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Abstract. Experiments in DNA microarray provide information of thou-
sands of genes, and bioinformatics researchers have analyzed them with
various machine learning techniques to diagnose diseases. Recently Sup-
port Vector Machines (SVM) have been demonstrated as an effective tool
in analyzing microarray data. Previous work involving SVM used every
gene in the microarray to classify normal and malignant lymphoid tis-
sue. This paper shows that, using gene selection techniques that selected
only 10% of the genes in “Lymphochip” (a DNA microarray developed
at Stanford University School of Medicine), a classification accuracy of
about 98% is achieved which is a comparable performance to using every
gene. This paper thus demonstrates the usefulness of feature selection
techniques in conjunction with SVM to improve its performance in an-
alyzing Lymphochip microarray data. The improved performance was
evident in terms of better accuracy, ROC (receiver operating character-
istics) analysis and faster training. Using the subsets of Lymphochip, this
paper then compared the performance of SVM against two other well-
known classifiers: multi-layer perceptron (MLP) and linear discriminant
analysis (LDA). Experimental results show that SVM outperforms the
other two classifiers.

1 Introduction

The DNA microarray provides information of thousands of genes, which could
be harnessed for different purposes. One common use is to separate cancerous
from healthy cells using either unsupervised or supervised classifiers [1–3, 17, 21].
Alizadeh et al. [1] used unsupervised classifier to group genes having similar ex-
pression patterns in order to separate healthy from cancerous cells. In recent
years, supervised methods have also been used for this classification task; for ex-
ample, decision tress, linear discriminant analysis (LDA), multi-layer perceptron
(MLP), support vector machines (SVM) and many others [5, 10, 12, 14]. In gen-
eral, supervised methods have been shown to perform better than unsupervised
methods.

Using the microarray in Alizadeh’s study, Valentini [21] showed that a su-
pervised method can achieve a significantly higher classification accuracy than
that reported by Alizadeh et al. [1]. In his study, Valentini trained SVM using all
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4026 genes in the microarray to separate normal from malignant cells. However,
use of such high feature dimensions reduces the efficiency of SVM.

The purpose of this paper is to test whether, by adopting gene (feature)
selection techniques in conjunction with SVM, the same level of accuracy can be
achieved using only a subset of the total number of genes. Fewer number of genes
require less computational time for SVM as an added advantage. Identifying the
contributing genes in this process also enables biologists to concentrate on few
genes to explore their roles in malignancy development in greater details. We
repeated Valentini’s experiment by training SVM using the same microarray,
and in addition, we trained more SVMs using only about 10% of the original
microarray; the subset genes were derived from feature selection techniques. As
MLP and LDA have been previously used for classifying microarray, we also
compared the performance of SVM with these two methods on the selected
subsets.

This paper is organised as follows. Section 2 discusses the methods for obtain-
ing the subsets. Section 3 describes the three classifiers investigated. Section 4
describes the experimental set up, and Section 5 contains the results and discus-
sion of results. Section 6 concludes the paper and provides direction for future
work.

2 Gene Selection

Feature selection obtains a subset from a complete set of features and can
increase the efficiency of the classifier by reducing redundant and irrelevant
features. It can be formally defined as follows. Let S be a subset of X and
S = {s1, s2, · · · , sn|si ∈ X, n << ||X ||}, where n is the number of features in the
subset. The feature selection function F selects si from X , that is F : X → S.
In general, feature selection can be broadly classified into three sub-areas: em-
bedded, filter and wrapper [15]. In this paper, we concentrated on filter-based
feature selection.

The filtering method reduces redundancies within the data by selecting only
relevant features. However, the definition of relevance is domain dependant, and
it has been known that although irrelevant features are less useful for classifiers,
not all relevant features are necessarily useful [6].

In this paper, more generic approaches were adopted for feature selection
using two statistical methods: the t -test and Significant Analysis of Microarrays
(SAM). The rationale for using statistical tests is that they are often used to
validate the significance of different treatments to influence an outcome. There-
fore, by performing statistical tests on the microarray features, it is possible to
reduce redundancy by excluding features that are not statistically significant.
The following sections briefly describe these two statistical methods.

2.1 Standard t-Test
The standard t -test is defined as:

t -test =
x̄i,1 − x̄i,2

σ̂i

√
1

n1
+ 1

n2

(1)
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where xi,1 − xi,2 is the difference of the means between the two classes, n1 and
n2 are the number of samples in the two classes, and σ̂i is within-class standard
deviation for gene i [9].

2.2 Significance Analysis of Microarrays (SAM)

The standard t -test was proposed for testing the significance of any data, while
SAM was proposed specifically for testing the significance of genes in microar-
rays. Tusher et al. [20] argued that the t -test may discover many significant genes
by chance, and subsequently proposed the development of SAM. SAM assigns
each gene a score calculated on the basis of change in gene expression relative
to standard deviation of repeated measurements.

The statistical test in SAM is given by d(i), the “relative difference” of gene
i and s(i), the “gene-specific scatter” of gene i. Tusher et al. defined d(i) as [20]:

d(i) =
x̄I(i) − x̄U (i)

s(i) + s0
(2)

where x̄I(i) is the average level of expression for gene (i) in states I, x̄U in state
U , s0 is a data dependent constant, and

s(i) =

√√√√a

{∑
m

[xm(i) − x̄I(i)]2 +
∑

n

[xn(i) − x̄U (i)]2
}

(3)

where
∑

m is the summation of the expression measurements in state I,
∑

n in
state U , a = 1/nI+1/nU

nI+nU−2 , and nI is the number of measurements in state I, and
nU in state U . The genes are then ranked in order of the magnitude of d(i) and
those larger than a threshold value are considered significant.

3 Formulation of the Three Classifiers Studied

This section describes the formulation of SVM, MLP and LDA, the three super-
vised classifiers used in this paper.

3.1 Support Vector Machines (SVM)

Support vector machine introduced by Vapnik [22] has attracted much research
attention in recent years due its demonstrated improved generalization perfor-
mance over other techniques in many real world applications including the anal-
ysis of microarrays [5, 21]. It has been used in classification as well as regression
tasks. The main difference between this technique and many other conventional
classification techniques including neural networks is that it minimizes the struc-
tural risk instead of the empirical risk. The principle is based of the fact that
minimizing an upper bound on the generalization error rather than minimizing
the training error is expected to perform better. The generalization error rate is
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bounded by the sum of training error rate and a term that depends on Vapnik-
Chervonenkis (VC) dimension [13]. VC dimension is a measure of complexity
of the dimension space. Support vector machines find a balance between the
empirical error and the VC-confidence interval. SVMs perform by nonlinearly
mapping the input data into a high dimensional feature space by means of a
kernel function and then do classification in the transformed space.

Consider a data set consisting D = (xi, yi)
L
i=1 of L, with each input xi ∈

�n and the associated output yi ∈ {-1,+1}. Searching an optimal separating
hyperplane (OSH) in the original input space is too restrictive in most practical
cases. In SVM, each input x is first mapped into a higher dimension feature
space F by z = φ(x) via a nonlinear mapping φ : �n → F . Considering the case
when the data are linearly separable in F , there exists a vector w ∈ F and a
scalar b that define the separating hyperplane as: w.z + b = 0 such that

yi(w.zi + b) ≥ 1, ∀i. (4)

SVM constructs an OSH for which the margin of separation between the two
classes is maximized. This margin is 2/||w|| according to its definition. Hence
the unique hyperplane that optimally separates the data in F is the one that

min
1
2
w.w (5)

under the constraints of Eq. (4). When the data is linearly non-separable, the
above minimization problem must be modified to allow classification error. This
is done by generalizing the previous analysis with the introduction of some non-
negative variables ξi ≥ 0, often called slack variables, such that

yi(w.zi + b) ≥ 1 − ξi, ∀i. (6)

Only the misclassified data points xi yield nonzero ξi. The term
∑L

i=1 ξi can be
regarded as a measure of misclassification. Thus the OSH is determined so that
the maximization of the margin and minimization of training error is achieved
by adding a penalty term to Eq. (5):

min
1
2

w.w + C

L∑
i=1

ξi (7)

subject to yi(w.zi + b) ≥ 1 − ξi and ξi ≥ 0, ∀i

where C is a constant parameter, called regularization parameter, that deter-
mines the trade off between the maximum margin and minimum classification
error. Minimizing the first term corresponds to minimizing the VC-dimension of
the classifier and minimizing the second term controls the empirical risk.

Searching the optimal hyperplane in Eq. (7) is a Quadratic Programming
(QP) problem that can be solved by constructing a Lagrangian and transforming
in a dual. The optimal hyperplane can then be shown as the solution of

min W (α) = ΣL
i=1αi − 1

2
ΣL

i=1Σ
L
j=1αiαjyiyjK(xi,xj) (8)
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subject to ΣL
i=1yiαi = 0 and 0 ≤ αi ≤ C, ∀i

where α = (α1, α2, . . . , αL) is the non-negative Lagrangian multiplier. The data
points xi corresponding to αi > 0 lie along the margins of decision bound-
ary and are support vectors (sv). The kernel function K(.) describes an inner
product in the D-dimensional space as described later and satisfies the Mercer’s
condition [8].

Having determined the optimum Lagrange multipliers, the optimum solution
for the weight vector w is given by

w = Σi∈svαiyizi (9)

where sv are the the support vectors. For any test vector x ∈ �n, the output is
then given by

y = sign(w.z + b) = sign(Σi∈svαiyiK(xi,x + b)) (10)

The generalization performance (i.e. classification accuracy in this study) de-
pends on the parameters C and kernel type. In this study, we used the following
kernel functions which are commonly used:

Linear K(xi,xj) = xi.xj

Polynomial K(xi,xj) = {a(xi.xj) + b}d

Radial basis (RBF) K(xi,xj) = exp(− ‖xi−xj‖2

2σ2 )

Sigmoid K(xi,xj) = tanh(xi.xj + c)

3.2 Multi-layer Perceptron (MLP)

A three layer MLP has an input layer, a hidden layer and an output layer.
Successive layers are fully connected by weights. An input vector x is presented
to the network and multiplied by the weights. All the weighted inputs to each
unit of upper layer are then summed up and produce an output governed by h
and y, which are defined as

h = f(Wh.x + θh)and (11)

y = f(Wo.h + θo) (12)

where y is the output vector produced by the network, Wh and Wo are the hid-
den and output layer weight matrices, respectively, h is the vector denoting the
response of hidden layer, θh and θo are the output and hidden layer bias vectors,
respectively and f(.) is the sigmoid activation function. The standard Backprop-
agation training algorithm [18] uses gradient descent techniques to minimize the
sum of squared error measured at the output layer. In this study, we used an
Levenberg and Marquardt technique to accelerate learning speed [16].
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3.3 Linear Discriminant Analysis (LDA)

In LDA an n-dimensional data is projected onto a line according to a given direc-
tion w. The choice of the projection direction is determined by different criteria.
The Fischer’s linear discriminant aims at maximizing the ratio of between-class
scatter to within-class scatter [4]. Let Iy = {i : yi = y}, y ∈ {−1, +1} be the sets
of indices of training vectors belonging to the first and second class, respectively.
The class separability in a direction w ∈ �n is found by maximizing the function
J(w), which is defined as

J(w) =
wtSbw
wtSww

(13)

where Sb and Sw are the between-class and within-class scatter matrices, respec-
tively.

4 Experimental Setup

We used the Lympochip (a DNA microarray developed at Stanford Univer-
sity School of Medicine [1]); 24 samples were collected from healthy cells and
72 samples collected from malignant lymphocytes cells, and each sample con-
sists of 4026 different genes. We then used the t -test and SAM implemented in
BRB-ArrayTools [19] to derive two subsets of Lymphochip, so in total there are
now three sets of Lymphochip (see the Appendix for the BRB-ArayTools param-
eters). For convenience, we refer to the complete set of genes as Lymphochip,
the subset selected by t -test as Lt−test and the subset by SAM as LSAM . The
total number of genes in Lymphochip, Lt−test and LSAM are 4026, 387 and 418,
respectively. Note that both subsets have only about 10% of the total number
of genes in Lymphochip.

We trained SVM classifiers using four kernels (linear, RBF, polynomial and
sigmoid) for all three data sets using libsvm [7]. As SVM is sensitive to training
parameters such as the regularisation parameters (C) and the parameters for
each kernel type, we generated 1856 SVM by varying the values of C from 2−31

to 227 with an increment of (22). The parameters a in the polynomial kernel,
γ = (1/2σ2) in RBF and c in sigmoid were all varied from 2−31 to 29 with an
increment of 22. The parameter d in the polynomial kernel was varied from 2 to
11 with an increment of 1.

We also trained LDA and MLP using Lt−test and LSAM and compared the
best performing SVM kernel (on Lt−test and LSAM) with LDA and MLP. The
MLP was trained using 5 to 13 hidden nodes with an increment of two nodes and
the training was stopped when the mean square error reached 0.01 or smaller.
As MLP settles down to different set of weights depending on initial weights
and learning parameters producing different results on each run, it is a com-
mon practice to generate multiple runs of MLP and use the average results for
comparison. In this experiment, MLP was trained 20 times using different initial
weights and learning parameters. LDA is the simplest classifier of the three and
requires no parameters setting. Like SVM, it is also a non-stochastic process, so
it is adequate to run it only once.
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The 6-fold cross-validation technique was used in all experiments, and each
fold contained 4 healthy and 12 malignant samples. The performance of all clas-
sifiers was then analysed using the average accuracy, sensitivity and specificity
of the 6-fold data measured as

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (14)

Sensitivity =
TP

TP + FN
× 100% (15)

Specificity =
TN

TN + FP
× 100% (16)

where TP is the number of true positives i.e. the number of malignant cells
labelled as malignant; TN is the number of true negatives i.e. the number of
healthy cells labelled as healthy; FP is the number of false positive i.e. the num-
ber of healthy cells labelled as malignant; and FN is the number of false negative
i.e. the number of malignant cells labelled as healthy. Accuracy measures the
overall detection for both healthy and cancerous cells. Sensitivity measures the
ability of a classifier in recognizing malignant cells whereas specificity measures
the ability of a classifier for not failing to detect healthy cells.

To further analyse how well the classifiers are able to generalize on un-
seen data, we employed Receiver Operating Characteristics (ROC) curves and
calculated the area under the curves. ROC curve plots sensitivity against (1-
specificity) as the threshold level of the classifier is varied. ROC analysis is
commonly used in medicine and healthcare to qualify the accuracy of diagnostic
test and evaluate performance of intelligent system [11].

5 Results and Discussion

This paper first discusses the performance of SVM using four kernels in Lym-
pochip, Lt−test and LSAM (Section 5.1) and then compared the best performing
SVM kernel against MLP and LDA using Lt−test and LSAM (Section 5.2)

5.1 Performance of SVM in Lymphochip, Lt−test and LSAM

The average sensitivity, specificity and accuracy for 6-fold cross validation of the
four SVM kernels using the three data sets are presented in Table 1. We first
compare the effectiveness of the different SVM kernels within each data sets,
then across different data sets. For polynomial kernel the second degree (d = 2)
produced the best results and is referred as Poly2 in the table.

It is clear that for Lymphochip, the accuracy of linear, RBF and sigmoid
kernels are equally good and are also the best whereas the two-degree polyno-
mial has lower specificity and accuracy. While for Lt−test, only the RBF and
polynomial kernels are equally good, followed by the linear and sigmoid kernels.
It is difficult to say whether the linear kernel is better than the sigmoid ker-
nel because although its sensitivity is better than that of the sigmoid kernel,
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Table 1. The average sensitivity, specificity and accuracy for 6-fold cross validation of
four SVM kernels using the three datasets: Lymphochip, Lt−test and LSAM

Kernel Lympochip Lt−test LSAM

Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc.

Linear 100.0 91.67 97.92 98.61 91.67 96.88 98.61 91.67 96.88

RBF 100.0 91.67 97.92 100.0 91.67 97.92 100.0 91.67 97.92

Poly2 100.0 79.17 94.79 100.0 91.67 97.92 100.0 87.5 96.88

Sigmoid 100.0 91.67 97.92 97.22 95.83 96.88 97.22 95.83 96.88

its specificity is worse than that of the sigmoid kernel. Interestingly, the speci-
ficity of Poly2 in Lt−test is better than in Lympochip. This means that having
higher number of genes does not necessarily improves performance. For LSAM ,
the RBF kernel performs the best, followed by the linear and sigmoid kernels
and lastly, the Poly2 kernel. Again, it is difficult to rank the last three kernels
because each performs well in different measures. As in Lt−test, the specificity
of Poly2 is slightly better than in Lymphochip.

After comparing the performance of kernels within each data set, we now
compare the accuracy of the best performing kernel across all data sets. The
results suggest that the RBF kernel is the most suitable kernel for this microarray
as it performs no worse than any of the other kernels across all data sets. The
observation also suggests that it is possible to achieve the same level of accuracy
using reduced subsets, Lt−test and LSAM , especially by choosing appropriate
kernel type. This is significant because both subsets have only about 10% of the
number of genes in Lymphochip and they were derived without using any domain
knowledge. The reduced number of genes reduces the training time of SVM by
about 90% on average. More importantly, this added advantage comes without
sacrificing the accuracy, enabling biologists to further explore the influence of
the subset genes in malignancy development.

For further analysis, we studied the ROC curves and the area under the
curves. The area under the ROC curve (AUC) summarizes the quality of the
classification and is used as a single measure of accuracy [11]. A maximum at-
tainable value of AUC is 1.0 and the higher value is more desirable. Figure 1
shows the ROC curves and AUC of all four kernels using the three data sets.
It can be seen that apart from Poly2, the curves of the other three kernels re-
main reasonably close. It is interesting to note that Poly2, despite having a lower
specificity in Lymphochip than in Lt−test and LSAM , it actually has better AUC
in Lymphochip than in Lt−test and LSAM .

For the Lymphochip data set, it appears that the performance of all kernels
except Poly2 is comparable. It is only at the subsets that we see more varia-
tion, most notably in the Poly2 kernel and, to a lesser degree, in the sigmoid
kernel. This finding confirms the observation made earlier on the sensitivity,
specificity and accuracy in that the performance of the kernels in Lympochip is
more uniform than in the subsets. Notably, the AUC for RBF kernel in all the
datasets are comparable. This result shows that RBF kernel is most suitable for
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Fig. 1. ROC curves and areas under ROC curves (AUCs) of the four SVM kernels
evaluated using (a) Lympochip and the subsets (b) Lt−test and (c) LSAM

lymphoma microarray data, as it performs well across three data sets, and it is
also consistent with the analysis based on sensitivity, specificity and accuracy
measures. Given that the performance of Lt−test and LSAM are comparable to
using all genes, we can reasonably conclude that it is possible to use SVM-RBF
most effectively in conjunction with gene selection techniques.

The next section compares the performance of SVM with other well known
classifiers (MLP and LDA) using the Lt−test and LSAM subsets.

5.2 Comparing SVM Against MLP and LDA in Lt−test and LSAM

This section compares the best performing SVM kernel with MLP and LDA. To
recap, the MLP were trained using 5 to 13 hidden nodes and for convenience, they
are labelled from MLP-5 to MLP-13. Table 2 compares the sensitivity, specificity
and accuracy of the SVM-RBF, MLP and LDA; the results for all MLP are the
average from 20 runs. It can be seen from Table 2 that increasing the number of
hidden nodes does not necessarily increase its effectiveness: in both Lt−test and
LSAM , MLP-11 has higher specificity and accuracy than MLP-13.

It is clear that SVM-RBF outperforms both MLP and LDA. As LDA is only
suitable for linearly separable classification, the poor results seem to suggest that
the classification on the reduced dataset is non-linearly separable. This would
also explain why MLP performs better than LDA; MLP is known to perform
well for non-linearly separable classifications.
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Table 2. The sensitivity, specificity and accuracy of SVM-RBF (the best performing
kernel), MLP with different hidden nodes and LDA

Classifiers Lt−test LSAM

Sens. Spec. Acc. Sens. Spec. Acc.

SVM-RBF 100.0 91.67 97.92 100.0 91.67 97.92

MLP-5∗ 95.49 87.71 93.54 92.85 91.67 92.55

MLP-7∗ 96.18 86.25 93.70 96.11 86.04 93.59

MLP-9∗ 96.11 90.42 94.69 95.21 90.42 94.01

MLP-11∗ 96.74 90.00 95.05 97.43 92.71 96.25

MLP-13∗ 96.88 88.96 94.90 97.22 88.54 95.05

LDA 76.39 70.83 75.0 72.22 83.33 75.0
*average of 20 runs
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Fig. 2. ROC curves and AUC of the SVM-RBF, MLP-11 and LDA using the subsets
(a) Lt−test and (b) LSAM

Figure 2 compares the ROC curves and AUC of SVM-RBF, MLP-11 and
LDA in Lt−test and LSAM . Note that the AUC for MLP is the average of 20
runs. In both datasets, SVM-RBF perform better than the other two classifiers.
As the MLP was run 20 times, we only show the curve of one run: the run having
the area closest to the average (for Lt−test the area was 0.9792, for LSAM was
0.9896). For both datasets, SVM-RBF yields greater AUC followed by MLP-11
and lastly LDA.

6 Conclusions and Future Works

This paper compared the performance of SVM in four different kernels (linear,
RBF, polynomial and sigmoid) using all 4026 genes in Lymphochip and two
reduced subsets extracted by employing gene selection techniques, where each
set has only about 10% number of genes from the Lymphochip. The performance
was measured in terms of sensitivity, specificity, accuracy and ROC analysis. This
paper showed that the performance of SVM using RBF, the most suitable kernel
for lymphoma microarray data, on small subsets of genes are comparable to the
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results of using all genes. The advantage of using only small subsets is that it
requires less training time for SVM without sacrificing accuracy. Importantly,
these reduced subsets were obtained using generic approaches i.e. without using
any domain knowledge. The reduced sets will help biologists to concrete on fewer
genes to identify their roles in malignancy development.

This paper then compared SVM with MLP and LDA using the two subsets.
Experimental results showed that SVM outperforms the other two classifiers.
Future experiments will involve SVM in gene selection process by determining
the relative influence of selected genes for further reduction of significant gene
set and further classification of malignant cells into main types of lymphoma.

Appendix

The parameters used in generating Lt−test using BRB-ArrayTools were as fol-
lows. P-value was 0.001, multivariate permutation: maximum number of false
discover was 5, maximum portion of false discover was 0.01, confidence level was
95% and the number of permutations was 2000.

The parameters used in generating LSAM using BRB-ArrayTools were the
following: median proportion of false discovery was 0.001 and the number of
permutations was 500.
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