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Abstract. Myocardial Contrast Echocardiography (MCE) is a recent
technique that allows to measure regional perfusion in the cardiac wall.
Segmentation of MCE sequences would allow simultaneous evaluation
of perfusion and wall motion. This paper deals with the application of
partial differential equations (PDE) for tracking the endocardial wall. We
use a variational optical flow method which we solve numerically with
a multigrid approach adapted to the MCE modality. The data sequence
are first smoothed and a hierarchical-iterative procedure is implemented
to correctly estimate the flow field magnitude. The method is tested on
several sequences showing promising results for automatic wall tracking.

1 Introduction

The analysis of the motion of the heart wall is a standard technique for studying
myocardial viability [1]. The measurement of cardiac perfusion using ultrasound
imaging has recently become available with contrast agents. Contrast agents pro-
vide information about the degree of perfusion and the speed of reperfusion of
the myocardium. Tracking of the myocardium would allow simultaneous quan-
tification of wall motion and perfusion. Caiani [3] et al. proposed an interactive
tracking method that segmented each frame independently.

In this work, we consider a new optical flow algorithm proposed recently in
[4] where real time performances are reported when test sequences of synthetic
images are considered. Our aim is to evaluate the effectiveness of the Combined
Local-Global approach (CLG) for endocardial tracking where noisy corrupted
image sequences are analysed. The algorithm combines local and global regular-
ization of the flow field. A hierarchical implementation has been designed that
allows to capture large inter-frame motion present in clinical sequences acquired
with low frame rate. To filter the high degree of speckle present in the image,
we evaluate two different smoothing schemes.

This paper is organized as follows: Section 2 introduce to the basic material
and definitions. The algorithms used in the model cases are detailed, the recon-
struction steps and the numerical implementation are presented. In Section 3
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Fig. 1. Frames of two myocardial contrast echocardiography sequences. Short axis view
(left) and apical four-chamber view (right)

we show the results we have obtained with different pre-processing steps as well
as a parametric study relating the optical flow problem and the segmentation
paradigm. Section 4 is devoted to the discussion and future work.

2 Material and Methods

The use of PDE’s is becoming a standard tool in digital images processing and
reconstruction [8]. On the other hand multigrid methods represent a new com-
putational paradigm which can outperform the typical gradient descent method.

2.1 Preprocessing

Before applying an optical flow algorithm a pre-processing smoothing step is
necessary ([2]), specially when dense flow fields and noisy images are analised.
Otherwise a mismatch in the direction field appears. This step, usually, amounts
to a convolution of the original sequences with a Gaussian kernel of standard
deviation σ. As a result we get a smoothed new sequence of images which can
be considered as the initial data of the CLG algorithm. This filtered version can
suffer from several drawbacks when tracking is performed. In fact the resulting
convolved images have a blur in the boundary of the cardiac wall and this can
complicate its tracking. As an alternative, we have also pre-processed the original
sequence with a Total Variation scheme because of its well known properties ([8])
as regards to edge preservation.

2.2 CLG Approach for Optical Flow

In this section, following Bruhn et al. ([4]), we shall introduce the basic notation
and equations. Let g(x, y, t) be the original image sequence where (x, y) ∈ Ω
denotes the pixel location, Ω ⊂ �2 is a bounded image domain and t denotes
time. Let f(x, y, t) be its smoothed version which represents the initial data of
the CLG algorithm.

The optical flow field (u(x, y), v(x, y), t)T at some time t is then computed
as the minimum of the energy functional

E(u, v) =
∫

Ω

(
ωT Jρ(∇3f)ω + α(|∇u|2 + |∇v|2)) dxdy
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where the vector field ω(x, y) = (u(x, y), v(x, y), 1)T is the displacement, ∇u =
(ux, uy)T and ∇3f = (fx, fy, ft)T . The matrix Jρ(∇3f) is given by Kρ ∗ (∇3f
∇3f

T ) where ∗ denotes convolution, Kρ is a gaussian kernel with standard de-
viation ρ and α > 0 is a regularization parameter. More details of CLG method
can be found in [7]. As usual in the variational approach the minimum of the
energy E(u, v) corresponds to a solution of the Euler-Lagrange equations

α∆u − [J11(∇3f)u + J12(∇3f)v + J13(∇3f)] = 0 (1)

α∆v − [J12(∇3f)u + J22(∇3f)v + J23(∇3f)] = 0 (2)

where ∆ denotes the laplacian operator. This elliptic system is complemented
with homogeneous Neumann boundary conditions.

As reported in Bruhn et al. [7] this approach speeds up the computation
when compared with the clasical gradient descent method and we shall follow
his indication here.

Discretisation. Optical flow seeks to find the unknown functions u(x, y, t) and
v(x, y, t) on a rectangular pixel grid of cell size hxxhy. We denote by uij and vij

the velocity components of the optical flow at pixel (i, j). The spatial derivates
of the images have been approximated using central differences and temporal
derivatives are approximated with a simple two-point stencil.

The finite difference approximation to the Euler-Lagrange equations (1) and
(2) is given by

0 =
α

h2
x

(ui,j−1 − 2uij + ui,j+1) +
α

h2
y

(ui−1,j − 2uij + ui+1,j) − (3)

−(J11,ijuij + J12,ijvij + J13,ij)

0 =
α

h2
x

(vi,j−1 − 2vij + vi,j+1) +
α

h2
y

(vi−1,j − 2vij + vi+1,j) − (4)

−(J21,ijuij + J22,ijvij + J23,ij)

where Jnm, ij is the component (n, m) of the structure tensor Jρ(∇3f) in the
pixel (i, j).

2.3 Numerical Implementation

The system of equations 3 and 4 has a sparse system matrix and may be solved
iteratively with a Gauss-Seidel scheme [5].

System Resolution. Iterative solvers of equation systems, such as Gauss-
Seidel, have an great initial convergence, however, after the initial iterations
the convergence slows down significatly. Multigrid algorithms, take this idea and
combine it with a hierarchy model of equations systems that come from differ-
ents levels of detail in the problem discretisation. The main idea of multigrid
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methods is to first aproximate one solution in a level of discretisation, then cal-
culate the error of the solution from a coarser level and correct the aproximate
solution with the error.

Suppose that the system Ax = b has arisen from the above discretization.
We can obtain a approximate solution, x̃, with a few iterations of an iterative
method, say the Gauss-Seidel method. It is posible to calculate the error e of the
solution and correct the solution: x = x̃ + e. We calculate e from the residual
error

r = b − Ax̃

As A is a linear operator, we can find e solving the equation system

Ae = r

Solving this equation requires the same complexity as solving Ax = b, but we
can solve Ae = r at a coarser discretisation level, where the problem is much
smaller and will be easier to solve [6]. Once we have e at he coarser level, we
calculate ê interpolating e from the coarser level to the finest level and suddenly
we do the correction x = x̃ + ê.

The multigrid method takes this idea of approximate-correction and yields
it to several levels of discretisation. The detailed algorithm is: (the superscripts
h1, h2...hn indicates the level of discretisation: h1 the finest level and hn the
coarsest level)

– We start at the finest level (h1). With a few iterations of Gauss-Seidel method
we aproximate a solution x̃h1 of the system

Ah1xh1 = bh1

We calculate the residual error rh1

rh1 = bh1 − Ah1 x̃h1

– In this step we solve the equation Ae = r in the next coarser level of dis-
cretisation:

Ah2eh2 = rh2

Restrict rh1 to rh2 , Ah1 to Ah2 . Now, we recall eh2 such as xh2 , and rh2 such
as bh2 . The equation is now

Ah2xh2 = bh2

At level h2, we aproximate a solution x̃h2 with a few iterations, and repeat
the process throw levels until reach the level hn.

– At level hn, the equation Ahnxhn = bhn is exactly solved. Be x̃hn to the
exact solution in this level.

Now we start the correction of the solutions calculated at the levels.

– Interpolate x̃hn to level hn−1 and add to x̃hn−1 to obtain x̂hn−1
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– Starting from x̂hn−1 , run a few iterations of Gauss-Seidel over

Ahn−1x = bhn−1

– Interpolate the new calculated aproximation x̃hn−1 to the level hn−2 and
repeat the process throw levels until the level h1 is reached.

– The solution obtained in the h1 is the solution of the original system.

Two operators are needed to move between levels in the multigrid. The re-
strictor operator used is a arithmetic mean and the interpotalion operator is a
constant interpolation.

Large Displacements: Hierarchical Approach. The CLG method, as all
variational methods, assumes that the movement of the objects in two consecu-
tive images is small. This is necessary because CLG is based on the a linearisation
of the grey value constancy assumption and the movements must be small for
holds the linearisation. However, this is not in MCE imaging where acquisition
frame rate can be small and heart motion can be non-linear.

This limitation can be overcome by calculating optical flows in coarser scales,
where the displacements are smaller. To calculate the optical flow of two con-
secutive images I1 and I2, we scale the two images into several levels, L1 to Ln,
obtaining I11, I12, .., I1n and I21, I22, .., I2n, where L1 is the finest level (the
original images), Ln is the coarsest level and I1i I2i correspond to the scaled
images. The detailed process is:

– Compute the optical flow, un and vn, at the level Ln between the images
I1n and I2n.

– Interpolate the optical flow to the next level Ln−1. Compute a new image
I1w

n−1 warping In−1 with the interpolated optical flow, then compute a new
optical flow among I1w

n−1 and I2n−1. Correct the interpolated optical flow
with the new optical flow adding the two fields.

– Repeat the process until level L1. The final optical flow is the corrected
optical flow at level L1.

Improving the Optical Flow: Iterative Hierarchical Approach. In the
ultrasound test sequences we noticed that the algorithm computes a correct field
direction but it subestimates the magnitude of the displacement. To overcome
this handicap we repeat the computation of the optical flow, warp the initial
image and calculate a new optical flow. This process is repeated iteratively until
the highest displacement is less than ‖ hx, hy ‖. The final optical flow is the sum
of all previously obtained optical flow values. This iterative process is applied
only at scale levels L2 to Ln.

3 Results

Algorithms were evaluated using images provided by Gregorio Marañón Hospital
in Madrid. The algorithm has been tested on two type of sequences, to take
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1.A 1.B

2.A 2.B

3.A 3.B

Fig. 2. Results of endocardial tracking with different preprocessing methods. Figures
1.A, 2.A, 3.A have been obtained with TV filtering while figures 1.B, 2.B and 3.B have
been obtained with a gaussian (σ = 3)

into account different signal to noise ratios and different acquisition views. The
first are short-axis views obtained during experimental surgery. The second are
clinical images obtained from patients in a four-chamber view.

A first set of experiments was carried out to evaluate the two different pres-
moothing filters. The role of the smoothing process is to improve the results
of the tracking. Therefore, the evaluation was carried out by comparing the re-
sult of the tracking with both filters on the same sequences. Fig. 2 shows the
result on three frames with both filters. We did not appreciate any substantial
improvement using the TV filter. As the gaussian filter is computationally more
efficient, all further tracking results are obtained using this filter. To evaluate the
optical flow algorithm the endocardial wall was manually segmented in the first
frame of the sequence and the wall was automatically tracked in the remaining
frames using the CLG algorithm with α = 200 and ρ = 3. Fig. 2 shows examples
of automatic tracking on short axis views. Fig. 3 shows the results on several
frames of a four-chamber view sequence. Notice the different degrees of perfusion
of the heart wall.

4 Discussion and Future Work

The results obtained in our study indicate that the CLG algorithm can be suc-
cesfully applied to myocardial contrast echocardiography sequences. We have
designed an iterative-hierarchical approach that allows to capture large displace-
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Fig. 3. Results of automatic tracking on several frames of a clinical sequence

ments accurately. The cardiac wall is tracked using only the information provided
by the dense optical-flow. Post-processing of the curve to include curvature or
smoothness assumptions would improve the current results. Also notice that the
model does not assume any hypothesis about the specific noise of this specific
imaging modality. Future work will consist in evaluating a denoising step com-
bined with nonlinear regularization as preprocessing.
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