
J.L. Oliveira et al. (Eds.): ISBMDA 2005, LNBI 3745, pp. 317–328, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Extracting Molecular Diversity Between Populations 
Through Sequence Alignments 

Steinar Thorvaldsen1, Tor Flå1, and Nils P. Willassen2 

1 Dept of Mathematics and Statistics, Faculty of Science 
{steinart,tor}@math.uit.no 

2 Department of Molecular Biotechnology, Faculty of Medicine, 
University of Tromsø, 9037 Tromsø, Norway 

nilspw@fagmed.uit.no 

Abstract. The use of sequence alignments for establishing protein homology 
relationships has an extensive tradition in the field of bioinformatics, and there 
is an increasing desire for more statistical methods in the data analysis. We pre-
sent statistical methods and algorithms that are useful when the protein align-
ments can be divided into two or more populations based on known features or 
traits. The algorithms are considered valuable for discovering differences be-
tween populations at a molecular level. The approach is illustrated with exam-
ples from real biological data sets, and we present experimental results in apply-
ing our work on bacterial populations of Vibrio, where the populations are 
defined by optimal growth temperature, Topt.  
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1   Biological Motivation 

Extreme environments are those that fall outside the limited range in which we, and 
most other eukaryotes can survive, and are inhabited by the extremophiles. Among 
extremophiles, which include thermophiles, psychrophiles, acidophiles, alkalophiles, 
halophiles, barophiles and xerophiles, those who live and prefer low temperatures are 
the largest and least studied group. Psycrophilic organisms are living at temperatures 
close to the freezing point of water. It is of great interest to understand how these 
organisms can function at “the limits of life” [1].  

Living at extreme temperatures requires a multiplicity of crucial adaptations in-
cluding preservation of membrane stability and maintenance of enzymatic activities at 
appropriate levels. At these temperatures a number of physiological factors are 
changed; the solubility of gases is not the same, the viscosity of water increases sev-
eral folds as temperature is changed towards the extreme areas, for example. 

The number of characterized cold or heat adapted proteins, reported sequences and 
high resolution structures is growing. The Vibrios are of the species with the greatest 
amount of published genomes, reaching five completed genomes this year, and seven 
ongoing whole genome sequencing projects including the cold adapted Vibrio sal-
monicida. 

Alignment-free analysis has been used previously to compare amino acid composi-
tions in whole genome and proteome datasets [2][3]. In this study, we focus on a set 
of homolog protein data from a relatively narrow range of closely related species 
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belonging to the group Vibrios of gamma proteobacteria - a strategy also adopted by 
[4]. In our comparative study, we employ alignment based methods for examination 
of similarities and chemical differences at the molecular level by comparing amino 
acids and their physicochemical properties in the proteins. Different new methods of 
univariate analysis have been developed and used in this analysis.  

The definition and analysis of chemical similarity has long been an active area of 
study in theoretical and computational chemistry [5-7]. Currently, there seems to be 
no generally agreed quantitative, or even qualitative, definition of chemical diversity. 
In formulating any description of quantitative chemical distance, one is obliged to 
make approximations and to use heuristically derived solutions. Many different ways 
have been used to represent chemical structures leading to many different approaches 
to assessing their similarity. These include methods based on three-dimensional repre-
sentations. Two-dimensional approaches are, perhaps, even more numerous. The term 
2D is a convention, as it is in general the properties of the molecular graph which are 
of interest, and not its pictorial representation in the plane. There have also been at-
tempts to consider the measured biological properties of compounds as the basis for 
diversity analysis. The descriptors may take the form of measured or computed physi-
cal properties such as topological or constitutional indices. There are several ap-
proaches based on some count of shared features. Such features include atom or ele-
ment types, bonds, topological torsions, etc. 

2   The Algorithms 
2.1   Residue Frequencies 

We wanted to examine amino acid occurrences in relation to background distribu-
tions, and for this purpose we analysed the composition of amino acids in two differ-
ent sequence populations. The distribution of the categorical variable (amino acid 
type) in the sequence samples can be modelled and compared statistically. The basic 
chain-like structure of proteins, allows an abstract view of these as strings, or se-
quences, over a finite alphabet. Protein sequences could in principle, as a first ap-
proximation, be considered as random samples taken from some distribution. Let X be 
a discrete random variable with a finite set of possible values, or categories 
{A,R,N,D,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V}. For convenience the amino acids are 
often encoded by ordinal numbers x = 1, 2,…, 20. If sites were independent, the mul-
tinomial distribution would follow. This is the multivariate generalisation of the 
common binomial distribution. 

However, gene sequences are not completely random, but display various kinds of 
structure. E.g. a family of homologous proteins is likely to have similar amino acid 
residues in “equivalent” positions, and the amino acid frequencies are expected to be 
different from gene to gene. Let two populations be defined by some trait (like differ-
ent temperature preference). For every gene family g = 1, 2,…, k; we may for each of 
the 20 amino acids compute the frequency change vector between the mean frequen-
cies in the two populations: 

∆fg = (∆f1, ∆f2,… ,∆f20),     g = 1,2,…, k 

This is a variable that can be studied statistically across the dataset concerning sig-
nificant changes.  
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Still, the statistics above have serious limitations. They simply indicate the degree 
of evidence for an over- or under-representation of the variables, and are not adequate 
for answering other more interesting questions about the data. One should also study 
the nature and effects of these differences. 

2.2   Residue Substitution Pairs 

A statistical approach to molecular sequence analysis also involves the stochastic 
modelling of the substitution, insertion and deletion processes. We also present an 
analysis of amino acid substitution data matrices from an independent set of paired 
homolog protein sequences. The method is based on trusted alignments, where ob-
served amino acid replacements are tallied in a raw residue replacement matrix. We 
also present an analysis of the amino acid substitution pattern.  

The modelling of amino acid replacement by a Markov chain has been introduced 
by Dayhoff et al [8]. Our strategy is much of the same as the method Dayhoff’ used to 
estimate the well known initial PAM1 (Percent Accepted Mutation) transition matrix 
based on just 1572 substitutions. But our technique is different and our aim is to study 
the internal distance between populations, not to extrapolate to higher PAM distances.  

Brenner et al [9] were the first to point out the problem in Dayhoff’s method of es-
timating one consistent model from an inhomogeneous pool of aligned sequence data. 
Bias in the sequence selection may influence the frequencies of substitutions. Though 
biases cannot be eliminated entirely when data are sparse, one has to minimize biases 
in the data selection. Without clustering, some closely related sequences may be over-
represented, and special care must be taken to locate representative samples as a safe-
guard against obtaining bias comparisons and ditto results in the investigations. Jones 
et al [10] presented an alternative method where the set of sequences are clustered at 
the 85 % identity level. The closest relating pairs of sequences are aligned, and ob-
served amino acid exchanges tallied in a matrix.  

We count by the Jones-method to minimize biases. Two pairs in an aligned site can 
be classified as invariant (where the same amino acid are conserved in the two popu-
lations) or variant (where there is a difference). Our main goal is not to measure con-
servation, but its opposite, deviation. A matched Substitution Pair (SP) is defined as 
the ordered combination of two amino acids observed in an alignment position, and a 
SP-matrix is the accumulation of all such pairs by summing over all positions. The 
accumulated array contains the frequency of all position specific pairing of residues. 
Thus, for any number of aligned amino acid sequences, the number of possible SP in 
each position is between 1 and 400, but only a small fraction of these SPs are ob-
served, and the majority of sequence positions are covered by less than 10 SPs for 
closely related homologous proteins. This method of mapping and expressing align-
ment data by SP-matrices trim down problems caused by statistical dependences be-
tween the sequences and the uncertain phylogeny involved in the PAM procedure. 
Note that no counting is done when a residue is aligned to a gap. The accepted SPs 
are counted by the algorithm shown in Figure 1. 

We may both calculate SP-matrices between two populations, and within one popu-
lation. SPs may be used to address the following question: Which and how many SPs 
account for the major significant variations between the populations?  
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Algorithm CountSubstitutionPairs 
Input k gene families each with m(k) aligned protein sequences 

s1,s2,…sm(k) from two populations. 
Process find in all genes all closest sequence pairs between the  populations,  

     and count substitutions over all positions 
1 
2 
3 
4 
5 

for all genes 
  for every sequence pair (sPop1,sPop2) with max similarity 
    for every residue position  j = 1,…,n 
      find all residue pairs SPj = {sp(x, x'): x є Pop1 and x' є Pop2} 
          SP := SP + SPj 

Output substitution pair matrix SP between the two populations 

Fig. 1. An algorithm to compute the SP-matrix. The amino acids are denoted by x = 1,2,…,20 

Instead of doing an overall test of the big SP-matrix, we partition the matrix in a 
meaningful manner and focus on more targeted tests. We want to analyse the over- or 
under representation of single SPs compared to a random model. The occurrence of 
SP might be expected to differ in some measure due solely to chance factors of sam-
pling, and for other reasons which might be attributed to random causes. And what we 
shall need to find out is whether or not the observed differences are too large to be 
credited to such causes.  

An enduring problem in statistics is the analysis of 2x2 contingency tables, and 
there has been a lot of research and debates [11, 12]. The main debate has at least two 
components. The first is to select either an exact test (e.g. Fisher’s exact test) or an 
asymptotic test (e.g. Pearson’s chisquared test). The second is which test procedure 
should be employed among many candidates in each group. There has been an effort 
to determine the best exact test among the Fisher’s exact test, the exact chi-squared 
test and the exact likelihood ratio test in 2x2 tables in both large and small samples. 
Kang and Kim [13] compared the three conditional tests and showed that the Fisher’s 
exact test turns out to be the best choice in most cases. Consequently, because of the 
practical values in our data, we decided to use Fisher’s exact test to find statistically 
whether there is any non-random relation between any two categorical variables with 
two observed levels found from the SP-matrix.  

2.3   Residue Properties 

An alignment of homolog sequences is a set of matched pairs where there is a mean-
ingful one-to-one correspondence between the data points in one group and those in 
the other. This gives us the possibility to investigate the mean property differences 
(like hydrophobicity) in the sequences by a probabilistic framework. 

For two amino acids, x and x', we denote their linear chemical difference measure: 
)()'()',( xqxqxxd −=  

This difference yields real values when we assume that we have a table of quantitative 
chemical values, q, for each amino acid. The measure is an expression of the diversity 
between the amino acids, and the choice of measures to be used depends on the test 
we want to perform. 
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Let sm, m = 1, 2, …M, be M aligned amino acid sequences, and let the amino acid 
at position j in sm be denoted by xm,j. We define the difference between the sequences 
from population p1 and p2 at position j by averaging the measurements at position j 
within each population: 

)()(),( ,1,2,2,1 jPopjPopjj xqxqppd −=  

By this we measure n differential effects between population 1 and 2, where n is 
the length of the gapless alignment. We find the mean chemical difference, D, be-
tween the two populations by: 

∑
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Assuming that the distribution of the differences in each position, j, is identical, we 
obtain the expected value ∆: 
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A standard parametric test would be to approximate D with the normal distribution, 
and apply the paired t-test. However, since it is not always clear that this is appropri-
ate with the protein properties; other statistical test should be considered. In the statis-
tical analysis, it is also important that the significant difference found between means 
(or not found) be due to the different conditions of the populations, and not due to the 
organisation and conservation of the particular enzyme in the study.  

A relevant alternative to the t-test is the Wilcoxon signed-rank test which is a non-
parametric test that also can be used on continuous type of paired data, both when the 
underlying population is normal and when not [14]. This test automatically discards 
all differences equal to zero from the analysis (conserved sites). It can in some cases 
be better than the paired t-test for non-normal populations, although non-parametric 
procedures in general need larger sample size than t-tests.  

It is not easy to compare the two test procedures in a general theoretical way. One 
widely used measure in the literature is asymptotic relative efficiency (ARE, [14]). 
The ARE of one test relative to another is the limiting ratio of the sample size neces-
sary to obtain identical error probabilities for the two procedures. For normal popula-
tions the ARE of the Wilcoxon test relative to the t-test is 3/π ≈ 0.95, and for non-
normal populations the ARE is ≥ 0.86 which means that it in some cases will ex-
ceed 1. Although these results are for large samples, and do not necessary tell us any-
thing for small samples, one may generally conclude that the Wilcoxon signed-rank 
test will never be much worse than the t-test, and in many cases where the population 
is non-normal it may be better. Our experience with using the two tests on the protein 
data is that they do not make much difference, with the Wilcoxon test as the most 
conservative, except for properties with more than one peak distribution (like Kyte-
Doolittle hydrophobicity). 

This defines a useful and reliable statistical model when we are investigating a 
variable along the sequence in two population groups. The formal statement of the 
hypothesis of interest is 

0:H
)difference mean zero(,0:H

1

0

≠
=

δ
δ  
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We may test the significance of property alterations, e.g. a decreased surface hy-
dration free energy, in psychrophilic sequence populations. This gives an efficient and 
more reliable comparison of protein populations than earlier studies. 

The differences between two sequence populations can be compared graphically as 
well as statistically, and we developed a smoothing technique to be able to recover 
and visualize underlying structure in the data set [15]. We use a rectangular box-filter 
where the vertical filter size is all the amino acids in the aligned sequence position of 
the population, and the horizontal window size can be varied. This filter can be used 
to plot smoothed lines of amino acid properties, such as comparative plots shown in 
Figure 5. All analyses reported in this work were implemented in Matlab. 

2.4   False Discovery Rate 

A common objection against the testing algorithms described above will be the multi-
ple comparisons problem. Benjamini and Hochberg have suggested that the false 
discovery rate (FDR) may be the suitable error rate to control such multiple testing 
problems [16]. FDR is the expected proportion of false rejections among all rejections 
and is a new measure of error rate. A simple procedure was given by them as an FDR 
controlling procedure for independent test statistics and was shown to be much more 
powerful than comparable procedures like Bonferroni correction which may be much 
too conservative. The original formulation FDR presumes independence among the 
different amino acid properties, which is far from correct in our case. But in a recent 
paper [17], the FDR criterion has also been extended to multiple testing under de-
pendency. 

However, a more straightforward way to overcome this difficulty is just to analyse 
more than one dataset by the same procedure, and only report features that are signifi-
cant across many independent protein groups.  

3   Experimental Design and Results 
3.1   Methodology and Datasets 

Sequenced proteins from the Vibrios were downloaded from standard databases in 
order to identify homologues. With a minimum cut-off score of 70% sequence iden-
tity the corresponding amino acid sequences of 7-14 vibrio species (4-10 in the meso-
phile population and 2-4 in the psychrophile) were extracted and 25 alignments of 
intracellular sequences were made with T-coffee. Physicochemical, steric and other 
properties were downloaded from the database AAindex release 6 [18], which contain 
494 quantitative properties of the amino acids, and collected from the literature [19]. 

We applied the methods of comparative analysis of protein sequences by focusing 
on discriminative features extracted from rationally selected parts of the data sets. In 
this approach we made extensive use of the sequence based predictors developed in 
the latest years, and our alignment-based data sets were decomposed and clustered in 
relevant subclasses. We used these tools: sub-cellular location (CELLO, Yu 2004), 
surface (SABLE, Adamczak 2004) and secondary structure (PSIPRED, McGuffin 
2000). The secondary structure was predicted with default settings, and the solvent 
Accessible Surface Area (ASA) was predicted with thresholds 0-1: completely buried, 
2-3: twilight zone, and 4-9: surface. All predictions were based on the sequences from 
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Vibrio cholerae. The alignments and annotations were automatically done with a 
program script, and made it possible to analyse the alignment data relative to its cellu-
lar, 2D and some of its 3D structural constraints: 

− cellular location (intracellular, membrane, extracellular) 
− 2D secondary structure region (alpha, beta, loop) 
− 3D structure location (surface, twilight zone, core) 

3.2   Experimental Results 

Compositional Analysis 
Different subsets of the protein data were used in the analysis; we examined the dis-
tribution in the compositional space. An example showing the variation in amino acid 
compositions are shown in Figure 2. In general it seems difficult to resolve general 
elements of cold adaptation at the basic compositional level. The standard deviations 
between the populations are overlapping. The greatest differences are found to be at 
the surface and the smallest in the interior of the molecule. 

 

Fig. 2. Average amino acid difference in compositions from the mesophilic to the psychrophilic 
temperature domain of 25 cytoplasmic proteins from the bacteria Vibro. Bars are the empirical 
standard deviations 

Analysis of SP Patterns 
In the matrix shown in Figure 3, we present the SPs found between the mesophilic 
and psycrophilic populations in one of our data analysis. They were all tested for 
statistical significance by using Fisher’s exact test (Figure 4). 

The data may also be decomposed and studied in more detail, such as secondary 
structure and external/internal surface position. Analyses of residue properties reveal 
that many frequent SPs consist of the most hydrophilic/ hydrophobic residues, or 
residues with high propensities to form secondary structures. In general, residues 
forming the most significant SPs have extreme values of one or more essential Phys-
icochemical property.  

(V,I) is the most frequent SP. These residues have in common a maximal propen-
sity to form beta-sheets, and the highest minimum width of the side chain. Among all 
pairs of residues, their steric similarity is the highest, as expressed by the partial spe-
cific volume and bulkiness. They are considered the most hydrophobic and conse-
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quently the most often buried residues which transfer with the highest free energy 
from the exterior to the core of the protein. The (L,I)  has similar characteristics to 
(V,I) and is also frequent, but I is more similar to V than to the differently branch-
ing L. 

 
Fig. 3. Visualisation of all the pairwise substitutions from the mesophilic (left) to the psychro-
philic (bottom) group. Two clear trends can be seen: Val (V) is replaced by Ile (I), P-
value=0.007; and Glu (E) is replaced by Asp (D), P-value=0.21. Many of the other minor 
changes are found to be statistically significant (P<0.01) 

Example: Substitution pair: V -> I 
Population Yes No 
Mesophilic vs. Psychrophilic 146 141 
Psychrophilic vs. Mesophilic   83 132 

Fig. 4. Example showing the use of Fisher’s exacte test. P-value= 0.007 

(E,D) is the second most frequent SP. These hydrophilic and accessible residues 
have high transfer free energies from water to organic solvents. They have the lowest 
propensity for bata-structures and the highest helix termination parameter.   

(K,R) is also a frequent SP. These are very hydrophilic and accessible residues and 
have the most side chain heteroatoms. The gyration radius and the side chain interac-
tion parameters are very high because of the long side chains of these amino acids. 

In terms of involvement in replacement pairs, A is a very changeable residue. The 
high mutability of A is probably due to its role as a default residue, with positive 
contributions to alpha-helix propensity. Lack of gamma-carbon also allows substitu-
tions with small steric obstructions. But replacements to the somewhat rigid A induce 
smaller changes in the fold than substitutions to the very flexible G.  

(A,S) also frequently replace each other, mostly in surface and loop areas. Both 
residues have low free energy of hydration. (T,S) are also repeated substitutions.  



Extracting Molecular Diversity Between Populations Through Sequence Alignments      325 

In the literature, there are also published some paired indexes of amino acid 
changes [20]. This model is described by a 20x20 matrix C, and may also be used to 
define the chemical difference d(x,x') between every pair x, x' of amino acids in a 
similar manner as we did above.  

Physicochemical Properties 
We analysed different sequence populations defined by origin and temperature, and 
conducted a large scale statistical test to identify systematic change and significant 
differences between the mesophilic and psychrophilic populations (described in part 
2.3 of the paper). A summary of the results are shown in Table 1. Results are only 
reported in the table if the P-values are found to be significantly low (P<0.01). We 
observe that there are many interesting differences especially at the surface and in the 
alpha helices of the molecules.  

The Gibbs free energy is a fundamental parameter that provides a measure of ther-
modynamic stability of the protein molecule. Most studies of the stability of proteins 
are concentrated on evaluation of the Gibbs free energy of unfolding. We found no 
significant difference for this parameter between the populations. However, the Gibbs 
energy, ∆G, consists of two terms describing the enthalpic, ∆H, and entropic, −T∆S, 
contribution, i.e. ∆G=∆H−T∆S. The enthalpic and entropic contributions for a given 
system appear to have a close relationship, the so-called enthalpy/entropy compensa-
tion. In some cases the enthalpy/entropy compensation is significantly close to ob-
scure the occurrence of the changes in a system, if the analysis is done only in terms 
of Gibbs energy. The differences between the separate changes in the enthalpy and 
entropy may be very significant, as we found it to be in our data analysis, where ∆H 
goes down and −T∆S up (Table 1).  

Table 1. List of main differences from mesophile to psychrophile populations. P-values are 
obtained by the Wilcoxon test of the total data set of 25 alignments from Vibrio bacteria. Parti-
cular 2D and 3D regions are also marked if they have significant hits (P<0.01): A=Alpha helix, 
B=Beta sheet, L=Loop, C=Core, T=Twilight zone and S=Surface. Details in the references to 
amino acid properties can be found in [18, 19]. Other properties gave no significant hits across 
the data set 

Property Change Entire seq.  
P-value 

Significant 
2D/3D region 

Ref. property index 

Hydrophobicity  ↓ <10-5 A,L,C,T Kyte-Doolittle, 1982 
Buriedness ↓ <10-5 A,L,C,T Chothia, 1976 
Molecular weight ↑ <10-5 A,L,C,T Fasman, 1976 
Volume ↑ <10-5 A,L,T. (C↓) Zamyatin, 1972 
Metabolic costs  ↓ <10-5 A,L,C,T Akashi, 2002 
Alpha-helix, frequency of  ↓ 4 10-3 A Chou-Fasman, 1978 
Beta-sheet, frequency of  ↓ 0.6 B Chou-Fasman, 1978 
Side-chain contrib. to stab. ↓ 6 10-3 B,C Takano-Yutani, 2001 
Average flexibility ↑ 3 10-5 A,B,C Bhaskaran et al  1988 
∆H (unfolding enthalpy) ↓ <10-5 A,B,L,C,T Oobatake-Ooi, 1993 
-T∆S (unfolding entropy) ↑ 5 10-5 A,B,C,T Oobatake-Ooi, 1993 

Amino acids have different propensities to form helical structures, and the compo-
sition in helical regions may affect both the helix stability (Figure 5) and the overall 
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stability of the protein. Our calculations of the alpha-helical sequences show a  
better stabilisation for mesophiles compared with psychrophiles (Table 1). 

We observe increasing trends with cold adaptation for molecular weight, volume, 
and average flexibility. Hydrophobicity, side-chain contribution to stability and meta-
bolic cost are decreasing properties.  

 

Fig. 5. Comparison of the mean helix formation parameter in the cytoplasmic protein Isocitrate 
lyase of 5 Vibrio gamma protobacteria (3 mesophilic and 2 psychrophilic). We used a box-filter 
of size m x 3 as smoothing technique to recover the underlying structure in the data, where m is 
the number of sequences in the population. For this particular scale (Chou-Fasman, 1978) the 
helix-favourable values are at the positive y-axis. In average the mesophilic sequences appear 
to have more favourable values than the psychrophile counterparts 

4   Conclusion 
We performed comparative analysis of genetic variability using protein sequences 
from bacterial populations of Vibrio with different temperature preferences. The use 
of data from the same taxonomic groups reduced problems associated with physiol-
ogy and phylogenetic noise that have been a problem in other studies.  

We have applied and expanded the methods of comparative analysis of proteins. 
The improved strategy is partly extensions of traditionally used statistics [19], e.g., 
residue frequencies, residue properties, but applied to positions of aligned sequence 
pairs rather than averaged over unaligned sequences. Statistics also include an amino 
acid replacement matrix approach to identify residue substitution pairs that differs 
between populations. The approach of using aligned sequence pairs yield better com-
parisons, and in this paper an appropriate probabilistic model of context-sensitive and 
property-dependent analysis of alignments is developed, including efficient algo-
rithms for constructing them. We extracted compositional differences into several 
distinct physicochemical factors.  

In the present Vibrio study we found that decreasing hydrophobicity and buriednes 
are generally (and especially for core residues) the most important properties for ad-
aptation to cold in cytoplasmic proteins. Moreover, unfolding enthalpy and unfolding 
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entropy are found to be different in a direction that compensates concerning the Gibbs 
free energy. 

Furthermore, decreased stability parameters correlates both in alpha helices and in 
beta-strands. All these results suggest that the maintenance of proper balance between 
stability and flexibility is critical for proteins to function at their environmental tem-
peratures. 

Some of the features observed may be specific to intracellular proteins or to the Vi-
brio species, and more sequence families should be analyzed to detect both general 
and special determinants of cold adaptation. 
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