
reasonably to find out similarity in matter (e.g. two employment contracts for 
managers with similar bonus plans) but can hardly support in linking at the clause 
level (to stay within contracts) or to maintain connections to supporting cases. 
Similarity is not taken to the conceptual level, and hidden links and background 
knowledge are … just treated as hidden. 

Hence knowledge management system to prove effective must support, other than 
‘conventional’ search, a way to annotate and hyperlink elements to the surrounding 



LKMS – A Legal KMS Exploiting Semantic Web Technologies  875 

context, and be able to navigate and search hyperlinks. To be usable, however, the 
system must be able to support automatic (at least partially) hyper-linking, and make 
easy to manage annotations.    

A rich knowledge layer and semantic web technologies provide the foundation to 
enhance existing knowledge sharing environments supporting these functionalities. In 
a sense, this is not surprising, as the same rationale (adding a semantic layer to 
enhance sharing providing a better user experience) is also behind the Semantic Web. 
Moreover, in a world where more and more information is going online, and where a 
number of public initiatives (e.g. NormeInRete, see [3]) are strongly driving to make 
available public legal information on the web, the more the technology supports 
integration of internal law firm material (the 'inside web') with external material, the 
more users are likely to take advantage of it. 

3   System Description 

LKMS (Legal Knowledge Management System) is a collaborative web-based 
platform for knowledge management, supporting law firms in managing a document 
base and the processes around it. LKMS is a vertical solution for the legal market 
built on top of  “K@”, a generic KM system developed by Quinary since 2002.  

With LKMS users can access and share a common repository of documents while 
the system keeps track of people interaction. Documents, including both physical 
documents residing inside the law firm, external URLs, notes and Wiki pages, may be 
organized according to one or more taxonomies, supporting multiple inheritance 
(DAGs): the environment provides a basic framework for sharing information by 
matching the way an organization is structuring its processes. 

The core system supports browsing and searching using free text queries and 
provides a number of tools to track user behavior (who added a document or a node in 
a taxonomy, who added classification links between nodes and taxonomies, who 
visited nodes or read documents) to facilitate sharing and keeping track of workgroup 
activities. 

 

filesystem
docs repository

J2EE App.ServerLKMS

SemantiK

Wiki

document 
filters 

RDBMS
metadata, 
users db, 

sesame triples

RDF 
repository/reasoner

(Sesame)

filesystem 
search indexes

filesystem
wiki repository

RSS Aggregator 

external 
classifier

Information Extraction Tools
Web Browser 

user module

semantic web

filesystem
docs repository

J2EE App.ServerLKMS

SemantiK

Wiki

Document 
filters 

RDBMS
metadata, 
users db, 

sesame triples

RDF 
repository/reasoner

Sesame 

filesystem 
search indexes

filesystem
wiki repository

RSS Aggregator 

External 
Classifier 

Information Extraction 

user module

semantic 
web 

full text 
search engine

full text 
search engine

 

Fig. 1. LKMS Architecture 



876 L. Gilardoni et al. 

The system also includes a document drafting component, based on XML 
technology, enabling to build template documents as aggregate of clauses and 
composition logic. Drafts can then be built from templates by specifying constraints 
through a user friendly query answer interface. 

The core version of LKMS has been enhanced in 2004, now it is able to maintain 
the association between documents and semantic annotations with respect to a formal 
ontology according to Semantic Web standards. Figure below outlines the overall 
system architecture. 

Semantic Layer Overview. The core KM framework has been enriched with the 
SemantiK plugin to provide a semantic layer over documents repository. SemantiK is 
a platform featuring presentation, editing, integration, and searching of knowledge 
expressed through the RDF language. SemantiK has been integrated with LKMS as a 
plugin, allowing for connecting annotations to documents on evidence that, in most 
cases, annotations are motivated by or related to document content.  

Storage and inferencing over annotations is given by an underlying RDF repository 
(Sesame, see [4]). The main purpose of SemantiK is to provide a middleware for 
high-level access to an RDF knowledge base, supported by a knowledge integration 
layer, and a web GUI for maintenance of RDF annotations tailored to end users 
habits. Main functionalities include:  

- ontology supported GUI for viewing, browsing and editing annotations 
through web forms; 

- support for semantic search; 
- support for knowledge integration and resources disambiguation; 
- interface and support for automatic annotation extraction from documents. 

 

 

Fig. 2. SemantiK Internal Architecture 

The whole architecture has been built to tackle flexibility in handling of specialized 
ontologies, with respect to both presentation issues and semantic integration. LKMS 
comes with a precompiled legal ontology, expressed in RDFS1, which may however 

                                                           
1 Enhanced with few custom meta-properties – porting to OWL is being considered. 



LKMS – A Legal KMS Exploiting Semantic Web Technologies  877 

be extended. The ontology is complemented by Ontology Handlers, a set of Java 
classes supporting specializations dependent on specific entities. 

Moreover, Information Extraction services enable to extract annotations from 
documents or, more in general, fetch them from external data sources. Plugins has 
been developed for a number of information extraction systems. 

The Ontology. The general legal ontology shipping with LKMS was created in 
cooperation with our first customer and has been only slightly modified since then 
(only manual adaptation is handled so far). 

The ontology covers three main areas. 

Laws. This area includes most of the subdivision of the Italian legislation. It also 
copes with law’s articles and articles’ subparts. Each concept is characterized by a 
minimal set of properties aiming at uniquely identifying each concept, such as law 
date and number. Given this information it is then also possible to compute URNs, 
that is a standard unique identifier used, in this case, in order to build links to the 
public site NormeInRete ([3]). Besides, name, description, source and references to 
other laws can be defined.  

Legal Documents. This part of the ontology describes different kind of legal 
documents: contracts, legal Opinions, Sentences from the different kind of Italian or 
European Courts, Regulations, Decisions, legal doctrine, etc. Aside, we also include 
entities describing actors – i.e. organizations such as Tribunals and Judges, and other 
supporting entities (e.g. grades of legal cases, possible outcomes of “Supreme Court 
Decisions” etc). 

Juridical Concepts. These kinds of concepts are expected to take over the glossary 
keywords normally used by lawyers, enabling annotating content on the basis of 
relevant matters. They have been derived transforming a digital glossary from a book 
about labor law into a structured and organized ontology. It resulted in a complex 
hierarchy of 1442 Legal Keywords, with references to each other and to more than 
3500 laws or regulations automatically extracted from the same book too. An RDF 
representation of all instances was created and uploaded in the system, and at the 
same time patterns (a JAPE grammar) were automatically generated to support a 
Legal NEA IE tool – described later. 

Knowledge Handlers. SemantiK has been tailored to the legal domain by providing a 
set of Ontology Handlers matching the legal concept classes described in the previous 
paragraph.  

An Ontology Handler is a Java class that is bound to some RDFS class and that is in 
charge of handling a number of actions regarding instances of that RDFS class –  such 
as rendering, searching, knowledge integration. The Java hierarchy must of course 
respect the RDFS hierarchy: this way, specialization of actions can be achieved 
straightforwardly. The root of the hierarchy is a Java class that by default is responsible 
for the instances of the RDFS class Resource – that is, of all resources in the KB. 

Ontology Handlers may provide customization such as to find and match legal 
documents by number and date (as opposed for example to judges, matched primarily 
by name and surname), to render links to external resources for laws, and to generate 
automatic label for structured legal documents. 



878 L. Gilardoni et al. 

The Presentation Layer. Given a set of triples all having as subject a certain 
resource (in particular an annotation associated to a document in LKMS), the 
SemantiK presentation layer is able to render it (for viewing or editing) in a domain 
dependent way by means of XSL transformations, applied to XML-ization of the 
triples.  

Using custom CSS we have been able to harmonize the output with web-
application environment that constitutes the user interface of LKMS. 

SemantiK uses custom meta-properties associated to RDF Resources and 
Properties for defining a number of presentation details like properties order, visibility 
and cardinality. 

Moreover SemantiK can highlight annotated text in documents, given that the RDF 
resources annotated have an offset –automatic Information Extraction tools described 
later on provide such offsets. Annotations are given different colors to distinguish 
RDF Classes and are hyperlinked for fast querying. 

Annotation Production and Knowledge Integration. Data can be inserted in 
SemantiK by manual editing or by means of external IE engines. In both cases, before 
instances are added to the Knowledge Base, they are passed through the SemantiK 
integration layer, which is in charge of detecting whether the intended resources exist 
already in the KB.  

Manual editing is supported by the ontology management module: when creating 
new instances, the user is asked to choose the type of the new resource if more than 
one is possible: the RDFS classes are displayed in a tree-like manner in a listbox, and 
possibly some branches of the tree are collapsed (the behavior can be set using meta-
properties). The wizard-like UI allows the user for expanding the class tree until the 
right type is found. 

When the user is editing an annotation, given a certain property, he is asked to 
formulate a query in order to find in the Knowledge Base the intended instances. The 
query is dispatched to the proper Ontology Handler depending on the range of the 
property. In general, each Ontology Handler is responsible for parsing the query (for 
it could have a peculiar syntax) and then trying to use some specific method or 
heuristic in order to find some results, as already mentioned above. 

In general, a fuzzy measure of closeness is computed between the candidate 
resource and the existing ones; then, the user is presented with the closest resources 
(if any) and is asked for disambiguate his intent. Note that the usage of a fuzzy match 
allows coping with misspelled words. 

In the case of automatic annotation using a Knowledge Broker, the Ontology 
Handlers try to automatically defuzzify the closeness measures using a proper 
threshold. 

Anyway, given some existing resource, at any moment the user is able to merge it 
with other existing resources, which can be selected from a list automatically 
generated of possibly similar resources, or manually searched. 

Semantic Annotation Extraction. The Legal IE Application is the module in charge 
of automatically extracts annotations from documents. It is targeted at the legal 
domain and its task is to get as input a document, extract references to legal 
documents and juridical concepts, and get them back in RDF format (referring to the 
legal ontology). 



LKMS – A Legal KMS Exploiting Semantic Web Technologies  879 

SemantiK is responsible for calling the Legal IE Application passing a plain text 
version of the document (conversion from PDF, MS Word and RTF is supported by 
the base system) and for integrating the resulting RDF in the semantic repository. The 
Legal IE Application, wrapped in a web service based on AXIS [9], performs analysis 
and, using the legal ontology as reference ontology, returns RDF annotations. The 
analysis may be based on different engines. We integrated and tested a GATE [5] 
based NEA, Amilcare [6] and TIES [7].  

The Legal IE Application uses GATE as processing framework and each external 
processing component is connected using a GATE component. There are four GATE 
components: Linguistic component, which uses Italian Linguistic tools to perform the 
basic linguistic analysis (tokenization, POS tagging, lemmatization); Legal NEA 
component, which uses JAPE grammar [8] and performs a NE analysis focused on 
legal entities; Amilcare component and TIES component, which use respectively 
Amilcare and TIES to perform IE processing. 

The application is configurable to possibly use only some of the components (e.g. 
there can be different legal IE applications working concurrently, using different 
components).  

Document Similarity Measures. An algorithm for computing documents similarity 
basing on RDF annotation has been developed in SemantiK. Roughly speaking, 
comparing annotations is accomplished by recursively following resources properties 
and values and counting matching values. The obtained measure is used to suggest 
similar documents motivated by semantic similarity. Experiments are ongoing to 
exploit the similarity measure for automatic document classification. 

4   LKMS in Use 

LKMS environment was designed in order to support a lawyer in his everyday work 
within a law firm. Accordingly, the system is used to maintain, in a centralised 
repository, and share between lawyers a number of documents, both coming from 
outside the law firm and produced inside.  

By supporting indexing by semantic content, LKMS enables to perform better 
searches, based not simply on full text but on semantic content – or, better, on both. 
Moreover, it becomes possible to support better automatic classification, and to 
develop triggers based on content; hence people working on specific cases can be 
signaled about changes in relevant regulations or news about the specific matter.  

Next picture shows the situation where a lawyer, browsing LKMS within a specific 
legal case, comes across a significant document. Starting from the SemantiK 
document info panel on top, the user can examine the annotations (in this example a 
number of references to laws). Then the lawyer can follow the hyperlinks leading to 
more specific information about a particular annotation  (an article of law) and, 
possibly, to other useful information (juridical concepts) or related documents. Please 
note that in the example the relation between the source document and the one 
‘discovered’ by following the semantic links is derived through the semantic layer 
through common references, while in a traditional KM system or DMS, such link 
should have been explicitly stated.   

 



880 L. Gilardoni et al. 

 

 

Fig. 3. SemantiK Browsing 

 

Fig. 4. Sentence Annotation 

 



LKMS – A Legal KMS Exploiting Semantic Web Technologies  881 

Annotation such as the ones just shown can derive from both manual annotation 
and semi-automatic information extraction processes. In this scenario a lawyer 
imports the sentence in the system, and gets a partial annotation of the new content, 
making use of some of the available IE modules. The lawyer may then further edit the 
annotation in SemantiK, removing mistakes and adding missed references. 

An essential requirement to reach the LKMS goals introduced above is the 
development of tools supporting annotation of new documents inserted in the 
repository, keeping the complexity of the semantic representation behind the scenes.  

Our feeling is that with SemantiK we are going in the right direction. The tool 
supports a lawyer with a point and click, workflow-based user interface, driving the 
user to a progressive refinement of the annotation with respect to our legal ontology. 

In figure 4, editing of annotations is done within the browser having side by side 
the form based annotation panel on the left and the text with annotations highlighted 
in the context of the document on the right, rendered as hyperlink to the system 
knowledge base. Defining new annotations (e.g. adding a legal concept reference, or 
one of the expected attributes of the sentence) may be done very simply by dragging 
text elements from right to left. SemantiK features for fuzzy matching and the 
possibility to exploit ontological information to drive the GUI properly constraining 
input values, enable to minimize user burden in obtaining a rich and precise 
annotation. 

Founding on a semantic layer also paves the way to development of new drafting 
tools, able to associate pertinent matter while editing legal documents. We are currently 
experimenting with tools enabling in-place annotation of text, such as AktiveDoc [26], 
developed during the course of Dot.Kom project by the University of Sheffield. 

  

Fig. 5. Enhanced Semantic Web Surfing – Kzilla on the left, Magpie on the right 

LKMS’s semantic knowledge base can be exploited proactively when the lawyer is 
browsing the web, either following links from online journals or institution web sites 
(e.g. during normal monitoring activities of selected sources) or actively searching for 
something relevant for a case he is working on. Tools like Magpie [24], a browser 
add-on that uses an ontology infrastructure to semantically markup web documents 
on-the-fly - which we tested integrated in SemantiK deriving automatically references 
for Juridical Concepts from our ontology - may support the user in making sense of 



882 L. Gilardoni et al. 

browsed pages on the web against internal knowledge, highlighting references to 
annotated material of LKMS stored documents (see Fig. 5). By clicking on the 
highlighted concept the user can follow the contextual link and browse the concept 
ontology in LKMS, reaching documents already in the system related to that specific 
concept and helping him to quickly make sense of new material. For the same 
purpose, we also developed Kzilla, a web browser plugin enabling to match browsed 
material against content of the LKMS internal repository, much alike what services 
like Alexa do for generic browsing. 

LKMS Evaluation. Currently LKMS has been deployed in an Italian legal firm 
grouping about 50 lawyers. LKMS hosts now more than 30000 documents. Most 
material is in PDF - a large number however constituted by scanned images - and 
Word format, plus a number of XML documents generated by an automated drafting 
systems, a number of simple textual notes and a number of html documents or URLS 
(specialized publishers, newspapers, Italian and European public institutions). 

Material includes legal documents produced within the firm or by other parts in 
cases, significant legal documents (cases, opinions etc) gathered from different 
sources, plus a number of general documents from newspapers. Material partly comes 
in from batch imports from older repositories, partly from daily work, with a minor 
part gathered by a specialized spider. Some types of documents (e.g. news from press 
and some legal related publication) is added by clerks and later on 
classified/annotated by lawyers, other are added by lawyers directly into the system or 
indirectly coming from the case management system (e.g. docs from corresponding 
parties).  

The first LKMS version enhanced by the semantic layer SemantiK has been 
deployed during fall 2004. Currently an average of 50 docs are added every day, 25% 
of which are manually annotated. Most of them only hold generic metadata such as 
authors or sources, but there are also more than 400 references through laws or 
articles, about 150 sentences of various kinds and about 100 acts, laws, circulars etc, 
for a total of about 30.000 triples in the RDF repository. 

The strong directives issued from the law firm management about having richly 
annotated material are by itself a clear sign of usefulness judged by end users eyes. 

A recent experiment has been made in the legal firm: focusing on a specific topic 
('non-competition pact'), 8 younger lawyers have been ‘commanded’ to collect 
selected material on the subject, add it to LKMS and properly annotate it. The 
experiment took 96 hours of work - including collecting and analyzing material – and 
resulted in 117 documents, properly annotated against the legal ontology, and 
enriched with references to laws, authors, keywords and so on. While manual 
annotation proved a daunting task, such work was judged useful and worth the effort 
from the senior partner's side. 

Automatic Annotations. It is well evident that automatic IE support is what's needed 
to step up, as manual annotation may be accepted (and has been accepted - once 
suitable support for minimizing the burden has been put in place!) for documents 
where IE is not feasible  (e.g. scanned documents), in case of major features (e.g. 
main metadata for a Supreme Court Sentence), full annotation on all material is out of 
question.  



LKMS – A Legal KMS Exploiting Semantic Web Technologies  883 

Usage of tools and IE techniques has however been explored and developed by the 
authors in the framework of the Dot.Kom project. An automatic information 
extraction application has been derived and already tested, and it is likely to be setup 
in production in short time. During the test, made on real data from the law firm, the 
system produced a number of automatically extracted annotations on a selected 
corpus of 1200 documents. 5800 references where extracted to a total number of 
about 250 laws, opinions or articles. 1150 articles to laws were identified. The 
repository was filled with 70000 triples. 

The automatically extracted annotations have been evaluated qualitatively on 
random elements and judged of relevant quality.  

A formal test has been done in parallel – in the framework of the Dot.Kom project 
- using a legal corpus composed of 197 Sentences from Corte Cassazione (the Italian 
High Court) in HTML format (2500 - 3000 words each). This corpus was fully 
annotated according to our legal ontology, starting from an automatic pass made using 
a NEA based IE module and further manually edited in order to remove mistakes and 
adding missing elements. While being very specific in coverage (i.e. it is based only 
on Supreme Courts Sentences) the corpora has the advantage of being based on public 
material, unlike most other legal documents, and sufficiently generic in both domain 
(the sentences are not only related to labor law but cover different topics) and in 
linguistic aspects. The structure of the documents is rather standardized, but the 
content vary; for example, considering legal references, a wide variety of forms is 
used, reasonably reflecting a much wider set of documents. 

Results of the formal evaluation are listed in a forthcoming Dot.Kom deliverable, 
but results for all the system tested show average precision over .85 for recalls 
ranging between .70 and .80 depending on IE subsystem used, with better values for 
most frequent and useful entities. 

Overall results from both tests has been judged more than adequate, and the 
manual work eventually needed to amend annotations has been judged feasible, given 
that the error rate is sufficiently low, and anyway worth while pursuing in the light of 
advantages in using annotated material.  

5   Related Work 

The idea of using Semantic Web technologies to enhance and facilitate the use of a 
Knowledge Management System is shared by several others systems such as, for 
example, KIM and Haystack. KIM [16] is a platform for semantic annotations of 
texts, supporting semantic indexing and retrieval, which also shares with our system 
the use of some underlying technologies (GATE, Sesame and Lucene). Haystack [17] 
as well aims at giving users a unified access to their own corpora of knowledge for 
organization, navigation, and search, enabling users to import a variety of information 
types (documents, email, calendar, web pages) into a single unified RDF repository. 
In either case the two platforms however focuses on general functionalities, while the 
system described here is strongly focused on the legal domain, making possible to 
tackle a number of specificities and to take into account peculiarities of legal 
processes. Another example of vertical solution – for the Environmental domain - is 
the Semantic Web Environmental Directory (SWED) [18].  



884 L. Gilardoni et al. 

Other systems, whose goal is to support the creation of semantic portals, have 
some similarities with our system. We can cite ODESeW [19], OntoWebber [20], 
SEAL [21], OntoWeb [22] and OntoView [23]. Other tools share with LKMS the 
semantic browsing approach, such as already mentioned Magpie [24], or Topicalla 
[25], a client application for the Semantic Web which allows one to view information 
using a UI that is generated based on the kind of data available. However these tools 
and platforms aim mainly to support accessing and retrieval of information, while the 
purpose of our system is to support the whole knowledge creation process. 

The legal area is subject of a growing interest, and there is a lot of work ongoing - 
see e.g. the recent book on Law and the Semantic Web [10]. Moreover a number of 
EU funded projects, including e-Court [11], e-Power [12], CLIME [13], FF Poirot 
[14], and SEKT [15], coped to different extent with exploitation of Semantic Web 
technologies in the legal domain. To our knowledge however no system aims at 
supporting the whole knowledge lifecycle and none has yet reached the stage of 
deployment in a production environment. 

6   Conclusions and Future Work 

In this paper we have presented a knowledge management solution for lawyer 
enhanced by a number of semantic web technologies. The system has already reached 
the commercial stage, where most features has already been incorporated in a 
commercial solution, deployed in a main Italian law firm and likely to be deployed at 
other sites on finalization of ongoing deals. 

A number of other features are currently in the research and development pipeline. 
We are currently doing preliminary experimentations on classifiers working on RDF 
expressions attached to documents – derived automatically from texts and enhanced 
by additional information derived from public web services based on partial data 
extracted. We also are experimenting Collaborative Filtering techniques to generate 
suggestion of interest, mixing data from user tracking – who read what where – with 
documents semantic features.  

Work done, and feedback got, clearly showed usefulness of rich representation 
framework in knowledge intensive environments, and capacity of semantic web 
derived technologies and tools to effectively support end users in everyday work. It 
also showed feasibility of a number of features still too often confined to experimental 
labs. Work done also enabled to better assess and investigate a number of issues 
related to matching organizations knowledge resources against public web material, 
including expected role of end user's as active annotators vs. automatic information 
extraction, and influences of the new features on ways of working within legal 
organizations. Attention paid to GUI issues, to flexibility in handling different 
ontology entities, to tools supporting 'making sense' of raw material has been 
functional to take end users within the loop. Several issues have still to be solved, and 
most relate to exploitation of machine learning techniques [27] to ease building of the 
semantic web. However we feel that as semantic web technology is a key element to 
step up knowledge management systems, we also believe that knowledge sharing 
environments like the one described, able to really exploit users knowledge through 
the organization, will be strong drivers to support building of the Semantic Web itself. 



LKMS – A Legal KMS Exploiting Semantic Web Technologies  885 

Acknowledgements 

Part of the R&D activities behind the work reported has been carried out within the 
IST-Dot.Kom project (http://www.dot-kom.org), sponsored by the European 
Commission as part of the framework V,  (grant IST-2001-34038). Dot.Kom involves 
the University of Sheffield (UK), ITC-Irst (I), Ontoprise (D), the Open University 
(UK), Quinary (I) and the University of Karlsruhe (D) . Its objectives are to develop 
Knowledge Management and Semantic Web methodologies based on Adaptive 
Information Extraction from Text.  

References 

1. Salzburg Research and EC IST DG Unit E2, “The Future of electronic publishing towards 
2010”, http://ep2010.salzburgresearch.at, 2003 

2. J. Iria, F. Ciravegna, P. Cimiano, A. Lavelli, E. Motta, L. Gilardoni and E. Mönch: 
"Integrating Information Extraction, Ontology Learning and Semantic Browsing into 
Organizational Knowledge Processes", Workshop on the application of Language and 
Semantic Technologies to support Knowledge Management Processes at the 14th 
International Conference on Knowledge Engineering and Knowledge Management EKAW 
2004, 5-8th October 2004 - Whittlebury Hall, Northamptonshire, UK  

3. NormeInRete project. http://www.normeinrete.it 
4. J. Broekstra, A. Kampman, F. van Harmelen, "Sesame: A Generic Architecture for Storing 

and Querying RDF and RDF Schema", Lecture Notes in Computer Science, Volume 2342, 
Jan 2002 

5. H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, “GATE: A Framework and 
Graphical Development Environment for Robust NLP Tools and Applications”, 
Proceedings of the 40th Anniversary Meeting of the Association for Computational 
Linguistics (ACL'02), Philadelphia, July 2002. 

6. F. Ciravegna, “Adaptive information extraction from text by rule induction and 
generalisation”, Proceedings of 17th International Joint Conference on Artificial 
Intelligence (IJCAI), Seattle, 2001. 

7. ITC-IRST “TIES. Trainable Information Extraction System”. http://tcc.itc.it/research/ 
textec/projects/dotkom/ties.html 

8. H. Cunningham, D. Maynard, V. Tablan. “JAPE: a Java Annotation Patterns Engine 
(Second Edition)”, Technical report CS--00--10, University of Sheffield, Department of 
Computer Science, 2000. 

9. “Apache Axis, an implementation of the SOAP “ http://ws.apache.org/axis/ 
10. V.R. Benjamins, P. Casanovas, J. Breuker, A. Gangemi”Law and the Semantic Web: Legal 

Ontologies, Methodologies, Legal Information Retrieval, and Applications”, Vol. 3369, 
Springer, 2005.9.  

11. “Electronic Court: Judicial IT-based management”. http://laplace.intrasoft-intl.com/ 
e-court/ 

12. “European Programme for an Ontology based Working Environment for Regulations and 
legislation”, http://www.belastingdienst.nl/epower/ 

13. “Computerised Legal Information Management and Explanation”, http://www.bmtech. 
co.uk/clime/ 

14. IST 2001-38248. “Financial Fraud Prevention-Oriented Information Resources using 
Ontology Technology”, http://www.starlab.vub.ac.be/research/projects/poirot/ 

15. “Semantically-Enabled Knowledge Technologies”, http://sekt.ijs.si/.  



886 L. Gilardoni et al. 

16. B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, A. Kirilov, “KIM - a semantic platform 
for information extraction and retrieval”, Journal of Natural Language Engineering, Vol. 
10, Issue 3-4, Sep 2004, pp. 375-392, Cambridge University Press. 

17. D. Quan, D. Huynh, and D. R. Karger, “Haystack: A Platform for Authoring End User 
Semantic Web Applications”, Proceeding of the 2nd International Semantic Web 
Conference, Florida, October 2003. 

18. “The Semantic Web Environmental Directory” http://www.swed.org.uk/swed/index.html. 
19. O. Corcho, A. Gomez-Perez, A. Lopez-Cima, V. Lopez-Garcia, and M. Suarez-Figueroa, 

“ODESeW. Automatic generation of knowledge portals for Intranets and Extranets”, The 
Semantic Web - ISWC 2003, vol. LNCS 2870, pp. 802-817, 2003. 

20. Y. Jin, S. Xu, S. Decker, and G. Wiederhold, “OntoWebber: a novel approach for 
managing data on the Web”, International Conference on Data Engineering, 2002. 

21. N. Stojanovic, A. Maedche, S. Staab, R. Studer, and Y. Sure, “SEAL - a framework for 
developing semantic portals”, Proceedings of the International Conference on Knowledge 
capture, pp. 155-162, 2001. 

22. P. Spyns, D. Oberle, R. Volz, J. Zheng, M. Jarrar, Y. Sure, R. Studer, and R. Meersman, 
“OntoWeb - a semantic Web community portal”, Fourth International Conference on 
Practical Aspects of Knowledge Management, 2002. 

23. E. Mäkelä, E. Hyvönen, S. Saarela, K. Viljanen, “OntoView - A Tool for Creating 
Semantic Web Portals”, Proceeding of the 3rd International Semantic Web Conference, 
Hiroshima, November 2004. 

24. M. Dzbor, J.B. Domingue, E. Motta, “Magpie - towards a semantic web browser”, 
Proceeding of the 2nd Intl. Semantic Web Conf., October 2003, Florida US. 

25. “Topicalla”, http://topicalla.mozdev.org/index.hml. 
26. V. Lanfranchi, F. Ciravegna, D. Petrelli: “Semantic Web-based Document: Editing and 

Browsing in AktiveDoc”, Proceedings of the 2nd European Semantic Web Conference , 
Heraklion, Greece, May 29-June 1, 2005 

27. F. Ciravegna, N. Kusmerick, S Staab, C Knoblock. “Machine learning for the Semantic 
Web” Dagstuhl workshop 13-18 February 2005, Dagstuhl, Germany. http://www.smi. 
ucd.ie/Dagstuhl-MLSW/ 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 887 – 901, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Definitions Management: A Semantics-Based Approach 
for Clinical Documentation in Healthcare Delivery 

Vipul Kashyap1, Alfredo Morales2, Tonya Hongsermeier1, and Qi Li1 

1 Clinical Informatics R&D, Partners Healthcare System, 93 Worcester St, 
Suite 201, Wellesley, MA 02481, USA 

{vkashyap1, thongsermeier, qli5}@partners.org 
2 Cerebra, 5963 La Place Court, Suite 200, Carlsbad, CA 92008, USA 

Alfredo.Morales@cerebra.com 

Abstract. Structured Clinical Documentation is a fundamental component of 
the healthcare enterprise, linking both clinical (e.g., electronic health record, 
clinical decision support) and administrative functions (e.g., evaluation and 
management coding, billing). Documentation templates have proven to be an 
effective mechanism for implementing structured clinical documentation. The 
ability to create and manage definitions, i.e., definitions management, for vari-
ous concepts such as diseases, drugs, contraindications, complications, etc. is 
crucial for creating and maintaining documentation templates in a consistent 
and cohesive manner across the organization. Definitions management involves 
the creation and management of concepts that may be a part of controlled vo-
cabularies, domain models and ontologies. In this paper, we present a real-
world implementation of a semantics-based approach to automate structured 
clinical documentation based on a description logics (DL) system for ontology 
management. In this context we will introduce the ontological underpinnings on 
which clinical documents are based, namely the domain, document and presen-
tation ontologies. We will present techniques that leverage these ontologies to 
render static and dynamic templates that contain branching logic. We will also 
evaluate the role of these ontologies in the context of managing the impact of 
definition changes on the creation and rendering of these documentation tem-
plates, and the ability to retrieve documentation templates and their instances 
precisely in a given clinical context. 

1   Introduction 

Structured Clinical Documentation is a fundamental component of the healthcare 
enterprise linking both clinical (e.g., electronic health record, clinical decision sup-
port) and administrative functions (e.g., evaluation and management coding, billing).  
At its core, Structured Clinical Documentation consists of template-based, logically 
driven instruments designed to facilitate and minimize the guesswork of coding and 
documenting information regarding a patient throughout the continuum of care. When 
well implemented in the context of the clinical workflow, these instruments can save 
clinicians’ time as well as well as assure clinical thoroughness, thus reducing the 
chance of medical errors.  

Stakeholders in basic sciences, health services and medical informatics research 
recognize the importance of information captured directly from episodes of clinical 



888 V. Kashyap et al. 

care for research, real-time decision support and patient screening for clinical trials or 
clinical syndromes [1,2]. Structured entry and reporting systems promise to meet this 
need by enabling health care providers to document clinical encounters through selec-
tion from pre-defined categories [3-6]. 

Structured entry and reporting systems are designed to enhance the process of 
clinical documentation by both presenting useful categorical concepts in a user inter-
face and capturing input from the end user though the interface as machine-readable 
data. Structured entry is achieved as the end user navigates through lists of relevant 
concepts and sets status (e.g. present/absent, etc.) or strongly typed values. The main 
objectives of these systems are: 

• Capture of raw data in a consistent and cohesive manner enabling generation and 
delivery of reminders and alerts to the point of care while providing an infrastruc-
ture for clinical research. This leads to enhancement of patient care. 

• Reduce variability in the quality and quantity of concepts recorded as part of the 
medical record. This enables research investigators to seamlessly integrate re-
search questions without impacting the clinical workflow. 

Although the benefits of structured entry and reporting systems have been well 
documented, their widespread implementation and consequent adoption has been 
limited due to the following reasons [8-11]: 

• Inefficiency, complexity and slow pace of navigating through user interfaces to 
find relevant content 

• Inflexibility for documenting unforeseen findings 
• Lack of integration with clinical applications 
• Deficiencies in both coverage by and goals of the underlying domain and docu-

ment models.  
• Lack of consistency and maintenance of documentation templates in the context 

of evolving domain and document models. 
• Decreased overall efficiency for generating complex documents. 

We present a semantics-based infrastructure that seeks to address some of the 
abovementioned issues. The ability to create and manage definitions, i.e., definitions 
management, for various concepts such as diseases, drugs, complications, etc. is cru-
cial for consistent maintenance and creation of documentation templates across the 
organization. Definitions management involves the creation and management of con-
cepts and other knowledge objects that could be components of controlled vocabular-
ies, domain models and ontologies. In this paper, we present a real world implementa-
tion of a semantics-based approach, with ontological underpinnings to automate exe-
cution and maintenance of documentation templates based on description logics (DL) 
system for ontology management. 

The ontological underpinnings of the proposed infrastructure help address issues 
related to the evolution of the underlying document and domain models. We leverage 
ontologies and semantic inferences to automate the process of generating and render-
ing complex documents and enable precise location of relevant clinical content refer-
enced in these documents. These techniques enable rendering static and dynamic 
templates that contain branching logic and manage the impact of definition changes 
on the creation and rendering of these documentation templates. 



 Definitions Management: A Semantics-Based Approach 889 

The organization of the paper is as follows. In Section 2, we present a real-world 
scenario and use case that describes an actual documentation template implemented at 
Partners HealthCare. Section 3 discusses the document and domain ontologies used in 
the system. We present and discuss the architecture of the system in Section 4. In 
Sections 5 and 6, we present the functionality of the clinical documentation system in 
the clinical and maintenance contexts. The role of semantic inference is explored in 
Section 7. Section 8 presents conclusions and future work. 

2   Use Case and Scenario 

A sample clinical documentation template being implemented at Partners HealthCare 
System is presented. It consists of a set of questions that elicit information related to 
patient state, including diseases, active medications and other important clinical in-
formation such as lab results and conditions or situations that makes a given therapy, 
treatment or procedure inadvisable (this is known as contraindications.) 

 

 
The above instrument contains a set of data collection items, each of which at-

tempts to elicit some information about the patient. It may be noted that some of the 
information might either be elicited directly from the physician and some of it may be 
populated from the Electronic Medical Record (EMR).  

The conventional approach to automate this template involves the design of tightly 
coupled structures incorporating information to be collected embedded within the 
business logic and presentation logic required to present them to the end user. Varia-
tions of this approach attempt to separate presentation logic from business logic and 
the data structures where the captured information is stored. 

PATIENT QUESTIONNAIRE 
 
1. Do you know if there any contraindications to fibric 
    acid for this patient? 
   __ Yes 
   __ No 
2.  Does this patient suffer from gallstones? 

__ Yes 
__ No 

3.  What is the AST Value for this patient? 
   ______ mg/ml? 
4. Which of the following range of values does the AST 
    values for this patient apply to? 
   _ < X 
   _ [X,Y] 
   _ [Y,Z] 
   _ > Z 
5. Are the liver panel values more than the normal value 
    for this patient? 
   __ Yes 
   __ No 
6. If the answer to Question 5 is Yes, then the liver 
    panel values are: 
   __ 2 x Normal    



890 V. Kashyap et al. 

Adopting either approach poses significant challenges. The maintainability and ex-
tensibility of the resulting documentation template may require significant additional 
investment as changes in the information requirements occur along with changes in 
presentation and business logic requirements. A different approach, based on the 
composition of the underlying information and domain knowledge models based on 
their underlying semantics, is needed to facilitate the development and delivery of 
documentation templates as adaptive knowledge assets.  If we adopt the above ap-
proach to defining and creating a template, the following observations can be made: 

• A distinction needs to be made between the questions being asked and the in-
formation about which the enquiry is being made. For instance, in Question 1, 
there is a distinction between contraindication to fibric acid as opposed to does 
this patient have contraindication to fibric acid? 

• The values displayed as potential answers to a question may not cover all the 
possible values associated with an information item. For instance, in Question 4, 
the values displayed as potential responses for AST may not cover all potential 
values of AST observed in practice. This template may be intended for a special-
ized subset of patients, which could be reflected in the potential choices avail-
able. 

• Most questions on the template are related to some attributes of the patient state. 
For instance, various questions in the questionnaire refer to contraindications, 
clinical conditions (suffer), clinical laboratory tests (AST, Liver Panel) 

• There is branching logic embedded in this questionnaire. For instance, Question 6 
becomes relevant only when the answer to Question 5 is Yes. This is just a simple 
example. In general there might be complicated patterns for branching logic that 
might be represented as a graph or a tree structure. 

• Some of the information being discussed in the question might be composite in 
structure. For instance, the information item, Liver Panel in Question 5 consists 
of a set of laboratory tests that are used to determine the liver condition of a pa-
tient 

• Some of the values displayed as potential answers to the questions may be de-
rived from the actual values. For instance in Question 6, the answers are based on 
the normal AST (e.g., 2 x Normal), where normal describes the range of values 
for that given laboratory test that are considered within the norm. These values 
may either be derived via statistical processes or stored as default values associ-
ated with the information item. The latter is typically the case in biomedical in-
formation systems such as an EMR 

• Some of the answers to a question might be intervals of values. This is illustrated 
in Question 4 

The observations above suggest a need to delineate between information related to 
the document template (questions, attributes, values) and information related to the 
biomedical concepts referred to in the documentation template. This helps us identify 
the two types of ontologies, viz. document and domain ontologies that underpin the 
system. Functionality needed to enable presentation and rendering of templates can 
now be specified in terms of operations on the underlying ontologies. In the next 
section, we illustrate these two types of ontologies represented using OWL-DL ex-
pressions that were constructed using the Cerebra Construct workbench. 



 Definitions Management: A Semantics-Based Approach 891 

3    Ontological Underpinnings 

The content and structure of a documentation template can be decomposed and mod-
eled using three types of ontologies: 

Document Ontologies: Documentation aspects of the template, such as the data col-
lection item, the questions being asked, the properties about the patient state about 
which the question is being asked, the set of proposed responses are modeled using 
document ontologies. These ontologies conform to a document template meta-model 
that determines the composition and the logical organization of a document template, 
and may be viewed as a container framework where biomedical knowledge is referred 
to and accessed while presenting the template to a physician in the context of a clini-
cal encounter. Fig. 1. illustrates the representation of the documentation template 
presented in the previous section as a document ontology. This representation was 
made using Cerebra Construct, a MS Vision add-on that allows modeling of ontolo-
gies following a visual paradigm producing OWL-DL as output. In the example, the 
document template ontology consists of a concept Document corresponding to the 
template. The Document concept contains concepts such as “Section” which contains 
concepts related to each of the questions such as Known Contraindications to Fibric 
Acid?, Known Gallstones History?, etc. Each of these questions contains references to 
biomedical concepts such as FibricAcidContraindication, Patient, etc. 

 

Fig. 1. Sample Documentation Template Ontology as Represented in Cerebra Construct 

Domain Ontologies: Biomedical knowledge referenced in the documentation tem-
plate is modeled using domain specific ontologies. This description will include con-
cepts that may have their origin in controlled vocabularies, e.g., SNOMED CT [16], 
LOINC [17], ICD-9-CM[18], complex concepts that may arise from their combina-



892 V. Kashyap et al. 

tion following a logical prescription, relationships among those concepts as well as 
restrictions over the concepts imposed by characterizations of their attributes and the 
values that they may assume. The concepts, restrictions and attributes modeled in the 
use case are represented in Fig. 2. 

 

Fig. 2. Representation of Domain Ontology for Sample Documentation Template 

• Patient: This refers to the subject  of the documentation template which is a  
patient. The questions in the questionnaire refer to the properties of patient state, 
such as has_contraindication, which specifies a patient’s contraindications to 
drugs and therapies; suffers_from, which specifies a patient’s conditions or 
problems; has_AST_value, a data type property that specifies the results of an 
AST test on the patient; has_liver_panel, which specifies liver panel values of a  
patient. 

• Contraindications: This refers to a set of contraindications 
• Fibric_Acid: This refers to the compound Fibric Acid 



 Definitions Management: A Semantics-Based Approach 893 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Composition Ontology 

• Fibric_Acid_Contraindication: This refers to a subclass of contraindications 
that deal with Contraindication to Fibric Acid and can be defined as: 

  Fibric_Acid_Contraindication ⊆   
                ∀has_liver_panel.AbnormalLiverPanel ∩   
                                     ∀suffers_from. Fibric_Acid_Allergy 

• Gallstones: This refers to the concept Gallstones 
• AST_Value: This is a datatype which refers to a range of valid AST values.  

Cerebra Server provides a mechanism to define ranges as restrictions based on 
values of the datatype. 

• Liver_Panel: This is a composite concept that is a cross product (intersection) of 
the concepts, ASTValue, ALTValue, AlkalinePhosphateValue, TotalBilirubin-
Value. The DL expression for LiverPanel can be given as: 

    LiverPanel ⊆ ∀has_AST_value.ASTValue ∩ ∀has_ALT_value.ALTValue ∩ 
                 ∀has_AP_value.AlkalinePhosphateValue ∩  
                 ∀has_TB_value.TotalBilirubinValue 

Composition Ontologies: Constitute a set of inter-ontology articulations between 
elements in the document ontology and domain ontologies. These articulations cap-
ture the association between a documentation template and the domain knowledge it 
contains. Fig. 3. presents the inter-ontology articulations between the document on-
tology and the domain ontology for the sample documentation template. 

4   Architecture 

The architectural components of the clinical documentation engine being imple-
mented at Partners HealthCare are presented in Fig. 4. 



894 V. Kashyap et al. 

Fig. 4. Clinical Documentation System Architecture 

• Client/Editor: User interfaces are needed in tow contexts. In the transactional or 
execution context, the clinician will enter data into the documentation template. 
In the maintenance context, the knowledge engineer will make editorial changes 
to the underlying ontologies and templates.  

• Rendering Engine: The rendering engine acts as a presentation logic layer. It 
consumes the data collection items presented to it by the event broker compo-
nent, applies style sheet templates and presents them to the user interface. 

• Event Broker: The event broker implements a blackboard architecture where it 
receives a stream of data collection items and decides based on appropriate crite-
ria whether the data collection item needs to be processed by the DL Engine or 
the Rules Engine. When the event broker receives a patient id it is forwarded to 
appropriately components to retrieve an initial set of data collection items. 

• DL Engine: This component processes OWL-DL based ontologies and provides 
inferencing capabilities in the execution and maintenance contexts. The DL en-
gine computes potential responses for questions associated with data collection 
items and identifies redundant questions in the context of interactions between 
the clinician and the documentation system. In the maintenance context, the DL 
engine interacts with the Ontology Management Server when the domain 
and/or document ontologies change, and checks for contradictions and equiva-
lences. The DL engine is implemented by the Cerebra Server. 

• Rules Engine: DL engines cannot reason with spatio-temporal information 
required by some documentation templates. In these cases, the event broker 
invokes the rules engine to perform the appropriate computations. In the main-
tenance context, DL engines and Rule engines interact with each other to ad-
dress changes in ontology and the resulting changes in rule bases (and vice 
versa).  

 

CLIENT RENDERING 
  ENGINE 

EVENT BROKER 
 

 CEREBRA SERVER 
(DL ENGINE) 

RULE 
ENGINE 

CEREBRA 
ONTOLOGY 

REPOSITORY 
(Ontology Management 

Server) 

    ONTOLOGY STORAGE 

EDITOR 



 Definitions Management: A Semantics-Based Approach 895 

• Ontology Management Server: The ontology management server manages 
changes in the domain and document ontologies in the maintenance context. It 
propagates the impact of changes in the domain ontology to the document ontol-
ogy. It invokes the DL engine to check whether the changes introduced are con-
sistent, and to identify new contradictions and equivalences that might surface.  

• Ontology Storage: This is the repository which stores the ontologies and in-
stances and might be implemented in a relational database management system. 

5   The Execution Context: Rendering and Instantiation of 
Documentation Templates 

Documentation templates become alive or are “played” in the execution context, i.e. 
when a clinician enters data in a documentation template in the context of a clinical 
encounter with a patient. We assume that the clinician enters the patient id and the 
documentation system retrieves the appropriate template(s). The DL engine may be 
invoked to determine the relevant template(s) to be displayed to the clinician. Each 
new data collection item in the documentation template is viewed as an event, which 
triggers various computational processes.  

 

Fig. 5. The Event processing framework 

The event processing framework is illustrated in Fig. 5. The workflow provides a 
mechanism to define how a documentation template will be presented to a clinician at 
the point of care. It will also evaluate at execution time whether inconsistencies have 
arisen. These would be communicated to the knowledge engineer, who would address 
them in maintenance mode. 



896 V. Kashyap et al. 

6   The Maintenance Context: Tracking and Maintenance of 
Domain and Document Ontologies 

In this section, we discuss scenarios related to changes in the definition of domain 
ontology concept by a knowledge engineer. The ontology management server en-
ables propagation of changes in the domain ontology elements to the relevant docu-
ment ontology elements as illustrated in the taxonomy in Fig. 6.  The possible scenar-
ios in which a knowledge engineer may be notified are: 

 

Fig. 6. Taxonomy of Changes in Domain and Document Ontologies 

Change in concept definitions: A concept could appear as the domain or range of an 
attribute (associated with a question) in the document ontology.  The knowledge en-
gineer is notified about the relevant attributes and values of a data collection item that 
are potentially impacted. Potential changes in the domain ontology that can result in 
changing concept definitions are: adding/removing a restriction on a property, add-
ing/removing of properties and addition of concepts to a definition.  For example, one 
may redefine the concept Patient as SeverelyIllPatient by adding a property  
severity-level with the restriction that it has a value “high”. 

Patient changes to Patient ∩ ∀severity-level.{“high”} 

Consider another example, where one may redefine the concept Contraindication-
ToFibricAcid as a disjunction of AbnormalAST and AbnormalALT. i.e., 

ContraindicationToFibricAcid ≡ AbnormalAST  
changes to ContraindicationToFibricAcid  ≡ AbnormalAST ∪  AbnormalALT 



 Definitions Management: A Semantics-Based Approach 897 

Change in property definitions: A property typically appears as an attribute of a 
data collection item on which a question is posed.  The knowledge engineer is notified 
of the questions impacted by this change. A definition can be changed by changing 
either its domain, range or cardinality. In each case the knowledge engineer should 
check that the domain and range associated with the relevant data collection items are 
consistent with the change. For example if the definition of the concept Patient is 
changed to FemalePatient, i.e., Patient changes to Patient ∩ Female, all the 
properties of FemalePatient, that appear in a data collection item are flagged and the 
knowledge engineer is notified. If the cardinality of a property changes from ≤ 1 to ≥ 
1, then the user interface for a data collection item may need to be changed from a 
single select to multi-select. 

Change in datatype definitions: Datatype definitions are represented using XML 
schema types and can be changed by changing the range of values associated with it. 
For example the value of normal LDL may be changed from < 100 to < 70. The data 
collection items where these datatypes appear as values are flagged and the knowl-
edge engineer is notified. 

7   The Role of Semantic Inferences 

We now illustrate with examples, the role of semantic inferences in the execution and 
maintenance contexts. 

Semantic Inferences in the Execution Context: The ability to retrieve relevant 
documentation templates based on properties of the patient state. Templates for pa-
tients suffering from Diabetes can be retrieved by performing the following inference:  

TBox  Patient ∩ ∃suffers-from.Diabetes ≡ D ? 

where D is the information domain associated with a documentation template. 
The ability to determine redundant questions based on a user response. For in-

stance, if a patient has a contraindication to fibric acid, the question that seeks infor-
mation on whether a patient suffers from gallstones becomes redundant. This redun-
dancy can be identified by performing the following inference.  

TBox  ∀suffers-from.Gallstones ⊆  
                     ∀has-contraindication.FibricAcidContraindication ? 

The ability to determine whether a question needs to be displayed based on the re-
sponses to earlier questions. Consider a patient P1 for which some state properties are 
known. For question 6 (from the instrument) to be rendered, the answer to question 5 
should be yes, i.e., the following statement should be satisfiable: 

ABox  P1 ∈ Patient ∩ ∀has-liver-panel.AbnormalLiverPanel ? 

Semantic Inferences in the Maintenance Context: Whenever concept definitions in 
the domain ontology change, semantic inferences can be performed to enable: 

Checking for consistency and contradictions: The DL engine checks whether the 
changes are consistent or whether they give rise to contradictions. For instance, clini-
cal evidence may suggest that abnormal AST values are not possible in the presence 



898 V. Kashyap et al. 

of abnormal ATL values. This may result in the following constraint being added to 
the TBox with the following inference: 

ASTValue ∩ ATLValue  φ,TBox  AbnormalLiverPanel  φ 

This will have an impact on question 5 in the questionnaire as this will never have a 
valid response. The Knowledge Engineer will be notified of this possibility 

Checking for equivalences: In this scenario, the DL engine checks whether the 
changes introduce new equivalences. For example, consider the following definition 
of FibricAcidContraindication: 

FibricAcidContraindication ≡ 
∃has_liver_panel.AbnormalLiverPanel ∩ ∃suffers_from.Fibric_Acid_Allergy 

Suppose the definition of FibricAcidContraindication changes to:  

FibricAcidContraindication’ ≡ ∃has_liver_panel.AbnormalLiverPanel 

This creates a new equivalence which can be used by the DL engine to infer the-
equivalence of questions 1 and 5, thus making one of them redundant, as follows: 

TBox  Patient ∩ ∃has-contraindication.FibricAcidContraindication  
             ≡ Patient ∩ ∃has_liver_panel.AbnormalLiverPanel 

Identifying concept differences:  Whenever a concept definition changes, the DL 
engine can identify the conceptual difference between the two versions of the concept 
and present the changes to the knowledge engineer. In the example given above, the 
knowledge engineer will be notified of the following conceptual difference: 

TBox   FibricAcidContraindication’ ∩ ∃suffers_from.Fibric_Acid_Allergy 
 FibricAcidContraindication 

Datatype reasoning: Whenever the definition of a data type, e.g., AbnormalASTval-
ues changes, the DL engine can identify potential impacts, including contradictions 
this can introduce. For instance changing of normal ASTValues from [5,25] to [10, 30] 
would change the definition of normal LiverPanelValues which will affect the re-
sponses to Questions 5 and 6. These changes will be propagated and the Knowledge 
Engineer notified. 

8   Conclusions and Future Work 

Clinical documentation templates are an intrinsic part of the process of care in modern 
medicine and constitute one of the most valuable tools for providing both episodic 
and preventive care. Mainstream implementations of an electronic documentation 
template system normally involve representing and storing these ontological concepts 
and their relationships as fix structures in relational databases or XML stores, expos-
ing them through a middleware layer of enterprise objects (.Net components or EJBs) 
which functionality would be presented to the end user via a framework of dynami-
cally generated user interfaces. 

The approach afore mentioned is intractable over time, as it will require continuous 
refactoring of enterprise objects and support for specialized data structures to handle 



 Definitions Management: A Semantics-Based Approach 899 

dynamic knowledge evolution. This will translate to a high cost of ownership and 
jeopardize their long term viability. In order to cope with the rapid change of knowl-
edge in medicine and its effect on biomedical concepts as illustrated in Sections 6 and 
7, technology and techniques are needed that enable model-based dependency propa-
gation and semantic inferences which are not currently supported by various middle-
ware platforms and relational databases.  

We have presented a model-based composition method for representing and deliv-
ering documentation templates to the point of care. This provides the foundation to 
define an infrastructure for creation and maintenance of documentation templates, 
clinical rules and other knowledge assets. Separation of the document model and the 
domain knowledge is the key architectural design, the adoption of which is expected 
to enable operational efficiencies at Partners HealthCare System. It is also anticipated 
that the cost of maintaining clinical documentation templates will be reduced over 
time generating more return on investment. This is expected to have a positive impact 
on the ability of the clinician to identify and complete patient relevant documentation 
in a streamlined manner.  

We also introduce a reference semantics-based architecture with ontological un-
derpinnings. The associated ontology management and inferencing capabilities are 
mechanisms that will enable Partners Healthcare to deliver adaptable documentation 
templates. These templates will be instantiated based on patient-state based classifica-
tion. Semantics also provides a mechanism to manage the implications of knowledge 
change over time, including identification of inconsistencies, equivalences and redun-
dancies that may arise as domain and document ontologies evolve.  

It is expected that the modeling approach and implemented architecture, will en-
able adoption of a scalable, long term solution that integrates seamlessly with the 
overall knowledge management efforts in progress. This will enable enhancement of 
documentation templates beyond information gathering nature into a knowledge ex-
ploration and delivery mechanism. 

A critical requirement for semantics and model based approaches is the availability 
of semantically rich knowledge that is loaded into the DL engine. Requirements re-
lated to clinical documentation will be analyzed and the set of biomedical terminol-
ogies and information models that will be identified. The following have been ear-
marked [14] as a starting set of standards that would constitute the foundational vo-
cabularies and models. These will be represented in the OWL-DL format and pre-
loaded into the DL engine for their use as descriptions of domain knowledge con-
cepts. These standards are: 

1. Health Level 7 (HL7) reference framework [15] for structuring and representing 
clinical information such as demographic information, clinical encounters, obser-
vations, diagnosis  

2. The College of American Pathologists Systematized Nomenclature of Medicine 
Clinical Terms (SNOMED CT) [16] for anatomical descriptions, diagnosis 
documentation, descriptions of interventions and procedures. 

3. Laboratory Logical Observation Identifier Name Codes (LOINC) [17] to stan-
dardize the electronic exchange of laboratory test orders and drug label section 
headers. 

4. A set of federal terminologies related to medications, including the Food and 
Drug Administration’s names and codes for ingredients, manufactured dosage 



900 V. Kashyap et al. 

forms, drug products and medication packages, the National Library of Medi-
cine’s RxNORM [19] for describing clinical drugs, and the Veterans Administra-
tion’s National Drug File Reference Terminology (NDF-RT) for specific drug 
classifications. 

5. The Human Gene Nomenclature (HUGN) [20] for exchanging information re-
garding the role of genes in biomedical research in the federal health sector. 

6. The Environmental Protection Agency’s Substance Registry System [21] for non-
medicinal chemicals of importance to health care. 

The work described in the paper is an ongoing implementation of a definitions man-
agement infrastructure for clinical decision support at Partners HealthCare System. 
Some future initiatives we are looking at are: 

• The use of rule-based approaches to capture knowledge not expressible within 
current DL-based systems 

• The integration of the ontology management server with a content management 
server for a managing the lifecycle of models and ontologies. 

• The integration of the rules engine with a content management server for managing 
the lifecycles of rules in conjunction with their associated models and ontologies. 

• Explore the use of description logics that support inferences on spatial and tem-
poral relationships. 

References 

1. Committee on Quality of Health Care in America: Using Information Technology. Cross-
ing the Quality Chasm: A New Health System for the 21st Century. Washington, D.C.: 
IOM; 2001 

2. Committee on Improving the Patient Record. The Computer-Based Patient Record: An Es-
sential Technology for Health Care, 2 ed. Washington, DC: ION; 1991 

3. Yoder JW, Schultz DF, Williams BT. The MEDIGATE graphical user interface for entry 
of physical findings: Design principles and implementation. Medical Examination Direct 
Iconic and Graphic Augmented Text Entry System. J Med Syst 1998;22(5):325-37. 

4. Stead WW, Brame RG, Hammond WE, Jelovsek FR, Estes EH, Parker RT. A computer-
ized obstetric medical record. Obstet Gynecol 1977;49(4):502-9. 

5. Slack WV, Hicks GP, Reed CE, Van Cura LJ. A computer based medical-history system. 
N Engl J Med 1966;274(4):194-8. 

6. Johnson KB, Cowan J. Clictate: a computer-based documentation tool for guideline-based 
care. J Med Syst 2002;26(1):47-60. 

7. Kahn CE, Jr. Self-documenting structured reports using open information standards. 
Medinfo 1998;9(Pt 1):403-7. 

8. McDonald CJ. The barriers to electronic medical record systems and how to overcome 
them. J Am Med Inform Assoc 1997;4(3):213-21. 

9. Lum F, Schein O, Schachat AP, Abbott RL, Hoskins HD, Jr., Steinberg EP. Initial two 
years of experience with the AAO National Eyecare Outcomes Network (NEON) cataract 
surgery database. Ophthalmology 2000;107(4):691-7. 

10. Poon AD, Fagan LM, Shortliffe EH. The PEN-Ivory project: exploring user-interface de-
sign for the selection of items from large controlled vocabularies of medicine.J AmMed In-
form Assoc 1996;3(2):168-83. 



 Definitions Management: A Semantics-Based Approach 901 

11. Rosenbloom ST,  Kiepek W, Belletti J, Adams P, Shuxteau K, Johnson KB, Elkin PL, 
Shultz EK. Generating Complex Clinical Documents using Structured Entry and Report-
ing. Medinfo 2004. 

12. Goldberg H, Morales A, McMillan D, Quinlan M. An Ontology-Driven Application to 
Improve the Prescription of Educational Resources to Parents of Premature Infants. EON 
2003 

13. Goldberg H, Morales A. Improving information prescription to parents of premature in-
fants through an OWL-based knowledge mediator. Medinfo 2004;11(Pt 1):361-5. 

14. Presidential Initiative on Consolidated Health Informatics, http://www.whitehouse.gov/ 
omb/egov/c-3-6-chi.html  

15. Health Level 7, http://www.hl7.org  
16. Snomed International, http://www.snomed.org  
17. LOINC, http://www.regenstrief.org/loinc 
18. International Classification of Diseases, Nine Revision, Clinical Modification – ICD-9-

CM, http://www.cdc.gov/nchs/about/otheract/icd9/abticd9.htm 
19. RxNORM, http://www.nlm.nih.gov/research/umls/rxnorm_main.html 
20. HUGO Gene Nomenclature Committee, http://www.gene.ucl.ac.uk/nomenclature  
21. EPA Substance Registry System, http://www.epa.gov/srs  



Ubiquitous Service Finder
Discovery of Services Semantically Derived from

Metadata in Ubiquitous Computing

Takahiro Kawamura1, Kouji Ueno1, Shinichi Nagano1,
Tetsuo Hasegawa1, and Akihiko Ohsuga1

Research and Development Center, Toshiba Corp.

Abstract. Metadata have been already given to most of the data and
objects in the real world, such as books, foods, digital contents like movie,
electric devices, and so forth. Further, they can be accumulated electron-
ically by barcodes and RFIDs, which is expected to spread explosively
in 2005. On the other hand, web services are getting popular in the
internet, and UPnP services and ECHONET are penetrating into the
home network. In our project, we propose a new handheld application
called Ubiquitous Service Finder, in which user can intuitively browse as
icons the metadata around him/her in a cellular phone, then invoke the
services semantically related to the metadata by simple drag and drop
operation.

1 Introduction

Objects and data are everywhere in the world, then most of them have their
own descriptions, metadata. For example, industrial products have names and
dates of manufacture and model numbers, and foods have production places
and producers. As the already disseminated standards, there are EAN and UPC
for barcodes, EPG for movie data, and ID3 for music data. Further, in near
future RFIDs will lead to add PML and/or ucode to the products. Since food
safety and recalls are common concerns these days, situations that people would
need refer to such information will increase. On the other hand, there are lots of
services and information in the internet, which can be related and used with such
information. For example, manufacturers are providing their product catalog
search service, and some public agencies are putting food safety information on
the web. Further, map services, news search, and banking services, etc. became
already quite popular. As their standards, there are RSS, FOAF, PICS, P3P
for some kinds of web pages, and WSDL, OWL-S and WSMO for web services
and their annotations. Services are not only in the internet, but also in the
home network according to dissemination of home information appliances. For
example, play and record functions of latest HDD recorders, temperature control
functions of air conditioners, and surveillance cameras can be accessible via
LAN. As their common standards, there are CC/PP for device profiles, UPnP
and DLNA mainly for digital audiovisual players, and ECHONET for white

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 902–915, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Ubiquitous Service Finder Discovery of Services 903

goods. Furthermore, the standards like RTMiddleware and RSi is now under
consideration for coordination among home robots via the network near future.

That is, metadata and services are flooding around us, nevertheless, there
is no simple and direct access method to them. You may have the following
experiments: at inventory clearance users always need turn their PCs upside
down to take a memo of small but long catalog numbers, and at stores need
check tiny and illegible information on some food packages. Besides, you have
no way to search the related information on the web at that moment. You first
have to go home, and have a chair in front of your PC, then type that information
by hand. In addition, we believe ubiquitous computing which is a product space
of pervasive and mobile has two essentials: people can use the same services
everywhere, and people can use the pinpoint services depending on that time
and location.

Therefore, we have developed Ubiquitous Service Finder (USF) to provide
the simple and direct access to ubiquitous metadata and services in a way of
combining both essentials. Here, we took a cellular phone as a target device
because of its ownership rate and adherence of younger people to bring it into
their beds. Then, as the most intuitive and friendly interface for the people, we
took an interface to represent metadata and services as icons. USF allows the
user to browse a large variety of metadata and services surrounding him/her,
and to invoke the services by icon-click and drag&drop operation. So that in
cases that what specification does this PC have?, what songs are inside of this
CD?, and when is the expiration date of this meat?, etc., you can just hold up
your phone to them, and get displayed the objects as icons. Then, by simply
clicking it you can see the content of their metadata, and store them locally.
The user has no need to turn over something and take a memo by a pen. In
addition to that, services in the internet and provided by the home information
appliances are also displayed as icons in the phone, Then, by drag&dropping
an object icon to a service icon you can just assign the metadata to the service
inputs, and invoke it. The user has no need to start up your PC and type the
keyboard.

In the rest of this paper, section 2 shows USF architecture and technical
points inside, and section 3 illustrates three of typical usecases for USF. Then,
we locate USF in the current ubiquitous computing research in section 4, and
discuss the related activities in section 5. Finally, our status and future plan are
summarized in section 6.

2 Proposal of Ubiquitous Service Finder

2.1 Architecture

In this paper, we have assumptions that metadata for the industrial products
and foods can be looked up electronically, and web services in the internet and
UPnP services in the office and home network can be accessed.

USF shown in fig. 1 is an application to coordinate those metadata with any of
services. In this figure, you can see several kinds of icons which are corresponding



904 T. Kawamura et al.

Fig. 1. Snapshot

to the real objects, data, and services. Note that the cellular phone is equipped
with a touch panel as the screen.

Further, fig. 2 shows the internal architecture. Here we took SOA (Service
Oriented Architecture) as our fundamental design, then services mean not only
web and UPnP services, but also object and data (movie, music, photos, etc.)
which only have outputs such as metadata and data themselves. In the following,
we describe some of components in USF architecture.

WA2WS Getaway transforms web applications likes cgis to web services, which
have WSDL interfaces to be published and are accessible via SOAP. The
detailed description can be found in [1]. Also, Annotator which is under
development suggests the related ontology classes to the service. The user
can just select some of them to make it semantic web service.

UPnP2WS Getaway is another gateway to transform UPnP services to web
services, which is combined with UPnP Control Point (hub to manage UPnP
devices), and automatically finds UPnP services within a sub-domain, then
publishes them as web services accessible via SOAP to User Agent below.

User Agent is assumed to be in a home server (or its corresponding PC) in
the home, and/or in a PC for personal use in the office. It gets metadata
corresponding to tag ids detected by RFID readers from Metadata DB, and
shows them as icons on the following USF device, as well as the available
services in the internet and the home network. Then, according to the user’s



Ubiquitous Service Finder Discovery of Services 905

Fig. 2. USF Architecture

operation on USF device, it returns the content of metadata to USF de-
vice, and/or invokes web/UPnP services. User Agent includes a scripting
system for sophisticated service flows, then if the user has some experiment
on programming it is possible to add the user’s own customization and batch
processes. Further, Metadata Matching Engine described in the next section
is included in User Agent.

Fig. 3. Icons in USF



906 T. Kawamura et al.

Metadata DB stores several kinds of metadata, and Ontology DB has a set of
ontologies to find the related services to the metadata.

USF in the narrow sense is a Java application running on cellular phones, which
displays the icons representing the objects, data, and services based on the
information sent by User Agent. The user can check the metadata and invoke
the services by familiar icon operations. Figure 3 lists the icons which can
be seen on USF. Section 3 illustrates how to use those icons.

2.2 Metadata Matching Engine

In terms of HCI aspect, USF is characterized by its icon abstraction of objects,
data and services in the real world, then by reflecting them on the mobile de-
vice giving the intuitive and familiar feeling as desktop PCs to the user in the
ubiquitous computing environment. However, as you would easily imagine this
approach has drawbacks that lots of icons flood in the small display, then it is
confusing which metadata can be combined with which services. Also, the sim-
ple click and drag&drop operations do not have enough expressiveness to specify
which value in the metadata to be inputted to which argument in the service if
that service needs more than one inputs. Therefore, we have developed Metadata
Matching Engine (MME) to the above problems, which calculates the relation-
ship between metadata and services, then proposes the possible combinations.
To this end, it has ontology (precisely, more like taxonomy) including 160,000
concepts, and semantic service matchmaker[2,3]. The following sections shows
the feature of metadata matching.

Mapping from Metadata to Ontology. First of all, MME parses the target
metadata, and by comparison with ontologies stored in DB retrieves a meaning
(concept in DL sense) corresponding to each property in the metadata, such as
producer, production place, expiration date, and so forth. For now metadata have
several formats, and are under standardization by each industrial segment or or-
ganization. So that metadata parsers must be developed for each format, how-
ever, most of metadata have essentially tuple form where property and value(s)
are pairwised. Thus, MME takes the property and compares it to the concepts in
the ontologies. Ontology is a set of concepts that defines a domain with their prop-
erties and the relations between them. We currently have so-called lightweight
ontologies, in the sense that they have no complicated relation and philosophi-
cal deliberation, but a huge number of concepts with some simple relations. Base
on those ontologies, MME finds out the semantically corresponding concept to the
property using regular expression technique and schema mappings. But, the prop-
erties defined in metadata are not arbitrary names, it is a set defined in advance.
So in practice we are able to prepare most of mappings between a property and a
concept. Then, since USF handles the objects and data as services, the concepts
included in those metadata become the outputs of those services.

Discovery of theRelatedServices As the next step, MME searches on services
which can be used with the metadata. The services must be annotated as semantic

.



Ubiquitous Service Finder Discovery of Services 907

web services[4] in advance. Semantic web services is an attempt of putting meta-
data referring ontology to web services and their exploitation for service discovery
and composition. Currently, we transformed 50 kinds of web applications to web
services by WA2WS Gateway, and annotated them as semantic web services for
this project. We hope to have publicly accessible semantic web services in the in-
ternet near future. In the above semantic web services, service description language
OWL-S[5] assigns any of concepts to a category and each input/output, etc. Thus,
MME calculates the relationship between the concepts returned from metadata in
the previous section and the concepts assigned to the services. Since the ontology is
definedbased onDescriptionLogic,MMEchecks to see if there is a relation like sub-
sumption, unionbetween those concepts.Wedeveloped aweb servicesmatchmaker
to find the similar services based on ontology[2,3], so here extended it to metadata
for objects, data and UPnP services. In practice, MME firstly determines whether
there is a certain degree of similarity between the most representative concept of
the metadata and the concept for the service category. Secondly, it checks if all of
the concepts for the service inputs can be supplied by any of the output concepts
in the metadata. That is, the service discovery has two-step approach with a class
hierarchy of service categories and IO Type matching. Then, if a service which can
take the outputs of the metadata as inputs is found, the next service which can take
the outputs of the service as inputs will be searched. After repeating this process
a certain times, a sequence of possible combinations of services can be found. USF
will show this sequence as a directed link of icons highlighted with red arrows to the
user. This behavior means a kind of simple reactive planning where the services
descriptions are operators. If there are more than one operator to be connected,
MME sorts the possible candidates according to distance of the concepts and cer-
tainty calculated from user contexts below. If the user does not like the proposed
combination, he/she can get the next combination displayed. Note that MME is
just suggesting the possible combinations by planning once or several times, and
the service invocation is not automatic. It will be done by the user’s drag&drop
operation of the first icon to one of the icons on the directed link. After that, User
Agent will pass the values corresponding to the properties (concepts) in the meta-
data to the service, and the output values of the service to the next service for the
sequential service invocation. We will show some examples in section 3.

Further, USF also allows the user to make service flows in advance as script
programs. In our first observation we thought it had a limit to define in advance
the service flows with specific service bindings, because there would be tons
of services in the internet and the information appliances vary in each home.
Therefore, we have developed MME to automatically suggest the combinations
of services based on semantics. However, as an intermediate way we are now
providing so-called latebinding scripts, where abstract services can be defined in
the flow without specific bindings, and at the runtime the services to be invoked
will be searched. The abstract services have OWL-S, and the above matchmaker
searches for the possible services to invoke. The user can describe his/her own
script, and User Agent will execute it.



908 T. Kawamura et al.

3 Usecases

As described in section 1, USF has been developed for the purpose of providing
an intuitive accessesor to metadata of objects and data around us and services
in the inter/home network. In this section, we introduce 3 useful cases: firstly
the user browses metadata bound to the physical objects, secondly the user
simply invokes a service with the data, lastly the user gets MME suggested a
service sequence from metadata and executes the service sequence. Further, we
summarize other features in USF.

3.1 Usecase 1: Metadata Scouter

Firstly, we show the simplest example that the user browses metadata surround-
ing him/her via USF (fig. 4(a)). In this example, we use RFIDs to find the
objects near the user carrying USF. There are already some mobile devices
attached with RFID readers, such as Ubiquitous Communicator[6], a cellular
phone[7]. Although we expect USF will be ported to those devices near future,
the current implementation is a simple but versatile one where a Java-enabled
cellular phone has a RFID in the back. RFID readers are connected to a PC

Fig. 4. Usecases



Ubiquitous Service Finder Discovery of Services 909

running User Agent, and controlled by the Agent. If User Agent detects the tag
id assigned to the cellular phone, it determines other ids detected by the same
reader as the user’s neighborhood, and get icons corresponding the ids displayed
on USF application in the phone.

For instance, when the user goes into the kitchen with USF, a tag attached to a
beef pack bought at a store is detected, and a beef icon will appear on USF. Then,
if the user clicks on the icon, User Agent accesses the metadata DB with the tag
id to get the description about the cow’s birth place and the expiration date, etc.
and get that text information displayed on the user’s USF. For the other use, it
is useful for checking the specification of PCs and electronic equipment purchased
some time ago, or for copying metadata of books and DVDs in the real shops into
USF, then comparing their prices with the net shops in the home 1.

3.2 Usecase 2: Ubiquitous Remote

As the next step to just browsing metadata, the user will want to pour the infor-
mation into any service, and invoke it. In this section, we show an example that
the user operates home appliances with USF (fig. 4(b)). It is possible for USF to
handle not only metadata for the real object, but also ones for electric data 2. For
example, if movie or music data are stored at a file server and they are accessible
from User Agent, those icons will appear on USF. Also, if web and UPnP services
are accessible from User Agent, those will appear as icons on USF. In practice,
since UPnP services are available within a sub-domain, the accessible services are
UPnP services detected by an UPnP Control Point in that sub-domain and web
services in the internet. UPnP2WS Gateway also has the Control Point function as
mentioned before. So if User Agent determines from the information of the RFID
reader that the user who has USF is approaching a sub-domain, UPnP services
detected by UPnP2WS Gateway will appear on USF.

For instance, when the user goes into the living room, movie data stored at
a file server in the home network and a replay service provided by an UPnP-
compliant HDD recorder will appear on USF. Then, if the user drag&drops a
movie icon to the replay service icon, the actual movie is played by the HDD
recorder. Further, if the user retires to his/her room, USF will show another
playable service like a PC in the room, and the icon for the HDD recorder in the
living room will disappear. Then, if the user drag&drops the movie icon to the
new playable service, this time the movie is played by his/her PC 3.
1 Note that there is an assumption here that the RFID tags are still active after pur-

chases, and the tag information mainly annotated for SCM (Supply Chain Manage-
ment) by manufacturers or distributors can be accessible from consumers. However,
barcode DBs like UPC or EAN are accessible in fact.

2 Needless to say, they are the metadata in its literal meaning. In this paper, we call
explanatory data for the real object also as metadata.

3 In the current implementation, the actual movie data is copied by User Agent and di-
rectly sent to the playable service which is published as an UPnP service. If DLNA[8]
will disseminate in the digital audiovisual appliances near future, streaming would
also be possible.



910 T. Kawamura et al.

3.3 Usecase 3: Service Finder

The above two cases illustrated introduction of USF as a browser and a remote.
However, as the number of icons increase, the icons flood in the display of USF
and the user will be confused the possible combination of the icons. Further, in
the previous example data themselves were inputted into a service, but meta-
data can also be inputted to a service. In that case, the user needs to indicate
which property of the metadata is inputted to which argument for service in-
puts. Therefore, the above mentioned Metadata Matching Engine will become
necessary. In the followings, we illustrate: discovery and invocation of web ser-
vices, coordination of web services and services provided by home appliances,
and interactive combination of data and services.

In the previous example, the user intuitively found the combination of the
movie data and the playable service, but it would not be so easy to find which
service is combined with the beef icon. In such a case, if the user double-clicks
the beef icon, USF will pick, for example, a food safety service from the crowd
of services, and link the beef icon to it with a red arrow. To this end, firstly
MME gets a pair of the property and the value like name: US beef in the beef
metadata, then according to the mapping from metadata to ontology described in
section 2.2 specifies a concept representing Meat in a food ontology stored in the
ontology DB. In the same manner, metadata like production region: Pennsylvania
and process day: 29/12/2004 are used to specify Location and Time concept.
Secondly, according to the discovery of the related services in section 2.2, MME
determines that the semantical distance between the Meat and the Food which
is a category concept given to the food safety service are close enough. Then, the
beef icon and the food service are linked after checking if the inputs of the food
service are filled by the beef metadata. That is, USF are digging and proposing
the possible services combined with the beef on behalf of the user. Finally, when
the user drag&drops the beef icon to the food service icon, the information of
the beef will be given to a search form for the food service, and the detailed
safety information will be displayed. In fact, MME determines the information
about Location, Time corresponds to inputs concepts for the food search service.
Then, each value (Pennsylvania, 29/12/2004, etc.) are given to the search form,
and the result is shown in a text dialog on USF. Figure 4(c) shows the above
flow, and fig. 5(1)-(4) shows the actual screen shots, although a beef is replaced
with a pumpkin.

For the other example, when the user double-clicks a CD icon, USF finds
the search service on Yahoo! Music via Music concept, then further the Text-
to-Speech service provided by a home robot via Text Information concept (see
fig. 5(5)). This is an example of the services sequence composed by repeating the
discovery of the services possibly combined twice. The length of the sequence
can be set at User Agent, normally it should be 2 or 3 due to computational
time. Figure 4(d) shows this flow.

On the contrary, it is possible to combine the services step by step. For
example, after the user gets the information about a wine by drag&dropping
a wine icon to a wine information service, then the user can search for the



Ubiquitous Service Finder Discovery of Services 911

Fig. 5. Screenshots

next service combined with the wine information by double-clicking on the wine
service. Further, if the user gets a map service from the wine service via Location
concept and does not like it, double-clicking on the wine service again shows
the next service such as a translation service and the previous TTS service.
Figure. 4(e) explains this sequence.

Although all the above examples are for generic metadata for the object and
the data, USF can handle metadata changing over time like MPEG-7, and find the
different service depending on timing (scene) of the double-click during the play.

3.4 Additional Use

In this section, we show some of USF functions not mentioned before.

Metadata Search. In the previous section, we showed the examples that
the services possibly combined with the object and the data are semantically
searched. However, in the first place there is a case that the user wants to find
icons for some specific objects, data, or services. For example, in a case of finding
a particular author’s book at a big bookstore or a library, it is impractical to
check all the icons one by one. For such a case, we have provided the abstract
icon. The abstract icon is a kind of folder predefined with search conditions.



912 T. Kawamura et al.

By double-clicking it, the user can search metadata which satisfy the conditions
from all the metadata currently detected. Setting of the conditions to the ab-
stract icon is written in User Agent. In the above case, the user can prepare
the abstract icon with the condition for the author and genre, and easily check
existence and location of desired books by double-clicking it at the library.

In addition to this, it is possible to automatically add the user’s context
to the condition. The current implementation is only providing macros to get
the user’s current location and time as the context information, but using this
information would be useful for finding the nearest shop to the current location,
and so forth.

Script Definition. As already described, we also provides the script icon to
execute the predefined flow. In a case that the user repeatedly uses the same
services on a daily basis, the sequence of the services should be described in a
script program at User Agent. In the script, a service definition can be written
with a specific URL (binding), but it is also possible to define it with necessary
metadata and get discovered the actual service at the invocation as described
in section 2.2. In the internet, there are lots of web services which require the
number of credit cards at the purchase. So that it would be useful for the user
who occasionally buys something at a particular site to prepare a script which
executes the necessary sequence by just drag&dropping the product metadata.
Although the user can define my profile icon including name, address, phone
numbers, etc. in USF, it would be safer to fill the important information like the
card number into the script, and make it not readable.

Agent Mobility. In USF, User Agent is managing the user’s conditions, scripts,
and other preferences like history. So we have a plan to make User Agent mobile
and follow the user to run on a home server when the user is in home, and migrate
to the office when the user is at work. We have already developed lightweight
mobile script system[9], and now merging it to MME.

4 Discussion

First of all, we locate USF in the ubiquitous computing research. We believe
the user’s icon choice in USF device represents the user’s current interest, and
it is like a snapshot of the user context. Then, USF is providing a mechanism to
recommend the services according to the context. So that USF is regarded as so-
called high-level service discovery, one of typical problems in this research area.
Methodologies for service discovery in the ubiquitous computing have already
been classified, however, at the same time it is well known that service discovery
based on the context, that is, the high-level service discovery is still unsolved[10].
As a distinct feature of USF, it is exploiting ontologies rather than rules in
lots of other systems to link the context to any service. Consequently, USF
has some advantages like that reasoning process gets visible and it is easier to
keep knowledge consistency, and recommendation gets faster, although the rules



Ubiquitous Service Finder Discovery of Services 913

are still necessary to make eccentric combination. As the other feature, USF is
adopting a forward chaining style in the sense that the proposed service is what
the user is inspired by something just attracted at that moment. We believe
it is more casual case for people than purposive behavior (backward chaining
style) like service composition by planning techniques. Also, this mechanism can
be seen as tracking associative relations with ontology. So the user might be
able to find surprising combinations of metadata and services, and use it not for
pragmatic use.

Also, USF has adopted Service Oriented Architecture as its basic design. In
contrast that CS system assumes the other party to connect from the design phase,
SOA system in its principle is that service providers provide services to a public
space, then service requesters search for and try to connect the services if neces-
sary. In USF, when the user enters a particular area, he/she tries to utilize the
objects and data available in that area combining the accessible services. There-
fore, it would be sort of a right design decision to take SOA as its base. Then, web
services has been taken as the richest and semantic web friendly framework.

On the other hand, some people might wonder from practical standpoint due to
its semantic approach. However, we are not aiming at the very intelligent task, but
rather simple task where hard-coding is impractical. The recent web browsers have
a function to automatically fill the user’s name and address in the corresponding
part of html form. In fact, USF is extending it with ontology for more general ser-
vice invocation. Further, semantic web is now actively investigated in the world,
and application of metadata and ontology on the web is growing faster. Semantic
web services is one of such activities, and WSDL 2.0 which is a de-fact standard for
web services has already included mapping to RDF[11]. Also, the next version of
UDDI is considering to adopt OWL[12] for category description. These movement
will support the semantic use of USF.

Finally, we mentioned why we took a cellular phone as the device in section 1,
but we do not adhere to it in the implementation, because the technical strengths
in our system are converged at User Agent. So we have some plan to port the front-
end application to other devices like TV, PC, car navigation system, and so forth.

5 Related Works

Sakamura et al.[6] and KDDI[7] have already developed mobile devices with
RFID readers. However, either one is only for tag detection, and has no mean
to connect web/UPnP services on the network. We will consider to port USF to
those devices.

Aura (Advanced User Resource Annotation System)[13] project in MS Re-
search is providing an application for a mobile device with a barcode reader, by
which the user can scan the barcode on products, and search the related data in
UPC database or Google and eBay. Besides, the individual user can annotate it
on the web, and share with other users. However, there is no semantic aspect,
and service discovery and combination are not considered.

Another similar approach to USF is Task Computing of Fujitsu[14]. This
allows the user to selectively combine and invoke a sequence of web and UPnP



914 T. Kawamura et al.

services on desktop PCs, and uses ontology to determine whether the combina-
tion is possible or not. Further, it is also possible from an arbitrary document to
make a service which outputs the document. This is similar to our handling for
metadata of the object and the data. However, mainly due to their different pur-
poses, USF is focusing on the dynamic discovery of available services based on
metadata retrieved in the ubiquitous environment, but Task Computing seems
to emphasize to make the user build a sequence from a list of services on PCs in
the office environment.

Further, CALI[15] of Nokia is a reasoning engine to semantically combine the
user context written in DL with any services. They are using SIP for exchange
of the context, and have a plan to implement on a cellular phone near future.

Finally, especially in Japan there are some internet services, which makes the
user read QR code or barcode with cellular phones or Pocket PCs, and searches
for its price in Amazon, or public reviews with RSS over the internet. However,
those are also not considering semantics and web services invocation.

6 Conclusion and Future Works

In an industry segment it is expected that coordination among networked appli-
ances in the home will become a big movement near future. Also, web services
in the internet was hype, but is growing constantly. On the other hand, SCM by
RFID is considered to be popular triggered by the admission of UHF tag. Also,
as HDD recorders and digital music players like iPod get popular, annotation to
digital data would make rapid progress.

In this circumstance, we developed USF aiming at simple coordination of
objects, data, and services, and took up two drawbacks of our approach: discov-
ery of services and inputs to the services. Then, we proposed metadata mapping
and service combination using Metadata Matching Engine. Our current status is
that we have just developed the prototype, and now have evaluation on precision
ratio on the proposed services based on our ontologies and matching strategy
response time at multiple accesses. As future works, we have a plan of public
experiment with some target products within this year. We hope we will provide
a value-added ubiquitous solution with semantics based on the result.

References

1. H. P. Huy, T. Kawamura, T. Hasegawa, How to make Web sites talk together -
Web Service Gateway Solution, Proceedings of 14th International World Wide Web
Conference (WWW 2005), 2005.

2. M. Paolucci, T. Kawamura, T. R. Payne, K. Sycara, Semantic Matching of Web
Services Capabilities, Proceedings of First International Semantic Web Conference
(ISWC 2002), LNCS No. 2342, pp. 333-347, 2002.

3. T. Kawamura, J. D. Blasio, T. Hasegawa, M. Paolucci, K. Sycara, Public Deploy-
ment of Semantic Service Matchmaker with UDDI Business Registry, Proceedings
of 3rd International Semantic Web Conference (ISWC 2004), LNCS 3298, pp. 752-
766, 2004.



Ubiquitous Service Finder Discovery of Services 915

4. D. Martin, M. Paolucci, S. McIlraith, M. Burstein, D. McDermott, D. McGuinness,
B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, K. Sycara, Bringing
Semantics to Web Services: The OWL-S Approach, Proceedings of International
Workshop on Semantic Web Services and Web Process Composition (SWSWPC
2004), 2004.

5. OWL Services, http://www.daml.org/services/owl-s/.
6. Ubiquitous Communicator, http://www.ubin.jp/press/pdf/TEP040915-u01e.pdf
7. http://www.kddi.com/corporate/r and d/kaihatsu/ (in Japanese)
8. Digital Living Network Alliance, http://www.dlna.org
9. K. Ueno, T. Kawamura, T. Hasegawa, A. Ohsuga, M. Doi, Cooperation between

Robots and Ubiquitous Devices with Network Script ”Flipcast”, Proceedings of
Network Robot System: Toward intelligent robotic systems integrated with envi-
ronments (IROS 2004 Workshop), 2004.

10. Hetal S., Standards for service discovery and delivery, IEEE Pervasive Computing
vol. 1, no. 3, 2002.

11. Resource Description Framework, http://www.w3.org/RDF/.
12. Web-Ontology Working Group, http://www.w3.org/2001/sw/WebOnt/.
13. Annotate the Planet, http://aura.research.microsoft.com
14. R. Masuoka, B. Parsia, Y. Labrou, E. Sirin, Ontology-Enabled Pervasive Comput-

ing Applications, IEEE Intelligent Systems, vol. 18, no. 5, pp. 68-72, 2003.
15. D. Khushraj, O. Lassila, CALI: Context-Awareness via Logical Inference, Pro-

ceedings of Workshop on Semantic Web Technology for Mobile and Ubiquitous
Applications, 2004.



Ontological Approach to Generating
Personalized User Interfaces for Web Services

Deepali Khushraj and Ora Lassila

Nokia Research Center,
5 Wayside Road,

Burlington MA, USA

Abstract. Web services can be presented to end-users via user inter-
faces (UIs) that facilitate the invocation of these services. Standardized,
interoperable mechanisms for describing Web service interfaces enable
the generation of UIs automatically and dynamically, at least in prin-
ciple; the emergence of Semantic Web services opens the possibility of
improving the generation process. In this paper, we propose a scheme
that extends the OWL-S ontology, an emerging standard for Semantic
Web services, to better enable the creation of such dynamic interfaces.

Semantic Web services go beyond “classical” Web services in enabling
enhanced discovery, invocation and composition. In our scheme, the inte-
gration of semantic descriptions of Web services with semantic models of
the user’s locally available data enables context-based personalization of
dynamically created user interfaces, allowing us to minimize the number
of necessary inputs. The need for this is compelling on mobile devices
with limitations on input methods and screen size and where context
data is readily available. The use of an underlying semantic model en-
ables better accuracy than traditional form-filling techniques.

We propose an architecture for the creation and personalization of
dynamic UIs from Web service descriptions. The key idea is to exploit
the semantic relationships between type information of Web service input
fields, and their association with information the system has about the
user (such as the user’s current context, PIM data, context history, usage
history, corporate data etc.), in order to personalize and simplify the
invocation of Web services.

1 Introduction

We observe that Web service interfaces [1] and Web forms [2, Chapter 17] bear a
conceptual resemblance to one another: both specify a set of inputs and a method
whose invocation yields some results. It is therefore possible to transform descrip-
tions of Web services to form-based UIs (for invoking these services). Current for-
malisms for interface description, however, are not strong enough to communicate
the semantics of services, a prerequisite for generating personalized UIs.

The Semantic Web is a vision of the next generation of the World Wide Web,
characterized by the association of formally described semantics with content and
services [3].Workon realizing theSemanticWeb ismotivatedbypromises of greater

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 916–927, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Ontological Approach to Generating Personalized User Interfaces 917

ease – and degree – of automation, as well as improved interoperability between in-
formation systems [4]. On the Semantic Web content and services are described us-
ing representation languages suchasRDF [5] andOWL[6].Representations refer to
ontologies, specifications of conceptualizations [7], which, in turn, enable reasoning
via the use of logic rules.

The application of Semantic Web technologies to Web services is referred to
as Semantic Web services [8]: Descriptions of service interfaces are associated with
formal semantics, allowing agents to describe their functionality, discover and “un-
derstand” other agents’ functionality and invoke services provided by other agents;
furthermore, it is possible to combine multiple services into new services. Work on
Semantic Web services is – again – drivenby the possibility to automate things that
formerly have required human involvement, consequently leading to improved in-
teroperability.

OWL-S [9,10] is one of the recently emerged ontologies for semantic annota-
tion of Web service descriptions. The OWL-S ontology is written in the ontology
language OWL. Web services annotated using OWL-S can be automatically dis-
covered, composed into new services, invoked, and their execution automatically
monitored. The process model of OWL-S is used to specify how a service works by
providing a semantic description of its inputs, outputs, preconditions, post condi-
tions and process flow. The OWL-S description can be grounded to a WSDL [1]
description (and possibly other standards). The grounding part of the ontology
enables mapping of OWL-S inputs and outputs to the corresponding inputs and
outputs in the WSDL description of the service. Hence OWL-S can be used with
SOAP based Web services, which provide a WSDL description, to create Semantic
Web services.

In the next section we present an approach to generating user interfaces auto-
matically from OWL-S profiles. These interfaces can be optimized and personalized
using semantic information about the user, collected in a semantic cache (as pre-
sented in section 3). Section 4 then outlines the overall architecture of our system.
Finally, we present a concrete example in the form of a simple usage scenario (sec-
tion 5).

2 Generating User Interfaces

Our approach is to use the OWL-S profile and process model of a service as the ba-
sic representation from which to generate a form-based UI. OWL-S provides a rich
vocabulary that can be used for describing not only the (call-)interface of a service,
but also other aspects that may be helpful in UI generation.There are, however, as-
pects ofUIs that are not “derivable” fromOWL-Sdescriptions; for this purpose,we
have extended the ontology with user interface annotations. The extensions pro-
vide cues about:

– display labels used for fields,
– preferred widget types for implementing fields (e.g. free-text input, checkbox),
– how to render fields with pre-determined value ranges (e.g., a selection list) as

well as the ordering of available values in such fields,



918 D. Khushraj and O. Lassila

– grouping of fields and subfields, and
– how to generate the serialized RDF data from inputs specified by the user (the

generation of serialized RDF is a requirement for invoking Semantic Web ser-
vices).

(The details of the extensions are presented below; an understanding of the OWL
Web ontology language as well as the OWL-S ontology is required to grasp the de-
tails.)

Every UIModel is associated with an OWL-S service and has associated pro-
cess UIs. Multiple UIs can be attached to a single process; hence each ProcessUI is
linked to a specific OWL-S process and a UIFieldMap that provides cues pertain-
ing to the input and output fields involved in the process interaction. UI-related
cues for fields are specified by creating an instance of the UIFieldMap class (note
that a set of related fields can then be grouped together by creating an instance of
the FieldMapList, which has individual UIFieldMap instances as members). Every
instance of the field map can specify the following properties:

– The parameterName property points to the input parameter resource used in
the OWL-S profile or process model. Since every input and output parameter
in OWL-S has an associated parameter type, it becomes easy to identify the
semantic type associated with the field using this property.

– TheparameterTypePathproperty specifies apath that is used to create anOWL
instance from the specified user inputs in the generated UI.

– The fieldType property provides cues about the type of UI widget that should
be used for the given field. For example, it could specify single select, multiple
select, check box, etc. Or, it could specify the widget type at a higher level, such
as “select one” or “select many” and a widget could then be chosen at run-
time based on available data about the field. Or, it could be of FieldSet type
to specify multiple subfields. For example, a currency converter service uses
inputs “price” and “currency” as input fields. Input price could further have
“amount” and “currency” as subfields. The subfields are specified using the
hasSubfieldMap property that has FieldMapList as range.

– The instanceDataLocation property along with instanceSelectionPath and dis-
playLabelPath are used for fields that have a pre-determined value range. The
instanceDataLocation property specifies the URL from where the value range
can be found. For example, a language translator service could specify possi-
ble values for input language and output language by pointing to an ontology
about languages supported by the service. Multiple locations for loading in-
stance data can be specified using this property. The instanceSelectionPath
property is then used to specify the path query required to select instance data
from the specified data locations. Finally, the path specified by the displayLa-
belPath property is used to find the label to be used to display the instance on
the UI widget.

In addition to the above properties, the UI Model fields could specify information
about how conservative the UI generation scheme must be. For example, using the



Ontological Approach to Generating Personalized User Interfaces 919

UI Model, strict ordering of input fields can be imposed, or strict ordering for ele-
ments in certain selection style widgets can be imposed.

When a Semantic Web service is accessed, the associated OWL-S description
along with the UIModel gets loaded. The rendering algorithm1 makes use of the
extended OWL-S description associated with the service to generate the UI. Once
the UI is generated and inputs are received from the user, an OWL instance is cre-
ated for every input parameter specified in the OWL-S description, by using the
parameterTypePath property. The data for creating an OWL instance could be re-
ceived from a single widget or from multiple widgets. The algorithm uses grouping
knowledge about fields along with the parameterTypePath to create a single OWL
instance from multiple widgets.2 Once the OWL instances are created, the OWL-S
grounding is used to invoke the service with the specified inputs. Finally, outputs
of the service invocation are presented to the user. A sample UIModel graph asso-
ciated with AltaVista’s “Babel Fish” language translator Web service along with
the generated UI is presented in Appendix A.

3 “Semantic Caching”

As illustrated in section 2, it is possible to generate form-based UIs from “plain”
OWL-S descriptions, and potentially better ones from OWL-S profiles augmented
with UI cues. Using additional information about the user – such as the current
context, history of actions, etc. – allows us to further improve the generated result.
The repository that stores information about the user is called the semantic cache.
The key idea is to exploit semantic relationships between type information of Web
service input (and output) fields and their association with data in the semantic
cache.

The semantic cache gets data from:

– User’s personal profile,
– PIM information such as address book entries, calendar entries, etc.,
– user’s current context and his context history, and
– the history of inputs/outputs in recently invoked services.
– corporate data, such as company phone book, organization hierarchies etc.

The data sources for the semantic cache could go beyond the ones above. The ba-
sic requirement for any data source is that it uses a semantic model to represent
data objects. In our case, we make use of semantic models that are created using
the OWL Web ontology language. Making use of all the available data would sig-
nificantly increase the response time for generating UIs, therefore a subset of data
objects from the sources are cached.

The semantic cache stores both semantic models and data annotated with these
models.A cachemanagement algorithmconstantly adds objects to and evicts them

1 Our rendering algorithm currently generates HTML forms based on UIModels, but the
renderer can easily be extended to create either XHTML or XForms based UIs.

2 A detailed discussion of this is beyond the scope of this paper.



920 D. Khushraj and O. Lassila

from the cache based on the usage patterns of the data objects in the cache. A
caching scheme that implements standard caching algorithms such asMRUorLRU
cannot be used directly. The scheme should also take into account the semantic re-
lationships between objects in the cache, since the addition or deletion of a set of se-
mantically similar objects could be done together. Additionally, the scheme should
take into account the nature of data sources involved. For example, the user’s cur-
rent context is transient, whereas his profile information mostly remains static.

While rendering a Semantic Web service, the type information associated with
the involved input fields is used to retrieve objects from the cache (in our case, the
parameterType property of OWL-S provides this information). The retrieved ob-
jects are essentially instances of the class specified as the type of the field.Bymaking
use of a reasoner, both explicit and implicit objects of a given type can be queried
for. The retrieved objects are given weights based on the nature of the data sources
involved and their frequency of occurrence. The semantic distance between pre-
specifiedobjects usedbyfields of the service anddata in the cache canalsobeused to
determine the relevance of a given instance. In the case of composite Web services,
the relevance of a semantic instance in the cache, can further be inferred based on
the atomic services that constitute the service and based on the control constructs
(such as Sequence, Split etc.) specified in the service’s process model. Weights are
additionally adjusted based on the current context. The cumulative weight of a
given object helps in determining the relevance of its use. Finally, customizations
are made using the objects retrieved:

– Eliminating user input widgets for fields where the answer is already known
with sufficient certainty,

– changing UI widgets where the input values can be predetermined (e.g. change
a free-text input widget to an editable selection list),

– providing intelligent default values for certain fields, and
– reordering or narrowing down element lists in widgets such as selection lists,

checkboxes, etc.

Semantic Web techniques (ontologies, reasoning, rich semantic models, etc.) can
also be used in determining the user’s current usage context and managing defini-
tions of contexts [11].Making the contextdefinitionsderivedvia semantic reasoning
available to the semantic cache, and consequently to the UI generationprocess, can
improve the system’s ability to discover implicit relationships between objects in
the cache. The user’s context can further be applied to limit the amount of data to
be considered when rendering a UI. For example, in case of location-based services,
only data relevant to the user’s current locationmaybe considered (or at least given
priority).Additionally, considering context inUI generationwill improve the user’s
perception that the system is behaving in a context-aware manner.

4 Component Architecture

Figure 1 shows the component architecture of our prototype implementation. The
Semantic Web services expose their service description using OWL-S and the ex-



Ontological Approach to Generating Personalized User Interfaces 921

Ex
te

nd
ed

 O
W

L-
S

D
es

cr
ip

tio
n

Semantic
Cache

UI Rendering &
Service Invocation

Engine

Semantic
Web Service

Web Service Proxy

P
IM

 D
at

a

C
on

te
xt

P
ro

fil
e

Data Sources

Transformation
Proxy

Reasoner

invoke

HTML

publish

Fig. 1. System Components

tended UIModel ontology (as presented in section 2). The UIModel for a Web ser-
vice could be provided by the Web service provider or by an intermediary such as
an enterprise that is making services available to employeeswithin an organization.
The enterprise could thusmakedecisions about the allowed level of personalization,
by appropriately configuring the UIModel.

When a service is to be invoked, the UI rendering engine uses the extended
OWL-S description to render a dynamic web-based UI (possibly using HTML,
XHTML or XForms). Additionally, it uses both explicit and implicit relationships
in the semantic cache to render a personalized UI appropriate to the current con-
text. Implicit relationships in the semantic cache are inferred using a reasoner. All
data sources that feed data into the semantic cache have type information associ-
ated with them. Commonly occurring types in the semantic cache include: profile
information, context history, PIM data, common sense information etc. The type
information is usedby the rendering algorithmto determinehowrelevant data from
a given source is.The system canalso support data originating from legacy applica-
tions using a transformational framework. In our system, the semantic cache along
with the rendering engine are implemented as part of a Web service proxy. After the
UI is rendered, user inputs are received to invoke the service. These inputs are used
to further change the contents of the semantic cache. Finally the service is invoked
and the outputs are presented as a UI.

5 Simple Usage Scenario

Our implementation was tested on a Nokia Series 60 phone with several atomic
and composite real-world Web services. Example test services include, AltaVista’s



922 D. Khushraj and O. Lassila

“BabelFish” language translator service,Barnes and Noble’s bookprice finder ser-
vice, zip code finder service etc. In order to test our system, theOWL-Sdescriptions
from the Mindswap Web site3 were adapted to have UI Model extensions. In this
section, we present an example usage scenario based on some of our test services.

A mobile user visiting India is shopping for a souvenir to take back home. He
makes use of the currency converter service on the phone to determine the price
of the souvenir in a familiar currency. The currency converter takes three inputs:
Input Price, Input Currency and Output Currency. The corresponding semantic
types in the OWL-S description for each of these fields are: XML Schema integer,
Currency type (represented as anOWLClassURI) andCurrency type, respectively.
The corresponding widget types in the UI Model are: free-text input, single select
drop-down list and multiple select drop-down list, respectively (see Figure 2).

Fig. 2. Currency Converter Fig. 3. Pages 1 & 2 of the currency list

Since the Input Price field uses a free-text input widget and has type XML
Schema, only values entered by the user to invoke the same service in the recent
past are used from the semantic cache. If the service was accessed recently, then
the field is displayed as an editable select list, with cached values, else a free-text
input widget is presented.

Since the Input Currency and Output Currency fields have the type Currency
and use drop-down list widgets (with pre-determined value ranges), the currencies
are ordered in the list so that relevant currencies appear on the top of the list. If any
instances of Currency are found in the cache then they are likely to occur higher up
on the list.

Additionally, the ordering of currencies is determined by using the semantic re-
lationship of the Currency type class with other classes in its ontology. From the
currency ontology, the rendering engine determines that every Currency object is
associated with one or more countries. Hence it determines all relevant countries in
the semantic cache to ascertain the ordering of currencies. In the rendered UI, USD
appears high on the list because the user’s profile indicates that he has an US res-
idential address. The user’s calendar information shows that he recently attended
a meeting in Helsinki, his context history indicates that he recently traveled via

3 www.mindswap.org



Ontological Approach to Generating Personalized User Interfaces 923

Fig. 4. Selected inputs & invocation results Fig. 5. Book Price Finder

Tokyo and the use of GPS coordinates suggest that the user’s current location is
Bombay. By using simple geo-spatial reasoning, the cache determines that the user
recently attended a meeting in Finland, that he recently traveled via Japan and
that he is currently located in India; hence the currencies used in these countries
(i.e. EUR, JPY and INR) appear high on the list. Similarly several other countries
appear high on the list based on data in the semantic cache (See Figure 3). In the
current context, the relevant inputs are INR as input currency and USD as output
currency (See Figure 4). Due to the reordering of currencies in the drop-down list,
based on data in the semantic cache, the hassle of browsing through a long list (of
98 currencies) is avoided in this case. Once the service is invoked, the results are
displayed to the user, as shown in Figure 5.

Now let us assume that the user wants to buy a book, from a local store, and
check its price in local currency before he gets to the store to pick it up. The user
makes use of the store’s book price finder service, which takes book name and out-
put currency as inputs. The corresponding types for these fields are: XML Schema
string and Currency. Since the INR object has semantic type Currency and was
recently used as an input for service invocation, it appears higher on the list, mak-
ing it easier to select (see Figure 5). Note that this service was never invoked in the
past, yet personalization is done based on the semantic types of fields.

Personalization of the rendered UI can further be done based on knowledge
about the atomic services involved. For example, the book price finder service, pre-
sented earlier, is a composite service based on three atomic services. It first makes
use of a book details grabber service, which takes a book name as input and pro-
vides the ISBN number along with other details as output. It then makes use of a
book price finder service, which takes the ISBN number and provides the price in
USD as output. And finally, it makes use of a currency converter service to trans-
late the price from USD to the desired currency. In the current scenario, knowledge
about the currency converter atomic service helps in further deciding the weights
given to individual currencies in the drop-down list.

We observe that the use of a semantic cache for rendering personalized UIs
makes form-filling easier on devices with limited text-input methods, specially for
the reduction in number of keystrokes used. Furthermore, it makes it easier to per-
sonalize the UI of services that were never invoked before or that are composed of
atomic services that were invoked in the past.



924 D. Khushraj and O. Lassila

6 Related Work

Definition and generation ofUIs for Web services has been addressed in manyways.
Some of the more notable approaches include Apple’s Sherlock application frame-
work4 which allows easy definition of Web service UIs using either JavaScript or
XQuery, as well as various industry specifications [12,13,14]. None of these fully
automates UI generation, but they are all attempts to provide a simple means of
specifying UIs for pre-existing Web service interfaces. The work byKassoff et al [15]
introduces a system for near-automatic generation of user interfaces from WSDL
profiles; in addition to a WSDL document, this system requires some additional
information to generate the UI. Furthermore, the approach to providing default
values requires authoring new “virtual” WSDL profiles which specify these values
explicitly.

Automated form-filling techniques are often used in the context of Web-based
forms. Published work in this area often addresses issues of building automated
Web robots (or “bots”) that need to access pages that are only reachable via vari-
ous (form-based) query interfaces [16,17, for example]. Furthermore, most modern
Web browsers offer some means of automatic filling or “completing” of Web forms.
Although these techniques make use of personal profile information and usage his-
tory, they cannot be used for rendering personalized Semantic Web service inter-
faces because they will not be able to exploit the associated semantic model. Due to
the lack of semantic processing capabilities, personalization based on the current
context, PIM information etc. will be limited.

In database research, semantic caching techniques are frequently used to cache
database queries and associated results [18, for example]. Subsequent queries are
then answered by determining their semantic locality with cached queries to im-
prove response time. As described earlier, the term “semantic caching” is used in
an entirely different manner in this paper; hence semantic caching techniques for
databases cannot be applied to render personalized UIs for Web services.

7 Conclusions

There is a striking resemblance between Web service descriptions and Web forms.
This strongly motivates the generation of dynamic UIs for Web service access. Our
work clearly establishes the need for a UI layer extension to Semantic Web ser-
vice descriptions and demonstrates the benefits of semantic caching techniques for
personalization of Web service UIs. The fundamental idea is to enable personaliza-
tion by exploiting the relationship of semantic objects in the user’s cache with type
information associated with Web service inputs. Additionally, the process model
associated with composite services can also be used. The use of caching is empha-
sized because all data about the user cannot be used while rendering personalized
UIs as this would considerably increase the time required for UI generation. Se-
mantic caching basedpersonalization enables automatic form-filling andother cus-
tomizations to UIs for services that have never been accessed before. The proposed

4 http://developer.apple.com/macosx/sherlock/



Ontological Approach to Generating Personalized User Interfaces 925

approach has great potential for access to services from mobile devices that have
limited text-input capabilities but have context information, such as current lo-
cation, social context etc., readily available. Our prototype implementation uses
a Web service proxy based architecture, which enables semantic processing to oc-
cur either remotely or locally on the user’s mobile device. The prototype imple-
mentation was tested using several real-world Web services and an evidence to the
practical benefits of the proposed approach was established. Several optimizations
can be performed on the algorithm used to query for semantic objects and manage
semantic objects in the cache; we would like to address this in the future.

References

1. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Descrip-
tion Language (WSDL) 1.1. W3C Note, World Wide Web Consortium (2001)

2. Raggett, D., Hors, A.L., Jacobs, I.: HTML 4.01 Specification. W3C Recommenda-
tion, World Wide Web Consortium (1999)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284 (2001) 34–43

4. Lassila, O.: Serendipitous Interoperability. In Eero Hyvönen, ed.: The Semantic
Web Kick-off in Finland – Vision, Technologies, Research, and Applications. HIIT
Publications 2002-001. University of Helsinki (2002)

5. Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and Syntax
Specification. W3C Recommendation, World Wide Web Consortium (1999)

6. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview.
W3C Recommendation, World Wide Web Consortium (February 2004)

7. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowl-
edge Acquisition 5 (1993) 199–220

8. Payne, T., Lassila, O.: Semantic Web Services (guest editors’ introduction). IEEE
Intelligent Systems 19 (2004) 14–15

9. Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., McDermott, D., Martin, D.,
McIllraith, S.A., Narayanan, S., Paolucci, M., Payne, T., Sycara, K.: DAML-S: Web
Service Description for the Semantic Web. In Horrocks, I., Hendler, J., eds.: The
Semantic Web - ISWC 2002. Volume 2342 of Lecture Notes in Computer Science.,
Springer Verlag (2002) 348–363

10. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: OWL-S: Semantic Markup for Web Services. W3C Member Submission, World
Wide Web Consortium (2004)

11. Khushraj, D., Lassila, O.: CALI: Context-Awareness via Logical Inference. In: ISWC
2004 workshop on Semantic Web Technology for Mobile and Ubiquitous Applica-
tions. (2004)

12. Anuff, E., Chaston, M., Moses, D., Kropp, A.: Web Service User Interface (WSUI)
1.0. Working Draft, Epicentric, Inc. (2001)

13. Kropp, A., Leue, C., Thompson, R.: Web Services for Remote Portlets Specifica-
tion. OASISStandard, Organization for the Advancement of Structured Information
Standards (OASIS) (2003)



926 D. Khushraj and O. Lassila

14. Arsanjani, A., Chamberlain, D., Gisolfi, D., Konuru, R., Macnaught, J., Maes, S.,
Merrick, R., Mundel, D., Raman, T., Ramaswamy, S., Schaeck, T., Thompson, R.,
Diaz, A., Lucassen, J., Wiecha, C.F.: (WSXL) Web Service Experience Language
Version 2. IBM Note, IBM Corporation (2002)

15. Kassoff, M., Kato, D., Mohsin, W.: Creating GUIs for Web Services. IEEE Internet
Computing 7 (2003) 66–73

16. Doorenbos, R.B., Etzioni, O., Weld, D.S.: A Scalable Comparison-Shopping Agent
for the World-Wide Web. In Johnson, W.L., Hayes-Roth, B., eds.: Proceedings of
the First International Conference on Autonomous Agents (Agents’97), Marina del
Rey, CA, USA, ACM Press (1997) 39–48

17. Liddle, S.W., Yau, S.H., Embley, D.W.: On the Automatic Extraction of Data from
the Hidden Web. In: Proceedings of the International Workshop on Data Semantics
in Web Information Systems (DASWIS-2001). (2001)

18. Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.: Semantic Data
Caching and Replacement. In Vijayaraman, T.M., Buchmann, A.P., Mohan, C.,
Sarda, N.L., eds.: VLDB’96, Proceedings of 22th International Conference on Very
Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, Morgan Kauf-
mann (1996) 330–341

A Example UI Model

AltaVista’s Babel Fish translator Web service is used to translate text between a
variety of languages. Figure 6 represents the RDF graph for the UI model of the

Fig. 6. Babel Fish Service & User Interface Model



Ontological Approach to Generating Personalized User Interfaces 927

service and the corresponding dynamic user interface generated by the rendering
engine. The model extends from concepts defined in the OWL-S description of the
service5. The UI model is supported by the TranslatorService and has an associ-
ated process UI. The specified process UI is created for the TranslatorProcess and
has several UI fields. Each UI field is specified as a mapping between the associated
parameter in the OWL-S description and other properties for rendering (and in-
voking) the UI. In the figure, we see three UI field map nodes, one for each of the
OWL-S input parameters, namely Input String, Input Language and Output Lan-
guage. A detailed explanation of all the properties emerging out of these nodes is
provided in section 2.

5 http://www.mindswap.org/2004/owl-s/1.0/BabelFishTranslator.owl



On Identifying Knowledge Processing Requirements�

Alain Léger1, Lyndon J.B. Nixon2, and Pavel Shvaiko3

1 France Telecom R&D, Rennes, France
alain.leger@francetelecom.com

2 Free University of Berlin, Berlin, Germany
nixon@inf.fu-berlin.de

3 University of Trento, Povo, Trento, Italy
pavel@dit.unitn.it

Abstract. The uptake of Semantic Web technology by industry is progressing
slowly. One of the problems is that academia is not always aware of the concrete
problems that arise in industry. Conversely, industry is not often well informed
about the academic developments that can potentially meet its needs. In this paper
we present a first step towards a successful transfer of knowledge-based technol-
ogy from academia to industry. In particular, we present a collection of use cases
from enterprises which are interested in Semantic Web technology. We provide
a detailed analysis of the use cases, identify their technology locks, discuss the
appropriateness of knowledge-based technology and possible solutions. We sum-
marize industrial knowledge processing requirements in the form of a typology of
knowledge processing tasks and a library of high level components for realizing
those tasks. Eventually these results are intended to focus academia on the devel-
opment of plausible knowledge-based solutions for concrete industrial problems,
and therefore, facilitate the uptake of Semantic Web technology within industry.

1 Introduction

The industrial uptake of Semantic Web technology is still slow. On the one hand, in-
dustry is not often well informed about the academic developments that can potentially
meet its needs. On the other hand, academia is not always aware of the concrete prob-
lems that arise in industry, and therefore, the research agenda and the achievements
thereof are not tailored for an easy migration to industrial applications. Thus, in order
to increase the industrial uptake of Semantic Web technology, there is a clear need for
researchers to have access to a study of industrial requirements, thereby focusing their
activities on research challenges arising exactly from those requirements. Simultane-
ously, industry needs to have access to studies identifying plausible knowledge-based
solutions to technological problems in their business scenarios, as well as to success
stories which demonstrate the value of adopting knowledge-based technology.

On a large scale, industry awareness of the knowledge-based technology has started
only recently, e.g., at the EC level with the IST-FP5 thematic network Ontoweb1 which

� The work described in this paper is supported by the EU Network of Excellence Knowledge
Web (FP6-507482).

1 http://www.ontoweb.org/

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 928–943, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



On Identifying Knowledge Processing Requirements 929

had brought together around 50 companies worldwide which are interested in Semantic
Web technology. These companies influenced significantly a global vision of Semantic
Web technology developments, provided success stories and guidelines for best prac-
tices. Based on this experience, within the IST-FP6 network of excellence Knowledge
Web2, an in-depth analysis of the concrete industry needs in the key economic sectors
has been identified as one of the next steps towards stimulating the industrial uptake of
Semantic Web technology. To this end, this paper aims at identifying technology locks
within the concrete business scenarios, and at discussing plausible knowledge-based
solutions to those locks.

The contributions of the paper are:

– a collection of the use cases and their detailed technical analysis used to determine
European industry needs with respect to knowledge-based technology;

– a typology of knowledge processing tasks and a library of high level components for
realizing those tasks used to focus academia on the current industry requirements.

The rest of the paper is organized as follows. A set of use cases collected from
industry and their preliminary analysis are presented in Section 2 and Section 3 respec-
tively. Section 4 describes, via an example, a methodology for identifying technology
locks occurring in the use cases and discusses the appropriateness of knowledge-based
approaches for resolving those locks. Section 5 summarizes industrial knowledge pro-
cessing requirements as a typology of knowledge processing tasks and a library of high
level components. Section 6 considers the related efforts and industrial experiences with
some components of the library proposed. Finally, Section 7 reports some conclusions
and discusses the future work.

2 Use Case Collection

A major barrier between industry and research is that the former thinks in terms of prob-
lems and solutions and the latter thinks in terms of technologies and research issues. A
business use case provides a brief description of a concrete business problem. A tech-
nical use case relates a business problem to a solution, and a solution to a technology,
which, in turn, may lead to a research issue. Therefore, business use cases and their
technical analysis provide an effective means for enterprises to argue and communicate
their needs to academia.

In order to enable the collection of use cases we invited companies interested in Se-
mantic Web technology to form an Industry Board (IB). Around 50 companies3 from 12

2 http://knowledgeweb.semanticweb.org/
3 Some examples are Acklin; Amper; Berlecon Research GmbH; Biovista; Bitext; British Tele-

com, BT; Computas Technology; Daimler Chrysler; Deimos Space; Distributed Thinking;
EADS Airbus Industry; France Télécom Division R&D; Green Cacti; HR-XML Consor-
tium Europe; IFP Institut Français du Pétrole; IKV++ Technologies AG; Illycaffè S.p.A.;
Labein; Merrall-Ross International Ltd; Neofonie Technology Development and Infor-
mation Management GmbH; NIWA; Office Line Engineering; QUARTO Software; RIS-
ARIS; Robotiker Tecnalia; Semtation GmbH; SNCF; Synergetics; Tecnologia, Información
y Finanzas; TSF S.p.A.; Telefonica; Thalés; TXT e-solutions; WTCM, see for details
http://knowledgeweb.semanticweb.org/o2i/



930 A. Léger, L.J.B. Nixon, and P. Shvaiko

Table 1. The use cases collected in 2004

# Use case name IB member Web page
1 Recruitment WWJ GmbH http://www.wwj.de
2 Multimedia content analysis Motorola http://www.motorola.com
3 eScience portal Neofonie http://www.neofonie.de
4 News aggregation service Neofonie http://www.neofonie.de
5 Product lifecycle management Semtation http://www.semtation.de
6 Data warehousing in healthcare Semtation http://www.semtation.de
7 B2C marketplace for tourism France Telecom http://www.francetelecom.com
8 Digital photo album France Telecom http://www.francetelecom.com
9 Geosciences project memory IFP http://www.ifp.fr

10 R&D support for coffee Illy Cafe http://www.illy.com
11 Real estate management TrenItalia http://www.trenitalia.com
12 Hospital information system L&C http://www.landcglobal.com
13 Agent-based system for insurance Acklin http://www.acklin.nl
14 DCVD Semantic Web portal DaimlerChrysler http://www.daimlerchrysler.com
15 Specialized web portals Robotiker http://www.robotiker.es
16 Integrated access to biology Robotiker http://www.robotiker.es

industry sectors4 have joined the initiative so far. We asked the IB members to describe
the actual or hypothetical deployment of Semantic Web technology in their business
environments. Thus, in 2004, 16 use cases were provided by 12 companies, see Table
1. The breakdown of the use cases with respect to industrial sectors is shown in Figure
1. For example, the most active sectors (in providing use cases) were service industry
and media & communications. A detailed description of all the use cases can be found
in [19].

Fig. 1. Breakdown of the use cases by industry sectors

4 These are: Health, Telecom, Automotive, Energy, Food, Media, Transport, Space, Publishing,
Banking, Manufacturing, Technology sectors.



On Identifying Knowledge Processing Requirements 931

3 Preliminary Analysis of Use Cases

We have performed an initial analysis of the use cases of Table 1 aiming at an overview
of the current industrial needs. The IB members were requested to point out technolog-
ical problems they have encountered in their businesses as well as the knowledge-based
approaches they view as plausible solutions to those problems. As a result, we obtained:

– a set of typical business problems for which an industry expert has determined that
a plausible solution can come from the knowledge-based technology;

– a set of typical technological issues/locks (and corresponding research challenges)
which knowledge-based technology is expected to overcome.

Figure 2 and Figure 3 illustrate the results of this preliminary analysis. The former
shows the type of business/market needs for which Semantic Web was considered by the
industry as a relevant technological approach. The latter shows the type of technological
issues which industry considers that Semantic Web must be able to overcome. Let us
discuss them in turn.

Figure 2 shows that in nearly half of the collected use cases industry has identified
data integration and semantic search as typical business problems for which they expect
Semantic Web to provide solutions. Below, we illustrate, with the help of two use cases,
how a concrete business problem can indicate the need for a knowledge-based solution.

The first use case is taken from the Human Resources field. In this use case, the
expert saw a solution needed for the problem of matching between job offers and job
seekers. The key reason given by the expert for such a need was that ”employee re-
cruitment is increasingly being carried out online. Finding the best suited candidate in
a short time should lead to cost cutting and resource sparing”. The second use case is
focused on the problem of data warehousing for a healthcare scenario. The solution
is seen as being to introduce a common terminology for healthcare data and wrap all
legacy data in this terminology. The key reason given by the expert for such a need was
that ”it reduces the time and cost involved in data integration and consistency checking
of the data coming from different healthcare providers”.

Fig. 2. Preliminary vision for solutions sought in the use cases



932 A. Léger, L.J.B. Nixon, and P. Shvaiko

Fig. 3. Preliminary vision of technological issues in the use cases

Figure 3 shows the technological issues/locks which industry consider that Seman-
tic Web approaches might overcome. Here, the key issues are: ontology matching, i.e.,
resolving semantic heterogeneity between heterogeneous ontologies; knowledge extrac-
tion, i.e., populating ontologies by extracting data from legacy systems; ontology devel-
opment, i.e., modeling a business domain, authoring tools, re-using existing ontologies.

Let us now illustrate, with the help of yet another use case from our collection, how
a concrete business problem can be used to identify such technology locks. The use
case deals with the problem of providing unified access to biological repositories on the
Internet. The problem is attacked by modeling those repositories (notice they may store
their data according to various data/conceptual models) as ontologies. This, in turn, is
performed by analyzing the underlying data instances. Finally, since those newly cre-
ated ontologies will likely use different terminologies, mappings between them must
also be established. Hence, in this case the technological issues to overcome are knowl-
edge extraction and ontology matching.

From the preliminary analysis we can already draw the areas of Semantic Web re-
search which could be of great value to industry (e.g., ontology matching). This analysis
(by experts estimations) provides us with a preliminary understanding of scope of the
current industrial needs for solutions and concrete technology locks where knowledge-
based technology is expected to provide a plausible solution. However, to be able to
answer specific industrial requirements, we need to conduct further an in-depth tech-
nical analysis of the use cases, thereby associating to each technological issue/lock a
concrete knowledge processing task and a component realizing its functionalities.

4 Detailed Analysis of Use Cases
4.1 A Methodology

A methodology used for a precise identification of technology locks and knowledge
processing tasks they require is based on Rational Unified Process (RUP) [1,15] which,



On Identifying Knowledge Processing Requirements 933

in turn, extensively exploits Unified Modeling Language (UML) [6]. Out of six standard
steps of the RUP approach (i.e., business modeling, service requirements, analysis, de-
sign, implementation, and validation) we focus only on three of them, namely, service
requirements, analysis, and design:

– Service Requirements. These are a set of services available from a system in order
to implement a business case. They are determined through analysis of functional
needs, which in turn imply some technical constraints (e.g., time response, number
of connected customers) of a system to be developed. Service requirements are
expressed via UML technical use cases.

– Analysis. This step performs initial system partitioning with respect to its main
processing tasks and analyses the use cases in detail. In particular, use cases are
refined with the help of UML sequence diagrams, which incorporate the modules
for the architecture proposal and the information flow between these modules to
fulfill the use case functionality. Notice that during this step we identify the use
case’s technology locks.

– Design. This step refines and homogenizes classes, and drafts the architecture de-
sign. It is partially specified in the context of our analysis, namely, it aims only
at identifying knowledge processing tasks which resolve technology locks deter-
mined in the previous step. We structure knowledge processing tasks as primary
and secondary tasks according to their influence on the architecture of a system to
be developed. Primary tasks are the common parts for most of actions or parts of
actions of the system. Secondary tasks are additional requirements, i.e., extensions
of the common parts.

4.2 The Methodology by an Example

Let us discuss with the help of the B2C marketplace for tourism use case how the above
introduced methodology is used for the identification of technology locks and possible
knowledge processing tasks resolving them. We first provide a summary of the use case,
then we discuss the service requirements, analysis, and design steps.

Use Case Summary. The B2C marketplace for tourism use case considers a scenario
where users are offered an one-stop browsing and purchasing of personalized tourism
packages by a dynamic combination of various tourism offers (e.g., travel, accommo-
dation, meals) from different providers. A detailed description of this business scenario
can be found in [19]. Figure 4 illustrates two primary use cases of the B2C marketplace
system.

The first use case, which is called to plan a nice weekend, constitutes the entry point
inside the marketplace allowing customers to define their personal needs. The platform
takes care of identifying potentially useful contents and services, accessing multiple
providers and selecting only the relevant ones.

The second use case, which is called to package and purchase a nice weekend,
requires (i) a dynamic aggregation of relevant contents and services (e.g., transport,
accommodation, leisure activities), (ii) an automated packaging of week-end proposals,
and (iii) facilities for purchasing them on-line.



934 A. Léger, L.J.B. Nixon, and P. Shvaiko

Fig. 4. UML use case diagram for B2C marketplace for tourism

Fig. 5. UML technical use case diagram for B2C marketplace for tourism

Service Requirements. The technical use case diagram is presented in Figure 5. Let
us discuss its actors.

Customer and Access Interface. A customer with the help of its access interface (e.g.,
mobile phone) accesses services available within the system through the authentication
mechanism, personalization, and session management.
Contents and Services providers (C/S Ps). Contents and services providers manage their
offers autonomously, i.e., the system does not impose any constraints. Each C/S P has its
own rules for structuring information at the protocol, syntactical, and semantic levels.
The system adapts itself via an Administrator or automatically.
Administrator performs (i) referencing of new contents and services providers, and (ii)
internal knowledge representation and management.

Analysis. During this step, we analyze each technical use case of Figure 5 in detail. In
particular, we consider navigation services, contents and services access, contents en-



On Identifying Knowledge Processing Requirements 935

richment, contents aggregation, contents association, contents and services provider’s
integration, heterogeneity of contents and services provider’s management, and knowl-
edge and services management technical use cases.

For lack of space we discuss here only the contents aggregation technical use case.
First, we report the actors it involves, then we provide its summary, inputs and out-
puts, and finally we analyze with the help of sequence diagrams the flow of its events,
possible technology locks and potential knowledge-based solutions.

Actors: Customer and Access Interface, C/S Ps.

Summary: The use case contents aggregation is inherited from the use case contents
enrichment. A global schema, which is a model for the data of all the C/S Ps, captures
the knowledge of the domain. The use case performs a fusion of the information issued
by different C/S Ps. It aims at providing a user with the result which has the following
characteristics:

– No duplication and redundant information;
– Avoid the user having to aggregate the contents issued from different C/S Ps.

Preconditions and inputs:

– The use case contents and services access has been executed;

Post-conditions and outputs:

– The aggregated contents are transferred to the access interface.

The flow of events for the contents aggregation technical use case is presented in
Figure 6. Let us discuss it in detail. The system (ManageContentAggregation compo-
nent) starts from mapping the data (potentially expressed using different data models)
among C/S Ps involved in the processing of the request of a user. This step is essen-
tial in order to evaluate the contents of each C/S P, and hence, detect redundancies,
complementary information, etc. The flow of events is as follows:

– Identification of the mappings between different data models (requestSchemas);
– Contents aggregation (manageContent): check for duplicated information, fusion

of complementary information are operated by the ControlContent component;
– Transformation of the result of contents aggregation into XML formalism;
– The results encoded in XML are transferred to the access interface (loadXmlStream).

Technology locks identification: Technology locks are highlighted in Figure 6. These
are the MappingContent and ControlContent components. Let us discuss them in turn.

It is crucial to be able to dynamically discover semantic mappings between the con-
tents of different C/S Ps. The current solution follows the data integration approach
which is to create static correspondences between data models [16]. In this case, map-
pings can be specified in a declarative manner (e.g., manually). However, this solution
does not satisfy requirements of the business case. In fact, C/S Ps may appear and dis-
appear over the network, change their contents, schemas, and so on. Thus, the problem
is to determine those semantic correspondences dynamically. For example, given two
XML schemas, suppose in the first schema the address element consists of the attributes



936 A. Léger, L.J.B. Nixon, and P. Shvaiko

Fig. 6. Flow of events: Contents aggregation technical use case

name, town, and postcode and in the second schema the address element is split down
into three sub elements street name, post code, and town. Then, a solution should
be developed in order to determine correspondences between the semantically related
entities, e.g., the address element in the first schema should be mapped to the address
element in the second schema. A more complex solution is required to determine which
attributes of the first schema are to be mapped to the elements of the second schema.

The second technology lock is to execute the correspondences (mappings) produced
as output of the MappingContent component. As the use case requires, mapping’s exe-
cution should not only translate the source data instances under the expected common
schema, but also check for duplications, and, if any detected, discard them. This lock
can be decomposed into two sub-locks. The first sub-lock is to generate query expres-
sions (out of the correspondences determined in the previous step) that automatically
translate data instances of the C/S P’s schemas under an integrated schema. For exam-
ple, [29] provides a standard data translation solution. Such a solution is based on the
assumption that correspondences between schema elements are only identified (using
a binary choice: a mapping exists or does not exist). However, if the correspondences
between schema elements can be determined by providing a more informative specifi-
cation, e.g., a particular type of the correspondence, namely a logical relation (equiv-
alence, subsumption), then data translation operation could also be performed more
accurately. The second sub-lock is to reconcile the data instances. Let us consider one
example which deals with duplicates. The current solution interprets data instances as
strings and checks if two strings are identical. However, in general, one C/S P may
adopt the use of a standard while another C/S P adopts the use of fully expanded de-
scriptions, and so on. For example, 〈Oro Stube, Restaurant, Trento, TN, NULL〉; 〈Oro
Stube, ristorante-pizzeria, Povo Trento, TN, I-38050〉; 〈Oro Stube, Trento, NULL, 38100〉
all refer to the same place Oro Stube. Thus, a solution should be developed in order to
detect (meaningfully) identical instances and discard the less informative ones.

Design. Having identified technology locks of the B2C tourism marketplace system, we
are able to propose knowledge processing tasks required in order to develop plausible



On Identifying Knowledge Processing Requirements 937

solutions to those technology locks. In particular, our technical use case requires the
matching, data translation, and results reconciliation knowledge processing tasks:

– Matching. This task aims at (on-the-fly and automatic) determining semantic cor-
respondences between the contents of C/S Ps and the global schema. It takes two
data/conceptual models (e.g., XML schemas, OWL ontologies) and returns a set
of mappings between the entities of those models that correspond semantically to
each other. This task is necessary to ensure semantic homogeneity at schema level
among C/S Ps, and therefore, it is classified as a primary task in the context of the
B2C marketplace system.

– Data translation. This task aims at generating query expressions (out of mappings
determined as a result of matching) that automatically translate data instances be-
tween heterogeneous information sources. This task is necessary to ensure semantic
homogeneity at the level of data instances, and therefore, it is classified as a primary
task in the context of the B2C marketplace system.

– Results reconciliation. This task aims at detecting redundancies, duplications, and
complements among the data coming from different C/S Ps which are involved
in the processing of the request of a user. It takes as input responses of each C/S
P involved in the processing of the request, performs all the necessary operations
(e.g., cleaning, fusion) and produces a reconciled result. This task is necessary to
provide a user with an accurate way of accessing the requested data, and therefore,
it is classified as a primary task.

In the above described manner we determine technology locks, discuss appropri-
ateness of the knowledge-based technology, and required knowledge processing tasks
for all the technical use cases of the B2C marketplace scenario. Also, we have consid-
ered some other business cases (e.g., recruitment of human resources (HR), multime-
dia content analysis and annotation (MCAA)) and we have analyzed them in detail as
demonstrated above, see [26].

5 Knowledge Processing Tasks and Components

Based on the primary and secondary knowledge processing tasks determined during the
technical use case analysis (conducted for four business cases, see [26]), we construct a
typology of knowledge processing tasks and a library of components for realizing those
tasks, see Table 2 and Table 3.

Our typology includes 9 primary tasks and 3 secondary tasks. Some tasks are re-
quired to be implemented within a single component. For example, (schema/ontology)
matching, matching results analysis, and producing explanations of mappings are the
functionalities of the match manager component. Thus, the library of high level compo-
nents contains less components than the number of knowledge processing tasks iden-
tified. In particular, it consists of 9 components. Let us discuss knowledge processing
tasks and components of Table 2 and Table 3 in more detail.

Ontology Management, Schema/Ontology Merging and Ontology Manager. These
aim at (i) ontology maintenance, e.g., editing concepts, resolving name conflicts, brows-
ing ontologies, and (ii) merging (multiple) ontologies, e.g., by taking the union of the



938 A. Léger, L.J.B. Nixon, and P. Shvaiko

Table 2. Typology of knowledge processing tasks & components. Part 1 - Primary tasks.

# Knowledge processing tasks Components
1 Ontology Management Ontology Manager
2 Matching Match Manager
3 Matching Results Analysis Match Manager
4 Data Translation Wrapper
5 Results Reconciliation Results Reconciler
6 Composition of Web Services Planner
7 Content Annotation Annotation Manager
8 Reasoning Reasoner
9 Semantic Query Processing Query Processor

Table 3. Typology of knowledge processing tasks & components. Part 2 - Secondary tasks.

# Knowledge processing tasks Components
1 Schema/Ontology Merging Ontology Manager
2 Producing Explanations Match Manager
3 Personalization Profiler

axioms, according to evolving business requirements, see [9, 14, 17]. For example, let
us consider the HR scenario. It requires exploiting a common HR ontology. Since the
job market or some aspects of the recruitment domain such as qualifications may al-
ter, the HR ontology has to be updated. In fact, with a globalization of the job market,
recruitment applications might be submitted from new countries which have different
educational systems. Therefore, higher level qualifications must be identified within the
system and related to existing qualifications. Moreover, in a decentralized distributed
environment such as the Web, it is reasonable to expect existence of multiple ontolo-
gies, even on the same topic. Thus, some of the relevant ontologies might be useful for
extending the HR ontology, and, hence, are need to be merged into it.

Matching, Matching Results Analysis, Producing Explanations and Match Man-
ager. These aim at discovering mappings between the entities of schemas/ontologies
which correspond semantically to each other, see [23,24]. Mappings are typically spec-
ified (i) by using coefficients rating match quality in the [0,1] range, see [5, 10, 20, 30],
or (ii) by using logical relations (e.g., equivalence, subsumption), see [11, 12]. For ex-
ample, in the HR scenario, a requirement for Java programming skills may be matched
against C++ programming skills as similar with a coefficient of 0.8 or as Java � C++.

Depending on the application requirements, some further manipulations with map-
pings (e.g., ordering, pruning) can be performed, see [8]. For example, in the HR sce-
nario, the complexity of qualifications and work experience suggest that exact matches
between job requirements and applicants are unlikely to happen; rather a ranking mech-
anism is required to express the extent to which, for example, the equivalence might be
assumed. In fact, when an applicant states that (s)he has a proficiency in C++, how
would this rank differently against vacancies requiring persons with skills in Java, Mi-
crosoft .NET, or object oriented programming?



On Identifying Knowledge Processing Requirements 939

State of the art matching systems may produce effective mappings. However, these
mappings may not be intuitively obvious to human users, and therefore, they need to
be explained, see [7, 25]. In fact, if Semantic Web users are going to trust the fact
that two terms may have the same meaning, then they need to understand the reasons
leading a matching system to produce such a result. Explanations are also useful when
matching (large) applications with thousands of entities (e.g., business catalogs, such
as UNSPSC and eCl@ss). In these cases automatic matching solutions will find a num-
ber of plausible mappings, hence, some human effort for performing the rationalization
of the mapping suggestions is inevitable. Generally, the key issue here is to represent
explanations in a simple and clear way to the user. For example, in the HR scenario,
explanations should help users of the HR system to make informed decisions on why a
job vacancy requirements meet a job applicant request.

Data Translation and Wrapper. These aim at an automatic manipulation (e.g., trans-
lation, exchange) of instances between information sources storing their data in differ-
ent formats (e.g., OWL, XML), see [21, 28]. Usually, for the task under consideration,
correspondences between semantically related entities among schemas/ontologies are
assumed to be given. They are taken in input, processed according to an application
requirements, and are returned in output as executable mappings. For example, in the
HR scenario, a wrapper acts as an interface to the input data such that both requests
from and responses to the system may be expressed in RDF while the underlying data
continues to be stored in its original format.

Results Reconciliation and Results Reconciler.These aim at determining an optimal
solution for returning results from the queried information sources. The problem should
be considered at least at two levels: (i) contents, e.g., for discarding redundant informa-
tion, and (ii) routing performance, e.g., for choosing the best (under the given condi-
tions) plan for delivering results to the user, see [22]. In the B2C tourism marketplace
scenario, this task prevents customers, for example, from encountering several (identical)
responses about the same restaurants or different opening times for the same museum.

Composition of Web Services and Planner. These aim at an automated composition of
the pre-existing web services into new (composed) web services, thereby enabling the
latter with new functionalities, see [4]. Technically, composition is typically performed
by using automated reasoning approaches (e.g., planning, see [27]). In the B2C tourism
marketplace scenario, composition of web services is needed when organizing a travel
journey. In particular, for the combination of transport and hotel reservation services.

Content Annotation and Annotation Manager. These aim at an automated generation
of metadata for different types of contents, such as text, images, audio tracks, etc., see, for
example [2]. Usually, an annotation manager has in input the (pre-processed) contents
and some sources of explicitly specified domain knowledge and outputs content annota-
tions. For example, in the MCAA scenario, knowledge-based analysis of the audiovisual
content should automatically generate semantic metadata, for instance, by extracting the
audiovisual features (e.g., color, shape) from visual objects, and by linking them to the
semantically equivalent concepts defined in the MCAA ontologies.



940 A. Léger, L.J.B. Nixon, and P. Shvaiko

Reasoning and Reasoner. These aim at providing a set of logical reasoning services
(e.g., subsumption, instance checking tests, see [13]), which are (heavily) tuned to partic-
ular application needs. For example, when dealing with multimedia annotations, logical
reasoning can be exploited in order to check consistency of the annotations against the set
of spatial (e.g., left, right, adjacent, near) and modal (possibility, necessity) constraints.
Thus, ensuring that the objects detected in the multimedia content correspond semanti-
cally to the concepts defined in domain ontologies. For example, in the football domain,
it should be checked whether a goalkeeper is located near the goal and potentially holds
a ball in his/her hands. The key issue here is in the development of optimizations over the
standard reasoning techniques tailored to specific application tasks, because, in general,
modal/temporal logic reasoning procedures do not scale well.

Semantic Query Processing and Query Processor. These aim at rewriting queries by
exploiting terms from the pre-existing ontologies, thus, enabling a semantics-preserving
query answering, see [2,18]. For example, in the MCAA scenario, query processor should
be able to interpret queries by exploiting a set of domain ontologies in order to return
relevant multimedia content (e.g., images, videos). Notice that the user should be able to
specify queries in different ways, for example, as (i) high level concepts, e.g., holiday,
beach; (ii) natural language expressions , e.g., give me all the photos of Trento; (iii) sample
images.

Personalization and Profiler. These aim at an adaptation of functionalities available
from a system to the needs of groups of users, see [3]. Typical tasks of a profiler include
automatic generation and maintenance of user profiles, personalized content manage-
ment and mining, etc. For example, in the MCAA scenario, users might want to partic-
ipate in different social networks and to share some annotations over them. Thus, they
need a support for new contact’s recommendation, adaptive navigation through these new
contacts, and so on. In turn, adaptation might be performed along different dimensions,
where the use of Semantic Web technology is promising, namely: user’ terminal (e.g.,
PDA, cell phone), external environment (e.g., language, location).

6 Discussion

The IST-FP5 project Ontoweb (2001-2004) has brought (EC) industry awareness of Se-
mantic Web technology on a large scale. In particular, a special interest group on In-
dustrial Applications5 was formed. It collected over 50 use cases (notice, their majority
dealt only with technology producers), which, in turn, provided a good overview of the
expectations from Semantic Web technology. Based on those foundations, the subsequent
IST-FP6 Network of Excellence Knowledge Web (2004-2007) has deliberately focused
on the potential adopters of the technology and an in-depth analysis of the use cases.

In this paper, we report our first results of the business use cases collection and anal-
ysis as targeted by Knowledge Web. By a preliminary analysis of the collected use cases
we categorized the types of solutions being sought for, and the types of technological
locks which arise when realizing those solutions. By a detailed technical analysis of the

5 http://sig4.ago.fr



On Identifying Knowledge Processing Requirements 941

selected use cases we identified precisely where in the business processes the technology
locks occur, described the requirements for technological solutions that overcome those
locks, and argued for the appropriateness of knowledge-based solutions. Moreover, a
quick analysis of the other business cases of [19] have shown that most of the knowledge
processing tasks of Table 2 and Table 3 repeat with some variations/specificity from use
case to use case. This observation suggests that the constructed typology is stable, i.e., it
contains (most of) the core knowledge processing tasks stipulated by the current industry
needs. By drawing from concrete industrial use cases the knowledge processing tasks and
components that can provide expected solutions, we link business problems to specific
research challenges. We expect the Semantic Web research community to address those
challenges. Once knowledge processing components are provided by research, their prac-
tical usefulness and contribution to technology transfer from academia to industry can
be assessed through an extensive evaluation within different industrial contexts.

Thus, for example in the HR scenario, the sought-for solution is the semantic match-
ing between job offers and job applications. By a technical use case analysis we located
where in the business process the lock occurs and defined the requirements with respect
to the matching task and the match manager component. Hence, we have already pro-
vided (i) a client industry with a clear identification of the place where the system requires
knowledge-based solutions and (ii) researchers with a clear definition of the requirements
that must be met by their prototypical implementations of knowledge processing com-
ponents. In particular, in the HR scenario, some existing implementations of a match
manager (e.g., [5,30]) have been plugged into the business process at the identified loca-
tion. A prototype has been tested by the client industrial partner, and it had demonstrated
a better characteristics (e.g., precision, recall) with respect to the legacy solution. Thus,
experience of this use case and some other use cases (e.g., MCAA scenario) gives us a
preliminary vision that the proposed approach is able to facilitate the industrial uptake
of Semantic Web technology.

7 Conclusions and Future Work

We have presented a set of business cases collected from enterprises which are interested
in Semantic Web technology. We discussed via examples a methodology for the identi-
fication of technology locks in business cases, appropriateness of the knowledge-based
technology, and possible approaches resolving those locks. We summarized industry re-
quirements with respect to the knowledge-based technology as a typology of knowledge
processing tasks and a library of high level components for realizing those tasks. We in-
tend our typology as a guide for academic activities, thereby connecting concrete indus-
trial problems with research efforts. Thus, by facilitating the communication of industry
requirements to academia and directing research results back to industry, where those
results are relevant, we contribute to the process of increasing the industrial uptake of
Semantic Web technology.

This work represents only an initial step. In fact, to build the typology presented in
this paper we have conducted an in-depth analysis of 4 (out of 16) use cases. Thus, we still
have to scrutinize the rest of the use cases and update our typology, although we have a
preliminary vision that in those use cases, most of the knowledge processing tasks repeat



942 A. Léger, L.J.B. Nixon, and P. Shvaiko

the current typology. Emerging business cases will also be tracked, as they will likely
generate new requirements. For example, future trends such as semantic web services,
grid computing, social networking will give rise to knowledge processing components
for web service discovery, orchestration; distributed reasoning; and so on.

References

1. Rational software corporation. http://www-306.ibm.com/software/rational/.
2. aceMedia project. Integrating knowledge, semantics and content for user centred intelligent

media services. http://www.acemedia.org.
3. G. Antoniou, M. Baldoni, C. Baroglio, R. Baumgartner, F. Bry, T. Eiter, N. Henze, M. Her-

zog, W. May, V. Patti, R. Schindlauer, H. Tompits, and S. Schaffert. Reasoning methods for
personalization on the Semantic Web. Annals of Mathematics, Computing & Teleinformatics,
2(1):1–24, 2004.

4. B. Benatallah, M.-S. Hacid, A. Léger, C. Rey, and F. Toumani. On automating web services
discovery. VLDB Journal, (14(1)):84–96, 2005.

5. A. Billig and K. Sandkuhl. Match-making based on Semantic Nets: The XML-based approach
of BaSeWeb. In Proceedings of the workshop on XML-Technologien für das Semantic Web,
pages 39–51, 2002.

6. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison-Wesley, 1997.

7. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering complex
semantic matches between database schemas. In Proceedings of SIGMOD, 2004.

8. T. Di Noia, E. Di Sciascio, F. M. Donini, and M. Mongiello. A system for principled match-
making in an electronic marketplace. In Proceedings of WWW, pages 321–330, 2003.

9. D. Dou, D. McDermott, and P. Qi. Ontology translation on the Semantic Web. Journal on
Data Semantics, II:35–57, 2005.

10. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-lite. In Proceedings
of ECAI, pages 333–337, 2004.

11. F. Giunchiglia and P. Shvaiko. Semantic matching. The Knowledge Engineering Review
Journal, (18(3)):265–280, 2003.

12. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. Semantic schema matching. In Proceedings
of CoopIS, 2005.

13. V. Haarslev, R. Moller, and M. Wessel. RACER: Semantic middleware for industrial
projects based on RDF/OWL, a W3C Standard. http://www.sts.tu-harburg.
de/˜r.f.moeller/racer/.

14. Stanford Medical Informatics. Protégé ontology editor and knowldege aquisition system.
http://protege.stanford.edu/index.html.

15. I. Jacobson, G. Booch, and J. Rumbaugh, editors. The unified software development process.
Addisson-Wesley, 1999.

16. M. Lenzerini. Data integration: A theoretical perspective. In Proceeding of PODS, pages
233–246, 2002.

17. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging and testing
large ontologies. In Proceedings of KR, pages 483–493, 2000.

18. E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. OBSERVER: An approach for query
processing in global information systems based on interoperability between pre-existing on-
tologies. In Proceedings of CoopIS, pages 14–25, 1996.

19. L. Nixon, M. Mochol, A. Léger, F. Paulus, L. Rocuet, M. Bonifacio, R. Cuel, M. Jarrar,
P. Verheyden, Y. Kompatsiaris, V. Papastathis, S. Dasiopoulou, and A. Gómez Pérez. D1.1.2
Prototypical Business Use Cases. Technical report, Knowledge Web NoE, 2004.



On Identifying Knowledge Processing Requirements 943

20. N. Noy and M. Musen. PROMPT: Algorithm and tool for automated ontology merging and
alignment. In Proceedings of AAAI, pages 450–455, 2000.

21. J. Petrini and T. Risch. Processing queries over RDF views of wrapped relational databases.
In Proceedings of the workshop on Wrapper Techniques for Legacy Systems, 2004.

22. N. Preguica, M. Shapiro, and C. Matheson. Semantics-based reconciliation for collaborative
and mobile environments. In Proccedings of CoopIS, pages 38–55, 2003.

23. E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching. VLDB
Journal, (10(4)):334–350, 2001.

24. P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal on Data
Semantics, IV, 2005.

25. P. Shvaiko, F. Giunchiglia, P. Pinheiro da Silva, and D. L. McGuinness. Web explanations
for semantic heterogeneity discovery. In Proceedings of ESWC, pages 303–317, 2005.

26. P. Shvaiko, A. Léger, F. Paulus, L. Rocuet, L. Nixon, M. Mochol, Y. Kompatsiaris, V. Papas-
tathis, and S. Dasiopoulou. D1.1.3 Knowledge Processing Requirements Analysis. Technical
report, Knowledge Web NoE, 2004.

27. P. Traverso and M. Pistore. Automated composition of semantic web services into executable
processes. In Proceedings of ISWC, pages 380–394, 2004.

28. Y. Velegrakis, R. J. Miller, and J. Mylopoulos. Representing and querying data transforma-
tions. In Proceedings of ICDE, pages 81–92, 2005.

29. L. Yan, R. Miller, L. Haas, and R. Fagin. Data driven understanding and refinement of schema
mappings. SIGMOD Record, 30(2):485–496, 2001.

30. J. Zhong, H. Zhu, J. Li, and Y. Yu. Conceptual graph matching for semantic search. In
Proceedings of the ICCS, pages 92–106, 2002.



 

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 944 – 958, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

An Application of Semantic Web Technologies 
to Situation Awareness  

Christopher J. Matheus1, Mieczyslaw M. Kokar 2,  
Kenneth Baclawski2, and Jerzy J. Letkowski3 

1 Versatile Information Systems, Inc. Framingham, Massachusetts USA 
cmatheus@vistology.com 

http://www.vistology.com 
2 Northeastern University Boston, Massachusetts USA 
ken@baclawski.com mkokar@ece.neu.edu 

3 Western New England College, Springfield, MA, USA 
jletkows@wnec.edu 

Abstract. Situation awareness involves the identification of relationships 
among objects participating in an evolving situation.  This problem in general is 
intractable and thus requires additional constraints and guidance defined by the 
user if there is to be any hope of creating practical situation awareness systems. 
This paper describes a Situation Awareness Assistant (SAWA) based on Se-
mantic Web technologies that facilitates the development of user-defined do-
main knowledge in the form of formal ontologies and rule sets and then permits 
the application of the domain knowledge to the monitoring of relevant relations 
as they occur in a situations.  SAWA includes tools for developing ontologies in 
OWL and rules in SWRL and provides runtime components for collecting event 
data, storing and querying the data, monitoring relevant relations and viewing 
the results through a graphical user interface.  An application of SAWA to a 
scenario from the domain of supply logistics is presented along with a discus-
sion of the challenges encountered in using SWRL for this task. 

1   Introduction 

The essence of situation awareness lies in the monitoring of various entities and the 
relations that occur among them. Since the properties of relations, unlike the proper-
ties of objects, are not directly measurable, one needs to have some background 
knowledge (such as ontologies and rules) to specify how to derive the existence and 
meaning of particular relations. For instance, in the domain of supply logistics, 
 relations like “suppliable” or “projected undersupply within 2 days” need to be sys-
tematically specified. The number of potentially relevant relation types is practically 
unlimited. This presents a great challenge to developers of general-purpose situation 
awareness systems since it essentially means that such systems must have the poten-
tial to track any possible relation. In other words, the relation determination  
algorithms must be generic, rather than handcrafted for each special kind of relation. 
Furthermore, in order to derive a specific relation one often needs to access a number 
of data sources and then combine (i.e., fuse) their inputs. One way to address these 
challenges is to use generic reasoning tools, such as those based on the principles 



 An Application of Semantic Web Technologies to Situation Awareness 945 

 

being employed by the Semantic Web. To take advantage of this approach, however, 
all information must be available in a formally defined knowledge base. 

At Versatile Information Systems, Inc., we are developing a collection of flexible on-
tology-based information fusion tools needed for identifying and tracking user-defined 
relations. These tools collectively make up our Situation Awareness Assistant (SAWA). 
The purpose of SAWA is to permit the offline development of problem specific domain 
knowledge and then apply it at runtime to the fusion and analysis of object-level data. 
Domain knowledge is captured in SAWA using OWL ontologies for describing the 
classes and properties of the domain and SWRL rules for defining the conditions of 
higher-order relations.  The user controls the system situation monitoring requirements 
by specifying “standing relations”, i.e., high-level relations or queries that the system is 
to monitor.  SAWA provides a flexible query and monitoring language based on OWL-
QL that can be used to request information about the current situation or to conduct 
what-if queries about possible future situations.  In this paper we describe the structure 
and capabilities of SAWA and show its use on examples from the supply logistics do-
main. In particular, we show how to develop an appropriate ontology and associated 
rules, how SAWA collects and processes incoming events and how it communicates 
with the user. We also discuss the advantages and limitations of applying Semantic Web 
technologies to the problem of situation awareness. 

2   General Approach 

We view situation awareness as a fusion problem involving the identification and 
monitoring of higher-order relations among object-level objects.  As mentioned in the 
introduction, practical solutions to this problem require user-defined constraints, 
which we usually identified with a corpus of knowledge specific to a domain of inter-
est, otherwise known as domain knowledge.  The use of domain knowledge requires a 
form of representation and a means for processing or reasoning about the knowledge 
representations.  Rather than developing ad hoc representations we advocate the lev-
eraging of existing standards.  We also believe strongly in the value of formal repre-
sentations that can be used in conjunction with generic yet formal reasoning systems.  
Our approach to domain knowledge representation, which we will describe shortly, is 
thus premised on use of standards-based formal representations. 

Even with appropriate domain knowledge the number of possible relations defin-
able within the domain knowledge constraints can remain intractable.  To further 
constrain a situation we believe it is necessary to know something about the user’s 
specific goals.  By knowing more specifically what the user is looking for, automated 
systems can focus attention on just those events and candidate relations that are rele-
vant.  Our process for relevance reasoning has been reported elsewhere [1] and will 
not be explained in detail in this paper.  We will summarize, however, by saying that 
relevance reasoning takes a standing relation (i.e. a goal) from the user, identifies the 
portion of the domain knowledge that is relevant to the standing relation, finds the 
attributes in the domain knowledge that must be grounded in input events and uses 
these attributes to identify what types of objects and which of their attributes need to 
be monitored in the event stream.  With this mechanism, the large number of objects 
and attributes in a situation can be pared down to a more manageable stream of data 
in which only a comparatively small number of relevant relations must be monitored. 



946 C.J. Matheus et al. 

 

2.1   Ontology Representation in OWL 

In our current efforts we have been exploring the use of recent developments for the 
Semantic Web [2].  In particular we have chosen to use the OWL Web Ontology 
Language [3] for defining ontologies that serve as the basis for data and knowledge 
representation within our situation awareness systems.  The advantages of using OWL 
includes the fact that it is defined by a formal set of semantics and that there are a 
growing number of automated systems to formally process OWL documents, includ-
ing editors, consistency checkers and reasoning engines [4].  

OWL was designed to capture the classes, properties and restrictions pertinent to a 
specific domain.  As such, OWL can capture basic class hierarchies, properties among 
classes and data and simple constraints on those properties and classes.  OWL, how-
ever, cannot capture all types of knowledge relevant to a given domain.  In particular, 
it does not provide a way to represent arbitrarily complex implications, in which 
knowledge of the existence of a collection of facts (X1, X2…Xn) implies the truth of 
some other information (i.e., X1 Λ X2 Λ…Xn →Y).  For example, there is no way in 
OWL to define the relationship of “uncle(X,Y)” which requires knowing that X is 
male, X has a sibling Z, and Z has a child Y.  The joining of collections of interrelated 
facts into implication rules as illustrated in this example is very common when defin-
ing relationships important to domains involving situation awareness.  We therefore 
need the ability to define portions of our domain knowledge using a rule language, 
and for this purpose we have selected the Semantic Web Rule Language, SWRL [5]. 

2.2   Rule Representation in SWRL 

SWRL is built on top of OWL and, like OWL, has a formally defined semantics, 
making it a natural choice for use in our situation awareness applications.  SWRL 
does, however, have some shortcomings that make it less than ideal.  Because it was 
officially introduced as a draft recommendation in just the spring of 2004, it is rela-
tively new and is still evolving; this means there are few tools and applications for use 
with SWRL and it remains a moving target which may undergo radical changes that 
will introduce inconsistencies for early adopters.  Furthermore, SWRL requires the 
use of binary predicates.  While it is possible to represent concepts dependent on 
higher-arity relations using SWRL, the process of doing so significantly complicates 
the resulting rules, making them difficult to read and maintain.  As an example con-
sider the concept of a “part” at a “facility” being in “critical supply” at a particular 
“time”, meaning there is a greater need for the part than the number of units available. 
What we would like to do is create a rule with a predicate of the form criticalPartAt-
Facility(?Part,?Facility,?Time,?DeficitAmount)1 as its head and additional predicates 
in the body that define the conditions under which this predicate should be deemed to 
be true.  To do this in SWRL we need to convert this four-term predicate into an in-
stance of a class (fabricated solely for this rule) that is the domain of four properties, 
one for each of the four terms.   

In the nine rules for our Repairable Assets scenario in which we monitor for criti-
cal and marginal parts at a number of airbases this technique was employed nine 
___________________ 
1  Variables in the examples of SWRL code presented in this paper are indicated by being pref-

aced with a question mark, such as in ?Facility. 



 An Application of Semantic Web Technologies to Situation Awareness 947 

 

times and was usually repeated in the head and bodies of multiple rules.  The need for 
this technique contributed greatly to the more than 1000 lines of SWRL code required 
to implement these nine relatively simple rules; this in turn made the debugging of the 
code very tedeous.  Still, the advantages of SWRL – primary its formal semantics and 
its close association with OWL – were enough to encourage us to continue with our 
exploration of its use for situation awareness. 

 

Fig. 1. SAW Core Ontology.  This ontology serves as the basis for all domain specific ontolo-
gies and rule sets.  According to the ontology a Situation consists of Objects and Relations and 
a Goal (standing relation).  Objects have AttributeTuples that are associated with specific At-
tributes and a collection of AttributeValues defined according to ExternalEvents.  Relations are 
realized through RelationTuples that connect pairs of Objects with RelationValues defining by 
the firing of Rules. 

2.3   SAW Core Ontology 

We are interested in building systems for situation awareness that are generic in na-
ture.  That is to say that the systems should be applicable to a wide variety of problem 
domains simply through the redefinition of the domain knowledge that they use.  For 
this approach to work, some core concepts need to be established that will be used as 
the basis for the development of specific domain knowledge ontologies and rule sets.  
For this reason we have developed a SAW Core Ontology that serves as the represen-
tational foundation of all domain knowledge that is built on top of it.  We have re-
ported on this core ontology in earlier papers [6] and will not describe it in detail here.  
A simplified version of the ontology is shown in Fig. 1 with the key concepts being 
 



948 C.J. Matheus et al. 

 

use of objects that have attributes with specific values being defined by external 
events that occur over time; in addition, relations combine pairs of objects with truth 
values defined over time by the firing of rules that define the relations. 

3   SAWA High-Level Architecture 

The SAWA High-Level Architecture has two aspects as shown in Fig. 2:  a set of 
offline tools for Knowledge Management and a Runtime System of components for 
applying the domain knowledge to the monitoring of evolving situations.  The knowl-
edge management tools include an ontology editor, an ontology consistency checker 
and a rule editor.  The runtime system consists of a Situation Management Compo-
nent (SMC), an Event Management Component (EMC), a Relation Monitor Agent 
(RMA), a Triples DataBase (TDB) and a Graphical User Interface (GUI).   

 

Fig. 2. SAWA High-Level Architecture.  On the left side of the diagram is the Knowledge 
Management suite of tools used to develop the domain knowledge that serves as input to the 
Runtime System, shown on the right hand side.  The user interacts with the system through the 
GUI by issuing standing relations (goals) and queries.  Events from the outside world come into 
the runtime system and are processed for redistribution to other components by the Event Man-
agement Component (EMC). 

4   SAWA Knowledge Management 

Knowledge Management in SAWA is handled by a loosely coupled suite of tools for 
developing and maintaining OWL ontologies and SWRL rule sets. 

4.1   Ontology Editor 

The OWL language is based in RDF [7], which has an XML-based representation.  
As such, any text or XML editor could be used to develop OWL ontologies.  The 
 



 An Application of Semantic Web Technologies to Situation Awareness 949 

 

manual coding of OWL is, however, tedious and prone to error, making specialized 
editors highly desirable.  There are a number of editors available for OWL [8] but the 
most widely used is Protégé [9].  Protégé is a general-purpose ontology management 
system developed long before OWL but for which OWL plug-ins have been devel-
oped.  Using Protégé with the basic OWL plug-in permits the use of Protégé’s frame-
based editor to construct OWL classes, properties and restrictions among them as well 
as to develop annotations for OWL ontologies.  This approach is adequate but not as 
convenient as a graphical editor that allows the visual display and manipulation of the 
relations between objects and properties.  Fortunately there is a plug-in for Protégé 
called ezOWL that provides a graphical editor on top of the basic OWL-plugin.  All 
of the ontologies depicted in this paper are screenshots taken from ezOWL.  EzOWL 
has its limitations (for example it does not cleanly display more than two properties 
between two classes) and does not always produce correct OWL code, but it is cur-
rently the best available visual editor for OWL and does a satisfactory job, provided 
the resulting code is checked for consistency. 

4.2   Consistency Checker 

Developing an accurate and consistent ontology is not easy, particularly as the com-
plexity of the domain increases.  For all but the most trivial problems it is imperative 
that newly constructed ontologies be automatically validated for logical consistency; 
this is also invaluable when combining multiple ontologies that may individually be 
consistent but are collectively incompatible.  It has been the authors’ experience that 
seldom is the first design of an ontology complete and consistent, and the use of con-
sistency checking tools has saved tremendous amounts of development time. SAWA 
includes ConsVISor [10], an OWL/RDF consistency checker, in its suite of knowl-
edge management tools.  ConsVISor is both a standalone Java application and a free 
Web Service available. at http://www.vistology.com/consvisor.   

ConsVISor’s purpose is to analyze OWL and RDF documents looking for symp-
toms of semantic inconsistencies. Not only does it detect outright semantic violations, 
it also identifies situations where logical implications have not been fully specified in 
a document.  For example, if an ontology places a minimum cardinality constraint on 
a property for a specific class and an instance of that class is created without having 
the minimum number of property values, an informative message is provided as 
shown. Emphasis is placed on providing highly informative feedback about detected 
symptoms so as to aid the correction of underlying errors by the human user.  Cons-
VISor’s output however is based on an OWL-based Symptom Ontology [11] and as 
such can produce symptom reports in OWL that can be automatically processed by 
other OWL-cognizant programs. 

4.3   Rule Editor 

SWRL rules in their XML representation are syntactically and (frequently) semanti-
cally difficult to read and write.  It was therefore decided that SAWA needed an easy 
to use editor to assist in the construction and maintenance of SWRL rules.  With 
SWRL being so new, there were no SWRL editors available and so we decided to 



950 C.J. Matheus et al. 

 

 

Fig. 3. RuleVISor. This screenshot of the RuleVISor SWRL editor shows its use on a set of 
rules used by the Supply Logistics scenario described in Section 6. 

implement one, which we are calling RuleVISor.  A screenshot of RuleVISor being 
used on a rule set for the Supply Logistics scenario described in Section 6 is shown in 
Fig. 3.  The rules are displayed along the top left hand side of the editor in a directory 
style layout for easy selection and high-level scanning.  The rule that is currently 
being edited appears in two forms in the right-hand section of the editor.  At the top of 
this section is the display of the contents of the rule head and body in either an easy to 
read atomic form, which is shown in the screenshot, or as raw SWRL code (not 
shown).  Below this display is the section where editing of the rule takes place, in-
cluding the optional naming of each rule.  This section is split into a portion at the top 
for editing the head followed by a portion for editing the body.  Within either of these 
the user has the option of adding or deleting binary atoms, atomic atoms, instances, 
data value ranges and built-in functions simply by clicking on the appropriate icons.  
Each clause in a rule head or body appears in a three row region that provides the 
name of the atom, the terms it operates over and possibly other constraints such as 
term type restrictions.  The values of the terms can either be typed in by the user or 
dragged from other areas of the editor.  The primary source for dragged items is the 
Ontology Tree that appears in the lower left hand corner. 

The Ontology Tree displays the contents of the ontologies upon which a rule set is 
to be built.  Of most interest here are the Classes and Properties of the ontology, 
which are used to populate the term slots of atoms used in the rule heads and bodies.  
Class and Property names may be dragged to any text entry box in the editor but they 
will only be accepted by the box if the value being dragged matches the type that the 
box expects.  This form of primitive type checking represents the beginning of a much 



 An Application of Semantic Web Technologies to Situation Awareness 951 

 

more sophisticated policy for consistency checking based on ConsVISor that is 
planned for a future version of RuleVISor. 

5   SAWA Runtime System 

The SAWA Runtime System, also called the SAWA Engine, is depicted in Fig. 4 
along with the communication channels between its sub-components.  SAWA is im-
plemented in Java, includes Jess as the basis for its reasoning functions and uses our 
proprietary RDF/OWL/XSD parser.  The SAWA Engine consists of the following 
sub-components:  the Situation Management Component (SMC) which is the sys-
tem’s central controller, the Event Management Component (EMC) which processes 
all incoming events, the Relation Monitoring Agent (RMA) which monitors relevant 
events for the status of relations occurring in the evolving situation, the Triples Data-
Base (TDB) which maintains a historical record of all situation events and permits the 
processing of queries, and the Graphical User Interface (GUI) which handles all user 
interaction with the system.  The function of each of these components is described 
further in the subsections that follow. 

 

Fig. 4. SAWA Runtime System  

5.1   Situation Management Component 

The Situation Management Component (SMC) is the central controller for SAWA.  It 
interacts with the GUI to provide options to the user and to accept the user’s com-
mands to start, stop and query situations.  In addition, it serves as the communication 
channel between the GUI and the TDB and RMA.  The SMC initializes the monitor-
ing of situations by instructing the EMC to start listening to specific event streams 
and informs the RMA, TDB and GUI how to connect to the EMC to receive their 
appropriate streams of processed events.  The SMC is also responsible for performing 



952 C.J. Matheus et al. 

 

relevance reasoning, which is achieved through the application of XSLT scripts, and 
for passing the appropriate set of relevant rules to the RMA and the set of relevant 
objects and attributes to the EMC. 

 

Fig. 5. Event Ontology. Simple ontology used to represent incoming events for processing by 
the EMC. Each Event describes one or more Objects each having one or more Attributes for 
which a value and certainty measure are defined. 

5.2   Event Management Component 

The Event Management Component (EMC) receives streams of raw event data and 
converts them into appropriate streams of events for the GUI, RMA and TDB.  Each 
of these components receives a specific type of event stream:  the RMA only receives 
relevant events encoded as Jess-formatted triples; the TDB receives all events in the 
form of OWL triples; the GUI receives relevant events in the form of object-attribute 
instances.  The raw input streams are expected to be annotated using an event ontol-
ogy with references to objects defined in the core ontology and the appropriate  
domain ontology.  The event ontology currently being used in SAWA is shown in  
Fig. 5. This event ontology is known only to the EMC which converts all event infor-
mation into appropriate structures for the other components; the isolation of the other 
components from the event ontology was done so as to permit the use of other event 
ontologies dependent upon the source of the event streams (which at this time is a 
simulator of fused object-level data). 

5.3   Relation Monitoring Agent 

The Relation Monitoring Agent (RMA) performs the task of monitoring the stream of 
relevant events and detecting the truth value of relevant relations that might exist 
between objects occurring in the evolving situation.  The RMA performs this task 
using the relevant rules defined by the domain knowledge in conjunction with the 
standing relation.  These relevant rules are converted from their SWRL representation 
into Jess rules using an XSLT script.  The Jess rules are then processed in the for-
ward-chaining Rete network of our enhanced Jess inference engine; some of the  
enhancements we have made to Jess include the support for over thirty of the SWRL 
built-ins which are implemented as procedural attachments in the form of Java 
method calls.  As events come in, they are processed through the Rete network and as 
a result may end up firing one or more rules.  The firing of a rule results in the instan-
tiation of a relation that is then reported to the GUI via the SMC.  At the moment all 
rule firings result in relations that have an associated certainty rating of 1.0 (i.e., 
100%).  We are working on a new implementation of the reasoning engine that will 
incorporate uncertainty reasoning and will thus afford the detection of relations hav-
ing incomplete certainties. 



 An Application of Semantic Web Technologies to Situation Awareness 953 

 

5.4   Triples Database 

In RDF and OWL all information is represented in the form of triples.  Each triple 
represents a predicate that relates a subject to an object.  For example, to state that S2 
is a SupplyStation requires a triple of the form: S2 rdf:type SupplyStation. More com-
plex knowledge structure can be represented using collections of interrelated triples 
[12].  The triples representing the domain knowledge, user input and the incoming 
events all need to be maintained in a way that they can be readily processed.  In 
SAWA this is accomplished through the Triples DataBase (TDB). 

The TDB’s primary purpose is to maintain an accurate history of all events so that 
they can be queried by the user at any time.  It is currently developed on top of Jess 
and makes use of Jess’ built-in query capabilities to implement an engine for OQL: 
OWL Query language [13].  The TDB also supports “what-if” queries in which a set 
of hypothetical facts are asserted, a query is run to produce what-if results, and the 
hypothetical facts are retracted along with all facts deduced from them.  The TDB 
accomplishes this what-if capability using the “logical” retraction feature of Jess.  
While both the general query mechanism and the what-if query mechanism work as 
designed, they are quite inefficient and not particularly suited for new real-time opera-
tions.  Consequently we are in the process of developing our own inferencing and 
query engine optimized for the processing of triples. 

 

Fig. 6. The SAWA GUI 



954 C.J. Matheus et al. 

 

5.5   Graphical User Interface 

The Graphical User Interface permits the user to define standing relations, execute 
queries and monitor the current state of events, objects, attributes and relations.  Its 
use on a Supply Logistics scenario (described in the next section) is illustrated in  
Fig. 6. The GUI provides the means for specifying the standing relation (i.e., goal), 
executing queries, and monitoring the evolution of events, objects, attributes and 
relations.   Objects and attributes are displayed in the Situation Object Table and also 
on the Situation Object Map.  Relevant relations appear in the Relevant Relations 
table as well as in the Relevant Relation Diagram.  Clicking on objects on the map or 
events, objects or relations in the tables brings up a sub window of supplemental in-
formation as shown in the figure for Unit B8.  The dials in the upper right hand corner 
are used for monitoring the performance of the inferencing engine. 

6   A Supply Logistics Scenario 

SAWA is currently being applied to the domain of supply logistics for which we have 
developed two scenarios, supply line and repairable assets.  In this section we focus 
on the first scenario that was constructed for the purposes of demonstrating the basic 
system functions.  The goal or “standing relation” for this scenario is to constantly 
monitor the relation “hasSupplyLine” for all friendly units.  A supply line is defined 
as the existence of a continuous path of roads under friendly control connecting a unit 
(e.g., B5, B6, etc.) to a supply station (e.g., S1).  The specific layout for this scenario 
can be seen in the map display in the GUI screenshot in Fig. 6.  Roads connect pairs of 
regions (their centroids indicated by solid dots). There are six friendly blue units (i.e., 
B5, B6, B7, B9 and S1), including one supply station (S1), and one unfriendly red 
unit (R1).  

The screenshot in Fig. 7 shows the simple supply logistics ontology that goes along 
with this scenario.  Note that all of the classes in this ontology are implicitly sub 
classes of the Object class in the SAW Core Ontology described in Section 2.2 – this 
is necessary for the domain specific ontology to work with the otherwise generic 
mechanisms of the SAWA Engine.  Note also that this ontology is a gross simplifica-
tion of what would be expected for a more complete ontology necessary to support 
more practical supply logistics scenarios (which the authors are currently working 
on).  This ontology was created using ezOWL, which produced the screenshot shown 
in Fig. 7 as well as the OWL code used in the running of the scenario. 

The rule set developed for this scenario is partially shown in the screenshot of 
RuleVISor in Fig. 3.  These rules define that a unit hasSupplyLine if the unit is in a 
region that isSuppliable.  A region isSuppliable if it hasSupplyStation and is under-
FriendlyControl or if it is connected to another region by a Passable road and that 
other region isSuppliable.  A region is underFriendlyControl if it contains a friendly 
unit.  A region hasSupplyStation if the region contains an object and that object is a 
supply station (note that this rather obvious sounding rule is an implication that can-
not be readily captured in OWL alone). 

To simulate the running of the scenario several snapshots where developed as 
OWL annotations to define the state of the world at sequential time slices.  In each 
time slice one of the units was moved around in such a manner as to create changes in 



 An Application of Semantic Web Technologies to Situation Awareness 955 

 

the set of relations that would hold true.  These snapshots where then presented to a 
running SAWA application in which the user specified the standing relation to be 
hasSupplyLine as applied to all friendly units.  The system correctly detected the 
standing relations that held true at each time slice and reported these back to the GUI 
which displayed them for the user; the GUI screenshot in Fig. 6 shows the display 
after a couple of time steps. 

 

Fig. 7. Simple Supply Logistics Ontology.  This ontology captures just enough information 
needed for reasoning about supply lines, which serves as the standing relation in our supply 
logistics scenario.  Each of the classes represented in the ontology is a subclass of the Object 
class defined in the SAW Core Ontology shown in Fig. 1. 

7   Semantic Web Technologies for Situation Awareness 

The representational and reasoning requirements for Situation Awareness share much in 
common with those of the Semantic Web, with an added emphasis on the handling of 
time and uncertainty.  Both need to be able to represent object-level information con-
cerning classes and properties as well as higher-order relations that can occur among 
specific instances (e.g., a web site and its content, a web service and the set of users 
permitted to access it, etc.).  Given our experience with using Semantic Web technolo-
gies it is natural to ask how well they fared when applied to Situation Awareness.   

We have found the use of OWL to be generally quite suitable for representing tax-
onomies of classes and for capturing most of the properties of interest.  There have 
been cases where we would have liked to have been able from within OWL to further 
constrain certain properties based on the values of other properties but instead were 
forced to use a rule.  This is a well-known limitation of OWL [14] and is something 
that we have no problem with resorting to SWRL to resolve. 

With regards to the use of SWRL there are a number of issues that we encountered 
(for more details see [15]).  The lack of higher-order predicates is the most severe and 
was already illustrated in Section 2.2.  Another issue we had to deal with was the 
declarative definitions of the SWRL built-ins.  SWRL built-ins are defined without 
specification of the input/output nature of their terms.  For example, 
swrlb:add(100,?X,?Y) is a perfectly valid use of the SWRL add built-in even though 
it defines an infinite set.  It is also possible to use it in the following manner to im-
plement subtraction, swrlb:add(100,50,?X), even though swrlb:subtract is also defined 
by the language. In practice “add” is generally needed as a function that binds to the 



956 C.J. Matheus et al. 

 

variable in the first term position the summation of the remaining bound terms.  In our 
implementation of the built-ins for Jess we require that there only be a single unbound 
variable and then use its occurrence in the list of terms to determine which function is 
to be used to calculate its value (this means you can, if you wish, use swrlb:add to 
perform subtraction); if more than one term is unbound an exception is thrown.  This 
approach is not strictly conformant with the definition of SWRL but it represents a 
pragmatic approach that satisfies the requirements of a large number of problems. 

Most rule languages have some mechanism for explicitly asserting new facts into 
working memory; in Jess this is achieved using (assert …).   There is no such con-
struct in SWRL.  Rather, SWRL only states that when the statements in the body of a 
true are all true then the statements in the head are also true.  The natural interpreta-
tion of this from the context of an inference engine like Jess is that the statements in 
the head should be asserted into working memory, for otherwise these true statements 
would be inaccessible by any of the other rules.  For this reason we translate the 
statements in the heads of rules into assert commands in Jess.  We go one step further 
in that we also look for the occurrence of variables in the head that are unbound in he 
body and produce a “gensym” command to generate a new symbol to produce an 
anonymous object to fill the role played by the variable.  Technically the occurrence 
of a variable in the head that is not bound in the body is prohibited in SWRL (these 
are referred to as unsafe rules owing to the existentially quantified variables in their 
heads).  In practice it is very frequently necessary to construct anonymous objects of 
this sort and yet SWRL has no construct for doing so (i.e., it has no gensym operator). 

SWRL also lacks user-defined procedural attachments, which greatly reduces it 
general usefulness in practical applications.  There are many calculations that are 
simply more appropriately handled by writing a method in Java (or any other proce-
dural language) than to force its computation using rules alone.  In situation aware-
ness applications this comes up in such tasks as calculating the aggregation of a set of 
objects into a group, finding the centroid of a set of objects, dynamically modeling the 
position of a moving object over time, etc. 

Perhaps the most restrictive aspect of SWRL is its lack of negation and in particu-
lar negation as failure.  In all of our rule-based applications we have encountered the 
need to use a closed world assumption when reasoning about the information at hand.  
Seldom in the real world is it the case that we will have all of the timely information 
needed to make a conclusion; we must therefore be able to write rules that can detect 
the absence of specific forms of information and make decisions accordingly.  In 
SWRL there is no way to look for the absence of information owing to its strict ad-
herence to the monotonic assumption inherited from OWL.  In our SWRL applica-
tions we have been forced to violate this assumption and move outside of the lan-
guage in order to fully represent the knowledge needed to define some of our rules. 

8   Conclusion 

This paper described the Situation Awareness Assistant, SAWA.  SAWA is designed 
to monitor the evolution of higher-order relations within a situation using formal and 
generic reasoning techniques for level-two fusion.  The system was developed to 
make use of the formal languages of OWL and SWRL, which permit the representa-



 An Application of Semantic Web Technologies to Situation Awareness 957 

 

tion of ontologies and rules.  For a specific application of SAWA, a domain theory 
consisting of a domain specific OWL ontology and a corresponding set of SWRL 
rules are first constructed or reused from a previous application.  A standing relation, 
or goal, is then defined by the user, which is used to determine the relevant portion of 
the domain knowledge for the current objectives as well as to identify the relevant 
object and object-attributes that the system needs to monitor in the event stream.  As 
relevant events are detected they are passed on to the relation-monitoring agent, 
which analyzes them for the possible occurrence of higher-order relations.  As higher-
order relations are detected they are passed onto the GUI, which displays them in both 
tabular and graphical forms for the user along with other data pertaining to the events, 
objects and their attributes.  The GUI also provides the capability for querying the 
system’s triple database using basic OQL queries or with “what-if” queries that can 
produce hypothetical situations against which a query is run.  A scenario from the 
domain of supply logistics was briefly described and we high-lighted some of the 
issues we encountered in our effort to apply Semantic Web technologies to the prob-
lem of Situation Awareness. 

References 

1. C. Matheus, K. Baclawski and M. Kokar, Derivation of ontological relations using formal 
methods in a situation awareness scenario. In Proc of SPIE Conference on Multisensor, 
Multisource Information Fusion, pages 298-309, April 2003. 

2. T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web: A new form of Web con-
tent that is meaningful to computers will unleash a revolution of new possibilities. Scien-
tific American, May 2001. 

3. M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. 
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL Web Ontology Language Ref-
erence. W3C Recommendation 10 February 2004. http://www.w3.org/TR/owl-ref/ 

4.  http://www.w3.org/2004/OWL/. 
5. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M. Dean. SWRL: A 

Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission, 
2004.  http://www.w3.org/Submission/SWRL/. 

6. C. Matheus, M. Kokar and K. Baclawski, A Core Ontology for Situation Awareness. In 
Proceedings of FUSION’03, Cairns, Queensland, Australia, pages 545-552, July 2003. 

7. G. Klyne, J. J. Carroll, and B. McBride, Resource Description Framework (RDF) Con-
cepts and Abstract Syntax.. W3C Recommendation 10 February 2004. Latest version is 
available at http://www.w3.org/TR/rdf-concepts/ 

8. European OntoWeb Consortium, A Survey of Ontology Tools, May 2002. 
http://ontoweb.aifb.uni-karlsruhe.de/About/Deliverables/D13_v1-0.zip. 

9. J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriksson, N. F. 
Noy, S. W. Tu The Evolution of Protégé: An Environment for Knowledge-Based Systems 
Development. 2002. 

10. ConsVISor, 2003.  http://www.vistology.com/consvisor. See also K. Baclawski, M. Kokar, 
R. Waldinger and P. Kogut, Consistency Checking of Semantic Web Ontologies. 1st In-
ternational Semantic Web Conference (ISWC)}, Lecture Notes in Computer Science, 
LNCS 2342, Springer, pp. 454--459, 2002. 



958 C.J. Matheus et al. 

 

11. K. Baclawski, C. Matheus, M. Kokar, J. Letkowski and P. Kogut, Towards a Symptom 
Ontology for Semantic Web Applications. In Proceedings of Third International Semantic 
Web Conference, Hiroshima, Japan, pages 650-667, November, 2004. 

12. RDF Primer. W3C Working Draft. Edited by F. Manola and E. Miller, 2002. 
http://www.w3.org/TR/rdf-primer/ 

13. OQL: OWL Query Language, 2003. 
14. M. K. Smith, Web Ontology Issue Status, 2003. http://www.w3.org/2001/sw/WebOnt/ 

webont-issues.html#I3.2-Qualified-Restrictions 
15. C. Matheus, Position Paper: Using Ontology-based Rules for Situation Awareness and In-

formation Fusion. W3C Workshop on Rule Languages for Interoperability, Washington, 
D.C., April 2005. http://www.w3.org/2004/12/rules-ws/paper/74 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 959 – 973, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Task Knowledge Based Retrieval for Service 
Relevant to Mobile User’s Activity 

Takefumi Naganuma and Shoji Kurakake 

Network Laboratories, NTT DoCoMo Inc. 3-5 Hikari-no-oka, 
Yokosuka-shi, Kanagawa, 239-8536 Japan 

{naganuma, kurakake}@netlab.nttdocomo.co.jp 

Abstract. Since mobile Internet services are rapidly proliferating, finding the 
most appropriate service or services from among the many offered requires pro-
found knowledge about the services which is becoming virtually impossible for 
ordinary mobile users. We propose a system that assists non-expert mobile us-
ers in finding the appropriate services that solve the real-world problems en-
countered by the user. Key components are a task knowledge base of tasks that 
a mobile user performs in daily life and a service knowledge base of services 
that can be used to accomplish user tasks. We present the architecture of the 
proposed system including a knowledge modeling framework, and a detailed 
description of a prototype system. We also show preliminary user test results; 
they indicate that the system allows a user to find appropriate services quicker 
with fewer loads than conventional commercial methods. 

1   Introduction 

NTT DoCoMo is the premier mobile communications company in Japan and is pro-
viding mobile Internet services to over 44 million subscribers. Currently, widely di-
verse contents such as entertainment services (Ring-tone download, Games, etc), 
transaction services (Money transfer, Airline reservation, etc) and information ser-
vices (Weather forecast, Maps and local information, etc) are being offered through 
more than 89,000 mobile Internet sites [1]. The market volume of mobile Internet 
content exceeded one hundred thousand million yen in 2003, which is more than the 
market volume of Internet content accessed through PCs, 760 hundred million yen. 
Moreover, 36.2% of people accessing the Internet via mobile phones used for-fee 
Internet contents, a larger proportion than personal computer users for which it is only 
9.5% [2]. 3rd Generation mobile network service (3G), which continues to spread, 
enables the transmission of more voluminous and richer content by extension of the 
communication bands, so the market is expected to increase greatly. However, those 
rich network environments will increase the service provider's cost for developing and 
maintaining content. Furthermore, the market has, up to now, been dominated by a 
few popular entertainment services such as character download and ring-tone 
download, but these markets have already become saturated. If we are to expand 
overall market volume, it is necessary to expand the market volume of non entertain-
ment services by increasing the frequency with which users can benefit from the rich 
contents possible in the 3G mobile network. 



960 T. Naganuma and S. Kurakake 

We believe that the key to the next step in mobile Internet market growth is realiz-
ing the intelligent service platform, which will mediate between services and users by 
interpreting the user’s activity in the real world. Because mobile handsets are the most 
appropriate devices for problem solving in daily life as users always carry them, there 
will be many more occasions for providing services compared to Internet services 
accessed by the PC. By realizing the intelligent service platform, users will be able to 
access the most appropriate services to help their activities in the real world anytime, 
anywhere, and service providers will gain more chances for providing new services. 

Current methods for accessing Internet services, such as directory-type search 
methods and keyword-type full-text search methods, do not suit mobile computing 
environments. This is because mobile handsets have strong resource limitations such 
as relatively weak input methods and small displays, and most users are non-experts 
in that they have no computer literacy, i.e. the young generation or the aged. Further-
more, most mobile Internet services are accessed for just a few minutes in daily life 
such as when waiting for a train. Novice users obviously cannot perform service re-
trieval efficiently because they do not understand the overall directory structure and 
can not come up with the keywords that will exactly identify the service needed. 

Many research activities are targeting the realization of efficient service retrieval in 
the mobile Internet environment such as a service retrieval system based on user’s 
location [3]. However, this system simply provides a mechanism for associating 
Internet content with the user’s location according to the address information written 
in the target document, its does not take into account the meaning of the user’s activ-
ity. The contents supported by the above approach are very limited, and content that 
has no address information can not be retrieved even if it is very useful to the user. 

We treat user activity in the real world as the semantics of services by using  
Semantic Web technology. To realize this, we propose a knowledge modeling frame-
work that makes it easy to describe various user tasks in the real world as the seman-
tics of services. We define “task” as what the user wants to do in the real world. And 
we also propose the task knowledge based service retrieval system based on the task 
knowledge base developed by using the knowledge modeling framework. The task 
knowledge base contains a variety of structured tasks in the real world and their rela-
tions with the information services available. Our system makes it easy for non-expert 
users of mobile services to retrieve the service appropriate to solve the user’s problem 
by just inputting her currently desired task as a problem-solving request to the system. 

We will present our approach and the high-level architecture of the proposed sys-
tem. We then discuss the knowledge modeling framework including our strategy for 
realizing network-wide knowledge sharing, semantic description of task knowledge 
with OWL-S [10], and a task knowledge modeling environment and service retrieval 
system. Details are provided of the design of the system sequence, server component 
and client interface, all of which are intended to be implemented on actual mobile 
handsets. We also describe a prototype system for each part. The paper finishes with 
an evaluation by user testing and our conclusions. 

2   Overview of Proposed System 

A general approach to problem-solving is to divide the large or abstract original prob-
lem into several small or concrete sub-problems. Paper [8] shows that human daily 



 Task Knowledge Based Retrieval for Service Relevant to Mobile User’s Activity 961 

life is driven by “proximal goals” (short-term goals), which are derived from “distal 
goals” (long-term goals). In the area of problem-solving by using information ser-
vices, a problem that corresponds to a “distal goal” is divided into sub-problems that 
correspond to “proximal goals” where each of the sub-problems can be solved di-
rectly by using one information service. Our idea is to divide the user’s “distal goal” 
into a couple of “proximal goals” and lead the user to appropriate services that can 
solve the “proximal goals”. 

To elucidate the above discussion we provide an example. Consider the real world 
problem: “I want to spend this weekend at amusement park XYZ, but I do not know 
how to get there”. The information-seeking actions associated with this problem are 
represented by the following structure. 
 

         Decide how to get to amusement park XYZ 
          Check route 
          Check distance and time required 
          Check for transfer instructions 

 
In the above example, the problem of “Decide how to get to amusement park 

XYZ” corresponds to the “distal goal”, and the sub-problems to realize it, “Check 
route”, “ Check distance and time required” and  “Check for transfer instructions”, 
correspond to “proximal goals”. The user is assisted in solving the original problem 
by invoking a sequence of services, each of which handles a corresponding sub-
problem. 

To realize the above approach, we treat “what a user wants to do” as the user’s task 
and structure knowledge that can be used to divide the task into sub-tasks as task 
knowledge. We have built a knowledge base that stores such structured task knowl-
edge. Furthermore, we have developed knowledge of service usage (for example, 
“This service provides functions for reserving movie tickets”) as service knowledge, 
and have built a knowledge base that stores service knowledge. We developed a task 
oriented service retrieval system that uses these two knowledge bases. Each task is 
represented as an individual node that we call task node, and task and sub-task struc-
tures in task knowledge are represented as a graph structure among task nodes yield-
ing parent tasks and their sub-tasks; service knowledge is expressed by associating 
each task node with the URI (Uniform Resource Identifier) of the appropriate con-
crete information service. 

2.1   High-Level Architecture 

Fig. 1 shows the high-level architecture of the proposed system. The system is com-
posed of two parts; the Knowledge Modeling Framework (KMF), which provides a 
task knowledge modeling environment to support task knowledge modeling and 
stores the described model in the Task Knowledge Base (Task KB), and the Service 
Retrieval Framework (SRF), which provides a task knowledge based service retrieval 
system for actual mobile handsets through the use of the Task KB and the Service 
Knowledge Base (Service KB). KMF provides an environment that makes it easy to 
describe and acquire task knowledge and that also supports interoperability within 
task knowledge because it is to be shared by many network service providers and 



962 T. Naganuma and S. Kurakake 

content service providers. SRF provides the server module needed to retrieve appro-
priate knowledge from the Task KB and the Service KB according to the user's re-
quest, and the client module, which actually runs on a mobile handset to provide an 
easy-to-use user interface. 

Service
Retrieval

Framework
(SRF)

User

User

User

SP

SP

SP

Service
Knowledge

Base
(Service KB)

Task
Knowledge

Base
(Task KB)

Knowledge
Modeling

Framework
(KMF)

*SP : Service Provider
 

Fig. 1. High-level architecture of proposed system. The system is composed of two parts; 
1)KMF, which provides a task knowledge modeling environment, and 2)SRF, which provides a 
task knowledge based service retrieval system that can be used from a mobile handset. 

2.2   Research Challenges 

1. The Knowledge Modeling Framework (KMF) must be capable of describing all 
tasks likely to be performed by mobile users in a structured way as task knowl-
edge. The framework must make it easy to describe knowledge and to extend exist-
ing knowledge. We note that task knowledge will be created by multiple entities. 

2. The Service Retrieval Framework (SRF) must enable a mobile user to retrieve 
appropriate services by entering a simple problem-solving request. The environ-
ment must provide components that run on commercial mobile handsets and pro-
vide a user interface that is easy to use and to understand. The environment also 
must handle a wide range of user requests such as abstract or concrete requests. 

3   Designing Knowledge Modeling Framework 

The Knowledge Modeling Framework (KMF) is designed to provide the ability to 
describe many kinds of task knowledge, and to extend existing knowledge or add 
external knowledge from a third party. We show details of this framework below.  

3.1   Basic Approach for Task Knowledge Modeling in the Real World 

It’s important to manage and reuse already described knowledge because there are so 
many tasks in the real world. Much research has been conducted on the ontology for 
knowledge sharing in the engineering domain [12] [13], business domain [14] or 
problem-solving research area [15] [16]. The final goal of our research is to create 
large scale task ontology for modeling real world user activities. Towards this goal, 
first of all, we considered the strategy for extracting task knowledge that can be re-



 Task Knowledge Based Retrieval for Service Relevant to Mobile User’s Activity 963 

used. Our approach is to extract task knowledge that depends on some specific place 
such as an amusement park or a department store at first, and next we extract the 
generic task knowledge from the place-dependent task knowledge. The advantage of 
this approach is that the extraction of the place-dependent task knowledge is easer to 
carry out by collecting and analyzing cases of service usage in the real world place. 
The category of the real-world place can be borrowed from commercial services such 
as a map service or car navigation service. In this research, we treat this category of 
place as a domain for classifying the task knowledge. Fig. 2 shows basic approach for 
task knowledge modeling in the real world. 

 

P4

P2 P3

P1

T1
T2

T3

Domain-specific
Task Knowledge

generalization

specialization

Extract and Model task knowledge 

P5

Domain as place in the real world 

New domain

Generic
Task Knowledge

 

Fig. 2. Basic approach for task knowledge modeling in the real world 

The generic task knowledge facilitates the reuse of knowledge. For instance, ge-
neric task knowledge such as “go to somewhere”, which corresponds to the general 
process model to perform the activity of moving from a starting point to a destination, 
is common knowledge among specific task knowledge regarding going to specific 
places from specific places. The knowledge engineer can use such generic task 
knowledge to describe more specific task knowledge in a new domain which de-
creases the cost for expanding the coverage of task knowledge. We have constructed 
domain specific task knowledge for 12 domains so far. 

3.2   Requirements for Semantic Description of Task Knowledge 

Task knowledge consists of various kinds of task nodes and their relations. A good 
description of task knowledge is quite important for the management and reuse of 
knowledge. In addition, an interoperable standard format for knowledge representa-
tion is essential for network-wide knowledge sharing. By sharing the same descrip-
tion, we can combine different task knowledge such as knowledge created by a  
service provider and independent user groups of the service. We extracted the task 
knowledge description requirements which were based from the analysis of structured 
task knowledge developed in [4]. Fig. 3 shows an example of a generic task model 
and a specific task model and their relation based on the requirements. 

 



964 T. Naganuma and S. Kurakake 

1. The relations between task nodes must allow the discrimination of two relation 
types: “specialized” relation, which indicates that an object task node is more spe-
cific than a subject task node, and “achieved” relation, which indicates that an ob-
ject task node is one of the divided task nodes that achieve a subject task node. 

2. The achieved relation must be represented as a sequence of tasks by using some 
kind of control construct, such as Sequence, Exclusiveness, etc. 

3. The achieved relation involves the role of each sub-task to achieve the task with 
which the sub-task is associated. 

4. The specialized relation involves the viewpoint of the policy for categorization. For 
instance, “Buy products” and “Buy foods” are associated by a specialized relation 
from the viewpoint of identification of the object being bought. 

5. The task nodes have to be discriminated based on context information such as 
location and/or time. For instance, when the user’s context is "midnight", the task 
of “travel by train” should not be associated with the user if there are no train ser-
vices in midnight. 

6. Task knowledge has to be associated with the widest possible variety of services, 
such as XML Web services, HTML-based Web content, etc. 

 

Go by train

Go to destination

Go to amusement park

Go to destination

Get Information about destination

Decide means of transport

Decide a route to destination

Go to amusement park

Get Information about amusement park

Decide means of transport
to amusement park

Decide a route to
amusement park

Go to department store

Go by public transport

Decide means of transport

Decide means of transport
to amusement park

Decide a route to destination

Decide a route to
amusement park Go by train

Go by public transport

Where

How

Where

Where

Where

What

Specialized relation Achieved relation (Generic Task Model)

Achieved relation (Domain-specific Task Model)

Specialize

 

Fig. 3. An Example of structured task knowledge described with achieved relation and special-
ized relation. All task nodes are defined in the specialized relation tree (left side) and some task 
nodes are associated with achieved relation (right side). 

3.3   Semantic Description of Task Knowledge with OWL-S 

For meeting the requirements in 3.2, we designed a description framework of task 
knowledge using OWL-S. OWL-S is an OWL [9] based Web service ontology for 
describing the properties and capabilities of Web services. OWL-S also includes 
process ontology for describing generic process.  

We describe the achieved relation by using the Process model and the control con-
structs defined in OWL-S, and define the specialized relation as an object property 
called “specializedBy”. In addition, we define a “View” class for describing the  



 Task Knowledge Based Retrieval for Service Relevant to Mobile User’s Activity 965 

viewpoint of specialization. The value of the “view” property is either 1) WHAT; 
specialization of object, 2) WHERE; specialization of location, or 3) HOW; speciali-
zation of method. 

Furthermore, we define a “Role” class for describing the role of a lower-level task 
with respect to an upper-level task in achieved relations. The “role” property can be 
either, 1) PLAN; the activity of planning to achieve upper-level task (e.g. decide a des-
tination), 2) PREPARE; the activity of preparation before performing concrete action 
(e.g. collect information of destination in advance), 3) ACTION; the concrete activity to 
achieve upper-level task (e.g. move to destination), or 4) CONFIRM; the activity of 
checking the current status of situation (e.g. check traffic jam). Each task node is de-
scribed as a Service class of OWL-S, and the context information that indicates the 
applicable condition of the task node is described by using the ServiceProfile. 

For describing service knowledge that associates task node with not only Web ser-
vices but also HTML-based Web content, we define an original class named “Book-
markAtomicProcessGrounding” (BAPG). BAPG has features that can associate mul-
tiple Web content with a single task node, and can handle service names and URIs. 

3.4   Task Knowledge Modeling Environment 

We developed a task knowledge modeling environment, named TEdit, to develop and 
manage the described task model. Fig. 4 shows the user interface of TEdit. TEdit is 
implemented in Java and has an SQL Database interface via JDBC. TEdit provides 
several functions, 1) Create task node and edit specialized relations, 2) Define and 
edit achieved relations, 3) Define control constructs in achieved relations, 4) Register 
services and edit association of services with task node, and so on. Furthermore, TE-
dit provides the feature of automatic creation of OWL-S codes. 

<service:describedBy>
<process:hasProcess>

<process:CompositeProcess>
<process:collapsesTo>

<process:SimpleProcess rdf:ID="Task00001"/>
</process:collapsesTo>
<dcm:specializedBy>
<dcm:Bundle>
<dcm:bundle rdf:resource=&dcm;#WHERE"/>
<dcm:components rdf:parseType="Collection">
<process:SimpleProcess rdf:resource="#Task00004/>
</dcm:components>

</dcm:Bundle>
</dcm:specializedBy> 

<dcm:rolesOf rdf:type="Resource">
<dcm:role rdf:resource="&dcm;#PLAN"/>
<dcm:child rdf:resource="#Task00002/>

</dcm:rolesOf>

<dcm:rolesOf rdf:type="Resource">
<dcm:role rdf:resource="&dcm;#ACTION"/>
<dcm:child rdf:resource="#Task00003/>

</dcm:rolesOf>

<composedOf>
<process:Unordered>
<process:components rdf:parseType="Collection">
<process:SimpleProcess rdf:about="#Task00002"/>
<process:SimpleProcess rdf:about="#Task00003"/>
</process:components>

</process:Unordered>
</composedOf>

</process:CompositeProcess>
</process:hasProcess>

</service:describedBy>

Task specialization view

Task achievement view

Service management view

OWL-S code

automatic 
creation

 

Fig. 4. User Interface of task knowledge modeling environment named TEdit 



966 T. Naganuma and S. Kurakake 

The left side of the user interface provides a specialization view in which the user 
can define each task node hierarchically. The viewpoint of specialization can be set 
by selecting the appropriate view such as WHAT, WHERE and HOW on a context 
menu shown by clicking on a task node. The selected viewpoint is shown as a special 
node. The right-upper side of the user interface provides an achievement view in 
which the user can define the achieved relations between task nodes. The role of 
achieved relations can also be assigned by selecting appropriate sub-task roles such as 
PLAN, PREPARE, ACTION, and CONFIRM. The control construct of the set of sub 
tasks such as Exclusive, Sequence, or IF-then-else, and the context information which 
indicates applicable condition of the task can also be set in the achievement view. 

4   Designing Service Retrieval Framework 

We designed and implemented the service retrieval framework based on task knowl-
edge that consists of server module and client module. The client module can run on 
commercial mobile handsets as a Java program specially designed for mobile hand-
sets. We show the system architecture and the user interface in detail below. 

4.1   System Architecture and Execution Sequence 

Fig. 5 shows the system architecture of Service Retrieval Framework (SRF) based on 
task knowledge. The system is composed of several parts: Task Knowledge Base 
(Task KB) stores description for task nodes and the relationships between task nodes 
as Semantic Task Descriptions; Service Knowledge Base (Service KB) stores descrip-
tions about the associations between a service (URI, service name and service expla-
nation) with a proper task node in Task KB as Semantic Service Descriptions; Task 
Selector (TSE) locates the most appropriate task nodes in TKB according to a user 
request and context information; Service Selector (SSE) locates appropriate services 
in Service KB associated with task node IDs; Task Navigator (TNA) provides the user 
interface to let a user input a request and communicates with TSE to obtain the task 
nodes matched with the user’s request; Web browser, which displays HTML-based 
Web content and Context Notifier (CNO) notifies TSE of the context information, 
such as user’s current location and time. 

A user sends a problem-solving request to TSE via the user interface presented by 
TNA. At the same time, CNO sends the user’s context information to TSE. TSE ana-
lyzes the user’s request and the context information, selects tasks that match the 
user’s request and context information by searching the Task KB, and sends the re-
sults to TNA. The user selects an appropriate task from a list of the tasks displayed on 
TNA. This task may be very high level and abstract. TNA sends the task ID of the 
user selected task to TSE. TSE sends back all sub-tasks related via the achieved rela-
tion to the task. Here, some of the sub-tasks may be very detailed and concrete 
enough to be directly associated with concrete services. The user can brows all sub-
tasks on TNA and selects one or more task nodes to execute and sends the IDs of the 
task nodes to SSE. SSE searches Service KB and retrieves the service associated with 
the task nodes that the user selected, and creates a summary HTML page listing the 
services deemed to be appropriate. The user uses the summary page displayed by the 
web browser to access the services. 



 Task Knowledge Based Retrieval for Service Relevant to Mobile User’s Activity 967 

Web
Browser

Task
Navigator

(TNA)

Mobile Device

Context
Notifier
(CNO)

Task
Selector
(TSE)

Service
Selector
(SSE)

User

Service KB

Service Mediator

Service

Service

Service

Semantic Service
Description

Task KB

Semantic Task
Description

 

Fig. 5. The system architecture of Service Retrieval Framework (SRF). SRF consists of two 
parts; 1) Service Mediator, which provides the server module running as Servlet, and 2) Mobile 
Device, which provides the client module running on the mobile handset. 

4.2   Implementation 

Fig. 6 shows the user interface of the prototype system. TNA, which runs on a mobile 
device, was implemented as a Java application running on a mobile device. TSE and 
SSE were implemented as Servlet running on an application server. The current im-
plementation does not support context-related features such as a Context Notifier. 

Input request as text Select a desired task Select concrete tasks
 

Fig. 6. User interface for the execution of task knowledge based service retrieval. Service selec-
tion procedure consists of 3 steps; 1) request input, 2) abstract task selection, 3) concrete task 
selection. 

The user enters a problem-solving request in a text box on TNA (left side of Fig. 
6). To respond to the user’s problem-solving request, a task node that can solve that 
request must be selected from the Task KB and presented to the user. This mechanism 
considers that the input is from a small portable terminal and assumes that the prob-
lem-solving request is expressed as a short text message. For this reason, task node 
selection actually presents not one but a set of task nodes which are associated with 
achieved relations. For each word in the user’s problem-solving request that is in the 
thesaurus, the mechanism creates word set W consisting of that word and its  



968 T. Naganuma and S. Kurakake 

synonyms and compares that set to the task nodes. For task node T, evaluation value 
val (T) is determined by the following equation, where p (T, w) is a function that re-
turns a constant value when task T and word w successfully match. 

∈
=

Ww

wTpTval ),()(
 

(1)

After all the words in the user's problem-solving request are checked against all task 
nodes in the Task KB, the sets of task nodes are listed in order of the average score of 
the evaluation value on TNA (center of Fig. 6). The user selects one desired task from 
the list and then selects more detailed and concrete tasks from the tree of the task nodes 
related via the achieved relations (right side of Fig. 6). The number of services associ-
ated with each task node is displayed on the right side of the task nodes. 

5   Evaluations 

We conducted a user test with 9 adult subjects to confirm the effectiveness of the 
proposed system. The purpose of this user test was to evaluate the process up to find-
ing services for problem-solving purposes in terms of process functionality. Subjects 
were asked to retrieve appropriate services to given problem by using the proposed 
system, a keyword-type full-text search system developed by ourselves, and a major 
commercial directory-type search system [11]. 

This test was designed based on ISO/IEC 9126 Part4: Quality In Use Metrics. The 
evaluation items were 1) Effectiveness: the percentage of users who could reach the 
services appropriate to the given problem, 2) Productivity: the time taken to reach the 
services appropriate to the given problem. 

5.1   Test Set 

We designed a test set consisting of 4 different problem based on goal type as follows. 

1. Service retrieval from a designated Web site: “You are at Tokyo station: Find a site 
that shows the location of a Karaoke shop near here. ” 

2. Service retrieval for obtaining designated multiple information: “You are at Tokyo 
station: Find all of the following information, (a) a title of movie that is now being 
shown, (b)movie ranking of the title, (c) the location of a theater that is showing 
the movie near here, (d) the starting time of the movie. ” 

3. Service retrieval for proper information to perform designated activity: “You are at 
Tokyo station and have a lot of luggage. Find a proper way to send it to your 
friend.” 

4. Service retrieval for proper information to help user to plan and perform activity in 
the real world to achieve a designated goal: “You are at Tokyo station at midnight. 
Find a good way to spend the time until tomorrow morning.” 

5.2   Test Environment 

The test environment consisted of 3 different search systems, 1) S1: keyword-type 
full-text search system, 2) S2: directory-type search system, 3) S3: task knowledge 



 Task Knowledge Based Retrieval for Service Relevant to Mobile User’s Activity 969 

based service retrieval system (proposed system). The target page set to be searched 
was the same for each system and the number of the page set was about 15,000. Sub-
jects were divided into 3 groups according to their experience of mobile Internet ser-
vice. 1) U1: subjects using mobile Internet service everyday, 2) U2: subjects using 
mobile Internet service a few days a week, 3) U3: subjects who have no experience in 
using mobile Internet service. 

5.3   Test Results 

Figures 7, 8, 9, and 10 show a test result. The horizontal axis shows the time taken (in 
seconds) to solve a given problem while the vertical axis shows the number of sub-
jects who solved a given problem at the time. The right end of the horizontal axis, 
labeled 900, shows the number of subjects who could not solve the given problem. 
 

 

Fig. 7. Test results of all systems (S1: Keyword-type search system, S2: Directory-type search 
system, S3: Proposed system). The horizontal axis shows the time taken to solve a given prob-
lem by the second and the vertical axis shows the number of subjects who solved the problem. 

 

Fig. 8. Test results of Keyword-type search system (S1) for each user type (U1 use mobile 
Internet everyday, U2 use mobile Internet a few days a week, and U3 has no experience in 
using mobile Internet). The horizontal axis shows the time taken (in seconds) to solve a given 
problem while the vertical axis shows the number of subjects who solved a given problem. 



970 T. Naganuma and S. Kurakake 

 

Fig. 9. Test results of Directory-type search system (S2) for each user type (U1 use mobile 
Internet everyday, U2 use mobile Internet a few days a week, and U3 has no experience in 
using mobile Internet). The horizontal axis shows the time taken to solve a given problem by 
the second and the vertical axis shows the number of subjects who solved a given problem. 

 

Fig. 10. Test results of proposed system (S3) for each user type (U1 use mobile Internet service 
everyday, U2 use mobile Internet service a few days a week, and U3 has no experience in using 
mobile Internet service). The horizontal axis shows the time taken (in seconds) to solve a given 
problem while the vertical axis shows the number of subjects who solved a given problem. 

The test results show that the proposed system offers superior performance. The rate 
of users who could reach the appropriate services was about 63%, which was higher 
than the result of the keyword-type search system (16%) and the result of the direc-
tory-type search system (56%). In particular, 50% subjects reached the appropriate 
services within 300 seconds which is an acceptable value in actual mobile Internet 
use, which was higher than directory-type search system (33%) and the keyword-type 
search system (10%). In this test, the number of subjects was not large enough and the 
test set was not comprehensive, but the test results actually show the effectiveness of 
our approach in an actual mobile Internet environment. 

With regard to the test results analyzed by user type, only the proposed system al-
lowed non-expert users grouped as U2 and U1 to achieve the same level of success as 
experienced users, U1. One observed drawback of the proposed system was that  



 Task Knowledge Based Retrieval for Service Relevant to Mobile User’s Activity 971 

performance of U1 was not enhanced much by our system. We imagine the reason is 
that users in U1 were accustomed to conventional search systems and did not have 
enough time to get accustomed to the different search strategy of the proposed sys-
tem. To resolve the above problem, we will consider the idea of changing the search 
system automatically according to the user’s response. 

6   Related Work 

Task Computing Environment (TCE) [6] is a DAML-S [5] based service discovery 
and composition framework for pervasive computing environments. TCE can reduce 
the cost of performing a task by displaying the tasks that could be performed by exe-
cuting pervasive services located around the user. However, TCE can not associate a 
user's task with services on the Internet that are not physically adjacent to the user, 
and does not support abstract tasks that are not solved directly by using those services, 
because the support range of TCE is limited to just those tasks that are solved directly 
by pervasive services. 

The process-based service retrieval approach [17] is a sophisticated service re-
trieval method that offers better precision and recall than the conventional service 
retrieval method. In this research, service models are indexed into a process ontology, 
such as MIT Process Handbook [14], and the process query language called PQL is 
introduced. A preliminary evaluation showed that the process-based service retrieval 
approach offers qualitatively higher retrieval precision than any other existing ap-
proach. 

Other research has considered the use of a knowledge base to infer what the user 
really wants to do. The GOOSE system [7], for example, employs a large amount of 
knowledge (common sense knowledge) collected from general Internet users to infer 
the user’s search goal and to present search results that achieve that goal. This system, 
though, requires relatively long text input because it applies natural language process-
ing technology to infer the search goal. It would not be easy to apply such a system to 
an environment where text input is cumbersome as is the case with mobile terminals. 

7   Conclusion and Future Work 

This paper proposed a task knowledge based service retrieval framework for non-
expert mobile users that makes it easy to retrieve services appropriate for tackling the 
user’s problem in the real world. The system features a task knowledge base that 
contains knowledge about which services will solve the problems that a user faces in 
daily life. Details of the prototype system including knowledge modeling framework 
were described. While the prototype system has only limited coverage, the results of a 
user test confirmed that it lowers the difficulty of service access. In addition, the sys-
tem allows the user to recognize ancillary tasks that were not initially thought of by 
the user since the system shows tasks related to the task of solving the problem di-
rectly extracted from the user’s initial request. 

The next step in our research is to consider and develop a task-ontology-based 
knowledge modelling environment. Task ontology provides a common vocabulary 



972 T. Naganuma and S. Kurakake 

and common viewpoint for describing task knowledge, and enables knowledge au-
thors to create reusable knowledge models. Furthermore, we will extend the scope of 
the knowledge to be able to describe relationships between obstructive events, such as 
“missing route” or “no vacant spaces”, and the task for preventing and resolving those 
obstructive events. 

We also plan on improving the user interface on the mobile handset. The current 
prototype system provides just one text box interface to input the user’s request. This 
interface is simple but some users are not certain about what kinds of request can be 
interpreted. Actually, some users input long sentences into the text box such as “find 
restaurant now available” or “find hotel near Tokyo station” in our test, but the cur-
rent prototype system can not interpret conditions that contain time or location infor-
mation. We will consider more functionality to help the user input his request with 
minimal load. 

Acknowledgement 

We would like to acknowledge Prof. Riichiro Mizoguchi, Prof. Yoshinobu Kitamura, 
and Dr. Munehiko Sasajima at Osaka University for their useful discussions and com-
ments on this work. 

References 

1. NTT DoCoMo web site.: http://www.nttdocomo.com/ 
2. Ministry of Public Management, Home Affairs, Posts and Telecommunications, Japan.: In-

formation and communications in Japan, Chapter2, Section5. (2004)  
3. Hiramatsu, K., Akahani, J., Satoh, T.: Querying Real World Services Through the Seman-

tic Web. In: Proceedings of The Third International Semantic Web Conference (ISWC 
2004)  (2004) 741-751 

4. Naganuma, T., Kurakake, S.: A task oriented approach to service retrieval in mobile com-
puting environment. In: Proceedings of IASTED International Conference on Artificial In-
telligence and Applications (AIA 2005) (2005) 

5. The DAML Services Coalition (Anupriya Ankolenkar, et al).: DAML-S: Web Service De-
scription for the Semantic Web. In: Proceedings of The First International Semantic Web 
Conf. (ISWC), Sardinia, Italy (2002) 348-363 

6. Masuoka, R., Parsia, B., Labrou, Y.: Task Computing - the Semantic Web meets Pervasive 
Computing -. In: Proceedings of The Third International Semantic Web Conference 
(ISWC 2003) (2003) 865-881. 

7. Hugo Liu, Henry Lieberman, and Ted Selker.: GOOSE: A Goal-Oriented Search Engine 
With Commonsense. In: Proceedings of Adaptive Hypermedia and Adaptive Web-Based 
Systems Second International Conf., Malaga, Spain (2002) 253-263. 

8. Bandula, A.: Self–regulation of motivation and action through internal standards and goal 
systems, Goal Concepts in Personality and Social Psychology (Hillsdale, NJ: 
A.P.Lawrence). (1989) 19-85. 

9. Web Ontology Language (OWL).: http://www.w3.org/2004/OWL/ 
10. OWL-S 1.0 Release.: http://www.daml.org/services/owl-s/1.0/ 
11. Yahoo Mobile web site.: http://mobile.yahoo.co.jp/index.html 
12. Kitamura, Y., Kashiwase, M., Fuse, M. Mizoguchi, R.: Deployment of an ontological 

framework of functional design knowledge. Advanced Engineering Informatics, 18(2), 
(2004) 115-127 



 Task Knowledge Based Retrieval for Service Relevant to Mobile User’s Activity 973 

13. Horváth I, Vergeest JSM, Kuczogi G. Development and Application of Design Concept 
Ontologies for Contextual Conceptualization. In: Proceedings of 1998 ASME Design En-
gineering Technical Conferences DETC (1998)  

14. Herman, G. A., Malone, T. W.: What is in the process handbook?, Organizing Business 
Knowledge: The MIT Process Handbook, MIT Press (2003) 221-258 

15. Mizoguchi, R., Ikeda, M., Seta, K., and Vanwelkenhuysen, J.: Ontology for Modeling the 
World from Problem Solving Perspectives, in IJCAI Workshop on Basic Ontological Is-
sues in Knowledge Sharing  (1995) 

16. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde, 
W. and Wielinga, B.: Knowledge Engineering and Management - The Common-KADS 
Methodology, The MIT Press, Cambridge, MA (2000) 

17. Bernstein, A., Klein, M. Towards High-Precision Service Retrieval, In: Proceedings of The 
First International Semantic Web Conf. (ISWC), Sardinia, Italy  (2002) 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 974 – 986, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Supporting Rule System Interoperability  
on the Semantic Web with SWRL 

Martin O’Connor1, Holger Knublauch1, Samson Tu1, Benjamin Grosof2,  
Mike Dean3, William Grosso4, and Mark Musen1 

1 Stanford Medical Informatics, 
Stanford University School of Medicine, Stanford, CA 94305 

musen@smi.stanford.edu  
2 Sloan School of Management, MIT, Cambridge, MA 02142 

bgrossof@mit.edu  
3 BBN Technologies, Ann Arbor, MI 48103  

mdean@bbn.com 
4 Echopass Corp., San Francisco, CA 95105  

wgrosso@echopass.com 

Abstract. Rule languages and rule systems are widely used in business 
applications including computer-aided training, diagnostic fact finding, 
compliance monitoring, and process control. However, there is little 
interoperability between current rule-based systems. Interoperation is one of the 
main goals of the Semantic Web, and developing a language for sharing rules is 
often seen as a key step in reaching this goal. The Semantic Web Rule 
Language (SWRL) is an important first step in defining such a rule language. 
This paper describes the development of a configurable interoperation 
environment for SWRL built in Protégé-OWL, the most widely-used OWL 
development platform. This environment supports both a highly-interactive, 
full-featured editor for SWRL and a plugin mechanism for integrating third 
party rule engines. We have integrated the popular Jess rule engine into this 
environment, thus providing one of the first steps on the path to rule integration 
on the Web. 

1   Introduction 

Many business processes, such as workflow management, computer aided training, 
compliance monitoring, diagnostic fact finding, and process control, are often best 
modeled using a declarative approach, leading to a very active commercial interest in 
rule-based systems. However, interoperability among the multitude of current rule-
based systems is limited. Given that interoperability is one of the primary goals of the 
Semantic Web and that rules are a key part of those goals, there has been significant 
recent interest in standardization.1 The goal of sharing rule bases and processing them 
with different rule engines has resulted in RuleML, SWRL, Metalog, and ISO Prolog, 
and other standardization efforts. 

One of the key steps to rule interoperation on the Web is SWRL2 which was designed 
to be the rule language of the Semantic Web. SWRL is based on a combination of the 



 Supporting Rule System Interoperability on the Semantic Web with SWRL 975 

OWL DL and OWL Lite sublanguages of the OWL Web Ontology Language3 the 
Unary/Binary Datalog4 sublanguages of the Rule Markup Language. SWRL allows users 
to write Horn-like rules expressed in terms of OWL concepts to reason about OWL 
individuals. The rules can be used to infer new knowledge from existing OWL knowledge 
bases.  

The SWRL Specification5 does not impose restrictions on how reasoning should be 
performed with SWRL rules. Thus, investigators are free to use a variety of rule 
engines to reason with the SWRL rules stored in an OWL knowledge base. They are 
also free to implement their own editing facilities to create SWRL rules. In this way, 
SWRL provides a convenient starting point for integrating rule systems to work with 
the Semantic Web. 

To this end, we have developed the Protégé SWRL Editor, a full-featured highly 
interactive open-source rule editor for SWRL. This editor operates within Protégé-
OWL6 and is tightly integrated with it. It adopts the look-and-feel of Protégé-OWL 
and allows users to seamlessly switch between SWRL rule editing and normal OWL 
editing of OWL entities. Users can also easily incorporate OWL entities into rules 
they are authoring.  

One of the main goals of the SWRL Editor is to permit interoperability between 
SWRL and existing rule engines. An important component of this interoperability is 
the editor’s mechanism for supporting tight integration with rule engines. This 
mechanism is supported by a subsystem called the Protégé SWRL Factory. The 
SWRL Factory supports a rule engine plugin mechanism that permits API-level 
interoperation with existing rule engines. It also allows developers to access real 
estate on the SWRL Editor tab, which allows the interface for the rule engine to 
coexist with the SWRL Editor. Developers integrating an existing rule engine with the 
SWRL Editor have full control of the area inside the panel. 

Of course, a looser form of interoperation can also occur at the OWL knowledge 
base level. Investigators are free to use the SWRL rules created by the editor and 
stored in OWL files as input to their rule engines. Researchers in the 
SweetRules7project, for example, have already used rules created by the SWRL Editor 
to perform inference using a Jena 2-based8rule engine. 

We used the SWRL Factory mechanism to integrate the Jess rule engine with the 
SWRL Editor. With Jess, users can run SWRL rules interactively to create new OWL 
concepts and then insert them into an OWL knowledge base. SWRL, coupled with 
Jess, can provide a rich rule-based reasoning facility for the Semantic Web and can 
serve as a starting point for further rule integration efforts. 

2   Semantic Web Rule Language  

In common with many other rule languages, SWRL rules are written as antecedent-
consequent pairs. In SWRL terminology, the antecedent is referred to as the rule body 
and the consequent is referred to as the head. The head and body consist of a 
conjunction of one or more atoms. At present, SWRL does not support more complex 
logical combinations of atoms.  

SWRL rules reason about OWL individuals, primarily in terms of OWL classes 
and properties. For example, a SWRL rule expressing that a person with a male 
sibling has a brother would require capturing the concepts of ‘person’, ‘male’, 



976 M. O’Connor et al. 

‘sibling’ and ‘brother’ in OWL. Intuitively, the concept of person and male can be 
captured using an OWL class called Person with a subclass Man; the sibling and 
brother relationships can be expressed using OWL properties hasSibling and 
hasBrother, which are attached to Person. The rule in SWRL would then be: 

Person (?x1) ^ hasSibling(?x1,?x2) ^ Man(?x2)  
hasBrother(?x1,?x2) 

Executing this rule would have the effect of setting the hasBrother property to x2 
in the individual that satisfies the rule, named  x1. 

SWRL rules can also refer explicitly to OWL individuals. For example, the 
following example is a variant of the above rule, inferring that a particular individual 
Fred has a brother: 

Person(Fred) ^ hasSibling(Fred,?x2) ^ Man(?x2)  
hasBrother(Fred,?x2) 

In this case Fred is the name of an OWL individual. 
SWRL also supports data literals. For example, assuming an individual has a 

hasAge property, it is possible to ask if Fred has a 40 year-old brother: 

Person(Fred) ^ hasSibling(Fred,?x2) ^ Man(?x2) ^ 
hasAge(?x2,40)  has40YearOldBrother(Fred,?x2) 

String literals — which are enclosed in single quotes — are also supported. 
SWRL also supports the common same-as and different-from concepts. For 

example, the SWRL sameAs atom can determine if two OWL individuals Fred and 
Frederick are the same individual: 

sameAs(Fred, Frederick) 

Similarly, the differentFrom atom can be used to express that two OWL 
individuals are not the same. 

SWRL also has an atom to determine if an individual, property, or variable is of a 
particular type. For example, the following example determines if variable x is of 
type unsigned integer: 

xsd:unsignedInt(?x) 

These atoms — which are called data range atoms in SWRL — must be preceded by 
the ‘xsd:’ namespace qualifier. The type specified must be an XML Schema data type.  

A second form of a data range atom can be used to express one-of relationships in 
SWRL. For example, the following SWRL atom indicates that variable x must be one 
of 3, 4 or 5: 

[3, 4, 5](?x) 

SWRL also supports a range of built-in predicates, which greatly expand its 
expressive power. SWRL built-ins are predicates that accept several arguments. They 
are described in detail in the SWRL Built-in Specification9. The simplest built-ins are 
comparison operations. For example, the greaterThan built-in determines if an 
individual has an older brother.  

hasBrother(?x1,?x2) ^ hasAge(?x1,?age1) ^ 
hasAge(?x2,?age2) ^ swrlb:greaterThan(?age2,?age1)  
hasOlderBrother(?x1,?x2) 



 Supporting Rule System Interoperability on the Semantic Web with SWRL 977 

All built-ins in SWRL must be preceded by the namespace qualifier ‘swrlb:’. 
Finally, SWRL supports more complex mathematical built-ins. For example, the 

following rule determines if an individual has a brother who is exactly 10 years older: 

hasBrother(?x1,?x2) ^ hasAge(?x1,?age1) ^ 
hasAge(?x2,?age2) ^ swrlb:subtract(10,?age2,?age1)  
hasDecadeOlderBrother(?x1,?x2) 

The SWRL Built-in Ontology10 describes the range of built-ins supported by SWRL. 
In addition to mathematical built-ins, there are built-ins for strings, dates, and lists. 
Additions may be made to this namespace in the future so the range of built-ins 
supported by SWRL can grow. 

3   The Protégé SWRL Editor 

The Protégé SWRL Editor is an extension to Protégé-OWL that permits interactive 
editing of SWRL rules. Users can create, edit, and read/write SWRL rules. With the 
exception of arbitrary OWL expressions (see Section 6), the SWRL Editor supports 
the full set of language features outlined in the current SWRL Specification. It is 
tightly integrated with Protégé-OWL and is primarily accessible through a tab within 
it. When editing rules, users can directly refer to OWL classes, properties, and 
individuals within an OWL knowledge base. They also have direct access to the full 
 

 

Fig. 1. The Protégé SWRL Rules tab in Protégé-OWL. The SWRL Rules tab provides a 
tabular listing of all SWRL rules in an OWL knowledge base. These rules can be edited in 
place or with a multi-line interactive editor, which can be popped up. 



978 M. O’Connor et al. 

set of built-ins described in the SWRL Built-in Ontology and to the full range of 
XML Schema data types. Figure 1 shows a screenshot of the Protégé SWRL Rules 
tab. The SWRL Editor also supports inference with SWRL rules using the Jess11 rule 
engine (see Section 5). Documentation for the editor is available in the Protégé 
SWRL Editor FAQ12. 

The SWRL Editor is automatically enabled in Protégé-OWL when loading any 
OWL knowledge base that imports the SWRL Ontology13. It is disabled by default if 
a loaded knowledge base does not import this ontology. A user can use Protégé-
OWL’s configuration menu to enable this tab for a knowledge base that does not 
import the SWRL Ontology; he will then be given an option to import this ontology 
so that all future loads of the knowledge base will activate the SWRL Editor. 

 

Fig. 2. Protégé-OWL Properties tab showing all SWRL rules that refer to the hasParent 
property. In common with the SWRL Editor tab, displayed rules can be edited in place or with 
a multi-line interactive editor. 

There are two ways of interacting with the SWRL Editor in Protégé-OWL: 

1. The primary mechanism is through the SWRL Rules tab (see Figure 1). This 
tab shows all the SWRL rules in a loaded OWL knowledge base in tabular 
form.  



 Supporting Rule System Interoperability on the Semantic Web with SWRL 979 

2. A second mechanism allows users to find rules relating to a selected OWL 
class, property, or individual in the respective Protégé-OWL tabs for those 
entities. For example, if a user is examining a class using the OWL Classes 
tab, he can display a list of SWRL rules referring to that class. The same 
mechanism applies in the properties and individuals tabs.  Figure 2 shows a 
Protégé-OWL Properties tab displaying all SWRL rules that refer to a 
selected property, hasParent. 

 

Fig. 3. SWRL Multi-Line Editor Dialog. The icon panel provides selection dialog boxes to 
select things including OWL classes, properties, and individuals. It also includes shortcuts and 
selection dialog boxes for various other entities. 

There are two editing modes for rules. Users can edit them in place in the table 
containing them, or they can pop up a multi-line editor (see Figure 3). The difference 
between the two modes is primarily visual. The same interaction mechanisms apply in 
both modes, though the multi-line editor has some additional options.  

The SWRL Editor allows users to enter rules completely as text. However, it also 
allows users to select OWL entities from a currently loaded knowledge base and 
insert them into the rule being edited. This task is performed via an icon panel. The 
icon panel provides access to selection dialog boxes, select OWL classes, properties, 
and individuals. It also includes selection dialog boxes for SWRL built-ins, XML 
Schema data types, and shortcuts for various other entities.  

The SWRL Editor performs syntactic and semantic checking as a rule is being 
entered. It ensures that each rule is syntactically correct and also ensures that any 
references to OWL entities are valid. It will also ensure that any variables referred to 
in a rule consequent are present in the head. If a user makes a mistake while entering 
a rule, the rule text entry box grays out and a textual explanation of the error is 



980 M. O’Connor et al. 

presented. A user can continue typing and immediately fix the error or fix it later. The 
editor does not allow users to save incomplete or erroneous rules.  

The editor also has convenience features such as auto-completion. Pressing the tab 
key while editing an OWL entity, built-in, or XML Schema data type name auto-
completes a name if it has a unique expansion. If the name is not unique, the software 
brings up a selection box containing a list of possible completions. 

4   The SWRL Editor and Interoperability 

SWRL rules are stored as OWL individuals with their associated knowledge base 
when an open OWL project is saved. The classes that describe these individuals are 
described by the SWRL Ontology. The highest level class in this Ontology is 
swrl:Imp, which is used to represent a single SWRL rule. It contains an antecedent 
part, which is referred to as the body, and a consequent part, which is referred to as 
the head. Both the body and head are instances of the swrl:AtomList class, which 
represents a list containing rule atoms. The abstract swrl:Atom class is used to 
represent a rule atom. The various types of atoms described in the SWRL 
Specification are described by subclasses of this class. The SWRL Ontology also 
includes a class called swrl:Builtin to describe built-ins and a class called 
swrl:Variable that can be used to represent variables. 

The SWRL Editor comes packaged with a Java API called the Protégé SWRL 
Factory, which allows developers to directly manipulate SWRL rules in an OWL 
knowledge base. The SWRL Factory provides a mapping from the OWL individuals 
representing SWRL rules to analogous Java instances. It also provides Java classes 
representing SWRL classes in the SWRL Ontology and mechanisms to create run-time 
instances of classes that mirror individuals in an OWL knowledge base. It is used 
internally by the SWRL Editor. However, it is accessible to all Protégé-OWL 
developers. SWRL Plugin developers can base their work directly on the classes created 
by this factory and can, for example, use it to integrate existing rule engines with 
Protégé-OWL. Indeed, this API could also be used to create new SWRL rule editors.  

Each class described in the SWRL Ontology has a direct Java equivalent SWRL 
Factory class to represent it. The factory has utility functions to create Java instances 
of all these classes. When one Java instance is created, an equivalent OWL individual 
is also created in the knowledge base. Java instances mirroring existing OWL 
individuals can also be created. For example, the factory provides methods to create 
SWRLImp and SWRLAtomList Java classes that can be used to represent instances 
of the equivalent swrl:imp and swrl:AtomList OWL classes. Documentation 
of the SWRL Factory API is outlined in the Protégé SWRL Factory FAQ14.  

The SWRL Editor itself has no inference capabilities. It simply allows users to edit 
SWRL rules and save and load them to and from OWL knowledge bases. However, 
the SWRL Factory supports a rule engine plugin mechanism that permits API-level 
interoperation with existing rule engines. It also allows developers to access real 
estate on the SWRL Editor tab, which allows the interface for the rule engine to 
coexist with the SWRL Editor. Developers integrating an existing rule engine with the 
SWRL Editor have full control of the area inside the panel. 

The SWRL Factory provides this functionality in a class called 
SWRLRuleEngineAdapter. The primary call provided by this class is 



 Supporting Rule System Interoperability on the Semantic Web with SWRL 981 

getSWRLTabRealEstate, which returns a Java JPanel Swing object 
representing an area of the screen in the SWRL tab. This class also provides a method 
called setRuleEngineIcon that allows users to access the rule engine 
interactively. This icon is displayed on the top right of the rule table in the SWRL tab 
and can be used to toggle the screen real estate of the associated rule engine. If several 
rule engines are available, multiple icons are displayed. However, only one rule 
engine can be active at a time. 

The SWRL Factory also provides a listening mechanism that allows users to 
register for rule creation, modification, and deletion events. Thus, when a SWRL rule 
is modified, a loaded rule engine can maintain an up-to-date image of the SWRL rule 
base automatically. Rule engine developers also have access to the Protégé event 
mechanism so that they can be immediately informed of modifications to a loaded 
OWL knowledge base. Thus, users can configure a rule engine so that it is 
synchronized with the SWRL rule base and the OWL knowledge base, and so that it 
performs immediate inference when changes are made to them. This approach has 
been used successfully in the Protégé environment for both the Jess15 and Algernon16 
rule engines. These characteristics allow the SWRL factory to provide a bridge for 
third-party rule engines to interact with the SWRL Editor at run time, allowing users 
of these engines to experience seamless interaction between the SWRL Editor and the 
rule engine. 

Of course, developers of rule engines may prefer a less dynamic relationship between 
the knowledge base and the rule engine. For example, instead of continually updating 
rule engine state in response to modifications to the associated SWRL rules or the loaded 
OWL knowledge base, a more user-controlled interaction may be desired.  

In this regard, users can choose step-by-step control of the inference process. Thus, 
a user can incrementally control loading of SWRL rules and OWL knowledge into a 
rule engine, execution of those rules on the knowledge, the review of the results, and 
storing concluded results back into the OWL knowledge base. This approach may be 
preferable during early development and testing of a set of rules when the 
consequences of rules firing may not be obvious. Erroneous rules could easily create 
hundreds or more incorrect relationships between OWL entities.  

5   Integrating the SWRL Editor and the Jess Rule Engine 

A large number of rule engines work well with Java17, and many are available as open 
source software. Some of the most popular engines include Jess, Algernon18 and 
SweetRules. We chose Jess as the first integration candidate for the SWRL Editor 
because it works seamlessly with Java, has an extensive user base, is well 
documented, and is very easy to use and configure. Several research teams have also 
demonstrated that mappings between SWRL and Jess19,20,21 and between RuleML and 
Jess22  are possible. Jess provides both an interactive command line interface and a 
Java-based API to its rule engine.  This engine can be embedded in Java applications 
and provides a flexible two-way run-time communication between Jess rules and 
Java. It is not open source but can be downloaded free for a 30-day evaluation period 
and is available free to academic users.  

The Jess system consists of a rule base, a fact base, and an execution engine. The 
execution engine matches facts in the fact base with rules in the rule base. These rules 
can assert new facts and put them in the fact base or execute Java functions. 



982 M. O’Connor et al. 

SWRL rules reason about OWL individuals, primarily in terms of OWL classes 
and properties. When a SWRL rule is fired, it can create new classifications for 
existing individuals. For example, if a rule consequent asserts that an individual is to 
be classified as a member of a particular class, that individual must be made a 
member of that class within OWL when the rule fires. Similarly, if a SWRL rule 
asserts that two individuals are related via a particular property, then that property 
must be associated with each individual that satisfies the rule.  

Thus, four main tasks must be performed to allow Jess to interoperate with the 
SWRL Editor: (1) represent relevant knowledge about OWL individuals as Jess facts; 
(2) represent SWRL rules as Jess rules; (3) perform inference using those rules and 
reflect the results of that inference in an OWL knowledge base; and (4) control this 
interaction from a graphical interface. 

5.1   Representing OWL Concepts as Jess Knowledge 

Relevant knowledge about OWL individuals must be represented as Jess knowledge. 
The two primary properties that must be represented are 1) the classes to which an 
individual belongs and 2) the properties the individual possesses. Same-as and 
different-from information about these individuals must also be captured. 

The Jess template facility provides a mechanism for representing an OWL class 
hierarchy. A Jess template hierarchy can be used to model an OWL class hierarchy 
using a Jess slot to hold the name of the individual belonging to the hierarchy. Thus, 
for example, a user must define a Jess template to represent the owl:Thing class: 

 (deftemplate OWLThing (slot name)) 

A hierarchy representing a class Man that subclasses a direct subclass of owl:Thing  
called Person could then be represented as follows in Jess: 

 (deftemplate Person extends OWLThing)1 

     (deftemplate Man extends Person) 

Using this template definition, the OWL individual can be asserted as a member of 
the class Man: 

 (assert (Man (name Fred))) 

OWL property information can be directly represented as Jess facts. For example, the 
information that an individual Fred is related to individual Joe through the 
hasUncle property can be directly asserted using: 

 (assert (hasUncle Fred Joe)) 

Similarly, OWL’s same-as and different-from relationships between individuals can 
be directly represented in Jess. For example, the information that Fred and Frederick 
are the same OWL individual can be expressed: 

 (assert (sameAs Fred Frederick)) 

                                                           
1  In practice, a fully qualified namespace would precede each entity name, but we have 

omitted it here for clarity. 



 Supporting Rule System Interoperability on the Semantic Web with SWRL 983 

XML Schema data types can be represented using the same approach. For example, 
the information that individual x is an unsigned integer can be written: 

 (assert (xsd:unsignedInt ?x)) 

Finally, built-ins can be represented using the Jess ‘test’ mechanism. For example, the 
SWRL built-in greaterThan applied to two integers can be written: 

 (test (> 10 34)) 

5.2   Representing SWRL Rules as Jess Rules 

The representation of SWRL rules in Jess using these facts is relatively 
straightforward. For example, take the following SWRL rule: 

Person(?x) ^ Man(?y) ^ hasSibling(?x,?y) ^  

hasAge(?x,?age1) ^ hasAge(?y,?age2) ^  

swrlb:greaterThan(?age2,?age1) ->  

hasOlderBrother(?x,?y) 

This rule can be represented in Jess — using the representation of individuals outlined 
above — as: 

(defrule aRule (Person (name ?x))(Man (name ?y)) 

               (hasSibling ?x ?y)(hasAge ?x ?age1) 

               (hasAge ?y ?age2)(test (> ?age2 ?age1)) 

 => (assert (hasOlderBrother ?x ?y)) 

5.3   Executing Jess Rules and Updating an OWL Knowledge Base 

Once the relevant OWL concepts and SWRL rules have been represented in Jess, the 
Jess execution engine can perform inference. As rules fire, new Jess facts are inserted 
into the fact base. Those facts are then used in further inference. When the inference 
process completes, these facts can then be transformed into OWL knowledge, a 
process that is the inverse of the mapping mechanism outlined in Section 5.1.  

5.4   Visual Interface to the Jess Rule Engine 

Interaction between the SWRL Editor and the Jess rule engine is user-driven. The 
user controls when OWL knowledge and SWRL rules are transferred to Jess, when 
inference is performed using those knowledge and rules, and when the resulting Jess 
facts are transferred back to Protégé-OWL as OWL knowledge.  

Five tabs in the Jess rule panel control this interaction: (1) a Jess Control tab, 
which is used to initiate fact and rule transfer and perform inference; (2) a Source 
Facts tab, which presents Jess facts that have been transferred from an OWL 
knowledge base (see Figure 4); (3) a Rules tab, which shows the Jess representation 
of SWRL rules (see Figure 5), (4) an Asserted Facts tab showing facts resulting from 
Jess inference, and (5) a Configuration tab that can be used to set Jess operating 
parameters. 



984 M. O’Connor et al. 

 

Fig. 4. Jess Loaded Facts Tab in the Protégé SWRL Editor.  This tab shows the Jess 
representation of relevant OWL individuals that will be used by Jess to perform inference. 

 
Fig. 5. Jess Rules Tab in the Protégé SWRL Editor. This tab shows the Jess representation of 
SWRL rules. 



 Supporting Rule System Interoperability on the Semantic Web with SWRL 985 

6   Discussion 

With the exception of allowing arbitrary OWL expressions in SWRL rules, the 
Protégé SWRL Editor supports all language features in the current SWRL 
Specification. The inability to use arbitrary OWL expressions is easy to work around 
by creating a named OWL class that models an expression and using it in the rule.  

One limitation of our inference support is that it is not integrated with an OWL 
classifier. Conflicts can arise in an OWL knowledge base between new information 
asserted by Jess and inserted into an OWL knowledge base and existing OWL 
restrictions. For example, a hasUncle property may be asserted for an individual as 
a result of firing a SWRL rule, but a class level restriction in OWL may forbid this 
property from belonging to that individual. As present, these conflicts are not detected 
automatically, and resolving the conflict—which is essentially between a SWRL rule 
and an OWL restriction and has nothing to do with Jess—is left to the user. Conflicts 
can be identified by running an OWL classifier on the knowledge base that has been 
populated by additional Jess-inferred knowledge.  

To resolve these conflicts automatically, all OWL restrictions relating to classes 
and properties operated on by Jess would have to be captured as Jess knowledge. Jess 
rules would be needed to replicate the functionality of both a classifier and rule 
integrity checker. An additional issue is that a conflict-free execution of the classifier 
may also infer new knowledge that may in turn produce information that may benefit 
from further SWRL inference, a process that may require several iterations before no 
new knowledge is generated. Clearly, having this classification and inference 
functionality in a single module would be desirable. 

The SWRL Editor has been available as part of Protégé-OWL since late 2004. User 
response has been very positive. Our hope now is that other investigators will use the 
Protégé SWRL Factory mechanism to integrate other rule engines with the SWRL 
Editor, eventually providing a range of rule engine choices. Jess, for example, has a 
very good implementation of a forward chaining rule engine but has weak backward 
chaining support. Consequently, a rule engine like Algernon may be more appropriate 
for users needing this support. Developers working within the Jena 2 environment 
would probably prefer the inference capabilities available in that environment. As 
more rule engines become available for SWRL, it should rapidly become a conduit 
for rule integration on the Semantic Web. 

Acknowledgements 

Funding for the Protégé SWRL Editor was provided by the DARPA Agent Markup 
Language Program. We thank Valerie Natale for her valuable editorial assistance. 

References 

1. W3C Workshop for Rule Languages for Interoperability: http://www.w3.org/2004/12/ 
rules-ws/cfp  

2. SWRL: http://www.daml.org/rules/proposal/  
3. OWL Web Ontology Language: http://www.w3.org/TR/owl-features/  



986 M. O’Connor et al. 

4. RuleML: http://www.ruleml.org/  
5. SWRL Specification: http://www.w3.org/Submission/SWRL/ 
6. H. Knublauch, R. W. Fergerson, N. F. Noy, M. A. Musen. The Protégé OWL Plugin: An 

Open Development Environment for Semantic Web Applications. Third International 
Semantic Web Conference (2004) 

7. SweetRules: http://sweetrules.projects.semwebcentral.org/  
8. Jena-2: http://www.hpl.hp.com/semweb/jena.htm  
9. SWRL Built-in Specification: http://www.daml.org/rules/proposal/builtins.html  

10. SWRL Built-in Ontology: http://www.w3.org/2003/11/swrlb.owl  
11. Jess Rule Engine: http://herzberg.ca.sandia.gov/jess/  
12. Protégé SWRL Editor FAQ: http://protege.stanford.edu/plugins/owl/swrl/  
13. SWRL Ontology: http://www.daml.org/rules/proposal/swrl.owl 
14. Protégé SWRL Factory FAQ: 

http://protege.stanford.edu/plugins/owl/swrl/ SWRLFactory.html  
15. Jess Protégé Tab: http://www.ida.liu.se/~her/JessTab/JessTab.ppt  
16. Algernon Protégé Tab: http://algernon-j.sourceforge.net/doc/algernon-protege.html  
17. Java-based Rule Engines: http://www.manageability.org/blog/stuff/rule_engines/view  
18. Algernon: http://www.cs.utexas.edu/users/qr/algy/  
19. Kuan M. Using SWRL and OWL DL to Develop an Inference System for Course 

Scheduling. Masters Thesis, Chung Yuan Christian University, Taiwan, R.O.C. (2004) 
20. Mei J., Bontas EP. Reasoning Paradigms for SWRL-Enabled Ontologies Protégé With 

Rules Workshop held at the 8th International Protégé Conference, Madrid Spain (2005) 
21. Golbreich, C., Imai, A. Combining SWRL rules and OWL ontologies with Protégé OWL 

Plugin, Jess, and Racer. 7th International Protégé Conference, Bethesda, MD (2004) 
22. Grosof B., Gandhe, M., Finin, T. SweetJess: Translating DamlRuleML to Jess. 

International Workshop on Rule Markup Languages for Business Rules on the Semantic 
Web. First International Semantic Web Confere nce (200 )2



 

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 987 – 1001, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Automated Business-to-Business Integration of a 
Logistics Supply Chain Using Semantic Web Services 

Technology 

Chris Preist1, Javier Esplugas-Cuadrado2, Steven A. Battle1, 
Stephan Grimm3, and Stuart K.Williams1 

1 Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol, BS34 8QZ, UK 
{chris.preist, steve.battle, skw}@hp.com 

2 Hewlett-Packard Espanola SL, Jose Echegaray no8, La Rozas, Spain. 28230 
javier.esplugas.cuadrado@hp.com 

3 Forschungszentrum Informatik(FZI), Haid-und-Neu-Strasse 10-14, 
76131 Karlsruhe, Germany 

grimm@fzi.de 

Abstract. In this paper, we present a demonstrator system which applies se-
mantic web services technology to business-to-business integration, focussing 
specifically on a logistics supply chain. The system is able to handle all stages 
of the service lifecycle – discovery, service selection and service execution. 
One unique feature of the system is its approach to protocol mediation, allowing 
a service requestor to dynamically modify the way it communicates with 
aprovider, based on a description of the provider’s protocol. We present the  
architecture of the system, together with an overview of the key components 
(discovery and mediation) and the implementation.  

1   Introduction 

The demonstrator system presented in this paper uses semantic web services technol-
ogy to tackle the problem of business-to-business integration (B2Bi).  It was devel-
oped as one of four case studies used in the European Union Semantic Web-enabled 
Web Services (SWWS) project. Increasingly, when two companies wish to do busi-
ness with each other, they establish a means of exchanging messages via the internet. 
This connection can be used for a variety of purposes – placing orders, invoicing, 
making payments, initiating and tracking shipment of goods and providing customer 
service information, among many others. The aim of such a connection is to allow 
automated or semi-automated processing of many of the transactions which take place 
between the two companies, and thus reduce costs and increase speed. 

However, to set up such a relationship requires a large initial investment of time 
and money. A team of developers need to reconcile the business processes of the two 
organizations and design a set of messages and permissible message sequences that 
can flow between them. This can be a formidable task. To ease this, standards bodies 
have developed standard sets of messages and guidelines for how they should be 
used. Three key standards in the world of B2Bi are EDIFACT, AnsiX12 and Roset-



988 C. Preist et al. 

 

taNet. By agreeing on one such standard, two organizations can ease the integration 
task. However, these standards have reasonable flexibility in them, both in terms of 
message content and message sequencing. This means that even having agreed a stan-
dard, significant effort is required to agree and implement exactly how it is used. As a 
result of this, even a standards-based B2Bi connection can take six months to set up. 

Semantic Web Services technology [1, 2] uses the tools of the semantic web to de-
scribe both the purpose of a service and the behaviour of its provider during service 
execution. This has the potential to significantly speed up this integration process; If 
one business partner gives a description of how to interact with it, it is possible to use 
mediation technology [3] to adapt the interaction of the other business partner so as to 
be compatible. Ideally, this would be fully automated, reducing integration time from 
months to minutes.  

Prior to integration, the selection of a business partner can also be time consuming. 
By providing semantic descriptions of the services a business offers, then discovery 
techniques [4, 5, 6] can support this process. This is particularly important when se-
lection is needed rapidly, such as the emergency replacement of a link in a supply 
chain. Our system supports automated discovery and selection of a service provider, 
and description-driven mediation which allows automated integration. The paper is 
structured as follows. In section 2, we introduce a motivating example, in the domain 
of logistics, and show how semantic web technology can be used to support it. In 
section 3, we present the architecture of the system we have developed, and show 
how it is used in the logistics domain. In section 4, we present the discovery module, 
and in section 5 we present the mediation modules. In section 6, we discuss the im-
plementation. In section 7 we discuss limitations of the current implementation, les-
sons learned and related work. We then present the business value of the system, and 
conclude. 

2   The Logistics Example 

To motivate this work, we use an example scenario. We consider a manufacturing 
company in Bristol, UK which needs to distribute its goods internationally. It does not 
maintain its own transportation capability, but instead outsources this to other compa-
nies, which we refer to as Freight Forwarders.  These companies provide a service to 
the manufacturing company – they transport crates on its behalf. However, the manu-
facturing company still needs to manage relationships with these service providers. 
One role within this company, which we refer to as the Logistics Coordinator, is 
responsible for doing this. Specifically, it carries out the following tasks; 

1. Commissioning new service providers, and agreeing the nature of the service they 
will provide. (E.g. locating a new freight forwarder in Poland, and agreeing that it 
will regularly transport crates from Gdansk to Warsaw.) 

2. Communicating with service providers to initiate, monitor and control shipments. 
(E.g. informing the Polish freight forwarder that a crate is about to arrive at 
Gdansk; receiving a message from them that it has been delivered in Warsaw, and 
they want payment.) This is done using one of the messaging standards, 
EDIFACT.  



 Automated Business-to-Business Integration of a Logistics Supply Chain 989 

 

3. Coordinating the activity of service providers to ensure that they link seamlessly to 
provide an end-to-end service. (E.g. making sure the shipping company plans to 
deliver the crate to Gdansk when the Polish transport company is expecting it. In-
forming the Polish company when the shipping company is about to drop it off.) 

4. Communicating with other roles in the company to coordinate logistics with other 
corporate functions. (E.g. sales to know what to dispatch; financial to ensure pay-
ment of freight forwarders.) 

In our scenario, we consider a specific logistics supply chain from Bristol, UK to 
Warsaw, Poland (Fig 1). It consists of three freight forwarders: The first is a trucking 
company, responsible for transporting crates from the manufacturing plant in Bristol 
to the port of Portsmouth, UK. The second is a shipping company, responsible for 
shipping crates from Portsmouth to the Polish port of Gdansk. The third is another 
trucking company, which transports crates to the distribution warehouse in Warsaw.  
We assume that the Logistics Provider communicates with the Freight Forwarders 
using the EDIFACT standard, and is already successfully using this logistics chain. 

 

 

 

 

 

Fig. 1. Example Logistics Supply Chain 

However, at some point a problem arises; the shipping company is temporarily un-
available and a new freight forwarder must be used for one shipment. At this point the 
Logistics Coordinator must; 

1. Locate a new shipping service provider able to meet its needs. 
2. Agree a service definition with it as to what exactly it should do. (When the crate 

will be transported, to where, how much it will cost, etc.) 
3. Perform B2B integration with the provider, to ensure messages can flow between 

them. We assume the new provider communicates using RosettaNet. 
4. Initiate and monitor the shipment via the logistics supply chain. 
5. Coordinate the three freight forwarders to ensure a seamless end-to-end service, 

resulting in the crate being shipped from Bristol to Warsaw. 

Semantic Web Services technology can be deployed throughout this lifecycle to 
automate or semi-automate what currently takes significant time and effort.  

1. Service Discovery can be used to locate potential service providers, based on them 
advertising descriptions of their service capabilities.  

UK POLANDNORTH SEA

Supplier Customer UnitFreight 
Forwarder 1

Freight 
Forwarder 2

Freight 
Forwarder 3

UK POLANDNORTH SEA

Supplier Customer UnitFreight 
Forwarder 1

Freight 
Forwarder 2

Freight 
Forwarder 3



990 C. Preist et al. 

 

2. Service Definition allows the refining of a service description to specify exactly 
what the provider and requestor agree the service should do. 

3. Message and Protocol Mediation allow a new provider to be integrated and com-
municated with, even though it uses a different messaging standard. 

We now describe how our scenario can be automated using semantic web services. A 
software agent acting on behalf of the company has detailed information about the 
transportation task which must be carried out. It contacts a discovery agent which has 
access to descriptions of services various organisations can provide, and asks for 
providers able to ship between Portsmouth and Gdansk. The discovery agent responds 
with a list of possible freight forwarders likely to be able to meet these requirements. 

The software agent then selects one or more of the possible freight forwarders, and 
sends a more detailed description of the task it requires to be performed, including the 
date the shipment will arrive at Portsmouth, and the date it must reach Gdansk. The 
freight forwarders respond with lists of services they can offer which meet these re-
quirements. For example, one forwarder may say that it has a ship leaving Portsmouth 
on the required day which will arrive in Gdansk the day before the deadline. It will 
also give the cost of placing a crate on that ship. 

The requesting agent then selects one of the proposed services (possibly by inter-
acting with a user to make the final decision) and informs the provider of the decision. 
Effectively, the two parties enter into an agreement at this point. 

As the shipment takes place, it is coordinated by an exchange of messages between 
the two parties. The messages use an industry standard, RosettaNet, which describes 
the format and order of the messages. The exchange starts when the crate is about to 
arrive in Portsmouth, with a RosettaNet Advanced Shipment Notification being sent 
by the requestor to freight forwarder 2, and ends with the sending of a Proof of Deliv-
ery and Invoice by freight forwarder 2 when the crate arrives in Gdansk.  

3   Overall System Architecture 

The overall system architecture used in the demonstrator system is provided by the 
generic SWWS Technical Architecture. The underlying conceptual model is provided 
by the SWWS Conceptual Architecture [7]. Here, we summarise the technical archi-
tecture and relate it to the specific actors in our B2B scenario. 

In Agent Technology research, a distinction is made between a micro-architecture 
and a macro-architecture.  A micro-architecture is the internal component-based 
architecture of an individual entity within a community. A macro-architecture is the 
structure of the overall community, considering each entity within it as a black box. It 
is also helpful to consider this distinction in semantic web services. Initially, we will 
present the macro-architecture for our community. There are three possible roles that 
a software entity can have; service requestor agent, service provider agent and discov-
ery provider agent.  

A service requestor agent acts on behalf of an individual or organisation to procure 
a service. It receives a service requirement description from its owner, and interacts 
with other agents in an attempt to fulfil the requirement it has been given. It has some 
model, in an ontology, of the domain of the service and also has some model of the 
kind of actions that can be taken (through message exchange) in this domain. In our 



 Automated Business-to-Business Integration of a Logistics Supply Chain 991 

 

scenario, the Logistics Coordinator takes the role of service requestor agent in rela-
tionship with each of the Freight Forwarders. 

A service provider agent is able to provide a service on behalf of an organisation. 
In our scenario, service provider agents represent the three freight forwarder compa-
nies used, as well as additional companies which could potentially be used by the 
logistics provider. It has a service offer description in some domain ontology (ideally, 
the same as the requestor agent), which gives an abstract description of services it can 
provide. In our scenario, for example, this would state that a company can ship crates 
from UK ports to Baltic ports. It also has a means to generate more concrete descrip-
tions of the precise services it can deliver. (For example, a specific shipment of 
crate42 from Portsmouth to Gdansk on 25/03/05.) Furthermore, it has a formal de-
scription of the message protocol used to deliver the service. This includes mappings 
from the content of messages into concepts within the domain ontology. It also in-
cludes mappings from message exchange sequences into actions. In our scenario, a 
field in the initial Advance Shipment Notification (ASN) message might map onto the 
‘weight’ attribute of the ‘crate’ concept within the domain. The sequence consisting 
of one party sending the ASN and the other party acknowledging receipt may corre-
spond to a ‘notify shipment’ action in the domain ontology. 

A discovery provider agent contains descriptions of service offers, together with 
references to provider agents able to provide these services. These service offer de-
scriptions are all expressed in some domain ontology associated with the discovery 
provider agent. Within this ontology is a ‘service description’ concept which effec-
tively acts as a template for the descriptions of services that the discovery provider 
can contain. In our scenario, the ontology defines concepts relevant to logistics and 
transportation, and the descriptions the discovery provider contains are descriptions of 
transportation services the freight forwarders are able to offer. 

We illustrate the macro-architecture by describing the interactions which can take 
place between the different agents. These interactions are roughly in order of the 
service lifecycle progression [8] adopted by the conceptual architecture.  

1. Provider agent registering a capability with the discovery provider. 
Initially, any service provider agent must register its service offer descriptions with 
the discovery provider using a simple message exchange protocol. It does this in 
terms of the ontology used by the discovery provider, and hence may require ontology 
mediation. In our scenario, each Freight Forwarder will register abstract descriptions 
of the services it can provide. 
2. Requestor agent finding possible providers. 
Discovery takes place through a simple message exchange protocol between a service 
requestor agent and a discovery agent. The requestor agent sends a message contain-
ing a service requirement description, and the discovery agent responds with a mes-
sage containing a list of URIs of service provider agents. These correspond to those 
provider agents with offer descriptions which match the service requirement descrip-
tion, according to the discovery agent’s algorithm. In our scenario, the Logistics Co-
ordinator will send a description of the shipment it requires – that it is from Ports-
mouth to Gdansk, it must arrive by 27th March, etc. It will receive back a list of all 
freight forwarders which have advertised a service capability compatible with these 
requirements, as e.g. one that covers all the Baltic Sea area with its shipping services.  

 



992 C. Preist et al. 

 

3. Requestor and Provider agents define service. 
Following discovery, the requestor agent exchanges messages with one or more pro-
vider agents to define the service it will receive, and to select which provider agent to 
use. In our architecture, we assume a single simple service definition protocol is used 
by all requestor and provider agents. Our simple protocol consists of two rounds of 
message exchange. Initially, the service requestor agent sends a service requirement 
description to each provider agent it is considering using. The provider agent replies 
with a list of (almost) concrete service descriptions of the services it is able to provide 
which meet the needs of the requestor. The requestor can select one of these, with the 
provider confirming the selection to the requestor. The confirm message contains a 
URI reference where the description of the choreographies, which will be used during 
service delivery, can be found. If the requestor does not select one within a certain 
time window, sending no response to the provider, this is taken as cancelling.  

In our scenario, the Logistics Coordinator sends a description of the shipment it re-
quires to one or more of the Freight Forwarders located at the previous stage. They 
respond with specific detailed descriptions of relevant shipment services – for exam-
ple, one may state that the crate can be carried on a ship departing on 24th March at 
3pm, with a cost of 30 euros. A given freight forwarder may provide several options 
at this stage. The Logistics Coordinator reviews these, and makes a selection (either 
automatically using stored preference information or, more likely, by providing the 
best options to a user who makes the final decision.)  
4. Service Delivery 
Service delivery starts when one party (depending on the choreography used) sends an 
initiating message. The choreography used at this stage will correspond to the sequence 
of messages specified by the RosettaNet or EDIFACT standard. Each service provider 
has a description of the service delivery choreography associated with each service it 
can provide. At the end of the service definition protocol, as a parameter of the confirm 
message, it informs the requestor of a URI which references this description. The re-
questor is then responsible for accessing this description, interpreting it and engaging in 
a message exchange with the provider which satisfies the requirements of the choreog-
raphy described. Exactly how this is done will be described in section 5. 

Having described the macro-architecture, we now turn to the micro-architecture. 
We look at two of the three roles that software entities can have – requestor agent and 
provider agent – and present a micro architecture for each. The micro architecture of 
the discovery service provider agent will be covered in section 4. Figure 2 illustrates 
our architecture for the service requestor agent. The application logic is responsible 
for decision making with regard to which service to select and how to make use of it. 
Normally, this will be integrated with back-end systems within the organisation which 
the service requestor agent represents. In our demonstrator, we provide a user inter-
face to allow a user to make the decisions that would be made by such a system.  

The first role of the application logic is to define a service requirement description 
for the service it needs. When this has been done, it passes the description to the dis-
covery and definition component, which exchanges appropriate messages to do this. 
The message format and contents are prepared and passed to the transport routines for 
transmission via an appropriate transportation protocol. At points where a decision is 
required – namely, when one or more provider is chosen after discovery and when a 
service is selected – it is made by the application logic.  



 Automated Business-to-Business Integration of a Logistics Supply Chain 993 

 

 

Fig. 2. Service Requestor Agent Micro-Architecture 

 

Fig. 3. Service Provider Agent Micro Architecture 

When a service has been defined, the application logic initiates the delivery 
process by using the delivery module. The delivery module is able to carry out 
protocol mediation. It accesses the description of the choreography given by the 
service provider. This shows how message contents map into the domain ontology 



994 C. Preist et al. 

 

of the knowledge base, and also how sequences of messages correspond to actions 
within this domain ontology.  The application logic can request the execution of one 
of these actions. This will result in the delivery module initiating an exchange of 
messages with the service provider. When an exchange terminates (either through 
successful completion or some failure) the application logic is informed of this. The 
delivery module also handles messages from the provider which are not part of an 
exchange initiated by the requestor. These correspond to actions within the domain 
which the provider is initiating. It informs the application logic of the actions and 
updates the knowledge base with relevant data from the messages. Details of this 
process are given in section 5.  

We now turn our attention to the provider agent (figure 3). In our architecture we 
assume that protocol mediation takes place within the requestor, so the provider can 
be simpler. The application logic module is responsible for deciding which services to 
offer a given requestor and also for the provisioning of the service itself. This will 
usually be provided by back-end systems belonging to the provider’s organisation. 

Initially, the application logic prepares a service offer description and registers this 
with the discovery service provider. From that point on, in our architecture, the pro-
vider agent is reactive. The service definition module can receive a service require-
ment description from a requestor. The application logic then prepares a set of possi-
ble services which satisfy the requirement, and this is sent to the requestor. If the 
definition module receives a selection message from the requestor, it returns the URI 
of the choreography description which it obtains from the application logic. As the 
provider agent does not need to perform mediation, service delivery is carried out by a 
hard-wired protocol description which interacts with the application logic when busi-
ness actions are required. 

4   Service Description and Discovery 

We now describe the service discovery functionality in more detail. The approach we 
use is inspired by that of [5]. During discovery and service selection, the business-
level description of the service plays a key part. It gives a detailed description of the 
service in terms of the domain in which it provides value to the user, using some do-
main ontology. In our logistics domain, this will be a description of what goods are to 
be transported, where they will be transported from, which vehicle is being used, 
when the vehicle will depart, what its destination is, when it is expected to arrive, and 
other relevant terms of service such as insurance liability, cost and payment condi-
tions, etc. At the end of the service selection stage, a concrete service description 
should be agreed between the requestor and provider, and effectively forms an infor-
mal ‘contract’ between the two parties. An example is the following: 

Contract   
Shipping     startLocation.{Portsmouth}     endLocation.{Gdansk}    

     dateOfDeparture.=2005-03-24     dateOfArrival.=2005-03-26    
     item.{SmallCargo#typeA}     vehicle.{CargoShip#34}     price.=90    
     currency.{Euro}     meansOfPayment.{EuroCreditTransfer} 



 Automated Business-to-Business Integration of a Logistics Supply Chain 995 

 

This concrete service description states that an item of small cargo will be carried 
on cargo ship 34 from Portsmouth to Gdansk, leaving on the 24th March and arriv-
ing on the 26th, and payment of  90 € will be made by credit transfer. It is expressed 
as an OWL-DL concept whose properties are restricted to specific values, allowing 
a unique configuration of the service. The terms used in this description are defined 
in a logistics domain ontology and in more generic ontologies for geography and 
vehicles.  

As it stands, such a concrete description of a service is clearly inappropriate for ad-
vertising or discovery, as requests and adverts would have to include many such 
classes covering all acceptable service parameter configurations. Instead, requestors 
and providers abstract from concrete parameter information, switching to less specific 
class descriptions. In such abstract service descriptions they specify the set of con-
crete services that they are willing to accept. For example, a freight forwarder may 
advertise the following capability, using an OWL-DL based description approach for 
abstract service descriptions explained in [6]. 

Sp  Shipping     startLocation.EUPort     endLocation.BalticPort   
    item.Container     vehicle.Ship    
    meansOfPayment.(Cheque  BankTransfer) 

This states that the service provider offers shipping services from EU ports to Baltic 
ports, can carry containers, and can accept payments by cheque or bank transfer. By 
using concepts and subconcepts to restrict the description appropriately, the service 
provider can give a precise view of the service it offers. It registers this with the dis-
covery agent. Similarly, a requestor can describe the kind of service it needs; 

Sr  Shipping     startLocation.{Portsmouth}    
    endLocation.{Gdansk}     dateOfArrival. 2005-03-27   
    item.CargoContainer    
    meansOfPayment.(CreditCard  BankTransfer) 

This requests the shipping of a cargo container from Portsmouth to Gdansk, to ar-
rive by the 27th March at the latest. Payment can be made by credit card or bank 
transfer. Hence, by using OWL-DL concepts, we can give descriptions of various 
granularities, from abstract service requests/offers to specific agreed parameter 
values in contracts. 

When the discovery agent receives a service request, it returns the set of all service 
advertisements which intersect with the request. An advert and a request intersect if 
they specify at least one common concrete service. The discovery agent uses an inter-
nal DL reasoner (RACER [9]) to check for intersection. Full details of the inferencing 
mechanism are given in [6]. The list of services returned includes URIs referencing 
the service providers, allowing the requestor to make direct contact. A requestor then 
makes contact with one or more of them to select and agree a concrete service. In 
some domains, negotiation of parameters may be necessary at this stage [10]. How-
ever, in our domain it is adequate for a provider to offer a list of relevant concrete 
services to the requestor, and allow them to select one. Again, this functionality can 
be provided by using a DL reasoner, this time internally to the service provider.  



996 C. Preist et al. 

 

5   Mediation During Service Execution 

Mediation is essential in our scenario to allow the rapid integration of a new freight 
forwarder into a logistics chain. We now present an overview of the approach taken. 
For a detailed description, see [11]. Communication is required during the execution 
of the service, as the shipment is initiated and progresses, to coordinate the behaviour 
of the service requestor and provider. In our scenario, we assume that the logistics 
coordinator usually communicates with freight forwarders using EDIFACT, but must 
now use RosettaNet with its new provider. 

Our approach to mediation is based around the insight that, even though there may be 
several different communications protocols used to communicate about a given task, it 
is often the case that the underlying models of the task that are implicit in these proto-
cols are very similar to each other. In the case of the logistics domain, analysis of the 
EDIFACT, ANSI X12 and RosettaNet protocols found that the set of actions carried out 
to execute the task, and the sequencing constraints on them, are identical. Hence, an 
abstract protocol can be identified and abstracted from the specific communications 
protocols [12]. In our system, the application logic communicates with the mediation 
component in terms of the actions within the abstract protocol – it informs the mediation 
component when it wishes to initiate such an action, and is informed by the mediation 
component when the other party carries out an action. The abstract protocol is repre-
sented as concurrent processes described by finite state machines, which can be used by 
the mediation component to determine what actions are permitted at any given stage in 
the process. The actions used are given in Table 1.  

Each action in the abstract protocol maps to some exchange of messages in a spe-
cific standard such as RosettaNet or EDIFACT. This mapping will vary from standard 
to standard. We refer to this mapping as a concrete protocol relating to a specific 
standard. For example, in RosettaNet, the informReadyForCollection action maps to a 
sequence consisting in the Logistics Coordinator sending an Advanced Shipment 
Notification message (with up to 3 re-sends if no response within half an hour), fol-
lowed by it receiving a response from the Freight Forwarder. In EDIFACT, however, 
it maps to a three-way exchange consisting of a DESADV message, responded to by 
an EDIFACT::ACK, followed by a re-send of the DESADV message. A concrete 
protocol is represented as concurrent processes described by finite state machines, 
which are used by the mediation component to manage the exchange of messages 
when an action takes place. The finite state machines are encoded in RDF, with tran-
sitions between states encoded procedurally in JavaScript.   

When the application logic wishes to initiate an action, it informs the mediation 
component. The mediation component checks that this action is permissible in the 
current state of the abstract protocol, and if it is, it executes the appropriate state ma-
chine within the concrete protocol. This will result in the sending and receiving of 
messages. On termination, the mediation component informs the application logic of 
the success or otherwise of the action. When the mediation component receives a 
message from the other party which does not correspond to an action it has initiated, it 
pattern-matches against the action mappings in the concrete protocol to identify which 
action the other party is initiating. (If the protocol is well-designed, this should be 
unique.) It then executes the appropriate concrete protocol to respond to this action, 
and informs the application logic to allow the service requestor to respond. 



 Automated Business-to-Business Integration of a Logistics Supply Chain 997 

 

Table 1. Communicative acts involved in the execution of a logistics service 

Communicative Act Direc-
tion 

Communicative intent 

informReadyForCollec-
tion 

LC to 
FF 

Inform the FF that the shipment is available 
for collection. 

requestShipmentStatus LC to 
FF 

Request an update of the shipment status 
from the FF. 

informShipmentStatus FF to 
LC 

Inform the LC of the shipment status 

informReadyToDeliver FF to 
LC 

Inform the LC that the FF is ready to deliver 
the shipment. 

informShipmentDeliv-
ered 

FF to 
LC 

Inform the LC (and provide proof) that the FF 
has infact delivered the shipment. 

requestPayment FF to 
LC 

Request payment for delivering the shipment 
from the LC. 

In addition to dealing with the message sequencing, the concrete protocol also con-
tains data mappings for the syntax of the messages, showing how the different fields 
in the message correspond to different concepts in the domain ontology. When a mes-
sage is received, content within that message is ‘lifted’ into an RDF knowledge base 
to become an instance of a concept in the logistics ontology. The application logic is 
able to read and assert information in this knowledge base as necessary. When a mes-
sage needs to be transmitted by the mediation component, it ‘lowers’ appropriate 
concept instances within this knowledge base into an XML syntax appropriate to the 
chosen standard. The technology used to do this is described in [13]. Using this me-
diation technology, a requestor can communicate with different providers using dif-
ferent standards, while allowing the application logic to be encoded in terms of busi-
ness actions. All it need do is insert the appropriate concrete protocol into its media-
tion component. Because we assume that the requestor is ‘semantically enabled’ (i.e. 
its internal logic uses RDF) the mediation component can be part of it. If it were not, 
mediation could take place as a semantically enabled intermediary agent using similar 
techniques. These alternative design decisions are discussed in [11]. 

During service execution, the freight forwarders’ behaviour must be coordinated. 
For example, when the first is about to deliver the crate to Portsmouth docks, the 
second freight forwarder must be informed. This is achieved through a combination of 
the business logic and the mediation component. The actions involved are straight-
forward, and can be encoded as part of the business workflow. However, the mes-
sages involved are in different protocols, so require mediation. The first trucking 
company sends notification in EDIFACT. The mediation system recognizes that this 
message corresponds to an ‘informReadyToDeliver’ action, which the workflow 
identifies as requiring an ‘informReadyForCollection’ exchange with the shipment 
company. This is initiated, and the mediation component generates the appropriate 
RosettaNet messages. Specific data, such as the estimated time of delivery, are trans-
ferred from one message to the other through a process of lifting/lowering to/from the 
RDF database.  



998 C. Preist et al. 

 

6   Implementation 

The demonstrator system is implemented primarily in JAVA, as a distributed system 
with each requestor or provider agent as an independent entity. Different components 
internal to each agent access each other via Java RMI, to ease re-use of components 
beyond the demonstrator. Communication between agents takes place primarily 
through web service technology. To facilitate this, the agents are deployed on a web 
server platform consisting of Tomcat servlet container and Axis SOAP engine. 

The Discovery Service is a self-contained web service that can be deployed re-
motely and accessed via a standard web service interface. The generic discovery ser-
vice is linked to a repository containing OWL-DL service descriptions compliant to 
an early form of WSMO (http://www.wsmo.org/). Reasoning is performed by the 
RACER DL reasoner. The Freight Forwarders provide web service interfaces for the 
exchange of messages involved in service specification. Service execution requires 
the exchange of EDIFACT or RosettaNet messages, which takes place over a standard 
http port, as specified by either the EDIFACT or RosettaNet standard. The logistics 
coordinator interacts with the discovery service via its web service interface, and the 
freight forwarders both for service specification, via their web service interfaces, and 
service execution, via a standard http port using RosettaNet or EDIFACT messages in 
XML. The components within the logistics coordinator are implemented in JAVA, 
with the RDF knowledge base provided by HP's JENA semantic web application 
framework (http://jena.sourceforge.net/). Transformation of XML messages into 
RDF, and vice-versa, was carried out using a combination of XML Schema and the 
JENA rules engine. As noted above, the application logic is provided by a user inter-
face allowing the user to make decisions the application logic would. If the system 
were used in a real environment, this functionality would be provided by a business 
workflow system integrated with the corporate IT systems. 

7   Analysis and Related Work 

The system presented in this paper is a demonstrator, not a deployed application. For 
this reason, certain simplifications have been made which need to be revisited. The 
first issue is that of representation; OWL does not have sufficient support for concrete 
domain predicates so that date ranges cannot properly be expressed and reasoned 
with. However RACER does support this feature and extensions to OWL such as 
OWL-E [14] provide a solution to this problem. Secondly, the system is not as secure 
as is necessary. The use of JavaScript in the choreography descriptions provides a 
security loophole; the system should provide a restricted JavaScript environment with 
a limited set of methods and reduced functionality. The messages sent during service 
execution should be packaged using S/MIME, to ensure non-repudiation. Thirdly, the 
system is not as robust as required – for example, conversations are not currently 
persistent objects, and hence will be lost if either party crashes.  These issues require 
enhancements of the system, but do not invalidate the underlying design, and we are 
confident that they can be carried out straightforwardly. 

If the system is to be deployed, it needs to be integrated with the internal workflow 
and decision support systems of the various service requestors and providers. Cur-



 Automated Business-to-Business Integration of a Logistics Supply Chain 999 

 

rently, these decisions are made by the user, using a bespoke user interface geared 
around the specific scenario described in this paper. The ideal approach to integration 
would be to have all internal systems re-engineered to communicate with each other 
(and the SWS components) using RDF data in a shared enterprise knowledge base – 
however, this is unlikely to be acceptable in the short term! Bespoke translation of 
relevant data into/out of RDF using the lifting tool would be more straightforward. 

The approach followed for discovery based on semantic service descriptions works 
in a relatively small and closed environment, where parties refer to well defined and 
settled domain ontologies when specifying their service descriptions. However, it 
does not scale to an open environment in which parties use arbitrary ontological vo-
cabularies that are not connected. This would require ontology mediation during dis-
covery. 

The approach adopted in this demonstrator is strongly influenced by architectural 
work in multi agent systems. Adept [15] was one of the first multi-agent systems to 
use a service agreement between provider and requestor. The role of contracts be-
tween requestors and providers has been incorporated in a semantic-web framework 
in the SweetDeal system [16]. Our approach to representing contracts is not as ex-
pressive as that used in SweetDeal, and it appears that the non-monotonicity they 
provide is not required in our domain. Trastour et. al. [8] describe the B2B lifecycle in 
terms of transformations of a DL contract, which has strongly influenced our ap-
proach. 

Trastour et. al. [17] augment RosettaNet PIPs with partner-specific OWL con-
straints to determine if parties have compatible processes, and automatically propose 
modifications if not. This is a simple application of semantic web technology which 
can ease, but not automate, the linking of two business partners using RosettaNet. 

Work on semantic web services provides approaches to service discovery (e.g. [4]) 
and generation and execution of composite services (e.g. [18]), however the majority 
of this work focuses on one specific part of the service lifecycle and so does not pro-
vide an integrated solution which can be applied to real problems. WSMX [19] is an 
exception to this, in that it provides an execution framework for semantic web ser-
vices throughout the lifecycle. While promising, it does not yet provide protocol me-
diation capabilities or rich business-level descriptions.  IRS-II [20] also supports a 
service lifecycle, but focuses on the composition of simple web services rather than 
choreography of complex business services. 

8   Business Value of the System and Conclusions 

If the system, enhanced as described above, were deployed in a business context it 
would have significant benefits. Specifically; 

 - By performing service discovery using detailed descriptions of capabilities, it is 
possible to rapidly locate many freight forwarders able to offer the service required. 
Because the service description is structured and detailed, it eliminates the many 'false 
positives' that a yellow-pages style service (or UDDI) would give. This will save a 
substantial amount of time, and therefore money, during the search for providers. 
Furthermore, it will increase the visibility of each provider, so will benefit them pro-
vided they offer a competitive service. 



1000 C. Preist et al. 

 

 - By providing semi-automated assistance during the service selection phase, the 
system replaces a large number of phone calls with a simple selection of contract by 
the user. This again reduces time. Because it significantly reduces the effort needed to 
check out each possible freight forwarder, it allows a user to make a wider search of 
the options and therefore is likely to result in a better final choice. 
 - By allowing the service requestor to adapt its protocol to communicate with the 
service provider, the system dramatically reduces the time and effort required to inte-
grate the two parties. Since integration can take months currently, this results in a 
very substantial cost saving. Furthermore, it means that the choice of service provider 
becomes far more flexible, as the time and effort of integration no longer results in 
lock in. This makes it easier to open up logistics chains to competitive tender where 
appropriate, with the resultant possibility of reducing costs further. 

While the demonstrator is focussed around logistics, and so is equipped with on-
tologies appropriate to this domain, the software developed could be applied to other 
domains of B2B interaction and integration if given the appropriate ontologies and 
knowledge. For example, it can be used in purchasing, order management, billing and 
other areas of supply chain management. The protocol mediation, data mediation and 
discovery components are designed to be used independently of each other, and can 
be applied outside the domain of B2B in other semantic web service applications, 
providing further potential value. 

In this paper, we have presented a demonstrator system using semantic web ser-
vices technology which allows a requestor to discover logistics service providers, 
select appropriate logistics services, coordinate the services to form a composite ser-
vice chain, and communicate with the service providers using arbitrary protocols 
through dynamic mediation. As far as we are aware, this is the first system imple-
mented which manages the full service lifecycle of a realistic business example. The 
demonstrator itself is not of product quality, and needs augmenting to be more secure 
and robust before deployment. However, we believe our results demonstrate the fea-
sibility of this approach to B2Bi problems in general, and expect the use of dynamic 
integration via semantic descriptions to become an important industrial technique in 
the near future. 

Acknowledgements. Thanks to Zlaty Marinova, Dan Twining, Peter Radokov, 
Silvestre Losada, Oscar Corcho, Jorge Pérez Bolaño and Juan Miguel Gomez for 
work on the system implementation, and all on the SWWS project for stimulating 
discussions. 

References 

1. McIlraith, S. and Martin, D.: Bringing Semantics to Web Services. IEEE Intelligent Sys-
tems, 18(1) (2003) 90-93 

2. Paolucci, M. and Sycara, K.: Autonomous Semantic Web Services. IEEE Internet Comput-
ing, (September 2003) 34-41 

3. Fensel, D. and Bussler, C.: The Web Service Modeling Framework WSMF. Electronic 
Commerce: Research and Applications, 1 (2002) 113-117 

4. Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K: Semantic Matching of Web Ser-
vice Capabilities. Proc. International Semantic Web Conference (2002) 333-347 



 Automated Business-to-Business Integration of a Logistics Supply Chain 1001 

 

5. Trastour, D., Bartolini, C. and Gonzalez-Castillo,J.: A Semantic Web Approach to Service 
Description for Matchmaking of Services. In Proceedings of the Semantic Web Working 
Symposium, Stanford, CA, USA, July 30 - August 1, 2001 

6. Grimm, S., Motik, B. and Preist, C.: Variance in eBusiness Service Discovery. Proc. of the 
ISWC Workshop on Semantic Web Services, 2004. 

7. Preist, C.: A Conceptual Architecture for Semantic Web Services. Proc. 3rd International 
Semantic Web Conference (2004) 395-409 

8. Trastour, D., Bartolini, C. and Preist, C.: Semantic Web Support for the B2B E-commerce 
pre-contractual lifecycle. Computer Networks 42(5) (August 2003) 661-673 

9. Haarslev,V. and Moller, R.: Description of the RACER System and its Applications. Proc. 
International Workshop on Description Logics (DL-2001), Stanford, USA, 2001. 

10. He, M., Jennings, N.R. and Leung, H: On Agent Mediated Electronic Commerce. IEEE 
Transactions on Knowledge and Data Engineering 15(4) (2003) 985-1003 

11. Williams, S.K., Battle, S.A. and Esplugas Cuadrado, J.: Protocol Mediation for Adaptation 
in Semantic Web Services. HP Labs Technical Report HPL-2005-78 

12. Esplugas Cuadrado, J., Preist, C. and Williams, S.: Integration of B2B Logistics using Se-
mantic Web Services. Proc. Artificial Intelligence: Methodology, Systems, and Applica-
tions, 11th International Conference, (2004) 

13. Battle, S.A.: Round Tripping between XML and RDF. Poster Proc. of ISWC 2004. 
14. Jeff Z. Pan and Ian Horrocks. OWL-E: Extending OWL with Expressive Datatype Expres-

sions. IMG Technical Report, School of Computer Science, the University of Manchester, 
April 2004 

15. Jennings, N.R., Faratin, P.,Johnson,M.J., O’Brien,P. and Wiegand, M.E.: Using Intelligent 
Agents to Manage Business Processes. Proceedings of the First Int. Conference on the 
Practical Application of Intelligent Agents and Multi-Agent Technology (1996) 345-360 

16. Grosof, B. and Poon, T.: SweetDeal: Representing Agent Contracts with Exceptions using 
Semantic Web Rules, Ontologies and Process Descriptions. International Journal of Elec-
tronic Commerce 8(4):61-98 (2004)  

17. Trastour, D., Preist, C. and Coleman, D.: Using Semantic Web Technology to Enhance 
Current Business-to-Business Integration Approaches. Proc. 7th Enterprise Distributed Ob-
ject Computing Conference, 2003, p222-231 

18. McIlraith, S. and Son, T.C.: Adapting Golog for Composition of Semantic Web Services. 
Proc. 8th International Conference on Knowledge Representation and Reasoning, 2002, 
p482-493 

19. Oren, E., Wahler, A., Schreder, B., Balaban, A., Zaremba, M., and Zaremba, M.: Demon-
strating WSMX – Least Cost Supply Management. Proc. Workshop on WSMO Implemen-
tations, 2004. 

20. Motta, E., Domingue, J., Cabral, L., and Gaspari, M.: IRS-II: A Framework and Infrastruc-
ture for Semantic Web Services. Proc. 2nd International Semantic Web Conference, 2003, 
p306-318 

 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729 , pp. 1002 – 1015, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Semantic Search Engine for the International  
Relation Sector 

L. Rodrigo1, V.R  Benjamins1, J. Contreras1, D. Patón1, D. Navarro1, R. Salla1, 
M. Blázquez1, P. Tena2, and I. Martos2 

1 Intelligent Software Components, S.A.  
{lrodrigo, rbenjamins, jcontreras, 
dpaton, dnavarro, rsalla}@isoco.com  

www.isoco.com 
2 Real Instituto Elcano 

{pilar.tena, isabelmartos}@r-i-elcano.org  
www.realinstitutoelcano.org 

Abstract The Royal Institute Elcano1 (Real Instituto Elcano) in Spain is a 
prestigious independent political institute whose mission is to comment on the 
political situation in the world focusing on its relation to Spain. As part of its 
dissemination strategy it operates a public website. In this paper we present and 
evaluate the application of a semantic search engine to improve access to the 
Institute’s content: instead of retrieving documents based on user queries of 
keywords, the system accepts queries in natural language and returns answers 
rather than links to documents. Topics that will be discussed include ontology 
construction, automatic ontology population, semantic access through a natural 
language interface and a failure analysis.  

1   Introduction 

Worldwide there are several prestigious institutes that comment on the political situation in 
the world, such as the UK’s Royal Institute for International Affairs (www.riia.org), or the 
Dutch Institute for International Relations (www.clingendael.nl). In Spain, the Real Instituto 
Elcano (Royal Institute Elcano, www.realinstitutoelcano.org) is fulfilling this role. The 
institute provides several types of written reports where they discuss the political situation in 
the world, with a focus on events relevant for Spain. The reports are organized in different 
categories, such as Economy, Defense, Society, Middle East, etc. In a special periodic report 
- the “Barometer of the Royal Institute Elcano” - the Institute comments on how the rest of 
the world views Spain in the political arena. Access to the content is provided by categorical 
navigation and a traditional full text search engine. While full text search engines are helpful 
instruments for information retrieval, in domains where relations are important, those 
techniques fall short. For instance, a keyword-based search engine will have a hard time to 
find the answer to a question such as: “Governments of which countries have a favorable 
attitude toward the US-led armed intervention in Iraq?” since the crux of answering this 
question resides in “understanding” the relation “has-favourable-attitude-toward”.  

                                                           
1  Juan Sebastián Elcano was a Spanish explorer, who commanded back home the first 

successful expedition to circumnavigate the globe in 1522. 

.



 A Semantic Search Engine for the International Relation Sector 1003 

In this paper we present and evaluate a semantic search engine that accepts natural 
language questions to access content produced by the Institute. 

In Section 2, we briefly describe the ontology of the International Relations domain. 
Section 3 details how we automatically populate the ontology with instances. Then, in 
Section 4, present the semantic search engine, and how we automatically establish relations 
between the Institute documents and the (instances of the) ontology. In Section 5, we provide 
a failure analysis of the system based on a test with unknown users. Finally, in Section 6 we 
provide conclusions. 

2   An Ontology of International Affairs 

When searching for a particular data, looking for a concrete answer to a precise question, a 
standard search engine that retrieves documents based on matching keywords falls short. 
First of all, it does not satisfy the primary need of the user, which is finding a well-defined 
data, and provides a collection of documents that the user must traverse, looking for the 
desired information. Besides, not all of the retrieved documents may contain the appropriate 
answer, and some of the documents that do contain it, may not be included in the collection. 
These drawbacks seem to suggest a change in the search paradigm, evolving from the 
extraction of whole documents, to the information contained in those documents. This 
approach, however, is not feasible in all conditions. It is not affordable to build such a search 
engine for general purpose, but only for limited, well-defined domains. This is the case of the 
semantic search engine developed for the Real Instituto Elcano, which focuses on the topics 
covered by the reports written by the institute analysts, this is, international politics. 

In order to be able to analyse the documents, and reach the sufficient “understanding” of 
them to be able to answer the users questions, the system relies on a representation of the 
main concepts, their properties and the relations among them in the form of an ontology. 
This ontology provides the system with the necessary knowledge to understand the questions 
of the users, provide the answers, and associate it a set of documents that mention the 
concept of the answer. Based on the ontology, each document gets its relevant concepts 
annotated and linked to the representing concept or instance in the ontology, allowing a user 
to browse from a document to the information of a concept he is interested in, and 
backwards, from the ontology to any of the reports that mention that concept.  

2.1   Ontology Design 

An ontology is a shared and common understanding of some domain that can be 
communicated across people and computers [6, 7, 3, and 8]. Ontologies can therefore be 
shared and reused among different applications [5]. An ontology can be defined as a formal, 
explicit specification of a shared conceptualization [6, 3]. “Conceptualization” refers to an 
abstract model of some phenomenon in the world by having identified the relevant concepts 
of that phenomenon. “Explicit” means that the type of concepts used, and the constraints on 
their use are explicitly defined. “Formal” refers to the fact that the ontology should be 
machine-readable. “Shared” reflects the notion that an ontology captures consensual 
knowledge, that is, it is not private to some individual, but accepted by a group. An ontology 
describes the subject matter using the notions of concepts, instances, relations, functions, and 
axioms. Concepts in the ontology are organized in taxonomies through which inheritance 



1004 L. Rodrigo et al. 

mechanisms can be applied. It is our experience that especially the social part for building a 
commonly agreed ontology is not easy [2]. 

Based on interviews with experts of the Elcano Institute, we used the CIA world factbook 
(http://www.cia.gov/cia/publications/factbook/) as the basis for the design of the ontology of 
International Affairs. The CIA fact book is a large online repository with actual information 
on most countries of the world, along with relevant information in the fields of geography, 
politics, society, economics, etc.  

 

Fig. 1. Ontology for International Affairs 

We have used the competency questions approach [10] to determine the scope and 
granularity of the domain ontology. The ontology consists of several top level classes, some 
of which are “Place” (representing geographical places such as countries, cities, buildings, 
etc.), “Agent” (extracted from WordNet [11], representing entities that can execute actions 
modifying the domain such as persons or organizations), “Events” (time expressions and 
events), and “Relations” (common class for any kind of relations between concepts).  

Without instances information, the ontology contains about 85 concepts and 335 
attributes (slots, properties). The ontology has been constructed using Protégé [9]. Fig. 1 
shows a fragment of the ontology in Protégé. 

3   Automatic Annotation 

One of the challenges for the success of the Semantic Web is the availability of a critical 
mass of semantic content [17]. Semantic annotation tools play a crucial role at upgrading the 
actual web content into semantic content, that can be exploited by semantic applications. In 
this context we developed the Knowledge Parser ®, a system able to extract data from online 
sources populating specific domain ontologies, adding new or modifying existing knowledge 



 A Semantic Search Engine for the International Relation Sector 1005 

facts or instances. The Semantic Web community often calls this process as semantic 
annotation (or just annotation). 

The Knowledge Parser ® offers a software platform that combines different technologies 
for information extraction, driven by extraction strategies that allow the optimal technology 
combination application to each source type based on the domain ontology definition.  

Ontology population from unstructured sources can be considered as the problem of 
extracting information from the source, its assignation to the appropriate location in the 
ontology, and finally, its coherent insertion in the ontology. The first part deals with the 
information extraction and document interpretation issues. The second part deals with the 
information annotation, in the sense of adding semantics to the extracted information, 
according to domain information and pre-existing strategies. The last part is in charge of 
populating, i.e., inserting and consolidating the extracted knowledge into the domain 
ontology. The three phases can be seen in the architecture of the system, illustrated in Fig. 2. 

 

Fig. 2. Overview of the extraction and population process 

3.1   Information Extraction 

The KP system at present handles HTML pages, and there are plans to extend it to handle 
also PDF, RTF, and some other popular formats.  

To be able to capture as much information as possible from the source document, KP 
analyzes it using four different processors, each one focusing on different aspects: the plain text 
processor, the layout processor, the HTML source processor an the natural language processor. 

The plain text source interpretation supports the usage of regular expressions matching 
techniques. The usage of these kind of expressions constitutes an easy way of retrieving data 
in the case of stable, well known pages. If the page suffers frequent changes the regular 
expression becomes useless. 

It is very common that even if documents of the same domain have very similar visual 
aspect they have a completely different internal code structure. Most of the online banks 
offer a position page where all the personal accounts and their balance are shown. These 
pages have very similar visual aspect, but their source code is completely different. The KP 
system includes layout interpretation of HTML sources, which allows to determine if certain 
pieces of information are visually located above or under, right or left, in column or in row, 
etc. of another piece of information.  

In addition to HTML renderization of the source code in a visual model, the KP system needs 
to process the HTML elements in order to browse through the sources. The source description 
may include a statement that some information is a valid HTML link (e.g., a country name in a 
geopolitical portal), and when activated it drives to another document (a country description). 



1006 L. Rodrigo et al. 

Finally, the fourth model tries to retrieve information from the texts present in the HTML 
pages. To do that, the user describes the pieces he is interested in in terms of linguistic 
properties and the relations among them (verbal or nominal phrases, coordinations, 
conjunctions, appositions, etc.) 

3.2   Information Annotation 

Once the document is parsed using different and complementary paradigms, there appears 
the challenge of assigning the extracted information piece to the correct place in the domain 
ontology. This task is called annotation, since it is equivalent to wrap up the information 
piece with the corresponding tag from the ontology schema.  

The annotation of information is not direct in most of the cases. For instance, a numeric data 
extracted from the description of a country can be catalogued as the country population, the 
land area, or its number of unemployed people. It is necessary to have some extra information 
that allows reducing this ambiguity. This information, formulated in another model, enlarges 
the domain ontology with background knowledge, the same way the human use for its 
understanding. The extraction system needs to know, for example, that in online banking the 
account balance usually appears in the same visual row as the account number, or that the is 
usually followed by a currency symbol. This kind of information describing the pieces of 
information expected in the source and the relations among them is formalized in a, so called, 
wrapping ontology. This ontology supports the annotation process holding information 
describing the following elements: document types, information pieces and relations among the 
pieces (any kind of relation detectable by the text, layout, html or nlp models). 

According to the domain ontology and the background information added, the system 
should construct possible assignments from the information extracted to the ontology 
schema. The result of this process is a set of hypotheses  about data included in the source 
and their correspondence with the concepts, properties and relations in the domain ontology. 
During the construction process the system can evaluate how much the extracted information 
fits the information description.  

The different ways in which hypothesis can be generated and evaluated are called strategies. 
Strategies are pluggable modules that according to the source description invoke operators. In 
the current version of the system there are two possible strategies available. For system usages 
where the response time is critical we use the greedy strategy. This strategy produces only one 
hypothesis per processed document using heuristics to solve possible ambiguities in data 
identification. On the other hand when quality of annotation is a priority and requirements on 
response time are less important we use a backtracking strategy. This strategy produces a whole 
set of hypothesis to be evaluated and populated into the domain ontology. 

3.3   Ontology Population 

The task of automatically filling a database or an ontological semantic model is non trivial, 
especially when the information comes from unstructured sources, where it may happen that 
the same information is repeated, spread over different places, or even inconsistent. For 
automatic ontology population, there is a need for a specialized module performing 
intelligent information integration tasks. In our architecture it is called IPO (Intelligent 
Population of Ontologies). 



 A Semantic Search Engine for the International Relation Sector 1007 

When the system has selected an information to be included in the ontology, there are 
different possible actions to take, which are: create a new instance with the information; 
insert found data into an existing instance; overwrite a value in an existing instance or, 
finally, relate two existing instances. 

At this point, there is a key decision which affects the action to be taken: is the data found 
already present in the ontology, even under a different name? For that purposes, we have 
developed a library, SmartMatching, that decides whether two names refer to the same 
entity, and whether two instances in the ontology refer to the same concept in the real world. 
For example, it can decide that George W. Bush, Mr. Bush and Bush, G., all refer to the 
same person, and at the entity level, it can decide whether two entities holding economical 
data may be similar enough to suspect that they may belong to the same country (and 
therefore need to be unified into one single instance) or not.  

The IPO module has to decide what hypothesis to insert into the domain ontology. Even 
if the input hypothesis is ordered from the most (the one that fulfils the source description 
with the highest degree) to the least probable, it does not take into account yet the 
consequences that introducing the data in the ontology may have. The best hypothesis may 
cause inconsistencies or may require many changes in the domain ontology. So there is a 
final decision step, in which one of the hypotheses generated in the previous step is 
populated in the ontology. For that reason the IPO makes simulations of the best ranked 
hypotheses and evaluates their suitability for final population according to their population 
cost. The population cost is calculated as the amount of changes needed in the domain 
ontology when filling new hypothesis. It means that hypothesis that contradicts and makes 
inconsistent the domain ontology has higher cost that the hypothesis that fits directly.  

This way of disambiguation assumes that the information that is stored in the source intents to 
communicate something consistent and coherent with the information already stored in the 
domain ontology. On the base of the Shannon’s information theory [Shannon] we understand 
that the online sources encode information looking to its easy understanding by the reader. The 
domain and the wrapping (description) ontology together try to reconstruct the possible mental 
model of the reader and guide the KP system in the task of its understanding. If the mental model 
is correct we assume that the cheapest interpretation (the one that require the smallest amount 
processing effort) is the correct one. We find here an application of the Occam’s razor principle.  

3.4   International Affairs Ontology Population 

Using the Knowledge Parser system, we populated the ontology of international affairs, 
designed as described in Section 2.1. The domain experts selected four sources where they 
could find most of the information that they used on their daily basis. These four sources are: 

· CIA World Factbook (http://www.cia.gov/cia/publications/factbook/). 
· Nationmaster (http://www.nationmaster.com) 
· Cidob (http://www.cidob.org/bios/castellano/indices/indices.htm). 
· International Policy Institute for Counter-Terrorism  (http://www.ict.org.il). 

The set of sources is, of course, not exhaustive, but tries to follow the 80-20 rule, where a 
few sites cover most of the knowledge needed by the users of the system. 

For each of the sites, a wrapping ontology was developed, describing the data contained 
in it, the way to detect it and the relations among them. The development of these kind of 
descriptive ontologies is at present done by experienced knowledge engineers considerably 



1008 L. Rodrigo et al. 

fast, but it is in the plans for future advances to develop some kind of tools that will allow the 
domain experts to describe a new source and populate the ontology with its contents 
themselves. As a result of this process, we evolved from an empty ontology to an ontology 
with more than 60.000 facts. 

4   The International Relations Portal 

Modeling the domain in the form of an ontology is one of the most difficult and time 
consuming tasks in developing a semantic application, but an ontology itself is just a way of 
representing information and provides no added value for the user. What becomes really 
interesting for the user is the kind of applications (or features inside an application) that an 
ontology allows.  

Following, we will present how we have exploited the semantic domain description, in 
the form of enhanced browsing of the already existing reports, and a semantic search engine 
integrated in the international relations portal, interconnected between them. 

4.1   Establishing Links Between Ontology Instances and Elcano Documents 

The portal holds two different representations for the same knowledge, the written reports 
from the institute analysts and the domain ontology, which are mutually independent. 
However, one representation can enrich the other, and vice versa. For example, an analyst 
looking for the GDP of a certain country may also be interested in reading some of the 
reports where this figure is mentioned, and, in the same way, someone who is reading an 
analysis about the situation in Latin America may want to find out the political parties 
present in the countries of the region.  

 

 
Fig. 3. Domain ontology population process 



 A Semantic Search Engine for the International Relation Sector 1009 

Trying to satisfy these interests, we inserted links between the instances in the ontology and 
the documents of the Institute. The links are established in both directions. Each concept in the 
ontology has links (references) to the documents where it is mentioned, and, viceversa,  each 
document has links that connect every concept mentioned in the article with the corresponding 
concept in the ontology. This way, the user can make a question, for example, “¿Quién es el 
presidente de EEUU?” (“Who is the USA president?”), and gets the information of the instance 
in the ontology corresponding to George Bush. From this screen, he can follow the links to any 
of the instances appearing in the text, George Bush being one of them. This process can be seen 
in Figure 4, where the information about George Bush in the ontology contains a set of links, 
and the document seen can be reached following one of them.  

To generate these links a batch process is launched, that generates at the same time both 
the links in the ontology and the links in the articles.  

At present, the process of adding links is a batch process that opens a document, and 
looks for appearances of the name of any of the instances of the ontology in that text. For any 
matching, it adds a link in the text that takes to the instance in the ontology and link in the 
ontology with a pointer to the text. To evaluate the matching, not only the exact name of the 
instance is used, but also the possible synonyms, contained in an external thesaurus, which 
can be easily extended by any user, i.e., the domain expert. 

Future plans include the automation of this task, so that any new document in the system 
(the institute produces new reports on a daily basis) is processed automatically by the link 
generator tool and the new links are transparently included in the system.  

 

Fig. 4. Links between the instances and the documents 



1010 L. Rodrigo et al. 

4.2   The Semantic Search Engine 

With the objective of making available to the users the knowledge contained in the ontology 
in a comfortable, easy to use fashion, we also designed a semantic search engine. Using this 
engine, users can ask in natural language (Spanish, in this case) for a concrete data, and the 
system retrieves the data from the ontology and presents the results to the user.  
The general steps that the system carries out with every query are the following: 

· First of all, the user question is interpreted, extracting the relevant concepts from the 
sentence. 

· Second, that set of concepts is used to build a query that is launched against the ontology. 
· Finally, the results are presented to the user.  

Each of these steps will further detailed in the following sections. 

4.2.1   Sentence Analysis 
When users go to the web searching for data, they expect a fast, almost immediate answer. If 
the process takes too long, the system just gives an impression of being unusable and the user 
will try with an alternative search engine. This is a serious drawback for these kind of 
systems that require heavy processing before being able to offer an answer to the user. 
Therefore, the process of obtaining an interpretation of the sentence of the user is optimized 
trying to provide an answer as fast as possible, sacrificing somehow the depth of the 
processing. 

The module is organized as a cascade of modules, from the most simple to the most 
complex ones, and each time a module is executed, the system checks if it is necessary to go 
on with the following modules, or if an answer can be already delivered. This process can be 
seen in Fig. 5. 

The input sentence is tokenized, obtaining a list of words, numbers, and punctuation 
signs. This list will be the input to the cascade of modules. 

The first module detects and marks the words that do not contribute any relevant meaning 
to the sentence (known as stopwords), so that from the very first moment those words are 
ignored by the rest of the modules.  

After every module execution, the system checks if the information collected is enough to 
provide an answer. To take this decision, the system checks if every token in the sentence is 
either marked as a stopword, as a punctuation sign or has any semantic information attached. 
If any of the tokens of the sentence is not annotated, the processing continues with the next 
module. 

The second module, the first one that attaches semantic information, uses the ontology as 
a gazetteer. Basically, it goes through all the names in the ontology (names of classes, 
attributes, symbols and instances), taking also into account the synonyms files that were 
afore mentioned, and checks if any of them appear in the sentence. If so, it attaches to the 
word the information of the element of the ontology it represents. This information depends 
on which kind of element was recognized. If it was the name of a class, just that name is 
enough, while if the word matched the value of an attribute, the system attaches the name of 
the class, attribute and exact value in the ontology (the matching does not need to be exact, 
especially due to capitalization and grammatical accents). 

The next module uses some shallow linguistic techniques to broaden the detection 
possibilities. The first thing that the system checks is if any of the words are operators that need 



 A Semantic Search Engine for the International Relation Sector 1011 

to be included in the query. At this moment, only negative (no) and comparative operators 
(mayor que, menor que, igual) are implemented, but future plans include temporal operators 
also. If this does not complete the sentence analysis, the system verifies if any of the tokens that 
could not be analyzed is a number, and if so, marks it as such. In the last step of this module, as 
the word in the sentence that could not be recognized does not match any of the terms 
contained in the ontology (it was checked in the previous step), the system looks for variations 
of the word. First of all, it tries with the lemmas of the words in the sentence. This is of special 
interest in a highly flexible language as Spanish when dealing with verbal forms. Finally, the 
last step is to check if any of the words that still have not been understood may have been 
misspelled. For this purpose, we have adapted a spelling corrector, ispell [20], adding to the 
corrector dictionary all the vocabulary contained in the ontology, so that it is optimized for the 
application domain. The corrections suggested by ispell are checked by the second module, to 
see if they appear in the ontology and, if so, the word is considered misspelled and the 
appropriate information is attached.  

Finally, if there is still some token that has no information one last “desperate” process is 
launched that, using regular expressions, checks if the word is part of the name of any 
element of the ontology. This is quite helpful, as names in the ontology  (particularly proper 
names) are written in their full form, while they are usually referred in a shorter way, for 
example, users will tipically write “Washington” while the name of the city in the ontology 
is “Washington D.C.”. 

 

 

Fig. 5. Steps in the sentence analysis 



1012 L. Rodrigo et al. 

If all the modules have been executed and any token remains unannotated, the token is 
marked as misunderstood, and the analysis finishes, returning the tokenized sentence with 
the corresponding information attached. Every token in the user question, therefore, will 
have some kind of information attached, which may range from a “Stopword” tag, a “Not 
understood” tag, or (hopefully) the semantic information that the system could build for it. 

4.2.2   Quezry Construction 
While human language is ambiguous most of the times, not mentioning facts that the speaker 
and the listener share, an ontology query language needs to explicitly mention all the facts that 
take part in the query. From the sentence analysis phase, the system gets a set of spots in the 
ontology, some classes, attributes and instances that the user has mentioned, but that is not 
enough to build a query. It is necessary to guess what kind of relations hold between those 
elements (that the speaker did not mention), so that the query can be well constructed. To 
achieve this, the system looks for the paths inside the ontology that connect all the elements 
mentioned in the sentence. Once a full path is found, a query can be constructed. 

The process that is carried out at present to calculate the path does not consider possible 
permutations in the order of the tokens in the sentence, and calculates the minimum distance 
from one element to the next, not taking into account minimum global paths. This is not the 
optimal algorithm, but once again efficiency has been preferred to efficacy. Nevertheless, 
improvement plans include this module as one of the main options, as sometimes the 
algorithm is just too rigid, and even though the system may have been able to understand the 
user sentence, the query cannot be correctly built and the system fails to give a response. 

 

Fig. 6. Results presentation 



 A Semantic Search Engine for the International Relation Sector 1013 

4.2.3   Results Presentation 
Once the system has got one or more URIs that represent the result to the question, the 
information contained by these URIs is presented to the user as tables with the information 
contained in the ontology. An example of a visualization of results can be seen in Fig. 6.  

5   Failure Analysis 

The system has been tested during one month in the context of the W3C Spanish standards 
tour2. The scenario for this external evaluation was the following. Users were given a brief 
introduction to the system capabilities and functions, and then they could freely interact with 
it. One hundred utterances were collected from unknown, spontaneous users.  

Summarizing the general processing of the system, depicted in Section 4, the system first 
tries to understand the natural language, translating it to an internal representation based on 
the ontology, and then tries to build a query that retrieves the instances from the ontology 
that satisfy the user question. These instances are finally presented to the user as an answer. 
If the system is not able to complete any of these two steps, it will not be able to offer a 
response. If this happens, the user will be given the option to redirect the search to an 
standard search engine, and, moreover, if the system detects that some words were not 
properly understood it also notifies the user about the problem and gives him the possibility 
to rephrase the sentence with new words.  

The two possible sources for preventing the system from giving an answer have been 
explicitly identified in the results table, to be able to point out the one that is responsible for a 
greater number of errors.  

Finally, answers classified as “Wrong result” denote an error in the system. It has been able 
to process the question and thinks that it is providing a sensible answer, but the answer does not 
correspond to the question. This kind of malfunctioning comes from design or implementation 
bugs which can be located at any level, in the ontology, in the sentence analysis, or in the query 
construction and should be studied individually to uncover the reasons. 

Table 1. Evaluation figures 

No result 

 Correct NL 
error 

Query 
generation 
error 

Wrong 
result 

 
 

TOTAL 

All 
Sentences 

46 24 21 9 100 

Domain 
sentences 

46 
(63.01%) 

3 
(4.11%) 

17 
(23.28%) 

7 
(9.59%) 

73 

From the figures in Table 1, we can conclude two main points. The search engine 
is clearly domain specific, and only if users understand the implications of this fact 
will they be able to use the system successfully. This is suggested by the dramatic 
decrease of errors (specially in the NL) when only domain specific sentences are 

                                                           
2 http://www.w3c.es/gira/info/intro.html.en 



1014 L. Rodrigo et al. 

considered. Additionally, this decrease suggest that the sources for data acquisition, 
that implicitly define the domain of the engine, should be chosen with great care and 
in agreement with the domain experts. The more sources that can be added, the more 
robust the system will behave. 

We can also conclude that the second phase of the analysis, the query construction 
is at present the weakest link in the chain as it is not flexible enough to ensure that 
every well understood question will be correctly converted to the appropriate query. 
This point constitutes one of the future lines of improvements, and we will focus on it 
in the short term. 

6   Related Work 

Our Knowledge Parser is related to several other initiatives in the area of automatic 
annotation for the Semantic Web, including KIM [12], which is based on GATE [13], 
Annotea [14] of W3C., Amilcare [15] of Sheffield University, and AeroDAML [16]. For an 
overview of those approaches and others, see [4]. All approaches use NLP as an important 
factor to extract semantic information. Our approach is innovative in the sense that it 
combines four different techniques for Information Extraction in a generic, scalable and open 
architecture. The state of the art of most of these approaches is still not mature enough (few 
commercial deployments) to provide concrete comparison in terms of performance and 
memory requirements. 

7   Conclusions 

A semantic search engine for a closed domain was presented. The figures of the evaluation 
are promising, as more than 60% of the spontaneous questions are understood and correctly 
answered when these belong to the application domain. However, there are still some things 
to improve, such as the automatic link generation, a more flexible mechanism for building 
queries, an automated process to generate complete synonym files from linguistic resources, 
just to mention a few of them. It would also be of a high interest to completely decouple the 
search engine from the domain information, which are now lightly connected, in order to be 
able to apply the semantic search engine to a new domain just by replacing the domain 
ontology and the synonyms files. 

The semantic search engine is, at the same time, a proof of the utility and applicability of 
the Knowledge Parser ® which will also be further developed in future projects. 

Acknowledgements 

Part of this work has been funded by the European Commission in the context of the project 
Esperonto Services IST-2001-34373, SWWS IST-2001-37134, SEKT IST-2003-506826 
and by the Spanish government in the scope of the project: Buscador Semántico, Real 
Instituto Elcano (PROFIT 2003, TIC). The natural language software used in this application 
is licensed from Bitext (www.bitext.com). For ontology management we use JENA libraries 
from HP Labs (http://www.hpl.hp.com/semweb) and Sesame (http://www.openrdf.org/). 



 A Semantic Search Engine for the International Relation Sector 1015 

References 

1. Gómez-Pérez A, et al (2003) Ontological Engineering. Springer-Verlag. London, UK. 
2. V. R. Benjamins, et al. (KA)2: Building ontologies for the internet: a mid term report. International 

Journal of Human-Computer Studies, 51(3):687–712, 1999. 
3. W. N. Borst. Construction of Engineering Ontologies. PhD thesis, University of Twente, 1997. 
4. Contreras  et al. D31: Annotation Tools and Services, Esperonto Project: www.esperonto.net  
5. A. Farquhar, et al. The ontolingua server: a tool for collaborative ontology construction. 

International Journal of Human-Computer Studies, 46(6):707–728, June 1997. 
6. T. R. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisition, 

5:199–220, 1993. 
7. N. Guarino. Formal ontology, conceptual analysis and knowledge representation. International 

Journal of Human-Computer Studies, 43(5/6):625–640, 1995. Special issue on The Role of Formal 
Ontology in the Information Technology. 

8. G. van Heijst, et al. Using explicit ontologies in KBS development. International Journal of 
Human-Computer Studies, 46(2/3):183–292, 1997. 

9. Protege 2000 tool: http://protege.stanford.edu  
10. M. Uschold and M. Gruninger. Ontologies: principles, methods, and applications. Knowledge 

Engineering Review, 11(2):93–155, 1996. 
11. WordNet: http://www.cogsci.princeton.edu/~wn/ 
12. Atanas Kiryakov, et al. Semantic Annotation, Indexing, and Retrieval 2nd International Semantic 

Web Conference (ISWC2003), 20-23 October 2003, Florida, USA. LNAI Vol. 2870, pp. 484-499, 
Springer-Verlag Berlin Heidelberg 2003 

13. H. Cunningham, et al. GATE: A Framework and Graphical Development Environment for Robust 
NLP Tools and Applications. Proceedings of the 40th Anniversary Meeting of the Association for 
Computational Linguistics (ACL'02). Philadelphia, July 2002 

14. José Kahan, et al, Annotea: An Open RDF Infrastructure for Shared Web Annotations,  in Proc. of 
the WWW10 International Conference, Hong Kong, May 2001. 

15. Fabio Ciravegna: "(LP)2, an Adaptive Algorithm for Information Extraction from Web-related Texts" in 
Proceedings of the IJCAI-2001 Workshop on Adaptive Text Extraction and Mining, held in conjunction 
with the 17th International Conference on Artificial Intelligence (IJCAI-01), Seattle, August, 2001 

16. P. Kogut and W. Holmes, "AeroDAML: Applying Information Extraction to Generate DAML 
Annotations from Web Pages", in Proceedings of the First International Conference on Knowledge 
Capture (K-CAP 2001). 

17. Benjamins, V., et al. Six Challenges for the Semantic Web. White Paper, April 2002. 



Gnowsis Adapter Framework: Treating
Structured Data Sources as Virtual RDF Graphs

Leo Sauermann and Sven Schwarz

Knowledge Management Department,
German Research Center for Artificial Intelligence DFKI GmbH,

Kaiserslautern, Germany
Knowledge-Based Systems Group, Department of Computer Science,

University of Kaiserslautern, Germany
{leo.sauermann, sven.schwarz}@dfki.de

Abstract. The integration of heterogenous data sources is a crucial step
for the upcoming semantic web – if existing information is not integrated,
where will the data come from that the semantic web builds on? In this
paper we present the gnowsis adapter framework, an implementation
of an RDF graph system that can be used to integrate structured data
sources, together with a set of already implemented adapters that can be
used in own applications or extended for new situations. We will give an
overview of the architecture and implementation details together with
a description of the common problems in this field and our solutions,
leading to an outlook on the future developments we expect. Using our
presented results, researchers can generate test data for experiments and
practitioners can access their desktop data sources as RDF graph.1

1 Introduction

Semantic Web applications have a need for data to work on, and to access ex-
isting data sources like file systems, relational databases or legacy applications
to extract information and represent it in RDF. For this task, common systems
like Aduna Metadata Server, Joseki, Kowari or RDF Gateway use adapter in-
terfaces and implementations. Or developers take existing adapter projects that
need some glue code to be deployed. The problem is, that all these adapters
conform to the special interfaces of the system and a Kowari adapter cannot be
used in Aduna or RDF Gateway. Also, the administrators of the systems have
all the same design decisions to make regarding their interfaces and approach
to the problem. As they all base on RDF and have similar use cases, a generic
adapter infrastructure that converts legacy data to RDF would be a goal. Then
adapters would generate RDF and not an implementation of system X, Y or Z.
The tedious task of writing adapters would be eased and existing adapters could
be reused in the Semantic Web community.
1 This work was supported by the German Federal Ministry of Education, Science,

Research and Technology (bmb+f), (Grant 01 IW C01, Project EPOS: Evolving
Personal to Organizational Memories).

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 1016–1028, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Gnowsis Adapter Framework 1017

The gnowsis adapter framework offers an architecture for adapters that do the
task of RDF extraction in different ways. We experimented with approaches that
differ in implementation effort and interfaces and evaluated, which interfaces are
easy to implement and The framework consists of three parts, first an abstract
implementation of adapters that build a skeleton for concrete adapters, second
a middleware to integrate multiple adapters into a single, queryable data source
and third a set of reference implementations that show how to build adapters
that can be used off the shelf. Using this framework, application developers can
extract information from heterogenous data sources based on the existing off-
the-shelf-adapters or own implementations. The main features of the framework
are:

– Interfaces and abstract implementations of adapters
– Existing adapter implementations to access the local filesystem, IMAP email

servers, Microsoft Outlook, relational databases, and the Mozilla address
book as RDF graphs

– A framework to configure, start and integrate several adapters
– Instructions and Examples to build custom adapters

The gnowsis adapter framework is based on the Jena RDF framework[11] and
extends the existing graph API. Each adapter implements either the graph API
or a method to create concise bounded descriptions (CBDs), a data exchange
format defined by Patrick Stickler in the URIQA web service [15]. In the latter
case these CBDs will implement the graph API indirectly. This means arbitrary
graph handling can take place nevertheless. Other more specialized third-party
adapters have also been integrated into the framework.

The functionality of the framework is restricted to extract information,
changes on the underlying data are not supported. There is no clear specifi-
cation how to express changes and send them to the adapter, especially facing
blank nodes, as our focus lies on generating data for the semantic web we de-
cided to start with an extraction framework and continue our work when the
SPARQL [7] specification contains a methodology for updates and after reference
implementations exist.

In this paper we will describe the implementation and use of the system,
together with references to related projects. We will show the necessary steps to
create, deploy and use the adapters. The main benefits of using such adapters
together with the underlying framework will also be explained. An evaluation
has been made regarding (a) the implementation cost of adapters (by measuring
the time a person takes to write an adapter) and (b) the performance of the
different adapters, using different query methods and different data sources.

2 Structured Data Sources

For our work we focus on RDF extraction from structured data sources, with a
distinction between files, applications and RDF repositories. We need these later,
when deciding what kind of adapter to implement with what functionality.



1018 L. Sauermann and S. Schwarz

2.1 File Data Sources

There exist many popular, standardized file formats, that contain valuable struc-
tured data for the semantic web. Usually there also exist tools, which extract
the structured information and convert it into RDF conforming to some popular
RDF schema(s). Examples of some interesting file formats are:

– iCalendar [6] is a popular text format for calendars and consequently used
by the MacOs calendar and popular open source calendaring tools. It is
an exchange format between calendar applications, and converters for RDF
exist as a result of the RDF Calendar Workspace2.

– JPEG Images are the default file format used by digital cameras and are
also popular on the WWW. The format allows embedded meta-data in the
EXIF format [3]. There exist several tools [1] to extract EXIF from image
files and already represent the result as RDF according to a RDF-Schema
[10].

– HTML files contain meta-information in the head of the document, struc-
tured meta-data about author, keywords, etc.

We concentrate on files that have characteristics of documents, not large storage
files like relational database files or excel sheets.

2.2 Application Data Sources

These are systems that hold structured data in a known format and are accessible
from outside to extract the data. Some are in popular use and can be easily
integrated into the RDF.

– Relational Databases that implement the SQL standard are a typical ex-
ample. For these, bindings in all common programming languages exist and
different implementations offer the same behavior. Many web applications
use MySQL to store their information, offering a vast pool of information
that can be transformed. D2RQ [5] by Chris Bizer, Andy Seaborne and
Richard Cyganiak is a generic tool that represents relational data as RDF
graph, by transforming RDF queries into SQL statements and then convert-
ing the query result to RDF. We used this tool as an example of how to
write adapters, our results are written below in the evaluation section.

– IMAP email servers are a common way to store emails and access them using
different email clients. The protocol is defined as RFC and many existing
APIs allow access to the servers. Emails are an important factor in today’s
knowledge work.

– Microsoft Outlook and the corresponding Exchange Server are a common
collaboration tool in business environments. The interfaces to the Outlook
client are well defined and many applications integrate with Outlook. An
RDF adapter for Outlook was already described in [13] and will serve as an
example.

2 http://www.w3.org/2002/12/cal/



Gnowsis Adapter Framework 1019

For these and other application data sources, generic adapters would be useful
to access them through RDF. The cost of implementing an adapter is justified
by the possible reuse in many scenarios.

2.3 RDF Repositories and Web-Services

Finally, existing RDF data sources published through proprietary or web in-
terfaces are very interesting, as they already implement the RDF framework.
Typical representations are Sesame [4], or kowari3. Integration of these has al-
ready been discussed in [9] but has to be reviewed again in the current situation
of the upcoming SPARQL protocol and the integration with other data sources.

3 Gnowsis Adapter Types

Definition 1. We define adapters as a software tool that can, on request, ex-
tract data from existing structured data sources and represent them as RDF.

The principle of adapters is well known in software architecture, as a design
pattern described in [8] and as a data extraction component in many applications
areas, ie search engines. To access data sources, we can differ between three
basic approaches, each suiting a certain purpose and having advantages and
drawbacks. We identified the following approaches to build an adapter:

3.1 Graph and Query Adapters

An adapter that implements the interface of an RDF graph or a sophisticated
query language like RDQL, SPARQL or TRIPLE. Typically, these interfaces
are based on querying the graph with a method that can be described with a
find (Subject Predicate Object) interface. The adapter has to answer to queries,
each query consists of a pattern matching the graph. The output of such an
adapter would be a list of statements that match the query. Both the SAIL API
of Sesame and the Jena Graph API offer a comparable architecture to a graph
adapter.

3.2 Concise Bounded Description (CBD) Adapters

This adapter can return a small subgraph that describes exactly one resource in
detail. The exact definition of the result is given as part of the URIQA specifica-
tion. There, a Concise Bounded Description (CBD)[15] is the basis for commu-
nication to web services. The interface such an adapter implements would be:
get the CBD of resource with URI X. The source on which it works could be any
application data source or the files stored on a web server. CBD adapters do not
depend on a complicated query framework neither can they answer any other re-
quest, but they serve as bootstrapping interfaces to quickly retrieve information
about a single resource.
3 http://www.kowari.org/



1020 L. Sauermann and S. Schwarz

3.3 File Extractors

Finally, extraction of meta-data stored in files requires special handling. Typ-
ically, a file extractor is a tool that reads files, parses them and returns some
meta-data that was extracted from the data stream. An example would be an
EXIF extractor that reads JPEG files and returns an RDF description of the
metadata. A typical use case for a file extractors would be a search engine that
builds and index over the metadata of files, another example is a Semantic Web
browser that can show the content of a file together with the metadata. These us-
age scenarios require that file extractors have to be lightweight, easy to program
and have a fast execution time.

For above approaches we have to discuss the benefits and drawbacks, you
will find these below in the evaluation section.

4 How to Build Gnowsis Adapters

Writing an adapter requires a series of important tasks. Aiming at a complete
methodology we successively collected information from our own experience and
by observing the RDF-Calendar working group of the W3C. The overall task of
building an adapter works according to the following main top-level tasks:

1. Analyze the data source
2. Choose an appropriate RDF representation
3. Choose an appropriate adapter type
4. Implement the adapter

Finally, different adapters can be integrated in a middleware architecture [9]
for RDF repositories, so some additional configuration and deployment tasks
have to be done. We implemented a specialized architecture for the integration
of desktop data sources. All the above mentioned tasks will now be explained in
detail.

4.1 Analyzing the Data Source

First, as a preparation, the data source in question has to be analyzed. You
have to find some test data for development of an adapter. A documentation of
the file format is needed or a documentation of the API how to access the data
source, if it is an IMAP server or a database. Normally, existing tools can be
examined that already implement the extraction mechanism and, sometimes, a
tool exists that already returns the structured data as RDF.

– Formal Description of the data source. For IMAP this would be the RFC, for
Microsoft Outlook it is the Programmer Reference, for iCal it is the RFC.

– Example Source Data. Valid data that has been generated by common ap-
plications.

– Search for an existing implementation to extract the information from the
data source, preferably one that returns RDF.



Gnowsis Adapter Framework 1021

4.2 Formal RDF Representation

If two adapters extract the same information but return different RDF represen-
tations, or use different identification schemes for resources, the usability suffers.

For most data sources, no formal representation of the data in RDF exists. In
2004 we did a survey on www.schemaweb.info and found only one public data
format for representing Emails using RDF-Schema, and it was not in popular
use. So, first is the search for an existing RDF-Schema that can represent the
data. When an RDF-Schema formalization of the data exists, it should be used.
If two exist, take the more popular scheme, we recommend the comparison of
search results on google (www.googlefight.com), using the namespace identifier
of the vocabulary as a search term. From our experience, it is always better to
extend existing schemas to represent additional statements, than to build a new
vocabulary from scratch. The FOAF project is a good example how a simple
vocabulary can be extended for special needs.

Then, a solution for the identification of resources has to be found. Ideally,
the data source already uses URIs to identify resources or a specification exists
that explains how to identify resources. For our IMAP adapter the RFC [12]
gives such a specification. For relational databases, D2RQ defines a way how
to use primary keys to create meaningful URIs. Additionally, you have to re-
gard scheme specific requirements, e.g., for the popular FOAF vocabulary, it is
best practice to identify human persons by using the email address as inverse
functional property. The resulting data should be compatible to already existing
RDF representations, so common practice is as valuable as the formal definitions.

When the formal representation in RDF-Schema or OWL is found and the
approach to identification is known, test data in RDF representation has to be
authored. Again, using examples that are in public use will help standardization.

4.3 Adapter Architecture Decision

Based on the nature of the data source, the intended usage scenario and other
facts like programming experience or the existing software architecture, an ar-
chitecture for the implementation can be chosen.

In the web we find a vast scenery of existing adapters, beginning at command
line tools written in scripting languages that take input on stdin and return
output on stdout to servers that specify their own protocols. We hope that above
classification into three adapter types helps picking a suitable implementation
path and making adapters reusable.

In table 1 we give an overview of architectures and facts that influence the
decision.

4.4 Implementation of an Adapter

Each adapter type requires a different approach to the implementation. While
graph adapters can benefit by integration into an existing RDF framework, a file
extractor can be implemented only returning an RDF text serialization. During



1022 L. Sauermann and S. Schwarz

Table 1. A comparison of the different adapter types

graph adapter CBD adapter file extractor
usage RDQL, find(spo) getCBD(uri) getGraph(file)
data sources application application, file metadata from files
implementation based on existing API

(Jena, SPARQL)
independent independent

implementation cost high low low
full RDQL support yes no no
CBD support yes yes yes

implementation we recommend to continually test against the data sources and
an example RDF file. Testing against sample data is especially helpful when
working in a distributed team or when the implementation is delegated to un-
trained personnel.

Graph Adapters. The gnowsis framework offers an abstract implementation
of graph adapters. The concrete adapter class is then a subclass implementing
the skeleton. Three abstract classes have to be implemented, the adapter itself,
a set of resource wrappers and a set of property wrappers. For each resource
type in the data source, a wrapping class is needed that represents the resource
(and should buffer the source object). For each property, a property wrapper has
to be implemented, with the functionality to generate triples. At this point we
need the RDF-Schema or OWL formalization of the source’s data format. This
ontology is mapped to the wrapping Java classes.

The exact functionality of the graph adapters is described in [13,2], together
with more instructions on the implementation details, the existing adapters serve
can serve as examples. Our approach to wrapping data sources using a mapping
file from an ontology to java implementations is similar to the approach by Bizer
et al [5].

CBD Adapters. The main function of a CBD adapter is to return a subgraph
around a named resource; a call to such an adapter will usually contain the URI
of the resource and some parameters. The exact parameters are defined in [16],
the gnowsis system only supports a subset of them, more information can be
found in the documentation. The results returned by a CBD adapter in gnowsis
are Jena Models, generated and filled by the adapter. In the result is the resource
of the request together with the statements describing the resource.

The implementation is simpler compared to a graph adapter, it consists of
parsing the URL, deciding how to generate the concise bounded description,
generating it and returning it. It does not involve dependencies to other parts
of gnowsis nor does the implementation require a deeper understanding of the
framework. An example for a simple CBD adapter can be found in the IMAP
adapter implemented by Shen Jianping (it is part of the gnowsis distribution).

When adapting the data stored inside a third party application data source
like the Mozilla Email client Thunderbird, there is another possibility to imple-



Gnowsis Adapter Framework 1023

ment a CBD adapter. The adapter can be embedded into the application itself,
generating the RDF representation in the serialized form (RDF/XML or N3) and
returning it through an inter-process-communication interface like XML/RPC or
activeX. The rather simple CBD interface and the URIQA protocol are easier to
implement compared to a full RDF query language. We created such an adapter
for Mozilla Thunderbird, it allows the access to data stored inside Thunderbird’s
address book through a CBD interface. The adapter was implemented mainly
in Javascript as a Thunderbird plugin and is contacted by gnowsis.

File Extractors. Similiar to CBD adapters, a file extractor returns the meta-
data of a single file as RDF. At the moment, we use an adapted CBD interface
for file extractors: the call contains the file in question and the URI with which
the file is identified. The extractor then uses the passed URI to generate the
RDF representation of the file’s meta-data.

We implemented an adapter that extracts the ID3 tags from MP3 files,
they contain information about title, album, artist, ... . Implementation of such
adapters is straightforward and we do not need to describe the details here. The
interesting question is, how to reuse existing file extractors implementations.
For example, the iCalendar converters fromIcal.py and ical2rdf.pl created
by Dan Connolly, Libby Miller, and Tim Berners-Lee provide simple and effective
means to convert text files to RDF. They can be called from other applications
as they take their input from stdin and return the RDF serialization on stdout.
Many such converters and extractors exist for different file types, and as they
implement similar interfaces, can be integrated to frameworks such as gnowsis.
We hope that the interfaces defined by gnowsis are an aid for others.

4.5 Usage of Adapters

Typical usage of an adapter are requests for concise bounded descriptions
(CBDs) or find(subject, predicate, object) calls. More complex query formats
can also be implemented in adapters, but this would raise implementation cost
and complex queries can be fractionated into several find calls, as it is done in
the actual Jena implementation.

Jena (and other popular RDF APIs) require a find(spo) implementation. In
complex queries (RDQL, SPARQL) including graph matching, the approach to
query execution by the adapter could:

– parse the whole query in its native form (RDQL) and execute it. The adapter
therefore has to implement a query parser and an execution engine.

– only implement the find(spo) interface. The query parsing is done by an-
other framework (for example Jena) and fractionated into several find(spo)
calls. The result of the calls are aggregated by Jena. This works satisfyingly
for most cases, if the client knows the structure of the graph and asks only
find(spo) questions that will return an answer. In any case, a query reorder-
ing helps the execution engine. We implemented a basic query reordering
algorithm in Gnowsis, extending the standard RDQL query engine of Jena.



1024 L. Sauermann and S. Schwarz

– buffer all graph information in an RDF Repository. The framework has to
crawl all adapters and store the crawled graph into one big database. We
recommend using a Quad-Store or named graph store for this and chose the
context id (the fourth resource in the quad or the name of the graph) the
same as the CBD URI. Then, updates are on CBD identifier level.

4.6 Integration of Heterogenous Data Sources

Faced with several data sources, they have to be integrated to a hub architecture.
[9]. In the gnowsis architecture we facilitated a registration of adapters and then
a use of these adapters based on the registration information. Configuration of
an adapter includes basic information about the implementation class (a Java
class implementing an adapter type), human readable data source identifier, an
ontology of the adapter and URI patterns that describe what URIs can be found
inside the graph of the adapter. This configuration is, of course, stored in an RDF
graph.

For crawling, each adapter has to define root URIs, one ore more URIs of a
resource that is queried first from the adapter, the resulting resources of such
querying (either by find(spo) or by CBD) can then be crawled further. The
concept of root URIs can also be employed in user interfaces: the information
content of the adapter can be explored starting at the root URI.

5 Benefits of the Framework

Reusable adapters help to avoid reinventing the wheel every time some RDF data
is needed. The obvious benefit of using standardized adapters is the reduced
implementation effort in Semantic Web projects. The time to create and test
custom implementations is higher compared to the time needed to integrate
an existing adapter. If the existing adapter does not comply to performance
requirements or functionality, it can be extended or used as a prototype.

The second, from our perspective far more important benefit, is the standard-
ization process that happens when the data is transformed to RDF. If two dis-
tinct applications use different implementations to access the same data source,
the two resulting RDF graphs may be different. We observed two main problems
in data transformation, the used ontology and the resulting URIs.

The ontology problem can be illustrated by looking at the history of the
W3C RDF-Calendar working group. A vocabulary to represent iCalendar event
information in RDF was authored by Dan Connoly and others4. The vocabulary
was changed and different implementations either implemented the old or the
new version Another case would be, when the same data is transformed into two
different ontologies, e.g., information about people can be expressed either in
FOAF or in vCARD5.
4 http://www.w3.org/2002/12/cal/ical
5 http://www.w3.org/TR/vcard-rdf



Gnowsis Adapter Framework 1025

The URI problem is similar. By what URIs should resources be identified? We
request that the same resource should be identified by the same URI. However,
even for a simple resource like a local file this is not straightforward. For instance,
Mozilla and Internet Explorer use different URIs for the same local files when
browsing.

Both problems can be avoided by always using the same adapter. Although
automatic matching of ontologies is possible, it could be avoided when using the
same extraction algorithm and ontology in the first place.

5.1 Deployment and Use of Adapters

The resulting adapters can be used in concrete applications or embedded in
the gnowsis Semantic Desktop framework [14]. In the embedded scenario, the
adapter will be packaged as gnowsis service in form of a WAR file (the standard
servlet container format, extended by gnowsis). The WAR file is included into an
installed gnowsis system and then configured using the options menu of gnowsis,
resulting in the integration of the data source into the data sources that will be
queried by gnowsis on browsing or searching features. The exact way of deploying
an adapter and using it is described in the according tutorials on the project
website [2].

Adapters can also be used independent of gnowsis, in any java application.
For this, the gnowsis adapter framework has to be included as a dependency
together with the complete Jena dependencies. To start and use an adapter,
an RDF graph containing the configuration information for the adapter has
to be passed during instantiation. Again, details on this can be found on the
website. Altogether, using and deploying adapters inside and outside gnowsis is
comparable (on the effort level) to other Semantic Web frameworks.

6 Evaluation

6.1 Implementation Cost

The task of implementing an IMAP adapter was delegated to one student. This
student was an average skilled developer, who was new to gnowsis and RDF.
He had to read and test the standard IMAP protocol, as well as, to read about
and get into the gnowsis framework. During his work the student had to write
down the amount of time needed for each subtask (reading, coding, testing,
etc.). Understanding and implementing for the gnowsis framework, as well as,
familiarizing with the adapter architecture took him about six hours. Getting
around with the IMAP protocol was already done in about three hours.

The student had to realize two types of adapters: He started with implement-
ing a graph based adapter. It took him 24 working hours of implementation plus
16 working hours of debugging. As a second task, a CBD based adapter has to
be implemented, too. In contrast to the graph adapter, it took him only about
8 hours to implement the CBD adapter, debugging included.



1026 L. Sauermann and S. Schwarz

Table 2. A comparison of the implementation cost for different adapter types

implementation cost in hours graph adapter CBD adapter
familiarize with adapter architecture 2 2
familiarize with gnowsis framework 4 –
reading and testing native data interface 3 3
implementation 24 7
debugging 16 1
deploy adapter 1 1

sum 50 14

The CBD adapter was not only easier to implement, but also easier to test
(particularly less debugging time): A CBD of some URI can be tested with-
out any RDF API or framework running. Besides, the CBD adapter can be
implemented in any language and the RDF/XML representation of the CBD
can be created by simple text concatenation. This was exactly the case for the
Mozilla address book plugin: an installable extension (XPI-file) integrates some
corresponding Java Script code into the native application (Mozilla Firefox) and
answers CBD queries via simple XML-RPC calls.

If existing graph implementations can be reused, the cost of developing a
wrapping gnowsis adapter is minimal. On 23th of April 2005, Richard Cyganiak
created a wrapper for the D2RQ project [5] in about six hours of programming
time. The existing D2RQ project is functional and tested, a stable basis for a
gnowsis adapter. It was wrapped in a Java project, and the needed glue code
has been written, including the formal RDF description of the adapter and a
graphical component to configure the adapter.

6.2 Performance of the Adapters

As displayed in table 1 a graph adapter provides full query support (e.g. RDQL),
because all triples in the graph are accessible and can be searched very efficiently.
In contrast, the CBD adapter provides “jigsaw pieces” around given URIs. Using
and combining these, some RDQL queries can be executed, too (searching for
subjects is not possible without crawling).

For such RDQL queries the retrieval and combining of the relevant CBDs
costs, of course, more time than directly accessing a graph adapter. On the other
hand, if (all) information about a resource shall be retrieved, the CBD provides
exactly what is needed, and therefore is as efficient as the graph adapter.

As an example we queried metadata about appointments stored in Microsoft
Outlook in form of different queries: (1) the timestamp of one specific appoint-
ment, then (2) all properties of that appointment, after that (3) the timestamps
of 1000 appointments, and finally (4) all properties of 1000 appointments. All
four queries have been tested on both the graph adapter and the CBD adapter.
Table 3 shows, that the graph adapter is, of course, faster on the retrieval of a
single property, whereas the CBD adapter needs even less time for the retrieval
of all properties of a resource.



Gnowsis Adapter Framework 1027

Table 3. Comparison of the runtimes of queries performed by the graph adapter and
by the CBD adapter

runtime in milli seconds graph adapter CBD adapter
one appointment, one property 20-30 20-30
one appointment, all properties 20-30 20-30
1000 appointments, one property 16924 26378
1000 appointments, all properties 30644 26378

7 Conclusions and Future Plans

The gnowsis adapter framework is published as an open source project and has
been used already by both interested individuals and research institutions. Using
the presented adapters, it is possible to connect to a variety of data sources and
crawl vast RDF graphs. By extracting real-life data sources, gnowsis adapters
eventually allow working on big, real RDF data instead of small, irrelevant sam-
ple graphs.

In consequence of the latest developments in the Data Access Working Group
of the W3C, and the resulting SPARQL framework, we will concentrate on taking
the gnowsis adapter framework in the suggested direction: Each adapter should
be represented as a named graph in a graph-set. A single adapter, as well as,
the graphset should be published using the SPARQL query language and the
according protocol. Then, contacting the framework and relying on this stable
protocol, applications can be implemented without any deeper knowledge about
adapters or the framework as such.

During the upcoming NEPOMUK EU project (lead by the DFKI) we will
take our experience with gnowsis and formulate generic interfaces for adapters
that could be used by the major RDF frameworks (Aduna Metadata Server,
Kowari, Jena, etc.). For this, we are already in discussion with other developers
of Jena and Aduna.

References

1. Exif2RDF by Masahide Kanzaki, http://www.kanzaki.com/test/exif2rdf JpegRDF
by Norman Walsh http://nwalsh.com/java/jpegrdf/jpegrdf.html.

2. the gnowsis semantic desktop project website http://www.gnowsis.org.
3. Digital still camera image file format standard (exchangeable image file format for

digital still cameras: Exif) version 2.1. Technical report, Japan Electronic Industry
Development Association (JEIDA), June 1998.

4. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying rdf and rdf schema. In Proc. of the Interna-
tional Semantic Web Conference 2002, 2002.

5. A. Seaborne C. Bizer. D2rq treating non-rdf databases as virtual rdf graphs. In
Proceedings of the 3rd International Semantic Web Conference (ISWC2004), 2004.

6. F. Dawson and D. Stenerson. Rfc 2445: Internet calendaring and scheduling core
object specification (icalendar), November 1998.



1028 L. Sauermann and S. Schwarz

7. Andy Seaborne (edts) Eric Prud’hommeaux. Sparql query language for rdf. W3c
working draft, W3C, 2005. http://www.w3.org/TR/rdf-sparql-query/.

8. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, 1995.

9. A. Harth. Seco: mediation services for semantic web data. Intelligent Systems,
IEEE, Volume 19(Issue 3):66 – 71, May-June 2004.

10. Masahide Kanzaki. Exif vocabulary workspace - rdf schema. Technical report,
RDF Interest Group, 2004.

11. Brian McBride. Jena: Implementing the rdf model and syntax specification. In
Proc. of the Semantic Web Workshop WWW2001, 2001.

12. C. Newman. Rfc 2192: Imap url scheme, September 1997.
13. Leo Sauermann. The gnowsis-using semantic web technologies to build a semantic

desktop. Diploma thesis, Technical University of Vienna, 2003.
14. Leo Sauermann and Sven Schwarz. Introducing the gnowsis semantic desktop. In

Proceedings of the International Semantic Web Conference 2004, 2004.
15. Patrick Stickler. Cbd - concise bounded description. Technical report, NOKIA,

2004. http://sw.nokia.com/uriqa/CBD.html.
16. Patrick Stickler. The uri query agent model - a semantic web enabler. Technical

report, NOKIA, 2004. http://sw.nokia.com/uriqa/URIQA.html.



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 1029 – 1040, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Do Not Use This Gear with a Switching Lever!  
Automotive Industry Experience with Semantic Guides 

Hans-Peter Schnurr and Jürgen Angele 

ontoprise GmbH, Amalienbadstr. 36, 76227 Karlsruhe, Germany 
{schnurr, angele}@ontoprise.de  

http://www.ontoprise.de 

Abstract. Besides the reduction of time to market, there may be observed an-
other trend in the automotive industry: built-to-order. Built-to-order reduces the 
mass production of cars to a limited-lot-production. Emphasis for optimization 
issues moves then from the production step to earlier steps as the collaboration 
of suppliers and manufacturer in development and delivering. Thus knowledge 
has to be shared between different organizations and departments in early de-
velopment processes. In this paper we describe a project in the automotive in-
dustry where ontologies have two main purposes: (i) representing and sharing 
knowledge to optimize business processes for the testing of cars and (ii) inte-
gration of life data into this optimization process. A test car configuration assis-
tant (semantic guide) is built on top of an inference engine equipped with an on-
tology containing information about parts and configuration rules. The ontology 
is attached to the legacy systems of the manufacturer and thus accesses and in-
tegrates up-to-date information. This semantic guide accelerates the configura-
tion of test cars and thus reduces time to market. 

1   Introduction 

Having a look at the shares of vehicle sales in US from 1970 – 2001 (see figure 1) we 
observe that the big three automobile vendors (Chrysler, Ford, General Motors) con-
siderably lost market shares in that time period. One of the reasons was that before the 
early nineties the poor quality of their cars compared to the competitor’s cars has been 
responsible for this loss. Then the big three started a quality offensive which resulted 
in a slight market gain until 1994. But after 1994 the big three again lost market 
shares. The reason for the second loss which lasts until today is the slow innovation in 
automotive industry in US. The competitors in Asia and Europe have been able to 
strongly reduce the time for developing new cars. As a consequence time-to-market is 
one of the main optimization goals in the automotive industry.  

Another very important trend in consumer oriented production industry is built-to-
order. Built-to-order means that a product is immediately produced and delivered 
after the consumer configured the product according to his whishes. With this strategy 
Dell edged out a lot of its competitors on the PC market. In contrast to that in automo-
tive industry cars are first developed and then manufactured in large amounts with a 
high degree of optimization. Very often the results are huge amounts of cars which 
cannot be sold and thus produce costs for the investment and for storing them. Finally 
these cars must be sold with large sales discounts which again reduce the profit of the 
 



1030 H.-P. Schnurr and J. Angele 

 

Fig. 1. Market shares of vehicle sales (source: Wards automotive yearbook) 

manufacturer. Built-to-order avoids all these problems but has a severe change of 
logistic processes and business processes as consequence. Built-to-order reduces the 
mass production of cars to a limited-lot-production. Emphasis for optimization issues 
moves then from the production step to earlier steps as the collaboration between 
suppliers and manufacturers in development and delivering. Thus knowledge has to 
be shared between different organizations and departments. Therefore, the main em-
phasis has to be put on optimizing these business processes.  

In this paper we describe a project in the automotive industry where ontologies 
have two main purposes: (i) representing and sharing knowledge to optimize business 
processes for testing of cars and (ii) integration of life data into this optimization 
process.  

The scenario for this process was given by the business processes around the test-
ing of cars. Our client has a fleet of test cars. These test cars are continuously recon-
figured and then tested with this new configuration. Reconfiguration means changing 
the engine, changing the gear, changing the electric, i.e. changing all kinds of parts. 
For changing parts a lot of dependencies between these parts have to be taken into 
account. In many cases these dependencies are only known by certain human experts 
and thus require a lot of communication effort between different departments of the 
manufacturer, between the manufacturer and suppliers and between suppliers. Very 
often test cars have been configured which did not work or which hampered the meas-
urement of the desired parameters. So making such dependencies exploitable by com-
puters allows for reducing the error rate in configuring test cars with a lower 
communication effort. This in turn accelerates the development of new cars and en-
hances the collaboration between manufacturer and suppliers. Thus it reduces time-to-
market and supports the built-to-order process. 

2   Knowledge Representation in Automotive  

2.1   The Representation Language F-Logic  

Conceptual (or Ontology) modeling deals with the question of how to describe in a 
declarative and abstract way the domain information of an application, its relevant 
vocabulary, and how to constrain the use of the data, by understanding what can be 
drawn from it. Corresponding abstract representation languages support the under-



 Do Not Use This Gear with a Switching Lever 1031 

standing of such descriptions, their rapid development, their maintenance and their 
reuse.  

Representing our domain in our representation language F-logic [1] provides a lot 
of advantages:  

• F-Logic represents knowledge on a high level of abstraction in an explicit 
way. Thus knowledge is represented in well understandable independent 
knowledge chunks. It is not hidden in lower levels like SQL programs or 
even in computer programs. 

• The abstraction level of F-Logic supports the rapid development of such 
models and the maintenance. Both aspects are very important in this domain 
since new dependencies arise with every new car model. This allows also to 
directly communicate F-Logic models between the users (in our case the en-
gineers) and thus allow users to evaluate these models.  

• The model is immediately executable. This means that as soon as the devel-
opment of the model has started it could be automatically exploited by que-
ries. Thus it immediately gives a value-add for the user. This distinguishes F-
Logic also from other conceptual modeling languages like UML etc. which 
are not expressive enough to describe the entire system in detail to provide 
an executable prototype. 

• F-Logic provides a clear and well-documented semantics (well-founded se-
mantics cf. [2]). This means that the knowledge models, i.e. the ontologies 
are interpretable and understandable in an inambigious way independently 
from an explicit implementation of a reasoning system (which is often the 
case for other business rules systems). 

Basic concepts in the specific are represented as concepts in F-Logic and are arranged 
in an isa-hierarchy. Concepts may be described by attributes and relationships to other 
concepts. 

//schema 
component:: DEFAULT_ROOT_CONCEPT. 
component[  has_part=>>Component; 
    is_part=>> Component]. 
motor::component[ 
    maximum_power=>INTEGER]. 

// instances and relations 
tdi_engine: motor. 
valve2:   component. 
pump3:   component. 
tdi_engine[ has_part->>valve2; 
   has_part->>pump3;horsepower->340]. 

//rules 
FORALL X,Y Y[is_part->>X] <- X [has_part->>Y]. 

//queries 
FORALL X <- X:component. 

In this example we have defined a component as a basic concept (below the root  
concept). A component has a relationship has_part to another component and an 



1032 H.-P. Schnurr and J. Angele 

attribute maximum_horsepower. A motor is a special component. Then we create an  
instantiation of a component tdi_engine being a specific motor. Concrete instances 
valve2, pump3 are given for concept component. A rule is used to describe the inver-
sity of has_part and is_part. With a query we ask for all components in the model. 

OntoBroker, our reasoning system, provides means for efficient reasoning in F-
Logic [3]. OntoBroker performs a mixture of forward and backward chaining based 
on the dynamic filtering algorithm [4] to compute (the smallest possible) subset of the 
model for answering the query. During forward chaining not only single tuples of 
variable instantiations but sets of such tuples are processed. It is well-known that set-
oriented evaluation strategies are much more efficient than tuple oriented ones. The 
semantics for a set of F-Logic statements is then defined by a transformation process 
of F-Logic into normal logic (Horn logic with negation) and the well-founded seman-
tics [2] for the resulting set of facts and rules and axioms in normal logic. 

2.2   Answer Justification with F-Logic 

There are many reasons that users and applications need to understand the provenance 
of the information they get back from applications. One major motivating factor is 
trust. Trust and reuse of retrieval and deduction processes are facilitated when expla-
nations are available. Ultimately, if users and/or applications are expected to trust, use 
and reuse application results, potentially in combination with other information or 
other application results, users and agents may need to understand where the derived 
and source information came from at varying degrees of detail. This information, 
sometimes called provenance, may be viewed as meta information about information 
told. Provenance information may include source name, date and author(s) of last 
update, authoritativeness of the source, degree of belief, degree of completeness, etc. 

Our approach for answer justification is based on meta-inferencing. While process-
ing a query the inference engine is producing a log-file of the proof tree for any given 
answer. This proof tree itself is represented in F-Logic. It contains the instantiated 
rules that were successfully applied to derive an answer. This file acts as input for a 
second inference run, where answers are produced, that are explaining the proof tree 
in natural language and by that how the answer to the original query was inferred. 

Rules which are important for justifying results were explicitly named. For these 
rules certain explain rules are formulated which will be applied in the second, the 
meta-inference run. Frequently the named rules corresponded to important scientific 
laws (like load transmission), while less important rules were typically required for 
technical reasons, e.g. in order to translate between two alternative representations of 
the same content, but were not important for the human to understand the solution 
proposed by the system. 

3   Business Logic Enhancements 

The setting here is the configuration of test cars. These test cars are continuously 
reconfigured and then tested with this new configuration. Reconfiguration means that 
according to orders of the test engineers parts have to be replaced by other parts, parts 
have to be dismantled or have to be built into the test cars. These test cars are then 
used to test for specific characteristics and to gain series of measurements either in 



 Do Not Use This Gear with a Switching Lever 1033 

house or in test drives. For changing parts a lot of dependencies between these parts 
have to be taken into account. In many cases this knowledge about these dependen-
cies is available by experts only. These experts need a lot of time for communication 
and often enough test cars have been wrongly configured due to inefficiencies in 
communication. 

Besides describing the knowledge about a domain, ontologies serve as mediators 
between data sources [5]. By this way up-to-date data about parts etc. from the legacy 
systems of the manufacturer are available. This integration aspect is handled in more 
detail in the next section. 

This ontology will be used in two different ways. In a first step it will be integrated 
into a software assistant which helps the engineer in configuring test cars. The engi-
neer asks the assistant for a reconfiguration and the system answers with the depend-
encies which have to be taken into account and the contact information for experts in 
this case. Additionally to these answers the assistant will provide explanations which 
help the engineer to understand and validate the decision of the assistant. 

3.1   Ontology 

The base ontology very strongly relies on parts which are arranged in a part-of hierar-
chy and their properties. The instances, i.e. concrete values are most often gained 
from parts list in the legacy systems. 

 

Fig. 2. An excerpt of the automotive ontology in OntoStudioTM 



1034 H.-P. Schnurr and J. Angele 

In figure 2, an excerpt of that ontology is shown in a part-of view. It shows that 
e.g. a gear is part of a car and the switching lever is a part of the gear. For motor 
some attributes like maximum power, type etc. are shown. 

An ontology without rules describes only simple relationships between concepts 
like a part is a part of another part, a part is connected to another part etc. More com-
plex relationships have to be described by rules and constraints. It is this more com-
plex knowledge which has to be captured by the ontology to help configuring test 
cars. In the following such constraints are presented: 

 

Constraint 1: The maximum power of the motor must not 
exceed the one of the brakes. 
   Pmotor < | Pbrakes | 

Constraint 2: The filter installed in a catalyst must 
be able to filter the motor’s fuel. 

Constraint 3: If there is a multitronic, then there 
must not be a switching lever and a clutch. 

 

These constraints are then added to the ontology by using rules: 
 

Rule 1: The maximum power of the motor must not exceed 
the one of the brakes: Pmotor < | Pbrakes | 

FORALL X,Y,Z,Z1,Z2,Z3   
message(“The motor’s maximum power exceeds the one of 
the brakes.”)  
<-  
X:testcar[hasMotor->Y;hasBrake->Z] and Y[maximum_power-
>>Z1] AND Z[maximum_power->>Z2] AND abs(Z1,Z3) AND les-
sorequal(Z2,Z3). 

Rule 2: The filter installed in a catalyst must be able 
to filter the motor’s fuel. 

FORALL X,Y,Z1,Z2   
message(“The installed filter uses another fuel type 
than the motor”)  
<-  
X:motor[fuel_type->>Z1] AND Y:filter[fuel_type->>Z2] 
AND not equal(Z1,Z2). 

Rule 3: If there is a multitronic, then there must not 
be a switching lever and a clutch. 

FORALL X,Y  
message(“A multitronic can not be combined with a 
switching lever or a clutch.”)  
<-   
X:multitronic AND (Y:switching_lever OR Y:clutch). 

 



 Do Not Use This Gear with a Switching Lever 1035 

It is clear that these single constraints look very simple. In most cases it is not the 
complexity of such a single relationship which creates the complexity of the task but 
the overwhelming amount of such rules and constraints which all interfere with a lot 
of others and thus make the task to configure a correct test car so complex and error 
prone. On the other hand the simplicity of the single rules gives us the hope that they 
can be created and maintained by the engineers themselves [6]. With its rules F-Logic 
is a very powerful language able to express arbitrary complex relationships. Other 
languages like OWL are much more restrictive. E.g. OWL does not allow to express 
conditions where variables are chained over different conditions like in rule 1. 

3.2   Inferencing 

Inferences are facts, derived by means of logical conclusions. Inferencing engines like 
SiLRI [7] or OntoBroker [3] use a formal logic calculus to generate new facts out of 
input facts and rules. By that way our ontology with the rules is immediately executa-
ble after being loaded into OntoBroker. This means that queries could be posed to 
OntoBroker which in turn draws logical conclusions by evaluating the rules and pro-
duces answers to the queries.  

In an inferencing process the rules are applied to the given facts and extend the 
knowledge base by the newly created facts. Figure 3 visualizes this process. 

 

Fig. 3. The inferencing process  

3.3   Semantic Guide for Test Car Configuration 

On top of OntoBroker equipped with our ontology, a first prototype of a web-based 
user interface for the semantic guide has been developed (see fig. 4). In the left frame 
the user navigates within a part-of hierarchy of the components. This view may be 
switched to an is-a hierarchy. The attribute values of a selected component are edit-
able in a form in the middle frame. The current configuration with all its components 
is shown in the right frame. If a configuration contains inconsistent components 
which is checked by applying consistency rules, appropriate error and warning mes-
sages are immediately given and alternatives for a selected component are presented 
to the user which make the configuration consistent. In our screenshot a special motor 
is selected and presented together with its attribute values. 



1036 H.-P. Schnurr and J. Angele 

The current configuration contains two incompatible components: gear 0815 and a 
switching lever must not be used together. This is indicated by the error message at 
the bottom. If the system knows about options which make the configuration consis-
tent, these options are shown in the right window. A user can now exchange a com-
ponent by the suggested option. It is clear that configuration on this way is a mixed-
initiative approach between the computer and the user. This is in contrast to problem-
solving methods for configuration like [13]. 

 

Fig. 4. Prototype of the Semantic Guide  

4   Data Source Integration 

Besides serving as a common communication language and representing expert knowl-
edge in our scenario ontologies serve as an integration means of different legacy sys-
tems. The ontology is used to reinterpret given information sources in a common lan-
guage and thus to provide a common and single view to different data sources. 

In our scenario the components data and the configuration data is already handled 
widespread in different departments and in different information sources like CAD-, 
CAE- or CAT-systems or ERP/PPS-applications, databases etc. All these IT systems 
accompany the whole PLM-process [8], beginning with the product design and end-
ing with the product release. Our test configuration system, and thus our ontology 
system must access this live information to be up-to-date, to avoid inconsistent data 
and to avoid additional effort.  

An ontology could now catch up these different sources and integrate them in a 
common logical model. This goes much beyond building just connectors [9] between 
applications. The goal of integration is to consolidate distributed information intelli-
gently, free of redundancy and providing users and applications a simple access to 
information without considering the underlying data structure or system. 

In our case we already have such a commonly accepted logical model: the automo-
tive ontology. This ontology describes schema information and is not yet populated 
by instances. This means e.g. that there exists a concept motor with attributes name, 



 Do Not Use This Gear with a Switching Lever 1037 

cylinders, type etc. But there is no information about concrete motors like TDI V6, 
with 6 cylinders, fuel type super etc. available. This is achieved by attaching the on-
tology to one or more of the existing information sources. In the following we exem-
plify the mapping to a relational database. 

4.1   Database Schema Import 

The first step to connect an ontology to a database is importing the database schema 
and visualize it in our ontology management environment OntoStudio, the successor 
version of the ontology engineering environment OntoEdit [6], [10]. Beneath rela-
tional database schemas OntoStudio has also import filters for other schemas like 
RDF  [11], [12] or OWL. In our example we will show the attachment of a database 
table motor to our ontology. The database table is given in figure 5. It contains infor-
mation about motors like the fuel type, power etc. 

 

Fig. 5. Database table engine  

4.2   Database Mappings 

After having imported the database schema the ontology and the schema have to be 
connected appropriately.  OntoMap – a mapping tool included in OntoStudio – sup-
ports the fundamental mapping types (i) table-to-concept mapping, (ii) attribute-to-
attribute mapping and (iii) attribute-to-concept mapping. 

In fig. 6 a table-to-concept mapping connects the table engine to the concept motor 
and additionally an attribute-to-attribute mapping from id in the database to name in 
the ontology.  This means that every row in the database corresponds to one object in 
the ontology. OntoStudio automatically creates a connection to the database by the 
dbaccessuserid-connector (there are various connectors to information sources avail-
able). This built-in automatically creates a unique object ID. It is used in a rule which 
defines the access and the mapping to our ontology: 

FORALL X, NAME, MAXIMUM_POWER, VOLUME_FLOW, FUEL_TYPE 
X:motor[name->>NAME; maximum_power->>MAXIMUM_POWER; 
volume_flow->>VOLUME_FLOW; fuel_type->>FUEL_TYPE] 
<- 
dbaccessuserid("engine",  
X, F( "id", NAME, "absolute power", MAXIMUM_POWER, 
"volume_flow", VOLUME_FLOW, "fuel", FUEL_TYPE), 
"mssqlserver2000", 
"database_motor","server_motordata:1433"). 



1038 H.-P. Schnurr and J. Angele 

 

Fig. 6. Database Mapping 

Another important mapping type is the mapping of attributes to concepts. This has the 
consequence that the attribute value is used as unique ID for an ontology instance. 
E.g. mapping the ID of engine to the concept motor creates an object for every differ-
ent ID in the database.  By that way information about one and the same object which 
is spread in different rows and is always identified by the same ID can be linked to-
gether. This was the case in our project for part lists. 

4.3   Querying the Integration Ontology 

Mappings as described in section 4.2 can be defined to different RDBMS and addi-
tionally to web services at the same time. A query to the integration ontology is thus 
at real-time translated (via the mapping rules) into calls for appropriate access builtins 
which in turn access the data sources (in case of an RDBMS via SQL queries) and 
translate the answers back into F-Logic. Thus a user or an application on top of the 
ontology needs only this single ontology view and with it single vocabulary to re-
trieve all necessary information. In our scenario different information sources con-
tribute to the same ontology. E.g. information about electronic parts are stored in 
other databases than information about mechanical parts. Information about the 3-D 
geometry of objects is separated from their mechanical properties etc. 

4.4   How to Handle Inconsistencies 

It is clear that in practice the different information sources contain redundant ore even 
inconsistent information. For instance in our scenario car types have not been repre-
sented in a unique way. The assignment of properties to car types has been described 
with different keys for one and the same car type. E.g. Keys like A3/A4 have been 



 Do Not Use This Gear with a Switching Lever 1039 

used to describe common properties of two car types while unique properties have 
been assigned to the car type by a key A3. We again use rules and thus inferencing to 
solve such problems.  
 

FORALL X, Part, Type 
X:Car[carType->>Type; has_part->>Part] 
<- 
dbaccessuserid("car", X, F( "id", T, "part", Part), 

"mssqlserver2000", "car database","server:1433") and  
T is substring(T,0,indexof(”/”)). 

5   Conclusion 

In a real-life industrial project, viz. in the automotive industry at a car manufacturer, 
we have shown that ontologies may very well be used to enhance business processes 
and to integrate different information sources. In our case the ontology represents 
knowledge about (complex) relationships between different parts which may auto-
matically be exploited in configuring test cars. This reduces the communication effort 
between the mechanical engineers, and reduces the error rate in configuring test cars. 
For this task the ontology is attached to the legacy systems of the manufacturer and 
thus accesses up-to-date information about parts and configurations. We have shown 
that our ontology engineering environment OntoStudio supports not only the comfort-
able development of ontologies but with the integrated mapping tool OntoMap also an 
easy to learn tool to attach ontologies to different information sources. Our semantic 
guide is based on our ontology run-time environment and inference engine OntoBro-
ker which is based on F-Logic. This semantic guide  is a prototype which is currently 
evaluated at our customer. It has been shown that it accelerates the configuration of 
test cars at our customer and thus accelerates the development of new cars as well. 
This will reduce time-to-market in the end.  

References 

1. M. Kifer, G. Lausen, and J.Wu. Logical foundations of object-oriented and framebased 
languages. Journal of the ACM, 42; (1995) 741–843 

2. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic 
programs. Journal of the ACM, 38(3); July (1991) 620–650 

3. S. Decker, M. Erdmann, D. Fensel, and R. Studer. OntoBroker™: Ontology based access 
to distributed and semi-structured information. In R. Meersman et al., editor, Database 
Semantics: Semantic Issues in Multimedia Systems. Kluwer Academic, (1999) 

4. M. Kifer and E. Lozinskii. A framework for an efficient implementation of deductive da-
tabases. In Proceedings of the 6th Advanced Database Symposium, Tokyo, August (1986) 
109–116 

5. Andreas Maier, Mike Ullrich, and Hans-Peter Schnurr. Ontology-based Information Inte-
gration in the Automotive Industry. Technical report, ontoprise whitepaper series, (2003) 



1040 H.-P. Schnurr and J. Angele 

6. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit: Collabora-
tive ontology development for the semantic web. In Horrocks and Hendler [HH02], (2002) 
221-235. 

7. S. Decker, D. Brickley, J. Saarela und J. Angele: A Query and Inference Service for RDF. 
In Proceedings of the W3C Query Language Workshop (QL-98), Boston, MA, 3.-4. 
Dezember, (1998) 

8. T. Bernold. Product life: from design to disposal : life-cycle engineering: the key to risk 
management, safer products and industrial environmental strategies. In International Con-
ference on Industrial Risk Management, Elsevier,.Zürich, (1990) 

9. D. Kreuz. Formale Semantik von Konnektoren. PhD thesis, Technische Universitaet 
Hamburg (1999) 

10. Y. Sure, S. Staab, J. Angele. OntoEdit: Guiding Ontology Development by Methodology 
and Inferencing. In: R. Meersman, Z. Tari et al. (eds.). Proceedings of the Confederated 
International Conferences CoopIS, DOA and ODBASE 2002, October 28th - November 
1st, 2002, University of California, Irvine, USA, Springer, LNCS 2519 , (2002)1205-1222. 

11. Richard Fikes. Ressource Description Framework (RDF). http://www.stanford.edu/ 
class/cs222/slides2/RDF.PDF. (2002) 

12. Steffen Staab, Michael Erdmann, Alexander Mädche, Stefan Decker. An extensible ap-
proach for Modeling Ontologies in RDF(S). In Knowledge Media in Healthcare: Oppor-
tunities and Challenges. Rolf Grütter (ed.). Idea Group Publishing, Hershey USA / Lon-
don, UK. December (2001) 

13. Mittal, S., Frayman, F. Towards a generic model of configuration tasks. In Proceedings of 
IJCAI'89, (1989).  



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729 , pp. 1041 – 1049, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

The Concept Object Web 
for Knowledge Management 

James Starz, Brian Kettler, Peter Haglich, Jason Losco,  
Gary Edwards, and Mark Hoffman 

 ISX Corporation, 4301 N. Fairfax Dr. Suite 370, 
Arlington, VA 22203, USA 

{jstarz, bkettler, phaglich, jlosco, 
 gedwards, mhoffman}@isx.com 

 

Abstract. The Semantic Web is a difficult concept for typical end-users to 
comprehend.  There is a lack of widespread understanding on how the Semantic 
Web could be used in day-to-day applications.  While there are now practical 
applications that have appeared supporting back-end functions such as data in-
tegration, there is only a handful of Semantic Web applications that the average 
Google user would want to use on a regular basis.  The Concept Object Web1 is 
a prototype application for knowledge/intelligence management that aggregates 
data from text documents, XML files, and databases so that end-users can visu-
ally discover and learn about knowledge object (entities) without reading 
documents.  The application addresses limitations with current knowl-
edge/intelligence management tools giving end-users the power of the Semantic 
Web without the perceived burden and complexity of the Semantic Web. 

1   Introduction 

Since the creation of the Semantic Web there have been a large number of tools cre-
ated that have proven its theoretical use and provided the infrastructure for application 
development.  However, there have been very few Semantic Web applications that 
would be acceptable to most end users.  There are many reasons this is the case as the 
technology is still emerging, but the foremost reason is that is currently difficult to do.  
Only recently have the underlying infrastructure tools matured to be used in real ap-
plications.  Additionally, almost no end user will ever want to see OWL, URIs, on-
tologies, and the rest of the backbone of the Semantic Web. 

Our experience with building and integrating Semantic Web applications has 
shown us the difficulties of providing functionality to users that do not care that the 
application uses the Semantic Web.  The Concept Object Web, built on top of ISX’s 
Semantic Object Web™ [6], is a prototype application for knowledge/intelligence 
management that tries to address many of the challenges of making a user friendly 
and useful Semantic Web application.  The Semantic Object Web approach extends 
the Semantic Web by focusing on how users and software agents can more easily 
                                                           
1 Demo available at http://semanticobjectweb.isx.com 



1042 J. Starz et al. 

access and exploit information about specific entities in the world – people, places, 
events, etc. – that is semantically integrated from multiple distributed, heterogeneous 
sources.  The underlying framework is used by a number of deployed applications.  
The Concept Object Web is based on a hybrid of features from these deployed appli-
cations using the Semantic Web. 

This paper describes the basic functionality of the Concept Object Web and how it 
leverages the power of the Semantic Web.  We discuss a number of features of the 
system and describe our lessons learned from implementing them.  Of particular in-
terest is how users can use the Semantic Web to manage knowledge.  The system 
addresses issues with resolving co-references of entities across data sources.  It takes 
into account tradeoffs for generating indices of disparate data stores for fast retrieval 
and inference.  The paper includes Semantic Web tradeoffs on the process of gather-
ing semantically-grounded content, indexing information, performing searches, visu-
alizing results, discovering and browsing information, and tracking data pedigree. 

2   Motivation and Requirements 

Though there are many great tools for doing search and discovery, they often place a 
heavy burden on users to eventually read documents or view database records.  Users 
have become quite willing to accept these limitations because in most cases they are 
not required to read more than a few documents to find the information they are look-
ing for.  Google™ works very well for the majority of users because of this assump-
tion.  In many real applications, such as business intelligence, the assumption simply 
does not hold.  There do exist tools, such as Endeca®2 and Siderean™3, that do a very 
good job of providing typical users with the ability to perform guided searches.  These 
may provide a better way to navigate to a smaller set of documents that would be 
required for an end user to read.  In all of these cases, if the user wants to know all the 
details about an object in the document they have no choice but to read all of the 
documents, even if the documents themselves are mostly repetitive. 

The Concept Object Web approach is to gather information from documents using 
automated, and when possible human, extraction of entities and facts.  Additional 
information can come from other heterogonous sources such as databases.  This in-
formation can then be represented semantically and many extraction tools are now 
supporting this functionality out of the box.  In this setting, common URI identifiers 
will not automatically be given to entities, so similar object must be resolved, best 
they can, into a single view using existing lexical and graph matching algorithms.  At 
this point in the process all of the information has uniform identification, as well as 
mappings to ontologies.  This information can now be stored in a knowledge base.  
All of the information in the populated knowledge base can now be shown to the user 
for a specific knowledge object, an instance of an ontological class.  Instead of read-
ing 10 documents about a person, a user could view the aggregated information from 
these 10 documents in a single view.  The end user can essentially read all of the 

                                                           
2 http://www.endeca.com 
3 http://www.siderean.com 



 The Concept Object Web for Knowledge Management 1043 

documents about an entity without reading all the documents4.  The source material is 
retained for reference and duplicate information is rolled up.  This approach has obvi-
ous advantages over other search techniques, but end users are more accustomed to 
reading documents and simple searching techniques.  The next section describes how 
we bridge the gap to allow keyword search users to utilize a Semantic Web applica-
tion for knowledge/intelligence management. 

3   The Concept Object Web Application 

To motivate how the Concept Object Web is relevant to knowledge/intelligence man-
agement, we present a thread of a user that highlights the functionalities of the sys-
tem.  This example is followed by the technical approach involved highlighting the 
differences between other applications and the lessons learned during development. 

3.1   Example 

Consider an analyst who is researching some suspicious activities in the Ukraine.  
When the analyst starts using the Concept Object Web they are presented with a 
sparse page with a familiar keyword search box.  In this example the user makes a 
query for “political murders Ukraine”.   

The result of the keyword based search, shown in Figure 1, is a display of docu-
ment metadata relevant for that query and a series of entities that are mentioned in the 
document collection for the query results.  For the keyword query, 36 documents were 
returned.  Along with the summary of each document, the user may view the knowl-
edge objects, class instances, that appear in each document.  The knowledge objects 
from the individual documents in the result set form the knowledge object display at 
the bottom of the screen.  These entities were grouped into three customizable catego-
ries which correspond to classes in an ontology.  The knowledge object portion of the 
display shows the occurrence count of knowledge objects that appear in the result set.  
In this example, the Ukraine Parliament occurs 6 times in our initial result set.  This 
is somewhat interesting given our initial keyword key word query was “political mur-
ders Ukraine” and that parliament is one of the most frequent occurring organization 
in the set. 

The initial query can be refined by clicking on the occurrence count for parliament 
from the previous figure.  The query now consists of a keyword query and a semantic 
query that requires a certain entity, parliament in this case, to appear in the result set.  
The result of this refined query is a set of 6 documents that have document metadata 
and knowledge objects as before.  The user could read those six documents, but COW 
provides other capabilities for exploring the information space.  As was the case with 
the initial query, Leonid Kuchma is the most occurring Person in the document set.  It 
may be of interest to find out more about Kuchma before proceeding.  This can be 
done by clicking on the knowledge object link.  The figure below shows the informa-
tion known about Leonid Kuchma. 

                                                           
4  The work in this paper was based on this concept introduced by Joseph Rockmore of Cy-

ladian Technological Consulting. 



1044 J. Starz et al. 

 

Fig. 1. This screen shows results for a keyword query.  It includes document metadata, con-
strained to show three results for this picture, and knowledge objects for faceted search.  The 
user can refine the queries using these facets or navigate to the knowledge objects themselves.  
The column on the left shows functions for regular users at the top and for an administrator of 
the system at the bottom. 

This knowledge object aggregates all of the semantic information about this entity 
and represents it with pointers back to the source document as well as providing in-
formation about when and how each fact was obtained.  Most of the assertions com-
posing this object were created via natural language processing over the document 
corpus.  As these assertions are just Semantic Web statements, they may come from 
other sources such as markup tools or relational databases. 

At this point users can navigate among knowledge objects to discover new infor-
mation.  Additional visualizations are available supporting graph-oriented views.  The 
application also supports a number of common Semantic Web capabilities, such as 
graph-based searching and pattern detection agents.  For the example, the user simply 
navigates among related knowledge objects.  The user quickly finds that Kuchma is 
accused of being involved in multiple murders.  Both murders are accused by Mykola 
Melnychenko with the evidence being secret audio records.  With further investiga-
tion, the accuser is a relative with Kuchma’s rival Victor Yanukovych and associated 
with a Russian FSB agent.  An analyst will be able to determine that Kuchma is being 
framed for these two events 



 The Concept Object Web for Knowledge Management 1045 

 

Fig. 2. This knowledge object displays relations and attributes for the entity.  Each of the asser-
tions displayed has metadata, which can be hidden, describing the source of the information.  In 
this display, assertions have come from multiple sources and tools.  The assertions from differ-
ent sources may confirm or refute each other.  The viewers tab is used for other graphical repre-
sentation of the information.  The actions tab allows users to edit and create knowledge objects.  
The tools tab is used to launch agents to look for predetermined patterns. 

From our initial query concerning “political murders Ukraine” the Concept Object 
Web lets you refine the query with facets until you arrive at documents and knowl-
edge objects of interest.  The example discovery involves only a few hops.  In the 
case above the human is critical in the loop to correlate information about two re-
cordings, described textually.  This could not be determined solely by a Semantic 
Web reasoning system.  One of the key components of the Concept Object Web is to 
use semantics when possible, but fall back on the expertise of the user when neces-
sary.  Pointers are always available back to the source documents so users can read 
the original documents if they need to. 

3.2   Technical Approach 

This section describes the technical details of the system and how we dealt with the 
tradeoffs of Semantic Web capabilities in a knowledge/intelligent management do-
main. 

3.2.1   System Architecture 
The architecture leverages tools that generate semantic markup to feed text and se-
mantic indexing repositories.  ISX’s SPARKAL was used for the Semantic Web 
 



1046 J. Starz et al. 

Initial Semantic Search:
“political murder Ukraine”

Gongadze Murder

Velyashkevych Beating

accused of

Gongadze Murder

Velyashkevych Beating

accused of Mykola Melnychenkoaccuser

“Secret audio recording”

evidenceevidence

“Audio recording”

evidence

“Audio recording”

evidence

“Audio recording”

evidenceevidence

Leonid Kuchma

POINTS TO

Leonid Kuchma

POINTS TOPOINTS TO
Viktor Yanukovych

relatives

Alexander Litvenenko

associates

Viktor Yanukovych

relatives

Alexander Litvenenko

associates

Russian FSB

works for

Russian FSB

works for

 

Fig. 3. This shows a fictitious discovery in the system concerning the interactions of Leonid 
Kuchma and Mykola Melnychenko.  The keyword search leads to knowledge objects that help 
the human correlate information about the entities.  In the above figure, the textual evidence is 
critical to the human’s discovery.  These types of situations cannot easily be solved by using 
Semantic Web technologies in isolation. 

knowledge base portion and Apache’s Lucene [1] was used to incorporate keyword 
and faceted search.  As documents or databases are ingested, the Lucene index must 
be populated with the semantically-grounded information that results from inference 
in the knowledge base [4].  We chose arbitrary fields to populate for faceted search 
based on our ontologies, but you could conceivably take a more dynamic approach. 

3.2.2   Search and Discovery 
Over the years we have found that most users are simply not comfortable with Se-
mantic Web style queries.  This could probably be said about relational databases as 
well, but they are generally much more restrictive in terms of numbers of tables and 
fields versus ontology classes and properties.  For usability, it seemed the text box 
was a better alternative.  At that point, we could have let users search directly for 
knowledge objects rather than documents.  We feel the use of facets, useful in their 
own regard, provides a conceptual jumping off point to viewing knowledge objects.  
The use of the facets allows the users to see how the document metadata could be 
leveraged. 

3.2.3   Navigation and Visualization 
Showing knowledge objects creates a number of difficulties.  The most prominent of 
these is determining which information should be displayed to the end user.  The 
current Concept Object Web displays all recent assertions, but other strategies are 
valuable.  Of particular interest is aggregating data into higher abstraction levels al-
lowing the users the ability to drill down on the information they care about while still 



 The Concept Object Web for Knowledge Management 1047 

Semantic Portal
Framework

Semantic
Search Tool

Knowledge 
Object Browser

Text Index
Engine

(Lucene)

Text Index Knowledge Object
Repository

Semantic
Index

Engine

OWL
Ontologies

Semantic
Markup Tool

Text Entity
Extractor

Text
Documents

OWL
Markup

Reference
Data

 

Fig. 4. This is the high-level architecture for COW.  Text documents are indexed and processed 
by an entity extractor for semantic index.  The portal framework provides multiple strategies 
for searching and discovering information. 

seeing a comprehensive view of the information.  There are many commercial prod-
ucts and research efforts that can be leveraged for visualizing graphs and networks. 

The Concept Object Web primarily uses a simple web based display.  Our tech-
niques try to ensure objects have names.  The first name asserted for that object will 
be used as the visual handle for that label.  This consistency of names has been found 
to be extremely important.  Though many objects do not have easily determined 
names, such as events, these unnamed objects are not terribly useful in this type of 
application and are usually hidden from users.  To help guide navigation in the web-
based view we have chosen ontological information to show in tool tip form.  This 
has proven to help users learn information about objects within their results set with-
out necessarily refining their query.  For other navigation and visualization Inxight’s 
StarTree™ and Graphviz are used. 

3.2.4   Markup Generation 
Markup can come from databases, XML, and text.  There are increasing numbers of 
tools for managing relational databases as though they were semantically-grounded.  
Additionally, techniques are prevalent for turning XML into RDF/OWL.  Text is 
particularly difficult to obtain markup for.  Automated entity/fact extractors can pro-
vide a partial set of entities and facts, but it will miss and misclassify many entities 
and relations.  There are a number of research-oriented tools for allowing humans to 
author semantic markup.  These tools are good for advanced users who need to create 
small amounts of markup, but they can be difficult to use. 

The Concept Object Web can leverage all of these types of markup despite the fact 
that the automated extraction may be errorful.  In this application, our ontologies were 
developed to constrain the amount of inference that is performed.  The intention is to 
limit the propagation of faulty data through inference.  We also attempted to build our 



1048 J. Starz et al. 

application around classes of objects that the entity extractor is good at extracting.  
For the Concept Object Web, Lockheed Martin’s Aeroswarm [8] was used to perform 
the automated extraction.  To perform full exploitation of text markup, manual tools 
are required. 

The Concept Object Web application also utilizes ISX’s Semantic Markup Tool 
[7].  This tool leverages the use of the automatically generated markup as well as 
templates to aid the user.  These templates act as ontological views that quickly con-
strain the complexity of the ontology while providing users with the ability to quickly 
mark up documents.  Though manual creation of the markup requires resources, we 
have seen problems where organizations have decided the benefits were worth the 
cost of human effort. 

3.2.5   Co-reference Resolution 
One of the keys to integrating information across data sources is the ability to perform 
co-reference resolutions across the sources.  This is a very challenging problem that is 
not easy to address.  We have found that seeding our knowledge bases with reference 
data containing basic information that can be used during the co-reference process is 
helpful. 

In the Concept Object Web we seeded our system with names of popular figures 
for our data corpus.  This data set included entity aliases and some basic information 
that could be used to determine identical objects.  Our co-reference algorithm primar-
ily depended on entity name matching using syntactic and phonetic cues.  We used 
the assumption that most entities have unique names.  More sophisticated graph 
matching could have provided better resolution performance, but for our corpus the 
simplifying assumptions worked sufficiently.  Due to our use of automated markup 
generation, most entities being co-referenced had very few properties and relation-
ships making sophisticated algorithms ineffective. 

Co-reference resolution is an active area of research that cannot be covered here.  
Our experiences have shown us that generic algorithms for graph matching need to be 
supported with custom algorithms for entity types.  For instance, there may be com-
pletely different algorithms for co-referencing entities and people.  Syntactic similar-
ity algorithms may work well for co-referencing people, but will lead to many false 
positives in co-referencing dates.  We have found that each algorithm beyond name 
matching provides a diminishing return.  Semantic Web application developers should 
take into account the characteristics of the data set and the required correctness for 
resolving duplicate entities. 

4   Related Work 

Since there are too many tools supporting knowledge/intelligence management to 
mention in this space, I will only refer to those that are using the Semantic Web.  
Most Semantic Web applications or components could easily fit into the knowl-
edge/intelligence management framework described in the Concept Object Web.  In 
fact, it shares many similarities to components from EU-funded research projects, 
such as the Information Society Technologies program, and DARPA’s DAML project 



 The Concept Object Web for Knowledge Management 1049 

[3].  It also leverages popular tools such as Jena [9] and Sesame [2] that were devel-
oped under research programs. 

In terms of some popular Semantic Web knowledge management applications, 
there are a number of interesting applications that cover different portions of the 
space.  SWAD-Europe [11] has produced a number of interesting Semantic Web 
Portal applications.  They have similarities to our work, but we focus on the notion of 
viewing integrated knowledge objects, particularly from text data sources.  Haystack 
[10] is comparable but leans more towards allowing clients manage their own infor-
mation spaces.  In our opinion tools similar to Haystack are complementary to the 
Concept Object Web.  Semantic Search [5] does a nice job of describing integrating 
Semantic Web with regular search, but doesn’t discuss some of the details mentioned 
in our work.   

5   Conclusions 

Though the Semantic Web is still emerging it is now clear that some of the barriers 
are being broken down to support everyday application.  The Concept Object Web is 
an example of a new paradigm of knowledge/intelligence management tools that 
leverage the powers of the Semantic Web complementing the human to perform their 
knowledge management tasks.  In this application, we believe there is added value in 
using the semantics to help aggregate the information and present the integrated view 
to users. 

References 

1. Apache Lucene. http://lucene.apache.org. 
2. Broekstra, J., Kampman, A., and van Harmelen, F. Sesame: A Generic Architecture for 

Storing and Querying RDF.  Published at the International Semantic Web Conference 
2002, Sardinia, Italy. 

3. The DARPA Agent Markup Language, http://www.daml.org. 
4. Finin, T., Mayfield J., Fink, C., Joshi, A., and Cost R. Information Retrieval and the Se-

mantic Web. Proceedings of the 38th International Conference on System Sciences (2005). 
5. Guha, R., McCool, R., Miller, E., Semantic Search.  WWW2003, Budapest, Hungary. 
6. Kettler, B. et al. The Semantic Object Web:  An Object-Centric Approach to Knowledge 

Management and Exploitation on the Semantic Web.  ISX Corporation Whitepaper.  Pre-
sented as a poster at the 2nd International Semantic Web Conference (ISWC 2003).  
http://www.semanticobjectweb.isx.com. 

7. Kettler, B., Starz, J., Miller, W., Haglich, P. A Template-based Markup Tool for Semantic 
Web Content.  Submitted to the 4th International Semantic Web Conference (ISWC 2005).  

8. Lockheed Martin 2005.  Lockheed Martin AeroSWARM tool.  http://ubot.lockheedmartin. 
com/ubot/hotdaml/aeroswarm.html. 

9. McBride, B. Jena: Implementing the RDF Model and Syntax Specification. Semantic Web 
Workshop, WWW2001. 

10. Quan, D., Huynh D., and Karger, D. Haystack: A Platform for Authoring End User Se-
mantic Web Applications in ISWC 2003. 

11. SWAD-Europe, http://www.w3.org/2001/sw/Europe/. 



The Personal Publication Reader

Fabian Abel1, Robert Baumgartner2,3, Adrian Brooks3, Christian Enzi2,
Georg Gottlob2,3, Nicola Henze1, Marcus Herzog2,3, Matthias Kriesell4,

Wolfgang Nejdl1, and Kai Tomaschewski1

1 Research Center L3S & Information Systems Institute, University of Hannover
{abel, henze, nejdl, tomaschewski}@kbs.uni-hannover.de

2 DBAI, Institute of Information Systems, Vienna University of Technology
{baumgart, enzi, gottlob, herzog}@dbai.tuwien.ac.at

3 Lixto Software GmbH, Donau-City-Strasse 1/Gate 1, 1220 Vienna, Austria
{baumgartner, brooks, gottlob, herzog}@lixto.com

4 Inst. f. Math. (A), University of Hannover
kriesell@math.uni-hannover.de

Abstract. This application demonstrates how to provide personalized,
syndicated views on distributed web data using Semantic Web technolo-
gies. The application comprises four steps: The information gather-
ing step, in which information from distributed, heterogenous sources
is extracted and enriched with machine-readable semantics, the oper-
ation step for timely and up-to-date extractions, the reasoning step
in which rules reason about the created semantic descriptions and addi-
tional knowledge-bases like ontologies and user profile information, and
the user interface creation step in which the RDF-descriptions result-
ing from the reasoning step are interpreted and translated into an appro-
priate, personalized user interface. We have developed this application for
solving the following real-world problem: We provide personalized, syn-
dicated views on the publications of a large European research project
with more than twenty geographically distributed partners and embed
this information with contextual information on the project, its working
groups, information about the authors, related publications, etc.1

Keywords: web data extraction, web data syndication, personalized
views.

1 Introduction

In today’s information society, the World Wide Web plays a prominent role for
disseminating and retrieving information: lots of useful information can be found
in the web, from train departure tables to consultation hours, from scientific
data to online auctions, and so on. While this information is already available
for consumption by human users, we lack applications that can collect, evaluate,

1 This research has partially been supported by REWERSE - Reasoning on the Web
(www.rewerse.net), Network of Excellence, 6th European Framework Program.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 1050–1053, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



The Personal Publication Reader 1051

combine, and re-evaluate this information. Currently, users retrieve online con-
tent in separate steps, one step for each information request, and evaluate the
information chunks afterwards according to their needs: e.g. the user compares
the train arrival time with the starting time of the meeting he is requested to
participate in, etc. Another common scenario for researchers is that a user reads
some scientific publication, gets curious about the authors, other work of the au-
thors, on related work targeting on similar research questions, etc. Linking these
information chunks together is a task that can currently not be performed by
machines. In our application, we show how to solve this information integration
problem for the latter mentioned “researcher scenario”. We show, how to

1. extract information from distributed and inhomogeneous sites, and create
semantic descriptions of the extracted information chunks,

2. maintain the web data extraction to ensure up-to-date information,
3. reason about the created semantic descriptions and ontological knowledge,
4. and create syndicated, personalized views on web information.

The Personal Publication Reader (PPR) extends the idea of Semantic Portals
like e.g. SEAL [4] or others with the capability of extracting and syndicating
web data from various, distributed sites or portals which do not belong to the
ownership of the application itself.

2 Extraction and Annotation with Semantic Descriptions

In our application, the web pages from which we extract the information are
maintained by partners of the research project REWERSE, thus the sources
of the information are distributed and belong to different owners which pro-
vide their information in various ways and formats (HTML, Java-script, PHP-
generated pages, etc.). Moreover, in each list, authors, titles and other entities
are potentially characterized in a different way, and different order criteria are
enforced (e.g. by year or by name). Such a web presentation is well suited for
human consumption, but hardly usable for automatic processing. Nevertheless,
the web is the most valuable information resource in this scenario. In order to
access and understand these heterogeneous information sources one has to apply
web extraction techniques. The idea of our application is to “wrap” these hetero-
geneous sources into a formal representation based on Semantic Web standards.
In this way, each institution can still maintain their own publication list and at
the same way we can offer an integrated and personalized view on this data by
regularly extracting web data from all member sites.

This application is open in the sense that it can be extended in an easy
way, i.e. by connecting additional web sources. For instance, abstracts from
www.researchindex.com can be queried for each publication lacking this in-
formation and joined to each entry. Moreover, using text categorization tools
one can rate and classify the contents of the abstracts. Another possibility is to
extract organization and person data from the institution’s web pages to inform
the ontology to which class in the taxonomy an author belongs (such as full



1052 F. Abel et al.

professor). Web extraction and annotation in the PPR is performed by the Lixto
Suite. Web data extraction is a hot topic – for an extensive overview of methods
and tools refer to [3]. First, with the Lixto Visual Wrapper [1] for each type
of web site a so-called wrapper is created; the application designer visually and
semi-automatically defines the characteristics of publication elements on partic-
ular web sites based on characteristics of the particular HTML presentation and
some possible domain knowledge. After a wrapper has been generated it can be
applied to a given web site (e.g. publications of University of Munich) to gener-
ate an “XML companion” that contains the relevant information stored in XML
using (in this application context meaningful) XML tags.

3 Extraction Maintenance

In the next step, in the Lixto Transformation Server application designer visually
composes the information flow from web sources to an RDF presentation that
is handed over to the PPR once a week. Then the application designer defines a
schedule how often which web source is queried and how often the information
flow is executed. Additionally, deep web navigation macros possibly containing
logins, cookies and web forms as well as iteration over forms are created. As a
next step in the data flow, the data is harmonized to fit into a common structure,
and e.g. an attribute “origin” is added containing the institution’s name, and
author names are harmonized by being mapped to a list of names known by
the system. Finally, the XML data structure is mapped to a pre-defined RDF
schema structure. Once the wrappers are in place, the complete application runs
without further human interference, and takes care of publication updates. In
case future extractions fail the application designers will receive a notification.

4 Reasoning for Syndicated and Personalized Views on
Distributed Web Data

In addition to the extracted dynamic information, we maintain data about the
members of the research project from the member’s corner of the REWERSE
project web site. We have constructed an ontology for describing researchers
and their involvement in scientific projects like REWERSE, which extends the
known Semantic Web Research Community Ontology (http://ontobroker.
semanticweb.org/ontos/swrc.html) with some project-specific aspects.

Personalization rules reason about all this dynamic and static data in order
to create syndicated and personalized views. As an example, the following rule
(using the TRIPLE[5] syntax) determines all authors of a publication:

FORALL A, P authors(A, P) <- P[dc:creator -> A]@’http:..’:publications.

In this rule, @’http:..’:publications is the name of the model which
contains the RDF-descriptions of the extracted publication informations. Further
rules combine information on these authors from the researcher ontology with
the author information. E.g. the following rule determines the employer of a



The Personal Publication Reader 1053

project member, which might be a company, or a university, or, in general, some
instance of a subclass of an organization (see line three below: here, we query
for some subclass (direct or inferred) of the class “Organization” ):

FORALL A,I works_at(A, I) <- EXISTS A_id,X (name(A_id,A)

AND ont:A_id[ont:involvedIn -> ont:I]@’http:...#’:researcher

AND ont:X[rdfs:subClassOf -> ont:Organization]@rdfschema(’..’:researcher)

AND ont:I[rdf:type -> ont:X]@’http:...#’:researcher).

Disambiguation of results – here especially resource identification problems
caused by varying author names – is achieved by an additional name identifica-
tion step. For a user with specific interests, for example “interest in personalized
information systems”, information on respective research groups in the project,
on persons working in this field, on their publications, etc., is syndicated.

5 User Interface Provision

We run the PPR within our Personal Reader framework for designing, imple-
menting and maintaining personal Web Content Readers [2]. These personal
Web Content Readers allow a user to browse information (the Reader part),
and to access personal recommendations and contextual information on the cur-
rently regarded web resource (the Personal part). For the PPR, we instantiated
a personalization Web service in our Personal Reader framework which holds the
above mentioned rules. An appropriate visualization Web service for displaying
the results of the reasoning step (which are provided as RDF documents and
refer to an ontology of personalization functionality) has been implemented.

Availability of the Personal Publication Reader

The concept of the Personal Publication Reader and its functionality are sum-
marized in a video, and so are the web data extraction and maintenance tasks.
All demonstration videos and access to the application itself are available via
http://www.personal-reader.de/semwebchallenge/sw-challenge.html.

References

1. R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web Information Extraction
with Lixto. In Proc. of VLDB, 2001.

2. N. Henze and M. Kriesell. Personalization Functionality for the Semantic Web:
Architectural Outline and First Sample Implementation. In 1st Int. Workshop on
Engineering the Adaptive Web (EAW 2004), Eindhoven, The Netherlands, 2004.

3. S. Kuhlins and R. Tredwell. Toolkits for generating wrappers. In Net.ObjectDays,
2002.

4. A. Maedche, S. Staab, N. Stojanovice, and R.Studer. Semantic portal - the seal ap-
proach. In D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster, editors, Spinning
the Semantic Web, pages 317–359. MIT-Press, 2003.

5. M. Sintek and S. Decker. TRIPLE - an RDF Query, Inference, and Transformation
Language. In International Semantic Web Conference (ISWC), Sardinia, Italy, 2002.



DynamicView: Distribution, Evolution and
Visualization of Research Areas in Computer

Science

Zhiqiang Gao, Yuzhong Qu, Yuqing Zhai, and Jianming Deng

Department of Computer Science and Engineering, Southeast University, China
{zqgao, yzqu, yqzhai, jmdeng}@seu.edu.cn

Abstract. It is tedious and error-prone to query search engines manu-
ally in order to accumulate a large body of factual information. Search
engines retrieve and rank potentially relevant documents for human pe-
rusal, but do not extract facts, or fuse information from multiple docu-
ments. This paper introduces DynamicView, a Semantic Web application
for researchers to query, browse and visualize distribution and evolution
of research areas in computer science. Present and historical web pages
of top 20 universities in USA and China are analyzed, and research areas
of faculties in computer science are extracted automatically by segmen-
tation based algorithm. Different ontologies of ACM and MST classifica-
tion systems are combined by SKOS vocabularies, and the classification
of research areas is learned from the ACM Digital Library. Query results
including numbers of researchers and their locations are visualized in
SVG map and animation. Interestingly, great differences of hot topics do
exist between the two countries, and the number of researchers in certain
areas changed greatly from the year 2000 to 2005.

1 Introduction

The web is increasingly becoming the primary source of research areas to mod-
ern researchers. With millions of pages available from thousands of web sites,
finding the distribution and evolution of research areas in different countries
and regions is a problematic task. Imagine that a young Chinese researcher,
who has just received his PH. D degree in artificial intelligence, is planning
his future research. He may want to know how many people are doing relative
researches, such as machine learning, multi-agent system, knowledge representa-
tion, etc. He may also want to examine history and prognosticate tendency of
machine learning. Additionally, if he intends to be a visiting scholar in USA in
the near future, finding differences of hot topics between the two countries is
rather helpful. However, browsing web sites, extracting related information and
analyzing this information is too time consuming for individuals. Therefore, we
develop DynamicView to tackle this challenge.

In the following of the paper, we begin with the introduction of major com-
ponents of DynamicView in Section 2. In Section 3, we describe key services.
Related works are discussed briefly in Section 4. Lastly, conclusions and ongoing
works are summarized in Section 5.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 1054–1058, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



DynamicView: Distribution, Evolution and Visualization of Research Areas 1055

2 Major Components

Crawler. Hub pages (faculty lists) are found by human intervention, and the
Crawler searches and stores the homepage of each faculty by link analysis. Top
20 universities in USA are chosen mainly according to the ranking of US News 1,
but not the exactly same. Top 20 universities in China are selected in accordance
with the ranking of Ministry of Education of China 2, with a few universities
excluded whose web pages could not be accessed (May, 2005). Historical web
pages of top 20 universities in USA are downloaded from the Web Archive 3.

Extraction Engine. English pages are processed automatically, while Chinese
ones by hand due to its complexity. Extraction results of research areas, names
of researchers and universities are stored into relational databases. Web pages
of top 10 universities are browsed manually and 65 cue phrases indicating start
positions for information extraction are obtained, such as research areas, research
interests, etc. End positions may be character ’.’, html tag <p>, end of file,
or the position where the window size exceeds 300. Meanwhile, 1274 pattern
phrases used for KMP algorithm are obtained. Combining cue phrases and KMP
algorithm with segmentation of pages for each faculty, the average performance
of our algorithm reaches 68.00% recall and 73.11% precision.

Ontology Learner. The ACM digital library 4 is utilized to learn classification
of research areas. Each research area is input as a keyword, and top 60 papers
returned with primary and additional classifications are used as training sam-
ples. Three cases of classification distribution may occur. 1) If one peak exists,
the peak classification is the answer. 2) If more than one peak exist, and they
belong to the same super classification, the super classification is the answer. 3)
If more than one peak exists but they belong to different super classifications,
or there is no peak, the classification is specified by human interaction. For each
research area, the following relations are defined in SKOS (Simple Knowledge
Organisation System) 5 vocabularies: skos:prefLabelENG, skos:prefLableCHN,
skos:altLabelENG, skos:altLabelCHN, skos:narrowerACM, skos:narrowerMST,
skos:broaderACM and skos:broaderMST. ENG means the label is expressed in
English, and CHN in Chinese. ACM refers to the ACM Computing Classifica-
tion System (1998)6, with MST to classification and code of disciplines GB/T
13745/92 by Ministry of Science and Technology, China.

Query Processor. Users may query by country (USA or China), ontology
(ACM or MST), hot topics and history. Note, users have to install SVG Viewers
7 to see SVG (Scalable Vector Graphics)8 maps and animation.
1 http://www.usnews.com
2 http://www.cdgdc.edu.cn/zhxx/index.jsp
3 http://www. archive.org
4 http://portal.acm.org/dl.cfm
5 http://www.w3.org/TR/swbp-skos-core-guide/
6 http://www.acm.org/class/1998/ccs98.html
7 http://www.adobe.com/svg/viewer/install/main.html
8 http://www.w3.org/Graphics/SVG/



1056 Z. Gao et al.

3 Key Services

Distribution of researchers in different countries and areas based on
different ontologies. Given as an example, the number of researchers in ar-
tificial intelligence is shown in Fig.1, which are 327 (USA, ACM), 315 (USA,
MST), 125 (China, ACM) and 169 (China, MST), respectively.

Fig. 1. Distribution of researchers in artificial intelligence according to ACM (left) and
MST (right) ontologies in USA (top) and China (bottom)

Distribution of hot topics in different countries. Top 10 hot topics are
deduced from original research areas with synonym relations, as depicted in Fig.
2 (top). Grey color refers to USA and pink color China. Surprisingly, the 1st

Fig. 2. Distribution of researchers in top 10 hot topics (top) in USA (left) and China
(right), as well as evolution of hot topics (bottom) of operating system (left) and ma-
chine learning (right)



DynamicView: Distribution, Evolution and Visualization of Research Areas 1057

and 4th hot topics in two countries are the same: artificial intelligence and soft-
ware engineering. But the other 8 hot topics are totally different. It seems that
researchers in USA prefer theory and foundation, including machine learning,
computer architecture, programming languages, distributed systems , operating
systems, robotics, computer graphics and computer vision. By contrast, Chinese
researchers emphasize application, including data mining, databases, computer
networks , information security, data warehousing, pattern recognition, network
security and image processing.

Evolution of hot topics from the year 2000 to 2005. The number of
researchers in some research areas does not change significantly such as operating
systems. Meanwhile, The number of researchers in other areas such as machine
learning has increased nearly 2 times, as demonstrated in Fig. 2 (bottom).

4 Related Works

CS AKTive Space [1] provides a way to explore the UK computer science research
domain across multiple dimensions for multiple stakeholders, from funding agen-
cies to individual researchers. Flink system [2] extracts, aggregates and visualizes
online social networks from a number of information sources including web pages,
emails, publication archives and FOAF profiles. However, DynamicView faces
a much larger challenge, namely to extract and demonstrate research areas of
computer science in different countries, languages, ontologies and over time. To
the best of our knowledge there is no well-established approach for this task.

5 Conclusions and Ongoing Works

DynamicView is designed for researchers of computer science to visualize the
distribution and evolution of research areas in top 20 universities of USA and
China. Research areas are extracted automatically by segmentation based algo-
rithm with the performance of 68.00% recall and 73.11% precision. In order to
combine different ontologies of ACM and MST, SKOS vocabularies are extended.
Classifications of research areas are learned from the ACM Digital Library by
analyzing the peaks of classification distribution. Except for artificial intelli-
gence and software engineering, the other 8 hot topics in the two countries are
different. The number of researchers in some areas such as machine learning has
changed greatly in the past 6 years. In the near future, we will design a link
grammar based information extraction algorithm to detect new areas9.

Acknowledgments

This work is supported in part by National Key Basic Research and Development
Program of China under Grant 2003CB317004, the NSF of Jiangsu Province,
China, under Grant BK2003001, Hwa-Ying Culture and Education Foundation
as well as Ministry of Education of China under Grant 6809001001.
9 http://xobjects.seu.edu.cn/DynamicView/index.html



1058 Z. Gao et al.

References

1. Nigel R. Shadbolt, Nicholas Gibbins, Hugh Glaser, et al.: Walking Through CS AK-
Tive Space: A demonstration of an integrated Semantic Web Application. Journal
of Web Semantics, volume 1, issue 4. 2004

2. Peter Mika: Flink: Semantic Web Technology for the Extraction and Analysis of
Social Networks. Journal of Web Semantics, volume 3, issue 2. 2005



Oyster - Sharing and Re-using Ontologies in a
Peer-to-Peer Community

Raúl Palma1 and Peter Haase2

1 Ontology Engineering Group, Laboratorio de Inteligencia Artificial, Facultad de Informática,
Universidad Politécnica de Madrid, Spain

2 Institute AIFB, University of Karlsruhe, Germany

Abstract. This paper presents Oyster, a Peer-to-Peer system for exchanging on-
tology metadata among communities in the Semantic Web. We describe how Oys-
ter assists researchers in re-using existing ontologies, and how Oyster exploits
semantic web techniques in data representation, query formulation, query result
presentation to provide an online solution to share ontologies.

1 Introduction

Currently, ontology re-use is rather difficult, as it is hard to find and share ontologies
available among the community. This leads to the problem of having many isolated on-
tologies created by many different parties. Besides the costs of the duplicate efforts this
also hampers interoperability between ontology-based applications. Oyster1 is a Peer-
to-Peer application that exploits semantic web techniques in order to provide a solution
for exchanging and re-using ontologies. To achieve this, Oyster implements a proposal
for a metadata standard, so called Ontology Metadata Vocabulary (OMV)2 [4] which
is based on discussions and agreement in the EU IST thematic network of excellence
Knowledge Web3 as the way to describe ontologies. Exchanging ontology metadata is
an interesting use case for a Peer-to-Peer application on the Semantic Web applica-
tion for the following reasons: The information sources (ontologies) are geographically
distributed among the community, and developers are willing to share the information
about the ontologies they created provided they do not have to invest much work in do-
ing so, while at the same time they are able to mantain the ownership of their ontologies.
As a Peer-to-Peer system, Oyster further benefits from the following characteristics: no
need for a centralized server (thus avoiding a bottleneck for both computational per-
formance and information update), robustness against failure of any single component,
and scalability both in data volumes and the number of connected parties.

Finally, since ontologies can be represented in different languages (such as OWL[5],
DAML+OIL[1], RDF-S[2]), Oyster provides the possibility to exchange heterogeneous
information through the use of the metadata standard.

1 Oyster is freely available for download under http://oyster.ontoware.org/
2 The OMV ontology is available at http://ontoware.org/projects/omv
3 http://knowledgeweb.semanticweb.org/

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 1059–1062, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



1060 R. Palma and P. Haase

2 Oyster

Oyster provides an innovative solution for sharing and re-using knowledge (i.e. ontolo-
gies) which is a crucial step to enable Semantic Web.

The Oyster system has been implemented as an instance of the Swapster system ar-
chitecture4. In Oyster, ontologies are used extensively in order to provide its main func-
tions (importing data, formulating queries, routing queries and processing answers).

Fig. 1. Oyster screenshot

Creating and Importing Metadata: Oyster enables users to create metadata about on-
tologies manually, as well as to import ontology files and to automatically extract the
ontology metadata available, letting the user to fill in missing values. For the automatic
extraction, Oyster supports the OWL, DAML+OIL and RDF-S ontology languages.
The ontology metadata entries are aligned and formally represented according to two
ontologies: (1) the proposal for a metadata standard OMV which describes the proper-
ties of the ontology, (2) a topic hierarchy (i.e. DMOZ topic hierarchy), which describes
specific categories of subjects to define the domain of the ontology.

4 http://swap.semanticweb.org/



Oyster - Sharing and Re-using Ontologies in a Peer-to-Peer Community 1061

Formulating Queries: As shown in the left pane of the screenshot, the user can search
for ontologies using simple keyword searches, or using more advanced, semantic
searches. Here, queries are formulated in terms of these two ontologies. This means
queries can refer to fields like name, acronym, ontology language, etc. (using the on-
tology document metadata ontology) or queries may refer to specific topic terms (using
the topic hierarchy i.e. DMOZ).

Routing Queries: As shown in the upper left pane of the screenshot, the user may query
a single specific peer (e.g. their own computer, because they can have many ontologies
stored locally and finding the right one for a specific task can be time consuming, or
users may want to query another peer in particular because this peer is a known big
provider of information), or a specific set of peers (e.g. all the member of a specific
organization), or the entire network of peers (e.g. when the user has no idea where to
search), in which case queries are routed automatically in the network. In the latter
case, queries are routed through the network depending on the expertise of the peers,
describing which topic of the topic hierarchy (i.e. DMOZ) a peer is knowledgeable
about. In order to achieve this expertise based routing, a matching function determines
how closely the semantic content of a query matches the expertise of a peer [3].

Processing Results: Finally, the results matching query are presented in a result list
(c.f. upper right pane in the screenshot). The answer of a query might be very large,
and contain many duplicates due to the distributed nature and potentially large size
of the Peer to Peer network. Such duplicates might not be exactly copies because the
semi structured nature of the metadata, so the ontologies are used again to measure
the semantic similarity between different answers and to remove apparent duplicates.
Then a merged representation that combines the knowledge from the individual and
potentially incomplete items is presented to the user. The details of particular results
are shown in the lower right of the screenshot. The user can integrate results of a query
into their local repository for future use. This information may in turn be used later to
answer queries by other peers. Also, as proposed by OMV, all the specific realizations
of an ontology can be grouped by the same base ontology to organize the answer.

3 Ontology Metadata Vocabulary in Oyster

Oyster applies semantic web technologies in order to build an online application for
exchanging information that will assist users in building applications faster. In particu-
lar, it targets to re-using existing ontologies. In order to achieve this objective, Oyster
provides an infrastructure for storing, sharing and finding ontologies making use of the
proposal for a metadata standard OMV.

OMV distinguishes between an ontology base and an ontology document. This sep-
aration is based on the observation that any existing ontology document has some kind
of core idea (conceptualisation) behind. From an ontology engineering perspective, ini-
tially a person develops such core idea of what should be modeled (and maybe how)
in his mind. Further, this initial conceptualisation might be discussed with other per-
sons and after all, an ontology will be realised using an ontology editor and stored in
a specific format. Over time, there might be created several realisations of this initial
conceptualisation in many different formats, e.g. in RDF-S[2] or OWL[5]. Therefore,



1062 R. Palma and P. Haase

an Ontology Base (OB) represents the abstract or core idea of an ontology, so called
conceptualisation, and it describes the core properties of an ontology, independent from
any implementation details. While an Ontology Document (OD) represents a specific
realization of an ontology base, describing properties of an ontology that are related to
the realization or implementation.

The distinction between an OB and OD leads to an efficient mechanism, e.g. for
tracking several versions and evolvements of ontologies as well as for different repre-
sentations of one knowledge model (conceptualisation) in different languages.

OMV also models additional classes required to represent and support the reuse of
ontologies by such metadata vocabulary, especially in the context of the Semantic Web.
Hence, OMV further models classes and properties representing environmental infor-
mation and relations such as Person, Organisation, Party, OntologyEngineeringTool,
OntologySyntax, OntologyLanguage, OntologyType. For a description of the complete
OMV ontology we refer the reader to [4].

4 Conclusion

Sharing an re-using ontologies within communities is a critical task, which previously
was rather difficult because of the heterogeneity, distribution and diverse ownership of
the ontologies as well as the lack of sufficient metadata. In this paper, we have sum-
marized the implementation of Oyster, a semantics-based Peer-to-Peer system for the
exchange of ontology metadata, that exactly addresses these challenges. Oyster exploits
semantic web technologies to provide a solution for re-using ontologies. It builds on a
proposed standard for metadata for describing ontologies. Oyster is already being ap-
plied in the Knowledge Web project with partner across the european union.

For more information about Oyster, we refer the reader to http://oyster.ontoware.org/.

Acknowledgments. Research reported in this paper has been partially financed by the
Knowledge Web project FP6-507482. We would like to thank our colleagues for fruitful
discussions.

References

1. DAML+OIL (March 2001) reference description, 2001. W3C Note, available at
http://www.w3.org/TR/daml+oil-reference.

2. D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Rec. 10 February 2004, 2004. available at http://www.w3.org/TR/rdf-schema/.

3. P. Haase, R. Siebes, and F. van Harmelen. Peer selection in peer-to-peer networks with seman-
tic topologies. In Proceedings of the International Conference on Semantics in a Networked
World (ICNSW’04), Paris, June 2004.

4. J. Hartmann, R. Palma, Y. Sure, M. Suarez-Figueroa, P. Haase, A. Gomez-Perez, and
R. Studer. Ontology metadata vocabulary and applications. In Proc. of the Workshop on
Web Semantics (SWWS’05), First IFIP WG 2.12 and WG 12.4 Agia Napa, Cyprus, 2005.

5. M. K. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language Guide, 2004.
W3C Rec. 10 February 2004, available at http://www.w3.org/TR/owl-guide/.



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729 , pp. 1063 – 1066, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

The FungalWeb Ontology: Semantic Web Challenges in 
Bioinformatics and Genomics 

Arash Shaban-Nejad, Christopher J.O. Baker, Volker Haarslev, and Greg Butler 

Dept. of Comp. Sci. and Software Eng., Concordia University, H3G1M8 Montreal, Canada 
{arash_sh, baker, haarslev, gregb}@cs.concordia.ca 

1   Introduction 

Bioinformatics and genomics cover a wide range of different data formats (i.e. 
annotations, pathways, structures, sequences) derived from experimental and in-silico 
biological analysis which are stored, used, and manipulated by scientists and machines. 
The volume of this data is huge and usually distributed in different locations, and often 
frequently being updated. 

FungalWeb is the first project of its kind in Canada to focus on bringing semantic web 
technology to genomics. It aimed to bring together available expertise in ontologies, 
multi-agent systems, machine learning and natural language processing to build a tailored 
knowledgebase and semantic systems of direct use to the scientific discovery process in 
the domain of fungal genomics [1].  

We describe the FungalWeb Ontology which is a large-scale integrated bio-ontology 
in the domain of fungal genomics using state-of-the-art semantic technologies. The 
ontology provides simplified access to units of intersecting information from different 
biological databases and existing bio-ontologies. In particular, the FungalWeb ontology 
is being used as a core for a semantic web system. This system can be used by human, 
bioinformatics applications or some intelligent systems for ontology-based information 
retrieval to provide extended interpretations and annotations. [2] 

2   The FungalWeb Ontology Design and Evaluation 

The FungalWeb Ontology [2] is the result of integrating numerous biological database 
schemas, web accessible textual resources and interviews with domain experts and 
reusing some existing bio-ontologies. The Ontology is designed with a high level of 
granularity and implemented in OWL-DL language to take advantage of the 
combination of a frame representation of OWL framework and expressive 
Description Logics (DL). The majority of the terms in the FungalWeb Ontology come 
from following sources: 

• NCBI taxonomy database [3]: contains the names of all organisms including fungi. 
• NEWT: is the taxonomy database maintained by the Swiss-Prot [4].  
• BRENDA [5]:  a database of enzymes which provides a representative overview of 

enzyme nomenclature, enzyme features and actual properties. 
• SwissProt [6]: a protein sequence database providing highly curated annotations, a 

minimal level of redundancy and a high level of integration with other databases. 
• Commercial Enzyme Vendors: Companies that retail enzymes provide detailed 

descriptions of the properties and benefits of their products on their websites. 



1064 A. Shaban-Nejad et al. 

The FungalWeb Ontology also reuses existing domain specific bio-ontologies such as 
Gene Ontology (GO) [7] and TAMBIS [8]. This is done by merging, mapping, 
sharing common concepts and partially importing instances. By reusing concepts 
from other generic ontologies, a set of well defined concepts is obtained. 

The integration is done at two levels: Data and Semantic Integration. Data 
integration is done by normalizing extracted data into a consistent representation. In 
order to perform semantic integration these we manually identified the relevant data 
items and the semantic commonality to bring them in a unified frame of reference. 

Currently the Ontology contains 3667 concepts, 12686 instances and 157 
Properties. Efforts to expand the conceptualization are continuing. Inclusion of more 
instance data in the knowledgebase allows us to pose richer and more complex 
queries.  

Different associative properties were defined to relate individuals of concepts. For 
example the property “has been reported to be found in” relates an enzyme individual 
to a corresponding fungal species.  

 

Fig. 1. The major resources included within the FungalWeb Ontology 

As shown in Fig.1 most of terminology in the ontology is fungal organisms and 
fungal enzymes. The classification of fungi presented in the ontology is based on 
phylum, class, order, family, genus and species. Species are considered as the fungi 
instances. Enzymes are classified based on catalyzed reactions recommended by the 
International Union of Biochemistry and Molecular Biology (IUBMB). Enzyme 
names are defined as the enzyme instances.  

The evaluation of the ontology is done pragmatically, by assessing the ontology to 
satisfy the requirements of our application, including determining the logical and 
semantic consistency. Logical consistency is checked automatically by KR editors 
and semantic consistency is assisted by the DL reasoner in the identification of correct 



 The FungalWeb Ontology: Semantic Web Challenges  1065 

or miss-classification. Although we sought to validate the biological data and 
relations by citing their origin (database or literature) or by checking consistency, 
validation by the domain expert was also necessary.  

We use RACER [15] as a DL reasoning system with support for T-Box (axioms 
about class definitions) and A-Box (assertions about individuals) for reasoning on the 
FungalWeb Ontology and Checking the A-Box and T-Box consistency. On average, 
Racer solves the posed subsumption problems within fraction of a second. The 
performance of Racer is highly dependent on the number of individuals and response 
time grows with the number of individuals. The number of properties does not have 
an important affect on the response time, but, the number of property fillers has 
strongest influence on the performance with respect to instance retrieval.  

3   Application Scenarios and Semantic Querying  

We describe real world application scenarios to demonstrate what a bioinformatics 
application can gain from using ontology-based technologies. We argue for the 
commercial usage and business feasibility of the ontology by presenting scenarios that 
show how the diverse needs of the fungal biotechnology manager can be 
accommodated by semantic querying of an integrated set of data in the ontology. 
FungalWeb Ontology currently accommodates the application scenarios below [10]. 

• Identification of enzymes acting on substrates  
• Identification of enzyme provenance and common taxonomic lineage 
• Identification of commercial enzyme products for enzyme benchmark testing 
• Identifying enzymes with unique properties suited for industrial application 

These scenarios are illustrated [10] by  posing semantic queries  to the FungalWeb 
knowledgebase using a description logics based query language called nRQL (new 
Racer Query Language) [11]. nRQL is implemented in Racer with its applicability to 
OWL Semantic Web repositories to retrieve A-box individuals under specific 
conditions. nRQL is more expressive than traditional concept-based retrieval 
languages offered by previous DLs reasoning systems. 

An example query made to the Ontology: This query retrieves the individuals of 
vendor name for vendors that sell products containing xylanase enzymes. 
(RETRIEVE (?x) (AND (?x ?y |http://a.com/ontology#Sells|)  

(?y ?z   |http://a.com/ontology#Contains|) (?z |http://a.com/ontology#Xylanase|) )) 
Also we use nRQL to retrieve values of annotation properties used to annotate 
ontological resources. These annotations represent metadata (i.e. comments, creator, 
date, identifier, source name, source URL, version, etc.) but can not be used for 
reasoning. This capability can be very useful for the ontology maintenance, 
versioning and providing proof and trust in a semantic web system.  

For example the following query retrieves the source(s) for “Enzyme”. 

(RETRIEVE (|http://a.com/ontology#Enzyme| 
(TOLD-VALUE (|http://a.com/ontology#Source|  |http://a.com/ontology#Enzyme|)))  
(BIND-INDIVIDUAL |http://a.com/ontology#Enzyme|)) 



1066 A. Shaban-Nejad et al. 

4   Challenges  

In the process of employing semantic web technology to develop ontology and a large 
knowledgebase in the domain of fungal biotechnology, we had to deal with variety of 
different challenges. Some of the major challenges included; working with highly 
heterogeneous and volatile data, the integration of ontologies implemented in 
different languages, with different semantic tools and platforms, and the lack of 
trustable tools for this purpose.  

Our ongoing research involves improvement of querying capabilities and using 
Natural Language Processing (NLP) techniques for ontology update and change 
management. The project FungalWeb: “Ontology, the Semantic Web and Intelligent 
Systems for Genomics” is funded by Génome Québec. 

References 

1. Baker C. J. O., Butler G., and Haarslev V. Ontologies, Semantic web and Intelligent 
Systems for Genomics. 1st Canadian Semantic Web Interest Group Meeting (SWIG’04) , 
Montreal, Quebec, Canada (2004). 

2. Shaban-Nejad A., Baker C. J. O., Butler G. Haarslev V.  The FungalWeb Ontology: 
Semantic Web Application for Fungal Genomic. 1st Canadian Semantic Web Interest 
Group Meeting (SWIG’04) , Montreal, Quebec, Canada (2004). 

3. National Centre for Biotechnology Information (NCBI)  (http://www.ncbi.nlm.nih.gov/). 
4. NEWT, UniProt taxonomy browser (http://www.ebi.ac.uk/newt/index.html). 
5. Brenda Enzyme Database (http://www.brenda.uni-koeln.de/). 
6. SwissProt protein sequence database (http://ca.expasy.org/sprot/). 
7. Gene Ontology documentation,  (http://www.geneontology.org/doc/GO.doc.html). 
8. P.G. Baker, A.  Brass, S.  Bechhofer, C.  Goble,  N.  Paton, and R.  Stevens. TAMBIS: 

Transparent Access to Multiple Bioinformatics Information Sources. An Overview.In 
Proceedings of the Sixth International Conference on Intelligent Systems for Molecular 
Biology (ISMB'98), pages 25-34, California, June 1998. 

9. Volker Haarslev, Ralf Möller. RACER System Description. Proceedings of International 
Joint Conference on Automated Reasoning, IJCAR’2001, R. Goré, A.Leitsch, T. Nipkow 
(Eds.), June 18-23, 2001, Siena, Italy, Springer-Verlag, Berlin,pp. 701-705. 

10. Baker C. J. O., Witte R., Shaban-Nejad A., Butler G., and Haarslev V. The FungalWeb 
Ontology: Application Scenarios. Eighth Annual Bio-Ontologies Meeting, co-located with 
ISMB 2005, Detroit, Michigan, USA (2005). 

11. M. Wessel, R. Möller. A High Performance Semantic Web Query Answering Engine. 
International Workshop on Description Logics (DL2005), Edinburgh, Scotland, UK, 2005. 



Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 1067 – 1070, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

CONFOTO: A Semantic Browsing and Annotation 
Service for Conference Photos 

Benjamin Nowack 

appmosphere web applications, Essen, Germany 
bnowack@appmosphere.com 

Abstract. CONFOTO1 is a semantic browsing and annotation service for 
conference photos. It combines recent Web trends with the advantages of 
Semantic Web platforms. The service offers several tools to upload, link, 
browse and annotate pictures. Simple forms can be used to create multilingual 
titles, tags, or descriptions, while more advanced forms allow the relation of 
pictures to events, persons, ratings, and copyright information. CONFOTO 
provides tailored and interlinked browsers for photos, people, events, and 
documents. Remotely maintained photo descriptions can be added to the local 
knowledge base, data re-use is made possible via customizable syndication 
functions and a query interface. 

1   Introduction 

CONFOTO is a browsing and annotation service for conference photos. It combines 
the flexibility of the Resource Description Framework (RDF)[1] with recent Web 
trends such as keyword-based classification (so-called "folksonomies"[2]), interactive 
user interfaces[3][4], and syndication of news feeds. The main advantage of utilizing 
folksonomies is the ease of metadata creation. Online services such as Flickr2 were 
able to attract a large number of users in a relatively short amount of time. However, 
simple tagging has its limits, as the retrieval of precise or implicit information is not 
possible. Additionally, a standardized way to directly re-use data does not exist. RDF, 
on the other hand, is a framework to create fine-grained annotations, but doesn't enjoy 
a good reputation in terms of simplicity. 

CONFOTO is one of the first applications that provides both an end-user-oriented 
browsing and editing front-end for rich annotations and also a W3C-compliant3 
interface[5] to an RDF-based data store. It supports the Semantic Web4 idea by 
allowing resource descriptions to be imported, created, annotated, combined, 
exported, and re-purposed.  

2   Tools and Features 

CONFOTO uses a set of wrappers to enable photo and conference data import from 
several different input formats, e.g. RSS 2.0 feeds from w3photo[6], Atom feeds from 

                                                           
1 http://www.confoto.org/ 
2 http://flickr.com/ 
3 http://www.w3.org/2001/sw/DataAccess/ 
4 http://www.w3.org/2001/sw 



1068 B. Nowack 

Flickr, or proprietary XML documents from events such ESWC 20055 and XTech 
20056. The system can generate and enhance RDF data for uploaded pictures, for 
image files linked via Web-accessible URLs, and also for photos described in external 
RDF/XML[7] documents. 

Semantically, CONFOTO is optimized for information about conferences and 
photos. However, the RDF model allows any resource description to be freely 
combined with related objects (e.g. a FOAF[8] file or a list of publications could be 
associated with a person depicted in a photo). 

The sections below give an overview of the tools and features currently available at 
confoto.org. 

2.1   Image Upload or Linking 

Image files can be uploaded via a simple HTML form. A group of uploaded photos 
can be annotated with associated date, conference, license, copyright, and/or subject 
information. The system automatically creates image thumbnails and a scaled image 
for the photo browser. 

Another option is to not copy already published pictures to the server but to simply 
add photo URLs to the local RDF store. This is done through CONFOTO's "Link 
remote images" form which accepts a list of Web locations and allows group-
annotations as well. 

For images which have been described in RDF, the service provides an "Add 
RDF/XML" form that can be used to import remotely maintained resource 
descriptions. Again, thumbnails will be created automatically. 

2.2   Photo Browser 

The photo browser is based on a generic RDF viewer which has been adjusted to 
generate galleries of clickable thumbnails. Several filters can be used to create custom 
photo sets. Selecting an image opens a details view which shows a larger version of 
the image and a list of annotations from the RDF store. In case of non-literal 
annotations that point to related resources (e.g. persons depicted in the selected 
photo), the browsers provides a list of labels (e.g. titles of publications, or names of 
persons) and links to other tools such as a person, event, or document browser when 
available. This functionality is implemented by utilizing inference capabilities of an 
underlying OWL[9] toolkit[10]. 

2.3   Annotators 

The main difference between CONFOTO and most existing Semantic Web 
applications is the availability of browser-based annotation forms. Depending on the 
type of a selected resource, a list of potential relations and attributes is offered to the 
user. Where possible, the tools support the annotation creation process by 
interactively suggesting matching resources as shown in Figure 1. This mechanism 
allows the seamless re-use of data already existing in the RDF store. 

                                                           
5 http://www.eswc2005.org/ 
6 http://www.xtech-conference.org/2005/ 



 CONFOTO: A Semantic Browsing and Annotation Service for Conference Photos 1069 

Fig. 1. Annotator with Suggest-as-you-Type Feature 

 
Annotations can directly be added to the RDF store, whereupon the system's 

inference scripts are executed, iteratively improving the browsing experience. 
Annotators are rewarded with enhanced results when they switch back to browsing 
mode. 

2.4   Data Export for Re-use 

CONFOTO features multiple possibilities to export local data: Each page provides a 
link to an RDF/XML version of the currently displayed resource(s). Apart from that, 
machine-readable resource descriptions can be obtained by URIQA[11] requests, and 
also via a basic SPARQL[12] interface. Finally, as the number of URIQA- or 
SPARQL-enabled tools is still small, custom photo galleries can be exported as 
simple RSS 1.0[13] news feeds. 

3   Conclusion and Possible Future Work 

CONFOTO demonstrates the advantages of an RDF-based infrastructure and shows, 
that end-user-oriented, Web-based annotation tools don't have to be limited to simple 
tagging, but can also be used to create and augment rich annotations. However, the 
system is still in an early stage and a lot of things could be improved: 

To better demonstrate the possibilities of RDF and SPARQL, the browsers need to 
be extended to offer means for context-specific views such as "all photos taken by this 
person", or "all events attended by this person". 



1070 B. Nowack 

CONFOTO maintains provenance information for each annotation. This could be 
utilized to facilitate navigating the available photos and annotations. 

The resource browsers support multiple languages, but the ontologies used are 
currently only available in English. It is planned to translate the labels of selected 
terms, so that CONFOTO's browsers can be used in different languages. 

References 

1. Resource Description Framework (RDF). W3C (2004). http://www.w3.org/RDF/ 
2. Folksonomy - Wikipedia. http://en.wikipedia.org/wiki/Folksonomy 
3. Remote Scripting with IFRAME. Apple Developer Connection (2002) http://developer. 

apple.com/internet/webcontent/iframe.html 
4. Garrett, J. J. Ajax: A New Approach to Web Applications. (2005) http://www.adaptivepath. 

com/publications/essays/archives/000385.php 
5. Clark, K. G. SPARQL Protocol for RDF. W3C. http://www.w3.org/TR/rdf-sparql-

protocol/ 
6. w3photo - A Semantic Photo History of the IW3C2 Conferences. http://w3photo.org/ 
7. Beckett, D. RDF/XML Syntax Specification (Revised). W3C (2004). http://www.w3. 

org/TR/rdf-syntax-grammar/ 
8. the friend of  a friend (foaf) project http://www.foaf-project.org/ 
9. Patel-Schneider, P. F., Hayes, P., Horrocks, I. OWL Web Ontology Language Semantics 

and Abstract Syntax. W3C (2004). http://www.w3.org/TR/owl-semantics/ 
10. Nowack, B. OWLCHESTRA: Facilitating the Development and Publishing of  

Small-Scale Web Ontologies. (2004). http://www.appmosphere.com/prod/media/ 
owlchestra_demo_esws2004.pdf 

11. Stickler, P. URIQA: The Nokia URI Query Agent Model. (2003) http://sw.nokia. 
com/uriqa/URIQA.html 

12. Prud'hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C (2005). 
http://www.w3.org/TR/rdf-sparql-query/ 

13. RDF Site Summary (RSS) 1.0. http://web.resource.org/rss/1.0/spec 



Author Index

Abel, Fabian 1050
Ackland, Ross 816
Alani, Harith 829
Allemang, Dean 844
Analyti, Anastasia 21
Angele, Jürgen 1029
Ankolekar, Anupriya 37
Antoniou, Grigoris 21, 216
An, Yuan 6
Au, Tsz-Chiu 52
Avesani, Paolo 67

Baclawski, Kenneth 944
Baget, Jean-François 82
Balke, Wolf-Tilo 491
Baker, Christopher J.O. 1063
Basili, Roberto 97
Battle, Steven A. 987
Baumgartner, Robert 1050
Benjamins, V.R 1002
Bernstein, Abraham 112
Biasuzzi, Chistian 872
Blacoe, Ian 653
Blázquez, M. 1002
Borgida, Alex 6
Brass, A. 786
Brooks, Adrian 1050
Buitelaar, Paul 593
Butler, Greg 1063

Cabral, Liliana 171
Cameron, Mark 816
Cammisa, Marco 97
Christophides, Vassilis 506, 607, 685
Collins, Trevor 127
Contreras, J. 1002
Corby, Olivier 247

Damásio, Carlos Viegas 21
d’Aquin, Mathieu 142
De Troyer, Olga 578
Dean, Mike 974
Deng, Jianming 1054
Ding, Li 156
Ding, Zhongli 563

Domingue, John 171
Donati, Emanuale 97
Drummond, Nick 745

Edwards, Gary 1041
Ehrig, Marc 186
Enzi, Christian 1050
Ermolayev, Vadim 201
Esplugas-Cuadrado, Javier 987

Fang, Weijian 801
Ferraro, Massimo 872
Finin, Tim 156
Flouris, Giorgos 216
Fonti, Roberto 872
Friedrich, Gerhard 232

Galizia, Stefania 171
Gandon, Fabien 247
Gangemi, Aldo 262
Gao, Zhiqiang 1054
Garćıa-Castro, Raúl 277
Garg, Shishir 858
Ghita, Stefania 293
Giboin, Alain 247
Giereth, Mark 308
Gilardoni, Luca 872
Giunchiglia, Fausto 67
Goble, Carole 1, 323
Goderis, Antoon 323
Göhring, Anne 112
Gómez-Pérez, Asunción 277
Goswami, Amit 858
Gottlob, Georg 1050
Grimm, Stephan 987
Gronnier, Nicolas 247
Grosof, Benjamin 974
Grosso, William 974
Groth, Paul 801
Guigard, Cecile 247
Guo, Yuanbo 338, 758

Haarslev, Volker 1063
Haase, Peter 353, 1059
Haglich, Peter 446, 1041



1072 Author Index

Hasegawa, Tetsuo 902
Heflin, Jeff 338, 758
Hendler, James 461
Henze, Nicola 1050
Herzog, Marcus 1050
Heymans, Stijn 368
Hitzler, Pascal 383
Hodgson, Ralph 844
Hoffman, Mark 1041
Hongsermeier, Tonya 887
Horridge, Matthew 745
Horrocks, I. 786
Huang, Zhisheng 353, 398
Huylebroeck, Jérémy 858
Huynh, David 413

Jaganathan, Senthil 858
Jaiswal, Anuj Rattan 537
Janik, Maciej 431
Joshi, Anupam 156

Kalfoglou, Yannis 829
Karger, David 413
Karvounarakis, Grigoris 685
Kashyap, Vipul 887
Katrenko, Sophia 732
Katz, Yarden 461
Kaufmann, Esther 112
Kawamura, Takahiro 902
Keberle, Natalya 201
Kettler, Brian 446, 1041
Khushraj, Deepali 916
Kiefer, Christoph 112
Knublauch, Holger 974
Kochut, Krys 431
Koffina, Ioanna 607
Kokar, Mieczyslaw M. 944
Kolari, Pranam 156
Kollias, Stefanos 624
Kolovski, Vladimir 461
Koubarakis, M. 506
Kriesell, Matthias 1050
Kumar, Arun 476
Kurakake, Shoji 959
Kuter, Ugur 52

Lassila, Ora 916
Lefort, Laurent 816
Léger, Alain 928
Letkowski, Jerzy J. 944

Li, Qi 887
Lieber, Jean 142
Lithgow-Smith, Ben 638, 653
Lord, Phillip 323, 786
Losco, Jason 1041
Löser, Alexander 491

Magiridou, M. 506
Martos, I. 1002
Matheus, Christopher J. 944
Matzke, Wolf-Ekkehard 201
Mazzocchi, Stefano 413
Mika, Peter 522
Miles, Simon 801
Miller, William 446
Mitra, Prasenjit 537
Mittal, Sumit 476
Morales, Alfredo 887
Moreau, Luc 801
Motik, Boris 548
Moyaux, Thierry 638
Mulholland, Paul 127
Mullan, Pramila 858
Musen, Mark 974
Mylopoulos, John 6

Nagano, Shinichi 902
Naganuma, Takefumi 959
Napoli, Amedeo 142
Nau, Dana 52
Navarro, D. 1002
Nejdl, Wolfgang 293, 491, 1050
Nixon, Lyndon J.B. 928
Nowack, Benjamin 1067
Noy, Natasha F. 537

O’Connor, Martin 974
O’Hara, Kieron 829
Ohsuga, Akihiko 902

Paiu, Raluca 293
Palma, Raúl 1059
Pan, Rong 156, 563
Paolucci, Massimo 37
Parsia, Bijan 461
Patón, D. 1002
Paurobally, Shamimabi 638
Peng, Yun 156, 563
Plessers, Peter 578
Plexousakis, Dimitris 216



Author Index 1073

Polikoff, Irene 844
Preist, Chris 987

Qasem, Abir 758
Qu, Yuzhong 1054
Quilitz, Bastian 491

Rahman, Joel 816
Rector, Alan 745
Rodrigo, L. 1002

Sahtouris, S. 506
Salla, R. 1002
Sattler, Ulrike 323, 786
Sauermann, Leo 1016
Schnurr, Hans-Peter 1029
Schreiber, Guus 732, 773
Schutz, Alexander 593
Schwarz, Sven 1016
Seidenberg, Julian 745
Serfiotis, Giorgos 607
Shaban-Nejad, Arash 1063
Shadbolt, Nigel 829
Shchekotykhin, Kostyantyn 232
Shvaiko, Pavel 928
Slavazza, Piercarlo 872
Spector, Alfred Z. 4
Srivastava, Biplav 476
Staab, Steffen 186, 491
Stamou, Giorgos 624
Starz, James 446, 1041
Stevens, R. 786
Stoilos, Giorgos 624
Stuckenschmidt, Heiner 353, 398
Sure, York 186, 353, 716
Sycara, Katia 37

Tamma, Valentina 638, 653
Tannen, Val 607
Taylor, Kerry 816
Tempich, Christoph 491

Tena, P. 1002
Theoharis, Yannis 685
ter Horst, Herman J. 668
Tomaschewski, Kai 1050
Tu, KeWei 702
Tu, Samson 974
Turi, D. 786

Ueno, Kouji 902

van Aart, Chris 638
van Hage, Willem Robert 732
van Harmelen, Frank 353
Van Nieuwenborgh, Davy 368
Völker, Johanna 716
Vermeir, Dirk 368
Vladimirov, Vladimir 201
Vrandečić, Denny 383, 716

Wagner, Gerd 21
Wang, Hai 745
Wang, Sui-Yu 758
Weitzner, Daniel J. 5
Wielemaker, Jan 773
Wielinga, Bob 773
Williams, Stuart K. 987
Wolstencroft, K. 786
Wong, Sylvia C. 801
Wooldridge, Michael 638, 653

Xiong, Miao 702

Yatskevich, Mikalai 67
Yu, Yang 563
Yu, Yong 702

Zdrahal, Zdenek 127
Zhai, Yuqing 1054
Zhang, Jie 702
Zhang, Lei 702
Zhu, HaiPing 702


	Frontmatter
	Invited Paper
	Using the Semantic Web for e-Science: Inspiration, Incubation, Irritation
	Semantic Acceleration Helping Realize the Semantic Web Vision or ``The Practical Web''
	Semantic Web Public Policy Challenges: Privacy, Provenance, Property and Personhood

	Research/Academic Track
	Constructing Complex Semantic Mappings Between XML Data and Ontologies
	Stable Model Theory for Extended RDF Ontologies
	Towards a Formal Verification of OWL-S Process Models
	Web Service Composition with Volatile Information
	A Large Scale Taxonomy Mapping Evaluation
	RDF Entailment as a Graph Homomorphism
	RitroveRAI: A Web Application for Semantic Indexing and Hyperlinking of Multimedia News
	Querying Ontologies: A Controlled English Interface for End-Users
	Semantic Browsing of Digital Collections
	Decentralized Case-Based Reasoning for the Semantic Web
	Finding and Ranking Knowledge on the Semantic Web
	Choreography in IRS-III -- Coping with Heterogeneous Interaction Patterns in Web Services
	Bootstrapping Ontology Alignment Methods with APFEL
	A Strategy for Automated Meaning Negotiation in Distributed Information Retrieval
	On Applying the AGM Theory to DLs and OWL
	A General Diagnosis Method for Ontologies
	Graph-Based Inferences in a Semantic Web Server for the Cartography of Competencies in a Telecom Valley
	Ontology Design Patterns for Semantic Web Content
	Guidelines for Benchmarking the Performance of Ontology Management APIs
	Semantically Rich Recommendations in Social Networks for Sharing, Exchanging and Ranking Semantic Context
	On Partial Encryption of RDF-Graphs
	Seven Bottlenecks to Workflow Reuse and Repurposing
	On Logical Consequence for Collections of OWL Documents
	A Framework for Handling Inconsistency in Changing Ontologies
	Preferential Reasoning on a Web of Trust
	Resolution-Based Approximate Reasoning for OWL DL
	Reasoning with Multi-version Ontologies: A Temporal Logic Approach
	Piggy Bank: Experience the Semantic Web Inside Your Web Browser
	BRAHMS: A WorkBench RDF Store and High Performance Memory System for Semantic Association Discovery
	A Template-Based Markup Tool for Semantic Web Content
	Representing Web Service Policies in OWL-DL
	Information Modeling for End to End Composition of Semantic Web Services
	Searching Dynamic Communities with Personal Indexes
	RUL: A Declarative Update Language for RDF
	Ontologies Are Us: A Unified Model of Social Networks and Semantics
	OMEN: A Probabilistic Ontology Mapping Tool
	On the Properties of Metamodeling in OWL
	A Bayesian Network Approach to Ontology Mapping
	Ontology Change Detection Using a Version Log
	{\itshape RelExt}: A Tool for Relation Extraction from Text in Ontology Extension
	Containment and Minimization of RDF/S Query Patterns
	A String Metric for Ontology Alignment
	An Ontological Framework for Dynamic Coordination
	Introducing Autonomic Behaviour in Semantic Web Agents
	Combining RDF and Part of OWL with Rules: Semantics, Decidability, Complexity
	Benchmarking Database Representations of RDF/S Stores
	Towards Imaging Large-Scale Ontologies for Quick Understanding and Analysis
	Automatic Evaluation of Ontologies (AEON)
	A Method to Combine Linguistic Ontology-Mapping Techniques
	Debugging OWL-DL Ontologies: A Heuristic Approach
	Rapid Benchmarking for Semantic Web Knowledge Base Systems
	Using Triples for Implementation: The Triple20 Ontology-Manipulation Tool
	A Little Semantic Web Goes a Long Way in Biology
	Provenance-Based Validation of E-Science Experiments

	Industrial Track
	Semantic Service Integration for Water Resource Management
	Towards a Killer App for the Semantic Web
	Enterprise Architecture Reference Modeling in OWL/RDF
	MediaCaddy -- Semantic Web Based On-Demand Content Navigation System for Entertainment
	LKMS -- A Legal Knowledge Management System Exploiting Semantic Web Technologies
	Definitions Management: A Semantics-Based Approach for Clinical Documentation in Healthcare Delivery
	Ubiquitous Service Finder Discovery of Services Semantically Derived from Metadata in Ubiquitous Computing
	Ontological Approach to Generating Personalized User Interfaces for Web Services
	On Identifying Knowledge Processing Requirements
	An Application of Semantic Web Technologies to Situation Awareness
	Task Knowledge Based Retrieval for Service Relevant to Mobile User's Activity
	Supporting Rule System Interoperability on the Semantic Web with SWRL
	Automated Business-to-Business Integration of a Logistics Supply Chain Using Semantic Web Services Technology
	A Semantic Search Engine for the International Relation Sector
	Gnowsis Adapter Framework: Treating Structured Data Sources as Virtual RDF Graphs
	Do Not Use This Gear with a Switching Lever! Automotive Industry Experience with Semantic Guides
	The Concept Object Web for Knowledge Management

	Semantic Web Challenge
	The Personal Publication Reader
	DynamicView: Distribution, Evolution and Visualization of Research Areas in Computer Science
	Oyster -- Sharing and Re-using Ontologies in a Peer-to-Peer Community
	The FungalWeb Ontology: Semantic Web Challenges in Bioinformatics and Genomics
	CONFOTO: A Semantic Browsing and Annotation Service for Conference Photos

	Backmatter



