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Abstract. Human liver cell bioreactors are used in extracorporeal liver support 
therapy. To optimize bioreactor operation with respect to clinical application an 
early prediction of the long-term bioreactor culture performance is of interest. 
Data from 70 liver cell bioreactor runs labeled by low (n=18), medium (n=34) 
and high (n=18) performance were analyzed by statistical and machine learning 
methods. 25 variables characterizing donor organ properties, organ preserva-
tion, cell isolation and cell inoculation prior to bioreactor operation were ana-
lyzed with respect to their importance to bioreactor performance prediction. 
Results obtained were compared and assessed with respect to their robustness. 
The inoculated volume of liver cells was found to be the most relevant variable 
allowing the prediction of low versus medium/high bioreactor performance 
with an accuracy of 84 %. 

1   Introduction 
Liver cell bioreactors are being developed and used for temporary extracorporeal 
liver support [1, 2]. Primary human liver cells isolated from discarded human organs 
are inoculated and cultured in these bioreactors. The 3D liver cell bioreactor investi-
gated here consists of a system of interwoven capillaries within a special housing that 
serve medium supply and removal as well as oxygenation of the cells that are culti-
vated in the inter-capillary space of the bioreactor. This bioreactor mimics conditions 
close to those in the liver organ in vivo. It was shown that primary human liver cells 
obtained from discarded human livers that were explanted but not suitable for trans-
plantation reconstitute to liver tissue-like structures after inoculation into the bioreac-
tor [3, 4]. 

The design of bioreactor operating conditions that support the long-term mainte-
nance of liver cell functionality is of great importance with respect to the bioreactor‘s 
clinical application. In previous work, data mining and pattern recognition methods 
were applied to extract knowledge from bioreactor operation data in order to enable 
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the prediction of the long-term performance of the human liver cells in the bioreactor 
based on early culture data [5]. Using fuzzy clustering and rule extraction methods, 
the kinetics of galactose and urea over the first 3 culture days were found to be the 
best single predictors. In addition, kinetic patterns of the amino acid metabolism over 
the first 6 culture days and their relation to the long-term bioreactor performance 
were identified and described by different network models (correlation networks, 
Bayesian networks, differential equation systems) [6]. However, these results alone 
do not allow to draw conclusions with respect to the causes of the observed differ-
ences in the metabolic performance of the bioreactor cultures. These differences may 
in particular be due to donor organ properties and/or differences in organ preserva-
tion, cell isolation and cell inoculation prior to bioreactor operation. This paper pre-
sents results obtained by statistical tests and machine learning methods to quantify 
relations between donor organ and cell preparation characteristics and bioreactor 
performance. 

2   Material and Methods 

2.1   Cell Isolation and Bioreactor Culture 

Cells for bioreactor inoculation were isolated from 70 human donor organs that were 
excluded from transplantation due to organ damage (steatosis, fibrosis, cirrhosis or 
other reasons). The organs were preserved at 4°C for varying time periods for the 
transport from the donor clinic to the Charité Virchow Clinic. Cell isolation from 
these organs was performed with the approval of the Deutsche Stiftung Organtrans-
plantation (DSO) and the local ethics committee using a five-step enzyme perfusion 
technique as described elsewhere [4]. 

Cells were inoculated into the bioreactors immediately after isolation and cultured 
in the systems under standardized perfusion and oxygenation conditions. The culture 
period was one day to 60 days. The bioreactor culture performance was assessed on 
the basis of biochemical variables that were measured daily in the culture perfusate 
(see 2.2). 

2.2   Data 

A data set xi,j (i = 1,…, I; j = 1,…, J) for 21 metric and 4 categorical variables (I = 25) 
characterizing donor and organ properties as well as organ preservation, cell isolation 
and cell inoculation of J = 70 bioreactor runs was analyzed (Tables 1 and 2). For 
some metric variables i, a number of values was missing (70-Ni, Table 1). 

Each run was labeled by Lj ∈ {L, M, H} denoting ‘low’, ‘medium’ and ‘high’ per-
formance, respectively, categorizing the long-term maintenance of the functionality 
of the liver cells in the bioreactor culture. 18, 34 and 18 runs were labeled L, M and 
H, respectively. This performance had been assessed by an expert based on the bio-
chemical variables that were measured during the bioreactor operation quantifying 
enzyme liberation, glucose and lactate metabolism, galactose and sorbitol uptake, 
ammonia elimination, urea and albumin production and amino acid metabolism. 
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Table 1. Metric variables characterizing donors and organs, organ preservation, cell isolation 
and cell inoculation (BMI – body mass index, GGT – gamma glutamyltranspeptidase, LDH – 
lactate dehydrogenase, ALT – alanine aminotransferase, AST – aspartate aminotransferase, 
GLDH – glutamate dehydrogenase, AP – alkaline phosphatase, PS – preservation solution; Min 
– minimum value, Max – maximum value, Ni – number of available values) 

Variable Unit Min Max Ni 
BMI (of the donor) 
Weight (of the donor) 
Height (of the donor) 
Age (of the donor) 
GGT (in the donor plasma) 
LDH (in the donor plasma) 
ALT (in the donor plasma) 
AST (in the donor plasma) 
DeRitis (quotient AST/ALT) 
Bilirubin (total bilirubin in the donor plasma) 
Urea (in the donor plasma) 
Preservation_Time (of the organ) 
Organ_Weight 
LDH_PS (LDH in the preservation solution) 
AST_PS (AST in the preservation solution) 
GLDH_PS (GLDH in the preservation solution) 
AP_PS (AP in the preservation solution) 
Remaining_Mass (of the organ after cell isolation) 
Dissolved_Mass (of the cells) 
Viability (of the cells) 
Inoculated_Volume (of the cells) 

kg⋅m-2 
kg 
cm 
a 
U⋅L-1 
U⋅L-1 
U⋅L-1 
U⋅L-1 
- 
µmol⋅L-1 
mmol⋅L-1 
h 
g 
U⋅L-1 
U⋅L-1 
U⋅L-1 
U⋅L-1 
g 
% 
% 
mL 

21
55

155
20
6

71
5
3

0.21
0.38
1.40
2.50
997
11
3
0
0

179
20
30

144

39 
140 
195 
79 

1075 
2013 
647 
405 

5.83 
133 
91 
27 

3378 
5310 
2110 

29 
19 

1344 
89 
85 

800 

68 
70 
68 
69 
66 
47 
70 
70 
65 
67 
64 
69 
70 
57 
57 
57 
56 
66 
67 
67 
67 

Table 2. Categorical variables characterizing donors, organ preservation, cell isolation and 
bioreactor culture performance (f – female, m – male, UW – University of Wisconsin solution, 
HTK – histidine-tryptophane-ketoglutarate solution, Coll. – collagenase P, HSA – human 
serum albumin) 

Variable Categories Distribution 
Gender (of the donor) 
Preservation_Solution 
Digestion_Enzyme 
Additives (used during cell isolation) 

{f, m} 
{UW, HTK, Celsior, -} 
{Coll., Liberase, Serva} 
{DNAse, HSA, none} 

[33, 37] 
[36, 25, 3, 6] 
[57, 11, 2] 
[19, 1, 50] 

Performance (of the bioreactor culture) {low, medium, high} [18, 34, 18] 

2.3   t-Test and Wilcoxon Test 

The 21 metric variables averaged over the groups of runs that were assigned to the 
different bioreactor performance levels were compared by the two-sided t-test and 
Wilcoxon’s rank sum test (Wilcoxon-Mann-Withney test, MATLAB Statistics Tool-
box, The MathWorks, Natick, MA, USA). Tests were performed comparing the 
groups ‘high’ versus ‘low or medium’, ‘low’ versus ‘high or medium’, ‘low’ versus 
‘high’, ‘high’ versus ‘medium’ and ‘low’ versus ‘medium’. The variables were 
ranked according to the p-values as determined by the t-test, i.e. according to the 
probability that two samples with a normal distribution of unknown but equal vari-
ances have the same mean. 
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2.4   Contingency Table Analysis 

For each variable a 2 by 2 table was generated determining the numbers of runs as-
signed to two clusters with respect to the variable values as well as to the bioreactor 
performance. The clustering of the metric variables was performed using the mini-
mum variance criterion. For the categorical variables the following pairs were ana-
lyzed: ‘female’ versus ‘male’, ‘University of Wisconsin solution’ versus ‘histidine-
tryptophane-ketoglutarate solution’, ‘Collagenase P’ versus ‘Liberase’ and ‘DNAse’ 
versus ‘no additives’. In respect of the bioreactor performance the pairs ‘high’ versus 
‘low or medium’, ‘low’ versus ‘high or medium’, ‘low’ versus ‘high’, ‘high’ versus 
‘medium’ and ‘low’ versus ‘medium’ were analyzed. For each 2 by 2 table the two-
sided p-values were calculated by Fisher’s exact test [7]. 

2.5   Random Forest Analysis 

The variables were ranked according to their importance as calculated by Breiman’s 
Random Forest algorithm [8, 9] available in R [10]. Before starting the algorithm 
‘randomForest’ missing values were imputed using the proximity obtained from the 
random forest imputing algorithm ‘rfImpute’ configured for 5 iterations and 2500 
trees. Running ‘randomForest’ in the supervised mode an ensemble of 5000 trees 
was generated using a mtry parameter of 3 (estimated by ‘tuneRF’ with stepfactor = 
2, ntreeTry = 5000, improve = 0.05) and default values for the other parameters. The 
ensemble of the 5000 trees generated was then analyzed with respect to the first and 
second level split variables of the decision trees. 

2.6   Support Vector Machines 

The Support Vector Machine algorithm [11, 12] with a linear kernel and c = 0.1 (cost 
of constraint violation) together with a leave-one-out cross-validation was used in 
order to find single variables as well as pairs and triplets of variables that can robustly 
predict the bioreactor performance. This was done comparing the performance levels 
‘low’, ‘medium’, ‘high’, ‘low or medium’ and ‘high or medium’. When running the 
algorithm for missing values xi,j, the corresponding runs j were ignored when the  
variable i was involved. The prediction accuracy was determined as the quotient Q 
dividing the number of correctly predicted runs by the total number of tests (which 
equals the number of runs J minus the number of runs ignored when dealing with 
missing values). Q characterizes the predictive strength of the respective variable set. 
Single variables, pairs or triplets of variables with maximum prediction accuracy Q 
were then selected. 

3   Results and Discussion 
Tables 3 and 4 show the results obtained by the ranking of the variables according to 
the p-values as calculated by the t-test and the exact Fisher’s test as well as according 
to the importance as calculated by the Random Forest algorithm (see also Fig. 2). The 
t-test can only be applied to the metric variables. Comparing the performances ‘low’ 
versus ‘high or medium’ and ‘low’ versus ‘medium’, the ‘Inoculated_Volume’ was 
found to be significantly correlated to the bioreactor performance (p<0.002, see also 
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Fig. 1) by all three statistical tests (t-test, Wilcoxon’s rank sum test, Table 3; exact 
Fisher’s test for the contingency table analysis, Table 4). 

The three statistical tests applied assess the relevance of individual variables but 
not of their combinations. To test such combinations of variables, Random Forests 
(RF) and Support Vector Machines (SVM) were applied. 

The RF algorithm [8, 9] combines two powerful concepts in machine learning: 
bagging and random feature selection. Bagging stands for bootstrap aggregating 
which uses resampling to produce pseudo-replicates in order to improve predictive 
accuracy. Random feature selection can considerably improve predictive accuracy, 
too. Fig. 2 shows the variables ranked by their importance as calculated by the RF 
algorithm. The RF out-of-bag (OOB) estimate of error rate obtained was 44 %. 

Each binary decision tree generated by the RF algorithm contains one first level 
split variable and two second level split variables (or one or two leaf nodes instead of 
them). Looking at individual variables, the ‘Inoculated_Volume’ most frequently 
occurred as first level and as second level split variable, i.e. in 10 % and 7 % of the 
cases, respectively (508 times in the 5000 first level nodes, 671 times in the 10000 
second level nodes; Table 5). Often, one of the two second level split variables does 
not appear, i.e. there exists a leaf node following the first split. There are 1054 trees 
among the 5000 generated ones (21 %) with a leaf node instead of one of the two 
second level split variables (Table 5). These 1054 leaf nodes at the second level stand 
430 times for ‘low’, 155 times for ‘medium’ and 469 times for ‘high’ performance. 

Table 3. Rankings of the metric variables with respect to their influence on the bioreactor 
performance as obtained by the two-sided t-test for the performances ‘high’ versus ‘low or 
medium’ (A), ‘low’ versus ‘high or medium’ (B), ‘low’ versus ‘high’ (C), ‘high’ versus ‘me-
dium’ (D) and ‘low’ versus ‘medium’ (E), respectively (*: p<0.05, **: p=0.0013, ***: 
p=0.0003); significant results obtained by Wilcoxon’s rank sum test are indicated by crosses 
(+: p<0.05, ++: p=0.0046, +++: p<0.001) 

Variable A
HvsL|M

B
LvsH|M

C
LvsH

D
HvsM

E 
LvsM 

BMI 
Weight 
Height 
Age 
GGT 
LDH 
ALT 
AST 
DeRitis 
Bilirubin 
Urea 
Preservation_Time 
Organ_Weight 
LDH_PS 
AST_PS 
GLDH_PS 
AP_PS 
Remaining_Mass 
Dissolved_Mass 
Viability 
Inoculated_Volume 

*, + 1
16

7
+ 3

9
18
17
13

8
11

5
14
19
10

+ 12
21
20

6
* 2

4
15

6
2

10
4

20
13
12
16
19
11

5
14

8
7
3

18
15

9
17
21

***, +++ 1

* 3
6

17
4

14
21
18
15
11

7
19
13
12

8
9

20
16

+ 5
* 2
10

*, ++ 1

3
21

2
6

10
14
15
13

7
12

*, + 1
16
19

8
+ 9
20
18
11

4
5

17

15 
4 
3 
9 

16 
7 
8 

13 
12 
17 

*, + 2 
19 

5 
10 

6 
21 
20 
11 
18 
14 

**, +++ 1 
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Searching for pairs of variables that most frequently appear in the set of generated 
decision trees, ‘Urea’ and ‘Inoculated_Volume’ were most often found jointly as first 
and second level split variables in 67 of the 5000 trees generated (1.3 %; Table 6). 
The occurrence of other pairs is less frequent, i.e. smaller than 1.3 % (Table 6). The 
‘pair’ consisting of the variable ‘Inoculated_Volume’ (as the first level split variable) 
and a leaf node (instead of one of the two second level split variables) was found with 
the highest frequency, i.e. in 242 of the 5000 trees (5%; Table 6). Almost all, i.e. 239 
of these 242 trees (99 %) can be expressed by the following rule: 

IF ‘Inoculated_Volume is smaller than B1’, THEN ‘Performance is low’. (1) 
The split value B1 is different for the 239 trees. The distribution of the split values B1 
is bimodal (Fig. 3): The split value B1 for the ‘Inoculated_Volume’ lies 166 times 
(i.e. 69 %) between 350 and 380 mL and 52 times (22 %) between 250 and 260 mL. 
21 times the split values B1 lie outside these intervals. 

Table 4. Rankings of the metric and the categorical variables with respect to their influence on 
the bioreactor performance as obtained by the two-sided exact Fisher’s test of the contingency 
table analysis for the performances ‘high’ versus ‘low or medium’ (A), ‘low’ versus ‘high or 
medium’ (B), ‘low’ versus ‘high’ (C), ‘high’ versus ‘medium’ (D) and ‘low’ versus ‘medium’ 
(E), respectively (*: p<0.05, **: p<0.002) as well as the rankings according to the importance 
as calculated by the Random Forest algorithm (see also Fig. 2) 

Variable A
HvsL|M

B
LvsH|M

C
LvsH

D
HvsM

E 
LvsM 

F 
RF 

BMI 
Weight 
Height 
Age 
GGT 
LDH 
ALT 
AST 
DeRitis 
Bilirubin 
Urea 
Preservation_Time 
Organ_Weight 
LDH_PS 
AST_PS 
GLDH_PS 
AP_PS 
Remaining_Mass 
Dissolved_Mass 
Viability 
Inoculated_Volume 
Gender 
Preservation_Solution 
Digestion_Enzyme 
Additives 

7
16
12

* 2
20
18
21
22
8

11
6

13
23
15
24
19
17
5

* 1
10
14
9

25
3
4

16
4

22
12
14
11
23
24
15
6

10
25
19
8

13
18
20
3
7

21
** 1

17
5
9

* 2

8
9

16
5

19
20
21
22
7

10
23
15
24
11
13
25
17
4

* 3
14

* 2
18
12
6

* 1

7
21
11

* 2
14
12
22
23
8

17
3

13
24
20
25
15
18
9

* 1
6

19
5

16
4

10

20 
4 

19 
21 
9 
8 

22 
23 
16 
13 
3 

24 
15 
11 
10 
12 
25 
6 

18 
14 

** 1 
7 
5 

17 
2 

14 
21 
17 
3 

13 
10 
15 
6 
8 

19 
2 

16 
9 
7 
4 

11 
20 
5 

12 
18 
1 

23 
24 
22 
25 

Searching for triplets of variables, those trees were most frequently found that 
have ‘AST’ as first level split variable with either ‘Inoculated_Volume’ (31 trees; 
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0.6 %) or ‘Urea’ (24 trees; 0.5 %) as one of the two second level split variables and a 
leaf node instead of the other second level split variable (Table 7). 

While the RF method is based on the induction of decision trees with conditions 
‘variable value x < split value B’ that define regions with axis-parallel borders, SVM 
allow to generate classifiers with discriminating borders that are not restricted to be 
parallel to the axes. Using SVM it was searched for individual variables as well as 
pairs and triplets of variables that provide the highest prediction accuracy Q as deter-
mined by leave-one-out cross-validation. 

 

Fig. 1. Box plot of the values of the variable ‘Inoculated_Volume’; each box shows the me-
dian, the lower and upper quartiles, the whiskers (length: 1.5-fold interquartile range) and the 
outliers (°, the rest of the data lies outside the whiskers); significant differences determined by 
the t-test and Wilcoxon’s rank sum test are indicated by asterisks (*: p=0.016 and 0.0046, **: 
p=0.0013 and 0.0009, ***: p=0.0003 and 0.0005, respectively) 

 

Fig. 2. Variable importance as calculated by the Random Forest algorithm [8, 9] 
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Table 5. Individual variables most frequently found as 1st or 2nd level split variable in the set of 
5000 trees generated by the Random Forest algorithm; N1, N2 – number of trees in which the 
variable represented the 1st level split variable or one of the two 2nd level split variables 

1st Level Split Variable N1  2nd Level Split Variable N2 
Inoculated_Volume 
Urea 
AST 
Age 
AST_PS 

508
415
319
302
298

 - (Leaf node) 
Inoculated_Volume 
AST_PS 
Age 
Urea 

1054 
671 
516 
486 
485 

Table 6. Pairs of variables most frequently found as 1st and 2nd level split variables in the set of 
5000 trees generated by the Random Forest algorithm; N12 – number of trees in which the pair 
represented the 1st level split variable and one of the two 2nd level split variables 

1st Level Split Variable 2nd Level Split Variable N12 
Inoculated_Volume 
AST 
LDH 
Dissolved_Mass 
Urea 
Inoculated_Volume 
Urea 
Urea 
AST 
Remaining_Mass 

- (Leaf node) 
- (Leaf node) 
- (Leaf node) 
- (Leaf node) 
Inoculated_Volume 
AST 
DeRitis 
AST_PS 
Inoculated_Volume 
Inoculated_Volume 

242 
217 
86 
83 
67 
64 
63 
55 
52 
51 

Table 7. Triplets of variables most frequently found as 1st and 2nd level split variables in the set 
of 5000 trees generated by the Random Forest algorithm; N122 – number of trees in which the 
triplet represented the 1st level split variable and both 2nd level split variables 

1st Level Split Variable 2nd Level Split Variables N122 
AST 
AST 
Inoculated_Volume 
AST 
Inoculated_Volume 

- (Leaf node), 
- (Leaf node), 
- (Leaf node), 
- (Leaf node), 
- (Leaf node), 

Inoculated_Volume 
Urea 
Dissolved_Mass 
Height 
AST_PS 

31 
24 
17 
17 
16 

 
Fig. 3. Histogram of the split values B1 in the condition of decision rule (1) as obtained by the 
Random Forest algorithm [8, 9]; (number of trees out of the 5000 generated versus split value) 
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Fig. 4. ’Low’ (o) versus ’high or medium’ (•) bioreactor performance can be satisfactorily 
predicted by the variable ‘Inoculated_Volume’ alone; using the variable ‘Viability’ in addition 
does not improve the prediction accuracy considerably as was shown using SVM 

Using SVM to distinguish between the performances ‘low’ and ‘high or medium’ 
yielded the highest values Q for the individual variable ‘Inoculated_Volume’ 
(Q=0.836), for the variable pair ‘Inoculated_Volume’/‘Viability’ (Q=0.844; Fig. 4) 
and for the variable triplet ‘Inoculated_Volume’/‘Viability’/‘DeRitis’ (Q=0.900). The 
value Q was compared to the accuracy Q0 of a dummy prediction ‘all values are high 
or medium’. With a total number of 70 bioreactor runs and 18 low performance ones, 
Q0 equals 0.74 (=1-18/70). However, neglecting runs with missing values, Q0 varies: 
0.74 for ‘Inoculated_Volume’, 0.78 for the pair ‘Inoculated_Volume’/‘Viability’ and 
0.77 for the triplet ‘Inoculated_Volume’/‘Viability’/‘DeRitis’. Judged by the ratio 
Q/Q0, the improvement in prediction accuracy by combining the ‘Inocu-
lated_Volume’ as most important variable with other variables is rather small. 

4   Conclusion 
The variability of the performance (as single output) of 70 human liver cell bioreactor 
runs was studied based on 25 variables (as multiple inputs) that characterize donor 
organ properties, organ preservation, cell isolation and inoculation prior to bioreactor 
operation. The input-output relation was analyzed by various methods, in particular 
statistical tests (t-test, Wilcoxon’s rank sum test, exact Fisher’s test), Random Forests 
(RF, [8, 9]) and Support Vector Machines (SVM, [11, 12]) with a linear kernel as 
described in this paper. In addition, further methods were applied that yielded quite 
similar results which are not presented here: multivariate analysis by Principal Com-
ponent Analysis (PCA), Independent Component Analysis (ICA) and Correspon-
dence Analysis (CA), generation of classifiers by Induction of Decision Trees (See5, 
[13], with boosting and leave-one-out cross-validation), Support Vector Machines 
with polynomial and radial kernels, Recursive Partitioning, k-Nearest-Neighbor Clas-
sifiers, Naive Bayes Classifiers as well as cluster based rule generation [14] after 
clustering of the runs for the metric variables by the fuzzy c-means algorithm and 
minimum variance analysis with two clusters or an optimized cluster number (using 
12 criteria). 
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The ‘Inoculated_Volume’ was found by all the applied methods as most important 
variable for the prediction of the liver cell bioreactor performance, in particular to 
predict ‘low’ performance. It is often followed next by ‘Urea’ (as shown in Table 3 
for the t-test and Wilcoxon’s rank sum test as well as in Fig. 2 and Tables 4 to 7 for 
RF). 

No robust results were obtained combining two or three variables. These more 
complex classifiers depend on the chosen method for classifier construction as well as 
on the selected data subset. In particular, only a maximum of 242 (5 %) out of the 
5000 trees generated by Breiman’s RF algorithm were found to have the first level 
split variable, i.e. the ‘Inoculated_Volume’, and a leaf node (instead of one of the two 
second level split variables) in common (non-genuine variable pair; genuine pairs are 
even far less frequent; see Table 6). The split value B1 for the first level split variable 
‘Inoculated_Volume’ has a bimodal distribution between 230.5 and 381.5 mL 
(Fig. 3). In addition, just 31 or less (0.6 % or less) out of the 5000 trees generated by 
the RF algorithm have the first level split variable, one of the two second level split 
variables and a leaf node (instead of the other second level split variable) in common 
(non-genuine variable triplet; genuine triplets are almost not existent; see Table 7). 

This unsatisfactory robustness of classifiers combining two or three of the vari-
ables also showed when SVM were employed. The ‘Inoculated_Volume’ on its own 
again proved to be the most discriminating variable to predict bioreactor perform-
ance, here with an accuracy of 84%. The inclusion of other variables, however, does 
not improve prediction accuracy considerably (see Fig. 4). 

The positive correlation of the inoculated volume of cells with the bioreactor per-
formance shown by different methods indicates that an improved performance can be 
achieved by increasing the cell volume that is inoculated into the bioreactor. Based on 
this theoretical result, it has to be established experimentally which maximum inocu-
lation volume is practically feasible and which bioreactor performance can actually 
be achieved by this under real operating conditions. 

Due to the widely consistent picture that evolved from the study using different 
methods (with the ‘Inoculated_Volume’ as the by far most important single variable 
for bioreactor performance prediction prior to operation) it may be concluded with 
respect to the problem investigated that only limited further information can be 
gained from the 25 variables analyzed here. 

Further work should therefore be directed towards the analysis of derived variables 
that for instance relate to more cell-specific than solely bioreactor-specific character-
istics. Also, other variables not included so far for various reasons should be part of 
an extended analysis. This for instance applies to additional donor organ properties, 
such as the liver injury (e.g. steatosis, cirrhosis, fibrosis and others) that led to the 
exclusion of the organ from transplantation and to the use of its cells in the bioreactor 
culture. Due to the diversity of these injuries and still low case numbers for several of 
them, the variable was not included in the present study. 
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