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Abstract. In this paper we present a fully automatic and accurate seg-
mentation framework for 2D tagged cardiac MR images. This scheme
consists of three learning methods: a) an active shape model is imple-
mented to model the heart shape variations, b) an Adaboost learning
method is applied to learn confidence-rated boundary criterions from the
local appearance features at each landmark point on the shape model,
and c) an Adaboost detection technique is used to initialize the seg-
mentation. The set of boundary statistics learned by Adaboost is the
weighted combination of all the useful appearance features, and results
in more reliable and accurate image forces compared to using only edge
or region information. Our experimental results show that given similar
imaging techniques, our method can achieve a highly accurate perfor-
mance without any human interaction.

1 Introduction

Tagged cardiac magnetic resonance imaging(MRI) is a well known technique for
non-invasively visualizing the detailed motion of myocardium throughout the
heart cycle. This technique has the potential of early diagnosis and quantitative
analysis of various kinds of heart diseases and malfunction. However, before it
can be used in routine clinical evaluations, an imperative but challenging task
is to automatically find the boundaries of the epicardium and the endocardium.
(See Figure 1(a-c) for some examples.)

Segmentation in tagged MRI is difficult for several reasons. First, the bound-
aries are often obscured or corrupted by the nearby tagging lines, which makes
the conventional edge-based segmentation method infeasible. Second, tagged
MRI tends to increase the intensity contrast between the tagged and un-tagged
tissues at the price of lowering the contrast between the myocardium and the
blood. At the same time, the intensity of the myocardium and blood vary during
the cardiac cycle due to the tagging lines fading in the myocardium and being
flushed away in the blood. Third, due to the short acquisition time, the tagged
MR images have a relatively high level of noise. These factors make conven-
tional region-based segmentation techniques impractical. The last and the most
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(a) (b) (c) (d)

Fig. 1. (a-c) Some examples of tagged cardiac MRI images. The task of segmentation

is to find the boundaries of the epicardium and endocardium (including the LV and RV

and excluding the papillary muscles.) (d) The framework of our segmentation method.

important reason is that, from the clinicians’ point of view, or for the purpose
of 3D modeling, accurate segmentation based solely on the MR image is usu-
ally not possible. For instance, for conventional clinical practice, the endocardial
boundary should exclude the papillary muscles for the purpose of easier anal-
ysis. However, in the MR images, the papillary muscles are often apparently
connected with the endocardium and cannot be separated if only the image in-
formation is used. Thus prior shape knowledge is needed to improve the results
of automated segmentation.

There have been some efforts to achieve tagged MRI segmentation. In [1],
grayscale morphological operations were used to find non-tagged blood-filled
regions. Then they used thresholding and active contour methods to find the
boundaries. In [2], a learning method with a coupled shape and intensity statis-
tical model was proposed. In [3,4], Gabor filtering was used to remove the tagging
lines before the segmentation. These methods work in some cases. However they
are still imperfect. In [1], morphological operations are sensitive to image noise,
and the active contour method tends to get irregular shapes without a prior
shape model. In [2], their intensity statistical model cannot capture the complex
local texture features, which leads to inaccurate image forces. And in [3,4], the
filtering methods blur the boundaries and decrease the segmentation accuracy.

In this paper, in order to address the difficulties stated above, we propose a
novel and fully automatic segmentation method based on three learning frame-
works: 1. An active shape model(ASM) is used as the prior heart shape model.
2. A set of confidence-rated local boundary criteria are learned by Adaboost,
a popular learning scheme (see Section 2.2), at landmark points of the shape
model, using the appearance features in the nearby local regions. These criteria
give the probability of the local region’s center point being on the boundary, and
force their corresponding landmark points to move toward the direction of the
highest probability regions. 3. An Adaboost detection method is used to initial-
ize the segmentation’s location, orientation and scale. The second component
is the most essential contribution of our method. We abandon the usual edge
or region-based methods because of the complicated boundary and region ap-
pearance in the tagged MRI. It is not feasible to designate one or a few edge or
region rules to solve the complicated segmentation task. Instead, we try to use
all possible information, such as the edges, the ridges, and the breaking points
of tagging lines, to form a complex rule. It is apparent that at different locations
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on the heart boundary, this complex rule must be different, and our confidence
in the complex rule varies too. It is impractical to manually set up each of these
complex rules and weight their confidence ratings. Therefore, we implement Ad-
aboost to learn a set of rules and confidence ratings at each landmark point on
the shape model. The first and the second frameworks are tightly coupled. The
shape model deforms under the forces from Framework 2 while controlled and
smoothed by Framework 1. To achieve fully automatic segmentation, in Frame-
work 3 the detection method automatically provides an approximate position
and size of the heart to initialize the segmentation step. See Figure 1(d) for a
complete illustration of the frameworks.

The remainder of this paper is organized as follows: in Section 2, we present
the segmentation methodology, including Frameworks 1 and 2. In Section 3,
we briefly introduce the heart detection technique of Framework 3. In Section
4 we give some details of our experiments and show some encouraging initial
experimental results.

2 Segmentation Based on ASM and Local Appearance
Features Learning Using Adaboost

There has been some previous research on ASM segmentation methods based on
local features modeling. In [5], a statistical analysis was performed, which used
sequential feature forward and backward selection to find the set of optimal local
features. In [6], an EM algorithm was used to select Gabor wavelet-based local
features. These two methods tried to select a small number of features, which
is impractical to represent complicated local textures such as in tagged MRI.
In [7], a simple Adaboost learning method was proposed to find the optimal
edge features. This method didn’t make full use of the local textures, and didn’t
differentiate each landmark point’s confidence level. In our method, similarly
using Adaboost, our main contributions are: the ASM deforms based on a more
complex and robust rule, which is learned from the local appearance, not only
of the edges, but also ridges and tagging line breakpoints. In this way we get a
better representation of the local appearance of the tagged MRI. At the same
time, we derive the confidence rating of each landmark point from their Adaboost
testing error rates, and use these confidence ratings to weight the image forces
on each landmark point. In this way the global shape is affected more by the
more confident points and we eliminate the possible error forces generated from
the less confident points.

2.1 ASM Shape Model

Since the shape of the mid portion of the heart in short axis (SA) images is
consistent and topologically fixed (one left ventricle (LV) and one right ventricle
(RV) ), it is reasonable to implement an active shape model [8] to represent the
desired boundary contours.

We acquired two image datasets each, from two normal subjects, using two
slightly different imaging techniques. The datasets were acquired in the short axis
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plane. There are two sets of tagging line orientations (0◦ and 90◦, or −45◦ and
45◦) and slightly different tag spacings. Each dataset included images acquired
at phases through systole into early diastole, and at positions along the axis of
the LV, from near the apex to near the base, but without topological changes.
An expert was asked to segment the epicardium (Epi), the left ventricle (LV)
endocardium and the right ventricle (RV) endocardium from the datasets. In
total, we obtained 220 sets (each set includes one LV, one RV, and one Epi) of
segmented contours to use as the training data.

Segmented contours were centered and scaled to a uniform size. Landmark
points were placed automatically by finding key points with specific geometric
characteristics. As shown in Figure 2(a), the black points are the key points,
which were determined by the curvatures and positions along the contours. For
instance, P1 and P2 are the highest curvature points of the RV; P7 and P8 are
on opposite sides of the center axis of the LV. Then, fixed numbers of other points
are equally placed in between. In this way, the landmark points were registered to
the corresponding locations on the contours. Here, we used 50 points to represent
the shape.

For each set of contours, the 50 landmark points (xi, yi) were reshaped to form
a shape vector X = (x1, x2, ..., x50, y1, y2, ..., y50)T . Then Principal Component
Analysis was applied and the modes of shape variation were found. Any heart
shape can be approximately modeled by X = X̄ + Pb, where X̄ is the mean
shape vector, P is the matrix of shape variations, and b is the vector of shape
parameters weighting the shape variations.

After we find the image forces at each landmark point, as in Section 2.2,
the active shape model evolves iteratively. In each iteration, the model deforms
under the influence of the image forces to a new location; the image forces are
then calculated at the new locations before the next iteration.

2.2 Segmentation Via Learning Boundary Criteria Using Adaboost

Feature Design. To capture the local appearance characteristics, we designed
three different kinds of steerable filters. We use the derivatives of a 2D Gaussian
to capture the edges, we use the second order derivatives of a 2D Gaussian to
capture the ridges, and we use half-reversed 2D Gabor filters [9] to capture the
tagging line breakpoints.

Assume G = G((x − x0) cos(θ), (y − y0) sin(θ), σx, σy) is an asymmetric 2D
Gaussian, with effective widths σx and σy , a translation of (x0, y0) and a rotation
of θ. We set the derivative of G to have the same orientation as G:

G′ = Gx cos(θ) +Gy sin(θ) (1)

The second derivative of a Gaussian can be approximated as the difference of
two Gaussians with different σ. We fix σx as the long axis of the 2D Gaussians,
and set σy2 > σy1. Thus:

G′′ = G(σy1) −G(σy2) (2)
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(a) (b) (c) (d)

Fig. 2. (a) shows the automatic method used to place the landmark points. (b-d) are

the sample sets of feature filters: (b) are the derivatives of Gaussian used for edge

detection, (c) are the second derivatives of Gaussian used for ridge detection, and (d)

are the half-reversed Gabor filters used for tag line breakpoint detection.

In the previous two equations, we set x0 = 0, and tune y0, θ, σx, σy , σy1 and
σy2 to generate the desired filters.

The half-reversed 2D Gabor filters are defined as a 2D sine wave multiplied
with the 2D derivative of a Gaussian:

F = G′(x, y) · R{e−j[φ+2π(Ux+V y)]} (3)

where G′ is the derivative of a 2D Gaussian. U and V are the frequencies of the
2D sine wave, ψ = arctan(V/U) is the orientation angle of the sine wave, and φ
is the phase shift. We set x0 = 0, σx = σy = σ,−45◦ ≤ ψ − θ ≤ 45◦, and tune
y0, θ, σ, φ, U and V to generate the desired filters.

For a 15x15 sized window, we designed 1840 filters in total. See Figure 2(b-d)
for some sample filters.

Adaboost Learning. In the learning section, each training image is scaled
proportionally to the scaling of its contours. At each landmark point of the
contours, a small window (15x15) around it was cut out as a positive appearance
training sample for this particular landmark point. Then along the normal of
the contour, on each side of the point, we cut out two 15x15-sized windows as
negative appearance training samples for this particular landmark point. Thus
for each training image, at a particular landmark point, we got one positive
sample and four negative samples (shown in Figure 3(a).) We also randomly
selected a few common negative samples outside the heart or inside the blood
area, which are suitable for every landmark point. For image contrast consistency,
every sample was histogram equalized.

The function of the Adaboost algorithm [10,11] is to classify the positive
training samples from the negative ones by selecting a small number of important
features from a huge potential feature set and creating a weighted combination
of them to use as an accurate strong classifier. During the boosting process, each
iteration selects one feature from the total potential features pool, and combines
it (with an appropriate weight) with the existing classifier that was obtained in
the previous iterations. After many iterations, the weighted combination of the
selected important features can become a strong classifier with high accuracy.
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(a) (b) (c)

Fig. 3. (a) shows the method of setting the training data. The solid box is the positive

sample around the landmark points. The four dashed line boxes along the normal

are the negative samples. This way of setting the negative samples is chosen to make

the classifier more adaptive to the particular landmark position. (b) and (c) show the

training error (solid lines) and testing error (dash lines) of two landmark points versus

Adaboost iteration times. (b) is a point on the LV, (c) is a point on the Epi. Note how

the training and testing error decrease as Adaboost iterates. Also note the testing error

of (b) is higher than (c): we are more confident of landmark point (c)’s classification

result.

The output of the strong classifier is the weighted summation of the outputs of
each of its each selected features, or, the weak classifiers: F = Σtαtht(x), where
α are the weights of weak classifiers, and h are the outputs of the weak classifiers.

We call F the boundary criterion. When F > 0, Adaboost classifies the point
as being on the boundary. When F < 0, the point is classified as off the boundary.
Even when the strong classifier consists of a large number of individual features,
Adaboost encounters relatively few overfitting problems [12]. We divided the
whole sample set into one training set and one testing set. The function of the
testing set is critical. It gives a performance measure and a confidence level that
tells us how much we should trust its classification result. Figure 3(b, c) shows
the learning error curve versus the boosting iteration numbers at two selected
landmark points. Note that every landmark point i has its own α, h and Fi.

Segmentation Based on Confidence Ratings. In the segmentation stage,
we first select an initial location and scale, and then overlay the mean shape X̄ ,
which is obtained from ASM, onto the task image. In section 3 we describe an
automatic initialization method.

At a selected landmark point i on the shape model, we select several equally
spaced points along the normal of the contour on both sides of i, and use their F
values to examine the corresponding windows centered on these points. In [12],
a logistic function was suggested to estimate the relative boundary probabilities:

Pr(y = +1|x) =
eF (x)

eF (x) + e−F (x)
(4)

We find a point j whose test window has the highest probability of being on the
heart boundary. Thus an image force f should push the current landmark point
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i toward j. Recall that, as discussed in the previous subsection, Adaboost gives
the errors of the testing data ei. We define the confidence rating as:

ci = ln
1
ei

; (5)

Intuitively, when ci is big, we trust its classification and increase the image force
f , and conversely. Thus, we define the image force at landmark point i as:

f = µ · [x(j) − x(i)] · c(i)
||x(j) − x(i)||2 (6)

where µ is a scale as a small step size.
The detailed algorithm to update the parameters of the ASM model with the

image force f can be found in [8].

3 Heart Detection Based on Adaboost Learning

The heart detection algorithm used is influenced by the Adaboost face detec-
tion algorithm developed by Paul Viola and Michael Jones [13]. The reason we
adapt a face detection method is that these two problems are closely related.
Often, there are marked variations between different face images, which come
from different facial appearance, lighting, expression, etc. In heart detection, we
have the similar challenges: the heart images have different tag patterns, shape,
position, phase, etc.

We use the same Haar wavelet features as in [13]. The training data contained
297 manually cropped heart images and 459 randomly selected non-heart images.
The testing data consisted of 41 heart images and 321 non-heart images. These
data were resized to 24x24 pixels and contrast equalized. Adaboost training gave
a strong classifier by combining 50 weak features. For an input task image, the
detection method searched every square window over the image, and found a
window with the highest probability as the final detection. If we rotate the task

(a) (b) (c) (d)

Fig. 4. (a) shows a few samples of the training data. (b), (c) and (d) are three detection

results. For image (d), the image was rotated by a set of discrete angles before the

detection, and the final detection is of the highest probability among all the discrete

angles tested.
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image by a set of discrete angles before the detection procedure, and compare
the probabilities across the discrete angles, we are also able to detect hearts in
rotated images (see Figure 4).

4 Representative Experimental Results and Validation

We applied our segmentation method to three data sets, one from the same sub-
ject and with the same imaging settings as the training data (but excluding the
training data), and the other two novel data sets from two different subjects and
with slightly different imaging settings. Respectively, the three data sets each
contained 32, 48 and 96 tagged MRI images, with different phases, positions and
tagging orientations. Each task image was rotated and scaled to contain a 80x80-
pixel-sized chest-on-top heart, using the detection method before the segmen-
tation. Each segmentation took 30 iterations to converge. Our experiment was
coded in Matlab 6.5 and run on a PC with dual Xeon 3.0G CPUs and 2G mem-
ory. The whole learning process took about 20 hours. The segmentation process
of one heart took 120 seconds on average. See Figure 5 for representative results.

For validation, we used the manual segmentation contours as the ground
truth for the first and second data sets. For the third data set, because we don’t
have independent manual contours, we used cross validation, since we know
that at the same position and phase, the heart shapes in the vertical-tagged and
horizontal-tagged images should be similar. We denote the ground truth contours
as T and our segmentation contours as S. We defined the average error distance
as D̄error = meansi∈S(min||T − si||2). Similarly the cross distance is defined as
D̄cross = meansvertical

i ∈Svertical(min||Shorizontal − svertical
i ||2). In a 80x80 pixel-

sized heart, the average error distances between the automatically segmented
contours and the contours manually segmented by the expert for the first data set
were: D̄error(LV ) = 1.12 pixels, D̄error(RV ) = 1.11 pixels, D̄error(Epi) = 0.98
pixels. For the second data set, D̄error(LV ) = 1.74 pixels, D̄error(RV ) = 2.05
pixels, D̄error(Epi) = 1.33 pixels. In the third dataset, the cross distances are:
D̄cross(LV ) = 2.39 pixels, D̄cross(RV ) = 1.40 pixels, D̄cross(Epi) = 1.94 pixels.
The larger distance in the cross validation arises in part from underlying mis-
registration between the (separately acquired) horizontal and vertical images.
Thus, the true discrepancy due to the segmentation should be smaller. From the
above quantitative results, we find that for a normal-sized adult human heart,
the accuracy of our segmentation method achieves an average error distance of
less than 2mm. The cross validation results of the third data set suggest that
our method is very robust as well.

5 Discussion

In this paper, we have proposed a learning scheme for fully automatic and accu-
rate segmentation of cardiac tagged MRI data. The framework has three steps.
In the first step we learn an ASM shape model as the prior shape constraint.
Second, we learn a confidence-rated complex boundary criterion from the local
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1)

2)

3)

4)
(a) (b) (c) (d) (e)

Fig. 5. The first and second rows of images come from the the first and second dataset,

respectively. For better representation, the images in the first row vary in position and

remain at the same phase, while the images in the second row vary in phase but remain

at the same position. The solid contours are from our automatic segmentation method;

the dashed contours are manual. Notice that the papillary muscles in LV are excluded

from the endocardium. The third and fourth rows are from the third dataset. Manual

contours are not available for this dataset, so we compare our segmentation results

between the the horizontal and vertical tagged images that are at same position and

phase. Qualitatively, the contours are quite consistent, allowing for possible misreg-

istration between the nominally corresponding image sets. In (3a), (3c) and (3e) the

dashed contours are testing examples of poor initializations, while the final contours

are solid. Although the initialization is fay away from the target, the shape model

moves and converges well to the target.

appearance features to use to direct the detected contour to move under the
influence of image forces. Third, we also learn a classifier to detect the heart.
This learning approach achieves higher accuracy and robustness than other pre-
viously available methods. Since our method is entirely based on learning, the
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way of choosing the training data is critical. We find that if the segmentation
method is applied to images at phases or positions that are not represented in
the training data, the segmentation process tends to get stuck in local minima.
Thus the training data need to be of sufficient size and range to cover all possible
variations that may be encountered in practice.

An interesting property of our method is that it is not very sensitive to the
initialization conditions. As shown in Figure 5, even if the initial contours are far
away from the target position, it can still eventually converge to the right position
after a few iterations. This property makes automatic initialization feasible. The
detection method gives only a rough approximation of the heart’s location and
size, but it is good enough for our segmentation purposes.
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