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Abstract. Treatment management in critically ill patients needs to be
efficient, as delay in treatment may give rise to deterioration in the pa-
tient’s condition. Ventilator-associated pneumonia (VAP) occurs in pa-
tients who are mechanically ventilated in intensive care units. As it is
quite difficult to diagnose and treat VAP, some form of computer-based
decision support might be helpful. As diagnosing and treating disorders
in medicine involves reasoning with uncertainty, we have used a Bayesian
network as our primary tool for building a decision-support system for
the clinical management of VAP. The effects of antibiotics on colonisa-
tion with various pathogens and subsequent antibiotic choices in case of
VAP were modelled in the Bayesian network using the notion of causal
independence. In particular, the conditional probability distribution of
the random variable that represents the overall coverage of pathogens
by antibiotics was modelled in terms of the conjunctive effect of the
seven different pathogens, usually referred to as the noisy-AND gate.
In this paper, we investigate generalisations of the noisy-AND, called
noisy threshold models. It is shown that they offer a means for further
improvement to the performance of the Bayesian network.

1 Introduction

Establishing an accurate diagnosis and choosing appropriate treatment are de-
sirable especially when it concerns critically ill patients. In the intensive care
unit (ICU), patients are often severely ill. Patients who depend on respiratory
support in the ICU are even more vulnerable than other patients, and are at
risk of developing ventilator-associated pneumonia, or VAP for short. Thus, it
is important to start antimicrobial treatment against VAP as soon as possible
in these patients. However, unnecessary antimicrobial treatment will enhance
selection of antibiotic-resistant pathogens, which may subsequently cause diffi-
culty in treating future infections adequately. Since only time-consuming and
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patient-unfriendly diagnostic tests are available for diagnosing VAP, some form
of computer-based decision support could be helpful in the process of early di-
agnosis and treatment of VAP.

Previously, we have developed a computer-based decision-support system
(DSS) that is aimed at assisting physicians in the diagnosis and treatment of
VAP. The model underlying the DSS consists of a Bayesian network with an
associated decision-theoretic part. The structure as well as the conditional prob-
abilities and utilities were elicitated with the help of two infectious disease spe-
cialists. The resulting decision-theoretic model, or influence diagram, was trans-
lated into a Bayesian network, and this is the model currently used (Cf. Ref. [1]
for details concerning the model and the translation process). The probability
of VAP is computed using the diagnostic part of the Bayesian network; the best
possible combination of antibiotics can be determined using the therapeutic part
of the network.

When prescribing antimicrobial treatment a physician wishes to cover all
microorganisms causing the infection, with a spectrum of antibiotics as narrow
as possible. This policy aims at preventing the creation of antibiotic resistance
and at saving financial costs [2]. This was already taken into account when
constructing the DSS, described in more detail in Ref. [1]. To cover as many
of the pathogens as possible by the antibiotic treatment advised by the DSS, a
noisy-AND gate was used in the Bayesian network for the modelling of the prob-
abilistic interactions of the effects of the prescribed antibiotics on the pathogens.
However, it was found that this way of modelling often yields an antibiotic spec-
trum which is too broad. In the research reported in this paper, noisy threshold
functions replace the noisy-AND gate used previously. We investigate whether
the therapeutic performance of the Bayesian network for VAP improves in this
way. Thus, the aim of the research was to refine the Bayesian network so that it
prescribes antibiotics with a spectrum that is less broad.

The paper is organised as follows. In the next section, our earlier work on
the development of a Bayesian network that is able to assist physicians in the
diagnosis and treatment of VAP is briefly reviewed. In Section 3, the mathemat-
ical principles of causal independence models are discussed and noisy threshold
functions are introduced. In Section 4, the data and methods used in evaluating
the Bayesian networks incorporating the noisy threshold functions are described.
The results achieved are commented on in Section 5. The paper is rounded off
by some conclusions in Section 6.

2 A Bayesian Network for the Management of VAP

Bayesian networks, or BNs for short, have been introduced in the 1980s as a
formalism to compactly represent and reason efficiently with joint probability
distributions. Bayesian networks are in particular well suited for the representa-
tion of causal relations within a specific domain of expertise.

Formally, a Bayesian network B = (G, Pr) is a directed acyclic graph G =
(V(G),A(G)) with set of vertices V(G) = {V1, . . . , Vn}, corresponding to
stochastic variables, here denoted by the same indexed letters, and a set of arcs



Improving the Therapeutic Performance of a Medical Bayesian Network 163

A(G) ⊆ V(G) × V(G), representing statistical dependences and independences
among the variables. On the set of stochastic variables, a joint probability distri-
bution Pr(V1, . . . , Vn) is defined that is factorised respecting the independences
represented in the graph:

Pr(V1, . . . , Vn) =
n∏

i=1

Pr(Vi | π(Vi)),

where π(Vi) stands for the variables corresponding to the parents of vertex Vi.
The formalism of BNs supports the kind of the reasoning under uncertainty

that is typical for medicine when dealing with diagnosis, treatment selection,
planning, and prediction of prognosis. Our medical domain is restricted to pa-
tients who are mechanically ventilated and are at risk of developing ventilator-
associated pneumonia. Entities that play an important role in the development
of VAP and that belong to the diagnostic part of the Bayesian network for VAP
include: the duration of mechanical ventilation, the amount of sputum, radiolog-
ical signs, i.e., whether the chest radiograph shows signs of an infection, body
temperature of the patient and the number of leukocytes (white blood cells) [3].
The structure of the Bayesian network for VAP is shown in Fig. 1. Mechanically
ventilated ICU patients become colonised by bacteria. When colonisation of the
lower respiratory tract occurs within 2–4 days after intubation, this is usually
caused by antibiotic-sensitive bacteria, whereas after one week of intubation of-
ten antibiotic-resistant bacteria are involved in colonisation and infection. Such
infections are more difficult to treat and immediate start of appropriate treat-
ment is, therefore, important. Duration of hospital stay and severity of illness
are associated with an increased risk of colonisation and infection with Gram-
negative bacteria. We modelled seven groups of microorganisms, each as one
vertex in the Bayesian network. Also, for each modelled microorganism, the
pathogenicity, i.e., the influence of that particular microorganism on the devel-
opment of VAP, was included in the model. The presence of certain bacteria is
influenced by antimicrobial therapy. Each microorganism is susceptible to some
particular antibiotics. Susceptibility, in this case, is stated as the sensitivity to
or degree to which a microorganism is affected by treatment with a specific an-
tibiotic. The susceptibility of each microorganism was taken into account while
constructing the model. The infectious-disease experts assigned utilities, by def-
inition quantitative measures of the strength of the preference for an outcome
[4], to each combination of microorganism(s) and antimicrobial drug(s) using a
decision-theoretic model. These variables are included in the therapeutic part of
the Bayesian network for VAP.

3 Causal Independence Modelling

Causal independence is a popular means to facility the specification of condi-
tional probability distributions Pr(Vi | π(Vi)) involving many parent variables
π(Vi). Its basic principles and some special forms are briefly discussed below.
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Fig. 1. Abstract model of the Bayesian network for the management of VAP. Coloni-
sation and pneumonia play a central role in this model. The duration of hospitalisation
and mechanical ventilation have influence on colonisation (col.) of the patient. PA:
Pseudomonas aeruginosa; HI: Haemophilus influenzae; SP: Streptococcus pneumoniae;
Ent{1,2}: Enterobacteriaceae{1,2}; SA: Staphylococcus Aureus; AC: Acinetobacter.
Each pathogen is susceptible (suscept.) to particular antibiotics and an optimal cov-
erage of the pathogens is what the model tries to achieve. The duration of mechanical
ventilation, immunological status and colonisation have influence on the development
of VAP. When a patient is diagnosed with VAP, the patient often has symptoms like
for example an increased body temperature. Boxes denote entities or processes which
are observed; processes that change or can be changed are denoted by ellipses

3.1 Basic Principles

Consider the conditional probability distribution Pr(E | C1, . . . , Cn), where the
variable E stands for an effect, e.g., coverage, and the variables Cj , j = 1, . . . , n,
denote causes, e.g., colonisation by pathogens. By taking a number of assump-
tions into account, which are summarised in Fig. 2, it is possible to simplify the
specification of Pr(E | C1, . . . , Cn). These assumptions are: (1) the causes Cj

are assumed to be mutually independent, and (2) the variable E is conditionally
independent of any cause variable Cj given the intermediate variables I1, . . . , In.
In our domain the intermediate variable Ij stands for susceptibility of pathogenj

to a specific antibiotic. The, using basic probability theory, it follows that:

Pr(e | C1, . . . , Cn) =
∑

I1,...,In

Pr(e | I1, . . . , In)
n∏

j=1

Pr(Ij | Cj). (1)
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Fig. 2. Causal independence model

Now, if we assume that the probability distribution Pr(E | I1, . . . , In) that is
specified for variable E expresses some deterministic function f : I1×· · ·× In →
E, called an interaction function, an alternative formalisation is possible. Using
the interaction function f and the causal parameters Pr(Ij | Cj), it follows that
[5–7]:

Pr(e | C1, . . . , Cn) =
∑

f(I1,...,In)=e

n∏

j=1

Pr(Ij | Cj). (2)

The result is called a causal independence model [5, 6, 8]. In this paper we assume
that the function f in Equation (2) is a Boolean function. Systematic analyses
of the global probabilistic patterns in causal independence models based on re-
stricted Boolean functions were presented in Ref. [6] and Ref. [9]. However, there
are 22n

different n-ary Boolean functions [10, 11]; thus, the potential number of
causal interaction models is huge. However, if we assume that the order of the
cause variables does not matter, the Boolean functions become symmetric; for-
mally, an interaction function f is called symmetric if

f(I1, . . . , In) = f(Ij1 , . . . , Ijn)

for any index function j : {1, . . . , n} → {1, . . . , n} [11]. The number of different
Boolean function reduces then to 2n+1. Examples of symmetric binary Boolean
functions include the logical OR, AND, exclusive OR and bi-implication. An
example of a general symmetric Boolean functions is the exact Boolean function
ek, which is defined as:

ek(I1, . . . , In) =
{� if

∑n
j=1 ν(Ij) = k

⊥ otherwise
(3)

with k ∈ N, and

ν(I) =
{

1 if I = �
0 otherwise

where � stands for ‘true’, and ⊥ for ‘false’. The interaction among variables mod-
elled by the susceptibility, or coverage variables, as shown in Fig. 1, was modelled
by assuming f to be a logical AND. The resulting probabilistic model Pr(E |
C1, . . . , Cn) is sometimes called the noisy-AND or noisy-AND gate. The proba-
bility distribution of the variable that represents the overall susceptibility (cov-
erage in Fig. 1), models the conjunctive effect of the seven different pathogens.
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This principle is modelled by a probability distribution Pr(E | C1, . . . , Cn) that
is defined as in Equation (1) by the noisy-AND, yielding the following equation:

Pr(coverage | Col1, . . . , Coln, Antibiotics) =
n∏

j=1

Pr(susceptibility-pathogenj | Colj , Antibiotics).

By adopting this modelling approach, the network attempts to cover all
pathogens in choosing appropriate antimicrobial treatment.

Evidence has shown that a patient can be colonised by at most 3 pathogens.
Therefore, covering the 7 possible groups of pathogens is simply too much and
results most of time in choosing antimicrobial treatment with a spectrum that
is too broad. This casts doubts on the appropriateness of the noisy-AND for the
modelling of interactions concerning coverage of bacteria by antibiotics.

3.2 Threshold Functions

As argued before, clinicians need to be careful in the prescription of antibiotics as
they have a tendency to prescribe antibiotics with a spectrum that is too broad.
A symmetric Boolean function that is useful in designing a generalised version of
the noisy-AND is the threshold function τk, which simply checks whether there
are at least k trues among its arguments, i.e., τk(I1, . . . , In) = � (i.e., true), if∑n

j=1 ν(Ij) ≥ k with ν(Ij) equals 1, if Ij equals � (true) and 0 otherwise [11].
Note that the noisy-AND gate corresponds to the threshold function τk with
k = n. Hence, the noisy-AND can be taken as one extreme of a spectrum of
Boolean functions based on the threshold function.

Using the threshold function τk with k �= 1, n, may result in a better model.
More intuitively, using the noisy threshold functions the network would only
cover for 1 (k = 1), i.e. noisy-OR, 2 (k = 2), 3 (k = 3), 4 (k = 4), 5 (k = 5)
or 6 (k = 6) pathogens compared to the noisy-AND gate, where all pathogens,
i.e. k = 7, are taken into account. In the following we therefore investigate
properties of the threshold function, and subsequently study its use in improving
the Bayesian network model shown in Fig. 1.

3.3 The Noisy Threshold Model

Symmetric Boolean functions can be decomposed in terms of the exact functions
ek as follows [11]:

f(I1, . . . , In) =
n∨

k=0

ek(I1, . . . , In) ∧ γk (4)

where γk are Boolean constants only dependent of the function f . Using this
result, the conditional probability of the occurrence of the effect E given the
causes C1, . . . , Cn can be decomposed in terms of probabilities that exactly l
amongst the intermediate variables I1, . . . , In are true, as follows:
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Pr(e | C1, . . . , Cn) =
∑

0 ≤ l ≤ n
γl

∑

el(I1,...,In)

n∏

j=1

Pr(Ij | Cj). (5)

Thus, Equation (5) yields a general formula to compute the probability of the
effect in terms of exact functions in any causal independence model where an
interaction function f is a symmetric Boolean function.

Let us denote a conditional probability of the effect E given causes C1, . . . , Cn

in a noisy threshold model with interaction function τk as Prτk
(e | C1, . . . , Cn).

Then, from Equation (5) it follows that:

Prτk
(e | C1, . . . , Cn) =

∑

k≤l≤n

∑

el(I1,...,In)

n∏

j=1

Pr(Ij | Cj). (6)

4 Data and Methods

In our attempt to improve the performance of therapeutic advice provided by
the Bayesian network for VAP, the following data and methods were used.

4.1 Data

We used a temporal database with 17710 records, each record representing a
period of 24 hours of a mechanically ventilated patient in the intensive care
unit. The database contains information of 2233 distinct patients, admitted to
the ICU of the University Medical Center Utrecht between 1999 and 2002. For
157 of these 17710 episodes, a VAP was diagnosed according to the judgement of
two infectious-disease specialists (IDS). We considered the period from admission
to the ICU until discharge from the ICU of the patient as a time series 〈Xt〉,
t = 0, . . . , np, where t = np is the time of discharge of patient p. The time-point
at which VAP was diagnosed was denoted by tV AP

p , t = 0 ≤ tV AP
p ≤ t = np.

For each patient day, we collected the output of the Bayesian network, i.e., the
best possible antimicrobial treatment. As reasoning with the network is time-
consuming, certainly when varying therapy advice, we (randomly) selected 6
patients, with a total of 40 patient days, who were diagnosed with VAP.

4.2 Therapy Advice

During the period of seven days from the time-point of diagnosis, the patient
is treated with antibiotics. Table 1 shows information for the 6 patients using
the original Bayesian network. When the number of days following the day of
the diagnosis of VAP is less than 7, we assume that this patient recovered, or
died. We furthermore assume that when a patient is colonised by one or more
microorganisms on a given day tc, that after three days, i.e. tc +1, tc +2, tc +3,
this patient is still colonised.
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Table 1. This table shows the therapeutic advises by the ICU physician (column 5) and
the Bayesian network (column 6), as well as the clinical culture data (column 4): acinetb
= Acinetobacter; entbct{1,2} = Enterobacteriaceae{1,2}; hinflu = H. influenzae; paeru
= P. aeruginosa; spneumon = S. pneumoniae; negative = ‘no microorganisms found’

Colonised Antibiotics selected by
Patient VAP day by Physician BN

1 1 6 entbct1 augmentin (n) meropenem (b)
1 0 7 cefpirom (i) meropenem (b)
1 0 8 cefpirom (i) meropenem (b)

2 1 7 paeru, hinflu, entbct2 cefpirom (i) clindam.+ciprox. (b)
2 0 8 cefpirom (i) clindam.+ciprox. (b)
2 0 9 cefpirom (i) clindam.+ciprox. (b)
2 0 10 paeru cefpirom (i) ceftazidime (i)
2 0 11 ciproxin (b) ceftazidime (i)
2 0 12 ciproxin (b) ceftazidime (i)
2 0 13 ciproxin (b) ceftazidime (i)
2 0 14 ciproxin (b) none

3 1 5 augm/erytro/gent (i) meropenem (b)
3 0 6 entbct1 augm/erytro (i) meropenem (b)
3 0 7 erytro/ceftriaxon (i) meropenem (b)
3 0 8 entbct1 erytro/ceftriaxon (i) meropenem (b)
3 0 9 ceftriaxon (i) meropenem (b)
3 0 10 ceftriaxon (i) meropenem (b)
3 0 11 negative ceftriaxon (i) ceftriaxone (i)
3 0 12 ceftriaxon (i) ceftriaxone (i)

4 1 30 acinetb, entbct1 cefpirom (i) meropenem (b)
4 0 31 cefpirom (i) meropenem (b)
4 0 32 acinetb cefpirom (i) meropenem (b)
4 0 33 acinetb cefpirom (i) meropenem (b)
4 0 34 cefpirom (i) meropenem (b)
4 0 35 cefpirom (i) meropenem (b)
4 0 36 cefpirom (i) meropenem (b)
4 0 37 cefpirom (i) meropenem (b)

5 1 5 hinflu, spneumon augmentin (n) meropenem (b)
5 0 6 augmentin (n) meropenem (b)
5 0 7 augmentin (n) meropenem (b)
5 0 8 augmentin (n) meropenem (b)
5 0 9 augmentin (n) none

6 1 11 paeru, entbct1 augm/pipcil (i) clindam.+ciprox. (b)
6 0 12 pipcil (i) clindam.+ciprox.(b)
6 0 13 pipcil (i) clindam.+ciprox. (b)
6 0 14 pipcil (i) clindam.+ciprox. (b)
6 0 15 pipcil (i) clindam.+ciprox. (b)
6 0 16 pipcil/ciprox.(b) clindam.+ciprox. (b)
6 0 17 paeru, entbct1 ciproxin (b) clindam.+ciprox. (b)
6 0 18 ciproxin (b) clindam.+ciprox. (b)
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The columns in Table 1 have the following meaning:

1. the patient number;
2. the day at which VAP was diagnosed (indicated by prefix ‘1’ instead of ‘0’);
3. the number of days a patient has been mechanically ventilated;
4. the microorganism(s) found in the sputum culture; abbreviations:

– acinetb = Acinetobacter;
– entbct{1,2} = Enterobacteriaceae{1,2};
– hinflu = H. influenzae;
– paeru = P. aeruginosa;
– spneumon = S. pneumoniae.

5. antibiotics, as mentioned above, can be divided in spectral groups. Used
abbreviations are:
– v : very narrow;
– n : narrow;
– i : intermediate;
– b : broad.

Comparison of antimicrobial spectrum imposes some difficulty. There are, for
example, several intermediate-spectrum antibiotics available, possibly produced
by different vendors. Thus, it is possible that in the table two different antibi-
otics are mentioned, even through they have the same effect. For example, in the
table we see that for patient 2 on day 10, the ICU physician prescribes cefpirom,
whereas the Bayesian network advises to prescribe ceftazidime. The antimicrobial
therapy prescribed by the ICU physician and corresponding spectrum indicated
between parentheses, as well as the therapy advice given by the Bayesian Net-
work with associated spectrum, are mentioned in the last two columns of the
table. Note that ‘none’ means that the Bayesian network advises not to prescribe
any antibiotics.

4.3 Methods

In order to improve the therapeutic performance of the Bayesian network, the
network was inspected in detail. Points for possible improvement that were iden-
tified included the utilities, used in the selection of antibiotics, and the noisy-
AND, used as a basis for the assessment of the conditional probability distribu-
tion

Pr(Coverage | Col1, . . . , Col7, Antibiotics).

Based on the inspection, the following actions were taken:

– It became clear that the preferences of antibiotics with a broad spectrum
were overestimated by the experts while assigning utilities. By giving the
broad-spectrum antibiotics a lower utility, it was expected that this might
result in a more appropriate treatment advice. On a scale between 0 and
100, with 0 representing ‘not preferred’ and 100 ‘preferred’ new utilities
were assessed by infectious disease experts; both the old and new utilities
are summarised in Table 2. In redefining the utilities, it was assumed that
each patient had VAP and that we wished to cover all pathogens present.
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Table 2. Old and new utilities

Utilities
Spectrum Old New

none 29 29
very narrow 96 96
narrow 89 89
intermediate 82 82
broad 71 60

– We studied the use of noisy threshold functions as explained in Section 3.2,
in achieving a better therapeutic performance by the Bayesian network.

Two infectious-disease specialists were requested to prescribe antibiotics for each
of the 6 patients. Their treatments were considered to be the gold standard. This
allowed us to validate the outcomes of the study.

5 Results

When prescribing antibiotics, choice of the spectrum should be based on tak-
ing into account the susceptibilities of causative pathogens. When the number
of different causative pathogens increases, the necessary coverage will become
more broad and often more than one antibiotic will be prescribed. Preliminary
results, shown in Table 1, indicate that the antimicrobial spectrum advised by
the Bayesian network is often broad, even when only two causative pathogens
are present. This effect is summarised in Table 3 in the column with header
‘Noisy-AND old’. Note that the treatments given by the ICU doctors included
in the table are not considered to be gold standard, as is it known that ICU
doctors have a tendency to prescribe antibiotics with a spectrum that is often
too broad.

Table 3 indicates in the column with header ‘Noisy-AND new’ that the redef-
inition of the utilities already resulted in a better therapeutic performance. Yet,
the Bayesian network still advised antibiotics with a spectrum that was often
too broad. Hence, there was a clear need for further refinement of the network,
which was subsequently undertaken using noisy threshold models.

For each noisy threshold model, we collected the output in the same manner
as for Table 1. We have summarised the resulting antibiotic spectra per patient
in Table 3 for thresholds k = 3, k = 4, k = 5 and the two noisy-ANDs. The
performance for the noisy-OR model (threshold function with k = 1), k = 2
(both not in the table), and k = 3 were rather poor: for all patients the resulting
antimicrobial spectrum was too narrow. The networks with threshold function
with k = 6 (not in the table) and the original network with the noisy-AND
(threshold function with k = 7), had a poor therapeutic performance as well,
but here the prescribed antibiotic spectrum was too broad in most of the cases.
The Bayesian networks with threshold functions with k = 4 and k = 5, however,
performed relatively well.
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Table 3. Results of the prescription of antibiotics to 6 patients with VAP according
to: ICU physician, the original network (noisy-AND old), network with new utilities,
network with noisy threshold with k = 3, k = 4 and k = 5 in comparison to the
Infectious Disease Specialists (IDS). Abbreviations of antibiotic spectrum: o: none; v:
very narrow; n: narrow; i: intermediate; b: broad

Patient
Model

1 2 3 4 5 6 total

ICU Physician 1n 2i 4i 4b 8i 8i 5n 5i 3b 6n 27i 7b
Noisy-AND old (k = 7) 3b 1o 4i 3b 2i 6b 8b 1o 4b 8b 2o 9i 29b
Noisy-AND new (k = 7) 3i 8i 1n 4i 3b 8b 5i 3i 5b 1n 23i 16b
Noisy threshold (k = 3) 3v 8v 8v 8v 5v 8v 40v
Noisy threshold (k = 4) 3v 4v 4n 4v 4n 2v 4n 2i 1v 4n 8n 14v 24n 2i
Noisy threshold (k = 5) 1n 2i 4n 4i 5v 1n 2i 2n 6i 3n 2i 3n 5i 5v 14n 21i

IDS gold standard 3n 8i 8i 8i 5n 8i 8n 32i

6 Conclusions and Discussion

In this paper, we have shown that by reconsidering the modelling of interac-
tions between variables in a Bayesian network, it is possible to improve its
performance. We used a Bayesian network for the diagnosis and treatment of
ventilator-associated pneumonia as an example. Intensive use was made of the
theory of causal independence, which not only facilitates the assessment of prob-
ability tables by allowing specifying a table in terms of a linear number of pa-
rameters Pr(Ij | Cj), but also allows taking into account domain characteristics
[6]. This was clearly shown for our Bayesian network concerning VAP, where
motivation was derived from the domain of infectious disease, indicating that a
noisy threshold model might be appropriate for the modelling of the interaction
between pathogens and antimicrobial susceptibility. It appeared that a noisy
threshold function with k = 5 yielded the best results, according to the gold
standard, i.e., the infectious disease experts. This also provides evidence that
the noisy OR and noisy AND, which are very popular in Bayesian network mod-
elling, might not be the best interaction functions for other application areas as
well. In the near future, we intend to test our findings on a larger sample of our
database.

To conclude, it was shown that the noisy threshold model is useful from a
practical point of view by using it as a basis for the refinement of an existing
real-world Bayesian network for the management of critically ill patients.
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