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Abstract. The paper presents a modified version of principal component analy-
sis of 3-channel Holter recordings that enables to construct one SVM linear 
classifier for the selected group of patients with arrhythmias. Our classifier has 
perfect generalization properties. We studied the discrimination of premature 
ventricular excitation from normal ones. The high score of correct classification 
(95 %) is due to the orientation of the system of coordinates along the largest 
eigenvector of the normal heart action of every patient under study.  

1   Introduction 

The morphological analysis of ECG signal is one of basic non-invasive diagnostic 
methods [7]. It allows making an assessment of myocardium state. The examination 
of arrhythmia and sporadically episode detection requires the analysis of long se-
quences of heartbeats. It corresponds to approximately 100 000 of ECG cycles. 
Therefore, automatic morphological analysis of Holter ECG recordings can be con-
sidered as a useful diagnostic tool.  

In [7] we reported the results of neural network and SVM classifiers that enabled 
fast and efficient detection of premature ventricular and supraventricular excitations 
with a high score of successful classification. Prior to automatic classification the 
ECG Holter recordings were preprocessed: filtered, segmented into separated heart-
beats. Then we applied to each heartbeat segment the principal component analysis of 
its covariance matrix. Hence, the description of the ECG signal shape was reduced to 
two angles of the corresponding principal eigenvector. Consequently, the resulting 
classifiers were just linear and the number of support vectors were minimal. The 
advantage of this approach is the graphical presentation of classification on the plane 
and clear interpretation of results. However, this method of automatic shape recogni-
tion required to design a special classifier for each considered patient.  

In this work automatic classifiers based on support vector machine (SVM) is pre-
sented. The statistical classifiers, as e.g. neural networks and SVMs, require large 
enough learning set of labelled examples The power of learning set, according to the 
Cover theorem [2], must be greater than (2N + 1), where N is the dimension of the 
input space  Therefore it is reasonable to apply the principal component analysis[1, 3, 
5] for the dimensionality reduction [4]. The computation speed of classification and 
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its effectiveness is obtained due to signal compression and particular parameterisation 
method. For each heartbeat description only two parameters were used. Such a small 
number of descriptors allow us to apply a training set containing not too many pat-
terns.  

In this paper we introduce the modification of PCA approach to ECG morphologi-
cal classification that enables to design one SVM classifier for the group of patients 
suffering from the same disease. We attempt to obtain one classifier for all group of 
selected patients that can perfectly discriminate pathological excitations from normal 
ones. The classifier efficiency is defined as a quotient of correctly classified patterns 
to total number of testing patterns. It  reaches 95% for the classes of normal as well as 
pathological heartbeats. Our study is based on the Holter recordings from the Ist De-
partment of Cardiology, Medical University of Warsaw for a group of patients with 
arrhythmia caused by premature ventricular excitations. 

2   PCA Parameterisation of ECG Holter Recordings 

We studied the 3-channel 24-hours Holter ECG signals measured by magnetic type 
recorder in the Ist Department of Cardiology of the Medical University of Warsaw. 
The signals are sampled by specialized hardware system at 128 Hz with 8-bit accu-
racy and preprocessed by the Oxford MEDILOG Excel 2 software package. The data 
are stored in the fdb format.  

 

Fig. 1. Filtered Holter recordings of 3-lead ECG signal. 
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Fig. 2. Trajectory of ECG signal in 3-dimensional phase space reconstructed from signals x(t), 
y(t), z(t) shown in Fig. 1 

 

Fig. 3. Angles of eigenvectors in plane-spherical system of coordinates 

The signals x(t), y(t) and z(t), shown in Fig. 1 can be treated as quasi-orthogonal 
components of 3-dimensional trajectory of a hypothetical dynamic system. The corre-
sponding trajectory is reconstructed in phase space as shown in Fig. 2. As can be 
stated, the trajectory corresponding to a single heartbeat is set up of 3 loops. 

The basic steps of our approach are as follows: ECG signal segmentation, calcula-
tion of covariance matrix of each signal segment and corresponding eigenvalues and 
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eigenvectors. Thus each segment is represented by 9 numbers: 3 eigenvectors in 3-
dimensional space. Taking into account only the direction of eigenvectors in spherical 
coordinate system reduces the number of shape descriptors to 6 angles in plane-
spherical system of coordinates (θ, ϕ), as shown in Fig. 2. The method described in 
[7] used the orientation of the sum of 3 eigenvectors, therefore two angles in spheri-
cal coordinates were sufficient descriptors of the signal shape.  

3   Modified PCA Parameterisation of ECG Signal 
Our approach deals with the 3-channel Holter monitoring performing quasi-
orthogonal system of coordinates that enables to register the electric potential in 
myocardium. The idea of presented modification of PCA parameterisation is to intro-
duce a special system of coordinates that is oriented natural for the average normal 
heart action of every patient under study. The Ox axis of this orthogonal system is 
determined by the largest eigenvector of the average normal excitation. Hence, in 
plane-spherical system of coordinates the angles of the largest eigenvectors of nor-
mally excited beats are concentrated near the origin of the system coordinates (0, 0). 

Suppose that each signal is a function of time x(t), y(t) and z(t). An example of 
these recordings is presented in Fig. 1. At any moment t0 three coordinates of points 
in 3-dimensional space can be calculated. In this way we can reconstruct the trace of 
the electric vector in 3-dimensional space as a trajectory, as shown in Fig 2. For any 
single normal heartbeat the trajectory consists of 3 loops. The largest loop corre-
sponds to QRS wave and two small loops represent P and T waves respectively. Sin-
gle trajectory as a 3- dimensional object can be placed into rectangular prism. The 
lengths of the edges are proportional to eigenvalues and orientation of rectangular 
prism depends on eigenvectors of covariance matrix. 

We attempt to reconstruct the trajectory of heart electric potential in three dimen-
sional phase space by using signals from each channel as (x(t), y(t), z(t)) components. 
The 3-channel Holter ECG signal can be described by the matrix S 
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where: N – number of sample points of a given segment of the signal, xi, yi, zi – values 
of sampled signals from 3 channels. 

The evaluating person selects the interval that contains a reasonable number of 
subsequent normal heartbeats(in practice 20 to 30). This selected part of ECG re-
cording is described by F3×k matrix (where k is the number of points of a given signal 
part). Its covariance matrix K is equal to: 

TFFK ⋅=  (2) 
The eigenvalues λi and eigenvectors wi of  matrix F define a new matrix: 

WSS'=  (3) 
where matrix W is set up of rows equal to eigenvectors of matrix K. 

This operation is equivalent to projection of a given trajectory into the coordinate 
system that is oriented along the largest eigenvector of the average normal excitation 
of the heart. 
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The orientation of the largest eigenvector (called principal component) is relevant 
to the shape of each beat. In order to improve the classification we calculate the 
orientation of each principal component with respect to the average orientation of the 
principal components corresponding to normal beats. The SVM classifier is used to 
discriminate the normal and abnormal beats upon the relative orientation of principal 
components.  

The modification of the classical approach is aimed to define a new orthogonal 
system of coordinates for the average trajectory of normal beats so that the principal 
component (the largest eigenvector) is parallel to Ox axis or to (0, 0) point in plane-
spherical system. 

Thus we obtain compressed information about the signal energy (the elements on a 
diagonal are proportional to the square of RMS values of each channel) and correla-
tion between the pairs of signal (the rest of elements of matrix C are dot product of 
every pair of signals) is not lost. The elements of covariance matrix are averaged over 
time interval. 

The projected components are shown as x’(t), y’(t) and z’(t) and the corresponding 
trajectory is shown in Figures 4 and 5. Fig. 6 presents the eigenvector in plane-
spherical coordinate system. 

The product describes the projection of the ECG signal trajectory onto axes deter-
mined by eigenvectors of the selected interval of normal heat action. Thus we obtain 
a new 3 orthogonal components x’(t), y’(t) and z’(t) of the signal S, shown in Fig. 1. 
These signals and the trace of transformed 3-dimensional trajectory are presented in 
Fig. 4 and in Fig.5. 

The ECG Holter recording is subjected to segmentation into intervals correspond-
ing to single heartbeats. Every cycle is related to R wave of ECG and contains 30% of 
Rn-1Rn interval and 70% of RnRn+1 interval. The covariance matrix of k-th heartbeat is 
equal: 

( )Tkkk

N
''1 SSC ⋅=  (4) 

where N – number of sample points. 
Then we calculate eigenvectors of these covariance matrices corresponding to sub-

sequent heartbeats. The results are shown in plane-spherical coordinate system. As 
can be seen from Fig. 6, the angles of the largest eigenvector of normal heartbeats are 
concentrated in the vicinity of point (0, 0) while those corresponding to pathological 
ones are significantly distanced from the point (0, 0).  

We applied the linear soft margin support vector machine classifier. The input of 
the classifier has the form of feature vector x = (x1,...,xn) (column vector) and its out-
put is real-valued function f: X ⊆ Rn → R. If  f(x) ≥ 0 the input x is assigned to the 
positive class and otherwise to the negative class. 

Linear classifier  in general form can be expressed as 

f b w x bi i
i

n
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where: (w, b) ∈ Rn×R - parameters that control the function f. w - the weight vector,  
b - the bias (threshold).  

The learning paradigm says these parameters must be learned from the data. The 
decision rule of classification is 
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))(sgn()( xx fh =  (6) 

This classifier has the natural geometric interpretation. The input space X is di-
vided into two parts by the hyperplane defined by the equation: 

0)( =+⋅ bxw  (7) 

which divides the space into two half spaces which correspond to the inputs of the 
two distinct classes. The vector w defines a direction perpendicular to the hyperplane, 
the value of b is the distance of the hyperplane from the origin. 

In order to separate a training set with a minimal number of errors we introduce 
some non-negative variables ξi ≥ 0 (slack variables). The Lagrangian of the data set is 
equal 
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where: w – weight vector, b – bias, C –regularisation term, ξ -slack variable, α - La-
grange multipliers, l – number of examples 

The Lagrangian L has to be minimised with respect to the primal variables w and b 
and maximised with respect  to the dual variables αi - a saddle point has to be found. 

Then the weight vector w*: 
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realises the maximal margin hyperplane with geometric margin γ=1/||w||2.  
In this expression only these points are involved that lie closest to the hyperplane 

because corresponding Lagrange multipliers are non-zero. These points are called 
support vectors. 

Usually there are only few support vectors in the training set hence, the informa-
tion compression property. 

The fact that only a subset of the Lagrange multipliers is non-zero is referred to as 
sparseness and means that support vectors contain all the information necessary to 
construct the optimal separating hyperplane. The fewer number of support vectors the 
better generalisation can be expected. This property does not depend on the dimen-
sion of the feature space. 

In our case the input space is just a plane and the linear classifier takes the form of 
an optimal separating line. 

4   Experimental Results 
Holter electrocardiography are clinical routine examinations that produce a large 
amount of data. Monitoring of the electrocardiogram during normal activity using 
Holter devices has become standard procedure for detection of cardiac arrhythmias. 

Ambulatory electrocardiography was carried out using the Oxford Medilog MR 45 
ECG recorder. The subjects with the history of myocardial infarction and heart failure 
post were encouraged and advised to undertake their usual daily activities except 
bathing. They were also advised to note the time and details of any symptoms per-
ceived (the event diary). 
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Fig. 4. Three components of the ECG trajectory projected into orthogonal system of coordi-
nates 

The 24-hour data was analysed by Medilog Excel 2 Holter Management System 
that divided the cardiac arrhythmias in supraventricular arrhythmias (supraventricular 
extasystoles, supraventricular couplets, supraventricular triplets, supraventricular 
bigeminy, supraventricular trigeminy, supraventricular tachycardia) and ventricular 
arrhythmias (ventricular extrasystoles, ventricular couplets, ventricular triplets, ven-
tricular bigeminy, ventricular trigeminy, ventricular tachycardia and R on T phe-
nomenon). The decisions of Medilog Excel 2 system were verified by the physician-
cardiologist. 
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Fig. 5. ECG signal trajectory in orthogonal system of coordinates 

 

Fig. 6. Distribution of eigenvectors after transformation 

The data from the Chair and Clinic of Cardiology, Medical University of Warsaw 
of 5 selected patients suffering from arrhythmia caused by premature ventricular 
excitations from various foci were examined. The signal files of 2000 heartbeats for 
each patient were analysed. The training set consisted of 200 cycles for each patient. 
The training set for SVM classifier consisted of 200 heartbeats for each patient, hence 
total number of examples was 1000 excitations. The linear SVM classifier trained for 
one patient is able to detect normal beats of another patient recording. The score of 
successful recognition of normal and pathological excitations is greater than 95%, in 
4 considered cases, as listed in Table 1. The functionality of SVM classifier is illus-
trated in Figures 7 and 8. 
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Table 1. Results of support vector machine classification 

Patient P003 P011 P018 P101 P103  
Correct classi-

fication 
 

1302 
 

1344 
 

1581 
 

740 
 

1775 
Wrong classifi-

cation 
 

15 
 

56 
 

0 
 

2 
 

7 
Number of 

patterns 
 

1317 
 

1400 
 

1581 
 

742 
 

1782 
Score 0.987 0.960 1.000 0.997 0.996 

 
 

Normal 
ECG 
beats 

Correct classi-
fication 

 
384 

 
325 

 
417 

 
329 

 
202 

Wrong classifi-
cation 

 
15 

 
6 

 
22 

 
8 

 
13 

Number of 
patterns 

 
399 

 
331 

 
439 

 
337 

 
215 

Score 0.962 0.982 0.959 0.976 0.940 

 
Pathological 

ECG 
beats 

Total number 
of patterns 

 
1716 

 
1731 

 
2030 

 
1079 

 
1997 

 

 

Fig. 7. Clusters of heartbeats representing the normal and the premature ventricular excitations 
for 5 patients (P011, P018, P101, P103, P114) represented by modified PCA descriptors and 
the linear SVM classifier 

5   Conclusions 
The modified PCA representation of single heartbeats obtained from 3-channel Holter 
monitoring enables efficient automatic classification of normal and pathological 
cases. Application of modified principal component analysis to data parameterisation 
allowed us to design simple and efficient classifier based on support vector machine. 
We emphasize that SVM trained on data set of one patient is able to classify the heart 
beats of other patients with approximately equal probability. 
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Fig. 8. Linear SVM classifier and margin of data from Fig. 5 presented in spherical coordinate 
system 

Modified principal component analysis enables to perform one general classifier 
for all selected patients. The shape of clusters in plane-spherical system of coordi-
nates can be used for unsupervised classification of large data sets. 

The successful recognition is due to combination of PCA data suppression, as re-
ported in [4] and to natural orientation of systems of coordinates for each patient 
along the largest eigenvector corresponding to individual normal heart action. 
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