

Lecture Notes in Computer Science 3777
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Oleg B. Lupanov Oktay M. Kasim-Zade
AlexanderV. Chaskin Kathleen Steinhöfel (Eds.)

StochasticAlgorithms:
Foundations
and Applications

Third International Symposium, SAGA 2005
Moscow, Russia, October 20-22, 2005
Proceedings

13

Volume Editors

Oleg B. Lupanov
Oktay M. Kasim-Zade
Alexander V. Chaskin
Moscow State University, Department of Discrete Mathematics
Leninskie Gory, Moscow 119992, Russia
E-mail: {lupanov, kasimz, chash}@mech.math.msu.su

Kathleen Steinhöfel
FIRST - Fraunhofer Institute for Computer Architecture and Software Technology
12489 Berlin, Germany
E-mail: kathleen.steinhoefel@first.fraunhofer.de

Library of Congress Control Number: 2005934273

CR Subject Classification (1998): F.2, F.1.2, G.1.2, G.1.6, G.2, G.3

ISSN 0302-9743
ISBN-10 3-540-29498-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29498-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11571155 06/3142 5 4 3 2 1 0

Preface

This volume constitutes the proceedings of the 3rd Symposium on Stochastic
Algorithms, Foundations and Applications (SAGA 2005), held in Moscow, Rus-
sia, at Moscow State University on October 20–22, 2005. The symposium was
organized by the Department of Discrete Mathematics, Faculty of Mechanics
and Mathematics of Moscow State University and was partially supported by
the Russian Foundation for Basic Research under Project No. 05–01–10140–Γ .
The SAGA symposium series is a biennial meeting which started in 2001 in
Berlin, Germany (LNCS vol. 2264). The second symposium was held in Septem-
ber 2003 at the University of Hertfordshire, Hatfield, UK (LNCS vol. 2827).

Since the first symposium in Berlin in 2001, an increased interest in the SAGA
series can be noticed. For SAGA 2005, we received submissions from China, the
European Union, Iran, Japan, Korea, Russia, SAR Hong Kong, Taiwan, and
USA, from which 14 papers were finally selected for publication after a thorough
reviewing process.

The contributed papers included in this volume cover both theoretical as
well as applied aspects of stochastic computations, which is one of the main
aims of the SAGA series. Furthermore, five invited lectures were delivered at
SAGA 2005: The talk by Alexander A. Sapozhenko (Moscow State University)
summarizes results on the container method, a technique that is used to solve
enumeration problems for various combinatorial structures and which has nu-
merous applications in the design and analysis of stochastic algorithms. Christos
D. Zaroliagis (University of Patras) presented recent advances in multiobjective
optimization. Joachim Wegener (DaimlerChrysler AG, Research and Technol-
ogy) introduced new search-based techniques for software testing, with par-
ticular emphasis on finding time-critical pathways in safety-relevant software
components. Chrystopher L. Nehaniv (University of Hertfordshire) presented a
comprehensive overview and the latest results on self-replication, evolvability and
asynchronicity in stochastic worlds. The talk by Farid Ablayev (Kazan State Uni-
versity) analyzed from the communication point of view some proof techniques
for obtaining lower complexity bounds in various classical models (deterministic,
nondeterministic and randomized), and quantum models of branching programs.

We wish to thank all who supported SAGA 2005, all authors who submitted
papers, all members of the Programme Committee and all reviewers for the great
collective effort, all invited speakers, all members of the Organizing Committee,
and the Russian Foundation for Basic Research for financial support.

October 2005 Oleg B. Lupanov, Oktay M. Kasim-Zade,
Alexander V. Chashkin, Kathleen Steinhöfel

Organization

SAGA 2005 was organized by the Department of Discrete Mathematics, Faculty
of Mechanics and Mathematics of Moscow State University, Russia.

Organizing Committee

Andreas A. Albrecht
Alexander V. Chashkin

Manolis Christodoulakis
Yoan Pinzon

Kathleen Steinhöfel

Programm Committee

Andreas A. Albrecht (University of Hertfordshire, UK)
Amihood Amir (Bar-Ilan University, Israel, and Georgia Tech, USA)
Michael A. Bender (State University New York, USA)
Alexander V. Chashkin (Moscow State University, Russia)
Walter Gutjahr (Vienna University, Austria)
Juraj Hromkovič (ETH Zürich, Switzerland)
Costas S. Iliopoulos (King’s College London, UK)
Oktay M. Kasim-Zade (Co-chair, Moscow State University, Russia)
Irwin King (CUHK, Hong Kong, China)
Gad M. Landau (University of Haifa, Israel)
Oleg B. Lupanov (Co-chair, Moscow State University, Russia)
Kunsoo Park (Seoul National University, Korea)
Irina Perfilieva (Ostrava University, Czech Republic)
Tomasz Radzik (King’s College London, UK)
Martin Sauerhoff (Dortmund University, Germany)
Christian Scheideler (Johns Hopkins University, USA)
Kathleen Steinhöfel (FhG FIRST, Germany)
Peter Widmayer (ETH Zürich, Switzerland)
Thomas Zeugmann (Hokkaido University, Japan)

Additional Referees

Gruia Calinescu
Lance Fortnow
André Gronemeier

Jan Poland
Detlef Sieling
Robert Spalek

Haixuan Yang

Sponsoring Institution

Russian Foundation for Basic Research

Table of Contents

Systems of Containers and Enumeration Problems (Invited Talk)
Alexander Sapozhenko . 1

Some Heuristic Analysis of Local Search Algorithms for SAT Problems
Osamu Watanabe . 14

Clustering in Stochastic Asynchronous Algorithms for Distributed
Simulations

Anatoli Manita, François Simonot . 26

On Construction of the Set of Irreducible Partial Covers
Mikhail Ju. Moshkov . 38

Recent Advances in Multiobjective Optimization (Invited Talk)
Christos Zaroliagis . 45

Polynomial Time Checking for Generation of Finite Distributions of
Rational Probabilities

Roman Kolpakov . 48

FPL Analysis for Adaptive Bandits
Jan Poland . 58

On Improved Least Flexibility First Heuristics Superior for Packing
and Stock Cutting Problems

Yu-Liang Wu, Chi-Kong Chan . 70

Evolutionary Testing Techniques (Invited Talk)
Joachim Wegener . 82

Optimal Fuzzy CLOS Guidance Law Design Using Ant Colony
Optimization

Hadi Nobahari, Seid H. Pourtakdoust . 95

On Some Bounds on the Size of Branching Programs (A Survey)
Elizaveta A. Okol’nishnikova . 107

Two Metaheuristics for Multiobjective Stochastic Combinatorial
Optimization

Walter J. Gutjahr . 116

VIII Table of Contents

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds
(Invited Talk)

Chrystopher L. Nehaniv . 126

New Computation Paradigm for Modular Exponentiation Using a
Graph Model

Chi Seong Park, Mun-Kyu Lee, Dong Kyue Kim 170

Dynamic Facility Location with Stochastic Demands
Martin Romauch, Richard F. Hartl . 180

The Complexity of Classical and Quantum Branching Programs: A
Communication Complexity Approach (Invited Talk)

Farid Ablayev . 190

On the Properties of Asymptotic Probability for Random Boolean
Expression Values in Binary Bases

Alexey D. Yashunsky . 202

Solving a Dynamic Cell Formation Problem with Machine Cost and
Alternative Process Plan by Memetic Algorithms

Reza Tavakkoli-Moghaddam, Nima Safaei, Masoud Babakhani 213

Eco-Grammar Systems as Models for Parallel Evolutionary Algorithms
Adrian Horia Dediu, Maŕıa Adela Grando . 228

Author Index . 239

Systems of Containers and Enumeration

Problems

Alexander Sapozhenko�

Lomonosov University, Moscow

Abstract. We discuss a technique (named ”the container method”) for
enumeration problems. It was applied for obtaining upper bounds and as-
ymptotically sharp estimates for the number of independent sets, codes,
antichains in posets, sum-free sets, monotone boolean functions and so
on. The container method works even the appropriate recurrent equal-
ities are absent and the traditional generating function method is not
applicable. The idea of the method is to reduce a considered enumeration
problem to evaluating the number of independent sets in the appropriate
graph. We give some examples of such reduction and a survey of upper
bounds for the number of independent sets in graphs. The method is usu-
ally successful if considered graphs are almost regular and expanders.

1 Introduction

We discuss a method for solving enumeration problems. The considered problems
are not usually amenable to the traditional generating function method because
of the absence of appropriate recurrent equations. The problems of estimating
the number of independent sets in graphs, antichains in posets, sum-free sets in
groups are among such problems. Our approach to solution of these problems
based on the notion of covering system (or system of containers) for a family of
sets. A family B of sets is called covering for a family A, if for any A ∈ A there
exists B ∈ B such that A ⊆ B. An element of the family B is called a container
and B is called the system of containers for A.

Suppose we want to know what is size of the family A of all sets with some
given property Q. We can think of A as the family of subsets in the n-cube
which are error correcting codes, sum-free sets in a finite group, vertex subsets
of graph which are cliques and so on. The container method consists in finding
a system of containers B with the special property. For example, it is good when
there exists a subsystem B1 ⊆ B such that all (or almost all) A ∈ B1 possessing
the property Q and simultaneously meeting the inequality∑

A∈B\B1

2|A| �
∑
B∈B

2|B|. (1)

� Supported by the RFBR grant No 04-01-00359 (Russia).

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 A. Sapozhenko

Then we know that |A| ≈ ∑B∈B 2|B|. The proof of (1) is usually reduced to
upper bounds for independent sets in appropriate graph.

The aim of this paper to give examples where these simple considerations
are successful. Except for the simplest cases, we does not present the complete
proofs but only some sketches. We give references on the paper with the proofs.
At the end, we consider the application of the container technique to estimating
the complexity of some algorithms correctly working almost always.

2 Definitions

All graphs under consideration are finite, undirected, and simple. The vertices
are considered as numbered. Denote the degree of a vertex v by σ(v).

A subset of vertices of a graph G is called independent if the subgraph of
G induced by A does not contain an edge. The family of all independent sets
of G will be denoted by I(G). We put I(G) = |I(G)|. Let G = (V ;E) be a
graph with the vertex set V and the edge set E, and v ∈ V . We call the set
∂v = {u : (u, v) ∈ E} the boundary of v. It is clear that σ(v) = |∂v|. The
boundary of A ⊆ V in a graph G = (V ;E) is the set ∂A =

(⋃
v∈A ∂v

) \ A.
Suppose 0 ≤ δ < 1. A graph G is called δ-expander, if |A| ≤ |∂A|(1− δ) for any
independent set A.

3 Reduction

In this section we discuss ways of reducing various enumeration problems to that
of counting independent sets.

The simplest for reductions is the problem of enumerating cliques. We just
use the fact that a clique in graph G corresponds to the independent set in the
complement of G.

The enumeration of error-correcting codes with distance r is equivalent to
that of independent sets in graph on the set of vertices of the n-cube, where an
edge is an arbitrary pair (u,v) with Hamming distance less than r.

The number of sum-free sets in groups is also estimated above by the number
of independent sets in the Cayley graph (see, for example, N.Alon [1]). Recall
that a set A is sum-free in an additive group G if A does not contain triples
a, b, c satisfying the equality a+ b = c. For a group G and sets A, V the Cayley
graph CA(V) is defined as the graph on vertex set V s.t. (u, v) is an edge if u+v,
u− v or v − u are contained in A. If B ⊆ G is sum-free then B is independent
in the Cayley graph CA(G) for any A ⊆ B.

4 On the Number of Independent Sets

Here we obtain upper bounds for the number of independent sets in graphs by
means of container method. We start with a simple lemma for regular graphs.
A regular graph of degree k on n vertices will be called (n, k)-graph.

Systems of Containers and Enumeration Problems 3

Lemma 1. Let G = (V ;E) be a (n, k)−graph, k > 1, and A ⊆ V be indepen-
dent. Suppose 0 < ϕ < k. Then there exists T ⊆ A such that

|T | ≤ |∂A|/ϕ , (2)

A ⊆ D, where D = D(T, ϕ) = {v ∈ V \ ∂T : |∂v \ ∂T | < ϕ} , (3)

and
|D| ≤ |∂T | k

k − ϕ . (4)

Proof. The set T can be constructed by the following step-by-step procedure.
Step 1. Let u1 be an arbitrary vertex from A. Set T1 = {u1}.

Suppose m steps have already been done and the set Tm = {u1, . . . , um} has
been constructed.

Step m + 1. If there exists um+1 ∈ A such that |∂um+1 \ ∂Tm| ≥ ϕ,
we put Tm+1 = Tm ∪ {um+1}. Otherwise, the procedure is complete and the
result is T = Tm. The inequality (2) and the inclusion (3) evidently hold for
the set T constructed as above. The inequality (4) follows from the facts that
|∂v ∩ ∂T | ≥ k − ϕ for every v ∈ D and |∂u| ≤ k for every u ∈ ∂T . 	

Denote by I(G) the family of independent sets of a graph G and set I(G) =
|I(G)|.
Corollary 1. Let G be a (n, k)-graph, 1 ≤ ϕ < k. Then there exists the system
of containers F for the family I(G) with the following properties:

|F| ≤
∑

i≤n/ϕ

(
n

i

)
, (5)

for any D ∈ F |D| ≤ nk/(2k − ϕ). (6)

Proof. By Lemma 1, every independent set A contains a subset T of size not
exceeding |∂A|/ϕ provided that A ⊆ D(T, ϕ). Note that D(T, ϕ) is uniquely
defined by T if ϕ is fixed. Thus the number of containers does not exceed the
number of vertex subsets of size |∂A|/ϕ ≤ n/ϕ. From this (5) follows.

The inequality (6) follows from (4) in view of |D| ≤ n− ∂T . 	

The following theorem improves the error term in Alon’s upper bound [1]. It

also gives an example of application of the container method.

Theorem 1. For any (n, k)-graph

I(G) ≤ 2
n
2

(
1+O

(√
(log k)/k

))
. (7)

Proof. The inequality (7) immediately follows from the corollary. All indepen-
dent sets can be enumerated in the following way. Fix ϕ =

√
k log k. Choose

some T ⊆ V and construct D = D(T, ϕ). Then choose A ⊆ D. Note that

|D| ≤ nk/(2k − ϕ) , (8)

4 A. Sapozhenko

in view of (6). Hence, under ϕ =
√
k log k, we have

I(G) ≤
∑

T⊆V,|T |≤n/ϕ

2|D(T,ϕ)| ≤
∑

i≤n/ϕ

(
n

i

)
2nk/(2k−ϕ)

≤ 2
n
2

(
1+O

(√
(log k)/k

))
. (9)

	

Theorem 1 was extended to the case of irregular graphs (see[17]). The need

of extensions caused by applications to enumeration problems from algebra and
number theory (see[3], [5], [11], [18], [19]).

G is called (n, k, θ)–graph, if it has n vertices and k ≤ σ(v) ≤ k + θ for any
vertex v. By definition, (n, k, 0)-graph is regular of degree k.

Theorem 2. For any (n, k, θ)-graph Γ

I(Γ) ≤ 2
n
2

(
1+O

(
θ/k+

√
(log k)/k

))
. (10)

This theorem extends the previous one to ”almost” regular graphs.
Denote by Iβ(Γ) the number of subsets A ∈ I(Γ) meeting the condition

||A| − n/4| ≥ βn/4 .

Theorem 3. Let Γ = (V ;E) be (n, k, θ)-graph and 0 < β < 1. Then

Iβ(Γ) ≤ 2
n
2

(
1− β2

2 ln 2+O
(

θ
k +
√

log k
k

))
. (11)

Theorem 4. Let (n, k, θ)-graph Γ = (V ; E) be δ-expander for some 0 ≤ δ < 1.
Then

I(Γ) ≤ 2
n
2

(
1−δ/7+O

(
θ/k+

√
(log k)/k

))
. (12)

Theorems 3 and 4 allow to obtain the upper bounds of the form I(G) ≤
2n(1/2−c), where c > 0 is some constant. It is very helpful when proving as-
sertions that some subsystem of containers gives small contribution (see, for
example, [18]).

The further similar extensions were proved in [21]. Suppose l, k, θ, n meet
the inequalities l ≤ k − θ ≤ k + θ ≤ n. A graph on n vertices is called a
(n, l, k,m, δ, ε, θ)-graph if it meets the following condition: the minimal vertex
degree is at least l, the maximal vertex degree is at most m, the fraction of
vertices with a degree exceeding k + θ is not more than ε, and the fraction of
vertices with a degree less than k − θ is not more than δ. In [19] the following
statement is proved.

Theorem 5. Let G = (V,E) be a (n, l, k,m, δ, ε, θ)-graph. Then there exists a
system B of containers for I(G) meeting the following two conditions:

Systems of Containers and Enumeration Problems 5

1. For any B ∈ B

|B| ≤ n
k + δ(k − l) + ε(m− k) + θ

2k −√k log k
; (13)

2. For k > 3 and large enough n

|B| ≤ 2n
√

log k
k . (14)

Furthermore, for large enough n

I(G) ≤ 2
n
2

(
1+δ(1− l

k)+ε(m
k −1)+O

(
θ
k +
√

log k
k

))
. (15)

The following two theorems proved in ([21]) are extensions of theorems 3
and 4.

Theorem 6. Let G be a (n, l, k,m, δ,∆, θ)-graph and

γ = δ (1− l/k) +∆ (m/k − 1) +O
(
(θ +

√
k log k)/k

)
.

Then for large enough n

Iβ(G) ≤ 2
n
2 (1−(β−γ)2/(2(1+γ) ln 2)) . (16)

Theorem 7. Let (n, l, k,m, δ,∆, θ)-graph G be ε-expander. Then for some ab-
solute constant c > 0 and large enough n

I(G) ≤ 2
n
2 (1−cε+δ(1−l/k)+∆(m/k−1)+O((θ+

√
k log k)/k)) . (17)

Theorems 5 – 7 sufficiently extend abilities of the container method. In par-
ticular, Theorem 5 is applied for proving the Cameron-Erdös conjecture in [19].

5 Bipartite Graphs

In the case of bipartite graphs the container method allows to get asymptotically
ultimate result if the graph is an expander. A bipartite graphG = (X,Z;E) with
the vertex partition sets X , Z and the edge set E will be called an two-sided
(ε, δ)-expander if |A| ≤ |∂(A)|(1−δ) for any A ⊆ X such that |A| ≤ ε |X | and for
any A ⊆ Z such that |A| ≤ ε |Z|. The first asymptotical result for the number
of the number of independent sets in regular bipartite graphs obtained with the
help of container idea concerned the n-cube. Let Bn be the n-cube, which is
n-regular graphs on N = 2n vertices. In [10] the following assertion was proved

Theorem 8.
I(Bn) ∼ 2

√
e22n−1

= 2
√
e2N/2 . (18)

In [16] the following theorem was proved.

6 A. Sapozhenko

Theorem 9. Let a bipartite (n, k, θ)-graph G = (X,Z;E) be a two-sided(1/2, δ)-
expander and z be maximum of solutions of the equation x = log2 (2ex/cδ).
Then for large enough n and k

2|X| + 2|Z| − 1 ≤ I(G) ≤
(
2|X| + 2|Z|

)(
1 + 2−kδ/z +O(

√
klog k+θ)

)
. (19)

The proof of the upper bound in (19) is based on the idea that X and Z
are ”main” containers covering almost all independent sets of G. The number of
remaining independent sets does not exceed(

2|X| + 2|Z|
)

2−kδ/z +O(
√

klog k+θ).

This follows from smallness of size and number of containers covering these sets.

Corollary 2. Let Gn = (Xn, Zn;En) be a sequence of bipartite (n, k(n), θn)-
graphs which are simultaneously (1/2, δn)-expanders. Suppose

k(n)δn →∞ and θn/k(n) + k(n)−1/2 log k(n)→ 0 (20)

as n→∞. Then
I(Gn) ∼ 2|Xn| + 2|Zn| . (21)

Note that the corollary 2 means that the following statement holds: If a
sequence Gn = (Xn, Zn;En) satisfies the condition of 2, then the portion of
independent sets of Gn intersecting both Xn and Zn tends to 0 as n→∞. The
similar assertions plays a part in describing the phase transition processes (see,
for example, citeBB and citeST).

A bipartite graph G = (X,Z;E) is called boundary (ε, delta)-expander, if

|A| ≤ |∂A|(1− δ) (22)

for all A ⊆ X with |∂A| ≤ �ε|Z|�.
Let (κ, ν, q, p, λ) be a tuple of numbers with κ, ν, λ integers, and q, p real. A

bipartite graph Γ = (X,Z;E) such that

(1) min
v∈X

σ(v) = κ, (2) max
v∈Z

σ(v) = ν, (3) min
v∈Z

σ(v) = λ,

will be called the (κ, ν, q, p, λ)–graph, if the following inequalities hold

(4) max
v∈X∪Z

σ(v) ≤ κp; (5) max
u,v∈X

v �=u

∣∣∂u ∩ ∂v∣∣ ≤ q.

If some of these conditions fails or are not sufficient, the corresponding coordi-
nates in the tuple will be replaced by ”-”. For example, if the properties 1, 5
hold and the remaining maybe are not, we say about a (κ,−, q,−,−)-graph.

A bipartite graph G = (X,Z;E) is called one-sided (ε, δ)– expander if

|A| ≤ |∂A|(1− δ)

Systems of Containers and Enumeration Problems 7

for any subset A ⊆ X such that

|A| ≤ ⌈ε|X | ⌉.
A bipartite graph G = (X,Z;E) is called one-sided boundary (ε, δ)– expander if

|A| ≤ |∂A|(1− δ)
for any A ⊆ X such that

|∂A| ≤ ⌈ε|Z| ⌉.
Let G = (X,Z;E) be a (∆,κ, q, p)–graph. Set

r0 = r0(G) = �κ/q�, g1 = g1(G) = min
A⊆X:|A|>r0

|∂A|,

g2 = g2(G) = κ3 log−7 κ, ε1 = ε1(G) = g2/|Z|,
δ1 = δ1(G) = κ−1 log2 κ, δ0 = δ0(G) = κ−2 log9 κ.

A (κ,−, q, p,−)–graph G = (X,Z;E) will be called a (∆,κ, q, p)–expander, if
it is a boundary (ε1, δ1)–expander, a one-sided (1, δ0)–expander and the following
inequalities hold:

κ/
√

log κ ≤ min
v∈Z

σ(v) ≤ max
v∈Z

σ(v) ≤ κ, (23)

|X | ≤ 2(∆+1)κ−2 log2 κ. (24)

A sequence (v1, v2, ..., vk) of vertices in a graph G = (V,E) is called a d–
chain if the distance between vi and vi+1 in G does not exceed d for 1 ≤ i < k.
A set A ⊂ V will be called connected with distance d, if any two vertices of A
are connected by d-chain. A subset B ⊆ A is called d-component of A, if B is
d–connected but B

⋃{v} is not connected for any v ∈ A \ B. Denote by I∆(G)
the number of independent sets A in a bipartite graph G = (X,Z;E) with the
property that the size of each 2-component of A

⋂
X does not exceed ∆. In [15]

the following statement is proved

Theorem 10. Let G = (X,Z;E) be total (∆,κ, q, p)-expander. Then

I∆(G) ≤ I(G) ≤
(
1 +O

(
2−

3
2 log2 κ

))
I∆(G). (25)

Theorem 11. Let G = (X,Z;E) be a total (1, κ, q, p)-expander. Then

I(G) =
(
1 +O

(
2−

3
2 log2 κ

))
2|Z| exp

{∑
v∈X

2−|∂{v}|}. (26)

If G = (X,Z;E) be a total (2, κ, q, p)-expander. Then

I(G) = 2|Z| exp
{(

1 +O
(
κ22−κ

)) ∑
v∈X

2−|∂{v}|}. (27)

Theorem 11 gives the asymptotically sharp estimate for many important cases.

8 A. Sapozhenko

6 Sum-Free Sets of Integers

Here we show how the containers are applied for solving enumeration problem in
the number theory. A subset A of integers is said to be sum-free (abbreviation,
SFS) if a + b �∈ A for any a, b ∈ A. For any real p ≤ q denote by [p, q] the set
of integers x such that p ≤ x ≤ q. The family of all SFS’s of [t, n] is denoted
by S(t, n). Put s(t, n) = |S(t, n)|, S(n) = S(1, n) and s(n) = |S(n)|. In 1988
P. Cameron and Erdős conjectured in [3] that s(n) = O(2n/2). This conjecture
was proved independently by B.Green [5] and the author [19]. B.Green used the
Fourier transformation technique. Our approach uses the idea of containers.

It is easy to see that the family S1(n) of all subsets of odd numbers consists
of sum-free sets. The other ”big” family of sum-free sets is the family S2(n) of
all subsets of the interval [�n/2� + 1, n]. We slightly correct the second family.
Set q̂ = n3/4 logn and t = �n/2− q̂�. Denote by S3(n) the family of all subsets
of the interval [t, n]. It is clear that

s(n) ≥ |S1 ∪ S3| ≥ |S1(n)|+ |S3(n)| − 2(n/4)+1 − q̂ ∼ |S1(n)|+ |S3(n)| . (28)

Note that |S1| = 2�n/2�. In [3] it was proved that s(n/3, n) = O(2n/2). Since
|S3| ≤ s(n/3, n), we need only to prove that the size of the family S̃(n) =
S(n) \ (S1(n) ∪ S3(n)) is of small enough size. In [19], we proved that

S̃(n) = o(2n/2). (29)

This implies that
s(n) ∼ |S1(n)|+ |S3(n)| . (30)

When proving (23), we do as follows. First, we prove the existence a so-called
almost correct system of containers.

We use denotation N for interval of integers [1, n]. Set q̃ = q̂ log n. Consider
two families A and B of subsets of N . We say that B is a system of containers
for A if for any A ∈ A there exists B ∈ B such that A ⊆ B. A set B ∈ B is
called a container. A family B of subsets of the set N will be called correct if the
following conditions hold:

1. For large enough n and any B ∈ B
|B| ≤ n/2 +O(q̂) . (31)

2. For large enough n
|B| ≤ 2o(q̂) . (32)

3. For any i ∈ [q̃, n− q̃] and p ∈ [q̃, n− i]
||Bi,p| − p/2| ≤ q̂ . (33)

4. For any σ ∈ {0, 1}, i ∈ [q̃, n− q̃], and p ∈ [q̃, n− i]
||Bi,p ∩Nσ| − p/4| ≤ q̂ . (34)

Systems of Containers and Enumeration Problems 9

A family B is called an almost correct system of containers for A if it correct for
some subfamily A′ ⊆ A such that |A \ A′| = o(2n/2).

The existence of almost correct system of containers for S̃(n) is proved by
reducing this problem to similar one for the family of independent sets in the
appropriate Cayley graph and using theorem 5. The other fact used is the well-
known Freiman theorem [4].

Theorem 12 (G. A. Freiman [4]). Suppose a set K of integers meets the
condition |K +K| ≤ 2|K| − 1 + b, where 0 ≤ b ≤ |K| − 3. Then K is contained
in some arithmetic progression of length |K|+ b.

The properties 3 and 4 of the correct system of containers together with
Freiman’s theorem allow to obtain upper bound (29). Thus, in the considered
case we use special properties of containers from auxiliary system to prove a
smallness of the number of enumerated objects. At the same time subsets from
the main system (which is S1(n)

⋃
S3(n)) are almost all sum-free sets. These

circumstances lead to getting asymptotically sharp result.

7 Sum-Free Sets in Groups

In this section we consider application of the container idea to enumerating
sum-free sets in abelian groups of even order. As in the case of sum-free sets
in a segment of integers in this case the asymptotically sharp result is obtained
(see [11] and [18]). The result is the following

Theorem 13. For any sufficiently large even n and for any abelian group G of
order n with t subgroups of index 2

t · 2n/2 − 2(n/4)(1+o(1)) ≤ s(G) ≤ t · 2n/2 + 2n(1/2−c) , (35)

where c > 0.01.

The idea of the proof is to find the appropriate system of containers. Note
that every coset of subgroup in a group is a sum-free set as well as any subset of
a coset is also sum-free. In particular, the family of cosets of index two subgroups
seems to be available to be system of containers for almost all sum-free sets in
a group. In any case, this family gives a good lower bound for the number of
sum-free sets.

Let G be an abelian group of order n = 2m. Denote by S(G) the family of
sum-free sets in a group G. We call a set C ∈ S(G) regular if there exists an
index two subgroup K such that A ⊆ K ′ where K ′ is the coset of K. Otherwise,
the set C is called irregular.

Denote by S1(G) the set of regular sets C ∈ S(G), and by t the number
subgroups of index two in G. Then

t 2n/2 −
(
t

2

)
2n/4 ≤ |S1(G)| ≤ t 2n/2. (36)

10 A. Sapozhenko

The upper bound in (36) follows from the definition. The lower bound is the
consequence of including–excluding formula and the fact that the intersection of
two different subgroups of index two consists of 2n/4 elements. Besides, we use
that t ≤ 2log2 n. So we have obtained the lower bound in (35).

Now we have to prove that the number of remaining (irregular) sum-free sets
is small, i.e. this number is o(t2n/2). We present the facts and considerations
leading to the goal. First we use the fact that for any index two subgroup H
each remaining sum-free set A both H and its coset H . So we can consider the
Cayley graph CH∩A(G) and reduce our problem to enumeration of independent
sets in CH∩A(G). The following statement plays important role in the proof.

Theorem 14. (M. Kneser) Let A and B be non-empty subsets of an abelian
group G. Suppose that |A+B| ≤ |A|+ |B| − 1. Then there exists subgroup H of
G such that

A+B +H = A+B and |A+B| ≥ |A+H |+ |B +H | − |H | . (37)

Kneser’s theorem allows to prove that the Cayley graph CH∩A(G) is a δ-
expander and hence to use theorem 4.

8 The Extended Dedekind Problem

Now we consider the question on the number of antichains in ranked posets. A
subset A of poset is called antichain if any two elements are non-comparable. The
particular case of the question when the poset is the n-cube is conventional to call
the Dedekind problem. With the common case in mind, we will speak about the
extended Dedekind problem. The problem was posed in 1897 when R.Dedekind
counted the number of antichains in the 4-cube. A lot of papers was written on
the topic. In 1980 A. D. Korshunov ([9]) obtained the asymptotically complete
solution. The author in ([13], ([14]) found asymptotic solution of the extended
Dedekind problem. Namely, asymptotics for the number of antichains in so-called
unimodal posets were obtained. Roughly speaking, an unimodal poset is a cube-
like ranked poset. The proof of the above mentioned results fall in the pattern
of the container method. At first, the problem is reduced to that of 3-levelled
poset P = (X,Z, Y), consisting of the largest levels of the considered poset.
The latter it turns out to be equivalent evaluating the number of independent
sets in the bipartite graph G = (X

⋃
Z, Y ;E) with vertex partition sets X

⋃
Z

and Y , where the vertices u ∈ X⋃Z and v ∈ Y are joint by edge iff they are
comparable in P .

9 Application to Algorithm Complexity in Typical Case

The information on the structure of main containers can be used for evaluation of
the complexity of algorithms. We consider an example, connected with problem
of deciphering monotone Boolean functions. The problem is to reconstruct a

Systems of Containers and Enumeration Problems 11

Boolean functions with minimum number of queries to a black box. A black
box knows some monotone Boolean function f and gives the answer of the form
f(x̃) on request in the form of Boolean vector x̃ = (x1, ..., xn). In deterministic
case the problem was investigated by V. K. Korobkov. Denote by ϕ(n) the least
number of queries to black box in the worst case. V. K. Korobkov [8] proved
that ϕ(n) = O

(
n

�n/2�
)
. The Hansel [6] obtained final result:

Theorem 15.

ϕ(n) =
(

n

�n/2�
)

+
(

n

�n/2�+ 1

)
. (38)

Now consider the probabilistic case. Denote by ψ(n) the least number of queries
sufficient for deciphering almost all functions on n variables. The following result
follows from [15].

Theorem 16.

ψ(n) =
(

n

�n/2�
)

+O

((
n

�n/2�
)

2−n/2
)
. (39)

Sketch of proof. The lower bound follows from the pigeon principle and the
lower bound for the number of monotone Boolean functions. The algorithm
giving the upper bound is the following. We ask the black box about function
values on all vectors with �n/2� ones and then ask it on the values on those
vectors with �n/2�±1 ones that do not contradict chosen values on vectors with
�n/2� ones. By [9] and [15], this number is almost always O

((
n

�n/2�
)
2−n/2

)
.

The second algorithmic problem is finding an upper zero of monotone Boolean
function. A binary vector x̃ = (x1, ..., xn) is called the upper zero of a monotone
Boolean function f if f(x̃) = 0 and the weight of x̃, defined by the equality∑

1≤i≤n xi, is maximum among all vectors making f vanish. The problem is to
find an upper zero with the least queries to the black box. In the deterministic
case the problem was investigated by N. A. Katerinochkina. Denote by µ(n) the
least number of queries to the black box for finding an upper zero of a monotone
Boolean function on n variables in the worst case. In [7] the following estimate
are obtained:

mu(n) =
(

n

�n/2�
)

+ 1. (40)

The typical case was investigated by the author[20]. Denote by ν(n) the least
number of queries sufficient for finding an upper zero for almost all functions of
n variables. It was shown that for any ω(n) tending to infinity as n → ∞ for
almost all monotone Boolean function

nu(n) ≤ ω(n)2n/2. (41)

The function ω(n) can not be replaced by a constant. The proof uses the fact
that the upper zeroes of almost all functions are of weight �n� or �n�. Besides,
it uses the fact that the typical functions have a zero among the first ω(n)2n/2

vectors of the corresponding weight. This property follows from the structure
almost all functions obtained with the help of the container method.

12 A. Sapozhenko

10 Some Unsolved Problems

Here we discuss some unsolved problems relevant to the topic of the paper. All
these problems can likely be solved by container method after some improving
the technique.

1. Error correcting codes.
The number of binary codes with distance 2 was found in [10]. The question
on the number of binary codes with distance more than 2 is open. The
difficulty is that the expendability of the corresponding graph is not proved.

2. Antichaines in Cartesian degree of the chain on 3 vertices.
The question on the number of antichains in Cartesian degree of the chain
on 2 vertices is known as the Dedekind problem. It is solved. The difficulty
of extending is the irregularity of the corresponding lattice.

3. Sum-free sets in groups.
Asymptotic value of the number of SFS’s in groups of prime order is known
not for all such groups.
There are little or no on the number of SFS’s for noncommutative groups.

References

[1] Alon N., Independent sets in regular graphs and Sum-Free Subsets of Finite
Groups. Israel Journal of Math., 73 (1991), No 2, 247-256.

[2] B. Bollobas, Random Graphs, Second eddition, Cambridge University Press, 2001,
495 p.

[3] Cameron P., Erdős P., On the number of integers with various properties. In
R. A. Mollin (ed). Number Theory: Proc. First Conf. Can. Number Th. Ass.,
Banff, 1988, — de Gruyter. 1990 — P. 61-79.

[4] Freiman G.A., Finite set addition. Izv. Vyssh. Uchebn. Zaved., Matematika, 6
(13), (1959), 202-213.

[5] Green B., The Cameron-Erdos conjecture, Bull. Lond. Math. Soc. 36(2004), no. 6,
769-778.

[6] Hansel G., Sur le nombre des fonctions booleen monotonesde n variables, C.R.
Acad. Sci. Paris, 262, (1966), 1088-1090.

[7] Katerinochkina N. n., Searcing of maximum upper zero of monotone Boolean func-
tions. Doklady Acad. Nauk of URSS, v. 224, No. 3, 1975, 557-560, (in Russian).

[8] Korobkov V. K., On monotone Boolean functions. Problemy Kibernetiki, V.38,
M. Nauka, 1981, 5-108. (in Russian)

[9] Korshunov A. D., On the number of monotone Boolean functions. Problemy
Kibernetiki, V.13, M. Nauka, 1965, 5-28. (in Russian)

[10] Korshunov A. D., Sapozhenko A. A., On the number of binary codes with distance
two. Problemy Kibernetiki, M. Nauka, Vol.40, 1993, 111-140 (in Russian).

[11] Lev V. F., Luczak T., Schoen T., Sum-free sets in Abelian groups. Israel
Journ. Math. 125 (2001) 347, 347-367.

[12] Sapozhenko A. A., On the number of connected sets with given size of boundary
in graphs. Metody diskretnoi matematiki v reshenii combinatornykh zadach, -
Novosibirsk, (1987), v.45, 35-58.

Systems of Containers and Enumeration Problems 13

[13] Sapozhenko A. A., On the number of antichains in posets. Discrete Mathematics
and Applications - Utrecht, The Nethelands, Tokio, Japan, - v.1, No.1, - 35-59.

[14] Sapozhenko A. A., On the number of antichains in multylevelled posets. Discrete
Mathematics and Applications - Utrecht, The Nethelands, Tokio, Japan, - v.1,
No.2, - 149-171.

[15] Sapozhenko A. A., The Dedekind problem and boundary funcional method.
Matematicheskie Voprosy Kibernetiki, M. Fizmatlit, 2000, No. 9, 161-220,

[16] Sapozhenko A. A., On the Number of Independent Sets in Bipartite Graphs with
Large Minimum Degree. DIMACS Technical Report 2000-25, August 2000, 24-
31,(in Russian).

[17] Sapozhenko A. A., On the Number of Independent Sets in expanders. Diskretnaya
matematika, Moscow, v. 13, No. 1, 2001, 56-62. (in Russian)

[18] Sapozhenko A. A., On the number of sum-free sets in Abelian groups. Vestnik
Moskovskogo Universiteta, ser. Math., Mech. 2002, No. 4, 14-18. (Russian).

[19] Sapozhenko A. A., The Cameron-Erdos conjecture. Doklady of Russian Academy
of Sciences, 2003, v. 393, No. 6, P. 749-752. (English Translation).

[20] Sapozhenko A. A., On searcing upper zeroes of monotone functions on ranked
posets. Journal of Mathematical Physics and Computational Mathematics, 1991,
v.31, No 12, 1871-1884. (English translation)

[21] Sapozhenko A. A., On the Number of Independent Sets in Graphs. Problems
of theoretical cybernetics. Proceedings of XIII International Conference, Kazan,
27-31 may 2002, 85-93.

[22] Stepanov V. E., Phase transition in random graphs. Theory Probab. Applcs 15,
187-203.

Some Heuristic Analysis of Local Search

Algorithms for SAT Problems

Osamu Watanabe�

Department of Mathematical and Computing Science,
Tokyo Institute of Technology, Tokyo 152-8552, Japan

watanabe@is.titech.ac.jp

Abstract. By using heuristic analysis proposed in [WSA03], we inves-
tigate the dynamical behavior of greedy local search algorithms for sat-
isfiability (SAT) problems. We observe that the difference between hard
and easy instances is relatively small while there are enough places to
be improved locally, and that the difference becomes crucial when all
such places are processed. We also show that a tabu search type restric-
tion could be useful for improving the efficiency of greedy local search
algorithms.

1 Introduction

Dynamical behavior of algorithms are usually very difficult to analyze; but un-
derstanding such dynamical behavior is important to see why and how algo-
rithms work and to find out a way of improving algorithms. For example, for
some algorithms or heuristics, while their excellent performance has been shown
experimentally, it has been open to give theoretical justifications to such exper-
imental results. One approach for discussing average case performance of such
algorithms is to study their dynamical behavior under given input distributions.

For bridging a gap between experimental observations and theoretical analy-
ses, a heuristic approach for analyzing algorithms has been proposed by several
researchers; see, e.g., Barhel, Hartmann, and M. Weigt [Betal03], Semerjian and
Monasson [SM03], and Watanabe et al. [WSA03]. In such approach, an aver-
age execution of a given algorithm is approximated “heuristically” by a much
simpler randomized model, and then, some mathematical analysis is made on
this simpler model. In this paper, we take this approach and analyze some local
search algorithms for two satisfiability problems following the heuristic analysis
proposed in [WSA03].

Our target problems are the standard 3-SAT problem and the 3-XOR-SAT
problem. The 3-XOR-SAT problem is a variant of the 3-SAT problem, where
each clause is the exclusive-or of three literals. The problem is essentially the
same as solving a system of linear equations over mod 2; hence, the problem of
finding a satisfying assignment is indeed polynomial-time solvable. On the other
� This work is supported in part by a Grant-in-Aid for Scientific Research on Priority

Areas “Statical-Mechanical Approach to Probabilistic Information Processing” 2002-
2005.

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 14–25, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Some Heuristic Analysis of Local Search Algorithms 15

hand, the problem of finding a satisfying assignment closest to a given initial
assignment is NP-hard; we consider this problem for the 3-XOR-SAT problem.
(See the next section for the precise definition of the problems and the average
scenario.)

In this paper, we investigate local search algorithms. Local search algorithms
are simple yet effective for solving many problems. In fact, many constraint
satisfaction problems can be solved efficiently to some extent on average by local
search algorithms, and our target problems are such examples. We would like to
know why and when local search algorithms work. Note also that local search
algorithms are not the same; there are several variations and their algorithmic
features may not be the same. Again we would like to know why some local search
algorithm does/does not work. We discuss this question on the 3-XOR-SAT and
3-SAT problems.

It is well known [SS96] that a simple and efficient greedy local search algorithm
solves 3-XOR-SAT quite well to some extent. Here by “greedy local search” we
mean to make a local change (to a current solution) on the most problematic
point. More precisely speaking, we define the “penalty” of (a current assignment
to) a variable to be the number of unsatisfied clauses that the variable appears
and make a local change on a variable with highest penalty. The performance
of this greedy local search algorithm is checked easily by computer experiments.
Such experiments show that there exists some threshold, and the algorithm
yields a correct answer with high success probability if the badness of an initial
assignment (i.e., the Hamming distance between the assignment and the closest
sat. assignment) is within this threshold; otherwise, the algorithm fails very
badly, i.e., almost 0 success probability. We would like to know why the threshold
exists. It should be noted here that Sipser and Spielman [SS96] indeed proved,
for some upper bound of initial assignments’ badness, the algorithm yields a
correct answer with high probability if the badness of an initial assignment is
within this bound. It is, nevertheless, still open to understand the performance
of the algorithm near the threshold, and for this, we would like to know the
average and dynamical behavior of the algorithm.

For investigating average behavior of the algorithm, we take the approach
proposed in [WSA03]. That is, we first define a relatively simple Markov process
and show experimentally that it simulates the behavior of the algorithm on
randomly generated inputs. Secondly we approximate the average state of this
Markov process by a recurrence formula, and again show experimentally that
the approximation is reasonable. Then by analyzing the obtained formula, we
observe that the difference occurs when the algorithm runs out variables with
high penalty. The success of the algorithm depends on whether an intermediate
solution is close enough to the target solution at this point of the execution.

Next we consider the 3-SAT problem. For the 3-SAT problem, random walk
local search algorithms have been investigated extensively, see, e.g., [SAT00];
in particular, the walk-SAT algorithm has been analyzed in depth by Barhel
et al. [Betal03] and Semerjian and Monasson [SM03], which are comparable to
our approach. On the other hand, as far as the author knows, no theoretical

16 O. Watanabe

investigation has been made on greedy local search algorithms for 3-SAT. Thus,
we focus on a greedy local search algorithm similar to the one for 3-XOR-SAT.
It turned out that our first approximation step, i.e., simulation by a relatively
simple Markov process, does not work in this case; simulation almost always
gives a better convergence than actual executions. We think that this difference
occurs because some variables are changed their values for several times and the
independence of local updates, which we assume for the simulation, no longer
holds. Thus, we introduce “flip once” restriction; that is, we modify the algorithm
so that the local update is made only on untouched variables so long as some
untouched and unsatisfiable variable exists, and the execution goes back to the
normal one from the point that there is no untouched and unsatisfiable variable.
This may be regarded as a “tabu search” type heuristics. For this modified
algorithm, we can again observe that algorithm’s behavior is quite close to the
Markov process simulation, and the algorithm runs more efficiently. Though our
experiments are limited, this is an evidence that the “flip once” restriction could
be useful when using greedy local search algorithms.

2 Preliminaries

We state problems and algorithms discussed in this paper formally. Our target
problems are the following 3-SAT problem and 3-XOR-SAT problem. Below
by, e.g., (3, d)-CNF formula, we mean a 3CNF-formula such that each variable
appears exactly d times in the formula.

(3,d)-SAT
Input: (3,d)-CNF formula F over n Boolean variables.
Output: A sat. assignment.

Closest Solution Search for (3,d)-XOR-SAT
Input: (3,d)-Parity formula F (like the one below) over n Boolean variables,

F = (¬x3 ⊕ x7 ⊕ x2) ∧ (x1 ⊕ ¬x12 ⊕ ¬x61) ∧ · · ·
and an assignment a to x1, ..., xn.

Output: A sat. assignment that is closest to a.

Since we consider only (3, d)-type formulas, the clause/var. ratio, the ratio
between the number of clauses and that of variables, is d/3. For the 3-SAT
problem, it has been well-known, see, e.g., [Ach01, SAT00], that formulas become
hard when this ratio is larger than 4.2. We will, however, consider in this paper
local search algorithms with “quite small” running time, and for such algorithms,
even (3, 9)-formulas (their clause/var. ratio is 3) are hard. Note, on the other
hand, the clause/var. ratio does not seem so essential for the XOR-SAT problem.

Next we define an average scenario that we will assume for our analysis. Let n
be the number of variables. A formula index sequence is a sequence of sets, each
of which is a set of three elements from [n] def= {1, ..., n}, such that each i ∈ [n]
appears exactly 6 times. A formula index sequence may contain some set more

Some Heuristic Analysis of Local Search Algorithms 17

program LocalSearch(F);
x1, ..., xn ← randomly chosen a in {0, 1}n;
repeat the following MAXSTEP steps⎡⎣ if F is satisfied with x then output the current assignment and halt;

choose one variable; — (∗)
flip the value of the selected variable;

output “failure”;
program end.

Fig. 1. General scheme for local search algorithms for 3-SAT

than once. For generating one (3, d)-SAT formula F , we first choose one (3, d)-
formula index sequence uniformly at random from all possible ones. Secondly,
for each set (i, j, k) in the sequence, we create a disjunctive clause consisting of
variables xi, xj , and xk, by determining the sign of the three literals randomly
so that (0, 0, ..., 0) is one of its satisfying assignments. Then F is simply the
conjunction of these clauses. We generate (3, d)-XOR-SAT formulas essentially
in the same way. In our average case analysis, we assume that formulas are
generated in this way. For the 3-XOR-SAT problem, we also assume that an
initial assignment is generated uniformly at random from those with Hamming
distance pn from the planted solution (0, ..., 0), for some parameter p.

Finally, we state our local search algorithms. Figure 1 is a general scheme
of local search algorithms that we consider in this paper. This is for the 3-SAT
problem; for the 3-XOR-SAT, we simply use a given a for the initial assignment
for x.

An actual algorithm is obtained by specifying the time bound MAXSTEP and
a way to choose “flip variable” at (∗). Here we consider quite small time bound,
MAXSTEP = 2pn for 3-XOR-SAT and MAXSTEP = n/2 for 3-SAT. Recall that
for our 3-XOR-SAT problem we assume that an initial assignment differs from
the planted solution by pn bits; hence, pn steps (i.e., pn flippings) are at least
necessary to get a solution. Our choice of time bound is quite tight; nevertheless,
it will be shown that the algorithms work well to some extent even under such
strong requirements.

For choosing a flip variable at (∗), we consider two ways: (1) choose one
(randomly one of them if there are many) that appears most often in unsatisfied
clauses, and (2) choose one randomly from those appearing in a randomly chosen
unsatisfied clause. We call the former greedy choice and the latter random-walk
choice. In particular, we call an algorithm of Figure 1 using the greedy choice
(resp., the random-walk choice) a greedy (resp., a random-walk) local search
algorithm for 3SAT, and denote them as GreedySAT and RandomWalkSAT.

Roughly speaking, greedy local search is more efficient than random-walk
local search; that is, greedy gets close to the solution faster than random-walk.
On the other hand, it is more likely that greedy local search gets trapped by
some local minimum. In fact, GreedySAT almost always fails by being trapped by
some local minimum. One standard way to avoid this problem is to introduce
“soft decision” when choosing a flip variable. We explain below a soft decision
type local search algorithm. It turns out that the random-walk local search

18 O. Watanabe

algorithm is also one special case of this algorithm. That is, both (soft decision
type) greedy local search and random-walk local search are uniformly expressed
by this algorithm. Thus, we will use this algorithm in the following discussion.

A soft decision type local search algorithm also follows the outline of Figure 1.
The difference is a way to select a flip variable at (∗). Consider any iteration in
the execution of the algorithm, and let a be the current assignment to variables
in x. We say that a variable xi has a penalty k (under the current assignment a)
if xi appears in k unsatisfied clauses. Recall that we assume that each variable
appears 6 times in the formula; hence, penalty k must be between 0 to 6. Let W
be a weight function, a function assigning weight to each penalty k ∈ {0, 1, ..., 6}.
Now our selection of a flip variable is as follows: (1) choose a penalty value k
with probability P (k), and then (2) choose one variable uniformly at random
from all variables with penalty k. Here P (k) is the proportion of the weight of
all penalty k variables in total weight; formally,

P (k) def=
W (k) · (# of penalty k var.s)

total weight
.

As one can easily expect, if W (k) << W (k + 1) holds for all k, 0 ≤ k ≤ 5,
then the execution of this algorithm is similar to that of the greedy local search
algorithm GreedySAT. For example, we will use a weight function W defined by
W (0) = 0 and W (k) = 10k−1 for all k, 1 ≤ k ≤ 6; we call the algorithm using
this weight function a soft decision greedy local search algorithm and denote it
as SoftGreedySAT. Also it is easy to see that with W (k) = k for all k, 0 ≤ k ≤ 6,
this algorithm is exactly the same as the random-walk local search algorithm
RandomWalkSAT. For the 3-XOR-SAT problem, algorithm SoftGreedyXORSAT is de-
fined in the same way.

3 Greedy Local Search Algorithm for 3-XOR-SAT

We study a greedy local search algorithm for 3-XOR-SAT; more specifically, the
soft decision greedy local search algorithm for 3-XOR-SAT — SoftGreedyXORSAT

— defined in the previous section. (Unfortunately, random-walk local search does
not work well; thus, we focus on the greedy algorithm.)

Let us first see that SoftGreedyXORSAT works well to some extent. Recall
that p is the ratio of error assignments (w.r.t. the planted solution) in a given
initial assignment. Figure 2 (a) shows the relation between p and the success
probability of SoftGreedyXORSAT (left line) and GreedyXORSAT (right line); the
success probability drops drastically at p = 0.28 ∼ 0.3 for SoftGreedyXORSAT and
p = 0.3 ∼ 0.32 for GreedyXORSAT. We call this range as a success threshold, and
we would like to know why the success prob. drops rapidly at this point.

One might ask whether the success prob. improves by using larger time
bound MAXSTEP. Figure 2 (b) shows this (for GreedyXORSAT); the success thresh-
old moves to the right by using larger time bound MAXSTEP, but there seems to
be some limit.

Some Heuristic Analysis of Local Search Algorithms 19

0

0.2

0.4

0.6

0.8

1

0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35
0

0.2

0.4

0.6

0.8

1

0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35

(a) MAXSTEP = 2pn (b) MAXSTEP = 2pn, 5pn, and 10pn

The result of 5 runs, on 3 formulas × 5 initial assignments. Here and in the
following experiments, the number n of variables is fixed to 6000.

Fig. 2. Success probability vs. p

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000 2500 3000 3500 4000
 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000 2500 3000

(a) p = 0.27, 0.28, 0.29, 0.3 (b) three runs for the same input
p = 0.27

Fig. 3. n0 vs. step t

Recall that the penalty of a variable x is the number of clauses having x that
is unsatisfied under a current assignment. Since each variable appears exactly 6
times in a formula, penalty must be between 0 to 6. For any k, 0 ≤ k ≤ 6, let nk

denote the number of penalty k variables (under the assignment at a given point
of the execution). We use (n0, ..., n6) to express the status of the execution. In
particular, when n0 reaches to n, the total number of variables, then we know
that the formula is satisfied with the assignment at this point1 Figure 3 (a)
shows how does n0 get increased during the execution for four different choices
of p before/after the success threshold. As shown in this figure, the execution
for p = 0.3 fails to get a sat. assignment.

Remark on the Presentation of Experimental Results
In this paper, we will present our experimental results by showing some “typ-
ical” one instead of the average of several executions. This is because, in most

1 A satisfying assignment may not be the desired solution, i.e., the closest sat. assign-
ment. But it is quite unlikely that there is a sat. assignment other than the target
solution (0, ..., 0) within distance 2pn from a given initial assignment.

20 O. Watanabe

cases (more precisely, before or after the success threshold), difference among
executions, initial assignments, and formulas is not so large. For example, Fig-
ure 3 (b) shows the result of three executions on the same input for p = 0.27;
difference among initial assignments and/or formulas is more or less the same.

3.1 Heuristic Analysis (Step 1): Markov Process Simulation

We would like to see, for example, how n0 changes during the execution on av-
erage. The first step of our heuristic analysis is to simulate the algorithm’s execu-
tion by a relatively simple Markov process. Clearly, the execution of
SoftGreedyXORSAT is indeed a Markov process, where its state space is the set
of assignments to n variables. But this state space with 2n states is too large,
and our first step is to simulate the algorithm by a Markov process with much
smaller number of states, whose size is polynomially bounded by n.

As an example, we use a tuple n = (n0, ..., n6) to express the state of the algo-
rithm during its execution, where nk is, as defined above, the number of penalty
k variables. Note that the information given by a tuple n is enough to simulate
the random selection of the penalty k of a flip variable. In SoftGreedyXORSAT, k
is randomly selected from {0, 1, ..., 6} with probability P (k), where

P (k) =
W (k) · nk∑6
i=0W (i) · ni

. (1)

Hence, by using the current state n = (n0, ..., n6), the algorithm’s execution
can be simulated precisely; select k as the algorithm specifies, and then decrease
nk by one and increase n6−k by one, thereby simulating the change of the flip
variable.

For the simulation, however, we need to make further changes on n reflecting
the change of the status of all related variables, variables appearing together with
the flip variable in some clause. For example, in the real execution, suppose that
a flip is made on x3, which makes a clause, say, C12 satisfiable, and let x7 be
a variable in C12; then the penalty of x7 gets decreased by one. Thus, if the

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000 2500 3000
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

(a) p = 0.27 (b) p = 0.3

One simulation and two real executions

Fig. 4. n0 vs. step t, simulation and execution

Some Heuristic Analysis of Local Search Algorithms 21

penalty of x7 is 5, then n5 gets decreased by one, and n4 gets increased by
one. Unfortunately, our information n = (n0, ..., n6) is insufficient for simulating
such changes; we can specify penalty k, but we cannot specify the name of a flip
variable, which is necessary to determine related variables.

Even though the names of related variables are unknown, we may still be
able to guess them, in particular, their penalties. We may randomly choose k′,
the penalty of a variable appearing with a flip variable in each clause, with some
appropriate probability. Unfortunately, n is too weak even for this purpose. But
we found that a reasonable simulation is possible by using some similar but more
complicated states, which we explain below.

For each variable x, consider a tuple, e.g, (+;−−;−+;−+; ++; ++; ++) to
express2 its current configuration; the first + means that x is not correctly as-
signed, and the next six −−, −+, or ++ express the status of related variables
in six clauses containing x. Note that there are 2

(6+2
2

)
= 56 possible configura-

tions. That is, we classify variables into 56 groups and use m = (m1, ...,m56) as
a state, where mi denotes now the number of variables with ith configuration
(under a current assignment).

It is easy to see that the penalty of a variable is determined from its configura-
tion; for example, a variable with configuration (+;−−;−+;−+; ++; ++; ++)
has penalty 2. Thus, each nk is computable from m = (m1, ...,m56). Hence the
selection of the penalty of a flip variable can be simulated as above. Furthermore,
by a quite natural way, we can randomly choose the configuration (not only the
penalty) of related variables. Then as shown in Figure 4, this Markov process
can simulates the algorithm’s execution quite well.

3.2 Heuristic Analysis (Step 2): Recurrence Formula

Assuming that our Markov process simulates the algorithm’s execution well, we
next derive a recurrence formula computing its “average state” at each step
t. Since it is a Markov process, for each state m′, the probability Pr[m′|m]
is well-defined. Then the average next state of m is simply defined as m̂ =∑

m′ m′ · Pr[m′|m].
More specifically, for each configuration index i, 1 ≤ i ≤ 56, a formula

computing the ith element m̂i of m̂ from m has the following form:

m̂i = − P (i) + P (i′) +
∑

j

P (j)[−E(i|j) +
∑

h∈N(i,j)

E(h|j)].

Here P (i) denotes the probability that the ith configuration is chosen as a flip
var.’s configuration, and i′ denotes the configuration that moves to i by one flip.
E(i|j) is the expected number of var.s with the ith configuration that are related
to some var. with the jth configuration, i.e., var.s with the ith configuration that
share some clause with some var. with the jth configuration. N(i, j) is the set of

2 We ignore the order; for example, +− and −+ are the same, and also
(+; −−;−−; −−;++;++;++) and (+;−−; ++; −−;++; −−;++) are considered
as the same tuple.

22 O. Watanabe

configurations that are related to some var. x with the jth configuration and that
change to the ith configuration when a flip is made on x. Note that P (i) can be
defined in the same way as (1); that is, P (i) def= W (ki) ·mi/TotalWeight, where
ki is the penalty of the ith configuration. Though a slightly more complicated,
E(i|j) can be defined similarly. We use F to denote a function computing m̂
from m.

For a given parameter p and n, we can define the average initial state m̂
(0) =

(m̂(0)
1 , ..., m̂

(0)
56), where each m̂

(0)
i is the average number of var.s with the ith

configuration, when a formula and an initial assignment are generated randomly
following our average scenario. Our second approximation step is to approximate
m̂

(t), the average state after the tth step, by the following recurrence formula.

m̂
(t) ≈ F t(m̂(0)),

where F t means to t time applications of F . Again our experiments show3 that
this is a quite good approximation.

3.3 Observations and Claims

Now let us assume that our two step approximations are reasonable, as our
experiments suggest. Then we can discuss our question by analyzing F t(m̂(0)),
which we call a pseudo average state at step t. We denote this pseudo average
state F t(m̂(0)) by m̃

(t) = (m̃(t)
1 , ..., m̃

(t)
56), and let ñ(t) = (ñ(t)

0 , ..., ñ
(t)
6) be a

tuple of average nk computed from m̃
(t).

By comparing ñ(t) for p = 0.27 (before the threshold) and p = 0.3 (after the
threshold), we noticed the following points:

1. For any k ≥ 4, ñ
(t)
k are almost the same between these p values (Figure 5 (a)).

2. Difference appears on ñ
(t)
1 at t = 1500, which is about the time when ñ

(t)
4

becomes small and its decreasing speed gets slower (e.g., Figure 5 (b)).

Notice that making a flip on any variable of penalty k ≥ 4 improves the
situation by reducing the total amount of penalties. So long as there are many
such variables, the algorithm behaves more or less in the same way; on the other
hand, the fate of the execution is determined when the most of such variables
get corrected. It seems important that the state at this point is close enough to
the solution or at least it starts getting closer to the solution.

We obtained a formula for pseudo average states. But, unfortunately, our
formula is not so simple for us to handle it symbolically. There is, however, still
some advantage of having such formula. One important merit is that we can
now easily change (some of the) parameters, which may not be easy in the real
execution or even in the simulation. For example, we can easily compute average

3 For this approximation, we have some error bound [Wat05] and it is good for the
simplest case; unfortunately, however, a good bound for the general case is still open,
and in this paper we will rely on experimental justification.

Some Heuristic Analysis of Local Search Algorithms 23

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000 3500 4000
 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000 3500 4000

(a) ñ
(t)
4 (for p = 0.27 and p = 0.3) (b) ñ

(t)
1 (for p = 0.27 and p = 0.3)

Fig. 5. Average number of var.s of each penalty

states for much larger n; this computation time is essentially independent from
n. In fact, it is not so hard to see the following relation holds:

3. For any c ≥ 1, let M̃
(t)

be a pseudo average computed for our Markov process

with size parameter cn. Then we have m̃
(t) ≈ M̃

(ct)
/c.

Thus, if we accept our approximations, we can expect that the above observa-
tions hold not only on n = 6000 but also on any sufficiently large n. Furthermore,
we may claim that the choice of weights W (k) can be independent from n.

4 Greedy Local Search Algorithm for 3-SAT

Here we study a greedy local search algorithm for 3-SAT. As mentioned in Intro-
duction, the standard greedy algorithm usually gets trapped by a local minimum;
but we can avoid this problem by the soft decision version — SoftGreedySAT,
which we will study in this section.

First let us compare the executions of SoftGreedySAT and RandomWalkSAT.
Figure 6 (a) shows typical executions of these algorithms. Here again we fix
n = 6000 in our experiments. The graph shows how n0, the number of sat.
clauses grows4. The greedy seems a bit faster during earlier steps, but then it
gets slower and it obtains the satisfying assignment almost at the same step.

Now we apply again our first approximation step, i.e., simulation by a Markov
process. Though slightly different, we can take essentially the same approach
and use a tuple of numbers, each of which denotes the number of var.s of a
certain configuration. Interestingly, however, this same approach does not work.
Figure 6 (b) shows the comparison between a real execution and a simulation
by our relatively simple Markov process. In the simulation, the value of n0 is
improved slightly faster; it is also noticed that the improvement is smoother.

Note that in 3-SAT there are not so many variables with high penalty; ini-
tially, most variables have penalty ≤ 3 and there are less than 200 var.s with
4 Here again some sat. assignment should be obtained when n0 reaches to n; but for

3-SAT, such sat. assignments are usually different from the planted solution.

24 O. Watanabe

2500

3000

3500

4000

4500

5000

5500

6000

0 500 1000 1500 2000 2500 3000 3500 4000
2500

3000

3500

4000

4500

5000

5500

6000

0 500 1000 1500 2000 2500 3000 3500 4000

(a) SoftGreedySAT (left line) (b) SoftGreedySAT (right line)
vs. RandomWalkSAT (right line) vs. simulation (left line)

Fig. 6. n0 vs. step t

penalty ≥ 4, where n = 6000. (Cf. A typical 3-XOR-SAT instance has about
1500 var.s with penalty ≥ 4.) Thus, we can expect that the algorithm fixes
these high penalty variables soon. Then some variables may be chosen as a flip
variable for several times. Due to this, the independence of flip variables is de-
stroyed, which prevents the execution follows the simulation where complete
independence is assumed.

From this consideration, we introduce the following additional restriction.

Flip Once Rule:
When choosing a flip variable, give a priority to variables that
have not been chosen before. More specifically, so long as there
are some untouched variable with penalty > 0, such variable is
chosen first. Then at the point when no such variable exists, the
execution is switched back to the standard greedy.

2500

3000

3500

4000

4500

5000

5500

6000

0 500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000 8000 10000

(a) (3,6)-SAT (b) (3,9)-SAT
RandomWalkSAT, SoftGreedySAT, Flip Once SoftGreedySAT,
and a simulation by our simple Markov process

Fig. 7. n0 vs. step t

Some Heuristic Analysis of Local Search Algorithms 25

Then as shown in Figure 7 (a), the execution of the algorithm becomes quite
close to the one defined by the Markov process. Furthermore, this improves the
efficiency of SoftGreedySAT; the running time is reduced almost half of the origi-
nal. Intuitively, a Markov process gives an ideal execution; thus, by removing an
obstacle that prevents actual executions to follow the execution of an appropri-
ately defined Markov process, we may be able to improve the efficiency of greedy
algorithms.

Note, however, this improvement has some limitation. The same trick does
not work for the (3,9)-SAT problem (Figure 7 (b)). Although the execution gets
close to the one by the Markov process, this does not lead to any improvement.
This is because the greedy search cannot reach to an appropriate assignment for
getting a solution when it runs out untouched and high penalty variables.

References

[Ach01] D. Achlioptas, Lower bounds for random 3-SAT via differential equations,
Theoret. Comput. Sci. 265, 159–185, 2001.

[Betal03] W. Barthel, A. Hartmann, and M. Weigt, Solving satisfiability by fluctua-
tions: The dynamics of stochastic local search algorithms, Physical Review
E, 67, 066104, 2003.

[SAT00] Special Issue “SAT-2000”, J. of Automated Reasoning 24(1-2), 2000.
[SM03] G. Semerjian and R. Monasson, Relaxation and metastability in a local

search procedure for the random satisfiability problem, Physical Review E,
67, 066103, 2003.

[SS96] M. Sipser and D. Spielman, Expander codes, IEEE Trans. on Information
Theory, 42(6), 1710–1719, 1996.

[WSA03] O. Watanabe, T. Sawai, and H. Takahashi, Analysis of a randomized local
search algorithm for LDPCC decoding problem, in Proc. SAGA’03, Lecture
Notes in Comp. Sci. 2827, 50–60, 2003.

[Wat05] O. Watanabe, Pseudo expectation: A tool for analyzing local search algo-
rithms, Progress of Theoret. Physics Supplement, No.157, 338–344, 2005. (A
detail version is available: Research Report C-198, Dept. of Mathematical
and Comput. Sci., Tokyo Inst. of Tech.)

Clustering in Stochastic Asynchronous
Algorithms for Distributed Simulations

Anatoli Manita1 and François Simonot2

1 Faculty of Mathematics and Mechanics, Moscow State University,
119992 Moscow, Russia

manita@mech.math.msu.su
2 IECN, Université Henri Poincaré Nancy I, Esstin,

2, Rue J. Lamour, 54500 Vandoeuvre, France
francois.simonot@esstin.uhp-nancy.fr

Abstract. We consider a cascade model of N different processors per-
forming a distributed parallel simulation. The main goal of the study
is to show that the long-time dynamics of the system have a cluster
behaviour. To attack this problem we combine two methods: stochastic
comparison and Foster–Lyapunov functions.

1 On Probabilistic Models of Parallel Simulations

The present paper contains the probabilistic analysis of some mathematical
model of asynchronous algorithm for parallel simulation. For the detailed dis-
cussion of synchronization issues in parallel and distributed algorithms we refer
to [1,11]. Here we give only a brief description of the problem. In large-scale paral-
lel computation it is necessary to coordinate the activities of different processors
which are working together on some common task. Usually such coordination
is implemented by using a so-called message-passing system. This means that a
processor shares data with other processors by sending timestamped messages.
Between sending or receiving the messages the processors work independently.
It can happen that till the moment of receiving of a message some processor
can proceed farther in performing its program than the value of timestamp in-
dicated in this newly received message; in this case the state of the processor
should be rolled back to the indicated value. It is clear that due to possible roll-
backs the mean speed of a given processor in the computing network will be
lower than its proper speed. One of the most important performance charac-
teristics of the system is the progress of the computing network on large time
intervals.

Probabilistic models for such system are studied for already twenty years.
From the probabilistic point of view these models consist of many relatively
independent components which synchronize from time to time their states ac-
cording to some special algorithm. The detailed review of all existing publications
is out of range of this paper. We would like to mention only that the bibliog-
raphy on this subject consists mostly of two groups of papers. The first group

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 26–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Clustering in Stochastic Asynchronous Algorithms 27

of publication [2,6,9,10,12,13] is devoted to the case of two processors. The pa-
per [2] is of special interest since it contains an exhaustive basic analysis of the
two-dimensional model and had a big influence on further researches. The case
of many processors is studied in [3,4,5,8,9,14,15]. The important difference of
such models from the two-dimensional case is that in realistic models with more
than two processors one message can provoke a multiple rollback of a chain of
processors. Since the multi-dimensional model is much more complicated for a
rigorous study, in the above papers the authors dealt with the set of identical
processors and their mathematical results are contained in preparatory sections
before large numerical simulations.

It should be noted also that probabilistic models with synchronization mech-
anism are interesting also for modeling database systems (see for example, [1]).
Moreover, now the synchronization-like interactions are considered as well in the
framework of interaction particle systems [16,17,18].

The model considered in the present paper is of special interest for the fol-
lowing reasons. We deal with a nonhomogeneous model which consists of several
different processors. We consider the case of message-passing topology different
from the topology of complete graph which was considered in all previous pa-
pers. Our main interest is the cascade model which pressuposes a subordination
between processors. We put forward a conjecture on the cluster behavior of the
system: processors can be divided into separated groups which are asymptotically
independent and have their own proper performance characteristics. Our main
goal is to justify this conjecture. It should be pointed out that in the case of the
complete graph topology the cluster decomposition into groups is degenerated
and, thus, is not interesting.

We describe our model in terms of multi-dimensional continuous time Markov
process. To get asymptotical performance characteristics of the model we com-
bine two probabilistic methods: stochastic comparison and Foster–Lyapunov
functions.

The paper is organized as follows. In Sect. 2 we introduce a general contin-
uous time Markov model and define a cascade model as a special subclass of
the general model. In Sect. 3 we pass to the embedded Markov chain. The main
problem is now to study a long-time behavior of Markov chain with highly non-
homogeneous transition probabilities. To do this we consider relative coordinates
and find groups of processors whose evolution is ergodic (it convergences to a
steady state) in these relative coordinates. In our opinion the method of Foster-
Lyapunov functions seems to be the only one to prove the stability in the relative
coordinates for the Markov chain under consideration. First of all in Sect. 5 we
begin from the case of two processors (N = 2) and the analysis here is rather
simple and similar to [2]. In the study of the three-dimensional case (Sect. 7) the
main point is the proof of ergodicity. We propose an explicit construction of some
nonsmooth Foster-Lyapunov function. Our construction is rather nontrivial as it
can be seen by comparing it with already existing explicit examples of Lyapunov
functions (see [7]). All this analysis brings us to some conclusions presented in
Sect. 8. This section contains the decomposition into groups (clusters) in the case

28 A. Manita and F. Simonot

of the cascade model with any number of processors N and our main Conjec-
ture 5. We show that the proof of this conjecture could be related with progress
in explicit construction of multi-dimensional Foster-Lyapunov functions. Analy-
sis of random walks in Zn

+ (which was done in [7]) shows that, in general, this
technical problem may be very difficult. In the next papers we hope to overcome
these difficulties by using specific features of our concrete Markov processes.

2 Description of Continuous Time Model

2.1 General Model

We present here some mathematical model for parallel computations. There are
N computing units (processors) working together on some common task. The
state of a processor k is described by an integer variable xk ∈ Z which is called
a local (or inner) time of the processor k and has a meaning of amount of job
done by the processor k up to the given time moment.

Assume that the state (x1, x2, . . . , xN) of the system evolves in the continu-
ous time t ∈ R+. Any change of the state is possible only at some special ran-
dom time instants. Namely, with any processor k we associate a Poissonian flow
Πk =

{
0 = σk

0 < σk
1 < · · · < σk

n < · · ·
}

with intensity λk and with a pair (k, l) of
processors we associate a Poissonian flowΠkl =

{
0 = σkl

0 < σkl
1 < · · · < σkl

n < · · ·}
with intensity βkl. This means, for example, that

{
σk

n − σk
n−1
}∞

n=1 is a sequence
of independent exponentially distributed random variables with mean λ−1

k : ∀n =
1, 2, . . . P

{
σk

n − σk
n−1 > s

}
= exp (−λks), and similarly for the flows Πkl. We

also assume that all these flows Πk and Πkl are mutually independent.
Let us now define a stochastic process (X(t) = (x1(t), . . . , xN (t)) , t ∈ R+)

on the state space ZN according to the following rules:
1) At time instants σk

n the processor k increases its local time xk by 1:

xk(σk
n + 0) = xk(σk

n) + 1 .

2) There is an exchange of information between different processors. At time
instant σkl

i the processor k sends a message m(xk)
kl to the processor l. We assume

that the messages reach their destination immediately. A message m(xk)
kl coming

to node l from node k contains an information about local time xk(σkl
i) = xk of

the sender k. If at the time instant σkl
i (when the message m(xk)

kl arrives to the
node l) we have xl(σkl

i) > xk(σkl
i) then the local time xl rolls back to the value

xk: xl(σkl
i + 0) = xk(σkl

i). Moreover, if the processor l rolls back, then all mes-
sages sent by the processor l during the time interval I = (θl(xk, σ

kl
i), σkl

i), where
θl(x, u) := max {s ≤ u : xl(s) = x, xl(s+ 0) = x+ 1} , σkl

i),should be eliminated
This may generate a cascading rollback of local times for some subset of proces-
sors. For example, assume that there is a processor q which received a message
m

(x′
l)

lq at some time instant s′ ∈ I and xq(σkl
i) > xl(s′) = x′l. Then the local

clock of q should be rolled back to the value xl(s′): xq(σkl
i + 0) = xl(s′) and,

moreover, all messages sent by q during the interval I = (θq(xl(s′), σkl
i), σkl

i)

Clustering in Stochastic Asynchronous Algorithms 29

should be deleted, and so on. Hence, at time instant σkl
i a message from k to l

can provoke a multiple rollback of processor l, q, . . . in the system.

2.2 Cascade Model

From now we shall consider the following special subclass of the above general
model. A chain of processors 1, 2, . . . , N is called a cascade if any processor j can
send a message only to its right neighbour j + 1. Hence, the processor N does
not send any message and the processor 1 does not receive any message. In other
words, βij �= 0 ⇔ (j = i+1). A message sent from j to j+1 can provoke a cascad-
ing rollback of processors j+2, Recall that all above time intervals are expo-
nentially distributed and assumed to be independent. Obviously, the stochastic
processX(N)

c (t) = (x1(t), . . . , xN (t)) is Markovian. A very important property is
that any “truncated” marginal process X(N1)

c (t) = (x1(t), . . . , xN1(t)), N1 ≤ N ,
is also Markovian.

Assume that for any j the following limit

v∗j = lim
t→+∞

xj(t)
t

(in probability) (1)

exists. Then the numbers v∗j , j = 1, . . . , N , characterize performance of the
model. In this paper we propose an approach for proving the existence of these
limits. We present here not only rigorous results in the final form (Theorems 3, 4
and 7) but also some conjectures (Sect. 8) which should be considered as starting
points for future studies.

Note that if we uniformly transform the absolute time scale t = cs, where
c > 0 is a constant and s is a new absolute time scale, the performance charac-
teristics (1) will not change.

3 Definition of the Discrete Time Cascade Model

Consider a sequence 0 = τ0 < τ1 < τ2 < · · · < · · · of time moments when
changes of local time at nodes may happen (we mean local time updates and
moments of sending of messages). It is clear that {τr+1 − τr}∞r=0 is a sequence
of independent identically distributed r.v. having exponential distribution with
parameter

Z =
N∑

i=1

λi +
N−1∑
i=1

βi,i+1 .

Observing the continuous time Markov process (x1(t), . . . , xN (t)) at epochs τn we
get the so-called embedded discrete time Markov chain {X(n), n = 0, 1, . . .} with
state space ZN

+ . In the sequel we will be interested in the long-time behaviour
of the chain {X(n), n = 0, 1, . . .}.

Transition Probabilities. In the MC {X(n), n = 0, 1, . . .} there are transitions
produced by the free dynamics and transitions generated by rollbacks. By the
free dynamics we mean updating of local times

30 A. Manita and F. Simonot

P {X(n+ 1) = x+ ej |X(n) = x} = λjZ
−1, j = 1, . . . , N ,

where ej = (0, . . . , 0, 1
j
, 0, . . . , 0). It is easy to see that if a state x = (x1, . . . , xN)

is such that for some j xj < xj+1 then a message sent from j to j + 1 produces
a transition of the following form

(x1, . . . , xj , xj+1, . . . , xl, xl+1, . . . , xN) → (x1, . . . , xj , wj+1, . . . , wl, xl+1, . . . , xN)
(2)

with probability

Z−1βj,j+1

l−1∏
q=j+1

p(wq , xq;wq+1, xq+1) × (1− bl)min(xl,xl+1−1)−wl+1
, (3)

where

– sequence (wj+1, . . . , wl) is admissible in the following sense:

j < l ≤ N, wj+1 = xj wq ≤ wq+1 ≤ min (xq, xq+1 − 1) , (j < q < l)

– p(wq, xq;wq+1, xq+1) = bq (1− bq)wq+1−wq

– bq =
λq

λq + βq,q+1
, q < N .

Here bq is the probability of an event that processor q in state xq sends at least
one message to q + 1 before updating its state xq → xq + 1. For q = N we put
bN = 0. So in the case l = N the probability (3) takes the form

Z−1βj,j+1

N−1∏
q=j+1

p(wq, xq;wq+1, xq+1) .

Relative Coordinates. Note that the first processor x1(t) evolves independently of
other processors. It is useful to introduce new process Yc(t) = (y2(t), . . . , yN (t)) ∈
ZN−1 in relative coordinates as viewing by an observer sitting at the point x1(t):

yj(t) := xj(t)− x1(t), j = 2, . . . , N .

In a similar way we define Y (n) = Yc(τn), n = 0, 1, The free dynamics
produce the following transitions of Y (n):

P {Y (n+ 1) = y + ej |Y (n) = y} = λjZ
−1, j = 2, . . . , N , (4)

P
{
Y (n+ 1) = y −∑N

j=2ej |Y (n) = y
}

= λ1Z
−1 . (5)

Since rollback does not affect on the first processor the corresponding transitions
have the same form and the same probabilities as (2) and (3).

Clustering in Stochastic Asynchronous Algorithms 31

4 Stochastic Monotonicity

All statements of this section are valid for the both Markov processes X(N)
c (t),

t ∈ R+, and X(n), n ∈ Z+. For the sake of brevity we give here results only for
the continuous time model X(N)

c (t).

Theorem 1. Consider two cascade models (say X(n)
c,1 (t) and X(n)

c,2 (t)) with proces-
sors 1, 2, . . . , n and parameters λ1, . . . , λn and β(1)

12 , β
(1)
23 , . . . , β

(1)
n−1,n for the first

model X(n)
c,1 (t) and parameters λ1, . . . , λn and β(2)

12 , β
(2)
23 , . . . , β

(2)
n−1,n for the sec-

ond model X(n)
c,2 (t). Assume that β(1)

i,i+1 ≤ β
(2)
i,i+1 ∀i . Then X(n)

c,1 is stochastically
larger than X

(n)
c,2 , that is: if X(n)

c,1 (0) = X
(n)
c,2 (0) then X

(n)
c,1 (t) ≥st X

(n)
c,2 (t) for

any t. 1

Proof may be given by a standard explicit coupling construction of the processes
X

(n)
c,1 (t) and X

(n)
c,2 (t) on the same probability space. The following fact should

be used: a Poisson flow with intensity β(1)
12 can be obtained from a Poisson flow

with intensity β(2)
12 in which any point (independently from other) is killed with

probability 1− β(1)
12 /β

(2)
12 .

Corollary 2 (Solid barriers). Fix some 1 ≤ r1 < r2 < · · · < rb < n and con-
sider two cascade models: X(n)

c,1 (t) with parameters
(
λ1, . . . , λn ; β(1)

12 , . . . , β
(1)
n−1,n

)
and X(n)

c,2 (t) with parameters
(
λ1, . . . , λn ; β(2)

12 , . . . , β
(2)
n−1,n

)
, where

β
(2)
i,i+1 = β

(1)
i,i+1 ∀i �∈ {r1, . . . , rb} , β

(2)
i,i+1 = 0 ∀i ∈ {r1, . . . , rb} .

We can say that the model X(n)
c,2 (t) differs from the model X(n)

c,1 (t) by the presence
of b solid barriers between processors r1 and r1 + 1, . . . , rb and rb + 1. Then by
Theorem 1 we have that X

(n)
c,1 (t) ≤st X

(n)
c,2 (t) .

5 Case N = 2

We start with the Markov chain X(2)
c (t). Since processor 1 works independently,

it is enough to consider the Markov chain Y (2)
c (t) = x2(t)− x1(t).

Taking in mind the remark at the end of Subsect. 2.2, for brevity of notation
let us rescale absolute time in such a way that Z = 1. Then the Markov chain
Y (n) has the following transition probabilities

pi,i+1 = λ2, pi,i−1 = λ1, pi,0 = β12 (i ≥ 0), pi,i = β12 (i < 0)

and pi,j = 0 for any another pair i, j .

1 It means that there exists a coupling
(
X̃

(n)
1 (t, ω), X̃

(n)
2 (t, ω)

)
of stochastic processes

X
(n)
1 (t) and X

(n)
2 (t) such that P

{
ω : X̃

(n)
1 (t, ω) ≥ X̃

(n)
2 (t, ω) ∀t

}
= 1. If w, z ∈ Rn

we say w ≥ z if wi ≥ zi for all i = 1, . . . , n (partial order).

32 A. Manita and F. Simonot

Theorem 3. If λ1 < λ2 then the Markov chain Y (n) is ergodic and we have
v∗1 = v∗2 = λ1. If λ1 > λ2 then the Markov chain Y (n) is transient and we have
v∗1 = λ1, v∗2 = λ2.

Proof. The Markov chain Y (n) is one-dimensional and its analysis is quite easy.
To establish ergodicity under assumption λ1 < λ2 we use the Foster-Lyapunov
criterion (Theorem 8, see Appendix) with test function f(y) = |y|, y ∈ Z. This
implies that x2(t) − x1(t) has a limit in distribution as t → ∞. Recall that
x1(t) is a Poissonian process hence the limit v∗1 = lim

t
t−1x1(t) = λ1 exists (in

probability). It follows from this that v∗2 = lim
t
t−1x2(t) = λ1.

Under assumption λ1 > λ2 we get transience by choosing the function
f(y) = min(eδy, 1), y ∈ Z, where we fix sufficiently small δ > 0, and apply-
ing Theorem 9 from Appendix. Therefore any trajectory of Y (n) spends a finite
time in any prefixed domain {y ≥ C} entailing lim

t→∞x2(t) − x1(t) = −∞ (a.s.).
It means that after some time, the messages from 1 to 2 can not produce roll-
backs anymore, so x1(t) and x2(t) become asymptotically independent and hence
v∗2 = lim

t
t−1x2(t) = λ2.

6 Case N = 3

Theorem 4. Four situations are possible.

1. If λ1 < min (λ2, λ3) then v∗1 = v∗2 = v∗3 = λ1.
2. If λ2 > λ1 > λ3 then v∗1 = v∗2 = λ1, v∗3 = λ3.
3. If λ2 < min (λ1, λ3) then v∗1 = λ1, v∗2 = v∗3 = λ2.
4. If λ1 > λ2 > λ3 then v∗1 = λ1, v∗2 = λ2, v∗3 = λ3.

Items 2, 3 and 4 can be reduced in some sense to the results of the case N = 2
(see Theorem 3). We prove them in the current section. Proof of the item 1
is much more intricate and relies heavily on the construction of an adequate
Lyapunov function needing lengthy developments deferred to Sect. 7.

Proof of Theorem 4 (items 2–4). We start from the item 2: λ2 > λ1 > λ3.
Since the first two processors are governed by the Markov chain X(2)

c (t) and do
not depend on the state of processor 3 we apply Theorem 3 and conclude that
X

(2)
c (t) is ergodic and v∗1 = v∗2 = λ1.
Let us compare the following two cascade models

X(3)
c (t) : 1

β1,2−→ 2
β2,3−→ 3 and X

(3)
c,2 (t) : 1

β1,2−→ 2 0−→ 3

(parameters λ1, λ2 and λ3 are the same for the both modelsX(3)
c (t) andX(3)

c,2 (t)).
In the model X(3)

c,2 the groups of processors {1, 2} and {3} evolve independently.
Evidently, an asymptotic speed of processor 3 in the model X(3)

c,2 exists and is
equal to λ3. By Corollary 2 X(3)

c (t) ≤st X
(3)
c,2 (t). Hence in the model X(3)

c an

Clustering in Stochastic Asynchronous Algorithms 33

asymptotic speed of the processor 3 is not greater than λ3. Let us show now
that the inferior limit lim inf

t→+∞ t−1x3(t) can not be less than λ3. Indeed, since

λ3 < λ1 we conclude that there exists a random time moment τ0 depending
on X(3)

c (0) such that for all t ≥ τ0 the both coordinates x1(t) and x2(t) of the
process X(3)

c (t) will be greater than its third coordinate x3(t). So after the time
τ0 a message from 2 to 3 can not roll back anymore the processor 3. We see that
with probability 1 the processor 3 gets only a finite number of rollbacks from
the processor 2 on the time interval [0,+∞). Hence the asymptotic speed of the
third processor in the cascade system X

(3)
c coincides with its proper asymptotic

speed which is equal to λ3.
Items 3 and 4 can be considered in a similar way. Note that the item 3 consists

of two subcases: λ1 > λ3 > λ2 and λ3 > λ1 > λ2. We omit details.

7 Explicit Construction of Lyapunov Function

In this section we prove the item 1 of Theorem 4. Recall that our key assumption
here is λ1 < λ2, λ1 < λ3. The main idea is to prove that the Markov chain Y (n)
is ergodic. To do this we apply the Foster-Lyapunov criterion (see Theorem 8 in
Appendix). As in the case of Theorem 3 ergodicity of Y (n) implies that v∗j = λ1,
j = 1, 2, 3 .

7.1 Transition Probabilities

Consider the embedded Markov chain Y (n). A stochastic dynamics produced by
this Markov chain consists of two components: transitions generated by the free
dynamics and transitions generated by rollbacks. For each transition probability
pαβ , α �= β, we have the following representation: pαβ = sαβ+rαβ , where sαβ ≥ 0
corresponds to a transition α → β which occurs due to the free dynamics and
rαβ ≥ 0 corresponds to a rollback transition α→ β.

λ1

λ2

y3

y2

2 → 3

2 → 3

1 → 2

1 → 2 → 3

1 → 2 → 3λ3

34 A. Manita and F. Simonot

Taking into account the remark at the end of Subsect. 2.2, without loss of
generality we assume that the time is rescaled in such way that Z = 1. This
slightly simplifies notation for transition probabilities. For example, the free
dynamics transitions (4)–(5) are equal to λ2, λ3 and λ1 correspondingly. On the
above figure we show all non-zero transitions α → β, (α �= β). It is true, of
course, that pαα = 1 −∑β �=α pαβ , but it is useless to put this information on
the picture. Below we give the explicit form of rollback transition probabilities:

1→ 2 : ryz = β12 for 0 < y2

2→ 3 : ryz = β23 for y2 < y3

1 → 2→ 3 : ryz =
{
β12 (1− b2)z3 b2, z3 < y3
β12 (1− b2)y3 , z3 = y3

for 0 < y3 ≤ y2

1 → 2→ 3 : ryz =
{
β12 (1− b2)z3 b2, z3 ≤ y2
β12 (1− b2)y2+1

, z3 = y3
for 0 < y2 < y3

where y = (y2, y3), z = (z2, z3).

7.2 Contour of Level 1

Fix some a > 0 and b > 0. In the plane Oy2y3 consider the ellipse e(y2, y3) =
ay2

2 + b (y2 − y3)2 = 1 and draw a tangent line to it with normal vector (−∆, 1).
Evidently, there exist two tangent lines with the same normal vector (−∆, 1).
If ∆ > 0 is sufficiently large then one of this tangent line touches the ellipse at
some point T3 of the domain y2 < 0, y3 < 0. Take a segment on this line from the
point T3 to a point K3 = (0, u3) of intersection with coordinate axis Oy3. Now
let us draw tangent lines to the ellipse corresponding to a normal vector (1,−∆).
If ∆ > 0 is sufficiently large, then one of these lines touches the ellipse at some
point T2 of the domain y3 < 0. Let us take this tangent line and fix a segment
on it from the point T2 to a point K2 = (u2, 0) of intersection with coordinate
axis Oy2. It is evident that [K2K3] = R2

+ ∩ {(y2, y3) : y2/u2 + y3/u3 = 1}.
y3

y2K2

K3

T3

T2

Clustering in Stochastic Asynchronous Algorithms 35

Let us consider now a closed contour L, consisting of subsequently joined
segment K3K2, segment K2T2, arc T2T3 of the ellipse and segment T3K3. This
contour has the following property: any ray of the form{cv, c > 0}, where v ∈ R2,
v �= 0, has exactly one common point with the contour L.

We denote by n(y) the outer normal unitary vector of the contour L corre-
sponding to the point y ∈ L, n(y) is well defined at all points of L except the
points K2 and K3 and, moreover, this function is continuous on L except the
points K2 and K3. The behaviour of n(y) on the arc T2T3 is of prime interest:

n(y) =
∇e(y)
‖∇e(y)‖ , ∇e(y) = 2(ay2+b(y2−y3),−b(y2−y3)), y ∈ T2T3 ⊂ L.

It is easy to see that n(y) = n(T2) for y ∈ (K2T2], n(y) = n(T3) for y ∈ [T3K3)
and n(y) =

(
u−1

2 , u−1
3

)
for y ∈ (K3K2). For the sequel it is important to point

out the following points of the arc T2T3: y(3) = (−a−1/2,−a−1/2) and y(2),{
y(2)
}

= T2T3 ∩
{
y
(2)
3 = a+b

b y
(2)
2

}
. Obviously, both points belong to the domain

{y2 < 0, y3 < 0}. It is easy to check that n(y(2))‖Oy3, n(y(3))‖Oy2 .
7.3 Definition of Function ϕ and the Foster Conditions

For any point (y2, y3) ∈ R2\{0} define ϕ(y2, y3) > 0 such that
(y2, y3)
ϕ(y2, y3)

∈ L .

For (y2, y3) = 0 we put ϕ(0, 0) = 0. The function ϕ(y2, y3) is well-defined and
has the following properties:
– ϕ : R2 → R+ (positivity)
– ϕ(ry2, ry3) = rϕ(y2, y3), r > 0, (homogeneity)
– L = {y : ϕ(y) = 1}.

To finish the proof it is sufficient to check that the above defined function ϕ(x)
satisfies to the conditions of the Foster criterion (see Appendix). From the point
of view of transition probabilities there are four different domains to consider:

E− := {y = (y2, y3) : min(y2, y3) < 0} , E1,2 := {y2 > 0, y3 = 0},
E1 := {y = (y2, y3) : y2 > 0, y3 > 0} , E1,3 := {y2 = 0, y3 > 0} .

This is a technical job and we omit details.

8 Conclusions, Conjectures and Perspectives

We shall always assume that all λ1, . . . , λN are different. Define a function
�(m) := min

i≤m
λi . Level sets of the function � generate a partition of the set

{1, . . . , N}. Namely, there exists a sequence j1 = 1 < j2 < · · · < jK < jK+1 =
N + 1 such that the set of all processors can be divided into several noninter-
secting groups

{1, . . . , N} =
⋃

k=1,K

Gk , (6)

Gk := {jk, jk + 1, . . . , jk+1 − 1} , �(jk−1) > �(jk) = · · · = �(jk+1−1) > λjk+1 .

36 A. Manita and F. Simonot

Taking into account Theorems 3 and 4 and the above notion of groups of
processors we put forward the following conjecture.

Conjecture 5. Assume that all λ1, . . . , λN are different. Then for any j the

following limit v∗j = lim
t→+∞

xj(t)
t

exists and v∗j = �(j).

Therefore this conjecture entails v∗j = �(jk) for j ∈ Gk. If for some k the
group Gk consists of more than one processor we may say that the processors of
the group Gk are synchronized.

Remark 6 (On monotone cases). If λ1 < · · · < λN then v∗j = λ1 for any j.
If λ1 > · · · > λN then for all j we have v∗j = λj .

Let us discuss briefly perspectives of rigorous proof of the above conjecture
for large values of N . In fact, we have already proved this conjectures for a wide
class of cascade models.

Theorem 7. Assume that all λ1, . . . , λN are different and a partition (6) of the
set of processors {1, . . . , N} is such that |Gk| ≤ 3 for all k. Then the limits

v∗j = lim
t→+∞

xj(t)
t

exist and v∗j = �(j).

The proof of this statement is just a combination of the result of Theorem 4
(item 1) and arguments of the proof of items 2-4 of Theorem 4. We will not
pursue further.

So the key to the proof of Conjecture 5 consists in generalization of item 1
of Theorem 4. As it was seen in Sect. 7, a possible way of such generalization is
an explicit construction of Foster-Lyapunov function in high dimensions. This
seems to be a difficult technical problem which is out of scope of this paper.

References

1. D. Jefferson, A. Witkowski, An Approach to Performance Analysis of Time stamp-
driven Synchronization Mechanisms. 1984 ACM0-89791-143-1 84, 008/0243

2. D. Mitra, I. Mitrani, Analysis and Optimum performance of two message-passing
parallel processors synchronized by rollback. Performance Evaluation 7 (1987),
111-124

3. V.K. Madisetti, J.C. Walrand and D.G. Messerschmitt, Asynchronous Algorithms
for the ParaSimulation of Event-Driven Dynamical Systems, ACM Transactions
on Modelling and Computer Simulation, Vol. 1, No 3, July 1991, Pages 244-274

4. A. Gupta, I.F. Akyildiz, Fujimoto, Performance Analysis of Time Warp With Mul-
tiple Homogeneous Processors. IEEE Transactions On Software Engineering, Vol.
17, No. 10, October 1991, 1013.

5. I.F. Akyildiz, L. Chen, S.R. Dast, R.M. Fujimoto, R.F. Serfozo, Performance Analy-
sis of Time Warp with Limited Memory. Performance Evaluation Review, Vol. 20,
No. 1, June 1992

6. A. Kumar and R. Shorey, Stability of Event Synchronisation in Distributed Dis-
crete Event Simulation. Proc. of the eighth workshop on parallel and distributed
simulation. Edinburgh, Scotland, United Kingdom. 65–72 (1994).

Clustering in Stochastic Asynchronous Algorithms 37

7. Fayolle G., Malyshev V., Menshikov M., Topics on constructive countable Markov
chains. Cambridge University Press, 1995.

8. S.Yu. Popov, A.G. Greenberg, V.A. Malyshev, Stochastic models of massively par-
allel computation. Markov Processes and Related Fields, V.1, N4 (1995), 473-490.

9. A.G. Greenberg, S. Shenker, A.L. Stolyar, Asynchronous Updates in Large Parallel
Systems. SIGMETRICS 96 5/96 PA, USA

10. M. Gupta, A. Kumar, R. Shorey, Queueing Models and Stability of Message Flows
in Distributed Simulators of Open Queueing Networks. Proc. of the tenth workshop
on parallel and distributed simulation. Philadelphia, Pennsylvania, United States.
162–169 (1996).

11. D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods. Athena Scientific, Belmont, Mass. 1997.

12. R. Shorey, A. Kumar, and K.M. Rege, Instability and Performance Limits of Dis-
tributed Simulators of Feedforward Queueing Networks. ACM Transactions on
Modeling and Computer Simulation, Vol. 7, No. 2, April 1997, Pages 210–238.

13. M. Gupta and A. Kumar, A Nonblocking Algorithm for the Distributed Simulation
of FCFS Queueing Networks with Irreducible Markovian Routing. Proc. of the
twelfth workshop on parallel and distributed simulation. Banff, Alberta, Canada.
20–27 (1998).

14. T.V. Voznesenskaya, Analysis of algorithms of time synchronisation for distributed
simulation. Artificial intelligence (Donetsk), N2, 24-30 (2000) (in Russian).

15. T.V. Voznesenskaya, Mathematical model of algorithms of synchronization of time
for the distributed simulation,in L.N. Korolev (Eds.), "Program systems and tools":
the Thematic collection of faculty VMiK of the Moscow State University N1: MAX
Press, 56-66 (2000).

16. Malyshev V., Manita A. Time synchronization problem. Rapport de recherche
INRIA, N. 5204, 2004.

17. A. Manita, V. Shcherbakov. Asymptotic analysis of particle system with mean-field
interaction, arXiv:math.PR/0408372 (http://arxiv.org), 2004.

18. Malyshev V.A., Manita A.D. Phase transitions in the time synchronization model.
Probability Theory and Applications, Vol. 50, 150–158 (2005).

A Appendix

Let (ξn, n = 0, 1, . . .) be a countable irreducible aperiodic Markov chain with the
state space A. We use the following Foster criterion.

Theorem 8 ([7]). The Markov chain ξn is ergodic if and only if there exists a
positive function f(α), α ∈ A, a number ε > 0 and a finite set A ∈ A such that

1) E (f(ξn+1) | ξn = y)− f(y) < −ε for all y �∈ A,
2) E (f(ξn+1) | ξn = y) < +∞ for all y ∈ A.

The following theorem give a criterion of transience.

Theorem 9 ([7]). The Markov chain is transient, if and only if there exists a
positive function f(α) and a set A such that the following inequalities are fulfilled

E (f(ξm+1) | ξm = αi)− f(αi) ≤ 0, ∀αi �∈ A,
f(αk) < inf

αj∈A
f(αj), for at least one αk �∈ A.

On Construction of the Set of Irreducible

Partial Covers

Mikhail Ju. Moshkov1,2

1 Foundation for Support of Agrarian Reform and Rural Development,
21-1, B. Kharitonyevsky, Moscow 105064, Russia

2 Institute of Computer Science, University of Silesia,
39, Bȩdzińska St., Sosnowiec 41-200, Poland

moshkov@us.edu.pl

Abstract. In the paper a totally polynomial algorithm for construction
of the set of irreducible partial covers for the major part of set cover
problems is considered.

Keywords: Irreducible partial cover, totally polynomial algorithm.

1 Introduction

Set cover problem arises often in areas of computer science connected with analy-
sis of data sets. In particular, problems of construction of minimal tests [2],
decision rules and reducts [5] can be represented as set cover problems.

The paper is devoted to investigation of partial covers. If a data set contains
noise then exact covers can be ”over-learned” i.e. depend essentially on noise. If
we see on constructed covers as on a way for knowledge representation [7] then
instead of large exact covers it is more appropriate to work with small partial
covers which cover the major part of elements.

Let A be a set with n elements and S be a family of m subsets of A. We con-
sider so-called t-covers for the set cover problem (A,S). A t-cover is a subfamily
of S, subsets from which cover at least n− t elements from A. A t-cover is called
irreducible if each proper subset of this cover is not a t-cover. We study the
problem of construction of all irreducible t-covers for a given set cover problem.
This problem is connected, in particular, with the evaluation of importance of
attributes in decision tables.

We prove that if t = 3 �log2m� and n = �mα�, where α is a positive real
number, then there is no polynomial algorithm which for the major part of
set cover problems constructs all irreducible t-covers, but there exists a totally
polynomial algorithm which constructs all irreducible t-covers for the major
part of set cover problems. Totally polynomial means that the algorithm has
polynomial time complexity depending on total length of input and output.
Note that this algorithm not only finds all irreducible t-covers but also identifies
the characteristic function for the set of t-covers which is a monotone Boolean
function.

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 38–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On Construction of the Set of Irreducible Partial Covers 39

The problem of identification of monotone Boolean function is the following:
for a monotone Boolean function f(x1, . . . , xm) (usually given by oracle) it is
required to find the set minT (f) of minimal true vectors and the set maxF (f)
of maximal false vectors [1]. Totally polynomial algorithms for this problem solv-
ing (algorithms with polynomial time complexity depending on m, |minT (f)|
and |maxF (f)|) are unknown. In [6] it was shown that there exists a totally
polynomial algorithm which identifies almost all monotone Boolean functions.
This algorithm is based on a totally polynomial algorithm for so-called k-tight
monotone Boolean functions [4], and on the fact discovered in [3]: for almost
all monotone Boolean functions all minimal true vectors and all maximal false
vectors are located on only three layers of Boolean m-cube which are closed to
central layers (with near to m

2 units in each vector).
It must be noted that for almost all of the considered set cover problems in

characteristics functions for the set of t-covers all minimal true vectors and all
maximal false vectors are located on lower layers of Boolean m-cube (with at
most 2 �α log2m� units in each vector).

2 Main Notions

Let A = {a1, . . . , an} be a nonempty finite set in which elements are enumerated
by numbers 1, . . . , n, and S = {B1, . . . , Bm} be a family of subsets of A in which
subsets are enumerated by numbers 1, . . . ,m. It is possible thatB1∪. . .∪Bm �= A,
and subsets from S with different numbers are equal. The pair (A,S) will be
called a set cover problem.

There is one-to-one correspondence between such set cover problems and
tables with n rows and m columns filled by numbers from {0, 1}. The problem
(A,S) corresponds to the table which for i = 1, . . . , n and j = 1, . . . ,m has 1
at the intersection of i-th row and j-th column if and only if ai ∈ Bj . So the
number of different set cover problems (A,S) such that A contains n elements
and S contains m subsets is equal to 2mn.

Let t be a natural number. A subfamily Q = {Bi1 , . . . , Bik
} of the family S

will be called a t-cover for (A,S) if

|Bi1 ∪ . . . ∪Bik
| ≥ |A| − t .

The number k will be called the cardinality of the considered t-cover. A
t-cover will be called irreducible if each proper subset of this t-cover is not a
t-cover.

3 On the Set of t-Covers

In this section we prove that if t = 3 �log2m� then for the major part of set
cover problems (A,S) any k subsets from S form a t-cover and any r subsets
from S do not form a t-cover where k is near to 2 log2 n and r is near to log2 n.

40 M.J. Moshkov

Theorem 1. Consider set cover problems (A,S) such that A = {a1, . . . , an}
and S = {B1, . . . , Bm}. Let t = 3 �log2m� and k = 2 �log2 n�. Then the relative
number of set cover problems for which any k subsets from S form a t-cover is
at least

1− 1
2�log2 m��log2 n�+�log2 n� .

Proof. Consider tables with n rows and m columns filled by numbers from {0, 1}.
Fix k columns and t + 1 rows. The number of tables which have only 0 at the
intersection of considered rows and columns is equal to 2mn−k(t+1). There are at
most mk variants for the choice of k columns. There are at most nt+1 variants
for the choice of t + 1 rows. Therefore the number of tables which have only 0
at the intersection of some k columns and some t+ 1 rows is at most

2mn+k log2 m+(t+1) log2 n−k(t+1) ≤ 2mn−�log2 m��log2 n�−�log2 n� .

Last number is an upper bound on the number of set cover problems (A,S) for
which there exist k subsets from S that do not form a t-cover. Therefore the
relative number of set cover problems for which any k subsets from S form a
t-cover is at least

2mn − 2mn−�log2 m��log2 n�−�log2 n�

2mn
= 1− 1

2�log2 m��log2 n�+�log2 n� . 	

Theorem 2. Consider set cover problems (A,S) such that A = {a1, . . . , an}
and S = {B1, . . . , Bm}. Let t = 3 �log2m�, m ≥ 2, n > t,

r = �log2(n− t)− log2 5− log2 �log2m� − log2 �log2 n��

and r > 0. Then the relative number of set cover problems for which any r
subsets from S do not form a t-cover is at least

1− 1
2�log2 m��log2 n�+�log2 m� .

Proof. Consider tables with n rows and m columns filled by numbers from {0, 1}.
Fix r columns and t rows. Let us evaluate the number of tables in which there
are no rows (with the exception, maybe, of the fixed t rows) that have only 0
at the intersection with the considered r columns. The number of such tables is
equal to

2mn−r(n−t)(2r − 1)n−t = 2mn

(
2r − 1

2r

)n−t

= 2mn

(
2r − 1

2r

)2r n−t
2r

.

Using well known inequality
(

c−1
c

)c ≤ 1
e , which holds for any natural c, obtain

2mn

(
2r − 1

2r

)2r n−t
2r

≤ 2mn−n−t
2r .

On Construction of the Set of Irreducible Partial Covers 41

There are at most mr variants for the choice of r columns. There are at
most nt variants for the choice of t rows. Therefore the number of tables which
have r columns and n − t rows such that among the considered rows there is
no row with only 0 at the intersection with the considered r columns is at most
2mn+r log2 m+t log2 n−n−t

2r . It is clear that

n− t
2r

≥ (n− t)5 �log2m� �log2 n�
(n− t) = 5 �log2m� �log2 n� ,

r ≤ �log2 n� − 1 and r log2m+ t log2 n ≤ 4 �log2m� �log2 n� − �log2m�. Hence

2mn+r log2 m+t log2 n−n−t
2r ≤ 2mn−�log2 m��log2 n�−�log2 m� .

Last number is an upper bound on the number of set cover problems (A,S) for
each of which there exist r subsets from S that form a t-cover. Therefore the
relative number of set cover problems for which any r subsets from S do not
form a t-cover is at least

2mn − 2mn−�log2 m��log2 n�−�log2 m�

2mn
= 1− 1

2�log2 m��log2 n�+�log2 m� . 	

Corollary 1. Consider set cover problems (A,S) such that A = {a1, . . . , an}
and S = {B1, . . . , Bm}. Let t = 3 �log2m�, k = 2 �log2 n�,

r = �log2(n− t)− log2 5− log2 �log2m� − log2 �log2 n�� ,

m ≥ 2, n > t and r > 0. Then the relative number of set cover problems for
which any k subsets from S form a t-cover, and any r subsets from S do not
form a t-cover is at least

1− 1
2�log2 m��log2 n� .

4 On the Set of Irreducible t-Covers

Let (A,S) be a set cover problem. Denote by I(A,S, t) the number of irreducible
t-covers for (A,S). In this section we obtain lower and upper bounds on the value
I(A,S, t) for t = 3 �log2m� and for the major part of set cover problems such
that n = �mα�, where α is a positive real number, and m is large enough.

Theorem 3. Consider set cover problems (A,S) such that A = {a1, . . . , an},
S = {B1, . . . , Bm} and n = �mα� where α is a real number and α > 0. Let
t = 3 �log2m� and k = 2 �log2 n�. Then for large enough m the relative number
of set cover problems (A,S) for which any k subsets from S form a t-cover, and

m
α
4 log2 m ≤ I(A,S, t) ≤ m5α log2 m

is at least
1− 1

2�log2 m��α log2 m� .

42 M.J. Moshkov

Proof. Denote k = 2 �log2 �mα�� and

r = �log2(�mα� − t)− log2 5− log2 �log2m� − log2 �log2 �mα��� .

From Corollary 1 it follows that for large enough m the relative number of set
cover problems for which any k subsets from S form a t-cover, and any r subsets
from S do not form a t-cover is at least

1− 1
2�log2 m��log2�mα�� ≥ 1− 1

2�log2 m��α log2 m� .

Consider an arbitrary set cover problem (A,S) for which any k subsets from S
form a t-cover, and any r subsets from S do not form a t-cover. Let us show that
if m is large enough then

m
α
4 log2 m ≤ I(A,S, t) ≤ m5α log2 m .

It is clear that each t-cover has an irreducible t-cover as a subset. Let Q be an
irreducible t-cover. Let us evaluate the number of t-covers of cardinality k which
have Q as a subset. Let |Q| = p. One can show that r + 1 ≤ p ≤ k. There are
Ck−p

m−p ways to obtain a t-cover of cardinality k from Q by adding subsets from
S. It it clear that Ck−p

m−p ≤ Ck−p
m . If k < m

2 then Ck−p
m ≤ Ck−r

m . Thus, for large
enough m the number of t-covers of cardinality k which have Q as a subset is at
most Ck−r

m .
The number of t-covers of cardinality k is equal to Ck

m. Hence

I(A,S, t) ≥ Ck
m

Ck−r
m

=
(m− k + 1) . . . (m− k + r)

(k − r + 1) . . . k
≥
(
m− k
k

)r

.

For large enough m

m− k
k

=
m− 2 �log2 �mα��

2 �log2 �mα�� ≥ m
1
2 .

Therefore I(A,S, t) ≥ m
r
2 . It is clear that for large enough m the inequality

r ≥ 1
2α log2m holds. Thus, for large enough m

I(A,S, t) ≥ m
α
4 log2 m .

It is clear that the cardinality of each irreducible t-cover is at most k. Therefore
I(A,S, t) ≤ kmk if k < m

2 . One can show that for large enough m the inequality
kmk ≤ m5α log2 m holds. Thus, for large enough m

I(A,S, t) ≤ m5α log2 m . 	

5 On Algorithms for Construction of All Irreducible
t-Covers

Let us consider set cover problems (A,S) such that A = {a1, . . . , an}, S =
{B1, . . . , Bm} and n = �mα� where α is a real number and α > 0. Let

On Construction of the Set of Irreducible Partial Covers 43

t = 3 �log2m� and k = 2 �log2 n�. For a given set cover problem (A,S) it is
required to find all irreducible t-covers for (A,S). The length of input for this
problem is equal to mn ≤ m1+α.

From Theorem 3 it follows that for large enough m the relative number of
set cover problems (A,S) for which any k subsets from S form a t-cover, and

m
α
4 log2 m ≤ I(A,S, t) ≤ m5α log2 m

is at least
1− 1

2�log2 m��α log2 m� .

Thus, there is no polynomial algorithm which for large enough m for the major
part of set cover problems constructs the set of irreducible t-covers.

Let us consider an algorithm which finds all nonempty subfamilies of the fam-
ily S with at most k = 2 �log2 n� subsets, and for each such subfamily recognizes
is this subfamily a t-cover or not. It is clear that this recognition problem can
be solved (for one subfamily) in polynomial time depending on mn. After that
among the considered subfamilies the algorithm chooses all minimal subfamilies
which are t-covers (such subfamilies are irreducible t-covers and correspond to
minimal true vectors of the characteristic function for the set of t-covers) and
all maximal subfamilies which are not t-covers (such subfamilies correspond to
maximal false vectors of the characteristic function for the set of t-covers).

From Theorem 3 it follows that for large enough m for the major part of set
cover problems the algorithm finds all minimal true vectors of the characteristic
function for the set of t-covers (all irreducible t-covers) and all maximal false
vectors of the characteristic function for the set of t-covers.

The considered algorithm for large enough m works with at most kmk sub-
families of S. One can show that kmk ≤ m5α log2 m for large enough m. Using
Theorem 3 we conclude that for large enough m

kmk ≤ (I(A,S, t))20 .

Thus, there exists a totally polynomial algorithm which for large enough m for
the major part of set cover problems constructs the set of irreducible t-covers
and finds all minimal true and all maximal false vectors of the characteristic
function for the set of t-covers.

6 Conclusions

In the paper it is shown that under some assumptions on m, n and t there is no
polynomial algorithm which for the major part of set cover problems (A,S) with
A containing n elements and S containing m subsets constructs all irreducible
t-covers, but there exists a totally polynomial algorithm which for the major
part of considered set cover problems constructs all irreducible t-covers.

Similar results can be obtained for more wide classes of set cover problems
and thresholds t.

44 M.J. Moshkov

Acknowledgments

The author is greatly indebted to Andrzej Skowron for stimulating discussions,
and to anonymous reviewer for helpful remarks.

References

1. Boros, E., Hammer, P.L., Ibaraki, T., Kawakami, K.: Polynomial time recognition
of 2-monotonic positive Boolean functions given by an oracle. SIAM J. Computing
26(1) (1997) 93–109

2. Chegis, I.A., Yablonskii, S.V.: Logical methods of electric circuit control. Trudy
MIAN SSSR 51 (1958) 270–360 (in Russian)

3. Korshunov, A.D.: On the number of monotone Boolean functions. Problemy Kiber-
netiki 38 (1981) 5–108 (in Russian)

4. Makino, K., Ibaraki, T.: The maximum latency and identification of positive Boolean
functions. SIAM J. Computing 26(5) (1997) 1363–1383

5. Pawlak, Z.: Rough Sets – Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht, Boston, London, 1991

6. Shmulevich, I., Korshunov, A.D., Astola, J.: Almost all monotone Boolean functions
are polynomially lernable using membership queries. Information Processing Letters
79 (2001) 211–213

7. Skowron, A.: Rough sets in KDD. Proceedings of the 16-th World Computer
Congress (IFIP’2000). Beijing, China (2000) 1–14

Recent Advances in Multiobjective

Optimization�

Christos Zaroliagis1,2

1 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
2 Department of Computer Engineering and Informatics,

University of Patras, 26500 Patras, Greece
zaro@ceid.upatras.gr

Multiobjective (or multicriteria) optimization is a research area with rich history
and under heavy investigation within Operations Research and Economics in the
last 60 years [1,2]. Its object of study is to investigate solutions to combinatorial
optimization problems that are evaluated under several objective functions –
typically defined on multidimensional attribute (cost) vectors. In multiobjective
optimization, we are interested not in finding a single optimal solution, but
in computing the trade-off among the different objective functions, called the
Pareto set (or curve) P , which is the set of all feasible solutions whose vector of
the various objectives is not dominated by any other solution.

Multiobjective optimization problems are usually NP-hard due to the fact
that the Pareto set is typically exponential in size (even in the case of two
objectives). On the other hand, even if a decision maker is armed with the entire
Pareto set, s/he is still left with the problem of which is the “best” solution for
the application at hand. Consequently, three natural approaches to deal with
multiobjective optimization problems are to:

(i) Study approximate versions of the Pareto curve that result in (guaranteed)
near optimal but smaller Pareto sets.

(ii) Optimize one objective while bounding the rest (constrained approach).
(iii) Proceed in a normative way and choose the “best” solution by introduc-

ing a utility (often non-linear) function on the objectives (normalization
approach).

Until quite recently, the vast majority of research in multiobjective optimiza-
tion [1,2] had focussed either on exact methods (i.e., to compute the entire Pareto
set), or approximation methods through heuristic and metaheuristic approaches
(that do not provide guarantees on the quality of the returned solution). An
important outcome of the existing literature is that the two objectives case has
been extensively studied, while there is a certain lack of efficient (generic) meth-
ods for the case of more than two objectives. Most importantly, there has been

� This work was partially supported by the IST Programme (6th FP) of EC under con-
tract No. IST-2002-001907 (integrated project DELIS), and the Action PYTHAGO-
RAS of the Operational Programme for Educational & Vocational Training II,
with matching funds from the European Social Fund and the Greek Ministry of
Education.

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 45–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

46 C. Zaroliagis

a lack of a systematic study of the complexity issues regarding approximate ver-
sions of the Pareto set (in a way analogous to the well-established approximation
theory for single objective optimization problems).

The normalization approach has been quite investigated, especially within
Operations Research. In this approach, a utility function is introduced that
translates (in a linear or non-linear way) the different criteria into a common
cost measure. For instance, when travelling in a traffic network one typically
wishes to minimize travel distance and time; both criteria can be translated into
a common cost measure (e.g., money), where the former is linearly translated,
while the latter non-linearly (small amounts of time have relatively low value,
while large amounts of time are very valuable). Under the normalization ap-
proach, we seek for a single optimum in the Pareto set (a feasible solution that
optimizes the utility function). Due to the exponential size of the Pareto set,
a fair portion of research had focussed on solving relaxed versions of the opti-
mization problem, which corresponds to finding the best solution in the convex
hull of the Pareto set. This turns out to be a good starting point to locate the
exact solution by applying heuristic methods. However, the approaches used so
far employ exhaustive algorithms for solving the relaxations of the problem at
hand with complexities bounded by some polynomial in the size of the convex
hull (which can be subexponentially large). In a very recent study [9], the first
efficient (polynomial time) algorithm for solving the relaxation of the normal-
ized version of the bicriteria shortest path is given, when the utility function is
non-linear and convex.

The constrained approach had been (almost exclusively) the method adopted
within Computer Science to deal with multiobjective optimization problems; see
e.g., [3,4,6,8]. Classical examples concern the restricted (or constrained) shortest
path and the restricted (or constrained) spanning tree problems.

Very recently, a systematic study (within Computer Science) has been ini-
tiated regarding the complexity issues of approximate Pareto curves [7]. Infor-
mally, an (1 + ε)-Pareto curve Pε is a subset of feasible solutions such that for
any Pareto optimal solution and any ε > 0, there exists a solution in Pε that is
no more than (1+ ε) away in all objectives. Although this concept is not new (it
has been previously used in the context of bicriteria and multiobjective shortest
paths [5,12]), Papadimitriou and Yannakakis in a seminal work [7] show that
for any multiobjective optimization problem there exists a (1 + ε)-Pareto curve
Pε of (polynomial) size |Pε| = O((4B/ε)d−1), where B is the number of bits
required to represent the values in the objective functions (bounded by some
polynomial in the size of the input). They also provide a necessary and sufficient
condition for its efficient (polynomial in the size of the input and 1/ε) construc-
tion. In particular, Pε can be constructed by O((4B/ε)d) calls to a GAP routine
that solves (in time polynomial in the size of the input and 1/ε) the following
problem: given a vector of values a, either compute a solution that dominates a,
or report that there is no solution better than a by at least a factor of 1+ε in all
objectives. Extensions to that method to produce a constant approximation to
the smallest possible (1 + ε)-Pareto curve for the cases of 2 and 3 objectives are

Recent Advances in Multiobjective Optimization 47

presented in [11], while for d > 3 objectives inapproximability results are shown
for such a constant approximation.

Apart from the above general results, there has been very recent work on
improved approximation algorithms (FPTAS) for multiobjective shortest paths
[10]. In that paper, a new and remarkably simple algorithm is given that con-
structs (1 + ε)-Pareto sets for the single-source multiobjective shortest path
problem, which improves considerably upon previous approaches. In the same
paper, it is also shown how this algorithm can provide better approximation
schemes for both the constrained and the normalized versions of the problem for
any number of objectives. An additional byproduct is a generic method for con-
structing FPTAS for any multiobjective optimization problem with non-linear
objectives of a rather general form (that includes any polynomial of bounded de-
gree with non-negative coefficients). This method does not require the existence
of a GAP routine for such non-linear objectives.

All these very recent algorithmic and complexity issues will be discussed and
elaborated in the talk.

References

1. M. Ehrgott, Multicriteria Optimization, Springer, 2000.
2. M. Ehrgott and X. Gandibleux (Eds), Multiple Criteria Optimization – state of the

art annotated bibliographic surveys, Kluwer Academic Publishers, Boston, 2002.
3. O. Etzioni, S. Hanks, T. Jiang, R. Karp, O. Madari, and O. Waarts, “Efficient

Information Gathering on the Internet”, in Proc. 37th IEEE Symp. on Foundations
of Computer Science – FOCS 1996, pp. 234-243.

4. G. Handler and I. Zang, “A Dual Algorithm for the Constrained Shortest Path
Problem”, Networks 10(1980), pp. 293-310.

5. P. Hansen, “Bicriterion Path Problems”, Proc. 3rd Conf. Multiple Criteria Decision
Making – Theory and Applications, LNEMS Vol. 117 (Springer, 1979), pp. 109-127.

6. M. Marathe, R. Ravi, R. Sundaram, S.S. Ravi, D. Rosenkrantz, and H.B. Hunt,
“Bicriteria Network Design Problems”, Journal of Algorithms 28 (1998), pp. 142-
171.

7. C. Papadimitriou and M. Yannakakis, “On the Approximability of Trade-offs and
Optimal Access of Web Sources”, in Proc. 41st IEEE Symp. on Foundations of
Computer Science – FOCS 2000, pp. 86-92.

8. R. Ravi, M. Marathe, S.S. Ravi, D. Rosenkrantz, and H.B. Hunt, “Many Birds
with One Stone: Multi-objective Approximation Algorithms”, in Proc. 25th ACM
Symp. on Theory of Computing – STOC 1993, pp. 438-447.

9. G. Tsaggouris and C. Zaroliagis, “Non-Additive Shortest Paths”, in Algorithms –
ESA 2004, LNCS Vol. 3221 (Springer-Verlag, 2004), pp. 822-834.

10. G. Tsaggouris and C. Zaroliagis, “Improved FPTAS for Multiobjective Shortest
Paths with Applications”, CTI Technical Report TR 2005/07/03, July 2005.

11. S. Vassilvitskii and M. Yannakakis, “Efficiently Computing Succinct Trade-off
Curves”, in Automata, Languages, and Programming – ICALP 2004, LNCS
Vol. 3142 (Springer, 2004), pp. 1201-1213.

12. A. Warburton, “Approximation of Pareto Optima in Multiple-Objective Shortest
Path Problems”, Operations Research 35(1987), pp. 70-79.

Polynomial Time Checking for Generation

of Finite Distributions of Rational Probabilities�

Roman Kolpakov

Moscow State University, Moscow 119992, Russia
foroman@mail.ru

Abstract. We study the generation of finite probabilistic distributions
by discrete transformations. By discrete transformation of distributions
we mean the distribution of a random variable which is a function of
the values of independent random variables with initial distributions.
We propose an algorithm which allows to determine in polynomial time
whether a given distribution is generated by a given set of finite distri-
butions of rational probabilities. Moreover, we describe all sets of finite
distributions of rational probabilities which are closed under the consid-
ered generation. Among these sets we find all finitely generated sets. We
also determine the structure of the lattice formed of these sets.

Keywords: Stochastic automata, probabilistic transformations, gener-
ation of randomness.

1 Introduction

We consider discrete transformations of independent finite distributions of ra-
tional probabilities. By transformation of distributions we mean the distribution
of a random variable which is a function of random variables with initial dis-
tributions. Such transformations are of great importance for the generation of
randomness which plays a vital role in many areas of computer science: struc-
tural theory of stochastic automata, simulations, network constructions, cryp-
tography, and so on (see [1, 12]). More precisely, the generation of randomness
is based actually on construction of some random variable ζ0 with a wanted
distribution proceeding from initial disposable random variables ζ1, . . . , ζk with
distributions different from the wanted distribution. The variable ζ0 is defined
by some function f : Ω1 × . . .× Ωk −→ Ω0 where Ωi is the set of values of the
random variable ζi, i = 0, 1, . . . , k. In the paper we consider random variables
which have a finite number of values. In this case without loss of generality we
can assume that for any i = 0, 1, . . . , k the set Ωi is {0, 1, . . . , hi − 1}, and the
probabilistic distribution of ζi is defined by a stochastic vector1 Di of dimension
� This work is supported by the Russian Foundation for Fundamental Research (Grant

05-01-00994), the program for supporting of leading scientific schools (Grant NSh-
1807.2003.1), and the program ”Universities of Russia” (Grant UR.04.02.528).

1 A stochastic vector is a vector with nonnegative components such that the sum of
all components of the vector is equal to 1.

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 48–57, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Polynomial Time Checking for Generation of Finite Distributions 49

hi such that jth component of Di is the probability of ζi to be equal to j − 1.
We will denote the set Ω1× . . .×Ωk = {0, 1, . . . , h1−1}× . . .×{0, 1, . . . , hk−1}
by Ω(D1, . . . ,Dk). For i = 0, 1, . . . , h0 − 1 denote by Ni(f) the set of all tuples
from Ω(D1, . . . ,Dk) on which the function f is equal to i. By D[j] we denote
jth component of a stochastic vector D. Note that if all variables ζ1, . . . , ζk are
independent, the vector D0 is determined uniquely by the vectors D1, . . . ,Dk

and the function f . In particular, we can define components of the vector D0 in
the following way:

D0[j] =
∑

(σ1;...;σk)∈Nj−1(f)

D1[σ1 + 1] · . . . · Dk[σk + 1]. (1)

Further we denote the vector D0 by P{f(D1, . . . ,Dk)}.
LetH be a set of distinct stochastic vectors. We say that a stochastic vectorD

is generated by the set H if there exists a function f(x1, . . . , xk) such that D =
P{f(D1, . . . ,Dk)} for some D1, . . . ,Dk ∈ H . We denote by 〈H〉 the set of all
stochastic vectors generated by H and call this set the closure of the set H .
The set H is called closed if H = 〈H〉. Note that H ⊆ 〈H〉 and 〈H ′ ∩ H ′′〉 ⊆
〈H ′〉 ∩ 〈H ′′〉 for any sets H ′ and H ′′ of stochastic vectors. Below (Corollary 1)
we show that 〈〈H〉〉 = 〈H〉, i.e. the considered operation of closure of sets of
stochastic vectors satisfies also the third standard property of a operation of
closure. We say also that a set A of stochastic vectors is generated by the set H
if A ⊆ 〈H〉. For a set T of natural numbers and a natural k we denote by T>k

the set of all numbers of T which are greater than k. By I(n) we denote the set
of all prime divisors for a natural number n, and by (x1, . . . , xk) we denote the
greatest common divisor of numbers x1, . . . , xk.

Investigating the introduced generation of stochastic vectors, first of all we
face the problem of determining whether a given stochastic vector is generated
by a given set of stochastic vectors. The basic difficulty of this problem consists,
obviously, in impossibility of the direct description of arbitrary sets of stochastic
vectors, since the set of all stochastic vectors has the continuum cardinality.
So one of the natural approaches for solving this problem is to consider it on
closed subsets of stochastic vectors everywhere dense in the set of all stochastic
vectors. The set of all stochastic vectors with rational components is the most
appropriate example of such subsets. We denote this set by SQ. Then for the
set SQ we have the following problem.

Problem 1 (Generation Problem on SQ). For any stochastic vector D and any
finite set M of stochastic vectors from SQ determine whether D is generated
by M .

Another important problem which is closely related to the Generation Prob-
lem on SQ is the problem of description of all closed subsets of the set SQ. For
any set Π of different prime numbers we consider in SQ the subset SG[Π] of all
stochastic vectors such that any component of these vectors can be represented
by a fraction of which the denominator is a production of powers of numbers
from Π :

50 R. Kolpakov

SG[Π] =
{

(d1; . . . ; dh)
∣∣∣∣ ∑h

i=1 di = 1, di = mi

n , mi ∈ ZZ+, i = 1, . . . , h
n ∈ IN, I[n] ⊆ Π

}
.

It is easy to see from (1) that subsets of a set SG[Π] can generate only stochastic
vectors from the same set. Thus sets SG[Π] present an example of closed subsets
of SQ. Further we show that in SQ there exist closed subsets different from sets
SG[Π].

Most of investigations in this field concerned the case of generation of two-di-
mensional stochastic vectors from SQ (since a two-dimensional stochastic vector
is determined uniquely by any one of its components, instead of two-dimensi-
onal stochastic vectors the numbers of the segment [0, 1] which are the second
components of these vectors are usually considered in the literature). In [10, 11]
it is shown that the sets of all two-dimensional stochastic vectors from SG[{2}]
and SG[{3}] are generated by the vectors

(1
2 ; 1

2

)
and

(1
3 ,

2
3

)
respectively. Thus

these sets are finitely generated, i.e., generated by some their own finite subsets.
In [6, 9] these results are generalized to the case of the set of all two-dimen-
sional stochastic vectors from G[Π] for an arbitrary Π . Moreover, the lattice
formed of these sets is described. Analogous results for the case of stochastic
vectors of arbitrary dimensions are obtained in [7, 8]. A number of questions on
the approximate generation of two-dimensional stochastic vectors are considered
in [5, 11]. In [2] an explicit description for the closures of arbitrary sets in the
class of all two-dimensional stochastic vectors from G[Π] is obtained, and, basing
on this description, all closed subsets of this class are found. In [3] the closures
of all finite sets of arbitrary vectors from SQ are explicitly described. Using
this result, we propose a polynomial time algorithm for solving the Generation
Problem on SQ. Moreover, we present all closed and all finitely generated closed
subsets of the set SQ. We also determine the structure of the lattice formed of
these subsets.

2 Auxiliary Definitions and Results

First of all we note the following property of stochastic vectors which can be
verified directly.

Proposition 1. Let D(1)
1 , . . . ,D(1)

k(1), . . . ,D(n)
1 , . . . ,D(n)

k(n) be stochastic vectors,
f1(x1, . . . , xk(1)),. . . , fn(x1, . . . , xk(n)) be discrete functions defined respec-
tively on the sets Ω(D(1)

1 , . . . ,D(1)
k(1)),. . . , Ω(D(n)

1 , . . . ,D(n)
k(n)), and f(x1, . . . , xn)

be a discrete functions defined on the set Ω(D1, . . . ,Dn) where Di =
P{fi(D(i)

1 , . . . ,D(i)
k(i))}, i = 1, . . . , n. Then

P{f(D1, . . . ,Dn)} = P{f̂(D(1)
1 , . . . ,D(1)

k(1), . . . ,D(n)
1 , . . . ,D(n)

k(n))}

where f̂(x(1)
1 , . . . , x

(1)
k(1), . . . , x

(n)
1 , . . . , x

(n)
k(n)) = f

(
f1(x

(1)
1 , . . . , x

(1)
k(1)), . . . , fn(x(n)

1 ,

. . . , x
(n)
k(n))

)
.

Polynomial Time Checking for Generation of Finite Distributions 51

Corollary 1. The closure of any set of stochastic vectors is a closed set.

Thus, the considered operation of closure of sets of stochastic vectors satisfies
all standard properties of a operation of closure.

Stochastic vector is called degenerated if it has a component which is equal
to 1. By natural way we assume that all degenerated stochastic vectors are
generated by the empty set and, therefore, are contained in any closed set of
stochastic vectors. For any nondegenerated stochastic vector D we denote by D+

the vector which is obtained from D by removing of all zero components. For
any set M of stochastic vectors we denote by M+ the set of all vectors D+ such
that D ∈M . The following obvious fact takes place.

Proposition 2. For any set M of stochastic vectors the relation 〈M〉 = 〈M+〉
is valid.

Nondegenerated stochastic vectors with nonzero components are called positive.
A set M of stochastic vectors is called closed positively if for any nondegenerated
vector D of H the vector D+ is also contained in H .

Natural numbers a1, a2, . . . , ak are called pairwise relatively prime if each
of these numbers is relatively prime to any other of them. We call a set of
numbers of N>1 divisible if it contains less than two numbers or all its numbers
are pairwise relatively prime. We call also a set of natural numbers relatively
prime to a natural number n if each of the numbers of this set is relatively
prime to n. An empty set is supposed to be relatively prime to any natural
number. If a set A of natural numbers is finite we denote by |A| the number of
elements of A and by ‖A‖ the product of all numbers of A. For an empty set we
assume ‖∅‖ = 1.

Let A,B be non-empty divisible sets of natural numbers. We call the set B
a divisor of the set A if for any number b of B the set A has a number divisible
by b. An empty set is supposed to be a divisor of any divisible set. Let A1, . . . , As

be finite divisible sets. The greatest common divisor (A1, . . . , As) of these sets is
the set

{ a | a = (a1, a2, . . . , as) > 1, ai ∈ Ai, i = 1, 2, . . . , s } ,
which consists of the numbers of N>1 that are greatest common divisors of all
possible s-tuples formed by picking out one number of each of the sets A1, . . . , As.
If at least one of the sets A1, . . . , As is empty we assume (A1, . . . , As) = ∅. Note
the following obvious properties of the set (A1, . . . , As).

Proposition 3. The greatest common divisor of divisible sets is a divisible set
which is relatively prime to any number relatively prime to at least one of these
sets.

Proposition 4. For any finite divisible sets A1, . . . , As the equality
‖(A1, . . . , As)‖ = (‖A1‖, . . . , ‖As‖) is valid.

We can also introduce the notion of greatest common divisor for an infinite
number of finite divisible sets. Let A1, A2, . . . be finite divisible sets. We define
the greatest common divisor (A1, A2, . . .) of these sets as the set

52 R. Kolpakov

{ a | a > 1, a = (a1, a2, . . .), ai ∈ Ai, i = 1, 2, . . . } ,

which consists of all the numbers of N>1 that are greatest common divisors
of infinite samples of numbers of A1, A2, . . . formed by picking out one number
of each of the sets. If at least one of the sets A1, A2, . . . is empty we assume
(A1, A2, . . .) = ∅. Analogously to Proposition 3, we have

Proposition 5. The greatest common divisor of an infinite number of divisible
sets is a divisible set which is relatively prime to any number relatively prime to
at least one of these sets.

3 Closed Subsets of SQ

Let Π be a non-empty set of different prime numbers, and T be a finite divisible
set of numbers relatively prime to the set Π . Denote by SG[Π ;T] the following
subset of the set SG[Π]:⎧⎪⎪⎪⎨⎪⎪⎪⎩(d1; . . . ; dh)

∣∣∣∣∣∣∣∣∣
di = mi

n , mi ∈ ZZ+, i = 1, . . . , h, n ∈ IN, I(n) ⊆ Π,∑h
i=1 di = 1, ∃T1, . . . , Th−1, T ⊇ T1 ⊇ T2 ⊇ . . . ⊇ Th−1,∑i
j=1mj ≡ 0 (mod ‖Ti‖), i = 1, . . . , h− 1,∑i
j=1mj ≡ n (mod ‖T \ Ti‖), i = 1, . . . , h− 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(the sets T1 . . . , Th−1 can coincide T or ∅). In case of T = ∅ we assume that
SG[Π ; ∅] = SG[Π]. One can note that the validity of the relation (d1; . . . ; dh) ∈
SG[Π ;T] depends formally on choosing the common denominator n of compo-
nents d1, . . . , dh. However, it is easy to verify that this dependence is actually
fictitious, i.e. our definition of SG[Π ;T] is invariant with respect to multipli-
cation or division of nominators and denominators of fractions by the same
number. Note that for any vector (d1; . . . ; dh) of SG[Π ;T] the corresponding
sets T1 . . . , Th−1 are determined uniquely by this vector. Note also that any set
SG[Π ;T] is infinite and closed positively and contains all degenerated vectors.
In [4] the following fact is proved.

Lemma 1. For any sets Π and T the set SG[Π ;T] is closed.

According to Lemma 1, all sets SG[Π ;T] form a collection of closed subsets of
the set SQ. We denote this collection by SG. The following proposition gives
for any two sets SG[Π ′;T ′], SG[Π ′′;T ′′] of SG the relationship between the
inclusion SG[Π ′;T ′] ⊆ SG[Π ′′;T ′′] and the parameters Π ′, Π ′′, T ′, T ′′.

Proposition 6. Let G[Π ′;T ′], G[Π ′′;T ′′] be two sets of SG. Then

1. SG[Π ′;T ′] ⊆ SG[Π ′′;T ′′] if and only if Π ′ ⊆ Π ′′ and T ′′ is a divisor of T ′;
2. SG[Π ′;T ′] = SG[Π ′′;T ′′] if and only if Π ′ = Π ′′ and T ′ = T ′′.

Proposition 6 allows to establish the inclusion relation between any sets of SG
and to describe in this way the structure of the lattice formed of all sets from SG.

Polynomial Time Checking for Generation of Finite Distributions 53

4 Closures of Finite Subsets of SQ

Our solution of the Generation Problem on SQ is based on an explicit description
of closures of all finite subsets of the set SQ. In order to give this description, by
Proposition 2 it is enough to consider only subsets consisting of positive vectors.
First we consider the case of a subset consisting of only one positive vector D =
(d1; . . . ; dt) of SQ. Without loss of generality we can assume that all components
of D are represented by fractions reduced to their least common denominator n,
i.e. di = mi

n where i = 1, . . . , t and (m1, . . . ,mt) = 1. Denote Π(D) = I(n).
Let lj be the greatest common divisor of all numbers m1, . . . ,mt except the
number mj for j = 1, . . . , t. Then we denote by T (D) the set {l1, . . . , lt}>1. It is
easy to verify the following proposition.

Proposition 7. For any D of SQ the set T (D) is divisible and relatively prime
to n.

Thus we can consider the set SG[Π(D);T (D)]. It is proved in [3] that this set
coincides 〈{D}〉.
Theorem 1. 〈{D}〉 = SG[Π(D);T (D)].

Now consider the case of an arbitrary finite subset of the set SQ. Let M =
{D1, . . . ,Ds} be a finite set of positive stochastic vectors of SQ, and h1, . . . , hs

be respective dimensions of these vectors. As in the case of a set of a single
vector, without loss of generality each vector Di can be represented in the form

Di =

(
m

(i)
1

ni
, . . . ,

m
(i)
hi

ni

)
, (2)

where (m(i)
1 , . . . ,m

(i)
hi

) = 1. Denote T (M) = (T (D1), . . . , T (Ds)) in case of s ≥ 2
and T (M) = T (D1) in case of s = 1. By Proposition 7 each set T (Di) is divisible
and relatively prime to ni. So by Propositions 7 and 3 we have

Proposition 8. The set T (M) is divisible and relatively prime to numbers
n1, . . . , ns.

Denote Π(M) =
⋃s

i=1 I(ni). By Proposition 8 we can consider the set
SG[Π(M);T (M)]. In [3] the following result is obtained.

Theorem 2. Let M be a finite set of positive stochastic vectors of SQ. Then
〈M〉 = SG[Π(M);T (M)].

5 Checking of Generation of Stochastic Vectors by Finite
Sets

Using Theorem 2, we can propose an effective algorithm for solving the Gener-
ation Problem on SQ. According to Theorem 2, for this purpose it is enough to

54 R. Kolpakov

verify if the vector D is contained in the set SG[Π(M);T (M)]. First we com-
pute the set T (M). Let M consist of positive vectors D1, . . . ,Ds which have
dimensions h1, . . . , hs respectively. We assume that all components of these vec-
tors are represented initially by fractions in their lowest terms. Let components
of the vector Di, i = 1, . . . , s, be represented by fractions with denominators
n

(i)
1 , . . . , n

(i)
hi

. Denote ηM = maxi,j n
(i)
j , hM = maxi hi and ΣM =

∑s
i=1 hi. First

of all each vector Di is converted to form (2). Note that the denominator ni of
components of Di in form (2) is the least common multiple of n(i)

1 , . . . , n
(i)
hi

. So we

can obtain ni by computing consecutively the numbers n̂(i)
1 , . . . , n̂

(i)
hi−1, n̂

(i)
hi

= ni

where n̂(i)
1 = n

(i)
1 and n̂

(i)
j is the least common multiple of n̂(i)

j−1 and n
(i)
j , i.e.

n̂
(i)
j =

n̂
(i)
j−1n

(i)
j

(n̂(i)
j−1,n

(i)
j)

, for j = 2, . . . , hi. Note that at each step of computing the great-

est common divisor of two numbers a, b ∈ IN>1 by means of Euclid’s algorithm
these numbers are reduced one after another at least half. Thus, for computa-
tion of (a, b) it is required to perform no more than O

(
1+ log

(
min(a, b)/(a, b)

))
operations of division of integer numbers. Hence, proceeding from the num-
bers n̂(i)

j−1 and n
(i)
j , we can compute the numbers (n̂(i)

j−1, n
(i)
j) and n̂

(i)
j by us-

ing O
(

1 + log
n

(i)
j

(n̂(i)
j−1,n

(i)
j)

)
= O

(
1 + log

n̂
(i)
j

n̂
(i)
j−1

)
arithmetic operations. Thus we

need O(hi + logni) arithmetic operations for computing the number ni and
converting the vector Di to form (2). Note that ni ≤ n

(i)
1 · . . . · n(i)

hi
≤ ηhi

M .
So logni ≤ hi log ηM . Taking into account this inequality, we conclude that
O(ΣM logΛM) arithmetic operations are required in total for converting all vec-
tors D1, . . . ,Ds to form (2). Then for any i = 1, . . . , s we have to construct the set
T (Di), i.e. for any j = 1, . . . , hi we have to compute the greatest common divisor
of all numbers m(i)

1 , . . . ,m
(i)
hi

except the number m(i)
j . To obtain (m(i)

2 , . . . ,m
(i)
hi

),

we compute consecutively the numbers dj = (m(i)
2 , . . . ,m

(i)
j) for j = 3, . . . , hi.

As noted above, proceeding from the numbers (m(i)
2 , . . . ,m

(i)
j−1) and m

(i)
j , the

greatest common divisor dj of these numbers can be computed by means of

Euclid’s algorithm, performing no more than O

(
1 + log

(m(i)
2 ,...,m

(i)
j−1)

(m(i)
2 ,...,m

(i)
j)

)
opera-

tions of division of integer numbers. So for computing dhi = (m(i)
2 , . . . ,m

(i)
hi

) we

need in total O(hi + logm(i)
2) arithmetic operations. Note that every number

m
(i)
j is less than ni. Hence the proved inequality implies that every number m(i)

j

satisfies the inequality

logm(i)
j < hi log ηM . (3)

Thus (m(i)
2 , . . . ,m

(i)
hi

) can be computed by performing O(hi log ηM) =
O(hM log ηM) arithmetic operations. In an analogous way we can compute
all other numbers of the set T (Di). Therefore, the computation of T (Di)
requires O(hihM log ηM) arithmetic operations. Thus for computing all sets
T (D1), . . . , T (Ds) we need O(ΣMhM log ηM) arithmetic operations. Proceeding

Polynomial Time Checking for Generation of Finite Distributions 55

from these sets, we construct the set T (M) by computing consecutively the
sets Ai =

(
T (D1), . . . , T (Di)

)
for i = 2, . . . , s. Each set Ai is computed as(

Ai−1, T (Di)
)

(where A1 = T (D1)). Since T (Di) contains no more than hi num-
bers, in order to compute

(
Ti−1, T (Di)

)
, for any number of Ai−1 we have to

perform no more than hi operations of obtaining the greatest common divisor
of this number and a number of T (Di). Recall that for computing the greatest
common divisor (a, b) we need O

(
1 + log

(
min(a, b)/(a, b)

))
= O

(
log min(a, b)

)
arithmetic operations. Therefore, proceeding from the sets Ai−1 and T (Di), we
can compute the set Ai by performing O

(
hi

∑
a∈Ai−1

log a
)

= O (hi log ‖Ai−1‖)
arithmetic operations. It follows from Proposition 4 that ‖Ai−1‖ ≤ ‖T (D1)‖.
Note that all numbers of the set ‖T (D1)‖ are pairwise relatively prime divisors
of either m(1)

1 or m(1)
2 . So ‖T (D1)‖ ≤ m

(1)
1 m

(1)
2 . Therefore, taking into account

inequality (3), we have

log ‖Ai−1‖ ≤ log ‖T (D1)‖ ≤ log(m(1)
1 m

(1)
2) < 2h1 log ηM ≤ 2hM log ηM .

Thus, O(hihM log ηM) arithmetic operations are required for computing the
set Ai from the sets Ai−1 and T (Di). Therefore, O(ΣMhM log ηM) arithmetic
operations are required for computing the set T (M) = As from the sets
T (D1), . . . , T (Ds). Thus, we can compute the set T (M) by performing in to-
tal O(ΣMhM log ηM) arithmetic operations.

Now consider the vector D. Let h be the dimension of this vector. If D /∈ SQ,
then, obviously, D /∈ 〈M〉. Assume that D ∈ SQ and all components of D are
represented by fractions in their lowest terms. Let numbers n(0)

1 , . . . , n
(0)
h be the

denominators of these fractions. Denote ηD = maxj n
(0)
j and n = n

(0)
1 · . . . · n(0)

h .

If any of numbers n(0)
1 , . . . , n

(0)
h has a prime divisor which is not contained in

Π(M), then D /∈ SG[Π(M)], so D /∈ 〈M〉 by Theorem 2. In order to verify that
all prime divisors of n(0)

1 , . . . , n
(0)
h are contained in Π(M), it is enough to check

the relation
I(n) ⊆ I(n1 · . . . · ns). (4)

This relation is valid if and only if η(D) is a divisor of some great enough
power of the number n1 · . . . · ns. For such a power we can, obviously, take
any power with an exponent no less than log2 η(D). In particular, we can take a
power obtained by applying the operation of raising a number to square power
�log2 log2 η(D)� times consecutively to the number n1 · . . . ·ns. Thus, relation (4)
can be checked by performing O(h + s+ log logn) arithmetic operations. From
n ≤ ηh

D we have log logn ≤ log h + log log ηD. Thus, the number of arithmetic
operations required for checking if all prime divisors of n(0)

1 , . . . , n
(0)
h are con-

tained in Π(M) can be estimated by O(h + s + log log ηD). If this checking is
positive we verify that D is contained in SG[Π(M);T (M)]. As noted in Sec-
tion 3, we can take the number n as a common denominator of components
of D. In this case, let µi be the sum of numerators of the first i components
of D, i = 1, . . . , h − 1. It is enough, obviously, to perform O(h) arithmetic op-
erations for computing µ1, . . . , µh−1, n − µ1, . . . , n − µh−1. Then, in order to

56 R. Kolpakov

construct the subsets T1 . . . , Th−1 corresponding to the vector D, we have to
check for any number t from T (M) the divisibility of the numbers µi and n−µi,
where i = 1, . . . , h − 1, by t (if µi is divisible by t, then t ∈ Ti; if n − µi is
divisible by t, then t ∈ T (M) \Ti; if neither µi, nor n−µi is divisible by t, then
we conclude that D /∈ SG[Π(M);T (M)]). It requires O(h|T (M)|) arithmetic
operations. No more than O(h|T (M)|) operations are additionally required for
checking the relations T1 ⊇ T2 ⊇ . . . ⊇ Th−1. Summing all stages of the pro-
posed algorithm of checking the relation D ∈ SG[Π(M);T (M)] and taking into
account that s < ΣM , we conclude that this algorithm requires to perform
O
(
ΣMhM log ηM + h(1 + |T (M)|) + log log ηD

)
operations. Note that |T (M)| ≤

log2 ‖T (M)‖ and the proved estimation log ‖Ai‖ < 2hM log ηM is valid for the
set T (M) = As, i.e. log ‖T (M)‖ < 2hM log ηM . Thus |T (M)| = O(hM log ηM).
Using this estimation for |T (M)|, we finally obtain

Theorem 3. If all components of the vector D and vectors of the set M are
represented by fractions in their lowest terms, then for checking the relation
D ∈ 〈M〉 it is enough to perform O

(
(ΣM +h)hM log ηM +log log ηD

)
arithmetic

operations.

Note that the value (ΣM +h)hM log ηM +log log ηD is polynomially bounded by
the size of input for the Generation Problem on SQ. So Theorem 3 implies

Corollary 2. The Generation Problem on SQ can be solved in polynomial time.

6 Closures of Infinite Subsets of SQ

The results of Section 4 can be generalized to the case of infinite subsets of the
set SQ. Let M = {D1,D2, . . .} be an infinite set of positive stochastic vectors of
SQ. In the same way as in Section 4, for each vector Di we assume that all com-
ponents of this vector are represented by fractions reduced to their least common
denominator ni and define the set T (Di). Denote T (M) = (T (D1), T (D2), . . .).
Propositions 7 and 5 imply

Proposition 9. T (M) is a finite divisible set which is relatively prime to num-
bers n1, n2,

Denote by Π(M) the set
⋃∞

i=1 I(ni). By Proposition 9 we can again consider
the set SG[Π(M);T (M)]. The following generalization of Theorem 2 to the case
of infinite subsets of the set SQ is proved in [4].

Theorem 4. Let M = {D1,D2, . . .} be an infinite set of positive stochastic vec-
tors of SQ. Then 〈M〉 = SG[Π(M);T (M)].

This theorem allows to give a description of all closed subsets of the set SQ. Since
each of these subsets is a closure of some set of vectors of SQ (for example, of
the subset itself), it is follows from Theorems 2 and 4 and Proposition 2 that
each of these subsets is an element of the set SG. Hence, taking into account
Lemma 1, we obtain the following statement.

Theorem 5. SG is the set of all closed subsets of the set SQ.

Polynomial Time Checking for Generation of Finite Distributions 57

7 Finitely Generated Closed Subsets of SQ

Among closed classes of stochastic vectors, the classes generated by finite subsets
are most important in practice. So the problem of a description of all finitely
generated closed subsets of the set SQ is of great interest. Denote by SGfin the
subset of SG which consists of all sets SG[Π ;T] such that Π is finite. It follows
from Theorem 2 and Proposition 2 that all finitely generated closed subsets of
the set SQ are elements of the set SGfin. On the other hand, it is proved in [4]
that any set belonging to SGfin is finitely generated. Thus we have

Theorem 6. SGfin is the set of all finitely generated closed subsets of the set
SQ.

References

[1] R. Bukharaev. Foundations of the Theory of Probabilistic Automata. Moscow:
Nauka, 1985 (in Russian).

[2] R. Kolpakov. Classes of Binary Rational Distributions Closed under Discrete
Transformations. Lecture Notes in Computer Science, Springer Verlag, 2003,
2827:157–166.

[3] R. Kolpakov. On discrete transformations of finite distributions with rational
probabilities. Matematicheskie voprosy kibernetiki, Moscow: Nauka, 2003, 12:109–
146 (in Russian).

[4] R. Kolpakov. Closed classes of finite distributions of rational probabilities. Diskret-
nyj analiz i issledovanie operacij, Ser. 1, Novosibirsk, 2004, 11(3):16–31 (in
Russian).

[5] N. Nurmeev. On Boolean functions with variables having random values. Pro-
ceedings of VIII USSR Conference “Problems of Theoretical Cybernetics”, Gorky,
1988, 2:59–60 (in Russian).

[6] F. Salimov. To the question of modelling Boolean random variables by functions of
logic algebra. Verojatnostnye metody i kibernetika, Kazan: Kazan State University,
1979, 15:68–89 (in Russian).

[7] F. Salimov. Finite generativeness of some algebras over random values. Voprosy
kibernetiki, Moscow, 1982, 86:122–130 (in Russian).

[8] F. Salimov. On maximal subalgebras of algebras of distributions. Izvestija vuzov,
Ser. Matematika, 1985, 7:14–20 (in Russian).

[9] F. Salimov. On one family of distribution algebras. Izvestija vuzov, Ser. Matem-
atika, 1988, 7:64–72 (in Russian).

[10] R. Skhirtladze. On the synthesis of p-circuits of contacts with random discrete
states. Soobschenija AN GrSSR, 1961, 26(2):181–186 (in Russian).

[11] R. Skhirtladze. On a method of constructing Boolean random variable with a
given probability distribution. Diskretnyj analiz, Novosibirsk, 1966, 7:71–80 (in
Russian).

[12] A. Srinivasan and D. Zuckerman. Computing with very weak random sources.
SIAM J. on Computing, 1999, 28(4):1433–1459.

FPL Analysis for Adaptive Bandits

Jan Poland�

Grad. School of Inf. Sci. and Tech.,
Hokkaido University, Japan
jan@ist.hokudai.ac.jp

http://www-alg.ist.hokudai.ac.jp/∼jan

Abstract. A main problem of “Follow the Perturbed Leader” strategies
for online decision problems is that regret bounds are typically proven
against oblivious adversary. In partial observation cases, it was not clear
how to obtain performance guarantees against adaptive adversary, with-
out worsening the bounds. We propose a conceptually simple argument

to resolve this problem. Using this, a regret bound of O(t
2
3) for FPL in

the adversarial multi-armed bandit problem is shown. This bound holds
for the common FPL variant using only the observations from designated
exploration rounds. Using all observations allows for the stronger bound
of O(

√
t), matching the best bound known so far (and essentially the

known lower bound) for adversarial bandits. Surprisingly, this variant
does not even need explicit exploration, it is self-stabilizing. However
the sampling probabilities have to be either externally provided or ap-
proximated to sufficient accuracy, using O(t2 log t) samples in each step.

1 Introduction

“Expert Advice” stands for an active research area which studies online algo-
rithms. In each time step t = 1, 2, 3, . . . the master algorithm, henceforth called
master for brevity, is required to commit to a decision, which results in some
cost. The master has access to a class of experts, each of which suggests a de-
cision at each time step. The goal is to design master algorithms such that the
cumulative regret (which is just the cumulative excess cost) with respect to any
expert is guaranteed to be small. Bounds on the regret are typically proven in the
worst case, i.e. without any statistical assumption on the process assigning the
experts’ costs. In particular, this might be an adaptive adversary which aims at
maximizing the master’s regret and also knows the master’s internal algorithm.
This implies that (unless the decision space is continuous and the cost function
is convex) the master must randomize in order to protect against this danger.

In the recent past, a growing number of different but related online problems
have been considered. Prediction of a binary sequence with expert advice has
been popular since the work of Littlestone and Warmuth in the early 1990’s. Fre-
und and Schapire [1] removed the structural assumption on the decision space

� This work was supported by JSPS 21st century COE program C01.

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 58–69, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

FPL Analysis for Adaptive Bandits 59

and gave a very general algorithm called Hedge which in each time step ran-
domly picks one expert and follows its recommendation. We will refer to this
setup as the online decision problem. Auer et al. [2,3] considered the first partial
observation case, namely the bandit setup, where in each time step the master
algorithm only learns its own cost, i.e. the cost of the selected expert. All these
and many other papers are based on weighted forecasting algorithms.

A different approach, Follow the Perturbed Leader (FPL), was pioneered as
early as 1957 by Hannan [4] and rediscovered recently by Kalai and Vempala [5].
Compared to weighted forecasters, FPL has two main advantages and one major
drawback. First, it applies to the online decision problem and admits a much
more elegant analysis for adaptive learning rate [6]. Even infinite expert classes
do not cause much complication. (However, the leading constant of the regret
bound is generically a factor of

√
2 worse than that for weighted forcasters.)

Adaptive learning rate is necessary unless the total number of time steps to be
played is known in advance.

As a second advantage, FPL also admits efficient treatment of cases where
the expert class is potentially huge but has a linear structure [7,8]. We will refer
to such problems as geometric online optimization. An example is the online
shortest path problem on a graph, where the set of admissible paths = experts
is exponential in the number of vertices, but the cost of each path is just the
sum of the costs of the vertices.

FPL’s main drawback is that its general analysis only applies against an
oblivious adversary, that is an adversary that has to decide on all cost vectors
before the game starts – as opposed to an adaptive one that before each time step
t just needs to commit to the current cost vector. For the full information game,
one can show that a regret bound against oblivious adversary implies the same
bound against an adaptive one [6]. The intuition is that FPL’s current decision at
time t does not depend on its past decisions. Therefore, the adversary may well
decide on the current cost vector before knowing FPL’s previous decisions. This
argument does not apply in partial observation cases, as there FPL’s behavior
does depend on its past decisions (because the observations do so). As a conse-
quence, authors started to explicitly distinguish between oblivious and adaptive
adversary, sometimes restricting to the former, sometimes obtaining bounds of
lower quality for the latter. E.g. McMahan and Blum [7] suggest a workaround,
proving sublinear regret bounds against an adaptive bandit, however of worse
order (t

3
4
√

log t instead of t
2
3 , for both, geometric online optimization and online

decision problem). This is not satisfactory, since in case of the bandit online
decision problem for a suitable weighted forecaster, even a O(

√
t) bound against

adaptive adversary is known [3].
In this work, we remove FPL’s major drawback. We give a simple argument

(Section 2) which shows that also in case of partial observation, a bound for
FPL against an oblivious adversary implies the same bound for adaptive ad-
versary. This will allow in particular to prove a O

(
(tn
√

logn)
2
3
)

bound for the
bandit online decision problem (Section 3). This bound is shown for the common
construction where only the observations of designated exploration rounds are

60 J. Poland

used. As this master algorithm is label efficient, the bound is essentially sharp. In
contrast, using all informations will enable us to prove a stronger O(

√
tn logn)

bound (Section 4). This matches the best bound known so far for the adversarial
bandit problem [3], which is sharp within

√
logn. The downside of this algorithm

is that either the sampling probabilities have to be given by an oracle, or they
have to be approximated with to sufficient accuracy, using O(t2 log t) samples.

2 FPL: Oblivious ⇒ Adaptive

Assume that c1, c2, . . . ∈ [0, 1]n is a sequence of cost vectors. There are n ≥ 1
experts. That is, cit is expert i’s cost at time t, and the costs are bounded (w.l.o.g.
in [0, 1]). In the full observation game, at time t the master would know the past
cumulative costs c<t = c1:t−1 =

∑t−1
s=1 cs (observe that we have introduced some

notation here). However, our focus are partial observations where this is not the
case. Hence, assume that there are estimates ĉt (to be specified later) for the cost
vectors ct. Then at time t, FPL(t) samples a perturbation vector qt ∈ [0,∞)n

the components of which are independently exponentially distributed, that is,
P(qi

t ≥ x) = e−x. Afterwards, the expert with the best (minimum) score ĉ<t− qt

ηt

is selected, where ηt > 0 is the learning rate:

FPL(t, ĉ<t) = arg min
1≤i≤n

{
ĉi<t − qi

t

ηt

}
where qi

t
d.∼ Exp independently. (1)

Denote the expert FPL chooses at time t by It = FPL(t, ĉ<t). Then an adaptive
adversary is a function A : [0, 1]n×t−1 × {1 . . . n}t−1 → [0, 1]n. (We assume A to
be deterministic but remark that all our results and proofs hold for randomized
A without major modification.) The complete game between FPL and A is spec-
ified by ct = A(c1c2 . . . ct−1, I1I2 . . . It−1) and It = FPL(t, ĉ<t) for t = 1, 2, . . .
The estimated cost vector ĉt is revealed to FPL after time t and specified by a
mechanism “outside” this game which is defined later (this is the exploration).

After the game has proceeded for a number of time steps T , we want to evalu-
ate FPL’s performance. Actually, the expected performance is the right quantity
to address. If we are rather interested in high probability bounds on the actual
performance, then they are easily obtained by observing that the difference of
actual to expected performance is a martingale with bounded differences (all
instantaneous costs cit are in [0, 1]). Thus, high probability bounds follow by
Azuma’s inequality, as we will demonstrate in Proposition 2.

How can we compute FPL’s expected costs EcFPL
1:T = E

∑T
t=1 c

It
t ? The key

observation is that – on the cost vectors generated by FPL and A and with the
given estimated costs ĉt – FPL’s expected costs at time t are the same as another
algorithm F̃PL’s expected costs. F̃PL is defined by

F̃PL(t, ĉ<t) = arg min
1≤i≤n

{
ĉi<t − qi

∗
ηt

}
, (2)

where q∗ is a single fixed vector with independently exponentially distributed
components. Since we have to be careful to take expectations w.r.t. the appro-
priate randomness, we explicitely refer to the randomness in the notation by

FPL Analysis for Adaptive Bandits 61

writing e.g. EcFPL
t = Eqtc

FPL
t . Then the following statement trivially holds, as qt

and q∗ have the same distribution.

Proposition 1. At each time t ≤ T , we have Eqtc
FPL
t = Eq∗c

F̃PL
t .

This means that in order to analyze FPL, we may now proceed by considering
the expected costs of F̃PL instead. We can use the standard analysis based on
the tools by Kalai and Vempala [5], which requires that F̃PL is executed on
a sequence of cost vectors that is fixed and not known in advance. Actually,
in contrast to the full observation game analysis, the bandit analysis will never
require the true cost vectors to be revealed, but rather the estimated cost vectors.
For the cost vectors generated by A in response to FPL, the prerequisite for
F̃PL is satisfied – just consider F̃PL as a virtual or hypothetic algorithm which
is not actually executed. Therefore it does not make any decisions or cause any
response from the adversary. Just for the sake of analysis we pretend that it runs
and evaluate the expected cost it incurs, which is the same as FPL.

Since our key argument and the way it is used in the analysis appears quite
subtle at the first glance, we encourage the reader to thoroughly verify each of
the subsequent formal steps.

3 The Standard Strategy Against Adversarial Bandits

The first algorithm we consider, bandit-FPL (bFPL), is specified in Figure 1
and proceeds as follows. At time t, it decides if to perform an exploration or an
exploitation step according to some exploration probability γt ∈ (0, 1). This is
realized by sampling rt ∈ {0, 1} independently from all other randomness with
P [rt = 1] = γt. In case of exploration (rt = 1), the decision Ib

t is uniformly
sampled from {1 . . . n}, independently from all other randomness. We denote
this choice by ut. (For notational convenience, we will also refer to the irrelevant
ut’s in the exploitations steps later.) In case of exploitation (rt = 0), bFPL
obtains its decision Ib

t by invoking FPL according to (1). After bFPL has played

its decision, it observes its own costs cI
b
t

t . Finally, only in case of exploration
(rt = 1), the estimated cost vector is set to something different from 0. This is
the standard way of constructing an FPL variant against an adversarial bandit

For t = 1, 2, 3, . . .
set ĉi

t = 0 for all i
sample rt ∈ {0, 1} independently s.t. P [rt = 1] = γt

If rt = 0 Then set Ib
t = FPL(t, ĉ<t) according to (1)

If rt = 1 Then sample Ib
t from {1 . . . n} uniformly (Ib

t = ut)

play decision Ib
t and observe cost c

Ib
t

t

If rt = 1 Then set ĉ
Ib
t

t = n · c
Ib
t

t /γt

Fig. 1. The algorithm bFPL. The exploration rate γt and the learning rate ηt (used

by subroutine FPL) will be specified in Theorem 1.

62 J. Poland

[7,8]. We will discuss how to make use of all observations in the next section.
Here is the formal specification of the algorithm again.

Ib
t = bFPL(t, ĉ<t) =

{
ut if rt = 1
FPL(t, ĉ<t) otherwise, ĉit =

{
nci

t

γt
if rt = 1 ∧ i = Ib

t

0 otherwise.

Consequently, the estimated cost vector is chosen unbiasedly, i.e. Ert,ut ĉ
i
t = cit.

This technique was introduced in [2].

Theorem 1. Let γt = min
{
1, t−

1
3
(
n
√

logn
) 2

3
}

and ηt = γt

n2 t
− 1

3
(
n
√

logn
) 2

3 .
Then, for any T ≥ (n logn)2, each expert i ∈ {1 . . . n}, and any adaptive assign-
ment of the costs c1, c2, . . ., bFPL satisfies the regret bound

EcbFPL
1:T − ci1:T ≤ 4

(
Tn
√

logn
) 2

3
. (3)

(For T < (n logn)2, the regret is clearly at most (n logn)2.)

Proof. All computations we use in the subsequent proof have been taken or
adapted from other work. Our point is to bring them into the right order and to
carefully check that in this context, against an adaptive adversary, all operations
are legitimate. In particular we have to take care that all expectations are w.r.t.
the appropriate randomness. Again, we make this explicit in the notation and
write e.g. EcbFPL

t = Eqt,r1:t,u1:tc
bFPL
t . Note that according to the definition of

bFPL, EcbFPL
t in fact does not depend on q<t. During the proof, we will avoid the

use of unspecified expectation (without subscripts). Let’s introduce abbreviation
h<t = (r<t, u<t, q<t) for the randomization history, i.e. the tuple containing all
past random variables.

Moreover, we will use conditional expectation. For instance, Eqt [cFPL
t |h<t] de-

notes a random variable depending on the randomization history h<t, where for
each possible history the expectation is taken w.r.t. qt. Since we admit adaptive
assignments, we must be aware that they may depend on bFPL’s past random-
ness. To make this explicit, we use the notation E[cit|h<t] for the adversary’s
decisions and rewrite our bound to show (3) as

T∑
t=1

Eqt,rt,ut [c
bFPL
t |h<t]−

T∑
t=1

E[cit|h<t] ≤ 4
(
Tn
√

logn
) 2

3
. (4)

In order to keep the presentation simple, we assume the adversary to be deter-
ministic. Then for given randomization history, cit is constant. The same proof
(and hence the theorem) remains valid if we admit randomized adversaries.

First note that Eqt,rt,ut [cbFPL
t |h<t] ≤ Eqt [cFPL

t |h<t] + γt holds in each time

step t by definition of bFPL and cI
b
t

t ≤ 1. Since γt ≤ t−
1
3
(
n
√

logn
) 2

3 , we have

T∑
t=1

γt ≤
T∑

t=1

t−
1
3
(
n
√

logn
) 2

3 ≤ 3
2

(
Tn
√

logn
) 2

3
. (5)

FPL Analysis for Adaptive Bandits 63

Therefore, (4) follows from

T∑
t=1

Eqt [c
FPL
t |h<t]−

T∑
t=1

E[cit|h<t] ≤ 5
2

(
Tn
√

logn
) 2

3
. (6)

Consider this form of FPL (i.e. FPL executed in each time step) as a virtual
algorithm: It does not run in that way on the inputs. Rather, for the sake of
analysis, we pretend that it runs with the ĉt obtained from bFPL and try to
evaluate its (virtual) performance.

We then use Proposition 1 to bring into the play another virtual algorithm,
namely F̃PL. Since for given randomization history, the expected performance
of FPL and F̃PL coincide, (6) is proven if we can show

T∑
t=1

Eq∗ [cF̃PL
t |h<t]−

T∑
t=1

E[cit|h<t] ≤ 5
2

(
Tn
√

logn
) 2

3
. (7)

Next, we perform the transition from real to estimated costs. Since the esti-
mate ĉ was defined to be unbiased, we have E[cit|h<t] = Ert,ut [ĉit|h<t]. By the
same argument, since the choice of F̃PL actually does not depend on rt and ut,
Eq∗ [cF̃PL

t |h<t] = Eq∗,rt,ut [ĉF̃PL
t |h<t] holds. Hence, (7) follows from

T∑
t=1

Eq∗,rt,ut [ĉ
ĨFPL
t |h<t]−

T∑
t=1

Ert,ut [ĉ
i
t|h<t] ≤ 5

2

(
Tn
√

logn
) 2

3
. (8)

Note that, somewhat curiously, F̃PL (like FPL) only incurs estimated costs in
case of exploration, i.e. where it actually did not decide the action. We need yet
another virtual algorithm, infeasible F̃PL or ĨFPL, defined as

ĨFPL(t, ĉ1:t) = arg min
1≤i≤n

{
ĉi1:t − qi

∗
ηt

}
, (9)

which uses the same perturbation q∗ as F̃PL. It is not feasible because at time t
it makes use of the information ĉt, which is only available afterwards. As it is a
virtual algorithm, this does not cause any problems. By [6, Theorem 4], which
is proven by an argument very similar to (13) below, in case of exploration (i.e.
rt = 1) it holds that Eq∗ [ĉF̃PL

t |h<t, rt = 1] ≤ Eq∗ [ĉĨFPL
t |h<t, rt = 1] + ηt

(
n
γt

)2. We
remark that this step is valid also for independently sampled perturbations qt.
Clearly, Eq∗ [ĉF̃PL

t |h<t, rt = 0] = Eq∗ [ĉĨFPL
t |h<t, rt = 0] in case of exploitation

(rt = 0). Thus in expectation w.r.t. q∗ and rt, and for any ut,

Eq∗ [ĉF̃PL
t |h1:T] = Eq∗,rt [ĉ

F̃PL
t |h<t] ≤ Eq∗,rt [ĉ

ĨFPL
t |h<t] + ηtn2

γt
.

The sum over ηtn2

γt
≤ t−

1
3
(
n
√

logn
) 2

3 is bounded as in (5), and we see that (8)
holds if we can show

T∑
t=1

Eq∗,rt,ut [ĉ
ĨFPL
t |h<t]−

T∑
t=1

Ert,ut [ĉ
i
t|h<t] ≤

(
Tn
√

logn
) 2

3
. (10)

64 J. Poland

The rest of the proof now follows as in [5] or [6]. In order to maintain self-
containedness, we give it here. Actually we verify (10) for any choice of r1:T , u1:T ,
then it also holds in expectation.

In the following, we suppress the dependency on r1:T , u1:T in the notation.
Then all expectations are w.r.t. q∗. We use the following convenient notation from
[5]: For a vector x ∈ Rn, let M(x) be the unit vector which has a 1 at the index
argmini{xi} and 0’s at all other places. Then the process of selecting a minimum
can be written as scalar product: mini{xi} = M(x) ◦x. For convenience, let
η0 = ∞ and c̃1:t = ĉ1:t − q∗

ηt
. Then it is easy to prove by induction [5,6] that

ĉĨFPL
1:t −

T∑
t=1

M(c̃1:t) ◦q∗
(

1
ηt
− 1

ηt−1

) T∑
t=1

M(c̃1:t) ◦c̃t ≤M(c̃1:T) ◦c̃1:T . (11)

In order to estimate EĉĨFPL
1:t , we take expectations on both sides. Then observe

EM(c̃1:T) ◦c̃1:T ≤ EM(ĉ1:T) ◦c̃1:T = minj{ĉj1:T } − EM(ĉ1:T) ◦q∗
ηT

≤ ĉi1:T − 1
ηT

by
definition of M . The negative term on the l.h.s. of (11) may be bounded by∑T

t=1M(c̃1:t) ◦q∗
(

1
ηt
− 1

ηt−1

)
≤ ∑T

t=1M(−q∗) ◦q∗
(

1
ηt
− 1

ηt−1

)
= maxi{qi

∗}
ηT

≤
1+log n

ηT
(see [5] or [6] for the last estimate). Plugging these estimates back into

(11) while observing 1
ηt
− 1

ηt−1
≥ 0 and ηT = T− 2

3
(log n

n

) 2
3 (which holds because

of T ≥ (n logn)2), finally shows (10) and concludes the proof of the theorem. �

Proposition 2. (High probability bound) For each T ≥ 1 and 0 ≤ δ ≤ 1, the
actual costs of bFPL are bounded with probability at least 1− δ by

cbFPL
1:T ≤ EcbFPL

1:T +
√

2T log 2
δ .

Proof. Again we use the explicit notation from the proof of the previous theorem.
It is easy to see that the sequence of random variables XT =

∑T
t=1

(
cbFPL
t −

Ert,ut,qt [cbFPL
t |h<t]

)
is a martingale w.r.t. the filter of sigma-algebras generated

by the randomization history h1:t. Moreover, its differences are bounded by |Xt−
Xt−1| ≤ 1. Consequently, by Azuma’s inequality, the probability thatXt exceeds
some λ > 0 is bounded by δ = 2 exp

(− λ2

2T

)
. Solve this for λ to obtain the

assertion. �

4 Using All Observations

The algorithm bFPL considered so far does only uses a γ-fraction of all the input.
It is thus a label efficient decision maker [9,10]. One possible way to specify a label
efficient problem setup is to require that the master usually does not observe
anything, and it incurs maximal cost if it decides to observe something [10].
Since just before (5), we upper bounded the costs in case of exploration by 1,
it is immediate that the same analysis and hence also Theorem 1 transfer to

FPL Analysis for Adaptive Bandits 65

the label efficient case. [10, Sec. 5] prove that there is a label efficient prediction
problem such that any forecaster incurs a regret proportional to t

2
3 . Hence the

bound in Theorem 1 is essentially sharp for bFPL.
Of course, the usual bandit setup does not require the master to make use

of only a tiny fraction of all information available. For weighted forecasters,
it is very easy to produce an unbiased cost estimate if each round’s inputs are
used. It turns out that then regret bound proportional to

√
t can be obtained [3].

Unfortunately this is different for FPL, as here the sampling probabilities are not
explicitely available. In the following, we will first discuss the computationally
infeasible case assuming that we know the sampling probabilities. After that,
we show how to approximate them by a Monte Carlo simulation to sufficient
accuracy.

Surprisingly, it is possible to work with the plain FPL algorithm from (1),
without exploration. We just have to use the correct estimated cost vectors,

ĉit =
{
cit/P(IFPL

t = i) if i = IFPL
t

0 otherwise, (12)

where IFPL
t was FPL’s choice at time t. We assume that the values P(IFPL

t = i)
are provided by some oracle.

It is not hard to adapt the proof of Theorem 1 to analyze FPL under these
conditions. As in the steps up to (8),

Eqt [c
FPL
t |h<t] = Eq∗,qt,rt,ut [ĉ

F̃PL
t |h<t]Eq∗,qt,rt,ut [ĉ

F̃PL(q∗)
t (qt)|h<t].

The overly explicit notation ĉ
F̃PL(q∗)
t (qt) serves to remind that the cost vec-

tor estimated is obtained using qt, while F̃PL’s choice incurring cost stems
from q∗. It is essential that qt and q∗ are independent. Observe that in gen-
eral, Eq∗,qt,rt,ut [ĉ

F̃PL(q∗)
t (qt)|h<t] � Eqt,rt,ut [ĉ

F̃PL(qt)
t (qt)|h<t]: the latter quantity,

which is the actual estimated cost of F̃PL’s choice, is biased and too large.
Abbreviate pi = P(I F̃PL

t = i) and πi = P(I ĨFPL
t = i). Denote the exponen-

tial distribution by µ and integration with respect to q1 . . . qn without the ith
coordinate by

∫
. . . dµ(q �=i). Moreover, for x ∈ R, let x+ = max{x, 0}. Then,

similarly to the proof of [6, Theorem 4],

pi =
∫ ∞∫

max
j �=i

{ηt(ĉi
<t−ĉj

<t)+qj}

dµ(qi)dµ(q �=i)
∫
e
−(max

j �=i
{ηt(ĉi

<t−ĉj
<t)+qj})+

dµ(q �=i) (13)

≤
∫
e

ηt
pi e

−(max
j �=i

{ηt(ĉi
<t−ĉj

<t)+qj}+ ηt
pi)+

dµ(q �=i)

≤ e
ηt
pi

∫
e
−(max

j �=i
{ηt(ĉi

1:t−ĉj
1:t)+qj})+

dµ(q �=i) = e
ηt
pi πi.

66 J. Poland

Hence, πi ≥ pie
−ηt

pi ≥ pi
(
1− ηt

pi

)
= pi − ηt, which implies

Eq∗,qt,rt,ut [ĉ
F̃PL
t |h<t] =

n∑
i=1

pi
n∑

j=1

pj
�i=j

cit
pi

=
n∑

i=1

picit

≤
n∑

i=1

πicit + nηt = Eq∗,qt,rt,ut [ĉ
ĨFPL
t |h<t] + nηt.

This shows the step from feasible to infeasible FPL. The last step from infeasible
FPL to the best decision in hindsight proceeds as shown already above and in
[5,6]. Like before, it causes the upper bound of the cumulative regret to increase
by log n

ηT
. This is true for any (q1:T , r1:T , u1:T), hence also in expectation. The total

regret is thus upper bounded by log n
ηT

+ n
∑T

t=1 ηt, and we have just proved:

Theorem 2. The algorithm FPL (1), obtaining cost estimates according to (12)

and with learning rate ηt =
√

log n
2nt achieves a regret of at most

EcFPL
1:T − ci1:T ≤ 2

√
2Tn logn for any i ∈ {1 . . . n}. (14)

We would like to point to a remarkable symmetry break here. It is straightfor-
ward to formulate FPL and the analysis from Section 3 for reward maximization
instead of cost minimization. Then the (perturbed) leader is the expert with
the highest (perturbed) reward, and perturbations are added to the scores. In
the full information game, this reward maximization is perfectly symmetric to
cost minimization by just setting reward i

t = 1 − cit: all probabilities, distribu-
tions, and outcomes will be exactly the same. This is different in the partial
observation case: There, in case of reward, the expert by FPL is the only one
which can gain score. This is an advantage, in contrast to the disadvantage in
case of loss minimization: Here, the selected expert is the only one to worsen its
score. Put it differently, there is an automatic exploration or self-stabilization in
the cost minimization case. With this intuition, it is less surprising that we did
not need explicit exploration in Theorem 2. The corresponding result for reward
maximization would not hold, as simple counterexamples show. Formally, it is
the step from FPL to infeasible FPL which fails: A computation similar to (13)
only shows πi ≤ pie

ηt
pi , which does not imply a sufficiently strong assertion in

general. However, reintroducing the exploration rate γt, we may set ηt = γt

n .

This implies ηt

pi ≤ 1 for all i, hence e
ηt
pi ≤ 1 + 2 ηt

pi . Letting γt =
√

n log n
t , we can

conclude a bound like (14).

4.1 A Computationally Feasible Algorithm

We conclude this section by discussing a computationally feasible variant of FPL
using all observations. This algorithm is constructed in a straightforward way:
Select the current action i = IFPL

t according to FPL and substitute the estimate
ĉit from (12) by ĉit = ci

t

p̂i
t
. It remains to estimate p̂i

t by a Monte Carlo simulation.

FPL Analysis for Adaptive Bandits 67

There are two possibilities of error: either p̂i
t overestimates pi

t, or it under-
estimates pi

t. The respective consequences are different: If p̂i
t > pi

t, then the
instantaneous cost of the selected expert is just underestimated. We can account
for this by adding a small correction to the instantaneous regret. At the end
of the game, we perform well with respect to the underestimated costs, which
are upper bounded by the true costs. This does not cause any further problems.
The case p̂i

t < pi
t is more critical, since then at the end of the game we perform

well only w.r.t. overestimated costs. We therefore have to treat this case more
carefully.

Problems arise if the true probability pi
t is very close to 0, as then the Monte

Carlo sample might contain very few or no hits and the variance of the estimated
cost is high. Since FPL does not prevent this case, we reintroduce γt as an
“exploration threshold”. Let γt = 1

2
√

t
≤ 1

2 . We first assume that pi
t ≥ γt. If

this assumption is false but we use p̂i
t ≥ γt, then p̂i

t is an overestimate and we
have to consider an additional instantaneous regret. This case has probability at
most γt. Consequently, as (true) instantaneous costs are always bounded by 1,
the additional instantaneous regret is at most γt.

We sample the perturbed leader k ∈ N times and denote by ai(k) the number
of times the leader happens to be expert i. Recall that expert i is the one already
selected by FPL. By Hoeffding’s inequality, the distribution of ai(k)

k is sharply
peaked around its mean pi:

P
[

ai(k)
k − pi ≥ γ2

t√
2

]
≤ e−γ4

t k and P
[

ai(k)
k − pi ≤ − γ2

t√
2

]
≤ e−γ4

t k.

We choose k such that the probability bounds on the r.h.s. are at most γt, i.e.
e−γ4

t k ≤ γt. Consequently we should sample k =
⌈
γ−4

t log(γ−1
t)
⌉
=
⌈
2t2 log(2

√
t)
⌉

times. Hence the sampling complexity of the algorithm is O(t2 log t). Let

p̂i
t := max

{
γt,

ai(k)
k − γ2

t√
2

}
,

then p̂i
t ≤ pi

t with probability at least 1 − γt (recall the assumption pi
t ≥ γt).

Hence the possibility of overestimate p̂i
t > pi

t causes an additional regret of γt.
Finally we need to deal with possible underestimates. For some integerm ≥ 1,

the probability that p̂i
t falls below pi

t − (
√

m+1)γ2
t√

2
is at most

P
[

ai(k)
k − pi ≤ −

√
mγ2

t√
2

]
≤ e−mγ4

t k ≤ γm
t (15)

by Hoeffding’s inequality. We partition the interval [γt, p
t
i) of all possible under-

estimates into subintervals A1 =
[
pi

t − 2γ2
t√
2
, pi

t

)
and

Am =
[
pi

t − (
√

m+1)γ2
t√

2
, pi

t − (
√

m−1+1)γ2
t√

2

)
, m ≥ 2.

We do not need to consider m with the property Am ∩ [γt, p
t
i) = ∅. That is, we

can restrict to m small enough that pt
i −
√

1
2 (
√
m + 1)γ2

t ≥ γt −
√

1
2γ

2
t . Let M

68 J. Poland

be the largest m for which this condition is satisfied, then one can easily see√
m+ 1 ≤ √M + 1 ≤ √2(p− γt +

√
1
2γ

2
t)/γ2

t .

Claim. If m ≤M , then ci
t

pi
t−(

√
m+1)γ2

t /
√

2
≤ ci

t

pi
t

+ γt(
√
m+ 1).

This follows by a simple algebraic manipulation. Consequently, for p̂t
i ∈ Am,

we have Eĉit ≤ cit + (
√
m+ 1)γt. Moreover, p̂i

t ∈ Am occurs with probability at
most γm−1

t according to (15). By bounding the expectation over all Am, we thus
obtain an additional regret of at most

M∑
m=1

(
√
m+ 1)γm

t ≤ γt

∞∑
m=0

(m+ 2)γm
t ≤ 2γt

1− γt
+

γ2
t

(1− γt)2
≤ 5γt,

since γt ≤ 1
2 . Altogether, this proves the following theorem.

Theorem 3. Let γt = 1
2
√

t
be the exploration threshold. In each time step, after

selecting one expert i, let FPL obtain an estimate p̂i
t = max

{
γt,

ai(k)
k − γ2

t√
2

}
for P(IFPL

t = i), by sampling the perturbed leader k =
⌈
2t2 log(2

√
t)
⌉

times and
counting the number of hits ai(k). Let the estimated cost of the selected expert be
ĉit = cit/p̂

i
t, and the estimated cost of all other experts be zero. Then the algorithm

FPL (1) with learning rate ηt =
√

log n
2nt achieves a regret of at most

EcFPL
1:T − ci1:T ≤ 2

√
2Tn logn+ 7

√
T for any i ∈ {1 . . . n}. (16)

5 Discussion

The main statement of this paper is the following:

If we have a regret minimization algorithm with a bound guaran-
teed against an oblivious adversary, and if the algorithm chooses
the current action/expert by some independent random sampling
based on past cumulative scores (e.g. FPL or weighted majority),
then the same bound also holds against an adaptive adversary.
This is true both for full and partial observations.

We have used this argument for showing bounds for FPL in the adversarial ban-
dit problem. The strategy to use only feedback from exploration rounds which is
common for FPL achieves a regret bound of O(t

2
3). As the algorithm is label effi-

cient, this bound is sharp. Using all observations allows to push the regret down
to O(

√
t). Then however the sampling probabilities have to be approximated.

In the same way, it is possible to use our argument for the general geometric
online optimization problem [7,8], also resulting in a O(t

2
3) regret bound against

adaptive adversary. An interesting open problem is the following: Under which
conditions and how is it possible to use all observations in the geometric online
optimization problem, hopefully arriving at a O(

√
t) bound?

FPL Analysis for Adaptive Bandits 69

We conclude with a note on regret against an adaptive adversary. We consid-
ered the external regret w.r.t. the best action/strategy/expert from a pool. There
are two directions from here. One is to go to different regret definitions, such
as internal regret. The other one is to change the reference and compare to the
hypothetical performance of the best strategy, in this way accepting a stronger
type of dependency of the future costs from the currently selected action (see
e.g. [11] and the references therein). It is one of the major open problems to
propose refined algorithms and prove better bounds in this model.

References

1. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55
(1997) 119–139

2. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino:
The adversarial multi-armed bandit problem. In: Proc. 36th Annual Symposium
on Foundations of Computer Science (FOCS), IEEE (1995) 322–331

3. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing 32 (2003) 48–77

4. Hannan, J.: Approximation to Bayes risk in repeated plays. In Dresher, M.,
Tucker, A.W., Wolfe, P., eds.: Contributions to the Theory of Games 3. Princeton
University Press (1957) 97–139

5. Kalai, A., Vempala, S.: Efficient algorithms for online decision. In: Proc. 16th
Annual Conference on Learning Theory (COLT). Springer (2003) 506–521

6. Hutter, M., Poland, J.: Adaptive online prediction by following the perturbed
leader. Journal of Machine Learning Research 6 (2005) 639–660

7. McMahan, H.B., Blum, A.: Online geometric optimization in the bandit setting
against an adaptive adversary. In: 17th Annual Conference on Learning Theory
(COLT), Springer (2004) 109–123

8. Awerbuch, B., Kleinberg, R.D.: Adaptive routing with end-to-end feedback: dis-
tributed learning and geometric approaches. In: STOC ’04: Proceedings of the
thirty-sixth annual ACM symposium on Theory of computing. (2004) 45–53

9. Cesa-Bianchi, N., Lugosi, G., Stoltz, G.: Minimizing regret with label efficient
prediction. In: 17th Annual Conference on Learning Theory (COLT). Springer
(2004) 77–92

10. Cesa-Bianchi, N., Lugosi, G., Stoltz, G.: Regret minimization under partial moni-
toring. Technical report (2004)

11. Poland, J., Hutter, M.: Defensive universal learning with experts. (2005) Interna-
tional Conference on Algorithmic Learning Theory (ALT), to appear.

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 70 – 81, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On Improved Least Flexibility First Heuristics Superior
for Packing and Stock Cutting Problems

Yu-Liang Wu and Chi-Kong Chan

The Chinese University of Hong Kong, Shatin, Hong Kong
{ylw, chanck}@cse.cuhk.edu.hk

Abstract. Two dimensional cutting and packing problems have applications in
many manufacturing and job allocation problems. In particular, in VLSI floor
planning problems and stock cutting problems, many simulated annealing and
genetic algorithms based methods have been proposed in the last ten years.
These researches have mainly been focused on finding efficient data structures
for representing packing results so the search space and processing time of the
underlying search engine can be minimized. In this paper, we tackle the prob-
lem from a different approach. Instead of using stochastic searches, we intro-
duce an effective deterministic optimization algorithm for packing and cutting.
By combining an improved Least Flexibility First principle and a greedy search
based evaluation routine, we can obtain very encouraging results: In stock cut-
ting problems, our algorithm achieved over 99% average packing density for a
series of public rectangle packing data sets, which is significantly better than
the 96% packing density obtained by meta-heuristics (simulated annealing)
based results while using much less CPU time; whereas in rectangle packing
applying the well-known MCNC and GSRC benchmarks, we achieved the best
(over 96%) packing density among all known published results packed by other
methods. Our encouraging results seem to suggesting a new experimen-
tal direction in designing efficient deterministic heuristics for some kind
of hard combinatorial problems.

1 Introduction

The two dimensional packing problem is defined as follow: given a set of n rectangu-
lar items of size (w1,h1), (w2,h2), … , (wn,hn), and a larger container box, we want to
find the minimum box size that would allow all the rectangles to be fit inside the box
without overlapping. Packing problem [17-26] has applications in many areas ranging
from newspaper layout editing to VLSI floor planning problems. Another problem
closely related to packing is the stock cutting problem[1][6][7][10][11][13], which
requires the rectangles to be packed in a long strip of fixed width W, and of undefined
height. The objective is to minimize the height of the strip used for the packing. This
problem occurs in many practical applications ranging from steel sheet pattern cutting
to resource allocation and job scheduling problems.

Both packing and stock cutting are the 2-dimensional extension of the 1-D bin
packing problem, which has been shown to be NP-complete. As a result, most re-
searches in this subject are focusing on approximate solutions, commonly employing
heuristic and meta-heuristics algorithms such as simulated annealing (SA) or genetic
algorithms (GA).

 On Improved Least Flexibility First Heuristics Superior 71

In stock cutting, one of the earliest approach is the Bottom-Left (BL) heuristic. In
BL, the rectangles to be packed are, starting from the top-right corner of the container
box, first slide vertically downward as far as possible, followed by sliding horizontally
as far as possible to the left. Several enhanced version of BL exists. One variant is the
Bottom-Left-Fill (BLF) heuristic. In BLF, instead of sliding downward and leftward,
the rectangles are placed directly into the lowest positions available, left justified. BLF
can fill “holes” that are not reachable using BL, but has a higher complexity (O(n3)
Vs O(n log n)) [12].

Both BL and BLF are later used in meta-heuristics based approaches. Jacobs [6]
proposed an approach that used GA to determine the packing order of the rectangles
which are to be packed using BL, Dagli and Poshyanonder [11] proposed a hybrid GA
and neural network approach based on slicing method. Burke and Kendall [10] used
SA to solve a related but more general problem of convex polygon packing, and ap-
plied it in stock cutting in their experiments. Finally, Hopper and Turon [12] studied
the result of different combination of SA and GA, with various placement heuristics
such as BL or BLF, and concluded that the SA + BLF combination is the best in term
of solution quality for stock cutting problems.

Researches in packing problems have been even more active than in stock cutting,
particularly in the VLSI floor-planning communities where many SA based ap-
proaches have been proposed. These researches have mainly been focusing on finding
an efficient data structure for representing packing results such that the search space
and processing time of the underlying SA search engine can be minimized. Typically,
a packing solution is encoded as some type of sequences, graphs or trees based repre-
sentation. Some corresponding moves are then defined for transforming one packing
solution to another and an SA engine is then responsibility for finding a good packing
result. One such early work is the Normalized Polish Expression [21] for handling a
special type of packing problems known as slicing floorplans packing.

Another influential SA-based packing approach is the sequence pair (SP) [9]. In
[9], a floorplan is represented as two sequences, where each sequence contains a per-
mutation of the rectangles to be packed. The relative locations or any two rectangles in
the two sequences define the geometric relations between the two rectangles in the
packing. The original SP algorithm required O(n2) time for decoding and evaluating
any pair of sequences. Later, a faster version [19] reduced it to O(n log n) time.

Soon after the introduction of SP, many other competing representations began to
appear. In the O-tree approach [24], each rectangle is represented by a node in a tree,
where the x axis coordinate of any rectangles is determined by the location and width
of its parent node rectangle only, and the y-axis coordinate is to be decided by the
insertion orders of the nodes in the tree. The B*-tree [25] approach proposed to use a
binary tree representation, with left child of a node representing an adjacent rectangle
located on the top, and the right child represents the lowest unvisited adjacent rectan-
gle located on the right. Moves are defined for rotating rectangles, moving nodes and
swapping nodes within the tree for the benefit of the SA engine.

Another graph based method is TCG [20] which was later enhanced to a faster
version called TCG-S [21]. In TCG (and TCG-S) a packing is represented as a pair of
transitive closure graphs. Here, each graph directly encodes the relative positions of
any two rectangles. TCG and TCG-S have been shown to equivalent to SP (each TCG
pair of graphs corresponds to one sequence pair and vice versa). Finally, an approach
called ACG [23] was published recently. Instead of encoding the relative location of

72 Y.-L. Wu and C.-K. Chan

each pair of rectangles as done in SP and TCG, ACG uses a constraint graph to repre-
sent only rectangles that are adjacent to each other. Their results showed that ACG is
superior in term of packing area while using similar annealing schedule.

Apart from general non-slicing floorplan packing, there are also several works
dedicated to a special type of floorplans packing problem known as Mosaic floor-
plans. Basically, a Mosaic floorplan is one that contains no empty rooms (i.e. no unoc-
cupied empty space between two rectangles). Examples of these works include the
corner list (ECBL) [17], the Q-sequence [18] and the twin binary sequence (TBS)[26].
These algorithms can be extended for handling general packing problems by inserting
dummy rooms, but at various costs.

So far, these SA and GA based approaches are producing close to optimal results in
a series of small to medium size benchmark problems. For larger problems with 100
rectangles or more, however, the results are not as convincing. Yet, experience tells us
that for these larger problems it should actually be easier to produce good results in
term of packing density. The reason is that there are more rectangles of various sizes
available to fill up any packing gaps. (Small problems, on the other hands, are already
solved by exhaustive searches, meaning that approximate solutions are not required,
even if the SA results are good.[27]

Instead of using stochastic algorithms, our research took another direction. In our
previous work we proposed a “Least Flexibility First” (LFF) packing principle [8] in
which the least flexible rectangles, which are the longest ones, are placed into the least
flexible locations of the box, the corners, using a search that involves evaluation by
greedy algorithm. Our current work is developed on the foundation of the LFF princi-
ples. In this paper, we take the LFF principle one step further by considering the both
the flexibility of candidate placement locations and that of the rectangles. By introduc-
ing a tightness measure for representing the degree of fitting between rectangles and
placement locations, we can propose an enhanced version of LFF, called LFFT, which
will be discussed in the following sections. We will see that the result of applying
LFFT in both packing and cutting is very encouraging, in terms of both packing den-
sity and running time, compared with the above mentioned algorithms. We also pro-
pose a fast version of the algorithm known as LFFT-fast for handling large problem
sets efficiently.

The organization of the remaining parts of this paper is as follow. Section 2 de-
scribes the Least-Flexibility-First principle and the LFFT algorithm. Section 3 and
section 4 handles the stock cutting problems and the packing problems respectively.
Section 5 concludes our work.

2 The Least Flexibility First Principle

A 2-d packing problem can be stated as follow: Given an initially empty rectangular
container box, with coordinate and a set of smaller rectangles (w1,h1),
(w2,h2)…(wn,hn), where each w and h represent the width and height of a rectangle, we
need to find a packing solution such that each rectangle can be placed inside the box
without overlapping. If no such solutions are found, depending on the application
requirement, we can either obtain a partial solution in which the amount of unused
space is minimized or we can repeat with larger container boxes in order to find the
smallest box size that will fit (as in stock cutting problems and packing problems).

 On Improved Least Flexibility First Heuristics Superior 73

LFF is based on the idea of flexibility. Two types of flexibilities are considered: (1)
Flexibility of rectangle: The flexibility of a rectangle can be defined as
Flexr = 1 / (max (Wh, Hh)) where Wh and Hh are width and height of the rectangle
respectively. In LFF, the rectangles to be packed are pre-sorted such that the longer
rectangles (i.e. the less flexible ones) will have higher packing priority. (2) Flexibility
of location: the ancient Chinese farmers and masons had an approximating heuristic
to the packing problems that can be summarized by the following rule-of thumb:
“Golden are the corners; silvery are the sides; and strawy are the voids” The saying
assign higher priorities to the rectangle placement locations that situate at corners of
the box or corners formed by other rectangles, followed by locations along the sides,
as the corners locations are considered to have less flexibilities than the side locations
and void spaces. The idea is illustrated by Figure 1. The corner placement locations
(C and D), are less flexible than the side location (B) and the void space (A). In this
case, location (D) is the preferred placement location of the rectangle.

Fig. 1. The least flexibility first principle

The basic principle of LFF is thus to pack the least flexible remaining rectangles,
which is the longest one, in one the least flexible packing locations, the corners. How-
ever, as illustrated in Figure 1, for a given rectangle, some corner locations (D) are
more desirable than others (C). To capture this idea, we can define, given and a list of
already packed rectangles P, the degree of fitting between a rectangle R and a candi-
date location L as Fit(R,L,P) = SharedPerim(R,L,P) / Perim (R) where Shared-
Perim(R,L,P) is the length of the perimeter of R that is shared by the edge of the box,
or by other rectangles in L, and Perim(R) is the perimeter of R.

The idea of rectangle flexibility, location flexibility and the degree of fitting is util-
ized by the LFFT algorithm as given in Figure 3. The central part of the LFFT algo-
rithm is a series of independent greedy search that evaluate the fitness function value
(FFV) of a list of (rect, corner) pairs, where rect is a rectangle to be packed, corner is

 C

B

A

 D

74 Y.-L. Wu and C.-K. Chan

a corner location that the rectangle can be placed without overlapping. Each pair
forms a corner-occupying packing move (COPM). In each iteration, each COPM is
pseudo-packed in turn and is evaluated using a greedy search such that, in each step of
the greedy-search, the least flexible remaining rectangle (the longest one), is pseudo-
packed in the corner location with the highest degree of fitting. (The pseudo-packed
rectangles are removed after each greedy search), until no more rectangles can be
packed. The total packed area at the end of the greedy search is then used as the fit-
ness function value (FFV) for that COPM. The COPM with the highest FFV is chosen
as the next packing move.

In our implementation, the degree of fitting for each COPM is approximated using
an eight point tightness heuristic which is defined as follow. For each candidate rec-
tangle placement location, we look at the points that are immediately adjacent to each
corner of the candidate rectangle. That is, suppose a COPM is bounded by the points
{(x0,y0), (x0,y1), (x1,y1), (x1,y0)}, we check whether the 8 corner adjacent points
{(x0 , y0 -δ), (x0-δ , y0), (x0 -δ ,y1), (x0, y1 +δ) (x1, y1+δ), (x1+δ ,y1), (x1+δ ,y0),
(x1, y0-δ)} are occupied. In Figure 2, the locations of the eight points are marked by
circle for both placement location A and B.

Our tightness value heuristic is then simply defined as the number of corner adja-
cent points that is not located in open space (that is, either in packed area or outside
the box boundary). In the Figure 2 example, the tightness value of rectangle A and B
are 3 and 4 respectively.

LFFT differs from the previous version (LFF) [9] in two aspects. The first is a way
to choose the next rectangle to be greedily packed. In the original approach, we only
need to find the longest rectangle that has a valid move. As we don’t care where it is
placed we can simply pick the first valid corner in the list. In LFFT, however, we need
also to examine the tightness value of each valid corner moves for that chosen rectan-
gle. That is, for each step in the greedy search, we find the longest rectangle that has a
valid move, and pack it in the corner location that has the highest tightness value. The
second difference is the introduction of a parameter q. In the original LFF algorithm,
at the beginning and after any rectangle is packed, an updated list of COPMs is gener-
ated for each of the remaining unpacked rectangle. Each of the COPMs is then evalu-
ated by a greedy search to determine the fitness function value (FFV) and the COPM
with the highest FFV is picked as the next move. However, observations indicated that
the COPM that has the highest FFV is much more likely to belong to one of the long-
est few rectangles. This means that most of the greedy searches performed for the
COPMs of the shorter rectangles have little effects on the outcome. Because of this, a
top-level branch factor parameter q is introduced in LFFT. In each iteration, we per-
form greedy searches for the COPMs of the q longest rectangles only, where 1 q n,
and n is the number of rectangles in the problem set.

As in the original LFF algorithm, the placement of a rectangle in each iteration of
the LFFT algorithm will occupy one or more corners, but, in the same time, also gen-
erates some new corners. The upper bound of the number of corners should be propor-
tional to n, where n is the total number of rectangles to be packed. Therefore the
length of the COPMs list in each iteration will be bounded by O(q * n). For each entry

 On Improved Least Flexibility First Heuristics Superior 75

in the COPM list, a greedy search is performed so that each remaining rectangle will
be pseudo-packed. In our implementation, both the packed and pseudo-packed rectan-
gles are stored using a k-d tree data structure [2], which is basically a multi-
dimensional binary tree that can be used for supporting area operations on 2-space.
The k-d tree helps to reduce the complexity by providing a fast O(log n) region search
operations. As a result, the complexity of one iteration of LFFT will be O(q * n * n2
* log n). As the process is repeated once for each rectangle packed (i.e. O(n)), the
worst case time complexity of LFFT is thus O(n4 log n) if a constant value q is used,
or O(n5 log n) if q = n.

The value to be chosen for q would depend on the problem set size, the desired re-
sult quality and the speed of the machine available. Our experiments are run on a
1.8GHz Pentium 4 PC with 256MB memory with all programs coded in C. Under this
setting, experience suggested that we can use q=n for very small problems with less
than 50 rectangles; use q=5 or q=10 for medium sized problems with 150 rectangles or
less, and use q=1 for larger problems with 150 rectangles or more.

Apart from the LFFT algorithm presented above, we also implemented a fast ver-
sion of the algorithm, labeled LFFT-fast. Unlike the full version of LFFT, LFFT-fast
do not perform multiple greedy searches for each COPM. Instead, in each iteration,
the least flexible remaining rectangle (the longest one) is packed directly at the loca-
tion with the highest tightness value. The algorithm is shown in Figure 4.

Experiment results for both LFFT and LFFT-fast are presented in the following
sections.

3 Stock Cutting Problems Experiments

In this section we apply LFFT to the stock cutting problem, which is described as
follows: Given a set of m rectangles {r1, r2 , r3…rm}, where each ri has a width wi and
height hi , and a container box of width W and undefined height, we want to pack the
rectangles in into the bottom of the box such that the height of the used section of the
box is minimized. The rectangles can be rotated by 90 degrees if necessary.

We apply our algorithm to stock cutting by a simple approach that we repeatedly
apply LFFT using a small top level branch factor q, and systematically increase the
height of the container box by 0.1% in subsequence calls until a successful complete
packing is achieved. Experiment results show that LFFT achieves a high packing
density of over 97% for most of the larger (size > 50) benchmark datasets we tested,
so the number of iterations is manageable. The value to be chosen for the top-level
branch factor parameter (q) would depend on the data set size, the desired result qual-
ity and the speed of the machine available as mentioned above. Experiment results are
given in the following sub-sections where all running time are rounded to the nearest
seconds. Running times of less than 1 second are displayed as ‘1’. The running time
of LFFT includes the running time of the final successful run where all rectangles are
packed and the running times of all previous unsuccessful attempts. The packing
densities, which are defined as the total packed area divided by the container box
area, are displayed in percent.

76 Y.-L. Wu and C.-K. Chan

Fig. 3. LFFT algorithm

3.1 Hopper and Turton Stock Cutting Data Sets

The first set of tests is done using the Hopper and Turton data sets defined in [13].
There are 21 data sets with size ranging from 16 to 196 rectangles grouped in 7

 A B

Fig. 2. Tightness measure

1 Choose the longest q rectangles from the list of rectangles that are not yet packed

 1.1 Generate a list of (rect, corner) pairs, where rect is in the list of the q longest unpacked

 rectangles, corner is a corner location that the rectangle can be placed without overlap-

 ping. Each pair forms a corner-occupying packing move (COPM)

 1.2 For each COPM

 1.2.1 Pseudo pack this COPM . (i.e., temporarily pack this COPM for evaluation)

 1.2.2 Sort all the remaining unpacked rectangles by their longest side and pseudo pack all

 these remaining rectangles greedily : -

 1.2.2.1 While there are rectangles remaining and there are spaces in the box,

 1.2.2.1.1 If there is a location that the next rectangle in the sorted list can fit, then,

 - For each legal corner moves of that rectangle, calculate the tightness values.

 - Choose the corner move with the highest tightness values and pseudo pack this

 rectangle there.

 - Update the corner lists and move to the next rectangle in the list

 Else

 - Skip this rectangle

 1.2.2.2 . At the end of the greedy search, return the total packed area as the fitness function

 value (FFV) of this COPM.

1. 1.3 Choose COPM with the highest FFV as the next move, update the list of packed rectangles

 and corners, and go to step 1 to repeat the process if there are rectangles still not packed

.

Note: All pseudo packed rectangles are removed before the next COPM is considered.

 On Improved Least Flexibility First Heuristics Superior 77

Fig. 4. LFFT-fast algorithm

different sized categories, with the optimal packing density being 100% for all prob-
lems. The result for the data sets using LFFT with q=5 is shown in Figure 5. The cor-
responding BLF, BLF + GA and BLF + SA results as quoted from [13] are also listed
for comparison. It should be noted that their tests are run on a machine where the
speed is only about 10% of ours. But as shown below, our results are still good in
terms of running time even after we take the machine speed into account. In fact,
LFFT achieved the optimal solution of 100% packing density in 12 cases out of the
total 21 cases, over 99% packing density in 18 cases (The results would be even better
if a higher value of q is used, but the running time is also proportional to q). The run-
ning time for the largest 197 rectangles problem set (Category 7 problem 3) is 2234
seconds for our PC machine, which is acceptable.

BLF BLF + GA BLF + SA LFFT (q=5)

Size

Width

Density
Time
(s)

Density Time
(s)

Density Time
(s)

Density Time
(s)

Cat 1 16/17 20 89% 1 96% 60 96% 42 100% 1

Cat 2 25 40 84% 1 93% 120 94% 144 100% 1

Cat 3 28/29 60 88% 1 95% 180 95% 240 99% 2

Cat 4 49 60 95% 1 97% 780 97% 1980 98% 15

Cat 5 73 60 95% 1 96% 2180 97% 6900 99% 31

Cat 6 97 80 95% 1 96% 5160 97% 22920 99% 92

Cat 7 196/197 160 95% 1 95% 46620 96% 258600 99% 2150

Aver-
age

 92% 95% 96% 99%

Fig. 5. Stocking cutting results for Hopper Dataset

1 Choose the longest rectangle from the list of rectangles that are not yet packed

 1.1 Generate a list of (rect, corner) pairs, where rect is the longest unpacked rectangles,

 corner is a corner location that the rectangle can be placed without overlapping. Each pair

 forms a corner-occupying packing move (COPM)

 1.2 If the list of COPM is not empty

 1.2.1 For each COPM

 1.2.1.1 Calculate the tightness value

 1.2.2 Choose the COPM with the highest tightness value as the next move, update the list

 packed rectangles and corners, and go to step 1 to repeat the process if there are rectangles

still not packed.

 1.3 Else

 1.3.1 Report failure.

78 Y.-L. Wu and C.-K. Chan

3.2 Other Stock Cutting Data Sets from the Literature

Next, we tested our algorithm using problem sets from other literatures. Unfortunately
the running time is not published in manyof the cases so most comparisons are on
packing density only. Because of the small data set size we used LFFT with q=n for
all cases. As shown in Figure 6, our results are also good comparing with other known
approaches. For the Kendall dataset, our LFFT result of height 148 is not too far from
the optimal result of 140, and is better than the SA [10] result of 158. For the Jacobs
data sets J1 and J2, our result of height 16 is better than the mean height of 17 ob-
tained using GA [6][16]. For the Dagli data sets D1 and D2, our packing densities are
97.8% and 97.6% respectively, which achieved more than 5% improvements over the
GA result of 92%[14]. Hopper and Turton reported results in the range of 92% to 98%
using BLF + SA [13] for these two problems, so in comparison our results are good.
For the Dagli dataset D3, our result of 98.6% is better than the GA best-case result of
94% reported in [15]. For the Dagli dataset D4 our result is better than both the re-
ported result of a hybrid GA + neural network approach [11] and the result using BLF
+ SA[13].

LFFT (q=n) Other Algorithms
Data set

Size

Box
Width

Height Packing
Density

Time
(s)

Algorithm Packing
Density

Kendall
[10]

12 80 148 94.6% 3 SA [10] 88.6%

Jacobs J1
[6]

25 40 16 93.7% 13 GA [6][16]
BL [6]

88.2%
71.4%

Jacobs J2
[6]

50 40 16 93.7% 88 GA [6][16]
BL [6]

88.2%
71.4%

Dagli D1
[14]

31 31 46 97.8% 17 GA [14]
BLF + SA [13]

92%
92 % to 98%

Dagli D2
[14]

21 21 41 97.6% 4 GA[14]
BLF + SA [13]

92%
92 % to 98%

Dagli D3
[15]

37 37 113 98.6% 32 GA[15] # 94%

Dagli D4
[11]

37 37 164 97.6% 40 Neural GA [11]
BLF + SA[13]

95% to 97%
95% to 96%

 # Best case result

Fig. 6. Stocking cutting results (other problem sets)

4 Packing Problems Experiments Using LFFT

In this section we discuss the result of applying LFFT in packing problems, which can
be described as follow: given a set of m rectangles {r1, r2, r3,…rm}, where each rectan-
gle ri has a width wi and height hi and a container box of to-be-determined size, we
want to pack the rectangles in into the box such that the area of the container box is
minimized. The rectangles can be rotated by 90 degrees if necessary. As with stock
cutting problems, we handle this by repeatedly applying LFFT using a small top-level
branch factor (q), and systematically increase the width height of the container box in
subsequence calls until a successful complete packing is achieved. As before, the
choice of q depends on the problem size and the desired quality of the packing result.

 On Improved Least Flexibility First Heuristics Superior 79

Results of applying LFFT on MCNC and GSRC benchmark problems are shown
in Figure 7. We tested the two medium size MCNC problems ami33 and ami49 using
LFFT with q=1, whereas the larger GSRC data sets n100, n200 and n300 are handled
using LFFT-fast. We did not perform test on the smaller MCNC benchmarks apte,
xerox and hp as these problems have already been solved by exhaustive search, mak-
ing approximate algorithms meaningless [27]. Results quoted from previous SA based
approaches are also listed for comparison, with the exception of the TBS results [26]
where we, for the sake of fair comparison, choose to repeat their results with a longer
running time than they previously allowed1. LFFT achieved packing density of 96.8%
for ami33, 97.8% for ami49, 99.8% for n100, 95.9% for n200, 96.5% for n300, and, as
seen in figure 7, LFFT is better than the SA based approaches in term of smaller used

 ami33 ami49 n100 n200 n300
 Area Time Area Time Area Time Area Time Area Time
TCG2 [20] 1.2 91 37.04 590 197800 2487
TCG-S2 [22] 1.24 23 38.47 63 192000 458 197000 4233 307000 163000
ACG2 [23] 1.2 2 36.92 7 187500 28 187100 129 293700 322
ENPA3 [24] 1.242 119 37.73 406 - - -
ECBL4 [17] 1.192 73 36.70 117 - - -
TBS2 [26] 1.186 50 37.01 985 - - -
B* tree4 [25] 1.27 3417 36.8 4752 - - -
Fast-SP4[19] 1.185 28 36.82 48 191200 128 197500 350 312300 653
Q-Seq4 [18] 1.194 40 36.75 57 - - -
LFFT 1.177 10 36.24 77 179776 1 183184 6 283024 17

Fig. 7. Packing results for MCNC and GSRC problem sets

area, while uses less computation time. For instance, LFFT-fast result for the largest
problem (the 300 rectangles n300) is a big improvement over the currently best pub-
lished result to our knowledge using ACG (packing density of 96.5% Vs 93.0%) while
using much less CPU time (17 sec Vs 322 sec).

Additionally, we also tested the playout data set and achieved an encouraging
packing density of 98.9% in 148 seconds using LFFT with q=10.

5 Conclusion

Packing and stock cutting problems are active research areas where many stochastic
or non-deterministic algorithms (like SA and GA) approaches were proposed in the
past. While being able to obtain good results for many small to medium size bench-
mark problems, the CPU overhead has imposed a severe obstacle for their applica-
tions upon larger problem instances (for example, larger problems with 100 or more
rectangles). In this paper, we handle the packing and cutting problem by extending
our greedy-search based Least-Flexibility-First packing algorithm using an eight-

1 We would like to thank E.F.Y.Young, author of [26], for kindly providing us their source-

code for this purpose.
2 Best result from 5 runs.
3 Best result from 100 runs.
4 It is not clear that whether they are publishing the best result or the average results from sev-

eral runs.

80 Y.-L. Wu and C.-K. Chan

points tightness measure. Our result is very encouraging. The improvement in packing
density allowed us to apply the enhanced algorithm for both stock-cutting and pack-
ing problems by repeatedly applying the algorithm using a small top-level branch
factor. This approach achieved a high average packing density of over 99% in one set
of stock cutting benchmark data sets with the optimal solution found in over half of
the cases, and we also obtained close to optimal results in other datasets from the
literature. The result of applying the algorithm to packing problems is also excellent
since our results is better than all other known results produced by SA based algo-
rithms while we used much less CPU time.

References

1. B.S. Baker, E.G. Coffman, Jr. and R.L. Rivest, Orthogonal Packing in two dimensions.
SIAM Journal on Computing 9 (1980), pg 846-855

2. J.L. Bentley, Multidimensional binary search trees used for associative searching, Com-
munication of ACM 18 (9) (1975) pg 507-517

3. C. Kenyon and E. Remila, Approximate strip packing, Proc. 37th IEEE Symposium on
Foundations of Computer Science (1996) pg 31-36

4. Kenyon and Remila, A near optimal solution to a two-dimensional cutting stock problem,
Mathematics of Operations Research Vol 25, Issue 4 (2000)

5. K. Dowsland, Some experiments with simulated annealing techniques for packing prob-
lems. European Journal of Operational Research 68 (1993), pg 389-399

6. S. Jacobs, On Genetic algorithms for the packing of polygons. European Journal of Opera-
tional Research 88 (1996), pg 165-181

7. T.W. Leung, C.K. Chan, M.D. Troutt, Mixed simulated annealing-Genetic algorithm Ap-
plication of a mixed simulated annealing-genetic algorithm heuristic for the two-
dimensional orthogonal packing problem, European Journal of Operational Research 145
(2003), pg 530-542

8. Y.L Wu, W.Q. Huang, S.C. Lau, C.K. Wong and G.H. Young, An effective quasi-human
heuristic for solving the rectangle packing problem, European Journal of Operational Re-
search 141 (2002), pg 341-358

9. H. Murata, K. Fujiyoshi, M. Kaneko, VLSI/PCB placement with obstacles based on se-
quence pair, IEEE Transactions on Computer-aided Design of Integrated Circuits and Sys-
tems 17 (1) (1998) 60-67

10. Burke E. and Kendall G., Applying Simulated Annealing and the No Fit Polygon to the
Nesting Problem. Proceedings of the World Manufacturing Congress, Durham, UK
(1999), pg 27-30

11. Dagli, CH, Poshyanonder, new approaches to nesting rectangular patterns, New Ap
proaches to Nesting Rectangular Patterns, Journal of Intelligent Manufacturing, Vol 8, 3
(1997), pp 177-190.

12. Chazzelle B., The Bottom-Left Bin Packing Heuristic: An efficient Implementation.
IEEE Transactions on Computers c32/8. (1983) pg 697-707

13. Hopper, E. and Turton, B., C.,H , An empirical investigation of meta-heuristic and heuris-
tic algorithms for a 2D packing problem", European Journal of Operational Research
128/1 (2000), pg 34-57

14. Ratanapan K. and Dagli C. H., An object-based evolutionary algorithm for solving irregu-
lar nesting problems, Proceedings for Artificial Neural Networks in Engineering Confer-
ence, vol. 7, ASME Press, New York (1997), pp. 383-388.

 On Improved Least Flexibility First Heuristics Superior 81

15. Ratanapan K. and Dagli CH, An object-based evolutionary algorithm: the nesting solu-
tion, IEEE (Eds.) Proceedings of the International Conference on Evolutionary Com-
putation 1998, ICEC '98, IEEE, Piscataway, NJ, USA, pp. 581-586

16. Liu, D., H. Teng. An Improved BL-algorithm for Genetic Algorithm of the Orthogonal.
Packing of Rectangles. European Journal of Operational Research. 112 (1999) pg 412-420.

17. S. Zhou, S.Dong, X.Hong, Y.Cai, CK Cheng, and J. Gu, ECBL, An Extended Corner
BlockList with solution Space including Optimum Placement, Proceeding of International
Symposium on Physical Design, (2001) pp. 156-161

18. C Zhuang, K. Saknushi, L.Jin and Y.Kajitani, An Enhanced Q-Sequence Augmented with
Empty-Room-Insertion and Parenthesis Trees, Proceedings of Design, Automation and
Test in Europe (2002), pp 61-68

19. Xiaoping Tang and D.F. Wong, FAST-SP: A Fast Algorithm for Block Placement based
on Sequence Pair, Proceeding of IEEE Asia South Pacific Design Automation Confer-
ence(2001), pp 521-526

20. J-M Lin and Y-W Chang, TCG: A Transitive Closure Graph-Based Representation for
Non-Slicing Floorplans. Proceedings of the 38th ACM/IEEE Design Automation Confer-
ence (2001), pp 764-769

21. D.F.Wong and C.L.Liu, Anew algorithm for floorplanning design, DAC 1986, pp 101-107
22. J-M Lin and Y-W Chang, TCG-S: orthogonal coupling of P*-admissable representation

for general floorplans, DAC 20002 pp 764-769
23. H.Zhou and J.Wang, ACG- adjacent constraint graph for general floorplans, ICCD 2004

pp 572-575
24. P.Wang, C.K.Cheng and T.Yoshimura, An enhanced perturbing algorithm for floorplan

design using the O-tree representation, ISPD 2000, pp 168-173
25. Y.C.Chang and Y.W.Chang, E.M.Wu and S.W.Wu, B*-trees: a new representation for

non-slicing floorplans, DAC 2000, pp 458-463
26. E.F.Y.Young , C.C.N.Chu and Z.C.Sgen, Twin binary sequences : a non-redundant , repre-

sentation for general non-slciing floorplan, IEEE Transaction on CAD 22(4), pp457-469,
2003

27. H.H.Chan and I.L.Markov, Practical slicing and non-slicing block-packing without simu-
lated annealing, IEEE Great Lake Symp. On VLSI 2004, pp 282-287

Appendix: Sample Results

Hopper and Turton category 7 problem number 3 (left), ami49 (middle) and playout (right)

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 82 – 94, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evolutionary Testing Techniques

Joachim Wegener

DaimlerChrysler AG, Research and Technology,
Alt-Moabit 96 a, D-10559 Berlin, Germany

Joachim.Wegener@daimlerchrysler.com

Abstract. The development and testing of software-based systems is an
essential activity for the automotive industry. 50-70 software-based systems
with different complexities and developed by various suppliers are installed in
today’s premium vehicles, communicating with each other via different bus
systems. The integration and testing of systems of this complexity is a very
challenging task. The aim of testing is to detect faults in the systems under test
and to convey confidence in the correct functioning of the systems if no faults
are found during comprehensive testing. Faults not found in the different testing
phases could have significant consequences that range from customer
dissatisfaction to damage of physical property or, in safety relevant areas, even
to the endangering of human lives. Therefore, the thorough testing of developed
systems is essential. Evolutionary Testing tries to improve the effectiveness and
efficiency of the testing process by transforming testing objectives into search
problems, and applying evolutionary computation in order to solve them.

1 Introduction

In today’s premium vehicles 50-70 embedded systems with different micro-
controllers and different operating systems (OSEK, QNX…) communicate via several
bus systems (CAN-B, CAN-C, MOST, Flexray…) exchanging thousands of signals
and messages. In order to realize complex functionalities, several embedded systems
have to interact closely, e.g. an ESP system stabilizing a car in critical driving
situations has to control at least the brakes, gear, and engine. The software-based
systems integrated in a vehicle are developed and produced by a large number of
different suppliers. A single software-based system can contain up to 4,000,000 lines
of software code. The size of the code in the entire vehicle can easily reach more than
10,000,000 lines of software code resulting in up to 500 MB of on-board software.
Unforeseen feature interaction can occur due to the interplay of electronics and
software technology within a network made up of systems of such complexity.

The testing of systems of this degree of complexity is a very challenging task
which is considerably more complex than the testing of conventional software
systems. This is due to the technical features of automotive systems, e.g. the
computational accuracy of the target system, memory space requirements which have
to be guaranteed during program execution, or the synchronization of parallel
processes running on different embedded systems. It is also due to special
requirements made on these kinds of systems, e.g. the fulfillment of functional as well
as non-functional requirements such as real-time and safety requirements. Therefore,

 Evolutionary Testing Techniques 83

testing of software-based systems takes up to 50% of the overall development effort
and budget for automotive embedded systems.

The most significant weakness of testing is that the postulated functioning of the
tested system can, in principle, only be verified for those input situations which were
selected as test data. According to Dijkstra [1], testing can only show the existence
but not the non-existence of errors. Proof of correctness can only be produced by a
complete test, i.e. a test with all possible input values, input value sequences, and
input value combinations under all practically possible constraints. In practice,
complete testing is usually impossible because of the vast amount of possible input
situations. Therefore, testing is only a sampling method. Consequently, one of the
major challenges associated with testing is that of finding test cases that are effective
at finding faults without requiring an excessive number of tests to be carried out. If
test cases relevant to the practical deployment of the systems are omitted, the
probability of detecting faults declines – faults may occur, leading to customer
dissatisfaction or to damage to physical property.

Since manual test case design is a time-consuming, tedious, difficult, and error-
prone activity, DaimlerChrysler, Research and Technology develops testing methods
to increase the effectiveness and efficiency of the test and thus to reduce the overall
development costs for software-based systems. An extensive automation of testing
can be achieved by transforming testing objectives into search problems which are
then solved using evolutionary computation. The application of evolutionary
computation to test automation is called Evolutionary Testing [2]. This paper surveys
some of the work undertaken by DaimlerChrysler on the application of Evolutionary
Testing to solve different testing problems occurring during the development of
automotive systems.

The second chapter introduces the basic principles of applying evolutionary
algorithms to testing. The third chapter discusses the use of Evolutionary Testing for
functional testing. The fourth chapter describes its application for the automation of
structural testing, and the fifth chapter presents results for real-time testing. Finally,
chapter 6 concludes the paper with a summary and an outlook to future work.

2 Evolutionary Testing

Due to the non-linearity of software (if-statements, loops, etc.), the conversion of
testing objectives into optimization tasks usually results in complex, discontinuous,
and non-linear search spaces. Neighbourhood search methods such as hill climbing
are not suitable in such cases. Therefore, meta-heuristic search methods, such as
evolutionary algorithms, are employed because their robustness and suitability for the
solution of different test tasks has already been proven in previous work, e.g. [3], [4],
and [5].

The suitability of evolutionary algorithms for testing is based on their ability to
produce effective solutions for complex and poorly understood search spaces with
many dimensions. The dimensions of the search spaces are directly related to the
number of input dimensions of the system under test. The execution of different
program paths and the nested structures in software systems lead to multi-modal
search spaces when testing. Apart from many local optima, these are also marked by

84 J. Wegener

jumps and levels of identical objective function values. Input parameter dependencies
within the system under test may result in definition gaps. A noisy objective function
may also be caused by internal system states. In this case, identical input values may
result in different objective function values.

During optimization, evolutionary algorithms identify the building blocks of an
ideal solution, and store those blocks in the individuals within the population.
Building blocks are the partial solutions (genetic modules) of which good solutions
are composed. The combination of individuals and different building blocks results in
more qualified individuals as optimization continues. As well as being particularly
well-suited to the treatment of complex search spaces, evolutionary algorithms also
represent a very robust optimization procedure.

In order to automate tests using evolutionary algorithms, the test aim must be
transformed into an optimization task. A numerical representation of the test aim is
necessary, from which a suitable objective function for the evaluation of the generated
test scenarios can be derived. Depending on which test aim is pursued, different
objective functions emerge for the evaluation of the test scenarios. If an appropriate
objective function can be defined for the test aim, and evolutionary computation is
applied as the search technique, then the Evolutionary Test proceeds as follows.

The initial set of test scenarios is generated, usually at random. In principle, if test
scenarios have been obtained by a previous test, they can also be used as an initial
population. The Evolutionary Test could thus benefit from the tester's knowledge of
the system under test.

Each individual within the population represents a test scenario with which the
system under test is executed. For each test scenario, execution is monitored and the
objective value is calculated for the corresponding individual.

Next, individuals with high objective values are selected with a higher probability
than those with a lower value and are subjected to combination and mutation
processes to generate new offspring individuals. It is important to ensure that the test
scenarios generated are valid with respect to the input specification of the system
under test. The test scenarios resulting from the offspring individuals are again
evaluated by executing the system under test and monitoring test execution.

Finally, a new population of individuals is formed by merging offspring and parent
individuals according to the survival procedures laid down. It is decided which parent
individuals are replaced by offspring individuals.

From here on, the process repeats itself, starting with selection until the test
objective is fulfilled or another given stopping condition is reached (compare Fig. 1).

In general, there are few prerequisites for the application of the Evolutionary Test.
An interface specification of the system under test is required to guarantee the
generation of valid test scenarios. For structural testing, the source code of the test
object is required. The most important prerequisite is a numerical presentation of the
testing objective, from which a suitable objective function for the evaluation of
generated test scenarios can be derived. Different fitness functions emerge for the
evaluation of test scenarios depending on which test aim is pursued (compare section
3 - 5). Finally, it must be possible to execute the system under test with the generated
test scenarios. However, this is a general testing requirement that always has to be
fulfilled when testing.

 Evolutionary Testing Techniques 85

Fig. 1. Evolutionary Testing

3 Evolutionary Functional Testing

As a leading car manufacturer, DaimlerChrysler is constantly developing innovations
to improve vehicle safety, quality, and comfort. Within this context, automotive
systems of increasing complexity are developed and have to be tested. Examples of
such applications are: Distronic (an adaptive cruise control system) with which the
vehicle maintains a constant distance from a vehicle ahead, automatic vehicle parking,
or emergency braking systems. In fact, all of the examples are control systems which
introduce novel comfort and safety functions on the basis of measuring the distance of
the vehicle to other objects – an application field for automotive systems which is
becoming increasingly important. Furthermore, all the examples represent very
complex systems with a multitude of components, whose function is, however,
narrowly focused. For such systems, DaimlerChrysler is evaluating the possibility of
using evolutionary testing to improve testing quality and to increase testing
efficiency. Two applications will be described in the following: the Evolutionary
Testing of an automatic parking system, and the Evolutionary Testing of a brake
assistant system. The aim of functional testing is to uncover errors in the functional
behaviour of the system to be tested. Whilst the objective function can be generalised
for structural and real-time testing, the objective functions for functional testing are
specifically tailored to the function of the respective system under test.

Selection

Replacement

Recombination

Mutatio

Test Results

Termination

Individuals

Test Scenario

Monitoring

Fitness

Test
Execution Evaluatio

86 J. Wegener

3.1 Evolutionary Testing of an Automatic Parking System

The automatic parking system [6] is intended to automate parking lengthways into a
parking space. To this end, the vehicle is equipped with short range environmental
sensors, which register objects surrounding the vehicle. On passing, the system can
recognize sufficiently large parking spaces and signals to the driver that a parking
space has been found. If the driver decides to park in the detected parking space the
vehicle does this automatically.

Input to the automatic parking system is provided by sensor signals, which receive
information on the state of the vehicle, e.g. vehicle speed or steering wheel position,
as well as information from the environmental sensors, which register objects in the
environment of the vehicle. The parking space detection of the automatic parking
system processes the data from the environmental sensors and delivers the geometry
of parking spaces detected as being sufficiently large. The automatic parking system
uses the geometry data on the parking space together with the data from the vehicle
sensors to steer the vehicle through the parking procedure. For this purpose, velocity
and steering angle are preset for the vehicle actors. A fundamental requirement for the
automatic parking system is that the vehicle controlled by the system must not
damage or even touch other objects in the surrounding of the vehicle. Naturally, the
fulfilment of this requirement has to be tested thoroughly before such a system may
be released.

In order to test the functional behaviour of the automatic parking system an
objective function has to be defined that calculates a numerical value for the parking
manoeuvre driven by the system for a generated parking scenario. The objective
function represents a quality figure for the driven parking manoeuvres and is intended
to guide the evolutionary search towards finding faulty system behaviour. Therefore,
good objective function values are assigned to parking scenarios which lead the
system into a collision or end up in an inadequate parking situation, bad objective
function values arise for scenarios which attain a good parking position with enough
clearance from the collision area. Different objective functions could be defined to
search for parking scenarios leading to faulty system behaviour, e.g. measuring the
minimum distance occurring between the vehicle’s surface and the borders of the
parking space during the parking manoeuvre (Fig. 2) [6]. Alternatively, the time to
contact can be calculated – taking into account not only the distance to a collision but
also the speed of the vehicle. The shortest time to contact measured for the parking
manoeuvre could form the objective function value for the parking manoeuvre
calculated by the automatic parking system. Another option is to use the area included
between the driving path of the vehicle, and the geometry of the parking space [7]. In
our experiments all three fitness functions led to good results.

For the testing of the automatic parking system the tests have to be performed in a
simulation environment. The simulation environment simulates the properties of the
vehicle and the surrounding environment. It runs with the control unit "in-the-loop"
meaning that the simulation environment calculates the sensor data of the vehicle and
presents it to the automatic parking system. The automatic parking system processes
this sensor data and reacts to it with control data for the actors captured and evaluated
in the simulation environment. In this way the complete parking manoeuvre is
simulated. The parameters necessary for the simulation of a parking scenario are

 Evolutionary Testing Techniques 87

represented by the individuals of the evolutionary search. Parameters are, for
example, positions of cars which are close by and form the parking space, the position
of the controlled vehicle itself with respect to the parking space, or the driving
manoeuvre performed when passing the parking space initially. After the simulation
of a parking manoeuvre the objective function value is calculated for the parking
manoeuvre, and assigned to the corresponding individual.

collision areacollision area

collision area

Fig. 2. Objective Function Value Calculation for a Parking Scenario with the Minimum
Distance Criterion

In this way, a simulation of the corresponding parking manoeuvre is performed for
each individual of a generation, determining the objective function value of the
individual. When all the individuals in a generation have a fitness value, the
evolutionary algorithm continues with the production of the next generation of
individuals. The test ends when a parking scenario is found leading either to a
collision of the vehicle with surrounding objects, to an inadequate parking position or
once a predefined number of parking manoeuvres has been performed successfully
without any collision.

During tests on a research prototype of the automatic parking system, different
errors were found fully automatically. Examples are shown in Fig. 3. It was possible
to significantly improve the quality of the prototype by eliminating the errors found.

3.2 Evolutionary Testing of a Brake Assistant System

Whilst the automatic parking system is still not yet ready for series production in
customer vehicles, series production of the brake assistant system [8] described in the
following, and its delivery to end customers will already begin this year.

A brake assistant is a function which helps drivers to slow down and stop their
vehicles in critical situations. In many cases, drivers do not brake hard enough in an
emergency situation, wasting valuable meters of braking distance. In order to support
the driver in emergency braking situations, the brake assistant measures the velocity
with which the driver presses the brake pedal and decides within a fraction of a
second whether the driver intends to make an emergency stop. Once the brake
assistant has recognized an emergency braking situation, it immediately initiates full
braking pressure, regardless of the driver’s brake pedal position. In this way, the
brake assistant can usually save several meters of braking distance, and the car is
brought to a halt more quickly.

88 J. Wegener

Fig. 3. Three erroneous parking manoeuvres found by the Evolutionary Testing of the
automatic parking system: the first two scenarios show a collision of the vehicle with
surrounding objects when the initial position of the vehicle is far away from the parking space
and the orientation of the vehicle has a certain angle; the third scenario shows a scenario
resulting in an inadequate parking position

Brake assistant systems of the second generation make use of environmental
sensors in order to continuously monitor the vehicle environment. Thus, information
such as the distance to the proceeding vehicle and the closing velocity between the
vehicle and the proceeding vehicle, can be used to calculate optimal deceleration of
the vehicle in order to avoid an accident. It is easily understandable that a brake
assistant of the second generation is much more complex than the first generation
systems.

The brake assistant system should support the driver in critical situations with a
high vehicle brake retardation. On the other hand, it should not enhance the driver’s
brake momentum in uncritical situations. To find errors in the functional behaviour of
the brake assistant system scenarios are of interest where the brake assistant system
does not enhance the brake retardation, even though the situation is critical.
Furthermore, scenarios are searched for where the brake assistance system does
enhance the brake retardation, even though the situation is uncritical.

Individuals of the evolutionary testing of the automatic brake system are
representing different scenarios varying for instance the velocities of the two vehicles
involved and the distance between the vehicles.

 Evolutionary Testing Techniques 89

For the testing of the new brake assistant system the objective function is based on
two quantities: the time-to-collision and the brake momentum added by the brake
assistant system. The time-to-collision is often considered in the context of collision-
critical situations. It describes the time before a collision happens and can be seen as a
degree of how critical a braking situation is. For the brake assistant system the
calculation of the time-to-collision is based on the closing velocity and the distance
between the proceeding vehicle and the own vehicle. The brake momentum is the
brake momentum added to the driver’s brake momentum by the brake assistance
system. For the objective function the added momentum multiplied with the time-to-
collision is integrated over the time of the braking manoeuvre [8]. The objective
function can be maximized in order to find scenarios with long time-to-collision but
nevertheless a high brake momentum added, and it can be minimized to find critical
situations with short time-to-collision but a low brake momentum added.

Again, the tests were performed in a simulation environment, and scenarios where
found fully automatically where the behaviour of the brake assistant system could be
improved. The erroneous situations found were unlikely to be detected with
conventional testing techniques [8].

4 Evolutionary Structural Testing

Structural testing is widespread in industrial practice and stipulated in many software
development standards. The idea behind structural testing is that for a thorough test of
a system all internal program structures shall be executed at least once. Depending on
the structural testing criteria chosen, the internal program structures to be covered by
the test differ. Statement, branch, and condition testing are common examples aiming
at the execution of every program statement, or every program branch, or at
evaluating every program condition at least once as True and False.

The aim of applying evolutionary testing for the automation of structural testing is
the generation of a quantity of test scenarios, leading to the highest possible coverage
for the selected structural testing criterion. The objective function definitions for
structural testing can be generalized.

In order to apply evolutionary testing to the automation of structural testing, the
test is split up into partial aims. The identification of the partial aims is based on the
control-flow graph of the system under test. Each partial aim represents a program
structure that needs to be executed to achieve full coverage, e.g. a statement, a branch,
or a condition with its possible logical values. For each partial aim an individual
objective function is formulated and a separate optimization is performed to search
for a test scenario executing the partial aim. The set of test scenarios found for the
partial aims then serves as the test scenario set for the coverage of the structure test
criterion.

In order to direct the search toward program structures not covered, the objective
function computes a distance for each individual that indicates how far away it is
from executing the desired program structure. Individuals closer to the execution of
the desired program structure are selected as parents and combined to produce
offspring individuals. The objective functions of the partial aims consist of two
components – the approach level and the branch distance. The strategy in which

90 J. Wegener

approach level and branch distance are computed varies slightly according to the
coverage type in question. The approach level supplies a figure for an individual that
gives the number of branching nodes lying between program structures covered by
the individual and the desired program structure. For this computation, only branching
nodes which contain an outgoing edge resulting in a lack of the desired program
structure are taken into account (see Fig. 4). In addition, the calculation of the branch
distance is performed in order to distinguish between different individuals missing
the desired program structure at the same program condition (in Fig. 4 this could be
the branching node at approach level 2). If during execution an undesired branch is
taken – one which deviates from the desired path – the branch distance is computed
using an objective function derived from the predicate of the desired, alternative
branch. The branch distance describes how “close" the predicate is to being fulfilled
in the desired way. Thus, a distance to the execution of the sibling branch is
calculated for the individual by means of the branching conditions in the branching
node in which the target node is missed, e.g. if a branching condition x==y is always
evaluated as False but needs to be evaluated as True to reach the desired partial aim,
then the branch distance may be defined as |x-y|.

For the calculation of the objective function values the system under test is
instrumented with statements supporting the calculation of approach levels and

Fig. 4. Objective Function Calculation for Evolutionary Structural Testing: the control-flow
executed by a generated individual is shown in bold. The target node is missed at approach
level 2. Different individuals with an approach level of 2 will be further distinguished by
calculating the branch distance for the branching condition at approach level 2. The branch
distance describes how far the generated individual is from reaching the approach level 1.

Level 4

Level 3

Level 2

Level 1

TTTTarget

 Evolutionary Testing Techniques 91

branch distances. The instrumentation remains the same for all partial aims. The
objective function values for the individuals are calculated on the basis of the
monitoring results provided by the statements added through the instrumentation. A
detailed definition of the objective functions and the test environment developed at
DaimlerChrysler to automate structural testing can be found in [9] and [10].

Although only one partial aim after the other is processed by the evolutionary test,
the execution of a test scenario usually leads to passing several partial aims. Thus, the
test soon focuses on those program structures which are difficult to reach. After the
processing of all partial aims, the tester is provided with a minimal amount of test
scenarios, leading to an execution of all partial aims reached.

5 Evolutionary Real-Time Testing

Most software-based systems in the automotive industry are subject to temporal
requirements. This is due to reasons of operational comfort, e.g. short system reaction
times to user commands, or due to the requirements of technical processes that are
controlled by the system, e.g. in engine control systems, airbag controllers or vehicle
dynamics control systems. Therefore, most software-based systems integrated into the
vehicles have to be thoroughly tested not only with regard to their functional
behaviour, but also to detect existing deficiencies in fulfilling the systems’ real-time
requirements.

Existing test methods are unsuitable for the examination of temporal correctness.
Even for an experienced tester, it is virtually impossible to find the critical test
scenarios with respect to the temporal behaviour of the systems by analysing and
testing the behaviour of complex systems manually. Effects of modern processor
architectures with pipelining, data caching and instruction caching as well as the
influences of system calls, parallelism, and optimizing compilers on the temporal
behaviour of a system can hardly be assessed by the tester. Therefore, real-time
testing is another important and promising application area for Evolutionary Testing.

When testing the temporal behaviour of systems, the objective is to check whether
input situations exist for which the system violates its specified timing constraints.
Usually, a violation occurs because outputs are produced too early or their
computation takes too long. The task of the tester and therefore of the Evolutionary
Test is to find input situations with especially long or short execution times in order to
check whether a violation of the real-time requirements can be produced.
Evolutionary Testing enables a fully automated search for extreme execution times.

When using Evolutionary Testing for the testing of temporal behaviour, the
execution time is measured for every generated test scenario. The fitness evaluation of
the individuals is based on the execution times measured for the corresponding test
scenario. If one searches for long execution times, individuals with long execution
times obtain high objective function values. Conversely, when searching for short
execution times, individuals with short execution times obtain high values.
Individuals with long or short execution times are selected depending on the objective
of the test and are combined in order to obtain test scenarios with even longer or
shorter execution times. The test is terminated if a violation of the system’s real-time
requirements is detected or a previously specified termination criterion is reached. If a
violation of the system’s predetermined temporal limits is detected, the test was

92 J. Wegener

successful and the system has to be corrected, usually by detailed performance
analyses and optimizations of the temporal characteristics of the program code
causing the deviation.

The application of Evolutionary Testing for the examination of temporal behaviour
has been evaluated successfully in many case studies on the task level (e.g. [2], [11],
[12], [13], [14]). The performance of the Evolutionary Test was superior to tests with
other testing methods such as functional testing, structural testing and random testing.

6 Conclusion and Future Work

Evolutionary Testing is a promising approach to fully automating the testing of
various testing objectives. The definition of the objective function depends on the
testing objective addressed by the Evolutionary Test. This paper described the
application of Evolutionary Testing to functional testing, structural testing and real-
time testing. Whereas the definition of the objective function is usually specific for a
certain system under test for functional testing, it can be generalized for structural
testing and real-time testing.

Evolutionary Testing is based on the idea of searching test scenarios relevant for
the testing objective considered in the input domain of the system under test with the
help of evolutionary algorithms. Due to the high degree of automation achievable, the
system under investigation can be tested with a large number of different input
situations. In most cases more than several thousand test scenarios are generated and
executed within a few minutes. Evolutionary Testing thus contributes to quality
improvement as well as to the reduction of development costs for software-based
systems. Effectiveness and efficiency of the test can be increased.

In the future, we intend to expand the application of evolutionary functional tests to
further vehicle systems such as the adaptive cruise control or automatic emergency
braking systems. We also intend to research the interaction between evolutionary
functional tests and structure tests more intensively. This should answer questions
such as: Which coverage is achieved with the generated functional tests? Does the
seeding of functionally determined test scenarios prove useful for an evolutionary
structure test and, on the other hand, does the seeding of structure-oriented test
scenarios increase the test quality of the evolutionary functional test?

For the structural testing current and future work aims at further improvements for
different program characteristics hindering the successful search for coverage-
oriented test scenarios. For example, the occurrence of flags in the branching
conditions of a program makes a distance calculation which would support a guidance
of the search impossible – the branch distance is one for all individuals reaching the
branching node. In cases where the value of a flag is calculated before the branching
condition, the application of program transformations that replace a flag by its
semantic meaning seems possible ([15], [16]).

A further problem for the test is the short circuit evaluation in C which breaks off
the evaluation of atomic predicates if logical dependencies are linked by && or ||, as
soon as the value of the entire condition is definite. This leads to an artificial
narrowing of the search domain since the linked predicates can only be optimised one
after the other. For the condition A && B && C, A and B need to be evaluated as True

 Evolutionary Testing Techniques 93

first, before the evaluation of the generated individual with regard to the predicate C
is possible. The search for individuals that fulfil A && B leads to an artificial focusing
on the individuals, without taking the predicate C into account. The search for
individuals that fulfil all three predicates becomes more complicated. One possibility
for solving this problem is the parallel evaluation of single predicates. For this,
however, one has to ensure that single predicates do not contain any side effects.

By introducing data-flow analyses that determine which input parameters every
partial aim relies on, testing efficiency can be further improved. Ideally, it is possible
to drastically reduce the size of the search domain for the selected partial aim, which
in turn accelerates the search considerably, if only a few input parameters are relevant
for the attainment of the partial aim [17].

Future work on real-time testing will focus on the application of Evolutionary
Testing at the integration and system test level. Seeding experiments will be
performed integrating existing functional and structural test scenarios into the
Evolutionary Test. Furthermore, combinations of structural testing and real-time
testing will be explored to ensure that all program parts are covered during the
temporal behaviour test.

For all testing objectives the consideration of internal states of the system under
test would be a significant improvement, since important scenarios might only occur
in certain system states [18]. Therefore, it would be useful to incorporate state-
knowledge in the objective functions for the different testing objectives.

References

1. Dijkstra, E. W., Dahl, O. J., Hoare, C. A. R.: Structured programming, Academic Press.,
1972.

2. Wegener, J., and Grochtmann, M.: Verifying timing constraints of real-time systems by
means of Evolutionary Testing. Real-Time, Systems, vol. 15, no. 3, Kluwer Academic
Publishers, pp. 275-298, 1998.

3. Jones, B.-F., Sthamer: H.-H., Eyres, D.: Automatic structural testing using genetic
algorithms. Software Engineering Journal, vol. 11, no. 5, pp. 299-306, 1996.

4. Sthamer, H.-H.: The automatic generation of software test data using genetic algorithms,
PhD Thesis, University of Glamorgan, Pontyprid, Wales, Great Britain, 1996.

5. Tracey, N., Clark, J., Mander, K. and McDermid, J.: An automated framework for
structural test-data generation. Proceedings of the 13th IEEE Conference on Automated
Software Engineering, Hawaii, USA 1998.

6. Buehler, O. and Wegener, J.: Evolutionary functional testing of an automated parking
system. Proceedings of the International Conference on Computer, Communication and
Control Technologies and the 9th. International Conference on Information Systems
Analysis and Synthesis, Orlando, Florida, USA, 2003.

7. Buehler, O. and Wegener, J.: Automatic testing of an autonomous parking system using
evolutionary computation. SAE World Congress, Detroit, USA, 2004.

8. Buehler, O. and Wegener, J.: Evolutionary functional testing of a vehicle brake assistant
system. 6th Metaheuristics International Conference, Vienna, Austria, 2005.

9. Wegener, J., Baresel, A.; Sthamer, H.: Evolutionary test environment for automatic
structural testing. Special Issue of Information and Software Technology devoted to the
Application of Meta-heuristic Algorithms to Problems in Software Engineering 2001.

94 J. Wegener

10. McMinn, P.: Search-based software test data generation: a survey. Software Testing,
Verification and Reliability, vol. 14, no. 2, pp. 105-156, 2004.

11. Wegener, J. and Mueller, F.: A comparison of static analysis and evolutionary testing for
the verification of timing constraints. Real-Time Systems, vol. 21, no. 3, pp. 241-268,
2001.

12. Puschner, P. and Nossal, R.: Testing the results of static worst-case execution-time
analysis. In Proceedings of the 19th IEEE Real-Time Systems Symposium, pp. 134-143,
Madrid, Spain, 1998.

13. Tracey, N., Clark, J. and Mander, K.: The way forward for unifying dynamic test-case
generation: The optimisation-based approach. International Workshop on Dependable
Computing and Its Applications, pp. 169-180, 1998.

14. Gross, H.-G.: Evolutionary testing in component-based real-time system construction. In
Proceedings of the Genetic and Evolutionary Computation Conference. Late Breaking
Papers, pp. 207-214, New York, USA, 2002.

15. Harman, M., Hu, L., Hierons, R., Baresel, A. and Sthamer, H.: Improving evolutionary
testing by flag removal. In Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 1359-1366, New York, USA, 2002. Morgan Kaufmann.

16. Baresel, A. and Sthamer, H.: Evolutionary testing of flag conditions. In Proceedings of the
Genetic and Evolutionary Computation Conference, Lecture Notes in Computer Science
2724, pp. 2442-2454, Chicago, USA, 2003. Springer-Verlag.

17. Harman, M., Fox, C., Hierons, R., Hu, L., Danicic, S., and Wegener, J.: VADA: A
transformation-based system for variable dependence analysis. 2nd IEEE International
Workshop on Source Code Analysis and Manipulation, pp. 55-64, Montreal, Canada,
2002.

18. McMinn, P. and Holcombe, M.: The state problem for evolutionary testing. In Proceedings
of the Genetic and Evolutionary Computation Conference, Lecture Notes in Computer
Science 2274, pages 2488-2497, Chicago, USA, 2003. Springer-Verlag.

Optimal Fuzzy CLOS Guidance Law Design

Using Ant Colony Optimization

Hadi Nobahari and Seid H. Pourtakdoust

Sharif University of Technology, P.O. Box: 11365-8639, Tehran, Iran
nobahari@mehr.sharif.edu

pourtak@sharif.edu

Abstract. The well-known ant colony optimization meta-heuristic is
applied to design a new command to line-of-sight guidance law. In this
regard, the lately developed continuous ant colony system is used to op-
timize the parameters of a pre-constructed fuzzy sliding mode controller.
The performance of the resulting guidance law is evaluated at different
engagement scenarios.

1 Introduction

The principle of Command to Line-of-Sight (CLOS) guidance law is to force the
missile to fly as nearly as possible along the instantaneous line joining the ground
tracker and the target, called the Line-of-Sight (LOS) [1,2,3,4,5,6,7,8,9]. Theo-
retically, the missile-target dynamic equations are nonlinear and time-varying,
partly because the equations of motion are described in an inertial frame, while
aerodynamic forces and moments are represented in the missile and target body
frames. Many different control techniques have been used to design different
CLOS guidance laws, examples of which are optimal control theory [3,6], feed-
back linearization [4], polynomial method [5], supervisory control [9], and so
on. However, these methods have resulted in rather complicated controllers, and
some of them require the knowledge of the maneuvering model of the target.

In recent years CLOS guidance laws based on Fuzzy Logic Control (FLC)
have been presented [7,8]. Fuzzy logic was proposed by Professor Lotfi Zadeh
in 1965, at first as a way of processing data by allowing partial set membership
rather than crisp membership. Soon after, it was proven to be an excellent choice
for many control system applications since it mimics human control logic. FLC
can model the qualitative aspects of human knowledge and reasoning processes
without employing precise quantitative analyses. It also possesses several advan-
tages such as robustness and being a model-free, universal approximation and a
rule-based algorithm. However, the stability analysis for general FLC systems is
still lacking. To cope with this deficiency, a combination of FLC and the well-
known Sliding Mode Control (SMC) has been proposed in recent years, called
Fuzzy Sliding Mode Control (FSMC) [10,11,12]. The stability of FSMC can be
proved in the Lyapunov sense [12]. This technique has been widely used in many
control applications, as well as the CLOS guidance problem [8]. The other ad-
vantage of the FSMC is that it has fewer rules than FLC. Moreover, by using

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 95–106, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

96 H. Nobahari and S.H. Pourtakdoust

SMC, the system possesses more robustness against parameter variations and
external disturbances.

There are some limitations to the development of fuzzy controllers, the most
important of which is the knowledge does not always completely exist and the
manual tuning of all the base parameters takes time. The lack of portability of
the rule bases when the dimensions of the control system change, makes the later
difficulty still more serious. To cope with these problems, the learning methods
have been introduced. The first attempt was made by Procyk and Mamdani in
1979 , with a ”self tuning controller” [13]. The gradient descent method was
used by Takagi and Sugeno in 1985 as a learning tool for fuzzy modeling and
identification [14]. It was used by Nomura, et al. in 1991 as a self tuning method
for fuzzy control [15].

The gradient descent method is appropriate for simple problems and real
time learning, since it is fast. But it may be trapped into local minima. Also
the calculation of the gradients depends on the shape of membership functions
employed, the operators used for fuzzy inferences as well as the selected cost
function. In 1998, Siarry and Guely used the well-known Genetic Algorithm to
tune the parameters of a Takagi-Sugeno fuzzy rule base [16]. The same problem
was solved by Nobahari and Pourtakdoust [17], using Continuous Ant Colony
System (CACS) [18], which is an adaptation of the well-known Ant Colony
Optimization (ACO) meta-heuristic to continuous optimization problems.

In this paper, CACS is used to optimize the parameters of a FSMC-CLOS
guidance law. The optimization problem is to minimize the average tracking error
obtained for 10 randomly generated engagement scenarios. In the simulation
of these scenarios, the proposed random target maneuver in [3] is used. The
performance of the optimal FSMC-CLOS, designed in this way, is then evaluated
at some other engagement scenarios, considering both maneuvering and non-
maneuvering targets. The simulation results show a good performance in both
tracking dynamics and the final miss distance.

2 Problem Formulation

In this section the three-dimensional CLOS guidance is formulated as a non-
linear time varying tracking problem. The three-dimensional pursuit situation
is depicted in Fig. 1. The origin of the inertial frame is located at the ground
tracker. The ZI axis is vertical upward and the XI − YI plane is tangent to the
Earth surface. The origin of the missile body frame is fixed at the missile center
of mass with the XI axis forward along the missile centerline.

Defining the LOS frame as depicted in Fig. 2, the three-dimensional guidance
problem can be converted to a tracking problem. According to the definition of
CLOS guidance law, reasonable choices for the tracking errors may be ∆σ =
σt−σm and ∆γ = γt− γm. The problem involves designing a controller to drive
[∆σ,∆γ]T to zero. The same design algorithm will be applied for both azimuth
and elevation angle control. In the following the azimuth angle control is chosen
as an example.

Optimal Fuzzy CLOS Guidance Law Design 97

Fig. 1. Three-dimensional pursuit situation

Fig. 2. Definition of the tracking error

Assume that e(t) = ∆σ represents the azimuth loop tracking error. The
differential equation of the tracking error can be derived as [9]

ë = f(e, t) + (1/Rm(t))u(t) (1)

Where e = [e(t), ė(t)]T is the error state vector, Rm(t) is missile to tracker range,
u(t) = −am(t) is the control variable, and

f(e, t) = −(R̈m(t)/Rm(t))e(t) − (2Ṙm(t)/Rm(t))ė(t) + (1/Rm(t))at(t) (2)

3 Sliding Mode Control

Let s(e) = 0 denotes a hyper-surface in the space of the error state, which is
called the sliding surface. The purpose of the sliding mode control is to force the
error vector e approach the sliding surface and then move along it to the origin.
If the sliding surface is stable, the error e will die out asymptotically. In this
regard, let the sliding surface s be defined as follows

s(e, ė) =
(
d

dt
+ λ

)
e = ė+ λe (3)

98 H. Nobahari and S.H. Pourtakdoust

where λ is a positive constant. It is obvious from Eq. (3) that keeping the states
of the system on the sliding surface will guarantee the tracking error vector e
asymptotically approach to zero. The corresponding sliding condition [19] is

1
2
d

dt
s2 = sṡ ≤ 0 (4)

The general control structure that satisfies the stability condition of the sliding
motion, can be written as [19]

u = û−Ksgn(s) (5)

where û is called the equivalent control law that is derived by setting s = ṡ = 0,
and K is a positive constant. The sliding condition can be satisfied as long as K
is chosen large enough [19].

3.1 Fuzzy Sliding Mode Control

As mentioned in section 1, the FSMC is a hybrid controller and inherits the ad-
vantages of both fuzzy and sliding mode controllers. The FSMC can be regarded
as a fuzzy regulator that controls the variable s approach to zero. Let s denote
the fuzzy variable of the universe of discourse, s. Then some linguistic terms
can be defined to describe the fuzzy variable s, such as ”zero”, ”positive large”,
”negative small”, etc. Each linguistic term expresses a certain situation in the
system. For example, s is ”zero” means that the state of system is on the sliding
surface or is near to the sliding surface. Such linguistic expressions can be used
to form fuzzy control rules as below

Rule 1: If s is NB, then u is PB
Rule 2: If s is NM, then u is PM
Rule 3: If s is ZO, then u is ZO
Rule 4: If s is PM, then u is NM
Rule 5: If s is PB, then u is NB

(6)

where u denotes the fuzzy variable of the control signal u, NB denotes ”Negative
Big”, NM denotes ”Negative Mid”, ZO denotes ”Zero”, PM denotes ”Positive
Mid”, and PB denotes ”Positive Big”. Each linguistic term is described by an
associated membership function as shown in Fig. 3. In conventional fuzzy con-
troller design, these membership functions are tuned by a trial-and-error proce-
dure, based on certain physical sense or designer’s experiences.

3.2 Definition of FSMC Design as an Optimization Problem

The FSMC considered here, involves a SISO fuzzy inference system with the
variable s as the input, and the variable u as the output. The design problem is
defined as finding the optimum values of the membership functions parameters.
The more fuzzy terms are defined, the more fuzzy rules will be requested for

Optimal Fuzzy CLOS Guidance Law Design 99

Fig. 3. Definition of fuzzy membership functions

Fig. 4. Fuzzy sliding surface of a second order system

completeness. In this paper, five fuzzy terms are proposed for the measure of s,
as follows

s ={NB, NM, ZO, PM, PB} (7)

One may choose more fuzzy terms if required. The associated five fuzzy terms
for control energy are defined in a similar way as

u ={NB, NM, ZO, PM, PB} (8)

A scaling factor will be used to normalize the fuzzy set. The fuzzy sliding surface
of a second order system is shown in Fig. 4, where δ represents the scaling factor.
For normalized fuzzy sets, SNB = −1, SPB = 1 and SZO = 0 can be defined. The
maximum control energy Umax is also bounded by physical limitations, that is
UNB = −1 and UPB = 1 can also be defined. If the symmetry of fuzzy terms
corresponding to s and u is assumed, the remaining design factors of the fuzzy
system are the values of SPM, UPM, and the scaling factor δ. The optimal design
problem of the FSMC then can be formulated as: to determine SPM, UPM, δ and
the positive constant λ such that a given cost function is optimized.

4 Ant Colony Optimization

Ant algorithms were inspired by the observation of real ant colonies. An impor-
tant and interesting behavior of ant colonies is their foraging behavior, and in

100 H. Nobahari and S.H. Pourtakdoust

particular, how ants can find the shortest path without using visual cues. While
walking from the food sources to the nest and vice versa, ants deposit on the
ground a chemical substance called pheromone which makes a pheromone trail.
Ants use pheromone trails as a medium to communicate with each other. They
can smell pheromone and when they choose their way, they tend to choose paths
with more pheromone. The pheromone trail allows the ants to find their way
back to the food source or to the nest. Also, the other ants can use it to find the
location of the food sources, which are previously found by their nest mates.

4.1 Ant Colony System

Ant Colony System (ACS) is one of the first discrete algorithms proposed based
on ACO. At first it was applied to the well-known Traveling Salesman Problem
(TSP) which is a discrete optimization problem. In this part we will shortly
review the basic idea of ACS. Then in the subsequent part, the continuous version
of ACS will be presented.

Ant Colony System uses a graph representation, like as the cities and the
connections between them in TSP. In addition to the cost measure, each edge has
also a desirability measure, called pheromone intensity. To solve the problem,
each ant generates a complete tour by choosing the nodes according to a so
called pseudo-random-proportional state transition rule, which has two major
features. Ants prefer to move to the nodes, which are connected by the edges
with a high amount of pheromone, while in some instances, their selection may
be completely random. The first feature is called exploitation and the second
one is a kind of exploration. While constructing a tour, ants also modify the
amount of pheromone on the visited edges by applying a local updating rule.
It concurrently simulates the evaporation of the previous pheromone and the
accumulation of the new pheromone deposited by the ants while they are building
their solutions. Once all the ants have completed their tours, the amount of
pheromone is modified again, by applying a global updating rule. Again a part of
pheromone evaporates and all edges that belong to the global best tour, receive
additional pheromone conversely proportional to their length.

4.2 Continuous Ant Colony System

In this part, the lately developed Continuous Ant Colony System (CACS) is
introduced. The interested readers can refer to [17,18] to find more details.

A continuous optimization problem is defined as finding the absolute mini-
mum of a positive non-zero continuous cost function f(x), within a given interval
[a, b], in which the minimum occurs at a point xs. In general f can be a multi-
variable function, defined on a subset of IRn delimited by n intervals [ai, bi],
i = 1, ..., n.

Continuous Ant Colony System (CACS) has all the major features of ACS,
but certainly in a continuous frame. These are a pheromone distribution model,
a state transition rule, and a pheromone updating rule. In the following these
features are introduced.

Optimal Fuzzy CLOS Guidance Law Design 101

Continuous Pheromone Model. Although pheromone distribution has been
first modeled over discrete sets, like the edges of TSP, in the case of real ants,
pheromone deposition occurs over a continuous space. The ants aggregation
around the food source causes the most pheromone intensity to occur at the
food source position. Then increasing the distance of a sample point from the
food source will countinuously decreases its pheromone intensity. CACS mod-
els the pheromone intensity, in the form of a normal Probability Distribution
Function (PDF):

τ(x) = e
−

(x− xmin)2

2σ2 (9)

where xmin is the best point found within the interval [a, b] from the beginning of
the trial and σ is an index of the ants aggregation around the current minimum.

State Transition Rule. In CACS, pheromone intensity is modeled using a
normal PDF, the center of which is the last best global solution and its variance
depends on the aggregation of the promising areas around the best one. So it
contains exploitation behavior. In the other hand, a normal PDF permits all
points of the search space to be chosen, either close to or far from the current
solution. So it also contains exploration behavior. It means that ants can use a
random generator with a normal PDF as the state transition rule to choose the
next point to move to.

Pheromone Update. During each iteration, ants choose their destinations
through the probabilistic strategy of Eq. (9). At the first iteration, there is no
knowledge about the minimum point and the ants choose their destinations only
by exploration. It means that they must use a high value of σ, associated with
an arbitrary xmin, to approximately model a uniform distribution function. Dur-
ing each iteration pheromone distribution over the search space will be updated
using the acquired knowledge of the evaluated points by the ants. This process
gradually increases the exploitation behavior of the algorithm, while its explo-
ration behavior will decrease. Pheromone updating can be stated as follows: The
value of objective function is evaluated for the new selected points by the ants.
Then, the best point found from the beginning of the trial is assigned to xmin.
Also the value of σ is updated based on the evaluated points during the last iter-
ation and the aggregation of those points around xmin. To satisfy simultaneously
the fitness and aggregation criteria, a concept of weighted variance is defined as
follows:

σ2 =

k∑
j=1

1
fj − fmin

(xj − xmin)2

k∑
j=1

1
fj − fmin

(10)

where k is the number of ants. This strategy means that the center of region
discovered during the subsequent iteration is the last best point and the narrow-
ness of its width depends on the aggregation of the other competitors around

102 H. Nobahari and S.H. Pourtakdoust

the best one. The closer the better solutions get (during the last iteration) to
the best one, the smaller σ is assigned to the next iteration.

During each iteration, the height of pheromone distribution function increases
with respect to the previous iteration and its narrowness decreases. So this strat-
egy concurrently simulates pheromone accumulation over the promising regions
and pheromone evaporation from the others, which are the two major charac-
teristics of ACS pheromone updating rule.

5 Numerical Results

In this section CACS is applied to optimize the parameters of a FSMC-CLOS
guidance law, and the performance of the designed optimal guidance law is eval-
uated through different engagement scenarios. Ten different randomly generated
engagement scenarios are used to evaluate each design point discovered by the
ants. The cost function is defined as the average of the normalized tracking er-
rors over the considered engagement scenarios. The normalized tracking error is
defined as follows

rn =
1
tf

∫ tf

0
r(t)dt (11)

where r(t) is the distance between the missile and the LOS at time t. The average
of the normalized tracking errors is defined as follows

y =
(

1
10

(r2n1
+ r2n2

+ ...+ r2n10
)
) 1

2

(12)

5.1 Mathematical Model of Missile and Target

The proposed equations of motion in [4] are used to simulate the behavior of
missile and target. The acceleration limits of missile and target are 20(g) and
5(g), respectively. Other data used in simulations are the same as those in [4].

A random target maneuver similar to that proposed in [3], is utilized in
simulations. It is assumed that target maneuvers about the LOS in a random
fashion defined by RMS and bandwidth of the target acceleration. A stochastic
representation of this maneuver will be generated by passing white noise, nt,
through a third order Butter-worth filter (Fig. 5). The values of Kt and ωt, used
in simulations, are 500(m/s2) and 1(rad/s), respectively.

Fig. 5. Stochastic target maneuver model

Optimal Fuzzy CLOS Guidance Law Design 103

5.2 Generation of the Random Engagement Scenarios

The cost function is defined based on the average performance obtained over
10 randomly generated engagement scenarios. These scenarios are pre-generated
because the same situations are needed to evaluate different design points. In
the generation of these primary scenarios, the following constraints are made

3000 ≤ R0t ≤ 5000 R0m = 50 m
−180◦ ≤ σ0t ≤ 180◦ −5◦ ≤ σ0m − σ0t ≤ 5◦

20◦ ≤ γ0t ≤ 70◦ −5◦ ≤ γ0m − γ0t ≤ 5◦

300 ≤ V0t ≤ 500 V0m = 150m/s
−45◦ ≤ ψ0t ≤ 45◦ ψ0m = σ0m

−20◦ ≤ θ0t ≤ 20◦ θ0m = γ0m

In addition to the pre-generated initial conditions, for each scenario, two long
lists of normalized zero-mean Gaussian random numbers are also generated and
stored as the inputs of the target maneuver model, corresponding to aty and atz .

5.3 Optimization Results

The proposed CACS works based on the search and evaluation of different points
in the solution space in a stochastic intelligent manner. The evaluation is done
through the simulation of the missile-target engagement at the primary scenarios.
The optimization problem can be defined as: find the values of SPM, UPM, δ,
and λ such that the cost function, y, is minimized. The boundaries of the search
space are defined as follows

0 < SPM < 1, 0 < UPM < 1, 0 < δ < 1, 0 < λ < 10

Fig. 6 shows the history of y for different number of ants. The best results
have obtained using 10 ants which is consistent with our previous results in

number of evaluations

y
(m
)

0 250 500 750 1000
50

100

150

200

250

300
Number of Ants = 8
Number of Ants = 10
Number of Ants = 12

Fig. 6. History of the cost function as shown for different number of ants

104 H. Nobahari and S.H. Pourtakdoust

[17,18]. The optimum values of the parameters obtained after 1000 evaluations
are: SPM = 0.0074, UPM = 0.9937, δ = 0.3029, and λ = 2.74.

5.4 Evaluation of the Optimal Design

The optimal set of parameters obtained based on the primary engagement sce-
narios, is again evaluated over two other scenarios. The two scenarios proposed
in [4,8,9] are considered here. The first one represents a non-maneuvering target,
while in the second one the target maneuvers with aty = 5g and atz = −g for
the first 2.5 sec., and then aty = −5g and atz = 5g until interception. The initial
condition data used to simulate these scenarios is given in table 1.

Figures 7 and 8 show the dynamic simulation results. It is clear that the new
optimal FSMC-CLOS guidance law, designed using CACS, successfully drives
the tracking error and as a result, the miss distance to zero. The obtained values

time (sec)

a m
y
,
a m

z

0 1 2 3 4 5-400

-300

-200

-100

0

100

200

300
400

amy
amz

x (m)

z(
m
)

1000 2000 3000 4000

500

1000

1500

2000

Missile Tra jectory
Target Tra jec tory

x (m)

y
(m
)

1000 2000 3000 4000-400

-300

-200

-100

0

100

Missile Tra jec tory
Target Tra jec tory

time (sec)

∆
σ
,

∆
γ

0 1 2 3 4 5

-0.4

-0.2

0

0.2

0.4

∆ σ
∆ γ

Fig. 7. Simulation results for the first scenario

time (sec)

∆
σ
,

∆
γ

0 1 2 3 4 5 6 7

-4

-2

0

2

4

∆ σ
∆ γ

x (m)

z(
m
)

0 1000 2000 30000

200

400

600

800

1000
Missile Trajectory
Target Tra jectory

time (sec)

a m
y
,
a m

z

0 1 2 3 4 5 6 7-400

-300

-200

-100

0

100

200

300
400

am y
a
m z

x (m)

y
(m
)

0 1000 2000 30000

1000

2000

3000

4000

5000

Missile Traj ectory
Target Tra jectory

Fig. 8. Simulation results for the second scenario

Optimal Fuzzy CLOS Guidance Law Design 105

Table 1. The initial condition used for different flight scenarios

Parameter Unit Scenario 1 Scenario 2

xt(0), yt(0), zt(0) m 4000, −400, 2000 2500, 5361.9, 1000

ẋt(0), ẏt(0), żt(0) m/s −400, 100, 0 0, −340, 0

ψt(0), θt(0) deg 165.96, 0 −90, 0

xm(0), ym(0), zm(0) m 100, −10, 50 14.32, 39.34, 3.36

ẋm(0), ẏm(0), żm(0) m/s 100, −10, 50 70.84, 151.92, 28.32

ψm(0), θm(0) deg −5.71, 26.56 65, 9.59

∆σ(0),∆γ(0) deg 0, 0 −5, 5

of miss distance for these two scenarios are 5.40 m and 3.96 m, respectively.
The obtained results verify the ability of CACS to solve practical optimization
problems such as guidance and control systems design.

6 Conclusion

In this paper the Continuous Ant Colony System (CACS), which is based on
the well-known Ant Colony Optimization meta-heuristic was applied to design
an optimal FSMC-CLOS guidance law. The optimization was done for differ-
ent number of ants. The evaluation of each discovered point within the design
space was done through the simulation of missile-target engagement at a number
of randomly generated scenarios. The cost function was defined as the average
of normalized tracking errors, corresponding to each scenario. Then the perfor-
mance of the resulting optimal FSMC-CLOS guidance law was studied through
some other new scenarios. Simulation results indicate a good performance for
the new guidance law. This again shows the ability of CACS to solve practical
optimization problems. The main advantage of CACS with respect to the other
meta-heuristics such as Genetic Algorithm is its simplicity which is mainly due to
its simple structure. CACS has only one control parameter which is the number
of ants. This makes the parameter setting easier than many other optimization
methods.

References

1. Garnell, P.: Guided Weapon Control Systems, 2nd Edition, Pergamon Press, Ox-
ford, England, UK. (1980) chap. 7

2. Zarchan, P.: Tactical and Strategic Missile Guidance, 3rd Edition, AIAA Education
Series. 176 (1997) 193–205

3. Kain, J. E., Yost, D. J.: Command to Line-of-Sight Guidance: A Stochastic Optimal
Control problem. AIAA Guidance and Control Conference Proceedings (1976) 356–
364

4. Ha, I. J., Chong, S.: Design of a CLOS Guidance Law via Feedback Linearization.
IEEE Transactions on Aerospace and Electronic Systems 28 (1) (1992) 51–62

106 H. Nobahari and S.H. Pourtakdoust

5. Parkes, N. E., Roberts, A. P.: Application of Polynomial Methods to Design of
Controllers for CLOS Guidance. IEEE Conference on Control Applications 2 (1994)
1453–1458

6. Pourtakdoust, S. H., Nobahari, H.: Optimization of LOS Guidance for Surface-to-
Air Missiles. Iranian Aerospace Organization Conference 2 (2000) 245–257

7. Arvan, M. R., Moshiri, B.: Optimal Fuzzy Controller Design for an Anti-Tank
Missile. International Conference on Intelligent and Cognitive Systems (1996) 123–
128

8. Lin, C. M., Hsu, C. F.: Guidance Law Design by Adaptive Fuzzy Sliding Mode
Control. Journal of Guidance, Control and Dynamics 25 (2) (2002) 248–256

9. Nobahari, H., Alasty, A., Pourtakdoust, S. H.: Design of a Supervisory Controller
for CLOS Guidance with Lead Angle. AIAA Guidance, Navigation and Control
Conference, AIAA-2005-6156 (2005)

10. Palm, R.: Robust Control by Fuzzy Sliding Mode. Automatica 30 (9) (1994) 1429–
1437

11. Chen, C. L., Chang M. H.: Optimal Design of Fuzzy Sliding-Mode Control: A
Comparative Study. Fuzzy Sets and Systems 93 (1998) 37–48

12. Choi, B. J., Kwak, S. W., Kim, B. K.: Design of a Single-Input Fuzzy Logic Con-
troller and Its Properties. Fuzzy Sets and Systems 106 (3) (1999) 299–308

13. Procyk, T. J., Mamdani, E. H.: A linguistic self-organizing process controller. Au-
tomatica, IFAC 15 (1979) 15–30

14. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to mod-
eling and control. IEEE Trans. Systems, Man and Cybernetics 15 (1985) 116–132

15. Nomura, H., Hayashi, I., Wakami, N.: A Self Tuning Method of Fuzzy Control
by Descent Method. Proceedings of the International Fuzzy Systems Association,
IFSA91, Bruxelles (1991) 155–158

16. Siarry, P., Guely, F.: A Genetic Algorithm for Optimizing Takagi-Sugeno Fuzzy
Rule Bases. Fuzzy Sets and Systems 99 (1998) 37–47

17. Nobahari, H., Pourtakdoust, S. H.: Optimization of Fuzzy Rule Bases Using Con-
tinuous Ant Colony System. Proceeding of the First International Conference on
Modeling, Simulation and Applied Optimization, Sharjah, U.A.E., ICMSAO-243
(2005) 1–6

18. Pourtakdoust, S. H., Nobahari, H.: An Extension of Ant Colony System to con-
tinuous optimization problems. Lecture Notes in Computer Science 3172 (2004)
294–301

19. Slotine, J. J. E., Li, W.: Applied Nonlinear Control, Prentice-Hall, Upper Saddle
River, NJ (1991) chap. 7

On Some Bounds on the Size

of Branching Programs (A Survey)�

Elizaveta A. Okol’nishnikova

Sobolev Institute of Mathematics
of Siberian Branch of Russian Academy of Sciences,

prospect acad. Koptjuga, 4, Novosibirsk 630090, Russia
okoln@math.nsc.ru

Abstract. Previously it was shown by the author that it is possible to
reduce obtaining of lower bounds on the complexity of Boolean functions
for branching programs without restriction to obtaining of lower bounds
on the complexity of minorants of the considered function for branching
programs with restriction on the number of occurrences of a variable in a
path (read-k-times branching programs). Theorems that reduce the prob-
lem of nonlinear lower bounds on the complexity of Boolean functions
for branching programs to the problem of lower bounds on the complex-
ity of covering of the set of “ones” of a Boolean function by functions
of the defined type or to the problem of obtaining the upper bounds on
the number of “ones” of a Boolean function in i-faces of a cube of the
defined dimension are presented. A survey of bounds obtained by this
method is given.

1 Introduction

The problem of finding of nontrivial lower bounds on the complexity of well-
defined Boolean functions is one of important problems in the complexity theory.
In the paper the computation of Boolean functions by nondeterministic branch-
ing programs is considered. Methods of obtaining exponential lower bounds
on the complexity of Boolean functions for read-k-times branching programs
and nonlinear lower bounds on the complexity for branching programs without
restrictions are presented. These methods permit to obtain Ω(n log / log logn)
lower bound on the complexity of characteristic functions of Reed–Muller codes
and BCH codes for nondeterministic branching programs.

The best known lower bound on the complexity of Boolean functions for non-
deterministic branching programs is the bound Ω(n3/2

log n) obtained by P. Pudlák
[11] with the use of Nečiporuk’s method [5]. Nečiporuk’s method is an universal
method that is based on the cardinality approach. It can be applied to a number
of types of circuits. It gives nontrivial lower bounds on complexity of Boolean
� This research was supported by the Russian foundation for Basic Researches (Grant

03-01-00634) and President program for support of Leading Scientific schools (Grant
313.2003.1).

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 107–115, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

108 E.A. Okol’nishnikova

functions from a special class. Therefore the problem is to suggest methods of
obtaining nonlinear lower bounds for other classes of functions. Besides the lower
bound Ω(n log log log∗ n) for some symmetric functions (including the Majority
function) follows from the bound of A. A. Razborov [12] for the contact–rectifier
circuits. The lower bound Ω(n logn/ log logn) for the characteristic function of
Reed–Muller codes was obtained by E. A. Okol’nishnikova [8,9]. The similar
bound is valid for the characteristic function of BCH codes (Theorem 10).

The best known lower bound on the complexity of Boolean functions for
deterministic branching programs is the bound Ω(n2

log2 n
) obtained by P. Pudlák

[11] with the use of Nečiporuk’s method. For some symmetric Boolean functions,
in particular for the Majority function, P. Pudlák [10] obtained a lower bound

BP(MAJn) ≥ Ω(n log logn/ log log logn)

for deterministic branching programs. This bound was subsequently improved
to the bound Ω(n logn/ log logn) on the complexity of some symmetric Boolean
functions, including the Majority function MAJn and the elementary symmet-
ric function E�n/2� in n variables [1]. E. A. Okol’nishnikova [6] obtained lower
bounds on the complexity of characteristic functions of binary codes with a large
number of code nodes and growing (with respect to n) code distance for deter-
ministic branching programs. In particular, the lower bound Ω(n logn/ log logn)
for characteristic functions of BCH codes with a code distance logn/ log logn
was obtained.

The bounds for characteristic functions of codes in [6,8] were obtained by the
same method. This method reduces obtaining of lower bounds on the complexity
of Boolean functions for branching programs without restriction to obtaining of
lower bounds on the complexity of minorants of the considered function for
branching programs with restriction on the number of occurrences of a variable
in a path (read-k-times branching programs).

At present two methods [3,6] of obtaining lower bounds on the complexity
of functions for read-k-times branching programs are known. Exponential lower
bounds on the complexity of Boolean functions for deterministic read-k-times
branching programs (k(n) = O(log n/ log logn)) were obtained in [6], and for
nondeterministic branching programs in [8]. Exponential lower bounds on the
complexity of Boolean functions for nondeterministic read-k-times branching
programs for k(n) = O(log n) were obtained in [3]. In [9] methods both from [6,8]
and [3,16] were used for obtaining lower bounds on the complexity of minorants
of characteristic functions of Reed–Muller codes.

The direct application of the above-mentioned methods does not permit to
obtain exponential lower bounds for a lot of functions. The modification of the
method from [6] was suggested in [7]. This version of the method can be applied
for functions that are defined on the set of variables that corresponds to the
edges of graphs, hypergraphs and other multi-dimensional objects. The Boolean
function Fn,s was introduced in [7], and an exponential lower bound on the com-
plexity of this function for nondeterministic branching programs was obtained.

On Some Bounds on the Size of Branching Programs 109

An extension of ideas of these approaches was made in [2,14,15,16] in or-
der to obtain exponential lower bounds on the size of randomized read-k-times
branching programs.

Each function can be computed by read-k-times branching programs with
different values of k. In a number of papers it is shown that the complexity of
computing of a function by read-1-times branching programs can exponentially
(with respect to the number of variables) exceed the complexity of computing
of the same function by read-2-times branching programs.

It is shown in [7] that the complexity of computing of Fn,s by read-k-times
branching programs can exponentially exceed the complexity of computing the
Fn,s by read-�k ln k/ ln 2 + C�-times branching programs, where C is a con-
stant not depending on k. Later J. S. Thathachar proved (constructively) that
the complexity of computing of some functions in n variables by read-k-times
branching programs can exponentially (with respect to n) exceed the complexity
of computing of the same functions by read-(k + 1)-times branching programs.

Exponential lower bounds for schemes with different restrictions were ob-
tained in a lot of papers. But the method from [6,8] is the first one that allow
us to use lower bounds for schemes with restrictions for obtaining of nontrivial
lower bounds for schemes without restrictions.

The problem of nonlinear lower bounds on the complexity of Boolean func-
tions for branching programs is reduced to the problem of lower bounds on the
complexity of covering of the set of “ones” of a Boolean function by functions of
the defined type or to the problem of obtaining the upper bounds on the num-
ber of “ones” of a Boolean function in i-faces of a cube of the defined dimension
(Theorems 4 and 5).

We use traditional definitions of nondeterministic and deterministic branch-
ing programs (see, e.g. [13]). A nondeterministic branching program is said to
be read-k-times branching program if and only if for any i, 1 ≤ i ≤ n, edges
with xi-labels occur at most k times in any computation path (whether or not
consistent). By NBP(P) (BP(P)) denote the size of a nondeterministic (de-
terministic) branching program P . By NBP(f) (BP(f)) denote the size of the
minimal nondeterministic (deterministic) branching program that computes a
Boolean function f .

By NBPk(f) (BPk(f)) denote the size of the minimal nondeterministic (de-
terministic) read-k-times program that computes a Boolean function f .

2 Lower Bounds on the Size of Read-k-Times Branching
Programs

Note that methods of obtaining high lower bounds on the complexity of Boolean
functions for read-k-times branching programs in [3,6,7,16] are similar. Let P be
a branching program computing the Boolean function f in n variables. To each
“one” of a Boolean function f we can assign a path in P . This path is divided
into “equal” parts. A separating set for these parts is a subset of nodes [6,7] or
a subset of edges [3,16] of the branching program. The cardinality of this set

110 E.A. Okol’nishnikova

depends only on parameters selected beforehand and is considerably less than
the path length. The function fi is assigned to the chosen subset of nodes or
edges of the program P . This function depends only on this subset of nodes or
edges and does not depend on paths to which these subsets belong. Thus

f = ∨fi, (1)

i. e. the functions fi cover the set of “ones” of the function f . If the number of
“ones” of each function fi is not large, and the number of “ones” of f is large,
then the number of different subsets that corresponds to units of the Boolean
function is large. It allows us to obtain lower bound on the number of nodes (or
edges) of the branching program.

In [6] subsets of nodes of the branching program correspond to “ones” of the
function. We need to transform a branching program to uniform form in this
case. Recall (see [6,8]) that nondeterministic read-k-times branching program is
said to be uniform if for every node a of this program and for every i, 1 ≤ i ≤ n,
the number of edges with xi-labels, in each path from the source to a node a
depends only on i and a. Moreover, for every i, 1 ≤ i ≤ n, the number of edges
labelled with xi = d, in each path from the source to the exit is equal to k.

This transformation slightly increases the size of a program, but it makes
possible to consider the generalized parts of the path. It gives the possibility
to assign to a path not all nodes that were chosen as a separating set of the
path, but only a part of them. Sometimes in this a way it is possible to receive
bounds that are better than bounds obtained by the application of a method
from [3], especially when read-k-times branching programs are used for obtaining
of lower bounds on the complexity for branching programs without restrictions
(see Corollary 1).

In [3] subsets of edges of the branching program correspond to units of the
function. On the one hand, there is no need to transform a branching program to
a uniform form in this case, and on the other hand it does not allow to combine
parts of the path, i. e., it is necessary to assign to a path all edges that are the
separators of the parts. In order to obtain lower bounds on the complexity for
branching programs by this method it is necessary to extract the root of greater
degree than in [6] from the cardinality of the obtained covering of set of “ones”
of the function from (1).

Let’s consider all possible representations of the function f(Y), |Y | = n, of
the form

f(Y) =
A∨

j=1

f j
1 (Y j

1 ∪ Y j
0) ∧ f j

2 (Y j
2 ∪ Y j

0), (2)

where Y j
1 , Y j

2 , and Y j
0 are nonintersecting sets; Y = Y j

1 ∪ Y j
2 ∪ Y j

0 ; |Y | = n;
|Y j

1 | ≥ m1; |Y j
2 | ≥ m2; |Y j

0 | = n− |Y j
1 | − |Y j

2 |.
By A(f ;n,m1,m2) denote the minimal number of disjunctive terms in the

representation (2).
I. We formulate the result from [8] for a particular case when p = k and

t = k2 + k (see lemma 3(1) from [8]). We have

On Some Bounds on the Size of Branching Programs 111

Theorem 1 ([8], Theorem 3). Let f be a Boolean function essentially de-
pending on n variables, n ≥ 16. Then

NBPk(f) ≥ max
{
n;

1
8
√
k
· (A(f ;n,m1,m2))

1/(4k)
}
,

where m1 =
⌈
n
/(

2(ke)k
)⌉

, m2 = �n/(k + 1)�.
II. In the same terms results from [3,16] can be formulate in the following

form.

Theorem 2. Let f be a Boolean function essentially depending on n variables.
Then

NBPk(f) ≥ max
{
n;

1
2
· (A(f ;n,m1,m2))

1/(144k2·2k)
}
,

where m1 = �(2/3)n/2k�, m2 = �(2/3)n/2k�.

3 Reduction of Lower Bounds on the Complexity for
Programs Without Restrictions to Lower Bounds on
the Complexity for Read-k-Times Programs

The idea of a method of obtaining of nonlinear lower bounds for branching pro-
grams without restrictions is the same as in [6]. Let P be a branching program
that computes a Boolean function f(x1, x2, . . . , xn). Let the number of occur-
rences of a variable xi on a path from the input node to the output node exceeds
k(n), where k(n) → ∞ as n → ∞, and the number of such variables is not
small. Then the size of P can not be small too. If the number of such variables
is small, we substitute constants for these variables. It allows us to transform
the program P to a program P ′ with restrictions on the number of occurrences
of a variable in a path, i. e. to consider the computation of a minorant of the
function f by read-k(n)-times branching programs.

This approach allows us to reduce obtaining of lower bounds on the complex-
ity of a Boolean function for branching programs without restrictions to obtain-
ing of lower bounds on the complexity of minorant functions of the considered
Boolean function for programs with restrictions, namely, for read-k(n)-times
branching programs.

Let f(x1, x2, . . . , xn) be a Boolean function, X ′ = {xi1 , . . . , xim} be a subset
of the set {x1, x2, . . . , xn}, and α = {αi1 , . . . , αim} be a set of constants. By
f
∣∣
X′=α

denote the function that is obtained from f by substitution of constants
from α instead of variables from X ′.

Theorem 3 ([8], Theorem 1). Let g(X) be a Boolean function, C, 0 < C < 1,
be a constant, ψ(n) be a growing function. Let X0 be a subset of variables, i. e.,
X0 ⊆ X, and let |X0| = �Cn�. If for each X0 there exists a substitution of
constants α in the set X0 such that NBPk(n)

(
g
∣∣
X0=α

(X \X0)
)
≥ nψ(n), then

NBP(g) ≥ min{Cnk(n), nψ(n)}.

112 E.A. Okol’nishnikova

4 Lower Bounds on the Complexity for Branching
Programs Without Restrictions

From Theorems 1, 2, and 3 it is easy to formulate theorems that reduce the
problem of nonlinear lower bounds on the complexity of Boolean functions for
branching programs to estimating of the value A(f ;n,m1,m2), i.e. to the prob-
lem of lower bounds on the complexity of covering of the set of “ones” of a
Boolean function by functions of the defined type.

There are some ways to obtain lower bounds on A(f ;n,m1,m2). We use the
following one. (The same way was used in [8]).

By Hi(f) denote the maximal number of “ones” of a Boolean function f
belonging to i-faces of a cube.

It is easy to prove the following lemma.

Lemma 1. The value A(f ;n,m1,m2) satisfies an inequality

A(f ;n,m1,m2) ≥ |f−1(1)|
2n−m1−m2Hm1(f)Hm2(f)

.

Combining Lemma 1, Theorem 1, 2, and 3 we obtain the following theorems.

Theorem 4 ([9], Theorem 6). Let gn(Xn), |Xn| = n, be a sequence of Boolean
functions; k(n) be a growing function; C, 0 < C < 1, be a constant. Then
the complexity NBP(gn) of the function gn(Xn) for nondeterministic branching
programs without restrictions satisfies an inequality

NBP(gn) ≥ min

{
Cnk(n),

1
8
√
k
·
(|g−1

n (1)|
2n−m1−m2Hm1(gn)Hm2(gn)

)1/(4k)
}
,

where m1 =
⌈
�(1−C)n�

2(ke)k

⌉
, m2 =

⌈
�(1−C)n�

k+1

⌉
.

Theorem 5 ([9], Theorem 7). Let gn(Xn), |Xn| = n, be a sequence of Boolean
functions; k(n) be a growing function; C, 0 < C < 1, be a constant. Then
the complexity NBP(gn) of the function gn(Xn) for nondeterministic branching
programs without restrictions satisfies an inequality

NBP(gn) ≥ min

{
Cnk(n),

1
2
·
(|g−1

n (1)|
2n−m1−m2Hm1(gn)Hm2(gn)

)1/(144k2·2k)
}
,

where m1 = m2 =
⌈
(2/3) �(1−C)n�

2k

⌉
.

5 Lower Bounds on the Complexity of Characteristic
Functions of Binary Codes for Nondeterministic
Branching Programs

We use the results from [17] for generalized Hamming weights and the weight
hierarchy for linear codes to estimate the maximum number of the code nodes

On Some Bounds on the Size of Branching Programs 113

belonging to i-faces, i.e. to obtain the upper bound on Hi for the characteristic
function of Reed–Muller codes. For these codes we shall use the notation from
[4,17]. By R(u,m) denote the mth Reed–Muller code of order u. R(u,m) is
considered as a linear space composing of all Boolean polynomials of degree u
or less in m variables v1, v2, . . . , vm.

It is known that the number of code nodes in R(u,m) is equal to

21+(m
1)+(m

2)+...+(m
u); (3)

the length of code words is equal to

n = 2m; (4)

the minimal code distance is

d = 2m−u.

Theorem 6 ([8], Theorem 7). Let ϕ be a natural number not exceeding m.
Then a 2m/2ϕ-face of the cube contains no more than 2(m−ϕ

0)+(m−ϕ
1)+...+(m−ϕ

u−ϕ)

code nodes of the code R(u,m).

From this theorem and Theorems 4 and 5 we obtain the following bounds on
the complexity of characteristic functions of Reed–Muller codes.

Theorem 7 ([8], Theorem 8). Let m
m−um

→ ∞ as m → ∞ and m − u ≥ 3.
Then

NBP(R(um,m)) = Ω

(
2m m

m− um

/
ln

m

m− um

)
.

The proof of the following theorem is similar to that of Theorem 7.

Theorem 8 ([9], Theorem 10). Let m
m−um

→∞ as m→∞ and m− u ≥ 3.
Then

NBP(R(um,m)) ≥ 2m−1 min
{

m

8(m− um)
,
m− um

4
log2

m

m− um

}
.

Combining Theorems 7 and 8 we have

Theorem 9 ([9], Theorem 11). Let m
m−um

→∞ as m→∞ and m−um ≥ 3.
Then

NBP(R(um,m)) ≥ 2m

2
max

{
m

4(m− um)

/
log2

m

m− um
,

min
{

m

8(m− um)
,
m− um

4
log2

m

m− um

}}
.

114 E.A. Okol’nishnikova

Corollary 1. Let m
m−um

→∞ as m→∞ and m− um ≥ 3. Then

NBP(R(um,m)) #

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2mm
(m−um)

/
log2

m
m−um

, if m− um ≤ h

(by Theorem 7);
2m
√
m, if h ≤ m− um ≤

√
m

log2
√

m

(by Theorem 8);
2m(m−um)

8 log2
m

m−um
, if

√
m

log2
√

m
≤ m− um ≤ h1

(by Theorem 8);
2m
√
m log2m, if h1 ≤ m− u ≤

√
m√

log2(m)

(by Theorem 8);
2mm

16(m−um) , if
√

m√
log2 m

≤ m− um

(by Theorem 8).

where h =
2
√
m
(
1− 2 log2 log2

√
m

log2 m

)
log2m

,

h1 =

√
m
(
1− 2 log2 log2 m

log2 m

)
√

log2(m)
.

From this corollary it follows that there exist Boolean functions such that
lower bounds of the complexity of these functions obtained by the use of Theorem
7 are better than similar ones obtained by the use of Theorem 8, and vise versa.

Reed–Muller code is a linear code, and the number of checking symbols of this
code is equal to 21+(m

1)+(m
2)+...+(m

m−u−1). The complexity of a linear function (in
n variable) for deterministic branching program is not more than 2n. Therefore

NBP(R(um,m)) ≤ 2m+1+1+(m
1)+(m

2)+...+(m
m−u−1).

From this fact and Theorem 9 we have

Corollary 2. Let um = m− C0, where C0, C0 ≥ 3, is a constant, then

n logn/ log logn $ NBP(R(um,m)) $ n logC0−1 n,

where n is a number of variables of the characteristic function of R(um,m).

There is a slight difference between statement of Theorem 1 for nondeter-
ministic and deterministic branching programs. Bounds

n lnn/ ln lnn $ BP(Hr) $ n ln2 n/ ln lnn,

on the complexity of the characteristic function of BCH code Hr

(r = lnn/ ln lnn) were obtained for deterministic branching programs (Corollary
3 from [6]). It is easy to obtain similar bounds for nondeterministic branching
programs.

On Some Bounds on the Size of Branching Programs 115

Theorem 10. Let Br be a characteristic function of BCH code, where r =
lnn/ ln lnn, then

n lnn/ ln lnn $ NBP(Hr) $ n ln2 n/ ln lnn.

References

1. Babai L., Pudlák P., Rödl V., Szemerédi M. Lower bounds to the complexity of
symmetric Boolean functions. Theoretical Computer Science, 74 (1990) 313–324.

2. Bollig B., Sauerhoff M., Wegener I. On the nonappoximability on boolean functions
by OBDD and read-k-times branching programs. Information and Computation,
178 (2002) 263–278.

3. Borodin A., Razborov A., Smolensky R. On lower bounds for read-k-times branch-
ing programs. Computational Complexity, 3(1) (1993) 1–18.

4. MacWilliams F.J., Sloane N.J.F. The theory of Error-Correcting Codes. Amster-
dam: North-Holland, (1977).

5. Nečiporuk E. On a Boolean function. Soviet Math. Doklady, 7 (1966) 999-1000.
6. Okol′nishnikova E. A. Lower bounds on complexity for the realization of charac-

teristic functions of binary codes by binary programs. Metody Diskret. Anal., 51
(1991) 61–83 (in Russian) (see also: Siberian Adv. Math., 3(1) (1993) 152–166).

7. Okol’nishnikova E. A. On the hierarchy of nondeterministic branching k-programs.
In Proc. of FCT 97, Lecture Notes in Comput. Sci., 1279 (1997) 376–387.

8. Okol’nishnikova E. A. On one method of obtaining of lower bounds of Boolean
functions for nondeterministic branching programs. Diskretn. Anal. Issled. Oper.
Ser. 1, 8(4) (2001) 76–102 (in Russian). (see also: ECCC TR02-020,2002, available
at http://www.eccc.uni-tri.de/eccc/ (in English))

9. Okol’nishnikova E. A. On the complexity of nondeterministic branching programs
for characteristic functions of Reed–Muller codes. Diskretn. Anal. Issled. Oper. Ser.
1, 10(3) (2003) 67–81 (in Russian).

10. Pudlák P. A lower bound on complexity of branching programs. Lecture Notes in
Comput. Sci., 176 (1984) 480–489.

11. Pudlák P. The hierarchy of Boolean circuits. Comput. Artificial Intelligence, 6(5)
(1987) 449–468.

12. Razborov A. A. Lower bounds on the complexity of symmetric Boolean functions
by switching-rectifier circuits. Matemat. zametki, 48(6) (1990) 79-90.

13. Razborov A. A. Lower bounds for deterministic and nondeterministic branching
program. Lecture Notes in Comput. Sci., 529 (1991) 47–61.

14. Sauerhoff M. Randomness versus nondeterminism for read-once and read-k branch-
ing programs. Lecture Notes in Comput. Sci., 1373 (1998) 105–115.

15. Sauerhoff M. Randomness versus nondeterminism for read-once and read-k branch-
ing programs. Lecture Notes in Comput. Sci., 2607 (2003) 307–318.

16. Thathachar J. S. On separating the read-k-times program hierarchy. In Proc. of
the 30th annual ACM Symposium on theory of computing, (1998) 652–662.

17. Wei V.K. Generalized Hamming weights for linear codes. IEEE Trans. on Inform.
Theory, 37(5) (1991) 1412–1418.

Two Metaheuristics for Multiobjective

Stochastic Combinatorial Optimization

Walter J. Gutjahr

Dept. of Statistics and Decision Support Systems,
University of Vienna

Abstract. Two general-purpose metaheuristic algorithms for solving
multiobjective stochastic combinatorial optimization problems are in-
troduced: SP-ACO (based on the Ant Colony Optimization paradigm)
which combines the previously developed algorithms S-ACO and P-ACO,
and SPSA, which extends Pareto Simulated Annealing to the stochastic
case. Both approaches are tested on random instances of a TSP with
time windows and stochastic service times.

Keywords: Ant colony optimization, combinatorial optimization, multi-
objective decision analysis, simulated annealing, stochastic optimization.

1 Introduction

Recently, two branches of combinatorial optimization have undergone a partic-
ularly dynamic evolution due to a strong application pull on the one hand, a
technology push triggered by increased computer power on the other hand. The
one of these branches is multiobjective combinatorial optimization (MOCO) pur-
suing the aim to support decision makers in the choice among a finite, but large
number of alternatives without imposing the necessity of an a priori assignment
of weights to different objectives (see, e.g., Ehrgott and Gandibleux [6]). Espe-
cially the solution of MOCO problems by metaheuristics has recently attracted
the attention of many researchers [8]. The other of the mentioned branches is
stochastic combinatorial optimization (SCO), which promises to support decision
making under a type of uncertainty that can be represented by some suitable
stochastic model. In many cases, simulation is used as an auxiliary tool for solv-
ing SCO problems. Efficient methods of diverse kind have been developed in the
past for SCO and simulation-supported optimization (for a recent survey, see Fu
[7]). Also in this area, metaheuristic techniques are gaining importance.

Interestingly enough, despite the large body of literature in both the MOCO
and the SCO area, there are only few papers combining both features, although
it would be desirable to be able to cope with problems that incorporate both mul-
tiple objectives and uncertainty. The scarcity of literature in this intersection has
also been noted in [7] and in [1]. Very few articles deal with problems of this com-
bined type by metaheuristic techniques. Baesler and Sepulveda [1] report on a
multiobjective simulation-optimization problem in layout and scheduling, which
they solve by a modification of a genetic algorithm (GA); their approach relies

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 116–125, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Two Metaheuristics for Multiobjective SCO 117

on goal programming. Also Hughes [11] uses a GA approach, but he refers to the
paradigm of finding nondominated (Pareto-optimal) solutions. He adapts rank-
ing procedures applied in standard multiobjective GAs to the situation where
function evaluations are subject to random noise.

The aim of this paper is to present two general-purpose metaheuristic solu-
tion algorithms SP-ACO and SPSA, determining approximations to the Pareto-
optimal set for instances from a large class of MOSCO (multiobjective stochas-
tic combinatorial optimization) problems. In Section 2, the considered type of
MOSCO problems is defined. Section 3 presents the new algorithms SP-ACO and
SPSA. The first, SP-ACO, is based on the ant colony optimization (ACO) par-
adigm (see [5]), whereas the second, SPSA, an extension of the PSA algorithm
by Czyzak and Jaszkiewicz [2], draws on the well-known simulated annealing
metaheuristic. In Section 4, we outline the application of both approaches to
randomly generated instances of a bi-objective stochastic travelling salesperson
problem with time windows and stochastic service times, and report on the ob-
tained experimental results. Section 5 contains conclusions.

2 MOSCO Problem Formulation and Objective Function
Estimation

Both approaches are designed for the heuristic solution of MOSCO problems of
the following very general form:

Minimize (F1(x), . . . , FR(x)) subject to x ∈ S (1)

with Fr(x) = E (fr(x, ω)) (r = 1, . . . , R). Therein, x is the decision variable,
fr is the r-th cost function, R is the number of objectives (cost functions), ω
denotes the influence of randomness, E denotes the mathematical expectation,
and S is a finite set of feasible decisions.

A solution x′ ∈ S dominates a solution x ∈ S, if Fr(x′) ≤ Fr(x) for all
r = 1, . . . , R, and if there is at least an index r such that Fr(x′) < Fr(x). A
solution x ∈ S is called dominated resp. nondominated by a set S′ ⊆ S of
solutions, if there is an x′ ∈ S′ such that x′ dominates x, resp. if there is no such
x′ ∈ S′. A solution x is called Pareto-optimal if it is nondominated by S. The
Pareto-optimal set is the set of Pareto-optimal solutions. As an exact solution of
(1), we consider the Pareto-optimal set defined by the MOCO problem (1). Since
the proposed algorithms are heuristics, it cannot be expected that they will in
general produce the Pareto-optimal set. They output approximations to this set.
Concerning quality evaluation of these approximations, we refer the reader to
Section 4.

In our context, it is not necessary that E (fr(x, ω)) can be computed numer-
ically. Instead, sampling is used for estimating this quantity: For this purpose,
draw N random scenarios ω1, . . . , ωN independently from each other. A sample
estimate of Fr(x) = E (fr(x, ω)) is given by

EFr(x) =
1
N

N∑
ν=1

fr(x, ων) ≈ E (fr(x, ω)). (2)

118 W.J. Gutjahr

3 Algorithms

3.1 The SP-ACO Algorithm

There exits several articles extending the ACO metaheuristic to multiobjective or
to stochastic problems; see Dorigo and Stützle [5] for a survey. For our combined
approach, we rely on the following formerly developed basic techniques: In [9],
[10], an algorithm S-ACO for the heuristic solution of single-objective stochastic
combinatorial problems has been proposed. The algorithm SP-ACO (Stochastic
Pareto Ant Colony Optimization) presented here is an extension of S-ACO to
the multiobjective case, combining it with the P-ACO algorithm developed for
MOCO problems in [3], [4]. S-ACO and SP-ACO work based on the encoding
of a given problem instance as a construction graph C, a directed graph with a
distinguished start node. The stepwise construction of a solution is represented
by a self-avoiding random walk in C, beginning in the start node. There may
be additional rules defining particular nodes as infeasible after a certain partial
walk has been traversed. When there is no feasible unvisited successor node
anymore, the walk stops and is decoded as a complete solution for the problem.
The conceptual unit performing such a walk is called an ant.

The encoding must assign exactly one feasible solution to each feasible walk.
Vice versa, to each feasible solution at least one feasible walk (possibly more)
must correspond. Given that the indicated condition is satisfied, we may consider
a walk as a solution, denote it again by the symbol x and consider S as the set
of feasible walks.

The probability pkl that an ant goes from a node k to a feasible successor node
l is chosen as proportional to τkl · ηkl(u), where τkl is the so-called pheromone
value, a memory value storing how good step (k, l) has been in previous runs,
and ηkl(u) is the so-called visibility, a pre-evaluation of how good step (k, l) will
presumably be, based on some problem-specific heuristic. ηkl(u) is allowed to
depend on the partial walk u performed so far. In the experimental investigations
in this paper, we did not use nontrivial visibility values, setting ηkl(u) = 1 in
each case. For this reason, the role of the visibility (which can improve solution
quality) will not be discussed here. For details, we refer the reader to [5].

Whether a continuation (k, l) of a partial walk u ending with node k is feasible
or not is defined in accordance with the condition above that node l is not yet
contained in u, and that none of the (eventual) additional rules specifies l as
infeasible after u has been traversed.

In a loop, a predefined number Γ of random walks of ants according to
the procedure above are performed sequentially. These Γ walks form together a
round of the process. The single-objective heuristic S-ACO determines in each
round a round-winner. This is done by comparing all walks that have been per-
formed in this round on one random scenario ω, drawn specifically for this round.
In the multiobjective context of SP-ACO, the determination of a round winner
necessitates that a unique objective function for ranking the solutions produced
by the walks of the ants is defined for this round. We do this by taking a weighted
average of the cost functions f1, . . . , fR. The weights w1, . . . , wR are drawn ran-

Two Metaheuristics for Multiobjective SCO 119

Procedure SP-ACO

τ
(r)
kl := 1 for all (k, l) and for all r = 1, . . . , R;

initialize the solution set X as the empty set;
for period π = 1 to Π {

draw weights w1, . . . , wR randomly;

τ :=
∑R

r=1 wrτ
(r);

for round m = 1 to M {
for ant γ = 1, . . . , Γ {

set position k equal to start node of C;
set u equal to the empty list;
while (a feasible continuation (k, l) of u exists) {

select successor node l with probability

pkl =

{
0, if (k, l) is infeasible,

τkl · ηkl(u) /
(∑

(k,r) τkr · ηkr(u)
)

, else,

the sum being over all feasible (k, r);
set k := l, and append l to u; }

xγ := u; }
based on one random scenario ω and objective function

f(x, ω) =
∑R

r=1 wrfr(x,ω),
select the best walk x out of x1, . . . , xΓ ;
if (m = 1) set x̂ := x; // candidate for best solution in period
else {

based on random scenarios ω1, . . . , ωNm , compute sample estimate

E(F (x) − F (x̂)) = 1
Nm

∑Nm
ν=1

∑R
r=1 wr(fr(x,ων) − fr(x̂, ων));

if (E(F (x) − F (x̂)) < 0) set x̂ := x; }
evaporation: τ (r) := (1 − ρ) τ (r) for all r;

global-best reinforcement: τ
(r)
kl := τ

(r)
kl + c1wr for all (k, l) ∈ x̂ and all r;

round-best reinforcement: τ
(r)
kl := τ

(r)
kl + c2wr for all (k, l) ∈ x and all r;

τ :=
∑R

r=1 wrτ
(r);

based on a sample of size N (c), evaluate estimates EF1(x̂), . . . , EFr(x̂);

if (x̂ nondominated by X according to computed estimates of size N (c))
add x̂ to X and remove dominated elements from X; } }

Fig. 1. Pseudocode SP-ACO

domly at the beginning of a process phase called period. A period contains several
rounds in which solutions are gradually improved w.r.t. the current weights. In
the next period, new weights are drawn; this process is iterated.

In an ACO implementation for a deterministic problem, it is customary to
store the best solution seen so far in a special variable. A crucial difference to the
deterministic case is that in the stochastic context, it is not possible anymore
to decide with certainty whether a current solution x is better than the solution
currently considered as the best found, x̂, or not. To make a tentative decision
by sampling, we perform a tournament: After a current round-winner x has
been determined, x is compared with the solution considered as the overall best
solution so far in this period, x̂. For evaluating the solutions, a weighted average
F of the objective functions F1, . . . , FR with the current weights w1, . . . , wR is

120 W.J. Gutjahr

used, and estimates for the values of the functions Fr are determined from a
sample consisting of Nm randomly drawn scenarios ων which are used by both
solutions. Also these scenarios are round-specific, i.e., in the next round, new
scenarios will be drawn. The larger Nm, the more reliable is the decision. The
winner of the comparison is stored as the new “global-best” x̂. In [9] it is shown
that the sample size Nm should be increased as a linear function of the round
number m to enable a convergence result for the single-objective case.

Next, the solution x̂ considered so far as the best of the current period as well
as the current round-winner are reinforced on each of their arcs by pheromone
increments, after a certain fraction ρ (“evaporation factor”) of pheromone has
been removed from each arc. The parameters c1 > 0 and c2 > 0 in the algorithm
determine the amount of pheromone increment on global-best and round-best
walks, respectively.

We take account of the different objective functions F1, . . . , FR by assigning
a separate pheromone matrix τ (r) = (τ (r)

kl) to each objective r. Global-best and
round-best reinforcement is done in each of these pheromone matrices with the
current respective weight wr. For the transition from a node k to a feasible
successor node l, the guiding pheromone values τkl must be computed as a
weighted mean of the objective-specific pheromone values τ (r)

kl . As weights we
take again the current values wr.

After reinforcement, it is checked whether the current global winner solution
x̂ can be added to the current set X of candidates for the approximation to
the Pareto-optimal set. For this purpose, an estimation of the objective function
values F1(x̂), . . . , FR(x̂) based on a random sample of constant size N (c), where
N (c) is comparably large, is performed. If x̂ turns out as nondominated by X
according to these estimates, x̂ is added to X , and solutions in X dominated
by x̂ are removed from X . The objective function estimates obtained from the
sample of size N (c) are assigned to x̂ in the list of the elements of X for future
dominance comparisons with new candidates for the solution set X .

3.2 The SPSA Algorithm

In this subsection, we present an extension of the PSA (Pareto Simulated An-
nealing) algorithm by Czyzak and Jaszkiewicz [2], designed for solving MOCO
problems, to an algorithm SPSA (Stochastic Pareto Simulated Annealing) for
the solution of MOSCO problems. Since PSA is already a well-established tech-
nique, we keep the description short, focusing on the points by which SPSA
extends PSA. The pseudocode of SPSA is given in Fig. 2.

PSA uses a search set (here denoted by Θ) exploring the solution space
governed by a mechanism that (i) drives the search points towards the Pareto-
optimal set, and (ii) favors diversification by forcing points that lie close to each
other in the solution space to “specialize” on different objectives. The last effect
is achieved by a suitable modification of the weights assigned to the objective
functions: the weights are increased for those objectives for which a current
search point x is better than a near-by search point x′, and decreased for the
others.

Two Metaheuristics for Multiobjective SCO 121

Procedure SPSA

initialize the search set Θ by s random feasible solutions;
initialize the solution set X as the empty set;

initialize N (2) by Ninit;
for i = 1 to s

if (ith solution xi in Θ is nondominated by X, based on sample size N (1))
add xi to X and remove dominated elements from X;

initialize temperature parameter T ;
repeat until (termination criterion is met) {

for l = 1 to L {
for i = 1 to s {

for r = 1 to R

compute sample estimate EFr(xi) based on sample size N (3);
construct a random feasible neighbor solution y to xi;
select x′ ∈ Θ nondominated by xi with minimum distance to xi;
if (first run or x′ not found) {

for r = 1 to R
draw random weight wir;

normalize weights wir to
∑

r wir = 1; }
else {

for r = 1 to R {
compute sample estimate EFr(x

′) based on sample size N (3);
if (EFr(xi) < EFr(x

′)) wir := awir; else wir := wir/a;
normalize weights wir to

∑
r wir = 1; } }

for r = 1 to R

compute sample estimate E(Fr(xi) − Fr(y)) based on sample size N (2);
with probability min(1, exp(

∑
r wirE(Fr(xi) − Fr(y))/T) {

xi := y;

if (T < Tc and y nondominated by X, based on sample of size N (1))
add y to X and remove dominated elements from X; } } }

T := bT ;

increase N (2) by Ninc; }

Fig. 2. Pseudocode SPSA

Basically, our extension SPSA works as PSA, with the exception that at any
time when an objective function evaluation is necessary, an estimation based on
sampling is done. For the sample estimate, we use the notation of (2). Three
sample size parameters N (1), N (2) and N (3) are used. N (1) and N (3) are con-
stants, N (2) is a variable. N (1) corresponds to the sample size N (c) in the SP-
ACO algorithm in that it is applied for deciding whether a candidate solution
is (presumably) nondominated by the current elements of the solution set X .
As N (c) in the case of SP-ACO, N (1) must be high, because the estimates are
not revised anymore at a later time. In the experiments, it turned out that
better results were achieved by considering insertion into X only after the tem-
perature parameter T has fallen below some threshold Tc. Sample size N (2) is
used for deciding whether or not a neighbor solution is to be accepted. Since by
the simulated annealing philosophy, in a late phase (low temparature), neighbor

122 W.J. Gutjahr

solutions that are not better than the current solution should be rejected with a
high probability, it is important that the estimation accuracy for the difference of
the objective function values is gradually increased during the process, similarly
as we gradually increase Nm in the SP-ACO algorithm. The third sample size,
N (3), is used for getting estimates of the objective function values of a current
solution x ∈ Θ compared to those of the closest neighbor x′ of x in Θ.

4 Experimental Results on a TSPTW-SST

For first computational experiments with the described algorithms, we used a
bi-objective TSP with Time Windows and Stochastic Service Times (TSPTW-
SST). A set of customers {1, . . . , n} and a distance matrix D = (dij) are given.
Distances are interpreted as driving times. Let us imagine that the travelling
person is a service engineer. To each customer i, a time window [ai, bi] can
be assigned, indicating that customer i requests a visit by the service engineer
starting at time ti with ai ≤ ti ≤ bi. If the service engineer arrives at customer
i at a time ti before time ai, (s)he must wait until time ai. If (s)he arrives after
time bi, a tardiness of amount ti − bi is registered. Not every customer needs
to have a time window for the visit. The service at customer i takes some time
Yi, where Yi is a random variable with known distribution. After finishing the
service at customer i, the service engineer drives to the next customer on the
list given by the chosen permutation x of customers. The aim is to minimize the
exepected values of two objectives: (i) the sum of total driving time and total
waiting time, (ii) the sum of the tardiness values (ti − bi)+.

Besides SP-ACO and SPSA, we also implemented a complete enumeration
procedure combined with brute force simulation (CE/BFS, sample size 106) to
evaluate proposed solutions, and a random search (RS) procedure with constant
sample size per solution.

We generated 12 different problem instances at random. The problem size
was chosen as n = 9 in all these instances, which was the largest number of
customers for which we were able to compute the Pareto-optimal set by the
CE/BFS approach within reasonable time. (On a PC Pentium 2.4 GHz, this took
about 5 hours per test instance; the sample size was chosen as high as 106 to
reach a sufficient accuracy of the objective function evaluations.) Test instances
with n = 9 may seem as very small, but we would like to emphasize that in
the combined setting of two different objectives combined with simulation-based
objective function determination, the problem is highly nontrivial already for
this instance size.

In the case of each problem instance, n = 9 customer points were selected
uniformly at random from a square. Distances were computed as Euclidean dis-
tances between these points. It was assumed that traversing an edge of the square
takes 10 time units. For each customer, a random decision was made on wether
or not to assign a time window, using a fixed probability pTW for the existence of
a time window. If a time window was assigned, its length was selected uniformly
at random between 6 and 60 time units, and its start time was selected uni-

Two Metaheuristics for Multiobjective SCO 123

formly at random between time 0 and the maximum time such that the whole
time window was still contained in an interval of 120 time units. The service
time distributions were chosen as uniform distributions on the interval between
two values σmin and σmax.

Experiments were carried out for the following combinations of parameter
values: For pTW , we considered the cases pTW = 0.2 and pTW = 0.3, and for
the intervals [σmin, σmax], we chose the cases [0, 20], [0, 40] and [10, 30]. For each
of the 6 parameter combinations, 2 random test instances were generated, such
that 12 test instances in total were produced. Fig. 3 shows a typical Pareto front
(Pareto-optimal set in objective space).

To have a fair comparison, each of the heuristic algorithms SP-ACO, SPSA
and RS was given 20 seconds on a PC Pentium 2.4 GHz for a single run.
The parameters of each heuristic were tuned to best possible results within
these 20 seconds at the first test instance for the combination pTW = 0.2,
[σmin, σmax] = [0, 40]. After that, 100 runs for each of the three heuristics were
performed on each test instance and evaluated with the help of the results ob-
tained by CE/BFS.

The tuning yielded the following parameter values: (a) SP-ACO: M = 10,
Γ = 200, ρ = 0.00005, N (c) = 2000, c1 = 0.0005, c2 = 0.000005. (b) SPSA:
s = 10, N (1) = 500, N (2): initial value 1, increment 1, N (3) = 1, a = 1.1, b = 0.9.
A neighbor solution y was determined by mn random 2-opt moves, where mn

was chosen uniformly between 1 and 4. (c) RS: sample size Nrs = 200 per
randomly generated solution. Concerning the SP-ACO parameters, we remark
that the value ρ may seem rather low compared to usual ACO implementations
for single-objective deterministic problems. However, it should be noted that
pheromone is not re-initialized at the beginning of each period, such that also
low values of ρ effect distinct differences in the pheromone values towards the

0

5000

10000

15000

20000

25000

30000

35000

40000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

driving/waiting time

ta
rd

in
es

s

Fig. 3. Pareto front for the first instance of pTW = 0.2, [σmin, σmax] = [0, 40], time

units multiplied by 1000

124 W.J. Gutjahr

Table 1. Results for the 12 test instances (including 100 runs per instance and method)

average ratio of found sol. significantly better
test instance no. sol. aco sa rs aco : sa aco : rs sa : rs

0.2, [0,20] / 1 22 0.337 0.327 0.184 n aco (s∗∗) sa (s∗∗)
0.2, [0,20] / 2 17 0.663 0.571 0.444 aco (s∗∗) aco (s∗∗) sa (s∗∗)
0.2, [0,40] / 1 41 0.421 0.285 0.218 aco (s∗∗) aco (s∗∗) sa (s∗∗)
0.2, [0,40] / 2 34 0.450 0.450 0.343 n aco (s∗∗) sa (s∗∗)
0.2, [10,30]/ 1 25 0.428 0.305 0.222 aco (s∗∗) aco (s∗∗) sa (s∗∗)
0.2, [10,30]/ 2 16 0.727 0.720 0.511 n aco (s∗∗) sa (s∗∗)
0.3, [0,20] / 1 21 0.701 0.561 0.366 aco (s∗∗) aco (s∗∗) sa (s∗∗)
0.3, [0,20] / 2 19 0.748 0.652 0.448 aco (s∗∗) aco (s∗∗) sa (s∗∗)
0.3, [0,40] / 1 23 0.620 0.662 0.515 sa (s∗∗) aco (s∗∗) sa (s∗∗)
0.3, [0,40] / 2 27 0.432 0.480 0.329 sa (s∗∗) aco (s∗∗) sa (s∗∗)
0.3, [10,30]/ 1 20 0.532 0.582 0.459 sa (s∗∗) aco (s∗) sa (s∗∗)
0.3, [10,30]/ 2 11 0.550 0.451 0.338 aco (s∗∗) aco (s∗∗) sa (s∗∗)

end of the procedure. Moreover, it can be observed that in the parameter choice
above, the global pheromone increment c1 is 100 times as high as the local
pheromone increment c2, which turned out as advantageous.

In the literature, many measures have been described for evaluating the re-
sults of multiobjective optimization heuristics (see, e.g., Jaszkiewicz [12]). Since
our present results are only intended as a first experimental test, we used only
one, rather basic evaluation metric, namely the ratio of Pareto-optimal solutions,
as determined by CE/BFS, that are covered by one of the solutions in the output
set of a considered heuristic algorithm. This is the first evaluation metric Q1 for
MOCO heuristics suggested in [12]; it goes back to Ulugu et al. [13].

In Table 1, we list the average Q1 value over 100 test runs for each problem
instance and each heuristic. In addition, for each problem instance and each pair
of heuristics, we performed a (two-sided) Wilcoxon test to decide whether or not
the difference between the indicated average Q1 values for the two heuristics is
statistically significant or not. Column 2 of Table 1 shows the total number of
Pareto-optimal solutions, columns 3 – 5 the averageQ1 values over 100 runs, and
columns 6 – 8 the results of the significance tests for the pairwise comparisons
(n: no significance; s, s∗ and s∗∗: significance at level α = 0.05, 0.01 and 0.001,
respectively). If a significant difference was found, the heuristic with the better
results in the pairwise comparison was named. As it can be seen, both SP-
ACO and SPSA outperformed RS in all cases with high significance. SP-ACO
outperformed SPSA in 6 cases with high significance and was outperformed by
SPSA in 3 cases, also with high significance. In the 3 remaining cases, there was
no statistically significant difference between the results of SP-ACO and SPSA.

5 Conclusions

Two metaheuristics, SP-ACO and SPSA, for solving MOSCO problems have
been developed and compared on a TSPTW with stochastic service times. The
results do not indicate a consistent superiority of SP-ACO over SPSA or vice

Two Metaheuristics for Multiobjective SCO 125

versa in the evaluation metric Q1, but a random search approach is clearly out-
performed by both. Future work should deal with more comprehensive outcome
evaluations on extended test instance sets, and Q1 should be supplemented by
other metrics. Furthermore, extensions of other MOCO metaheuristics to the
stochastic case should be included into the comparison.

References

1. Baesler, F.F., Sepúlveda, J.A., “Multi-objective simulation optimization for a can-
cer treatment center”, Proc. WSC 2001, pp. 1405-1411 (2001).

2. Czyzak, P., Jaszkiewicz, A., “Pareto simulated annealing — a metaheuristic tech-
nique for multiple-objective combinatorial optimization”, J. of Multi-Criteria De-
cision Analysis 7, pp. 34-47 (1998).

3. Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C., “Ant Colony
Optimization in Multiobjective Portfolio Selection”, Proc. 4th Metaheuristics In-
ternational Conference, pp. 243-248 (2001).

4. Doerner, K., Gutjahr, W.J., Hartl, R.F., Strauss, C., Stummer, C., “Pareto Ant
Colony Optimization: A metaheuristic approach to multiobjective portfolio selec-
tion”, Annals of Operations Research 131, pp. 79-99 (2004).

5. Dorigo, M., Stützle, T., Ant Colony Optimization, MIT Press (2004).
6. Ehrgott, M., Gandibleux, X., “A Survey and Annotated Bibliography of Multiob-

jective Combinatorial Optimization”, OR Spektrum 22, pp. 425-460 (2000).
7. Fu, M.C., “Optimization for simulation: theory vs. practice”, INFORMS J. on

Computing 14, pp. 192-215 (2002).
8. Gandibleu, X., Sevaux, M., Sörensen, K., T’kindt, V. (Eds.), Metaheuristics for

Multiobjective Optimization, Springer, Berlin-Heidelberg (2004).
9. Gutjahr, W.J., “A converging ACO algorithm for stochastic combinatorial opti-

mization”, Proc. SAGA 2003 (Stochastic Algorithms: Foundations and Applica-
tions), Springer LNCS 2827, pp. 10-25 (2003).

10. Gutjahr, W.J., “S-ACO: An ant-based approach to combinatorial optimization
under uncertainty”, Proc. ANTS 2004 (4th International Workshop on Ant Colony
Optimization and Swarm Intelligence), Springer LNCS 3172, pp. 238-249 (2004).

11. Hughes, E.J., “Evolutionary Multi-objective Ranking with Uncertainty and Noise”,
in: E. Zitzler, K. Deb, L. Thiele, C.A. Coello Coello, and D. Corne (eds.), First
International Conference on Evolutionary Multi-Criterion Optimization, pp. 329-
343, Springer LNCS No. 1993 (2001).

12. Jaszkiewicz, A., “Evaluation of multiple objective metaheuristics”, in: Gandibleu,
X., Sevaux, M., Sörensen, K., T’kindt, V. (Eds.), Metaheuristics for Multiobjective
Optimization, Springer, Berlin-Heidelberg, pp. 65-89 (2004).

13. Ulugu, E.L., Teghem, J., Fortemps, Ph., Tuyttens, D., “MOSA method: a tool for
solving multiobjective combinatorial optimization problems”, J. of Multi-Criteria
Decision Analysis 8, pp. 221-236 (1999).

Self-replication, Evolvability and Asynchronicity

in Stochastic Worlds

Chrystopher L. Nehaniv

Adaptive Systems, Algorithms, and BioComputation Research Groups,
School of Computer Science & Science and Technology Research Institute,

University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, United Kingdom
C.L.Nehaniv@herts.ac.uk

In Memory of John Maynard Smith and Victor Varshavsky

Abstract. We consider temporal aspects of self-replication and evolv-
ability – in particular, the massively asynchronous parallel and
distributed nature of living systems. Formal views of self-reproduction
and time are surveyed, and a general asynchronization construction for
automata networks is presented. Evolution and evolvability are distin-
guished, and the evolvability characteristics of natural and artificial ex-
amples are overviewed. Minimal implemented evolvable systems achiev-
ing (1) asynchronous self-replication and evolution, as well as (2) proto-
cultural transmission and evolution, are presented and analyzed for
evolvability. Developmental genetic regulatory networks (DGRNs) are
suggested as a novel paradigm for massive asynchronous computation
and evolvability. An appendix classifies modes of life (with different de-
grees of aliveness) for natural and artificial living systems and possible
transitions between them.

1 Models of Time: Logical vs. Physical Time

We consider time in discrete dynamical systems. St. Augustine considered time
as something intuitively graspable yet ineffable. Varshavsky distinguished two
kinds of time: Time as a logical variable in a system defined by events vs. time
as an independent physical variable [96], and studied self-timing and asynchrony
theory for computing devices as the problem of reconciling the two types of time
via design of system timing for the appropriate functioning asynchronous devices
interacting with external environments.

For a single observer or location, we can consider three main views of the
(logical) time:

1.1 Partial Orders as Models of Time

Aristotle considered events in time via ordering related to casuality (and motion),
and time as defined by differences between states before and after (thus change
is required for the passage of time).

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 126–169, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 127

1.2 Time as a Random Variable

Another view is to regard logical events, such as a discrete event clock-tick, as
embedded in physical time but where a random variable takes values event or no
event according to some distribution at successive discrete moments of physical
time. (Instead of just one type of event more generally different particular events
might be generated.) Here the passage of logical time, if used to increment a
measuring counter, is monotonically but not deterministically related to the
passage of physical time.

1.3 Algebras of Time: Semigroups as Models of Time

Following J. L. Rhodes (who refers to Aristotle), we can describe time alge-
braically. If α, β, and γ are each sequences of events in time, and the composite
sequence β then γ is preceded by α, this is exactly the same as when β follows
α and after both γ occurs. That is, the associative law

(αβ)γ = α(βγ)

is a grammatical statement about sequences of events in time. The study of
associative structures (semigroups) is thus the study of models of time.

As a simple application, we have algebraically classified all models of time
allowing for only a single repeated event (or “clock-tick”).1

Semigroups are intimately connected with deterministic automata, as se-
quences of inputs induce mappings of the set of states of the automaton to itself;
these induced mappings thus comprise a semigroup (under the associative oper-
ation of function composition) which serves as a model of time in the automaton.

To pass to a nondeterministic or probabilistic automaton, there are several
methods. A very general one, related to the construction of minimal automata,
applies to the more general case of observations or measurements of any phenom-
enon at all. Observations of a given stochastic phenomenon can be treated via
Crutchfield’s ε-machines: from observations of an, in general stochastic, process
one constructs a deterministic automaton in which transitions are single observa-
tions and in which states are equivalence classes of past histories for each member
of which the probability distribution over the future histories is the identical. In
other words, in a given state the future is conditionally independent of the past
[15]. The semigroup of the ε-machine then serves as an algebraic invariant and
model of the temporal dynamics of the given phenomenon.

2 Evolution and Evolvability

Evolution viewed as stochastic synchronous or asynchronous algorithm or tem-
poral process is described here. Evolvability describes the capacity to which a
1 The possible single event models are cyclic groups, the positive natural numbers

under addition, and thresholded cyclic groups – in which the event can be repeated
some number of times whereupon one enters a cyclic group [57].

128 C.L. Nehaniv

particular evolutionary process is successful in generating adaptive individuals
and will be discussed in detail later. After defining Darwinian evolution, we
survey non-biological examples and the other evolution-like phenomena. Evolv-
ability is then discussed in detail for these examples.

2.1 Definition of Darwinian Evolution

Evolution is any dynamical population process [17,16] with the follow-
ing characteristics, which one can regard as the semi-formal Darwin-Wallace
axioms:

(1) Heritability: Individuals have inherited information or material (genotype)
from parent(s) that makes them similar to their parent(s) in some traits.
(2) Variability: Offspring may differ from their parents in their heritable ma-
terial (genotype) and in other respects (phenotype).
(3) Differential Reproductive Success [selection]: depending on phenotype,
which must depend at least in part on inherited traits, some individuals are more
likely to have any (or more) offspring than others.
(4) Finite Resources and Turn-over of Generations: Lifespans of individ-
uals are finite and the existence of only a limited number of individuals can be
supported in the population at any moment.

The above axioms yield a creative engine via a “struggle for existence” driving
“descent with modification”. Persistence and increase in distribution of heritable
successful traits follow by (1) and (3), and creativity arises via (2). Competition
for existence is due to (4). Note that a presupposition of (1) is that the population
consists of well-defined individuals.

2.2 Stochasticity of Evolution

Stochasticity impinges on evolution usually (1) via the mechanism of genotypic
variability, whereby inherited information is perturbed, but also (2) in pheno-
typic variability whereby the environment or constrained aspects of develop-
ment lead to differences between parent and progeny. Differential reproductive
success (3) refers to the probability of success at producing progeny depend-
ing on inherited information is therefore generally modeled as stochastic in
nature.2

Evolution can thus be regarded as a very general class of stochastic algorithm
with many instances occurring in nature, culture, and artificial systems.

2.3 Instances of Evolution in Silico

Genetic Algorithms and Evolutionary Computation. Genetic Algorithms
(GAs) and allied methods are population processes for artificial evolution in com-

2 Nevertheless, evolution is also possible in completely deterministic systems, e.g. the
synchronous evoloop system [77] (see below), or any non-interactive genetic algo-
rithm running with a given ‘seed’ for generating random numbers.

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 129

puters and have been introduce in many variants: genetic algorithms [27], evolu-
tionary strategies [70,80], evolutionary algorithms [24], and others. The “vanilla”
genetic algorithm in the style of Holland [27] is described here:
1. Create a population of fixed finite size of fixed-length bit-strings encoding
candidate solutions to an optimization problem (initialized randomly or with
domain knowledge)
2. Evaluate each against an objective function (“fitness function”)
3. Copy individuals that do better with higher probability into next generation
(a new population, with same population size) [selection]
4. Apply variability operators: mutation random bit-flips, crossover: recombina-
tion of substrings in individuals subtrees at random nodes between two individ-
uals, and others.
5. Iterate 1-3 until satisfied.

Genetic Programming: Variant of GA. Genetic Programming (GP) is a
variant of GAs introduced in the early 1990s by John Koza [30]. It has the
following structure:
1. Do GA, but on populations of programs, not bit-strings (e.g. Lisp S-express-
ions, or parse trees in any programming language). Individuals are syntactically
correct programs over some chosen set of basic operations, and terminals (con-
stants and variables).
2. Behaviour or output of each program in population is evaluated against ob-
jective function (“fitness function”)
3. Copy individuals that do better with higher probability into next generation
(a new population, with same population size) [selection]
4. Apply variability operators respecting syntax: mutation replaces a subtree by
random one (of the same type); crossover: exchange subtrees (of the same type)
at random nodes between two individuals. New individuals are syntactically cor-
rect since the operators respect node typing.

Later variants of GP also introduced explicit support for modularity, named
functions (so-called automatically defined functions (ADFs)) that can be called
by the main result producing branch of the program.

Digital Organisms. Digital organisms were introduced by tropical evolution-
ary biologist and computer scientist T.S. Ray around 1989. Individuals in a
finite computer memory are self-replicating programs running on a Darwinian
operating systems (one in which mutations in data and flaws in computational
operations occur with certain low probabilities). There is no objective function,
so we have an instance of natural selection. The motivation is not optimization
but artificial life as a generalization of biology. Several systems for the evolution
of digital organisms have been developed: Tierra [69], the first one, gives rise to
rich ecologies (parasites, obligatorily social hyperparasites, etc.). Insights that
make it evolvable (as compared to random mutation of computer code) were
inspired by biology and include (1) template recognition and matching (recog-
nition based on “shape”); (2) all strings are syntactically correct assembler-like
programs, and (3) small language size - no numerical constants are permitted
in statements (but must be constructed in an organism’s digital processor if

130 C.L. Nehaniv

needed). Space in computer memory and processor cycles are the fundamental
resources for digital organisms; these and interaction amongst digital organisms
determines their reproductive success in an emergent manner. NetTierra is an
internet wide version with multithreading (an analogue of multicellularity), sens-
ing by digital organisms of other sites over the network, and migration between
computers. The Avida system added CPU cycle rewards for some computations
and is currently most widely used [2], especially as a model for bacterial and
an experimental test-bed for population genetics theory. Physis [23] is new sys-
tem for studying evolvability of digital organisms in which organisms carry not
only the code for their self-replication, but also code specifying the processor
that will run it and, moreover, code specifying the language they will run on it:
evolvable processors. This latter system allows the study of the evolvability of
self-replication, including phenomena analogous to evolution of the genetic code
for protein biosynthesis via translation to amino acid sequences from sequences
of codons in very long oligonucleotides DNA/RNA.

3 Not-Quite-Darwinian Evolution

Several cases of what looks like evolution (and is often called evolution) fail
to meet the Darwinian axioms. Generally, in such cases, there are dynamical
similarities, but the problem is that one cannot identify well-defined individu-
als. An analogue of producing progeny in such cases is persistence [52], usually
eventually with modification (and hence variability).

3.1 Software Evolution

In Software Engineering, the costs of so-called ‘software maintenance’ and ‘soft-
ware evolution’, i.e. costs of modifying and adapting already released software,
amount to billions of dollars annually (50-95% of all software costs [83,35]).
Software is static, fragile and inflexible (except where adaptation need has been
foreseen), but its context and environments of use change, hence requirements
change. Software evolution has been characterized as managing change – see the
work of Lehman, Goguen, and Berners-Lee (e.g. [35,25,26,8]). Persistence and re-
use of software is an analogue to heritability [52]. If software code is regarded as
heritable information, the severe problem of requirements change shows the need
for software that possesses phenotypic versatility and robustness to perturbation,
both of which are related to evolvability.

Software growth has been studied as a dynamical system with system-level,
positive and negative growth laws [103]. There are no clear individuals, no pop-
ulation. But there is persistence and growth, and descent with modification.
Are there principles in common with those biological evolvability? The answer
seems to be yes, but they are not well-understood yet. Any software carries with
it unbounded number of assumptions, which are progressively violated as time
passes and context of use – and hence requirements – change [35]. A design
principle similar to biological evolvability: attempt to be future-proof, robust to

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 131

likely sources of change (see [8] on future-proofing and world wide web data and
mark-up languages).3

3.2 Cultural Evolution

Other examples of evolution without a readily identifiable individuals in popu-
lations are the evolution of artifacts, and the evolution of behavior or cultural
(memetic) evolution.

4 Evolvability

The evolution of life on earth has undergone several major transitions. Major
transitions in evolution are studied in [11,45]: Free Replicators to replicators
in compartments; RNA as gene/enzyme to DNA and protein (genetic code);
prokaryotes to eukaryotes; asexual clones to sexual populations; protists to dif-
ferentiated multicellular life (esp. [11,47]); solitary individuals to colonies with
non-reproductive castes [45].

All of them involve transitions in the way information is used and most of
them involve the advent of new types of individuality and thus new units of
selection in populations of these new individuals.

Nothing like the complexity and creative power of organic evolution has been
realized in artificially constructed evolutionary systems. Why is this the case?
Computer scientists using evolutionary computation techniques quickly discov-
ered that in some cases evolution was better able to find solutions than in others.
Sometimes evolution completely failed as an optimization method, other times it
worked well. Biologists had tacitly assumed that evolution by itself was sufficient
to generate open-ended adaptivity and complexity of the kind they observed in
nature (e.g. flowering plans, animals with complex body plans, etc.). But the
frustration of computer scientists in some cases showed clearly that some sys-
tems were obviously more evolvable than others.

4.1 Krohn-Rhodes Complexity and Open-Ended Evolution

This leads to a constructive challenge problem.
Open Problem 1. (Open-Ended Evolution) Build a system that exhibits
open-ended evolution. One in which complexity can grow arbitrarily large and
new innovation and complex traits continue to arise.

Krohn-Rhodes complexity in algebraic automata theory using semigroups
as models of time (or, e.g. Kolmogorov complexity) can be used to formalize
3 The problem with being “future-proof” is that evolution by itself is a historical

process that cannot predict anything about the future. In biology, robustness to
likely sources of change appears to be achieved via lineage selection, i.e. lineages
robust to the kind of change that has historically occurred are more likely to continue
than others when changes of the same type reoccur in the future. In software, human
design as well as such lineage selection may be operate. See also the discussion in
the sections of this paper on GP code bloat and on the evolution of evolvability.

132 C.L. Nehaniv

the notion of unbounded complexity growth, and explicit bounds on complexity
increase in the course of smooth evolution can be computed [60]. Duplication-
and-divergence is one generic method of maximizing jumps in complexity [62].

4.2 Origin vs. Fate of Variation

Most evolutionary theory (e.g. nearly all of population genetics) has been con-
cerned with the fate rather than origin of variation [101]. Variability is the only
source of creativity in the evolution axioms, and its generation must therefore
be one of the keys to evolvability.

4.3 Definition of Evolvability

Evolvability has been characterized in various ways in the literature:

– “the ability of a population to produce variants fitter than any yet existing”
(Altenberg [5])

– “genome’s ability to produce adaptive variants when acted on by the genetic
system” (Wagner & Altenberg [101])

– “the capacity to generate heritable phenotypic variation” (Kirschner & Ger-
hart [29])

– characterized by evolutionary watersheds opening the floodgates of evolu-
tion, such as with the advent of segmentation and body plans (Dawkins
[20])

A synthetic definition is formulated here:

Definition. Evolvability is the capacity of a population to generate adaptive
heritable genotypic and phenotypic variation.

In this definition, “adaptive” is understood as fitter than any currently
existing.4

4.4 Genetic Algorithms and Evolutionary Computation:
Evolvability Issues

Choice of encoding is a crucial issue for evolutionary computation: ‘The Repre-
sentation Problem”. Encoding determines the genotype (e.g. bit-string) to phe-
notype (fitness evaluation) mapping (Genotype-Phenotype Map).

4 This notion of evolutionary adaptivity is similar in its sense to that used in Al-
tenberg’s definition above [5], but is more specific in that it replaces “fitter than any
yet existing” by “fitter than any currently existing”. The reason for this is that fit-
ness is a spatio-temporally local notion depends of the current organism-environment
interactions and niches which are of course subject in general to temporal variation
over generations. The production of fitter individuals might first proceed via neutral
evolution, i.e. the production of new individuals with different genotypes and of equal
fitness to those existing; this is known to increase evolvability in many examples (cf.
[28,93].)

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 133

Genotype-Phenotype Relation

“The genotype-phenotype map is the common theme underlying such
varied biological phenomena as genetic canalization, developmental con-
straints, biological versatility, developmental dissociability, morphologi-
cal integration, and many more” - G. P. Wagner & L. Altenberg [101]

Variability operators determine the topology (neighborhood relations of geno-
types) of the fitness landscape (S. Wright 1932 [107]), mapping genotype (or geno-
type and phenotype via environment interaction) to probability of reproductive
success. Smoothness of the objective function on this landscape determines how
well GAs can do their stochastic hill-climbing. If there are deep broad valleys
between fitness peaks (local optima) that can’t be traversed quickly enough, the
system is not evolvable. Conversely, uphill paths reachable by a single step from
local optima make landscape evolution-friendly.

To improve evolvability, the evolutionary strategies of Rechenberg and Schwe-
fel [70,80] introduce the heritability of locus specific mutation parameters (for
the variance of noise applied to numerical parameters under optimization).

Extradimensional bypass [14] is the adding of dimensions to the genetic
‘search’ space (e.g. by an insertion mutation or by duplication of a gene), in
higher dimensional fitness landscapes, local optima often become saddle points;
this is observed in protein evolution, and is related to neutral networks and ro-
bustness (via mutational buffering). Sometimes it has been used in evolutionary
computation, e.g. via growth in genome size or duplication of all or part of the
genome, to achieve improved evolutionary performance.

4.5 Genetic Programming and General Evolvability Issues

In GP, an important phenomenon is code bloat: for robustness to crossover, size
of programs increases uncontrollably. They are full of junk in order to with-
stand crossover with lower chance of distribution. Making multiple crossover
occurrences more likely for large trees according to their size eliminates this
trend [91].

This is a particular instance of a general principal in the evolution of evolv-
ability: Evolution favors lineages that robustness to disruption from the vari-
ability operators experience by the evolving population. See [66] for a related
study on linkage and crossover, and [92] for the neutral evolution of mutational
robustness.

Modularity: Automatically Defined Functions (ADFs) [31] are functional
modules that can be called from various locations in a program. Using these
can measurably increase evolvability [90]. This is related to analogous principles
in software engineering for evolvability: code factoring, appropriate modularity,
re-use (e.g. [65,52,83]).

4.6 Properties and Mechanisms of Evolvability

What makes an instance of the stochastic algorithm, evolution, evolvable? A list
of properties and mechanisms that seem closely related to evolvability is pre-
sented here. In many cases it is unclear whether we are examining a prerequisite

134 C.L. Nehaniv

for, or a consequence of, evolvability, or possibly both (via the circular casuality
of the dynamical evolutionary process), or perhaps an incidental property.

1. Developmental Plasticity: Universal responsiveness to interaction with the
environment, an incessant, continual coupling throughout life. (lifelong
viability; multiple cell types; complex life cycles; multiple developmental
pathways/behaviours/morphs; continual self-creation and maintenance in
interaction with environment/others). This property is almost unknown in
artificial systems, standard population genetics models, the ‘new synthesis’,
unimodal evolutionary models; but see West-Eberhard [104] and also Varela
[94].

2. Flexibility/Rigidity of Genotype-Phenotype Relation Robustness (to Heri-
table and to Developmental/ Environmental Perturbations)

3. Duplication-Divergence: From one, many! (cell types, castes, genetic regula-
tory networks (GRNs), segmentation, generic complexity increase)

4. Differentiation, Local Adaptation and Control
5. Appropriate Modularity, Compartmentation Potential to Combine Lower

Level Units: one from many!
6. Symbiogenesis
7. New Individuality (e.g. Multicellularity, Compartmentation; Linkage)
8. Use of Signaling, Switches, Signal Transduction, & Feedback Control
9. Employment of Evolutionary Dynamics (within individuals!)

10. Redundancy
11. Extradimensional Bypass

4.7 Duplication and Divergence

Gene duplication is remarkably frequent and important in biological evolution
[63], and subject to complex evolutionary dynamics [39]. The creation of a full or
partial extra copy of a gene (or other component) frees one copy or both copies
to specialize functionally, or one copy to acquire a new function. Duplication
and divergence in biological evolution [63] is thus a generic mechanism for the
generation of variability, of great potential creative power.

Duplication and divergence (Figure 1) is also exemplified by division of la-
bor among cells or tissue types in a body, or castes in a social insect colony. In
differentiated multicellularity, growth via cell division and followed by special-
ization into cell types (e.g. into soma and germ lines) provides an opportunity
and mechanism to exploit asynchronous parallel processing by closely related
entities to achieve adaptation at a higher level of individuality.

Complexity increase via increase via duplication and divergence, e.g. increase
in number and role of cell types [9], or the acquiring genomes [43] (which does
not involve duplication and divergence) can apparently realize known, sharp
theoretical bounds on the evolution of biological complexity [60].

Differentiation. Differentiation of multiple copies of the same entity as in
differentiated multicellular involves the following properties:

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 135

Fig. 1. Duplication-Divergence: A Generic Path toward Complexity Increase and

Evolvability (after J. Maynard Smith [44])

– Multiple copies of regulatory mechanism in similar units (e.g. genetic regu-
latory networks, cells, individuals, etc.)

– Local state
– State inherited by lineage (e.g. Cell types, growth and morphogenesis, epi-

genetics methylation, etc.)
– Local adaptation to local conditions
– Long- and medium- distance interactions
– Growth from single unit to a differentiated many, with changing topology
– Division of labour

5 Self-production and Reproduction

How is it possible for a mechanistic system to produce something as complex
or even more complex than itself? This problem motivated von Neumann to
study the physical and logical basis of self-reproduction using automata models.
Von Neumann considered automata capable of (1) examining and copying any
pattern or specimen given to them, or of (2) production of any object starting
from a logical description.5 Either approach leads to a solution to von Neumann’s
problem: in the first method, present the automaton with an entity as or more
complex than itself; in the second, present it with a logical description of one. Of

5 See especially notes of von Neumann’s fifth lecture “Re-Evaluation of the Problems
of Complicated Automata - Problems of Hierarchy and Evolution” in Part I of [99]
delivered in December 1949 (and edited and reconstructed by A. W. Burks). In both
cases the word “any” must taken as having scope over a particular very large class
of bounded structures whose existence possible in the ambient environment.

136 C.L. Nehaniv

course for this to work, it is necessary to construct such universal constructing
automata with these capabilities or to demonstrate their existence.6

These two approaches lead to solutions of the problem of self-reproduction
by self-examination vs. heritable encoded information respectively. One presents
the universal construction automaton with itself (or a copy of itself), or with a
logical description of itself, respectively. In the latter case, a copying component
of the automata can be used to copy the logical description (regarded part of
the entity), which thus becomes heritable genetic information. Von Neumann
showed how to construct such an automaton in a synchronous cellular automata
network using the second method [99, Part II].

Mutations or errors in the construction process could lead to lethal or non-
lethal variant copies and hence provide the variability required for evolution to
act. Conceivably, this could therefore lead to the evolution of more and more
complex automata. Although von Neumann considered this possibility, so far no
one has been able to shown in detail how it could be realized.7

It is remarkable that von Neumann’s solution used genetic, inherited infor-
mation in two roles: (1) blindly copied and (2) executed, before the structure
of the heritable genetic material in life on earth was uncovered by Watson and
Crick’s 1953 detailed description of the structure of DNA revealing its essen-
tially digital nature with similar dual roles [102]. Thus, von Neumann’s work
on his automata models even anticipated the important transcription (“blind
copying”) and translation (“executability”) properties of genetic material found
for DNA, with the former realized by complementary pairing of bases and the
latter via template matching and the genetic code sequentially mapping codons
(triplets of “letters” of DNA) to the amino acids in proteins (along with numer-
ous regulatory intricacies).

From the beginnings of the study of self-reproduction in artificial systems
initiated by von Neumann already in 1948, the primary formal model has been
synchronous cellular automata in which configurations develop that eventually
may include an unbounded number of copies of the original. The models con-
structed by von Neumman and his successors have amply demonstrated that
self-reproduction is indeed possible in artificial systems.

The different possibilities for achieving self-reproduction have implications
for our understanding of the origin of life, the nature of organic life, and for the
possibilities of life as it may exist elsewhere in the universe. Szathmáry [84] offers
a classification of replicators applicable to natural and artificial systems along
the dimensions of the replication process (holistic vs. modular, and genotypic vs.
phenotypic (the latter is defined by non-modular copying of functionality)) and
of variability (limited vs. unlimited heredity, where the latter requires that the
number of possible variants be much larger than the number of individuals in
the population).

6 Portions of this section are based on the author’s paper [55].
7 To demonstrate this, a suitable rigorous complexity measure would of course be a

pre-requisite (cf. [62]).

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 137

Self-reproduction is of course a prerequisite for any independent evolutionary
process. Sending information, instructions on how to build copies of desired
structures using local materials, into an environment rather than sending all
necessary materials into that environment represents more economical methods
of space exploration and colonization. See the NASA report edited by Freitas
and Gilbreath (1980) for further potential examples and applications of self-
reproduction to space science, e.g. self-replicating and self-maintaining lunar
factories.

Nature abounds with asynchrony. Cells in a multicellular organism or or-
ganelles or molecules within a cell apparently have no access to a central clock
signal. Can von Neumann’s problem still be solved without synchrony? Might
the restriction to synchronous update be relaxed?. In building an artificial self-
reproducing entity is it really necessary to have a single global synchronization
signal that reaches all parts of the entity simultaneously (or at least within a
well-defined tolerance)? If local parts of the configuration are ready to change
their state, is it realistic and practical to assume that they must wait until all
other parts of the cellular space are also ready to update their states?

We can indeed free all cellular automata models of self-reproduction as well
as all cellular automata models of evolution, universal computation, and univer-
sal construction from the need for synchronous update ([55,53], and below). This
is accomplished by an elegant simple mechanism that allows one to construct
an asynchronous automata network that is capable of emulating the behavior
of a given synchronous automata network. State updates in the asynchronous
model may be produced by practically any asynchronous update mechanism
whatsoever8 (e.g. updates may be sequential, occur randomly – locally distrib-
uted according a probability distribution, be partially simultaneous, etc., or even
synchronous). The result for cellular automata is a special case of a more gen-
eral theorem for automata networks with inputs due to the author (Theorem 1
below, [56]).

We describe below the construction for making any automata network’s com-
putation asynchronously realizable, give examples that illustrate how the use of
“local time” frees cellular automata networks from the need for global synchro-
nization, and display asynchronous examples of self-reproduction and evolution
in cellular automata in the context of discussing evolvability in natural and ar-
tificial systems.

5.1 Models of Self-reproduction

Von Neumann’s original constructive demonstration (begun in the 1940s and
completed by Burks in the 1960s) of self-reproduction of a configuration of states
in the cellular automata network has the properties that the self-reproducing
configuration is capable of universal computation (in Turing’s sense) and of
universal construction – loosely speaking, the ability to fill any compact area in
8 The only essential restriction is that each local automaton is updated an unbounded

number of times, and a given node from the viewpoint of another cannot have been
updated infinitely often in the past.

138 C.L. Nehaniv

the cellular space with any desired pattern. These properties were included in
addition to the ability of the replicator to make a copy of itself, and could also
be used to support this ability. Namely, universal construction (as the ability
to fill any compact region of the cellular space with arbitrary configurations)
guarantees that a copy of the self (including its ‘instruction tape’ which is present
in many examples) can be constructed. However, von Neumann’s design of a
self-reproducing universal computer and constructor was infeasibly large and
has never been fully implemented and executed through a reproduction cycle on
a computational device.

Langton’s (1984) definition requires that a copy is constructed but realizes
neither universal computation nor universal construction [33]. Langton imple-
mented and studied the first example of feasible self-reproduction in cellular
automata, using an 8-state cellular automaton with an initial configuration of
86 cells, that produces a first offspring after 151 time steps and then proceeds
to fill up available space with copies. To avoid trivialities while avoiding the
complexity of von Neumann’s model, Langton’s criterion [33,34] was proposed
as a necessary condition on self-reproduction and requires that information is
treated in the two ways identified above: as instructions that are executed (‘trans-
lation’) and as data which are blindly copied (‘transcription’). These properties
are also present in and abstracted from von Neumann’s and later Codd’s ex-
amples [13], and were by that time also known to be characteristic of biological
self-reproduction. Encoding of heritable information in the shape of a config-
uration or using self-inspection represents another feasible mode of encoding
heritable variation in self-reproduction (cf. [32,69,50,54]). Subsequent examples
of Byl [12] and Reggia et al. (e.g., [71,38]) simplified the self-replicating loop of
Langton toward minimality, with fewer states, simpler transition rules, or less
cells in the initial configuration. In some cases the simplifications are so severe
that it is debatable whether nontrivial self-reproduction has been achieved (e.g.
according to Langton’s criterion).

Subsequently, various researchers kept Langton’s requirements for self-repro-
duction, but have added more and more computational power to the relatively
small self-reproducing cellular automata configurations (in comparison to von
Neumann’s solution). These trends are surveyed by Lohn [37], who also describes
the evolution of cellular automata rules that support self-reproduction (see also
[38]). An annotated bibliography with some links to various relevant on-line
resources can be found at Moshe Sipper’s Artificial Self-Replication page [82].

H. Sayama [76,77] has constructed variants of the self-reproducing Langton
loop which exhibit self-dissolution once they can no longer reproduce, thus free-
ing up space for reuse by progeny, and most interestingly, another similar variant
called “evoloop” which exhibits heritable variability in loop size and is subject to
evolution via interaction among descendants of a common ancestor acting as a
selective force ([75,77], and below). Heritability, variability, and differential sur-
vival in an environment with limited resources are present in his evoloop when
run in finite spaces. Thus evoloop appears to be the first convincing example of
an evolutionary process occurring in cellular automata.

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 139

5.2 Self-reproduction, Individuality, and the Heritability of Fitness

What constitutes self-reproduction?
The definition is not uncontroversial. We have already mentioned that von Neu-

mann included universal computation and universal construction in order to ex-
clude trivialities, such as the simple example of spreading activation. Langton ab-
stracted the properties of inherited information being both copied and executed.

E. F. Moore [49] defines a configuration C to be capable of self-reproducing
n offspring by time t if starting from the initial conditions of the entire cellular
space at time t = 0 such that the set of all non-quiescent cells of the space is
an array whose configuration is a copy of C there is a time t′ > t such that at
time t′ the set of all non-quiescent cells will then be contained in an array whose
configuration includes at least n copies of C.

Lohn and Reggia [38] give the following definition:

“A configuration C is self-replicating if the following criteria are met.
First, C is a structure comprised of more than one non-quiescent cell and
changes its shape during its self-replication process. Second, replicants of
C, possibly translated and/or rotated, are created in neighbor-adjacent
cells by the structure. Third, there must exist a time t such that C
can produce i or more replicants, for any positive integer i, for infinite
cellular spaces (Moore’s criterion). Fourth, if the self-replication begins
at time t, there exists a time t+∆t (for finite ∆t > 1) such that the first
replicant becomes isolated from the parent structure.”

The issue of exactness of the copy is problematic since it is not desirable
to exclude the possibility of variability. Variability among offspring is certainly
present in biological systems, and, as Darwin showed us, is necessary for evolv-
ability. Vitányi [97] introduced sexual reproduction in cellular automata and
Sayama [76], mentioned above, has demonstrated variability and (deterministic)
evolution occurring in cellular automata.

A discussion of the difficulties in formulating a rigorous definition of self-
replicating or self-reproduction is given by Nehaniv and Dautenhahn [58], who
point out that even in accepted cellular automata models of self-reproduction
there are rarely two copies of the original configuration present at exactly at
the same time when reproduction is generally accepted to have occurred (e.g.
in the von Neumann or Langton models), and it is certainly not the case when
the first offspring has been produced. The various copies of the configuration
may be at different stages in their “lifecycles” and not have exactly the same
configuration of states. They suggest looser criteria on identity of copies to allow
‘species’ of non-exact copies to be acknowledged as offspring, and also loosen
the restriction on the presence of copies all at the same time (e.g., offspring
that have to grow into adults are still regarded as offspring even though they
are never in exactly the same state of development as the parent). Adequate
formal definitions of “member of the same species” and of “individual” are still
lacking in the sciences of the artificial, including the study of self-reproduction in
artificial systems. Although these concepts are clearly fundamental to biological

140 C.L. Nehaniv

evolution, even within biology there is still on-going controversy and current
research into appropriate definitions for these concepts [43].

Coming back to Darwin’s ideas, some degree of heritability of fitness is re-
quired for nontrivial evolution to occur. With self-reproduction, the similarity
of offspring to the parents and the similarities of the environments in which the
replicators find themselves is often enough to account for this. However, beyond
the level of simple replicators, heritability of fitness requires more explanation,
e.g. in considering multicellular lifeforms with differentiated cell types, subunits
which are themselves replicators comprise populations within the body that are
themselves potentially subject to evolutionary pressures [11,45,47,48]. For ex-
ample, cancer is an example in which reproduction and evolution occur at the
lower cellular level at the expense of the higher organismal one. Multicellularity
can arise (in certain conditions on mutations and cost of defection) where fitness
(reproductive success) at the higher, whole organism level emerges in a trade-off
against short-term fitness at lower, cellular level. Guaranteeing that the offspring
are similar to the parent by suppression of freedom at the lower level in exchange
for benefits is the first functionality required of any higher unit of fitness such
as a multicellular organism. The latter must employ mechanisms to balance the
tendency of the lower level to defect by sufficient benefits from cooperation in
the higher level unit, in order to persist over evolutionary time [48,47].

In asynchronous self-reproduction the very fact that the relative synchro-
nization of the entire state of the “organism” is uncertain contributes to this
problem of heritability of fitness.

5.3 Self-repair: Biological Methods and Generalizations

Self-reproduction and self-repair (or self-maintenance) are often closely related
in biology, and an understanding of self-reproduction can thus contribute to our
ability to create self-repairing, self-maintaining hardware and software. von Neu-
mann [98] considers synthesis of reliable organisms from unreliable components
through redundancy and degeneracy, but apparently did not extend this dur-
ing his lifetime to self-repair or relate it directly to self-reproduction. Automata
models and circuitry capable of autonomous fault-detection and self-repair is an
increasingly important area [40,89,41], both as an means to understand princi-
ples of biological organization, and also in technological applications, including
robust computation, and especially for mission critical systems in space sciences.
The capacity of a system to generate parts and components of its own structure
and to establish their organization might obviously be useful in generating and
installing a replacement parts in maintaining itself.

5.4 Self-maintaining and Self-creating Systems: Autopoiesis

Such a capacity for production of constituent components in the building andmain-
tenance of them in an organized structure and dynamical process in the face of fa-
vorable or unfavorable perturbations (such as damage, production of waste, and
entropic decay) is identified, according to biologists F. Varela and H. Maturana,
as the key property, autopoiesis (“self-production”), defining living systems [95].

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 141

Fig. 2. Compartmentation as Proto-Self-Maintenance: Components of an Autocat-

alytic Cycle in a Protected Environment with only Constituent Partners present in

suitable proportions (After J. Maynard Smith [44])

Neither von Neumann’s work on self-reproducing automata, nor the stud-
ies following him have addressed via constructive models this aspect of living
systems. Langton’s work on self-reproducing loops (removing the universal con-
struction and universal computation capacity) and its successors have focused on
minimal models of self-reproduction, first by minimizing the size of replicators
[12,71,37], and then adding various computational and other abilities [86].

Autocatalysis, Compartmentation, Early Life. An autocatalyst, by defini-
tion, promotes its own formation from other materials, and thus is in some sense
self-replicating [64]. Autocatalysis implies dynamically cycles, potentially contin-
uing without end. Compartmentation proceeds via isolation of an environment in-
side a vesicle or membrane (see Figure 2) within which conditions are conducive
to the autocatalytic cycle and the production and maintenance of the membrane.
Self-replication in early life might thus have arisen as a bifurcation in the dynamics
of a self-producing, self-maintaining system resulting in response to some pertur-
bation. For example, due to increase in size or due to accidental damage, an early
self-maintaining vesicle is broken into two parts along its membrane; each surviv-
ing component repairs itself comprising a new self-producing organization. Any
heritable aspect of organization that increases stability following such an event
leads to similar descendants, potentially growing exponentially in number.

5.5 Challenge Problems

Work in constructive biology and the theory of self-reproducing automata dis-
cussed above leaves several challenges unanswered:

142 C.L. Nehaniv

Open Problem 2. Realize construction universality in any computationally
feasible, implementable models.
Open Problem 3. Construct an autopoietic self-reproducer whether synchro-
nous or asynchronous in logical, kinematic or physical realization.
Open Problem 4. Solve open problem 3, adding heritable variation to realize
evolution in a population of autopoietic self-reproducers.

Genetic Acquisitions. Sex in biology is, by definition, nothing more than the
transfer or exchange of genetic material. It occurs, e.g., between homologous
chromosomes in meiosis, or in the uptake of DNA from the environment by
bacteria. If precious genetic information is lost due to damage to DNA, or if an
organism is doing poorly due to heavy environmental stress, recourse to the ge-
netic material from others may save the day by providing an undamaged source –
though quite possibly different in content – of relevant genetic information; see
[46] for the role of sex in repair.

A more extreme acquisition of genetic material than in sex is the acquisition
of entire genomes in symbiogenesis (the advent of a merged entity, derived from
replicators from two evolving populations, which becomes the unit of selection
in an evolutionary process – see Appendix), and resulting speciation [43]. Such
processes were involved in the acquisition by eukaryotes of the bacterial ancestors
of mitochondria and, in plants, of chloroplasts [42].

Open Problem 5. Construct an evolutionary system in which different popula-
tions of autopoietic self-reproducers interact, and in which one species acquired
the genome of another, realizing symbiogenesis.

5.6 Evolution of Evolvability

Finally, how can evolvability itself evolve? Lineage selection arguments suggest
that lineages will survive that are robust to variational operators acting an evolv-
ing population [66,5]. The genetic code and genotype phenotype mapping, and
genetic switches have all arisen in organic evolution of life on earth. Evolution
of developmental genetic regulatory networks in constructed artificial systems
interacting with their environments (see sec. 8) is suggested as one road toward
achieving some small reflection of what nature has achieved.

6 Local Time

We adopt here the view of local time as a random variable to approach the asyn-
chronization problem for automata networks. That is, given a synchronously up-
dating network of automata, we want to construct another network of automata,
with essentially the same behaviour, but in which at each node logical time is
determined by an (unknown) local random variable. It is at first unclear whether
this is possible at all, since simple experiments with common cellular automata
networks show that the behaviour of the system generally changes radically in
a qualitative sense when abandoning synchronous update.

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 143

An automata network consists a collection of automata Av associated to
the vertices v ∈ V of a locally finite directed graph Γ = (V,E), and a global
input alphabet X and local transition rules δv. A state of the network is a choice
of state for each component automaton. Given a global input x ∈ X and a state
of the automata, the next state of the network at node v is determined by the
state of the automaton at v, the states of the automata in the neighborhood of
v (i.e. at those nodes w which have an edge (w, v) ∈ E to node v), and x. Thus
the new state of the automaton at node v may be written as

q′v = δv(qv, qN(v), x),

where qv and qN(v) are, respectively, the current state at v and the states qw of
all nodes w in the neighborhood of v.

An automata network is synchronous if every node advances to its next state
simultaneously. Otherwise it is called asynchronous.9

An automata network is called a cellular automaton if it has only only one
global input letter (i.e. the alphabet satisfies |X | = 1 and its unique letter can be
considered a “clock tick”), and the local transition functions, local automata, and
neighborhoods at each node are isomorphic. Synchronous cellular automata have
been well-studied since they were introduced by S. Ulam and J. von Neumann
in the middle of the last century (e.g. [99,13,10,88]).

Definition (Emulation). Let A be an synchronous automata network over a
directed graph Γ = (V,E) with global state set Q and Â be an asynchronous
automata network with the same input alphabet X , a directed graph Γ ′ =
(V,E′) with the same set of nodes, and global state set Q̂. Let π : Q̂ → Q be
a function from global states of the asynchronous automata network to global
states of the synchronous one, such that πv(q̂) = (π(q̂))v depends only on q̂v for
all q̂ ∈ Q̂. Thus we can denote (π(q̂))v by π(q̂v).

Regarding physical time as modeled by non-negative real numbers and logical
time in the synchronous automata network as modeled by the natural numbers,

9 We assume for asynchronous update that there are no delays in state information
reaching a node in a local transition and that local updates may be regarded as
instantaneous. We do not require any particular ordering of updates of nodes, only
that, after an update of any given node, each node will still be updated an un-
bounded number of times in its future. Simultaneity of the update of any two nodes
is permitted (but not required), and massive asynchronous parallelism is thus pos-
sible.

We may assume an ambient physical time in which stochastic update events occur,
i.e. particular subsets of the sets of nodes are updated at discrete moments of physical
time; every node is updated an unbounded number of times; and no node is updated
an infinite number of times within a bounded interval of physical time.

In our model of asynchronous networks, based solely on a function of its local
neighborhood and state information, a local automaton may choose to read or delay
reading the next letter in global input sequence. Reading of the global input sequence
is thus not synchronized but happens independently at each node.

See [56] or [21, Ch. 7] for more details and proofs of theorems stated here.

144 C.L. Nehaniv

we then say that the behavior q̂ : R+ → Q̂ of Â starting in state q̂0 for update
pattern determined by local random variables at each node (as above) and input
sequence x1, x2, . . . (xi ∈ X for i ∈ N) emulates the behavior q : N → Q of
Â starting in state q0 with the same input sequence under the projection π if
there exists a spatial-temporal covering λ : R+×V → N such that the following
diagram commutes for each v ∈ V :

R+ q̂v

−→ Q̂v (asynchronous)
λ(−, v) ↓ ↓ π

N
qv

−→ Qv (synchronous)

That is, π(q̂v
t) = qv

λ(t,v), with qv
n = state in A of node v at time n ∈ N and q̂v

t =

state in Â of node v at time t ∈ R+.
Thus the behaviour of Â projects onto and completely determines the be-

haviour of A.

Theorem 1 (Emulation by Asynchronous Automata Networks [56]).
Let any synchronous automata network A over a locally finite digraph Γ = (V,E)
with local automata Av = (Qv, Xv, δv) (v ∈ V) and external input alphabet X
be given.

We construct an asynchronous automata network Â (with the same input
alphabet X) such that every possible behavior of Â with input sequence {xn}n>0
emulates the (only possible) behavior of A with input sequence {xn}n>0, when
Â starts in an initial global state q̂0 depending only on the initial global state q0
of A.

Moreover, the following hold:

1. The underlying digraph for Â is the reflexive-symmetric closure of the di-
graph for A.

2. For each vertex v, the local automaton Âv at vertex v in Â is “not much more
complicated” than the local automaton Av at v in A. Indeed, Âv is a direct
product of Av, an identity-reset automaton, and a modulo three counter. In
fact, Av has state set state set Q̂v = Qv ×Qv × {0, 1, 2}.

3. The projection π : Q̂→ Q is given locally by πv(qv, bv, r) = qv for (qv, bv, r) ∈
Q̂v.

4. The starting state of Â is given by q̂v
0 = (qv

0 , q
v
0 , 0) for all v ∈ V .

5. Furthermore, the spatial-temporal covering of the emulation satisfies

|λ(t, v) − λ(t, v′)| ≤ �d(v, v
′) + 2
3

�.

Note that updates of local states in the constructed emulating automaton
are essentially arbitrary.

We call λ(t, v) the local time of the synchronous automaton A at vertex v

for time t in the emulating asynchronous automaton Â. Of course, λ depends in
general on the update pattern for the particular behavior of Â. Thus (5.) above

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 145

says that the difference in local time at two nodes in the emulating asynchronous
automata network is bounded above by approximately one third of the distance
between them.

Brief Sketch of Proof and Construction: Let N(v) denote the set of neighbors of
node v, and let N̂(v) denote the neighbors of v in the reflexive-symmetric closure
of Γ , which gives the topology of the emulating asynchronous automaton Â. The
local update function in Â is defined as follows, where ϕv and ϕ̂v give the action
at vertex v in A and Â, respectively, as a function of their arguments, depending
only on local state in the neighborhood and global input letter:

δ̂v((qv, bv, rv), ϕ̂v(q̂, x)) =⎧⎪⎪⎨⎪⎪⎩
(qv, bv, rv) if rw = rv − 1 mod 3 for some w ∈ N̂(v)
(qv, bv, rv + 1 mod 3) if rw �= rv − 1 mod 3 for all w ∈ N̂(v)

and rv �= 0
(qv · ϕv(c, x), qv , 1) otherwise,

where c be an arbitrary state of A such that for each w ∈ N(v),

cw =
{
qw if rw = 0
bw if rw = 1.

Note each rw must lie in {0, 1} in determining cw of the third case, as necessarily
rv = 0 in third case and w ∈ N(v) ⊆ N̂(v) implies rw �= 2 mod 3.

Thus, in the emulating automata the neighboring nodes carry a copy of
“current state” and “old state” in case a neighbor needs to read either one. The
third component of state carries a modulo 3 value. The neighbors of any node v
can be shown inductively to receive the same number of increments modulo 3 as
node v, plus or minus one. Thus neighboring nodes differ by at most 1 modulo 3
in this component. In computing its local update, a node can check whether each
of its neighbors is in the past, future, or in sync with it. If any neighbor is in the
past, no update is performed (and the global input letter is not read). Otherwise,
we increment the modulo 3 counter and on every third counter increment, copy
current state to old, and update the current state according to the update rule
of A and the global input letter. In the latter case, every neighbor must be in
sync or in the future relative to the node in question, so the appropriate state
of the neighbor node in A can be determined from the current or past state
component of the corresponding neighbor in Â.

Using the fact that nodes differ by at most one in the number of increments
they receive in the third component and using local finiteness another lemma
shows freedom from deadlocks – a node can only be waiting for one that has
received one less such increment and only finitely many can have occurred, so
any chain of waiting ends when the automata at its end (with fewest increments
so far) receives an update. Induction then shows that behavior of the synchro-
nous automata network can be recovered uniquely from any behaviour of the
asynchronous one by a spatial-temporal section λ(t, v) equal to the ceiling of the

146 C.L. Nehaniv

one-third of two plus the number of counter increments at node v. (See [56] for
full details.) �

A special case of essentially this construction was found independently and
presented by K. Nakamura [51], the author [55,53], and T. Toffoli [87,88], with
full rigorous proof of its correctness given in [56]:

Corollary 1 (Asynchronous Emulation of Cellular Automata Networks
Theorem). If A is a synchronous cellular automaton then there is an emulating
asynchronous cellular automaton Â. �

Open Problem 7. Prove an analogue of the Asynchronous Emulation Theorem
for Automata Networks that may dynamically change their topology and number
of component automata. (Or, more weakly, prove such an analogue for cellular
automata networks.)

6.1 Temporal Waves, Asynchronous Game of Life and Universal
Computation

Temporal Waves. From what we saw in the last section, it follows that local
time in the asynchronous emulating network for nodes at distance d differs by
at most about a third of the distance between them. 10 Since the values of the
modulo 3 synchronization counter differs by at most 1 between neighbors in the
asynchronous emulating network, this spatial continuity of the modulo 3 counter
state entails that updates corresponding to simultaneous ones in the synchronous
network move as temporal waves across the space of the asynchronous network.

Asynchronous Game of Life. This phenomenon is illustrated here with an
asynchronous version of John Conway’s famous synchronous cellular automata
network, “The Game of Life”.

Let us apply the construction to Conway’s (synchronous) Game of Life. A lo-
cal automaton in synchronous Life has two possible states (quiescent (0) or alive
(1)) and the following transition function: if a cell is quiescent and has exactly 3
neighbors that are alive, its next state is alive. If a cell is alive, and it has either
2 or 3 live neighbors (not including itself) then it stays alive, otherwise it be-
comes quiescent. It is well-known that, in principle, universal computation can
be implemented in a infinite two-dimensional (synchronous) cellular automa-
ton running Conway’s rule (for an enjoyable yet highly readable and detailed
overview see chapter 1 of [81]).

Figure 3 (top panel) shows an initial configuration of some well-known struc-
tures in Conway’s Game of Life as an initial configuration for the corresponding
asynchronous cellular automaton: Three gliders which move across the space, a
stable 2 × 2 box, and a blinker (a row of 3 cells, that becomes a column of 3
cells, then a row of 3 cells, and so on).

The next panel shows the state of the world a few time steps later, the shading
indicates the synchronization state of the cell in the space, while the darker cells
10 Disconnected components are of course at infinite distance, and so the temporal

disparity between them can be arbitrarily large.

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 147

Asynchronous Game of Life
Initial State:

Progress of Gliders in Asynchronous Life. Note that the upper left hand glider is not
recognizable as one due to small local temporal variation in its cells:

p

Further Progress of Gliders in Asynchronous Life. All their parts are nearly in the
same spatial-temporal section; all three gliders are now recognizable again:

Fig. 3. Temporal Waves and Progression of 3 Gliders, with Box, and Blinker in Asyn-

chronous Game of Life. Contiguous regions of the same shade are “temporal wavefronts”

that represent the same moment in a spatio-temporal section giving the global state of

the corresponding synchronous cellular automaton [55]. Shade is determined by value

of modulo 3 counter at a given node. Neighbor nodes differ by at most one time unit

with respect corresponding nodes in the synchronous model.

148 C.L. Nehaniv

Fig. 4. Asynchronous Version of Sayama’s Structurally Dissolvable Self-Reproducing

Loop. Space is liberated by “programmed cell death” and can be reused by descendents

of the original loop (6 snapshots of a single run; toroidal topology). Differences in shad-

ing (shown only in the first four panels) correspond to differences in the synchronization

component of local state (cf. discussion of temporal waves).

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 149

of various shades are live cells in various stages of temporal synchronization.
Contiguous cells of the same shade are in sync and reflect the same instant of
time in the synchronous cellular automaton. The third panel down shows the
state of the system a little later.

Asynchronous Universal Computation. The possibility of implementation
of Conway’s Game of Life in an asynchronous cellular automaton as illustrated
here entails that universal computation is possible in a two-dimensional asyn-
chronous cellular automata running the modified rules (see [81] for a lively ex-
position).

Of course, a Turing machine can be regarded as a synchronous 1-dimensional
cellular automata where all state transitions are trivial except in the vicinity of
the read-write head. Thus applying Corollary 1 to a universal Turing machine
also yields the result.

6.2 Asynchronous Self-replicators

Applying the construction of the theorem to Langton’s self-reproducing loop, and
numerous self-reproducers including those of Byl, Reggia et al., Sayama and oth-
ers mentioned above, we implemented the first asynchronous self-reproduction in
cellular automata [55]. Figure 4 illustrates asynchronous replication of a struc-
turally dissolvable loop capable of programmed cell death.

7 Minimal Evolvable Systems

To better understand evolvability we considered some open-ended evolutionary
systems. Now we examine two (more or less) minimal evolvable systems to study
how evolvability, and in particular variability, can arise.

7.1 Minimal Example 1: Asynchronous Evoloop

This example is due to Sayama-Nehaniv [77,53] by combining their techniques.
Here a population of self-replicating loops in finite space is implemented (asyn-
chronous cellular automata; physics: changes according to deterministic rules
depending on local neighborhoods; asynchronous version of Sayama-Langton
evoloop [53]).

Sayama [76], extending Langton’s construction, introduced apoptosis. Apop-
tosis (“programmed cell death”), locally started, is triggered by local rules in
response to stagnant or unexpected configurations (tending to indicate non-
viability) generating a suicide signal, which propagates over to contiguous local
automata that are non-quiescent [76]. This results in resource freeing and makes
possible the turn over of generations required by evolution.

A further synchronous variant, evoloop, allows evolution in a cellular au-
tomata network to be realized [77]. By careful design of the update rules, an-
cestral self-reproducing loops are robust to some interactions (collisions) with
others in space. They might either recover from a collision with another loop,
undergo an apoptosis chain reaction, or survive in a changed form. The latter

150 C.L. Nehaniv

may or may not have the same circulating genome determining its construc-
tion. If a changed loop produces viable, reproductive offspring, then variation is
inherited, so variability has been introduced in evolution.

Applying the asynchronous emulation theorem yields the first implemented
example of an asynchronous cellular automata network with the capacity for
Darwinian evolution (minimal evolvability), including heredity, variability, dif-
ferential reproductive success, finite resources and turn-over of generations [53].

Over evolutionary time, loops of different sizes arise; smaller loops can repli-
cate more quickly and are less likely to collide than large ones; the population
generally evolves smaller and smaller loops until no further reduction in size is
possible. See Figure 5.

7.2 Sources of Variability: Interaction

Interactions during lifetime are the major selective force but also the source of
variation. There is only limited potential for variability (rotation of genetic core;
loop and genome size).

7.3 Minimal Example 2: Cultural Evolution in Alissandrakis’
Imitating Robotic Arms

Another instance of evolution occurs in human and non-human culture with the
transmission of patterns of behavior (or memes [19]). Imitation broadly con-
strued is the transmission mechanism for memes.11

7.4 Imitation, Social Learning, and Cultural Evolution

Learning behaviours from others, with cultural variations between populations
that are not explainable simply due to differences in local ecological context, has
been established not only for humans, but also in some other animal species,
including cetaceans [72] and in chimpanzees [105].

Cultural evolution is based on transmitted patterns of behavior, and is ex-
hibited by humans and some other animal species. Social learning, imitation,
and/or instruction allow an organism to learn from the experience of others,
which facilitates the accumulation of cultural practice and obviate much, often
dangerous, trial-and-error individual learning. Social learning can also be com-
bined with individual learning to exploit creative variability. In several realms
(behaviors, technology artifacts, language) cultural evolution can be open-ended.

11 There is a unsettled debate on whether a meme should be regarded as an unob-
servable (at least until now) pattern of information in the brain or as an observable
expressed pattern of behaviour. The former seems more “genotypic” (as an infor-
mational pattern, but it probably is incapable of ever being directly copied from
one individual to another) and the latter more “phenotypic” (as an effect of such a
pattern).

Moreover, it is unclear what constitute an individual meme in the population
dynamics of memetic evolution, or when two memes are “the same” (either at the
neuronal or behavioral level).

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 151

Evolvability (First Asynchronous Cellular Automata Network Example)

. . .

. . . .

. . . .

. . . .

Fig. 5. Evolution in Asynchronous Cellular Automata: Asynchronous Version of Self-

Reproducing Evoloop. (12 snapshots (not all from the same run); toroidal topologies).

Heritable variability of characteristics of individuals (e.g. loop size) entails that this is

an evolutionary system. Evolution leads to small, fast-replicating loops that are less

likely to collide then larger ones. Temporal waves shading is shown in first six snapshots

[53].

152 C.L. Nehaniv

Fig. 6. An example robotic arm imitating agent. A two-joint robotic arm, with seg-

ments of length �1 and �2, moving from state S0 (arm completely outstretched along

the horizontal axis) to state S to state S′ to state S′′, as it sequentially performs ac-
tions A, A′, and A′′. Effects of these actions (marked trails) are shown as the arrows

that join the tips of the arm as it moves.

Cultural (memetic) evolution is possible in artificial societies and in the fu-
ture might find application e.g. in factories populated by autonomous robots of
various types who acquire and transmit skills and task knowledge through social
learning. These robots could acquire skills and competencies by observing others
(e.g. human demonstrators, or industrial robotic arms with different sizes, kinds
and numbers of joints) and pass them to newcomer robots of as yet unknown
type when they join the population.

A simple robotic population model illustrates this potentiality [3,4]: Simu-
lated robotic arms are used, with differing lengths of segments, differing numbers
of joints, but all with fixed base about which they can rotate (Figures 6 & 7).

The robot arms carry out behaviors in a two-dimensional workspace and
engage in social learning via imitation. The agent embodiment can be described
as the vector L = [�1, �2, �3 · · · , �n], where �i is the length of the ith joint. Each
robot builds “correspondence library” to imitate another, possibly dissimilar one
(using various metrics of similarity to reinforce success). A robot arm observes
another one (with possibly different embodiment) and attempts to match its
behaviour (according to some metric such as posture, end-effector position, or
angle changes at the joints). In turn, a third robot arm observes the imitator
and attempts to imitate it (again using its own possibly different embodiment,
using some metric), but does not observe the first robot, and so on. Behaviors
can thus be culturally transmitted through a chain of robots.

The example illustrated in Fig. 8 demonstrates such (horizontal) transmis-
sion of a behavioral pattern via social learning in a chain of imitating agents.

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 153

Fig. 7. Solving a correspondence problem for matched behaviour between different

embodiments. A demonstrator behaviour consists of a model folding its 3 joints counter-

clockwise (left). Imitation attempts to match the position of the end point are shown

for a 2-joint imitator (center) and a 6-joint imitator (right).

Fig. 8. An example of social transmission. Trail left by end-effector tips during

behaviors by 3 robot arms are visualized. The original model model0 (L = [20, 20, 20])

is shown to the left. In the middle, a two-joint imitator0 (L = [30, 30]) acts also as a

model for imitator1 on the right (L = [20, 20, 20])). Due to the different embodiment

of the agent imitator0, the replication of the model pattern is similar, but not exact.

imitator1 has the same embodiment as the original model model0 and, although in-

directly transmitted, the resulting pattern is closer to that of the original model than

is the behavior of the intermediate agent imitator 0 used as a model by this second

imitator [3].

The original model with three joints is shown in (Fig. 8, left). It is imitated
by a two-joint robotic arm (Fig. 8, center), which in turn is imitated by an-
other imitator (Fig. 8, right) with the same embodiment as the original model,
but which only perceives the behavior of the two-joint agent. After transmis-
sion through the intermediary, the behavioral pattern that has been acquired
by the second imitator in (Fig. 8, right) is quite similar to the original despite

154 C.L. Nehaniv

differences in embodiment in the chain of transmission. This example illustrates
transmission of a behavioral pattern through a chain of robotic agents, despite
differences in embodiment of agents involved. This simple example serves as
proof of the concept that by using social learning and imitation, rudimentary
cultural transmission with variability is possible among robots, even heteroge-
neous ones.

Evolutionary emergence of shared behavior and rudimentary ‘proto-culture’
in populations of robotic arms is discussed in [4]. Figure 9 shows imitators,
with different embodiments arranged in a circle each learning by imitating its
neighbor, and the resulting emergence of shared behavior.

Synchronization (via resetting to a fixed initial posture) before each demon-
stration has been shown to generally result in much faster and more accurate
behavioral transmission [3].

7.5 Sources of Variability: Embodiment Differences

The behaviors of the arms are the selectable entity for a Darwinian evolutionary
process: Imitation is the replication mechanism for these behaviors. Resources
are finite since there are finitely many arms and each arm can only perform one
behavior at a time.

Variability arises from several sources: (1) Errors in observation and noise in
production of a behavior can introduce variability in a behaviour, which an ob-
serving robot might match, learn and pass on. (2) Embodiment differences may
constrain what an imitator can do. For instance, a complex folding up by a six-
segment arm could not be matched exactly angle-for-angle by a three-segment
arm. Conversely, the six-segment arm imitating a two-segment arm might vary
the position of various joints in many ways and still achieve a satisfactory im-
itative behavior; further down the chain of transmission an observer of this
six-segment robot arm might acquire some aspects of its behavior not present in
the original behavior of the two-segment robot.

The first source of variability is very closely analogous to mutation at the level
of copying errors and is not particularly novel. The second source of variability,
differences in embodiment, is unlike what we know from biological or evolutionary
computation examples.

Replication in the robot arm example is based on interaction (like in prions –
proteins that can inherit a conformation from interaction with a variant protein –
but with vastly more variability).12

8 Developmental Genetic Regulatory Networks (DGRNs)

A particular paradigm from nature realizes all of the above properties discussed
for differentiation, duplication and divergence: developmental genetic regulatory

12 This is in contrast to evolving population of self-reproducing loops in example 1.
There interaction provided the basis, not for replication, but for variability.

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 155

Fig. 9. Emergence of proto-culture among eight heterogeneous agents. Arm robots

have alternating 2 and 4 joint embodiments (overall arm length remains constant).

Starting with no initial “seed” model, and imitating each other clock-wise using a

metric on actions, the figure shows an example of two stable repeated single-action

variant behaviours emerging in the population: the agents with two joints move both

joints anti-clockwise (by 10 degrees), while the agents with four joints freeze their first

and the third joint, moving only the second and third joint. The different effect patterns

shown result from the different states the agents are in when stable imitative behaviour

is established.

networks (DGRNs). The most complex systems known to humankind are dif-
ferentiated multicellular organisms. They may consist of e.g. on the order of
between 1013 and 1014 cells in the human body; in multicellular organisms ge-
netically identical cells differentiate, spending on the species, into between two
or tens, or hundreds, of cell types [9] with each cell each capable of taking astro-
nomically many states. The component cells themselves are each living entities
each in itself already more complex than anything ever constructed by a human

156 C.L. Nehaniv

being. The organism maintains coherence as an individual while growing from
a single cell into this huge number through asynchronous divisions, with a dy-
namically changing topology of interactivity between this changing number of
cells including long, medium and short range interactions regulating patterning,
global metabolism and the essential processes of life (see e.g. [106,6]).

In nature genetic regulatory networks with development/differentiation are
constantly engaged in interaction (within each cell, with the local environment of
the cell, or at organismal level with the external, ecological, and possibly social
environment). This kind of incessant activity in the control systems within each
cell and their coherent integrated activity has been called universal responsive-
ness by West-Eberhard and lies at the basis of phenotypic and developmental
plasticity [104]. Selection for robustness in development (due, for example, to
pressures for fitness to be heritable from parent to offspring) could have as a
non-selected by-product the following properties which enhance evolvability:

(1) phenotypic variation becomes tolerated and possible;
(2) particular phenotypic variations becomes heritable, since similar genes in a

similar environment yield similar development; later canalized, and
(3) developmental versatility leads to increased phenotypic variability (along the

“right” dimensions of variation) serving as fodder for the next “rounds” of
evolution.

Very little in Artificial Life has been achieved in the two modes of life involv-
ing self-reproducing autopoietic entities or symbiogenesis (see Appendix), but
they can be approached on the foundations of current work. Genetic regulatory
networks (GRNs) in cells are an essential component of how nature is able to
grow developing, living systems [18]. GRNs are universally responsive control
systems within biological cells. In multicellular organisms, GRNs are duplicated
and diverge in functionality as organisms grow, in response to local conditions,
the environment, and via signaling. They appear to provide essential properties
for evolvability [1], and the continual, universal responsiveness and plasticity of
living systems [104].

Operating continually in close connection with their environment through sig-
naling channels, while actively maintaining internal dynamics, artificial GRNs
easily allow for heritable digital genetic encoding, and provide a model analo-
gous to that of a single cell (although presently without its replication capa-
bilities). Unlike most other present-day computational models it is natural to
apply them in an continually active and responsive mode [67]. Moreover, they
exhibit very flexible evolvable, expressive dynamics similar to key biological reg-
ulatory phenomena useful in achieving a variety of control and computational
dynamics [7,67]. The evolvability properties of GRNs and DGRNs are being an-
alyzed mathematically as dynamical systems using techniques, e.g. of [62,61,60],
in efforts to develop a predictive theory of their evolution and application in
novel computation, as well as Artificial Life. The genetic regulatory network in
a developing organism is duplicated in each cell, which carries its own differ-
ing state (in cytoplasm, structural and epigenetic marking). Each cell has the

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 157

same genetic network and responds to local conditions. Multicellular living or-
ganisms use DGRNs to control for growth and differentiation, as well as for
incessant active control while growing from a single zygote (or “seed”) to adult
by cell division. The desirable dynamical systems properties of GRNs might be
combined with development to allow flexible, responsive control, continually cou-
pled to the environment in organisms consisting of even astronomical numbers
of different cells. Massively parallel distributed, adaptive, robust, fault-tolerant,
self-repairing control and computation is a hallmark of DGRNs in living organ-
isms but very unlike what we find in conventional software engineering and von
Neumann computation, but the potential of DGRNs for novel computation and
the simulation and synthesis of life is only now beginning to be explored.

Reaction-diffusion, cellular signaling and positional information could be set
up using tools available and being developed in evolving multicellular systems
as a natural method for computational morphogenesis and novel, developmental
computation.

Development of NetBuilder, a test-bed for modeling the dynamics of mul-
ticellular genetic regulatory networks for biologists [78], is currently supported
by a grant of the Wellcome Trust to Maria Schilstra and the author. It turns
out that this platform can also be used to model artificial developmental ge-
netic regulatory networks. Schilstra and Nehaniv [79] discuss the computational
modelling of gene regulation in genetic regulatory networks, and current work
is exploring the use of such computational networks to reverse engineer genetic
regulatory control given gene expression data.

The evolutionary approach to understanding DGRNs is the most natural and
would help characterize and evaluate aspects of their evolvability properties and
developmental plasticity in different contexts.

Study of artificial versions of developmental genetic regulatory networks, com-
prising multicellular individuals, in evolving populations of such multicellular in-
dividuals is also a natural approach to addressing the essential questions of defin-
ing possible modes of life (see Appendix). Such evolving populations of DGRNs
embodied in different environments may be rich enough to study (1) heritability
of characters at higher levels, and (2) regulation of conflicts with the constituent
cellular level (guided by some predicative theory from [47]), (3) emergence of self-
maintenance at various levels, as well as (4) differentiation and modification of
regulatory dynamics, and genetic, development and phenotypic plasticity.

Coupled with replication capability, evolving these artificial DGRNs (in soft-
ware or in artificial proto-cells) could lead to systems showing more or all of
the properties of life in its various modes. It would also be interesting to study
(5) the induction of symbiogenesis in such systems, perhaps leading to artificial
organelles and the degeneration of properties of life if capacity for independent
maintenance of pattern integrity and replication is lost (mode 3). The genetic
network in each cell of a differentiated multicellular organism is duplicated and
divergence from its progenitors. Evolved differentiated multicellular organism
possess a dynamic topology of interacting, developing genetic regulatory net-
works within their cells. These DGRNs have the following properties that could
also be realized in implementations of artificial versions:

158 C.L. Nehaniv

– Multiple copies of the same regulatory mechanism in similar units, with
lineage structure

– Expressive and robust dynamical systems with parameters tunable by tran-
scription factor (TF) binding strengths, concentrations, co-factors,etc.

– Layering of combinatorial logic on activation/inhibition of transcription (“bi-
ologic”)

– Duplication-divergence via sensitivity of dynamics to epigenetic marking,
development, environment, timing, cell-type, external signals

There are some open questions for GRNs and DGRNs:
(1) What is the degree of smoothness of their evolutionary dynamics?
(2) What is the relative importance of variability operators yielding regulatory
changes vs. operators yielding gene product changes?
(3) What organizations of development yield what evolvability properties?
(4) What is the role of development and ecology in their evolvability (evo-devo-
eco) regulatory changes?
(5) As biological DGRNs are naturally asynchronous, with no global clock co-
ordinating their action, developmental and organismal time and timing must
rely on local mechanisms to achieve coordination. The dynamic topology and
asynchronous nature of DGRNs thus make them a promising test-bed for the
studying the evolutionary dynamics and emergence of asynchronous temporal
coordination.

9 Conclusion and Major Challenges

Evolution have been presented as a powerful and general class of stochastic al-
gorithms. Response to interactivity (phenotypic plasticity) with environment/
others may be fundamental to evolvability. Interaction can play a selective and/or
reproductive role in the capacity to evolve (as shown in two minimal examples
exhibiting evolvability). Interaction can modulate duplication-divergence: Ge-
netic regulatory networks, lifelong engagement, and differentiation/development
appear to have important evolvability properties and consequences that deserve
to be better studied. Interaction also plays a important role in the arising of mul-
ticellularity. Culture arises via social transmission of behavior, knowledge and
skills, and is possible for constructed agents (e.g. robots on shop floor). In dif-
ferent example minimal evolutionary systems, interaction and embodiment can
serve as a sources of variability. Developmental Genetic Regulatory Networks
(DGRNs) are proposed as a paradigm for novel computation and the study of
evolvability. Evolvability of autopoietic self-replicators, open-ended evolution,
and feasible universal construction are open problems. Asynchrony is present
in the most complex natural systems such as differentiated multicellular life,
but synchronous automata network models can be made asynchronous using a
uniform method by which emulation of behaviour of the synchronous system is
mathematically guaranteed.

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 159

Acknowledgments. Many thanks for their encouragement to Andreas Al-
brecht and the organizers of SAGA’05, and for discussions on particular areas to
Aris Alissandrakis (variability in social transmission; proto-culture in artifacts),
Attila Egri-Nagy (evolvability of genotype-phenotype relation in populations
of self-replicating programs), R. E. Michod (discussions of individuality, sex,
and fitness), John L. Rhodes (algebra and time), and Günter P. Wagner, Lee
Altenberg, the late Michael Conrad (evolvability), Hiroki Sayama and Barry
McMullin (self-replication and evolvability), Maria Schilstra, Wolfgang Marwan,
René te Boekhorst, Tom Ray, Hans Meinhardt, Julian F. Miller, and members
of the EPSRC SEEDS research cluster. Except where stated, the ideas and re-
sults expressed in this paper, together with any shortcomings, are the author’s
own. Thanks to Algorithms and Adaptive Systems Research Groups, University
of Hertfordshire, and the Engineering and Physical Sciences Research Council
(EPSRC) for supporting the network on Evolvability in Biological and Software
Systems. The biological modelling work involving NetBuilder is supported in
part by an grant from the Wellcome Trust.

References

1. BioSystems 69, 2-3. Special issue on Evolvability, C. L. Nehaniv (ed.) (2003).

2. Adami, C., Ofria, C., and Collier, T. C. Evolution of biological complexity.
Proc. Natl. Acad. Sci. U.S.A. 97 (2000), 4463–4468.

3. Alissandrakis, A., Nehaniv, C. L., and Dautenhahn, K. Synchrony and
perception in robotic imitation across embodiments. In Proc. IEEE International
Symposium on Computational Intelligence in Robotics and Automation (CIRA
’03) (2003), pp. 923–930.

4. Alissandrakis, A., Nehaniv, C. L., and Dautenhahn, K. Towards robot
cultures? - learning to imitate in a robotic arm test-bed with dissimilarly embodied
agents. Interaction Studies 5, 1 (2004), 3–44.

5. Altenberg, L. The evolution of evolvability in genetic programming. In Ad-
vances in Genetic Programming, K. E. Kinnear, Ed. MIT Press, 1994, pp. 47–74.

6. Arthur, W. The Origin of Animal Body Plans: A Study in Evolutionary Devel-
opmental Biology, 1st paperback edition ed. Cambridge, 2000.

7. Banzhaf, W. Artificial regulatory networks and genetic programming. In Genetic
Programming - Theory and Applications. Kluwer, 2003, pp. 43–61.

8. Berners-Lee, T. Evolvability. In 7th International WWW Conference, Brisbane,
Australia (15 April 1998). keynote address: slides on-line at
http://www.w3.org/Talks/1998/0415-Evolvability/.

9. Bonner, J. T. The Evolution of Complexity, by Means of Natural Selection.
Princeton University Press, 1988.

10. Burks, A. W. Essays on Cellular Automata. University of Illinois Press, Urbana,
Illinois, 1970.

11. Buss, L. W. The Evolution of Individuality. Princeton University Press, 1987.

12. Byl, J. Self-reproduction in small cellular automata. Physica D 34 (1989),
295–299.

13. Codd, E. F. Cellular Automata. Academic Press, New York, 1968.

14. Conrad, M. The geometry of evolution. BioSystems 24, 2 (1990), 61–81.

160 C.L. Nehaniv

15. Crutchfield, J. P. Observing complexity and the complexity of observation. In
Inside versus Outside, H. Atmanspacher, Ed. Springer, Berlin, 1993, pp. 235–272.

16. Darwin, C. The Origin of Species by Means of Natural Selection, 1st ed. John
Murray, London, 1859.

17. Darwin, C., and Wallace, A. On the tendency of species to form varieties;
and on the perpetuation of varieties and species by natural means of selection.
Journal of the Proceedings of the Linnean Society, Zoology 3 (20 August 1858),
45–62.

18. Davidson, E. H. Genomic Regulatory Systems: Development and Evolution.
Academic Press, 2001.

19. Dawkins, R. The Selfish Gene. Oxford, 1976.

20. Dawkins, R. The evolution of evolvability. In Artificial Life, C. Langton, Ed.
Addison Wesley, 1989.

21. Dömösi, P., and Nehaniv, C. L. Algebraic Theory of Finite Automata Networks:
An Introduction (SIAM Monographs on Discrete Mathematics and Applications,
Vol. 11). Society for Industrial and Applied Mathematics, Philadelphia, 2005.

22. Edmundson, A. C. A Fuller Explanation: The Synergistic Geometry of R. Buck-
minster Fuller. Birkhäuser, 1987.

23. Egri-Nagy, A., and Nehaniv, C. L. Evolvability of the genotype-phenotype re-
lation in populations of self-replicating digital organisms in a tierra-like system. In
Proc. European Conference on Artificial Life (ECAL’03), September 14-17, 2003
Dortmund, Germany (2003), vol. Springer Lecture Notes in Artificial Intelligence
Vol. 2801, pp. 2380–247.

24. Fogel, L. J., Owen, A. J., and Walsh, M. J. Artificial Intelligence Through
Simulated Evolution. John Wiley, 1966.

25. Goguen, J. Requirements engineering as the reconciliation of technical and social
issues. In Requirements Engineering: Social and Technical Issues, M. Jirotka and
J. Goguen, Eds. Academic Press, 1994, pp. 165–199.

26. Goguen, J. Formality and informality in requirements engineering. In Proceed-
ings, Fourth International Conference on Requirements Engineering (April 1996),
IEEE Computer Society, pp. 102–108.

27. Holland, J. Adaptation in Natural and Artificial Systems. MIT Press, 1975.

28. Kimura, M. The neutral theory of molecular evolution. Cambridge Univ. Press,
1983.

29. Kirschner, M., and Gerhart, J. Evolvability. Proc. Natl. Acad. Sci. USA 95
(1998), 8420–8427.

30. Koza, J. R. Evolution of subsumption. In Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection. MIT Press, 1992, ch. 13.

31. Koza, J. R. Genetic Programming II: The Next Generation. MIT Press, 1994.

32. Laing, R. Automaton models of reproduction by self-inspection. Journal of
Theoretical Biology 66 (1977), 437–456.

33. Langton, C. G. Self-reproduction in cellular automata. Physica D 10 (1984),
135–144.

34. Langton, C. G. Studying artificial life with cellular automata. Physica D 22
(1986), 120–149.

35. Lehman, M. M. The role and impact of assumptions in software development,
maintenance and evolution. In IEEE International Workshop on Software Evolv-
ability (2005), IEEE Computer Society Press, p. (in press).

36. Leyser, O., and Day, S. Mechanisms in Plant Development. Blackwell, 2003.

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 161

37. Lohn, J. D. Self-replicating systems in cellular space models. In Mathematical
and Computational Biology: Computational Morphogenesis, Hierarchical Com-
plexity, and Digital Evolution. Vol. 26 in Lectures on Mathematics in the Life
Sciences (Providence, Rhode Island, 1999), C. L. Nehaniv, Ed., American Math-
ematical Society, pp. 11–30.

38. Lohn, J. D., and Reggia, J. A. Automatic discovery of self replicating struc-
tures in cellular automata. IEEE Transactions on Evolutionary Computation 1,
3 (1997), 165–178.

39. Lynch, M., and Katju, V. The altered evolutionary trajectories of gene dupli-
cates. Trends in Genetics 11 (2004), 544–549.

40. Macias, N. J., and Durbeck, L. J. K. Adaptive methods for growing electronic
circuits on an imperfect synthetic matrix. BioSystems 73 (2004), 173–204.

41. Mange, D., Sanchez, E., Stauffer, A., Tempesti, G., Marchal, P., and
Piguet, C. Embryonics: A new methodology for designing field-programmable
gate arrays with self-repair and self-replicating properties. In Readings in Hard-
ware/Software Co-Design, G. D. Micheli, R. Ernst, and W. Wolf, Eds. Morgan
Kaufmann, San Francisco, 2002, pp. 643–655.

42. Margulis, L. Symbiosis in Cell Evolution. W. H. Freeman & Co., 1981.
43. Margulis, L., and Sagan, D. Acquiring Genomes: A Theory of the Origins of

Species. Basic Books, 2002. Foreword by Ernst Mayr.
44. Maynard Smith, J. A darwinian view of symbiosis. In Symbiosis as a Source

of Evolutionary Innovation, L. Margulis and R. Fester, Eds. MIT Press, 1991,
pp. 26–39.

45. Maynard Smith, J., and Szathmáry, E. The Major Transitions in Evolution.
W. H. Freeman, 1995.

46. Michod, R. E. Eros and Evolution: A Natural Philosophy of Sex. Addison-
Wesley, 1995.

47. Michod, R. E. Darwinian Dynamics: Evolutionary Transitions in Fitness and
Individuality. Princeton, 1999.

48. Michod, R. E., and Roze, D. Cooperation and conflict in the evolution of
individuality. III. transitions in the unit of fitness. In Mathematical and Com-
putational Biology: Computational Morphogenesis, Hierarchical Complexity, and
Digital Evolution. Vol. 26 in Lectures on Mathematics in the Life Sciences (Prov-
idence, Rhode Island, 1999), American Mathematical Society, pp. 47–91.

49. Moore, E. F. Machine models of self-reproduction. In Proceedings of the Four-
teenth Symposium on Applied Mathematics (1962, (Reprinted in A. W. Burks
(ed.), 1968)), American Mathematical Society, pp. 17–33.

50. Morita, K., and Imai, K. A simple self-reproducing cellular automaton with
shape-encoding mechanism. In Artificial Life V (1997), C. G. Langton and K. Shi-
mohara, Eds., MIT Press, pp. 489–496.

51. Nakamura, K. Asynchronous cellular automata and their computational abil-
ity. Systems, Computers, Controls 5, 5 (1974), 58–66. translated from Japanese,
Denshi Tsushin Gakkai Ronbunshi, 57-D, No. 10, pp. 573–580, October 1974.

52. Nehaniv, C. L. Evolvability in biology, artifacts, and software systems. In
Proceedings of the Evolvability Workshop at the the Seventh International Con-
ference on the Simulation and Synthesis of Living Systems (Artificial Life 7)
1-2 August 2000, Reed College, Portland, Oregon, USA (2000). On-line at:
http://homepages.feis.herts.ac.uk/ nehaniv/al7ev/.

53. Nehaniv, C. L. Evolution in asynchronous cellular automata. In Artificial Life
VIII: Proc. 8th Intl. Conf. on Artificial Life (2002), R. K. Standish, M. A. Bedau,
and H. A. Abbass, Eds., MIT Press, pp. 65–73.

162 C.L. Nehaniv

54. Nehaniv, C. L. Internal constraints and ecology in evolution: A case study in
tierra. In Proceedings of the Fifth German Workshop on Artificial Life (GWAL
V) (2002), pp. 243–252.

55. Nehaniv, C. L. Self-reproduction in asynchronous cellular automata. In Proc.
2002 NASA/DoD Conference on Evolvable Hardware (15-18 July 2002 – Alexan-
dria, Virginia) (2002), IEEE Computer Society Press, pp. 201–209.

56. Nehaniv, C. L. Asynchronous automata networks can emulate any synchronous
automata network. International Journal of Algebra & Computation 14, 5 & 6
(2004), 719–739. Presented at International Workshop on Semigroups, Automata,
and Formal Languages (June 2002 – Crema, Italy).

57. Nehaniv, C. L. The algebra of time. In Proc. National Conf. of the Japan Society
for Industrial and Applied Mathematics (September 1993), pp. 127–128.

58. Nehaniv, C. L., and Dautenhahn, K. Self-replication and reproduction: Con-
siderations and obstacles for rigorous definitions. In Proceedings of the Third
German Workshop on Artificial Life (GWAL III) (1998), pp. 283–290.

59. Nehaniv, C. L., and Dautenhahn, K. Artificial Life Fundamentals: The Sim-
ulation and Synthesis of Living Systems. Springer Verlag, in prep.

60. Nehaniv, C. L., and Rhodes, J. L. On the manner in which biological complex-
ity may grow. Lectures on Mathematics in the Life Sciences 26 (1999), 93–102.

61. Nehaniv, C. L., and Rhodes, J. L. Axioms for biological complexity and mathe-
matically rigorous measures of computational capacity: Applications to evolution
of computation in cells. In Proc. Computation in Cells: An EPSRC Emergent
Computing Workshop (17-18 April 2000) (2000), H. Bolouri and R. Paton, Eds.,
University of Hertfordshire, U.K., pp. 71–76.

62. Nehaniv, C. L., and Rhodes, J. L. The evolution and understanding of biolog-
ical complexity from an algebraic perspective. Artificial Life 6, 1 (2000), 45–67.

63. Ohno, S. Evolution by Gene Duplication. Springer Verlag, 1970.
64. Orgel, L. E. Molecular replication. Nature 358 (1992), 203–209.
65. Parnas, D. On the criteria to be used in decomposing systems into modules.

Communications of the Association for Computing Machinery 15, 2 (1972), 1052–
1058.

66. Pepper, J. W. The evolution of evolvability in genetic linkage patterns. BioSys-
tems 69(2-3). Special issue on Evolvability, C. L. Nehaniv (ed.) (2003), 115–126.

67. Quick, T., Nehaniv, C. L., Dautenhahn, K., and Roberts, G. Evolving
embodied genetic regulatory network-driven control systems. In Proc. Euro-
pean Conference on Artificial Life (ECAL’03), Springer LNAI Vol. 2801 (2003),
pp. 266–277.

68. Rasmussen, S., Chen, L., Deamer, D., Krakauer, D., Packard, N.,
Stadler, P., and Bedau, M. Transitions from nonliving to living matter. Sci-
ence 303 (2004), 963–965.

69. Ray, T. S. An approach to the synthesis of life. In Artificial Life II, F. Jones,
Ed. Addison-Wesley, 1991, pp. 371–408.

70. Rechenberg, I. Evolutionsstrategie - Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

71. Reggia, J. A., Armentrout, S., Chou, H. H., and Peng, Y. Simple systems
that exhibit self-directed replication. Science 259 (1993), 1282–1288.

72. Rendell, L., and Whitehead, H. Culture in whales and dolphins. Behavioral
and Brain Sciences 24, 2 (2001), 309–382.

73. Ridley, M. Evolution, 2nd ed. Blackwell Science, 1996.
74. Sapp, J. Evolution by Association. Oxford, 1994.

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 163

75. Sayama, H. Constructing Evolutionary Systems on a Simple Deterministic Cel-
lular Automata Space. PhD thesis, Department of Information Science, Grad uate
School of Science, University of Tokyo, December 1998.

76. Sayama, H. Introduction of structural dissolution into langton’s self-
reproducing loop. In Artificial Life VI: Proceedings of the Sixth Interna-
tional Conference on Artificial Life (1998), C. Adami, R. K. Belew, H. Ki-
tano, and C. E. Taylor, Eds., MIT Press, pp. 114–122. On-line material at:
http://necsi.org/postdocs/sayama/sdsr/.

77. Sayama, H. A new structurally dissolvable self-reproducing loop evolving in a
simple cellular automata space. Artificial Life 5, 4 (1999), 343–365.

78. Schilstra, M., and Bolouri, H. Logical modelling of developmental genetic
regulatory networks with netbuilder. In 2nd Int. Conf. Systems Biology (ICSB
2001). Omnipress, 2001.

79. Schilstra, M., and Nehaniv, C. L. The logic of genetic regulation. submitted .
80. Schwefel, H.-P. Numerische Optimierung von Computer-Modellen mittels der

Evolutionsstrategie. Birkhäuser, 1977.
81. Sigmund, K. Games of Life. Penguin, 1995.
82. Sipper, M. The artificial self-replication page.

http://www.cs.bgu.ac.il/∼sipper/selfrep/.
83. Sommerville, I. Software Engineering, 5th ed. Addison-Wesley, 1996.
84. Szathmáry, E. Chemes, genes, memes: A classification of replicators. In Mathe-

matical and Computational Biology: Computational Morphogenesis, Hierarchical
Complexity, and Digital Evolution. volume=26, in Lectures on Mathematics
in the Life Sciences (Providence, Rhode Island, 1999), C. L. Nehaniv, Ed.,
American Mathematical Society, pp. 1–10.

85. Szostak, J., Bartel, D., and Luisi, P. Synthesizing life. Nature 409 (2001),
383–390.

86. Tempesti, G. A new self-reproducing cellular automaton capable of construction
and computation. In ECAL’95: Third European Conference on Artificial Life
(1995), vol. Lecture Notes in Computer Science 929, pp. 555–563.

87. Toffoli, T. Integration of phase-difference relations in asynchronous sequen-
tial networks. In Automata, Languages, and Programming (Fifth Colloquium,
Udine, July 1978), Lecture Notes in Computer Science 62 (1978), G. Ausiello
and C. Bohm, Eds., Springer Verlag, pp. 457–463.

88. Toffoli, T., and Margolus, N. Cellular Automata Machines. MIT Press,
1987.

89. Tyrrell, A. M., Sanchez, E., Floreano, D., Tempesti, G., Mange, D.,
Moreno, J. M., Rosenberg, J., and Villa, A. E. P. Poetic tissue: An inte-
grated architecture for bio-inspired hardware. In Evolvable Systems: From Biol-
ogy to Hardware, 5th International Conference,ICES 2003, Trondheim, Norway,
March 17-20, 2003, Lecture Notes in Computer Science, Vol. 2606 (2003), Springer
Verlag, pp. 129–140.

90. Van Belle, T., and Ackley, D. H. Code factoring and the evolution of evolv-
ability. In GECCO 2002: Proceedings of the Genetic and Evolutionary Computa-
tion Conference (2002), Morgan Kaufmann, pp. 1383–1390.

91. Van Belle, T., and Ackley, D. H. Uniform subtree mutation. In Proc.
EuroGP-2002, the 5th European Conference on Genetic Programming (2002),
pp. 152–161.

92. van Nimwegen, E., Crutchfield, J. P., and Huynen, M. Neutral evolution
of mutational robustness. Proc. Natl. Acad. Sci. U.S.A. 96 (1999), 9716–9720.

164 C.L. Nehaniv

93. van Nimwegen, E., Crutchfield, J. P., and Mitchell, M. Statistical dy-
namics of the royal road genetic algorithm. Theoretical Computer Science 229,
Special Issue on Evolutionary Computation, A. E. Eiben and G. Rudolph (eds.)
(1999).

94. Varela, F. J. Principles of biological autonomy. orth Holland, 1979.
95. Varela, F. J., Maturana, H. R., and Uribe, R. Autopoiesis: The organization

of living systems. BioSystems 5, 4 (1974), 187–196.
96. Varshavsky, V. System time and system timing. In Algebraic Engineering, C. L.

Nehaniv and M. Ito, Eds. World Scientific Press, 1999, pp. 38–57.
97. Vitányi, P. M. B. Sexually reproducing cellular automata. Mathematical Bio-

sciences 18 (1973), 23–54.
98. von Neumann, J. Probabilistic logics and the synthesis of reliable organisms from

unreliable components. In Automata Studies (Annals of Mathematics Studies,
Number 34), C. E. Shannon and J. McCarthy, Eds. Princeton, 1956, pp. 43–98.

99. von Neumann, J. Theory of Self-Reproducing Automata. Edited and completed
by A. W. Burks. University of Illinois Press, 1966.

100. Wagner, G. P., Ed. The Character Concept in Evolutionary Biology. Academic
Press, 2001.

101. Wagner, G. P., and Altenberg, L. Complex adaptations and the evolution
of evolvability. Evolution 50, 3 (1996), 967–976.

102. Watson, J. D., and Crick, F. H. C. Molecular structure of nucleic acids.
Nature 171 (1953), 737–738.

103. Wernick, P., and Lehman, M. M. Software process white box modelling for
feast/1. Journal of Systems and Software 46, 2-3 (1999), 193–201.

104. West-Eberhard, M. Developmental Plasticity and Evolution. Oxford University
Press, 2003.

105. Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V.,
Sugiyama, Y., Tutin, C. E. G., Wrangham, R. W., and Boesch, C. Culture
in chimpanzees. Nature 399 (1999), 682–685.

106. Wolpert, L. The Triumph of the Embryo. Oxford University Press, 1991.
107. Wright, S. The role of mutation, inbreeding, crossbreeding, and selection in

evolution. Proceedings of the Sixth International Congress on Genetics 1 (1932),
356–366.

Appendix A: Are There Degrees of Life? – Converting
Resources into Persistence and Progeny

The preceding considerations of evolutionary processes as stochastic algorithms
that may be realize in many substrates lead naturally to the question of when
the individuals in an evolutionary process should be called alive. We consider
in this appendix what heritability, self-maintenance, symbiosis and responsive
dynamics via genetic regulatory networks can tell us about possible modes of
life, in whatever medium it might find realization.

A.1 Re-thinking Life

The last two centuries have yielded profound scientific advances in our under-
standing of the particular nature of life on earth: the nature of the cell, the

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 165

Darwinian theory of evolution, its synthesis with Mendelian genetics, and later
with biochemistry, the basis of hereditary in the substance of long chains of
nucleotides, the (nearly) universal genetic code, the details of protein biosynthe-
sis (see e.g. [73]), increased understanding of the dynamics of development in
animals [6] and plants [36], and of evolvability [1,100], as well as ever more de-
tailed understanding of genetic regulatory systems and how they operate in the
single-celled and differentiated multicellular organisms (e.g. [18]), among other
advances. Recent advances in the construction of ‘proto-cells’ with various prop-
erties of living systems bring us closer to new and very minimal instantiations
of life – of various kinds (artificially constructed or parred-down cells) [68,85].
We may possibly find other examples of life elsewhere in the solar system or uni-
verse, but also in media other than those of organic biochemistry. Researchers in
Artificial Life have sought to capture and reproduce an underlying an “logic of
life” in software running on electronic computers (e.g. [69]), or in other media.
These developments are leading us to reconsider the notion of living organism:
How are we to know whether we are looking at new kinds of life?

A.2 Some Subtle Properties of Life

Here we collect fundamental phenomena found in organic life on earth that have
tended not to receive emphasis. We formulate them with a view toward achieving
a more universal understanding what life is.

Replicators in Context. The heritable material in replicators does not fully
specify the constraints of the environment in which they are capable of repli-
cation. Indeed, there is no way for evolution directly to distinguish between
genetic, environmental, physical, geometric, energetic constraints, or incidental
or universal properties of an evolving population’s environment. Catalyzing the
ambient dynamics, no matter how, that promote their own replication is enough
for the most primitive replicators. Other capabilities come later in the evolution
of biological complexity [62].

Pattern Integrity. Life is an organizational pattern that “holds its shape”.
Although the particular material that makes up an organism in the course of its
life may be changing, the individual persists. Just as a wave on the ocean, a dy-
namical event occurring on a substrate of water molecules, and a slipknot, which
be passed down from a string to a rope to a necktie, depend on configuration
and not particular material for their existence, similarly life relies on persistence
of an organizational pattern that is structurally stable enough to perpetuate its
existence in a medium (pattern integrity). (cf. discussion in [22].)

Enough stability must be present in the structure of the dynamics for this to
occur for us to be able to speak about an individual of any kind.

In replication, during a transition when a parent is giving rise to its offspring
in the dynamics of the medium, the parent is active in the establishment of the
offspring’s pattern integrity, as is the new individual itself, in changing degrees
(self-production). Replicators whose dynamics favors conditions that happen to
tend to increase their reproductive success through promoting processes of home-

166 C.L. Nehaniv

ostasis and self-repair will increase under the action of evolution. Beyond basic
pattern integrity – which is necessarily present already with simple replicators, or
for that matter in any persistent individuals – life has also achieved more sophis-
ticated types of pattern integrity in the forms of self-maintenance, homeostasis,
self-repair and regeneration within an individual.

Robustness, Plasticity and Incessant Responsiveness. Despite pertur-
bation and variability at the level of inheritance (such as mutations and sex),
living organisms are often robust and can grow, develop, persist, and thrive
successfully (robustness to genetic variability [14]). Moreover, despite the lack
of any full ‘specification’ of organisms by their genetic material and despite
perturbations to the environment, they are often remarkably able to generate
appropriate and adaptive forms and responses to various, changing environmen-
tal situations (phenotypic and developmental plasticity) [104]. This relies on the
fact that organisms continually engage with their local environment, showing
incessant adaptive activity, internally and externally (universal responsiveness
[104]).

Evolvable Dynamical Systems. Evolvability (cf. [1]) is defined above as the
particular capacity of an evolving population to generate adaptive heritable geno-
typic and phenotypic variation. Evolvability depends on many details of the ge-
netic system and can be radically different in different instances of evolution. To
achieve self-maintenance, plasticity, and continual responsiveness a sufficiently
evolvable substrate is necessary. Sufficiently powerful dynamical systems bases
(such as the physics, chemistry and genetic system enjoyed by life on earth)
are necessary to support evolvability. Moreover, the evolvability of a system can
change (e.g. with the advent of a genetic code).

Achieving Heritability and Transitions in Individuality. Things fall apart
(in the physical and many artificial worlds). Quick reproduction based on digital
templates is one of the ways that life uses to help it to triumph over entropy.
With a discrete basis of heritability (such as provided by a limited alphabet of
nucleotides and codons), copies can be perfect. Engineering shows that rebuilding
is often more efficient than repair.

Simple replicators might have no regeneration and repair capabilities (and
these might be quite complex to specify in a heritable manner). Without these,
replication rather than repair is eventually the only option in the face of the
tendency of things to crumble. With increased degrees of self-repair and regen-
eration, persistence rather than immediate production of offspring becomes an
option. Too much persistence however would stop evolution, unless variability is
somehow continually generated.

The simplest replicators have offspring like themselves in a similar environ-
ment. Fitness of these is likely to be similar to that of the parents (until resources
are exhausted, or conditions change): When offspring are produced, they are
likely to be successful in the environment of their parent if they are similar to
it – that is, if their capabilities of promoting their own persistence and reproduc-

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 167

tive success in that environment are similar to those of their parents. Heritability
of fitness is achieved simply for accurate replicators in a stable environment: if
the new one is to be viable, a copy of the original is likely to be a good choice.

Ensuring faithfulness of copies is one way to ensure heritability of fitness.
Digital genetic systems help achieve this.

New higher-level, e.g. multicellular, replicators whose components are them-
selves alive need to solve the problems of heritability of fitness anew, together
with those of sex, and self-repair. At higher levels, for life to exist, a transition
to individuality must reinvent replication, resulting in heritability of fitness at
that level; also reinvented are self-maintenance for the higher-level individual,
and sex (receiving or exchanging of heritable material from others) [47]. It is also
faced with new problems: suppression of freedom at lower levels and harnessing
lower level units into cooperatives that contribute to the fitness of the higher
level individual requires a balance of the tendency of replicators at lower levels
to pursue their own individual reproductive success at the expense of that of
the higher level individual [11,47]. In differentiated multicellularity, constituent
cells may pursue their own replication at the higher-level’s expense (cancer); in
social insects some members of non-reproductive labor castes may ‘defect’ and
become reproductive, at the expense of the colony’s integrity.

Higher-level individuals develop from a single (or a small number of) con-
stituents and harness division of labor and the differentiation of their con-
stituents (e.g. cells in a body; insect castes). Epigenetic inheritance (via state and
marking) in the population of constituents comprising them makes this possible.

A.3 Degrees and Modes of Being Alive

Biologists asked to define life have not agreed on a universally accepted definition,
but instead tend to produce lists of properties. One candidate definition [59],
applicable to life-as-it-could-be as well as life-as-we-know-it, is:
A living organism is an individual entity that

1. transforms resources into persistence (pattern integrity) and progeny (i.e. to
achieve reproduction),

2. results from reproduction (or is able to reproduce),
3. results from an evolutionary process in a population (involving heritable

variation, differential reproductive success, finite resources),
4. produces itself in the context of its environment (self-production, growth and

possibly development),
5. engages in self-maintenance,
6. uses signaling and interaction (internally and externally), and
7. modifies and is modified by its environment (embodiment and plasticity).

The more of these properties from such lists a system exhibits, the more jus-
tified we feel in saying that it is alive. For example, viruses or ‘digital organisms’
(such as Tierrans [69]) exhibit some but not all the properties of life (see also
below). This suggests that there may be different degrees to which it makes sense
to call something alive, i.e. different degrees of life depending on the degree to
which each of requirements in the biologist’s list are satisfied [59].

168 C.L. Nehaniv

Modes of Life with Different Degrees of Aliveness. In light of the ad-
vances in Biology and Artificial Life mentioned above, it will be argued here that
the evolution of life from a single ancestor or ancestral population may involve
different modes which account for some of the differences in the degree of alive-
ness. Organic evolution on earth (and in some cases in artificial systems at the
first two levels) has apparently produce different modes of life (which comprise
a evolutionary continuum). These modes show marked qualitative differences in
dimensions present among the requirements for life, but are related to each other
by evolutionary contingencies:

– Mode 0: Replicators (no or very limited variation in heritability).
Prions, crystal growth, and cellular automata replicators show many prop-
erties of life. They engage in no self-maintenance. Evolution does not occur
(with some recent exceptions in cellular automata). At the level of the indi-
vidual, they do not show genetic, developmental, or phenotypic plasticity.

– Mode 1: Replicators in Evolving Populations. Viruses, Tierrans (and to
a lesser degree transposons) exist in populations showing heritability, vari-
ability, and differential reproductive success – the requirements for evolution.
This leads some researchers to assert that they are examples of minimal living
systems. They exhibit no homeostatic control, or capabilities of regeneration
and self-repair.

– Mode 2: Self-Maintaining Organisms (showing various degrees of
autonomous responsive dynamics and plasticity). These extend mode
1 capacities and include all the uncontroversial cases of living organisms. [See
list of living organism dimensional properties above. This class might have
identifiable occurring submodes, e.g. some self-maintenance and regenera-
tive capability but little or no phenotypic plasticity. Some examples may
be naturally occurring, but others might soon be produced by constructive
methods en route to more sophisticated artificial life forms, e.g. proto-cells.]

– Mode 3: Degenerated Life (arising, e.g., due to Symbiogenesis or
Multicellularity). These are evolving replicators whose ancestors were of
another mode but which are in the process of losing (or have lost) most
of their individuality. Examples associated with evolutionary transitions: in
the RNA world (or other early life scenarios), early replicators→ membrane-
bound genes/‘chromosomes’; in the evolution of eukaryotes, free-living
prokaryotic ancestors of organelles→ mitochondria, chloroplasts. Mitochon-
dria and chloroplasts are organelles whose ancestors where free-living en-
dosymbionts of ancestors of eukaryotic cells but which are not longer capable
of replication without the machinery of the cells and some of the heritable
information in the cell’s nuclear DNA [42,74].

Transitions Between Modes of Life. The advent of new higher-level repli-
cators such as multicellular entities (possibly with differentiation of constituents
into a cooperative division of labor) leads us to ask the question again. Are
these replicators (rather than their constituent members) alive? To what degree
do they show the properties required of living systems such as being members

Self-replication, Evolvability and Asynchronicity in Stochastic Worlds 169

of an evolving population? self-maintenance, heritability of fitness, and sophis-
ticated responsive dynamics?

If multicellular plants, animals and fungi, or colonies of social insects are
self-replicating higher level individuals satisfying the properties of life, how are
the properties of life (in the list above) achieved by the higher level entity?
Are we dealing with mere replicators, evolution, or evolution of self-maintaining
dynamic entities?

With symbiogenesis and increasing dependency on partners, loss of individ-
uality may result (e.g. in the evolution of cellular organelles having endosymbi-
otic origin, mitochondria and chloroplasts). For most definitions of life, evolution
must act on individuals in a population, if individuality is lost, then evolution
at the former level of individuality – and hence life at that level – becomes less
distinct (mode 3), and eventually it may not be appropriate to speak of life.

The extreme modes are less alive than the middle ones. Transitions between
the above modes of life (in the direction of the list) are however natural and
may be favored by natural selection (as with the evolution of mitochondria).
Even though the last mode involves degeneration of life properties at one level,
it is only known to occur in the transitional genesis of higher-level units of
selection. Note that it also need not occur (even with new, albeit loose units
of selection); e.g. the cells in differentiated multicellular organisms or symbiotic
partners in lichens that can also live independently are both mode 2. In the
opposite direction, examples which may or may not have arisen as renegade
replicators that were originally components of a larger unit of life include viruses
and transposons (transitions to mode 1 from higher modes).

New Computation Paradigm for Modular

Exponentiation Using a Graph Model�

Chi Seong Park1, Mun-Kyu Lee2, and Dong Kyue Kim1

1 Pusan National University, Busan 609-735, Korea
{cspark, dkkim}@islab.ce.pusan.ac.kr
2 Inha University, Incheon 402-751, Korea

mklee@inha.ac.kr

Abstract. Modular exponentiation is to compute xE mod N for posi-
tive integers x, E, and N . It is an essential operation for various public-
key cryptographic algorithms such as RSA, ElGamal and DSA, and it
is crucial to develop fast modular exponentiation methods for efficient
implementation of the above algorithms. To accelerate modular expo-
nentiation, one can either speed up each multiplication or reduce the
number of required multiplications. We focus on the latter.

In this paper, we propose a general model to describe the behav-
ior of modular exponentiation in terms of a graph. First, we show that
the problem of finding the minimum number of multiplications for a
modular exponentiation is equivalent to finding a shortest path in its
corresponding graph. The previously known exponentiation algorithms
including the binary method, the M -ary method and the sliding window
method can be represented as a specific instance of our model. Next,
we present a general method to reduce the number of required multi-
plications by modifying the pre-computation table which is used for the
sliding window method. According to our experimental results, the new
method significantly reduces the number of multiplications, especially in
the cases that the exponent E has a high Hamming weight.

Keywords: Exponentiation, Modular Exponentiation, Graph Model,
Window Method.

1 Introduction

Modular exponentiation is to compute xE mod N for positive integers x, E,
and N . It is an essential operation for various public-key cryptographic algo-
rithms such as RSA [1], ElGamal [2], and DSA [3]. To guarantee the security of
these applications, very large exponents E should be used. Therefore, it is cru-
cial to develop fast modular exponentiation methods that are practical for large
exponents. Because a modular exponentiation is composed of repeated multipli-
cations, the study on the efficiency of modular exponentiation can be divided
� This work was supported by the Regional Research Centers Program(Research Cen-

ter for Logistics Information Technology), granted by the Korean Ministry of Edu-
cation & Human Resources Development. Contact Author: dkkim1@pusan.ac.kr.

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 170–179, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

New Computation Paradigm for Modular Exponentiation 171

into two categories: to speed up multiplication itself, and to reduce the number
of required multiplications. In this paper, we focus on the latter.

There has been an extensive research to reduce the number of required mul-
tiplications for modular exponentiation, e.g., the binary method [4], the M -ary
method [4], the addition chain method [5,6], the sliding window method [7], and
so forth. It is known that the sliding window method shows the best performance
from the practical viewpoint.

In this paper, we propose a general framework to describe the behavior of
modular exponentiation and to find an optimized computation sequence. Our
work is based on the idea that an exponentiation can be represented by a graph.
Specifically, our contributions are as follows:

• We present a new interpretation of modular exponentiation, where each bit
in the binary representation of an exponent E is modeled as a vertex in a
graph and each multiplication as an edge. Then we show that the problem of
finding the minimum number of multiplications for an instance of modular
exponentiation is equivalent to finding a shortest path in its graph represen-
tation. Actually, the previously known algorithms such as the binary method,
the M -ary method, and the sliding window method can be translated into
specific paths over the graph constructed as described above.

• We present a general method to reduce the number of required multipli-
cations. Our technique is to properly expand the pre-computation table in
such a direction that the overall number of multiplications is reduced. Our
experimental results show that the new method reduces the number of re-
quired multiplications by 5.38, 8.87 and 15.18, when it is applied to the
exponentiation with random exponents E ≈ 2512, E ≈ 21024 and E ≈ 22048,
respectively. Moreover, the improvements are remarkable, i.e., up to about
33, 54 and 95, respectively, when the new method is applied to the special
exponents with high Hamming weights.

The rest of this paper is organized as follows. Section 2 gives previous works to
reduce the number of required multiplications. In Section 3, we present a general
framework to describe the behavior of modular exponentiation using a graph. In
Section 4, we suggest two techniques to expand a pre-computation table which
we call a block-table, so that the number of multiplications is reduced. Section 5
shows the performance of our method in various practical settings.

2 Related Works

Reducing the number of required multiplications means finding a shorter se-
quence of multiplications in xE mod N . In this section, we review existing al-
gorithms to find such an efficient sequence of multiplications.

2.1 Binary Method

This fundamental method considers the exponent E as a binary number EB ,
and then repeats squarings and multiplications according to the individual bits

172 C.S. Park, M.-K. Lee, and D.K. Kim

Algorithm 1 Binary method
1. A ← x.
2. for i from n − 2 to 0 do
3. A ← A2.
4. if (ei = 1) then A ← A · x.
5. od
6. output A.

Algorithm 2 M -ary method (M = 2d)

1. Compute and store x2, x3, . . . , x2d−1.
2. A ← xfl−1 .
3. for i from l − 2 to 0 do
4. A ← A2d

.
5. if (fi �= 0) then A ← A · xfi .
6. od
7. output A.

in EB . Algorithm 1 is the binary method, where the exponent is represented as
EB = (en−1, . . . , e0) and n = �lg(E + 1)�. We can easily see that the number of
required multiplications (and squarings) in the binary method is k(n−1), where
1 ≤ k ≤ 2.

2.2 M-Ary Method

The M -ary method is a generalization of the binary method. Instead of using
radix 2, the M -ary method uses radix M to represent the exponent E, i.e.,
E =

∑l−1
i=0 fiM

i, where l = �logM (E + 1)� and 0 ≤ fi ≤ M − 1. Generally,
M = 2d is used for some positive integer d, i.e., the binary representation EB

is partitioned into the blocks of length d. (See Algorithm 2.) Although there
is an overhead to construct a pre-computation table for x2, x3, . . . , x2d−1, the
number of overall multiplications is reduced because several multiplications for
each block is changed into only one multiplication by one of the table elements.
Note that the performance of this method depends on the proper choice of the
block size d.

2.3 Sliding Window Method

The sliding window method of window size d is a modification of the 2d-ary
method. There are two kinds of sliding window method, i.e., the CLNW (Con-
stant Length Non-zero Window) method and the VLNW (Variable Length Non-
zero Window) method. In the CLNW method, we require that every non-zero
block should end with a ‘1’ and the length of every non-zero block is fixed as d.
By this modification, we can reduce the size of pre-computation table to a half,
since only odd powers of x is to be stored. Also, we can expect the number of
multiplications should be reduced slightly, since we can partition the exponent

New Computation Paradigm for Modular Exponentiation 173

so that variable-length zero blocks may exist between adjacent non-zero blocks.
On the other hand, the VLNW method requires that both of the starting and
ending bits in a non-zero block should be ‘1’, and the length of each non-zero
block should be less than or equal to d. We remark that for the VLNW method,
another parameter q should be chosen properly. While we will not go into its de-
tails, it is known that the optimal parameters of VLNW method are 4 ≤ d ≤ 8,
1 ≤ q ≤ 3 for 128 ≤ n ≤ 2048.

3 General Graph Model for Modular Exponentiation

In this section, we present a new model to describe the behavior of modular
exponentiation, which is called the general graph model. This model reduces the
problem of modular exponentiation into the shortest path problem in a graph,
and it can be effectively used to find a short sequence of multiplications. The
reason why we use the term ‘general’ is that the existing algorithms including
the binary method, the M -ary method and the sliding window method can be
represented by our model.

The general graph model employs a block-table of size 2d/2 which is equal
to that of the sliding window method with a window size d. For xE mod N , we
define a directed graph G = (V,EG) as follows. First, the node set V of G is
defined as :

V = {vi for 0 ≤ i ≤ n− 1 : vi corresponds to ei in EB} ∪ {source, sink},

where EB is the binary representation of exponent E, and n = �lg(E+1)�. Hence
the graph has n nodes between the source node and the sink node. Fig. 1 shows
the nodes of a graph corresponding to EB = 11010110111011111110111110100
1112, where the left-most node indicates the source node, and the right-most
node indicates the sink node. Note that the node next to the source node is
vn−1 which corresponds to en−1, and the node next to the sink node is v0 which
corresponds to e0.

0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 10 1 1 1 1 0 1 0 0 1 111 1S S

Fig. 1. Nodes of a graph in the general graph model

On the other hand, the edge set EG of G is defined as

EG = {(vi, vj) : 0 ≤ i− j ≤ d and vi, vj ∈ V },

where an edge from vi to vj corresponds to the computation of x(en−1,en−2,...ei,...,ej)

modN using the value x(en−1,en−2,...,ei) mod N . We also define the weight of the
edge (vi, vj), which is denoted by w(vi, vj), as the number of required multipli-
cations (including squarings) for this computation.

174 C.S. Park, M.-K. Lee, and D.K. Kim

Now we show how to decide the weight value of an edge. Recall that

x(en−1,en−2,...ei,...,ej) ≡ (x(en−1,en−2,...,ei))2
i−j × x(ei−1,...,ej)(mod N). (1)

Then we have the following three cases.

1. If ej = 1, then x(ei−1,...,ej) mod N is in the pre-computed block-table. Thus
we can get x(en−1,en−2,...ei,...,ej) mod N from x(en−1,en−2,...,ei) mod N by (i−
j) squarings and one multiplication. Therefore w(vi, vj) = i− j + 1.

2. If (ei−1, . . . , ej) = (0, . . . , 0), we need only squarings. Thus w(vi, vj) = i− j.
3. If ej = 0 but not all of the bits ei−1, . . . , ej are zeros, then the situation

is similar to the first case. The only difference is that the multiplication
does not occur after squarings, but it occurs between squarings. Therefore
w(vi, vj) = i− j + 1.

Fig. 2 shows a graph corresponding toEB=110101101110111111101111101001112
and d = 5, omitting the weight values.

0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 10 1 1 1 1 0 1 0 0 1 111 1S S

Fig. 2. General graph model

- binary method: weight of the path = 54

0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 10 1 1 1 1 0 1 0 0 1 111 1S S

12 2 2 2 2 2 2 1 2 2 2 22 2 2 2 2 2 2 2 2 1 2 2 21 1 1 1 10 0

- M -ary method(d = 5): weight of the path = 36

0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 10 1 1 1 1 0 1 0 0 1 111 1S S

6 6 6 6 6 60 0

- CLNW method(d = 5): weight of the path = 37

0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 10 1 1 1 1 0 1 0 0 1 111 1S S

6 6 6 6 6 610 0

- VLNW method(d = 5, q = 1): weight of the path = 35

0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 10 1 1 1 1 0 1 0 0 1 111 1S S
11 41 6 1 6 1 23 4 3 20 0

- shortest path(d = 5): weight of the path = 34

0 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 10 1 1 1 1 0 1 0 0 1 111 1S S

6 6 6 6 4 60 0

Fig. 3. Paths corresponding to various algorithms

New Computation Paradigm for Modular Exponentiation 175

There are many paths from the source to the sink in G, and each path
represents a distinct sequence of multiplications. The number of required mul-
tiplications for a specific path is (the cost to construct the block-table of size
2d−1) + (the sum of weights in the path). Therefore, G can be viewed as a gen-
eral model to describe computing sequences for modular exponentiation based
on the block partitioning, such as the binary method, the M -ary method, or the
sliding window method. Fig. 3 shows the paths corresponding to the existing
algorithms for EB = 110101101110111111101111101001112 and d = 5.

Because we can represent a specific exponentiation algorithm as a path from
the source to the sink in our general graph model, it is straightforward to see
that we can use one of the well-known shortest path algorithms [8] to find the
minimum weight path in G, which corresponds to the optimal computation se-
quence under the given parameters. The last row of Fig. 3 shows the result of
this task.

4 Methods for Constructing the Block-Table

In this section, we describe a general way to reduce the number of required
multiplications. Note that since a block-table, i.e., a pre-computation table, de-
termines the weight value of each edge in our model, it is very important to
construct a block-table properly. Our basic block-table is the same as that of the
sliding window method. In this section, we propose two methods to modify this
initial table and get an optimized one.

4.1 Conditions for Block Expansion

Before we show the specific methods, we give a general criterion for the opti-
mization of a block-table. First, note that the total number of required multi-
plications, denoted by T (EB, d), can be written as follows:

T (EB, d) = Pre(d) + Sq(EB , d) +Mul(EB, d),

where Pre(d) is the number of required multiplications for block-table construc-
tion, and Sq(EB, d) and Mul(EB, d) are the numbers of squarings and multipli-
cations along the shortest path, respectively. Thus Sq(EB, d) + Mul(EB, d) is
the sum of weights along the shortest path.

Initially, the block-table is the same as that of the sliding window method,
and Pre(d) = 2d−1. But if we can insert a new element into the initial block-
table, then Pre(d) will be increased since additional multiplications are needed
to compute the new block. On the other hand, the newly inserted table element
will also modify the initial graph. Since it is possible to newly link some node
pairs by only one multiplication (excluding squarings), some new edges are in-
serted into the graph. This means that we have more paths than those of the
initial graph. Thus we can possibility reduce Sq(EB, d) and/or Mul(EB, d) by
finding the new shortest path of the modified graph. If we define ∆Pre(d) as
the number of additional multiplications to compute the new table element, and

176 C.S. Park, M.-K. Lee, and D.K. Kim

∆ iinc ∆ iinc

1 1 0 11 0 1 11 0 0 1 1 0 1 11 0 0 1

0 8

101

111

110

1100

010

011

000

001

0

0

1

2

3

4

1

2

backtrack

11000

110000

1100000

1100101

11001010

110010100

1100101000

1100101111

3

4

5

6

1

2

3

4

eval blockeval block

expand
no

yes

−

−

−

−

−

−

−

−

−

−

−

−

−

−

original
initial blocks

... ...

Fig. 4. Prefix block expansion

∆Sq(EB , d) and ∆Mul(EB, d) as the reduced numbers of squarings and block
multiplications, respectively, then the necessary condition for us to expand our
block table is obviously

∆Pre(d) < ∆Sq(EB, d) +∆Mul(EB, d). (2)

In other words, if the condition (2) is satisfied, then we decide to insert the
corresponding new element into the block-table. Note that the table expansion
can be done iteratively until we cannot find an adequate element to be inserted.

4.2 Prefix Block Expansion

Our first heuristic to expand the block-table is prefix block expansion, where we
define the prefix block of EB as the first partitioned block of EB in the initial
graph.

We expand the prefix blocks as follows. When a computed block is odd, we
compare the weights of the initially computed shortest path and the new shortest
path determined by adding an edge associated with the expanded block. If the
criterion (2) is satisfied, then we continue this expansion for the next odd block;
Otherwise, we backtrack to the location where the last odd block was attached,
and we stop the expansion of prefix blocks.

Figure 4 shows an example of prefix expansion in case for EB = 110101101110
111111101111101001112 and d = 3. In case of expanding 11001011112, we back-
track to the location of 11001012 and stop since the reduced weight of shortest
path is less than ∆Pre(d), i.e., 4 in this case. The edges corresponding to the
expanded prefix blocks should be added to the graph.

4.3 Addition-Chain Block Expansion

We now describe another heuristic to expand the block-table. We consider a pair
of blocks in the current block-table. Then, the new block, which is the sum of two

New Computation Paradigm for Modular Exponentiation 177

0 1 11 0 110

6

... ...

Fig. 5. Addition-chain block expansion

blocks, is called an addition-chain block. Note that, addition of two blocks in an
exponent represents one multiplication in computing modular exponentiation.
Thus, we have ∆Pre(d) = 1 for each addition-chain block. Note that in our
graph model, using the parameter d is one of the limitations to get the optimal
sequence of multiplications. The addition-chain block expansion method is an
effort to overcome such a limitation since the length of an addition-chain block
may be larger than d.

Our expansion method is as follows. First, we find candidate elements by
adding every pair of blocks in the current block-table. If the newly computed
element is odd and the criterion (2) is satisfied, we update the block-table by
inserting this candidate. We show an example of addition-chain block expansion
in Fig. 5 when 11002 + 1112 = 100112.

4.4 Combination of Two Expansions

We describe how to combine two expansion methods. While there can be various
combinations of the two methods, we consider only two representative combi-
nation forms as shown in Fig. 6. One is to execute two expansion procedures
sequentially as in the left-hand side of Fig. 6. We denote this kind of combi-
nation as ExD. This combination can minimize expansions of useless blocks by
prefix block expansions when we perform addition-chain expansion procedures.

The other combination is to execute the addition-chain block expansion pro-
cedure whenever each prefix block is expanded as in the right-hand side of Fig. 6.
We denote this kind of combination as ExM. This combination can maximize
the number of possible candidate blocks for addition-chain block expansion by

addition chain block expansion

prefix block expansion

block lengthblock length

expansion
sequence

expansion
sequence

Fig. 6. Two combinations of two expansion processes

178 C.S. Park, M.-K. Lee, and D.K. Kim

newly generated prefix blocks. We try both of the two approaches and show the
experimental results in the next section.

5 Experimental Results

In our experiments, we consider two sets of exponents EB whose lengths n are
512, 1024, and 2048. The first set is composed of 10,000 random exponents EB

generated via the binomial distribution B(n, 1/2). The second set is composed
of 9 subsets with 100 elements each, where the subsets are classified by the ratio
of non-zero bits in EB .

We compare the performance of our methods with those of the CLNW
method and the VLNW method, which are known as the best practical expo-
nentiation methods. We considered various parameters d = {1–7} and q = {1–3}
for the CLNW and the VLNW methods, and we compared the best results with
ours in all of the cases.

Table 1 shows the required numbers of multiplications for the four different
methods with 10,000 random exponents generated by the binomial distribution
B(n, 1/2). By this table, we can see that the new method reduces the number
of multiplications by 5.38 (0.88%), 8.87 (0.73%) and 15.18 (0.64%), when it is
applied to the exponentiation with random exponents E ≈ 2512, E ≈ 21024 and
E ≈ 22048, respectively.

 530

 540

 550

 560

 570

 580

 590

 600

 610

 620

 630

 10 20 30 40 50 60 70 80 90

nu
m

be
r

of
 m

ul
tip

lic
at

io
n

the rate of non-zero bits (%)

n = 512

CLNW
VLNW

ExD
ExM

 1060

 1080

 1100

 1120

 1140

 1160

 1180

 1200

 1220

 1240

 10 20 30 40 50 60 70 80 90

nu
m

be
r

of
 m

ul
tip

lic
at

io
n

the rate of non-zero bits (%)

n = 1024

CLNW
VLNW

ExD
ExM

 2100

 2150

 2200

 2250

 2300

 2350

 2400

 10 20 30 40 50 60 70 80 90

nu
m

be
r

of
 m

ul
tip

lic
at

io
n

the rate of non-zero bits (%)

n = 2048

CLNW
VLNW

ExD
ExM

Fig. 7. Experimental results for effects for Hamming weights in exponents

New Computation Paradigm for Modular Exponentiation 179

Table 1. Comparison our methods with sliding window techniques

method
sliding window methods general graph model difference of

minCLNW VLNW min ExD ExM min

n = 512 614.07 611.81 611.26 606.46 606.87 605.88 -5.38 (-0.88%)

n = 1024 1203.40 1203.70 1201.97 1193.92 1194.32 1193.10 -8.87(-0.73%)

n = 2048 2369.35 2375.39 2369.26 2355.97 2355.96 2354.09 -15.18(-0.64%)

Figure 7 shows the experimental results for exponents with various Hamming
weights. In the figure, the horizontal axis represents the ratio of non-zero bits
in EB, and the vertical axis represents the average number of required multi-
plications for each method. We can see that if Hamming weight of EB is low,
our expansion techniques do not contribute so much since many of the blocks in
EB will be short. However, our methods reduce the number of multiplications
remarkably in the case of high Hamming weights, because our prefix expansion
method and addition-chain method can be effectively used to partition EB into
larger blocks. That is, the new method reduces the number of required mul-
tiplications up to about 33(5.22%), 54(4.44%) and 95(4.01%) for EB ≈ 2512,
EB ≈ 21024 and EB ≈ 22048, respectively.

References

1. R. L. Rivest, A. Shamir and L. Adleman: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21 (2) (1978) 120–126

2. T. ElGamal: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31 (4) (1985) 469–472

3. National Institute of Standards and Technology, Digital Signature Standard, FIPS
Publication 186 (1994)

4. D. E. Knuth: The art of computer programming: Seminumerical algorithms, Volumn
2, 2nd edition, Addison-Wesley, Reading, MA (1981) 461–485

5. J. Bos, M. Coster: Addition chain heuristics. In Proc. Crypto ’89, Lecture Notes in
Computer Science 435 (1990) 400–407

6. P. Downey, B. Leong and R. Sethi: Computing sequences with addition chains.
SIAM J. Comp. 10 (3) (1981) 638–646

7. C. K. Koç: Analysis of Sliding Window Techniques for Exponentiation. Computers
and Mathematics with Application 30 (10) (1995) 17–24

8. Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest: Introduction to
algorithms, The MIT Press (1990) 514–531

Dynamic Facility Location with Stochastic

Demands

Martin Romauch and Richard F. Hartl

University of Vienna, Department of Management Science,
Brünner Straße 72, 1210 Vienna, Austria

{martin.romauch, richard.hartl}@univie.ac.at

Abstract. In this paper, a Stochastic Dynamic Facility Location Prob-
lem (SDFLP) is formulated. In the first part, an exact solution method
based on stochastic dynamic programming is given. It is only usable for
small instances. In the second part a Monte Carlo based method for solv-
ing larger instances is applied, which is derived from the Sample Average
Approximation (SAA) method.

1 Introduction

The Uncapacitated Facility Location Problem (UFLP) has been enhanced into
many directions. In [9] and [2] you can find numerous approaches that consider
either dynamic or stochastic aspects of location problems. An exact solution
method to an UFLP with stochastic demands is discussed in [6]. The problem
considered there could be interpreted as a two stage stochastic programm. In
[8] you can find dynamic (multi period) aspects as well as the multi commodity
aspect. The approach in [10] could be seen as the integration of stochastics into
the UFLP. In the work in hand a model will be presented, where the UFLP
gets enriched by inventory and randomness in the demand. The UFLP and its
generalizations are part of the class of NP-hard problems, where no exact efficient
solution methods are known. First of all, the aim of this work is the preparation of
tools to develop and investigate heuristics for this problem type. For this reason,
an exact method for small instances was developed. This makes possible both,
to carve out the range of exact solvability and to compare exact and heuristic
solutions. A more detailed description of the problem is now following.

2 Stochastic Dynamic Warehouse Location Problem

Our aim is to find the optimal decisions for production, inventory and transporta-
tion, to serve the customers during a certain number of periods, t ∈ {1, ..., T}.
Assume that the company runs a number for the production sites i ∈ I =
{1, 2, ..., n} that have limited storage capacities, ∆(t)

i . These production sites
need not be used in all periods. When a production site i is operated at time
t, this is denoted by the binary variable δ(t)i = 1 . In this case the fixed costs
o
(t)
i arise. If a location is active, then the exact production quantity u(t)

i must be

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 180–189, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dynamic Facility Location with Stochastic Demands 181

fixed. For each period, the production decision is the first stage of the decision
process. It has to be done before the demand of the customers is known. Only
the current level of inventory y(t−1)

i as well as the demand forecasts are known
in advance.

Demand occurs at various customer locations j ∈ J = {1, 2, ...,m}. At any
given period t the demand dt

j at customer j will occur with probability pt
j ,

whereas customer j will not require any delivery with probability 1− pt
j . Hence,

demand can be described by a dichotomous random variable1 D(τ)
j (τ ≥ t). We

also assume that the random variables D(t)
j are stochastically independent.

P(D(t)
j = d

(t)
j) = p

(t)
j P(D(t)

j = 0) = 1− p(t)
j

In the second stage, when the demand is known, we must decide upon the
transportation of appropriate quantities xij (t) from the production sites i to
the customers j. We assume that the time needed for transportation can be
neglected (i.e. the transportation lead time is less than one period). Stockouts
(shortages) f (t)

j are permitted and are penalized by shortage costs p(t)
j per unit

time and per unit of the product. We assume that backordering is not possible
and that these potential sales are lost.

The periods are linked by the inventories y(t)
j at the production sites and

the usual inventory balance equations (1) apply. Here η(t)
i denotes the surplus

in period t at site i.

y
(t)
i + η

(t)
i = y

(t−1)
i + u

(t)
i −

∑
j∈J

x
(t)
ij (1)

In this paper we assume free disposal, therefore the variable η(t)
i can be

eliminated by turning the equality (1) into the inequality (2).

y
(t)
i ≤ y

(t−1)
i + u

(t)
i −

∑
j∈J

x
(t)
ij (2)

After the completion of the production and transportation decisions and after
updating the inventories, the next period can be considered. We note here, that
for all periods we have to pay attention to the capacity restrictions (3).

0 ≤ ut
i + y

(t−1)
i ≤ ∆

(t)
i (3)

In order to have a convenient notation, we introduce the concept of scenarios.
A scenario Dt ⊂ J is a subset of customers where the demand gets realized.
Since the demands of the different customers are independent, the corresponding
probability of a scenario to occur is given in formula (4).

P(Dt) =
∏

j∈Dt

p
(t)
j

∏
j �∈Dt

(
1− p(t)

j

)
(4)

1 The embedding of stochastics is similar to the embedding of stochastics into the
TSP, see [4].

182 M. Romauch and R.F. Hartl

(a) Scenarios (|I | = 2, |J | = 3) (b) Transition

Fig. 1. Sequencing of Decisions

Solving the SDFLP means finding a strategy that minimizes the expected
costs. Because of the sequencing of the decisions and the uncertain demand,
the solutions could be understood as scenario dependent strategies, where the
decisions are dependent on the forecasts and the level of inventory at hand.
Figures 1(a) and 1(b) illustrate the dependency of operative planning2 and the
scenarios (realization of demand).

The left hand side of Figure 1(a) shows the production decisions u(t)
i and

all of the possible subsequent scenarios (8 in number). One of the scenarios is
magnified in the upper part of Figure 1(b). In each scenario the decisions for
transportation, inventory and shortage are necessary.

In order to complete the model formulation, we summarize the decision vari-
ables and the corresponding costs in Table 1.

Table 1. Variables and Costs

variable cost description

δ
(t)
i ∈ {0, 1} o

(t)
i operating decision and fixed costs

x
(t)
ij ∈ Z+ c

(t)
ij transportation decision and unit transportation cost

y
(t)
i ∈ Z+ s

(t)
i inventory level and unit holding cost

u
(t)
i ∈ Z+ m

(t)
i production decision and variable production cost

f
(t)
j ∈ Z+ p

(t)
j shortage (lost sales) and unit shortage cost

The decisions δ(t)i and u(t)
i are linked by formula (5)

δ
(t)
i =

{
1 if u(t)

i > 0
0 if u

(t)
i = 0

(5)

2 To keep the figure as simple as possible shortages and disposal are not integrated.

Dynamic Facility Location with Stochastic Demands 183

while shortages are defined as

f
(t)
j = D(t)

j −
∑
i∈I

x
(t)
ij .

The total cost F is the sum over all periods of fixed operating costs, variable
production costs,

F = E

(
T∑

t=1

∑
i∈I

[
o
(t)
i δ

(t)
i +m

(t)
i u

(t)
i + s

(t)
i y

(t)
i

]

+
T∑

t=1

∑
i∈I

∑
j∈J

c
(t)
ij x

(t)
ij +

T∑
t=1

∑
j∈J

p
(t)
j f

(t)
j

⎞⎠
Since all relevant information about the past is contained in the inventory

levels, this model is well suited to be solved by dynamic programming. This will
be outlined in the next section.

3 Exact Solution Method

3.1 Stochastic Dynamic Programming

The principle of dynamic programming is the recursive estimation of the value
function. This value function, henceforward denoted by F, contains the aggregate
value of the optimal costs in all remaining periods. It can be derived recursively.
It is convenient to first describe the method in general and to apply it to the
problem afterwards. Let z ∈ Rm

+ be the vector of state variables and u ∈ Rn
+

be the vector of decisions. The set of feasible decisions in state z and period t is
denoted by Ut(z). The random influence in period t is represented by the random
vector r(t) for which the corresponding distribution is known. It is important to
note that the random variables {r(t)} have to be stochastically independent. The
state transformation is described by

zt+1 = A(zt, ut, rt)

and depends on the current state zt, the random influence rt at time t, and the
chosen decision ut. The single period costs in period t and state z when decision
u is taken and random variable r is realized is denoted by gt(z, u, r).

The value function Ft(z) gives the minimal expected remaining costs when
starting in state z in period t. We now present a variant of the stochastic Bellman
equation (compare Schneeweiß[11] S.151 (10.25) or Bertsekas [1] S.16).

184 M. Romauch and R.F. Hartl

FT (z) = min
u∈UT (z)

{
E
[
gT (z, u, r(T))

]}
Ft(z) = min

u∈Ut(z)

{
E
[
gt(z, u, r(t)) + Ft+1(At(z, u, r(t)))

]}
t = T − 1, . . . , 1

(6)

Recursively solving the equation (6) we get an optimal strategy that balances
the cost for implementing the decision u and the expected resulting remaining
costs.

Applying Stochastic Dynamic Programming (SDP) to the SDFLP is almost
straight forward. For solving the problem we have to iteratively calculate the
functions Ft. We will show later that for the SDFLP it is sufficient to consider
integer controls.

3.2 Application to the SDFLP

In order to apply the DP equation (6) to the SDFLP, we first introduce the
notation G

(
D, ystart

i , yend
i , t

)
for the sum of inventory holding costs, shortage

costs, and transportation costs in scenario D in period t when starting with
initial inventory levels ystart

i and where the final inventories are required to be
yend

i . To every given inventory level ystart
i and scenario D, the best possible

transportation plan has to be calculated. This can be done by solving a linear
program:

G
(
D, ystart

i , yend
i , t

)
=
∑
i∈I

s
(t)
i yend

i +

min
xij ,fj

∑
j∈J

p
(t)
j fj+

∑
i∈I

∑
j∈J

c
(t)
ij xij

(7)

s.t.
∑

i∈I xij + fj = d
(t)
j ∀j ∈ D∑

j∈J xij + yend
i ≤ ystart

i ∀i ∈ I
fj, xij ≥ 0.

Now the value function FT of the final period T can be computed. In G,
the starting inventory is now given by ystart

i = u
(T)
i + y

(T−1)
i while the terminal

inventory must be zero, yend
i = 0:

FT (y(T−1)
i) = min

u
(T)
i ≥0

0≤uT
i +y

(T −1)
i ≤∆

(T)
i

{∑
i∈I

δ
(T)
i o

(T)
i +

∑
i∈I

u
(T)
i m

(T)
i +

+
∑

DT ⊂J

P(DT)G
(
DT , u

(T)
i + y

(T−1)
i , 0, T

)} (8)

Going back in time, we have to turn to the general case in period t < T .
Now we have to take into account the remaining costs in periods t + 1, ..., T
when making the decision in period t. The starting inventory is now given by

Dynamic Facility Location with Stochastic Demands 185

ystart
i = u

(t)
i + y

(t−1)
i while the inventory at the end of period t is yend

i = y
(t)
i .

When determining G(Dt, u
(t)
i + y

(t−1)
i , y

(t)
i , t) again a linear program has to be

solved. The recursion for the value function becomes:

Ft(y
(t−1)
i) = min

u
(t)
i ≥0

0≤u
(t)
i +y

(t−1)
i ≤∆

(t)
i

{∑
i∈I

δ
(t)
i o

(t)
i + u

(t)
i m

(t)
i +

+
∑

Dt⊂J

P(Dt) min
0≤y

(t)
i ≤∆

(t+1)
i

{
Gt

(
Dt, u

(t)
i + y

(t−1)
i , y

(t)
i , t

)
+ Ft+1(y

(t)
i)
}} (9)

In the SDFLP the data and the controls are assumed to be integer. In the
problem (7) we therefore have to solve an integer linear program. It turns out
to be a min cost flow problem and therefore it is totally unimodular, such that
using the Simplex method for solving the relaxed linear program results in integer
solutions for the transportation quantities xij and the shortages fj.

The computational effort of this exact algorithm is increasing exponentially
with the capacity at the locations and the number of customers. The additional
effort that emerges from adding additional periods to the problem is linear.

This DP formulation is only applicable for small problem instances and for
larger problem instances heuristic approaches are necessary. This is considered
in the next section.

4 Heuristic Approach

A heuristic designed to solve stochastic combinatorial optimization problems is
the Sample Average Approximation Method (SAA); see Kleywegt et al. [5]. Our
model deals with a multi stage problem and that is the reason why this method
is not directly applicable. In what follows we first present the classical SAA for
solving static stochastic combinatorial optimization problems. Afterwards, we
will explain how this method can be modified in order to be applicable to our
problem.

Consider the following stochastic combinatorial optimization problem (10) in
which W is a random vector with known distribution P , and S is the finite set
of feasible solutions.

v� = min
x∈S

g(x), g(x) := EPG(x,W) (10)

The main idea of the SAA method is to replace the expected value EPG(x,W)
=
∫
G(x,w)P (dw) (which is usually very time consuming) by the average of a

sample. The following substitute problem (11) is an estimator of the original
problem (10).

min
x∈S

ĝN (x), ĝN(x) :=
1
N

N∑
j=1

G(x,W j) (11)

186 M. Romauch and R.F. Hartl

The SAA method works in three steps

1. Generate a set of independent identically distributed samples: {W 1
i , . . . ,

WN
i }M

i=1 of the random variable W.
2. Solve the corresponding optimization problems, i.e. optimize:

v̂i = min
x∈S

ĝi(x), ĝi(x) =
1
N

N∑
j=1

G(x,W j
i).

3. Estimate the solution quality. This is done by first computing mean and
variance of the sample:

v̂ =
1
M

M∑
i=1

v̂i, σ̂2 =
1

M(M − 1)

M∑
i=1

(v̂i − v̂)2.

Then a solution x̃ is chosen (e.g. we can take the solution with the smallest
v̂i) and its objective value is estimated more accurately by generating a
larger sample {W 1, . . . ,WN ′} (N ′ >> N)

ṽ =
1
N ′

N ′∑
j=1

G(x̃,W j), σ̃2 =
1

N ′(N ′ − 1)

N ′∑
j=1

(G(x̃,W j)− ṽ)2.

Calculate the value gap and σ2
gap:

gap = ṽ − v̂, σ2
gap = σ̃2 + σ̂2

Since E(v̂) ≤ v� ≤ E(ṽ) the values ṽ and v̂ can be interpreted as bounds
on v�: let x� ∈ S denote an optimal solutions of (10) then the first inequality
E(v̂) ≤ v� comes from taking the expected value on the following inequality:

v̂i ≤ ĝi(x�)

which results in
E(v̂i) ≤ E(ĝi(x�)) = v�.

After completing Step 3, we have to inspect the values of gap and σ2
gap. If

these values are too large, one must repeat the procedure with increased values
of N , M and N ′. In [10] this method is applied for a Supply-Chain Management
problem that includes location decisions.

Because of the multi-period structure of the SDFLP, the above SAA proce-
dure has to be adapted. In particular, one must pay special attention to the way
how the sampling is done. The sampling is done independently in every stage
and every state of the SDP sipmly by modifying formulas (8) and (9), where for
every period and inventory level we only sum over a small randomly chosen sets
of scenarios. To be more specific, the expected value in formula (9) passes over
into (12) where {Di} denotes the sample chosen in stage t and state y(t)

i .

1
N

N∑
i=1

min
0≤y

(t)
i ≤∆

(t+1)
i

{
Gt

(
Di, u

(t)
i + y

(t−1)
i , y

(t)
i , t

)
+ Ft+1(y

(t)
i)
}}

(12)

Dynamic Facility Location with Stochastic Demands 187

5 Results

The implementation was done in C++ and an additional library from the GNU
Linear Programming Kit (GLPK) [7] was used. For small examples where the
product

∏
i∈I ∆

(t)
i is small enough (say ≤ 50) it is possible to find the exact

solution using the dynamic programming approach described in Section 3. In
Figure 2, we can see the cost distributions for the exact and the heuristc approach
in a small example (3 periods, 3 customers, 2 facilities and capacity = 3). Here
one can see that the shapes are quite different. The instance considered has very

Fig. 2. Comparison of Different Solutions

Fig. 3. Distributions of the Optimal Solution to Instances with Different Levels of

Probability (p
(t)
j = p ∈ {0, 0.01, 0.02, . . . , 1})

188 M. Romauch and R.F. Hartl

sample size (N)

0 10 20 30 40 50 60 70 80 90 100

solsol

M=1

M=81

M=101

optimal

M=61M=61

co
st

s

8

9

10

11

12

13

14

15

16

17

(a) (b) Detail

Fig. 4. Choice of sample size N and the number of samples M

states

co
st

s

opt
SAA (N=5, M=7) ... average of 7 solutions
SAA (N=5) ... evaluation of one solution

Fig. 5. Expected costs to different levels of inventory y (1 : [0, 0]; 2 : [0, 1]; ...; 4 : [0, 3];

5 : [1, 0]; ...; 12 : [2, 3])

uncertain demand (every customer has probability 50%). Hence the two peaks
in the optimal solution are not very surprising. It is interesting to observe that
the heuristic solution does not show these twin peaks.

This second peak diminishes if the probability is close to 0 or 1. An exper-
iment was made where the probability for the demand varied from 0 to 1 for
all customers, i.e.: (p(t)

j = p ∈ {0, 0.01, 0.02, . . . , 1}). The result is depicted in
Figure 3 where grey areas represent positive probabilities that these cost values
occur. Every vertical line (p fixed) corresponds to a distribution function. For
instance, at p = 0.1 five peaks occur. When the probability p increases, the
number of peaks in the distribution function decreases.

The key decision to make the heuristic work well is to choose the right sample
sizeN and the right number of samplesM . In Figure 4 the statistical lower bound
v̂ (calculated in step 3) is depicted for different values of N and M . Choosing

Dynamic Facility Location with Stochastic Demands 189

a sample size N that is large enough seems to be more important than a large
number of samples. In Figure 4(b) the region N > 70 of Figure 4) is magnified
to see the effect of a choosing the number of samples more clearly. One also can
see that the statistical gap stays positive if at least 11 samples of size 71 are
chosen. It is also interesting to note that for small values of N and sufficient
large M the corresponding bounds are quite good, although the corresponding
individual solutions are quite bad. This situation is depicted in Figure 5.

6 Conclusion and Further Research

In this paper a stochastic dynamic facility location problem was proposed and
exact and heuristic solution methods were presented. The examples that can be
solved to optimality are quite small and therefore of minor practical interest.
But the comparison of the SAA results and the exact solution method shows
the applicability of the proposed method for larger instances of the SDFLP. To
get more insight into this method, it will be necessary to make a transfer of the
theoretical results known for the SAA method (see [5] for statistical bounds).
For comparison purposes it would be interesting to adopt metaheuristic concepts:
e.g. by using the variable-sample approach (for references see [3]). In our further
research we also want to consider other exact solution techniques considering
the SDFLP as a multistage stochastic program.

References

1. Bertsekas, D.P.: Dynamic Programming and Optimal Control, Athena Scientific,
Belmont, MA (1995)

2. Hammer, P.L.: Annals of Operations Research: Recent Developments in the Theory
and Applications of Location Models 1/2, Kluwer Academic Publishers (2002)

3. Homem-de-Mello, T.: Variable-Sample Methods for Stochastic Optimimization,
ACM Trans. on Modeling and Computer Simulation (2003)

4. Jaillet, P.: Probabilistic Travelling Salesman Problems, Ph.D. thesis, MIT (1985)
5. Kleywegt, A.,Shapiro,A., Hohem-de-Mello, T.: The Sample Average Method for

Stochastic Discrete Optimization, SIAM J. Optim. 12 (2001/02)
6. Laporte, G., Louveaux, F., Van Hamme, L.: Exact Solution to a Location Problem

with Stochatic Demands, Transportation Science, Vol. 28,(1994)
7. Makhorin, A.:GNU Linear Programming Kit - Reference Manual - Version 4.1,

Department for Applied Informatics, Moscow Aviation Institute, Moscow, Russia
(2003)

8. Melo, M.T., Nickel, S., Saldanha da Gama, F.: Large-Scale Models for Dynamic
Multi-Commodity Capacitated Facility Location, Berichtsreihe des Fraunhofer In-
ststituts für Techno- und Wirtschaftsmathematik (ITWM), ISSN 1434-997, Kaiser-
slautern (2003)

9. Hesse Owen, S., Daskin, M.S.: Strategic Facility Location: A Review, Eropean
Journal of Operational Research, Vol. 111, (1998)

10. Santoso, T., Ahmed, S., Goetschalckx, M., Shapiro, J.: A Stochastic Programming
Approach for Supply Chain Network Design under Uncertainty, The Stochastic
Programming E-Print Series (SPEPS), (2003)

11. Schneeweiß, C.: Dynamisches Programmieren, Physica-Verlag, (1974)

The Complexity of Classical and Quantum

Branching Programs: A Communication
Complexity Approach

Farid Ablayev�

Dept. of Theoretical Cybernetics, Kazan State University,
420008 Kazan, Russia

ablayev@ksu.ru

Abstract. We present a survey of the communication point of view for
a complexity lower bounds proof technique for classical (deterministic,
nondeterministic and randomized) and quantum models of branching
programs.

Keywords: Branching programs, communication computations, quan-
tum computations.

1 Classical Branching Programs and Communication
Complexity

We present a survey of the communication point of view for a complexity lower
bounds proof technique for classical (deterministic, nondeterministic and ran-
domized) and quantum models of branching programs. We do not try to present a
complete survey on communication complexity methods for branching programs
— this is a hard task. Our goal is to give some intuition how communication
complexity technique works for the area of branching programs.

A good source of information on classical branching programs is Wegener’s
book [34], and for an introduction to quantum computation see Nielsen and
Chuang [22]. In the paper we try to make citation to original papers on branch-
ing programs. Some of these facts are displayed in [34]. Randomized branching
programs intensively investigated since 1996 when first result on “exponential
separation complexity” for deterministic and randomized read-once branching
programs was proved in [3]. Many authors developed lower bound technique for
randomized branching programs complexity. We would like to mentions here re-
sults due to Martin Sauerhoff whose last decade research results on randomized
branching programs draw light to this area. Recently different models of quantum
branching programs defined [6,21]. Investigation of quantum branching program
is a new perspective area in the theory of branching programs.
� Supported by the Russia Fund for Basic Research under the grant 03-01-00769.

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 190–201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Complexity of Classical and Quantum Branching Programs 191

Branching programs. Recall definition of branching programs (BP)[34].
A deterministic branching program (BP) P is a finite directed acyclic graph

which accepts some subset of {0, 1}n. Each node (except for the sink nodes)
is labeled with an integer 1 ≤ i ≤ n and has two outgoing arrows labeled 0
and 1. This pair of edges corresponds to querying the i’th bit xi of the input,
and making a transition along one outgoing edge or the other depending on the
value of xi. There is a single source node corresponding to the start state, and
a subset Accept of the sink nodes corresponding to accepting states. An input
σ is accepted if and only if it induces a chain of transitions leading from source
to a node in Accept, and the set of such inputs is the language accepted by the
program.

The branching program P computes function g in the obvious way: for each
σ ∈ {0, 1}n we let g(σ) = 1 iff there is a directed path starting in the source s
and leading to the accepting node accept such that all labels xi = σi along this
path are consistent with σ = σ1σ2 . . . σn.

A nondeterministic BP (for short NBP) is branching program with ”guessing
nodes” (see for example [11]) that is nodes with two outgoing edges being unla-
beled. Unlabeled edges allow all inputs to produce. A nondeterministic branching
program P computes a function g, in the obvious way; that is, g(σ) = 1 iff there
exists (at least one) computation on σ starting in the source node s and leading
to the accepting node accept.

A randomized BP [3,34] (for short RBP) is a one which has in addition to
its standard inputs specially designated inputs called ”random inputs”. When
values of these ”random inputs” are chosen from the uniform distribution, the
output of the branching program is a random variable.

Say that RBP (a, b)-computes a boolean function f if it outputs 1 with prob-
ability at most a for input σ such that f(σ) = 0 and outputs 1 with probability
at least b for inputs σ such that f(σ) = 1.

As usual for a branching program P (deterministic or random), we define
size(P) (complexity of the branching program P) as the number of internal
nodes in P . Define, following [11], the size(P) of the nondeterministic branching
program P as the number of internal nodes in P minus the number of guessing
nodes.

In theory BP-s are useful for investigation the amount of space necessary to
compute various functions. That is (see the book [34]),

LOGSPACE/poly = BP (poly) (1)

where LOGSPACE/poly is the nonuniform analogy of LOGSPACE and
BP (poly) is the class of all functions having polynomial DBP size. Another
known result due to Barrington (see [8] for more information) is that constant
width (width 5) DBP-s are as powerful as O(log n) depth circuits with constant
fan-in gates.

One-way Communication Computations. A communication protocol for a func-
tion f : {0, 1}n1×{0, 1}n2 → {0, 1}m, is a distributive algorithm of computation
among two parties, conventionally referred to as Alice and Bob, in order for Bob

192 F. Ablayev

to acquire the value of f(υ, ω), where, initially, Alice is given υ ∈ {0, 1}n1 and
Bob is given ω ∈ {0, 1}n2. The cost of a communication protocol is defined as
the minimal amount of communication (number of bits) necessary to Alice and
Bob to compute the value of f(υ, ω) for a worst-case input (υ, ω). The commu-
nication complexity of a function f , is defined as the cost of the best protocol
for f . This model of communication computation was introduced by Yao [35].
Since 1979 different models of communication computations were introduced
(see books [19,14]).

Randomized communication protocols are that produce results probabilisti-
cally [19,14]. Let p = 1

2 + ε for 0 ≤ ε ≤ 1/2. Say that the probabilistic protocol
φ p-computes a function h if for every input σ = (u,w) it holds that h(σ) = b
iff the probability of outputting the bit b in the computation Tφ(u,w) is no less
than p.

In the paper we consider only one-way communication computations. For
this model only player A can send messages to B. Player B on obtaining a
message and his part of input produces a result. Let a set U ⊆ {0, 1}n be
such that U = L × R. The randomized communication complexity C(φ) of the
probabilistic protocol φ on the inputs from U is �log |M(φ)|�, where M(φ) is the
set of messages used by φ during computations on inputs from U . For p ∈ [1/2, 1]
the randomized communication complexity PCU

p,π(h) of a boolean function h is

min{C(φ) : protocol φ p-computes h for the partition π of inputs from U}.

1.1 OBDD Models and One-Way Communication

Developments in the field of digital design and verification have led to the re-
stricted forms of branching programs. The most common model used for verifying
circuits is a polynomial size ordered read-once branching program also called an
ordered binary decision diagram (for short OBDD), (see [10,33,20]). The impor-
tance of OBDD for practice based on the following fact: Boolean manipulations
with OBDD (equivalence checking, ...) can be performed deterministically in
polynomial time.

Read-once branching program is a BP in which for each path each variable is
tested no more than once. A τ -ordered read-once branching program is a read-
once branching program which respects an ordering τ of the variables, i.e. if an
edge leads from an xi-node to an xj -node, the condition τ(i) < τ(j) has to be
fulfilled. An OBDD, is a τ -ordered read-once branching program which respects
some ordering τ of variables.

It has turned out that many important for practice functions cannot be
computed by polynomial size OBDD-s and read-once branching programs (see
[10], [31], and [24]). One of such important functions is multiplication function
MULT which is exponentially hard for deterministic and randomized OBDDs
[9,5]. Communication complexity approach is the main method for proving lower
bounds for OBDD like models.

Definition 1. We call branching program a π-weak-ordered branching program
if its respects a partition π of variables {x1, x2, . . . , xn} into two parts X1 and

The Complexity of Classical and Quantum Branching Programs 193

X2 such that if an edge leads from an xi-node to an xj-node, where xi ∈ Xt and
xj ∈ Xm, then the condition t ≤ m has to be fulfilled.

We call branching program P an weak-ordered if it is π-weak-ordered for some
partition π of the set of variables of P into two sets.

Using the property 1 below many exponential lower bounds for function
presentation by OBDDs were proved. The analog of the property 1 is correct for
deterministic and nondeterministic cases.

Property 1. Let ε ∈ [0, 1/2], p = 1/2 + ε. Let randomized π-weak-ordered
branching program P (1 − p, p)-computes function h : {0, 1}n → {0, 1}. Let
U ⊆ {0, 1}n be such that U = L×R, where L and R are defined in according to
partition π of inputs. Then

size(P) ≥ 2PCU
p,π(h)−1.

Proof. The key idea (which now folklore) is to view on program P as a specific
communication protocol Φ, which p-computes function h for the partition π of
inputs.

Let σ ∈ U be a valuation of x, σ = (u,w), u ∈ L, w ∈ R. Players A and B
receive respectively u and w in according to partition π of inputs. Let v1, . . . , vd

be all internal nodes of P that are reachable during paths of computation on the
part u of input σ with non zero probabilities p1(u), . . . , pd(u).

During the computation on the input u, player A sends node vi with prob-
ability pi(u) to player B. Player B on obtaining message vi from A starts its
computation (simulation of the branching program P) from the node vi on the
part w of the input σ.

From the definition of the protocol Φ results the statement of Property.

As an example of exponential hard (for OBDDs) function we consider the
following Boolean function first considered in [29]. Let n be an integer and let
p[n] be the smallest prime greater or equal to n. Then, for every integer s, let
ωn(s) be defined as follows. Let j be the unique integer satisfying j = s mod p[n]
and 1 ≤ j ≤ p[n]. Then, ωn(s) = j, if 1 ≤ j ≤ n, and ωn(s) = 1 otherwise. For
every n, the boolean function gn : {0, 1}n → {0, 1} is defined as gn(σ) = σj ,
where j = ωn(

∑n
i=1 iσi).

It was proved [29] that gn needs size at least 2n−3
√

n for computation by
deterministic read-once branching program.

Theorem 1 ([2]).
Let ε ∈ [0, 1/2], p = 1/2+ε. Then for arbitrary δ > 0 for every n large enough it
holds that any randomized ordered read-once branching program that (1 − p, p)-
computes function gn has the size no less than

1/4

(
2n−�3√n�

n

)1−(1+δ)H(p)

.

194 F. Ablayev

1.2 Regular (1, +k)-BP and One-Way Communication with
Information Overlap

In this section we consider branching programs with the restriction only on
the number of variables testing and without limitation on the ordering (weak-
ordering) of variables reading. In this case the possibility of applying communi-
cation methods for proving lower bounds is not evident as for OBDD model: we
have no possibility for natural partition of the set of variables among two play-
ers as in the case of OBDD (see for example [25] for more arguments). Simon
and Szegedy developed [31] another (different from the communication method)
lower bound technique for proving lower bounds for read-once branching pro-
grams. Their method is the generalization of technique used by different authors
for the read-once BP model.

Below we present communication lower bound proof method that works for
more general than read-once BP model.

Let v be a node of BP P . We denote X(v) a set of all variables from X that
are tested on paths of P from the source to v.

Definition 2. A branching program P is called regular if
(i) for each node v of P on each path from the source to v the same set

X(v) ⊆ X of variables is tested and
(ii) on each path from the source to a sink all variables X are tested.

Remark. Notice, that similar BPs model was investigated by Oklonishnikova
[23], she used word “uniform” for defining such model. We think that it would be
more convenient to use word “regular” than the word “uniform” which already
has its own meaning for denoting computational models.

Clearly we have that OBDDs are regular branching programs. Notice that
an arbitrary branching program P can be transformed into a regular read-
once branching program P ′ by inserting dummy tests such that size(P ′) ≤
2n size(P) [23].

Definition 3. Call P a regular (1,+k)-branching program (for short (1,+k)-
ReBP) iff (i) P is regular and (ii) along every consistent path at most k variables
are tested more than once.

Notice that the procedure of inserting dummy tests for ordinary (1,+k)-BP
P (in order to get regular BP P ′ from P) can violates the (1,+k) property.

Decomposition of (1, +k)-ReBP. Consider X-input (1,+k)-ReBP P . Call
an edge (v, v′) of P an xi-edge if it is labeled by xi = 0 or xi = 1. By a path
path of P we mean a consistent path. That is, path is a sequence of nodes
path = (v0, . . . , vl), where v0 is a source of P , vl is one of a sinks of P and an
assignment γ &→ X of constants γ = γ1, . . . , γn to variables in X is such that
each xj-edge (vi, vi+1) of path is labeled by xj = γj .

We will also use notion computation in the paper. By a computation pathγ

of P we mean path path together with its label γ &→ X .

The Complexity of Classical and Quantum Branching Programs 195

Let S ⊂ X . Define an S-border set B(S) of nodes of P as follows:

B(S) = {v : X(v) = S and for all offspring nodes v′ of v S ⊂ X(v′) properly }.
Denote P (S) a subprogram (subgraph) of P which is determined by all paths

path with the property: path path contains a node from B(S). Note that for
nondeterministic P its P (S) subprogram can be deterministic.

The following property is evident.

Property 2. Each path path of P (S) contains exactly one node from B(S).

We will view on P (S) as a BP consisting of two parts P 1 and P 2 where P 1

consists of the part of P (S) “before” B(S), including S-border B(S) and P 2 —
is a remind part of P (S).

Let Z ⊂ S. Let PZ(S) be a subprogram (subgraph) of P (S) which determined
by all paths path with the property: for any computation of P (S) only variables
from Z are tested in the second part P 2 of P (S). From the property that P is
(1,+k)-ReBP program it follows that |Z| ≤ k.

Let ρ be a map ρ : Z → {0, 1}. Denote P |ρ(S) a subgraph of PZ(S) which
determined by all paths path with the property: for path all its zi-edges, zi ∈ Z,
are marked zi = σi in according to the map ρ.

Definition 4. We call a family R = {S : S ⊂ X} of subsets of X a P -family
if it is true that each computation pathγ of P belongs to some subprogram P (S)
of P for S ∈ R and removing arbitrary set S from R violates this property.

The following lemma is motivated by the exposition in [11].

Lemma 1 (decomposing lemma). Let P be a nondeterministic (1,+k)-ReBP.
Let R be a P -family. Then P can be represented in the form

P =
⋃

S∈R

⋃
ρ:Z→{0,1},

|Z|≤k

P |ρ(S).

Proof. Each S ∈ R determines a subprogram P (S) of P and each computation
pathγ belongs to some subprogram P (S) of P for S ∈ R. So, P =

⋃
S∈R P (S).

Each computation pathγ of P (S) determines a set Z ⊂ X , |Z| ≤ k, of all vari-
ables tested along pathγ both in the first part P 1 and the second part P 2 of
P (S). So, P (S) =

⋃
Z⊂X,
|Z|≤k

PZ(S). All (suitable) settings ρ : Z → {0, 1} deter-

mines nonempty subprograms P |ρ(S) of PZ(S).

We call the presentation of (1,+k)-ReBP P from Lemma 1 an R-decompo-
sition of P or just decomposition of P .

Lower Bounds for (1, +k)-ReBP. Let MP = P |ρ(S). Let B(S) be an S-
border set of P |ρ(S). Using the property that size(P) ≥ |B(S)| we reduce a
problem of proving lower bound for size(P) for proving a lower bound for |B(S)|.

196 F. Ablayev

Denote ψ a boolean function computable by subprogram P |ρ(S) of P . Note
that for deterministic program P that computes function f for all inputs γ of
P |ρ(S) it holds that f |ρ(γ) = ψ(γ) but for nondeterministic P this can be not
true (for an input γ for which f |ρ(γ) = 1 the subprogram P |ρ(S) can contain
only rejecting paths of P).

Denote S1 = S\Z, S2 = X\(S1 ∪ Z). Subprogram P |ρ(S) of P is a weak
ordered.

Denote NCS1:S2(ψ) (DCS1:S2(ψ)) a nondeterministic (deterministic) one-
way communication complexity of computing ψ for the case when player A gets
only bits in S1 and B — only bits in S2.

Denote CMS1:S2(ψ) a communication matrix. That is, CMS1:S2(ψ) is an
|S1| × |S2| boolean matrix, (σ, σ′) entry of CMS1:S2(ψ) is ψ(σ, σ′). Denote
nrow(CMS1 :S2(ψ)) to be a number of different rows of CMS1:S2(ψ).

Lemma 2. Let P be an X-input (1,+k)-ReBP. Let P |ρ(S) be an arbitrary sub-
program of decomposition of P and ψ be a function computable by P |ρ(S). If P
is nondeterministic then

|B(S)| ≥ 2NCS1:S2(ψ).

If P is deterministic then

|B(S)| ≥ nrow(CMS1 :S2(ψ)).

Proof. Describe the following communication protocol Φ, which computes func-
tion ψ. Let γ ∈ Σ be a valuation of X . Denote γ = (σ1;σ;σ2), where σ1 &→ S1,
σ &→ Z, σ2 &→ S2 assignments of γ to S1, S2, and Z respectively.

Players A and B receive respectively σ1 and σ2. Setting σ &→ Z is known
both to A and B. This model of computation is known as a communication
computation with overlap information [19]. Let v1, . . . , vd be all internal nodes
of P |ρ(S) that are reachable during paths of computation on the part σ1 of γ.

During the computation on the input σ1 playerA nondeterministically selects
and sends node vi to player B. Player B on obtaining message vi from A starts
its computation (simulation of P |ρ(S)) from the node vi on the part σ2 of the
input γ.

The statements of the lemma result from the definition of the protocol Φ and
known fact that DCS1:S2(ψ) = � lognrow(CMS1 :S2(ψ))� [35].

The boolean function fn,k is defined in [30]. Informally it defined as follows.
The n variablesX are divided into k blocks of length m. For every j = 1, 2, . . . , k
a weighted sum of the bits of block j determines an index ij ∈ {1, 2 . . . , n} of
input bits. Then, the value of the function is the parity of bits determined by ij
for j = 1, 2, . . . , k. See [30] for the formal definition.

Theorem 2. Let for k ≥ 1 the function fn,k is computed by a deterministic
(1,+(k − 1))-ReBP P . Then

size(P) ≥ 2(n/k−k log(n/k)−3
√

n−k)/2

Proof. The proof uses decomposing lemma and communication technique.

The Complexity of Classical and Quantum Branching Programs 197

Note that using arguments of the paper [12] we can construct (1,+k)-ReBP
for presentation fn,k of size O(nk). Together with the theorem 2 this proves
proper hierarchy of the computational power of (1,+k)-ReBP-s in respect of pa-
rameter k. In particular this proves that (1,+k)-ReBP-s are more powerful than
read-once BP-s. Note that Savicky and Zak in [30] proved the proper hierarchy
for ordinary (1,+k)-BP-s with respect to k.

2 Quantum Communication Computations and OBDDs

Quantum communication protocol is a generalization of randomized communi-
cation protocols (see for example [16]). In a quantum protocol both players have
a private set of qubits. Some of the qubits are initialized to the input before the
start of the protocol, the other qubits are in state |0〉. Alice performs some uni-
tary transformation on her qubits and then sends some of the qubits (channel
qubits) to Bob. Bob performs some unitary transformation on channel qubits
and his part of qubits. Then some qubits are measured and the result is taken
as the output.

In a (bounded error) quantum protocol the correct answer must be given
with a probability 1 − δ for some δ ∈ (0, 1/2). The (bounded error) quantum
complexity of a function is denoted Qδ(f).

For a Boolean function f : {0, 1}n1 × {0, 1}n2 → {0, 1} its communication
matrix is an 2n × 2n matrix with CMf [x, y] = f(x, y).

For V ⊆ {0, 1}n1 andW ⊆ {0, 1}n2 denote CMV,W the |V |×|W | submatrix of
CMf formed by rows V and columnsW of CMf . DenoteMf a set of submatrices
of CMf with pairwise different rows. For matrix CMV,W ∈ Mf call set W a
control set.

Theorem 3. For every function f : {0, 1}n1 × {0, 1}n2 → {0, 1}, every δ ∈
(0, 1/2), and every CMV,W ∈Mf ,

Qδ(f) ≥ log |V | − |W |H(δ).

where H(δ) = −δ log δ − (1 − δ) log(1− δ).
Proof. The proof uses entropy approach and omitted. Such approach used in sev-
eral papers for classical randomized and quantum communication computations
[1,17,16].

Klauck’s lower bound (Theorem 4) is a corollary of Theorem 3. Recall that
for a Boolean function f : {0, 1}n1 × {0, 1}n2 → {0, 1}, a set W ⊆ {0, 1}n2 is
shattered, if for all R ⊆ W there is an υ such that f(υ, ω) = 1 ⇔ ω ∈ R for all
ω ∈W . The VC-dimension VC(f) of f is the maximal size of a shattered set.

Theorem 4 ([16]). For every Boolean function f : {0, 1}n1×{0, 1}n2 → {0, 1},
every δ ∈ (0, 1/2),

Qδ(f) = VC(f)(1−H(δ)).

Proof. In according to definition of VC(f) there exists matrix MV,W ∈ Mf ,
where W is shattered set with |W | = VC(f) and |V | = 2|W |.

198 F. Ablayev

2.1 Quantum OBDD

We use quantum OBDD model defined in [6]. A QOBDD P of width d for
Boolean function f on n variables that tests its n variables in order π = (π(1) . . .
π(n)) is a triple

P = 〈T, |ψ0〉, F 〉
where T is a sequence (of the length n) of d-dimensional unitary transformations
of d-dimensional Hilbert space Hd:

T = (〈π(i), Ui(0), Ui(1)〉)n
i=1,

|ψ0〉 is the unitary (in respect to the �2 norm) vector of Hd (initial state of P).
F ⊆ {1, . . . , d} is the set of accepting states.

Computation on P for an input σ = σ1 . . . σn ∈ {0, 1}n is defined as follows:

1. A computation of P starts from the state |ψ0〉. On the i-th step, 1 ≤ i ≤ n,
of computation P transforms state |ψ〉 to a state |ψ′〉 = Ui(σπ(i))|ψ〉.

2. After the n-th (last) step of quantum transformation P measures its resulting
state |ψ(σ)〉. Measurement is presented by a diagonal zero-one projection
matrix M where Mii = 1 if i ∈ F and Mii = 0 if i �∈ F . The probability
paccept(σ) of P accepting input σ is defined by

paccept(σ) = ||M |ψ(σ)〉||2.

Acceptance criteria and complexity. Let δ ∈ (0, 1/2). We say that an QOBDD P
computes f with bounded error (with δ-error) if for all σ ∈ f−1(1) the probability
of P accepting σ is at least 1 − δ and for all σ ∈ f−1(0) the probability of P
accepting σ is at most δ. We call such QOBDD δ-error QOBDD and denote
it Pδ.

We denote width(P) a dimension d of Hilbert space Hd of program P . For a
Boolean function f we define its quantum width Qwidthδ(f) to be the width of
the best quantum OBDD that computes f with δ-error.

Property 3. Let δ ∈ (0, 1/2). Let QOBDD P computes f with δ-error. Let
π = (L,R) be a partition of inputs of f between Alice and Bob with L and R
defined according to an ordering τ of inputs of P . That is, P can read variables
from R only after reading variables from L and cannot read variables from L
after starting reading variables from R. Then

width(P) ≥ 2Qπ
δ (f),

here (and below in the paper) Qπ
δ is communication complexity of function f in

respect to partition π of inputs.

The proof of Property 3 uses the same approach as the proof of Lemma 1.

In [32] for indirect storage access function ISAn on n+logn variables proved
that any QOBDD δ-error computed ISAn has size 2Ω(n/logn). Theorem 3 and
Property 3 give the following lower bound.

The Complexity of Classical and Quantum Branching Programs 199

Property 4. Qwidthδ(ISAn) ≥ 2(1−H(δ))n/logn.

Below we consider lower bound for complexity for almost all Boolean func-
tions. Denote by F(n) the set of all boolean functions f : {0, 1}n → {0, 1}. Let
E be some property of functions from F(n). Denote by FE(n) the subset of
functions from F(n) without property E. We say that almost all functions have
the property E if

| FE(n) | / | F(n) |→ 0, as n→∞.

Theorem 5. For almost all functions f : {0, 1}n → {0, 1}, for δ ∈ (0, 1/2)

Qwidthδ(f) ≥ 2(1−(2+θ)H(δ))(n−log 3n).

Proof Sketch. For an ordering τ of n variables testing for QOBDD let π = (L,R)
be a corresponding partition of the set of variables such that |R| = � log 3n�, be
a partition of n variables of function f .

Consider communication computation for f for the partition π of inputs.
Elementary counting proves that 1) DC(fn) = n for almost all functions f ; 2)
for an arbitrary θ ∈ (0, 1) it holds that n ≤ cs(CM) < (2 + θ)n for almost all
functions f . Now Theorem 3 gives that for almost all functions, for δ ∈ (0, 1/2)

Qπ
δ (f) ≥ (1− (2 + θ)H(δ))(n − log 3n).

There are C|R|
n different partitions π of the set of n variables determined by dif-

ferent possible orderings τ of variables testings by QOBDDs. Further counting
together with the previous inequality and Property 3 proves that for almost all
functions f it holds that Qwidthδ(f) ≥ 2(1−(2+θ)H(δ))(n−log 3n).

References

1. F.Ablayev, Lower bounds for one-way probabilistic communication complexity and
their application to space complexity, Theoretical Computer Science, 157, (1996),
139-159.

2. F. Ablayev, Randomization and nondeterminism are incomparable for ordered-
read once branching programs, in Proceedings of the ICALP’97, Lecture Notes in
Computer Science, Springer-Verlag, 1256, (1997), 195-202.

3. F. Ablayev and M. Karpinski, On the power of randomized branching programs, in
Proceedings of the ICALP’96, Lecture Notes in Computer Science, Springer-Verlag,
1099, (1996), 348-356.

4. F. Ablayev and M. Karpinski, On the Power of Randomized Ordered Branching
Programs Electronic Colloquium on Computational Complexity, TR98-004, (1998),
available at http://www.eccc.uni-trier.de/eccc/

5. F. Ablayev and M. Karpinski, A lower bound for integer multiplication on random-
ized ordered read-once branching programs. Information and Computation 186(1),
(2003), 78-89.

200 F. Ablayev

6. F. Ablayev, A. Gainutdinova, and M. Karpinski, On the computational power of
quantum branching programs. Proc. FCT 2001, Lecture Notes in Computer Science
2138: 59–70, 2001.

7. M.Agrawal and T. Thierauf, The Satisfiability Problem for Probabilistic Ordered
Branching Programs, Electronic Colloquium on Computational Complexity, TR97-
060, (1997), available at http://www.eccc.uni-trier.de/eccc/

8. R. Boppana and M. Sipser, The complexity of finite functions, in Handbook of
Theoretical Computer Science, Vol A: Algorithms and Complexity, MIT Press and
Elsevier, The Netherlands, 1990, ed. J Van Leeuwen, pp. 757-804.

9. R. Bryant, On the complexity of VLSI implementations and graph representa-
tions of boolean functions with applications to integer multiplication, IEEE Trans.
Comput., 40 (2), (1991), 205-213.

10. R. Bryant, Symbolic boolean manipulation with ordered binary decision diagrams,
ACM Computing Surveys, 24, No. 3, (1992), 293-318.

11. A. Borodin, A. Razborov, and R. Smolensky, On lower bounds for read-k-times
branching programs, Computational Complexity , 3, (1993), 1-18.

12. B. Bolling, M. Sauerhoff, D. Sieling, and I. Wegener, On the power of different
types of restricted branching programs, ECCC Reports 1994, TR94-025. Available
at http://www.eccc.uni-trier.de/eccc/

13. S. Jukna, Complexity of Boolean Functions, see Electronic Collo-
quium on Computational Complexity, section Lecture Notes, available at
http://www.eccc.uni-trier.de/eccc/

14. J. Hromkovic, Communication complexity and parallel computations, Springer
Verlag Press, 1997.

15. M. Karchmer, R. Raz, and A. Wigderson, Super-logarithmic Depth Lower Bounds
Via the Direct Sum in Communication Complexity, Computational Complexity, 5,
(1995), 191-204.

16. H. Klauck. On quantum and probabilistic communication: La Vegas and one-way
protocols. In the Proc. of the 32nd ACM Symp. Theory of Computing, 2000.

17. Ilan Kremer, Noam Nisan, Dana Ron: On randomized one-round communication
complexity. In Proceedings of the 27th annual ACM symposium on Theory of com-
puting, 1995, 596-605.

18. M. Krause, C. Meinel, and S. Waack, Separating the eraser Turing machine classes
Le, NLe, co − NLe, and Pe, in Proc. of the MFCS’88, Lecture Notes in Computer
Science, Springer-Verlag, 324, 405-413.

19. E. Kushilevitz and N. Nisan, Communication comple xity, Cambridge University
Press, 1997.

20. C.Meinel and T.Theobald, Ordered Binary Decision Diagrams and Their Signif-
icance in Computer-Aided Design of VLSI Circuits - a Survey, Electronic Collo-
quium on Computational Complexity, TR98-039, available at http://www.eccc.uni-
trier.de/eccc

21. M. Nakanishi, K. Hamaguchi, and T. Kashiwabara, Ordered quantum branching
programs are more powerful than ordered probabilistic branching programs under a
bounded-width restriction, Proc. 6th Intl. Conf. on Computing and Combinatorics
(COCOON) Lecture Notes in Computer Science 1858: 467–476, 2000.

22. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

23. E. Oklonishnikova, On one lower bound for branching programs, Electronic Collo-
quium on Computational Complexity, TR02-020, available at http://www.eccc.uni-
trier.de/eccc

The Complexity of Classical and Quantum Branching Programs 201

24. S. Ponzio, A lower bound for integer multiplication with read-once branching pro-
grams, Proceedings of the 27-th STOC, (1995), 130-139.

25. S. Ponzio, Restricted Branching Programs and Hardware Verification, PhD Theses,
Massachusetts Institute of Technology, 1995. Available at http://www.eccc.uni-
trier.de/eccc

26. A. Razborov, Lower bounds for deterministic and nondeterministic branching
programs, in Proceedings of the FCT’91, Lecture Notes in Computer Science,
Springer-Verlag, 529, (1991), 47–60.

27. R.Raz and P. McKenzie, Separation of the monotone NC hierarchy, in Proc. of the
38th Annual Symposium on Foundation of Computer Science, (1997), 234-243.

28. M. Sauerhoff, A lower bounds for randomized read-k-times branching programs
Electronic Colloquium on Computational Complexity, TR97-019, (1997), available
at http://www.eccc.uni-trier.de/eccc/

29. P. Savicky, S. Zak, A large lower bound for 1-branching programs, Electronic Col-
loquium on Computational Complexity, Revision 01 of TR96-036, (1996), available
at http://www.eccc.uni-trier.de/eccc/

30. P. Savicky, S. Zak, A hierarchy for (1, +k)-branching programs with respect to k,
Electronic Colloquium on Computational Complexity, TR96-050, (1996), available
at http://www.eccc.uni-trier.de/eccc/

31. J. Simon and M. Szegedy, A new lower bound theorem for read-only-once branching
programs and its applications, Advances in Computational Complexity Theory, ed.
Jin-Yi Cai, DIMACS Series, 13, AMS (1993), 183-193.

32. M. Sauerhoff and D. Sieling, Quantum branching programs and space-bounded
nonuniform quantum complexity. ph/0403164, March 2004.

33. I. Wegener, Efficient data structures for boolean functions, Discrete Mathematics,
136, (1994), 347-372.

34. I. Wegener, Branching Programs and Binary Decision Diagrams. SIAM Mono-
graphs on Discrete Mathematics and Applications, 2000.

35. A. Yao. Some Complexity Questions Related to Distributive Computing. In Pro-
ceedings of the 11th Annual ACM Symposium on the Theory of Computing, (1979),
209-213.

On the Properties of Asymptotic Probability

for Random Boolean Expression Values
in Binary Bases

Alexey D. Yashunsky

Department of Discrete Mathematics,
Faculty of Mechanics and Mathematics,

Moscow State University,
Leninskie Gory, Moscow, 119992 Russia

Abstract. The present paper deals with the problem of analyzing the
value of a random Boolean expression. The expressions are constructed
of Boolean operations and constants chosen independently at random
with given probabilities. The dependence between the expression value
probability and the constants’ probabilities is investigated for different
sets of operations. The asymptotic behavior of this dependence is given
by a probability function, explicitly obtained through analysis of gener-
ating functions for expressions. Special attention is given to the case of
binary Boolean operations.

The paper demonstrates some probability function properties and
their connection with the properties of Boolean operations used in ran-
dom expressions.

1 Introduction

Let us first state one simple problem illustrating the issue: suppose we consider
Boolean expressions constructed of Boolean operations of disjunction ∨ and
conjunction &, the constants 0 and 1, and the necessary parentheses. Operations
are chosen independently and at random, each with a probability of 1/2, the same
for the constants. Every expression of the kind has a value of either 0 or 1 which
is easily computed.

The question arises then — what is the probability of expressions with value
1 in the set of all expressions with exactly n operations? The solution to this
problem is very simple: probability distribution on constants and operations be-
ing uniform and the set of operations (∨ and &) being self-dual, every expression
has a dual one, which has the same probability. Hence, a random expression with
a fixed number of operations (n) takes values of 0 and 1 with equal probabilities.

A natural generalization of the problem is to consider different sets of opera-
tions (that we shall name ”bases”) and probabilities other than 1/2. The present
paper treats mostly the case of binary bases, i.e. bases consisting of operations
with at most two arguments.

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 202–212, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Properties of Asymptotic Probability 203

We consider random expressions with operations from an arbitrary fixed
Boolean basis B. Constants in the expression are chosen independently at ran-
dom with probability p of being equal to 1 and probability 1− p of being equal
to 0. We are interested in the probability function P1(p), which is the limit-
ing probability of a random expression value to be equal to 1, when expression
length tends to infinity. We intend to investigate the properties of P1(p) and
the way the behavior of P1(p) is related to the properties of the basis B under
consideration.

The motivation for such an approach is provided by the following model
problem. Suppose we have a ”black box” that takes Boolean values as input and
produces Boolean output. The ”black box” takes a certain number of random
input bits, performs a series of random Boolean operations on them and produces
an output bit. The operations are taken from a certain basis B. The probability
of each input bit to be equal to 1 is p, the probability of an output bit to be
equal to 1 tends to P1(p).

Let us now suppose that the basis B is known, while the input probability
p is not given, though it is fixed. Is it possible to obtain the value of p through
the value of P1(p)?

Another model problem is the following: suppose the basis B is a priori
unknown, yet it is given that B contains operations, belonging to a certain set
(all operations are binary, for instance). What knowledge could one acquire of
the basis, while knowing only its P1(p) function?

Combinatorial analysis in the present paper is based upon the work of Ph. Fla-
jolet and R. Sedgewik [1], notably the theorem that is made known as the
Drmota-Lalley-Woods theorem for asymptotics of algebraic generating functions’
coefficients.

Certain problems that are in some sense of a similar nature are treated in
the works of P. Savický (see in particular [2]) and the works of B. Chauvin et al.
(see in particular [3]). The methods applied in the latter work are partly used in
this paper as well, yet the problem under consideration is not the same and the
results are of an essentially different nature. Both P. Savický and B. Chauvin et
al. consider the probabilities of functions realized by random Boolean formulas,
devoting their research mainly to the formulas in the {&,∨} basis with literals
xi and x̄i.

The problem we are considering here, concerns the behavior of the prob-
abilities for random expression values, instead of functions. The expressions
are obtained from formulas in an arbitrary basis by individual constant
assignments.

2 Basic Definitions and the Main Theorem

Let us now state the problem formally. From now on we prefer to speak of
Boolean functions instead of operations. For the exact definitions of notions
concerning Boolean functions used in this paper see Glossary (part 4 of this
paper). First we define the concept of a basis.

204 A.D. Yashunsky

Definition 1. A set (or multiset) B = B1 ∪ B2 ∪ . . . ∪ Br, where Bk is a set
(multiset) of k-ary Boolean functions and Br �= ∅ is called a basis1.

The case of a binary basis corresponds to r = 2. Now we define the notion of
Boolean expression inductively.

Definition 2. Let B be a basis. The constants 0 and 1 are Boolean expressions
over the basis B. If Φ1, Φ2, . . . , Φk are Boolean expressions over the basis B and
g ∈ Bk, then g(Φ1, Φ2, . . . , Φk) is also a Boolean expression over B.

Definition 3. The number of function symbols from the basis B in the expres-
sion Φ is called the complexity of Φ and is denoted by |Φ|.

Let us now define a probability distribution on the set of all expressions of a
given complexity n over the basis B. Informally, we regard a random expression
as the result of substituting constants 0 and 1 for variables in a random Boolean
formula of complexity n with non-repeating variables, considering all formulas of
complexity n to be of equal probability. Constants are substituted for variables
independently at random with fixed probabilities.

For example, we regard the expression Ψ = ⊕(⊕(0,⊕(1, 1)), 1) of complexity
3 over the basis {⊕} as the result of substituting constants for variables in the
formula ⊕(⊕(x1,⊕(x2, x3)), x4) with non-repeating variables (here and in the
following we assume that variables in such formulas are ordered by their index
numbers from left to right).

We now proceed to a formal definition of probabilities for expressions that is
intended to match the informal description given above. We assign probability
p to the constant 1 and 1− p to the constant 0. For an expression Φ we denote
by π(Φ) the product of the probabilities of all constants in this expression.

The value of π(Φ) is interpreted in the terms described above. Let us suppose
the expression Φ is the result of substituting constants for non-repeating vari-
ables in a certain formula. Then the value π(Φ) is the probability to choose this
individual assignment of variables from the set of all possible constant assign-
ments for the considered formula. The sum of π(Φ) for all expressions Φ that are
obtained by all possible assignments for a given formula is obviously equal to 1.
Hence, the sum of π(Φ) for all expressions Φ of complexity n equals the number
Nn of all possible formulas of the same complexity n, i.e. Nn =

∑
|Φ|=n

π(Φ).

According to our informal description, the probability to choose an individual
formula of complexity n with non-repeating variables is 1/Nn, while the proba-
bility to choose an individual constant assignment for this formula to form the
expression Φ is π(Φ). Then the probability of Φ should be π(Φ)/Nn. Let us now
state this in a formal manner.

1 Functions of zero variables (B0) are not included in a basis. The problem for a basis
with 0-ary functions is easily reduced to a problem with B0 = ∅ and a different value
of p.

On the Properties of Asymptotic Probability 205

Definition 4. The probability P (Φ) of an expression Φ of complexity n is de-
fined by P (Φ) = π(Φ)/Nn. We define P1,n(p) =

∑
|Φ|=n,Φ=1

P (Φ), i.e. the sum of

probabilities of expressions with value 1 and complexity n.

Obviously, P1,n(p) is the probability of an expression value to be equal to 1 for
a random expression of complexity n.

Returning to the above example, we have π(Ψ) = p3(1 − p), while N3 = 5
and hence P (Ψ) = p3(1−p)/5. Also in this case P1,3(p) = 4p(1−p)3+4p3(1−p).

We call a basis uniform if all of its functions have the same number of vari-
ables. In the case of a uniform basis B, the probability distribution defined above
on the set of all expressions of a given complexity over the basis B, in fact, in-
duces implicitly a uniform probability distribution on the basis itself, i.e. all
functions of B (counting their multiplicities) have equal probabilities of being
placed into a random expression. In the case of a non-uniform basis, the proba-
bility distribution of Definition 4 also induces a probability distribution on the
basis B that is, in general, more intricate and depends upon n.

The case of a uniform basis B that is a multiset demonstrates an interesting
possibility of a somewhat more general approach to random Boolean expres-
sions. Due to the fact that one may include a function several times into B, it
becomes possible to model the case where functions in B have arbitrary rational
probabilities.

Our major interest is the behavior of P1,n(p) in the limit when n tends to
infinity.

Definition 5. For a Boolean basis B and for any fixed p, 0 ≤ p ≤ 1, we define

P1(p) = lim
n→∞P1,n(p) ,

if the limit does exist and we say P1(p) is not defined at the point p otherwise.

The existence of the limit for all p, 0 < p < 1, as well as an explicit formula
for P1(p), is provided by Theorem 1. The formula that represents P1(p) depends
upon two polynomials, corresponding to the basis B. The first of these is the
basis polynomial B(S) = |B1|S + |B2|S2 + . . . + |Br|Sr, and the second is the
characteristic polynomial A(T, F) in the form of:

A(T, F) =
r∑

n=1

n∑
i=0

aniT
iFn−i ,

where ani is the number of unit values among the values of functions from Bn

on assignments of weight i (i.e., the assignments with exactly i units and n− i
zeroes). For a binary basis, r = 2.

Considering P1(p) a function of the variable p we call it the probability func-
tion corresponding to basis B.

Definition 6. Two bases are called equivalent if their P1(p) functions are
identical.

206 A.D. Yashunsky

Two bases that share the basis polynomial and the characteristic polynomial,
share the function P1(p) as well and, therefore, are equivalent. Also, there do
exist equivalent bases that have non-identical B(S) and A(T, F) polynomials.
Obviously, bases are equivalent iff they are indistinguishable in the sense of the
second ”black box” question.

We now proceed with the main theorem.

Theorem 1. Let B be a basis, B(S) its basis polynomial and A(T, F) its char-
acteristic polynomial. Then for any fixed p, 0 < p < 1, there does exist the limit
P1(p) = lim

n→∞P1,n(p). Furthermore,

P1(p) =
A′

F (τ, σ − τ)
ω−1 −A′

T (τ, σ − τ) +A′
F (τ, σ − τ) ,

where ω and σ are real numbers, which form the unique solution of a system of
equations: {

σ = 1 + ωB(σ) ,
1 = ωB′(σ) , (1)

under an additional claim that the value of |ω| is minimal (among all possible
solutions of (1)), while A′

T and A′
F are partial derivatives of A(T, F) and τ =

τ(p) is a certain uniquely defined algebraic function, satisfying the equation:

τ = p+ ωA(τ, σ − τ) .
The proof of Theorem 1 makes use of generating functions for probabilities.
A system of polynomial equations describing the relations between generating
functions leads to an asymptotic expansion of generating functions’ coefficients
by means of the Drmota-Lalley-Woods theorem from [1].

It should be noted that the function τ(p) in Theorem 1 in general is not
necessarily uniquely defined by its equation; the equation may as well have sev-
eral solutions. In order to choose the right solution, one has to make use of
certain additional relations, following from the proof of Theorem 1. Fortunately,
in the case of binary bases, a simple condition 0 ≤ τ ≤ σ that follows from
combinatorial meaning of τ , allows to make the right choice.

Theorem 1 covers only the values of p that satisfy 0 < p < 1. The boundary
values and the continuity of the function P1(p) are covered by Theorem 2.

Theorem 2. The function P1(p) is continuous for 0 < p < 1.
If all functions in B preserve zero, then P1(0) = 0. If all functions in B are

linear, depending essentially upon all variables, not preserving zero, then P1(0)
is not defined. In all other cases P1(p) is continuous at p = 0.

If all functions in B preserve unity, then P1(1) = 1. If all functions in B are
linear, depending essentially upon all variables, not preserving unity, then P1(1)
is not defined. In all other cases P1(p) is continuous at p = 1.

Theorem 2 is partly based on an assertion that is of interest by itself.

Proposition 1. The function τ(p) is continuous, monotonously increasing for
0 < p < 1 and dτ

dp = (1− ωA′
T (τ, σ − τ) + ωA′

F (τ, σ − τ))−1.

On the Properties of Asymptotic Probability 207

Proposition 1 is mainly a consequence of the Implicit Function Theorem applied
to the equation τ = p+ ωA(τ, σ − τ).

Let us make a simple but useful observation, which is a direct consequence
of Theorem 1. It concerns the values of P1(p) for dual bases: bases B and B∗

are called dual if each consists of functions dual to those in the other2.

Theorem 3. Let B be a basis and P1(p) its probability function. Let B∗ be the
basis dual to B and P ∗

1 (p) the probability function of B∗. Then

P1(p) = 1− P ∗
1 (1− p) .

The case of self-dual bases follows naturally:

Corollary 1. Let B be a self-dual basis (i.e., B = B∗) and P1(p) its probability
function. Then P1(p) = 1− P1(1− p).

3 The P1(p) Function Properties for Binary Bases

The forthcoming analysis will be restricted to binary bases, i.e. the ones with
r = 2. Some examples obtained by direct application of Theorem 1 are presented
below: see Fig. 1 for the graphs of the P1(p) function of some binary bases, and
Table 1 for P1(p) functions of certain sample binary bases.

P (p)
1

0

{&, V}

0,74

{&, V, x}

0,26

0,5

1

0,5

p
1

{&, x}

{V, x}

P (p)
1

0

0,73

0,16

0,27

 1

0,84

1

p

P1(p) for bases {&, ∨, ¬} and {&, ∨} P1(p) for bases {&, ¬} and {∨, ¬}

Fig. 1. The graphs of the P1(p) function

Note that the graphs on Fig. 1 well illustrate the connection between dual
bases and the case of self-dual bases, given by Theorem 3 and Corollary 1.
2 Taking into account the multiplicity of functions in the case of multiset bases.

208 A.D. Yashunsky

Table 1. The P1(p) function for certain binary bases

Basis Polynomials P1(p) for 0 < p < 1

All binary and
unary functions

B(S) = 4S + 16S2

A(T, F) = 2T + 2F + 8F 2 + 16TF + 8T 2 1/2

All binary functions
B(S) = 16S2

A(T, F) = 8F 2 + 16TF + 8T 2 1/2

All binary non-
linear functions

B(S) = 8S2

A(T, F) = 4F 2 + 8TF + 4T 2 1/2

{∨, ↓} B(S) = 2S2, A(T, F) = F 2 + 2TF + T 2 1/2

{⊕} B(S) = S2, A(T, F) = 2TF 1/2

{&, ↓, ⊕, ¬} B(S) = S + 3S2

A(T, F) = F + F 2 + 2TF + T 2
6−√

3
12

{&, ∨} B(S) = 2S2, A(T, F) = 2TF + 2T 2 p

{&, ∨, ¬} B(S) = S + 2S2

A(T, F) = F + 2TF + 2T 2
7+2

√
6

25 (p + 3 − √
6)

{/} B(S) = S2

A(T, F) = F 2 + 2TF
1√

2+p

{↓} B(S) = S2

A(T, F) = F 2 1 − 1√
3−p

{&, ¬} B(S) = S + S2

A(T, F) = F + T 2
1

2
√

5+3
√

2−(3+2
√

2)p

{∨, ¬} B(S) = S + S2

A(T, F) = F + T 2 1 − 1

2
√

2+
√

2+(3+2
√

2)p

Let us now write out an explicit formula for P1(p) in the case of a binary
basis. Since the characteristic polynomial has the form:

A(T, F) = a10F + a11T + a20F
2 + a21TF + a22T

2 ,

the function P1(p) for 0 < p < 1 is the following:

P1(p) =
a10 + 2a20(σ − τ) + a21τ

ω−1 + a10 − a11 + (2a20 − a21)(σ − τ) + (a21 − 2a22)τ
, (2)

where ω, σ and the function τ = τ(p) are as defined earlier. This explicit form
for P1(p) allows to prove the following statement.

Theorem 4. For a binary basis B the function P1(p) is either strictly monoto-
nous or constant for 0 < p < 1.

Proof. It follows from (2) that in the case of a binary basis P1(p) = U0+U1τ
V0+V1τ ,

where U0, U1, V0, V1 depend upon ani, ω and σ, but not τ . Let us now differentiate
this expression of P1(p):

d

dp
P1(p) =

U1(V0 + V1τ) − V1(U0 + U1τ)
(V0 + V1τ)2

dτ

dp
=
U1V0 − V1U0

(V0 + V1τ)2
dτ

dp
.

According to Proposition 1, τ(p) is a monotonously increasing function, hence its
derivative in p is strictly positive. The denominator of the fraction is positive as

On the Properties of Asymptotic Probability 209

well. Therefore the derivative’s sign depends only upon the sign of U1V0−V1U0. If
U1V0−V1U0 > 0, then P1(p) is monotonously increasing; if U1V0−V1U0 < 0, then
P1(p) is monotonously decreasing. The equality U1V0−V1U0 = 0 corresponds to
a constant P1(p) function.

Theorem 4, in general, does not hold for bases other than binary: there do
exist ternary bases (r = 3) for which the function P1(p) is neither constant nor
monotonous.

In the case of binary bases Theorem 4 gives an answer to the first ”black
box” question, concerning the possibility of obtaining the value of p through the
value of P1(p).

If we restrict the range of p to the interval 0 < p < 1 then, according to
Theorem 4, for a binary basis B, either the value P1(p) is unique for each p in
this interval, or all 0 < p < 1 share the same value of P1(p). Thus, depending on
the binary basis under consideration, either the value of p is strictly defined by
the value of P1(p), or it is impossible to determine the value of p, given a value
of P1(p).

The two remaining values, p = 0 and p = 1 need special treatment. If the
function P1(p) is continuous at points p = 0 and p = 1, then the above statement
holds true for the whole interval 0 ≤ p ≤ 1. Yet, if P1(p) has discontinuities at
these points, certain corrections have to be made in view of Theorem 2.

We now examine more closely the case of constant P1(p) functions for binary
bases. For the sake of simplicity, we restrict the study to the case 0 < p < 1.

Theorem 5. Let B be a binary basis with basis polynomial B(S) and charac-
teristic polynomial A(T, F). Let

dni =
ani(

n
i

)|Bn|
,

where ani are the characteristic polynomial coefficients and |Bn| are the basis
polynomial coefficients3. The function P1(p) corresponding to the basis B is con-
stant for 0 < p < 1 iff dni obey the equality:

|B1| [(d21 − d20)(1 − d11)− (d21 − d22)d10] +
+2|B2|σ [d21(1 − d21)− d20(1− d22)] = 0 .

(3)

Theorem 5 follows directly from Theorem 4: (3) is obtained by an easy transfor-
mation of the equality U1V0 − V1U0 = 0 from Theorem 4.

Theorem 5 gives an easy criterion for P1(p) constancy and allows to recognize
this property from the basis by simple calculations with the coefficients of the
characteristic and the basis polynomials.

It follows directly from Theorem 3 that if a basis B has a constant P1(p)
function, then its dual basis B∗ has a constant P ∗

1 (p) function as well. It is easy
to verify that (3) is invariant under the transformation of the basis into its dual.

The following corollaries simplify the P1(p) constancy conditions for some
special cases.
3 In case |B1| = 0, all a1i = 0 as well; we then define d1i = 0.

210 A.D. Yashunsky

Corollary 2. Let B be a uniform binary basis. The function P1(p) is constant
for 0 < p < 1 iff d2i obey the equality:

d21(1− d21) = d20(1− d22) . (4)

Corollary 3. Let B be a non-uniform binary basis (i.e., B1 �= ∅) and the num-
ber σ, corresponding to the basis B, be irrational. Then P1(p) is constant for
0 < p < 1 iff dni obey (4) together with the equality:

d10(d22 − d21) = (1− d11)(d20 − d21) . (5)

The conditions of Corollary 3 require the number σ to be irrational. Let us
see, when this condition is satisfied. According to Theorem 1, ω and σ are the
solution of (1) with the minimal value of |ω|. Solving (1) for a non-uniform binary
basis we obtain that the value of σ, corresponding to the minimal value of |ω|,
is σ = 1 +

√
1 + |B1|

|B2| . If the basis is not a multiset, the possible values of |B1|
are 1, 2, 3 and 4. It is easy to verify that the only case with a rational value of
σ is |B1| = 3, |B2| = 1. A straight inspection of all the bases with |B1| = 3 and
|B2| = 1 reveals no bases with a constant P1(p), other than the ones that obey
(4) and (5). Still, when B is a multiset, the fulfillment of the conditions (4) and
(5) in general is only sufficient for constancy, but not necessary. The following
corollaries are other useful and simple sufficient conditions for constancy of P1(p).

Corollary 4. Let B be a binary basis with d20 = d21 = d22. Then P1(p) is
constant for 0 < p < 1.

Corollary 5. Let B be a binary basis invariant under negation (i.e., the basis
obtained by negating every function in B is identical to B). Then the function
P1(p) is constant for 0 < p < 1.

Corollary 4 holds, since the equality of all d2i provides that (4) is satisfied, while
(5) becomes the identity 0 = 0. Corollary 5 follows directly from Corollary 4: if
both f and f̄ are in B2 then each d2i is equal to 1/2.

Corollary 5, in particular, accounts for P1(p) constancy in the case of the
following bases from Table 1: all binary and unary functions, all binary functions,
all binary non-linear functions, {∨, ↓}. Corollary 4 allows a simple verification
of constancy for the basis {&, ↓,⊕,¬}.

Using Theorem 5 and its corollaries it is easy to show that equivalent bases
do not always share their characteristic and basis polynomials.

Let us consider two bases: B⊕ = {/,&,⊕} and B∼ = {/,&,∼}. Both have
the same basis polynomial B(S) = 3S2, while their characteristic polynomials
differ: A⊕ = F 2 + 4TF + T 2, A∼ = 2F 2 + 2TF + 2T 2. Yet the ratios d2i for
both bases obey the conditions of Corollary 2 and hence for both bases the
corresponding function P1(p) is constant. Moreover, in both cases the constant
is 1/2.

The bases B⊕ and B∼ are, in some sense, a better example of equivalent
bases than the bases {⊕} and {∼}, for instance, though the latter also have

On the Properties of Asymptotic Probability 211

P1(p) = 1/2 for 0 < p < 1. According to Theorem 2, both B⊕ and B∼ possess a
function P1(p) that is continuous at p = 0 and p = 1, while {⊕} and {∼} have
discontinuities at these points.

A consideration of the bases listed in Table 1 and the examples presented
above allows us to make several conclusions, concerning the second ”black box”
question. Neither the basis polynomial, nor the characteristic polynomial are
determined by the P1(p) function. Moreover, in general it is impossible to deter-
mine even the arity of functions belonging to the basis, while knowing only the
function P1(p).

4 Boolean Functions Glossary

We present here, for the reader’s convenience, a brief summary of basic notions
from Boolean functions theory that are used in this paper. An n-ary (or an n-
variable) Boolean function f is a map f : {0, 1}n → {0, 1}. Truth tables and
symbolic notation of binary Boolean functions used in this paper are given in
Table 2. The unary function ¬x (or x̄) is defined as ¬0 = 1 and ¬1 = 0.

Table 2. Binary Boolean functions

x y x&y x ∨ y x ⊕ y x ∼ y x/y x ↓ y x → y

0 0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0 1
1 0 0 1 1 0 1 0 0
1 1 1 1 0 1 0 0 1

A variable xi of a Boolean function f is called dummy if

f(x1, . . . , xi−1, 0, xi+1, . . . , xn) ≡ f(x1, . . . , xi−1, 1, xi+1, . . . , xn) .

If a variable is not dummy, then the function depends essentially upon it.
A Boolean function f preserves zero (unity) if f(0, . . . , 0) = 0 (respectively,
f(1, . . . , 1) = 1). A Boolean function f is linear if it has the form:

f(x1, . . . , xn) = α1x1 ⊕ . . .⊕ αnxn ⊕ α0 ,

where α0, α1, . . . , αn ∈ {0, 1}.
Boolean functions f and g are dual if f(x̄1, . . . , x̄n) = ḡ(x1, . . . , xn).

Acknowledgments. The author would like to express his gratitude to his re-
search advisor O.M. Kasim-Zade for posing the problem and helpful advice
throughout the work that led to the present paper. The work was supported
in part by the Russian Foundation for Basic Research (project no. 05-01-00994),
the Support Program for Leading Scientific Schools of the Russian Federation
(project no. NS-1807.2003.1), the Program ”Universities of Russia” (project no.
UR.04.02.528) and the Russian Academy of Sciences Section of Mathemati-
cal Sciences Basic Research Program ”Algebraic and Combinatorial Methods
of Mathematical Cybernetics” (project ”Control Systems Optimal Synthesis”).

212 A.D. Yashunsky

References

1. Ph. Flajolet, R. Sedgewick ”Analytic Combinatorics: Functional Equations, Ratio-
nal and Algebraic Functions”. Research Report 4103, INRIA, 2001.

2. P. Savický ”Complexity and Probability of some Boolean Formulas”. Combinatorics,
Probability and Computing, Vol. 7 No. 4, pp. 451-463, 1998.

3. B. Chauvin, P. Flajolet, D. Gardy and B. Gittenberger ”And/Or trees revisited”.
Combinatorics, Probability and Computing, Vol. 13 No. 4-5, pp. 475-497, 2004.

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 213 – 227, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Solving a Dynamic Cell Formation Problem
with Machine Cost and Alternative Process Plan

by Memetic Algorithms

Reza Tavakkoli-Moghaddam1, Nima Safaei2, and Masoud Babakhani2

1 Department of Industrial Engineering, Faculty of Engineering, University of Tehran,
P.O. Box: 11365/4563, Tehran, Iran

tavakoli@ut.ac.ir
2 Department of Industrial Engineering, Iran University of Science and Technology,

P.C. 16846/13114, Tehran, Iran
nima.safaei@iust.ac.ir

Abstract. In this paper, we present a new model of a cell formation problem
(CFP) for a multi-period planning horizon where the product mix and demand
are different in each period, but they are deterministic. As a consequence, the
formed cells in the current period may be not optimal for the next period. This
evolution results from reformulation of part families, manufacturing cells, and
reconfiguration of the CFP as required. Reconfiguration consists of reforming
part families, machine groups, and machine relocations. The objective of the
model is to determine the optimal number of cells while minimizing the
machine amortization/relocation costs as well as the inter-cell movements in
each period. In the proposed model, parts have alternative process plans,
operation sequence, and produce as batch. The machine capacity is also limited
and machine duplication is allowed. The proposed model for real-world
instances cannot be solved optimally within a reasonable amount of
computational time. Thus, we propose an efficient memetic algorithm (MA)
with a simulated annealing-based local search engine for solving the proposed
model. This model is solved optimally by the Lingo software then the optimal
solution is compared with the MA implementation.

Keywords: Dynamic cell formation, Alternative process plan, Machine
relocation, Memetic Algorithm.

1 Introduction

In most industries, the production is dynamic. In other words, the planning horizon
can be divided into periods, in which each period has different product mix and
demand requirements. In such cases, we face with dynamic production. Note that in
the dynamic condition, product mix, and/or demand in each period are different from
other periods but it is deterministic (i.e., known as a prior). In a dynamic production
condition, the best cell formation (CF) design for one period may not be an efficient
design for subsequent periods. By rearranging the manufacturing cells, the CF can
continue operating efficiently as the product mix and demand changes. However, it
may require some of machines moved from one cell to another cell (i.e., machine

214 R. Tavakkoli-Moghaddam, N. Safaei, and M. Babakhani

relocation) and/or the number of cells changed [1-5]. The CF model belongs to the
category of NP-hard problems, in which real-world instances cannot be solved
optimality within a reasonable amount of computational time. Thus, the use of
metaheuristic is unavoidable.

Some of investigations have been done in content of modeling the dynamic cell
formation problem and using its methodology to solve it [6] and [7]. Also, several
efforts in similar research areas such as dynamic plant layouts [8] and [9], flexible
plant layouts [10] and dynamic layout problems [11], [12] and [13] have been
proposed to deal with the dynamic condition. Song and Hitomi [14] have also
developed a methodology to design flexible manufacturing cells. The method is to
integrate production planning and cellular layout in a long-run planning horizon.
Their methodology can determine the production quantity for each part and timing of
adjusting the cellular layout in a finite planning horizon period with a dynamic
demand. Their objectives are to minimize the sum of inventory-holding cost, group
setup cost, material handling cost, and layout adjusting cost. Wilhelm, et al. [6] have
proposed a multi-period formation of the part family and machine cell formation
problem. Their objectives are to minimize the sum of inter-cell material handling cost,
investment in additional machines, and cost of reconfiguration over the planning
horizon. Harhalaks, et al. [15] have used a two-stage design approach to obtain a
cellular design with the minimum expected inter-cell material handling cost over a
system design horizon which has been broken down into elementary time periods.
The most of pervious researches on dynamic cell formation are single objective. The
multi-objective cell formation has been considered in single period planning horizon
[10] and [16]. Also due to the model complexity, the machine cost, material handling
cost, relocation cost along with sequence of operations, and cell size have not been
considered in previous researches for a multi-period planning horizon simultaneously.

Evolutionary algorithms have been applied successfully in various domains of
search, optimization, and artificial intelligence. They combine the advantages of
efficient heuristics incorporating domain knowledge and population-based search
approaches. One form of this combination is the use of local search in evolutionary
algorithms [17] and [18]. These algorithms, sometimes called genetic local search
algorithms, belong to the class of memetic algorithms (MAs). The generic
denomination of MAs is used to encompass a broad class of meta-heuristics. The
method is based on a population of agents and proved to be of practical success in a
variety of problem domains and in particular for the approximate solution of NP-Hard
optimization problems [19]. MAs [19], [20] and [21] are population-based heuristic
search approaches for optimization problems similar to genetic algorithms (GAs).
MAs are inspired by Dawkins’s notion of a meme defined as a unit of information
that reproduces itself while people exchange ideas [22]. In contrast to genes, memes
are typically adapted by the people who transmit them before they are passed on to
the next generation. According to Moscato and Norman [23], “memetic evolution”
can be mimicked by combining evolutionary algorithms with local refinement
strategies such as local neighborhood search or simulated annealing. However, GAs
rely on the concept of biological evolution and MAs, in contrast, mimic cultural
evolution. While in nature, genes are usually not modified during an individual's
lifetime, memes are [22]. MAs are based on a population of agents. However, the

 Solving a Dynamic CFP with Machine Cost and Alternative Process Plan by MA 215

method is less constrained since it does not use any biological metaphor that will
restrict the design of its components. Unlike the traditional evolution methods, MAs
are primarily concerned with exploiting all available knowledge about the problem
studied [20] and [21]. As a consequence, each agent can make use of previous
knowledge of solution results. This knowledge can be optimal solution proprieties,
heuristics, truncated exact algorithms, and the like. Different agents may use different
algorithms, even having different behaviours that parameterize how they recombine
solutions [24]. Also, the agents can use different meta-heuristics for the individual
search processes, or independently adapt the search based on their own historical
information [25]. A number of investigations have been carried out in the content of
applications of MAs; such as minimum sum-of-squares clustering problem [26],
unconstrained binary quadratic programming problem [27], multistage capacitated
lot-sizing problem [28], arc routing problems [29] and asymmetric travelling
salesman problem [30].

2 Problem Formulation

In this section, we present the proposed dynamic cell formation model. The model
expanded under the following goals:

1. Establish the part families and machine groups simultaneously.
2. Determine the optimum number of cells in each period.
3. Determine the optimal alternative process plan for each part in each period.
4. Determine the number of needed machines for each type in each period.
5. Add, remove, or relocate machines in cells between each two consecutive

periods.

The dynamic cell formation problem is considered under the following
assumptions.

2.1 Assumptions

The assumptions for the above-mentioned problem are given bellow:

1. The process time for all part type operations on different machine types are
known.

2. Each part must be processed according to a known sequence of operations.
3. The demand for each part type in each period is known.
4. The capabilities and capacity of each machine type is known and constant over

time period.
5. Amortization cost in each period to procure one machine of each type is known.
6. Parts are moved between cells in batches. The inter-cell material handling cost

for each batch between cells is known and constant (independent of quantity of
cells).

7. The maximum number of cells used must be specified as a prior.
8. Bounds and quantity of machines in each cell need to be specified in advance

and they remain constant over time.

216 R. Tavakkoli-Moghaddam, N. Safaei, and M. Babakhani

9. Machine relocation from one cell to another is performed between periods and
it requires zero time. The machine relocation cost of each machine type is
known and it is independent of where machines are actually being relocated.

10. Each machine type can perform one or more operations (i.e., machine
flexibility). Likewise each operation can be done on one machine type with
different times (i.e., routing flexibility).

11. Inter-cell handling costs are constant for all moves regardless of the distance
traveled.

12. No inventory is considered.
13. Setup times are not considered.
14. Backorders are not allowed. All demand must be satisfied in the given period.
15. No queue in production is allowed.
16. Machine breakdowns are not considered.
17. Batch size is constant for all productions and all periods.
18. Machines are available at the state of the period (i.e., zero installation time).

2.2 Notation

Indexes:
c Index for manufacturing cells (c=1, …, C)
m Index for machine types (m=1, …, M)
p Index for part types (p=1, …, P)
h Index for time periods (h=1, …, H)
j Index for operations required by part p (j=1, …, Op)

Model Inputs:
P Number of part types.
Op Number operations of part p.
M Number of machine types.
C Maximum number of cells that can be formed.
Dph Demand for product p in period h.
B Batch size for inter-cell material handling.
αm Amortization (or depreciation) cost of machine of type m.
γ Inter-cell material handling cost each batch.
δm Relocation cost of machine type m.
Tm Capacity of each machine of type m (hours).
LB Lower bound cell size.
UB Upper bound cell size.
tjpm Time required to perform operation j of part type p on machine type m.
 1 if operation j of part p can be done on machine type m
ajpm
 0 otherwise
Ψjp Set of operating machines for operation j of part type p, where Ψjp = {m |

ajpm =1}

Decision variables:
Nmch Number of machines of type m used in cell c during period h.
K+

mch Number of machines of type m added in cell c during period h.

 Solving a Dynamic CFP with Machine Cost and Alternative Process Plan by MA 217

K-
mch Number of machines of type m removed from cell c during period h.
 1 if operation j of part type p is done on machine type m in cell c in period h.

Xjpmch

 0 otherwise
 1 if operation j of part type p is done in cell c in period h.

Zjpch

 0 otherwise

 1 if cell c formed in period h
Ych

 0 otherwise

2.3 Mathematical Formulation

By using the above notation, the objective function and constraints are now written in
the following equation forms.

()
1

(1)
1 1 1 1 1 1 1 1 1

1 1
min

2 2

pOH M C H P C H M
ph

mch m j pch jpch mch mch m
h m c h p j c h m

D
Z N Z Z k k

B
α γ δ

−
+ −

+
= = = = = = = = =

= + × − + +

 (1)
s.t:

M

c 1 m 1

1 , ,
C

jpm jpmcha x j p h
= =

= ∀ (2)

1 1

 , ,
OpP

ph jpm jpmch m mch
p j

D t x T N m c h
= =

≤ ∀ (3)

1 1 1

 ,
M M M

mch mch mch ch
m m m

N K K LB Y c h+ −

= = =

+ − ≥ × ∀ (4)

1 1 1

 ,
M M M

mch mch mch ch
m m m

N K K UB Y c h+ −

= = =

+ − ≤ × ∀ (5)

(1) , , mc h mch mch mchN K K N m c h+ −
− + − = ∀ (6)

1

, , ,

M

jpch jpmch
m

Z x j p c h
=

= ∀ (7)

 , , ,ch jpchY Z j p c h≥ ∀ (8)

 , , 0 or 1 , , , , 0 and Integerjpmch jpch ch mch mch mch phx Z Y N K K D+ −= ≥

The objective function given in Equation (1) is a nonlinear integer model. It is to

minimizing the total sum of the machine amortization cost, the inter-cell material
handling cost, and the machine relocation cost over the planning horizon. The first

218 R. Tavakkoli-Moghaddam, N. Safaei, and M. Babakhani

term represents the cost of all machines required in all periods. The machine
amortization (or depreciation) cost is obtained by the product of the number of
machine type m in cell c in period h and their respective costs. The second term is the
cost of operating machines. It is the sum of the product of the number of hours for
each machine type and their respective costs. The third term is the inter-cell material
handling costs. The total cost is obtained by summing the products of the number of
inter-cell transfer for each part type and the cost of transferring a batch of each part
type. The next cost is the machine relocation cost. It is the sum of the product of the
number of machines relocated and their respective cost. Equation (2) guarantees that
each part operation is assigned to one machine and one cell. Equation (3) ensures that
machine capacities are not exceeded and can satisfy the demand. Equations (4) and
(5) specify the lower and upper bounds of cells. Equation (6) ensures that the number
of machines in the current period is equal to the number of machines in the previous,
plus the number of machines being moved in, and minus the number of machines
being moved out. In other words, they ensure the conservation of machines over the
horizon. In equation (7), if at least one of the operations of part p is processed in cell c
in period h then the value of zjpch will be equal to 1, otherwise is set to zero. This
constraint is used for calculating inter-cell material handling in the third term of the
objective function. Equation (8) determines the number of cells formed in period h.

3 Memetic Algorithm Implementation

Memetic algorithms can be thought of as a special kind of genetic search over the
subspace of local optima, within which a local optimizer is added to genetic
algorithms and applied to every offspring before it is inserted into the population.
Crossover and mutation will usually produce solutions that are outside this space of
local optima, but a local optimizer can then repair such solutions to produce final
offspring that lie within this subspace. In this section, a memetic algorithm with a SA-
based local search engine is proposed to solve the considered dynamic cell formation
problem. The chromosome representation, adaptive penalty function, genetic
operators, local search engine, and selection method of the proposed memetic
algorithm are explained.

3.1 Chromosome Representation

The first step in each evolutionary programming is to determine the chromosome
representation or solution structure. In this paper, we represent a solution S by a three-
dimensional structure consisting of two matrices [X]p×r and [Y] p×r in each period (e.g.,
Sh =[Xh | Yh] S = [S1, S2,…, Sh]) as shown in Fig. 1. The matrix X denotes the
allocation of operation-part to machine and the matrix Y denote the allocation of
operation-part to cell. This idea is taken from Tavakkoli-Moghaddam, et al. [31]. R =
maxp{Op} and xh

pr is equal to the machine that operation r part p must be processed
on, where xh

pr∈Ψrp. Also, yh
pr is equal to the cell that operation r part p allocated to

where 1 yh
pr C. Because of Op R ∀p, some of entries in solution representation

are equal to zero inherently.

 Solving a Dynamic CFP with Machine Cost and Alternative Process Plan by MA 219

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

h h h h h h
R R

h h h h h h
R R

h h h h h h
P P PR P P PR

x x x y y y

x x x y y y

x x x y y y

M M

Fig. 1. Chromosome representation in period h

3.2 Genetic Operators

3.2.1 Recombination Operators
We use three kinds of crossover operators: machine level, cell level and conventional.
The conventional crossover is accomplished by selecting two parents and swapping
corresponding matrixes from parents to form the offspring as shown in Fig. 2. In
machine level crossover, one cut point selected randomly on matrix X in vertical or
horizontal direction then the partial matrixes from parents swapped together as shown
in Fig. 3. The cell level crossover is similar to machine level except for matrix Y.

Fig. 2. Conventional crossover implementation

Fig. 3. Machine level crossover implementation

3.2.2 Mutation Operators
For preserving diversity in generations and for escaping from local optimums, we use
three mutation operators as follows: single-mutation, multi-mutation, and inversion
operators. In single-mutation, an operation from a part (e.g. part-operation [p×r]) is
selected at random then its machine (xh

pr) or cell (yh
pr) is changed as xh

pr → xh′pr∈Ψrp

Y Parent 1

Y Parent 2

Y Offspring 1

Y Offspring 2

Parent 1

Parent 2

Y

Y

Offspring 1

Offspring 2

Y

Y

X Y Parent 1

X Y Parent 2 X

Y Offspring 1 X

Y Offspring 2

220 R. Tavakkoli-Moghaddam, N. Safaei, and M. Babakhani

or yh
pr → yh′pr randomly. In multi-mutation, a part (e.g. part p) is selected at random

then the single-mutation is implemented on all its operations in matrix X or Y. In
inversion operator, a part (e.g. part p) selected at random then the corresponding row
p in matrix Y are inversed as yh

pr → yh
p(R-r+1); 1 r < R/2 . To implement each

operator, the value of decision variable Nmch must be updated with respect to the
entries of matrixes X and Y. It can be done as Equation (9) then decision variables
K+

mch and K-
mch must be updated by Equations (10) and (11).

,
 , ,

jpm
h hx m y cjp jp

mch
m

t

N m c h
T

= =
= ∀ (9)

{ }(1)max ,0 , , 1mch mch mc hK N N m c h+
−= − ∀ > (10)

{ }(1)max ,0 , , 1mch mc h mchK N N m c h−
−= − ∀ > (11)

3.3 Adaptive Penalty Function

Because of violating constraints (4) or (5) the genetic operators and local search used
to manipulate the chromosomes often yield infeasible offspring. The penalty
technique is perhaps the most common one used to handle infeasible solutions in the
genetic algorithms for constrained optimization problems. The penalty technique is
used to keep a certain amount of infeasible solutions in each generation so as to
enforce genetic search towards an optimal solution from both sides of feasible and
infeasible regions [32]. Adaptive penalty function is used to handle constraints. The
fitness function is composed of two parts: 1) the objective function, i.e., Equation (1),
2) penalties for violating lower and upper bounds cell capacity constraints, i.e.,
Equations (4) and (5). The adaptive penalty function is constructed with variable
penalty coefficients and the penalty for violation of each constraint. The fitness
function is defined as follows:

()
1

(1)
1 1 1 1 1 1 1 1 1

1 1
min

2 2

pOH M C H P C H M
ph

mch m j pch jpch mch mch m
h m c h p j c h m

D
Z N Z Z k k

B
α γ δ

−
+ −

+
= = = = = = = = =

= + × − + + +

1
1 1 1

2
1 1 1

() max , 0 +

+ () max , 0

M M M

mch mch mch
m m m

M M M

mch mch mch
m m m

A g LB N K K

A g N K K UB

+ −

= = =

+ −

= = =

+ × − + −

× + − −

 (12)

Where A1(g) and A2(g) denote the penalty coefficients for Lower and upper bounds
constraints in the g-th generation, respectively. The quality of solutions heavily
depends on the values of these penalty coefficients [33]. If the penalty coefficients are
moderate, the algorithm may converge to an infeasible solution. On the other hand, if
the penalty coefficients are too large, the method is equivalent to a rejecting strategy.
In order to obtain appropriate coefficient values, we use a set-and-test approach to

 Solving a Dynamic CFP with Machine Cost and Alternative Process Plan by MA 221

dynamically adjust these coefficients according to the number of infeasible solutions
in each generation.

The behavior of genetic search is characterized by a balance between exploitation
and exploration in the search space. Here, more infeasible solutions are indicated at
the beginning of the memetic algorithm search in favor of a wide exploration of the
search space, while less infeasible solutions are recommended at the end in order to
exploit the most promising regions in the feasible search space. Hence, the allowable
number of infeasible solutions in each generation decreases in steps of the main loop.
The dynamic of the resource penalty coefficient is described below:

[]1 1 1 1 1() (1) (1) ; () (1) / (1)A g A g R g R g R gα α= + × − = − − − (13)

[]2 2 2 2 2() (1) (1) ; () (1) / (1)A g A g R g R g R gβ β= + × − = − − − (14)

Where R1(g) is the total number of infeasible solutions with respect to lower bound
cell capacity constraint in generation g. Also, R2(g) is the total number of infeasible
solutions with respect to the upper bound cell capacity constraint in generation g.
Parameters α and β denote the percent change of the number of infeasible solutions in
current generation with respect to lower and upper bound cell capacity constraint. If
the current number of infeasible solutions is reduce by η percent then decrease the
penalty coefficient value by η percent.

3.4 Local Search Engine (LSE)

The local search engine is one of the basal components in memetic algorithms. As
said earlier, it implicates to cultural evolution. It is referred to as a local search, since
it starts with a feasible solution and, using moves (such as mutation), it searches a
neighborhood for another feasible solution with lower cost. The neighborhood of a
solution is the set of all solutions that can be reached with a move. If a better solution
is found, the current solution is replaced and the neighborhood search is started again.
If no further improvement can be made, a local optimal is found. It means that there is
no better solution in the neighborhood of the current solution. The balance between
genetic search and local search has a significant effect on the search ability of
memetic algorithms [34]. One crucial problem of memetic algorithm is how to
properly allocate the available computation time wisely between genetic search and
local search.

We use a heuristic local search based on a semi-annealing approach in which there
is only outside loop (instead of two inside and outside loops) that controlled by three
parameters T, α, and δ. Parameters T and α denote the temperature and cooling
schedule like to simulated annealing (SA) and δ indicates the relative fitness of
recently obtained neighborhood. The computation time allocated to local search
depend on initial setting of above parameters. We found the best parameter settings as
T=1, δ = 0.1 and α = 0.9. In optimistic status, if in first iteration Fit(Tmp_X) ≤
0.5×Fit (New_X) then δ = 1 and Do-Until loop iterate only one times. In pessimistic
status, if it is not found any better neighborhood then Do-Until loop iterate r times
where r = [ln(α) / ln(δ)] ≅ 22 times. The proposed algorithm causes a high
computation time is not allocated to local search. A pseudo code of the proposed local
search is shown in Fig. 4.

222 R. Tavakkoli-Moghaddam, N. Safaei, and M. Babakhani

 Set T=1, δ = 0.1, α = 0.9
 Get solution X.
 SET Tmp_X=∅ , New_X=X
 DO
 Select a kind of mutation at random with specific rate.
 Tmp_X = MUTATION(X)
 IF Fit(Tmp_X) < Fit (New_X) THEN
 New_X = Tmp_X
 δ = (Fit (New_X) - Fit (Tmp_X))/ Fit (Tmp_X)
 END IF
 T= α ×T
LOOP UNTIL(T ≤ δ)
X = New_X

Fig. 4. Pseudo code of the local search engine

3.5 Stoppage Conditions

We use three criteria for stopping the algorithm as follows: 1) Maximum number of
the established generation (G). 2) Least variance of the generation (π). 3) Maximum
run time for the algorithm (MRT).

Fig. 5 shows the pseudo code of the MA that we have implemented. The
INITIALIZE_POPULATION() procedure is used for generating a initial population
in which individuals are created randomly then improved by
LOCAL_SEARCH_ENGIN() filter. The population diversity is controlled by a
dissimilarity mechanism that calculates the similarity rate for each new individual.
The similarity rate is equal to the number of similar genes (i.e., genes with same allele
and locus) in new individual and other individuals in current population divided to
total number of genes in chromosome structures, i.e., 2×P×R.

INITIALIZE_POPULATION()
DO (outside loop)
 Set i=0, g =0
 DO (inside loop)
 Select randomly parent1 and parent2.
 offspring = CROSSOVER(parent1,parent2)
 offspring = LOCAL_SEARCH_ENGIN(offspring)
 Similarity_Rate= DIVERSITY(offspring)
 IF Similarity_Rate <1 THEN Accept offspring AND Set i=i+1
 LOOP UNTIL(i = K)
 Set g= g+1
LOOP WHILE(g<G)
Print best solution

Fig. 5. Pseudo code of the MA

4 Computational Experience

Ten instances have been solved by the Lingo 6.0 software for verifying the proposed
model in the linear case. The CPU times is corresponded to an intel® Celeron®

 Solving a Dynamic CFP with Machine Cost and Alternative Process Plan by MA 223

mobile 1.3 GHz processor with 512 MB RAM. The test problems are randomly
generated in terms of uniform distribution. For simplicity, a number of parameters are
set in advance as shown in Tables 1 and 2. The value of Σm ajpm denotes the number of
operative machines for operation j and part p. It is obvious that by increasing Σm ajpm
the solution space increases progressively. The parameters initialized in Table 2 are
set experimentally. Table 3 includes the comparison of the results obtained from the
Lingo solver and MA algorithm in terms of the objective function value (OFV), CPU
time, and cell size for small-sized problems. The "Cell Size" column shows the
optimum number of cells formed in each period. The "Var" column denotes the
number of model variables and the "Cons" column denotes the number of
linearization constraints. The columns 'Tm' and 'UB' are considered for the sensitivity
analysis. The capacity is same for all machines in each problem. As shown in Table 3,
the model is very sensitive to UB and Tm where by decreasing Tm the CPU time
increases progressively such as problems 5 and 10. Also by increasing UB, the CPU
time decreases such as problems 5 and 6 or by decreasing UB, it is possible that the
number of formed cells increases such as problems 5 and 10. The average gap
between optimum and MA runs is equal to 3.67 percent that is very promising and
satisfactory. Two instance cells formed in optimum and MA solutions related to
problems 1 and 4 are shown in Figures 6 through 9 respectively. As shown in Fig. 6,
machine 3 is removed from cell 3 in period 1 and machine 2 is added to cell 3 in
period 2. Machines 4 and 6 are duplicated in both periods. The part families for MA

Table 1. Model parameter settings for small-sized problems

Parameter B LB C Σm ajpm ∀j,p αm δm
Value 40 50 1 3 2 U(1000, 10000) 0.5×αm

Table 2. MA parameter settings

 Stoppage conditions Population size Tuning
Parameter G MRT π K Crossover Mutation Inversion

Value 100 1 hour 5 100 0.8 0.1 0.1

Table 3. Comparison of optimum and MA run for small/medium-sized problems

Test Problem Optimum Solution MA run

No. Var Cons
P(Σp

 Op)
×M ×H

Tm UB O.F.V
CPU
Time

Cell
Size

O.F.V
CPU
Time
(Sec.)

Cell
Size

Gap
(%)

1 915 259 7(12)×6×2 3000 3 67234 00:00:56 3-3 67995 30 3-3 1.13
2 915 259 7(12)×6×2 4000 4 57989 00:01:04 2-2 58285 30 2-2 0.51
3 636 302 8(18)×7×2 8000 4 50314 00:01:30 1-2 56901 177 3-3 13
4 735 307 6(13)×6×2 5000 4 36044 00:01:51 2-2 36740 50 2-2 1.9
5 759 406 7(19)×7×2 15000 5 52250 00:07:23 1-1 54000 81 1-1 3.34
6 759 406 7(19)×7×2 15000 3 54380 00:08:54 2-3 57390 58 1-2 5.53
7 1167 314 8(14)×8×2 6000 5 51744 00:13:30 2-2 54430 42 3-3 5.19
8 594 315 5(9)×5×3 7000 4 72602 00:16:24 1-1-2 72602 148 1-1-2 0
9 636 302 8(18)×7×2 6000 4 61010 00:28:16 2-2 61260 371 3-3 4
10 759 406 7(19)×7×2 12000 5 60720 01:30:06 2-2 62000 217 2-2 2.1

 Average gap of O.F.V: 3.67

224 R. Tavakkoli-Moghaddam, N. Safaei, and M. Babakhani

C1 C2 C3 C1 C2 C3
Period 1

P7 P3 P1 P2 P5
Period 2

P4 P7 P6 P2 P5
C1 3 M6 1 C1 3 M6 1 1
C2 3 M4 2,3 C2 3 M4 3

1 M3 1 1 1 M2 2 2
C3

1 M5 1 1
C3

1 M5 1 1 1

Fig. 6. The formed cells in optimum solution for problem 1 in Table 1

C1 C2 C3 C1 C2 C3
Period 1

P7 P1 P2 P5 P3
Period 2

P4 P7 P2 P5 P6
C1 3 M6 1 C1 3 M6 1 1

2 M2 1 2 1 M2 2 2
C2

1 M5 1 1
C2

1 M5 1 1 1
1 M3 1 C3 3 M4 3

C3
2 M4 3

Fig. 7. The formed cells in MA solution for problem 1 in Table 1

C1 C2 C1 C2
Period 1

P3 P4 P5 P1
Period2

P4 P5 P6 P1 P2
2 M4 1 1 2 M4 1 2

C1
1 M5 2 1

C1
1 M5 1 1 3

1 M2 3 2 1,3 2 M2 2 2 1,3
C2

1 M3 3 2
C2

1 M3 3 2 1

Fig. 8. The formed cells in optimum solution for problem 4 in Table 1

C1 C2 C1 C2
Period 1

P3 P5 P1 P4
Period2

P5 P1 P2 P4 P6
 1 M2 2

C1 2 M4 1 1

C
1 2 M4 1 2

1 M2 2 1,3 1 M2 1,3 2
1 M3 3 2 1 M3 3 2 1 C2
1 M5 2 1

C
2

1 M5 3 1 1

Fig. 9. The formed cells in MA solution for problem 4 in Table 1

Table 4. Parameter settings for large-sized problems

Parameter B LB UB C Σm ajpm ∀j,p αm δm Tm
Value 40 50 2 M/2 5 2 U(1000, 10000) 0.5×αm 10000

Table 5. MA solutions for large-sized problems

Test Problem Initial Solution Final Solution

No. P(Σp
 Op) ×M ×H O.F.V O.F.V

CPU Time
(Sec.)

Number of
movements

Rate of reduction
(%)

1 20(37)×10×2 368661 113665 688 66 69
2 30(61)×15×2 378954 175456 1222 82 53
3 40(79)×20×2 633054 248805 1566 116 57
4 50(102)×25×2 630857 272208 1944 148 56
5 100(203)× 05×2 1556249 633199 4295 254 59

 Solving a Dynamic CFP with Machine Cost and Alternative Process Plan by MA 225

and optimum solutions are same in both periods whereas the group machines are
similar in period 1 and same in period 2.

Table 3 includes the results obtained from the MA algorithm for large-sized
problems in which they cannot be solved by optimal methods on personal computers.
In Table 3, the initial and final solutions are compared with respect to the OFV. The
initial solution implicates to the solution obtained in time zero. The number of
movements used for achieving to final solution is considered in column "Number of
movements". The relative different between initial and final solutions is shown in
column "Rate of reduction".

5 Conclusions

In this paper, we have proposed a new multi-objective cell formation (CF) model with
assuming dynamic production, alternative process plan, sequence operation, and
machine relocation. The main advantages of the proposed model are to form parts
family and machine groups simultaneously, determine the optimum number of cells in
each period, determine the best processing route for each part in each period, and
relocate machines between two consecutive periods as required. Due to the
complexity of the proposed model, a memetic algorithm is introduced for solving the
proposed CF model by a matrix form representation and several effective specialized
genetic operators. The proposed MA finds near-optimal solutions in a reasonable
amount of the CPU time. The violation of any assumptions in Section 2.1 can be
investigated in the future researches.

References

1. Wemmerlov, U. Hyer, N.: Cellular manufacturing in the US industry: A survey of users.
Int. J. of Production research, 27 (1989) 1511-1530.

2. Schaller, J.E., Erenguc, S.S., Vakharia, A.J.: A mathematical approach for integrating the
cell design and production planning decision. Int. J. of Production Research, 38 (2000)
3953–3971.

3. Chen, M.: A model for integrated production planning in cellular manufacturing systems.
Integrated Manufacturing Systems, 12 (2001) 275–84.

4. Foulds, L.R., Neumann, K.: Techniques for machine group formation in manufacturing
cells. Mathematical and Computer Modeling, 38 (2003) 623–635.

5. Shafer, S., Rogers, D.: A goal programming approach to the cell formation problem. J. of
Operations Management, 10 (1991): 28-43.

6. Wilhelm, W., Chou, C., Chang, D.: Integrating design and planning considerations in cell
formation. Annals of Operations Research, 77 (1998) 97-107.

7. Chen, M.: A mathematical programming model for systems reconfiguration in a dynamic
cell formation condition, Annals of Operations Research, 77 (1998) 109-128.

8. Monteruiln, B., Laforge, A.: Dynamic layout design given a scenario tree of probable
future. Eur. J. of Operational Research, 63 (1992) 271-286.

9. Rogers, G., Bottaci, L.: Modular production systems: A new manufacturing paradigm. J.
of Intelligent Manufacturing, 8 (1997) 147-156.

10. Black, J.T.: The design of the factory with a future. McGraw-Hill, New York (1991).

226 R. Tavakkoli-Moghaddam, N. Safaei, and M. Babakhani

11. A. Baykasogylu and N. Gindy. A simulated annealing algorithm for dynamic layout
problem, Computers and Operation Research, 28 (2001) 1403-1426.

12. Lacksonen, T.A.: Static and dynamic layout problems with varying areas. J. of Operational
Research Society, 45 (1994) 59-69.

13. Lacksonen, T.A.: Preprocessing for static and dynamic layout problems. Int. J. of
Production Research, 35 (1997) 1095-1106.

14. Song, S., Hitomi, K.: Integrating the production planning and cellular layout for flexible
cellular manufacturing. Int. J. of Production Planning and Control. 7 (1996) 585-593.

15. Harhalaks, G., Nagi, R., Proth, J.: An effective heuristic in manufacturing cell formation
for group technology applications. Int. J. of Production Research. 28 (1990) 185-198.

16. Caux, C., Bruniaux, R., Pierreval, H.: Manufacturing cell formation with alternative
process plans and machine capacity constraints: a new combined approach. Int. J. of
Production Economics. 64 (2000) 279–84.

17. Kollen, A., Pesch, E.: Genetic local search in combinatorial optimization. Discrete Applied
Mathematics and Combinatorial Operation Research and Computer Science 48 (1994)
273– 284.

18. Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design, in: Corne, D.,
Dorigo, M., Glover, F. (Eds.), New ideas in optimization, McGraw-Hill, London (1999).

19. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms, in: Glower, F.,
Kochenberger, G. (Eds.), Handbook of metaheuristics, Kluwer, (1999) 1–56.

20. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts:
toward memetic algorithms, Caltech Concurrent Computation Program, California
Institute of Technology, Pasadena, Technical Report 790 (1989).

21. Moscato, P.: A memetic approach for the traveling salesman problem implementation of a
computational ecology for combinatorial optimization on message-passing systems, in:
Valero, M., Onate, E., Jane, M., Larriba, J.L., Suarez, B. (Eds.), Parallel computing and
transporter Applications, IOS Press, Amsterdam, The Netherlands, (1992) 176–177.

22. Dawkins, R.: The selfish gene. Oxford University Press, Oxford (1976).
23. Moscato, P., Norman, M.G.: A memetic approach for the Traveling Salesman Problem

implementation of a computational ecology for combinatorial optimization on message-
passing systems. In: Valero, M., Onate, E., Jane, M., Larriba, J.L., Suarez, B. (Eds.),
Parallel computing and Transporter Applications. IOS Press, Amsterdam, The
Netherlands, (1992). 177–186.

24. Berretta, R.E., Moscato, P.: The number partitioning problem: An open challenge for
evolutionary computation? In: Corne, D., Glover, F., Dorigo, M. (Eds.), New ideas in
optimization. McGraw-Hill, Maidenhead, UK, (1999) 261–278 (Chapter 17).

25. Holstein, D., Moscato, P.: Memetic algorithms using guided local search: A case study. In:
Corne, D., Glover, F., Dorigo, M. (Eds.), New ideas in optimization. McGraw-Hill,
Maidenhead, UK, (1999) 235–244 (Chapter 15).

26. Merz, P.: Analysis of gene expression profiles: an application of memetic algorithms to the
minimum sum-of-squares clustering problem. BioSystems 72 (2003) 99–109.

27. Merz, P., Katayama, K.: Memetic algorithms for the unconstrained binary quadratic
programming problem, BioSystems, 78 (2004) 99–118.

28. Berrettaa, R., Rodrigues, L.F.: A memetic algorithm for a multistage capacitated lot-sizing
problem, Int. J. Production Economics, 87 (2004) 67–81.

29. Lacomme, P., Prins, C., Ramdane, W.: cherif, Competitive memetic algorithms for arc
routing problems, Annals of Operations Research, 131(2004) 159–185.

30. Buriol, L., Franca, P.M., and Moscato, P.: A New Memetic Algorithm for the asymmetric
traveling salesman problem. J. of Heuristics, 10 (2004) 483–506.

 Solving a Dynamic CFP with Machine Cost and Alternative Process Plan by MA 227

31. Tavakkoli-Moghaddam, R., Aryanezhad, M.B., Safaei, N., Azaron, A.: Solving a dynamic
cell formation problem using metaheuristics. Applied Mathematics and Computation,
Article in press, 2005.

32. Glover, F., Greenberg, H.: New approach heuristic search: a bilateral linkage with artificial
intelligence. Eur. J. Oper. Res., 39 (2) (1989) 119-130.

33. Krasnogor, N.: Studies on the theory and design space of memetic algorithms. Ph.D.
dissertation, Univ. of the West of England, Bristol, U.K. (2002).

34. Gen, M., Cheng, R.: Genetic algorithms and engineering design. New York: Wiley (1997).

Eco-Grammar Systems as Models

for Parallel Evolutionary Algorithms

Adrian Horia Dediu and Maŕıa Adela Grando�

Research Group on Mathematical Linguistics, Rovira i Virgili University,
Pl. Imperial Tárraco 1, 43005 Tarragona, Spain

{adrianhoria.dediu, mariaadela.grando}@estudiants.urv.es

Abstract. Evolutionary Algorithms (EAs), biological inspired search-
ing techniques, represent a research domain where theoretical proofs are
still missing. Due to the lack of theoretical foundations, an extensive
experimental work developed many variations of the basic model. Re-
markable tendencies such as variable control parameters or parallel pop-
ulations try to overcome the stagnation observed at the end of evolutions.

We tried to study from theoretical point of view the possibility of
modelling parallel EAs using Eco-grammar systems. We expect that our
research opens a new perspective over EAs behavior and our framework
can bring theoretical results that will lead to new recommendations for
EAs architectures as well as for specific details requested by practical
problems.

1 Introduction

The Eco-grammar systems (EG systems) were introduced in the formal language
theory by [5] in 1997 having biological inspiration and universal computational
power. There are only several papers regarding the practical applications of EG
systems, most of them showing constructive ways to simulate other computa-
tional models. As an example, Petr Sośık in [10] constructed an EG system able
to simulate an Artificial Neural Network and viceversa. Also in [6] we found the
relation between EG systems and Simple Evolutionary Algorithms.

Evolutionary Algorithms (EAs) were introduced in the 60’s as biological in-
spired searching technics. We can find a large number of references for EAs
from introductory materials as [3], [2], to monographic books such as [1], [7],
[8]. Despite the large number of existing references in this area, EAs represent a
research domain where theoretical proofs are still missing. These computational
models suggested by the Darwinian paradigm of evolution have been showed to
be powerful and to perform well on a broad class of problems. Yet, when the
complexity of the applications increases EAs exhibit some limitations, such as
the premature convergence. It is interesting to note that the convergence of an

� This work was possible thanks to the research grant “Programa Nacional para la
formación del profesorado universitario”, from the Ministery of Education, Culture
and Sports of Spain.

O.B. Lupanov et al. (Eds.): SAGA 2005, LNCS 3777, pp. 228–238, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Eco-Grammar Systems as Models for Parallel Evolutionary Algorithms 229

EA is defined as the process of multiplication in the population of the same in-
dividual. If the convergence process finds a local optimum we call it a premature
convergence. Sometimes it is difficult for EAs to escape from such a local opti-
mum. Remarkable tendencies such as variable control parameters [11] or parallel
populations try to overcome the stagnation observed at the end of evolutions. In
order to overcome these problems efficient parallel models for EAs have been de-
veloped. Parallel Evolutionary Algorithms (PEAs) [4] have showed a speed up in
computation time, they need less objective function evaluations when compared
to sequential versions.

In this paper we continue with the work done in [6] but now we focus on
EG systems as models for PEAs. Beside the parallel evolution, we also model
the process of genetic information interchange between sub-populations. As EGs
and EAs are biologically inspired, we found appropriate associations between the
computational models’ natural metaphors such as individuals, populations, ge-
netic operators, etc. After presenting the formal definition of a PEA we show
the way to construct an EG system that can simulate the behavior of the given
formal model. The main result we get is that EG systems can be seen as powerful
problem solvers with the possibility of modelling EAs. We believe that our re-
search opens a new perspective over EAs behavior and our studying framework
will bring new theoretical results about the EAs architectural implementations
recommendations. On the other hand EG systems benefit from this approach
being able to be used as efficient combinatorial searchers in a huge variety of
NP problems, apart from their traditional used as language generators. In this
way we introduce in EG systems, that were conceived as formal frameworks for
studying evolution in eco-systems, the idea of parallel-evolution and the role of
genetic exchange inter-populations to the general evolution.

2 Eco-Grammar Systems

Before introducing the formal definition of an EG system, we present some no-
tations and basic concepts. An alphabet is a finite and nonempty set of symbols.
Any sequence of symbols from an alphabet V is called word over V . The set of
all words over V is denoted by V ∗ and the empty word is denoted by λ. Further,
V + = V \ {λ}. The number of occurrences of a symbol a ∈ V in a word w ∈ V ∗

is denoted as (w)#a and the length of w is denoted as | w | . The cardinality of
a set S is denoted as card(S).

A Chomsky grammar is a quadruple G = (N,T, S, P), where N is the symbol
alphabet, T is the terminal alphabet, S ∈ N is the axiom, and P is the (finite)
set of rewriting rules. The rules are presented in the form u → v and used in
derivations as follows: we write x =⇒ y if x = x1ux2, y = x1vx2 and u → v is
a rule in P (one occurrence of u in x is replaced by v and the obtained string
is y). Denoting by =⇒∗ the reflexive and transitive closure of =⇒, the language
generated by G is defined by:

L(G) = {x ∈ T ∗ | S =⇒∗ x}.

230 A.H. Dediu and M.A. Grando

ωE

PE

P1

R1

ϕ

ψ

P2

R2

ϕ

ψ

ω1 ωn

Pn

Rn

ϕn

ψ

ω2
…

…

…

Fig. 1. Description of an eco-grammar system

The families of languages generated by rules of the form u→ v where u ∈ N
and v ∈ (N ∪ T)∗ are called context-free grammars and denoted by CF .

Similarly a 0L system (an interactionless Lindenmayer system) is a triple
G = (V, ω, P) as above, with context-free rules in P , and with complete P (for
each a ∈ V there is a rule a → x ∈ P). The derivation is defined in a parallel
way: x =⇒ y if x = a1a2...an, y = z1z2...zn, for ai ∈ V and ai → zi ∈ P,
1 ≤ i ≤ n.

For all unexplained notions the reader is referred to [9].
We can find an introductory article about eco-grammar systems (EGs) in

[5]. For an easier understanding of the formal definitions we present an intuitive
image of the system in figure 1.

We observe that double arrows stand for parallel rewriting 0L− rules while
simple arrows are used for CF−rules.

Definition 1. (eco-grammar system) An eco-grammar system of degree n is a
(n+ 1)-tuple Σ = (E,A1, . . . , An), where E = (VE , PE) is the environment that
uses VE as a finite alphabet, and PE as a finite set of 0L rewriting rules over
VE; Ai, 1 ≤ i ≤ n, are agents defined by Ai = (Vi, Pi, Ri, ϕi, ψi) where Vi is a
finite alphabet, Pi a finite set of 0L rewriting rules over Vi, Ri is a finite set
of simple CF−rewriting rules over the environment, Ri ∈ V +

E × V ∗
E , ϕi, ψi are

computable functions that select production sets according to the environment
state, respectively the agent state: ϕi : V ∗

E → 2Pi , ψi : V +
i → 2Ri .

Until now, the definition provides only the description of the EG system’s compo-
nents. In order to describe the dynamic evolution of EGs, we give the definitions
of configuration, derivation and language generated.

Eco-Grammar Systems as Models for Parallel Evolutionary Algorithms 231

Definition 2. (configuration) A configuration of an eco-grammar system is a
tuple σ = (ωE , ω1, . . . , ωn), ωi ∈ V ∗

i , i ∈ E ∪ {1, . . . , n} ωE being a string that
represents the environment state and ω1, . . . , ωn are strings that represent the
agents’ state.

According to the configuration evolution we define the direct derivation of a
configuration in an eco-grammar system.

Definition 3. (direct derivation) Considering an eco-grammar system Σ and
two configurations denoted by σ = (ωE , ω1, . . . , ωn) and
σ′ = (ω′

E , ω
′
1, . . . , ω

′
n), we say that σ directly derives σ′ written as σ =⇒Σ σ′

iff

– ωi =⇒ ω′
i according to the selected set of rules for the i-th agent by the ϕi

mapping,
– ωE = z1x1z2x2, . . . , zmxmzm+1 and ω′

E = z′1y1z
′
2y2, . . . , z

′
mymz

′
m+1, such

that z1x1z2x2, . . . , zmxmzm+1 =⇒ z1y1z2y2, . . . , zmymzm+1 as the result of
parallel applying the rewriting rules selected by the ψi mappings for all agents
and z1z2, . . . , zm+1 =⇒ z′1z

′
2, . . . , z

′
m+1 according to the environment’s rules

PE.

The transitive and reflexive closure of =⇒Σ is denoted by =⇒+
Σ , =⇒∗

Σ

respectively.
The whole “life” of the system is governed by a universal clock, dividing the

time in unit intervals: in every time unit the agents act on the environment then
the evolution rules rewrite, in parallel, all the remained symbols in the strings
describing the environment and the agents. Thus, the action has priority over
evolution.

Definition 4. (the generated language) The language generated by the environ-
ment of an eco-grammar system Σ, starting from the initial configuration σ0 is
defined as

LE(Σ, σ0) =
{

ωE ∈ V ∗
E | σj = (ωE , ω1, ..., ωn),

σ0 =⇒Σ σ1 =⇒Σ =⇒Σ σj , j ≥ 0

}

3 Parallel Evolutionary Algorithms

Formally we define a PEA as a (m+ 4)-tuple:

[I, Φ, StopCondition,Ξ, (µ1, λ1, Ω1, s1), ..., (µm, λm, Ωm, sm)] (1)

with m the number of populations that evolve in parallel, m ≥ 0 and m ∈ N,
where:

– I represents the set of the searching space instances usually called individ-
uals. Sometimes associated with individuals we can keep useful informa-
tion for genetic operators like their fitness value. Here we use the notation

232 A.H. Dediu and M.A. Grando

〈−→i q,r(t), Φ(
−→
i q,r(t))〉, where

−→
i q,r(t) denotes the vectorial representation of

the chromosome of q-th individual in the r-th population in the t-th gen-
eration and Φ(

−→
i q,r(t)) corresponds to the fitness value associated to that

individual. So, we consider

I =
{
〈−→i q,r(t), Φ(

−→
i q,r(t))〉 | −→i q,r(t) ∈ V ector ∧ Φ(

−→
i q,r(t)) ∈ F∧

∧q ∈ N ∧ 1 ≤ q ≤ µr + λr ∧ r ∈ N ∧ 1 ≤ r ≤ m ∧ t ∈ N ∧ t ≥ 0

}
.

– Φ : I → F is the fitness function that determines the adaptation of individu-
als to the environment, where F is a finite ordered set corresponding to the
fitness function values assigned to individuals.

– We consider StopCondition : Fm × N×F×N→Boolean, where
StopCondition(f1, ..., fm, gen, impfitness,maxGen) is satisfied when the
number of generation gen exceeds maxGen generations or when the fitness
value of the best individuals from all populations (f1, ..., fm) is greater or
equal than impfitness.

– Ξ : (Iµ1) × ... × (Iµm) → (Iµ1) × ... × (Iµm) is an operator that exchanges
individuals among the m populations. An structure, usually a graph, is asso-
ciated to Ξ: each node Nx, 1 ≤ x ≤ m, represents a population Px and each
directed vertex Vxy connecting nodes Nx and Ny indicates that a certain
number of individuals from population Px are selected with some criteria
(best fitness value, random selection, etcetera), removed from Px and moved
to Py .

– (µr, λr, Ωr, sr) with r ∈ N and 1 ≤ r ≤ m are parameters required for the
computation of the evolutive process in the r-th population where:

• µr ∈ N, µr ≥ 1 denotes the number of parents of the r-th population.
• λr ∈ N, λr ≥ 1 is the number of offsprings inside the r-th population.
• Ωr : Iµr → I(µr+λr) is a set of genetic operators which applied to the

individuals of the r-th population, called parents, produce new λr indi-
viduals called offsprings.

• sr : Iµr × Iλr → Iµr is the selection operator that chooses individuals
from parents and offsprings of the r-th population to remain in next
generation. There are variants of EAs where sr selects only from the
offsprings of the r-th population (sr : Iλr → Iµr).

In figure 2 we present a general description of a PEA, where we use the
notation ‖procP for “parallel execution of procedure procP”. The variables gen
and isolationtime are numerical ones and they indicate respectively the current
number of generation and the number of generations that have to be wait until
an interchange process can take place. Pi(gen) represents the set of µi individuals
that are potential parents in i-th population and gen-th generation and P ’i(gen)
is the set of λi offsprings we get from the application of genetic operators to
individuals from Pi(gen). The step 2 of the algorithm, initialization(n, µi, L),
is the call to a function that returns the set of µi individuals of i-th population
initialized with random values. The number of genes of the chromosomes of those
individuals is n ∈ N and their fitness values are not initialized. Depending on
the coding chosen for the problem an ordered list L for genes possible values
is given, each gene searching space being a set Cj , 1 ≤ j ≤ n. Without loss of

Eco-Grammar Systems as Models for Parallel Evolutionary Algorithms 233

1 gen := 0;
2 ‖ Initialization process

(P1(0) := initialization(n, µ1, L), ...,
...,Pm(0) := initialization(n, µm, L),

3 ‖Evaluate fitness values of all the individuals of P1(0), ..., Pm(0);
4 do while not (StopCondition(best(P1(gen)), ..., best(Pm(gen)),

gen, impfitness, maxGen))
5 ‖ Apply genetic operators

Ω1(P1(gen)) → P1’(gen), ...
..., Ωm(Pm(gen)) → Pm’(gen)

6 ‖ Evaluate fitness values of all the individuals of P1’(gen), ..., Pm’(gen);
7 ‖ Select the next generation

(P1(gen + 1) := s1(P1(gen), P1’(gen)), ...,
..., Pm(gen + 1) := sm(Pm(gen), Pm’(gen));

8 gen := gen + 1;
9.1 if mod(gen, isolationtime) = 0 then
9.2 Apply exchange of individuals between populations

Ξ(P1(gen),, Pm(gen)) → {P1(gen + 1), ..., Pm(gen + 1)};
9.3 gen := gen + 1;

endif;
end do;

Fig. 2. The structure of a PEA

generality we consider each Cj a finite and discrete set of values of a given type,
such that all values of genes in the position j of a chromosome of an individual
are of type Cj . The function best : Iµi → I returns the individual with best
fitness value from Iµi . The function mod : Z × Z→ Z returns the rest of the
division between the first parameter called dividend and the second parameter
called divisor.

4 Simulating a Parallel Evolutionary Algorithm with an
Eco-Grammar System

In the table (Table 1) we show how we associate in this simulation concepts from
PEAs and EG systems.

Theorem 1 (PEA→ EG). Given an arbitrary PEA of m populations defined
like in (3) and with a description like in figure 2, we can define an EG system
able to simulate the PEA behavior.

Next we show how we can construct an EG system starting from a given PEA.
The constructed EG system has (µ1 + λ1) + (µ2 + λ2) + ...+ (µm + λm) agents,
where each agent Ax,y represents the x-th individual, 1 ≤ x ≤ µy + λy, of the
population Py , 1 ≤ y ≤ m. In EG systems the number of agents (individuals) is
fixed, so we have to define for each population Py a number of (µy +λy) agents,
which is the maximal number of individuals for that population.

We consider that the evaluation of any function and the performance of
any communication process takes only one time unit. In the implementations of

234 A.H. Dediu and M.A. Grando

Table 1. Associations between entities in Parallel EAs and EG systems

Concept Entity of PEA Entity of EG system
Individual Vector

−→
i x,y(gen) String ωx,y, state

of agent Ax,y

Evolutive Process Algorithm of figure 2 Production set PE and
a symbol in ωE

Initial Population Initialization process Initialization process
embedded in ϕx,y

Fitness function Function φ Function φ,
embedded in ψx,y

Termination Function StopCondition Function StopCondition
embedded in ϕx,y

Number of generation Variable gen Number of symbols
Generation in ωE

Genetic operators Set Ωy of operators Set Ωy of operators
embedded in ϕx,y

Selection operator Function sy Function sy

embedded in ϕx,y

Interchange operator Function Ξ Function Ξ
embedded in ψx,y

PEAs not all the functions consume the same time, in particular fitness function
evaluation or the interchange process can consume a large amount of time. Yet
our modelling hypothesis still represent a general enough framework for EAs
while we can consider that a synchronization takes place after each generation.

We define the environment’s sate of the EG system as follows:

ωE = ControlSymbol ·Generationgen · c1,1 · f1,1 · Status1,1...
...c(µ1+λ1),1 · f(µ1+λ1),1 · Status(µ1+λ1),1...

...c(µm+λm),m · f(µm+λm),m · Status(µm+λm),m

where:

– ControlSymbol ∈ VE together with the environment productions rules PE

simulate the control sequence described by figure 2. In the formal description
of the simulation, the VE alphabet’s symbols likeGeneticProcess, Selection,
NewIteration, CheckTermination, Termination, etcetera are used in ωE

to indicate the current step of the algorithm.
– Generation ∈ VE represents a special symbol used to code the generation

number in the EA. Each time the number of generation has to be increased
(steps 8 and 9.3 of the algorithm) a new symbol Generation is introduced
in ωE .

– cx,y = 〈h1x,y , ..., hnx,y〉x,y is the string representing the chromosome of the
x-th individual in the y-th population. Because the chromosome of all indi-
viduals are kept in ωE , subindexes x and y are needed to address a particular
individual.

– hsx,y ∈ Cs represents the gene value in the s-th position of the chromosome
of the x-th individual in the y-th population, it has the type Cs, 1 ≤ s ≤ n.

Eco-Grammar Systems as Models for Parallel Evolutionary Algorithms 235

– fx,y is the fitness value fx,y ∈ F ∪ {min} of the x-th individual in the y-th
population.

– Statusx,y ∈ {O,P, S,R,M,Copy, Stop, Inactive, IncrGen} means respec-
tively that the individual is an offspring, is a potential parent, has been
selected for next generation, has been rejected for next generation, is par-
ticipating in the exchange process, the string representing its chromosome
has to be copied in the environment’s state, the algorithm’s stop condition
is satisfied, the x-th individual in the y-th population is in inactive state and
the x-th individual in the y-th population is in inactive state and that the
EG can increment the number of generation.

In a similar manner we define the agents’ sate as follows:

ωx,y = c · fx,y · Statusx,y

where: 1 ≤ x ≤ µy + λy, 1 ≤ y ≤ m.
With respect to the mappings ϕx,y and ψx,y, the first one embeds the process

of random initialization of individuals (step 1), the checking of the stop condition
(step 4) and the application of functions from Ωy (step 5), function sy (step 7)
and function Ξ (step 9.2). For mappings ϕx,y being able to perform step 4, 5,
7 and 9.2 they need to know the fitness values of the individuals during the
evolutive process. For the simulation of the step 5 and 9.2 the mappings ϕx,y

also need to have information about the chromosomes of all the individuals of
all populations with the status of potential parents. And for step 7 besides the
chromosomes of the parents, the offspring’s chromosomes are needed. So before
performing this operation the corresponding chromosomes are copied in ωE by
the mappings ψx,y. Mappings ψx,y are also in charge of embedding the fitness
function Φ performing the evaluations of steps 3, 6 and 9.2 of the algorithm.

In any computational implementation of PEA following the algorithm shown
in Figure 2, populations are suppose to evolve in a parallel and independent way
in steps 2, 3, 5, 6 and 7. Each population consumes different times to perform
these steps according to their number of individuals, the time consumed by
the tasks performed and the number of processors assigned. For example some
populations can be in the step 5, while others can be in the step 6 or 7; performing
the step 8, all the populations have to synchronize. In this definition of EG system
we assign to each individual one agent or processing unit and one time-unit to
the execution of any action, therefore all the populations execute the same step
of the algorithm in a parallel and synchronized manner. At a given time unit
all populations are performing the same evolutive step so it is enough to keep
in ωE only one control symbol to deal with parallelism and synchronization.
We exemplify this simulating step 5 of the algorithm with the definition of EG
system we give. We show how genetic operators Ωy from all populations Py are
applied in a simultaneous and parallel way in one derivation step of the system.
We start the simulation from a configuration equivalent to the following one:

σs =(GeneticProcess ·Generationgen · c1,1 · f1,1, Status1,1...
...c(µm+λm),m · f(µm+λm),m, Status(µm+λm),m,

236 A.H. Dediu and M.A. Grando

ω1,1,...,ω(µ1+λ1),1,...,ω1,m,...,ω(µm+λm),m) where
(for all i, j : 1 ≤ i ≤ µj + λj ∧ 1 ≤ j ≤ m ∧ ci,j = 〈h1, h2, ..., hn〉i,j)∧

∧

⎛⎜⎜⎜⎜⎝
for all ωx,y ∈ Individuals 0 :⎛⎝ωx,y = 〈m1x,y ,m2x,y , ...,mnx,y〉P∧
∧cx,y = 〈m1x,y , ...,mnx,y〉∧
∧fx,y, Statusx,y = Φ(〈m1x,y , ...,mnx,y〉), P

⎞⎠∨
∨(ωx,y = Inactive ∧ fx,y, Statusx,y = fx,y, I)

⎞⎟⎟⎟⎟⎠∧
∧
(

for all y : 1 ≤ y ≤ m ∧ (ω1,y....ω(µy+λy),y)#P = µy∧
∧(ω1,y....ω(µy+λy),y)#Inactive = λy

)
∧

∧StopCondition(fs1,1, ..., fsm,m, gen, impfitness,maxGen) ≡ false∧

∧
⎛⎝ for all r : 1 ≤ r ≤ m ∧ fsr,r is a substring of ωE∧
∧
(

for all k : 1 ≤ k ≤ µr + λr∧
∧fsr ,r ≥ fk,r ∧ fk,r, P is a substring of ωE

) ⎞⎠
The presence of the symbol GeneticProcess in the environment’s state of

σs indicates that performance of step 5 has to take place and the number gen
of occurrences of the symbol Generation shows that the number of generation
is gen. The number of agents in each population Py whose state contain the
symbol P (have the status of parents) is µy while the number of agents containing
symbol Inactive (are in inactive state) is λy . The environment ωE contains all
the information needed for the application of the genetic operators: the strings
corresponding to the chromosomes of the potential parents of every population
and their fitness values, what we denoted Py(gen), 1 ≤ y ≤ m. And the stopping
condition is not satisfied.

From a configuration equivalent to σs we get a new configuration in one evolu-
tion step of the EG system. Rules GeneticProcess→ OffSpringEvaluation ∈
PE and the following definition of mappings ϕx,y, for 1 ≤ x ≤ µy + λy and
1 ≤ y ≤ m are applied:

ϕx,y(GeneticProcess ·Generationgen · α) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Inactive→ 〈y1, y2, ..., yn〉 such that 〈y1, y2, ..., yn〉
is the chromosome assigned to individual x
resulting from the application of genetic operators from Ωy

to those individuals from population Py in ωE

with the status of parents

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Step 5 of the algorithm is simulated: genetic operators from Ωy are applied

to each population Py . λy individuals of each population that were in an inactive
state (ωx,y = Inactive) rewrite it for a string corresponding to a chromosome
resulting from the application of the genetic operators followed by the symbol
O that indicates status of offspring (ω’x,y = 〈m1x,y ,m2x,y , ...,mnx,y〉O).

The environmental rule replaces the symbol GeneticPr ocess from ωE for
OffspringEvaluation indicating that in next derivation step of the EG system
step 6 of the algorithm has to be simulated: fitness values of the offsprings have
to be actualized in ωE . So from σs we get a configuration equivalent to this
one:

Eco-Grammar Systems as Models for Parallel Evolutionary Algorithms 237

σt =(OffspringEvaluation ·Generationgen · c1,1 · f1,1, Status1,1...
c(µm+λm),m · f(µm+λm),m, Status(µm+λm),m,
ω’1,1,...,ω’(µ1+λ1),1,...,ω’1,m,...,ω’(µm+λm),m) where

∧

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

for all ω’x,y :⎛⎝ωx,y = 〈m1x,y , ...,mnx,y〉P →
→
(
ω’x,y = ωx,y ∧ cx,y = 〈m1x,y , ...,mnx,y〉∧
∧fx,y, Statusx,y = Φ(〈m1x,y , ...,mnx,y〉)x,y, P

)⎞⎠∧
∧(ωx,y = Inactive −→ ω’x,y = 〈m1x,y , ...,mnx,y〉O)∧
∧
(

for all y : 1 ≤ y ≤ m ∧ (ω’1,y...ω’(µy+λy),y)#P = µy∧
∧(ω’1,y...ω’(µy+λy),y)#O = λy)

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
It is important to mention that we always keep in the environment state the

evolution of the individuals fitness values of every populations. The main reason
for this is that the application of functions embedded in mappings ϕx,y require
this information. Also when the stop condition is satisfied the evolution of the
system is stopped introducing a symbol Termination in the environment state,
from which no evolution can take place. In this case ωE has to be examine to
find the individual with best fitness value, which will be considered the solution
of the problem.

5 Conclusions and Future Work

In this paper we present a method to simulate the behavior of a given Parallel
Evolutionary Algorithm using an EG system. We think that from now on, EG
systems may be used not just as language generators that give exact answers, but
also as efficient probabilistic solvers that can be used to obtain good solutions of
very complex problems in an efficient way. As the the spectrum of applications
that use EAs is quite large, we mention only several of them like game playing,
face recognition, financial time-series prediction, etc., then all these applications
might be better studied using EG systems.

For future work we will focus on studying theoretical aspects regarding the
alphabet used in the coding of individuals in EAs, the control parameters and
appropriate operators for EAs, all of them analyzed from the EG system’s point
of view.

References

1. Th. Bäck, Evolutionary Algorithms in Theory and Practice - Evolution Strategies,
Evolutionary Programming, Genetic Algorithms, Oxford University Press (1996).

2. D. Beasley, D.R. Bull, R.R. Martin, An Overview of Genetic Algorithms, Part 1,
Fundamentals, University Computing (1993), 15(2) pp. 58-69.

3. D. Beasley, D.R. Bull, R.R. Martin, An Overview of Genetic Algorithms, Part 2,
Research topics, University Computing (1993), 15(4) pp. 170-181.

4. E. Cantu-Paz, A survey of Parallel Geneti Algorithms, IlliGAL Report No. 97003
(1997).

238 A.H. Dediu and M.A. Grando

5. E. Csuhaj-Varjú., J. Kelemen, A. Kelemenová, Gh. Păun, Eco-grammar systems:
A grammatical framework for studying lifelike interactions, Artificial Life 3 (1997)
pp. 1-28.

6. A. H. Dediu, M. A. Grando, Simulating Evolutionary Algorithms with Eco-grammar
Systems IWINAC 2005, LNCS 3562 ,J. Mira and J.R. Alvarez (eds.) Springer-
Verlag Berlin Heidelberg (2005) pp. 112-121.

7. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley (1989).

8. Z. Michalewicz, Genetic Algorithms + data Structures = Evolution Programs,
Springer - Verlag, New York (1996).

9. G. Rozenberg, A. Salomaa (eds.), Handbook of Formal Languages, Springer-Verlag,
Berlin (1997).

10. Petr Sośık, On eco-grammar systems and artificial neural networks, Computers and
Artificial Intelligence 15 (1996) pp. 247-264

11. M Srinivas, L. M. Patnoik, Adaptive Probabilities of Crossover and Mutation in
Genetic Algorithms, IEEE Transactions on Systems, Man and Cybernetics, Vol.
24, No. 4 (1994) pp. 656-668.

Author Index

Ablayev, Farid 190

Babakhani, Masoud 213

Chan, Chi-Kong 70

Dediu, Adrian Horia 228

Grando, Maŕıa Adela 228
Gutjahr, Walter J. 116

Hartl, Richard F. 180

Kim, Dong Kyue 170
Kolpakov, Roman 48

Lee, Mun-Kyu 170

Manita, Anatoli 26
Moshkov, Mikhail Ju. 38

Nehaniv, Chrystopher L. 126
Nobahari, Hadi 95

Okol’nishnikova, Elizaveta A. 107

Park, Chi Seong 170
Poland, Jan 58
Pourtakdoust, Seid H. 95

Romauch, Martin 180

Safaei, Nima 213
Sapozhenko, Alexander 1
Simonot, François 26

Tavakkoli-Moghaddam, Reza 213

Watanabe, Osamu 14
Wegener, Joachim 82
Wu, Yu-Liang 70

Yashunsky, Alexey D. 202

Zaroliagis, Christos 45

	Frontmatter
	Systems of Containers and Enumeration Problems
	Some Heuristic Analysis of Local Search Algorithms for SAT Problems
	Clustering in Stochastic Asynchronous Algorithms for Distributed Simulations
	On Construction of the Set of Irreducible Partial Covers
	Recent Advances in Multiobjective Optimization
	Polynomial Time Checking for Generation of Finite Distributions of Rational Probabilities
	FPL Analysis for Adaptive Bandits
	On Improved Least Flexibility First Heuristics Superior for Packing and Stock Cutting Problems
	Evolutionary Testing Techniques
	Optimal Fuzzy CLOS Guidance Law Design Using Ant Colony Optimization
	On Some Bounds on the Size of Branching Programs (A Survey)
	Two Metaheuristics for Multiobjective Stochastic Combinatorial Optimization
	Self-replication, Evolvability and Asynchronicity in Stochastic Worlds
	New Computation Paradigm for Modular Exponentiation Using a Graph Model
	Dynamic Facility Location with Stochastic Demands
	The Complexity of Classical and Quantum Branching Programs: A Communication Complexity Approach
	On the Properties of Asymptotic Probability for Random Boolean Expression Values in Binary Bases
	Solving a Dynamic Cell Formation Problem with Machine Cost and Alternative Process Plan by Memetic Algorithms
	Eco-Grammar Systems as Models for Parallel Evolutionary Algorithms
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

