
Hybridizing Sparse Component Analysis
with Genetic Algorithms

for Blind Source Separation

Kurt Stadlthanner1, Fabian J. Theis1, Carlos G. Puntonet2, Juan M. Górriz2,
Ana Maria Tomé3, and Elmar W. Lang1

1 Institute of Biophysics, University of Regensburg, 93040 Regensburg, Germany
kusta@web.de

2 Dept. Arquitectura y Tecnoloǵıa de Computadores, Universidad de Granada,
E-18071 Granada, Spain

3 Dept. de Electrónica e Telecomunicações / IEETA, Universidade de Aveiro,
3810-Aveiro, Portugal

Abstract. Nonnegative Matrix Factorization (NMF) has proven to be
a useful tool for the analysis of nonnegative multivariate data. However,
it is known not to lead to unique results when applied to nonnegative
Blind Source Separation (BSS) problems. In this paper we present first
results of an extension to the NMF algorithm which solves the BSS prob-
lem when the underlying sources are sufficiently sparse. As the proposed
target function has many local minima, we use a genetic algorithm for
its minimization.

1 Matrix Factorization and Blind Source Separation

In the field of modern data analysis mathematical transforms of the observed
data are often used to unveil hidden principles. Especially in situations where
different observations of the same process are available matrix factorization tech-
niques have been used very successfully in recent years. Thereby, the m× T ob-
servation matrix X is decomposed into a m×n matrix W and a n×T matrix H

X = WH. (1)

Here, it is assumed that m observations, consisting of T samples, constitute the
rows of X and that m ≤ n.

One application of matrix factorization is linear blind source separation
(BSS), where the observations X are known to be weighted sums of n underlying
sources. If the sources form the rows of the n × T matrix S, and the element
aij of the so-called mixing matrix A is the weight with which the j-th source
contributes to the i-th observation, then X can be decomposed as

X = AS. (2)

In BSS now, given only the matrix X, a matrix factorization as in (1) is sought
such that A and S are essentially equal to W and H, i.e. they are identical up

J.L. Oliveira et al. (Eds.): ISBMDA 2005, LNBI 3745, pp. 137–148, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

138 Kurt Stadlthanner et al.

to some scaling and permutation indeterminacies. Obviously, the BSS problem
is highly underdetermined such that it can only be solved uniquely if additional
assumptions on the sources or the mixing matrix are made.

Note, that in the sequel we will confine ourselves to the quadratic BSS prob-
lem where the number of sources to be recovered equals the number of available
observations, i.e. m = n.

2 Sparse Nonnegative Blind Source Separation

An often used variant of matrix factorization is nonnegative matrix factorization
(NMF) where the source matrix S, the mixing matrix A as well as the obser-
vation matrix X are assumed to be strictly nonnegative. Albeit NMF has been
used successfully in the field of image and text analysis [1], it cannot solve the
BSS problem uniquely up to scaling and permutation indeterminacies, which
means, that additional constraints are needed.

In literature, the assumption has often been made that the sources are
sparsely represented, i.e. have many zero entries. Such sparseness constraints
have already been exploited successfully in NMF based image analysis methods
[2] as well as in other BSS algorithms. Therefore, we adopt this idea and require
in our approach that the sources are sparsely represented.

The basic idea of our approach is to estimate the original source matrix A
and mixing matrix S, respectively, by determining two nonnegative matrices Â
and Ŝ such that

1. the rows of the matrix Ŝ are as sparse as possible,
2. the reconstruction error of the mixtures ||X − ÂŜ||2 is as small as possible.

Our approach to solve this problem algorithmically is to find two nonnegative
matrices Â and Ŝ which minimize the following target function E(Ã, S̃)

E(Ã, S̃) = ||X− ÃS̃||2 + λ

N∑

i=1

σ(S̃i), (3)

where σ is an appropriate sparseness measure, λ is a weighting factor, and S̃i

denotes the i-th row of the matrix S̃.
Thereby, the matrix S̃ is obtained from the matrix S̃− = Ã−1X by setting

the negative elements of S̃− to zero. Note, that given the matrix Ã the matrix
S̃ is already defined which means that the above optimization problem depends
only on the matrix Ã.

3 Sparseness Measure

For the sparse nonnegative BSS problem at hand, we define the sparseness σ
of a vector s as the fraction of its zero to its nonzero elements. However, as in
real life experiments measurements are always corrupted by noise, also small

Hybridizing Sparse Component Analysis with Genetic Algorithms for BSS 139

nonzero entries of a vector should be treated as zero elements. Hence, we use a
nonnegative threshold τ which defines the maximum value an entry of s may have
in order to be regarded as a zero element. This leads to the following sparseness
measure σ:

σ(s) =
number of elements of s < τ

number of elements of s
, (4)

It may be noted that in literature another sparseness measure has already
been proposed in the context of NMF which defines the spareness of a vector
by the ratio of its l1 norm to its l2 norm. Even if such a sparseness measure is
computationally less demanding it is inappropriate for the BSS task as will be
shown in the simulations section.

4 Genetic Algorithm Based Optimization

As the target function defined in Eq. 3 has many local minima we use a Genetic
Algorithm (GA) for its minimization.

GAs are stochastic global search and optimization methods inspired by nat-
ural biological evolution. The core of a GA is a population of possible solutions,
called individuals, to a given optimization problem as well as a set of operators
borrowed from natural genetics. At each generation of a GA, a new set of ap-
proximations is created by the process of selecting individuals according to their
level of fitness in the problem domain and reproducing them using the genet-
ically motivated operators. This process leads to the evolution of populations
of individuals that better solve the optimization problem than the individuals
from which they were created. Finally, this process should lead to the optimal
solution of the optimization problem even if many suboptimal solutions exist,
i.e. if the target function to be optimized has many local minima.

For the minimization of the target function in Eq. 3 the m2 elements of
the solution matrix Â have to be determined. Taking advantage of the scaling
indeterminacy inherent in the linear mixture model (2) we may assume that the
columns of the original mixing matrix A are normalized such that its diagonal
elements are ones. Hence, only the m2 −m off elements of the matrix Â have to
be determined by the GA. Accordingly, each of the Nind individuals of the GA
algorithm consists of m2 −m parameters which are usually referred to as genes.
As the original mixing matrix is known to have only nonnegative entries it seems
self-evident to confine the genes to be nonnegative, too. However, we allow the
genes to be negative throughout the optimization procedure as we have observed
in our experiments that otherwise the GA often fails to find the global minimum
of the target function.

In every generation of the GA, the fitness of each individual for the optimiza-
tion task has to be computed in order to determine the number of offsprings it
will be allowed to produce. For this purpose, the target function (3) is evaluated
for all individuals. These function values are not used directly as fitness values
as otherwise the fittest individuals often produce too many offsprings such that
the needed diversity in the population is destroyed and the algorithm converges

140 Kurt Stadlthanner et al.

prematurely to a suboptimal solution. Hence, we use a linear scaling procedure
to transform target function values to fitness values.

In order to compute the target function values, for every individual a matrix
Ã− is generated which off elements consist of the genes as stored in the individual
and which diagonal elements are set to one. As in the next step the matrix Ã−
has to be inverted, care must be taken that it is not singular. Therefore, we
replace matrices Ã− with a conditional number with respect to inversion which
is higher than a user defined threshold τsing by a random matrix (also with ones
on its diagonal) with a conditional number lower than τsing. Accordingly, the
genes of the corresponding individual are adjusted.

Next, the matrices Ã and S̃ are needed in order to evaluate the target function
(3). For this purpose, the inverse W̃− of Ã− is computed and the matrices S̃ and
Ã are then obtained by setting the negative elements of the matrices S̃− = W̃−X
and Ã−, respectively, to zero.

After inserting the matrices S̃ and Ã into (3) the resulting target function
value is assigned to the corresponding individual. The individuals are then ar-
ranged in ascending order according to their target function values and their
fitness values F (p(i)), i = 1, . . . , Nind, are determined by

F (p(i)) = 2 − µ + 2(µ − 1)
p(i) − 1
Nind − 1

, (5)

where p(i) is the position of individual i in the ordered population. The scalar
parameter µ, which is usually chosen to be between 1.1 and 2.0, denotes the
selective pressure towards the fittest individuals.

We have used Stochastic Universal Sampling (SUS) to determine the ab-
solute number of offsprings an individual may produce. Thereby, an arc Ri of
length F (p(i)) is assigned to the i-th individual, i = 1, . . . , Nind, on a circle of
circumference C =

∑Nind

i=1 F (x(i)). Starting from a randomly selected position,
2Noff marker points are allocated on the circle, whereas the distance between
two consecutive marker points is C/2Noff and Noff is the total number of off-
springs to be created. The i-th individual may then produce as many offsprings
as there are marker points in its corresponding arc Ri on the circle.

The offsprings are created in a two step procedure. In the first step, two
individuals, which are eligible for reproduction according to the SUS criterion,
are chosen at random and are used to create a new individual. Thereby, the
genes of the new individual are generated by uniform crossover, i.e. each gene of
the new individual is created by copying, each time with a probability of 50 %,
the corresponding gene of the first or the second parent individuum.

In the second step, called mutation, the actual offsprings are obtained by
altering a certain fraction rmut of the genes of the new individuals. These genes
are chosen at random and are increased or decreased by a random number in the
range of [0, mmax]. The role of mutation is often seen as providing a guarantee
that the probability of searching any given parameter set will never be zero and
acting as a safety net to recover good genetic material that may be lost through
the action of selection and crossover.

Hybridizing Sparse Component Analysis with Genetic Algorithms for BSS 141

The last action occurring during each generation of a GA is the replace-
ment of the parent individuals by their offsprings. We use an elitist reinsertion
scheme meaning that a certain fraction relit of the fittest individuals is deter-
ministically allowed to propagate through successive generations. Hence, only the
(1−relit)Nind less fittest parent individuals are replaced by their fittest offsprings
which ensures that the best solution found so far remains in the population.

In order to keep the algorithm from converging permaturely we make use
of the concept of multiple populations. Thereby, a number Npop of populations,
each consisting of Nind individuals, are propagating independently in parallel
and are only allowed to exchange their fittest individuals after every Tex-th
generation. Hence, as long as not all populations have converged to the same
solution they will regain some diversity after every Tex-th iteration step. We use
the complete net structure scheme for the exchange of individuals which means
that every population is exchanging a fraction rmig of its fittest individuals with
all other populations.

Finally, it must be noted that we have used the functions provided by the
Genetic Algorithm Toolbox [4] for all GA procedures apart from the mutation
operator which was implemented by ourselves.

5 Algorithm Repetitions

Despite the use of the mutation operator and multiple populations, the algorithm
failed in many experiments to recover the source and mixing matrix after its
first run. In order to keep the computational cost of the algorithm reasonable,
this problem could not be overcome by simply increasing the number Nind of
individuals and Npop of populations to arbitrarily large values.

We still managed to achieve satisfying results by applying the algorithm
repeatedly. As usually, the algorithm is provided with the observation matrix
X in its first run which is then decomposed into a first estimate of the source
matrix S̃(1) and the first estimate of the mixing matrix Ã(1), i.e. X = Ã(1)S̃(1).
In order to make use of the suboptimal results already achieved in the first run,
the matrix S̃(1) is provided to the algorithm instead of the matrix X in the
second run. The matrix S̃(1) is then factorized into the matrices Ã(2) and S̃(2),
which means that the matrix X can now be factorized as X = Ã(1)Ã(2)S̃(2). This
procedure is repeated K times until the newly determined mixing matrix A(K)

differs only marginally from the identity matrix. With this procedure the final
estimates of the mixing matrix Â and of the source matrix Ŝ are determined as

Â =
K∏

j=1

Ã(j) (6)

and
Ŝ = S̃(K), (7)

respectively, as the matrix X can be factorized as X =
∏K

j=1 Ã(j)S̃(K).

142 Kurt Stadlthanner et al.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

s
1

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

s
2

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

s
1
pseu

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

s
2
pseu

Fig. 1. Top: The original sources s1 and s2. Bottom: The pseudo sources spseu
1 and

spseu
2 . Even if the number of zero elements in spseu

2 is lower than in the original source
s the sparseness measure sp assigns to it a higher value than to the original source

6 Simulations

6.1 Choice of Sparseness Measure

We want to point out that the often used sparseness measure sp(s) of a T -
dimensional vector s

sp(s) =

√
n − ∑T

i=1 |si|/
√∑T

i=1 s2
i√

n − 1
, (8)

where si is the i-th component of s, cannot be used for the BSS task even
if it measures reasonably the sparseness of vectors with only one nonzero entry
(sp(s) = 1) and the sparseness of vectors where all elements are equal (sp(s) = 0).

To give an example for the ineligibility of the sparseness measure sp, we
have generated two nonnegative random sources s1 and s2, each consisting of
1000 data points, and have randomly set 90% of the elements of the first source

Hybridizing Sparse Component Analysis with Genetic Algorithms for BSS 143

and 80% of the elements of the second source to zero. These two sources were
normalized and then used to constitute the rows of the source matrix S (cf.
Fig. 1). The matrix of observations X was obtained by mixing the sources with
the following mixing matrix

A =
[
5 1
6 1

]
(9)

according to Eq. 2.
Note, that as the first source is dominating in both of the mixtures the

following alternative factorization of the observation matrix X is feasible. First,
the original mixing matrix A can be replaced by the pseudo mixing matrix

Apseu =
[
0 1
1 1

]
. (10)

Correspondingly, the original source matrix S has then to be replaced by the
matrix Spseu, which rows are constituted by the following pseudo sources (see
Fig. 1)

spseu
1 = s1, (11)

spseu
2 = 5s1 + s2. (12)

Obviously, these matrices also factorize X, i.e. X = ApseuSpseu still holds,
but the number of zero elements in the second pseudo source spseu

2 is about 8%
lower than that of the original source s2 (cf. Tab. 1). Hence, a BSS algorithm
based on the sparseness measure σ as defined in Eq. 4 would correctly favor
the original source and mixing matrix S and A, respectively, over their pseudo
variants Spseudo and Apseudo.

In contrast, the sparseness measure sp as defined in Eq. 8 assigns a higher
sparseness value to the second pseudo source spseudo

2 than to the original source
s2 (cf. Tab. 1). Accordingly, a sparse BSS algorithm based on this sparseness
measure would fail to recover the original source and mixing matrix A and S,
respectively.

6.2 Reliability of the Proposed Algorithm

We have generated 25 different observation matrices X(j), j = 1, . . . , 25, in order
to evaluate the reliability of the proposed algorithm. For the generation of each

Table 1. The sparsenesses sp as defined in Eq. 8 and σ as defined in Eq. 4 (τ = 0) of
the original and the pseudo sources. Note, that contradicting the fact that the number
of zero elements of the pseudo source spseu

2 is lower than that of the original source s2,
the sparseness measure sp reaches a higher value for the second pseudo source than for
the second original source

sp(s) σ(s)

s1 0.76 0.90
s2 0.62 0.80

spseu
1 0.76 0.90

spseu
2 0.69 0.72

144 Kurt Stadlthanner et al.

of the j-th observations, three nonnegative sources s
(j)
i , i = 1, . . . , 3, have been

created, whereas each source consisted of 1000 nonnegative random elements
uniformly distributed in the interval (0, 1). We have set 900 randomly selected
elements of the first source, 800 of the second source and 700 of the third source,
respectively, to zero before adding some low level random noise with a maximum
amplitude of 0.001. Accordingly, elements smaller than τ = 0.001 (cf. Eq. 4) were
treated as zero elements leading to sparseness values of σ1 = 0.9, σ2 = 0.8 and
σ3 = 0.7, respectively, of the sources. These sources were used to constitute the
rows of 25 different source matrices S(j). Next, 25 random nonnegative 3 × 3
mixing matrices A(j) have been generated and the observation matrices X(j)

were computed as X(j) = A(j)S(j). Based on these observation matrices only,
the presented algorithm was used to recover the source and the mixing matrices,
respectively.

It turned out that multiple populations are indispensable for the success of
the algorithm as it otherwise converged prematurely to suboptimal solutions.
Hence, we used Npop = 8 populations, each consisting of Nind = 50 individuals,
and allowed them every Tex = 100 generations to exchange rmig = 20% of their
fittest individuals. Thereby, each individual consisted of 6 genes corresponding
to the 6 off elements of the mixing matrix A.

As individuals corresponding to singular mixing matrices lead to problems
during the optimization procedure, we have replaced matrices with a conditional
number larger than τsing = 100 by random matrices with a lower conditional
number.

For the computation of the target function values for every individual, the
weight factor λ in (3) was set to 0.01 and kept fixed troughout the experiments.

The selective pressure µ used for the fitness assignment was set to 1.5 while
rmut = 10% of the genes of each individual were increased or decreased by
maximally mmax = 0.1 during the mutation step.

Furthermore, we used an elitist reinsertion scheme where 98% of the individ-
uals were replaced by their offsprings, i.e. only the best individual of the parent
generation was passed to the new generation.

We noticed, that the algorithm seemed to converge after about 1500 itera-
tions and finally stopped it after 2000 iterations. Finally between K = 2 and
K = 5 repetitions of the algorithm were necessary in order to obtain reasonable
estimates Â and Ŝ of the mixing and source matrix according to (6) and (7),
respectively.

The results of the algorithm were evaluated by computing the correlation co-
efficients between the original and the estimated sources on the one hand and the
cross-talking error (CTE) between the original and the estimated mixing matrix
on the other hand. As can be seen in Fig. 2 the algorithm lead in 76% of its runs
to correlation coefficients higher than 0.99. Likewise, also the the cross-talking
error between the estimated and the original mixing matrix was below 1 in 76%
of the runs. As expected, problems have arisen when the conditional number of
the original mixing matrix was high as we replaced possible solution matrices
with a conditional number larger than τsing = 100 during the optimization phase
of the algorithm. However, even if we use higher τsing ’s the algorithm still fails to

Hybridizing Sparse Component Analysis with Genetic Algorithms for BSS 145

0 5 10 15 20 25
0

0.5

1

Correlation Coefficients

0 5 10 15 20 25
0

2

4

6
CTEs

0 5 10 15 20 25
0

200

400
Conditional numbers of A

Fig. 2. Top: the correlation coefficients between the estimated and the original sources.
Middle: crosstalking error between the estimated and the original mixing matrix. Bot-
tom: the condition numbers of the original mixing matrices. If the condition numbers
of the original matrices become too high the algorithm fails to recover the source and
the mixing matrix

recover the source and mixing matrix sufficiently well. The reason is that in the
case of poorly conditioned mixing matrices the global minimum is very narrow
and therefore hard to find during the optimization process. On the other hand,
we have noticed that choosing too high values for τsing leads to worse results
when the conditional number of the original mixing matrix is low. This happens
because a low τsing narrows the search space and the global minimum is found
easier. Hence, our algorithm is especially eligible for problems where the mixing
matrix is not extremely poorly conditioned.

6.3 Recovery of Correlated Sources

In this section we show that the presented method is capable of solving the BSS
problem even if the underlying sources are correlated. This case is especially in-
teresting as a very popular alternative BSS technique, called Independent Com-
ponent Analysis (ICA), fails in such a situation as it is based on the assumption
that the underlying sources are statistically independent.

For the simulation, we have generated three sources si, i = 1, . . . , 3, as follows.
The first and the second source were generated as nonnegative random vectors
where 90% and 80%, respectively, of the elements were randomly set to zero. The

Table 2. Results obtained with the presented method (abbreviated as sparse NN BSS)
and the fastICA algorithm. Displayed are the correlation coefficients ci between the
i-th original source and its corresponding estimate as well as the cross-talking error
(CTE) between the estimated and the original mixing matrix

c1 c2 c3 CTE

sparse NN BSS 1.00 1.00 1.00 0.39
fastICA 1.00 1.00 0.75 5.19

146 Kurt Stadlthanner et al.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

s
3

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

s
1

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

s
2

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

x
3

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

x
1

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

x
2

Fig. 3. Top: The original sources si. Note, that s3 was obtained from s2 by adding
a linear function. Bottom: The rows xi of the mixture matrix X as provided to the
algorithms

third source was generated from the second source by adding a linear function,
i.e.

s3(n) = s2(n) + 0.001(n− 1), (13)

where si(n) denotes the n-th element of the source si and n = 1, . . . , 1000 (cf.
Fig. 3).

This procedure lead to a non-vanishing correlation coefficient of c = 0.65
between the second and the third source, while the sources s1 and s2 as well as
s1 and s3 were uncorrelated. As before, these sources were used to constitute
the source matrix S.

The observation matrix X (cf. Fig. 3) was generated as in Eq. 2 by multiplying
the source matrix S with the following well conditioned (condition number about
5.5) mixing matrix

A =

0.4554 0.5833 0.3739
0.8916 0.3988 0.8736
0.9042 0.0604 0.1326

 . (14)

Hybridizing Sparse Component Analysis with Genetic Algorithms for BSS 147

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

s
1
sparse

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

s
2
sparse

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

s
3
sparse

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

10

s
1
fICA

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

4

s
2
fICA

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

s
3
fICA

Fig. 4. Top: The estimates ssparse
i of the sources as obtained by the nonnegative sparse

BSS algorithm. Bottom: The estimates sfICA
i of the sources as obtained by the fastICA

algorithm. Note, that fastICA fails to recover the third source

When we used the presented nonnegative sparse BSS algorithm with the
parameters set as in the last section, we could recover the sources as well as the
mixing matrix almost perfectly as can be seen in Tab. 2 and Fig. 4. Thereby,
only K = 2 successive runs of the algorithm were needed.

In contrast, such a perfect recovery seems to be impossible by ICA based
BSS. To show this, we have used the famous fastICA algorithm [3] in order to
recover the sources si, i = 1, . . . , 3, and the mixing matrix A. This algorithm
also succeeded in recovering the sources s1 and s2 almost perfectly, but it failed
to recover the third source s3 (cf. Fig. 4). Accordingly, the cross-talking error
between the estimated and the original mixing matrix is more than five times
higher than the CTE achieved with the sparse nonnegative BSS approach (cf.
Tab. 2). Surely, these poor results are not surprising as we have violated the
independence assumption by creating correlated sources.

Hence, the presented algorithm seems to be capable of solving BSS problems
where other well established BSS algorithms, like fastICA, principally fail.

148 Kurt Stadlthanner et al.

7 Conclusions

In this paper we have presented a new BSS algorithm which is appropriate for
problems where the observations, the underlying sources as well as the mixing
matrix are nonnegative and where the sources are sparse. As the used target
function has many local minima we have used a GA for its minimization. Fur-
thermore, we have discussed which sparseness measure is eligible for our ap-
proach. As shown by our simulations the proposed algorithm solves well the
BSS problem as long as the mixing matrix is not close to singular. Furthermore,
we have shown that our approach is capable of solving the BSS problem even if
the underlying sources are not uncorrelated or statistically independent. Future
research will focus on alternative optimization methods for the target function
like simulated annealing.

References

1. D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 40:788-791, 1999.

2. P.O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal
of Machine Learning Research, 5:1457-1469, 2004

3. A. Hyvärinen, Fast and robust fixed-point algorithms for independent component
analysis, IEEE Transactions on Neuronal Networks, 10(3), 626-634, 1999

4. A. Chipperfield, P. Fleming, H. Pohlheim, C. Fonseca, Genetic Algorithm
Toolbox, Evolutionary Computation Research Group, University fo Sheffield,
www.shef.ac.uk/acse/research/ecrg/

	Hybridizing Sparse Component Analysis with Genetic Algorithms for Blind Source Separation
	1 Matrix Factorization and Blind Source Separation
	2 Sparse Nonnegative Blind Source Separation
	3 Sparseness Measure
	4 Genetic Algorithm Based Optimization
	5 Algorithm Repetitions
	6 Simulations
	6.1 Choice of Sparseness Measure
	6.2 Reliability of the Proposed Algorithm
	6.3 Recovery of Correlated Sources

	7 Conclusions
	References

