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Abstract. A main problem of “Follow the Perturbed Leader” strategies
for online decision problems is that regret bounds are typically proven
against oblivious adversary. In partial observation cases, it was not clear
how to obtain performance guarantees against adaptive adversary, with-
out worsening the bounds. We propose a conceptually simple argument
to resolve this problem. Using this, a regret bound of O(t

2
3 ) for FPL in

the adversarial multi-armed bandit problem is shown. This bound holds
for the common FPL variant using only the observations from designated
exploration rounds. Using all observations allows for the stronger bound
of O(

√
t), matching the best bound known so far (and essentially the

known lower bound) for adversarial bandits. Surprisingly, this variant
does not even need explicit exploration, it is self-stabilizing. However
the sampling probabilities have to be either externally provided or ap-
proximated to sufficient accuracy, using O(t2 log t) samples in each step.

1 Introduction

“Expert Advice” stands for an active research area which studies online algo-
rithms. In each time step t = 1, 2, 3, . . . the master algorithm, henceforth called
master for brevity, is required to commit to a decision, which results in some
cost. The master has access to a class of experts, each of which suggests a de-
cision at each time step. The goal is to design master algorithms such that the
cumulative regret (which is just the cumulative excess cost) with respect to any
expert is guaranteed to be small. Bounds on the regret are typically proven in the
worst case, i.e. without any statistical assumption on the process assigning the
experts’ costs. In particular, this might be an adaptive adversary which aims at
maximizing the master’s regret and also knows the master’s internal algorithm.
This implies that (unless the decision space is continuous and the cost function
is convex) the master must randomize in order to protect against this danger.

In the recent past, a growing number of different but related online problems
have been considered. Prediction of a binary sequence with expert advice has
been popular since the work of Littlestone and Warmuth in the early 1990’s. Fre-
und and Schapire [1] removed the structural assumption on the decision space
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and gave a very general algorithm called Hedge which in each time step ran-
domly picks one expert and follows its recommendation. We will refer to this
setup as the online decision problem. Auer et al. [2,3] considered the first partial
observation case, namely the bandit setup, where in each time step the master
algorithm only learns its own cost, i.e. the cost of the selected expert. All these
and many other papers are based on weighted forecasting algorithms.

A different approach, Follow the Perturbed Leader (FPL), was pioneered as
early as 1957 by Hannan [4] and rediscovered recently by Kalai and Vempala [5].
Compared to weighted forecasters, FPL has two main advantages and one major
drawback. First, it applies to the online decision problem and admits a much
more elegant analysis for adaptive learning rate [6]. Even infinite expert classes
do not cause much complication. (However, the leading constant of the regret
bound is generically a factor of

√
2 worse than that for weighted forcasters.)

Adaptive learning rate is necessary unless the total number of time steps to be
played is known in advance.

As a second advantage, FPL also admits efficient treatment of cases where
the expert class is potentially huge but has a linear structure [7,8]. We will refer
to such problems as geometric online optimization. An example is the online
shortest path problem on a graph, where the set of admissible paths = experts
is exponential in the number of vertices, but the cost of each path is just the
sum of the costs of the vertices.

FPL’s main drawback is that its general analysis only applies against an
oblivious adversary, that is an adversary that has to decide on all cost vectors
before the game starts – as opposed to an adaptive one that before each time step
t just needs to commit to the current cost vector. For the full information game,
one can show that a regret bound against oblivious adversary implies the same
bound against an adaptive one [6]. The intuition is that FPL’s current decision at
time t does not depend on its past decisions. Therefore, the adversary may well
decide on the current cost vector before knowing FPL’s previous decisions. This
argument does not apply in partial observation cases, as there FPL’s behavior
does depend on its past decisions (because the observations do so). As a conse-
quence, authors started to explicitly distinguish between oblivious and adaptive
adversary, sometimes restricting to the former, sometimes obtaining bounds of
lower quality for the latter. E.g. McMahan and Blum [7] suggest a workaround,
proving sublinear regret bounds against an adaptive bandit, however of worse
order (t

3
4
√

log t instead of t
2
3 , for both, geometric online optimization and online

decision problem). This is not satisfactory, since in case of the bandit online
decision problem for a suitable weighted forecaster, even a O(

√
t) bound against

adaptive adversary is known [3].
In this work, we remove FPL’s major drawback. We give a simple argument

(Section 2) which shows that also in case of partial observation, a bound for
FPL against an oblivious adversary implies the same bound for adaptive ad-
versary. This will allow in particular to prove a O

(
(tn

√
log n)

2
3
)

bound for the
bandit online decision problem (Section 3). This bound is shown for the common
construction where only the observations of designated exploration rounds are
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used. As this master algorithm is label efficient, the bound is essentially sharp. In
contrast, using all informations will enable us to prove a stronger O(

√
tn log n)

bound (Section 4). This matches the best bound known so far for the adversarial
bandit problem [3], which is sharp within

√
log n. The downside of this algorithm

is that either the sampling probabilities have to be given by an oracle, or they
have to be approximated with to sufficient accuracy, using O(t2 log t) samples.

2 FPL: Oblivious ⇒ Adaptive

Assume that c1, c2, . . . ∈ [0, 1]n is a sequence of cost vectors. There are n ≥ 1
experts. That is, ci

t is expert i’s cost at time t, and the costs are bounded (w.l.o.g.
in [0, 1]). In the full observation game, at time t the master would know the past
cumulative costs c<t = c1:t−1 =

∑t−1
s=1 cs (observe that we have introduced some

notation here). However, our focus are partial observations where this is not the
case. Hence, assume that there are estimates ĉt (to be specified later) for the cost
vectors ct. Then at time t, FPL(t) samples a perturbation vector qt ∈ [0, ∞)n

the components of which are independently exponentially distributed, that is,
P(qi

t ≥ x) = e−x. Afterwards, the expert with the best (minimum) score ĉ<t− qt

ηt

is selected, where ηt > 0 is the learning rate:

FPL(t, ĉ<t) = arg min
1≤i≤n

{
ĉi
<t − qi

t

ηt

}
where qi

t
d.∼ Exp independently. (1)

Denote the expert FPL chooses at time t by It = FPL(t, ĉ<t). Then an adaptive
adversary is a function A : [0, 1]n×t−1 × {1 . . . n}t−1 → [0, 1]n. (We assume A to
be deterministic but remark that all our results and proofs hold for randomized
A without major modification.) The complete game between FPL and A is spec-
ified by ct = A(c1c2 . . . ct−1, I1I2 . . . It−1) and It = FPL(t, ĉ<t) for t = 1, 2, . . .
The estimated cost vector ĉt is revealed to FPL after time t and specified by a
mechanism “outside” this game which is defined later (this is the exploration).

After the game has proceeded for a number of time steps T , we want to evalu-
ate FPL’s performance. Actually, the expected performance is the right quantity
to address. If we are rather interested in high probability bounds on the actual
performance, then they are easily obtained by observing that the difference of
actual to expected performance is a martingale with bounded differences (all
instantaneous costs ci

t are in [0, 1]). Thus, high probability bounds follow by
Azuma’s inequality, as we will demonstrate in Proposition 2.

How can we compute FPL’s expected costs EcFPL
1:T = E

∑T
t=1 cIt

t ? The key
observation is that – on the cost vectors generated by FPL and A and with the
given estimated costs ĉt – FPL’s expected costs at time t are the same as another
algorithm F̃PL’s expected costs. F̃PL is defined by

F̃PL(t, ĉ<t) = arg min
1≤i≤n

{
ĉi
<t − qi

∗
ηt

}
, (2)

where q∗ is a single fixed vector with independently exponentially distributed
components. Since we have to be careful to take expectations w.r.t. the appro-
priate randomness, we explicitely refer to the randomness in the notation by
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writing e.g. EcFPL
t = Eqtc

FPL
t . Then the following statement trivially holds, as qt

and q∗ have the same distribution.

Proposition 1. At each time t ≤ T , we have Eqtc
FPL
t = Eq∗cF̃PL

t .

This means that in order to analyze FPL, we may now proceed by considering
the expected costs of F̃PL instead. We can use the standard analysis based on
the tools by Kalai and Vempala [5], which requires that F̃PL is executed on
a sequence of cost vectors that is fixed and not known in advance. Actually,
in contrast to the full observation game analysis, the bandit analysis will never
require the true cost vectors to be revealed, but rather the estimated cost vectors.
For the cost vectors generated by A in response to FPL, the prerequisite for
F̃PL is satisfied – just consider F̃PL as a virtual or hypothetic algorithm which
is not actually executed. Therefore it does not make any decisions or cause any
response from the adversary. Just for the sake of analysis we pretend that it runs
and evaluate the expected cost it incurs, which is the same as FPL.

Since our key argument and the way it is used in the analysis appears quite
subtle at the first glance, we encourage the reader to thoroughly verify each of
the subsequent formal steps.

3 The Standard Strategy Against Adversarial Bandits

The first algorithm we consider, bandit-FPL (bFPL), is specified in Figure 1
and proceeds as follows. At time t, it decides if to perform an exploration or an
exploitation step according to some exploration probability γt ∈ (0, 1). This is
realized by sampling rt ∈ {0, 1} independently from all other randomness with
P [rt = 1] = γt. In case of exploration (rt = 1), the decision Ib

t is uniformly
sampled from {1 . . . n}, independently from all other randomness. We denote
this choice by ut. (For notational convenience, we will also refer to the irrelevant
ut’s in the exploitations steps later.) In case of exploitation (rt = 0), bFPL
obtains its decision Ib

t by invoking FPL according to (1). After bFPL has played

its decision, it observes its own costs c
Ib

t
t . Finally, only in case of exploration

(rt = 1), the estimated cost vector is set to something different from 0. This is
the standard way of constructing an FPL variant against an adversarial bandit

For t = 1, 2, 3, . . .
set ĉi

t = 0 for all i
sample rt ∈ {0, 1} independently s.t. P [rt = 1] = γt

If rt = 0 Then set Ib
t = FPL(t, ĉ<t) according to (1)

If rt = 1 Then sample Ib
t from {1 . . . n} uniformly (Ib

t = ut)

play decision Ib
t and observe cost c

Ib
t

t

If rt = 1 Then set ĉ
Ib
t

t = n · c
Ib
t

t /γt

Fig. 1. The algorithm bFPL. The exploration rate γt and the learning rate ηt (used
by subroutine FPL) will be specified in Theorem 1.
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[7,8]. We will discuss how to make use of all observations in the next section.
Here is the formal specification of the algorithm again.

Ib
t = bFPL(t, ĉ<t) =

{
ut if rt = 1
FPL(t, ĉ<t) otherwise, ĉi

t =

{
nci

t

γt
if rt = 1 ∧ i = Ib

t

0 otherwise.

Consequently, the estimated cost vector is chosen unbiasedly, i.e. Ert,ut ĉ
i
t = ci

t.
This technique was introduced in [2].

Theorem 1. Let γt = min
{
1, t−

1
3
(
n
√

log n
) 2

3
}

and ηt = γt

n2 t−
1
3
(
n
√

log n
) 2

3 .
Then, for any T ≥ (n log n)2, each expert i ∈ {1 . . . n}, and any adaptive assign-
ment of the costs c1, c2, . . ., bFPL satisfies the regret bound

EcbFPL
1:T − ci

1:T ≤ 4
(
Tn

√
log n

) 2
3
. (3)

(For T < (n log n)2, the regret is clearly at most (n log n)2.)

Proof. All computations we use in the subsequent proof have been taken or
adapted from other work. Our point is to bring them into the right order and to
carefully check that in this context, against an adaptive adversary, all operations
are legitimate. In particular we have to take care that all expectations are w.r.t.
the appropriate randomness. Again, we make this explicit in the notation and
write e.g. EcbFPL

t = Eqt,r1:t,u1:tc
bFPL
t . Note that according to the definition of

bFPL, EcbFPL
t in fact does not depend on q<t. During the proof, we will avoid the

use of unspecified expectation (without subscripts). Let’s introduce abbreviation
h<t = (r<t, u<t, q<t) for the randomization history, i.e. the tuple containing all
past random variables.

Moreover, we will use conditional expectation. For instance, Eqt [cFPL
t |h<t] de-

notes a random variable depending on the randomization history h<t, where for
each possible history the expectation is taken w.r.t. qt. Since we admit adaptive
assignments, we must be aware that they may depend on bFPL’s past random-
ness. To make this explicit, we use the notation E[ci

t|h<t] for the adversary’s
decisions and rewrite our bound to show (3) as

T∑

t=1

Eqt,rt,ut [c
bFPL
t |h<t] −

T∑

t=1

E[ci
t|h<t] ≤ 4

(
Tn

√
log n

) 2
3
. (4)

In order to keep the presentation simple, we assume the adversary to be deter-
ministic. Then for given randomization history, ci

t is constant. The same proof
(and hence the theorem) remains valid if we admit randomized adversaries.

First note that Eqt,rt,ut [cbFPL
t |h<t] ≤ Eqt [cFPL

t |h<t] + γt holds in each time

step t by definition of bFPL and c
Ib

t
t ≤ 1. Since γt ≤ t−

1
3
(
n
√

log n
) 2

3 , we have

T∑

t=1

γt ≤
T∑

t=1

t−
1
3
(
n
√

log n
) 2

3 ≤ 3
2

(
Tn

√
log n

) 2
3
. (5)
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Therefore, (4) follows from

T∑

t=1

Eqt [c
FPL
t |h<t] −

T∑

t=1

E[ci
t|h<t] ≤ 5

2

(
Tn

√
log n

) 2
3
. (6)

Consider this form of FPL (i.e. FPL executed in each time step) as a virtual
algorithm: It does not run in that way on the inputs. Rather, for the sake of
analysis, we pretend that it runs with the ĉt obtained from bFPL and try to
evaluate its (virtual) performance.

We then use Proposition 1 to bring into the play another virtual algorithm,
namely F̃PL. Since for given randomization history, the expected performance
of FPL and F̃PL coincide, (6) is proven if we can show

T∑

t=1

Eq∗ [cF̃PL
t |h<t] −

T∑

t=1

E[ci
t|h<t] ≤ 5

2

(
Tn

√
log n

) 2
3
. (7)

Next, we perform the transition from real to estimated costs. Since the esti-
mate ĉ was defined to be unbiased, we have E[ci

t|h<t] = Ert,ut [ĉi
t|h<t]. By the

same argument, since the choice of F̃PL actually does not depend on rt and ut,
Eq∗ [cF̃PL

t |h<t] = Eq∗,rt,ut [ĉF̃PL
t |h<t] holds. Hence, (7) follows from

T∑

t=1

Eq∗,rt,ut [ĉ
ĨFPL
t |h<t] −

T∑

t=1

Ert,ut [ĉ
i
t|h<t] ≤ 5

2

(
Tn

√
log n

) 2
3
. (8)

Note that, somewhat curiously, F̃PL (like FPL) only incurs estimated costs in
case of exploration, i.e. where it actually did not decide the action. We need yet
another virtual algorithm, infeasible F̃PL or ˜IFPL, defined as

˜IFPL(t, ĉ1:t) = arg min
1≤i≤n

{
ĉi
1:t − qi

∗
ηt

}
, (9)

which uses the same perturbation q∗ as F̃PL. It is not feasible because at time t
it makes use of the information ĉt, which is only available afterwards. As it is a
virtual algorithm, this does not cause any problems. By [6, Theorem 4], which
is proven by an argument very similar to (13) below, in case of exploration (i.e.
rt = 1) it holds that Eq∗ [ĉF̃PL

t |h<t, rt = 1] ≤ Eq∗ [ĉĨFPL
t |h<t, rt = 1] + ηt

(
n
γt

)2. We
remark that this step is valid also for independently sampled perturbations qt.
Clearly, Eq∗ [ĉF̃PL

t |h<t, rt = 0] = Eq∗ [ĉĨFPL
t |h<t, rt = 0] in case of exploitation

(rt = 0). Thus in expectation w.r.t. q∗ and rt, and for any ut,

Eq∗ [ĉF̃PL
t |h1:T ] = Eq∗,rt [ĉ

F̃PL
t |h<t] ≤ Eq∗,rt [ĉ

ĨFPL
t |h<t] + ηtn2

γt
.

The sum over ηtn2

γt
≤ t−

1
3
(
n
√

log n
) 2

3 is bounded as in (5), and we see that (8)
holds if we can show

T∑

t=1

Eq∗,rt,ut [ĉ
ĨFPL
t |h<t] −

T∑

t=1

Ert,ut [ĉ
i
t|h<t] ≤

(
Tn

√
log n

) 2
3
. (10)



64 J. Poland

The rest of the proof now follows as in [5] or [6]. In order to maintain self-
containedness, we give it here. Actually we verify (10) for any choice of r1:T , u1:T ,
then it also holds in expectation.

In the following, we suppress the dependency on r1:T , u1:T in the notation.
Then all expectations are w.r.t. q∗. We use the following convenient notation from
[5]: For a vector x ∈ R

n, let M(x) be the unit vector which has a 1 at the index
argmini{xi} and 0’s at all other places. Then the process of selecting a minimum
can be written as scalar product: mini{xi} = M(x) ◦x. For convenience, let
η0 = ∞ and c̃1:t = ĉ1:t − q∗

ηt
. Then it is easy to prove by induction [5,6] that

ĉĨFPL
1:t −

T∑

t=1

M(c̃1:t) ◦q∗
(

1
ηt

− 1
ηt−1

) T∑

t=1

M(c̃1:t) ◦c̃t ≤ M(c̃1:T ) ◦c̃1:T . (11)

In order to estimate EĉĨFPL
1:t , we take expectations on both sides. Then observe

EM(c̃1:T ) ◦c̃1:T ≤ EM(ĉ1:T ) ◦c̃1:T = minj{ĉj
1:T } − EM(ĉ1:T ) ◦q∗

ηT
≤ ĉi

1:T − 1
ηT

by
definition of M . The negative term on the l.h.s. of (11) may be bounded by
∑T

t=1 M(c̃1:t) ◦q∗
(

1
ηt

− 1
ηt−1

)
≤

∑T
t=1 M(−q∗) ◦q∗

(
1
ηt

− 1
ηt−1

)
= maxi{qi

∗}
ηT

≤
1+log n

ηT
(see [5] or [6] for the last estimate). Plugging these estimates back into

(11) while observing 1
ηt

− 1
ηt−1

≥ 0 and ηT = T− 2
3
( log n

n

) 2
3 (which holds because

of T ≥ (n log n)2), finally shows (10) and concludes the proof of the theorem. �

Proposition 2. (High probability bound) For each T ≥ 1 and 0 ≤ δ ≤ 1, the
actual costs of bFPL are bounded with probability at least 1 − δ by

cbFPL
1:T ≤ EcbFPL

1:T +
√

2T log 2
δ .

Proof. Again we use the explicit notation from the proof of the previous theorem.
It is easy to see that the sequence of random variables XT =

∑T
t=1

(
cbFPL
t −

Ert,ut,qt [cbFPL
t |h<t]

)
is a martingale w.r.t. the filter of sigma-algebras generated

by the randomization history h1:t. Moreover, its differences are bounded by |Xt−
Xt−1| ≤ 1. Consequently, by Azuma’s inequality, the probability that Xt exceeds
some λ > 0 is bounded by δ = 2 exp

(
− λ2

2T

)
. Solve this for λ to obtain the

assertion. �

4 Using All Observations

The algorithm bFPL considered so far does only uses a γ-fraction of all the input.
It is thus a label efficient decision maker [9,10]. One possible way to specify a label
efficient problem setup is to require that the master usually does not observe
anything, and it incurs maximal cost if it decides to observe something [10].
Since just before (5), we upper bounded the costs in case of exploration by 1,
it is immediate that the same analysis and hence also Theorem 1 transfer to
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the label efficient case. [10, Sec. 5] prove that there is a label efficient prediction
problem such that any forecaster incurs a regret proportional to t

2
3 . Hence the

bound in Theorem 1 is essentially sharp for bFPL.
Of course, the usual bandit setup does not require the master to make use

of only a tiny fraction of all information available. For weighted forecasters,
it is very easy to produce an unbiased cost estimate if each round’s inputs are
used. It turns out that then regret bound proportional to

√
t can be obtained [3].

Unfortunately this is different for FPL, as here the sampling probabilities are not
explicitely available. In the following, we will first discuss the computationally
infeasible case assuming that we know the sampling probabilities. After that,
we show how to approximate them by a Monte Carlo simulation to sufficient
accuracy.

Surprisingly, it is possible to work with the plain FPL algorithm from (1),
without exploration. We just have to use the correct estimated cost vectors,

ĉi
t =

{
ci
t/P(IFPL

t = i) if i = IFPL
t

0 otherwise, (12)

where IFPL
t was FPL’s choice at time t. We assume that the values P(IFPL

t = i)
are provided by some oracle.

It is not hard to adapt the proof of Theorem 1 to analyze FPL under these
conditions. As in the steps up to (8),

Eqt [c
FPL
t |h<t] = Eq∗,qt,rt,ut [ĉ

F̃PL
t |h<t]Eq∗,qt,rt,ut [ĉ

F̃PL(q∗)
t (qt)|h<t].

The overly explicit notation ĉ
F̃PL(q∗)
t (qt) serves to remind that the cost vec-

tor estimated is obtained using qt, while F̃PL’s choice incurring cost stems
from q∗. It is essential that qt and q∗ are independent. Observe that in gen-
eral, Eq∗,qt,rt,ut [ĉ

F̃PL(q∗)
t (qt)|h<t] � Eqt,rt,ut [ĉ

F̃PL(qt)
t (qt)|h<t]: the latter quantity,

which is the actual estimated cost of F̃PL’s choice, is biased and too large.
Abbreviate pi = P(I F̃PL

t = i) and πi = P(I ĨFPL
t = i). Denote the exponen-

tial distribution by µ and integration with respect to q1 . . . qn without the ith
coordinate by

∫
. . . dµ(q �=i). Moreover, for x ∈ R, let x+ = max{x, 0}. Then,

similarly to the proof of [6, Theorem 4],

pi =
∫ ∞∫

max
j �=i

{ηt(ĉi
<t−ĉj

<t)+qj}

dµ(qi)dµ(q �=i)
∫

e
−(max

j �=i
{ηt(ĉi

<t−ĉj
<t)+qj})+

dµ(q �=i) (13)

≤
∫

e
ηt
pi e

−(max
j �=i

{ηt(ĉi
<t−ĉj

<t)+qj}+ ηt
pi )+

dµ(q �=i)

≤ e
ηt
pi

∫
e
−(max

j �=i
{ηt(ĉi

1:t−ĉj
1:t)+qj})+

dµ(q �=i) = e
ηt
pi πi.
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Hence, πi ≥ pie
−ηt

pi ≥ pi
(
1 − ηt

pi

)
= pi − ηt, which implies

Eq∗,qt,rt,ut [ĉ
F̃PL
t |h<t] =

n∑

i=1

pi
n∑

j=1

pj
�i=j

ci
t

pi
=

n∑

i=1

pici
t

≤
n∑

i=1

πici
t + nηt = Eq∗,qt,rt,ut [ĉ

ĨFPL
t |h<t] + nηt.

This shows the step from feasible to infeasible FPL. The last step from infeasible
FPL to the best decision in hindsight proceeds as shown already above and in
[5,6]. Like before, it causes the upper bound of the cumulative regret to increase
by log n

ηT
. This is true for any (q1:T , r1:T , u1:T ), hence also in expectation. The total

regret is thus upper bounded by log n
ηT

+ n
∑T

t=1 ηt, and we have just proved:

Theorem 2. The algorithm FPL (1), obtaining cost estimates according to (12)

and with learning rate ηt =
√

log n
2nt achieves a regret of at most

EcFPL
1:T − ci

1:T ≤ 2
√

2Tn logn for any i ∈ {1 . . . n}. (14)

We would like to point to a remarkable symmetry break here. It is straightfor-
ward to formulate FPL and the analysis from Section 3 for reward maximization
instead of cost minimization. Then the (perturbed) leader is the expert with
the highest (perturbed) reward, and perturbations are added to the scores. In
the full information game, this reward maximization is perfectly symmetric to
cost minimization by just setting reward i

t = 1 − ci
t: all probabilities, distribu-

tions, and outcomes will be exactly the same. This is different in the partial
observation case: There, in case of reward, the expert by FPL is the only one
which can gain score. This is an advantage, in contrast to the disadvantage in
case of loss minimization: Here, the selected expert is the only one to worsen its
score. Put it differently, there is an automatic exploration or self-stabilization in
the cost minimization case. With this intuition, it is less surprising that we did
not need explicit exploration in Theorem 2. The corresponding result for reward
maximization would not hold, as simple counterexamples show. Formally, it is
the step from FPL to infeasible FPL which fails: A computation similar to (13)
only shows πi ≤ pie

ηt
pi , which does not imply a sufficiently strong assertion in

general. However, reintroducing the exploration rate γt, we may set ηt = γt

n .

This implies ηt

pi ≤ 1 for all i, hence e
ηt
pi ≤ 1 + 2 ηt

pi . Letting γt =
√

n log n
t , we can

conclude a bound like (14).

4.1 A Computationally Feasible Algorithm

We conclude this section by discussing a computationally feasible variant of FPL
using all observations. This algorithm is constructed in a straightforward way:
Select the current action i = IFPL

t according to FPL and substitute the estimate
ĉi
t from (12) by ĉi

t = ci
t

p̂i
t
. It remains to estimate p̂i

t by a Monte Carlo simulation.
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There are two possibilities of error: either p̂i
t overestimates pi

t, or it under-
estimates pi

t. The respective consequences are different: If p̂i
t > pi

t, then the
instantaneous cost of the selected expert is just underestimated. We can account
for this by adding a small correction to the instantaneous regret. At the end
of the game, we perform well with respect to the underestimated costs, which
are upper bounded by the true costs. This does not cause any further problems.
The case p̂i

t < pi
t is more critical, since then at the end of the game we perform

well only w.r.t. overestimated costs. We therefore have to treat this case more
carefully.

Problems arise if the true probability pi
t is very close to 0, as then the Monte

Carlo sample might contain very few or no hits and the variance of the estimated
cost is high. Since FPL does not prevent this case, we reintroduce γt as an
“exploration threshold”. Let γt = 1

2
√

t
≤ 1

2 . We first assume that pi
t ≥ γt. If

this assumption is false but we use p̂i
t ≥ γt, then p̂i

t is an overestimate and we
have to consider an additional instantaneous regret. This case has probability at
most γt. Consequently, as (true) instantaneous costs are always bounded by 1,
the additional instantaneous regret is at most γt.

We sample the perturbed leader k ∈ N times and denote by ai(k) the number
of times the leader happens to be expert i. Recall that expert i is the one already
selected by FPL. By Hoeffding’s inequality, the distribution of ai(k)

k is sharply
peaked around its mean pi:

P
[

ai(k)
k − pi ≥ γ2

t√
2

]
≤ e−γ4

t k and P
[

ai(k)
k − pi ≤ − γ2

t√
2

]
≤ e−γ4

t k.

We choose k such that the probability bounds on the r.h.s. are at most γt, i.e.
e−γ4

t k ≤ γt. Consequently we should sample k =
⌈
γ−4

t log(γ−1
t )

⌉
=

⌈
2t2 log(2

√
t)

⌉

times. Hence the sampling complexity of the algorithm is O(t2 log t). Let

p̂i
t := max

{
γt,

ai(k)
k − γ2

t√
2

}
,

then p̂i
t ≤ pi

t with probability at least 1 − γt (recall the assumption pi
t ≥ γt).

Hence the possibility of overestimate p̂i
t > pi

t causes an additional regret of γt.
Finally we need to deal with possible underestimates. For some integer m ≥ 1,

the probability that p̂i
t falls below pi

t − (
√

m+1)γ2
t√

2
is at most

P
[

ai(k)
k − pi ≤ −

√
mγ2

t√
2

]
≤ e−mγ4

t k ≤ γm
t (15)

by Hoeffding’s inequality. We partition the interval [γt, p
t
i) of all possible under-

estimates into subintervals A1 =
[
pi

t − 2γ2
t√
2
, pi

t

)
and

Am =
[
pi

t − (
√

m+1)γ2
t√

2
, pi

t − (
√

m−1+1)γ2
t√

2

)
, m ≥ 2.

We do not need to consider m with the property Am ∩ [γt, p
t
i) = ∅. That is, we

can restrict to m small enough that pt
i −

√
1
2 (

√
m + 1)γ2

t ≥ γt −
√

1
2γ2

t . Let M
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be the largest m for which this condition is satisfied, then one can easily see
√

m + 1 ≤
√

M + 1 ≤
√

2(p − γt +
√

1
2γ2

t )/γ2
t .

Claim. If m ≤ M , then ci
t

pi
t−(

√
m+1)γ2

t /
√

2
≤ ci

t

pi
t

+ γt(
√

m + 1).

This follows by a simple algebraic manipulation. Consequently, for p̂t
i ∈ Am,

we have Eĉi
t ≤ ci

t + (
√

m + 1)γt. Moreover, p̂i
t ∈ Am occurs with probability at

most γm−1
t according to (15). By bounding the expectation over all Am, we thus

obtain an additional regret of at most

M∑

m=1

(
√

m + 1)γm
t ≤ γt

∞∑

m=0

(m + 2)γm
t ≤ 2γt

1 − γt
+

γ2
t

(1 − γt)2
≤ 5γt,

since γt ≤ 1
2 . Altogether, this proves the following theorem.

Theorem 3. Let γt = 1
2
√

t
be the exploration threshold. In each time step, after

selecting one expert i, let FPL obtain an estimate p̂i
t = max

{
γt,

ai(k)
k − γ2

t√
2

}

for P(IFPL
t = i), by sampling the perturbed leader k =

⌈
2t2 log(2

√
t)

⌉
times and

counting the number of hits ai(k). Let the estimated cost of the selected expert be
ĉi
t = ci

t/p̂i
t, and the estimated cost of all other experts be zero. Then the algorithm

FPL (1) with learning rate ηt =
√

log n
2nt achieves a regret of at most

EcFPL
1:T − ci

1:T ≤ 2
√

2Tn logn + 7
√

T for any i ∈ {1 . . . n}. (16)

5 Discussion

The main statement of this paper is the following:

If we have a regret minimization algorithm with a bound guaran-
teed against an oblivious adversary, and if the algorithm chooses
the current action/expert by some independent random sampling
based on past cumulative scores (e.g. FPL or weighted majority),
then the same bound also holds against an adaptive adversary.
This is true both for full and partial observations.

We have used this argument for showing bounds for FPL in the adversarial ban-
dit problem. The strategy to use only feedback from exploration rounds which is
common for FPL achieves a regret bound of O(t

2
3 ). As the algorithm is label effi-

cient, this bound is sharp. Using all observations allows to push the regret down
to O(

√
t). Then however the sampling probabilities have to be approximated.

In the same way, it is possible to use our argument for the general geometric
online optimization problem [7,8], also resulting in a O(t

2
3 ) regret bound against

adaptive adversary. An interesting open problem is the following: Under which
conditions and how is it possible to use all observations in the geometric online
optimization problem, hopefully arriving at a O(

√
t) bound?
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We conclude with a note on regret against an adaptive adversary. We consid-
ered the external regret w.r.t. the best action/strategy/expert from a pool. There
are two directions from here. One is to go to different regret definitions, such
as internal regret. The other one is to change the reference and compare to the
hypothetical performance of the best strategy, in this way accepting a stronger
type of dependency of the future costs from the currently selected action (see
e.g. [11] and the references therein). It is one of the major open problems to
propose refined algorithms and prove better bounds in this model.
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