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Abstract. One of the first motivations of using grids comes from appli-
cations managing large data sets like for example in High Energy Physic
or Life Sciences. To improve the global throughput of software environ-
ments, replicas are usually put at wisely selected sites. Moreover, com-
putation requests have to be scheduled among the available resources.
To get the best performance, scheduling and data replication have to be
tightly coupled which is not always the case in existing approaches.
This paper presents an algorithm that combines data management and
scheduling at the same time using a steady-state approach. Our theoreti-
cal results are validated using simulation and logs from a large life science
application (ACI GRID GriPPS). The PattInProt application searches
sites and signatures of proteins into databanks of protein sequences.

1 Introduction

One of the first motivations of using grids [11, 21] comes from applications man-
aging large data sets [17, 31] such in Life Science [7, 24, 26] or for example in
High Energy Physic [23]. Indeed, life Science is a scientific field that produce con-
tinuously lot of data through experiences such as complete genome sequencing
projects (1220 projects in november 2004 [12]). These raw bioinformatic datasets
come generally from different sources located in different institutes, and need to
be analyzed with many different algorithms [29]. Grid is a good mean to solve the
equation of analysing such large datasets with a large panel of bioinformatic soft-
ware. To improve the global throughput of software environments, replicas are
usually put at wisely selected sites. Moreover, computation requests have to be
scheduled among the available resources. To get the best performance, schedul-
ing and data replication have to be tightly coupled which is not always the case
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in existing approaches. Usually, in existing grid computing environments, data
replication and scheduling are two independent tasks. In some cases, replication
managers are requested to find best replicas in term of access costs. But the
choice of the best replica has to be done at the same time as the schedule of
computation requests.

Our motivating example comes from an existing life science application (see
Section 2). This kind of application has usually the following characteristics:
a large number of independent tasks of small duration (for example pattern
scanning, searching for signature or functional site of protein family into a data-
bank), reference databases from some MBs to several GBs which are updated
on a daily or weekly basis, several computational servers available on the net-
work, and the size of the overall data set is too important to be replicated on
every computational server on the whole. The resolution of such application on
the grid leads to solve two problems related to replication: finding how (and
where) to replicate the databases and choosing wisely the data to be
deleted when new data have to be stored. On the scheduling side, com-
putation requests must be scheduled on servers by minimizing some
performance metric, taking into account the data location. This paper
presents an algorithm that combines data management and scheduling simul-
taneously using a steady-state approach. Our theoretical results are validated
using simulation and logs from a large life science application.

This paper is organized as follows. In a first section, we present the appli-
cation that motivated this work. In Section 3, we discuss some previous work
around data replication, web cache mapping, data and computation scheduling.
In Section 4, we present our model of the problem and the algorithm we designed
to solve it. Finally, before some conclusions and our future work, we discuss our
experimentation using the OptorSim simulator [9] for replica managers.

2 Motivating Example

Our motivation for this work comes from the PattInProt application about the
search of sites and signatures of proteins into databanks of protein sequences.

Genomic acquiring programs such as full genomes sequencing projects pro-
duce large amounts of data, made available to the community. These raw data
have to be understood and annotated in order to be useful for further studies
and for cross references to and from other datasets. There is also a large number
of bioinformatic tools used to analyze these data, and they come from different
fields of Bioinformatic (similiraty and homology, protein function analysis, se-
quence analysis, etc). But many of them can be modeled as shown in Figure 1.
Protein function analysis, such as the PattInProt application studied in a grid
context by the GriPPS project, can act as a good model of such a bioinformatic
application requiring access to several datasets of various sources and sizes.

Functional sites and signatures of protein are very useful for analyzing these
data or for correlating different kinds of existing biological data. Sites and signa-
tures of protein can be expressed using the syntax defined by the PROSITE [14]
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databank, and written as a regular expression. Then, the search of functional
sites or signature into databanks can be very similar to simple pattern matching
except that some biological relevant error between search pattern and matching
protein can be allowed. These methods can be applied, for example, to identify
and find a characterization of the potential functions of new sequenced proteins,
or to clusterize the sequences contained into international databanks into families
of proteins. Most of the time, this kind of analysis, i.e. searching for a matching
protein into a databank, is quite fast and its execution time mainly depends on
the size of the databanks, but the number of requests for such analysis can be
very high as the number of users increases every day thanks to the Internet.

The difficulties come from the fact that the number of datasets used as refer-
ence for this kind of search can be large and of very different sizes. These datasets
can be international protein sequence databanks such as Swiss-Prot/TrEMBL
[13], PIR [34], etc. But they also can be raised quite directly from genome se-
quencing projects with the translation of the CDS (CoDing Sequence) extracted
from the gene sequence obtained. In this case, the number of datasets are as large
as the genome project [12], and as variable as the size of the genomes (e.g. 3 Gpb
for the human genome or 120 Mpb for the Saccharomyces cerevisiae genome).

Figure 1 describes the classical architecture of a bioinformatic application.
We can notice two kinds of components connected together by the Internet
network. On one side, there is a set of clients which submit requests to compu-
tational servers. Clients are seen as personal computers that have no knowledge
from each others but which are often gathered in some big sites. Usually, these
are office computer of researchers in biology or bioinformatics research centers.
Computational servers are dedicated to computation. They usually are single
processors computers or, sometime clusters of computers. These servers locally
store a limited number of reference databanks and algorithms on which they
can be applied. Often, they are independent from each other and are located
and managed in bioinformatic centers such as EBI [1], NCBI [3], SIB [5], or
NPS@ [4]. Clients access computational servers through web portals or directly
by asking for an account to servers administrators.

Database 1

Clients

Database 2

Database 3

INTERNET

Fig. 1. Current view of a Bioinformatic Application
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We accessed the logs of such a cluster that provides computational work
through a bioinformatic web portal and allows users to apply some well known
algorithms to existing databanks. The portal is the “Network Protein Sequence
Analysis - NPS@” bioinformatic portal [18], providing around 40 algorithms and
7 databanks to biologists and bioinformaticians for biological queries. NPS@ is
up since 1998 and had answered to more than 6 million bioinformatic analyses. It
currently computes more than 3 thousands of such analyses per day. The portal
and the cluster are located at IBCP [2] in Lyon (France), a research institute on
biology and chemistry of proteins, and they are managed by the bioinformatic
team of this laboratory.

Input of such requests are user’s protein sequences or signatures that usually
do not excess a few kilobytes. This is a centralized cluster with limited capacities
so only major databanks and algorithms are available. This is currently improved
by the GriPPS [22] which aims at distributing its work among a large number
of servers made accessible through the grid.

3 Related Work

Data replication has attracted much attention over the last decade. Our work is
connected to several others: high performance web caches, data replication, and
scheduling in grids.

With the rapid growth of the Internet, scalability became in major issue for
the design of high performance web services [35]. Several researches have studied
how to optimally replace data in distributed web caches [15, 30]. Even if this
problem seems to be close to ours, the fundamental difference between the two
is that our problem has a non-negligible computation cost that depends upon
the speed of the machine hosting a given replica.

In computation grids, some work exist around replication [28] and among
them the researches for the Datagrid project from the CERN [6]. OptorSim [9, 19]
allows to simulate data replication algorithms over a grid. This tool is more
precisely described in Section 5.1. In [8], several strategies are simulated like
unconditional replication (oldest file deleted, LRU) and with an economic ap-
proach. The target application is the data management of the Datagrid physic
application. Simulation shows that the economical model is as fast as classical
algorithms. OGSA [27] also proposes a replication service which is currently not
connected to request scheduling. In [25], the authors describe Stork, a scheduler
for data mapping in grid environments. Data are considered as resources that
have to be managed as computation resources. This environment is mainly used
to be able to map data close to computation during the scheduling of task graphs
in Condor.

The closest researches to the results presented in our paper are the one that
aim to schedule computation requests and data mapping on remote sites at the
same time. In [32, 33], several strategies are evaluated to manage data and com-
putation scheduling. These strategies are either strongly related to the scheduling
of computation or completely disconnected. However, these strategies are highly
dynamic and the mapping is not proved close to the optimal. In [16], the au-
thors present an algorithm (Integrated Replication and Scheduling Strategy) in
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which performance are iteratively improved by working alternatively on the data
mapping and the task mapping.

4 Joint Data and Computation Scheduling Algorithm

In this section, we present the algorithm we designed that combines data repli-
cation and scheduling (Scheduling and Replication Algorithm or SRA).

4.1 Model

Our model is based on three kinds of objects: a set of computational servers Pi,
i ∈ [1..m], a set of data dj of size sizej, j ∈ [1..n] and a set of algorithms ak,
k ∈ [1..p] that use one dj as an input. We call a request, or task, Rk,j a couple
(ak, dj) where ak is an algorithm and dj is a data which will be used as an input
of the algorithm ak. All algorithms can not be applied on all kind of data, so
we define vk,j = 1 if Rk,j is a request that is possible, otherwise vk,j = 0. The
complexity of algorithm ak is linear in time with the size of the data. Thus the
amount of computation needed to compute a request Rk,j is αk ·sizej+ck, where
αk and ck are two constants defined for each algorithm ak. For each server, we
also introduce ni(k, j), which is the number of requests Rk,j that will be executed
on server Pi. A server Pi is described by two constants: its computational power
wi and its storage capacity mi. fk,j is the fraction of request of type Rk,j in the
pool of requests. We suppose that this proportion of request is always the same
whatever the interval of time you consider as soon as it is large enough. Our
study focus on managing data and their replication taking all these parameters
into account to improve the computation time of a set of requests. We also make
the assumption that it is possible to store at least one replica of each data.

Our goal is to find a placement of the databanks that maximizes the through-
put of the platform. We call TP this throughput. It is the number of requests
that can be executed per unit time on the platform. The ratio of each kind of
request is defined by f(j, k). So the number of requests of type R(k, j) that is
executed is restricted by this ratio in order to avoid to take in account more
requests than the number that will be submitted.

The throughput is limited by some constraints due to the specifications of
the platform and the requests. First, the space on each server is limited by its
storage capacity. So the total size of data stored on server Pi cannot exceed mi

Then number of requests a server Pi can handle is restricted by its computation
capacity. Thus the amount of computation that a server will execute cannot
exceed wi. To compute a request Rk,j on server Pi, the data dj should be stored
on this server. If it is not the case, then ni(k, j) should be equal to 0, otherwise,
ni(k, j) is limited by the maximal number of requests Rk,j this server can handle.

Let δj
i = 1 if there is a replica of data dj on server Pi, δj

i = 0 otherwise.
Considering previous constraints, we can define the linear program of Figure 2.
The solution of this linear program will give us a placement for the databanks
on the servers but also, for each kind of job, on which server they should be
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Maximise TP,
Constraint to





(1)
∑n

j=1 δj
i ≥ 1

1 ≤ i ≤ m

(2)
∑n

j=1 δj
i .sizej ≤ mi

1 ≤ i ≤ m

(3) ni(k, j) ≤ vk,j .δ
j
i . wi

αk.sizej+ck

1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p
(4)

∑p
k=1

∑n
j=1 ni(k, j)(αk ∗ sizej + ck) ≤ wi

1 ≤ i ≤ m
(5)

∑m
i=1 ni(k, j) = fk,j .TP

1 ≤ i ≤ m, 1 ≤ j ≤ n

(6) δj
i ∈ {0, 1}

1 ≤ i ≤ m, 1 ≤ j ≤ n

Fig. 2. Linear Program Formulation

executed. More precisely, for a kind of request Rk,j , we know how many job
can be executed on the platform and we also know how many requests of this
kind should be executed on each server to reach optimal throughput. Thus, with
the placement of data, the linear program also gives good information for the
scheduling of requests.

4.2 A Greedy Solution

Starting with the same platform and algorithm models, we also design a greedy
algorithm to solve the mapping problem. The idea behind this algorithm is to
try to map data that need the most computational power to the server that has
the most computation capacities first.

The algorithm starts by computing the amount of computation needed by
each data proportionally to its usage. Then data are sort by decreasing values of
this amount. We also sort the list of servers by decreasing computation abilities.
We try to map the data that need the most computational power to the server
that has the highest computation capacity. If there is not enough space, we try
to map the data on the second server and so on and so forth until the data is
mapped. Then, we try to place the second data by computation need to the first
server. We do this operation for each data. If a data cannot be placed on any
server we skip it and try to place the following data item. We restart from the
beginning of data list till there is enough space available to place a data on the
platform.

5 Experiments

To experiment the results of our model, we used OptorSim [9, 19], a simulator
of Data Grid environments developed in the Work Package 2 of EU Datagrid
project [6]. We have modified OptorSim to exactly match our needs.
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5.1 Experimental Environment

The target platforms of our studies are distributed and may span multiple ad-
ministrative domains. Therefore, it may be quite difficult to conduct repeatable
experiments for long running applications on such systems. So we choose to
make use of simulation to experiments our algorithms. Other advantage to use
simulation is the ability to easily test our algorithm with different network con-
figurations which is not possible using experiments on a real platform.

The simulated grids have five major components. Computing Elements (CE)
act like gateways, or masters of a batch scheduler system and will distribute jobs
that are submitted to them to their Worker Nodes (WN). Worker Nodes execute
jobs and are defined by their computation power expressed in Mflops. All Worker
Nodes managed by the same CE have the same capacity of computation, but
WN from different CE may have different capacities.

The third kind of component is the Storage Element (SE). It is where data
are stored and is defined by its storage capacity (in MB). The same file can be
stored on different SEs at the same time. To work properly, a CE should have
a local SE that is accessible by all of its Worker Nodes. Access time to data
located on the local SE by a WN is considered to be null.

The Replica Manager (RM) is in charge of all data movements between sites.
And finally, jobs are created and scheduled by the Resource Broker which is able
to instantiate communications with CE and RM to get all information needed
about SE, network bandwidth, job queues, etc. for scheduling purpose. In our
case, a job is defined by an algorithm and a databank on which the algorithm is
applied.

For our experiments, we extracted from raw logs all information about data
sets and algorithm usage. With external information about data sizes, algorithm
computation costs, and a description of the target platform, we generated the
concrete instance of the linear program described in Section 4. This linear pro-
gram is solved using lp solve [10]. The results give us all information about data
mapping and job scheduling. These outputs are used, with other configuration
files, as inputs for the simulator.

For the experiments, the topology of the simulated platform is inspired from
the architecture of the European DataGrid testbed. There are ten clusters of
eight nodes with associated SE and seven routers without any storage nor com-
putation abilities.

Requests are submitted to the RB with a frequency around ten per second.
This could seems to be a very high rate, but discussions with the biologist
and bioinformatic community lead to the conclusion that the more computation
power we can give them, the more they will use.

5.2 Experiment Results and Discussion

In this section we will discuss our experiments using OptorSim and the results we
obtained. We have done simulations for three kinds of mapping and schedulers.
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The first one, SRA, corresponds to our algorithm. Scheduling and mapping
that are used for the simulation are those that match the solution of our linear
program.

In the MCT (for Minimum Completion Time) simulation, only the mapping
has been done using the results of the linear program. The scheduling is on-line:
at each request submission, it tries to find the computation server that should
be able to finish this task first (considering time to retrieve data if needed and
computation time of all jobs already scheduled on the CE).

Finally, the greedy simulation is done using the mapping of the greedy algo-
rithm. The scheduling is done with the previous on-line scheduler. Simulations
have been done for a pool a 40000 requests.
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Fig. 3. Execution time for 40000 jobs as function of the network bandwidth

Figure 3 shows the execution time of whole set of requests depending on the
network bandwidth. In this simulation, the bandwidth between nodes is chosen
to be homogeneous to see more easily its impact on execution time. On Figure 3,
we can see that for SRA and greedy, the time of execution is totally constant
and independent of network bandwidth. It is due to the fact that there are no
data movement with these two methods.

But reasons for which there are no movement are not the same in both
cases. With SRA algorithm, the scheduling is computed at the same time as the
placement. So the scheduler always schedules a job on a server that has needed
data for this request. In the greedy case, the scheduling uses an on-line MCT



270 Frédéric Desprez, Antoine Vernois, and Christophe Blanchet

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0  5  10  15  20  25  30  35  40

ex
ec

ut
io

n 
tim

e 
(s

)

space available / size of databanks

SRA
MCT

greedy

Fig. 4. Execution time for 40000 jobs as a function of available space on SE

method but there is still no data movement because the algorithm totally fills
the available space in the platform. So the scheduler always schedules requests
where a data is available. As MCT favours the execution time of current request
to schedule, it does a lot of transfers. But its lack of knowledge on request usage
scheme leads him to perform a lot of errors and useless data transfers. Then, it
becomes efficient only when transfers costs are negligible in front of computation
costs.

Figure 4 shows the execution time of same set of 40000 requests depending
on the storage space available on the platform. The space is expressed as the
ratio between the total volume of databanks and the global space available. For
this simulation the network bandwidth is equal to 10MB/s. We can notice that
for all kind of mapping and scheduling algorithms, the execution time decreases
with the increase of available space. It can be easily explained by the fact that
the more space is available, the more replicas can be placed on different servers.
As we can expect, when storage space is small, less than 8 times the size of
databanks, our solution gives better results than greedy and MCT. The linear
program makes a better use of restricted resources. With the increase of available
space, the results of the greedy algorithm improves regularly to become better
than the SRA algorithm. This appears when next to all databanks can be stored
on each server.

When space storage is very limited, the results of our algorithm are not reg-
ular. That comes from our heuristic that constructs an integer solution of the
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linear program from the solution over rational numbers. With a small storage
space, the impact of a bad mapping choice has a high impact on the objective
function. In this case, we notice very high differences between value of the objec-
tive function of the approximation integer solution and the solution in rational
numbers. When available space becomes large enough, our integer approximation
gives the same result of the objective value than resolution in rational number.

6 Conclusion and Future Work

In this paper, we have presented an algorithm that computes at the same time
the mapping of data and computational requests on these data.

Our approach uses a good knowledge of databank usage scheme and of the
target platform. Starting with these information, we have designed a linear pro-
gram and a method to obtain a mixed solution, i.e., integer and rational numbers,
of this program. With the OptorSim simulator, we have been able to compare
the results of our algorithm to other approaches: a greedy algorithm for data
mapping, and an on-line algorithm for the scheduling of requests.

We came to the conclusion that when the storage space available on the
grid is not large enough to store all databanks that lead to very time consuming
requests on all computation servers, then our approach improves the throughput
of the platform. But our heuristic for approximating an integer solution of the
linear program does not always give the best mapping of data and can give
results that are very far from the value of the objective function in the solution
over rational number.

Our future work will consist on adding communication costs for the requests
in the model to be able to consider other kind of applications. We are also working
on an implementation of these algorithm in the DIET [20] environment to deploy
efficiently the GriPPS [22] application. A replica manager will be designed and
developed in this environment.
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