
J. Tao, T. Tan, and R.W. Picard (Eds.): ACII 2005, LNCS 3784, pp. 675 – 682, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Informal User Interface for Graphical Computing

Zhengxing Sun and Jing Liu

State Key Lab for Novel Software Technology, Nanjing University, 210093, China
szx@nju.edu.cn

Abstract. This paper explores a concept of sketch-based informal user interface
for graphic computing, which can be characterized by two properties: stroke-
based input and perceptual processing of strokes. A sketch-based graphics input
prototype system designed for creative brainstorming in conceptual design is
introduced. Two core technologies for implementing such a system, adaptive
sketch recognition and dynamic user modeling, are also outlined.

1 Introduction

For over three decades, the graphical user interfaces (GUI) and its associated desktop
metaphors have dominated both the marketplace and HCI research. As computers
changes in terms of physical size, capacity, usage and ubiquity, peoples interact with
them in more informal ways than they used to. The obvious question arises, such as

what is the next major generation in the evolution of user interfaces and if there is a
paradigm (and its associated technology) that will displace GUI and become the
dominant user interface model. There is no shortage of HCI researches collectively
called as post-WIMP interfaces [1] or non-command interfaces [2], such as various
flavors of immersive environments (virtual, augmented, and mixed reality), tangible
interfaces, haptic interfaces and so on. The common goal of them is to make
computers more intelligent, more convenient to use, more adaptable to the human-
preferred communication mode, and to allow the user to concentrate on the task itself
without worrying about commands.

In the domain of graphical computing, people are accustomed to write down their
improvisatory ideas. For them, the ability to rapidly deliver their ideas using graphic
objects with uncertain types, indefinite sizes, irregular shapes, and inaccurate
positions is most important. However, most current drafting tools are formal and
computer-oriented, which requires users to select graphic patterns from lots of toolbar
buttons or menu items and does not work well for expressing arbitrary graphical ideas
or geometric shapes in computers. Users frequently find it inconvenient via too many
mouse-clicks. They also complain that they have to memorize the precise position of
each toolbar button or menu item since they cannot focus on the design idea itself
when utilizing these tools to deliver their bursting creative ideas. Therefore, they
cannot finish the design fluently due to too many interruptions.

In this paper, we will explore an informal user interface (IUI) paradigm using
sketching for graphical computing and illustrate our experiments on this topic. The
remainder of this paper is organized as follows. In section 2, the concept of the
sketch-based informal user interface is defined with two properties: stroke-based

676 Z. Sun and J. Liu

input and perceptual processing, and some related works are outlined. Section 3
briefly introduces our prototype system, named as Magic-Sketch, embodying the idea
of informal user interface. Section 4 discusses two core techniques for implementing
informal user interface. Conclusions and future works are given in the final Section.

2 Sketch-Based Informal User Interfaces for Graphic Computing

People have been using pen and paper to express graphical ideas for centuries, which
is a preferred choice for creative brainstorming [3]. Even in this high-tech computer
era, paper and pencils have still to be designers’ preferred choice to quickly sketch
bursting ideas. It can help user convey ideas and guide our thought process both by
aiding short-term memory and by helping to make abstract problems more concrete.
Sketch-based user interface is an informal input modality of increasing interest for
human-computer interaction. It embodies a non-command user interface for the
graphical applications in that the user can transfer visual ideas into target computers
without converting the ideas into a sequence of tedious command operations. The
term “informal” is referred to that sketch-based interfaces are tolerant of the user’s
input and show variability in their output. The tolerance means allowable differences
in input function mapping to an internal representation. The variability means that an
internal representation can be mapped in a number of ways to an output mechanism
without appearing to have a different meaning.

The sketchy shape in its rough state contains more information than the regularized
one. But its ambiguity and uncertainty make the deduction of intents very difficult.
The regularized shape is better for users to communicate and recall their original
intention of this sketch in graphical applications. It will be more helpful for graphic
computing if the sketchy shape can be recognized and converted into the user-
intended regular shape. Therefore, the manner of sketch-based graphic input is that
user can draw their approximate line shapes with pen-based stroking quickly and
fluently, while computer must recognize/covert user’s inputting strokes to the regular
shapes immediately.

Pen-based stroking is usually recognized as a dragging operation in a standard
programming environment: it is initiated by “button press” event, followed by a
sequence of “mouse move” event, and terminated by “button release” event. The
system’s reaction is based on the entire trajectory of the pen’s movement during the
stroking, not just the pen’s position at the end. In stroking, the user first imagines the
desired stroke shape and then draws the shape on the screen at once, while the user
constantly adjusts the cursor position observing the feedback objects during dragging.
Through stroke seems to be a primitive unit in sketch user interface at first
appearance, the stroke is not a structural and unique constitutive geometric primitive
of a shape for human cognition. Therefore, stroke segmentation is the groundwork for
realizing sketch-based IUI, which decomposes the inputting strokes into basic
geometric primitives, such as lines and curves. As strokes can be segmented in many
different ways, the challenge of stroke segmentation is to find out which bumps and
bends are intended and which are accident. Sezgin [4] have used both curvature and
speed information in a stroke to locate breakpoints, while Saund [5] used more
perceptual context, including local features such as curvature and intersections, as

 Informal User Interface for Graphical Computing 677

well as global features such as closed paths. All of them use empirical thresholds to
test the validity of an approximation that ultimately leads to the problem of a
threshold being too tight or too loose.

The another important property is its advanced processing of strokes inspired by
human perception, which characterizes sketch-based IUI as a non-command user
interface and makes sketch-based IUI different from plain pen-based scribbling
systems that simply convert the user’s pen movement into a painted stroke on the
screen without any further processing. We call this advanced processing as
“perceptual processing” or “sketch recognition”. The idea behind sketch recognition
is inspired by the observation that human beings perceive rich information in simple
drawings, such as possible geometric relations among line primitives, three-
dimensional shapes from two-dimensional silhouettes. Sketch recognition is an
attempt to simulate human perception at least in limited domains. The goal of sketch
recognition is to allow the user to perform complicated tasks with a minimum amount
of explicit control. Sketch-based IUI must free users from detailed command
operations by this perceptual processing of freeform strokes and reduces significantly
the effort spent on learning commands. A variety of sketch recognition techniques
have been proposed, which can be classified into three categories: feature-based
methods [6][7], graph-based methods [8] and machine learning methods [9][10]. In
addition, several experimental systems for supporting sketch-based informal user
interface in limited domain, such as Sim-U-Sketch for mechanical design and
simulation [11], DENIM for the early stages of web site design [12], and so on. In
summary, while there has been significant progress in sketch recognition, the poor
efficiency of the recognition engines is always frustrating, especially for complex
sketchy shapes and newly added users. The main challenge in sketch recognition is
that a recognizer should be adaptable to a particular user’s sketching styles. More
importantly, most symbol recognizers do stroke fragmentation and symbol
recognition separately. This would apparently result in aimless segmentation of
strokes and incorrect recognition of symbols deviating from users’ intentions.

3 Magic-Sketch: A Sketch-Based Platform for Graphic Input

3.1 Overview of Magic-Sketch

We have being developed a prototype platform of sketch-based graphic input for
conceptual design to support users’ creativities, named Magic-Sketch. The framework
of Magic-Sketch is outlined in Fig. 1. It is mainly consisted of following components:
stroke pre-processing, stroke segmentation and sketch recognition, dynamic user
modeling, database management, input and edit interface, and application interfaces.

As a basis of sketch-based graphic input, the stroke pre-processing is firstly
adopted to eliminate the noise that may come from restriction of input condition
or habits [13], such as redundant points reducing, agglomerate points filtering
and end points refinement. The candidate breakpoints of strokes are also
distinguished, where the pen speed is at a minimum; the ink exhibits high curvature,
or the sign of the curvature changes besides the start and end point of each stroke. The
stroke segmentation and Sketch recognition are then used to decompose each stroke
into some kinds of primitives and recognize each of individual geometric shapes such

678 Z. Sun and J. Liu

as glyphs and symbols and their relationships in the inputting pattern respectively.
Several gesture commands are also recognized. To adapt for the arbitrariness and
amphibology of inputting, we propose a novel method of sketch recognition, which
integrates stroke segmentation with sketch recognition. This will be discussed in next
subsection. Dynamic user modeling is designed to build user models for each specific
user to capture users’ habit of drawing styles and to facilitate the sketch recognition in
an incremental manner. This will be discussed in the subsection 3.3. In addition, user
model can also been updated by user mediation based on relevance feedback
techniques, where user can refine/correct the recognition results by interactive
feedback based on partial and overall structural similarity between inputting drawing
and templates [13].

User Model of
Draw ing

Semantic
Applications

Sketch
Documents

User Interface (Pen-Based Input and Gesture-based Edit)

Raw Strokes

Stroke Pre-processing

Dynamic User
Modeling

Sketch
Models

Symbol
Templates

Presentation and
Feedback

Stroke Segmentation

Sketch Recognition

Database Management

Fig. 1. Framework of Sketch-based Graphics Input Tool

In order to preserve and manage the information during user drawing, two types
of data model are designed in our prototype system as shown in Fig. 2. Fig. 2(a)
shows the hierarchical structure of Sketch model, which includes backboard, raw
strokes, primitives, shapes and semantics from the bottom up. Backboard is a host
structural format that sketches are located in. We can use HTML or XHTML as a
backboard to define a sketch document for sketch model. This will make sketch model
more powerful and portable for different domains. Raw stroke refers to ink points that
are sampled by input equipment. Primitives and shapes are the geometric and relation
information of the tokens extracted from raw strokes. Sketch semantics refers to
recognized symbols related to applied domain. User model is also organized in a
layered structure, as shown in Fig. 2(b). For a specific user, besides the identifier of
user, some of his/her drawing properties of ink points, strokes, symbols and applied
domain are defined, such as pen pressure and drawing speed at each of ink points, the
temporal sequence of strokes, frequency of intended symbol and so on.

We also design a particular user interface to support the freedom and fluency of
pen-based drawing and editing. We offer 9 gestures to users, including copying,
deleting, dragging, pasting, undo, redo, cleaning panel, finishing and selecting. The
interactive editor is provided with the manager of the document. It provides an
interactive and visualized interface for document editing. If the input strokes are

 Informal User Interface for Graphical Computing 679

identified as a visual token, then the new token will be added to the document,
together with corresponding modifications of their spatial relations. If the stroke is
recognized as a gesture commands, the editor processes them directly, just as
common document editors. User interactions are saved in for feedback. The user
feedback style indicates two styles. One is the time that the system submits its result.
The other is the granularity that the result is presented in. This means that the form of
result, which is shown to user, can be different, from regularized strokes to the whole
sketch after recognition.

Raw Stroke Layer

Semantic Layer

Sketch Model

Shape Layer

Backboard Layer

Primitive Layer

(a)

Properties of Ink Points

Domain Know ledge

Identif ier of User

User Model

Properties of Symbols

Properties of Strokes

(b)

Fig. 2. Conceptual model of data structure in Magic-Sketch

3.2 Adaptive Sketch Recognition Based on Templates

Most of the existing methods treat stroke segmentation and sketch recognition
separately. In fact, a user is purposeful with the intended symbol in head when
expressing his/her ideas with the particular sketchy shape based on both the current
observations and the past experiences, though he/she draws one stroke after another.
This is the primary reason for the poor accuracy of recognizers no matter how robust
they might. Therefore, it is necessary for sketch recognition to integrate the process of
stroke segmentation and sketch recognition, in order to account for the variations
inherent in hand-drawn sketches.

To achieve this goal, we propose a novel approach of adaptive sketch recognition
by regarding both of stroke segmentation and sketch recognition as a problem of
“fitting to a template” with a minimal fitting error between input patterns and the
particular domain definition models of the symbol (templates). Fig. 3 shows the
flowchart of our strategy, which is designed to work for single isolated symbols.
Examples include symbols in conceptual design, analogy electric circuits design, data
flow diagrams, algorithmic flowcharts and so on.

In our strategy, stroke segmentation optimizes the combination of breakpoints by
calculating the similarity between the primitives of inputting pattern and that of the
templates based on the selection of candidate breakpoints in stroke pre-processing.
This makes stroke segmentation be well guided by the templates.

Given a sketchy symbol SM and a template T, SM is consisted of a sequence of
strokes, each stroke contains a set of the ordered candidate breakpoints; a template T
is represented as a set of ordered primitives T{t(i)}, the number of breakpoints needed
to be identified is: k=NT-NS(in general, NS ≤ NT ≤ NB-1, where, NT is the number of
primitives for defining a template of symbol, NS is the number of strokes and NB is
the total numbers of ordered candidate breakpoints (NBi is the number of ordered

680 Z. Sun and J. Liu

candidate breakpoints for ith stroke.) respectively for an inputting sketchy symbol. The
problem of stroke segmentation using templates can then be defined as to select k
numbers of breakpoints from the ordered candidate breakpoints to fragment the storke
into some segments such that a sketchy shape represented by these segments is fit for
some of shape definitions in template library with minimal fitting error.

Input

Stroke
Pre-process ing

Outputs

Stroke
Segmentation

Symbol
Templates

Sketch
Recognition

Fig. 3. Flowchart of strategy for adaptive sketch recognition

To find an optimal fragmentation of a set of strokes with template T, one assumes
that the optimal solution for fragmenting everything up to the selected breakpoint
with a template T{t(i)|i=1,2,…,NT-1} has been computed, and the piece from the
choice breakpoint to the end is then fit with T{t(NT)}. A recursive solution is then
defined based on above optimal substructure. Let d(n,m,k,t) be a minimal fitting error
to approximate every point up to the mth point in the nth stroke with the template t, and
let f(Sn,i,m,t(j)) be the fitting error, resulting from fitting the segment from the ith point
up to the mth point in the nth stroke using t(j). The best fragmentation for a set of
strokes with NS strokes using K breakpoints and a template T would thus be d(NS,
NB,K,T). The recursive definition of d(n,m,k,t) is expressed as follows:

()
()() ()()

()(){ }
()() ()()

()(){ }⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎪⎩

⎪
⎨
⎧

>>−=−+
−=−+

>=−=−+

=+⎥
⎦

⎤
⎢
⎣

⎡

=

<<

−

<<

−

=
∑

.0 ,1 if ,
1,,1|,1,,))(,,,(min

1,,1|,,,1,,,
min

;0,1 if ,1,,1|,1,,))(,,,(min

;0 if ,,,1,,,1,

,,,

1

1

1

kn
NTjjtkindNTtmiSf

NTjjtkindNTtNBmSf

knNTjjtkindNTtmiSf

kntmSfitNBSf

tkmnd

n
mik

nn

n
mik

n

n

i
ii

L

L

L

(1)

Sketch recognition can then take the results of optimization of stroke segmentation
directly as candidate symbols and prune the list of candidate symbols by matching
each of primitives and their relationships of drawing shape with the templates. In
practice, we design a nested recursive solution by adapting to the technology of
dynamic programming. This brings on not only the integration of stroke segmentation
and sketch recognition concurrently, but the acceleration of the optimization process
also. The contexts of drawing or user model can also be used to reduce the computing
complexity. Experiments prove adaptability of this method to both different drawing
styles and various shapes with different complexities. Details can be seen in [14].

3.3 Dynamic User Modeling

It is quite difficult and impossible to ask computers to completely understand various
sketches. To facilitate the processing of computers, it may be helpful for perceptual
processing of strokes that computer can incrementally share the drawing habits and
cognitive understanding of humans. Therefore, we propose a dynamic user modeling

 Informal User Interface for Graphical Computing 681

method to collect and analyze the user’s drawings incrementally and establish user
model dynamically to assist sketch recognition.

In our work, the term ‘user model’ mainly means how a user draws a particular
sketchy shape or reflects the user’s drawing style. For a specific user, a user model is
organized as an incremental decision tree, where the root records the user’s id and
each leaf node records the class label of the inputting graphics, and the branch nodes,
that is one part of the integrate graph represented by the leaf node, record the drawing
properties of each stroke. All drawing attributes are put together to identify one stroke
and used to avoid over-branching of the tree. Each time he/she is drawing, user model
is used as an assistance of sketch recognition to predict the “possible shapes” and
updated incrementally based on statistical calculation of his/her historical drawing
properties. Fig. 4 shows the principle of our strategy of dynamic user modeling.

4

6

④ ①
②

③

⑤
Shape 1

Incremental Decision Tree

1

2

3
4

5
6

Shape 2

Inputting Sketchy Shapes Possible Shape

⑤

①

②

③

④

ID

1

ID

2

3

5

Fig. 4. Illustration of principle of dynamic user modeling

Along with the training process, the decision tree will grow and adjust to the user’s
styles in stroke sequence and construction of composite shapes. When a composite
shape is being sketched in a sequence of strokes, each stroke may be tried to match
along the branch. If the matching is successful, the possible composite shape can be
predicted or recognized, and, at the same time, the weight of related nodes in the user
models are adjusted. Let g' is a weight of the current searching node and GList is a list of
the candidate objects of the current node, the weight of the candidate objects from this
node is “g’⋅Glist. All candidate objects from all surveyed nodes will be ranked by its
weight and the objects with less weight will be deleted if there are the same objects
classes. When another stroke is input, the direction of this stroke can be calculated as s1
and s2, the relation to the last stroke is r1 and r2, and the possible shape classes is Rij.
Consequently, the weight of the next searching node is: g = g’smrnRij, where m, n=1 or 2,
and i, j=1,…,14, which is based on our statistic analysis of our experiments. Otherwise,
a new branch of the tree is created. Once a composite shape does not exist in the
template, the strokes are collected and added to the system after shape regularization.
Experimental results prove both effective and efficient of the proposed strategy. Details
can be seen in [10] and [13].

682 Z. Sun and J. Liu

4 Conclusion

This paper explores a novel concept of sketch-based informal user interface for
graphic computing, Such an interaction mode can be characterized by two properties:
pen-based stroking and perceptual processing of strokes, and makes user transfer
visual ideas into computer without converting the ideas into a sequence of tedious
command operations. This carries through the vision of human-centric computing. A
prototype system has embodied some characteristics of informal user interface and
two core technologies, adaptive sketch recognition and dynamic user modeling, make
it more robust. Obviously, an important task for further researches is to identify an
emerging application domain and find a paradigm of interface for that domain.

Acknowledgement

The work described in this paper was supported by grants from National Natural
Science Foundation of China (Project No. 69903006 and 60373065) and the Program
for New Century Excellent Talents in University of China (2004).

References

1. van Dam A. Post-WIMP user interfaces, Communications of ACM, Vol.40, No.2 (1997).
2. Nielsen J. Non-command user interfaces, Communications of ACM, Vol.36, No.4 (1993).
3. Fish J and S Scrivener, Amplifying the mind’s eye: Sketching and visual cognition,

Leonardo, Vol. 23, No. 1 (1990) 117-126.
4. Sezgin T. M., Stahovich T., Davis R., Sketch-based interface: early processing for sketch

understanding, Proceedings of the 2001 Workshop on PUI, Orlando, Florida, (2001) 1-8.
5. Saund, E, Finding Perceptually Closed Paths in Sketches and Drawings, Transactions on

Pattern Analysis and Machine Intelligence. Vol.25, No.4, (2003) 475-491.
6. Rubine Dean, Specifying gestures by example, Computer Graphics, Vol. 25, No. 1 (1991).
7. Fonseca M. J., Pimentel C., Jorge J. A., An online scribble recognizer for calligraphic

interfaces. In: AAAI Symposium on Sketch Understanding, AAAI Press (2002) 51-58.
8. Xu X G, Sun Z X, Peng B B, et al, An online composite graphics recognition approach

based on matching of spatial relation graphs, IJDAR, Vol. 7, No. 1 (2004) 44-55.
9. Sezgin T. M. and Davis R., HMM-Based Efficient Sketch Recognition, Proceedings of the

international conference on Intelligence user interfaces, San Diego, USA, 2005.
10. Sun Z. X., Liu W. Y., et al, User Adaptation for Online Sketchy Shape Recognition.

Lecture Notes in Computer Science, Vol. 3088. Springer-Veralg (2004) 303-314.
11. Levent Burak Kara, Thomas F Stahovich, Sim-U-Sketch: A Sketch-Based Interface for

Simulink, Proceedings of AVI-2004 (2004) 354-357.
12. Newman M W, James L, Hong J I, et al: DENIM: An informal web site design tool

inspired by observations of practice, HCI, Vol. 18 (2003) 259-324.
13. Sun Z X, Wang Q, Yin J F, et al, Incremental Online Sketchy Shape Recognition with

Dynamic Modeling and Relevance Feedback, Proceedings of ICMLC2004, Shanghai,
China, (2004) 3787-3792.

14. Sun Z X, Yin J F, Yuan B, A novel approach for sketchy shape recognition, Proceedings
of GREC2005, Hong Kong, China, (2005).

	Introduction
	Sketch-Based Informal User Interfaces for Graphic Computing
	Magic-Sketch: A Sketch-Based Platform for Graphic Input
	Overview of Magic-Sketch
	Adaptive Sketch Recognition Based on Templates
	Dynamic User Modeling

	Conclusion
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

