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Abstract. The combination of classifiers has been proposed as a method to im-
prove the accuracy achieved by a single classifier. In this study, the perform-
ances of optimistic and pessimistic ordered weighted averaging1 operators for 
protein secondary structure classifiers fusion have been investigated. Each sec-
ondary structure classifier outputs a unique structure for each input residue. We 
used confusion matrix of each secondary structure classifier as a general reus-
able pattern for converting this unique label to measurement level. The results 
of optimistic and pessimistic OWA operators have been compared with major-
ity voting and five common classifiers used in the fusion process. Using a 
benchmark set from the EVA server, the results showed a significant improve-
ment in the average Q3 prediction accuracy up to 1.69% toward the best classi-
fier results. 

1   Introduction 

There are three main classes of secondary structural elements in proteins named as 
alpha helices (H), beta strands (E) and irregular structures (turns or coils that are 
shown as C), so prediction engines can be assumed as structural classifiers. In the 
process of predicting protein secondary structure classification, it is usual to use a 
variety of approaches that each of them has its own strengths and weaknesses [1, 2, 
and 3]. 

The reasons for combining the outputs of multiple classifiers are compelling, be-
cause different classifiers may implicitly represent different useful aspects of the 
problem, or of the input data, while none of them represents all useful aspects [4]. In 
this context, the idea of decisions fusion of several classifiers has been well explored. 
Information fusion techniques have been intensively investigated in recent years and 
their applications for classification domain have been widely tested [5]. Methods for 
fusing multiple classifiers can be classified according to the type of information pro-
duced by the individual classifiers. Classifiers can differ in both the nature of the 
measurements used in the classification process and in the type of classification pro-
duced. A Type I classification is a simple statement of the class, a Type II classifica-
tion is a ranked list of probable classes, and a Type III classification assigns probabili-
ties to classes [6]. These three types are known as Abstract level outputs, Rank level 
outputs and Measurement level outputs respectively. Most of protein secondary struc-
                                                           
1  Ordered Weighted Averaging (OWA) 
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ture classifiers are type I classifier. The best known approach for consensus of type I 
classifiers is majority voting. In Majority voting approach there are some problems, 
for instance, where there is no majority winner, what the majority voter should do? 
There are some better techniques for classifier’s outputs fusion but most of them need 
the results of type II or type III classifiers [7]. 

The results of five common protein secondary structure prediction engines of a 
benchmark dataset have been used for testing this fusion approach. The rest of the 
paper is organized as follows: the confusion matrix and the algorithm for converting 
type I classifier to type III classifier have been explained in section 2. Section 3 de-
scribes two simple OWA operators and demonstrates the application of these opera-
tors in the protein secondary structure classifiers fusion context. The classifiers and 
test dataset were introduced briefly in section 4. Section 5 presents the criteria of 
secondary structure prediction accuracy. Section 6 reveals the results of the fusion and 
finally the conclusion has been posed. 

2   Measurement Level from Abstract Level Classifications 
In this study, it is suggested that measurement level classifications could be created 
from the confusion matrix (a posteriori probabilities of each classification) of a Type I 
classifier. The assumptions are that, first, the behavior of the classifier is known and is 
characterized in a confusion matrix and, second, that the prior behavior or the classi-
fier is representative of its future behavior. The larger the data set on which the classi-
fier has been tested, the more thoroughly will the second assumption be true. 

A confusion matrix is a matrix in which the actual class or a datum under test is 
represented by the matrix row, and the classification of that particular datum is repre-
sented by the confusion matrix column. The element M[i][j] gives the number of 
times that a class i object was assigned to class j. The diagonal elements indicate 
correct classifications and, if the matrix is not normalized, the sum of row I is the total 
number of elements of class I that actually appeared in the data set [8]. The columns 
of such a matrix can be used to convert Type I to Type III classification, which can 
then be sorted to yield the ranks (Type II classification). 

Consider a classifier that produces only a single output class (Type I) and has been 
trained and tested on many thousands of data elements. During this process, the fol-
lowing confusion matrix was generated (assume there are three classes): 
(Table 1) 

Table 1. Confusion Matrix for a classifier 

 Classified as H Classified as E Classified as C 
Actual Class H 1600 100 300 
Actual Class E 200 1200 600 
Actual Class C 100 500 1400 

Each row sums to 2000, which was the number of elements of each class in the 
data set. Note that if there was not the same number of elements in each row, it must 
be normalize by the number of its elements. Now as an example, presume that this 
classifier issues a classification of H for a given input datum. From the first column of 
the confusion matrix, it can be seen that the most likely actual class is H, the second 
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most likely class is E, followed by C. This is a fair ranking of the possible classes 
based on the past of the classifier history. In other words, given a classification of H:  

1600/1900 will be correct (class H) 
200/1900 will actually be class E 
100/1900 will actually be class C 

This is the scheme suggested for converting abstract level classifications into 
measurement level. 

3   Ordered Weighted Averaging 

The Ordered Weighted Averaging Operators (OWA) were originally introduced by 
Yager to provide a means for aggregating scores associated with the satisfaction of 
multiple criteria, which unifies in one operator the conjunctive and disjunctive behav-
ior [9]. An OWA operator of dimension n is a mapping  
F: Rn → R and is given by: 

∑
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This operator has been proved to be very useful, because of its versatility, The 
OWA operators provide a parameterized family of aggregation operators, which in-
clude many of the well-known operators such as the maximum, the minimum, the k-
order statistics, the median and the arithmetic mean. In order to obtain these particular 
operators we should simply choose particular weights. The Ordered Weighted Aver-
aging operators are commutative, monotone, idempotent, they are stable for positive 
linear transformations, and they have a compensatory behavior. This last property 
translates the fact that the aggregation done by an OWA operator always is between 
the maximum and the minimum. It can be seen as a parameterized way to go from the 
min to the max. In this context, a degree of maxness (initially called orness) was in-
troduced in [9], defined by: 
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We see that for the minimum, we have that maxness(1,0,…,0)=0 and for the maxi-
mum maxness(0, …,0,1)=1. 

A simple class of OWA operators as exponential class of OWA operators was in-
troduced to generate the OWA weights satisfying a given degree of maxness. The 
optimistic and pessimistic exponential OWA operators were introduced as follows 
[9]: 

• Optimistic weights: 

w1=a; w2=a(1–a); w3=a(1-a)2; ...; wn-1=a(1–a)n-2; wn=(1-a)n-1 (3) 
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• Pessimistic weights: 

w1= an-1; w2=(1-a) an-2; w3=(1-a)an-3; ...; wn-1=(1-a)a; wn=(1-a) (4) 

Where parameter a (alpha) belongs to the unit interval, [0 1] and is related to orness 
value regarding the n. 

Each protein secondary structure classifier outputs a label (H or E or C). Mean-
while a list of measured level classification (MLC) is constituted by using confusion 
matrix as descried in previous section )}(),(),({)( CWEWHWiMLC iii= . This list 

shows the confidences of a classifier to its possible outputs. For example, consider the 
MLC of two classifiers: 

 
Wi(H), Wi(E) and Wi(C) are fused by OWA operator separately for all of classifiers. 
After fusion process, the secondary structure of a certain amino acid is extracted from 
the Fused MLC, )}(),(),({ CWEWHW  as below: 

)}(),(),({ CWEWHWarg maxPC =  (5) 

The general architecture of proposed Meta classifier is shown in Figure 1. 

 
Fig. 1. Meta classifier schema-(PC: predicted class) 

4   Experimental Evaluations 
An experimental evaluation was carried out on EVA1 dataset. Novel test set which is 
provided by the datasets available from the real-time evaluation experiment [10], 
which compares a number of prediction servers on a regular basis using the sequences 
deposited in the PDB every week. In particular, we have used the dataset labeled 
“common1” published on 20/10/2002. Some information about the prediction method 
and location of five used prediction servers are shown in Table 2. For more informa-
tion about these servers, see the references. 
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Table 2. Secondary structure prediction servers on Internet 

Secondary Structure Prediction Servers 
Server Location Prediction method 
Apssp2 [11] Institute of Microbial Technology, INDIA EBL* + Neural network 
Profsec [12] Columbia University, USA Profile-based Neural network 
PSIPRED [13] University College London, UK Neural network 
SAM-T99 [14] University of California, Santa Cruz, USA Hidden Markov Model 
SSPro2 [15] University of California, Irvine, USA Recurrent Neural Network 

* Example Based Learning 

To choose the parameter alpha in optimistic and pessimistic OWA, an iterative ap-
proach is used. In this purpose, a dataset is divided into three parts randomly; one of 
them is assigned for training and the rest for testing purpose. In training set, the alpha 
value was increased from zero to one by step 0.01 and consequently the prediction 
accuracy was calculated. The alpha value, in which the prediction accuracy was the 
maximum there, is selected as a needed parameter. 

5   Accuracy of Predicting Secondary Structure Content 

• Prediction accuracy matrix: 
Mij = number of residues observed in state I and predicted in state j, with i, j {H, 
E, C} 
Note: the total number of residues observed in state i is:  
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Note: the total number of residues predicted in state i is (helix, strand, other)  
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The total number of residues is simply: 
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• Three-state prediction accuracy: Q3  
The three-state per residue accuracy Q3 becomes:  
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• Per-state percentages:  
To define the accuracy for a particular state (helix, strand, other), two possible 
variants could be considered. As a result, the following questions could be raised 
up:  
How many observed helix residues (strand or coil) were correctly predicted?  
Given are the correctly predicted residues as percentage of all residues 
OBSERVED in a particular state (% obs).  
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How many predicted helix (strand or coil) residues were correctly predicted?  
Given are the correctly predicted residues as percentage of all residues 
PREDICTED in a particular state (% prd)  
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6   Results 
Statistics of the predictions performed by the five selected servers (described in pre-
vious section) are presented in Table3. The results demonstrate that the best classifier 
for this dataset is PSIPRED. Although its predictions of the secondary structure are of 
the highest accuracy, it has been further improved by our meta-classifier. Improve-
ments in terms of the accuracy of the OWA based meta-classifier are presented in 
Table 5. The results show that the OWA based meta-classifier has absolute improve-
ment of 1.69% compared to PSIPRED. The most interesting results have been 
achieved for β strand prediction. PSIPRED predicts accurately 68.25% of the cases 
while OWA gets 73.08% giving an improvement of 4.83%. In addition, there is 
5.78% improvement in helix structure prediction with -3.75% changes in coil struc-
ture classification.  

Comparison between MV and OWA shows that the OWA based meta-classifier 
has improvement of 0.79% compared to MV, which is not very interesting in first 
look, but with deeper look into the results, we found that the OWA caused an im-
provement of 6.71% in β strand and 4.14% in helix structure. Recognition rate in 
helices and strands is more important than coils because due to general definition of 
protein secondary structures, each residue that is not in helix or strand structure will 
be posed in coil structure. 

Table 3. The results of EVA1 dataset prediction by five common selected engines 
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cQ%

 

apssp2 74.49 78.00 65.65 77.01 79.4 76.38 70.08 
Profsec 74.71 75.38 74.48 74.05 82.95 71.29 70.76 
Psipred 74.78 78.53 68.25 75.67 79.21 75.32 70.99 
samt99_sec 74.63 82.60 63.12 75.06 77.90 79.37 69.74 
sspro2 73.58 78.14 62.79 76.45 78.70 76.55 68.35 

Table 4. The calculated maxness value and corresponding alpha value (achieved by the Fig.1 of 
[14]) of OWA 

 alpha maxness 
Majority Voting  * * 
OWA-optimistic 0.3 0.6 
OWA-pessimistic 0.7 0.4 
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Table 5. The results of Majority Voting and OWA operators 
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MV 75.68 80.17 66.37 77.68 80.28 78.94 70.58 
OWA-optimistic 76.47 84.31 73.08 71.92 78.63 75.51 75.03 
OWA-pessimistic 76.47 84.31 73.08 71.92 78.63 75.51 75.03 

7   Conclusions and Future Research 

Combining protein secondary structure classifiers requires a uniform representation of 
their decisions with respect to an observation. Confusion matrix is a well-known 
evaluator for each type of classifier which is used here as a general reusable pattern 
for fusion of protein secondary structure classifiers. Such a general assessor could be 
used in better weighting assignment in all fusion approaches. Moreover, a confusion 
matrix is used for converting Type I classifier to Type III classifier. In these types of 
classifiers, heuristic functions or theories for decision fusion may be more applicable. 

The performance of a Meta classifier system can be better than each individual 
classifier; also, such systems can provide a unified access to data for users. 

There are still open issues ahead: 

• To obtain the number of classifiers those are required to achieve a desired accu-
racy. 

• To obtain better identifiers to convert Type I classification to Type III classifica-
tion. 

• To publish the protein secondary structure meta-classifiers as an open-access web 
service. 
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