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Abstract. The effectiveness of cancer treatment depends strongly on
an accurate diagnosis. In this paper we propose a system for automatic
and precise diagnosis of a tumor’s origin based on genetic data. This
system is based on a combination of coding theory techniques and ma-
chine learning algorithms. In particular, tumor classification is described
as a multiclass learning setup, where gene expression values serve the
system to distinguish between types of tumors. Since multiclass learning
is intrinsically complex, the data is divided into several biclass problems
whose results are combined with an error correcting linear block code.
The robustness of the prediction is increased as errors of the base binary
classifiers are corrected by the linear code. Promising results have been
achieved with a best case precision of 72% when the system was tested
on real data from cancer patients.

1 Introduction

Effective cancer treatment depends strongly on an accurate diagnosis of the
type of tumor. Nowadays, the diagnosis of such malignancy relies strongly on
histopathological and clinical data. Molecular tests have not yet been widely
exploited to predict the type of cancer since molecular markers have not been
identified for all possible tumors.

A promising technology has been introduced in molecular biology called mi-
croarrays, where thousands of genes can be analyzed simultaneously. On the
surface of these devices, fragments of DNA or RNA are deposited. Then, a dyed
sample of tissue is applied to the microarray for analysis. Hybridization occurs
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at the spots where the sample genetic material matches the DNA/RNA on the
surface of the microarray. The output of such an experiment is a colormap where
the color intensity is related to the degree of expression of the genes under con-
sideration. Since microarrays are built in a controlled fashion, it is possible to
identify gene expression patterns from the obtained colormaps. This technique
opens new ways for researchers to further investigate the existing relationships
between gene expression patterns and cancer.

Following current trends in bioinformatics, the present article studies the clas-
sification of cancer tissues based on genetic information provided by a microarray.
The analyzed data was obtained from the Whitehead Institute of Cancer Re-
search in the USA [3]. It consists of two independent databases, i.e. one training
set of 144 classified instances and one test set of 54 classified instances. Each
instance is composed of 16063 gene expression values. The database is small in
size since it is an extremely costly process to obtain sample tissues valid for later
analysis. The employed samples correspond to primary biopsy tissues enriched
by 50% in malignant cells in order to make the analysis of the data easier. They
represent the 14 most common classes of cancer in human beings, i.e. breast,
prostate, colon, lung, uterus, renal, ovary, bladder, pancreas, central nervous
system cancer, leukaemia, lymphoma and mesothelioma. In every case indepen-
dent medical experts of different cancer research centers in the USA verified
the initial diagnosis twice. Once the samples were classified, a high throughput
technique was used to profile the data genetically: Affymetrix’s GeneChips.

The problem in the presented research is to train classifiers on a multiclass
dataset of 144 instances and validate the results on the 54-instance test set.
This problem’s complexity is due to two reasons: first, there exist much more
attributes than classified instances and second, multiclass machine learning is
intrinsically more complex than biclass learning because most of the available
algorithms are designed for the biclass case.

1.1 Related Work

Previous work has been published on the creation of a diagnosis system for
cancer based on gene expression data and machine learning algorithms. We can
compare for instance the results of Yeang et al. [15], Ramaswamy [9] and Golub
[4]. Yeang and Ramaswamy have developed a system for multiclass diagnosis and
evaluated it on the same dataset. They are considered, therefore, an important
reference for the current research and their results establish a goal to achieve.
Golub introduces in his article the statistical Signal to Noise Ratio (SNR) that we
will also use for feature selection and correlation measurements. The approach
followed by Yeang and Ramaswamy is similar to our system since they also
decompose the multiclass learning problem into N binary and simpler problems.
Their approach differs from ours on how to combine the individual predictions
of the binary learners. They use a One-Versus-All code where every classifier is
trained to distinguish each class from the rest. A disadvantage of their system
is that contradictions may exist when several classifiers have positive output.
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Instead, in our approach, linear codes are employed to combine the output
of the individual binary learners to create a better prediction. Not every linear
block code is suited for machine learning. We rely on the good properties of
low density parity check codes (LDPC codes), as the Gallager code [6], [7].
An important reference for our work is Dietterich et al. [1]. Their publication
explains how error correcting output codes can be used in multiclass learning as
opposed to standard multiclass learning algorithms like, for instance, ID3. The
foundations of how to apply LDPC codes in machine learning can be found in
the Ph.D. dissertation of Tapia [12].

An important choice in multiclass learning based on linear coding theory is
the underlying binary learning algorithm. As it is normally done in bioinformat-
ics when dealing with gene expression datasets, an algorithm is selected capable
of handling a number of attributes that is higher than the number of samples.
This algorithm is called Support Vector Machines (SVM). In addition to the
powerful SVM learners, the performance of the binary classifiers is improved by
boosting them. A very good introduction to boosting and the employed boosting
algorithm, AdaBoost.M1, can be found in the publication by Freund et al. [2].

The present article is structured in seven sections. After the brief introduc-
tion, the feature selection process dealing with the dimensionality problem of
the data is explained. Then, an overview over all preprocessing steps is given.
Later, the selected machine learning approach is detailed. In the fifth section,
the results of the classification on a real dataset are presented. A conclusion and
an acknowledgement section finish the article.

2 Feature Selection

The complexity of the problem is addressed partially by a feature selection pro-
cess. The objective is to find out which genes are most correlated with the class
distinction and use only these genes in the classification. Attribute selection is
performed according to a parameter called Signal to Noise Ratio (SNR) [4] for
its similarity to the SNR parameter used in communication theory.

SNR
(−−→gen,

−−−→
class

)
=

µclass+ (−−→gen) − µclass− (−−→gen)
σclass+ (−−→gen) + σclass− (−−→gen)

. (1)

The main advantages of the SNR statistic are that it respects the correlation
structure of the data and it does not assume any hypothesis about the statistical
distribution of the samples, which would have to be verified [9].

Another added value is that it can be computed empirically if the selected
attributes are meaningful in a statistical sense by a hypothesis contrast. The
goal of the hypothesis contrast is to state, with a given significance level, if
a hypothesis is valid or not. In our case the null hypothesis is that the SNR
ratio does not select the most correlated genes with the class distinction. This
hypothesis must be rejected for the machine learning process to remain valid.

A hypothesis contrast can have two possible outcomes: the null hypothesis
can be either true or false. The significance level α is the probability to reject a
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correct null hypothesis H0. We call the error of rejecting a correct null hypothesis
Type I error. Another possible scenario is to accept a false H0. This type of error
is called Type II and its probability is given by the power of the contrast, β.
If we reduce the significance level α of a hypothesis contrast, we reduce the
probability to reject a valid H0 hypothesis. A p-value is the lowest significance
level at which it is possible to reject the null hypothesis. The p-value also gives
the lowest α for which the observed statistic is meaningful. It is possible to use
the p-value in a decision rule for accepting or rejecting the null hypothesis.

p − value ≤ α ⇐⇒ reject H0; p − value > α ⇐⇒ accept H0 . (2)

In our case it is possible to calculate p-values experimentally1 and compare
them with the significance level of the null hypothesis in order to contrast its
validity. The p-value of a gene is the probability that the SNR hypothesis contrast
of a random permutation of the class labels is greater than or equal to the SNR
observed. We calculate in some experiments the number of genes that exceed
the real SNR ratios, when the class labels are permutated. Formally:

p − value (−−→geni) =
NPERM∑

B=1

# {j ∈ {1, 2, . . . , Ngenes} : |Cj | ≥ |Ai|}
Ngenes · Nperm

(3)

Ai = SNRreal

(−−→geni,
−−−→
class

)
; Cj = SNRB

rand

(−−→genj,
−−−−→
class∗

)
.

where Cj is the SNR statistic in random permutation B of the class labels,−−−−→
class∗. If the p-value calculated in the permutation test is lower than the signif-
icance level α, the null hypothesis is rejected.

In figure 1 we can see that, even in the worst case, the null hypothesis can
be rejected since there are enough genes with a small p-value. We can conclude
that the SNR ratio is a good correlation measure with the class distinction.

Fig. 1. Histograms representing the number of genes as function of the p-values. The
figure shows on the left the best case (bladder cancer) and on the right the worst case
(ovary cancer) scenario for the hypothesis contrast. In both cases the null hypothesis
can be rejected since there are enough genes with small p-values
1 For further explanation please refer to [11]
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Fig. 2. Preprocessing and filtering stages. Two paths of data processing are shown: one
affecting the training data and the other referring to the test set. Both databases must
be compatible after modifying the attribute set in order to achieve meaningful results

3 Preprocessing

In figure 2 all stages of preprocessing and filtering are summarized. On top, the
flow for the training set is represented and below the steps relative to the test
set are shown. The process starts with an adaptation filter that transforms the
data from its original format into an understandable format for the employed
machine learning library, WEKA [14]. The adaptation of the data is followed by
a variation filter that eliminates those genes with not enough dynamic variation
among samples, i.e. the genes without marked difference in expression across
different classes. Genes selected in the training dataset must also be selected in
the test data by the variation filter for both datasets to be compatible. After
the variation filter, the data is normalized to mean zero and standard deviation
one. The data is normalized in order to avoid that genes with higher absolute
expression values mask other genes with smaller values. At this point in the
process, the tracks for both the test and training dataset split. With a random
selection filter, attributes are chosen from the total set of attributes to verify if
the attributes of the feature selection stage are truly marker genes. Both paths
of training and test set contain as last stage of preprocessing a SNR filter that
chooses the most correlated sets of attributes out of the total set. Note that
again full compatibility between training and test set is maintained.

4 Machine Learning Approach

In order to deal with multiclass classification using biclass base algorithms, a
novel approach is used related to coding theory. Binary classifiers are trained
transforming the original fourteen class-learning task in N binary learning prob-
lems. The number of learners is higher than the amount of bits needed to code
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fourteen classes, i.e. four bits. This way, if one of the classifiers fails, the original
class may still be retrieved if the codeword is decoded correctly using the prop-
erties of linear block codes. The underlying model employed is the transmission
of codewords over a binary memoryless channel with additive white gaussian
noise. The received codeword is decoded bearing in mind that it might have a
small amount of errors. In this setting the errors are modeled according to the
training error performance of the binary classifiers.

−→r =
(−→

t + −→e
)

mod 2 =
(
GT

nxk · −→sk + −→e )
mod 2 . (4)

In the above equation −→sk represents a vector of the k possible source symbols
and GT

nxk is the generator matrix of the linear block code C(n, k). The received
codeword is the sum modulo two of the transmitted codeword and an error
vector. At the moment of reception, both the transmitted and the error vectors
are unknown. One of them has to be guessed based on the available data, i.e. the
received vector and the properties of the linear block code. An optimum decoder
estimates the transmitted vector with the maximum a posteriori probability of
having transmitted this vector given the received vector and GT

nxk. Formally:

t̂ = argmax
t

p
(−→

t
∣∣−→r , GT

nxk

)
. (5)

The main disadvantage of optimum decoding is its computational complexity
that makes it impractical. Normally, the problem of optimum decoding is NP-
complete [7].

Closely related to the generator matrix GT
nxk is the parity check matrix

H(n−k)xn that has the property of being orthogonal to the generator matrix.
If this property is applied to the equation of reception in a memoryless channel,
the syndrome relation is obtained:

syndrome : z = H(n−k)xn · −→e mod 2 . (6)

The syndrome of a vector can be used in the decoding process as it is done in
the sum-prod algorithm that is used in the presented research.

4.1 Gallager Codes

A special kind of linear code that can be decoded iteratively is used as composing
scheme. This code was developed by MacKay and Neal [7], [6]. Gallager codes
have a parity check matrix with a very low density of ‘1’s. Let’s denote by
m = n− k the number of parity bits (rows of H(n−k)xn) and by t the number of
‘1’s of a column. The parity check matrix of the code is constructed by choosing
randomly its bits. The number of ‘1’s per column is constrained to t and the
number of ‘1’s per row is as uniform as possible.

Based on the syndrome relation, the following sets are defined:

L (m) ≡ {l : Hml = 1} ; M (l) ≡ {m : Hml = 1} . (7)
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L(i) represents the set of bits that participate in the syndrome equation zi .
M(l) is the set of indexes of the parity check equations, which involve the bit l
of the vector whose syndrome is calculated.

The sum-prod algorithm is a two-step process consisting of a horizontal and
a vertical step. During these stages two parameters related to H(n−k)xn, qx

ml

and rx
ml, are updated iteratively until the syndrome condition (equation 6) is

satisfied. The value qx
ml, with x = 1 or x = 0, represents the probability that

bit l of the vector whose syndrome is calculated is equal to x, given all the
information obtained from all parity check equations except equation m. The
value rx

ml, with x = 1 or x = 0, gives the probability that syndrome equation m
is satisfied if the bit l has the value x and the rest of the bits have a separable
probability distribution given by:

{qml′ : l′ ∈ L (m) \l} . (8)

During the initialization stage, initial values are assigned to the variables qx
ml

with Hmxn = 1. These initial values are calculated as the a priori probabilities of
the error vector. The horizontal step is devoted to calculate the rx

ml variables for
all bits of L(m) iterating through the rows of the parity check matrix. During the
vertical step the qx

ml probabilities are updated using the rx
ml values obtained in

the horizontal step. For the details of how these values are calculated, we refer to
the publications of MacKay and Neal [6], [7]. With qx

ml it is possible to calculate
the values of the a posteriori probabilities that are used to estimate the bits of
the error vector. If the estimated error vector satisfies the syndrome condition
(equation 6), the process is stopped. Otherwise, the horizontal and vertical steps
are repeated, updating variables with the values of the previous iteration. The
decoding is accomplished by setting a one on position l of the error vector if
the a posteriori probability exceeds 0.5. As part of the decoding, the syndrome
condition is always verified to see if all the constrains are met. An error occurs
if a maximum number of iterations is exceeded. Nevertheless, the final values
of an erroneous decoding process can serve as initial values for the next run of
the sum-prod algorithm. Undetected errors can appear if the estimated error
vector satisfies the syndrome equation (equation 6) but does not correspond to
the actual transmission error pattern.

4.2 Relation Between Gallager Codes and Multiclass Learning

The learning system consists of the elements depicted in figure 3: channel coder,
binary symmetric memoryless transmission channel and channel decoder. A bi-
nary source that produces binary symbols represents the training set. The super-
visor is a novel element in the transmission model. This supervisor determines
if the output of the system is correct. In the case errors are present, the system
is updated accordingly. The supervisor calculates error probabilities of the bi-
nary classifiers, which later determine the behavior of the discrete memoryless
channel of the model. The supervisor does not change the channel coder. Once
obtained, the linear code, parity check and generator matrices remain fixed.
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Fig. 3. Model for the multiclass learning problem. The original multiclass setting is
transformed into N binary problems. The output of the N binary classifiers is later
combined with a linear block code

The class of a new sample is obtained evaluating the output of all binary
base classifiers. After all base learners have provided their output, a decoding
process is started where the error probabilities are estimated according to the
training errors of the binary classifiers. It is important to note that the system
takes the performance of all base classifiers into account when doing a prediction
of a new sample’s class. This is achieved because the individual training error
probabilities are used during the decoding process. Globally, the system adapts
to the learning task by training binary learners and applying later a decoding
approach.

Low Density Parity Check codes (LDPC codes), as for example the Gallager
Codes, have an interesting property that makes them attractive for machine
learning problems. There is a threshold for the crossover probability, p∗0, that
defines the maximum value at which the number of erroneous messages tends to
zero as the number of iterations tends to infinity. If the number of ‘1’s per column
of H(n−k)xn is greater than three, the components of the error probability vector
decrease exponentially. From this it is possible to infer that LDPC codes behave
better if they are very long. The above condition can be satisfied more easily as
p∗0 decreases with the channel rate. Therefore, if the performance of a code is
not satisfactory, it is only necessary to reduce the channel rate to improve the
results [12].

4.3 Support Vector Machines

So as to keep the training error low, strong binary classifiers are used: boosted
Support Vector Machines (SVM). SVM is a novel machine learning algorithm
widely employed for genomic data, where there are much more attributes than
instances. The main advantage of SVM is that they perform a classification
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in high dimensionality feature spaces and do the computations in the original
feature space by kernel functions. The main goal of the algorithm is to find the
maximum margin hyperplane that separates the data, i.e. the best conceivable
separation of samples so as to obtain the smallest possible error [8]. In the
presented research, the SVM implementation of the WEKA machine learning
library was used with polynomial kernel functions.

4.4 Boosting: AdaBoost

SVM is a powerful classification scheme but another algorithm called boosting is
added to further improve the results. Boosting is a technique that minimizes the
training error by performing several iterations on the training data. Normally,
it is used in combination with weak learning algorithms in order to improve
their performance. A boosted classifier is trained on different distributions of
the initial training set. Every sample is assigned a probability related to the
error probability when classifying it. On every iteration, a stronger effort is
made on wrongly classified samples because the probability distribution of the
samples is modified according to classification results. At the end all hypothesis
are combined having a higher weight those hypothesis with smaller error. It is
important to notice, however, that a small training error does not necessary
imply small test errors. This is only true if the training and test databases have
similar valued attributes for the same classes [2].

The boosting implementation employed in the presented research is called
AdaBoost.M1 [2] and forms part of the WEKA machine learning libraries [14].
In AdaBoost.M1 a base classifier is trained for a fixed number of iterations on
the training set. This base classifier returns in the i-th iteration a hypothesis
that classifies the data minimizing the training error. The training error is cal-
culated according to the probability distribution Di that describes the difficulty
to classify each sample. Di is updated after every iteration proportionally to
the training error. At first, D0 is uniform for all the samples of the training set.
Di+1 is calculated from Di and the weak hypothesis hi multiplying the weight of
the sample by a number related to the training error. If a sample was classified
correctly in the previous iteration, its weight is left unchanged for the next step.
The dependency of the number that multiplies the weight distribution is such
that erroneously classified samples get a higher probability in the next iteration.
At the end of the process, the final hypothesis is obtained as a weighted sum of
the weak hypothesis, hi, being the weight related to the training error.

5 Results

In this section the results of the machine learning approach are presented. On
two graphs the precision, i.e. the relation among correctly classified positives and
the number of instances classified as positives, is displayed. Figure 4(A,B) clearly
shows that with increasing decoding iterations of the LDPC recursive Gallager
code, the error of the classifier is lower in average. The minimum error obtained
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Fig. 4. Results of the classification process. The precision is plotted in function of the
number of decoding and boosting iterations. Higher number of learners improve the
performance of the classifiers (A,C). A best case precision of 72% is achieved (A).
The results for random permutation data (C,D) are significantly worse than for the
complete dataset (B,D)

in 10 simulations is of 40%, which is a little bit higher than the error achieved
by Ramaswany et al. on the same database. It is important to mention however,
that reducing the channel rate from 0.25 to 0.08, i.e. increasing the number of
learners from 16 to 50, significantly improves the quality of the results. With
a higher number of learners, the error correcting capability of a linear code
increases and thus the overall error is reduced. Computational constraints only
permitted to use at maximum 50 learners. Exceeding this number of classifiers
significantly increased the computation time of the simulations to a non-tolerable
limit given the available computers resources. With more powerful processors or
even clusters we expect to further reduce test errors. Nevertheless, the results
are comparable to other publications as for example [9] and [15] that worked on
the same dataset and achieved a best-case precision of 78%.

In order to verify that the performance of the system is satisfactory, the ob-
tained results are compared with the classification of randomly selected attribute
sets. This way it can be proved that the genes selected by high SNR ratio are
truly marker genes for the analyzed pathologies. From figure 4(C,D) it can be
concluded that the classification provided by the most correlated genes in the
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sense of the SNR ratio is meaningful. In the case of the randomly selected genes,
the best-case precision does not exceed 40%.

6 Conclusions

The addressed problem bears a high complexity due to the following reasons:
first, the relation between number of attributes and instances is very low (curse
of dimensionality) and second, multiclass machine learning is intrinsically very
complicated2. The small size of the available sample databases increases the
difficulty of training proper classifiers. In particular, only eight instances per
category are available. Nevertheless, our results are comparable to the results
published by other research groups [9], [15]. This is achieved by transforming the
multiclass learning problem via a coding approach into several simpler biclass
learning settings. The results of the binary classifiers are combined to a joint
prediction with a linear block code that allows a small number of classification
errors to be present. The learning problem is thus similar to a transmission
through a binary symmetric memoryless channel. The output of each base binary
classifier represents a bit of the received codeword and the training errors of the
classifiers can be assimilated to the channel’s error probability. Decoding is done
with a recursive Gallager code with excellent performance. Due to the iterative
decoding, error rates can be limited with sufficiently high number of learners.

It is also necessary to face the problem of dimensionality in the present re-
search, which means that the number of attributes exceeds largely the number of
available classified samples. This problem is common to gene expression datasets
since modern high throughput techniques allow analyzing thousands of genes si-
multaneously. Still, it is a costly process to obtain many classified samples and,
therefore, the size of the databases never exceeds a few hundred instances. This
problem has been solved in our investigation using statistical feature selection
algorithms based on the SNR ratio. It is verified statistically by a hypothesis
contrast that the SNR ratio correctly measures the correlation to a class dis-
tinction before training the classifiers with the filtered datasets. The importance
of the performed feature selection is not only related to machine learning re-
quirements, it also offers insight into biological processes by identifying possible
marker genes for a particular kind of tumor. As the number of attributes is still
too high even after SNR filtering, a base learning algorithms is chosen able to
deal with a huge number of features: Support Vector Machines.

Presently it is being investigated how to improve the computational efficiency
in order to reduce the error rate of the process even more. The results obtained
up to now encourage to continue researching on molecular diagnosis systems that
may improve further the treatment of patients. The combined use of techniques
from the areas of information and coding theory along with machine learning al-
gorithms represent a new and encouraging approach to the use of gene expression
data for medical diagnosis.
2 In multiclass learning the random guessing probability is 1

k
for k classes in compar-

ison to the much higher random guessing probability for biclass learning of 1
2
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Recursive ECOC Learning Machines In Multiple Classifier Systems, MCS 2004,
Lecture Notes in Computer Science Vol. 3077, pp. 62-71. Springer 2004.

14. I. H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations, Morgan Kaufmann, 1999.

15. C. H. Yeang et al. Molecular classification of multiple tumor types; Bioinformatics
17 (Suppl. 1): pp. 316-322, 2001.


	Tumor Classification from Gene Expression Data: A Coding-Based Multiclass Learning Approach
	1 Introduction
	1.1 Related Work

	2 Feature Selection
	3 Preprocessing
	4 Machine Learning Approach
	4.1 Gallager Codes
	4.2 Relation Between Gallager Codes and Multiclass Learning
	4.3 Support Vector Machines
	4.4 Boosting: AdaBoost

	5 Results
	6 Conclusions
	References




