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Abstract. The large number of genes in microarray data makes feature selec-
tion techniques more crucial than ever. From various ranking-based filter pro-
cedures to classifier-based wrapper techniques, many studies have devised their 
own flavor of feature selection techniques. Only a handful of the studies delved 
into the effect of redundancy in the predictor set on classification accuracy, and 
even fewer on the effect of varying the importance between relevance and re-
dundancy. We present a filter-based feature selection technique which incorpo-
rates the three elements of relevance, redundancy and differential prioritization. 
With the aid of differential prioritization, our feature selection technique is ca-
pable of achieving better accuracies than those of previous studies, while using 
fewer genes in the predictor set. At the same time, the pitfalls of over-optimistic 
estimates of accuracy are avoided through the use of a more realistic evaluation 
procedure than the internal leave-one-out-cross-validation.   
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1   Introduction 

When it comes to multiclass microarray datasets, most of the previous classification 
studies have taken one of the following stances: 

1. Feature selection does not aid in improving classification accuracy [1, 2], at least 
not as much as the type of classifier used. 

2. Feature selection is often rank-based, and is implemented mainly with the inten-
tion of merely reducing cost/complexity of subsequent computations (since the 
transformed dataset is smaller), rather than also finding the feature subset which 
best explains the dataset [1, 3]. 

3. Studies proposing feature selection techniques with sophistication above that of 
rank-based techniques resort to an evaluation procedure which often gives overly-
optimistic estimate of accuracy, but has the advantage of costing less computa-
tionally than procedures which yield a more realistic estimate of accuracy [4, 5]. 

From these stances, we see the three levels with which feature selection has been, 
and still is regarded for multiclass microarray datasets: 1) should not be considered at 
all, 2) simple rank-based methods for dataset truncation, and finally, 3) more compli-
cated methods with sound theoretical foundation, but with dubious empirical results. 

An important axiom governing the principles behind most feature selection works 
of the third level can be summarized by the following statement: A good predictor set 
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should contain features highly correlated with the target class distinction, and yet 
uncorrelated with each other [6]. The attribute referred to in the first part of this 
statement is encapsulated in the term ‘relevance’, and has been the backbone for sim-
ple rank-based feature selection techniques, where genes are selected into the predic-
tor set based on the score of their correlation to the target class distinction. The meas-
urement of the aspect alluded to in the second part, ‘redundancy’ however, is not as 
straightforward, since the pairwise relationship between each pair of genes in the 
predictor set needs to be taken into account.  

Previous studies [4, 6] have based their filter-based feature selection techniques on 
the concept of relevance and redundancy having equal role in the formation of a good 
predictor set. On the other hand, Guyon and Elisseeff demonstrated using a 2-class 
problem that seemingly redundant features may improve the discriminant power of 
the predictor set instead [7], although it remains to be seen how this scales up to mul-
ticlass domains with thousands of features. A study was implemented on the effect of 
varying the importance of redundancy in predictor set evaluation in [8]. However, due 
to its use of a relevance score that was inapplicable to multiclass problems, the study 
was limited to binary classification. 

From here, we can rephrase the three levels of feature selection for tumor classifi-
cation as follows: 1) no selection, 2) pick based on relevance alone, and finally, 3) 
pick based on relevance and redundancy. Thus, currently, relevance and redundancy 
are the two existing components used in predictor set scoring methods to evaluate the 
goodness of a predictor set. 

We propose going one step further, by introducing the third element, this element 
being the relative importance placed between relevance vs. redundancy. This third 
element compels the search method to prioritize the optimization of one of the ele-
ments (of relevance and redundancy) at the cost of the optimization of the other. The 
degree of differential prioritization is determined by this third element. That is, unlike 
other existing redundancy-based feature selection studies, with our proposed feature 
selection technique, it is not taken for granted that the optimizations of both elements 
of relevance and redundancy are to have equal priorities in the search for the optimal 
predictor set.  

The effectiveness of our proposed feature selection technique on the tumor classifi-
cation of a multiclass microarray dataset has been reported in [9]. However, this paper 
aims to do more than illustrate the efficacy of the technique on various other multi-
class microarray datasets. More importantly, applying our technique to multiple such 
datasets makes it possible for us to discern the relationship between dataset character-
istics and the optimal degree of differential prioritization for a particular dataset. 

Having introduced the element of differential prioritization, we go on to demon-
strate the importance of applying evaluation procedure which yields more realistic 
estimate of accuracy than the internal cross validation procedure used in recent tumor 
classification studies [3, 4, 5]. This is done by evaluating our feature selection tech-
niques using two evaluation procedures: the first being the F-splits procedure, the 
second is the aforementioned internal cross validation procedure. 

The contributions of this study are threefold: 1) to show that a degree of freedom in 
adjusting the priorities between maximizing relevance and minimizing redundancy is 
necessary to produce the best classification performance (i.e. equal-priorities tech-
niques might not yield the optimal predictor set); 2) to demonstrate the relationship 
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between dataset characteristics and the optimal degree of differential prioritization; 
and 3) to highlight the importance of using a realistic evaluation procedure. 

2   Methods 

The training set upon which feature selection is to be implemented, T, consists of N 
genes and Mt training samples. Sample j is represented by a vector, xj, containing the 
expression of the N genes [x1,j,…, xN,j]

T and a scalar, yj, representing the class the 
sample belongs to. The target class vector y is defined as [y1, …, yMt], yj∈[1,K] in a K-
class dataset. Gene i, on the other hand, is represented by vector gi, containing expres-
sion of gene i across the Mt samples in the training set, [xi,1,…, xi,Mt]. From the total of 
N genes, the objective of feature selection is to form the subset of genes, called the 
predictor set S, which would give the optimal classification accuracy.  

2.1   The Antiredundancy-Based Scoring Method 

A score of goodness incorporating both the elements of maximum relevance and 
minimum redundancy ensures that the optimal predictor set should possess maximal 
power in discriminating between different classes (maximum relevance), while at the 
same time containing features with minimal correlation to each other (minimal redun-
dancy). 

For the purpose of defining our predictor set scoring method, without loss of gen-
erality, we define the following parameters.  

• VS  is the measure of relevance for the candidate predictor set S.  
• US  is the measure of antiredundancy for the candidate predictor set S.  

Both VS and US are to be maximized in the search for the optimal predictor set. 
US quantifies the lack of redundancy in S. With US, we have an antiredundancy-

based scoring method in which the measure of goodness for predictor set S is given as 
follows. 

( ) ( ) αα −⋅= 1
, SSSA UVW  (1) 

where the power factor α ∈ (0, 1] denotes the degree of differential prioritization 
between maximizing relevance and maximizing antiredundancy.  

2.2   Significance of the Differential Prioritization Factor, α 

In the previous section it has been stated that an optimal predictor set is to be found 
based on two criteria: maximum relevance and maximum antiredundancy. However, 
the quantification of the priority to be assigned to each of these two criteria remains 
an unexplored area.  

In the antiredundancy-based scoring method, decreasing the value of α forces the 
search method to put more priority on maximizing antiredundancy at the cost of 
maximizing relevance. Raising the value of α increases the emphasis on maximizing 
relevance (at the same time decreases the emphasis on maximizing antiredundancy) 
during the search for the optimal predictor set. A predictor set found using larger 
value of α has more features with strong relevance to the target class vector, but also 
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more redundancy among these features. Conversely, a predictor set obtained using 
smaller value of α contains less redundancy among its member features, but at the 
same time also has fewer features with strong relevance to the target class vector. At 

5.0=α , we get an equal-priorities scoring method. At  1=α , the feature selection 
technique becomes rank-based. 

We posit that different datasets will require different degrees of prioritization be-
tween maximizing relevance and maximizing antiredundancy in order to come up 
with the most efficacious predictor set. Therefore the optimal range of α (optimal as 
in leading to the predictor set giving the best estimate of accuracy) is dataset-specific.  

2.3   Definitions of Relevance and Antiredundancy 

The measure of relevance for S is computed by averaging up the score of relevance, 
F(i) of all members of the predictor set, as recommended in [4]: 

( )∑=
∈Si

S iF
S

V 1
 (2) 

F(i) is the score of relevance for gene i. It indicates the correlation of gene i to the 
target class vector y. For continuous-valued datasets, a popular parameter for comput-
ing F(i) is the BSS/WSS ratios (the F-test statistics) used in [4, 10]. For gene i, 
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where I(.) is an indicator function returning 1 if the condition inside the parentheses is 
true, otherwise it returns 0. •ix  is the average of the expression of gene i across all 

training samples, while ikx  is the average of the expression of gene i across training 
samples belonging to class k. The BSS/WSS ratio, first used in [10] for multiclass 
tumor classification, is a modification of the F-ratio statistics for one-way ANOVA 
(Analysis of Variance). It indicates the gene’s ability in discriminating among sam-
ples belonging to the K different classes. 

The measure of antiredundancy for S is computed by summing up one minus abso-
lute values of the measures of correlation between all possible pairwise combinations 
of the members of S, and normalizing by division with the square of the size of S. 
Since both correlation and anti-correlation contribute to redundancy in S, absolute 
values of correlation are used.  

( )∑ −=
∈Sji

S jiR
S

U
,2 ,11

 (4) 

For continuous-valued datasets, a conventional measure of correlation between pairs 
of genes is the absolute value of the Pearson product moment correlation coefficient, 
which measures similarity between two genes. Between genes p and q, the measure of 
correlation R(p,q) is the Pearson product moment correlation coefficient between 
genes p and q. Larger US indicates lower average pairwise correlation in S, and hence, 
smaller amount of redundancy among the members of S.  
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2.4   The Search Method 

An exhaustive search for the optimal predictor set is computationally expensive. For 
instance, in searching for the best S of a certain size P, the order of complexity is 
O(NP). We employed the linear incremental search method, where the first member of 
S is chosen by selecting the gene with the highest F(i) score. To find the second and 
the subsequent members of the predictor set, the remaining genes are screened one by 
one for the gene that would give the maximum WA,S. This search method, with a lower 
computational complexity of O(NP), has been applied in previous feature selection 
studies [4, 5]. 

 
Fig. 1. F-splits procedure 

2.5   Over-Optimistic Estimate of Accuracy 

In several previous studies on feature selection for microarray datasets [3, 4, 5], fea-
ture selection techniques have been applied once on the full dataset before leave-one-
out-cross-validation (LOOCV) procedure is employed to evaluate the classification 
performance of the resulting predictor sets. We denote this evaluation procedure the 
Internal LOOCV (ICV) procedure. ICV is known to produce selection bias, which 
leads to an overly-optimistic estimate of accuracy [11].  

To avoid this pitfall, we propose the use of different splits of the dataset into train-
ing and test sets and repeating feature selection for each of the splits. During each 
split, our feature selection techniques will be applied only on the training set of that 
particular split. It is very important that no information from the test set is ever 
‘leaked’ into the process of forming the predictor set (which is precisely what happens 
during the ICV procedure). Classifier trained on the predictor set and the training 
samples will then be used to predict the class of the test samples of the current split. 
The test set accuracies obtained from each split will be averaged to give an estimate 
of the classification accuracy. We call this procedure of accuracy estimation the F-
splits procedure (F being the number of splits used) (Figure 1). 

In addition to accuracy, we used an approximation of the area under the Receiver 
Operating Characteristic (ROC) curve (AUC) as a performance evaluation parameter. 
The approximation used is the modified macro-average of class accuracies (MAVG-
MOD) recommended in [12] for multiclass problems employing crisp classifiers.  
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For best performance, the value of τ  has been determined as 0.76 [12]. The class 
accuracy for class k is represented by ak. 

3   Results 

3.1   Benchmark Datasets and Evaluation Procedures 

Several multiclass microarray datasets are used as benchmark datasets (Table 1). The 
GCM dataset [2] contains 14 tumor classes: breast, prostate, lung, colorectal, lym-
phoma, bladder, melanoma, uterus, leukemia, renal, pancreas, ovarian, mesothelioma 
and CNS (central nervous system). For NCI60 [13], only 8 tumor classes (breast, 
CNS, colon, leukemia, melanoma, ovarian, renal and non-small-cell lung cancer) are 
analyzed; the 2 samples of the prostate class are excluded due to the small class size. 
In the 5-class lung dataset [14], 4 classes (lung adenocarcinoma, squamous cell lung 
carcinoma, pulmonary carcinoid and small-cell lung cancer) are subtypes of lung 
cancer; the fifth class comprises of normal samples. The MLL dataset [15] contains 3 
subtypes of leukemia: ALL, MLL and AML. The AML/ALL dataset [16] also con-
tains 3 subtypes of leukemia: AML, B-cell and T-cell ALL. Datasets are preprocessed 
and normalized based on the recommended procedures in [10] for Affymetrix and 
cDNA microarray data.  

Different degrees of importance were placed on antiredundancy measure by vary-
ing the values of α  from 0.1 up to 1. Optimal predictor sets ranging from sizes 
P=2,3,…,100 were formed in the different runs.  

For each dataset we implemented two different evaluation procedures: the 10-splits 
procedure, and the ICV procedure employed in previous tumor classification studies 
[3, 4, 5]. The difference between the estimates of accuracy obtained from the two 
procedures offers us an insight into the effect of selection bias which occurs when 
feature selection is not repeated for different splits or subsets of the dataset. 

Table 1. Descriptions of benchmark datasets. N  is the number of features after preprocessing 

Dataset Type N K 
Training:Test set ratio 
(10-splits procedure) 

GCM Affymetrix 10820 14 144:54 
NCI60 cDNA 7386 8 40:20 
Lung Affymetrix 1741 5 135:68 
MLL Affymetrix 8681 3 48:24 

AML/ALL Affymetrix 3571 3 48:24 

The DAGSVM classifier is used throughout the performance evaluation for both 
10-splits and ICV procedures. The DAGSVM is an SVM-based multi-classifier which 
uses substantially less training time compared to either the standard algorithm or Max 
Wins, and has been shown to produce accuracy comparable to both of these algo-
rithms [17]. 
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3.2   Best Estimates of Accuracy for the Benchmark Datasets 

The best estimate of accuracy obtained from each dataset is shown in Table 2. Where 
a draw occurs in terms of the estimate of accuracy, the α value giving the smaller 
predictor set size is proclaimed as the optimal α. Comparisons with previously re-
ported results will only be made for the 2 datasets which have been known to produce 
low realistic estimates of accuracy (<90%), the GCM and NCI60 datasets [1].  

For the GCM dataset, with a predictor set containing no more than 94 genes at 
most, an accuracy of 80.6−84.3% is achievable with our predictor set scoring method 
when the value of α is set within the range of 0.2−0.3. This is a significant improve-
ment compared to the 78% accuracy obtained, using all available 16000 genes, in the 
original analysis of the same dataset [2]. However, strict comparison cannot be made 
against this 78% accuracy of [2] and the 81.5% accuracy (using 84 genes) achieved in 
[18] since the evaluation procedure in both studies [2, 18] is based on a single (the 
original) split. We can make a more appropriate comparison, however, with a com-
prehensive study on various rank-based feature selection techniques [1]. The study 
uses external 4-fold cross validation to evaluate classification performance. In [1], the 
best accuracy for the GCM dataset is 63.3%, when no feature selection is applied 
prior to classification! 

For the NCI60 dataset, the best accuracy of 74% from the 10-splits evaluation pro-
cedure occurs at 3.0=α , and is better than the best accuracy obtained from the two 
studies employing a similar evaluation procedure [1, 10]. In [10], the best averaged 
accuracy is around 63% (using the top 30 BSS/WSS-ranked genes), whereas the study 
in [1] performs slightly better with best accuracy of 66.7% (150 genes) achieved us-
ing the sum minority rank-based feature selection technique [1]. For the estimate of 
accuracy from the ICV procedure, the ICV estimate of 96.7% for our predictor set 
scoring method is significantly higher than the best ICV estimate in [4] for the con-
tinuous-valued version of their predictor set scoring method (80.6%). 

Table 2. Best accuracy estimated from the 10-splits and ICV procedures, followed by the cor-
responding differential prioritization factor and predictor set size 

Dataset 10-splits ICV 
GCM 80.6%, α=0.2, 85 genes 84.3%, α=0.3, 94 genes 
NCI60 74.0%, α=0.3, 61 genes 96.7%, α=0.2, 89 genes 
Lung 95.6%, α=0.5, 31 genes 96.1%, α=0.4, 43 genes 
MLL 99.2%, α=0.6, 12 genes 98.6%, α=0.6, 4 genes 

AML/ALL 97.9%, α=0.8, 11 genes 98.6%, α=0.6, 5 genes 

From Table 2 and Figure 2, it can be seen that the optimal value of α, (i.e. the 
value of α where the best accuracy is obtained) is not necessarily 0.5 (denoting equal 
priorities for maximization of relevance and maximization of antiredundancy) or 1 (in 
which our feature selection technique becomes rank-based selection technique). As 
mentioned previously in Section 2.2, for a given predictor set scoring method and a 
set of definitions of F(i) and R(i,j), the optimal range of α is most likely dataset-
dependent, as shown by the results.  

For the GCM dataset, the highest 10-splits accuracy, 80.6% is obtained when α is 
set to 0.2. If we had limited ourselves to equal priorities for the maximizations of 
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relevance and antiredundancy (i.e. equivalent to setting α to 0.5), we would have 
achieved only a 75.9% accuracy, and if we had been content with rank-based tech-
niques (i.e. equivalent to setting α to 1), we would have fared worse, with only a 
measly 65.6% if the maximum size of the predictor set is set to 100.  

 

Fig. 2. MAVG-MOD and best accuracy estimate from the 10-splits procedure (ACCavg) and 
best accuracy estimate from the ICV procedure respectively plotted against α 

The same can be said for the NCI60 dataset. Using 3.0=α  we obtain the best ac-
curacy of 74% based on the 10-splits evaluation procedure, whereas at 5.0=α  and 

1=α , much lower accuracies (69% and 68% respectively) are achieved. 
The lung dataset is the only dataset tested where the best 10-splits accuracy is ob-

tained when α is set to 0.5. Rather than presenting a conflict against the results from 
the other datasets, in Section 4.2 we will prove that in case of the lung dataset 0.5 
merely happens to be the optimal α  due to the characteristics of the lung dataset it-
self, in the same way that the values of the optimal α  for each of the other datasets 
are influenced by the characteristics of the respective datasets. 

For the MLL dataset, we have an accuracy of 99.2% at 6.0=α . When the predic-
tor set scoring method gives equal priorities to relevance and redundancy ( 5.0=α ), 
the accuracy achieved drops to 98.7%. However, when the selection is rank-based 
( 1=α ), the same accuracy of 99.2% is obtained, but using twice the number of genes 
(24 instead of 12 genes) compared to the predictor set scoring method run with 

6.0=α . This is not surprising, considering that at 1=α , genes are selected based on 
relevance without regards to redundancy, hence the bigger size of predictor set due to 
the inclusion of redundant genes. 

For the AML/ALL dataset, we get an accuracy of 97.9% at 8.0=α  using an 11-
gene predictor set. At 5.0=α , the same accuracy is achieved but using twice the 
number of genes (20 genes). Accuracy drops to 97.5% when the value 1=α  is used. 

With the single exception of the lung dataset, Figure 2 shows that our alternative 
performance evaluation parameter, MAVG-MOD, demonstrates the same trend 
against α as accuracy does, i.e., the peak of the accuracy curve always coincides with 
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the peak of the MAVG-MOD curve. Even for the lung dataset, the peak of the 
MAVG-MOD at 5.0=α  is only slightly lower than the peak at 1.0=α  (by 0.005). 
Looking at the class accuracies for this dataset, we found the underlying reason: the 
class accuracies of the 4 classes with the best class accuracies peak at 1.0=α , 
whereas only one class, the worst-performing class (squamous cell lung carcinoma) 
has its best accuracy at 5.0=α . Therefore, being capable of producing the highest 
class accuracy for the worst-performing class, 5.0=α is still the optimal value of α 
for the lung dataset. 

4   Discussion 
4.1   Selection Bias 

Selection bias is reflected in the difference between the accuracy estimated from the 
10-splits procedure and the accuracy obtained from the ICV procedure for each pre-
dictor set size (P=2,3,…,100). By contrasting between the results from the 10-splits 
and the ICV procedures, it is clear that the apparently better performance reported 
previously [4] is a product of selection bias.  

In order to quantify selection bias susceptibility for a dataset, we use the ratio of 
the number of features to the median class size, N/CS50 (Table 3). Greater number of 
total features (N) and smaller class sizes (CS50) mean higher likelihood for a search 
method to find the predictor set which fits the data, thereby increasing the probability 
of over-fitting. In F-splits evaluation procedure, over-fitting can be easily detected 
through the resulting low accuracy estimate from the classification of test sets unin-
volved in feature selection. In ICV evaluation procedure, over-fitting naturally results 
in higher accuracy estimate since all samples have been involved in feature selection. 

Table 3. Median class size, CS50, ratio of N  to CS50  and optimal α values for each dataset 

Dataset K CS50 N/CS50 optimal α 
GCM 14 12 901.7 0.2 
NCI60 8 7.5 984.8 0.3 
Lung 5 20 87.1 0.5 
MLL 3 24 361.7 0.6 

AML/ALL 3 25 142.8 0.8 

The N/CS50 ratios for all datasets are correlated to the selection bias shown in Fig-
ure 3. The NCI60 dataset is the most susceptible to selection bias due to its high 
N/CS50 ratio of 984.8. The GCM dataset, which has the second highest overall selec-
tion bias, also has the second highest N/CS50 ratio (901.7). The remaining three data-
sets (lung, MLL and AML/ALL datasets), for each of which the N/CS50 ratio is below 
400, have relatively smaller selection bias (near 0% for most of the tested values 
of α). 

4.2   Optimal Differential Prioritization Factor and Dataset Characteristics 

The relationship between the optimal value of α and the number of classes, K, for all 
benchmark datasets is illustrated in the left-side panel of Figure 4. The effect of the 
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class size, represented by the median class size, CS50, on the optimal value of α is 
shown in the right-side panel of Figure 4. It can be seen that the optimal value of α 
decreases as K increases, but increases as CS50 becomes larger. 

 
Fig. 3. Selection bias in GCM, NCI60, lung, MLL and AML/ALL datasets. Averaged bias 
among predictor sets of different sizes (P=2,3,…,100) plotted against α 

The optimal value of α  (Table 3) has a strong positive correlation to CS50 (0.90) 
but strong negative correlation to K (−0.89). This means that with smaller class sizes 
and more classes per dataset, the Pearson-moment-based antiredundancy plays in-
creasingly important role in the search for the optimal predictor set than the 
BSS/WSS-based relevance (as reflected by the smaller optimal α). Conversely, 
maximizing antiredundancy becomes less important as K decreases – therefore sup-
porting the assertion in [7] that redundancy does not hinder the discriminant power of 
the predictor set when K is 2. 

 

Fig. 4. Optimal values of α for all benchmark datasets plotted against K (left-side panel) and 
CS50 (right-side panel) of corresponding datasets 

Larger number of multiclass datasets of diverse characteristics needed to be tested 
before a more definite rule can be determined regarding the optimal choice for the 
value of α − which we know, for now, most likely depends on at least two character-
istics of the dataset, class size (CS50) and the number of classes, K. 
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5   Conclusion 
For majority of the datasets tested, the differential prioritization factor makes it possi-
ble to achieve an accuracy rate higher than the rates obtainable using an equal-
priorities scoring method (α fixed at 0.5) or a rank-based selection technique (α fixed 
at 1). Therefore, instead of limiting ourselves to a fixed universal set of priorities for 
relevance and antiredundancy (α fixed to 0.5 or 1) for all datasets, a suitable range for 
α should be chosen based on the characteristics of the dataset of interest in order to 
achieve the optimal estimate of accuracy.  

Estimate of accuracy from the ICV procedure, which has been popularly used for 
gene expression datasets due to its low computational cost, can be radically overly-
optimistic, particularly when the N/CS50 ratio is large.  
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