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Preface 

With the rapid increase in the variety and quantity of biomedical images in recent 
years, we see a steadily growing number of computer vision technologies applied to 
biomedical applications.   The time is ripe for us to take a closer look at the 
accomplishments and experiences gained in this research subdomain, and to 
strategically plan the directions of our future research. The scientific goal of our 
workshop, “Computer Vision for Biomedical Image Applications: Current 
Techniques and Future Trends” (CVBIA), is to examine the diverse applications of 
computer vision to biomedical image applications, considering both current methods 
and promising new trends.  An additional goal is to provide the opportunity for direct 
interactions between (1) prominent senior researchers and young scientists, including 
students, postdoctoral associates and junior faculty; (2) local researchers and 
international leaders in biomedical image analysis; and (3) computer scientists and 
medical practitioners. Our CVBIA workshop had two novel characteristics: each 
contributed paper was authored primarily by a young scientist, and the workshop 
attracted an unusually large number of well-respected invited speakers (and their 
papers). We had the good fortune of having Dr. Ayache of INRIA, France to talk 
about “Computational Anatomy and Computational Physiology,” Prof. Grimson of 
MIT to discuss “Analyzing Anatomical Structures: Leveraging Multiple Sources of 
Knowledge,” Dr. Jiang of the Chinese Academy of Sciences to present their work on 
“Computational Neuroanatomy and Brain Connectivity,” Prof. Kanade of CMU to 
reveal their recent work on “Tracking of Migrating and Proliferating Cells in Phase-
Contrast Microscopy Imagery for Tissue Engineering,” Prof. Noble of Oxford to 
answer the question: “Cardiology Meets Image Analysis: Just an Application or Can 
Image Analysis Usefully Impact Cardiology Practice?,” and Prof. Stewart of RPI to 
summarize “Computer Vision Algorithms for Retina Images.” 

We received an overwhelming response from the computer vision community to 
our call for papers. A total of 82 full papers were received from 12 countries. Through 
careful reviews of each paper by at least three members of our Program Committee, 
50 contributed papers were accepted for this volume of the LNCS book series. This 
large number of paper acceptances reflects the high quality of the submissions. 

We received generous support from our sponsors: National Science Foundation of 
China, Chinese Association for Artificial Intelligence, Siemens Research, Intel 
Research, and Dr. Enming Song. 

A workshop of this size would not be possible without the hard work of many 
people. In particular, we would like to thank each member of the Program Committee 
for their prompt and critical reviews, which ensured high standards for this workshop. 
We would like to express our sincere gratitude to our administrative coordinator, Ms. 
Janice Brochetti of Carnegie Mellon University, for her dedicated, tireless effort; to 
Dr. Zhongbao Kou of Tsinghua University for his effective plans; and to Ms. Fang 
Qian of the National Lab of Pattern Recognition for her care and attention to detail. 



VI Preface 

Last, but not least, we would like to thank the Advisory Committee and Prof. Stewart. 
Without their insightful guidance, we would not have made. 

We hope our readers will benefit from this timely collection of excellent papers in 
CVBIA research as much as we enjoyed putting the volume together. 
 
August 2005                                             Yanxi Liu 

Tianzi Jiang 
Changshui Zhang 
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Computational Anatomy and Computational Physiology 
for Medical Image Analysis  

Nicholas Ayache 

Research Director, 
Epidaure/Asclepios Laboratory, 

INRIA, 2004 Route des Lucioles, 06902, Sophia-Antipolis, France 

Medical image analysis brings about a revolution to the medicine of the 21st century, 
introducing a collection of powerful new tools designed to better assist the clinical 
diagnosis and to model, simulate, and guide more efficiently the patient’s therapy. A 
new discipline has emerged in computer science, closely related to others like 
computer vision, computer graphics, artificial intelligence and robotics.  

In this talk, I will describe the increasing role of computational models of anatomy 
and physiology to guide the interpretation of complex series of medical images, and 
illustrate my presentation with three applications: the modeling and analysis of 1) 
brain variability from a large database of cerebral images, 2) tumor growth in the 
brain and 3) heart function from a combined exploitation of cardiac images and 
electrophysiology. 

I will conclude with a presentation of some promising trends, including the 
analysis of in vivo microscopic images. 
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Analyzing Anatomical Structures: Leveraging Multiple 
Sources of Knowledge 

Eric Grimson and Polina Golland 

Computer Science and Artificial Intelligence Laboratory, 
Massachusetts Institute of Technology, 

Cambridge MA 02139 

Abstract. Analysis of medical images, especially the extraction of anatomical 
structures, is a critical component of many medical applications: surgical 
planning and navigation, and population studies of anatomical shapes for 
tracking disease progression are two primary examples. We summarize recent 
trends in segmentation and analysis of shapes, highlighting how different 
sources of information have been factored into current approaches. 

1   Background and Motivation 

The application of computer vision techniques to detailed anatomical information 
from volumetric medical imaging is changing medical practice, in areas ranging from 
surgery to clinical assessment. Automated reconstruction of precise patient-specific 
models of anatomic structures from medical images is becoming de rigeur for many 
surgical procedures, disease studies, and clinical evaluation of therapy effectiveness. 

For example, neurosurgeons often use navigational aids linked to labeled imagery 
in order to localize targets. Even the registration to the patient of unprocessed 
volumetric imagery, such as MRI, is of value to the surgeon.  It allows her to see 
beneath exposed surfaces to localize nearby structures, and to track instruments 
during minimally invasive procedures, providing faster navigation through narrow 
openings. But raw imagery is often insufficient, since it is often cluttered and filled 
with subtle boundaries. By segmenting out distinct anatomical structures, by co-
registering functional, biomechanical, or other information to those segmented 
structures, and by relating all that information to the patient's position, the surgeon's 
ability to visualize the entire surgical space is greatly enhanced, as is her ability to 
avoid critical structures while ensuring that targeted tissue is fully excised. This 
allows surgeons to execute surgeries more quickly, and with less impact on 
neighboring tissues. Hence, extracting anatomical models from imagery is a key 
element of emerging surgical techniques.  An example is shown in Figure 1. 

Understanding healthy development and disease progression also can benefit from 
computational methods that extract precise models of anatomical substructures from 
volumetric imagery. For example, in studies of schizophrenia accurately measuring 
shapes of cortical and subcortical structures and identifying significant differences in 
shape between diseased and normal populations provides an invaluable tool for 

 CVBIA



4 E. Grimson and P. Golland 

 

understanding the disease's progression.  This is particularly true when shapes of 
structures also can be tracked over time.  In Alzheimer's disease, understanding the 
relationship between changes in shape and volume of neural structures in correlation 
with other factors, such as genetic markers or distributions of functional information 
during specific mental tasks, may provide neuroscientists with computational tools for 
deepening the understanding of the disease, and its progression. Hence, extracting 
anatomical models from imagery, especially group statistical properties of those 
models, is an essential component of emerging neuroscience techniques. 

 

Fig. 1. Example of segmented images in surgical navigation. Segmented structures are overlaid 
on cross-sectional views of an MRI scan (bottom). The position of a surgical probe is tracked 
relative to the patient and the segmented scans. 

To enhance surgical practice, and to extend neuroscientific understanding of 
diseases, we need models of shapes, and thus we need segmentation algorithms to 
extract structures from multi-modal images. These methods have evolved in 
capability, as increasingly sophisticated models of anatomy and of the image 
formation process have been embedded within them. Early methods simply relied 
intensity thresholds to separate structures. These methods fail when confronted with 
bias fields in the imagery, so approaches were developed that either model the field as 
a smooth function (e.g., a polynomial) or employ non-parametric techniques, (e.g., 
Expectation Maximization (EM)), to account for image acquisition artifacts and to 
create statistical models of tissue response. Because individual voxel responses can be 
consistent with several tissue types, especially in the presence of noise, Markov 
Random Field (MRF) methods have been added to impose local continuity. They 
capture the notion that nearby labels for tissue type should influence the labeling of a 
particular voxel, since tissue is generally locally continuous. Atlas-based methods 
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capture more global constraints, especially the expected position and spatial extent of 
structures, by providing spatial templates in which to interpret voxel intensities, either 
by defining prior probabilities on tissue type as a function of position, or by defining 
initial positions for boundaries of structures, which are then warped to best match the 
intensity data. 

Structural measurements in morphological studies have seen a parallel refinement. 
Early methods simply recorded volumes of structures, measurements that have 
improved in specificity as segmentation methods enabled increasingly detailed and 
accurate delineation of the structures of interest. However, volume alone is often 
insufficient to detect changes in a structure or to differentiate different populations.  
Often a difference in structure between two distinct populations is localized in 
specific components of that structure; or the progression of a disease will result in 
variations in a particular component of a structure.  

 
 

Fig. 2. An example segmentation from a neurosurgical case. Thirty-one different brain structures 
have been segmented using MRF-based voxel classification methods. The goals of the proposed 
project include improving on such segmentation by adding shape constraints. While these 
segmentations are a good start, there are residual errors near subtle boundaries that would be 
improved by adding shape information. 

Thus, we believe that a natural next stage in the evolution of segmentation methods 
and associated measurements of structures is the incorporation of shape information 
into the process. To do this, we need to learn the typical shapes of structures and their 
statistical variation across normal populations. We believe that this information can 
be extracted from sets of training images, and that the resulting statistical distributions 
on shape can be used to guide segmentation of new images. Moreover, if we can 
capture shape distributions, we can use them as a comparative too: to identify 
differences in shape between populations or to track changes in shape with time. 

We have suggested that capturing statistics of shape can aid in segmenting new 
scans. One clear application of this tool is in surgical planning and guidance. By 
providing the surgeon with a detailed reconstruction of the anatomy, she can plan 
access to the operative site, and by registering the model to the actual position of the 
patient, she can track the position of surgical instruments relative to structures in the  
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Fig. 3. Visualization of the shape differences in the right hippocampus between the schizophrenia 
group and the normal controls captured by a discriminative model learned from example images. 
Using the learned classifier based on the two groups, one can examine the amount of deformation, 
from blue (moving inwards) to red (moving outwards) needed to shift a normal example towards 
the schizophrenia group, and vice versa. 

reconstructed model. Figure 2 shows an example segmentation of a neuroimage into 
31 structures derived using atlas-based segmentation, followed by a MRF label 
regularization. 

Shape based methods can provide more than just better segmentation, however. 
The shape analysis methods also may improve the quantitative assessment of 
anatomical development during disease progression. In particular, we can create 
shape-based classifiers, using machine learning tools applied to our shape 
distributions, to distinguish between different populations.  Such classifiers not only 
provide a mechanism for assigning new instances to the appropriate class, they can be 
used to determine what parts of the shape change in significant ways between the two 
classes, as illustrated in Figure 3 for a study of hippocampal shape in schizophrenia. 
The colormap indicates the amount of deformation required to make the normal 
hippocampus shown here be likely to come from the schizophrenia group with respect 
to the trained classifier function. Such visualization techniques allow one to isolate 
shape changes to key elements of a structure.  

2   Classes of Segmentation Methods 

Segmentation is a central component in many medical image analysis applications. It 
provides a fundamental basis for surgical planning, surgical navigation, analysis of 
disease progression, and therapy evaluation in essence by extracting geometrically 
accurate, patient-specific reconstructions of anatomical structures, segmentation 
provides a foundation for understanding structural correlates with disease and for 
visualizing and planning interventions. Unfortunately, segmentation is inherently 
under-constrained: the image intensity alone is often insufficient to delineate 
anatomical structures. Human operators employ their knowledge of anatomy when 
they perform segmentation; thus incorporating such knowledge into the automatic 
methods has improved the quality of segmentation results. However, the problem of 
accurate automatic segmentation of neuroimages is not yet fully solved, and we 
believe that building computational mechanisms for modeling anatomical shape and 
its variability will significantly improve segmentation accuracy. 
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To understand the role of shape in segmentation, we find it useful to group image 
segmentation methods into three broad classes: voxel classification, atlas-based 
segmentation, and boundary localization. The output of the first class of algorithms is 
a volume in which each voxel is labeled with an associated tissue class. The second 
group infers segmentation through registering a previously segmented image (atlas) to 
a new input image. Algorithms in the third class are based on deformable contours 
that are evolved to explain the novel image. 

2.1   Voxel Classification 

The original methods in this class used intensity information at a specific voxel to 
decide on the tissue type enclosed by that voxel [1,2,3,4]. These methods measured 
intensity responses for different tissue classes from training data (such as voxels 
selected by a user based on uniqueness of tissue type) and derived a set of optimal 
thresholds for assigning a tissue class to each voxel. This approach has been refined 
by our group and other researchers to deal with non-linear gain (bias) artifacts by 
simultaneously solving for a smooth spatially variant gain field and the identification 
of tissues at voxels [5,6,7]. To handle noise and uncertainty in the intensity 
information, the next group of algorithms in this class incorporated local geometric 
information by employing Markov Random Field (MRF) models [8,9]. The idea is to 
use information about tissue likelihoods at neighboring voxels to influence the 
assignment of a tissue label at a specific voxel.  The original formulation has been 
refined by several groups, including ours, to include local estimation of individual and 
pairwise priors from a set of scans previously segmented by an expert and registered 
together to form an atlas. This probabilistic atlas is then registered to a new scan to 
transform the likelihoods into appropriate locations [10,11].  

Algorithms in this class provide excellent quality segmentation for gross voxel 
assignment into three large classes: white matter, gray matter, and cerebrospinal fluid 
(CSF). The results can be used for analysis of overall (total volume) tissue changes in 
an individual or a population, but since the methods operate on an implicit 
representation of the anatomy as a discrete map of tissue labels, they do not produce 
an explicit representation of the structure boundaries. Instead, an additional step of 
extracting the boundary surfaces is required if we are to utilize the results of voxel 
classification in visualization for surgical planning and navigation, or population 
studies focusing on anatomical shape. Moreover, explicit shape models that involve 
global descriptors do not easily fit within this intrinsically local framework.  Recent 
work focuses on more detailed segmentation into individual subcortical structures and 
cortical parcelation by constructing location-specific Markov priors for every 
structure [10,12] effectively reducing the representation of the anatomy to the level of 
individual voxels and voxel neighborhoods. 

2.2   Atlas-Based Segmentation 

The methods in this class seek to induce a segmentation of a new scan by deforming a 
given segmented atlas image to the novel grayscale image and by applying the 
estimated transformation, or warp, to the label map of the atlas. The atlas generally 
includes at least one scan that has been carefully annotated, perhaps along with 
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likelihoods used to describe the variance seen across a population. If the atlas can be 
successfully matched to a novel scan, then all information present in the atlas, such as 
the tissue labels, is known with respect to the new image. The registration process is 
often reduced to an optimization of a weighted sum of two terms: the quality of the 
image fit, i.e., how well the atlas grayscale image matches the novel scan, and a 
penalty term on the amount of deformation between the atlas and the image. The 
deformations required to adequately match the atlas to novel scans are typically 
sufficiently high-dimensional, requiring a substantial amount of regularization. 
Examples of regularization methods include representing the deformation field as a 
sum of basis vectors, which allows for a coarse to fine solution [13,14], or 
representing the large deformation as a concatenation of a set of small deformations 
that more efficiently fit into the optimization framework [15] or employing a cascade 
of similarity groups beginning with rigid transformations, and subsequently allowing 
more flexible warps, such as piece-wise affine [16,17] or elastic [18,19]. Tissue 
deformation models can also assist in regularizing the deformation field when dealing 
with anatomy containing very different structures such as bone, muscle, and CSF 
[20,21]. Depending on the image properties, the quality of the fit is evaluated using 
image intensity, its gradient, texture measures, or discrete landmark points. A 
comprehensive survey of relevant registration techniques can be found in [22]. 

The algorithms in this class have also been used to map tissue class priors onto a 
new scan as an initialization step in voxel classification methods that further refine the 
initial segmentation by evoking MRF-based segmentation [10,11]. Like the voxel 
classification algorithms, these methods operate on the implicit voxel-based 
representation of anatomy and thus take little advantage of information on anatomical 
shape variability. They typically rely on the intensity information and the inherent 
geometric properties of the mapping (continuity, smoothness, etc.) to guide 
registration. Active Appearance Models [23,24] are a notable exception, as they 
achieve registration of a template to a novel image based on the shape variability 
model.  However, we group this particular method with the boundary detection 
algorithms, as it manipulates an explicit boundary representation both for shape 
modeling and for registration. 

2.3   Boundary Detection 

Rather than label each voxel by tissue type, the methods in this group search for 
boundaries between different tissue types. Standard methods use deformable contours, 
or ``snakes'' [25]: they evolve a contour (or a surface in 3D), typically by shrinking or 
expanding it in proportion to its local curvature, until it reaches a strong intensity 
boundary. Robust variants that use regularization to reduce the sensitivity to noise 
include balloons [26], t-snakes [27], and pedal snakes [28]. 

Boundary evolution techniques explicitly manipulate the object boundary surface 
and therefore lend themselves naturally to shape-based extensions. The Active Shape 
Models method [29,30] extracts a set of corresponding points on the outline of every 
training example and employs Principal Component Analysis (PCA) to build a linear 
model of variation, typically keeping only a few principal components. The resulting 
probabilistic model is then used to constrain the space of deformations of the 
``representative'' example (mean shape) when matching it to a new image. In addition 
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to the variance of point positions, Active Appearance Models [23,24] include the 
intensity distributions over the object. The model fitting stage searches over the eigen-
coefficients with the goal of matching the grayscale values of the model and the 
image. This framework has also been extended to multi-shape segmentation, where 
the statistical model captures shape of several structures, as well as their relative 
position and orientation, helping to overcome poor local intensity contrast [31]. 
Variants of this approach have been demonstrated that manipulate parametric 
representations of the boundary -- the Fourier descriptors in 2D [32, 33] and the 
spherical harmonics in 3D [34] -- by transferring the problem of modeling and 
template matching into the space of the representation coefficients instead of the 
boundary points. 

The level-set implementation of curve evolution [35,36] overcomes several 
shortcomings of the traditional snakes. It is more robust to initialization, allows 
topology changes, and is more stable numerically as it operates on the volumetric 
grid, thus eliminating the need for re-parameterization of the snake. Similarly to the 
original snakes, the level-set implementation can be augmented to include prior shape 
information in steering the evolving boundary towards the ``typical'' shape. Examples 
of application-specific shape constraints include coupled evolution of two surfaces for 
cortical segmentation [37], or topology preservation of the resulting surface through 
local constraints [38,39]. We demonstrated a level-set counterpart of the Active Shape 
Models by applying PCA to the signed distance transforms of the training examples 
and by introducing a term into the evolution dynamics that ``pulls'' the evolving 
distance transform towards the most likely shape under the probability distribution 
obtained through PCA [40,41,42]. A multi-shape segmentation based on this principle 
has recently been demonstrated by our and other groups [43,44]. 

3   Next Steps in Segmentation 

To summarize, segmentation methods have seen a series of developments, each stage 
incorporating additional information.  Thus, early methods simply relied on intensity 
thresholds to separate structures. These methods fail when confronted with bias fields 
in the imagery, so approaches were developed that either model the field as a smooth 
function or employ non-parametric techniques to account for image acquisition 
artifacts and to create statistical models of tissue response. Because individual voxel 
responses can be consistent with several tissue types, especially in the presence of 
noise, Markov Random Field (MRF) methods have been added to impose local 
continuity. They capture the notion that nearby labels for tissue type should influence 
the labeling of a particular voxel, since tissue is generally locally continuous. Atlas-
based methods capture more global constraints, especially the expected position and 
spatial extent of structures, by providing spatial templates in which to interpret voxel 
intensities, either by defining prior probabilities on tissue type as a function of 
position, or by defining initial positions for boundaries of structures, which are then 
warped to best match the intensity data.  Finally, template-based segmentation has 
served as a basis for most methods that incorporate prior shape information into 
segmentation. Both the original deformable contour methods and the more recent 
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level-set implementations have been augmented with probabilistic shape models that 
modify the evolution of the boundary.  

Although considerable progress has been made in creating sophisticated 
segmentation algorithms and in analyzing populations of segmented structures to 
capture statistical models of variation, important challenges remain. Key among these 
are as follows:  

• methods that robustly leverage shape information to enhance segmentation; 
• a demonstration that shape information significantly improves the quality of 

segmentation; 
• a demonstration that such improved segmentation provides an added value 

in surgical planning and navigation;  
• methods that capture statistical variations in distributions of shape 

information;  
• a demonstration that these statistical models can be used to create classifiers 

that distinguish between diseased and normal populations; 
• a demonstration that classifiers based on shape differences are more 

accurate than simple volumetric measures;  
• methods that use these classifiers to visualize differences in shapes of 

populations; and 
• using the results of the statistical analysis to find correlations between 

disease states and changes in shapes of structures. 
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Abstract. In this article, we present some advances on medical imaging and 
computing at the National Laboratory of Pattern Recognition (NLPR) in the 
Chinese Academy of Sciences. The first part is computational neuroanatomy. 
Several novel methods on segmentations of brain tissue and anatomical 
substructures, brain image registration, and shape analysis are presented. The 
second part consists of brain connectivity, which includes anatomical 
connectivity based on diffusion tensor imaging (DTI), functional and effective 
connectivity with functional magnetic resonance imaging (fMRI). It focuses on 
abnormal patterns of brain connectivity of patients with various brain disorders 
compared with matched normal controls. Finally, some prospects and future 
research directions in this field are also given. 

1   Introduction 

It is well known that information technology and biomedical technology are two of 
the hottest sciences in twenty-first century. Medical imaging is the convergence of 
them. Under such a trend, the Division of Medical Imaging and Computing (MIC) at 
the National Laboratory of Pattern Recognition (NLPR) in the Chinese Academy of 
Sciences was established in 2001. It is a new group that brings together 
multidisciplinary expertise in computer science, mathematics, physics, medical 
imaging, medicine, and neuroscience.  It pursues a scientifically coherent program of 
internationally competitive research in Quantitative Imaging, Image and Signal 
Computing, and Medical Computer Vision - building on established strengths in these 
areas. Three major fields have been involved. One is Computational Neuroanatomy 
(especially on relationships between anatomical abnormalities and mental diseases) 
including brain tissue segmentation of MR images, intra- and inter-modality image 
registration, automatic lesion detection and segmentation, brain structure 
segmentation, registration and shape analysis. The second one is Brain Connectivity, 
which includes detection of brain activation regions and functional connectivity 
analysis with functional Magnetic Resonance Imaging (fMRI), Diffusion Tensor 
Imaging (DTI) based white matter bundle tracking and analysis, and studies on brain 
connectivity abnormalities of patients with mental diseases with fMRI and DTI. The 
third one is the imaging genome. The motivation is to understand genetic bases for 
various anatomical and functional abnormalities of patients with brain diseases and 
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disorders based on neuroimages. We will introduce the historical achievements, 
current progress, and future plans of these research fields in the follow on sections 
respectively. 

2   Computational Neuroanatomy 

In this part, we focus on human brain morphemetry with Magnetic Resonance 
Imaging (MRI), especially on brain image and lesion segmentation, registration, and 
shape analysis. 

2.1   Image Segmentation 

Brain Tissue Segmentation: Brain tissue segmentation is an important preprocessing 
step in many medical research and clinical applications. However, intensity 
inhomogeneities in MR images, which can change the absolute intensity for a given 
tissue class in different locations, are a major obstacle to any automatic methods for 
MR image segmentation and make it difficult to obtain accurate segmentation results. 
In order to address this issue, we proposed a novel method called Multi-context fuzzy 
clustering (MCFC) based on a local image model for classifying 2D and 3D MR data 
into tissues of white matter, gray matter, and cerebral spinal fluid automatically [1]. 
Experimental results on both real MR images and simulated volumetric MR data 
show that the MCFC outperforms the classic fuzzy c-means (FCM) as well as other 
segmentation methods that deal with intensity inhomogeneities, as shown in Fig. 1. 

        
(a)                                     (b)                                         (c) 

Fig. 1. 3-D renderings of the segmentation results of WM  (a) FCM segmentation (b) MCFC 
segmentation (c) true model 

Another related work done in the MIC is Pixon based image segmentation. Markov 
random fields (MRF)-based methods are of great importance in image segmentation, 
for their ability to model a prior belief about the continuity of image features such as 
region labels, textures, edges. However, the main disadvantage of MRF-based 
methods is that the objective function associated with most nontrivial MRF problems 
is extremely nonconvex, which makes the corresponding minimization problem very 
time consuming. We combined a pixon-based image model with a Markov random 
field (MRF) model under a Bayesian framework [2]. The anisotropic diffusion 
equation was successfully used to form the pixons in our new pixon scheme. 
Experimental results demonstrate that the proposed method performs fairly well and 
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computational costs decrease dramatically compared with the pixel-based MRF 
algorithm. 

Brain Sub-Structure Segmentation: Accurate volumetric segmentation of brain 
structures, such as the brain ventricles, is needed for some clinic applications. In 
recent years, the active-models-based segmentation methods have been extensively 
studied and widely employed in medical image segmentation and have achieved 
considerable success. Unfortunately, the current techniques are going to be trapped in 
undesired minimum due to the image noise and pseudoedges. We proposed a parallel 
genetic algorithm-based active model method and applied it to segment the lateral 
ventricles from magnetic resonance brain images [3]. First, an objective function was 
defined. Then one instance surface was extracted using the finite-difference method-
based active model and used to initialize the first generation of a parallel genetic 
algorithm. Finally, the parallel genetic algorithm was employed to refine the result. 
We demonstrate that the method successfully overcomes numerical instability and is 
capable of generating an accurate and robust anatomic descriptor for complex objects 
in the human brain, such as the lateral ventricles. This is first time in literature to 
introduce clustering distributed computing in medical image analysis. It is very 
promising and cheap to increase the speed, which is especially needed for some real 
time clinic applications. 

Active shape models (ASM) was proposed by Cootes [4] as shape and appearance 
models. The method makes full use of priori shape and appearance knowledge of 
object and has the ability to deform within some constraints. Rather than representing 
the image structure using intensity gradients, we extracted local edge features for each 
landmark using steerable filters in [5], which provided richer edge information than 
intensity. We proposed a machine learning algorithm based on AdaBoost, which 
selected a small number of critical features from a larger set and can yield extremely 
efficient classifiers. These non-linear classifiers were used, instead of the linear 
Mahalanobis distance, to find optimal displacements for landmarks by searching 
along the direction perpendicular to each landmark. These features give more accurate 
and reliable matching between models and new images than modeling image intensity 
alone. Experimental results demonstrated the ability of this improved method to 
accurately align and locate edge features.  

2.2   Image Registration 

Image registration is a key component of computational neuroanatomy. In terms of 
satisfying the technical requirements of robustness and accuracy with minimal user 
interaction, rigid registration has been considered by many works in the field to be a 
solved problem.  Now the research focus of medical image registration has been 
shifted to the non-rigid registration. Neuroscientists and clinicians are in dire need of 
the automatically medical image registration tools to process intra-subject, inter-
subject and atlas registration. The method of non-rigid medical image registration 
usually include physics-based and geometry-based. We have made our effort on both 
of them. 

Physics-Based Method: We developed a fast fluid registration method in [6], which 
was based on the physics rule of fluid mechanics, and developed another non-rigid 
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medical image registration algorithm, by assuming that the displacement fields were 
constrained by Maxwell model of viscoelasticity. In Fig. 3, applications of the 
proposed method to synthetic images and inter-subject registration of brain 
anatomical structure images illustrate the high efficiency and accuracy.  

A non-rigid Medical Image Registration by Viscoelastic Model was presented in 
[7], by assuming the local shape variations were satisfied the property of Maxwell 
model of viscoelasticity, the deformable fields were constrained by the corresponding 
partial differential equations. Experimental results showed that the performance of 
proposed method were satisfactory in accuracy and speed. 

 

Fig. 2. Top: the template slices; and Bottom: the corresponding slices of reference 

Geometry-Based Method: Non-rigid registration of medical image by linear singular 
blending techniques was proposed by Tang and Jiang [8]. A free-form deformation 
was based on a LSB B-Spline, which can enhance the shape-control capability of B-
Spline. The experiment results indicate that the method is much better to describe the 
deformation than the affine algorithm and B-Spline techniques.  

2.3   Shape Analysis 

Statistical Shape Analysis (SSA) is a powerful tool for noninvasive studies of 
pathophysiology and diagnosis of brain diseases. It is another key component of 
computational neuroanatomy. The population-based shape analysis not only reveals 
the difference between the healthy and diseased subjects, but also provides the 
dynamic variations of the patients’ brain structures over time. We proposed a new 
method which incorporated shape-based landmarks into parameterization of banana-
like 3D brain structures to address this problem [9]. First, the triangulated surface of 
the object was obtained and two landmarks were extracted from the mesh, i.e. the 
ends of the banana-like object. Then the surface was parameterized by creating a 
continuous and bijective mapping from the surface to a spherical surface based on a 
heat conduction model. The correspondence of shapes was achieved by mapping the 
two landmarks to the north and south poles of the sphere. The approach was applied 
to the parameterization of lateral ventricle and a multiresolution shape representation 
was obtained by using the Discrete Fourier Transform, as shown in Fig.3.  
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Fig. 3. Parameterization of lateral ventricle and a multiresolution shape representation obtained 
by using the Discrete Fourier Transform, with Fourier coefficient 9, 13, 29, 49, 81, 1257, and 
7845, respectively 

3   Diffusion Tensor Imaging 

Diffusion tensor imaging, as a relatively new MRI technique, provides information 
about the random displacement of water molecules in the brain tissue. Using this 
information, ones could investigate the white matter characteristic and the anatomical 
connections between different regions non-invasively. Our research efforts cover a 
wide range from developing new approaches to fiber tracking and the white matter 
analysis using DTI. 

      
                 (a)                                          (b)                                         (c) 

Fig. 4. (a) The reconstructed cingulum tract. (b) The statistical results for asymmetry of right-
handers. (c) The statistical results for the effects of handerness and side in cinulum. 

Analysis of white matter from DTI is mostly based on region of interesting (ROI) 
in image data set, which is specified by user. However, this method is not always 
reliable because of the uncertainty of manual specification. In [10], we developed an 
improved fiber-based scheme rather than ROI-based analysis to study the cingulum, 
the most prominent white matter fiber tract of the limbic system. In this work, 
cingulum bundles were first reconstructed by fiber-tracking algorithm and then were 
parameterized by arc-angle, which was scale-invariant. All fibers centered at a 
common origin, and anatomic correspondence across subjects in cingulum was 
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established. This method was used to explore the asymmetry of cingulum in DTI 
datasets of right-hander normal subjects. As in Fig. 4, statistical results show a 
significant left-greater-than-right asymmetry pattern in most segments of cingulum 
bundle, except the most posterior portion. 

4   Functional Brain Connectivity 

fMRI is an important functional brain imaging technique. Since its advent in the early 
1990’s, a variety of analytic methods have been developed. This is one important 
research field in the MIC. Recently, what we have been mostly concerning about are 
methods for steady-state (including resting-state) fMRI data and connectivity. 

4.1   fMRI Activation Detection 

Both the spatial and temporal information of fMRI data have been considered in our 
research on fMRI activation detection. The temporal information is typically the time 
variant characteristics of the hemodynamic responses, and the spatial information is 
the fMRI activated regions typically occur in clusters of several spatially contiguous 
voxels [11, 12]. Another research direction was how to model the trial to trial 
variability of the hemodynamic responses in human brain. Since the typical model-
based methods for fMRI data analysis, for instance, the General Linear Model (GLM) 
and the deconvolution method, are based on the following assumption: the 
hemodynamic responses are same across trials, i.e., the trial-to-trial variability is 
considered as noise. When hemodynamic responses vary from trial to trail [13], an 
alternative approach is needed to include the trial-to-trial variability.  

A region-growing and a split-merge based method have been proposed for fMRI 
activation detection [14, 15]. Main feature of the region-growing and split-merge 
based methods was that they can utilize the neighboring information of each time 
series. As for the second aim, an optimization based framework for single trial 
variability was proposed in [16]. The main features of this proposed method were as 
follows: (1) The trial-to-trial variability was modeled as meaningful signal rather than 
assuming that same HR was evoked in each trial; (2) Since the proposed method was 
a constrained optimization based general framework, it could be extended by utilizing 
of prior knowledge of HR; (3) The traditional deconvolution method could be 
included into our method as a special case. 

4.2    Regional Homogeneity (ReHo) 

As a result that no specific stimulus was given for resting-state, we proposed a data-
driven method call regional homogeneity (ReHo) in [17]. ReHo assumed that voxels 
within a functional cluster should share similar characteristics and such similarity 
could vary from state to state. By this method, we found significant higher ReHo in 
bilateral primary motor cortex (M1) during unilateral finger tapping. Higher ReHo 
was also detected in posterior cingulate cortex (PCC) during resting-state.  
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4.3   Functional Connectivity 

A large quantity of fMRI studies traditionally focused on identifying activated regions 
of the brain during an experimental task. However, brain function may be as a result 
of information integration among brain regions, described in terms of functional 
connectivity [18] or effective connectivity [19]. Recently, increasing attention has 
been focused on detecting interregional connectivity, especially in a resting state. Our 
research efforts cover a wide range from developing new methodology to using 
established methods for the understanding of the resting brain mechanism and clinical 
validation. Some representative contributions were as follows. 

All-To-All Functional Connectivity [20]: We developed a new approach based on 
graph theory taking into account n-to-1 connectivity using 1-to-1 connectivity 
measures instead of conventional pairwise connectivity. It can better reflect the joint 
interactions among multiple brain regions. With it, a large organized functional 
connectivity network related to motor function in the resting brain with fMRI was 
shown. More importantly, we found that such a network can be modulated from a 
conscious resting state to a voluntary movement state by the measure. 

ReHo and Functional Connectivity [21]: So far, the resting state functional 
connectivity (RSFC) has been performed mainly by seed correlation analysis (SCA) 
on fMRI studies. On the basis of our previous work based on the ReHo [17], 
functional network in the resting brain was detected by using the model-free method. 
Our method identified a parietal-frontal network of brain regions utilizing only resting 
state data. We proposed the ReHo to serve as the selection of the seed before 
functional connectivity based on the SCA is performed [21]. It provides a novel way 
to select the desired seeds by taking the natures of resting state data into account, 
compared with the previous studies about the selection of the seed utilizing prior 
anatomical information [22] or previously performed activation maps [20]. Using this 
technique, the bilateral anterior inferior cerebellum (AICb) showing higher ReHo 
were identified and used as the seeds for resting state functional connectivity patterns 
studies. The results show that the bilateral AICb has significant functional 
connectivity with the bilateral thalamus, the bilateral hippocampus, the precuneus, the 
temporal lobe, and the prefrontal lobe.  

5   Current Activities 

Much of our current work on computational neuroanatomy is concerned with 
structural abnormalities in human brain. This is essential for the research of mental 
diseases. Under the consideration of the limited resolution of the existing imaging 
sensors and the low contrast of brain structures to their peri-structures, robust tools for 
the identification of such structures are highly expected, so that the structures can be 
quantitatively and statistically analyzed. The research on geometrical fairing mapping 
using Mean Curvature Flows is now undergoing. It is applicable for arbitrary genus 
surfaces and avoids shape shrinkage in discrete space. The global geometry of the 
original object and its area are theoretically preserved. This mapping method has the 
potential applicability in skeleton regularization and brain surface matching. 
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Our previous study on DTI was confined to right-handers without considering the 
role of handedness. It should be interesting to ascertain the relationship of the 
cingulum microstructure with the handedness and side. We therefore recruited another 
group of left-handed healthy subjects to examine this issue with the same method 
mentioned above. The statistical results also showed a remarkable left-greater-than-
right asymmetry pattern of anisotropy in most segments of cingulum bundles except 
the most posterior segment. Higher anisotropy of the right-hander than the left-hander 
was found in the bilateral cingulum bundles. However, no significant handedness-by-
side interaction was observed. Besides the applications to brain research based on 
DTI, a lot of computational issues are also under our consideration. The tensor model 
is explicit, however is too simple to characterize the property in some complicated 
regions such as fiber crossing regions and boundary regions between different brain 
tissues. More suitable models are under construction in our group. 

 

Fig. 5. Highly discriminative regions identified by Fisher brain 

Discriminative analysis on fMRI has also been concerned. A discriminative model 
of attention deficit hyperactivity disorder (ADHD) was newly presented on the basis 
of multivariate pattern classification and fMRI [23]. This model consists of two parts, 
a classifier and an intuitive representation of discriminative pattern of brain function 
between patients and normal controls. Regional homogeneity (ReHo), a measure of 
brain function at resting-state, is used here as a feature of classification. Fisher 
discriminative analysis (FDA) is performed on the features of training samples and a 
linear classifier is generated. The classifier is also compared with linear support 
vector machine (SVM) and Batch Perceptron. Our classifier outperforms its 
counterparts significantly. Fisher brain, the optimal projective-direction vector in 
FDA, is used to represent the discriminative pattern. As shown in Fig. 5, some 
abnormal brain regions identified by Fisher brain, like prefrontal cortex and anterior 
cingulate cortex, are well consistent with that reported in neuroimaging studies on 
ADHD. Moreover, some less reported but highly discriminative regions are also 
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identified. The discriminative model has potential ability to improve current diagnosis 
and treatment evaluation of ADHD. 

We also apply discriminative analysis on DTI. We use two-dimensional histogram 
of ADC and FA to discriminate Neuromyelitis optica (NMO) from healthy subjects. 
The correct recognition rate reaches 85%, which is much higher than that of based on 
the traditional FA histogram (50%) and ADC histogram (73%). The results indicate 
that our method based on combined feature from two-dimensional histogram is more 
effective for classification than that of based on one type of feature. Furthermore, 
some discriminative regions that contribute most to separating the patients with NMO 
and normal controls can be obtained based on our method. It implies that NMO has 
diffuse damages of brain tissue on such a small scale that conventional MRI cannot 
detect it. This challenges the classic notion of a sparing of the brain tissue in the 
course of NMO. In addition, our method based on two-dimensional histogram can 
also be used in other brain tissue, especially the diffuse damage of brain tissue, such 
as multiple sclerosis.  

The application of functional connectivity analysis in ADHD is undergoing. We 
investigate the difference of functional connectivity between the Attention-
Deficit/Hyperactivity Disorder (ADHD) children and the normal controls in Flanker 
task and resting state, respectively. In Flanker task, we found that ADHD children 
show enhanced functional connectivity between dACC and several other brain areas 
as shown in Fig. 6. Such an enhanced functional connectivity pattern may suggest that 
children with ADHD need greater effort, and accordingly a wider network of brain 
areas to complete the same task as the normal controls do. In a resting state, we found 
that the ADHD patients exhibited more significant functional connectivity of the 
dACC with the dACC, as well as with the left medial frontal cortex/ventral anterior 
cingulate cortex, bilateral thalamus, bilateral cerebellum, bilateral insula, right 
superior frontal cortex, and brainstem (pons), and only within the brainstem (medulla) 
did the controls exhibit more significant connectivity than the patients. More 
information is available at http://www.nlpr.ia.ac.cn/jiangtz. 

 

Fig. 6. The brain regions showing significant between-group differences in the Flanker task 
(p<0.05 corrected, upper row) and in the resting state (p<0.05 & cluster size >600mm3, lower 
row) 
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The application of ReHo in AD is being evaluated. We used resting-state fMRI to 
examine LFFs activity in terms of regional homogeneity (ReHo) to explore the 
pathophysiology of dementia of the Alzheimer type (DAT). Compared with healthy 
controls, DAT subjects showed decreased ReHo in the posterior cingulate cortex 
(PCC) and increased ReHo in the right inferior temporal cortex and bilateral occipital 
lobe. In addition, examination of the behavioral correlates revealed significant 
positive correlation of PCC ReHo versus Mini-Mental State Examination score. Our 
finding, together with a recent fMRI result that DAT subjects showed decreased 
resting-state activity in the PCC and hippocampus explored by using a non-pure 
resting-state paradigm, suggests that PCC LFFs activity measured using resting-state 
fMRI may be a promising marker for characterization and detection of early DAT. 

6   Conclusions and Future Directions 

We have developed various techniques to detect the anatomical and functional 
abnormalities of human brain with neurological and psychiatric diseases. We have 
been applying various modern neuroimaging techniques to combat the neurological 
and psychiatric diseases, especially Alzheimer's Diseases and Schizophrenia. A long-
term goal of the MIC is to find the early markers based on neuroimages and genome 
datasets for the neurological and psychiatric diseases.  It would be very interesting to 
identify the genetic basis of the anatomical and functional abnormalities of human 
brain with neurological and psychiatric diseases. In fact, several publications have 
been available and a new field - imaging genomics, named by Hariri and Weinberger, 
has emerged  [24]. It is at its infant stage and we expect a lot of important progress 
can be made in the future. 
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Abstract. Tissue Engineering is an interdisciplinary field that applies the 
principles of biology and engineering to develop tissue substitutes to restore, 
maintain, or improve the function of diseased or damaged human tissues. One 
approach for engineering tissue involves seeding biodegradable scaffolds with 
hormones, then culturing and implanting the scaffolds by means of a printing 
technology to induce and direct the growth of new, healthy tissue cells. Precise 
and quantitative tracking of the migrating and proliferating cells by non-
invasive phase-contrast video microscopy is a vital component to studying and 
understanding how the concentration-modulated patterns of hormones direct the 
migration and proliferation of tissue cells. The varying density of the cell 
culture and the complexity of the cell behavior (shape deformation, 
division/mitosis, close contact and partial occlusion) pose many challenges to 
existing tracking techniques. We propose a multi-target tracking algorithm that 
simultaneously tracks a very large number of cells based on a topology-
constrained level-set method and Markov-chain Monte Carlo particle filtering. 
We apply our methodology to in vitro tissue cell tracking under phase-contrast 
microscopy and demonstrate that the cells proliferate and migrate in alignment 
with the printed hormone patterns.  
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Abstract. A decade ago, cardiovascular image analysis very much meant the 
application of image analysis methods to a cardiac image sequence obtained 
from a friendly cardiologist. 10 years on, have things changed? In this short 
paper, I overview research conducted in Oxford in the area of cardiovascular 
image analysis over this period, aimed at developing clinically useful methods 
for diagnosing heart disease. This has mainly concerned echocardiography 
(ultrasound imaging of the heart). I also consider how this area may develop in 
the future and the influence that computer vision may have on this 
development. 

1   Introduction 

More people in the Western World, both women and men1, are killed by 
cardiovascular disease (CVD) than any other disease; according to recent figures, it 
annually accounts for almost 1 million deaths in the USA and over 4.3 million deaths 
in Europe [1,2]. Coronary heart disease (CHD) accounts for around half of these 
deaths in both Europe and the USA. 

Echocardiography (ultrasound of the heart), PET/SPECT (nuclear medicine), 
cardiac magnetic resonance imaging (MRI) and X-ray-based cardiac imaging are now 
widely employed in cardiology departments. However, it is only in the last decade, 
with advances in spatial and temporal resolution, and the increased availability of 
digital imagery in hospitals that automated image analysis has become viable. It is 
even more recently that we have started to see a strong clinical pull for image analysis 
technology as cardiology departments have become flooded with digital data when 
what is needed is useful digital information. The earliest image analysis technology, 
developed to track heart chamber walls, and mostly derived based on original ideas 
from computer vision, is now moving from research laboratories into commercial 
products. Cardiologists are now questioning how we can provide more advanced 
quantitative image-based tools for measuring the thickness of the heart walls and how 
this changes over the cardiac cycle (myocardial thickening), tissue health (or 
perfusion), and integrating imaging modalities such as PET-MRI and ultrasound-
                                                           
1 With, in Europe, according to [2], the exception of France and San Marino for men. 
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MRI, ideally from truly 3D acquisitions; all to provide integrated cardiac function 
models that in turn provide more useful clinical measurements for early diagnosis and 
treatment monitoring. 

The cardiac image analysis research area is relatively small. To place this is 
perspective, at a leading international meeting on medical image analysis this year 
(MICCAI 2005, www.miccai20005.org ), by clinical application area only 2% of the 
papers concern cardiology, compared to 34% on computer aided detection (CAD) and 
22% on the brain and neurology. Increasingly, in medical image analysis, we are 
seeing specialized meetings established; in the case of the heart, there is an 
established meeting on functional imaging and modeling of the heart (FIMH) which 
covers both modeling and analysis for understanding physiological function and 
clinical disease management. However, today, given the clinical (and economic) need 
for cardiac image analysis methods, the level of effort in image analysis is remarkably 
out of proportion to its potential impact. 

A large amount of our own research at Oxford has concerned analysis of 
echocardiography.  Echocardiography is the most widely used imaging method in 
cardiology, but has high patient-to-patient variability in quality – indeed it has been 
estimated that only approximately 40% of patient data is “good” quality. The key to 
successful image analysis in this case is to make use of as many constraints on 
interpretation as possible, for instance, models of imaging physics, knowledge of 
expected shape change, and temporal models.  In the following sections I briefly 
overview both the work we have done and general trends in different aspects of 
echocardiographic image analysis. I conclude by outlining some general areas in 
which perhaps computer vision research and researchers might help advance this 
field. 

2   2D Echocardiographic Image Sequence Motion Analysis 

Motion analysis, specifically tracking the endocardial (inner) border of the left 
ventricle is the most widely investigated problem in cardiac image analysis. In the 
literature, most research validated on a reasonable number of datasets (more than 20 
subjects) has been 2D image sequence analysis.  

The idea in cardiac motion analysis is to develop (semi)-automatic methods to 
track the boundaries and then either measure the ejection fraction of the heart as a 
global measure of heart function or quantify the motion of heart wall segments. This 
is challenging as the motion is non-rigid. In addition, for ultrasound-based analysis 
the bloodpool-tissue border has poor definition in routine echocardiography data 
which makes detection of the border difficult. Along with other groups we have 
focused on spatio-temporal model-based methods which use a shape-space and a 
temporal model to constrain the possible deformation of the tracking algorithm [3, 4]. 
We have also looked at spatio-temporal border detection using phase-based methods 
in an attempt to overcome the limitation of using intensity gradients to find 
boundaries [5]. For routine clinical use, in collaboration with Mirada Solutions Ltd, 
the Gregario Maranon Hospital, Madrid, and the Oxford John Radcliffe Hospital, we 
have developed a prototype clinical system which works on ultrasound data enhanced 
by a contrast agent. Results from a large study (under review for a clinical journal) 
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evaluating this approach will be presented at the workshop. Early results were 
reported in [6].  A conclusion from this work is that 2D echocardiographic image 
tracking technology is now sufficiently well-developed for application on good-to-
medium quality routine clinical data. The technical challenges remain how to analyze 
low quality data, and hence make analysis truly applicable for all routine use. Our 
own research effort is now turning to look at automatic quantification of myocardial 
thickening (strain) and analysis of stress echocardiography. In the former case, an 
unknown today is how to best model the biomechanics of the heart for this 
application; in the latter case, the quality of images is lower than for a rest sequence. 

3   Assessment of Tissue Health or “Perfusion” 

A new and largely un-developed area of automated cardiac image analysis relates to 
assessing the health of the heart tissue (myocardium) by the rate of uptake of a 
contrast agent. The rate of uptake or “perfusion” rate is normally observed earlier than 
a motion change so this is advocated as a way to perform earlier detection of coronary 
heart disease. When ultrasound imaging is used to measure tissue “perfusion” the 
technique is known as myocardial contrast echocardiography (MCE) [7]. In MCE, a 
microbubble contrast agent is injected into the bloodstream. Special ultrasound 
imaging protocols are used to acquire images as the contrast agent is taken up into the 
walls of the heart (the myocardium). Typically, image sequences are assessed “by-
eye” which is both tedious and subjective. The image sequence in this case is a 
sampled acquisition of a spatio-temporal functional model of contrast agent uptake 
which is often assumed to take on the form of a parameterized exponential model. In 
[8,9] we developed a novel way to estimate both the parameters of the tissue 
perfusion model and segment the myocardium using a combined Bayesian Factor 
Analysis and Markov Random Field (BFA-MRF) approach. This fully spatio-
temporal method has been evaluated in a 22 patient study showing that automated 
image analysis gives a better diagnosis than an experienced MCE reader and rather 
than just detect the presence of an abnormality localizes the extent of disease. The 
method is now undergoing a larger clinical evaluation. To improve clinical MCE 
quantification further, we need new protocols to compensate for acquisition artefacts 
such as signal attenuation and perform quantification on the ultrasound signal rather 
than image; i.e. work towards a new generation of combined ultrasound signal 
acquisition and image analysis methods. This trend to consider acquisition and 
analysis together rather than treat them as separate processing stages is one that we 
are increasingly seeing in medical image analysis as the limitations of physics-free 
medical image analysis are being reached.  

4   3D Analysis – The Way Forward 

2D cardiac image analysis makes the assumption that the important components of 
motion (or perfusion) are restricted to in-plane. In practice, although often a good 
approximation for acquisitions gated to the cardiac cycle, this is a strong assumption 
as the heart undergoes a complex 3D motion. Thus in the future 3D+T (here ‘T’ 
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means times) cardiac imaging and image analysis is likely to predominate. In the case 
of echocardiography, until a couple of years ago state-of-art 3D echocardiography 
machines involved mechanically rotating a conventional linear array transducer 
around an axis. Rotational 3D echocardiography has relatively poor image quality and 
respiration artifacts were a problem. Sanchez-Ortiz et al (2002) [10] describes the 
evaluation of a heart tracking method we developed using a ‘feature detection then 
surface-tracking’ approach which  is representative of  the state-of-art that could be 
achieved using this technology.  

Real-time 3D or RT3D (such as the Philips Medical Systems system) is the newest 
generation of 3D echocardiography and indeed 3D cardiac imaging modality2. It is 
based on matrix-array (rather than linear-array technology) and offers advantages 
over conventional 2D ultrasound imaging in that 3D volumes can be acquired very 
quickly (“real-time”) minimizing acquisition artifacts due to respiration and 
transducer movement. Compared with other 3D cardiac imaging techniques, RT3D 
systems are portable, and acquire 3D data quickly. There are a few early papers 
reporting on analysis using RT3D but its full utility as a 3D imaging modality is still 
being evaluated both from the clinical and image analysis perspectives. At Oxford we 
have recently being extending our previous work on multiple-acquisition (or “acoustic 
window”) analysis applied to rotational 3D echocardiography [11] to fuse RT3D 
acquisitions from different transducer positions [12]. In this approach we take a 
probabilistic view, and fuse features from different acquisitions based on their 
magnitude and orientation with respect to the transducer. This produces an output 
“saliency” image volume with enhanced structures relative to any individual 
acquisition.  We are currently investigating the advantages of using a 3D saliency 
representation as the basis for segmentation and tracking. We are also looking at 
alignment of cardiac MR and RT3D data for multi-modality cardiac disease diagnosis 
and treatment monitoring [13].  

5   Conclusion 

In this overview, I have used examples from research in my own laboratory in Oxford 
to highlight the state-of-art in the field of echocardiographic image analysis.  

In general, there has been significant technical progress in this field over the last 
decade, aided by improvements in acquisition technology, but particularly due to the 
success of using spatio-temporal models to guide image interpretation and 
segmentation. However, the literature shows that only a limited number of methods 
have been well-validated on routine clinical images. It is clear that more attention 
needs to be given to working with cardiologists on validation to better establish the 
strengths and weaknesses of different approaches. This is important for the field as a 
whole, not only to gain credibility with practicing cardiologists, but also this 
acceptance will open up new opportunities to look at more advanced modeling and 
analysis problems. 

                                                           
2  There is an earlier version of RT3D, developed at Duke University and commercialized by 

Volumetrics. However, Volumetrics has ceased trading, and the newer Philips Medical 
Systems system has superior image quality. 
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I have not touched on the related area of analysis of clinical cardiac magnetic 
resonance (MR) imaging (1.5T or 3T). Cardiac MR offers superior tissue 
differentiation to echocardiography, temporal resolution has significantly improved, 
and acquisition times are reducing. This is making cardiac MR increasingly a viable 
alternative to echocardiography in clinical diagnosis. Segmentation issues are 
different in this case, and non-trivial for automated analysis, but spatial-temporal 
modeling issues are the same (motion) or similar (perfusion). Nor, have I discussed 
how one might adapt methods developed for diagnosis, to assess heart recovery after 
treatment/surgery. This is one of the exciting new opportunities for the application of 
cardiac image analysis research area in the future. 

I have focused on describing methods aimed at clinical diagnosis which employ 
relatively simple models of the heart. At the other extreme, there is a very active 
research area developing detailed computational electro-mechanical models of the 
heart [14, 15]. Unfortunately, such models can not be derived from routine clinical 
data today. It will be interesting to see how the computational models used in these 
two fields converge in the future. 

Turning to methodology development, computer vision played a role in early work 
on cardiac motion analysis, although most approaches today are not only governed by 
the choice of motion model but also knowledge of cardiology and imaging physics. 
However, there are a number of ways in which ideas from computer vision might be 
applied in cardiovascular image analysis in the future; particularly relating to spatio-
temporal modeling and spatio-temporal segmentation.  Multi-modality fusion also 
offers interesting challenges in terms of how to fuse images/information of time-
varying entities with different spatial and temporal resolutions. 
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Abstract. Automated image analysis tools have the potential to play
an important role in assisting in the diagnosis and treatment of retinal
diseases.1 Problems that must be addressed in developing these tools in-
clude extraction of vascular and non-vascular features, segmentation of
pathologies, unimodal and multimodal image registration, mosaic con-
struction, and real-time systems. Research at Rensselaer Polytechnic In-
stitute since the late 1990’s has focused on several of these problems.
Most significantly, we have developed a series of registration and mosaic
formation algorithms which have been validated on thousands of retinal
images and have been extended beyond the retina application. While the
core fundus image registration problem is essentially solved, important
problems remain in many aspects of retinal image analysis.

1 Introduction

Diabetic retinopathy, age-related macular degeneration (AMD) and glaucoma,
the three leading blindness-causing retinal diseases, currently affect approxi-
mately 8 million individuals over age 40 in the United States [45, 44, 46]. These
numbers are projected to increase to over 13 million individuals in the next
15 years as the population ages. World-wide the incidence of these diseases is
dramatically higher. Much of this blindness can be prevented through periodic
screening, early detection, and treatment [40]. Unfortunately, many of the most
at-risk individuals do not have regular eye exams.

The first step in diagnosing retinal diseases is a dilated-eye examination. This
visual diagnosis may be confirmed through more detailed studies, including color
or red-free photography to record the appearance of various parts of the retina,
1 The author would like to thank the entire Retina Project team at Rensselaer, espe-

cially Badri Roysam for his project leadership, Drs Howard Tanenbaum and Anna
Majerovics for their inspiration and encouragement, and Michal Sofka, Chia-Ling
Tsai and Gehua Yange for their help with the figures. This work was supported by
National Science Foundation Experimental Partnerships grant EIA-0000417 and the
National Institutes for Health grant RR14038.

Y. Liu, T. Jiang, and C. Zhang (Eds.): CV IB A 2005, LNCS 3765, pp. 31–50, 2005.
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(a) (b)

(c) (d)

Fig. 1. Three different types of images of the retina: (a) shows a red-free fundus pho-
tograph, (b) and (c) show fluorescein angiograms (FA) early and late in the profusion
of the fluorescein dye, (d) shows an idocyanine green (ICG) angiogram

fluorescein angiography (FA) to analyze blood flow in the retinal vasculature,
or indocyanine-green (ICG) angiography to study blood flow in the choroid (see
Figure 1). More specialized imaging sensors, including retinal tomography, opti-
cal coherence tomography and scanning laser ophthalmoscopes may be used as
well to obtain 3D and subsurface measurements. This expensive equipment is
used in larger clinics.

The combination of the large number of at-risk patients, the incidence of
disease, and the ease of acquiring images makes the development of automatic
retinal image analysis techniques a fertile and critical area of research. Moreover,
since the primary acquisition devices are cameras, the image analysis problems
are closely related to problems in pattern recognition and computer vision. Image
analysis algorithms can potentially be used in a number of ways. Automatic
screening tools may be used to label and count the pathologies such as drusen
[37, 33, 6], microaneurysms [15, 30], cotton-wool spots [55], and exudates [50, 31,
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24,55] that are early indicators of disease. Registration techniques [9, 29, 34, 43,
47,53] may be used to combine multiple images to provide a more complete view
of the retina, to align and combine multimodal imagery, and to visualize and
measure change. Stereo algorithms may be applied to measure three-dimensional
structures, especially near the optic disk [12]. Tracking and real-time systems
[25, 39] may be used as tools to guide treatment devices such as lasers.

Since the late 1990’s, a team at Rensselaer Polytechnic Institute, led by Pro-
fessors Badrinath Roysam and Charles Stewart, the current author, has been
working toward the development of image analysis tools to aid in the diagnosis
and treatment of retinal diseases. Our initial goal was tools to aid in the con-
trol of lasers during surgery – especially the treatment of macular degeneration.
Early in the project we decided to focus first on the core image analysis algo-
rithms, treating them as generally as possible. This turned out to be critically
important, since treatment protocols for specific diseases change frequently. In
particular, photo-dynamic therapy, which requires significantly less precise con-
trol of the laser, is now the recommended treatment for the wet form of macular
degeneration [38]. Since we developed the core algorithms first, however, we have
been able to move far beyond the original application and now have algorithms
that can be used in many different ways.

This paper summarizes current research in algorithms for retinal image analy-
sis, focusing on our own work at Rensselaer and emphasizing our work in image
registration in particular. Registration is where we have made the most im-
portant algorithmic breakthroughs, and we have extended our algorithms well-
beyond retinal images. Registration is also a fundamental underlying technology
for many prospective applications of retinal image analysis. The paper empha-
sizes problems, motivating insights, and inter-relationship between algorithms
rather than specific details.

The main body of the paper starts with background on retinal image analysis
and its associated challenges. It then proceeds to discuss the main problem areas
and algorithms. The paper concludes with an outline of both lessons learned in
this work and a set of important open problems.

2 Challenges of Retinal Imaging

The characteristic appearance of the retina is illustrated by the red-free pho-
tograph in Figure 1(a). The optic disk is the bright region on the right — on
the nasal side of the retina — and the central, bright region of the disk is the
optic cup. Emerging from the top and bottom of the optic disk are two rela-
tively large arterial and venous trees. Nerve ganglion fibers, not usually visible
in fundus images, cross the retinal surface and meet at the optic disk to form
the optic nerve. The macula — where the fovea lies — is to the left of the optic
disk and slightly below it. The macula is darker than its surroundings, and is
not vascularized: unlike other parts of the retina which are fed by the surface
vasculature, the macula is fed from underneath by the choroidal vessels. Over-
all, the retina appears to have a relatively simple structure — the bright disk,
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upper and lower branching vessels, relatively dark macula, and a fairly uniform
background.

This apparent simplicity is deceiving. It only characterizes what is seen in
images of healthy eyes showing both the optic disk and the macular regions.
Retinal images taken in routine clinical settings often vary significantly in struc-
ture and appearance, with variations arising from both the imaging process and
disease conditions. Some of these are illustrated by the images shown in Figure 2.
The issues include the following.

– Since the illumination is introduced through the dilated pupil of the eye, it
tends to be non-uniform and sometimes has sharp glare artifacts.

– The retina is seen through the lens and the vitreous humor, both of which
may be clouded by the effects of disease.

– The retina is imaged using a fundus camera whose optics are designed to
minimize distortion of the retina when seen through the lens of the eye.

– The retina is a smoothly curved surface, with a slight depression in the
macular region, and a much deeper depression at the optic disk.

– Hemorrhages and other artifacts of disease may obscure part or all of the
retina. Diseases such as diabetic retinopathy may cause some vessels to die
and new vessels to grow (angiogenessis).

– Images may be acquired of many different parts of the retina as the eye
rotates. Aligning these images and building a mosaic must therefore handle
potentially low overlap between images. Moreover, images taken of the far
periphery of the retina tend to have much less structure because there are
far fewer blood vessels.

– For diseased retinas, the characteristic and dark bright appearances of the
optic disk and macula, respectively, are often lost.

– The retina may become transparent so that the choroid, with its larger and
more complicated vascular structure, dominates fundus images.

Certainly it is not necessary to address all of these issues in any particular appli-
cation of retinal image analysis. Ignoring them, however, will lead to algorithms
that work only on hand-selected images or in controlled circumstances. More-
over, facing the issues is not merely a matter of tuning algorithms developed for a
small set of images. Instead, addressing the issues directly can lead to fundamen-
tal insights and to algorithms that work well in many different circumstances.
This is illustrated here in the context of retinal image registration.

3 Feature Extraction

Most approaches to retinal image analysis, regardless of the application, start
with some form of feature extraction. Feature extraction includes the vascular
structure [7,21,32], the optic disk location and boundary [20,27], the macula [32],
and regions of pathologies [6, 15, 22, 30, 31, 37, 50, 55]. Even when the primary
feature extraction goal is detection of pathologies, the location of the optic disk,
the macula and the vessels are still important, both as an aid in detection and
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(a) (b)

(c) (d)

Fig. 2. These images illustrate some of the challenges of retinal image analysis: (a)
shows non-uniform illumination caused by glare as well as a partially-effaced retina
where the choroidal vessels are starting to appear; in (b) substantial sections of the
retina are obscured by a hemorrhage (on the left) and a slight clouding of the vitreous;
in (c) the optic disk is not the brightest region of the image, the macula is not clearly
visible, and as in (a) the choroidal vasculature is starting to appear; in (d) vasculitis
has caused the appearance of pathological regions, the narrowing of vessels, and the
neovascularization appearing below and to the left of the optic disk

in interpretation — pathologies such as drusen appearing near the macula are
of much greater concern in the progression of macular degeneration than drusen
appearing elsewhere on the retina.

3.1 Vascular Structure

The first question in vessel extraction is whether the goal should be segmenta-
tion of pixels corresponding to vascular structure or extraction of more geometric



36 C.V. Stewart

Fig. 3. Parallel-edge tracing results for a red-free retinal image. The white contours
show the extracted vessel centerline points. Landmarks detected where these contours
meet are show as dark segments. Landmarks are used in our first retinal image regis-
tration algorithm, while landmarks and traces are both used in the subsequent Dual-
Bootstrap ICP.

quantities such as the location of the centerlines of vessels together with the asso-
ciated vessel orientations and widths. In our work at Rensselaer, we have stressed
geometric descriptions because they are more closely matched to the needs of
algorithms that follow. See [21] and [42] for results on pixel-level segmentation.

The next issue is to determine the primary image measurement used to indi-
cate the presence of a vessel. Common techniques include morphological opera-
tors [54], matched-filters [10,21], eigenvalues of the Hessian matrix [1,16,42], and
a two-sided edge model [7, 17]. In most of our work we have stressed the latter.
Centerline points of the vessels are placed halfway between anti-parallel edge
elements [7], each located to subpixel accuracy [17]. The primary thresholds are
determined adaptively based on robustly-computed statistics of intensity gradi-
ents in relatively small, overlapping image regions. In very recent work [41], we
have built a hybrid vessel measurement model, combining multiscale matched
filter responses, Hessian measures, two-sided edge models, and associated confi-
dence measures into a 6-component feature vector at each pixel, which is then
mapped into a likelihood ratio. This gives better response to low-contrast ves-
sels and narrow vessels, while avoiding false responses due to the appearance of
pathologies.

Our vessel extraction algorithms, like many others [1], use a recursive tracing
framework. Seed points on vessels are detected using 1-D searches along vertical
and horizontal lines. Tracing starts from these seed points, one at a time, and
steps along the vessel centerlines. At each step, the vessel model is applied and
the centerline position, the vessel orientation, and the vessel width are all esti-
mated. Tracing for a given seed point ends when the strength of the response is
too low, or when a vessel is reached that has already been traced. The two-sided
edge algorithm runs in less than a second on megapixel images, whereas the new
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Fig. 4. An example image with parallel-edge (center) and likelihood-ratio (right) trac-
ing results. The new likelihood-ratio results are more complete, especially for narrow
and low-contrast vessels.

and more expensive likelihood ratio technique runs in about 10 seconds. The
final step of vessel extraction is location of vascular landmarks, which are placed
at the branching and cross-over points of the centerline tracings. These are sub-
sequently refined to subpixel accuracy [48]. Thus the final output of tracing is a
set of centerline points with their widths and orientations and a set of landmarks
with their locations and the orientations of the vessels that meet to form them.
Figure 3 shows an example of detecting traces and landmarks, while Figure 4
shows a side-by-side comparison between the results of parallel-edge tracing and
likelihood-ratio tracing.

While these results appear nearly complete, several challenges remain:

– On larger vessels there is sometimes a bright strip running along the center
of a vessel called the “central reflex”. Locally such vessels can easily be
misinterpreted as two smaller vessels running side-by-side.

– The most subtle vessels are difficult to detect in small image regions — they
disappear into the noise. This might not seem to be a significant problem
except that the presence of small vessels above and below an image region,
but not running through it, is a good cue for the location of the macula.

– Vessels are particularly difficult to detect in the later stages of a fluorescein
angiography sequence.

– Neovascularization (Figure 2(d)), a sign of proliferative diabetic retinopa-
thy, is not easily detected using standard techniques for extracting retinal
vasculature. Specialized algorithms are needed to handle their short, thin,
tortuous appearance.

– Finally, an important issue in mapping out the structure of the retina is
the higher-level organization of the vasculature, including complete trees of
veins and arteries.

One key to addressing many of these questions appears to be application of
higher-level information over larger image domains. Some important preliminary
steps in this direction are reported in [42].
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3.2 Optic Disk, Macula and Pathologies

Detection and localization of the optic disk [14, 20, 28] and the macular region,
as well as segmentation of pathologies such as cotton-wool spots and micro-
aneurysms (for diabetic retinopathy) and drusen (macular degeneration) are all
important. Because optic disk detection must work for unhealthy retinas where
the typical bright appearance is obscured and because pathologies may appear
brighter than the disk, the most important cue is the convergence of the large-
scale vascular structure. In Hoover’s work [20], vessel endpoints are used together
with brightness and shape measures to detect the disk, achieving approximately
90% detection on a challenging data set.

In unhealthy retinas, the characteristic dark shape of the macula is often
lost. Additional cues must be used including the position of the optic disk and
the position of the vessels, as discussed above. To the best of our knowledge, this
remains an open problem.

Techniques for detecting pathologies typically use a suite of methods, includ-
ing illumination correction [33, 55], morphological shape operations [15, 37, 50],
vessel detection [22], and classifier systems [30,31,6,55]. A detailed discussion of
these methods is beyond the scope of this paper.

4 Registration

Retinal image registration is challenging for all the reasons outlined in Section 2.
Examples of the application of registration, including multisensor fusion and
mosaic construction to obtain broader views of the retina, are illustrated in
Figure 5.

4.1 Transformation Model

In developing a registration algorithm, one of the first considerations is determin-
ing an appropriate transformation model for mapping the pixels from one image
into the coordinate system of the other. Earlier retinal image registration algo-
rithms used affine transformations or planar projective transformations [4,29,53].
These models are accurate for lower resolution images (e.g. 512x512 or below),
especially when images are taken from roughly the same viewpoint. For higher
resolution images and images taken from differing viewpoints, a higher-order
transformation is needed. In [8, 9] we derived a quadratic transformation using
three assumptions: rigid motion of the retina between views, a quadratic retinal
surface, and a weak-perspective camera. From these we obtained a 12-parameter
quadratic model of the form

T(p; θ) =
(

θ11 θ12 θ13 θ14 θ15 θ16

θ21 θ22 θ23 θ24 θ25 θ26

)(
1 x y x2 xy y2

)T
, (1)

where p = (x, y)T is an image location and θ is formed from the entries in
the 2x6 parameter matrix. Estimating the values of θ is the algorithmic goal



Computer Vision Algorithms for Retinal Image Analysis 39

Fig. 5. Example applications of retinal image registration. The top shows a chip from a
fluorescein angiogram (left) mapped into the same coordinate system as a fundus image
(right). The arrow points to a vein occlusion, seen clearly in the fluorescein angiogram
and automatically mapped onto the visible surface of the fundus image. The bottom
image shows a mosaic of retinal images constructed using the results of registration.

of registration. The derived quadratic model is accurate to less than 1 pixel on
1024x1024 images, whereas the affine transformation can be off by as many as
5 pixels, depending on the movement of the retina [9]. It is perhaps surprising
that the quadratic model is so accurate even though the combined optic system
of the fundus camera and the lens of the eye appear to be so complicated. The
fundus camera, however, is designed to compensate for the average optics of the
human eye, allowing for the effectiveness of the simple model used.

Applying the quadratic transformation to a retinal image assumes, in ef-
fect, that the points on the retina corresponding to the pixels are sitting on
a quadratic surface. To the level of precision available in current fundus im-
ages, this is true almost everywhere on the retina. However, in the macula and
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especially in the optic disk, which are below the quadratic surface, application
of the transformation can lead to slight misalignments. The amount of misalign-
ment depends on a number of factors, including the effective focal length of the
camera, the amount of motion, and the depth of the optic disk and cup. No
registration algorithm has yet been developed that compensates for these local
misalignments.

4.2 Landmark-Based Algorithm

Our first algorithm is based on landmarks (Figure 3) [8,9]. The quadratic trans-
formation between two images is estimated using a hierarchy of transformation
models and estimation techniques. An initial translation between the images is
estimated using a weighted histogram of possible translations based on all pos-
sible landmark matches. The match set is then culled based on proximity to
the histogram peak. An affine transformation is estimated from the resulting
matches using a robust random sampling algorithm. The final quadratic trans-
formation is estimated using a further-reduced match set and an M-estimator
initialized from the best affine transformation. Experimental evaluation of this
algorithm showed that on healthy retinas it almost never fails when the over-
lap between images is greater than 67% and it often succeeds for lower-overlap
images.

The downfall of this algorithm is the restriction to only matching landmarks.
It requires a minimum of 10 correct correspondences — 6 to fully constrain the
quadratic transformation and at least 4 more to confirm the estimate. Land-
mark features are not densely distributed in the images, and are quite sparse far
from the optic disk. Moreover, in images of unhealthy retinas the appearance of
landmarks is often obscured, and repeatable detection of landmarks is difficult.
Clearly, a more effective algorithm must depend on more than just landmarks.
The obvious candidate is vascular centerlines.

4.3 Dual-Bootstrap

Our second algorithm, the Dual-Bootstrap ICP [43], is neither a revision nor
an extension of the first algorithm. It is radically different and novel. The moti-
vation behind the algorithm is the desire to work with as few initial landmark
matches as possible. We began to explore this idea in work on real-time indexing
and registration in [39], where constellations of two or three matches are used
to initialize an affine transformation and matching of vessel centerline points
is used to refine it. However, our biggest breakthrough came with the insight
that we could get started with just one landmark match. This match gives a
limited initial estimate of the mapping between two images. The locations of the
matching landmarks in the two images provide an initial indication of the inter-
image translation, while comparing the widths and orientations of the vessels
meeting to form the landmarks provide the remaining parameters of a similarity
transformation. As illustrated in Figure 6 (upper left), this transformation is
accurate in a small image region surrounding the matching landmark, but much
less accurate farther away.
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Fig. 6. The Dual-Bootstrap ICP algorithm. The upper left shows the initial similarity-
transformation alignment of two retinal images based on a single landmark correspon-
dence. (The black contours are vessel centerline points extracted from one image and
the white contours are vessel centerline points extracted from the other.) The trans-
formation is only well-aligned within the bootstrap region, shown as a white rectangle.
The other three panels show the progress of the Dual-Bootstrap algorithm, with the
alignment becoming better and better as the iterations proceed and the region grows.

This insight raised two questions: (1) how to generate the initial landmark
match, and (2) how to generate a quadratic transformation that is accurate
throughout the images from the initial similarity transformation. To address
the first issue we compute a signature vector of similarity invariants at each
landmark, and then match these signature vectors between images. Matches are
rank-ordered by signature vector distance, and then tested one-by-one starting
with the match that has the lowest distance. Each match is used to generate a
similarity transformation as described in the previous paragraph and then each
is tested using the following algorithm, which addresses the second question.

Starting from the initial similarity transformation and using the vessel cen-
terline points extracted by tracing, the Dual-Bootstrap ICP algorithm iterates
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three steps until convergence: re-estimation, model selection and region growing
(Figure 6). (1) The transformation parameters are re-estimated by applying one
step of a robust form of the iterative closest points (ICP) algorithm [5, 11, 35]
using only the centerline points within the small region (the “bootstrap region”)
surrounding the initial match in the moving image. (2) The alignment error and
covariance matrix of the transformation parameters are used in model selection,
automatically choosing between the initial similarity transformation, an affine
transformation, a simplified form of the quadratic transformation (called the “re-
duced quadratic” [43]), and the full quadratic model for the current bootstrap
region. As the region grows, more vessel centerline points are included and more
matching constraints are generated, allowing the model to switch from lower-
order to higher-order models. (3) The bootstrap region is expanded outward,
growing in inverse proportion to the mapping error on the region boundaries.
This error is computed from the covariance matrix of the transformation param-
eters using error propagation techniques [19, Ch. 4].

The Dual-Bootstrap iterations converge when the bootstrap region expands
to cover the overlap between images, model selection reaches the quadratic
model, and the ICP iterations converge. The resulting transformation is then
tested for accuracy (centerlines alignment error is less than 1.5 pixels) and sta-
bility (full-rank parameter estimate covariance matrix). If it passes these tests it
is excepted as correct and the whole algorithm terminates. Otherwise the next
initial estimate is evaluated. The algorithm ends and indicates that it can not
align two images when a user-defined number of initial transformations has been
tried. Interestingly, in more than half the cases the first match is correct and
the Dual-Bootstrap converts this into a correct overall transformation. Figure 6
illustrates several intermediate transformations during the Dual-Bootstrap iter-
ations, and the final mapping between the two images.

Experimental evaluation of the Dual-Bootstrap has produced impressive re-
sults. Tests on over 10,000 image pairs have shown that it always succeeds in
producing an accurate transformation when (a) the images overlap by at least
30%, (b) at least one common landmark has been detected in the two images
and (c) there are enough trace centerline points detected in the overlap between
the images to obtain a stable transformation estimate. We have also applied this
algorithm to aligning color or red-free fundus images with the images of a FA
sequence. The algorithm succeeds quite well in doing so, failing only in extreme
cases where the fluorescein dye leaks immediately into the retina or late in the se-
quence (“late recirculation”) where the dye is heavily diluted [47]. Figure 5 shows
an example of the alignment of a red-free image and fluorescein angiogram.

4.4 Generalized Dual-Bootstrap

Our next innovation in registration came by moving the Dual-Bootstrap ap-
proach beyond the retinal application [52]. Doing so requires addressing two
primary issues: an initialization method is needed that does not depend on ex-
tracting vascular landmarks, and image information other than the location of
vascular centerlines is needed to drive the Dual-Bootstrap growth and refinement
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Fig. 7. Two images taken during the winter and sumer, with some the generic features
needed to drive the Generalized Dual-Bootstrap algorithm. Face points are shown with
line segments and corners are shown with small circles. Features are shown only at a
single coarse scale, even though features at all scales are used simultaneously.

process. Solving the first issue simply requires applying recent keypoint match-
ing algorithms from the computer vision literature, Lowe’s in particular [26].
Multiscale keypoints are detected by finding peaks in the Laplacian-of-Gaussian
response in both spatial and scale dimensions. These keypoints are matched ac-
cording to a locally-computed signature vector and the matches are rank-ordered
according to their distinctiveness. These matches play the same role as landmark
correspondences in generating initial matches for the Dual-Bootstrap growth and
refinement process.

In order to address the second issue we developed a new generic, multiscale
feature extraction technique. The idea is to evaluate the gradient distribution in
neighborhoods surrounding each pixel, characterizing each according to whether
there are one or two dimensions of signifiant spatial variation in the intensity near
the pixel. Features of the first type are “face points”, while features of the second
type are “corners”. Thresholds on the required strengths of these features are
determined from robustly-computed local image statistics. The features used in
registration are chosen to ensure wide-spread distribution throughout an image.
The result, as shown in Figure 7, is not necessarily a perceptually-pleasing set
of features. Instead it is a set of features sufficient to drive Dual-Bootstrap
registration in place of the original vessel centerlines.

Several other innovations are used to make the Dual-Bootstrap work on a
diverse set of images. First, matching is applied symmetrically from the fixed
image to the moving image and vice-versa. The transformation parameters are
estimated in both directions. This produces a denser and more reliable set of
matches, especially in handling small bootstrap regions and scale changes be-
tween images. Second, features at all scales are used simultaneously during reg-
istration. Third, two different types of distance constraints are used during es-
timation, one for corners and one for face points. These are combined during
parameter estimation using both a standard (though robust) linear least-squares
estimation and using Levenberg-Marquardt. Finally, a much more sophisticated
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Fig. 8. Two registration results using the Generalized Dual-Bootstrap. The top shows
a checkerboard of the alignment of the winter-summer pair from Figure 7, while the
bottom shows a mosaic of two retinal images that the original Dual-Bootstrap did not
successfully align because of the appearance of the choroidal vessels.

decision criteria is needed, one that requires images to be well-aligned, the map-
ping to be stable on the boundaries of the bootstrap region, and the resulting
face-point matches to have closely-aligned orientations.

This “Generalized Dual-Bootstrap” algorithm has proven to be effective in
tests on an extremely challenging database of images, including successful align-
ments of overlapping images taken day and night and winter and summer. Ex-
amples are shown in Figure 8. Interestingly, and importantly, one of the two
pairs shown is a retinal image pair that the original Dual-Bootstrap could not
align: The images are dominated by the appearance of the choroidal vasculature,
which is much larger than the retinal vasculature. The tracing-based vessel and
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landmark extraction algorithm could not produce enough constraints to drive
the Dual-Bootstrap, but the more generic technique, which does not rely on the
appearance of particular structures, was successful.

4.5 Multi-image Registration and Mosaics

In combination with our algorithms for aligning pairs of retinal images (“pairwise
registration”), we have developed algorithms for simultaneously aligning multiple
images. These can be used to play aligned images of a FA sequence as a movie
loop, to visualize changes over multiple visits, and to build a mosaic of images,
providing a broader view than available from a single image alone.

Each of the N images to be aligned may be thought of as nodes in a graph.
Each of the N(N − 1)/2 possible pairs of the images may be tested individu-
ally using the Dual-Bootstrap or Generalized Dual-Bootstrap, and when a pair
is successfully aligned the associated nodes are linked to form an edge in the
graph. The final ICP feature correspondences are saved with this edge. (Simple
heuristics may be used to avoid testing pairs that obviously do not overlap once
the graph is partially constructed.) If the final graph is connected, all images
may be jointly aligned; otherwise only the images in each connected-component
may be aligned separately. In computing the final set of transformations, one
image is chosen as the anchor to determine the final coordinate frame, and the
quadratic transformation parameters mapping each image onto this anchor are
estimated jointly using the final correspondence sets. Unlike other multi-image
registration techniques [36], no bundle adjustment is necessary because the final
positions of the mapped feature points are not explicitly constructed.

This overall procedure is capable of consistent alignments even for images
that do not overlap the anchor or for image pairs that overlap but the Dual-
Bootstrap could not align. (In more recent work, we’ve introduced the capabil-
ity of adding new constraints between such images [51], improving the results
for datasets with extremely low overlaps.) An example mosaic is shown in Fig-
ure 5. In extensive tests on the retrospective data set described in Section 4.3,
we found that the overall procedure left only 2 of the 855 images unaligned
with other images from the same retina (recall that there are images from 46
retinas in this set) [47]. Both these images are completely featureless and can
not be aligned manually. Multi-image registration also works extremely well in
aligning fluorescein angiogram sequences, except occasionally for images taken
in the “late recirculation” stage, after the dye has pooled and been diluted by
recirculation through the body (see Figure 1(c)). These results show that our
pairwise and multi-image registration algorithms are sufficiently accurate and
reliable for many routine clinical applications.

5 Other Problems and Algorithms

Research on retinal image analysis has focused on other problems as well. This
includes work at Rensselaer. Here are three important problem areas:
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– We have developed real-time versions of some of our earlier registration al-
gorithms [39,25], together with underlying supporting systems implementa-
tions [49]. The goal is accurate knowledge of the position of a surgical tool,
such as a laser, with respect to a map of the retina (built off-line), within a
guaranteed response time. Related work is reported in [2, 3].

– Researchers have begun to address the problem of using stereo images of the
optic disk to construct a depth map of the optic cup [12]. One problem in
doing so is that true stereo fundus cameras are not widely available, so that
stereo images must be created through movement of the head and eye. Since
this movement must be small, is uncontrolled, and involves rotations that
do not add significant information about depth, accurate 3d reconstructions
are difficult to obtain in many circumstances. If true stereo fundus cameras
become available, stereo reconstruction of the disk will become an important
problem.

– While the wide-spread availability and predominant clinical use of fundus
cameras has led most research on retinal image analysis to concentrate on
fundus (color and red-free) images and fluorescein angiography, image analy-
sis algorithms have been developed for other modalities as well. Of particular
interest are the use of edge detection, boundary models and active contour
techniques in delineating fluid-filled regions [13] and measuring retinal thick-
ness [23] in optical coherence tomography.

6 Discussion

A number of lessons may be gleaned from the success of our retinal image regis-
tration algorithms. First, it is important to work with a wide range of data sets
indicative of what might be seen in practice. It is not sufficient to work from
a small sampling and assume the algorithms will generalize with minor modifi-
cation. Instead, building the algorithm needed to work on a diverse set of data
and on the most challenging cases requires fundamental innovations. Second, ex-
tensive testing of algorithms, including careful analysis of the causes of failure,
is important not only to validate particular techniques but to lay the ground
work for future innovations. Finally, even though algorithm development may
be motivated by particular applications, it is important to push toward general-
ity. By trying to minimize the assumptions on which an algorithm depends, the
probability that the algorithm will be useful beyond the original application and
development data set will be substantially increased.

There are a number of open issues in retinal image analysis. Many of these
have already been mentioned in the paper, but they are gathered here for com-
pleteness.

– Within the context of registration there are two major issues. One is han-
dling especially challenging imagery from late in the recirculation phases of
fluorescein angiography and from indocyanine green angiography which is
dominated by the appearance of choroidal vasculature. The second is han-
dling the elevations and depressions of the retinal surface caused by the
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macula, the optic disk and macular edema. These can cause distracting mis-
alignments of image regions after registration.

– Within the context of feature extraction, a major problem remains building
a complete map of the retina that includes labeling the arteries and veins
and their branching structure and identifying the optic disk and macula.
Significant progress has been made in some of these areas, but a fully-reliable
system has not yet been developed.

– Feature extraction also includes automatic pathology detection as an aid to
large-scale, rapid screening for diabetic retinopathy and macular degenera-
tion. Challenges include handling the small size of the features, accommo-
dating variations in illumination, and employing knowledge of the map of
the retina to interpret the significance of the results.

– Further work in feature detection is needed to detect and characterize neo-
vascularization both near the optic disk and on the periphery of the retina.
These small, narrow and tortuous vessels are not captured by standard fea-
ture extraction methods.

– Finally, the success of registration has opened the door to automatic change
detection, both in the vascular structure [18] and to signal the presence
of pathologies. While pathologies appear and disappear frequently during
the progress of disease, the ability to align longitudinal images and detect
changes provides additional information for the detection and characteriza-
tion of disease.

In conclusion, the success of current algorithms for retinal image analysis, the
challenge of remaining problems, and the societal importance of building tools
to aid in the diagnosis and treatment retinal diseases ensure that retinal im-
age analysis will remain an important area of research in medical imaging and
computer vision for the foreseeable future.
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Abstract. This paper presents the creation of 3D statistical shape mod-
els of the knee bones and their use to embed information into a segmen-
tation system for MRIs of the knee. We propose utilising the strong
spatial relationship between the cartilages and the bones in the knee by
embedding this information into the created models. This information
can then be used to automate the initialisation of segmentation algo-
rithms for the cartilages. The approach used to automatically generate
the 3D statistical shape models of the bones is based on the point distri-
bution model optimisation framework of Davies. Our implementation of
this scheme uses a parameterized surface extraction algorithm, which is
used as the basis for the optimisation scheme that automatically creates
the 3D statistical shape models. The current approach is illustrated by
generating 3D statistical shape models of the patella, tibia and femoral
bones from a segmented database of the knee. The use of these models
to embed spatial relationship information to aid in the automation of
segmentation algorithms for the cartilages is then illustrated.

1 Introduction

Osteoarthritis (OA) of the knee is usually characterized by the degeneration of
the articular cartilage. However, the progression of OA is much more compli-
cated, usually consisting of changes in all the cartilages, bones and other tissues
in the knee. Nevertheless, the loss of the few millimeters of thickness in the ar-
ticular cartilage is still regarded as the most important feature to monitor OA
progression. As OA develops, the changes undergone by the articular cartilage
are not simply degenerative, rather it usually consists of localised thinning or
thickening that develops slowly over time. The ability to accurately measure this
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degeneration is essential to the development of pharmaceuticals and therapies
for OA.

Several MR sequences now exist that provide a non-invasive way to obtain
high contrast accurate images of the knee cartilage morphology [1]. The poten-
tial of MRI to more accurately diagnose and monitor OA compared to other
imaging modalities has now been shown in numerous studies. These studies usu-
ally monitored the progression of OA using measurements like thickness [2][3],
volume [4] and surface area [5].

To obtain these measures from 3D MR images requires the articular cartilage
to be segmented, preferably in an accurate and repeatable way. Unfortunately
due to the low contrast in several areas particularly in the joint contact areas,
tendons and ligaments, fully automated segmentation of the cartilage has not
been achieved. Current clinical studies have favored the use of supervised semi-
automated 2D algorithms like region growing [6], active shape models [7], active
contours [8] and live wire [9]. These algorithms all require various degrees of user
interaction, verification and correction of the segmentations results on a slice by
slice basis. These approaches have significantly reduced the time taken to seg-
ment a dataset and provide provide higher intra- and inter-observer consistency
than fully manual methods. However, for routine clinical use they are still too
time consuming, so a fully automated approach is desirable.

To fully automate the segmentation of the cartilages requires the segmenta-
tion to be performed directly in 3D. There have only been a few attempts to
do this, including a model based approach [10], immersion based watershed [11]
and statistical classification [12]. The most promising work uses a modified wa-
tershed metric that utilises prior information to perform the segmentation of
the cartilages [13]. This algorithm can be combined with an atlas registration
to fully automate the segmentations, however this has yet to be performed with
the cartilages.

1.1 Segmentation System for the Knee

The philosophy behind our segmentation system for the knee is similar to the
thoughts of both Kapur [10] and Hamarneh [14] and is focused on the effective
but flexible incorporation of a priori knowledge, which is utilised intelligently
to obtain automated, accurate and robust segmentations of the knee. Different
types of knowledge needs to be used in order to attain the required automation,
accuracy and the robustness.

Shape information is the most important piece of knowledge for the knee
as it allows us to compensate for the missing or poor delineation seen in the
cartilages. This primarily is used to improve the robustness of the segmentation
algorithm, which is essential if full automation is desired. In 2D, active shape
models (ASMs) have been shown to produce accurate and robust results for the
articular cartilage [7]. The primary problem with ASM type approaches is that
they are sensitive to initialisation, and for many providing a good automatic
initialisation is difficult. Spatial relationship information is one of the primary
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piece of knowledge that can be used to aid in automating the initialisation of
segmentation algorithms.

The core of the segmentation system will be a statistical map of the knee
based around 3D statistical shape models (SSMs). Besides the use of the SSM
to incorporate shape information we propose to use it as a framework to include
a priori knowledge by utilising the corresponding landmarks to extract informa-
tion from the set of training images. This type of approach is used in grey level
modeling of ASMs; however, our segmentation system incorporates various other
types of information including texture and spatial relationship information. This
information is used either by embedding it inside the SSM or modeling the as-
sociated information separately. The incorporation of image derived information
will aid the accuracy and robustness of the segmentations, while spatial rela-
tionship information will aid in automating and self correcting the segmentation
system.

The first part of this paper presents the automatic creation of 3D SSMs of
the patella, tibia and femoral bones using an implementation based on the Point
Distribution Model optimisation scheme of Davies [15]. The second part of the
paper presents how these models are then extended to include associated or em-
bedded spatial relationship information. The strong spatial relationship between
the bones and the cartilages is used to illustrate how this information could be
used to automatically initialise segmentation algorithms of the cartilages.

2 Methodology

2.1 Subjects and Imaging

This work used a knee database provided by Brigham and Women’s Hospital that
consisted of 15 normal adults scanned using 1.5 and 3 T G.E. MR scanners with
a fat suppressed 3D SPGR MR sequence. The sequence parameters were te = 5
or 7 msec, tr = 60 msec and a flip angle of 40o. The FOV was 120×120 and the
acquisition matrix was either 512×512 or 256×256. These were reconstructed to
images with dimension of 0.23×0.23 or 0.46×0.46 and slice thickness of 1.5mm.
The bones and cartilages in the images were then interactively segmented by
experts. To retain the variability of the shaft lengths in the SSM, the femoral
and tibia shafts were not concatenated to be proportional to the head widths.

This database is sufficient to evaluate the feasibility and effectiveness of 3D
SSM for the knee segmentation system. However, the final knee segmentation
system will either require the use of a much larger database or the use of a more
sensitive modeling technique than principal component analysis (ie wavelets).

2.2 Statistical Shape Models for the Bones

SSMs provide a compact representation of the shape variability from a training
set [16]. A SSM is built from a set of N training shapes si (i = 1, . . . , N). Each
shape si has M points sampled on its surface. These shapes are aligned using
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generalised Procrustes alignment. Principal Component Analysis (PCA) allows
each shape to be written as

si = s̃ + Pbi = s̃ +
∑

k

pkbk
i (1)

where s̃ is the mean shape and P = pk contains the k eigenvectors of the co-
variance matrix. The corresponding eigenvalues (λk) describe the amount of
variation expressed by each eigenvector. The shape parameters b = bk are used
to control the modes of variation.

To obtain a valid SSM it is necessary that the coordinates are in a com-
mon frame of reference and all the points on each surface correspond in an
anatomically meaningful way. Several approaches can be used to obtain point
correspondence including non-rigid registration [17], deformable models [18] and
Point Distribution Model optimisation [15].

The primary problem with using non-rigid registration is that the correspon-
dence obtained is not unique and dependent on the accuracy of the registration,
which for objects like cartilage can be highly inaccurate. Deformable models
do not generate any true correspondence and Davies Point Distribution Model
framework is restricted to genus 0 surfaces and requires already segmented train-
ing sets.

For the knee segmentation system we have implemented an automated
scheme to generate 3D SSMs based on the Point Distribution Model optimisa-
tion framework of Davies et al [15]. The primary reason for this is the flexibility
the optimisation scheme allows, where the target results obtained can be altered
simply by changing the objective function or the type of model we are optimis-
ing1 This flexibility as well as the known improvement in the correspondence
obtained compared to other techniques are the reason we chose this approach.

3 Implementation

The implementation we used for the Point Distribution Model optimisation
framework of Davies can be broken down into 3 stages: pre-processing, gen-
eration of initial landmarking and the optimisation of the landmarking.

3.1 Pre-processing and Initial Landmarking

The 15 manually segmented knee datasets are pre-processed as outlined in
Figure 1. In the literature the surfaces are usually extracted before being deci-
mated (or remeshed) and then smoothed before being parameterized onto a unit
sphere. In this work we have used a subdivision based parameterized surface
extraction algorithm to guarantee we obtain genus 0 surfaces and parameteriza-
tion. The full algorithm is similar to shrink wrap algorithms [19] however it is
still under development and beyond the scope of this paper.
1 Eg. inclusion of curvature, thickness and other derived measures into the model or

objective function.
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Fig. 1. Overview of Pre-processing

The bone surfaces and parameterization that is used consisted of 4098 vertices
for the patella and 16,386 vertices for the tibia and femoral bones. These surfaces
are then rigidly ICP aligned, centroid matching and RMS normalisation. The
resulting surfaces are then used to align the set of parameterizations.

3.2 Initial Landmarking

The initial SSM is created by quasi-uniformly sampling2 the parameter space
of each ICP aligned surface as outlined and illustrated in Figure 2. The set of
re-parameterized surfaces are then used to generate a 3D SSM (see Section 2.2).

To inverse map each vertex in parameter space to the surface, an efficient
intersection algorithm using a partitioned parameter space and barycentric co-
ordinates has been utilised.

Fig. 2. A surface is re-parameterized by sampling its parameter space and inverse
mapping the sampled landmarks onto the surface

3.3 Optimisation of Landmarking

Although the parameter spaces are rotationally aligned there is no true cor-
respondence from the parameterization; the correspondence is obtained by us-
ing an implementation of the Point Distribution Model optimisation scheme of
Davies [15] (See Figure 3). The Nelder Mead simplex algorithm was used to
optimise an eigenspace objective function, F =

∑
i log(λi + ε) with ε = 0.01.

2 The patella consisted of 1026 vertices and the tibia and femur 4,098 vertices.
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Fig. 3. 3 Patella bones pairs where the left pair is held fixed during the optimisation
process. Top Initial landmarking Bottom Optimised landmarking Note: Colouring
of surface based on corresponding triangles.

3.4 Associating or Embedding Information into 3D SSM

The creation of corresponding point distribution models allows the extraction
of accurate information from the training datasets. The simplest approach is to
associate with each point in the model the set of extracted or derived information.
An example of this is the expected thickness of the cartilage above a point on
the tibia, or the variance of the thickness across the training set (see Figure 4
and 5).

Fig. 4. The mean thickness of the cartilage above each landmark in the SSM

Ideally, rather than having a static representation of the information at each
point in the model, it is often preferable that the information varies based on
the parameters of the model. One approach to this is to embed the information
extracted from the training sets directly into the model by simply extending the
dimensionality from R3 to R3+m, where m is the number of different types of
information to be included in the model. This type of approach has been previ-
ously used to incorporate thickness variability into the optimisation of a model
for the Levator Ani [20]. However, spatial relationship information between the
cartilages and bone is disassociated from the whole shape, because the thickness
is only defined for a subset of the model. As a result, by directly incorporat-
ing the information into the model, the expected thickness values obtained as
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Fig. 5. The standard deviation of the thickness of the cartilage above each landmark
in the SSM

Fig. 6. The primary mode of the combined tibia shape and thickness (of the meniscus)
model varied by ±√

3 standard deviations Note: The cartilage thickness extending
beyond 5mm

the model is varied extend beyond the range that is expected anatomically (see
Figure 6).

As we are still examining how best to combine several types of disassociated
information into one model, the current models are optimised in the standard
way and from the corresponding points the information of interest is extracted.
The information is associated with each point and kept constant, rather than be-
ing modeled in a way that would allow its value to vary based on the parameters
of the shape model. Several examples of the type of spatial relation information
that we are interested in are illustrated in Figure 4, 5 and 8.

4 Results and Discussion

The initial landmarking obtained for the patella, tibia and femur provide a sat-
isfactory initial approximation for correspondence landmarks. The optimisation
scheme improves this correspondence significantly as can be seen in Figure 3
and by the improvement in compactness shown in Table 1. The primary mode
of variation of the optimised models can be seen in Figure 7.

Associating or embedding information into the SSM will aid the automation
of the initialisation of the cartilage models. After segmenting the bones using
these models, the information embedded in these models (like cartilage thickness)
will be used to determine the placement and parameters used to initialise them.
The type of information includes the probability that the cartilage exists above
a point, its expected thickness and the variation of the thickness (see Figures 4,
5 and 8).
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Table 1. Compactness and the first four primary modes of variation of the bone
models: Optimised (Initial)

Mode Patella Tibia Femur

0 5.77 (12.98) 13.32 (14.01) 13.37 (22.17)
1 1.92 (2.62) 9.34 (9.44) 10.60 (12.53)
2 1.71 (2.16) 2.31 (2.93) 4.06 (4.87)
3 1.27 (1.72) 1.68 (2.38) 2.20 (2.80)

Compactness 14.78 (25.00) 33.11 (36.51) 37.03 (51.86)

Fig. 7. The primary mode of the bone models varied by ±√
3 standard deviations

Fig. 8. The probability that cartilage is above each landmark in the SSM

5 Conclusion

The optimisation process presented has allowed the automatic creation of 3D
SSMs of the knee bones. We propose the use of these models as a basis to as-
sociate or embed a priori knowledge like spatial relationship information. The
initial use of this information is to aid in the automatic initialisation of 3D
segmentation models of the cartilages using the probability and expected thick-
ness. This information can also be utilised by each model to improve their seg-
mentation process and allow for the development of cooperative or competitive
segmentations of difficult regions like the meniscus/articular cartilage boundary.
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The incorporation of information such as thickness into the models will be-
come even more important with models created from a database of osteoarthritis
sufferers. This approach extends naturally to the embedding of other a priori
knowledge and is an ideal way to aid in the development of 3D intelligent de-
formable models [14] for use in an automated segmentation system.
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Abstract. Image segmentation is an important research topic in medical image 
analysis area. In this paper, we firstly propose a generalized level set formula-
tion of the Mumford-Shah functional by a sound mathematical definition of line 
integral. The variational flow is implemented in level set framework and thus 
implicit and intrinsic. By embedding a weighted length term to the original 
Mumford-Shah functional, the paper presents a generic framework that inte-
grates region, gradient and shape information of an image into the segmentation 
process naturally. The region force provides a global criterion and increases the 
speed of convergence, the gradient information allows for a better spatial local-
ization while the shape prior makes the model especially useful to recover ob-
jects of interest whose shape can be learned through statistical analysis. The 
shape prior is represented by the zero-level set of signed distance maps of im-
ages and is well consistent with level set based variational framework. Experi-
ments on 2-D synthetic and real images validate this novel method.  

1   Introduction 

Medical applications, visualization and quantification methods for computer-aided 
diagnosis or surgical planning from various modalities typically involve the segmen-
tation of anatomical structures as a preliminary step. Because of the huge amount of 
data and the complexity of these organs and structures, computer-based automatic 
segmentation methods are needed to fully exploit medical data.  

Active contour model, since proposed in [1], has been extensively studied in this 
area. Level set methods, as an alternative of snake models, have been proposed in an 
effort to overcome some limitations of traditional parameterized active contour mod-
els. They can support complex topology naturally, extended to higher dimensions 
easily and are implicit, intrinsic and parameter free [2]. Among others, geodesic ac-
tive contour[3], Chan-Vese model [4] and geodesic active region model [5] are three 
well-studied  level set formulations for image segmentation which are based on gradi-
ents, region and the integration of boundary and region information, separately.  

However, these common gradient or region based active contour models can not 
deal with occlusion problems or the presence of other missing information about the 
object which are common in many object extraction problems. Moreover, there are 

 CVBIA
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many medical applications in which some prior knowledge about the object is avail-
able and useful. Therefore the incorporation of more specific prior information into to 
deformable models has received some attention. In [6], Leventon proposed an MAP 
formulation to incorporate shape prior using level set representation into segmentation 
process. Chen has employed an “average shape” to serve as the shape prior term in 
their energy functional [7]. However, neither the method of Leventon’s nor the energy 
of Chen’s can make use of region information of the image. On the other hand, 
Tsai[8] and Yang [9] have proposed their level set shape model ,separately, based on 
the integration of Leventon’s level set shape representation idea and region based 
active contour models. However, both Tsai’s and Yang’s methods did not consider 
the boundary information. In [10], the authors have proposed a novel energetic form 
to introduce shape prior to level set representation and then applied to object extrac-
tion combined with geodesic active region model.  

In this paper, we demonstrate a new theoretical interpretation of Mumford-Shah 
functional and arrive at a generalized level set formulation of the original Mumford-
Shah functional based on a sound mathematical definition of line integral in [11]. 
After investigating the terms of level set method, we propose that by using a weighted 
length term, the new level set based variational formulation of the Mumford-Shah 
functional can provide a very general scheme where region homogeneity and bound-
ary curve features (such as gradient or the shape of interested objects which are repre-
sented by evolving curves) can be incorporated into the segmentation process simul-
taneously. That is also the major novelty of the proposed method when compared 
with some related previous literatures, for example [12] and [13], where the varia-
tional formulation is just a heuristic combination of region, edge and shape terms.  In 
our former paper [14], we have demonstrated that gradient information can be incor-
porated into this framework for brain MR image segmentation. In this paper, we show 
such a generalized formulation can also be effectively used to develop a level set 
shape model. Region-based forces make our method less sensitive to noise, gradient 
information allows for a better spatial localization, while the shape prior makes the 
model especially useful to recover objects of interest whose shape can be learned 
through statistical analysis. To be specific, our model not only exploits the region and 
gradient information of an image but also is a knowledge based method because it 
incorporates the shape of object for segmenting images.  

The remainder of the paper is organized as follows. In section 2, we will briefly in-
troduce the Mumford-Shah functional. The details of the new model and related nu-
merical implementation will be discussed in section 3. Experimental results and con-
clusion will be given in section 4 and 5, separately. 

2   Background 

In the variational framework, an image 0I is usually considered a real-valued bounded 

function defined on Ω , where Ω  is a bounded and open subset of 2R  (in two di-
mension case) with Ω∂ its boundary. Let I  be a differentiable function on Ω , Γ is a 
set of discontinuities (i.e. contours).  In [15], Mumford and Shah proposed a func-
tional to segment an image into homogeneous objects. A reduced form of this seg-
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mentation problem is simply the restriction of I  to piecewise constant functions, i.e. 

I = constant ic on each connected component iΩ .Under this circumstance, the image 

segmentation problem, is solved through minimizing the following functional: 
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where iα  and ν  are scaling parameters , || Γ   stands for the total length of the arcs 

making up Γ . 
In [4], Chan and Vese formulated this functional in terms of the level set frame-

work. Later, they generalized this method to treat multiple regions [16]. The similar 
work was also proposed by Tsai et al. [17]. However, both their methods did not con-
sider the shape and gradient information of an image for segmentation problems. 

3   Description of the Model 

3.1   Shape Representation 

The shape prior can be defined by many different methods in the literature, such as 
point distribution model [18], Fourier descriptor [19], and medial axis [20]. Following 
the lead of [6] and [7], in this paper, we adopt the implicit representation of the seg-
menting curve based on the level set method of Osher and Sethian [2] to build our 
statistical shape model. Specifically, the boundary curve of the object in a training set 
of n  aligned images is embedded as the zero-level set of a higher dimensional func-

tion },,{ ,21 nΦΦΦ K  with negative distances assigned to the outside and positive 

distances inside the object. Then a distance map for each of the training image can be 
derived. As pointed out in [21], distance map is a dense descriptor capable of captur-
ing an arbitrary shape whose bounded behavior in the presence of noise in the outline 
and in the object position makes it an attractive choice for image based statistical 
analysis. Furthermore, basic geometric properties such as curvature and the normal of 
evolving curves are easily derived. Finally, such a shape representation is also natu-
rally consistent with level set based active contour models. 

Using the technique developed in [6], we compute Φ , the mean level set function 
of the training shapes, as the average of these n  signed distance func-

tions
=

Φ=Φ
n

i
in 1

1
 . To extract the shape variabilities, iΨ  is subtracted from each 

iΦ  to create the deviation form the mean.  Each of the deviation iΨ  is placed as a 

column vector to form a nN d ×  -dimensional shape-variability matrix S  where d  

is the number of spatial dimensions and dN  is the number of samples of each level 
set function. Next using Singular Value Decomposition (SVD) to shape variance 
matrix: 
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where V is a matrix whose column vectors  represent the orthogonal modes of varia-

tion in the shape and  is an diagonal matrix whose diagonal elements are the corre-
sponding eigenvalues. Now the most important modes of variations can be recovered 
through Principle Component Analysis (PCA): 
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where k is the number of  selected principle modes of variation, 

},,,{ 21 kλλλλ K= are the linear weight factors for the k eigenshapes with the vari-

ances },,,{ 22
2

2
1 kσσσ K given by the eigenvalues calculated by the above SVD, 

},,,{ 21 jφφφ K are the corresponding principle modes(eigenvectors) and spatially 

dependent. Note that a novel shape which is represented by the zero-level set of φ  is 

the function of vector λ . That’s to say, by adjusting the values of vector λ , one var-

ies  φ  which indirectly changes the shape. 

In this paper, we used ellipse as our synthetic images. Specifically, we generated a 
training set of 36 ellipses by changing the eccentricity with a Gaussian distribution 
and applied PCA on the distance maps of training images. We thus select 1 principle 
mode to fit 96% of the total variation (about the selection of k, please see 3.3). Fig.1 
shows the shape of the mean and principle mode corresponding to the largest eigen-
value which is represented by the zero-level set.  

                       

 (a) 15.1 λ                         (b) Mean                         (c) - 15.1 λ  

Fig. 1. Illustration of PCA : (b) is the mean shape,(a) and (c) demonstrate 115.1 φλφ ±Φ=  

The shape is represented by the zero-level set of φ . 

3.2   Generalization of the Mumford-Shah Functional 

In this section, we present the generalized level set formulation of the Mumford-Shah 
functional in bimodal case. According to level set theory originally proposed by 
Osher and Sethian in [2], a geometric active contour can be represented by the zero-

level set of a real-valued Lipschitz function RR →⊂ΩΨ 2:   such that 0>Ψ in-
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side the evolving curve Γ and 0<Ψ  outside the curve. As in [4], the first term of 
Eq. (1) can be represented as follows (in bimodal case): 

2 2
1 0 1 2 0 2( ) ( ) ( ) (1 ( ))I c H dx I c H dxα α

Ω Ω

− Ψ + − − Ψ
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where 1c and 2c  are the mean intensities inside and outside the active contour Γ , 

respectively, and )(ΨH is the Heaviside function defined as: 
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Next let us consider the length term of the Mumford-Shah functional. In [11], the line 

integral of function )(xf  in 2R  is defined as the following formula: 
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where the region of integration is all of  Ω , and )(xδ  is the Delta function defined 

as follows: 
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Because the Delta function prunes out everything except the boundary Ω∂  automati-
cally, the one-dimensional Delta function can be used to rewrite the line integral in 
level set framework as (for more details, please see [11]): 

Ω

Ψ∇Ψ xdxf ||)()( δ                                       (8) 

Based on this definition of line integral, we propose to use the following weighted 
length to stand for the length term in Eq. (1) as: 

                                      
Ω

Ψ∇Ψ xdxB ||)()( δ                                          (9) 

where )(xB is the weighted function which is used as boundary feature descriptor. In 

this paper, we exploit two kinds of function to drive the active contour towards the 
shape prior as well as high image gradients: 

))(,()()( 2 λφγβ TxsRdxgxB sg ++=                               (10) 

where gβ and sγ are scaling parameters balancing the force of gradient and the shape 

prior. At the stationary point of the decent of Eq.(9), we expect the curve Γ to lie over 
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points of high gradients and subject to shape prior driven by the boundary descriptor 
function. 

Usually, )(xg is defined as (in 2 dimension): 
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where 0IG ∗σ ,  a smoother version of 0I , is the convolution of the image 0I with 

the Gaussian σ
σ σ 4/||2/1 22

),( yxeyxG +−−= . The function )(xg is supposed to be 

positive in homogeneous regions and close to zero in high gradient of image. 

))(,(2 λφTxsRd +  is used as a function to compute the distance between the 

evolving contour and the shape prior. In this paper, we only consider 2-D rigid trans-
formation to capture pose variabilities (without the loss of generalization, affine trans-
formation can also be considered in a similar way) where s  is the scale factor, R  is 

the rotation matrix in terms of the angleθ  , and T is the translation factor. )(λφ  is 

the shape prior derived from PCA defined in Eq.(3) and d  is the  distance between a 
rigid transformed point of the evolving contour and its closest point on the zero-level 
set of )(λφ  which can be obtained by the fast marching method proposed in [22]. 

Such a distance function evaluates the shape differences between the evolving contour 
and the shape prior. Therefore the use of function d  enables our implicit representa-
tion of shape to accommodate shape variabilities due to differences both in pose and 
in eigenshapes. Similar function d  can also be found in [7] and [23]. However, both 
their methods can not make use of the region information of an image and are not 
derived from Mumford-Shah functional like here, either.  

Taking into account of Eqs. (1), (9) and (4), the Mumford-Shah functional, using 
level set techniques, can be reformulated as follows: 
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where ))(,()()( 2 λφγβ TxsRdxgxB sg ++=  as  in Eq.(10).The first two terms 

describe the attraction of region homogeneity forces ; the third term drives the contour 

according to the shape prior as well as the high gradient areas of the image. 1α , 2α  , 

gβ and sγ are four parameters used to adjust the weights of the region, gradient and 

shape forces in segmentation process. One can see that the new active contour model 
provides a general framework that unifies the region and boundary features (gradient 
and the shape prior) of an image for medical segmentation problems. Although the 
experiments part of this paper mainly demonstrate the influence of shape prior, we 
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point out that the tradeoff between shape prior, gradient and region forces depends on 
how much faith one has in the prior shape model and the  imagery for a specific ap-
plication.   

Using gradient decent method for the energy of Eq.(12), the evolution equations 
can be derived as follows (for the details, we refer to the Appendix of [14]): 
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3.3   Implementation Techniques 

The first issue is the choice of k , the number of modes of variation. In our experi-
ments, we adopt the method described in [18] to compute the total variation in the 
image bases (for more details, please see [18]).  

One important issue is the choice of the parameters of the region and boundary 
forces, In our experiments, we adopt an empirical way to choose parameters. When 
noise is high, we can choose a relatively higher value for the parameter of the length 

term, for example, ,g sβ γ  in (10), in order to exert a strong regularization force. On 

the other hand, a high sγ would indicate a more dependence on the statistical shape 

prior of the evolving contour. 
About the possible regularization of the Heaviside function )(ΨH  and )(Ψδ , 

we use in our experiments the same regularization form as in Chan-Vese model. 

1c and 2c are computed with the method proposed in [4]. Ψ∇•∇B and || Ψ∇ are 

discretized using up wind difference scheme [2] . The discretization of 
|| Ψ∇

Ψ∇•∇  is 

with central difference scheme and the temporal derivative with a forward difference 
scheme. The Eqs. (14)-(17) are discretized using the methods introduced in [7]. When 
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necessary, reinitializing the level set function at a few iterations using the fast march-
ing method [22].  

4   Experimental Results 

In this section, we present the results obtained by our method when applied to syn-
thetic, hand and medical images. The experimental results have achieved desirable 
performance and demonstrate the effectiveness of this new method. 

4.1   Synthetic Images and Hand Images 

In the first experiment, we used our segmentation method to recover an ellipse which 
is partially cut and placed with different pose (translation, rotation and scale) to the 
training images described in 3.1.  In this experiment, we 

keep 5.021 == αα , 0.25gβ =  and 7.0=sγ .The algorithm converged in a few 

seconds on a Pentium III PC.  From Fig.2(c) and (d) one can see that compared to 
Chan-Vese model, our level set shape model successfully captured the missing part in 
noisy environment thanks to the prior shape information. Moreover, it can deal with 
shape variability due to pose. 

The second experiment demonstrates that our model can recover the hand which is 
partially occluded by a vertical bar. The training set is composed by 35 human hand 
images and the number of principle mode is 5. In practice, we fixed 

5.021 == αα , 0.7gβ = and 8.0=sγ .The algorithm converged in less than 1 
minute . From Fig.3 (d) one can see that the new variational model can deal with 
occlusion problems. 

                                   
(a)                             (b)                              (c)                               (d) 

Fig. 2. Results for the synthetic ellipses: (a) the shape prior; (b) the object of interest; (c) results 
by Chan-Vese model ; (d) results obtained by our model 

                                 
          (a)                                    (b)                                   (c)                                   (d) 

Fig. 3. Results for hand images: (a) original occluded hand; (b) the initial contour; (c) a middle 
step; (d) the final result, the occluded hand is recovered. The active contour is in white. 
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               (a)                               (b)                             (c)                         (d)   

                         
                 (e)                             (f)                            (g)                               (h) 

Fig. 4. Segmentation results for MR cardiac images: (a) is the original image for case 2, (b)~(d) 
are the three steps for the segmentation process; (e)~(h) are the final results for case 3,7,1 and 
8, separately. The active contour is in red. 

In sum, our variational level set shape model can extract objects with missing in-
formation, occlusion and local shape variability. 

4.2   Medical Application 

We have applied our algorithm to a lot of medical imagery problems. For simplicity, 
we only give the results for the extraction of left ventricles of 2-D cardiac MR im-
ages. The training base consists of 42 cardiac images whose outlines are traced by a 
doctor and the test sets are composed of 20 novel images. In implementation, we 

choose 6.021 == αα  , 8.0=bβ and 9.0=sγ . In Fig.4 we show our results ob-

tained by our model. One can see that the contours are able to converge on the desired 
boundaries even though some parts of the boundaries are too blurred to be detected 
only by gray level information. The algorithm usually converged in several minutes.   

To validate the results, we computed the undirected Hausdorff distance [24] be-

tween the zero-level set A ( AN points) obtained by our algorithm and the manual 

segmentation results M  ( MN  points): 

                        )),(),,(max(),( AMhMAhMAH =                           (18) 
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The quantitative results for 14 cases are given in Table 1. One can see that virtually 
all the boundary points of the zero-level set lie in one ore two pixels of the manual 
segmentation. 
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Table 1. Distance between the results of our algorithm and manual segmentation (unit: pixel) 

Case        1      2     3     4      5     6    7      8    9   10   11   12   13    14 
Distance  1.9   0.9  0.8  1.2  0.7  1.3  0.8   1.1  1.0 1.5  0.9  1.3  1.2   1.0 

5   Discussion and Conclusion 

In this paper, we proposed a generalized level set formulation of Mumford-Shah func-
tional for image segmentation with shape prior based on a sound mathematical defini-
tion of line integral in [11]. By embedding a weighted length term to the original 
Mumford-Shah functional, the novel variational model not only makes use of region 
homogeneities, but also provides a general framework to incorporate useful boundary 
features for image segmentation. In this paper, we have demonstrated that boundary 
information, such as shape prior as well as gradient information, can be efficiently 
incorporated into the segmentation process in this general framework.   

The shape prior is represented by the zero-level set of signed distance maps in the 
attempt to avoid having to solve the point correspondence problem and is consistent 
with the curve evolution in a variational formulation well. The experiments indicate 
that our level set shape model can deal with missing information, occlusion problem 
and shape variation due to differences in pose and the eigenshapes. When applied to 
cardiac MR images, the variational contour model also achieved desirable perform-
ance. Although we did not give 3-D medical image illustration, the extension to 3-D 
medical image segmentation problems of the model is rather straightforward thanks to 
the level set representation of the evolving contour. Our method can also be extended 
to incorporate the prior image gray level information [25] or deal with multiple ob-
jects [16]. These will be the subjects of future research. 

Acknowledgements. The authors Lishui Cheng and Xian Fan would like to particu-
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Abstract. We present a novel approach to efficiently compute thickness, corre-
spondence, and gridding of tissues between two simply connected boundaries. 
The solution of Laplace’s equation within the tissue region provides a harmonic 
function whose gradient flow determines the correspondence trajectories going 
from one boundary to the other. The proposed method uses and expands upon 
two recently introduced techniques in order to compute thickness and corre-
spondences based on these trajectories. Pairs of partial differential equations 
(PDEs) are efficiently computed within an Eulerian framework and combined 
with a Lagrangian approach so that correspondences trajectories are partially 
constructed when necessary. Results show that the proposed technique takes 
advantage of both the speed of the Eulerian PDE approach and the accuracy of 
the Lagrangian approach. 

1   Introduction 

Many parts of the human body have an annular tissue structure comprising two or 
more quasi-homogeneous tissues nested within one another. For example, the cerebral 
cortex is comprised of gray matter “sandwiched” between white matter on the inside 
and cerebrospinal fluid on the outside [1]. Another example is the left ventricular 
myocardium, which is intrinsically annular when viewed from cross-section images 
such as those obtained using magnetic resonance imaging (MRI) or computed tomo-
graphy (CT) [2]. 

The thickness of such annular structures is often associated with functional per-
formance or disease. For example, an increased thickness of the cerebral cortex may 
be associated with cortical dysplasias and lissencephaly [3], and decreased thickness 
may be related to Alzheimer’s disease and anorexia nervosa [4]. In the heart, adequate 
thickening of the myocardium during systole is associated with a healthy heart, 
whereas overall thickening of the myocardium over time is associated with many car-
diac diseases [5]. Sometimes it is also useful to subdivide (or grid) annular regions for 
regional characterization, labeling, or for finite element analysis [6]. 

A variety of methods have been described and used to measure thickness within 
annular regions. Most methods are ad hoc, often manually-assisted, and have accura-
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cies that are highly dependent on the boundary shapes and on the person analyzing the 
images. Jones et al. [7] proposed an approach based on solving Laplace’s equation 
that yields unique measures of thickness without paradoxes (see [8], [9]), and pro-
vides a strong initial basis for making thickness, correspondence, and gridding of an-
nular regions unique, accurate, and repeatable. A faster, but less accurate, approach 
within an Eulerian framework was later presented in [8], [9]. In this newer approach 
partial differential equations (PDEs) are solved for the desired lengths thereby avoid-
ing the explicit construction or tracing of any correspondence trajectory. In this paper 
we introduce a hybrid approach, in which the Eulerian approach is carefully modified 
so that it can use the Lagrangian approach where more precision is needed. The new 
method is significantly faster than the pure Lagrangian approach and more accurate 
than the Eulerian PDE approach. 

In Section 2, we review how thickness and correspondence are defined and sum-
marize both the Lagrangian and Eulerian PDE approaches. In Section 3, we describe 
in detail the proposed hybrid Eulerian-Lagrangian approach together with its numeri-
cal implementation. In Section 4, we compare the three approaches in terms of the 
precision of their results and their computational times using several images. 

2   Thickness and Correspondences 

Although there have been many attempts to properly define thickness within an annu-
lar region, most of them present certain problems [7]-[9]. For instance, the simple 
definition of thickness as the smallest Euclidean distance from a point in one surface 
to any point in the opposite surface has the problem that it lacks of reciprocity, that is, 
the thickness may be different in the case that the surfaces are interchanged. Jones et 
al. [7] defined thickness as the length of the flow lines of a harmonic function that is 
equal to 0 in one of the surfaces and equal to 1 in the other. The advantage of Jones’ 
method is that these flow lines, which are called correspondence trajectories, have the 
highly desirable properties that they are orthogonal to each one of the surfaces, they 
do not intersect each other, and they are nominally parallel. 

Let R ⊂ ℜn for n = 2, 3 be a spatial region with a simply connected inner boundary 
0R and outer boundary 1R (see Fig. 1). These boundaries have a sub-voxel resolu-

tion and are usually given as level set representations of some given functions. 

 

Fig. 1. Inner and outer boundaries of the tissue region R and a correspondence trajectory 
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Now let u be a harmonic function in R such that u( 0R) = 0 and u( 1R) = 1. The normalized 
gradient vector field of u coincides with the tangent vector field of the correspondence trajecto-
ries and is given by 

||||T u u= ∇ ∇
r

 . (1) 

For each point x ∈ R let the functions L0(x) and L1(x) be defined as the lengths of 
the correspondence trajectories that go from x to 0R and from x to 1R, respectively. 
Accordingly, the thickness W(x) of R at x is just 

0 1( ) ( ) ( )W L L= +x x x  . (2) 

In the Lagrangian approach proposed by Jones et al., L1(x) is computed by integrat-
ing T

r
 from x to 1R, and L0(x) is computed by integrating T−

r
 from x to 0R. Then 

the thickness of R at x is obtained using (2). Integration can be carried out using a va-
riety of methods such as Euler and Runge-Kutta integration. 

Although very accurate and easy to implement, the Lagrangian approach is compu-
tationally intensive. This is the main reason why a faster method within and Eulerian 
framework was proposed in [8]. In the Eulerian PDE approach, thickness is computed 
by solving a pair of PDEs that are constructed from the geometry of the problem. 
From the differential structure of L0 and L1, the following set of PDEs must be satis-
fied for each point x in R  

0 0 01,  with ( ) 0L T L R  , 1 1 11,  with ( ) 0L T L R .  
(3) 

The characteristics of the first differential equation in (3) are (by design) equal to 
the correspondence trajectories; therefore the tangent field T

r
 determines the direction 

of its characteristic flow. Similarly, the negative of the tangent field, T−
r

, determines 
the direction of the characteristic flow of the second differential equation in (3). More 
specifically, if Tx, Ty, and Tz are the components of T

r
 at the grid point (i, j, k) in R, 

and if the grids are assumed to have spacing x = y = z = 1, it is shown in [8] that 
the numerical finite difference approximations for L0[i, j, k] and L1[i, j, k] using up-
wind schemes are 
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Several iterative algorithms are proposed in [8] to solve (4). In all of them the ini-
tial values of L0 and L1 are set to 0 at all grid points so that values outside R serve as 
boundary conditions. Although all three methods yield the same solution, their con-
vergence rates are different.  

Besides computing thickness, one may be interested in finding the corresponding 
boundary points, that is, for any x ∈ R one wants to find the points x0 ∈ 0R and x1 ∈ 

1R such that the correspondence trajectory going from x0 to x1 passes through x (see 
Fig. 1). Since the correspondence trajectories have the property that they do not inter-
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sect each other, there is only a pair of points, x0 and x1, satisfying this condition. Hav-
ing unique corresponding boundary points in both 0R and 1R for every grid point in 
R allow us to generate anatomically shaped discrete grids within the tissue region. As 
described in [9], the Eulerian PDE approach can be also used to find correspondences. 
Let us define the correspondence functions φ0 : ℜn ℜn and φ1 : ℜn ℜn, which map 
x ∈ R to the inner and outer boundaries of R, respectively. One of the two conditions 
that both φ0 and φ1 must satisfy is that they must remain constant along the correspon-
dence trajectories, implying that their directional derivatives vanish along the direc-
tion given by T

r
. That is, we must have 

0 1( ) ( )T Tφ φ∇ = ∇ = 0
r r

 , (6) 

where of ∇φ0 and ∇φ1 denote the Jacobian matrices of φ0 and φ1, respectively. In addi-
tion, each correspondence function must map a point on its own boundary to itself as 
well, which yields another set of conditions given by 

0 0( ) , Rφ = ∀ ∈ ∂x x x  , 1 1( ) , Rφ = ∀ ∈ ∂x x x . (7) 

Boundary correspondences can be computed by solving (6) subject to the boundary 
conditions in (7). In [9], the solution is found by using upwind schemes similar the 
ones used to solve (4) for computing the thickness of R. Specifically, for x = y = z 
= 1 the resulting finite difference equations are 

| | [ 1, , ] | | [ , 1, ]+ | | [ , , 1]
[ , , ] , for 0,1 ,

| | | | | |
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x y z

T i j k T i j k T i j k
i j k

T T T
α α α

α
φ φ φφ α⊕ + ⊕ ⊕

= =
+ +

 (8) 

where the definitions in (5) hold. The same iterative procedures that can be used to 
solve L0 and L1 can also be used to solve for φ0 and φ1 above with the only difference 
being in the initialization procedure. In [9], the initialization is done by making φ0[i, j, 
k] and φ1[i, j, k] equal to (i, j, k) at grid points outside R that are next to the inner and 
outer boundaries, respectively. 

Finally, as described in [9], pairs of PDEs similar to those in (8) can be used to find 
correspondences no just in the boundaries, but also in any level set of a function that 
is equal to 0 on 0R and equal to 1 on 1R such as the harmonic function u itself or the 
normalized length function 0L  defined by 0 0 0 1( )L L L L= + . These correspondences 

can then be used to generate shaped discrete grids within R. 

3   A Hybrid Eulerian-Lagrangian Approach 

The main advantage of the Eulerian PDE approach is its computational speed – sev-
eral times faster than the Lagrangian approach, as shown in [8], [9]. On the other 
hand, as it is going to be shown in the next section, its main disadvantage is that it 
does not produce the highly accurate results that the Lagrangian approach yields. This 
is due to several factors. First, in the Eulerian PDE approach for thickness there is a 
lack of precision when setting up the boundary conditions as L0 and L1 are set to 0 at 
grid points in which they might have nonzero values. When doing this, the algorithm 
implicitly assumes an outer boundary that is shifted a little bit outward and an inner 
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boundary that is shifted a little bit inward. As a result, the computed thickness tends to 
be larger than what it should be. This is especially problematic when there are just a 
few grid points between the inner and the outer boundary. Similarly, in the Eulerian 
PDE approach for correspondences, the boundary conditions for φ0 and φ1 at grid 
points are set up to be equal to their coordinate positions, creating a similar undesir-
able effect as above. We may encounter another problem when solving (8) as well. As 
illustrated in Fig. 2, it is possible to have the corresponding boundary points for grid 
point x’s neighbors lying far apart on the boundary. Careful examination of (8) re-
veals that the computed values of φ0 and φ1 at x are convex combinations of φ0 and φ1 
at grid points that are neighbors of x. Therefore, it is possible for x to be mapped ei-
ther far outside the boundary [Fig. 2(a)] or far inside the boundary [Fig. 2(b)], de-
pending on the boundary’s curvature. 

It is logical to ask whether there is a way to naturally blend the Lagrangian and 
Eulerian PDE approaches so that the resulting method yields more accurate results 
than the Eulerian PDE approach, while requiring less computational time than the La-
grangian approach. Toward this end, we modify the previous Eulerian PDE approach 
to obtain a new hybrid algorithm with prescribable accuracy and the minimal possible 
sacrifice in speed. The first step to increase the accuracy of the Eulerian PDE ap-
proach is to improve the boundary conditions of the PDEs involved. We do this by us-
ing the Lagrangian approach to compute the values of L0 and φ0 at the grid points of R 
located immediately next to the inner boundary. Similarly, we use the Lagrangian ap-
proach to compute the values of L1 and φ1 at grid points immediately next to the outer 
boundary. Once we have computed these values, we use the Eulerian PDE approach 
to solve for L0, L1, φ0, and φ1 at the remaining grid points. In doing so, not only we ob-
tain more accurate values near the boundaries, but also we avoid propagating larger 
computational errors throughout the whole region R. Since these grid points are at 
most one grid away from the boundary, the explicit computation of their correspon-
dence trajectories does not require extensive computations. 

Having improved the initial conditions for the Eulerian approach, the next step is to 
guarantee that points be mapped as closely as desired to the boundaries. This can be 
done by making some changes to the order transversal algorithm proposed in [8], 
which is very similar to the “fast marching method” used in solving the Eikonal equa-
tion [10]. In this algorithm points are visited in the order that they are reached by the 
correspondence trajectories as they flow away from the known boundary. As a result, 
only one full sweep through the grid points in R is required to solve for L0 and φ0 fol-
lowed by one other sweep, but in a different direction, for L1 and φ1. Let  be a chosen  
 

 

Fig. 2. Points mapped outside the annulus region due to a concavity (a) and to a convexity (b) 
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tolerance constant. As it will be explained shortly,  will provide a mean to control the 
accuracy of the proposed hybrid approach. In the 2-D case, the idea consists in com-
puting the value of the Euclidean distance between φ [i±1, j] and φ [i, j±1], where  
could be either 0 or 1, before we consider φ [i, j] to be solved. If this distance is less 
than , then we can assume that φ [i, j] is very close to the boundary, otherwise we 
compute φ [i, j] using another technique. One thing we can do is just to use the La-
grangian approach and follow the correspondence trajectory for this particular grid 
point until we reach the corresponding boundary. By doing so, we are taking full ad-
vantage of the Lagrangian approach and getting an accurate value. However, a faster 
way would be to follow the correspondence trajectory until it reaches a region be-
tween two grid points that have already been solved such that the distance between 
the two boundary maps is less than the tolerance . If they are close enough, we use 
the linear interpolation implicit in the discretized Eulerian PDE approach to estimate 
the value of φ [i, j] at that point (since φ  is constant along the correspondence trajec-
tories, this is the value of φ  at the original grid point), otherwise we continue follow-
ing the trajectory and doing the same procedure until we find two correspondences 
that are close enough according to the desired tolerance. 

We stress out that in the proposed hybrid approach we use the Lagrangian ap-
proach just when needed (e.g., whenever the Euclidean distance between φ [i±1, j] 
and φ [i, j±1] is greater than or equal to ) otherwise we use the Eulerian PDE ap-
proach. Therefore, in general, we will not have to follow the whole correspondence 
trajectory. Consequently, depending on the value of , the proposed procedure can 
give us results as accurate as the Lagrangian approach or as fast as the Eulerian PDE 
approach. As it can be seen from (4), the values of L0 and L1 are computed in a similar 
way to those of φ0 and φ1. Consequently, it can be expected the computed values for 
L0 and L1 to be better approximations to the real values whenever the Euclidean dis-
tances between φ0 and φ1 at the grid points involved in the estimations are less than , 
than when they are greater than or equal to . Therefore, we can improve the precision 
of L0 and L1 if we compute them at the same time and in the same way as we compute 
φ0 and φ1 in the algorithm described above, taking into account that we have to add 
the arclength of the followed trajectory to the computed values. The hybrid Eulerian-
Lagrangian approach to compute L0 and φ0 is summarized as follows: 

Algorithm (Hybrid Eulerian-Lagrangian Approach): 

{1} Initially tag all grid points in R as UNVISITED. 
{2} Use the Lagrangian approach to compute the values of L0 and φ0 at grid points 

in R adjacent to the boundary 0R and re-tag them as SOLVED. 
{3} Use (4) and (8) to compute the values of L0 and φ0 at grid points in R next to the 

points already tagged as SOLVED, tag them as VISITED, and put them into a 
heap sorted by the values of u. 

{4} Grab the grid point from the top of the current heap of VISITED points (i.e. the 
grid point with the smallest value of u). Remove this point from the heap and tag 
it as SOLVED. 

{5} If the distance between the correspondence values of φ0 at the neighboring grid 
points used in (8) is less than the desired tolerance λ, then compute φ0 and L0 
using (4) and (8) and go to {7}, else set the arclength variable  to 0. 
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{6} Follow the correspondence trajectory at the current grid point until it intersects 
the horizontal or vertical grid line between two grid points tagged as SOLVED 
and located one cell away from each other, record its arclength, and replace the 
value of  with the sum of  and the recorded arclength. If the distance between 
the values of φ0 at these new grid points is greater than or equal to , then go to 
{6}, else compute φ0 using linear interpolation and assign the resulting value to 
φ0 of the original grid point of {5}. Compute L0 using linear interpolation and 
add the value of  to it. Assign this new computed value to L0 of the original grid 
point of {5}. 

{7} Update the values of L0 and φ0 using (4) and (8) for whichever neighbors of this 
grid point are not yet tagged as SOLVED. If any of these neighbors are cur-
rently tagged as UNVISITED, re-tag them as VISITED and add them to the cur-
rent heap of VISITED grid points. Stop if all points in R have been tagged 
SOLVED, else go to {4}.                                                                                        

The algorithm for computing L1 and φ1 is almost the same as above with minimal 
differences: in {2} we use the Lagrangian approach to compute the values of L1 and φ1 
at points in R next to the boundary 1R and in {3} the heap should be sorted by the 
values of 1 – u instead of u. For the 3-D implementation of the hybrid Eulerian-
Lagrangian approach we note that there are three grid points involved in each one of 
(4) and (8), consequently we must compute the distances between the values of φ0 (or 
φ1) at each of these points and the others two (there are just three cases) and then com-
pare the maximum of these distances with the desired tolerance . In addition, we 
must follow the trajectory until it intersects a square plane parallel to one of the three 
coordinate planes and formed by four neighbor grid points that are already solved. 
Besides computing thickness and correspondences at the same time and in a very fast 
way, the hybrid Eulerian-Lagrangian approach has two more important advantages. 
First, it terminates automatically so we do not have to keep testing for convergence. 
And second, the desired tolerance  gives us a way to control the accuracy of the 
computed values. If  is big enough, the hybrid Eulerian-Lagrangian approach will be 
nothing more than the Eulerian PDE approach with improved boundary conditions; 
whereas if  is 0, the hybrid Eulerian-Lagrangian approach will yield the same results 
as the Lagrangian approach. 

4   Results 

In this section, we compare the performance of the hybrid Eulerian-Lagrangian ap-
proach with those of the Eulerian and the Lagrangian approaches in terms of accuracy 
and computational speed for three experimental regions. We used a novel numerical 
method that was presented in [11] to compute a very accurate estimation of the har-
monic interpolant u within any annular region R. We then used this method, together 
with the Lagrangian approach with as much precision as possible, to compute highly 
accurate estimates of thickness and correspondences to serve as baseline for compar-
ing the results of the three approaches on images for which the real values for thick-
ness and correspondences are unknown in a simple closed form. To measure the accu-
racy of the computed correspondences in the experiments we define the 
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correspondence distance error as the average over all grid points inside R of the 
Euclidean distances between φ0 and the most accurately measured corresponding in-
ner boundary point and between φ1 and the most accurately measured corresponding 
outer boundary point. Unless otherwise stated, the tolerance value  is set to 1 pixel 
for all experiments. We used the ordered traversal algorithm in our implementation of 
the Eulerian approach. All algorithms were implemented in C++ on a 2.52-GHz Pen-
tium IV computer running Windows. 

We tested the three different approaches on the annulus between two concentric 
circles of radii 40 and 80 (all units in pixels) shown in Fig. 3. Clearly, the thickness at 
any point in R is equal to 40 pixels. In addition, the corresponding boundary points for 
any x in R are just the intersections of the line passing through x and the center of the 
circles with the inner and outer circumferences. As a consequence, we can compare 
the computed thickness and correspondences with the exact values. The average com-
puted thickness was equal to 40.01, 40.05, and 40.83 for the Lagrangian, hybrid Eule-
rian-Lagrangian, and Eulerian approach, respectively, whereas the correspondence 
distance error was 0.10, 0.12, 0.41 pixels, respectively. As expected, the accuracy of 
the hybrid Eulerian-Lagrangian approach was much better than that of the Eulerian 
approach, but not better than that of the Lagrangian approach. However, the computa-
tional times tell a different story, with the Eulerian approach being the fastest at 0.69 
seconds and the Lagrangian approach being the slowest at 4.39 seconds. The Eule-
rian-Lagrangian approach took just 1.11 seconds. For this experiment, the proposed 
hybrid approach allowed us to get the best of both worlds: the precision of the La-
grangian approach with almost the same speed as the Eulerian approach. Fig. 3 shows 
the computed values of L0 and L1 using the hybrid Eulerian-Lagrangian approach. The 
computed thickness ranged from 39.98 to 40.15. 

We again tested the three approaches with another synthetic region, shown in Fig. 
4. This time, the region R was the annulus between a circle of radius 25 and an ellipse 
with minor and major radii of 50 and 90. Comparing to what we assumed to be the 
exact solution, we got an average relative thickness error, over the 12,148 pixels in-
side R, of 0.078%, 0.26%, and 2.24% for the Lagrangian, hybrid Eulerian-Lagrangian, 
and Eulerian approach. Additionally, the correspondence distance errors were 0.13, 
0.14, and 0.52 pixels, respectively. The computational times were 3.97, 0.91, and 0.58 
seconds, respectively. Again, the proposed approach required much less time than the 
Lagrangian approach, while the accuracy of the latter was better than that of the for-
mer. 

 

Fig. 3. Thickness computations for a synthetic annular region between two concentric circles. 
a) Circular annulus. (b) Harmonic interpolant. (c) Tangent field. (d) L0. (e) L1. (f) Thickness. 

Finally, we applied all three methods to a 160 x 160 segmentation of the myocar-
dium obtained from a short-axis MR image of the heart shown in Fig. 5, which also 
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depicts some correspondence trajectories, evidencing the need to form curved corre-
spondence trajectories in some parts of the annular region R. The calculated thickness 
using the proposed approach is shown in Fig. 5(e), in which brighter regions represent 
thicker myocardium. Fig. 6 depicts the correspondence distance errors and the thick-
ness relative errors for the three approaches, including the hybrid Eulerian-Lagrangian 
approach with different values of tolerance . We note that for all cases the errors of 
the Eulerian PDE approach are much greater than those of the other approaches. We 
also observe that the performance of the proposed approach lies in-between those of 
the Eulerian and the Lagrangian approaches. Particularly, when  = 0.5 the errors of 
the Lagrangian and hybrid Eulerian-Lagrangian approaches are very similar, despite 
the fact that the hybrid approach required just about half the time required by the La-
grangian approach. Of course, this difference in computational time becomes much 
more relevant when working with 3-D images. 

 

Fig. 4. Thickness computations for a synthetic annular region between a circle and an ellipse. 
(a) Circular annulus. (b) Harmonic interpolant. (c) Tangent field. (d) L0. (e) L1. (f) Thickness. 

 

Fig. 5. Myocardial thickness from a short-axis MR image. (a) Endocardial and epicardial 
boundaries. (b) Harmonic interpolant. (c) Tangent field. (d) Boundary correspondences for 
some selected points. (e) Thickness. (f) Gridding of the region. 

 

Fig. 6. Comparison of the different approaches in terms of the average correspondence distance 
error, the average thickness relative error, and the computational time 
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5   Conclusions 

We have presented a new hybrid Eulerian-Lagrangian algorithm for computing thick-
ness, correspondences, and gridding in annular regions. These types of regions are of 
particular interest in medical imaging since their analysis can be used to early detect 
certain diseases or estimate functional performance of some parts of the human body. 
The innovation of the new method lies in the intricate way the Eulerian PDE approach 
and the Lagrangian approach are combined. These two earlier methods are completely 
different from each other and the way they can be efficiently and usefully blended is 
not straightforward at all as is evident from the description of the hybrid algorithm 
proposed. The whole purpose of this work was to create a practical approach that 
people would be more likely to use in contrast to the pure Lagrangian and pure Eule-
rian schemes previously published. The resulting technique possesses the best of both 
worlds, namely the speed of the Eulerian PDE approach and the accuracy of the La-
grangian approach, with the additional important (and practical) benefit of giving user 
precise control over the accuracy and maximum possible speed given that selected 
degree of accuracy. This makes the proposed method suitable for a much wider range 
of applications than either the Eulerian or Lagrangian approaches that are currently 
well known. 
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Abstract. In this paper we present a new framework for image segmentation
using probabilistic multinets. We apply this framework to integration of region-
based and contour-based segmentation constraints. A graphical model is con-
structed to represent the relationship of the observed image pixels, the region
labels and the underlying object contour. We then formulate the problem of im-
age segmentation as the one of joint region-contour inference and learning in the
graphical model. The joint inference problem is solved approximately in a band
area around the estimated contour. Parameters of the model are learned on-line.
The fully probabilistic nature of the model allows us to study the utility of dif-
ferent inference methods and schedules. Experimental results show that our new
hybrid method outperforms methods that use homogeneous constraints.

1 Introduction

Image segmentation is an example of a challenging clustering/classification problem
where image pixels are grouped according to some notion of homogeneity such as inten-
sity, texture, color, motion layers, etc. Unlike many traditional clustering/classification
problems, where the class labels of different query points are inferred independently,
image segmentation can be viewed as a constrained clustering/classification problem.
It is reasonable to expect that class-labels of points that are in spatial proximity of each
other will be similar. Moreover, the boundaries of segmented image regions are often
smooth, imposing another constraint on the clustering/classification solution.

Markov Random Fields (MRFs) have long been used, with various inference tech-
niques, in image analysis, because of their ability to impose the similarity constraints
among neighboring image pixels and deal with the noise [1,2,3,4,5]. The MRF-based
image segmentation method is an important representative of region-based segmenta-
tions, which assign image pixels to a region according to some image property (e.g.,
region homogeneity). The other major class of image segmentation methods are edge-
based segmentations, which generate boundaries of the segmented objects. Among oth-
ers, deformable models and their variants [6,7,8,9] are important representatives of this
class.

Though one can label regions according to edges or detect edges from regions, the
two kinds of methods are naturally different and have respective advantages and disad-
vantages. The MRF-based methods work well in noisy images, where edges are usually
difficult to detect while the region homogeneity is preserved. The disadvantages of these
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methods are that they may generate rough edges and holes inside the objects, and they
do not take account of the shape and topology of the segmented objects. On the other
hand, in deformable model-based methods, a prior knowledge of object shape can be
easily incorporated to constrain the segmentation result. While this often leads to suf-
ficiently smooth boundaries, the oversmoothing may be excessive. And these methods
rely on edge detecting operators, so they are sensitive to image noise and may need to
be initialized close to the actual region boundaries. The real world images, especially
medical images, usually have significant, often non-white noise and contain complex
high-curvature objects with a strong shape prior, suggesting a hybrid method to take
advantages of both MRFs and deformable models.

In this paper we propose a fully probabilistic graphical model-based framework to
combine the heterogeneous constraints imposed by MRFs and deformable models, thus
constraining the image segmentation problem. To tightly couple the two models, we
construct a graphical model to represent the relationship of the observed image pixels,
the true region labels and the underlying object contour. Unlike traditional graphical
models, the links between contour and region nodes are not fixed; rather, they vary ac-
cording to the state (position) of the contour nodes. This leads to a novel representation
similar to Bayesian multinets [10]. We then formulate the problem of image segmen-
tation under heterogeneous constraints as the one of joint region-contour inference and
learning in the graphical model. Because the model is fully probabilistic, we are able to
use the general tools of probabilistic inference to solve the segmentation problem. We
solve this problem in a computationally efficient manner using approximate inference
in a band area around the estimated contour.

The rest of this paper is organized as follows: section 2 reviews the previous work;
section 3 introduces a new integrated model; detailed inference on the coupled model
is described in section 4; section 5 shows the experimental results and comparison of
alternative inference methods and schedules; and section 6 summarizes the paper and
future work.

2 Previous Work

Because the exact MAP inference in MRF models is computationally infeasible, var-
ious techniques for approximating the MAP estimation have been proposed, such as
MCMC [1], ICM [2], MPM [3], and two of the more recently developed fast algo-
rithms: Belief Propagation (BP) [4] and Graph Cuts [5]. The estimation of the MRF
parameters is often solved using the EM algorithm [11]. However, MRFs do not take
account of object shape and may generate rough edges and even holes inside the ob-
jects. Since the introduction of Snakes [6], variants of deformable models have been
proposed to address problems such as initialization (Balloons [7] and GVF Snakes [9])
and changes in model’s topology [8]. One limitation of the deformable model-based
method is its sensitivity to image noise, a common drawback of edge-based methods.

Methods for integration of region and contour models were studied in [12,13] us-
ing inside-outside and stochastic Gibbs models. The joint contour-region inference is
accomplished using general energy minimization methods, without explicit model pa-
rameter learning. Chen et al. proposed a way of integrating MRFs and deformable mod-
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els in [14] using a loosely coupled combination of MRFs and balloon models. [15] first
introduced a more tightly coupled MRF-balloon hybrid model. While the model em-
ploys a probabilistic MRF, it still relies on a traditional energy-based balloon inference.
The model we propose in this paper differs because it is fully probabilistic, in both the
region and the contour constraints. This unified framework allows for probabilistic in-
ference and machine learning techniques to be applied consistently throughout the full
model, and not only to some of its parts, as in [15]. This allows us to systematically
study the utility of different inference methods and schedules. Moreover, our formu-
lation opens up the possibility to easily impose more specific constraints, such as the
shape priors, by appropriately settings the model’s parameters (or their priors).

3 Integrated Model

The integrated MRF-contour model structure is depicted in Fig. 1(a).
The model consists of three layers: the image pixel layer, the region label layer,

and the contour layer. Let n be the number of pixels in the image. A configuration of
the observable layer is y = (y1, ..., yn), yi ∈ D, i = 1, ..., n, where D is a set of
pixel values, e.g., gray values 0-255. Similarly, a configuration of the hidden layer is
s = (s1, ..., sn), si ∈ L, i = 1, ..., n, where L is a set of region labels, such as L =
{inside, outside}.

s (region labels)

y (image pixels)

c (underlying contour)
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Fig. 1. Structure and definition of the integrated model

The contour representation c (Fig. 1(b)) is slightly different from the traditional
representations used in energy-based models. Let d = (d1, ..., dm) be the m contour
node positions di = (xdi , ydi) in the image plane. We define c = (c1, ..., cm) as ci =
(di, di+1), i = 1, ..., m − 1, cm = (dm, d1). That is, each node ci in our model is
a segment of the actual contour. The edges between the s layer and the c layer are
determined based on the distance between the image pixels and the contour segments:
each pixel label node si is connected to its nearest contour segment ci′

i ← i′ = arg min
j

dist(i, cj).

Hence, the graph structure depends on the state of the contour nodes ci′ . A model of
this type is often referred to as a multinet [10].
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The segmentation problem can now be viewed as a joint MAP estimation problem:

(c, s, θ)MAP = arg max
c,s,θ

P (c, s, θ|y) (1)

where
P (c, s, θ|y) ∝ P (y|s, θ)P (s, c, θ)P (θ). (2)

Note that we include the estimation of model parameters θ as a part of the segmentation
process.

To define the joint distribution of the integrated model, we model the image likeli-
hood term P (y|s) identical to the traditional MRF model (we drop the dependency on
parameters θ when obvious):

P (y|s) =
∏

i

P (yi|si) =
∏

i

pi(si) =
∏

i

1√
2πσ2

si

exp
(

− (yi − µsi)
2

2σ2
si

)
(3)

where we assume the image pixels are corrupted by white Gaussian noise. The second
term P (s, c) models a joint distribution of region labels and the contour. We represent
this distribution in terms of two compatibility functions, rather than probabilities:

P (s, c) =
1

Z(s, c)
Ψsc(s, c)Ψc(c). (4)

The first term models the compatibility of the region labels with the contour, defined as:

Ψsc(s, c) =
∏

(i,j)

Ψss(si, sj)
∏
i

Ψsc(si, ci′)

=
∏

(i,j)

ψij(si, sj)
∏
i

ψii′(si, ci′)

=
∏
i

exp
(

δ(si−sj)

σ2

)∏
i

ψii′(si, ci′)

(5)

where we incorporated a shape c to constrain the region labels s, in addition to the
original Gibbs distribution. Note that the dependency between the contour and the re-
gion labels is not deterministic. The uncertainty in region labels for a given contour can
arise as an attempt to model, e.g., image aliasing and changes in region appearance at
boundaries.

Since we only segment one specific region at a time, we need only consider the
pixels near the contour, and label them either inside or outside the contour. We model the
dependency between the contour c and the region labels s using the softmax function:

ψii′(si = inside, ci′) ∼ 1/
(
1 + exp(−d(s)(i, ci′))

)
(6)

induced by the signed distance of pixel i from the contour segment ci′ (see Fig. 1(c)):

d(s)(i, ci′) = (di′ − loc(i)) × (di′+1 − di′)/|di′+1 − di′ | (7)

where loc(i) denotes the spatial coordinates of pixel i. This equation only holds when
the pixel is close to the contour, which accords with our assumption. When the contour
nodes are ordered counter-clockwise, the sign is positive when pixel i is inside the
contour and negative when it is outside.
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The contour prior term P (c) can be represented as:

Ψc(c) =
∏
i′

Ψcc(ci′−1, ci′)
∏
i′

Ψb(ci′) =
∏

(i′−1,i′)

ψi′−1,i′(ci′−1, ci′)
∏
i′

ψi′(ci′) (8)

where ψi′−1,i′(ci′−1, ci′) is the contour smoothness term and ψi′ (ci′) is used to simu-
late the balloon force.

Despite the compact graphical representation of the integrated model, the exact in-
ference in the model is computationally intractable. One reason for this is the large
state space size of the contour nodes (the 2D image plane). To deal with this problem
we restrict the contour searching to a set of normal lines along the current contour,
as proposed in [16] (see Fig. 1(b)). That is, the state space of each contour node di

is restricted to a small number, e.g., k, distinct values. In turn, the state space of each
contour segment ci is of size k2. Now we can easily calculate the discretized contour
smoothness term:

ψi′−1,i′(ci′−1, ci′) = e

(
−ω1

|d
i′−1−d

i′+1|2

4h2 −ω2
|d

i′−1+d
i′+1−2d

i′ |
2

h4

)
(9)

and simulate the balloon force by defining ψi′(ci′ ) = [ψi′,1, ..., ψi′,k], where ψi′,j is
the prior of each state j at the contour node di′ .

Lastly, the parameter priors P (θ) are chosen from the appropriate conjugate prior
families and are assumed to be uninformative. In this paper we primarily focus on the
MRF parameters.

4 Model Inference Using Bp

The whole inference/learning algorithm for the hybrid model can now be summarized as
below. The goal of our segmentation method is to find one specific region with a smooth
and closed boundary. A seed point is arbitrarily specified and the region containing it is
then segmented automatically. Thus, without significant loss of modeling generality, we
simplify the MRF model and avoid possible problems caused by segmenting multiple
regions simultaneously.

Initialize contour c;
while (error > maxError) {

1. Calculate a band area B around c. Perform remaining steps inside B;
2. Build links between the s and c layers according to the signed distances;
3. Calculate the discretized states at each contour node along its normal;
4. Estimate the MAP solution (c, s)MAP using BP with schedule S;
5. Update model parameters θMAP and contour position dMAP ;

}

As mentioned previously, the exact MAP inference even in the MRF model alone
is often computationally infeasible. In our significantly more complex but probabilis-
tic model, we resort to using the BP algorithm. BP is an inference method proposed
by Pearl [17] to efficiently estimate Bayesian beliefs in the network by the way of it-
eratively passing messages between neighbors. It is an exact inference method in the
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network without loops. Even in the network with loops, the method often leads to good
approximate and tractable solutions [18]. The implementation of BP in our model is
slightly more difficult than the BP algorithm in a traditional pairwise MRF, since the
model structure is more complicated. One can solve this by converting the model into
an equivalent factor graph, and use the BP algorithm for factor graphs [19,20]. Here
we give the straightforward algorithm for our specific model. Examples of the message
passing rules are

mij(sj) = max
si

[ψi(si)
∏

k∈ℵ(i)\j

mki(si)mi′i(si)ψij(si, sj)

 (10)

mi′i(si) = max
ci′

ψi′(ci′)
∏

k′∈ℵ(i′)

mk′i′(ci′)
∏

k∈ℵ′(i′)\i

mki′(ci′)ψii′(si, ci′)

 (11)

with message definition given in Fig. 1(d). ℵ denotes the set of neighbors from the same
layer, and ℵ′ denotes the set of neighbors from a different layer. The rules are based on
the max-product scheme. At convergence, the beliefs, e.g., of the pixel labels are

bi(si) ∼ ψi(si)
∏

k∈ℵ(i)mki(si)mi′i(si). (12)

A crucial question in this BP process is that of the “right” message passing sched-
ule [19,20]. Different schedules may result in different stable/unstable configurations.
For instance, it is widely accepted that short graph cycles deteriorate the performance
of the BP algorithm. We empirically study this question in Section 5.3 and show that
good schedules arise from understanding of the physical processes involved.

The BP is evoked only in a band area around current contour. A primary reason for
the band-limited BP update is the computational complexity of inference. Moreover,
the band-limited update can also be justified by the fact that the region labels of pixels
far from the current contour have little influence on the contour estimates. When the
BP algorithm converges, the model parameters (i.e., µsi and σsi ) can be updated using
following equations:

µl =
∑

i

b(si = l)yi/
∑

i

b(si = l), σ2
l =

∑
i

b(si = l)(yi − µl)2/
∑

i

b(si = l) (13)

where l ∈ {inside, outside} and b(·) denotes the current belief.
Because the edges between the s layer and the c layer are determined by the distance

between pixels and contour nodes, they also need to be updated in the inference process.
This step follows directly after the MAP estimation.

5 Experiments

Our algorithm was implemented in MATLAB/C, and all the experiments were tested on
a 1.5GHz P4 Computer. Most of the experiments took several minutes on the images of
size 128×128.
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5.1 Comparison with Other Methods

The initial study of properties and utility of our method was conducted on a set of
synthetic images. The 64×64 perfect images contain only 2 gray levels representing
the ”object” (gray level is 160) and the ”background” (gray level is 100) respectively.
We then made the background more complicated by introducing a gray level gradient
from 100 to 160, along the normal direction of the object contour to the image boundary
(Fig. 2(a)). Fig. 2(b) shows the result of a traditional MRF-based method. The object is
segmented correctly, however some regions in the background are misclassified. On the
other hand, the deformable model slightly leaked from the high-curvature part of the
object contour, where the gradient in the normal direction is too weak (Fig. 2(c)). Our
hybrid method, shown in Fig. 2(d), results in a significantly improved segmentation.

We next generated a test image (Fig. 2(e)) by adding zero-mean Gaussian noise with
σ 60 to Fig. 2(a). The result of the MRF-based method on the noisy image (Fig. 2(f))
is somewhat similar to that in Fig. 2(b), which shows the MRF can deal with image
noise to some extent. But significant misclassification occurred because of the com-
plicated background and noise levels. The deformable model either sticks to spurious
edges caused by image noise or leaks (Fig. 2(g)) because of the weakness of the true
edges. Unlike the two independent methods, our hybrid algorithm, depicted in Fig. 2(h),
correctly identifies the object boundaries despite the excessive image noise. For visual-
ization purposes we superimpose the contour on the original image (Fig. 2(a)) to show
the quality of the result in Fig. 2(g) and Fig. 2(h).

(a) Input (b) MRF (c) DM (d) GM (e) Noisy (f) MRF (g) DM (h) GM

Fig. 2. Experiments on synthetic images

(a) (b) (c) (d)

Fig. 3. Experiments on medical images

Experiments with synthetic images outlined some of the benefits of our hybrid
method. The real world images (e.g., medical images) usually have significant, often
non-white noise and contain multiple regions and objects, rendering the segmentation
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task a great deal more difficult. Fig. 3(a) is a good example of difficult images with com-
plicated global properties, requiring the MRF-based method to automatically determine
the number of regions and the initial values of the parameters. Fig. 3(b) is obtained by
manually specifying the inside/outside regions to get an initial guess of the parameters
for the MRF model. Our method avoids this problem by creating and updating an MRF
model locally and incrementally. Another problem with MRF-based method is that we
can not get a good representation of the segmented object directly from the model. The
image is also difficult for deformable models because the boundaries of the objects to
be segmented have many high-curvature parts. Fig. 3(c) exemplifies the over-smoothed
deformable models. Our method’s results, shown in Fig. 3(d) does not suffer from the
problems. For the deformable model method, we started the balloon model at several
different initial positions and use the best results for the comparison. On the other hand,
our hybrid method is significantly less sensitive to the initialization of the parameters
and the initial seed position.

5.2 Comparison of Different Inference Methods

We compared our proposed inference method (MAP by BP) with three other simi-
lar methods: maximum marginal posterior (MM), iterative conditional modes (ICM),
and Gibbs sampling. In the MM method the inference process is accomplished using
the sum-product belief propagation algorithm [20]. The algorithm yields approximate
marginal posteriors, e.g., P (si|y) that are then maximized on individual basis, e.g.,
si∗ = argmaxsi P (si|y). The ICM and Gibbs inference methods, respectively, maxi-
mize and sample from the local conditional models, e.g.,
si∗ = argmaxsi P (si|Markov Blanket(si)), one variable at a time.

In all our experiments there was no substantial visible difference between the seg-
mentation results of MAP and MM estimates, as exemplified by Fig. 4. Comparison
of log likelihood profiles during inference revealed small differences—as expected, the
sum-product inference outperforms the max-product in noisy situations. On the other
hand, the use of ICM and Gibbs inference resulted in significantly worse final segmen-
tation. For instance, when used only in the MRF layer, ICM and Gibbs-driven segmen-
tation lead to final estimates shown in Fig. 4c and Fig.4d. Surprisingly, the differences
in the log likelihood estimates appear to be less indicative of this final performance.
The use of the two approximate inference methods, not shown here, in the DM layer
resulted in very poor segmentation.

5.3 Comparison of Different Message Passing Schedules

The choice of the message passing schedule in the BP algorithm is an interesting and
still open problem. We experimented with two different schedules. In the first schedule
S1 we first update messages mij(sj) in s-layer until convergence (this usually takes two
or three iterations in our experiments), and then send messages mii′(ci′ ) once (which
is essentially passing messages from s-layer to c-layer). Next, we update messages
mi′j′(cj′ ) in c-layer until convergence (usually in one or two iterations), and finally
update messages mi′i(xi), i.e., send messages back from c-layer to s-layer. In the other
schedule S2 we started from the top of the model, update all the messages mij(sj),
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Fig. 4. Top: Final segmentation results of different inference schemes: (a) sum-product, (b) max-
product, (c) ICM in MRF, sum-product in DM, and (d) Gibbs in MRF, sum-product in DM.
Bottom: Changes in log likelihood during iterations of different inference schemes
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Fig. 5. Experiments with different message passing schedule. Top: S1, Center: S2, Bottom: Log
likelihoods (computed at MAP estimates) using the two different schedules.

mii′(ci′ ), mi′j′ (cj′), and mi′i(si) in this sequence exactly once and repeat, until con-
vergence.

The two message passing schedules were chosen to study the importance of within-
model (e.g., inside MRF) local consistency (schedule S1) and between-models local
consistency (S2). The former message passing schedule may be intuitively more ap-
pealing considering the physical difference of the two models (MRFs and deformable
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models) we are coupling. Traditional energy-based methods also point in the direction
of this schedule; integration of forces is usually first computed in the individual hor-
izontal layers. Moreover, S1 leads to better experimental results. The upper two rows
of Fig. 5 show, visually, the segmentation performance of the two schedules. The esti-
mates of the likelihood resulting from the two schedule, displayed in the bottom row of
Fig. 5, also indicate that S1 is preferred to S2. Again, the contour is superimpose on the
perfect image for visualization purposes.

6 Conclusions

We proposed a new, fully probabilistic framework to combine two heterogeneous con-
straints, MRFs and deformable models, for the clustering/classification task of image
segmentation. The framework was developed under the auspices of the probabilistic
multinet model theory allowing us to employ a well-founded set of statistical estimation
and learning techniques. In particular, we employed an approximate, computationally
efficient solution to the otherwise intractable constrained inference of image regions.
We showed the utility of our hybrid method and different inference schemes. We also
presented two different message passing schedules. Finally, we point to the central role
of inference schemes and message passing schedules in the segmentation process.

We are now working on including a stronger shape prior to the model, in additional
to current smoothness term and balloon forces. In our future work we will consider
similarity as well as dissimilarity constraints, specified by users or learned from data,
to further reduce the feasible solution spaces in the context of image segmentation.
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Abstract. In this paper we present a fully automatic and accurate seg-
mentation framework for 2D tagged cardiac MR images. This scheme
consists of three learning methods: a) an active shape model is imple-
mented to model the heart shape variations, b) an Adaboost learning
method is applied to learn confidence-rated boundary criterions from the
local appearance features at each landmark point on the shape model,
and c) an Adaboost detection technique is used to initialize the seg-
mentation. The set of boundary statistics learned by Adaboost is the
weighted combination of all the useful appearance features, and results
in more reliable and accurate image forces compared to using only edge
or region information. Our experimental results show that given similar
imaging techniques, our method can achieve a highly accurate perfor-
mance without any human interaction.

1 Introduction

Tagged cardiac magnetic resonance imaging(MRI) is a well known technique for
non-invasively visualizing the detailed motion of myocardium throughout the
heart cycle. This technique has the potential of early diagnosis and quantitative
analysis of various kinds of heart diseases and malfunction. However, before it
can be used in routine clinical evaluations, an imperative but challenging task
is to automatically find the boundaries of the epicardium and the endocardium.
(See Figure 1(a-c) for some examples.)

Segmentation in tagged MRI is difficult for several reasons. First, the bound-
aries are often obscured or corrupted by the nearby tagging lines, which makes
the conventional edge-based segmentation method infeasible. Second, tagged
MRI tends to increase the intensity contrast between the tagged and un-tagged
tissues at the price of lowering the contrast between the myocardium and the
blood. At the same time, the intensity of the myocardium and blood vary during
the cardiac cycle due to the tagging lines fading in the myocardium and being
flushed away in the blood. Third, due to the short acquisition time, the tagged
MR images have a relatively high level of noise. These factors make conven-
tional region-based segmentation techniques impractical. The last and the most

Y. Liu, T. Jiang, and C. Zhang (Eds.): 2005, LNCS 3765, pp. 93–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CV IB A



94 Z. Qian, D.N. Metaxas, and L. Axel

(a) (b) (c) (d)

Fig. 1. (a-c) Some examples of tagged cardiac MRI images. The task of segmentation
is to find the boundaries of the epicardium and endocardium (including the LV and RV
and excluding the papillary muscles.) (d) The framework of our segmentation method.

important reason is that, from the clinicians’ point of view, or for the purpose
of 3D modeling, accurate segmentation based solely on the MR image is usu-
ally not possible. For instance, for conventional clinical practice, the endocardial
boundary should exclude the papillary muscles for the purpose of easier anal-
ysis. However, in the MR images, the papillary muscles are often apparently
connected with the endocardium and cannot be separated if only the image in-
formation is used. Thus prior shape knowledge is needed to improve the results
of automated segmentation.

There have been some efforts to achieve tagged MRI segmentation. In [1],
grayscale morphological operations were used to find non-tagged blood-filled
regions. Then they used thresholding and active contour methods to find the
boundaries. In [2], a learning method with a coupled shape and intensity statis-
tical model was proposed. In [3,4], Gabor filtering was used to remove the tagging
lines before the segmentation. These methods work in some cases. However they
are still imperfect. In [1], morphological operations are sensitive to image noise,
and the active contour method tends to get irregular shapes without a prior
shape model. In [2], their intensity statistical model cannot capture the complex
local texture features, which leads to inaccurate image forces. And in [3,4], the
filtering methods blur the boundaries and decrease the segmentation accuracy.

In this paper, in order to address the difficulties stated above, we propose a
novel and fully automatic segmentation method based on three learning frame-
works: 1. An active shape model(ASM) is used as the prior heart shape model.
2. A set of confidence-rated local boundary criteria are learned by Adaboost,
a popular learning scheme (see Section 2.2), at landmark points of the shape
model, using the appearance features in the nearby local regions. These criteria
give the probability of the local region’s center point being on the boundary, and
force their corresponding landmark points to move toward the direction of the
highest probability regions. 3. An Adaboost detection method is used to initial-
ize the segmentation’s location, orientation and scale. The second component
is the most essential contribution of our method. We abandon the usual edge
or region-based methods because of the complicated boundary and region ap-
pearance in the tagged MRI. It is not feasible to designate one or a few edge or
region rules to solve the complicated segmentation task. Instead, we try to use
all possible information, such as the edges, the ridges, and the breaking points
of tagging lines, to form a complex rule. It is apparent that at different locations
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on the heart boundary, this complex rule must be different, and our confidence
in the complex rule varies too. It is impractical to manually set up each of these
complex rules and weight their confidence ratings. Therefore, we implement Ad-
aboost to learn a set of rules and confidence ratings at each landmark point on
the shape model. The first and the second frameworks are tightly coupled. The
shape model deforms under the forces from Framework 2 while controlled and
smoothed by Framework 1. To achieve fully automatic segmentation, in Frame-
work 3 the detection method automatically provides an approximate position
and size of the heart to initialize the segmentation step. See Figure 1(d) for a
complete illustration of the frameworks.

The remainder of this paper is organized as follows: in Section 2, we present
the segmentation methodology, including Frameworks 1 and 2. In Section 3,
we briefly introduce the heart detection technique of Framework 3. In Section
4 we give some details of our experiments and show some encouraging initial
experimental results.

2 Segmentation Based on ASM and Local Appearance
Features Learning Using Adaboost

There has been some previous research on ASM segmentation methods based on
local features modeling. In [5], a statistical analysis was performed, which used
sequential feature forward and backward selection to find the set of optimal local
features. In [6], an EM algorithm was used to select Gabor wavelet-based local
features. These two methods tried to select a small number of features, which
is impractical to represent complicated local textures such as in tagged MRI.
In [7], a simple Adaboost learning method was proposed to find the optimal
edge features. This method didn’t make full use of the local textures, and didn’t
differentiate each landmark point’s confidence level. In our method, similarly
using Adaboost, our main contributions are: the ASM deforms based on a more
complex and robust rule, which is learned from the local appearance, not only
of the edges, but also ridges and tagging line breakpoints. In this way we get a
better representation of the local appearance of the tagged MRI. At the same
time, we derive the confidence rating of each landmark point from their Adaboost
testing error rates, and use these confidence ratings to weight the image forces
on each landmark point. In this way the global shape is affected more by the
more confident points and we eliminate the possible error forces generated from
the less confident points.

2.1 ASM Shape Model

Since the shape of the mid portion of the heart in short axis (SA) images is
consistent and topologically fixed (one left ventricle (LV) and one right ventricle
(RV) ), it is reasonable to implement an active shape model [8] to represent the
desired boundary contours.

We acquired two image datasets each, from two normal subjects, using two
slightly different imaging techniques. The datasets were acquired in the short axis
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plane. There are two sets of tagging line orientations (0◦ and 90◦, or −45◦ and
45◦) and slightly different tag spacings. Each dataset included images acquired
at phases through systole into early diastole, and at positions along the axis of
the LV, from near the apex to near the base, but without topological changes.
An expert was asked to segment the epicardium (Epi), the left ventricle (LV)
endocardium and the right ventricle (RV) endocardium from the datasets. In
total, we obtained 220 sets (each set includes one LV, one RV, and one Epi) of
segmented contours to use as the training data.

Segmented contours were centered and scaled to a uniform size. Landmark
points were placed automatically by finding key points with specific geometric
characteristics. As shown in Figure 2(a), the black points are the key points,
which were determined by the curvatures and positions along the contours. For
instance, P1 and P2 are the highest curvature points of the RV; P7 and P8 are
on opposite sides of the center axis of the LV. Then, fixed numbers of other points
are equally placed in between. In this way, the landmark points were registered to
the corresponding locations on the contours. Here, we used 50 points to represent
the shape.

For each set of contours, the 50 landmark points (xi, yi) were reshaped to form
a shape vector X = (x1, x2, ..., x50, y1, y2, ..., y50)T . Then Principal Component
Analysis was applied and the modes of shape variation were found. Any heart
shape can be approximately modeled by X = X̄ + Pb, where X̄ is the mean
shape vector, P is the matrix of shape variations, and b is the vector of shape
parameters weighting the shape variations.

After we find the image forces at each landmark point, as in Section 2.2,
the active shape model evolves iteratively. In each iteration, the model deforms
under the influence of the image forces to a new location; the image forces are
then calculated at the new locations before the next iteration.

2.2 Segmentation Via Learning Boundary Criteria Using Adaboost

Feature Design. To capture the local appearance characteristics, we designed
three different kinds of steerable filters. We use the derivatives of a 2D Gaussian
to capture the edges, we use the second order derivatives of a 2D Gaussian to
capture the ridges, and we use half-reversed 2D Gabor filters [9] to capture the
tagging line breakpoints.

Assume G = G((x − x0) cos(θ), (y − y0) sin(θ), σx, σy) is an asymmetric 2D
Gaussian, with effective widths σx and σy , a translation of (x0, y0) and a rotation
of θ. We set the derivative of G to have the same orientation as G:

G′ = Gx cos(θ) + Gy sin(θ) (1)

The second derivative of a Gaussian can be approximated as the difference of
two Gaussians with different σ. We fix σx as the long axis of the 2D Gaussians,
and set σy2 > σy1. Thus:

G′′ = G(σy1) − G(σy2) (2)
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(a) (b) (c) (d)

Fig. 2. (a) shows the automatic method used to place the landmark points. (b-d) are
the sample sets of feature filters: (b) are the derivatives of Gaussian used for edge
detection, (c) are the second derivatives of Gaussian used for ridge detection, and (d)
are the half-reversed Gabor filters used for tag line breakpoint detection.

In the previous two equations, we set x0 = 0, and tune y0, θ, σx, σy , σy1 and
σy2 to generate the desired filters.

The half-reversed 2D Gabor filters are defined as a 2D sine wave multiplied
with the 2D derivative of a Gaussian:

F = G′(x, y) · R{e−j[φ+2π(Ux+V y)]} (3)

where G′ is the derivative of a 2D Gaussian. U and V are the frequencies of the
2D sine wave, ψ = arctan(V/U) is the orientation angle of the sine wave, and φ
is the phase shift. We set x0 = 0, σx = σy = σ,−45◦ ≤ ψ − θ ≤ 45◦, and tune
y0, θ, σ, φ, U and V to generate the desired filters.

For a 15x15 sized window, we designed 1840 filters in total. See Figure 2(b-d)
for some sample filters.

Adaboost Learning. In the learning section, each training image is scaled
proportionally to the scaling of its contours. At each landmark point of the
contours, a small window (15x15) around it was cut out as a positive appearance
training sample for this particular landmark point. Then along the normal of
the contour, on each side of the point, we cut out two 15x15-sized windows as
negative appearance training samples for this particular landmark point. Thus
for each training image, at a particular landmark point, we got one positive
sample and four negative samples (shown in Figure 3(a).) We also randomly
selected a few common negative samples outside the heart or inside the blood
area, which are suitable for every landmark point. For image contrast consistency,
every sample was histogram equalized.

The function of the Adaboost algorithm [10,11] is to classify the positive
training samples from the negative ones by selecting a small number of important
features from a huge potential feature set and creating a weighted combination
of them to use as an accurate strong classifier. During the boosting process, each
iteration selects one feature from the total potential features pool, and combines
it (with an appropriate weight) with the existing classifier that was obtained in
the previous iterations. After many iterations, the weighted combination of the
selected important features can become a strong classifier with high accuracy.
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(a) (b) (c)

Fig. 3. (a) shows the method of setting the training data. The solid box is the positive
sample around the landmark points. The four dashed line boxes along the normal
are the negative samples. This way of setting the negative samples is chosen to make
the classifier more adaptive to the particular landmark position. (b) and (c) show the
training error (solid lines) and testing error (dash lines) of two landmark points versus
Adaboost iteration times. (b) is a point on the LV, (c) is a point on the Epi. Note how
the training and testing error decrease as Adaboost iterates. Also note the testing error
of (b) is higher than (c): we are more confident of landmark point (c)’s classification
result.

The output of the strong classifier is the weighted summation of the outputs of
each of its each selected features, or, the weak classifiers: F = Σtαtht(x), where
α are the weights of weak classifiers, and h are the outputs of the weak classifiers.

We call F the boundary criterion. When F > 0, Adaboost classifies the point
as being on the boundary. When F < 0, the point is classified as off the boundary.
Even when the strong classifier consists of a large number of individual features,
Adaboost encounters relatively few overfitting problems [12]. We divided the
whole sample set into one training set and one testing set. The function of the
testing set is critical. It gives a performance measure and a confidence level that
tells us how much we should trust its classification result. Figure 3(b, c) shows
the learning error curve versus the boosting iteration numbers at two selected
landmark points. Note that every landmark point i has its own α, h and Fi.

Segmentation Based on Confidence Ratings. In the segmentation stage,
we first select an initial location and scale, and then overlay the mean shape X̄ ,
which is obtained from ASM, onto the task image. In section 3 we describe an
automatic initialization method.

At a selected landmark point i on the shape model, we select several equally
spaced points along the normal of the contour on both sides of i, and use their F
values to examine the corresponding windows centered on these points. In [12],
a logistic function was suggested to estimate the relative boundary probabilities:

Pr(y = +1|x) =
eF (x)

eF (x) + e−F (x)
(4)

We find a point j whose test window has the highest probability of being on the
heart boundary. Thus an image force f should push the current landmark point
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i toward j. Recall that, as discussed in the previous subsection, Adaboost gives
the errors of the testing data ei. We define the confidence rating as:

ci = ln
1
ei

; (5)

Intuitively, when ci is big, we trust its classification and increase the image force
f , and conversely. Thus, we define the image force at landmark point i as:

f = µ · [x(j) − x(i)] · c(i)
||x(j) − x(i)||2

(6)

where µ is a scale as a small step size.
The detailed algorithm to update the parameters of the ASM model with the

image force f can be found in [8].

3 Heart Detection Based on Adaboost Learning

The heart detection algorithm used is influenced by the Adaboost face detec-
tion algorithm developed by Paul Viola and Michael Jones [13]. The reason we
adapt a face detection method is that these two problems are closely related.
Often, there are marked variations between different face images, which come
from different facial appearance, lighting, expression, etc. In heart detection, we
have the similar challenges: the heart images have different tag patterns, shape,
position, phase, etc.

We use the same Haar wavelet features as in [13]. The training data contained
297 manually cropped heart images and 459 randomly selected non-heart images.
The testing data consisted of 41 heart images and 321 non-heart images. These
data were resized to 24x24 pixels and contrast equalized. Adaboost training gave
a strong classifier by combining 50 weak features. For an input task image, the
detection method searched every square window over the image, and found a
window with the highest probability as the final detection. If we rotate the task

(a) (b) (c) (d)

Fig. 4. (a) shows a few samples of the training data. (b), (c) and (d) are three detection
results. For image (d), the image was rotated by a set of discrete angles before the
detection, and the final detection is of the highest probability among all the discrete
angles tested.
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image by a set of discrete angles before the detection procedure, and compare
the probabilities across the discrete angles, we are also able to detect hearts in
rotated images (see Figure 4).

4 Representative Experimental Results and Validation

We applied our segmentation method to three data sets, one from the same sub-
ject and with the same imaging settings as the training data (but excluding the
training data), and the other two novel data sets from two different subjects and
with slightly different imaging settings. Respectively, the three data sets each
contained 32, 48 and 96 tagged MRI images, with different phases, positions and
tagging orientations. Each task image was rotated and scaled to contain a 80x80-
pixel-sized chest-on-top heart, using the detection method before the segmen-
tation. Each segmentation took 30 iterations to converge. Our experiment was
coded in Matlab 6.5 and run on a PC with dual Xeon 3.0G CPUs and 2G mem-
ory. The whole learning process took about 20 hours. The segmentation process
of one heart took 120 seconds on average. See Figure 5 for representative results.

For validation, we used the manual segmentation contours as the ground
truth for the first and second data sets. For the third data set, because we don’t
have independent manual contours, we used cross validation, since we know
that at the same position and phase, the heart shapes in the vertical-tagged and
horizontal-tagged images should be similar. We denote the ground truth contours
as T and our segmentation contours as S. We defined the average error distance
as D̄error = meansi∈S(min||T − si||2). Similarly the cross distance is defined as
D̄cross = meansvertical

i ∈Svertical(min||Shorizontal − svertical
i ||2). In a 80x80 pixel-

sized heart, the average error distances between the automatically segmented
contours and the contours manually segmented by the expert for the first data set
were: D̄error(LV ) = 1.12 pixels, D̄error(RV ) = 1.11 pixels, D̄error(Epi) = 0.98
pixels. For the second data set, D̄error(LV ) = 1.74 pixels, D̄error(RV ) = 2.05
pixels, D̄error(Epi) = 1.33 pixels. In the third dataset, the cross distances are:
D̄cross(LV ) = 2.39 pixels, D̄cross(RV ) = 1.40 pixels, D̄cross(Epi) = 1.94 pixels.
The larger distance in the cross validation arises in part from underlying mis-
registration between the (separately acquired) horizontal and vertical images.
Thus, the true discrepancy due to the segmentation should be smaller. From the
above quantitative results, we find that for a normal-sized adult human heart,
the accuracy of our segmentation method achieves an average error distance of
less than 2mm. The cross validation results of the third data set suggest that
our method is very robust as well.

5 Discussion

In this paper, we have proposed a learning scheme for fully automatic and accu-
rate segmentation of cardiac tagged MRI data. The framework has three steps.
In the first step we learn an ASM shape model as the prior shape constraint.
Second, we learn a confidence-rated complex boundary criterion from the local
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1)

2)

3)

4)
(a) (b) (c) (d) (e)

Fig. 5. The first and second rows of images come from the the first and second dataset,
respectively. For better representation, the images in the first row vary in position and
remain at the same phase, while the images in the second row vary in phase but remain
at the same position. The solid contours are from our automatic segmentation method;
the dashed contours are manual. Notice that the papillary muscles in LV are excluded
from the endocardium. The third and fourth rows are from the third dataset. Manual
contours are not available for this dataset, so we compare our segmentation results
between the the horizontal and vertical tagged images that are at same position and
phase. Qualitatively, the contours are quite consistent, allowing for possible misreg-
istration between the nominally corresponding image sets. In (3a), (3c) and (3e) the
dashed contours are testing examples of poor initializations, while the final contours
are solid. Although the initialization is fay away from the target, the shape model
moves and converges well to the target.

appearance features to use to direct the detected contour to move under the
influence of image forces. Third, we also learn a classifier to detect the heart.
This learning approach achieves higher accuracy and robustness than other pre-
viously available methods. Since our method is entirely based on learning, the
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way of choosing the training data is critical. We find that if the segmentation
method is applied to images at phases or positions that are not represented in
the training data, the segmentation process tends to get stuck in local minima.
Thus the training data need to be of sufficient size and range to cover all possible
variations that may be encountered in practice.

An interesting property of our method is that it is not very sensitive to the
initialization conditions. As shown in Figure 5, even if the initial contours are far
away from the target position, it can still eventually converge to the right position
after a few iterations. This property makes automatic initialization feasible. The
detection method gives only a rough approximation of the heart’s location and
size, but it is good enough for our segmentation purposes.
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Abstract. Microaneurysms (MAs) detection is a critical step in diabetic
retinopathy screening, since MAs are the earliest visible warning of po-
tential future problems. A variety of thresholding based algorithms have
been proposed for MAs detection in mass screening. Most of them pro-
cess fundus images globally without a mechanism to take into account the
local properties and changes. Their performance is often susceptible to
nonuniform illumination and locations of MAs in different retinal regions.
To keep sensitivity at a relatively high level, a low grey value threshold
must be applied to the entire image globally, resulting in a much lower
specificity in MAs detection. Therefore, post-processing steps, such as,
feature extraction and classification, must be followed to improve the
specificity at the cost of sensitivity. In order to address this problem,
a local adaptive algorithm is proposed for automatic detection of MAs,
where multiple subregions of each image are automatically analyzed to
adapt to local intensity variation and properties, and furthermore prior
structural features and pathology, such as, region and location informa-
tion of vessel, optic disk and hard exudate are incorporated to further
improve the detection accuracy. This algorithm effectively improves the
specificity of MAs detection, without sacrificing the achieved sensitivity.
It has potential to be used for automatic level-one grading of diabetic
retinopathy screening.

1 Introduction

Diabetic retinopathy is a widely spread eye disease that may cause blindness
in diabetic patients. Often patients may not be aware of being affected by the
disease until its late stage, thus annual screening of patients for possible diabetic
retinopathy is recommended. In the screening, microaneurysms (MAs), one of
the lesions that is the earliest visible in diabetic retinopathy, is an important
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pathology to be detected and be followed-up closely. The number, density and
location of MAs are important factors to quantify the progression of diabetic
retinopathy. MAs are saccular outpouchings of the retinal capillaries, and their
sizes range from 10 µm to 100 µm, but should always be less than 125 µm. As
capillaries are too thin to be visible in digital fundus image, MAs appear to be
isolated patterns that are disconnected from vessel structures. Hemorrhages are
blood leaking from MAs and deposit in the retina. Small dotted hemorrhages
are often hard to be visually differentiated from MAs. So like most of other
publications, we make no distinction between small dotted hemorrhages and
MAs. A digital fundus image with MAs is illustrated in the top figure of Fig. 5.

Manual identification of MAs is time consuming and subjected to inter- and
intra-operator variability. Screening a large amount of diabetic patients annually
poses a huge workload for ophthalmologists. Therefore, automatic detection of
MAs and other lesions, and then referring only suspicious cases to ophthalmolo-
gists for further treatment attract much attentions from researchers. Most exist-
ing MAs detection techniques were developed with fluorescein angiogram, which
is an image of the eye fundus obtained after a fluorescent dye was injected into
the patient’s body and passed through the blood vessels of the retina. MAs are
then highlighted in fluorescein angiograms, which makes MAs detection easier.
In recent years, the digital fundus image, which does not require dye injection, is
getting more used for screenings. MAs are dark reddish small dots with a size of
several pixels in digital fundus images, depending on image resolution. Although
most techniques developed for angiogram can be directly applied to digital fun-
dus images, care must be taken for the weaker contrast of MAs to surrounding
pixels. In this paper, MAs detection in digital fundus images is addressed.

1.1 Related Work

The most widely used scheme for MAs detection contains a sequence of oper-
ations: image preprocessing, global thresholding, region grow and feature ex-
traction, and then classification to discriminate true MAs from false detec-
tions [1,2,3,4,5,6]. An illustration of the procedure is shown in Fig.1. It has
achieved success in MAs detection to some degree, however, several factors con-
strain further improvement of the detection accuracy.

First of all, local properties of retina and inhomogeneous illumination of dif-
ferent regions are not considered in this framework. Thus, a global processing
method often generates considerable amount of false detections. Some prepro-
cessing techniques, such as shade correction, can ease the severity of inhomoge-
neous imaging conditions, the problem associated with global thresholding still
exists. Region grow, feature extraction and classification can remove some false
detections, but these steps may also introduce extra errors. For example, as
pointed out in [3,5], region growing of small objects such as MAs is not very re-
liable. The shape features in MAs detection are essential to classification [1,4,6].
However, due to the irregular shape of MAs [4], a classifier is usually trained to
accept shapes varying in a large range, which leads to misclassification. These
issues exist for MAs detection in fluorescein angiograms, and are likely to be
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Fig. 1. Widely used scheme for MA detection

more severe in digital fundus images, where MAs appear to have much weaker
contrast to their neighboring pixels. In addition, all parameters in this sequential
procedure are coupled and affect each other - the parameters in a later process-
ing step need to be adjusted according to the output of the previous one. As
a result, the performance is more sensitive to parameter adjustment and less
robust.

Another method based on normalized cuts [7] was proposed for MAs detec-
tion in [8], where two factors may hinder its success in real applications. Its
performance is sensitive to the number of segments selected; and the computa-
tional complexity can be as high as O(n3), where n is the total number of pixels.
It becomes impractical with a normal size of 1024×1280 digital fundus images.

1.2 Structure of the Paper

The rest of the paper is organized as follows. Section 2 proposes a new scheme
for MAs detection that combines local adaptive detection with prior structural
and lesion knowledge. It is then followed by a detailed description of the imple-
mentation. Section 2.1 describes the image division and enhancement techniques.
Section 2.2 describes a local adaptive algorithm for MAs detection. Incorporation
of prior knowledge, including detecting optic disk, vessel and hard exudate, is
discussed in Section 2.3. Section 3 shows the results and comparison with the ex-
isting methods. Finally, Section 4 concludes the paper with possible future work.

2 New Scheme for MAs Detection

A new scheme is proposed for MAs detection based on analyzing the existing
algorithms. The main goal is to (1) take into account the local properties and
variations to improve the sensitivity of detection; (2) incorporate prior knowledge
during detection, such as, no MAs would appear on vessels, to further reduce
false detections; (3) be more robust to parameter selections, therefore to different
imaging conditions. Fig. 2 illustrates the flowchart of our proposed scheme, where
a fundus image is first automatically subdivided, and each subregion is then
analyzed adaptively. Detections of optical disk, vessel and hard exudate are
introduced in parallel to incorporate prior knowledge about locations where MAs
would not appear.

In comparison with the scheme in Fig. 1, we believe that the new scheme
contributes in the following aspects. A mechanism is introduced for including
and analyzing the local properties of images in the detection. Instead of using
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Fig. 2. Our proposed scheme for MAs detection

one global threshold, multiple automatically selected thresholds are used in MAs
detection that is adapted to local variations, thus less false detections are gen-
erated. Reliable prior knowledge, such as locations of optic disk and vessel, is
incorporated to improve the accuracy of detection, rather than employing region
grow, feature extraction and classification that are often the sources of extra er-
rors. Since most processing procedures in Fig. 2 are in parallel, the parameters
in the scheme are less coupled, therefore less sensitive to the outputs of other
procedures than the ones in Fig. 1.

2.1 Image Division and Enhancement

The first step in MAs detection is to divide an entire fundus image into mul-
tiple subregions such that in each subregion potential candidates of MAs can
be robustly identified. Two options are available for image division: overlapping
and non-overlapping. Neighboring subregions share common regions or pixels in
an overlapping scheme, while as for a non-overlapping one, no regions or pixels
are shared by two different subregions. In this paper, an overlapping division
is used to avoid generating false candidates for MAs. An example of such a
false candidate that could be generated by a non-overlapping division is given in
Fig. 3, where part of another anatomical structure is cropped into a subregion
and may be mistakenly identified as a MA candidate. In this implementation,
the original fundus image is divided into subregions with a size M1 ×M2, where
only the central m1 × m2(m1 < M1, m2 < M2) region is of our interest. Given
an image I with a size N1 × N2, N1

m1
× N2

m2
subregions are obtained, and each

subregion In1,n2 is cropped from I as:

In1,n2(i, j) = I[m1n1 − 0.5(M1 − m1) + i, m2n2 − 0.5(M2 − m2) + j] (1)

where 0 ≤ i ≤ M1−1, 0 ≤ j ≤ M2−1, 0 ≤ n1 ≤ N1
m1

−1, 0 ≤ n2 ≤ N2
m2

−1. When
m1 = N1 and m2 = N2, the local adaptive method becomes a global processing
method. Large amounts of artifact may be generated when subregions are too
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Fig. 3. False MA candidate caused by non-overlapping image division

small. For the size of 1024×1280, we found M1 = M2 = 120 and m1 = m2 = 100
is a good compromise.

Shading effect in digital fundus images presents slowly varying image inten-
sity in background, which may be due to the different physiological properties in
retina and the nonuniform illumination across the field of view. Usually an optic
disk region is the brightest in a retinal image, and a macular region appears
to be the darkest. The shading effect in MA detection is very undesirable, and
needs to be compensated before detection. The correction is normally done by
first estimating a background image and then subtracting the estimated back-
ground image from the original one to correct for background variations [9]. In
this paper, the shade correction is applied to each subregion and a low-pass
2-dimensional (2D) Gaussian filter with 25 × 25 is used to estimate a back-
ground image. To enhance the visibility of small structures like MAs, contrast
enhancement is applied to the difference image [10], where the following mapping
function is used

u =
{

a1t
r + b1, if t ≤ µ

a2t
r + b2, if t > µ

(2)

where a1 = 1
2

umax−umin
µr−tr

min
, b1 = umin−a1t

r
min, a2 = 1

2
umax−umin
tr
max−µr , b2 = umax−a2t

r
max

and µ is the mean gray value of all pixels to be enhanced. A low-pass 2D Gaussian
filter is then applied to reduce the step effect in the image after shade correction
and contrast enhancement. A sample of the contrast enhancement function, i.e.,
equation (2), and the result from each processing step of shade correction are
shown in Fig.4.

2.2 Local Adaptive MAs Detection

MAs appear to be small dark disks in the image after shade correction and
contrast enhancement, while vessels and hard exudates also appear to be dark
in the same image. Using the size information that any valid MA should not
have more than 10 pixels in diameter with a resolution of 1024 × 1280, a filter
called ”Top-Hat” is used for identifying potential MAs from the shade corrected
and enhanced image [1,3,4,5,6]. In the paper, a flat linear structure element
with a length of 15 is chosen to perform morphological dilations on a subregion
at each orientation, ranging from 0 to 170 degree with an interval of 10 degree.
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Fig. 4. Contrast enhancement function and shade correction. (1) mapping function
for contrast enhancement; (2) green channel image; (3) estimated background; (4)
difference image between green channel image and background; (5) difference image
after contrast enhancement and smoothing.

Its output is defined as the minimum value of all orientations. So an image ∆I,
defined as the difference between an output of the filter and its corresponding
original image, responds much stronger at the areas where potential MAs are
located. Pixel values are set to 0 where the differences are negative, thus, any
disconnected bright disk like shapes will not produce strong responses to the
filter.

To accurately identify MAs in a ∆I image, two factors should be taken into
account: the area or size of a candidate covers and gray values in the area.
Denote the area of a typical MA as ω pixels and the ω-th largest gray value
in ∆I as ∆I(ω), the threshold value T is set as:

T = min{∆I(ω), Tlow} (3)

Note that a fast algorithm to extract the ω-th largest value from an unsorted
array can be found in [11]. Tlow is introduced here to avoid the threshold T is
set too high, which may cause to miss potential candidates in the region. The
situation could happen when there are multiple MAs in a subregion. Tlow is a
relatively high value, predefined to be the same for all subregions and Tlow >
∆I(ω) for most cases. A value of ω is set to be 25 in the paper. Thus each
subregion associates with one threshold T that represents local characteristics
of the subregion, and is adaptively analyzed for potential MA candidates. Each
connected region in the thresholded image is then identified as a MA candidate
region, denoted as mAn. The mean of gray values in mAn is computed to reflect
the confidence how likely it corresponds to a true MA:

C(mAn) = mean(∆I(i, j)) , (i, j) ∈ mAn (4)
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The higher the value C(mAn), the more likely it is a true MA. So using the
method, each candidate associates with a confidence value. The contrast en-
hancement in the previous stage sometime over-enhances some gray dotted ar-
eas, which may lead to high confidence values associated with them. To address
this problem, the candidate generation procedure mentioned above is repeated
on the corresponding original green channel subregion. The resulting confidence
value is the product of the two confidence values. Tlow is empirically set to 12
for each original green channel subregion. Tlow for the corresponding enhanced
subregion is set to 100, which reflects a much better contrast after enhancement.

2.3 Incorporation of Prior Knowledge for MAs Detection

It is known physiologically that MAs do not appear on the optical disk (OD),
vessel (VS) and hard exudate (HE). Therefore, incorporating this important
prior knowledge will help significantly reduce the number of false detections. An
optic disk is the brightest part from which vessels are originated in a fundus
image. Vessels appear to be a connected tree structure distributed over an entire
fundus image. Hard exudate appears to be yellow waxy non-uniform regions with
various sizes and shapes. These properties can be exploited further for detection,
and some algorithms are given in literature, e.g., [12,13,14,15,16]. Once they are
correctly identified and detected, the location information can be used to remove
the MA candidates that are in those regions.

The algorithm described in [12] has been simplified and employed in the paper
for OD detection. The shapes of detected ODs in the simplified way are not as
accurate, but serve adequately the purpose of removing false MA detections
that may appear on the central OD regions in our local adaptive candidate
generation. We have developed a computationally efficient algorithm for vessel
detection based on an adaptive multilevel image enhancement method [17]. It
is applied to reduce false MAs on the vessels, and has produced very promising
results. HE can be effectively separated using features in a color space [12,14].
However, large variations in a color space poses challenges. We combine both
the color and texture features in this paper to detect HE . The waxy structure
of HE produces a strong response to the ”Top-Hat” filter, while other smooth
yellow regions would not. This property is utilized in the HE detection for more
robust performance.

3 Experiments

Experimental test is performed on 6 subjects, i.e. 12 digital fundus images with
a size of 1024 × 1280. The first four images are taken from healthy eyes and
should not have any MAs; the rest eight images are taken from patients who
need medical attention.

Sensitivity and specificity are normally used to evaluate the performance of
a MA detection system. Given an algorithm, changes in sensitivity are inversely
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Table 1. Experiment results on MA detection: Global detection

Patient 1 2 3 4 5 6

Without OD/VS/HE 25 23 10 16 68 56 60 43 20 15 62 72

With OD/VS/HE 14 12 4 9 45 42 41 32 13 8 27 23

True MA 0 0 0 0 26 28 28 22 8 4 20 16

False Detection 14 12 4 9 19 14 13 10 5 4 7 7

proportional to changes in specificity. In order to make meaningful and fair com-
parisons with global detection methods in general, the experiment is designed as
follows. By making each subregion be equal to the size of an original image in
the local adaptive algorithm, we obtain a global thresholding algorithm without
the steps of region grow, feature extraction and classification, since this compar-
ison is to demonstrate a local adaptive thresholding method produces less false
detections than a global thresholding approach. To demonstrate the benefits of
incorporating prior knowledge, such as locations of an optic disk, vessel and hard
exudate, the results are compared with and without such a priori knowledge in
the local and global algorithm.

All ground-truth are identified and labelled manually, and each of the local
and global algorithm is asked to achieve 100% sensitivity, i.e. , detect all ground-
truth labelled manually. Under this requirement, the total number of false MA
detections is then compared for each algorithm with and without the detected
OD/VS/HE regions. Results from the two methods are reported in Table 1 and
Table 2, separately. The two tables have the same structure. The first row is the
index of subjects and the following four rows are: (1) the total number of detected
MAs without OD/VS/HE detection; (2) the total number of detected MAs with
OD/VS/HE detection; (3) the total number of identified ground-truth; (4) the
total number of false detections with OD/VS/HE detection.

Table 2. Experiment results on MA detection: Local Adaptive detection

Patient 1 2 3 4 5 6

Without OD/VS/HE 5 6 2 3 39 38 40 30 10 7 48 49

With OD/VS/HE 0 1 0 0 29 30 31 25 8 4 21 18

True MA 0 0 0 0 26 28 28 22 8 4 20 16

False Detection 0 1 0 0 3 2 3 3 0 0 1 2

By comparing Table 1 and Table 2, the local adaptive method clearly gener-
ates much less false MA detections than the global method, ranging from8 to 29
by looking at the numbers in the second rows from the two tables. The advantage
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Fig. 5. Original digital fundus image with illustration of different structures (top) and
the corresponding result from the local adaptive method (bottom). The detected MAs
are labeled black in the bottom image.

of using prior information, i.e. locations from OD/VS/HE detection, is also ob-
vious for the reduction of false detections, when comparing the second and third
row of each table. We have observed some MA candidates generated on some
OD and VS areas with nonuniform illumination and on the waxy textures of HE,
using the prior information is able to remove them. The overall results clearly
demonstrate that in combination with local adaptive detection, incorporating
prior knowledge has significantly improved false detections without scarifying
the sensitivity. A sample of the resulting detection with our proposed method is
demonstrated in Fig. 5.

4 Conclusion and Future Work

A new local adaptive algorithm is proposed for improving overall performance of
automatic MAs detection. It is achieved through the combination of local adap-
tivity and incorporating prior knowledge. The results clearly demonstrate that
the new method effectively reduces the number of false detections, while keeping



112 K. Huang and M. Yan

the detection sensitivity at a comparable level. Further clinical assessment is on
going with ophthalmologists on much larger samples to study the sensitivity and
specificity, and to validate its practical uses.
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Abstract. Registration, that is, the alignment of multiple images, has been one 
of the most challenging problems in the field of computer vision. It also serves 
as an important role in biomedical image analysis and its applications. Although 
various methods have been proposed for solving different kinds of registration 
problems in computer vision, the results are still far from ideal when it comes to 
real world biomedical image applications. For instance, in order to register 3D 
brain MR images, current state of the art registration methods use a multi-
resolution coarse-to-fine algorithm, which typically involves starting with low 
resolution images and working progressively through to higher resolutions, with 
the aim to avoid the local maximum "traps". However, these methods do not 
always successfully avoid the local maximum. Consequently, various rather so-
phisticated optimization methods are developed to attack this problem. In this 
paper, we propose a novel viewpoint on the coarse-to-fine registration, in which 
coarse and fine images are distinguished by different scales of the objects in-
stead of different resolutions of the images. Based on this new perspective, we 
develop a new image registration framework by combining the multi-resolution 
method with novel multi-scale algorithm, which could achieve higher accuracy 
and robustness on 3D brain MR images. We believe this work has great contri-
bution to biomedical image analysis and related applications. 

1   Introduction 

In medical image analysis, what is most often desired is a proper integration of the 
information provided by different images. Image registration, serving as the first step 
of the information integration process, is to bring various images into spatial align-
ment. In other words, it is a process of overlaying multiple images of the same type of 
objects taken at different times, by different modalities, and from different subjects. 
Image registration serves various functions in medical image applications: it can be 
used to obtain ampler information about the patient by registration images acquired 
from different modalities, to monitor and investigate tumor growth by images taken at 
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different times, to compare patients' data with anatomical atlases, to correct the mo-
tion of a series of data acquired continuously, etc. Despite the fact that registration is 
of great significance, fully automatic registration with high accuracy and robustness 
on 3D data is hardly achieved due to the difficulties of finding the most proper set-
tings of the following factors: transformation, interpolation, similarity metric, and 
optimization. In this paper, we propose a multi-scale and multi-resolution coarse-to-
fine (MMCTF) optimization method for 3D brain MR image registration, which can 
be used in conjunction with any transformation, interpolation method, and similarity 
metric to obtain consistent and accurate registration results. 

1.1   Issues in Brain MRI Registration 

In this section, we briefly introduce existing methods for medical image registration. 
A survey of more medical image registration methods, including semi-automatic 
registration methods using landmarks and interactive registration, can be found in [9]. 
Registration is the process to seek a transformation T(·) that registers the floating 
image F and the reference image R by maximizing their similarity: 

 ))()),(((maxarg xRxFTST T= ,           (1) 

where x are the coordinates of the voxel, and S is the similarity metric which meas-
ures the closeness of the two images. Determining the type of transformation is the 
first task of registration. It can be divided into linear transformation and nonlinear 
warping. Considering 3D linear transformation, it can be from 6 DOF (a rigid body 
transformation including 3 translations and 3 rotations) up to 12 DOF (an affine trans-
formation including 3 translations, 3 rotations, 3 scales, and 3 skew parameters). Non-
linear warping encompasses a wide range of transformations, which can be up to 
millions of DOF and allow any geometric change between images. The most suitable 
type of transformation is determined based on factors such as the characteristics of the 
data, the need of a specific experiment or application, the dimensionality and the size 
of the data, and the tradeoff between speed and accuracy.  

Interpolation methods are used to calculate the intensity of location between dis-
crete points during transformation. There are several widely-practiced interpolation 
methods. Nearest neighbor decides the intensity of a location by taking the value from 
its nearest neighbor. Trilinear interpolation calculates the intensity from the 8 corner 
points of the 3D cube encompassing the specific location. Sinc interpolation calcu-
lates local intensity from much more than 8 neighbors. Although it is generally more 
accurate for registration between images with large transformations, Sinc interpola-
tion requires much more computational time and is not widely used in 3D data.  

Selecting the similarity metric is one of the most challenging problems in medical 
image analysis. Its purpose is to measure the closeness of different images. Similarity 
measurements of intra-modal and inter-modal registration of two images may be very 
different. In practice, mean absolute difference, least square difference, and normal-
ized correlation are often used for intra-modal registration whereas mutual informa-
tion [19], woods [20], and correlation ratio [16] are suitable for inter-modal cases. 

Optimization method is used to search for the transformation that maximizes the 
similarity value given the cost function and the type of transformation. Although 
global maximum is always desired, it is not always worth doing exhaustive search due 
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to unacceptable computational overhead, especially when the search is performed in 
high dimensional space. Powell's method [15] and gradient descent are two of the 
most well-known and widely-used local optimization methods. Multi-resolution 
methods, on the other hand, are often used to improve the robustness and speed up the 
registration process. A multi-resolution method is a coarse-to-fine method where 
images are registered progressively through lower resolutions to higher resolutions. 
Different resolutions of the image are obtained by different sub-samplings (fig. 2 (I)). 
Other optimization methods include apodization of the cost function [6], multi-start, 
etc. Apodization of the cost function gives greater weighting to the object region 
inside the FOV (Filed of View). Multi-start obtains several local maximums during 
the lowest resolution match and then passes these candidates to the next level to re-
duce the chance of missing the global maximum. 

 

Fig. 1. (I) The TV-L� �model on 1-d signal. Note that small scale signal can be separated from 
large scale signal using different λ according to their scale r. (II) Original image f and dif-
ferent level of u when applying different (λ). (III) Additive signals with one included in the 
other can be extracted one by one using increasing values of (λ). s shows the original intensities 
of the four shapes before addition. 

2   Methodology 

In this section, we introduce the MMCTF framework and illustrate how it works for 
image registration. Before that, we first introduce the TV-L1 model and extend it to 
3D, which serves as the basis of the proposed framework. In the TV-based frame-
work, an image f is modeled as the sum of image cartoon u and texture v, where f, u 
and v are defined as functions (or flow fields) in appropriate spaces. Cartoon contains 
background hues and important boundaries as sharp edges. The rest of the image, 
which is texture, is characterized by small-scale patterns. Since cartoon u is more 
regular than texture v, we can obtain u from image f by solving:  

Ω

+∇ ,||),(||||min Bfutu λ                    (2) 

where Ω|∇u| is the total variation of u over its domain Ω, ||t(u, f)||B  can be any meas-
ure of the closeness between u and f, and λ is a scalar weight parameter. The choice of 
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the measure || ||B depends on applications. The first use of this model was the ROF 
model for image denoising [17], where ||t(u, f)||B = ||f - u|| L2. The essential merit of 
total variation based image model is the edge-preserving property [18]. First, mini-
mizing the regularization measure Ω|∇u(x)|dx only reduces the total variation of u 
over its support, a value that is independent of edge smoothness. Second, unless ||t(u, 
f)||B specifically penalizes sharp edges, minimizing a fidelity term ||t(u, f)||B (e.g., L1 or 
L2-norm of f - u) generally tends to keep u close to f, and thus, also keeps edges of f in 
u. Finally, minimizing Ω|∇u| + λ||t(u, f)||B, with λ sufficiently big will keep sharp 
edges. ROF uses the L2-norm, which penalizes big point-wise differences between f 
and u, so it removes small point-wise differences (noise) from f. Mainly due to this 
good edge-keeping property, this model has been adopted, generalized and extended 
in many way. One of them uses the L1-norm as the fidelity term [2, 3, 11]. 

 

Fig. 2. (I) Traditional coarse-to-fine method uses different sub-samplings of the images. (II) 
Multi scales of the brain image obtained by the TV- L1 model. (III) The contour image obtained 
by 3D TV-L1 model (right) does not contain artifacts or noise in the original image (left). 

2.1   The TV-L1 Model for Scale-Driven Image Extraction 

Formally, this TV-L1 model is formulated as: 

Ω

≤−∇ ,||)()(||..|)(|min 1 σ
L

xuxftsdxxu                 (3) 

where Ω is the image domain where functions f and u are defined on. Since (3) is a 
convex optimization problem, it can be reformulated as  

Ω

−+∇ ,|)()(||)(|min dxxuxfdxxu
u

λ                   (4) 

Just like the L2-norm, the L1-norm keeps u close to f (but under a different measure), 
so the edge-preserving property can be easily seen by following the similar argument 
of the ROF model. To concrete our claims, we give the TV-L1 analytical results of 
some easy problems from ℜ to ℜ3. Fig.1 (I) illustrates the TV-L1 method applied to 1-
d signal. According to fig. 1 (I), with different values of λ, u keeps different signals 
according to their scales but not intensities. Now, we extend this to 2-d signal (i.e. an 
image). Chan and Esedoglu [3] have proved that solving equation (4) is equivalent to 
solving the following level-set-based geometrical problem: 

+∞

∞−
>⊕>+> ,}))(:{})(:({}))(:({min duuxfxuxuxVoluxuxPer

u
λ        (5) 

where Per(·) is the perimeter function, Vol(·) is the volume function, and S1⊕S2 := 
(S1\S2)∪(S2\S1), for any set S1 and S2. Using equation (5), Chan and Esedoglu [3] 
proved the following geometric properties of the solution v λ λ ): 
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• Suppose f = c11Br(y)(x), a function with the intensity c1 in the disk centered at y and 
with radius r, and the intensity 0 ywhere else. Then 
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By this property, when applying different values of λ, objects of different scales can 
be kept in either u or v. Fig. 1 (II) illustrates this property. Furthermore, we can extend 
this property to the following: 

• Suppose f = c11Br1 (y)(x) + c21Br2 (y)(x), where 0 < r2 < r1 and c1, c2 > 0. 
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Fig. 1 (III) illustrates this property, which is proved in [4]. More discussions on 2D 
properties of the TV-L1 model can be found in [21]. 

2.2   3D TV-ψ � �Model 

The properties discussed in the previous section which has been developed and used 
for 2D image can be simply extended to 3D. First, we extend property (5) and claim 
that solving (2) in 3D is equal to solve the following equation: 

+∞

∞−
>⊕>+> ,}))(:{})(:({}))(:({min duuxfxuxuxVoluxuxSur

u
λ        (8) 

where Sur(·) is the surface area function, and Vol(·) is the volume function. Using 
equation (8), we can extend previous geometric properties (6) and (7) to: 

• Suppose f = c11Br(y)(x), a function with the intensity c1 in the ball centered at y and 
with radius r, and the intensity 0 anywhere else. Then 
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• Suppose f = c11Br1(y)(x) + c21Br2(y)(x), where 0 < r2 < r1 and c1, c2 > 0. Then 
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(9) is proved as follows and (10) can be easily proved by following the proof of (7). 
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Proof of property (9): 
Proof. By assumption, f = c11Br(y)(x). Without loss of generality, we assume c1 > 0. 
Clearly, solution u(x) of (4) is bounded between 0 and c1, for all x ∈ Ω. It follows that 
(8) is simplified to:  

>⊕>+>1

0
,}))(:{})(:({}))(:({min

c

u
duuxfxuxuxVoluxuxSur λ       (11) 

Since {x : f(x) > u} ≡ Br(y) for u ∈ (0; c1),  S(u) := {x : u(x) > u } must solve the 
following geometry problem: 

))()(())((min yBuSVoluSSur r
S

⊕+ λ ,   (12) 

for almost all u ∈ (0; c1). First, S(u) ⊆ Br(y) holds because, otherwise, S(u) := S(u) 
∩Br(y) achieves lower objective value than S(u). Then, it follows that  

))(\)(())()(( uSyBVolyBuSVol rr =⊕        (13)

Therefore, to minimize (12) is to minimize the surface area of S while maximizing 
its volume. By extending the Isoperimetric Theorem into 3D, S(u) must be either 
empty or a ball. Let rS denote the radius of S, it follows that rS = r if λ > 3/r, rS = 0 if  

0 ≤ λ < 3/r, and rS ( {0, r} if = 3/r.                           

Based on the above properties, we can extract different scales of a brain by differ-
ent λs, which is illustrated in fig. 2 (II). More precisely, if we select λ ≈ 3/r, where r is 
close to the radius of the brain region, u will be close to the 3D contour of the brain.  

2.3   The MMCTF Registration Algorithm 

Traditional 3D brain MRI registration methods avoid local minimum and improve the 
efficiency of the registration process by a multi-resolution coarse-to-fine algorithm. 
This approach is not always sufficient for avoiding local minimum traps. To over-
come this limitation, we propose a new viewpoint on coarse-to-fine registration – 
coarse and fine images can be distinguished by different scales of the objects (fig. 2 
(II)). However, if we do a pure multi-scale coarse-to-fine registration, it may lose the 
efficiency of the traditional multi-resolution method. Hence, instead of using multi-
scale method only, we develop a novel framework combining the two methods to-
gether to avoid the limitation of each other. Fig. 3 illustrates our final algorithm, a 
Multi-scale and Multi-resolution Coarse-To-Fine (MMCTF) framework. In order to 
simplify following discussions, we call the u obtained using λ ≈ 3/r, which is the 
largest scale we used in the MMCTF framework, the contour image in this paper. In 
the MMCTF algorithm, the first step is to obtain the contour images of both the float-
ing image and the reference image using 3D TV-L1 model with λ ( 3/r, where r is the 
radius specifying the volume of interest. Second, we use a traditional coarse-to-fine 
(multi-resolution) method to register the two contour images. An initial search for 
translation, rotation, and global scaling parameters is applied at the beginning of the 
lowest resolution registration to speed up the search. The initial search includes 
matching the COM (center of mass) of the two images and finding the best initial 
rotation by searching every 30 degree in all directions. Since it is in the lowest resolu-
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tion, this initial search can be done efficiently. After the initial search, the Powell’s 
local optimization method [15] is used to search for the maximum of the similarity 
measurement in each level. Followed by the registration of the contour images, the 
final parameters can be used to register the floating and reference images. We would 
like to point out that although we can do more scales in between the contour image 
and the original image by increasing the value of ( (fig. 2 (II)), empirically only two 
scale levels are enough for robust and accurate registration. Besides, it is much more 
efficient to perform the registration with only two scale levels. There are several ad-
vantages of this combination framework: 1.) The multi-resolution method is used for 
initial registration, which finds a good registration efficiently at the beginning. 2.) 
Since the multi-resolution is performed on the contour images, which consist of only 
the contours without detailed features, the chance that the gross features in the low 
resolution images mislead further registration is much smaller. 3.) By a multi-scale 
registration, a good registration can be easily found based on the contour images. 4.) 
Noise or other artifacts, which may degrade the registration performance and cause 
local maximum/minimum, barely exist in the contour images. (fig. 2 (III)) 5.) Empiri-
cally, only two scale levels are enough to obtain satisfying results. Besides, since the 
registration of the contour images is mostly very close to the final registration, step 10 
in fig. 3 normally costs only a little more computational time than pure multi-
resolution method. 

 

Fig. 3. The MMCTF algorithm 

3   Experimental Results 

In this section, we compare the proposed MMCTF algorithm with one of the famous 
brain MR image registration methods, FLIRT [6], and with the traditional pure multi-
resolution (PMR) coarse-to-fine method. For fair comparison, the following settings 
are used in all methods throughout the experiments. Transformation: 3D affine trans-
formation with 12 DOF (3 translations, 3 rotations, 3 scales, and 3 skews). Cost func-
tion: although any similarity metric can be used in our framework, correlation ratio is 
adopted for inter-modal registration since it is suggested in [6], which we aim to com-
pare to. In addition, normalized correlation is used for intra-modal registration. Inter-
polation: Trilinear interpolation. The step sizes used to search for each parameters are: 
translation: ∆t = 0.5, rotation: ∆θ = 0.3°, scale: ∆s = 0.005, and skew: ∆k = 0.005. The 
number of intensity bins used per image for correlation ratio is 256/n, where n is the 
resolution in mm. Some other optimization settings used by FLIRT (i.e. apodization of 
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the cost function, multi-start, etc.) to improve robustness and efficiency are not im-
plemented in PMR and MMCTF. The T1 weighted images we use are real 3D brain 
MR images. The T2 weighted image is obtained from brainweb [8]. 

3.1   Accuracy Evaluation 

Although the quantitative assessment of registration methods is quite difficult, a 
method can be affirmed as relatively more accurate than others if it consistently ob-
tains higher similarity values, under the circumstances that all other settings are the 
same. In the first experiment, we evaluate the registration accuracy between 6 high 
resolution T1 weighted MR images with size 207×255×207. 15 total registrations 
between each pair of the six images are evaluated. Normalized correlation is chosen 
as the similarity measurement. Fig. 4 shows the results. In fig. 4, the three methods 
achieve similar and consistent results, which means that the traditional multi-
resolution method is good enough for high resolution intra-modal registration. Next, 
we evaluate the inter-modal registration accuracy between images with different reso-
lution. In this experiment, we register one low resolution 181×217×30, T2 weighted 
MR image with voxel dimension 1×1×5 mm3 to six different high resolution 
207×255×207, T1 weighted MR images with voxel dimension 1×1×1 mm3. Correla-
tion ratio is used to measure the similarity. Fig. 5 illustrates the results. In this more 
complicated and difficult case, although all methods register the images well, the 
strength of MMCTF is demonstrated by the higher similarity of images. Fig. 5 shows 
that the MMCTF algorithm reaches higher maximum value of the correlation ratio, 
which proves  that the proposed algorithm has a much higher chance to reach global 
 

  

Fig. 4. Left: Normalized correlation between registered and reference images (intra-modal 
registration). Right: An example (2D slice from 3D data). 

   

Fig. 5. Left: Correlation ratio between registered and reference images (inter-modal registra-
tion). Right: An example (2D slice from 3D data). 
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maximum. It can also be observed by human eyes that the registration results of the 
MMCTF are closer to the reference images (fig. 5 (right)). 

3.2   Robustness Evaluation 

The robustness evaluation of the registration method is originally purposed by Jenkin-
son and Smith [7]. In this paper, we use a similar way to evaluate the robustness of 
the registration algorithm. Similar to the inter-modal experiment in the accuracy 
evaluation, we register the same low resolution T2 weighted MR image with voxel 
dimension 1×1×5 mm3 to six different high resolution T1 weighted MR images with 
voxel dimension 1×1×1 mm3. However, for each registration, we operate ten different 
initial transformations on the T2 weighted low resolution image before the registration 
process, including four global scalings of 0.7, 0.8, 0.9, and 1.1, four different rotations 
of -10, -2, 2, and 10 degrees about the anterior-posterior (y) axis, and two extreme 
cases with rotations of -10 and 10 degrees about y axis plus the second skew factor = 
0.4. The ten transformed images are then registered to the reference image. To evalu-
ate the robustness, we compare the ten registration results to the registered image 
which obtained directly from the original floating image to the reference image. If the 
registration algorithm is robust, these 10 values should show little difference. Fig. 6 
shows the results. In fig. 6 (I), the variance between the results obtained by the 
MMCTF model is much smaller than the variances of FLIRT and PMR. In fact, 
 

 
(I)                                                (II)
 

(III) 
 

 

Fig. 6. (I) Normalized correlation between registered images with different initial transforma-
tions and the registered image without initial transformation. 6 cases (I~VI) in total and each 
with 10 different initial transformations (0~9). (II) The first two rows: Registration results of 
the same image with different initial transformations by FLIRT. The last two rows: Same re-
sults by MMCTF. 10 initial parameters from left to right, top to down are global scalings: 0.7, 
0.8, 0.9, and 1.1, rotation about y-axis, 2, -2, 10, and -10 degrees, and rotation of -10 and 10 
degrees plus 2nd skew factor = 0.4. (III) (a): Floating image; (b): (a) after initial transformation, 
rotation = -10 and 2nd skew factor = 0.4. (e): Reference image; (c): Result of registering (b) to 
(e) by FLIRT; (d): Result of registering (b) to (e) by MMCTF. 
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FLIRT and PMR fail to register some images correctly after large initial transforma-
tions. On the contrary, the MMCTF algorithm always gets consistent and good regis-
tration results throughout the experiments. Fig. 6 (II) shows one sample of the regis-
tration results obtained by FLIRT and MMCTF. While FLIRT fails to register the 
images in the last two cases, all results registered by the proposed MMCTF algorithm 
are very consistent. Fig. 6 (III) illustrates the coronal view. The floating image is first 
transformed by -10 degrees about the y axis and 0.4 of the second skew parameter. 

4   Summary and Conclusion 

In this paper, we try to improve the accuracy and robustness of biomedical image 
registration using a novel coarse-to-fine image registration framework. The results 
show that by integrating the novel multi-scale idea into original multi-resolution reg-
istration framework, we can improve both consistency and accuracy of both inter-
modal and intra-modal registrations on 3D brain MR images. The proposed frame-
work is also expected to be useful for registration of other types of biomedical images 
and may also contribute to high dimensional non-linear warping, which normally 
requires much more computation. Although the computation overhead of the TV-L1 
model on 3D data is high, it is fully parallel computable, which greatly alleviates this 
problem. Our future work includes comparing our method with other famous works 
such as mutual information based methods [14, 19] and extending the capability of 
our model to handle local affine transformation. 
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Abstract. Digital colposcopy is an emerging new technology, which can
be used as adjunct to the conventional Pap test for staging of cervical
cancer and it can improve the diagnostic accuracy of the test. Computer
aided diagnosis (CAD) in digital colposcopy has as a goal to segment
and outline abnormal areas on the cervix, one of which is an impor-
tant anatomical landmark on the ectocervix - the transformation zone
(TZ). In this paper we proposed a new method for estimation of the
local spectrum features of cervical cancer in vivo. We used a 2D method
to estimate the energy of the local frequency bands, using a geometric
restriction (GR). In the current work we reported up to 12 dB difference
between the local power spectral density content of the region of interest
(ROI) and (ROI)complimentary for the mid-frequency band. We devised
a method to present pseudo-color visual maps of the cervical images, use-
ful for CAD and successful ROI segmentation.

1 Introduction to Cervical Image Features

Cervical cancer is the most frequent cancer in women under 35 years of age
[1]. It is a preventable disease, one in which the neoplastic changes grow slowly
and they can often be treated effectively in the early stages of neoplasia. Visual
impression of the cervix are highly correlated with the accuracy of staging and
diagnosis of cancer [2], hence a computer-aided diagnosis (CAD) is a promising
tool for prevention of cervical cancer [3]. In medical practice it is essential to
diagnose the abnormal cervical tissue and this often is performed by medical
experts. Simulating the “trained expert approach,” our method aims to evaluate
automatically the transformation zone (TZ), where 90% of the cancers occur.
Punctuation, mosaicism and abnormal vessels are diagnostic features of pre-
cancer. These can be evaluated and assessed quantitatively using signal process-
ing methods [3]. The cervical cancer precursors are located within the TZ. Here,
we propose to evaluate the vascularity within the TZ in terms of texture. The
vascularity and cervical texture is a clinical phenomena, expressed as vascular
punctuation, vascular mosaics, columnar epithelium (CE) and CE’s metaplasia
- all rich in texture. There is no previous attempt to use joint-time-frequency
analysis (JTFA) for textural features on the cervix. The advantage of JTFA
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Fig. 1. Illustration of various types of maturing TZ with a different textural content.
The degree of metaplasia (transformation from a columnar epithelium (CE)) to squa-
mous epithelium (SE) is different amongst normal cervices.

is its independency from color perception and variations in illumination. JTFA
does not need color calibration. To demonstrate the texture in TZ, a variety of
colposcopic images are depicted in Figure 1 with the centrally located TZ sur-
rounding the dark cervical canal. Computerized detection of diagnostic features
for CAD in cervical imagery (using both reflectance and hyperspectral imaging)
started in early 90’es. B. Pogue et al. [4] studied color as a diagnostic feature to
differentiate high grade (HG) squamous intraepithelial lesions (SIL) form nor-
mal squamous metaplasia (SM), using pixelwise measurements of chromaticity
and found that the color has no statistical significance to discriminate the HG
SIL from the SM. B. Pogue et al. used also the Euler number to study cervical
textures as diagnostic feature. They found that the Euler number is statistically
significant to discriminate the HG SIL from the SM. Ji et al. explored further
texture, studying six diagnostic textural patterns of the HG SIL, accumulating
24-dimensional feature vectors. These vectors were used to measure objectively
two different grades of cancer. Each texture pattern represented a specific char-
acteristic of the particular neoplasia. Ji et al. reported that the densities of the
line intersections in thresholded images, the entropies and the local statistical
moments (the zeroth to the third moment) are the most significant discriminant
features. Using the 24 dimensional vectors, a classifier was built, classifying the
HG SIL with 95% accuracy [5]. Although Ji et al. algorithm was successful for the
task, the described texture classification scheme has not been assessed in terms
of scale-space. The classification was performed only at a single scale which is
useful under constrained conditions. In real, the texture parameters are depen-
dent on the focal distance, that varies during patient examination. In case of a
change in these conditions, the scale of the texture and the texture metrics will
vary accordingly for each patient and the scheme described in [5] could be obso-
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Fig. 2. Three images that depict magnified coarse mosaic formation from blood vessels
within the TZ. The coarse mosaics is related to HG SIL.

lete. Scale independent TZ texture features were studied in [6] and [7] these were
assessed independently from the grain of the texton [6] using various scales [7]
via Gabor decomposition. These schemes are valuable for analyzing the various
textures depicted in Figure 1. For example - a mosaics is a important sign of HG
SIL, it has degrees of coarseness as it is depicted in Figure 2. Currently, in this
paper we are proposing a 2D local power spectrum estimation method via Geo-
metric Restriction (GR) in the 2D frequency domain for texture’s quantitative
measurement.
The paper is organized as follows: Section 1 introduces us to the core of

the problem in cervical cancer feature detection in vivo. Section 2 contains the
background theory of PSD and windowing, including the Welch algorithm in 1D.
Section 3 shows our 2D method of PSD with GR. In Section 4 we briefly discuss
the achieved visual discrimination as gray scale images; the evaluations of the
band separation in the gray scale images in measures; the pseudo-color map for
gray scale images and the segmentation of ROI by automatic thresholding. In
Section 5 we discuss the introduced methods and suggest further work.

2 Previous Methods for Local Power Spectral Density
Estimation

There are several methods for power spectral density (PSD) estimation. The
most prevalent non-parametric methods are the Bartlett, the Welch and the
Blackman-Tukey methods. A powerful parametric methods is the autocorrela-
tion method (eq. 1 aka Burg’s algorithm).These and many other valuable meth-
ods in 1D were described in [11] and elsewhere. These are the Maximum En-
tropy estimations, Prony’s method, Pisarenko harmonic decomposition and the
minimum-variance spectral estimation. It is important to underline that not all
of the 1D methods can be used in image analysis (2D) due to restrictions such as
shift and phase invariance and Nyqust’s limits. One of the prominent methods
that can be transferred from 1D to 2D is the Welch algorithm for PSD [13] which
is relatively simple frequency-based algorithm. The Wiener-Khinchin theorem [9]
states that the inverse Fourier Transform or the absolute square of F (ω) as the
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power spectrum of a signal f(t) yields the same as the autocorrelation function
RXX(t) of f(t) and it represents the “full (theoretical) power” of f(t):

RXX(t) =

+∞

−∞
f(τ)f(t+ τ)dτ = F−1ω [|F (ω)|2](t) (1)

The autocorrelation of f(t) is maximum at the origin, hence, the RXX(t) in (1)
is always limited by the energy of the signal, as the signal f(t) must have a finite
energy. The SXX(ω) = |F (ω)|2 is called the power spectrum of the signal and it
is always real.
The simplest and the one with no phase distortion JTFA method for local

frequency features estimation on images is the STFT. This method is using a
Gaussian window in time and frequency domains (GW) (eq. 2 ), optimal in both
time and frequency domains.

g(t) = exp(−1
2

t2

σ2t
); G(ω) =

2π

σ2u
exp(−1

2

ω2

σ2u
) (2)

Therefore, using GW for windowing, the proposed 2D method is similar to the
Welch method for local power spectral estimation in 1D [13].

2.1 The Welch Algorithm for PSD Estimation

During the last 30 years, devoted in spectral estimation, the Welch algorithm
in 1D [13] is the most used method for practical applications. The algorithm
is based on the modified periodogram averages ([10] and [14]). The essence of
the Welch algorithm is that for a data stream f [n] (a discrete signal) a sliding
windowed portion of the signal f [n] is used as series of steps, segmenting the
signal into K overlapping sequences, each one of length L. The ith sequence of
the signal is defined by the relation:

f [i,m] = f [m+ i(1− r)L], (3)

where the indices are i = 0, 1, ....K − 1, and m = 0, 1, 2...L− 1 (L even) and r
represents the percentage of overlap. The most often use percentage of overlap is
r = 1 for 100% overlap and r = 0.5 for 50% overlap. The data can be windowed
using various windows and the effects of the application of these windows are
discussed in specialized parts of many signal processing books and articles: [15]
and elsewhere. Windowing is applied to prevent a spectral leakage or distortions
(aliasing) from the highest frequencies of the “all-or-nothing” window.

3 Proposed PSD Estimation Geometric Restriction

We propose to manipulate the separation of the bands in 2D without filtering.
This is performed using a Euclidean distance restriction in frequency, ensuring

Via
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Fig. 3. The density estimation for s−band partition of the local frequency domain
in a bandlimited windowed portion of the signal [−π,π], adjacent to image point. In
the center is the zero frequency DC. The most distant point (αs,βs) is the highest
frequency [−τ, τ ].

highest accuracy of the calculated PSD. The number of boundaries in the fre-
quency domain is s (Figure 3). In this way we avoid the drawbacks of creating
very narrowband 2D filters, eliminating distortions in their frequency response.
We directly manipulated the frequency transformed window in 2D. The ban-

dlimited signal (with boundaries [−π,π]) have spectral signatures in each of the
2D ‘stripes’ for each window at all image points. We defined the bounds of each
frequency band as a stripe, using 2D Euclidian distance criteria, limiting them
with s+1 circular bounds, forming s-bands. Thus, the PSD of each image point
(windowed with GW) has a representative window in the frequency domain.
PSD is an average of the band’s energy, normalized by the stripe’s area. The
scheme is illustrated in Figure 3). We predefined the boundaries of each band
using an Euclidian distance from each point of the 2D “window” with central
point the DC (Figure 3). The PSD within kth band (Bk ⊂ B = [B1,B2,....Bs]), is
expressed in equation (4 ), thus representing the PSD or the energy distribution
for band Bk with area Ak. The PSD of k

th stripe is:

PSDk =
1

Ak

αk

αk−1

βk

βk−1

ε(u, v)dudv (4)

By calculating each PSD for all bands we can form a PSD-based image similar
to RGB image - each channel will contain the “energy” in one of the s bands -

I
(s)
PSD. This feature image reflects the local frequency content at each point at
a [Y,I,Q]—color transformed gray scale image Icolp. By this means we can have
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separate bandpassed feature images I
(1)
PSD, I

(2)
PSD....I

(s)
PSD, representing a subset

for the energy content that belong to the original image Icolp. We can analyze
this using one gray scale image at a time, for example - the luminance Y.

4 Results

We demonstrate the effectiveness of the current method for visual discrimina-
tion based on the tristimulus theories of the Human Visual System (HVS) [17]
decomposing the gray scale image in three frequency bands, in a similar fashion
as the ear perceives pitch. We also evaluate the differences of ROI discrimination
to underline the differences in signal power for both regions (ROI’s PSD power
versus ROIC), mimicing HVS discrimination in the “simple cells” of the cortex.
We processed 70 color images (512 x 512) by the proposed method using gray

scale images only [Y] [17]. We varied the GW using different cutoff frequencies.
Here we present only the results form GW with three cutoff frequencies (Figure
4). Each image depicted there is one of the three band-passed images (column-
wise) and cutoff frequencies (row-wise). Whilst the first band has high values for
centrally located ROI, ROIC has also strong content low frequencies. The second
band shows a clear outline of the TZ (ROI) and large attenuation of the area of
ROIC . Figure 4 demonstrated a well-defined TZ using GW with σk ≥ 0.45π and
σk ≤ 0.65π. The gray scale images in the second band shows the best feature
separation. Hence, band 2 is the best candidate for texture feature detection.

4.1 Visual Discrimination of ROI in Gray Scale Images

Figure 4 reinforced that band 2 is the most suitable for textural feature detection.
Features in band 3 exhibit strong presence of specular reflection (SR) - an artifact
in endoscopy and colposcopy images. Band 3 contains mostly the outline of SR.

4.2 Evaluation of Band Separation in ROI

The pooled average values of ROIs and its complement - the ROICwas estimated
as well, studying the impact of the scale-space parameters of the GW (σu1,u2)
for ROI vs. ROIC discrimination, changing σu1,u2 from 0.15π. to 0.5π. The dif-
ferences in pooled average values for Band 1to Band 3 reached the maximum of
20dB in Band 2. The absolute differences for the pixel set of ROI was compared
to the adjacent set of pixels of ROIC for each σk depicted by the graphs in 4.
The results were evaluated automatically using Matlab. The evaluation was per-
formed using “ground truth” binary masks for ROI and ROIC (read for more
details in [8]). Binary mask of the “ground truth” was applied automatically for
experiments with different σk.Analysis of these values shows that the values for
ROI in band 2 are all positive, while the values of ROIC for the band 3 are all
negative, resulting in twofold difference (shown on the Figure 5) for the location-
wise PSD difference estimates differentiating between the ROI and ROIC (see
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Fig. 4. Gray scale images that illustrate the formation of separate PSD-based images
into three bands using a geometric restriction. The upper row troika are calculated
with σk = 0.15π for band1, band2 and band3. The second row is a set of three band
specific images when σk=0.25 is used. The images on the lowest row are calculated for
σk = 0.45π.

Fig. 5. Luminance(Y)-based differences of PSD values [dB] of ROI and ROIC for three
bands with varying covariance of the applied Gaussian filter

Figure 5). Luminance only results are displayed of Figure 5), but the data from
the both chrominance channels [I, Q] yielded lower difference values, evaluated
against the “ground truth” (A{|ROI − ROIC |}), taken set-wize for band sep-
aration. The results for the chrominances reached 5-6 dB difference for Band 2
for either chromaticity, while the Y -based results reached 20dB difference for
Band 2.The differences within the ROI and ROIC yields a further possibility
to find the ideal threshold for bimodal segmentation of these images, which we
demonstrate this further in Figure 6.
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Fig. 6. Depicts the original RGB image and the binary image at three bands

4.3

Representing each of the three bands as tri-stimuli of the HVS we will mimic
the frequency band separation from the proposed method. Thus, we show that
texture can be perceived in a similar as the pitch of the sound by the ear. This
enhances also the Human-Computer Interaction concept of diagnosis. Assigning
color to a particular combination of frequency values to a location from image
can reveal important frequency structure. This concept is presented on Figure 7.
The green color is associated with the small grain texture, whilst the red color
shows relative constancy (low frequency) for that particular location. This color
is assigned automatically.

We created the pseudo color map as we “combined” the quantitative infor-
mation using one type of source image: e.g. using only Y, or only I or only Q

Fig. 7. Illustrates a pseudo-color map in scale-space-frequency via sliding Gaussian
window. The window σk varies form 0.15π to 0.5π in normalized frequency.

132 V.V. Raad

Pseudo-Color Maps Based on HVS



point can be associated with a specific color, that could point to “normality” or
“disease.”

5 Concluding Remarks

We devised a new method that analyzes textural features in joint-time frequency
space. We showed that the method can be developed further and it can be
used for an accurate estimation of ROI. We proposed this method offering an
increased accuracy of the band-wise estimates for ROIs in gray scale cervical
images. An advantage of this method is that the averaged energy per band is
useful for non-oriented texture evaluation, combined with flexible and specific
2D frequency-based boundary placement. The method can be very precise in
estimation of parameters, although the Matlab implementation carries a heavy
computational load.

In addition, a HVS concept using a tristimulus vision and perception can be
applied to distinguish textures with different diagnostic content. The reported
experimental results demonstrated the merits of the method as an effective way
to discriminate features either visually and by using metrics. The so proposed
visual discrimination methods for pseudo-color image feature matching can be
applied either for CAD in colposcopy or in other image modalities.

In our future work we will emphasize on developing a training unsupervised
algorithm for automatic vascular texture detection or detection of lesions and
areas such as TZ, ectropion and abnormal vessels networks. We will continue

current case, we are presenting the pseudo-color images from 3-band separation
based on the luminance (Y) information only. The pseudo-color map, illustrated
on Figure 7 represents a 3-tuple image formed by band1,band2 and band3,whilst
we varied the variance of the Gaussian window σk starting from 0.15π to 0.65π
(step of 0.05π) with σk =0.15π shown to be the upper left image. The idea of
the pseudo-color map is to collate an unique combination of values in 3D color
space, that be created from the three bands (Band1, Band2, Band3), presented
as multi-dimensional data, using the perceptual ability of the Human Visual
System (HVS) that view the surrounding world hypothesized by the tri-stimuli
theory [17]. The unique combination of the response in the three band at each

work on implementing an algorithm useful for real-time applications with an
increased computational speed.

components. In a case where we will be looking for multidimensional feature,
each of the (Y,I,Q) 3-band separation will lead to 9-dimensional feature. In the
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Abstract. We present a novel framework to exert topology control over a level
set evolution. Level set methods offer several advantages over parametric ac-
tive contours, in particular automated topological changes. In some applications,
where some a priori knowledge of the target topology is available, topological
changes may not be desirable. This is typically the case in biomedical image seg-
mentation, where the topology of the target shape is prescribed by anatomical
knowledge. However, topologically constrained evolutions often generate topo-
logical barriers that lead to large geometric inconsistencies. We introduce a topo-
logically controlled level set framework that greatly alleviates this problem. Un-
like existing work, our method allows connected components to merge, split or
vanish under some specific conditions that ensure that no topological defects are
generated. We demonstrate the strength of our method on a wide range of numer-
ical experiments and illustrate its performance on the segmentation of cortical
surfaces and blood vessels.

1 Introduction

Active contours constitute a general technique of matching a deformable model onto
an image by means of energy minimization. Curves or surfaces deform within a 2-
dimensional or 3-dimensional image subject to both internal and external forces and
external constraints. Since their introduction by Kass et al. in [9], active contours have
benefited many computer vision research areas.

Geometric active contours, which represents the manifold of interest as level sets
of functions defined on higher-dimensional manifolds [13,3], offer many advantages
over parametric approaches. In addition to their ease of implementation, level sets do
not require any parameterization of the evolving contour. Self-intersections, which are
costly to prevent in parametric deformable models, are naturally avoided and topolog-
ical changes are automated. Also, the geometric properties of the contour, such as the
normal or the curvature, are easily computed from the level set function.

The ability to automatically change topology is often presented as an advantage of
the level set method over explicit deformable models. However, this behavior is not
desirable in some applications. This is typically the case in biomedical image segmen-
tation, where the topology of the target shape is prescribed by anatomical knowledge. In
order to overcome this problem, a topology-preserving variant of the level set method
has been proposed [7]. The level set function is iteratively updated with a modified
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procedure based on the concept of simple point from digital topology [1]; the final
mesh is obtained with a modified topology-consistent marching cubes algorithm. This
method ensures that the resulting mesh has the same topology as the user-defined initial
level set.

While such topological preservation is desired in some applications, it is often too
restrictive. Because the different components of the contour are not allowed to merge
or to split up, the number of connected components will remain constant throughout the
evolution. This number must be known by the user a priori and the initial contour must
be designed accordingly. Also, the sensitivity to initial conditions, which already limits
the applicability and efficiency of active contour methods, is considerably increased.
The initial contour must both have the same topology as the target shape and be close
enough to the final configuration, otherwise the evolution is likely to be trapped in
topological dead-ends including large geometric inconsistencies (cf Fig.1 b&e).

In this paper, we propose a method to exert a more subtle topological control on a
level set evolution. Some a priori knowledge of the target topology can be integrated
without requiring that the topology be known exactly. Our method greatly alleviates
the sensitivity to initial conditions by allowing connected components to merge, split
or vanish without introducing any topological defects (such as handles). For example,
an initial contour with a spherical topology may split into several pieces, go through
one or several mergings, and finally produce a certain number of contours, all of which
will be topologically equivalent to a sphere. A subset of these components may then
be selected by the user as the desired output (typically the largest component if one
spherical contour is needed, the others being caused by noise).

Our approach is based on an extension of the concept of simple point to “multi-
label” images, that we have called multisimple point. This criterion ensures that no
topological defects are generated while splitting or merging the components of the ob-
ject. This algorithm fills the gap between the original level set framework and topology-
preserving level set methods. We apply our method to the segmentation of cortical sur-
faces in Magnetic Resonance Imaging (MRI) and of blood vessels in Magnetic Reso-
nance Angiography (MRA).

2 Background

2.1 Topology

Topology is a branch of mathematics that studies the properties of geometric figures that
are preserved through deformations, twistings and stretchings, hence without regard to
size, absolute position.

Here, we focus on closed contours (i.e. compact surfaces) in three dimensions. Any
compact connected orientable surface is homeomorphic to a sphere with some number
of handles. This number of handles is a topological invariant called the genus. For
example, a sphere is of genus 0 and a torus is of genus 1. The genus g is directly
related to another topological invariant called the Euler characteristic χ by the formula
χ = 2 − 2g. The Euler characteristic is of great practical interest because it can be
calculated from any polyhedral decomposition of the surface by χ = V − E + F ,
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where V , E and F denote respectively the number of vertices, edges and faces of the
polyhedron.

Homeomorphisms are used to define the intrinsic topology of an object, indepen-
dently of the embedding space. For example, a knotted solid torus has the same genus
as a simple torus, or a hollow sphere as two spheres. In order to topologically differen-
tiate these surfaces, one needs a theory that considers the embedding space. Homotopy,
which defines two surfaces to be homotopic if one can be continuously transformed into
the other, is such a theory that provides a measure of an object’s topology (see [8] for
an excellent course in algebraic topology).

2.2 Digital Topology

Digital topology provides an elegant framework, which transposes the continuous con-
cepts of topology to discrete images. In this theory, binary images inherit a precise
topological meaning. In particular, the concept of homotopic deformation, necessary
to assign a topological type to a digital object, is clearly defined through the notion of
simple point. An extensive discussion of these concepts can be found in the work of
Mangin et al [12]. In this section, some basic notions of digital topology are presented.
All definitions are from the work of G. Bertrand, which we refer to for more details [1].

A 3D binary digital image I is composed of a foreground object X and its inverse,
the complement X . We first need the concept of connectivity, which specifies the con-
dition of adjacency that two points must fulfill to be regarded as connected. Three types
of connectivity are commonly used in 3D: 6-, 18- and 26-connectivity. Two voxels are
6-adjacent if they share a face, 18-adjacent if they share at least an edge and 26-adjacent
if they share at least a corner. In order to avoid topological paradoxes, different connec-
tivities, n and n, must be used for X and X . This leaves us with four pairs of compatible
connectivities, (6,26), (6,18), (18,6) and (26,6). We note that digital topology does not
provide a consistent framework for multi-label images, since no compatible connectiv-
ities could be chosen for neighboring components of the same object. Digital topology
is strictly limited to binary images.

We then go to the definition of a simple point. This concept is central to the method
of [7] and to our method. A point of a binary object is simple if it can be added or re-
moved without changing the topology of both the object and its background, i.e. with-
out changing the number of connected components, cavities and handles of both X and
X . A simple point is easily characterized by two topological numbers with respect to
the digital object X and a consistent connectivity pair (n, n). These numbers, denoted
Tn(x, X) and Tn(x, X), have been introduced by G. Bertrand in [1] as an elegant way
to classify the topology type of a given voxel. The values of Tn(x, X) and Tn(x, X)
characterize isolated, interior and border points as well as different kinds of junctions.
In particular, a point is simple if and only if Tn(x, X) = Tn(x, X) = 1. Their
efficient computation, which only involves the 26-neighborhood, is described in [2].

2.3 Topology-Preserving Level Sets

Han et al. [7] have used the concept of simple point to design a topology-preserving
variant of the level set framework. The binary object of interest is the interior of the con-
tour, i.e. the domain where the level set function is strictly negative: X={x|Φ(x) < 0}.
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The digital topology of X is preserved during the evolution by the means of a modified
update procedure detailed in Algorithm 1, below. This approach prevents digital non-
simple grid points from changing sign, therefore retaining the initial digital topology
throughout the level set evolution.

Algorithm 1 Topology-preserving level sets. Han et al. [7]
for all iterations do

for all grid points do
Compute the new value of the level set function
if the sign does not change then

Accept the new value
else {sign change}

Compute the topological numbers
if the point is simple then

Accept the new value
else

Discard the new value
Set instead a small value of the adequate sign

For this method to be useful, it must be complemented with a topology-consistent
isocontour extraction algorithm. Standard marching squares or marching cubes algo-
rithm [11] do not generate topologically consistent tessellations. In order to alleviate
this problem, Han et al. have designed a modified connectivity-consistent marching
contour algorithm, by building a specialized case table for each type of digital topology.
Using the topology-preserving level set algorithm and the topology-consistent marching
contour algorithm in conjunction, with the same digital topology (n, n) throughout the
process, guarantees that the output mesh is topologically equivalent to the user-defined
initial level set.

3 Methods

The simple point condition is a very efficient way to detect topological changes during
a level set evolution. However, in many applications, the topology-preserving level set
method of Han et al. is too restrictive.

The primary concern is topological defects such as handles, which are difficult to
retrospectively correct [6,4,5,10]. On the other hand, changes in the number of con-
nected components during the evolution are less problematic. Different connected com-
ponents are easily identified using standard region growing algorithms. A subset of
them may be selected by the user as the final output, typically the largest one if a single
component is needed, the others being imputable to noise in the input data. Unexpected
cavities, which can be interpreted as background n-connected components, might gen-
erate large geometrical inaccuracies in level set evolutions that prevent their formation.
This might be of particular importance when dealing with noisy data or in medical
imaging, when unexpected medical structures, such as tumors, might exist in the vol-
ume to be segmented.
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We extend the concept of simple point to allow distinct connected components to
merge and split while ensuring that no additional handle is generated in the object.
For example, an initial contour with spherical topology may split into several pieces,
generate cavities, go through one or several mergings, and finally produce a specific
number of surfaces, all of which are topologically equivalent to a sphere.

3.1 From Simple Points to Multisimple Points

The different values of Tn and Tn characterize the topology type of a given point x,
providing important information with regards to its connectivity to the object X . In
particular, isolated points are characterized by Tn = 0 and Tn = 1, while different
junctions by Tn > 1 and Tn = 1. This additional information can be used to carefully
design a multi-label digital framework, which allows different connected components
to split, merge or vanish under topology control.

We say that a point is multisimple if it can be added or removed without changing
the number of handles of the object X . Contrary to the case of simple points, the addi-
tion of a multisimple point may merge several connected components, and its removal
may split a component into several parts. We note Cn(x, X) the set of n-connected
components of X \ {x} that are n-adjacent to x. If the cardinality of this set is strictly
greater than one, the addition or removal of x involves a merge or a split respectively.
By duality, the generation of one or several cavities in X can be interpreted as a split of
connected components of X .

Formally, a point is said to be multisimple if and only if:

Tn(x, X) = 1
∀ C ∈ Cn(x, X), Tn(x, C) = Tn(x, C) = 1

or

Tn(x, X) = 1
∀ C ∈ Cn(x, X), Tn(x, C) = Tn(x, C) = 1

When merging or splitting connected components by adding or removing a multi-
simple point, the total genus (i.e. the total number of handles) of the different compo-
nents is preserved. We note that, under this condition, an isolated point is a multisimple
point, which allows components to be created or to disappear.

3.2 Level Set Evolution Under Topology Control

With the concept of multisimple point in hand, we are now ready to describe our new
level set framework. Similarly to the approach of Han et al. [7], we exploit the binary
nature of the level set function that partitions the underlying digital image into strictly
negative inside points and positive outside points. During the evolution, we maintain a
map L of labels coding for the different connected components of X and X .

The update procedure for each grid point at each iteration is concisely described
in Algorithm 2. The simple point condition, more restrictive, is checked first, because
it is computationally cheaper. If the point is non-simple, then Cn(x, X) and Cn(x, X)
are computed in order to check the multisimple criterion. We refer to the technical
report [14] for more details.
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Interestingly, if x is part of the background (resp. foreground) object and is a can-
didate for addition, Cn(x, X) (resp. Cn(x, X)) can be deduced directly from the map
L. If x is a candidate for removal in X (resp. in X), the complete set Cn(x, X) (resp.
Cn(x, X)) must be computed. However, when dealing with components that do not pos-
sess any handles, the most common situation in practice, the computation of Cn(x, X)
and Cn(x, X) only involves local computations.

Some care must be taken in order to ensure that the map of labels L is correctly
updated. The more complex case is the removal of a multisimple point involving a split:
in this case, some unused labels must be assigned to the new connected components.
The first equation of each condition guarantees that sign changes do not generate am-
biguous label changes. For each point x ∈ X changing sign, only one single connected
component C of the inverse object X is adjacent to the point x; unambiguously, the
newly assigned label of x is the one of the component C.

Algorithm 2 Genus Preserving Level Sets
Compute the new value of the level set function
if the sign does not change then

Accept the new value
else {sign change}

Compute the topological numbers
if the point is simple then

Accept the new value
else {non-simple point}

if the point is multisimple then
Accept the new value
Update L(x)

else
Discard the new value
Set instead a small value of the adequate sign

The resulting procedure is an efficient level set model that prevents handles from
being created during the evolution, allowing the number of connected components (in-
cluding cavities) to vary. We insist on the fact that digital topology does not provide a
consistent framework for multi-label images. However, by ensuring that no components
of the same object X or X are adjacent, topological inconsistencies can be eliminated.

4 Experiments and Applications

In this section, we present some experiments illustrating the performance of our ap-
proach and introduce some potential applications. We first apply our level set framework
to two synthetic examples to demonstrate its ability to handle disconnected components
and cavities. Next, two segmentation tasks are presented: the generation of cortical sur-
faces from MRI images and the extraction of blood vessels from MRA images.

4.1 Experiments

’C’ shape: First, we consider the segmentation of a simple ’C’ shape under two dif-
ferent initializations (cf Fig.1 a-c & d-f ). Our method, columns c,f, is compared to the
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Fig. 1. Left: Segmentation of a ’C’ shape using a spherical initialization a-c and a rectangular
initialization d-f. The top row shows cuts of the 3D shape locating the initial component. a,d:
Traditional level set evolution. b,e: Topology-preserving level set evolution. c,f: level set evolu-
tion under topology control. Differences of behavior are circled in the images. Note that in both
cases, our level set framework is able to correctly segment the shape of interest, without gener-
ating invalid topology during the evolution. Right: Segmentation of a cubic shape containing 3
cavities. 10 initial seed points were randomly selected. Note how components split, merge and
disappear during the evolution, and how the active contour encloses cavities.

original level set formulation, columns a,d, and the topology-preserving model intro-
duced by Han et al. [7], columns b,e. In the case of this simple example, standard level
sets produce accurate segmentations. However, they do not provide control over the fi-
nal topology, as illustrated by the second initialization, column d. During the evolution,
the level set automatically changes topology, temporarily generating a toroı̈dal shape.

On the other hand, topology-preserving level sets, while guaranteeing the correct
topology, might easily be geometrically inaccurate (see Fig.1 b,e). Topological barri-
ers, generated during the evolution to prevent topological changes, generate incorrect
contour configurations which are difficult to retrospectively correct. We note that even
close initializations (cf column e) can lead to inaccurate segmentations.

The behavior of our approach corresponds to a trade-off in between the previous two
methods. Our level set framework, which offers more flexibility during the evolution,
greatly alleviates the sensitivity to initialization. It provides a control over the topol-
ogy of all connected components, without enforcing strong topological constraints. The
first initialization (cf column c) produces a level set evolution, which splits the active
contour into three distinct components with a spherical topology. While one of these
components vanishes, the two other components merge, closing the ’C’ shape. In this
case, topologically controlled level sets behaved in exactly the same way traditional
level sets do. Our method is still sensitive to topological barriers, in the sense that it
will not allow component to generate handles. However, it is less likely to be trapped
into topological dead-ends than a strict topology-preserving model. This is illustrated
in Fig.1 f, where the spherical component is prevented from generating a handle until it
gets separated into two distinct components.

Formation of cavities: The second experiment illustrates the ability of our approach to
generate cavities during the evolution. The object to be segmented is a synthetic cube,
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containing 3 large cavities. 10 seed points, randomly selected inside and outside the
volume, were used to initialize the level set evolution reported in Fig.1-right. During the
evolution, components merge, vanish and produce cavities, generating a final accurate
representation constituted of 3 spherical cavities and the main object. We note that all
the components are easily extracted, since they carry distinct labels that are iteratively
updated during the evolution.

4.2 Medical Image Segmentation

Two segmentation tasks are presented that illustrate the potential benefits of our novel
level set framework : the segmentation of cortical surfaces from MRI and the extraction
of blood vessels from MRA data sets. The level set evolution is naively guided by a
simple intensity-based velocity term and a curvature term:

∂tφ(x, t) = [α(I(x) − T (x)) − κ]|∇φ|,

where I(x) and κ represents the image intensity and mean curvature respectively at
location x, T is a threshold computed locally from image intensities, α a weighting
coefficient equal to α = 0.1.

Cortical segmentation: Excluding pathological cases, the cortex, which corresponds
to a highly-folded thin sheet of gray matter, has the topology of a sphere. The extraction
of accurate and topologically correct cortical representations is still an active research
area [4,6]. In this example, the cortical surface is initialized with 55 spherical com-
ponents, automatically selected in a greedy manner, such that every selected point is
located at a minimal distance of 10mm from the previous ones (see Fig.2). During the
evolution, the components progressively merge together and enclose cavities, result-
ing in a final surface composed of one single spherical component with 5 cavities. The
same evolution without topology constraint produces a final cortical surface with 18
topological defects (i.e. handles).

Fig. 2. Segmentation of the cortex from an anatomical MRI. The initial level set was constituted
of 55 connected components. The final surface has a spherical topology, corresponding to an
Euler number of 2. The same level set evolution without topological control results in a final
surface with 18 topological defects (Euler number of χ = −34).
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Fig. 3. Segmentations of blood vessels in a 3D angiography under two different initializations.
Top row: 20 seed points were selected to initialize the active contour, which generates 3 com-
ponents. Bottom row: An enclosing contour is used to initialize the level set. After 9 mergings
and 99 splittings, the final segmentation is constituted of 91 components, 53 of which were due
to random noise. The last image in the black frame shows the final segmentation produced by a
topologically constrained evolution under the same initialization.

Segmentation of blood vessels: Finally, we show how our method could be applied
to the segmentation of blood vessels from Magnetic Resonance Angiography. Because
these vessels do not split and merge, their topology is the one of several distinct compo-
nents with no handles (i.e. each component has the topology of a sphere). While tradi-
tional level sets produce segmentations that could include topological defects, topologi-
cally constrained level sets would result in a slow and laborious segmentation. Since the
simultaneous evolution of several components, which cannot be merged together, can
easily be trapped in topological dead-ends, each component would need to be iteratively
initialized, when the evolution of the previous one has terminated.

On the other hand, our method offers the possibility to concurrently evolve multiple
components that can merge, split and . The initial contour can be initialized by a set of
seed points, manually or automatically selected, or by a single enclosing component,
without affecting much the final representation.

Figure 3 shows the segmentation of an angiography under two different initializa-
tions. In a first experiment (cf top row), 20 seed points were automatically selected at
the brightest locations in the MRA. The level set evolution iteratively merged most of the
components, generating a final segmentation with 3 spherical components. In the second
experiment (cf bottom row), one single global component, enclosing most of the object
of interest, was used to initialize the active contour. During the evolution, 9 components
merged and 99 split producing a final segmentation composed of 91 components, 53 of
which were single voxel components due to random noise in the imaging process.

5 Discussion and Conclusion

We introduce a new level set framework that offers control over the topology of the level
set components during the evolution. Previous approaches either do not constrain the
topology or enforce a hard topological constraint. Our method exerts a subtle control
over the topology of each component to prevent the formation of topological defects.
Distinct components can merge, split or disappear during the evolution, but no handles
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will be generated. In particular, a contour solely composed of spherical components
will only produce spherical components throughout the evolution. In this case, which is
the most common situation in practice, all computations are local and the multisimple
point checking can be done efficiently. The only computational complexity comes from
the generation of new components, as new labels need to be assigned to each of them.

While the original level set model does not provide any topological control,
topology-preserving level sets enforce a strong constraint that is often too restrictive.
Our framework establishes a trade-off in between the two models. It offers a subtle
topological control that alleviates most problems of methods that enforce a strong topo-
logical constraint (i.e. sensitivity to initialization and noise, simultaneous evolution of
multiple components and speed of convergence). The experiments presented in this pa-
per illustrate some potential applications that could greatly benefit from our approach.
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Abstract. The paper addresses the problem of virtual craniofacial 
reconstruction from a set of Computer Tomography (CT) images, with the 
multiple objectives of achieving accurate local matching of the opposable 
fracture surfaces and preservation of the global shape symmetry and the 
biomechanical stability of the reconstructed mandible. The first phase of the 
reconstruction, with the mean squared error as the performance metric, achieves 
the best possible local surface matching using the Iterative Closest Point (ICP) 
algorithm and the Data Aligned Rigidity Constrained Exhaustive Search 
(DARCES) algorithm each used individually and then in a synergistic 
combination. The second phase, which consists of an angular perturbation 
scheme, optimizes a composite reconstruction metric. The composite 
reconstruction metric is a linear combination of the mean squared error, a global 
shape symmetry term and the surface area which is shown to be a measure of 
biomechanical stability. Experimental results, including a thorough validation 
scheme on simulated fractures in phantoms of the craniofacial skeleton, are 
presented. 

1   Motivation 

In modern society, craniofacial fractures are encountered very frequently with the two 
most prominent causes being gunshot wounds and motor vehicle accidents [1]. These 
frequently encountered fractures possess some distinct patterns. Sometimes, the 
patterns imply a single fracture, and, in some other cases, there can be a combination 
of single fractures [2]. From the surgical standpoint, fractures are fixated one at a time 
in the operating room and thus can and must be so decomposed in the pre-surgical 
planning as well. Thus, practically speaking, in almost all the cases, reconstruction 
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from a single mandibular fracture assumes paramount importance. The plastic 
surgeon in the operating room restores the form and function of the fractured bone 
elements in the craniofacial skeleton typically by first exposing all the fragments, then 
returning them to their normal configuration, and finally maintaining these reduced 
bone pieces with rigid screws and plates. However, there are several critical and 
inherent limitations to this current, standard approach. To visualize the fragments in 
order to reduce them necessitates their exposure which consequently reduces the 
attached blood supply. To improve the blood supply, one can decrease the extent of 
dissection. However this means not being able to visualize the entire fracture, which 
could lead to potential misalignments of the bone fragments. Additionally, the cost of 
surgery becomes prohibitive with the increased operating time necessary to ensure an 
accurate reconstruction, especially in complex cases [3].  An elaborate virtual 
reconstruction scheme involving a single mandibular fracture is proposed in this work 
which can potentially reduce the operating time and consequently, the cost of surgery 
without sacrificing surgical precision, thus drastically reducing the operative and post-
operative patient trauma.   

2   Literature Review and Our Contribution  

A lot of interesting research has been performed over the past decade in various 
aspects of craniofacial/maxillofacial surgery. Because of space limitations, only a few 
representative works are mentioned here.  The mass tensor model is used for fast soft 
tissue prediction in [4] whereas the mass-spring model is used for fast surgical 
simulation from CT data in [5].  The problem of building a virtual craniofacial patient 
from CT data has been addressed in [6] whereas a reconstruction approach involving 
complete 3D modeling of the solid high-detailed structure of the craniofacial skeleton, 
starting from the information present in the 3D diagnostic CT images can be found in 
[7]. The Iterative Closest Point (ICP) [8] algorithm is seen to be a popular computer 
vision algorithm for surface registration in the field of medical imaging. Some 
variants of the ICP algorithm that incorporate certain statistical concepts such as 
Expectation Maximization (EM) in the context of medical imaging can be found in 
[9]. The basic benefit of the ICP algorithm is that it gives an accurate result given a 
good initial starting point. Another surface registration algorithm called the Data 
Aligned Rigidity Constrained Exhaustive Search (DARCES) which incorporates a 
Random Sample Consensus (RANSAC) model fitting approach [10], is popular 
because of its robustness to outliers and has also been used in medical imaging [11].   

In this paper, we address the problem of single fracture craniofacial reconstruction 
from broken solid fragments. Our principal contribution is the formulation of a novel 
two-phase virtual reconstruction scheme. The first phase of our proposed 
reconstruction scheme employs the ICP and DARCES algorithms first individually 
and then in a novel synergistic combination. The ICP algorithm in our implementation 
solves the 3D correspondence problem using Bipartite Graph Matching. The 
synergetic combination of the two algorithms, where the output of the DARCES 
algorithm is fed as an input to the ICP algorithm, is observed to result in an improved 
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surface matching algorithm with a considerable reduction in both, the mean squared 
error (MSE) and the execution time. We briefly describe the first phase of 
reconstruction in this paper and refer the interested reader to our previous work in 
[12]. The anatomy of the human mandible clearly exhibits bilateral symmetry. 
Furthermore, basic biophysical principles indicate that the most stable state for a solid 
body is the state with minimum energy [13] and this fact should be applicable to the 
human mandible as well. Since both the ICP and DARCES algorithms are essentially 
data driven and are purely local in nature, the first phase cannot explicitly guarantee 
the preservation of either the global shape symmetry or the biomechanical stability of 
the reconstructed human mandible. The incorporation of anatomical shape knowledge 
in medical image registration has been discussed in [14, 15]. However, we go one step 
further in the second phase of our reconstruction paradigm. In the second phase, a 
composite reconstruction metric is introduced and expressed as a linear combination 
of three different terms, namely (a) the MSE, (b) a global shape symmetry term and 
(c) a surface area term (which is shown to be a measure of biomechanical stability). 
An angular perturbation scheme is used to optimize the composite reconstruction 
metric. Thus the second reconstruction phase enables us to explore and address, in an 
innovative manner, the anatomical shape preservation as well as biophysical stability 
issues in the reconstruction paradigm (which may not be always possible in the 
operating room). As shown in this paper, the second phase of reconstruction 
integrates computer vision algorithms with ideas from biophysics and mathematics to 
generate a more accurate reconstruction.    

3   Image Preprocessing 

The input to the system (Fig.1) is a sequence of 2D grayscale images of a fractured 
human mandible, generated via Computer Tomography (CT). Each image slice is 150 
mm x 150 mm with an 8-bit color depth. A simple thresholding scheme is used to 
binarize each CT image slice (Fig. 2b). A 2D Connected Component Labeling (CCL) 
algorithm in conjunction with an area filter is used to remove some unwanted artifacts 
(Fig. 2c). The results of the 2D CCL algorithm are propagated across the CT image 
slices, resulting in a 3D CCL algorithm. Interactive contour detection is then 
performed on all the 2D CT slices. The contour points from the CT image stack are 
assembled to form a 3D surface point data set. The data sets resulting from two 
opposable fracture surfaces are denoted as the sample dataset and the model dataset. 

           

Fig. 1. A sequence of CT images (where higher intensity values represent mandible fragments 
and artifacts and lower intensity values represent soft tissue) 



 A Novel Multifaceted Virtual Craniofacial Surgery Scheme Using Computer Vision 149 

 

                  

Fig. 2. (a) A typical 2D CT slice. (b) The CT slice after thresholding. (c) The CT slice after 
Connected Component Labeling and Size Filtering. In (b) and (c), the lower intensity values 
represent mandible fragments and artifacts. 

4   Reconstruction Phase I - Surface Matching Algorithms 

The first phase of the virtual reconstruction consists of applications of the ICP, 
DARCES and hybrid DARCES-ICP algorithms. For the ICP algorithm [8], the 
matching point pairs (forming the closest set) are determined in a novel fashion using 
the Maximum Cardinality Minimum Weight (MCMW) Bipartite Graph Matching 
algorithm [16] based on the Hungarian Marriage method proposed by Kuhn [17]. The 
3D sample and model data sets correspond to the two disjoint vertex sets (V1, V2) in a 
bipartite graph G(V, E). The edge-weight (Wij ∈  E) between any two nodes i and j 
(such that i ∈V1 and j ∈V2) is deemed to be the Euclidean distance between them. 
Note that the Euclidean distance is invariant to a 3D rigid body transformation. The 
bipartite graph matching implicitly preserves the local shape of the two surfaces (to be 
registered) with arbitrary orientation, without necessitating their pre-alignment. The 
edge weights are given by:  
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where R denotes the rotation matrix, T, the translation vector, si, a point in the sample 
data set and ci, the corresponding point in the closest set. A pre-specified error 
convergence criterion of 0.001 was used. A RANSAC-based approach for the 
DARCES algorithm was adopted [10]. All the 3D rigid body transformation 
parameters were computed using the Singular Value Decomposition (SVD) algorithm 
[18]. A novel synergistic combination of the DARCES and ICP algorithms, where the 
inputs to the ICP algorithm are the original model set and, the sample set transformed 
by the DARCES algorithm, was employed [12]. The ICP algorithm yields an accurate 
3D rigid body transformation but is sensitive to outliers in the input data. The 
DARCES algorithm, on the other hand, enables outlier rejection but the computed 
transformation is only approximate. In the DARCES-ICP hybrid algorithm, the pairs 
of matched points generated by the DARCES algorithm serve to reduce the 
cardinalities of the two data sets to be matched (using bipartite graph matching) in the 
ICP algorithm. Consequently, the dense bipartite graph used to determine the closest 
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set in the ICP algorithm is reduced to a sparse bipartite graph with fewer nodes and 
edges. Thus, the subsequent MCMW bipartite graph matching procedure in the ICP 
algorithm has a lower execution time since it is run on a more meaningful (in terms of 
the number of pairs of matching points in the two vertex sets V1 and V2) sparse 
bipartite graph. Also, a much lower MSE is achieved by the ICP algorithm for the 
matching of the two fracture surfaces, since the DARCES algorithm provides a better 
starting point to the ICP algorithm by virtue of outlier removal. We have also 
achieved further improvement in local surface matching with suitable modeling of 
surface irregularities and their incorporation in the reconstruction scheme [19]. 

5   Identification of the Plane of Bilateral Symmetry 

In order to ensure preservation of the global shape of the reconstructed human 
mandible, the plane of bilateral symmetry [20] – [24] is determined for the 
reconstructed human mandible. We assume the general equation of a three-
dimensional plane to be: 

0),,( =−++= DCzByAxzyxF  (3) 

It is well known that the planes of reflection symmetry for any rigid body pass 
through its centre of mass and that their coefficients are the components of the 
eigenvectors of the real symmetric moment of inertia matrix/tensor [13]. This fact 
allows us to determine the possible candidates for the planes of reflection symmetry 
without recourse to exhaustive search [23]. The elements of the 3x3 moment of inertia 
matrix/tensor are the second order centralized moments for the rigid body under 
consideration. Once the coefficients of the three symmetry planes are determined, the 
entire mandible is reflected about each of these planes. For each point f(x, y, z) in the 
reconstructed mandible, there exists a corresponding point fR (x, y, z) in the reflected 
mandible, given by the following equation [21]: 
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where the F is computed using equation (3). There are various measures of symmetry 
to be found in the literature such as the sum of absolute distance and the normalized 
cross- correlation [20 - 23]. The proposed metric is a linear combination of the 
normalized cross-correlation and a novel set-theoretic measure. If one treats the 
reconstructed mandible g and the reflected mandible h as two N-dimensional vectors, 
the normalized cross-correlation γ between g and h is given by [20, 21, 24]:  

uhhugg

uhhugg
hg

−−
−−= )).((
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where g and h are the means of the elements of g and h respectively and u is an N-

dimensional unit vector. Alternatively, g and h can be considered as two 3D data sets 
of cardinality n. A novel set theoretic term  is introduced as a measure of overlap 
between the sets g and h: 

hg

hg

∪
∆

−= 1β  (6) 

where ∆  denotes the symmetric difference between and ∪  represents the union of 
the reconstructed mandible set g and the reflected mandible set h. Interestingly,   lies 
between 0 (when there is no overlap between g and h) and 1 (when there is perfect 
overlap between g and h). The proposed metric for global shape symmetry, denoted 
by GM, is given by: 

βλγλ ∗+∗= 21GM  (7) 

where =
=

2

1
1

i
iλ  (8) 

Depending on the problem structure and image representation, different values of 

1λ and 2λ  can be chosen. We assume 1λ = 2λ = 0.5 for our present problem. The 

plane with the largest value of GM is deemed to be the plane of bilateral symmetry. 

6   Estimation of Biomechanical Stability 

Surface energy minimization is modeled along the well accepted principle of strain 
potential minimization, which, in turn, is based on minimization of the strain energy 
of an isotropic solid. The strain potential (U) can be defined as follows: 

(normal and shear strains, Young's and shear moduli, Poisson ratio) 
V

U f dv=  
(9) 

Details of the functional form of f for an isotropic solid may be found in [25]. The 
normal and shear strains occurring in response to a force field are represented by a 
displacement field u and resisted by forces arising from the Young’s and shear 
moduli. A body force B (operating on a volume V with surface area S) and surface 
shear forces T will result in a deformation pattern that minimizes U. Further, it can  
be shown that the following criterion must be satisfied under equilibrium  
conditions [25]: 

=−+
S V

UvuBauT 0.. δδδδδ  (10) 

The integral on the left in equation (10) is a surface energy term. For the purpose of 
this discussion, we may assume near zero resistance to movement resulting from a 
force of unity, thus the energy related to volumetric response is near zero. Hence it 
can be concluded that a minimum potential energy state results in minimum surface 
energy. Further, minimum surface energy in the context of moving fragments with 
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constant surface force is consistent with minimum surface area. So, a biomechanically 
stable state (i.e. a state with minimum potential energy) is guaranteed by a state with 
minimum surface area. Only the top and bottom curved surfaces (of the six possible 
surfaces) of the human mandible in the CT image stack, that account for the 
maximum contribution to the total surface area, are considered. Each surface (S) can 
be modeled of as an aggregation of disjoint surface patches (SP) [26]: 

i

n

i
SPS

1=
∪=  

(11) 

 

 jiifSPSP ji ≠=∩ φ  (12) 

The determinant (gm) of the first fundamental form matrix G [26, 27] for each surface 
patch is computed using techniques of differential geometry. The area of each surface 
(SA), in terms of its constituent surface patch areas (SPA) and metric determinants 
(gm), is given by the following equation: 

=
=

n

i
ii SPAgmSA

1

2/1 *  (13) 

where n is the number of surface patches comprising a given surface. Each digital 
surface (patch) is approximated by an analytic surface (patch) using a least-squares 
surface fitting technique [26, 27]. Discrete bi-orthogonal Chebyshev polynomials are 
used as the basis functions for each such surface patch within an N x N window 
(where N = 5 in our case). The surface function estimate that minimizes the sum of 
squared surface fitting error within the window is given by: 
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where theϕ i ’s are the basis functions for the Chebyshev polynomials. Coefficients of 

the functional approximation are given by: 

=
=
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where M= (N-1)/2 and the bi’s are the normalized versions of the above polynomials. 
From the estimated coefficients, the first and second order partial derivatives of the 
fitted surface patch are computed. These partial derivatives are used to compute the 
elements of the first fundamental form matrix G of the fitted surface patch. Finally, 
the determinant gm of the matrix G for that surface patch is computed [26, 27].  

7   Reconstruction Phase II - Angular Perturbation Scheme 

The rationale behind the second phase of the reconstruction scheme, which consists of 
an angular perturbation scheme, is to arrive at a reconstruction that minimizes the 
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MSE between the matched fracture surfaces and also yields the best possible shape 
symmetry and biomechanically, the most stable configuration. A normalized 
composite reconstruction metric (CRM), which is a linear combination of the MSE, 
the inverse of the global shape symmetry (since the optimization problem is 
formulated as one of minimization) and the surface area (as a measure of surface 
energy, which, in turn, determines biomechanical stability) is proposed as a 
performance measure for the perturbation scheme and is given by: 

)2/)((** 3
1

2
2

1 BSATSAGMCRM +++∗= − ααξα  (16) 

where 2ξ is the MSE, GM is given by equation (7), and TSA and BSA denote the top 

and bottom surface areas respectively and are estimated using equation (13). The iα ’s 

are determined using the following equation: 
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where )(t∂  denotes the normalized absolute difference (i.e. difference of the 
maximum and minimum values, divided by the maximum value) of the term t over 
the range of perturbation. One of the rationales behind model generation is to exploit 
certain key anatomical measurements to fine tune the coefficients in the equation (16). 
However, presently, these coefficients are computed based on the normalized absolute 
differences of the associated factors over the range of angular perturbations (see  
Fig. 5). The perturbations are applied to the fracture site in steps of 0.20 from -10 to 
+10 about each of the x, y and z axes. In each perturbed state, a new CRM is estimated 
after re-computing all the three components in equation (16). The small range of 
angular perturbations is justified based on a reasonable expectation that the locally 
best (minimum MSE yielding) solution generated by the DARCES-ICP hybrid 
algorithm is not very far off from the best overall solution (resulting the minimum 
CRM value). The choice of angular quantization (0.20) is a judicious compromise 
between execution time and accuracy. The smaller the angular quantization, higher 
the execution time of the algorithm. On the contrary, making the angular quantization 
too large may prevent the algorithm from arriving at the best possible solution. The 
state generating the minimum CRM value is deemed to be the desired reconstruction. 

8   Experimental Results and Analysis 

The reconstructed images for the DARCES, ICP and hybrid DARCES-ICP algorithms 
are presented in Fig. 3. In Fig. 4, the projections, along each of the coordinate axes, of 
the 3D reconstruction obtained using the hybrid DARCES-ICP algorithm are visually 
compared with the projections of the original mandible. 

The quantitative reconstruction results (i.e., the MSE), obtained by using the 
various surface matching algorithms (described in Section 4) are shown in Table 1. 
Table 2 shows typical values for the parameters γ ,  and GM (in the equations (5), (6) 
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Fig. 3. The first row represents broken mandible fragments in typical CT slices. The second, 
third and fourth rows respectively represent reconstruction resulting from ICP, DARCES and 
hybrid DARCES-ICP algorithms. 

and (7) respectively) for the three different candidate symmetry planes in the 
unperturbed state. The variations of the mean squared error, the inverse global metric 
for the plane of the bilateral symmetry, the average surface area and the normalized 
composite reconstruction metric as a function of angular perturbations along all the 
three major axes are graphically portrayed in Figs. 5(a)-5(d) respectively. The ranges 
of variations for these parameters along with their coefficients in equation (17) are 
shown in Table 3. Interestingly, with the incorporation of very small angular 
perturbations, it is possible to attain a reconstruction state, which not only yields 
better results in terms of the average surface area and shape symmetry, but also 
significantly reduces the local MSE. This is clearly revealed in Table 4, where the 
first and the second row respectively show the values of different terms of equation 
(16) for the unperturbed configuration (i.e. the reconstruction generated by the hybrid 
DARCES-ICP algorithm) and the optimal configuration (for a perturbation of -0.40 
about the x-axis, yielding the minimum normalized CRM value). These results show 
the effectiveness of the novel second phase of the proposed virtual reconstruction.  
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Fig. 4. Comparison of the original and reconstructed mandibles. The top row is the original 
mandible and the bottom row is the reconstructed mandible obtained using DARCES-ICP 
hybrid algorithm. The first, second and the third columns represent the 3D projections along the 
x, y and z axes respectively. 

Table 1. A comparison of MSE values obtained by applying various surface matching 
algorithms [12, 19] 

Surface Matching Scheme MSE (mm2) 
ICP 0.91 

DARCES 0.33 
Hybrid DARCES-ICP 0.25 

Table 2. Symmetry plane determination for a typical unperturbed state resulting from phase-I 
of the reconstruction 

γ   GM Equation of the Plane Comment 
0.79 0.88 0.83 0.98x – 0.16y + 0.12z = 65.42 Plane of Bilateral Symmetry 
0.27 0.72 0.50 -0.20x + 0.87y – 0.45 z = 58.78 - 
0.35 0.82 0.59 -0.03x + 0.47y + 0.88z = 50.95 - 

Table 3. Comparison of the normalized variations of the different terms in eqn. (16) and their 
coefficients  in eqn. (17) 

 MSE Inverse Global 
Symmetry 

Average Surface 
Area 

Variations 0.86 0.07 0.12 
Coefficients 0.82 0.06 0.11 

The experimental results and subsequent analysis presented in this section are for a 
typical single fracture reconstruction which is carried out using our developed 
software InSilicoSurgeon [12], which is built on top of ImageJ, the imaging software 
from NIH [28]. Our software contains a simple but elegant Graphical User Interface 



156 A.S. Chowdhury et al. 

 

rotation about x-axis) and the unperturbed state (the MSE, Inverse_GM, Average Surface Area 
and CRM values are all normalized). 

Axis Angle MSE Inverse_GM Average  Surface 
Area 

CRM  

x -0.40 0.138 0.952 0.892 0.275 
- - 0.148 0.964 0.982 0.293 

                        
                            (a)               (b) 

                        
                                              (c)                                                                      (d) 

Fig. 5. Variations in the (a) mean squared error ( 2ξ ) (b) Inverse Global Metric for the Plane of 
Bilateral Symmetry (GM--1) (c) Average Surface Area ((TSA + BSA/2)) (d) Normalized CRM, 
with angular perturbation along all the three major axes 

 

Fig. 6. A snapshot of the developed GUI where the extreme left column describes various 
stages of the reconstruction and each button performs a dedicated task (is evident from the 
name of the button) 

(GUI) which can be of substantial help for virtual surgery as well as surgical training 
purposes. A Help button is provided for general guidance. The Geometric 
Transformation button (see Fig. 6) is used to finally bring the various bone fragments 
into registration. 

Table 4. Comparison of the performance measures associated with the optimal state (-0.40 
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9   Model Generation and Validation of the Virtual Reconstruction  

In addition to the visual comparison and qualitative estimation of the accuracy of the 
virtual craniofacial reconstruction, we used solid modeling for further validation. The 
serial images of the reconstructed human mandible were loaded into the 3D Doctor 
software [29] which builds the virtual solid model from the serial CT scans and 
facilitates initial processing and 3-D viewing. Solid models were saved in the STL file 
format for prototype development and further analyses. The solid models were printed 
on a StratoSys rapid prototype printer (model: Dimension, software: Catalyst 3.4)1, 
which reproduces a solid model by layering high density polyethylene plastic in 4 nm 
layers with repeated passes. A comparison of key anatomical measurements between 
the reference and reconstructed mandible were made. The STL files were transformed 
via AutoCAD into a Pro/E compatible file format for Finite Element (FE) analyses. 
Research is also currently underway for assigning appropriate material properties and 
for identifying a suitable constitutive model for the mandible material. 

10   Conclusions and Future Work 

The paper addressed the important problem of virtual craniofacial reconstruction with 
multiple objectives of obtaining accurate local surface matching as well as ensuring 
global shape preservation and biomechanical stability of the reconstructed human 
mandible. The present application can be used as a pre-surgical planning tool and as a 
training tool for surgical residents. In phase-I of the reconstruction, two different 
classes of algorithms namely the ICP and the DARCES were first applied individually 
and then in a cascaded manner for accurate surface matching. The combination of the 
two algorithms resulted in an improved MSE, and a considerable reduction in the 
execution time compared to the ICP algorithm used in isolation. The plane of bilateral 
symmetry was computed for the best possible reconstruction resulting from the first 
phase, using a novel combination of the normalized cross-correlation and a set 
theoretic measure. Minimization of surface area was shown to be mathematically 
equivalent to minimization of surface energy and used as a measure of biomechanical 
stability. The average surface area was estimated for the best reconstructed mandible 
resulting from the first phase. A composite reconstruction metric, expressed as a 
linear combination of the mean squared error, global shape symmetry and surface 
area, was introduced as a performance measure in the second phase of the 
reconstruction. A local search in this phase, based on an angular perturbation scheme, 
was shown to result in a solution that minimizes the composite reconstruction metric 
instead of just the MSE alone. A validation scheme was proposed to measure the 
effectiveness of the entire reconstruction by generation of a solid model of the 
reconstructed mandible. It is important to note that although the experiments thus far 
have been performed on phantom data sets (experiments on real data sets are ongoing 
), our reconstruction paradigm, with the statistically robust RANSAC-based DARCES 
algorithm, as an integral component, is adequate to handle the issue of outliers and 
missing data in case of real data sets. The hybrid DARCES-ICP algorithm could be 
expected to provide an accurate reconstruction (with lower MSE) followed by the 
                                                           
1 14950, Martin Dr. Eden Prairie, MN 55344, USA. 
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second reconstruction phase to guarantee a minimum CRM value on real data sets. 
Future research will involve (i) model guided feedback to fine tune the coefficients of 
the different terms in the composite metric in equations (16) and (17) to result in an 
even better reconstruction, and (ii) extending the present single fracture reconstruction 
framework to multiple fractures using a combinatorial optimization approach. 
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Abstract. Image segmentation is an important research topic in image process-
ing and computer vision community. In this paper, we present a novel segmen-
tation method based on the combination of fuzzy connectedness and adaptive 
fuzzy C means (AFCM). AFCM handles intensity inhomogeneities problem in 
magnetic resonance images (MRI) and provides effective seeds for fuzzy con-
nectedness simultaneously. With the seeds selected, fuzzy connectedness 
method is applied. As fuzzy connectedness method makes full use of the inac-
curacy and ‘hanging togetherness’ property of MRI, our new method behaves 
well in both simulated and real images. 

1   Introduction 

Image segmentation is one of the most important step or research topics of computer 
vision. It is also the foundation of medical image analysis and clinical planning. Due 
to the great amount of data and the high requirement of segmentation result, auto-
matic segmentation has aroused increasing interest. 

Images are by nature fuzzy [1]. This is especially true to the biomedical images. 
The fuzzy property of images is usually made by the limitation of scanners in the 
ways of spatial, parametric, and temporal resolutions. The heterogeneous material 
composition of human organs also adds to the fuzzy property in magnetic resonance 
images (MRI).  As the objective of image segmentation is to extract the object from 
the other parts, segmentation by hard means may despoil the fuzziness of images, and 
lead to bad results. By contrast, using fuzzy methods to segment biomedical images 
would respect the inherent property fully, and could retain inaccuracies and uncertain-
ties as realistically as possible [2]. 

Although the object regions of biomedical images manifest themselves with het-
erogeneity of intensity values due to their fuzzy property, knowledgeable human 
observers could recognize the objects easily from background. That is, the elements in 
these regions seem to “hang together” to form the object regions in spite of their het-
erogeneity of intensity.  

In 1973, Dunn[3] firstly developed “fuzzy c-means” (FCM) which is a fuzzy clus-
tering method to allow one piece of data to belong to two or more clusters. In [4], 
Bezdek improved the algorithm so that the objective function minimizes in an itera-
tive procedure. The method is nearly unsupervised, and is computationally fast.  

 CVBIA
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However, FCM does not address the problem of intensity inhomogeneities. There-
fore, it does not work well in the presence of great noise. As intensity inhomogenei-
ties are caused by non-uniformities in the RF field during acquisition, they often hap-
pen to MRI. In 1999, Pham and Prince [5] improved FCM and proposed a new 
method AFCM, which behaves well to overcome the problem of intensity inhomoge-
neities. But AFCM may perform poorly in the presence of extreme noise [5]. 

In [6], Rosenfeld developed fuzzy digital topological and geometric concepts. He 
defined fuzzy connectedness by using a min-max construct on fuzzy subsets of 2-D 
picture domains. Based on these, Udupa [7] introduces a fundamental concept called 
affinity, which combined fuzzy connectedness directly with images and utilized it for 
image segmentation. Thus the properties of inaccuracy and hanging togetherness are 
made full use of. However, the step of manual selection of seeds, although onerous 
and time-consuming, is unavoidable in the initialization of fuzzy connectedness. 
Moreover, it is hard to select effective seeds in the presence of extreme noise, espe-
cially when the object is not connected. 

This paper proposes a novel segmentation method based on the combination of 
fuzzy connectedness and AFCM, and applies it to segment MR brain images. The 
proposed algorithm first simultaneously achieves inhomogeneity compensation and 
automatic seed selection through AFCM, then fuzzy connectedness method is applied 
using the selected seeds. The contribution of this paper is as follows. 1). The proposed 
segmentation method is robust to intensity inhomogeneities. 2). The procedure is 
unsupervised since the seeds for fuzzy connectedness are automatically selected. 3). 
Accuracy of result is further enhanced due to the good behavior of fuzzy connected-
ness. Experiments on simulated and real MR brain images prove that this new method 
behaves well. 

The remainder of this paper is organized as follows. Section 2 briefly introduces 
the fuzzy connectedness method and AFCM. Section 3 describes our fuzzy connect-
edness and AFCM based method in detail. Section 4 presents the experimental results. 
Conclusions are given in Section 5. 

2   Background 

This section briefly describes the two fuzzy methods, fuzzy connectedness method 
and AFCM. 

2.1   Fuzzy Connectedness 

First, we summarize the fuzzy connectedness method for segmentation proposed by 
Udupa[7]. 

Let X be any reference set. A fuzzy subset of is a set of ordered pairs 

where  is called the membership function of  in X .  

Let nZ be the set of all spels (space elements) in n -dimensional Euclidean space 
nR . A fuzzy relationα  in nZ  is said to be a fuzzy adjacency if it is both reflexive 

and symmetric. It is desirable thatα be such that is a non increasing function of the 

: [0,1]X .
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distance || ||c d− between c  and d .We call the pair ( , )nZ α , where α  is a fuzzy 

adjacency, a fuzzy digital space. 

A scene over a fuzzy digital space ( , )nZ α is a pair ( , )C f= where 

{ | j j jC c b c b= − ≤ ≤ for some }nb Z+∈ ; nZ+  is the set of n -tuples of positive 

integers; f , called scene intensity, is a function whose domain is C . C  is called the 

scene domain, whose range [ , ]L H  is a set of numbers (usually integers). 

Let ( , )C f= be any scene over ( , )nZ α . Any fuzzy relation κ  in C  is said 

to be a fuzzy spel affinity (or, affinity for short) in  if it is reflexive and symmetric. 
In practice, for κ  to lead to meaningful segmentation, it should be such that, for any 

,c d C∈ , ( , )c dκµ  is a function of 1) the fuzzy adjacency between c and d ; 2) the 

homogeneity of the spel intensities at c and d ; 3) the closeness of the spel intensities 

and of the intensity-based features of c and d to some expected intensity and feature 

values for the object. Further, ( , )c dκµ may depend on the actual location of 

( , )c dκµ  (i.e., κµ  is shift variant). 

Path strength is denoted as the strength of a certain path connecting two spels. Saha 
and Udupa[7] have shown that under a set of reasonable assumptions the minimum of 
affinities is the only valid choice for path strength. So the path strength is  

[ ]11
( ) min ( , )

p
i i

i l
p c cκµ µ −< ≤

= , (1) 

where p is the path 1 2, ,...,
pl

c c c< > and is denoted as the fuzzy κ -net in C . 

Every pair of 1( , )i ic c− is a link in the path while 1ic −  and ic  may not always be 

adjacent. 

For any scene  over ( , )nZ α  , for any affinityκ  and κ –net  in , fuzzy 

κ  -connectedness K  in is a fuzzy relation in C defined by the following mem-

bership function. For any ,c d C∈  

[ ]( , ) max ( )
cd

K
p P

c d pµ µ
∈

= . (2) 

Combined with eq.(1), eq.(2) shows the min-max property of the fuzzy connected-
ness between each two spels, as is illustrated in Fig.1. 

As in Fig.1., a physical analogy one may consider is to think that there are a lot of 
strings connecting spels A and B , each with its own strength (called path strength as 
to a certain path). Imagine A and B are pulled apart. Under the force the strings will 
break one by one. As to a certain string, the link where the string breaks is denoted as 
the path strength of this string (the path strength is defined as the minimum affinity of 
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Fig. 1. Illustration of the path strength and fuzzy connectedness described in fuzzy connected-
ness method 

all the links in the path). When all but one string are broken, the last string behave as 
the strongest one and it’s path strength is denoted as the fuzzy connectedness between 
spels A and B .  

Let S be any subset of C . We refer to S  as the set of seed spels and assume 

throughout that S ≠ ∅ . The fuzzy kθ -object of containing S equals 

{ }( ) | max[ ( , )]K K
s S

O S c c C and s cθ µ θ
∈

= ∈ ≥ . (3) 

With eq.(3), we could extract the object we want given θ  and S . This could be 
computed via dynamic programming [7]. 

2.2   AFCM 

We now briefly describe the objective function for AFCM. Detailed and complete 
descriptions of steps are provided in [5]. The objective function for AFCM is as  
follows. 
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In which ( , )ku i j  is the membership value at pixel location ( , )i j  for class k . 

( , )y i j  is the observed image intensity at location ( , )i j , and kv  is the centroid of 

class k . The total number of classes C  is assumed to be known. iD  and jD  are the 

standard forward finite difference operators along the rows and columns, and 

ii i iD D D= ∗  , jj j jD D D= ∗ , and ij i jD D D= ∗∗  are second-order finite dif-
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ferences. The symbols ‘∗ ’ and ‘∗∗ ’ denote the one and two-dimensional discrete 
convolution operators, respectively. The last two terms is the first-order and second-

order regularization, respectively and 1λ , 2λ  is the parameters. The major difference 

between FCM and AFCM is ( , )m i j , which is assumed to be smooth and slowly 

varying. It is by multiplying the centroids by ( , )m i j  that AFCM could compensate 

intensity inhomogeneities.  

3   Proposed Method 

In this section, we propose a new segmentation method which is unsupervised and 
robust, based on the combination of fuzzy connectedness and AFCM.  

Intensity inhomogeneities are the common problem to most of real MRI. There are 
two ways to compensate them. The first is to preprocess the images with the correc-
tion algorithm followed by the segmentation one. The second is to correct and seg-
ment the image simultaneously. In the proposed method, AFCM is applied to the 
images first so that not only the intensity inhomogeneities are compensated, but also 
the images are segmented. Since AFCM may perform poorly in the presence of ex-
treme noise [5], this segmentation result is only used as the pre-segmentation one. 

On the other hand, as Udupa has been trying to utilize the fuzzy nature of the bio-
medical images in both aspects of inaccuracy and hanging togetherness, users’ identi-
fying seed spels belonging to the various objects is always left to be an onerous task. 
Therefore, automatic selection of seeds becomes important in our research work.  

Our new method combines the two fuzzy methods organically. In the proposed 
method, while seed selection is made automatic, the intensity inhomogeneities could 
be overcome, and the accuracies of the result are guaranteed. Our goal is to both im-
plement automatic seed selection and guarantee the segmentation quality. 

The outline of the new method is as follows. First, AFCM is used to pre-segment 
the MR brain image, through which the scope of the seeds is obtained. Since the num-
ber of seeds within the scope is much more than that we need, the seeds within the 
scope are automatically eliminated according to their spatial information. With the 
left seeds as an initialization, the MR brain image is segmented by fuzzy connected-
ness. Here are the detailed steps of our proposed algorithm applied to MR brain  
images. 

Step 1. Preprocess the MR brain images, including denoising, intensity correction. 
In intensity correction, a standardized histogram of MR brain image is acquired, and 
all the other images’ is corrected so that their histogram would match the standardized 
one as best as possible [8].  

Step 2. Set the cluster number C  to 4, and pre-segment the image by AFCM, so 
that the expected segmented objects will be white matter, grey matter, CSF and back-
ground. 

Step 3. After the convergence of AFCM, compute each cluster’s centroid kv , 

1, 2,3,4k = . 
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Step 4. Compute the variance kδ  of the k th cluster. The scope of the seeds is de-

fined by the equation 

kv ± 0.3 kδ . (5) 

in which 0.3 is the heuristic parameter. 
Step 5. Define N  as the number of seeds in fuzzy connectedness. 
Step 6. Take the spatial information of the spels within the scope into account, and 

class them into N  clusters. Make the center spels of each cluster the seeds as  
initialization. 

Step 7. Segment the image precisely with selected seeds by fuzzy connectedness 
method. 

With step 1, we get the standardized histogram of each MR brain image, which 
guarantees that the parameter 0.3 in eq.(5) will work. Then according to the average 
and variance intensity of the object of interest, the scope of the seeds could be gotten 
with the eq.(5). Although this is a heuristic algorithm, it could be noticed in section 4 
that it does work in different situations. What’s more, since the spatial information of 
these spels is taken into account, the automatically selected seeds are effective. 

4   Experimental Results 

In this section, we give the experimental results with both simulated and real MR 
brain images.  

To simulated images, as the reference result is the “ground truth”, accuracy is de-
scribed with three parameters: true positive volume fraction (TPVF), false positive 
volume fraction (FPVF), and false negative volume fraction (FNVF). These parame-
ters are defined as follows: 

( , ) t
t

t

V V
FPVF V V

V

−
= , ( , ) t

t
t

V V
FNVF V V

V

−
= . (6) 

Where tV denotes  the  set of spels  in the reference result, V denotes the set of  spels 

resulting from the users’ algorithms. ( , )tFPVF V V  denotes the cardinality of the set 

of spels expressed as a fraction of the cardinality of tV that are in the segmentation 

result of the method but not in tV . Analogously, ( , )tFNVF V V  denotes a fraction of 

tV  that is missing in V . We use probability of error (PE) to evaluate the overall 

accuracy of the simulated image segmentation. PE [9] could be described as 

( , ) ( , )t tPE FPVF V V FNVF V V= + . (7) 

The larger PE is, the poorer the accuracy of the segmentation method is. 
To the real images, as the reference result is made manually, the inaccuracy of the 

reference segmentation result should be taken into account. Zijdenbos’s[10] Dice 
Similarity Coefficient (DSC), which has been adopted for voxel-by-voxel classifica-
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tion agreement, is proper to evaluate the segmentation result of real images. We now 

describe it as follows. For any type T, assuming that mV  denotes the set of pixels 

assigned for it by manual segmentation and αV  denotes the set of pixels assigned for 

it by the algorithm, DSC is defined as follows: 

||||
||

2
α

α

VV

VV
DSC

m

m

+
= I

. (8) 

Since manual segmentations are not “ground truth”, DSC provides a reasonable 
way to evaluate automated segmentation methods. 

4.1   Simulated Images 

We applied our method on simulated MR brain images provided by McConnell Brain 
Image Center [11]. As the brain database has provided the gold standard, validation of 
the segmentation methods could be carried out. The experimental images in this paper 
were imaged with T1 modality, 217 * 181 (spels) resolution and 1mm slice thickness. 
5% noise has been put up and the intensity-nonuniformity is 40%.  

We take the 81th to 100th slices of the whole brain MRI in the database, and seg-
ment them with fuzzy connectedness (FC), AFCM and the proposed method respec-
tively. The evaluation values are listed in table 1 according to the gold standard.  

It could be noticed in table 1 that our method behaves best, and the second is 
AFCM, the last fuzzy connectedness. That is because when faced with relatively high 
noise, it is hard to select fine seeds manually for fuzzy connectedness, especially to 
grey matter and CSF. However, when the intensity inhomogeneities are compensated 
by AFCM, fuzzy connectedness works well, showing that the automatically selected  
 

Table 1. Average value of 20 simulated images using three segmentation methods (%) 

Study TPVF FPVF FNVF PE 
AFCM 97.31 2.30 2.69 4.99 

FC 96.23 2.02 3.77 5.79 
Proposed Method 98.68 1.23 1.32 2.55 

    
(a)                               (b)                                  (c)                                 (d) 

Fig. 2. Segmentation result of the 90th slice of simulated images (a) original image; (b) white 
matter; (c) grey matter; (d) CSF 
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seeds are effective. Thus, the proposed method behaves best, with the high accuracy 
obtained by fuzzy connectedness and compensated intensity inhomogeneities by 
AFCM. Fig.2 shows the 90th slice of the simulated database. Fig.2 (b), (c) and (d) are 
white matter, grey matter and CSF, respectively.  

4.2   Real Images 

We applied our method to twelve real MRI brain data sets. They were imaged with a 
1.5 T MRI system (GE, Signa) with the resolution 0:94 *1.25*1.5 mm (256* 192* 
124 voxels). These data sets have been previously labeled through a labor-intensive 
(usually 50 hours per brain) manual method by an expert. We first applied our method 
on these data sets and then compared with expert results. We give the results from the 
5th to the 12th of them gained by our method in Table 2 and Fig. 3. 

Table  2. Average DSC of the 5th to 12th real cases using three segmentation methods (%) 

 1 2 3 4 5 6 7 8 
FC 74 75 78 76 75 78 76 78 
AFCM 77 78 80 81 82 83 82 81 
Proposed Method 83 84 85 83 84 86 83 82 

According to table 2, the rank of DSC of three methods is the same as that in simu-
lated image experiments. There are several data sets corrupted badly by noise, and the 
intensity inhomogeneities are rather common in these real images. As AFCM has the 
function of compensate intensity inhomogeneities, it behaves better than fuzzy con-
nectedness. However, fuzzy connectedness shows high accuracy when the selected 
seeds are effective. Thus, through the compensation of intensity inhomogeneities and 
automatic selection of seeds by AFCM, the proposed method segments the images 
with the highest accuracy of the three.  

We segment the white matter, grey matter and CSF, respectively, using proposed 
method, fuzzy connectedness and AFCM. Take the 8th case as an illustration. Fig.3 is 
the segmentation result of the 70th slice of the whole brain. As the automatically  

   
   (a)                       (b)                                 (c)                          (d) 

Fig. 3. Segmentation result of real images (a) original image; (b) white matter; (c) grey matter; 
(d) CSF 
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selected seed number is defined beforehand, we choose 10 for white matter, 25 fore 
grey matter and 30 for CSF. That’s because in grey matter and CSF, the objects are 
not connected due to noise and heterogeneous composition of human organs. And 
because fuzzy connectedness segments one object of one seed in it, the last step of the 
proposed method need more seeds for grey matter and CSF.  

5   Conclusion 

Accuracy and automation are the two main goals in image segmentation. The pro-
posed method is designed especially to aim at these two goals. The experiments illus-
trate that the proposed method is unsupervised, and more accurate than both AFCM 
and fuzzy connectedness method. 

Fuzziness is the nature of images. When images are segmented by fuzzy means, 
the inaccuracy property of the elements is adopted. AFCM makes use of fuzzy clus-
tering techniques, and compensates the intensity inhomogeneities of the images. On 
the other hand, fuzzy connectedness is a method which takes both the inaccuracies 
and hanging-togetherness of the elements into consideration. That is, it takes into 
account not only the intensity information, but the location of spels and their mutual 
relationship as well. Although fuzzy connectedness method behaves well, the selec-
tion of seeds takes operators time and energy. And in the case of great noise, it is so 
hard to select enough effective seeds for an ordinary operator. In our fuzzy connect-
edness and AFCM based method, the intensity inhomogeneities problem is solved by 
AFCM, and at the same time automatic seed selection is implemented. Our method is 
robust due to the high accuracy of fuzzy connectedness. Moreover, as the number of 
automatically selected seeds could be controlled, automatic seed selection is as man-
ageable as manual one. Through simulated and real image experiments, we could see 
that the proposed method could not only automatically select seeds, but has a rela-
tively high accuracy.  
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Abstract. A method for automated detection of calcifications in the abdominal
aorta from standard X-ray images is presented. Pixel classification based on local
image structure is combined with a spatially varying prior that is derived from a
statistical model of the combined shape variation in aorta and spine.

Leave-one-out experiments were performed on 87 standard lateral lumbar
spine X-rays, resulting in on average 93.7% of the pixels within the aorta being
correctly classified.

1 Introduction

Calcifications in the abdominal aorta were shown to correlate with the presence — or
future development— of calcifications at other sites such as the coronary arteries, and
are an important predictor for future cardiovascular morbidity and mortality [7,12,13].
Accurate and reproducible measurement of the amount of calcified deposit in the aorta
is therefore of great value in diagnosis, treatment planning, and the study of drug effects.
Several automatic and semi-automatic calcium scoring methods have been proposed for
CT [2,9].

This paper aims at automatically detecting calcified plaques in the lumbar aorta
from standard radiographs. Although CT is better suited for identifying and quantify-
ing atherosclerosis, standard X-rays have the advantage that they are cheap and fast.
Several approaches to manually quantifying the severity of aortic calcification in radio-
graphs have been proposed, of which the antero-posterior severity score by Kauppila
et al. [10] is the most popular. For this score, the lumbar part of the aorta is divided in
four segments adjacent to the four vertebra L1-L4, and the severity of the anterior and
posterior aortic calcification are graded individually for each segment on a 0-3 scale.
The results are summed in a composite severity score ranging from 0 to 24. Such man-
ual scoring systems have been successfully applied in epidemiological studies, but can
not describe subtle changes in disease progression and are labor-intensive and prone to
inter- and intra-observer variations.

An automated calcification detection scheme would allow for automatic scoring ac-
cording to the current semi-quantitative standards as well as for continuous and likely
more precise quantification by for instance counting the number of calcified pixels or
assessing the density of separate calcifications [3]. To our knowledge, no method cur-
rently exists for automatic detection of calcified plaques from standard radiographs.

Calcifications show up in X-ray images as small and usually elongated bright struc-
tures. One of the main problems in automatic detection of calcification is that many
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other structures in the image, e.g. bone and image artifacts, have a similar appearance.
If the location of the aorta is known in the image the detection becomes easier, but
aorta segmentation is a difficult problem as well since the non-calcified parts of the
aorta are not visible in X-ray. However, the shape and position of the aorta are strongly
correlated to the shape and position of the spine, which is much easier detected in the
image. In this work we use knowledge of the shape of the spine to aid appearance-based
calcification detection.

We combine pixel classification on the basis of local intensity features with a spa-
tially varying calcium prior that is dependent on the position of a pixel with respect to
the spine. The spatially varying prior is derived from a statistical model of combined
spine and aorta shape variation, together with a model of how the calcium is distributed
within the aorta. The method requires the localization of the corner and midpoints of
the first four lumbar vertebra. Currently manual input is used here — obtained from a
vertebral morphometry study on the same dataset — but these point positions could also
be derived from an automatic spine segmentation, see e.g. [6,11].

Section 2 of this paper deals with modelling the distribution of calcium inside the
aorta as well as modelling the distribution of calcium in relation to the vertebrae. Our
approach to calcium detection, combining appearance-based pixel classification and
the models of calcium distribution, is described in Section 3. Section 4 presents ex-
periments on 87 digitized X-ray images, and a discussion and conclusion are given in
Section 5.

2 Estimating Calcium Prior Probability

It is well known that the distribution of calcification in the aorta is not uniform. The
number of plaques increases towards the aortic bifurcation, and due to the projection
imaging the majority of the plaques is visible along the anterior and posterior aortic
walls and not in between.

If a large training set of example images with annotated aorta and calcifications was
available, the probability of presence of calcium in each pixel could be estimated by
labelling calcified pixels as 1 and non-calcified as 0, warping all aortas on top of each
other, and computing the average labelled aorta image.

If the training set is limited the above procedure will lead to incorrect results; pixels
inside the aorta may coincidentally have a very high or low probability of being calci-
fied. As a trade-off between generalizability and specificity, in this work we model the
cross-sectional and longitudinal presence of calcium separately.

In a set of labelled training images, the part of the aorta adjacent to the first four
lumbar vertebrae is selected and intensity profiles are sampled perpendicular to the ves-
sel axis, reaching from the anterior to the posterior wall. All profiles are normalized to
equal length and averaged to form a cross-sectional calcium prior distribution. For each
image, one longitudinal profile is formed by summing the values in the individual pro-
files. An average longitudinal profile is computed by length normalizing and averaging
the longitudinal profiles of all images.

For a given aorta shape, a calcium prior probability map can then be constructed by
sweeping the cross-sectional prior profile along the axis, modulated with the longitudi-
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Fig. 1. Cross-sectional profile (left) and longitudinal profile (right) of calcium distribution inside
the aorta. Prevalence of calcium is higher at the aortic walls and near the aortic bifurcation.

nal profile. The two profiles and an example of a calcium probability map are given in
Figures 1 and 2.

2.1 Estimating the Location of Aortic Walls

In general, the shape and location of the aorta will not be known a priori, and since
the aortic walls are only visible if calcium is present, automatic aorta segmentation can
not be used as a first step to guide calcium detection. However, the shape and location
of the aorta are strongly correlated with the shape and location of the spine [4]. In the
following we will use a set of training images in which the aorta and the vertebrae have
been annotated to model the probability density function of aorta shape and location
conditional on the spine shape.

To constrain the shapes of possible aortas, any kind of shape model from which
samples can be drawn can be inserted here. We will use the popular linear point distri-
bution models (PDM) as proposed by Cootes and Taylor [5] to model the object shape
variations observed in the training set.

In PDMs, shapes are defined by the coordinates of a set of landmark points which
correspond between different shape instances. A collection of training shapes are
aligned using for instance Procrustes analysis [8] and a principal component analy-
sis (PCA) of the aligned shapes yields the so-called modes of shape variation which
describe a joint displacement of all landmarks. Each shape can then be approximated
by a linear combination of the mean shape and these modes of variation. Usually only
a small number of modes is needed to capture most of the variation in the training set.

To construct a conditional shape model of the aorta given the spine, the spine and
aorta landmarks are combined into one shape vector. The Procrustes alignment must
be done only on the spine part of the combined shapes. The distribution P (S1|S2), the
probability distribution of the expected aorta shape and pose S1 for a given spine S2,
can be then modelled as the Gaussian conditional density

P (S1|S2) = N (µ, K)

with
µ = Σ12Σ

−1
22 S2

K = Σ11 − Σ12Σ
−1
22 Σ21

and Σij are obtained from the covariance matrix of the combined model
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Σ =
[
Σ11 Σ12

Σ21 Σ22

]
as

Σij =
1

n − 1

∑
n

(Sin − S̄i)(Sjn − S̄j)T .

An example of the modes of variation of such a conditional model is given in Fig-
ure 3.

2.2 Spatially Varying Prior

To derive a spatial calcium prior, the aorta shape distribution is represented by a ran-
dom sample of N shapes drawn from the Gaussian conditional shape model. The final
calcium probability map is then constructed by averaging the N individual prior maps.
Note, that to get a true probability the ‘prior’ would need to be normalized so that the
probabilities of the two classes sum to 1. We here omit this normalization.

Fig. 2. From left to right: Original image, inverted for better visibility of calcium (left); anno-
tated aorta with constructed calcium probability map; calcium probability map from 50 random
samples of the aorta conditional shape model

3 Calcification Detection

A pixel classifier is trained to distinguish between calcium and background pixels on
the basis of local image descriptors. We have chosen a general scheme in which pixels
are described by the outputs of a set of Gaussian derivative filters at multiple scales,
and a k-NN classifier is used for probability estimation. The probability that a pixel
with feature vector x belongs to class ω is thus given by

P (ω|x) =
kω

k
, (1)

where kω among the k nearest neighbors belong to class ω.
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Fig. 3. Modes of variation of the aorta (gray and black lines) given the known positions of ver-
tebrae corner- and mid-points (black points). The mean aorta shape is given in black, the mean
shape ± 3 standard deviations in gray. From left to right the first three modes of variation are
shown.

The spatial prior can be applied simply as a multiplication of the soft classification
from Equation 1 with the calcium prior map as computed in Section 2.

For classification with as well as without spatial prior, a threshold defining the de-
sired sensitivity/specificity tradeoff should be selected in order to make a final binary
decision of whether calcium is present or not in each pixel.

4 Experiments

Leave-one-out experiments are performed on 87 lateral spine radiographs taken from a
combined osteoporosis-atherosclerosis screening program. The dataset is diverse, rang-
ing from uncalcified to severely calcified aortas. The original radiographs have been
scanned at a resolution of 0.1 mm per pixel and were inverted for better visibility of
calcific deposits. A medical expert outlined all calcifications adjacent to vertebrae L1
through L4 manually and also placed 6 points on each vertebra as is routinely done in
vertebral morphology studies.

4.1 Parameter Settings

Before further analysis the images were normalized to zero mean and unit variance.
The appearance features used include the original image and the derivatives up to and
including the third order computed at three different scales. Training pixels were se-
lected randomly from a region of interest including the aorta and its surroundings. The
set of samples is normalized to unit variance for each feature, and k-NN classification
is performed with an approximate k-NN classifier [1] with k=25. In all cases, results
reported are accuracies of hard classification with the overall optimal threshold that is
kept constant for all 87 images.

In the conditional shape model, 6 manually placed landmarks on each of the ver-
tebrae are used and 50 aorta landmarks are selected on each aortic wall by equidistant
sampling along the manual outlines. The first 5 modes of shape variation are selected
for the conditional shape model, and N = 100 aorta shapes are sampled randomly from
the model to form the calcium prior probability map.
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99.2 98.9 99.3

91.3 93.0 92.0

91.2 93.1 91.0

Fig. 4. Examples of classifications obtained for images of varying degree of calcification. Each
row gives the different results for one image, from left to right: Original image (inverted for im-
proved visibility of calcium); Manual segmentation; Pixel classification alone; Pixel classification
combined with calcium prior for manually segmented aorta; Pixel classification and calcium prior
from conditional shape model. The numbers above each image denote the classification accuracy.
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4.2 Results

To assess the performance of separate parts of the proposed method, we measure the
accuracy in three different experiments:

1. Pixel classification on the basis of appearance features alone
2. Pixel classification on the basis of appearance features combined with calcium prior

for a known aorta
3. The complete scheme; pixel classification on the basis of appearance features com-

bined with calcium prior from the conditional model

The pixel classification alone yields an average accuracy, defined as the percent-
age of correctly classified pixels inside the aorta, of 93.8%. Combining this with the
spatially varying prior based on the manually drawn aorta shape results in a small, but
significant (p = 0.0004 in a paired t-test) improvement to 94%.

The classification obtained by pixel classification combined with the fuzzy calcium
prior for the aorta estimates is of course less good, but the average accuracy is still
93.7%.

Figure 4 shows examples of the classification results by the three different schemes.

5 Discussion and Conclusion

We propose an automated method for detection of calcified deposits in radiographs of
the lumbar aorta, which may be used as an inexpensive screening tool for quantifying
atherosclerosis and cardiovascular risk.

The results of a standard pixel classification were improved by combination with a
spatially varying prior. The assumption underlying the proposed combination by mul-
tiplication is that the two individual probabilities, based on appearance and on position
with respect to the spine, are independent. If this is not the case, modelling appearance
and position features together in one k-NN classification, with appropriate scaling of
features, may be more appropriate. On the other hand, combination by multiplication is
much faster.

The current approach, in which the calcification detection task is guided by sam-
ples of an aorta shape model, can be extended to a joint optimization of aorta shape
distribution and calcification detection. A likelihood weight for each of the aorta shape
samples can be defined on basis of how well the expected calcium distribution coincides
with the measured calcifications, and subsequently a new shape set — with smaller vari-
ance — can be constructed through weighted resampling from the current set. In such
an iterative optimization in which the spatial prior is updated in each iteration, the ad-
vantage of combination by multiplication instead of using one large k-NN classifier
becomes obvious. We are currently investigating the feasibility of such methods.

Acknowledgements

We would like to thank L.B. Tánko and C. Christiansen of the Center for Clinical and
Basic Research (CCBR A/S), Denmark, for providing the data sets and manual seg-
mentations used in this study, L.A. Conrad-Hansen and M.T. Lund of the IT University



A Pattern Classification Approach to Aorta Calcium Scoring in Radiographs 177

of Copenhagen, Denmark, for providing the software to perform the manual segmenta-
tions, and CCBR A/S, Denmark, for funding.

References

1. S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. An optimal algorithm
for approximate nearest neighbor searching. Journal of the ACM, (45):891–923, 1998.

2. C. Hong C, K.T. Bae, and T.K. Pilgram. Coronary artery calcium: Accuracy and repro-
ducibility of measurements with multi-detector row CT — assessment of effects of different
thresholds and quantification methods. Radiology, 227:795–801, 2003.

3. L.A. Conrad-Hansen, M. de Bruijne, F.B. Lauze, L.B. Tánko, and M. Nielsen. Quantizing
calcification in the lumbar aorta on 2-D lateral X-ray images. In Proceedings of the ICCV
workshop Computer Vision for Biomedical Image Applications: Current Techniques and Fu-
ture Trends, Lecture Notes in Computer Science, 2005.

4. L.A. Conrad-Hansen, J. Raundahl, L.B. Tánko, and M. Nielsen. Prediction of the location
of the posterior aortic wall using the first four lumbar vertebrae as a predictor. In Medical
Imaging: Image Processing, volume 5370 of Proceedings of SPIE. SPIE Press, 2004.

5. T.F. Cootes, C.J. Taylor, D.H. Cooper, and J. Graham. Active shape models – their training
and application. Computer Vision and Image Understanding, 61(1):38–59, 1995.

6. M. de Bruijne and M. Nielsen. Shape particle filtering for image segmentation. In Medical
Imaging Computing & Computer-Assisted Intervention, volume 3216 of Lecture Notes in
Computer Science, pages I:186–175. Springer, 2004.

7. D.A. Eggen, J.P. Strong, and H.C.J. McGill. Calcification in the abdominal aorta: relationship
to race, sex, and coronary atherosclerosis. Archives of pathology, 1964.

8. C. Goodall. Procrustes methods in the statistical analysis of shape. Journal of the Royal
Statistical Society B, 53(2):285–339, 1991.

9. I. Isgum, B. van Ginneken, and M. Olree. Automatic detection of calcifications in the aorta
from CT scans of the abdomen. Academic Radiology, 11(3):247–257, March 2004.

10. L.I. Kauppila, J.F. Polak, L.A. Cupples, M.T. Hannan, D.P. Kiel, and P.W. Wilson. New
indices to classify location, severity and progression of calcific lesions in the abdominal
aorta: a 25-year follow-up study. Atherosclerosis, 25(132(2)):245–250, 1997.

11. P.P. Smyth, C.J. Taylor, and J.E. Adams. Vertebral shape: Automatic measurement with
active shape models. Radiology, 211(2):571–578, 1999.

12. P.W.F. Wilson, L.I. Kauppila, C.J. ODonnell, D.P. Kiel, M. Hannan, J.M. Polak, and L.A.
Cupples. Abdominal aortic calcific deposits are an important predictor of vascular morbidity
and mortality. Circulation, 103:1529 – 1534, 2001.

13. J.C.M. Witteman, J.L.C. Van Saase, and H.A. Valkenburg. Aortic calcification as a predictor
of cardiovascular mortality. Lancet, 2:11201122, 1986.



A Topologically Faithful, Tissue-Guided,
Spatially Varying Meshing Strategy

for Computing Patient-Specific Head Models
for Endoscopic Pituitary Surgery Simulation

M.A. Audette, H. Delingette, A. Fuchs, O. Astley, and K. Chinzei

AIST, Surgical Assist Group, Namiki 1-2, Tsukuba, 305-8564, Japan
m.audette@aist.go.jp

Abstract. This paper presents a method for tessellating tissue bound-
aries and their interiors, given as input a tissue map consisting of rele-
vant classes of the head, in order to produce anatomical models for finite
element-based simulation of endoscopic pituitary surgery. Our surface
meshing method is based on the simplex model, which is initialized by
duality from the topologically accurate results of the Marching Cubes
algorithm, and which features explicit control over mesh scale, while us-
ing tissue information to adhere to relevant boundaries. Our mesh scale
strategy is spatially varying, based on the distance to a central point
or linearized surgical path. The tetrahedralization stage also features a
spatially varying mesh scale, consistent with that of the surface mesh.

1 Introduction

Virtual reality (VR) based surgical simulation involves the interaction of a user
with an anatomical model representative of clinically relevant tissues and en-
dowed with realistic constitutive properties, through virtual surgical tools. This
model must be sufficiently descriptive for the interaction to be clinically mean-
ingful: it must afford advantages over traditional surgical training in terms of
improving surgical skill and patient outcome. Our simulation application, endo-
scopic transnasal pituitary surgery, is a procedure that typically involves remov-
ing mocusa, enlarging an opening in the sphenoid sinus bone with a rongeur,
making an incision in the dura mater, and scooping out the pathology with
a curette, while avoiding surrounding critical tissues [4]. This entails anatomi-
cal meshing capable of an accurate depiction of the pituitary gland and of the
arteries and cranial nerves surrounding it, as well as the brain, relevant sinus
bones, dura mater, and any imbedded pathology, as shown in figure 1. This
paper presents a method for tessellating tissue boundaries and their interiors,
featuring surface and volume meshing stages, as part of a minimally supervised
procedure for computing patient-specific models for neurosurgery simulation.

Our clinical application, in light of the presence of surrounding critical tissues
and the correlation between lack of experience and surgical complications [5], is
a good candidate for simulation. Furthermore, this application requires dense
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(a) (b) (c)

Fig. 1. Illustration of endoscopic trans-nasal pituitary surgery: (a) OR setup; (b) sagit-
tal image of the head featuring the pituitary gland, parasellar bones, brain and cranium;
(c) oblique image featuring pituitary gland and surrounding critical tissues (reproduced
with permission [4])

shapes in the field of view of the endoscope, while limiting the number of ele-
ments overall and still maintaining the conformality of the mesh. This argument
justifies the application of a spatially varying mesh strategy. Furthermore, an im-
portant objective of ours is the recruitment of finite element (FE) modeling in
our simulation, because of the rigourous treatment and the material descriptive-
ness afforded by the method. Specifically, we want to apply a recent hierarchical
multirate FE software architecture [1] designed for surgical simulation. As shown
on figure 2, this architecture partitions the underlying volume into a sparse, lin-
early elastic parent mesh as well as one or more dense, possibly nonlinear child
meshes. It then decouples the subregions in a manner analogous to the Norton
equivalent in circuit analysis: for each subregion, parent or child, it expresses
the other subregion(s) encountered at each node as one equivalent impedance
and force. A FE system composed of a parent and n children, characterized by
a relatively large stiffness matrix K, is then reduced to decoupled systems with
significantly smaller stiffness matrices K̂i, i = 1 . . . n + 1.

The implications of our objectives for anatomical meshing are as follows.

1. Assuming that we have a sufficiently descriptive patient-specific tissue map
as input, such as illustrated in figure 3 [3], the meshing must be rigourously
tissue-guided, with the proviso that for the sake of the simulation, it may
be allowable, even preferable from a computational standpoint, to consider
some tissue boundaries together. Also, it must specifically account for crit-
ical tissues in order to penalize gestures that cause damage to them. In
constrast, existing meshing methods have been demonstrated typically on
imaging data consisting of 2-class problems [14]: inner tissue and outer back-
ground, whereas our simulation requires a far more descriptive anatomical
mesh.

2. The method must produce as few elements as possible, to limit the com-
plexity of the real-time problem, while meeting our requirements for hap-
tic, visual and constitutive realism. Therefore, mesh scale must be spatially
flexible, to allow small elements near the surgical target, particularly if an



180 M.A. Audette et al.

Fig. 2. Partition of FE domain into par-
ent and child meshes; parent Norton
equivalents, seen by child (reproduced
with permission [1])

Fig. 3. Tissue map computation from CT
and MR, exploiting tubular structure of
critical tissues and embedded structure of
other soft tissues (from [3])

endoscopic view is required, while producing significantly larger elements far
away, thereby limiting the number of elements overall, and still maintaining
the conformality of the mesh. The hierarchical multirate FE model of [1]
suggests a way of treating this mesh that alleviates adverse effect on the
condition number of the system, provided that parent and child systems are
not themselves too ill-conditioned.

3. The meshing must reflect the topology of the underlying tissue: if a tissue
features one or more inner boundaries, as well as an outer boundary, these
boundaries must be accounted for, if the clinical and constitutive realism
of the simulation requires it. Proceeding this way gives us the option of
modeling the ventricles, filled with corticospinal fluid, as well as sinuses of
arbitrarily complex topology, on a patient-specific basis.

4. Next, the method should afford both 2D and 3D elements, as some tissues
are better modeled as collections of surface elements, such as the dura mater,
thin cranial bones and vasculature 1, while others are inherently volumetric.
Existing methods that are purely volumetric [14] suffer from their inabil-
ity to model tissues that are inherently curviplanar: rather than use just
a few shell elements that feature no short edges, they are condemned to
using a needlessly large number of small tetrahedra or hexahedra to limit
the proportion between the longest and shortest edge of each for numerical
stability [11].

5. Last, the meshing method must produce high-quality triangles and tetrahedra:
within each 2D or 3D element the edges should be of near-equal length, as
opposed to 1 or 2 edges significantly shorter than the others, for the sake of
rapid convergence of the FE method [11]. Also, wherever smooth anatomical
boundaries are involved, the surface visible to the user should be continuous,
except where surgical interaction invalidates this assumption. Existing meth-
ods can also achieve continuous surfaces as well as high-quality triangles [6],
but have not yet demonstrated a mesh scale strategy sufficiently flexible to
meet our endoscopic simulation requirements.

1 The latter might be simplified as a curvilinear element, were it not for the require-
ment that cutting through it should appear realistic and be appropriately penalized
in our simulation.
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(a) (b) (c) (d)

Fig. 4. Illustration of tissue-guided simplex models: (a) 2-simplex mesh and dual trian-
gulation; (b) T1 and T2 Eulerian operators defined on 2-simplex mesh; prior results [2]:
(c) radially varying simplex and (d) dual triangulated surface, topologically equivalent
to a sphere. This topological limitation is addressed by this paper.

The goal of the surface meshing procedure is to establish the topologically
faithful tissue surfaces bounding each class or contiguous subset of classes, where
each surface mesh exhibits the required edge scale pattern. Given our objectives,
we have opted for a surface model-based approach to tessellating anatomical
boundaries, featuring the well-known simplex model [7], illustrated in figure 4
(a). Its topological operators, specifically the Eulerian T1 and T2, as illustrated
figure 4 (b), as well as the edge swap T7[7], provide explicit control over individ-
ual faces and edges. This surface meshing stage is followed by a tetrahedraliza-
tion stage that also meets our mesh scale objectives and that uses as input the
triangular boundaries produced by the surface meshing stage.

1.1 Topologically Accurate Tissue-Guided Simplex Meshing with
Spatially Varying Edge Scale

As shown in figure 4 (a), the m-simplex mesh (black) is a discrete active surface
model [7], characterized by each vertex being linked to each of m+1 neighbours
by an edge. A surface model in 3D is realized as a 2-simplex, where each vertex
has 3 neighbours, and this representation is the dual of a triangulated surface
(blue), with each simplex vertex coinciding with a center, and each simplex
edge being bisected by an edge, of a triangle. A balloon force can act on this
mesh to cause it to expand until some image-based force halts this expansion.
Furthermore, this surface model also features other internal forces [7] that nudge
each simplex face, and consequently each dual triangle, towards having edges
of equal or locally consistent length, and towards C0, C1 or C2 continuity, for
example. The edge scale can be constant, within some tolerance, as in figure 4
(c), or spatially varying as in figure 4 (d), consistent with a decomposition into
parent (top, in white) and child (blue) subsystems, and leading to a triangulated
surface of comparable scale.

This model has been limited by its topological equivalence with a sphere,
in the absence of topological adaptivity. While topological adaptivity is achiev-
able, based on operators published in [7], the convergence of the surface to the
intended boundary, involving hundreds of iterations of a model integrating inter-
nal and image forces, is fraught with local extrema, a situation exacerbated by
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the capability of splitting or fusing. To alleviate this issue, we instead initialize
the simplex model with a dense surface mesh of high accuracy and topological
fidelity, resulting from Marching Cubes (MC) [9], based on the duality between
a triangular surface and a 2-simplex mesh. We then decimate the simplex mesh
in a highly controlled, spatially varying manner, while exploiting a previously
computed tissue map to guide the model on a tissue-specific basis. The final
simplex boundaries can be converted to triangulated surfaces by duality.

This way of proceding allows us more control over the decimation than ex-
isting algorithms not based on surface models, as our spatially varying control
over mesh scale allows us to resolve the relevant anatomical surfaces densely
enough for endoscopic simulation, while still limiting the number of triangles
and tetrahedra enough to make real-time interaction feasible. Control over mesh
size is typically implemented through the T1 and T2 operators, as triggered by
geometric measurements of each simplex face or edge. For example, if the small-
est edge of a face is smaller than the edge scale objective at that position, in
order to produce a sparser mesh we delete that edge by a T1 operation. Also,
if a simplex face has more than k vertices (k = 7 usually), coinciding with a
triangular mesh vertex with more than k incident, typically elongated, triangles,
we also use T1 and T2 to reduce the number of simplex vertices and improve
surface mesh quality.

It should also be emphasized that our procedure identifies anatomical surfaces
prior to volumetric meshing, rather than proceed directly from the classification
to tissue-guided volumetric meshing, because some tissues are inherently curvipla-
nar rather than volumetric and are more efficiently modeled by shell elements than
tetrahedraorhexahedra.Also, apurelyvolumetric approachwill in general notpro-
duce a mesh that is as smooth and that closely agrees with the anatomical bound-
ary: from a haptic and visual rendering standpoint, an anatomical model with
jagged or badly localized boundaries would detract from the realism and clinical
relevance of a surgical simulator as well as confuse the user.

We start from a densely triangulated surface produced by Marching Cubes,
post-processed by an existing, topology-preserving, decimation method [10],
which is somewhat more computationally efficient than ours and in order to
reduce the number of triangles to a manageable number, as well as with iden-
tification and area-thresholding of contiguous structures, all VTK-based [13].
This stage produces a set of triangulated surfaces that we convert to simplex
meshes by duality. From geometric tests to ascertain the shortest edge of each
face, we iteratively perform T1 operations on those faces whose shortest edge
are furthest from their respective objective. We can use heap-sorting to fix the
“worst” edge first. We note that when the curvature of the boundary may be
sufficiently pronounced, with respect to the edge scale objective, T1 operations
lead to faces whose center lies too far from the boundary (only the vertices of
each face are attracted to the boundary by image forces). At that point, the
optimal representation may be a trade-off between the desired edge scale and
the desired proximity of the face center to the boundary (a parameter). This
trade-off entails the recruitment of T2 operators to partition each ill-fitting face
into two.
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1.2 Spatially Varying Edge Scale Strategies: Radial and Surgical
Path-Based Distance

As demonstrated in figure 4, control over simplex mesh edge scale can be exer-
cised with a Radially Varying Surface Mesh Scale function Lsm (dR(x,pc)). This
function is defined at any x in the volume spanned by the mesh, based on the
Euclidian distance dR(x,pc) = ‖x − pc‖ from a user-provided central point pc

(e.g.: on the pituitary gland). For example, we may define

Lsm(dR(x))=

{Lsm,min if dR(x) <= dmin

Lsm,min + (Lsm,max − Lsm,min)
{

1 − exp
[
−(dR(x)−dmin)

dscale

]}
otherwise, (1)

where Lsm,min and Lsm,max specify smallest and largest edge scales of the sim-
plex mesh, and dmin and dscale determine the behaviour of the function bridging
the two values: an exponential function of the distance of the midpoint of the
edge ei to the central point. This scale function thereby produces consistently
small edges near the pituitary gland and, beyond a transition whose abruptness
is controlled by the parameter dscale, longer edges away from it. We can also
enforce a face area scale function, which can be derived from the edge scale.

Alternately, we can specify at any x a Surgical Path Based Mesh Scale
function L(dSP (x, S)), substituting dSP for dR in expression (1), where S =
{Ei(pi,pi+1)} is a set of linear edges Ei. Each edge Ei connects 2 user-provided
points pi and pi+1, and together they approximate an intended surgical path:

dSP (x, S) ≡ min
Ei∈S

dedge (x, Ei)) where dedge (x, Ei)) ≡ min
u+v=1

‖upi +vpi+1 −x‖ , (2)

where u, v ∈ [0, 1]. This expression defines the minimum distance from x to the
set of edges S that is a linearized approximation of the intended surgical path.

This notion of using proximity to a point or to an intended surgical path to
optimize mesh size can be extended to choices about constitutive and clinical
realism. For example, within a distance threshold εd from a point or a path2,
we may elect to model soft tissues as nonlinearly elastic, beyond which we are
content with linearly elastic behaviour. Or, for any x where dSP (x, S) > εd, we
may model skin, muscle, fat and bone as having a prescribed null displacement,
thereby effectively eliminating them from the real-time FE problem, whereas
closer to the surgical path, we can account for the material properties of mucosa,
muscle and even bones, as in the case of the sphenoidal sinus. Finally, far away
from the path, it is expedient to not account for critical tissues, which can be
obtained based on processing of MRI data with the method in [3] and of MRA
data with a method such as [12], as this subset of critical tissues is less relevant
to the simulation and otherwise would only add to computational overhead.

2 This threshold need not be constant along a path: if for example we had to model
a cranial procedure, as the inwards arclength s of the path increases, εd(s) would
tend to be larger at the surface (s=0) and become smaller along the path.
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1.3 Almost-Regular Volumetric Meshing with Spatially Varying
Resolution Control

The last stage in our procedure partitions each volume bounded by a triangulated
mesh, coinciding with a tissue class or contiguous subset of tissue classes, into
tetrahedral elements consistent with the FE method. The volumetric meshing
stage is a published technique [8] that automatically produces an optimal tetra-
hedralization from a given polygonal boundary, such as a triangulated surface.
In this case, optimality is defined as near-equal length of the tetrahedral edges,
along with a sharing of each inner vertex by a nearly consistent number of edges
and tetrahedra. This method features the optimal positioning of inner vertices,
expressed as a minimization of a penalty functional, followed by a Delaunay
tetrahedralization. The resulting near-regularity is important for FE stability
and efficiency [11]. Moreover, based on the relationship between the number of
simplex and triangle vertices Vt ≈ Vsm/2 [7] and after some manipulation, a
target simplex mesh size of Lsm(x) works out to a triangle or a tetrahedral
mesh size of Lt(x) ≈

√
2Lsm(x). We modify this technique by integrating into

the penalty functional the now-familiar spatially varying scale function, which
is specified as a target edge length Lt(x) for each tetrahedron.

2 Results and Discussion

Figures 5 and 6 contrast an existing, curvature-sensitive (but otherwise spatially
consistent), decimation algorithm [10] with our spatially varying, simplex-based
surface mesh decimation. Figure 5 displays a synthetic cube with 4 tubular
openings through it, along axes x and y, to which we’ve added a synthetic hemi-
spherical “gland” in its inner ceiling: (a) surface as originally identified by MC,
(b) as decimated by the existing method. Its dual, featuring 1224 faces, ini-
tializes our spatially varying method, whose results are shown in (c), featuring
585 faces and dense faces on the gland, where edge colour from white to fully
saturated red indicates a tissue proximity varying between 0 and 3 mm, and

(a) (b) (c) (d)

Fig. 5. Contrasting decimation methods on synthetic invaginated cube surface, featur-
ing a hemispheric inner gland: (a) wireframe of MC results; (b): existing decimation
method [10] displayed as a 3D wireframe overlaid on a surface rendering; (c) and (d):
radially varying simplex mesh, featuring final simplex and dual triangular results
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(a) (b) (c) (d)

Fig. 6. Contrasting decimation methods on brain surface: (a) existing method, fea-
turing wireframe of overall brain surface mesh and closeup of wireframe overlaid on
rendering of brain surface, centered on pituitary gland; (b) radially varying simplex
mesh, featuring wireframe and overlay closeup views as in (a); (c) radially varying tri-
angular surface, dual to simplex mesh in (b). (d) Decimation statistics: top, number of
faces, and bottom, average distance to boundary, versus simplex iteration respectively,
in going from the dual of (a) to (b) (2618 to 1051 faces).

whose dual triangulated surface appears in (d). We choose a proximity thresh-
old that is tight at the gland and looser far away. A halt is triggered here by
a near-constant number of faces, where scale-based T1 and proximity-based T2

operations offset each other. Figure 6 shows results for a brain surface, going
from the prior method in (a) to the results of our method in (b) and (c). The
graphs (d) illustrate the evolution in terms of the number of simplex faces and
average distance to the tissue boundary: the reduction of the number of faces
is traded off against proximity to the boundary, especially far from the area of
surgical interaction. Here, T1 and T2 operations are applied every 3 iterations.

Next, figure 7 illustrates the flexibility and clinical applicability of the surface
meshing method, in its ability to characterize relevant critical tissues, which
are currently modeled as hollow and meshed at constant density. Blood vessels
irrelevant to the simulation are not considered.

Figure 8 depicts how a combination of path-based (εd,SP =10mm) and ra-
dial (εd,R =25mm) distance allows us to convert “distant” extra-cranial tissue
to “null displacement” tissue to exclude it from the real-time biomechanical
problem. These two distances are then used to determine the mesh scale.

Finally, figure 9 illustrates our topologically accurate, radially varying tetra-
hedralization results, on the cube and brain volumes. The former meshing is
visualized as a wireframe composed of all tetrahedral edges. The brain tetra-
hedral meshing is shown a semi-transparent volume whose intersection with a
clipping plane is shown as a set of triangles, as well as a wiremesh of all edges
in a manner comparable to the cube.
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Fig. 7. Clinically use-
ful meshing: superposi-
tion of relevant criti-
cal tissue meshes with
brain surface: basilar ar-
teries, optic and oculo-
motor nerves, shown as
triangular mesh.

Fig. 8. Illustration of use of radial and path-based dis-
tance to convert “distant” extra-cranial soft tissue to
tissue of null displacement and determine edge scale:
(a) original tissue map [3]; (b) null-displacement tissue
in orange; (c) final wireframe and rendering of triangu-
lated surface, with dense results visible within 10mm of
path.

(a) (b) (c)

Fig. 9. Illustration of topologically accurate, radially varying brain volume tetrahedral-
ization: (a) invaginated cube visualized as 3D wireframe of all tetrahedral edges, with
child mesh in pink and parent mesh in turquoise; brain mesh visualized as: (b) semi-
transparent boundary of clipped volume, where triangular intersections of tetrahedra
with clipping plane shown as white wireframe, and (c) 3D wireframe rendering.

3 Conclusions

This paper presented a new meshing strategy for computing patient-specific
anatomical models comprised of triangles and tetrahedra coinciding with, or for
computational efficiency idealized as, homogeneous tissue, in a manner that ad-
dresses the requirements of endoscopic pituitary surgery simulation. Our surface
mesh method combines the strengths of Marching Cubes and the simplex mesh
model for computing triangulated boundaries, in terms of topological fidelity and
control of mesh characteristics such as edge scale. While each method, on its own,
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is well researched, the combination of the two, and in particular the edge scale
strategy, is novel. Our strategy offers promise for dealing with the conflicting
requirements of narrowly focused, and especially endoscopic, visualization and
haptic rendering as well as the computation of body forces and displacements
over large volumes, particularly if combined with hierarchical multirate finite el-
ements. Our notion of edge scale extends flexibly to decisions about constitutive
and clinical realism, such as which subset of tissues to consider as having null
displacement. This method is conceived to be extensible to surgery simulation
in general, and it appears able to deal with any tissue shape as well as most
practical requirements for tissue mesh size.

In the near future, the particular choice of parameters for our application
will be settled in conjunction with improvements to the prior tissue classifica-
tion and with the application of HMFEs to our models. We will also investigate a
conformality-preserving simplex force, which would cause two contiguous bound-
aries to share vertices wherever desirable. A more thorough validation of these
methods will follow, based on a refinement of the MNI digital head phantom to
account for bone and critical tissues.
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Abstract. We address the problem of precise segmentation of 3D complex 
structure from high-contrast images. Particularly, we focus on the representa-
tion and application of prior knowledge in the 3D level set framework. We dis-
cuss the limitations of the popular prior shape model in this type of situations, 
and conclude that shape model only is not complete and effective if not aug-
mented by high-level boundary and context features. We present the principle 
that global priors should not compete with local image forces at the same level, 
but should instead guide the evolving surface to converge to the correct local 
primitives, thus avoiding the common problems of leakage and local minima. 
We propose several schemes to achieve this goal, including initial front design, 
speed design, and the introduction of high-level context blockers. 

1   Introduction 

The segmentation of objects such as anatomies and pathologies from 3D medical vol-
ume data poses a challenging problem. The challenges include inhomogeneous inten-
sity and strong edges within the object, and weak or broken boundaries. To cope with 
these challenges, high-level prior knowledge or global priors needs to be 
 incorporated.  

A 3D complex structure has complex surface boundaries and strong high-level fea-
tures. A good example is the human vertebra, as shown in Figure 1. We believe this is 
a type of segmentation problem that is not well addressed in the literature, especially 
when it is from a high-contrast data such as multi-slice CT images. First, such a struc-
ture is too complex to be segmented by 2D methods on a slice-by-slice basis. On the 
other hand, inter-slice resolution is high enough to provide the inter-slice correlation 
needed for 3D methods. Second, it differs from the objects shown in many literatures 
on medical image segmentation, such as organs in MR or Ultrasound data, in which 
the shape is often unclear. A 3D complex structure in high-contrast data has relatively 
well-defined shape, at least for a human, who can perform consistent delineation of 
the object boundaries on 2D slice images. On the other hand, the boundaries, when 
viewed locally, are not clear at all. There are gaps, weak or diffused boundaries eve-
rywhere. Further, such a structure is usually adjacent or even connected to a neighbor-
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ing structure with similar image properties. A special challenge is, since the shape 
looks clearly defined for a human, the segmentation result has to closely match the 
consistent human perception.  

p p

a b c

d e f

g h i  

Fig. 1. (a)-(c): 3D views of a complex vertebra structure. (d)-(f): Vertebra on selected axial 
slices, with its neighboring vertebra and rib structures. While the shape looks well defined for a 
human, local boundaries are weak at many locations. Also notice the pathological abnormal 
shape on the top-left corner of the vertebra in (e)&(f). (g)-(i): 2D contours delineated by a hu-
man. Regions not enclosed by black contours belong to other vertebras and ribs. 

In the past decades, the level set method [1,2] received much attention. However, 
level set only reacts to local properties. It truthfully conforms to whatever local in-
formation it encounters. Since a 3D complex structure usually also has very complex 
local image properties, level set is bound to fail when no prior knowledge is applied. 

1.1   Prior Work: Surface Model  

Recent works provide schemes for representing prior knowledge—particularly global 
shape priors. Leventon et al. [3] followed by others [4,5] proposed the PCA model 
that uses global shape priors to augment the level set framework. This approach uses 
signed distance functions to represent a shape, and applies PCA analysis on a set of 
registered training samples. A model is therefore allowed to vary within the linear 
space spanned by eigenvector shapes. To constrain the surface evolution process, the 
difference between the current surface and a matched shape in the model space is ap-
plied as a penalty force. This term is summed with the local image force term to com 
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pute the speed map. A multiplier is introduced between the two terms, the modifica 
tion of which will adjust the strength of the model term. This type of scheme provides 
a unified solution to the issue of incorporating prior shape knowledge, and has shown 
to be successful in many applications, especially when the shape is not well defined in 
image data and therefore requires a strong shape model. 

The linear PCA model on signed distance function is only valid within the limited 
space [3,4] centered at the mean shapes. Therefore usually only small coefficients are 
allowed. Further, for practical purpose, the number of modes or dimensions is also 
small; otherwise the search of model space for the most similar shape will be intracta-
ble. This issue becomes prominent in the segmentation of a 3D complex structure, 
which usually has high variations in shape. A large number of modes are needed, re-
sulting in a high-dimensional model space. At the same time, a shape can be far away 
from the mean shape, leading to high values of the coefficients, which will drive the 
algorithm out of the linear range. We cannot afford to have a full representation of 
most structure variations, even at the theoretical level. Above all, there are high varia-
tions due to age, gender, race, and especially countless pathological abnormalities. 
From the practical side, to obtain a large and representative set of training samples 
poses a challenging problem. Aside from selecting samples, the manual segmentation 
of a 3D complex structure is an arduous task. Even if we have all the offline time and 
resource to set up such a model space, it would be too large for the system to search 
under any reasonable online performance requirement.  

The above problem combines with the inherent issue from the same-level competi-
tion between prior knowledge and local image properties in the PCA framework. 
Since the surface model cannot even roughly cover the variations of 3D complex 
structures, we need to rely on the surface evolution of level set to converge to local 
boundaries. The problem is, at many locations the two pieces of information will not 
agree.  Obviously, this cannot be completely addressed by adjusting the multiplier. 
The not-well-fit model shape will compete with local primitives to pull the evolving 
surface away from these strong features and the abnormal boundaries. This can be 
seen from the limited literatures covering vertebra segmentation [3]. Converged sur-
face was quite far way from the object boundaries that would be easily delineated by a 
human observer.  

1.2   Our Approach  

Merely the surface model is not a sufficient representation of prior knowledge. This is 
not just because an affordable and practical shape model space will not even roughly 
cover the spectrum of variations, but also because any surface model is extracted from 
the training data by some kind of averaging operations, which leads to the loss of high 
frequency information. High-level features such as abrupt edges, ridges, etc., can only 
be explicitly represented rather than embedded in a shape model.  

In the surface evolution process, global priors should not be simply added to local 
image forces, creating competition at the same level. It should serve as a guidance to-
help the surface selectively converge to the “correct” local properties, avoiding local 
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minima and preventing leak-out. Since the convergence of level set depends on the 
initial front as well as local speed, we will spend our effort mainly in the design of the 
initial front and the speed map. Beside this, high-level context features will be a major 
help in preventing leakage. A prior knowledge representation should include a small 
set of surface models, augmented by the explicit description of a set of known high-
level features. For the sake of clarity, we exemplify the general principles for such a 
situation in the context of vertebra segmentation from chest CT volume data. 

 

Fig. 2. Global prior representation. (a) The mean shape and the common coordinate system. 
(b)(c) Parametric planes representing high-level boundary features (4 in total) and context 
features (6 in total). Their cross-sections within the axial plane are marked white (also 
pointed by arrows) and black, respectively.  

2   Prior Knowledge Representation 

2.1   The Mean Shape Template 

A small number of vertebras are selected and their surfaces are manually segmented 
by 2D contour delineation. At the same time, the spinal channel and the two roughly 
parallel inter-vertebra planes are also segmented. These features are used to register 
the samples with a common coordinate system such that the centroid of the spinal 
channel is at the origin, the normal of the two planes align with the z-axis, and the 
spinal channel is roughly symmetric with respect to the plane x=0. Following Leven-
ton et al. [3], we then construct from the transformed surfaces a set of signed distance 
functions },,,{ 21 nS φφφ K=  such that the surface of the ith sample is represented as 

}0)(,|{ 3 =∈=Γ xxx φR . We define the mean shape as 

=

=
n

i
in 1

1 φφ , (1) 

an example of which is shown in Fig. 2(a). It has the essential shape and structure that 
characterize a vertebra. Certainly, we do not intend to cover large variations. The 
mean shape is used as a rough guide or template. This low requirement allows a small 
sample size, corresponding to a much smaller manual task. For a more general 
scheme, a small number of PCA shapes can be stored. In the case of vertebra, we only 
store the mean shape.  
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2.2   High-Level Features 

Linear primitives include intensity edges, ridges, and valleys. If the locations of the 
strong and same-type primitives in a local neighborhood roughly form a flat surface, 
we can fit a simple parametric model and describe it as a high-level feature.  

If a high-level feature is based on the ridges or edges from the object boundary, 
then it is a high-level boundary feature. A high-level context feature, on the other 
hand, comes from the intensity valleys located at the interface between the object and 
a neighboring structure. Both types of high-level features are recorded with reference 
to the common coordinate system. Without loss of generality, we use the plane  
models 

miT
i L1,0 ==xB  (2) 

njT
j L1,0 ==xC  (3) 

to describe the high-level boundary and context features, respectively. Here x is the 
homogeneous coordinate vector, m and n are the number of high-level boundary and 
context features, respectively. As will be discussed later, high-level context features 
will be crucial in the prevention of leakages. We record in total 4 boundary planes and 
6 context planes for each vertebra, as shown in Fig.2(b)&(c).  

3   Speed Map Design for Level Set Evolution 

The surface evolvement of level set depends on speed that is computed from local im-
age properties [6], which can be region-based [7] or primitive-based. In many situa-
tions, neither of the methods is sufficient.  

3.1   Speeds Based on Sub-region Division  

The image properties of a 3D complex structure are usually non-uniform within the 
object.  Therefore we can divide the object into sub-regions. For each sub-region, we 
choose the proper type of speed, either region-based or primitive-based. One piece of 
prior knowledge we did not present in Section 2 is the division of sub-regions within 
the object. We record a set of planes in the common coordinate system to describe 
sub-region boundaries, as illustrated in Fig. 3.  

   

Fig. 3. (a)(b) Dividing the mean shape into sub-regions.(c) Definition of blocker region. All 
points that are on different sides of xv with respect to surface SB is in the blocker region. 
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Sub-regions 1, 2, 3, and 7 have blurred boundaries and high intensity variations. 
Noise is also strong and cannot be easily smoothed lest the boundary will be further 
blurred.  The average intensities in these regions are higher than the background, 
which suggests the usage of region-based intensity speed. Following Chan-Vese [7], 

[ ] 7,3,2,1, ,))(())(()( 2
2

2
1Im =∈−−−= iRcIcIF iiiage xxxx α  (4) 

is used to describe the speed, where c1i and c2i are the estimated average intensity in-
side and outside the vertebra, respectively.  

Sub-regions 4 and 6 both have relatively strong edges, despite the blurred and bro-
ken boundaries. We compute g(x) as the combined response term of edges and ridges. 
Its gradient is projected on the normal of the level set function φ: 

6,4,   ),,()( )(Im =∈∇⋅∇= iRtgF iage xxxx φβ , (5) 

For sub-region 5 there are both the high intensity variation and strong edges, and we 
design the speed to be based on both edge and region:  

[ ] 5
2

2
2

1Im     , ),()()1())(())(()( RtgcIcIF iiage ∈∇⋅∇−+−−−= xxxxxx φγγ  (6) 

The speed map is unified, although the types of speeds vary with respect to loca-
tions. The speed of all types are normalized to be at the same range and made con-
tinuous at boundaries of sub-regions.  

3.2   Blocker Speed Based on Context Features  

Suppose the similarity transformation from model to data is described as 

elimage modTxx = , where T is the transformation matrix, the high-level contexts fea-

tures in Eq.3 and are mapped as  

njimage
T

j L1,01 ==− xTC  (7) 

which remain as planes.  
The detection of high-level feature in the image is obviously different from that of 

low-level features. We search the correspondent plane in the small parametric space:  

),( 11 PTCPTCP ∆+∆−∈ −− T
j

T
j  (8) 

in which the plane is only allowed limited variation |∆P|.  The search is via model-
fitting techniques such as the Hough transform. After primitive detection in the local 
neighborhood, each primitive votes with its strength e(x). The vote for a candidate 
plane P is therefore  

<
=

εxP
xP )()( eU  

(9) 

where ε is a minor distance value. The winner is then  
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)(maxarg
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PP
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j

final
∆+∆−∈ −−

=  
(10) 

Certainly the bin size for voting needs to be carefully chosen. This method is very 
robust as long as the local primitives are in majority over noises and outliers.  

The detected parametric plane is an approximation of the actual surface SB, as 
shown in Fig. 2(a)&(b). Therefore primitive detection is again applied on the close 
neighborhoods of Pfinal, along its normal direction. The strongest and closest primi-
tives are accepted as the points that form SB. 

A high-level context feature belongs to the background, and hence intensity valleys 
are detected as the primitive to vote in the Hough transform. These valleys also form 
the refined surface SB. For high-level boundary features, intensity edges and ridges are 
detected instead. 

We here introduce a blocker speed term that is built up from a high-level context 
feature to prevent leakage. Let SB be an oriented surface, and hence it partitions the 
3D space into two sides. We further assume that the line connecting any two points on 
the different sides of SB, only makes one intersection with it. Using a fixed point 

vx
r

 
inside the transformed mean shape as an anchor, we define the blocker region includ-
ing all points on the other side of SB: 

})(|{ vBvB S xxxxx ∈∩=Ω  (11) 

If there are n blocker regions, we combined them:  

BnBBB Ω∪∪Ω∪Ω=Ω L21  (12) 

Specifically, we set 1)( −=xBlockF  for BΩ∈x , which overrides )(Im xageF  defined 

in Section 3.1. The above definition of blocker region is illustrated in Fig. 3(c). Obvi-
ously, the blocker region prevents the surface from evolving into it. The surface is 
forced to converge to local properties outside the blocker region. By using a high-
level context feature blocker we can prevent leakage but still allow the surface to con-
verge freely to local boundaries that belong to the object. 

3.3   Level Set Formulation 

In addition to the image-dependent speed and blocker speed, we also use the smooth 
speed,κ , the mean curvature of the surface. Also, we define a field  

Ω∈
=

lse    ,0

   ,1
)(

e
B

B

x
xν  (13) 

to denote if a point is inside the blocker region. Thus the final speed is defined as 

εκνν ++−= kerIm )())(1()( BlocBageBFinal FFF xxx  (14) 

According to [10], the evolution of the surface is embedded in the evolution of a level 
set function φ(t): 
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 (15) 

where 
|| φ

φκ
∇
∇⋅∇= is the mean curvature of the level set.   

4   Initial Front Design  

The initial front of level set greatly affects the evolution and convergence of the sur-
face. Works on level set segmentation often use such simple shape as a circle or a 
sphere as the initial front, and rely on level set to recover the object shape and topol-
ogy. The results often prove the power and flexibility of level set. In the segmentation 
of 3D complex shapes, however, it is crucial to carefully design the initial front so as 
to avoid local minima. A well-designed initial front will have similar shape and to-
pology as object surface, and be close to the desired boundaries. 

With this in mind, we map the mean shape on to the image. To estimate a similar-
ity transformation between the mean shape and the image, we detect the spinal chan-
nel and the two inter-vertebra planes, as shown in Fig. 4(a). The plane normal n of the 
mean shape is first rotated to align with that of the object. The mean shape is then ro-
tated around n such that the long and short axes of the spinal channel in the axial 
plane are aligned with those of the object. The mean shape is then scaled so that the 
area of the spinal channel in the axial plane equals that of the object.  Finally the 
mean shape is shifted so that the centroid of spinal channel coincides with that of the 
object. This mapping is application-specific. However, a transformation can be esti-
mated with other more general methods to map the initial shape, and we have seen 
examples in the literature [8]. 

 

 
  

Fig. 4. Initial front design. (a) Inter-vertebra planes. (b) The mapped mean shape. (c) High 
level context and boundary features on the two sides of the transverse processes. (d) The 
rectangular parallelepipeds that contain the high-level features. (e) The initial front contour 
(f) 3D shape of initial front. 
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The cross-section of the surface of the mapped mean shape model is illustrated in 
Fig. 4(b). It possesses most of the desired properties of initial front. However, since it 
is only an average of shape of limited samples, it is not yet a good initial front. As 
shown in Fig. 4(b), the surface of the mean shape is quite far away from the actual 
image boundary at the two transverse processes. Such an initial front will be captured 
by local minima and not converge to the outside true boundaries. 

A costly option is to search for a higher order PCA shape to use as the initial front. 
Instead, we adjust the mean shape with high-level features. We define Π as the set 
that contain all points inside the mean shape. As described in Section 3.3, we detect 
the planes that represent the high-level features on the two sides of the transverse 
processes, the cross-section of which is shown in Fig. 4(c). Having detected the two 
planes  

2,1},0|{ ==⋅= iP ii xax  (16) 

where x is the homogeneous coordinate vector. Take an arbitrary shape Σ such that 

2,1, =Σ⊂ iPi  and φ≠∏∩Σ  (17) 

where φ is the empty set. We then merged the regions:  

Σ∪∏=Λ  (18) 

from which we construct the signed distance function as the implicit representation of 
the new surface. As shown in Fig.4(c), the dark lines are the cross-sections of detected 
high-level features Pi with the axial plane, and we fit an arbitrary shape Σ that con-
tains these features and at the same time connected to the mean shape Π.  In this case 
we constructed two rectangular parallelepipeds as shown in Fig.4(d). The new front Λ 
is shown in Fig. 4(e) and Fig. 4(f).  

5   Results 

The cross-section contours of converged surfaces in axial, coronal and sagittal planes 
are shown in Fig. 5. We show in alterative rows the original image and segmentation 
results. The images in the result columns are dimmed in order to clearly show the 
contours. The cases include all types of complications, such as weak boundary, 
crowed and connected neighboring structures, partial volume effects, pathological ab-
normalities, and high intensity variations. On the other hand, a trained human ob-
server would still be able to consistently delineate the boundaries. Although we did 
not show human-drawn contours here, it is clear that our segmentation result should 
closely match what a human would have drawn.  

We tested on 5 chest CT data sets, each with 300-400 slices of 512×512 images, 
and with in-plane and inter-plane resolutions of (0.5~0.8) mm and 1mm, respectively. 
Each data set contains around 9 vertebras of different shapes covered in the chest por-
tion. The results are generally satisfactory, as shown in Fig. 5. The algorithm heavily  
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Fig. 5. Selected 3D segmentation results shown as the cross-section contours in axial, sagittal 
and coronal planes. The first and third rows show original image, and the other two rows 
show the contours. The result rows have the image dimmed to show the contours more 
clearly. 

depends on the correct detection of high-level features. Although the detection 
scheme is robust by itself, we are still working on its improvement. 

6   Conclusions 

We have proposed a scheme for incorporating prior knowledge into the level set seg-
mentation of 3D complex structure. The prior knowledge includes shape and high- 
level features. The design of speed and initial front comes from prior knowledge and 
guides the local surface to converge to the correct object boundaries. We introduced 
the concept of context blocker speed, which is crucial in the prevention of leakage. 
We also attempted to combine several types of speeds according to location. 

We exemplify our scheme with the human vertebra segmentation because it is one 
of most complicated 3D structures. We also chose high-contrast CT as the data type. 
This is because a vertebra has well-defined shape only in CT data, from which precise 
segmentation is possible. 
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Abstract. Extraction of bone contours from x-ray images is an im-
portant first step in computer analysis of medical images. It is more
complex than the segmentation of CT and MR images because the re-
gions delineated by bone contours are highly nonuniform in intensity and
texture. Classical segmentation algorithms based on homogeneity criteria
are not applicable. This paper presents a model-based approach for auto-
matically extracting femur contours from hip x-ray images. The method
works by first detecting prominent features, followed by registration of
the model to the x-ray image according to these features. Then the model
is refined using active contour algorithm to get the accurate result. Ex-
periments show that this method can extract the contours of femurs with
regular shapes, despite variations in size, shape and orientation.

1 Introduction

Extraction of bone contours from x-ray images is an important first step in
computer analysis of medical images. For example, to detect fractures in femur
bones from x-ray images [1,2,3], it is necessary to first determine the contours of
the femurs within which features are to be extracted for fracture detection. In
the work of [4], contours of carpal bones are determined followed by extracting
features within the bone region for skeletal age assessment. Interestingly, most
of the existing work on medical image segmentation has been focused on CT and
MR images. Much less work has been done on the segmentation of x-ray images.

Classical image segmentation algorithms assume that the regions to be seg-
mented contain homogeneous features. With this assumption, the segmentation
algorithms attempt to segment the input image into regions based on feature
homogeneity criteria. Unfortunately, such homogeneity criteria are not satisfied
for large and complex bones in x-ray images. For instance, in a femur x-ray image
(Fig. 1), the femoral head region contains nonuniform texture pattern due to the
trabeculae (Fig. 1b), and the femoral shaft region has nonuniform intensity due

� This research is supported by NMRC/0482/2000.

Y. Liu, T. Jiang, and C. Zhang (Eds.): 2005, LNCS 3765, pp. 200–209, 2005.
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to the hollow interior within solid bony walls (Fig. 1a). Moreover, the femoral
head overlaps with the pelvis bone. In this case, the extraction of bone contours
becomes a more complex problem than classical image segmentation problem.
This paper describes a model-based approach for automatically extracting femur
contours from standard hip x-ray images used in clinical practice (Fig. 1a).

2 Related Work

As discussed in Section 1, classical image segmentation algorithms that rely
on region homogeneity criteria are not applicable for the extraction of femur
contours in x-ray images. These algorithms include thresholding, region growing,
region splitting and merging, watershed, classifier, clustering, etc. [5,6].

Deformable models such as active contour [7], active shape [8], and level set
method [9] have also been used for medical image segmentation [6]. These meth-
ods are contour-based instead of region-based. So, they have the potential of
extracting contours of body parts that do not contain homogeneous features.
An important weakness of these approaches is that they typically require good
initialization of the model contour. If the model is poorly initialized, these ap-
proaches can be easily affected by noise and extraneous edges in the image,
resulting in incorrect segmentation of the regions.

The atlas-based approach [6] can overcome the weakness of deformable mod-
els by roughly aligning a spatial map called atlas to the image before applying
deformable model methods. That is, it attempts to solve the initialization prob-
lem of deformable models by using prior knowledge such as spatial relationships
between the body parts in the images. This approach is very promising but it
is typically application specific. That is, segmentation of different images of dif-
ferent body parts typically require different kinds of atlas that contain different
prior knowledge. This approach has been applied to the segmentation of brain
MR images [10,11] and abdominal CT images [12].

In our application, the atlas-based approach can still face difficulties be-
cause the femurs in different images can be oriented differently (Fig. 4) due to
variations in the patients’ standing postures resulting from femur fractures. In-
corporating articulation of body parts in the atlas-based approach may help to
solve the problem of model initialization but it makes the atlas very complex and
difficult to use. Instead, we apply a simpler model-based approach specific to the
femur bone that can handle variations in shape, size, as well as the orientation
of the femur in different images.

3 Overview of Algorithm

Our algorithm takes a standard hip x-ray image (Fig. 1a) as the input and
automatically extracts femur contours in the x-ray image. It is a model-based
algorithm that consists of three main stages:
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(a) (b)

Fig. 1. (a) A standard hip x-ray image. The dark lines delineate the regions that
contain the femurs. (b) Close-up view of femoral head.

1. Delineation of the regions that contain the left and the right femurs.
2. Registration of a 2D model femur contour to femur regions in the image.
3. Application of the active contour algorithm with shape constraints to refine

the femur model to accurately identify the femur contour in the image.

The first stage is easy to automate because the pose of the patients are similar
when the hip x-ray images are taken. The femurs always fall in the left and right
bottom corners of the images. Based of 50 training samples, it is determined
that the femur region falls within a bounding box of size 990× 1160 pixels.

The second and third stages are described in the following sections.

3.1 Registration of Femur Model

This stage applies prior knowledge about the femur to register a model of the
femur contour to the one in the image. It consists of four main steps:

1. Detection of candidate femoral shafts represented by pairs of parallel lines.
2. Detection of candidate femoral heads represented by circles.
3. Detection of candidate turning points near the base of the greater trochanter.
4. Piecewise registration of model femur contour.

1. Detection of Candidate Femoral Shafts

The outer contours of the femoral shaft consists of two approximately parallel
straight lines. So, the natural way to detect femoral shaft is to find a pair of long
parallel straight lines.
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Femoral shaft detection is performed as follows. First, up to 8 points near the
bottom of the image with the largest horizontal intensity gradient components
are identified. These are good candidate feature points because the points of the
shaft contours have very large intensity gradients. The directions of the intensity
gradients at these points should not be larger than 30◦ (determined from training
samples) because the shafts are roughly vertical in the images.

Next, contour following method is applied to identify approximately straight
lines starting at the points detected above. The points along a line should have
roughly the same intensity gradient direction, and fit well onto a straight line.

After identifying all candidate lines, they are paired up to form candidate
femoral shaft contours. The lines are paired based on the following criteria:

– The width wi between a pair i of lines should fall within an acceptable range.
From training samples, it is found the width has a unimodal distribution
which can be modeled by a Gaussian Gs with a mean µs of 44.64 pixels and
a standard deviation σs of 4.67. So, given the width wi, the probability that
the pair of lines is the shaft contour is given by Gs(wi|µs, σs).

– The lines in a pair i have the correct intensity gradient directions. Specifi-
cally, the intensity gradient of the line on the left of the femur should change
from dark to bright along the positive x-axis, and that of the line of the right
of the femur should change in the opposite direction. Moreover, they should
also have large intensity gradient magnitudes Mi, which is computed as the
mean of the intensity gradient magnitudes of the points along the lines.

– Thus, the probability Pi that a pair i of lines is indeed the shaft contour is
proportional to the product MiGs(wi|µs, σs), assuming the intensity gradi-
ent magnitude and the shaft width are independent factors. The intensity
gradient magnitude is based on x-ray absorption, while the shaft width is
based on the patient’s body size. These two factors are thus independent.

So, each candidate femoral shaft i is associated with a probability measure Pi.
The top candidates, at most three, with the largest probability measures are kept.
Figure 2(a) illustrates an example with two candidate femoral shaft contours.

2. Detection of Candidate Femoral Heads

The femoral head is approximately circular. Usually, the contour of the femoral
head is not very distinctive. On the other hand, the femur socket of the hip bone
appears as strong edges in x-ray images, and the points on these strong edges
have very large horizontal or vertical intensity gradient components. So, such
points are detected at the top left corner of the femur region in the image. Next,
circles are fitted over these points using circular Hough transform.

For a particular patient, the size of the femoral head is positively related to
that of the femoral shaft. From training samples, it is found that the ratio of
the radius of the femoral head to the width of the femoral shaft has a unimodal
distribution which can be modeled by a Gaussian Gh with a mean µh of 0.91
and a standard deviation σh of 0.11. Given a fitted circle i with radius ri and a
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(a) (b) (c)

Fig. 2. (a) Candidate femoral shafts. (b) Candidate femoral heads. (c) Turning point
(white dot) at greater trochanter.

candidate shaft with width wi, the probability that circle i falls onto the femoral
head is given by Gh(ri/wi|µh, σh). For each candidate shaft found in the previous
step, the top femoral head candidates, at most three, with the largest probabil-
ities are kept. This produces at most nine shaft-head combinations. Fig. 2(b)
illustrates an example with 3 candidate femoral heads.

3. Detection of Candidate Turning Points

In addition to the candidate femoral shafts and heads, an important feature
point which we call the “turning point” is also extracted (Fig. 2c). This feature
point is required to correctly initialize the model feature contour for running the
active contour algorithm. It is obtained as follows:

– For each candidate femoral shaft, the line on the right side of the parallel
pair is extended upward using contour following method with the straight
line condition relaxed. So, the line now traces a curve that goes along the
boundary of the greater trochanter.

– Next the second derivatives of the points along the curve is computed. The
locations of the zero crossings of the second derivatives are identified.

– For each shaft-head combination, the candidate turning points along the
shaft and below the center of the head are identified.

– The lowest candidate turning points, at most three, are kept for each shaft-
head combination. This produces at most 27 shaft-head-turning point com-
binations.

4. Piecewise Registration of Femur Model

The model femur contour is divided by five feature points into five segments
(Fig. 3a). The corresponding features points in the image are obtained as follows.
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(a) (b) (c)

Fig. 3. (a) Model femur contour divided into 5 segments. (b) Piecewise registered
femur model used as the initial configuration of the snake algorithm. (c) Extracted
femur contour after running the snake algorithm.

The two feature points on the head contour are obtained from the top-most and
left-most points of a candidate femoral head. The two feature points at the
bottom of the shaft contour are obtained from a candidate femoral shaft. The
last feature point is a candidate turning point.

The model femur contour is placed onto the image by piecewise registration
of the segments based on each of the 27 possible shaft-head-turning point combi-
nations. The registration of each segment is performed by computing the scaling
factor s, rotation matrix R and translation vector T that maps a model feature
point p to the corresponding image feature point q:

q = sRp + T . (1)

All other points along the model contour are mapped in the same way onto the
image. Figure 3(a) illustrates a model femur contour that is registered onto the
image and to be used as the initial configuration of the active contour algorithm.

3.2 Active Contour with Curvature Constraints

The original active contour [7], or snake, algorithm is too flexible for this ap-
plication and has a high tendency of being attracted to noise and extraneous
edges instead of the desired femur contour. To allow the snake to avoid noise
and extraneous edges, shape constraints are added to the snake model.

The snake is represented by a parametric contour v(s) = (x(s), y(s)), 0 ≤
s ≤ 1. Its internal energy Ei(v(s)) is defined as

Ei(v(s)) =
1
2
(
α‖v′(s)‖2 + β‖v′′(s)‖2

)
(2)

where α and β controls the stretching and bending of the snake contour. It
is attracted to image features such as edges and lines. The image features are
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represented by the external energy E. In our application, the gradient vector
flow field [13] is used for E.

The shape of a snake can be constrained by constraining its curvature. The
curvature of a contour is proportional to the rate of change of the tangent of the
contour, which is a second derivative of the contour point. So, the curvature can
be represented by the second derivative vector v′′(s) = (x′′(s), y′′(s)).

To constrain the curvature, we introduce a spring force that is proportional to
the difference between the actual curvature v′′(s) of the snake and the reference
curvature ω(s) of the model. The reference curvature is obtained by averaging the
curvature of corresponding points in training samples. Then, the spring energy
Ec(v(s)) is given by

Ec(v(s)) =
ξ

2
‖v′′(s) − ω(s)‖2 (3)

where ξ is a constant parameter that controls the stiffness of the snake. The
larger the ξ, the more stiff is the snake, and thus, the better is the snake in
preserving its reference shape encoded by the reference curvature ω(s).

The snake’s total energy ET is

ET =
∫

[Ei(v(s)) + Ec(v(s)) + E(v(s))] ds . (4)

When ET is minimized, v(s) satisfies the following Euler-Lagrange equation,
which can be obtained using variational calculus:

− (αv′(s))′ + (βv′′(s))′′ + (ξv′′(s) − ξω(s))′′ + ∇E(v(s)) = 0 . (5)

Denote the vectors ∇E = F = (Fx, Fy) and ω = (ωx, ωy). Discretizing Eq. 5
and rewriting in matrix form yields

Ax x + Fx = 0
Ay y + Fy = 0 .

(6)

Let the snake be a closed contour with n points such that v(n+1) = v(1). Then,
the matrix Ax is given by

Ax =


c1 d1 e1 0 · · · 0 a1 b1 f1

b2 c2 d2 e2 0 · · · 0 a2 f2

...
...

...
...

...
...

...
...

...
dn en 0 · · · 0 an bn cn fn

0 0 0 0 · · · 0 0 0 1

 (7)

where
ai = ei = β + ξ
bi = di = −α − 4β − 4ξ

ci = 2α + 6β + 6ξ
fi = ξ(−ωx,i−1 + 2ωx,i − ωx,i+1) .

(8)

Compared to the original snake, Ax has an additional column of constants fi

that capture the second derivatives of the reference curvature at points v(i).
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Moreover, an extra row of n zeros followed by a 1 is added to make the matrix
square and invertible. The matrix Ay is the same as Ax except ωx in fi is
replaced by ωy.

Equation 6 can be solved iteratively by regarding x and y as functions of
time t, yielding the iterative update equations:

x(t) = (Ax + γI)−1(γx(t − 1) − Fx(t − 1))
y(t) = (Ay + γI)−1(γy(t − 1) − Fy(t − 1)) .

(9)

The constrained snake algorithm is applied onto each of the candidate shaft-
head-turning point combinations. After the snake algorithm has converged, the
shape difference between the candidate resultant snake and the reference model
is computed in terms of the mean squared error of rigid registration between
them. The candidate result with the smallest shape difference is regarded as the
extracted femur contour.

Existing methods that also incorporate geometric constraints in the snake
include [11,14]. Shen et al. [11] embedded geometric information as attribute
vector into a snake. The attribute vector contains the areas of triangles formed
by each point on the snake and their two neighboring points. During the snake’s
evolution process, the areas of the triangles are constrained. However, triangles
of different shapes can have the same area. So, this method may not reliably
constrain the snake’s shape.

Foulonneau et al. [14] includes Legendre moments in the snake. The short-
coming of this method is that moments provide global description of a reference
shape. Large local deformations such as size variations of parts of the femur and
orientation variations of femurs in different images (Fig. 4) would change the
moments significantly even though the overall shape remains roughly the same.
Moreover, this method will become very complex if rotation invariance, left out
in [14], is to be considered as well.

(a) (b) (c)

Fig. 4. Sample test results. Despite the significant variations in the shapes, sizes, and
orientations of the femurs in the images, correct femur contours are extracted. The
errors are: (a) 0.98 pixel (b) 3.27 pixels (c) 3.92 pixels.



208 Y. Chen et al.

In comparison, our method not only allows the snake to handle shape and
size variations but also variations in the orientations of the femurs.

4 Tests and Discussion

A training set of 100 femur images with manually extracted contours were used to
determine the shaft width model and the femoral head radius model. A different
set of 172 femur images were used to test the contour extraction method. The size
of all training and testing images was 297×348. A simple model femur is used by
the algorithm to extract the femur contours in the test images. The error of an
extracted contour is measured in terms of the mean error between the points on
the extracted contour and their corresponding points on the manually marked
contour. Success rate is the fraction of testing samples whose femur contours are
extracted accurately. A femur contour is considered successfully extracted if the
error is less than 8 pixels, which is only 2% of the image size.

Of the 172 testing samples, 81.4% of the femur contours were successfully
extracted, despite the variations in shapes, sizes and orientations of the femurs
in the images (Fig. 4). The mean and standard deviation of the errors of the
successful samples are 3.88 pixels and 1.50 pixels.

Among the failed cases, 31.3% are such that at least one of the candidate
solution is acceptable but not the top ranking solution (e.g., Figure 5a). If we
consider these cases as successful cases, the success rate becomes 87.2%.

The other 68.7% of the failed cases do not have acceptable results among the
candidate results. Failed samples are either fracture cases such as Figure 5(b) or
healthy femurs with odd shapes such as Figure 5(c) or images that contain arti-
facts such as extraneous straight lines caused by the analogue imaging process.
Odd shaped femurs have very short neck or shaft or both, due to the unusual
standing postures of the patients with fractures on the other femurs.

(a) (b) (c)

Fig. 5. Sample failed cases. (a) One of the candidate solution is acceptable but not
ranked at the top. (b) Fractured femur with severe shape distortion. (c) Healthy femur
with an odd shape. There is almost no neck or shaft.
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5 Conclusion

This paper presented a method for automatically extracting femur contours from
x-ray images. The method detects the positions of the femoral shaft, head and
turning points. Then, a model femur contour is registered piecewise to the x-ray
image according to these detected features. Finally, active contour with shape
constraints is applied to accurately identify the femur contour. Experiments show
that this method can successfully extract the contours of femurs with regular
shapes, despite variations in size, shape, and orientation. Our continuing research
is to extend the method to the extraction of the contours of femurs with severe
shape distortions and of other body parts in x-ray images.
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Abstract. MR Imaging techniques provide a non-invasive and accurate
method for determining the ultra-structural features of human anatomy.
In this study, we utilise a novel approach to segment out the ventricular
system in a series of high resolution T1-weighted MR images. Our ap-
proach is based on an automated landmark extraction algorithm which
automatically selects points along the contour of the ventricles from a
series of 2D MRI brain images. Automated landmark extraction is ac-
complished through the use of the self-organising network the growing
neural gas (GNG) which is able to topographically map the low dimen-
sion of the network to the high dimension of the manifold of the contour
without requiring a priori knowledge of the structure of the input space.
The GNG method is compared to other self-organising networks such as
Kohonen and Neural Gas (NG) maps and an error metric is applied to
quantify the performance of our algorithm compared to the other two.

1 Introduction

The cerebral ventricles are buried within the centre of the brain parenchyma and
are the source of cerebral spinal fluid, which provides nutritive and cushioning
support to the brain and spinal cord. Neuropathologies involving the ventricles
range from severe hypertrophy diagnostic for hydrocephalus, to mild and diffuse
enlargements associated with AIDS, Alzheimer’s Disease and Schizophrenia [4,7].
Currently, MRI techniques are employed routinely in the diagnosis of ventricular
related diseases. In many cases, the extent of disease progression can be deter-
mined by quantifying the extent of the change in ventricular morphology and/or
volume [4]. The usual practise in a clinical setting is to perform a high resolution
T1-weighted MRI followed by laborious post-processing steps. The first stage in
the post-processing step is to segment out the ventricles, which can be difficult
in many cases if the patient is not properly aligned in the scanner. Next, the
ventricles must be segmented followed by volumetric quantification. These post-
processing steps are laborious and must be very accurate if the purpose of the
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scan is to help determine the extent of disease progression. In very overburdened
medical facilities, performing this task manually may not be feasible. In addition,
in a multi-centre study or when a patient visits multiple medical facilities, there
is little assurance that the post-processing steps will be performed in an identical
fashion. An automated procedure may provide the means of yielding objective
and consistent results across various institutions. It is imperative therefore that
an accurate, rapid and automated algorithm be developed and deployed. That
is the subject of the rest of this paper.

There are several algorithms that have been employed to perform automatic
segmentation. These algorithms can be broadly classified into landmark and
non-landmark based approaches. Typical non-landmark based techniques have
been published using region-growing algorithms [15], level set [1], and rough
sets based [17] techniques have been applied in the medical imaging domain.

Landmark based techniques can be classified as manual, semi-automatic and
automatic. Because the first two are laborious and subjective especially when
applied to 3D images, various attempts have been made to automate the process
of landmark based image registration and correct correspondences among a set of
shapes. Sousa’s et al. [16] method, which uses the landmarks of the mean shape
of an MRI foot data set as a reference to automatically generate the landmarks
to the training set by locally searching the distance between the given landmark
point from the mean shape and the nearest strong edge in the image, is arbitrary
since the mean shape can be defined only for closed boundaries and for set of
images that are mainly aligned and have small variations.

Davies et al. [3] method of automatically building statistical shape models by
re-paremeterising each shape from the training set and optimising an information
theoretic function to assess the quality of the model has received a lot of attention
recently. The quality of the model is assessed by adopting a minimum description
length (MDL) criterion to the training set. This is a very promising method
and the models that are produced are comparable to and often better than the
manual built models. However, due to very large number of function evaluations
and nonlinear optimisation the method is computationally expensive.

Recently, Fatemizadeh et al. [5] have used modified growing neural gas to
automatically correspond important landmark points from two related shapes
by adding a third dimension to the data points and by treating the problem of
correspondence as a cluster-seeking method by adjusting the centers of points
from the two corresponding shapes. This is a promising method and has been
tested to both synthetic and real data, but the method has not been tested on
a large scale for stability and accuracy of building statistical shape models.

In this work, we introduce a new and computationally inexpensive method
for the automatic selection of landmarks along the contours of 2D MRI slices of
human brain. The incremental neural network, the growing neural gas (GNG) is
used to automatically annotate the training set without using a priori knowledge
of the structure of the input patterns. Unlike other methods, the incremental
character of the model avoids the necessity to previously specify a reference
shape. The method is used for the representation of two-dimensional outline of
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the ventricles, which can be extended to three dimensions. As will be discussed in
Section 3, GNG does not use any a priori knowledge, as its adaptation process is
incremental based on competitive hebbian learning. To evaluate the accuracy of
the method we have tested it with other self-organising models such as Kohonen
maps and Neural Gas (NG) maps and global distance error have been applied
to measure the quality of the adaptation of the network.

The remaining of the paper is organised as follows. Section 2 introduces the
statistical shape models and its application to automated ventricular segmenta-
tion. Section 3 provides a detailed description of the topology learning algorithm
GNG and the error measurement used for the adaptation process. A set of ex-
perimental results is presented in Section 4, followed by our major conclusions
and future work.

2 Statistical Shape Models

When analysing biological shapes it is convenient and usually effective to de-
scribe them using statistical shape models. The most well known statistical
shape models are Cootes et al. [2] ’Point Distribution Models’ (PDMs) that
models the shape of an object and its variation by using a set of np landmark
points from a training set of Si shapes. In this work, PDM represents the ven-
tricles as a set of np automatically extracted landmarks (in our case 64, 100,
144 and 169 neurons) in a vector x = [xi0, xi1, ...., xinp−1 , yi0, yi1, ..., yinp−1 ]

T . In
order to generate flexible shape models the Si shapes are aligned (translated,
rotated, scaled) and normalised (removing the centre-of-gravity and placing it
at the origin) to a common set of axes. The modes of variations of the ventricles
are captured by applying principal component analysis (PCA). The ith shape in
the training set can be back-projected to the input space by a linear model of
the form:

x = x + Φβi (1)

where x is the mean shape, Φ describes a set of orthogonal modes of shape
variations, and βi is a vector of weights for the ith shape. To ensure that the
above weight changes describe reasonable variations we restrict the weight βi to
the range −2

√
λ ≤ βi ≤ 2

√
λ and the shape is back-projected to the input space

using Equation (1). PCA works well as long as good correspondences exist. To
obtain the correspondences and represent the contour of the ventricles a self-
organising network GNG was used.

3 Topology Learning

One way of selecting points of interest along the contour of 2D shapes is to use a
topographic mapping where a low dimensional map is fitted to the high dimen-
sional manifold of the contour, whilst preserving the topographic structure of the
data. A common way to achieve this is by using self-organising neural networks
where input patterns are projected onto a network of neural units such that
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similar patterns are projected onto units adjacent in the network and vice versa.
As a result of this mapping a representation of the input patterns is achieved
that in postprocessing stages allows one to exploit the similarity relations of the
input patterns. Such models have been successfully used in applications such as
speech processing [9], robotics [14,11] and image processing [13]. However, most
common approaches are not able to provide good neighborhood and topology
preservation if the logical structure of the input patten is not known a priori. In
fact, the most common approaches specify in advance the number of neurons in
the network and a graph that represents topological relationships between them,
for example, a two-dimensional grid, and seek the best match to the given input
pattern manifold. When this is not the case the networks fail to provide good
topology preserving as for example in the case of Kohonen’s algorithm.

The approach presented in this paper is based on self-organising networks
trained using the Growing Neural Gas learning method [6]. This is an incremen-
tal training algorithm where the number of units in the network are determined
by the unifying measure for neighborhood preservation [8], the topographic prod-
uct. The links between the units in the network are established through com-
petitive hebbian learning [10]. As a result the algorithm can be used in cases
where the topological structure of the input pattern is not known a priori and
yields topology preserving maps of feature manifold [12].

3.1 Growing Neural Gas

With Growing Neural Gas (GNG) [6] a growth process takes place from mini-
mal network size and new units are inserted successively using a particular type
of vector quantisation [9]. To determine where to insert new units, local error
measures are gathered during the adaptation process and each new unit is in-
serted near the unit which has the highest accumulated error. At each adaptation
step a connection between the winner and the second-nearest unit is created as
dictated by the competitive hebbian learning algorithm. This is continued until
an ending condition is fulfilled, as for example evaluation of the optimal net-
work topology based on the topographic product [8]. This measure is used to
detect deviations between the dimensionalities of the network and that of the
input space, detecting folds in the network and, indicating that is trying to ap-
proximate to an input manifold with different dimensions. In addition, in GNG
networks learning parameters are constant in time, in contrast to other methods
whose learning is based on decaying parameters.

In the remaining of this Section we describe the growing neural gas algorithm
and ending condition as used in this work. The network is specified as:

– A set N of nodes (neurons). Each neuron c ∈ N has its associated reference
vector wc ∈ Rd. The reference vectors can be regarded as positions in the
input space of their corresponding neurons.

– A set of edges (connections) between pairs of neurons. These connections
are not weighted and its purpose is to define the topological structure. An
edge aging scheme is used to remove connections that are invalid due to the
motion of the neuron during the adaptation process.
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The GNG learning algorithm to map the network to the input manifold is as
follows:

1. Start with two neurons a and b at random positions wa and wb in Rd.
2. Generate at random an input pattern ξ according to the data distribution

P (ξ) of each input pattern. In our case since the input space is 1D, the input
pattern is the (x, y) coordinate of the edges. Typically, for the training of
the network we generated 1000 to 10000 input patterns depending on the
complexity of the input space.

3. Find the nearest neuron (winner neuron) s1 and the second nearest s2.
4. Increase the age of all the edges emanating from s1.
5. Add the squared distance between the input signal and the winner neuron

to a counter error of s1 such as:

∆error(s1) = ‖ws1 − ξ‖2 (2)

6. Move the winner neuron s1 and its topological neighbours (neurons con-
nected to s1) towards ξ by a learning step εw and εn, respectively, of the
total distance:

∆ws1 = εw(ξ − ws1) (3)

∆wsn = εw(ξ − wsn) (4)
for all direct neighbours n of s1.

7. If s1 and s2 are connected by an edge, set the age of this edge to 0. If it does
not exist, create it.

8. Remove the edges larger than amax . If this results in isolated neurons (with-
out emanating edges), remove them as well.

9. Every certain number λ of input patterns generated, insert a new neuron as
follows:
– Determine the neuron q with the maximum accumulated error.
– Insert a new neuron r between q and its further neighbour f :

wr = 0.5(wq + wf ) (5)

– Insert new edges connecting the neuron r with neurons q and f , removing
the old edge between q and f .

10. Decrease the error variables of neurons q and f multiplying them with a
consistent α. Initialize the error variable of r with the new value of the error
variable of q and f .

11. Decrease all error variables by multiplying them with a constant γ.
12. If the stopping criterion is not yet achieved (in our case the stopping criterion

is the number of neurons), go to step 2.

The algorithm was tested with different number of neurons so that the best
topological map can be achieved. The testing involved two cases were the number
of neurons were too few or too excessive for the training set of the images. In the
former the topological map is lost, not enough neurons to represent the contour
of the ventricles and in the later an overfit is performed.
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3.2 Error Minimisation

The goal of training a network is to minimise the expected quantisation or dis-
tortion error. In our case is to find the values of the reference vectors wc, c ∈ Rd

of the input pattern distribution P (ξ) such that the error:

E =
∑

∀ξ∈Rd

‖ wsξ − ξ ‖2 P (ξ) (6)

is minimised, where sξ is the nearest neuron to the input pattern ξ.
Figure 1 shows the quantisation error for the three self-organising maps

(SOMs) for different number of neurons. From Figure 1 one can see that the
distortion error for Kohonen is very big compared to NG and GNG but for NG
the results are slightly better to GNG, since it has less distortion error thus
better topology preservation, but the learning time is 20 times higher compared
to GNG (Figure 6). However, as the number of neurons increases the distortion
error decreases and stabilises for both networks. For both Kohonen and NG in
the adaptation rule it is assumed that the numbers of weights are known and
are not allowed to change. GNG overcomes this as it is a growth mechanism and
new neurons are inserted based on local error measurements. Thus GNG can
give better preservation compared to the other two and when tested to a larger
scale of data set (the above algorithms have been tested to hand shapes).

Fig. 1. Quadratic error for different SOMs and neurons

4 Experiments

The data that we used in this study was obtained from the MNI BIC Centre for
Imaging at McGill University, Canada. These images are 1 mm thick, 181x217
pixels per slice (1.0mm2 in-plane resolution), 3% noise and 20% INU. These
images are used as our gold standard for segmentation, as every voxel in the
entire volume has been correctly labelled to a tissue class by the McGill Institute.
The entire brain volume consisted of 181 slices, from which we extracted those
that contained ventricles (slices 49-91). The images are 16 bit grey scale, which
were thresholded out manually to remove all but the outline of the ventricles.
Since most typical clinical MRI volumes are on average 5 mm thick, we selected 4
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Fig. 2. The first mode (m = 1) of variation for the four groups of 5 contiguous slices
taken from MR brain data. Range of variation −2

√
λ ≤ βi ≤ 2

√
λ.

groups of 5 contiguous slices to produce our point distribution model. In Figure 2
the modes of variation for all four groups are displayed by varying the first
shape parameter βi{±2σ} over the training set. The qualitatively results show
that GNG leads to correct extraction of corners of anatomical shapes and are
compact when the topology preservation of the network is achieved (Figure 4).

In Figure 3 two shape variations from the automatically generated landmarks
were superimposed to groups 4 and 3 from the training set. These modes effec-
tively capture the variability of the training set and present only valid shape
instances.

Fig. 3. Superimposed shape instances to groups 4 and 3 from the training set

Table 1 shows the total variance achieved by maps containing varying number
of neurons (64, 100, 144, 169) used for the automatic annotation (Figure 4). The
map of 100 neurons is the most compact since it achieves the least variance
compared to 64, 144 and 169 neurons among the four groups. It is interesting to
note that whilst there is significant difference between 64, and 169 neurons -not
enough neurons to represent the object (Image A) and too many neurons (Image
D)- the mapping with 100 is good and has no significant difference with the
mapping of 144 neurons. The reason is that for the current size of the images the
distance between the neurons is short enough so adding extra neurons does not
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Fig. 4. Automatic annotation with network size of 64 (Image A, E), 100 (Image B, F),
144 (Image C, G) and 164 (Image D, H) neurons for two groups of the MRI volumes
of the ventricles

Table 1. A quantitative comparison of various neurons adapted to the ventricle model
with total variance per group

Groups 64 (neurons) 100 (neurons) 144 (neurons) 169 (neurons)
VT1 9.8340 1.9385 3.9668 3.9235
VT2 13.1873 1.7284 4.3672 3.1617
VT3 6.7822 2.0109 3.2260 4.0057
VT4 2.2567 1.6198 2.8398 3.5861

Fig. 5. The means of the four groups and for different neurons. The blue outlines
represent the means of the 64, 144 and 169 neurons. The red outline represents the
most compact mean achieved with the mapping of 100 neurons.

give more accuracy in placement. Figure 5 shows superimposed the mean shapes
of each group and for all neurons. The red shape referring to the 100 neurons
is the most compact mean shape. We have tested and compared our method
with two other SOMs, the Kohonen map and the NG map. The quantitative
results show that GNG is significantly faster compared to Kohonen and NG,
and the learning time is not so significant in GNG with the insertion of neurons



218 A. Angelopoulou et al.

Fig. 6. Learning time for various SOMs and at various neurons

compared to the other two where the adaptation process slows dramatically as
the number of neurons increases.

Figure 6 shows a comparative diagram of the learning time of various SOMs
and at different number of neurons. The adaptation with 64 neurons is only 3 sec
with GNG compared to the 57 sec and 52 sec with Kohonen and NG, but with
64 neurons the topology preservation in most of the shapes is lost independent
of the selection of the SOM. A good adaptation with 100 and 144 neurons takes
6 and 11 seconds respectively at 1000 patterns to adapt to the contour of the
ventricles.

5 Conclusions

In this paper, we have used an incremental self-organising neural network (GNG)
to automatically annotate landmark points on a training set of ventricle out-
lines. We have shown that the low dimensional incremental neural model (GNG)
adapts successfully to the high dimensional manifold of the contour of the ventri-
cles, allowing good eigenshape models to be generated completely automatically
from the training set. With the current formulation of our algorithm, we can
calculate the volume of the ventricles by integrating the area of the ventricles
across each slice. The accuracy of our automated segmentation algorithm is bet-
ter compared to the self-organising networks NG and Kohonen both in quality
(Figure 1) and in execution time (Figure 6). In addition, we have shown that the
optimum number of neurons required to represent the contour depends mainly
on the resolution of the input space and if it is not sufficient then the topology
preservation is lost or overfit.

In future work, we could extend this technology so that it will generate
3D models directly. In addition, the generalisability of this model needs to be
determined by applying it to various phantoms and other MRI standards. In
addition, we will investigate what is the most suitable number of neurons for
classifying ventricles. Lastly, we will investigate applying this technology to other
brain tissue components in an effort to generate a complete MRI segmentation
utility.
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Abstract. In this paper, we address a problem of biomedical image
classification that involves the automatic classification of x-ray images
in 57 predefined classes with large intra-class variability. To achieve that
goal, we apply and slightly adapt a recent generic method for image
classification based on ensemble of decision trees and random subwin-
dows. We obtain classification results close to the state of the art on a
publicly available database of 10000 x-ray images. We also provide some
clues to interpret the classification of each image in terms of subwindow
relevance.

1 Introduction

Image classification is an important problem which appears in many application
domains. Manual classification of images is time-consuming, repetitive, and could
not always be considered reliable. Therefore, there is an important need for
automatic image classification tools. Given a set of training images labelled into
a finite number of classes, the goal of an automatic image classification method is
to build a model that will be able to predict accurately the class of new, unseen
images.

In biomedical applications, such automatic techniques could help to orga-
nize large-scale image databases into image categories before further retrieval or
diagnostic [LGD+05]. A class could for example denote a code [LSK+03] corre-
sponding to an imaging modality and direction, a body part, and a biological
system examined, in order to organize images in a general way without limita-
tion to a specific diagnostic study. The annotation of such images is usually done
automatically by medical equipments and/or manually adapted by physicians or
radiologists. However, [GKK+02] has examined reliability of the encoded infor-
mation from past clinical routines and the authors observed that some entries
are missing, or are false, or do not describe the anatomic region precisely. Auto-
matic image classification systems are thus an important, complementary, first
step in medical imaging.

Image classification methods have also been proposed to setup clinical diag-
nosis tools based on functional magnetic resonance [ZST+05, LTC+04] or optical
tomography [BH05] images. Another interesting application is the study of the
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phenotypic effects of drugs in human cells [KDN01] where a class could for ex-
ample denote stomatocytes, discocytes, or echinocytes. It is also desirable to
setup high-throughput cell phenotype screening [CEW+04] where the goal of an
automatic image classification method could be to identify classes of subcellular
phenotypes, for example cytoplasm, mitochondria, nucleoli, . . . In histological
image classification [ZCC05], a class could represent a tissue from an organ and
part of the body: pancreas, lung, thyroid, . . .

1.1 Related Work

Till recently, image classification systems usually relied on a pre-processing step,
specific to the particular problem and application domain, which aims at ex-
tracting a reduced set of “interesting” features from the initially huge number of
pixels. This reduced set is then used as new input variables (or “signatures”) for
traditional learning algorithms (for example a nearest neighbor or neural net-
work classifiers), possibly tuned for the specific application ([GMT+96], [AZC01],
[ALTS03]).

The limitation of this approach is clear: When considering a new application
or when new image classes appear, it is often necessary to manually adapt the
pre-processing step by taking into account the specific characteristics of the new
task. However, a more recent trend is to consider combining several different
types of features that describe different aspects of an image. For example, in
[LGD+05], image recognition rates are improved by combining global texture
measures and local pixel neighborhood information. In [CEW+04], 448 different
image features are extracted corresponding to textures descriptions, intensity
distributions, edges, . . . Other recent computer vision studies [MTS+05] suggest
that current feature detectors are complementary (some being more adapted to
structured scenes while others to textures) and that all of them should ideally
be used in parallel, what would likely increase robustness to different types of
image transformations.

In [MGPW05b], we have proposed a generic approach to image classifica-
tion. Indeed, as we generally don’t know in advance what is useful in images
to classify them, we proposed to describe images by the combination of a large
number of square patches randomly extracted from images (“Random Subwin-
dows”). This process has the advantage to provide a rich representation of im-
ages corresponding to various overlapping regions both local and global, what-
ever the task and content of images. Moreover, to avoid discarding useful in-
formation and to be able to classify a large number of classes, we proposed
to use a highly informative representation that is basically the pixel values of
these subwindows. This representation is also normalized to improve robustness
to scale changes. To handle this high-dimensional data and to extract useful
information, we rely on recent tree-based machine learning ensemble methods
[MGPW05a]. These methods are indeed able to handle more and more complex
problems (high-dimensional data) without requiring any a priori information
about the application. This approach has been evaluated on various image clas-
sification datasets involving the classification of digits, faces, objects, buildings,
photographs, . . .
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1.2 This Work

In this paper, we propose to apply and slightly adapt our general approach
[MGPW05b] to a specific biomedical application: the classification of a database
of 10000 grey-level x-ray images into 57 categories.1 For image classification
methods, this is a very challenging task because of the intra-class variability of
such images. But thanks to the generality of the approach, only some minor
adaptations have been required to tackle specific issues of this dataset and to
obtain results comparable to the state of the art. In this paper, we also propose
an interpretation of the classification results by focusing on the test subwindows
that contribute to the classification of one image.

The biomedical dataset we used is described in Section 2. The main steps
of the approach and its adaptation are described in Section 3. Our empirical
results, and the interpretation of the results are given in Section 4.

2 IRMA X-Ray Dataset

The IRMA dataset contains 10000 anonymous x-ray images, which have been
arbitrarly selected from clinical routine at Aachen University of Technology Hos-
pital (RWTH), Germany. These images were acquired using different imaging
techniques and modalities (plain radiography, fluoroscopy, angiography) with
different relative directions of the device and the patient (coronal, sagittal, ax-
ial, other). They represent different anatomic body parts (cranium, spine, arm,
chest, abdomen, leg, pelvis, breast, hand, . . . ) and biological systems (muscu-
loscetal, uropoietic, gastrointestinal, reproductive, cardiovascular) of patients of
various ages, genders, and pathologies. All images are in grey levels and were
downscaled to fit into a 512× 512 bounding box maintaining the original aspect
ratio. All images were classified according to the IRMA code [LSK+03]. Based
on this code, 57 classes were defined. As mentionned by [PG04], in addition to
natural variations between different patients, the intra-class variability is high
for that kind of task, caused in particular by varying orientation and align-
ment, and/or by the presence of cloths, jewels, artificial-implants and medical
instruments, and/or because images are characterized with contrast variation,
non-uniform intensity background and various sources of noise. The task is thus
non-trivial for image classification methods. Figure 2 exhibits some images of the
dataset with intra-class variability, but also images from different classes that
may look similar for non-experts.

3 Method

In this section, we briefly describe the framework that we proposed in
[MGPW05b] with an emphasis on minor changes for the purpose of the task
considered in this paper.
1 IRMA database courtesy of TM Lehmann, Dept. of Medical Informatics, RWTH

Aachen, Germany, http://www.irma-project.org.
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Fig. 1. Some plain radiographies. On the first line, the three first images are from
the same class (chest), the four following ones are from another class (pelvis). On the
second line, all images are from 7 different classes related to cranium or cervical spine.
Note that all these images are correclty classified by our method.
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Fig. 2. Recognition: randomly-extracted subwindows are propagated through the trees
(here T = 5). Votes are aggregated and the majority class is assigned to the image.

During the training phase, subwindows are randomly extracted from training
images (3.1), and a model is constructed by machine learning (3.2). Classifica-
tion of a new test image (3.3) similarly entails extraction and description of
subwindows, and the application of the learned model to these subwindows. Ag-
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gregation of subwindow predictions is then performed to classify the test image,
as illustrated in Figure 2.

3.1 Subwindows

The method extracts a large number (Nw) of possibly overlapping, square sub-
windows of random sizes and at random positions from training images. Subwin-
dows are resized to a fixed scale (16×16 pixels) and encoded by their grey-value
pixels. Each subwindow is thus described by a feature vector of 256 integer val-
ues. The same random process and descriptors are used for test images.

For the specific x-ray task, the method has to cope with a learning dataset
with very unbalanced class distributions. For example, a “chest” class is repre-
sented by more than 2500 images while several other classes have less than 20
images. For example, an “abdomen” class has only 9 training images. In order
to have an equal number of subwindows in each class, we extract from each
training image a number of subwindows inversely proportional to the number
of images in its class. More precisely, from each training image of class c, we
extract Nw/(m ∗nbc) subwindows where m is the number of classes and nbc the
number of training images of class c. For testing, we extract a fixed number of
subwindows in each image, Nw,test, as in the original method.

3.2 Learning

At the learning phase, a model is automatically built using subwindows ex-
tracted from training images. First, each subwindow is labelled with the class
of its parent image. Then, any supervised machine learning algorithm can be
applied to build a subwindow classification model. Here, the input of a ma-
chine learning algorithm is thus a training sample of Nw subwindows, each of
which is described by 256 integer input variables and a discrete output class.
The learning algorithm should consequently be able to deal efficiently with a
large amount of data, first in terms of the number of subwindows and classes
of images in the training set, but more importantly in terms of the number of
values describing these subwindows. In this context, and following our previous
comparative study [MGPW05a], we use the Tree Boosting [FRS96] and Extra-
Trees [GEW05] algorithms. Their advantages are the computational efficiency
(especially Extra-Trees) and their good accuracy.

3.3 Recognition

In this approach, the learned model is used to classify subwindows of a test image.
To make a prediction for a test image with an ensemble of trees grown from sub-
windows, each subwindow is simply propagated into each tree of the ensemble.
Each tree outputs conditional class probability estimates for each subwindow.
Each subwindow thus receives T class probability estimate vectors where T de-
notes the number of trees in the ensemble. All the predictions are then averaged
and the class corresponding to the largest aggregated probability estimate is
assigned to the image.
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4 Experiments

4.1 Protocol and Method Parameters

To be able to directly compare our results with other methods, we used the
standard protocol defined in the context of the ImageCLEF 2005 Automatic
Annotation Task [iCS05]. The learning set is composed of 9000 images and the
remaining 1000 images are used for testing.

The parameters of our method were fixed to Nw = 800000 learning subwin-
dows (which corresponds approximately to 14000 subwindows per class), T = 25
trees, and Nw,test = 500 subwindows are randomly extracted from each test
image. To minimize contrast variations between images, we have applied the
contrast enhancement technique of ImageMagick2 (-normalize option) to each
image which transforms it to span the full range of grey values.

For each machine learning method within the framework, the values of several
parameters need to be fixed.

Extra-Trees. With Extra-Trees, the only parameter is the number K of at-
tributes randomly selected at each test node. To fix its value, we used an in-
ternal cross validation in the learning sample to determine the best of K ∈
{1, 16, 128, 256}. The best result was obtained with K = 256 and then we used
this value to build a model on the whole learning set.

Tree Boosting. Boosting requires that the learning algorithm does not give
perfect models on the learning sample (so as to provide some misclassified in-
stances). Hence, with this method, we used with decision trees the stop-splitting
criterion described by [Weh97]. It uses a hypothesis test based on the G2 statis-
tic to determine the significance of a test. In our experiments, we fixed the
nondetection risk α to 0.005, as in our previous study for object recognition
[MGPW05a].

4.2 Accuracy Results

Our results using the standard protocol are reported in Table 1 in terms of
misclassification error rates on the independent test set, as well as several results
obtained by 11 other research units. 3 Among the 46 methods evaluated on
this dataset, a majority of them yield more than 20% error rate where each
0.1% corresponds to 1 misclassification. The Random Subwindows combined
with Tree Boosting method yields 140 errors among 1000 test images (14%)
and compares very well with the best result on this dataset (12.6%). Combining
Random Subwindows with Extra-Trees also yields good results with 14.7% error
rate. Table 2 also gives results when the correct class occurs among the first r
classes, and we observe that the error rate could be reduced downto 6.6% with
Tree Boosting if the correct class is only required to be within the top three
classes.
2 http://www.imagemagick.org/
3 All results are available on http://www-i6.informatik.rwth-aachen.de/

~deselaers/imageclef05_aat_results.html.
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Table 1. Error rates on IRMA dataset (our results italic) [iCS05]

Method error rate

1-NN + IDM [KGN04] 12.6%
1-NN + CCF + IDM + Tamura 13.3%
Discriminative patches [DKN05] 13.9%
Random Subwindows + Tree Boosting 14.0 %
MI1 Confidence 14.6%
Random Subwindows + Extra-Trees 14.7%
Gift 5NN8g 20.6%
... ...
Nearest Neighbor, 32 × 32, Euclidian 36.8%
... ...
Texture directionality 73.3%

Table 2. Error rates for rank r = 1, ..., 5

Method r = 1 r = 2 r = 3 r = 4 r = 5
RSw + Tree Boosting 14.0 % 9.0% 6.6% 6.5% 6.5%
RSw + Extra-Trees 14.7% 9.4% 7.0% 7.0% 7.0%

4.3 Computational Efficiency

Even though our current implementation has not been fully optimized, some
indications can be given about computational requirements. For example, on a
standard 2.4Ghz computer it took us about 75 hours to build a tree ensemble
by boosting, and 18 hours to build an ensemble of 25 Extra-Trees (without
counting the pre-processing tasks4 such as subwindow sampling, extraction and
normalization). With these models, the CPU time needed to classify a single
new image was of about 1.125s (without taking into account the time needed to
extract the 500 subwindows).

Notice that the computational complexity of the training algorithm is on the
order of TNw log Nw, and that of the testing stage is essentially proportional to
TNw,test log Nw. These numbers could thus be adjusted in order to comply with
the desired requirements. For example, with Tree Boosting, using Nw,test = 100
instead of 500 reduced classification time to 0.225s, at the price of a negligible
increase in error rate (which increased from 14% to 14.1%).

4.4 Relevant Subwindows

Beyond misclassification error rates, it could be interesting to observe how the
proposed method classifies images, or in other words which subwindows con-
tribute to the correct classification of one image. As mentionned before and
illustrated by Figure 2, for one test image, each subwindow is propagated into
4 For the pre-processing tasks, we used ImageMagick.
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Fig. 3. Subwindows with the highest number of correct votes for three test images
(from classes cranium, ankle joint, and foot).

the T trees of the ensemble and thus receives T votes. Consequently, we have for
each subwindow the distribution of votes for all classes. The subwindows that
receive the highest number of votes for a given class can then be considered as
the most specific ones for that class and their visualization on the top of the
image can bring potentially useful information about that class.

This functionality could be very helpful if the goal of the biomedical image clas-
sication task is for example to detect and classify diseased regions. The most rele-
vant regions for a given class could then be shown to experts for further analysis.

In Figure 3, we simply provide some examples of subwindows receiving a high
number of correct votes when using Random Subwindows combined with Tree
Boosting. We observe that both small and large regions are among the best clas-
sified subwindows of many test images. It seems to confirm that it is not straigth-
forward to determine in advance what is useful in images to classify them and thus
both local and global regions should be used by image classification methods.

5 Conclusions

In this paper we evaluated the applicability of our image classification method
based on ensemble of decision trees and random subwindows [MGPW05b], for a
specific biomedical task: x-ray image classification. We obtained results compara-
ble to the state of the art with around 14% error rate on a 57 class dataset involving
large intra-class variability and very unbalanced class distributions. For the task
of retrieving the correct class within the third best classes, our method yields 6.6%
error rate. We also provide a novel simple way to understand how the method clas-
sifies images which may be of high interest for biomedical applications.

Our results confirm the potential of the approach for a wide range of applica-
tions. Many biomedical applications could benefit from this approach especially
since it is directly applicable without tedious adaptation. We plan to apply the
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method to other biomedical applications as soon as such image datasets will
be publicly available. Possible applications are for example the classification of
pharmaceutical powders, human cells, histological tissues, . . .
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Abstract. We have developed a method for segmenting tibial and
femoral medial cartilage in MR knee scans by combining two k Near-
est Neighbors (kNN) classifiers for the cartilage classes with a rejection
threshold for the background class. We show that with this threshold,
two binary classifiers are sufficient compared to three binary classifiers
in the traditional one-versus-all approach. We also show that the combi-
nation of binary classifiers produces better results than a kNN classifier
that is trained to partition the voxels directly into three classes. The re-
sulting sensitivity, specificity and Dice volume overlap of our method are
84.2%, 99.9% and 0.81 respectively. Compared to state-of-the-art seg-
mentation methods, our method outperforms a fully automatic method
and is comparable to a semi-automatic method.

1 Introduction

One of the most common health defects among elderly today is osteoarthritis
(OA), a disease which most often affect weight bearing joints such as knees
and hips and is characterized by the degeneration of the articular cartilage. As
of today, the treatment is restricted to symptom control because there are no
disease-modifying drugs [1]. Therefore, much effort is put into OA drug develop-
ment and consequently for finding quantitative measures of disease progression.

Magnetic resonance imaging (MRI) allows for quantitative evaluation of the
articular cartilage [2], and cartilage deterioration can be detected using this
technique [3]. Recently it has been shown that low-field dedicated extremity
MRI can provide similar information on bone erosions and synovitis as expen-
sive high-field MRI units [4]. If low-field scanners can replace high-field scanners
in clinical studies, the costs of making such studies would be reduced signifi-
cantly.

The cartilage in OA patients degenerates by losing thickness and integrity,
and typical relevant quantitative measures of the cartilage status are volume and
thickness maps. When finding such measures the segmentation of the cartilage
is a crucial step. Many segmentation methods rely heavily on expert user in-
teraction, but having experts to perform manual slice-by-slice delineation of the
cartilage is too time consuming for routine clinical use and is inclined to inter-
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and intra-user variability. In order to find a cost-effective and precise cartilage
segmentation, methods that are partly or fully automated are being developed.
The main challenges in cartilage segmentation are the thin structure of the car-
tilage and the low contrast, both between the cartilage and surrounding soft
tissues and between different cartilage compartments.

1.1 Related Work by Others

Several groups have developed semi-automated/automated methods for cartilage
segmentation. Lynch et al. [5] combine user interaction with active contours, and
Solloway et al. [6] use active shape models for slice-by-slice cartilage segmenta-
tion. 2D methods has limited continuation between slices and since they have to
be converted into a 3D segmentation when finding for example thickness maps,
it is advantageous to perform segmentation in 3D directly.

Among the 3D techniques that have been developed, Grau et al. [7] have a
segmentation method that is based on a watershed approach. Pakin et al. [8]
have developed a region growing scheme that is followed by a two-class clus-
tering for automatic segmentation. Warfield et al. [9] presents a semi-automatic
segmentation method that iterates between a classification step and a template
registration step, which is shown to a lower variability compared to repeated
manual segmentations.

1.2 Overview of Our Work

The 3D segmentation techniques described in section 1.1 all require some amount
of manual interaction except for the method of Pakin et al. [8], and the meth-
ods are evaluated only on small data sets. Neither Grau et al. nor Pakin et al.
evaluate their methods on scans from OA patients. In this paper, we present
a segmentation method that combines a tibial cartilage vs. rest and a femoral
cartilage vs. rest approximate kNN classifier with a rejection threshold for the
background class for the segmentation of tibial and femoral medial cartilage.
Our method is evaluated on a large data set containing both healthy and os-
teoarthritic knees. We show that by introducing the rejection threshold, two
binary classifiers are sufficient for our three-class classification task. OA is more
often observed in the medial compartments [10], therefore we focus on medial
cartilage in this work.

Besides comparing our method to state-of-the-art cartilage segmentation
methods, we do a comparison between the combination of binary classifiers and
previous work where the cartilage is segmented using a hierarchical approach,
combining one two-class and one three-class kNN classifier [11]. We also com-
pare our results to a direct three-class classifier. Features are selected by forward
selection followed by backward selection, and we consider the importance of of
a suitable criterion function in the feature selection for the classifier perfor-
mance.
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2 Methods

2.1 Image Acquisition

An Esaote C-Span low-field 0.18 T scanner dedicated to imaging of extremi-
ties acquires Turbo 3D T1 scans (40◦ flip angle, TR 50 ms, TE 16 ms). The
scans are made through the sagittal plane and have four different voxel sizes,
(0.7031/0.7813/0.8594/0.9375)× 0.7031 × 0.7031mm3. After automatically re-
moving boundaries that contain no information, the scan size is 104× 170× 170
voxels.

The scans have been manually segmented on a slice-by-slice basis by a ra-
diologist. A scan slice with the tibial and femoral medial cartilage manually
segmented is shown in Figure 1. We use 111 scans of both left and right knees,

Fig. 1. The segmentation of tibial and femoral medial cartilage. Top row shows one slice
(170x170 pixels) and the bottom row are the 3D visualizations. Manual segmentations
are to the left and automatic segmentations to the right. The sensitivity, specificity
and DSC of our automatic segmentation are 88.68%, 99.88% and 0.812 for this scan.

the right knees are reflected about the center in the sagittal plane in order to
treat all scans analogously. The test subjects are both males and females, aged
between 22 and 79 years, and diagnosed as having a Kellgren and Lawrence In-
dex [12] between 0 and 3. There are 98 scans of healthy knees (KL index ≤ 1)
and 13 of osteoarthritic knees (KL index > 1).
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2.2 Cartilage Classification

We implement our classifier in an Approximate Nearest Neighbor (ANN) frame-
work developed by Mount and colleagues [13]. The ANN classifier is in principle
a kNN-classifier, but allows for faster computations if an error is tolerated. The
ANN search algorithm returns k points such that the ratio of the distance be-
tween the ith reported point (1 ≤ i ≤ k) and the true ith nearest neighbor is
at most 1 + ε. Given a set S of n data points in Rd, the k nearest neighbors of a
point in S can be computed in O((cd,ε +kd)logn) time, where cd,ε = d[1+6d/ε]d,
thus the computational complexity increases exponentially with the dimensions.
One difficulty in classification tasks is the tradeoff between computational com-
plexity and accuracy. After experimenting with different values we set ε = 2 and
k = 100 for a reasonable such tradeoff.

There are three classes we wish to separate, tibial medial cartilage, femoral
medial cartilage and background. We combine one binary classifier trained to
separate tibial cartilage from the rest and one trained to separate femoral carti-
lage from the rest with a rejection threshold, described in section 2.6.

2.3 Features

We here introduce a set of candidate features, and in section 2.4 we describe
our feature selection scheme. We are interested in features that describe the
geometry of the object in question, and therefore have the 3-jet as candidate
features since they can describe all local 3D geometric features up to third order
[14]. All derivatives are achieved by the convolution with Gaussian derivatives,
defined as Ii1,...,in = I ∗ Di1,...,inG(σ), where G is a Gaussian, D the differential
operator and σ is the scale. All features are examined on three scales, (0.65mm,
1.1mm and 2.5mm), to cover the range of different cartilage thicknesses. The x-,
y and z axes are defined as the sagittal-, coronal- and axial axes. The eigenvalues
and the eigenvectors of the Hessian and the structure tensor are also candidate
features. The Hessian,

H(σ) =

 Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 ,

describes local curvature and is among other things used for locating vessels,
and the structure tensor,

ST (σout, σ) = G(σout) ∗

 IxIx IxIy IxIz

IyIx IyIy IyIz

IzIx IzIy IzIz

 ,

examines the local gradient distribution. We would also like to examine some
third order properties and therefore evaluate the third order tensor, in Einstein
annotation Lwww = IijkIiIjIk/(IiIi)3/2, in the gradient direction as candidate
features. Besides these features related to the geometry, we also include the
location in the image and the intensity as candidate features, because these are
features that are highly relevant for a radiologist when visually inspecting the
images. The intensities smoothed on the three scales are also candidate features.
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2.4 Training of the Classifier

Feature selection can not only reduce computational time and complexity, it can
also provide better classification accuracy due to the curse of dimensionality.
The features of the classifiers are selected by sequential forward selection fol-
lowed by sequential backward selection. In the forward selection we start with
an empty feature set and expand the search space by adding one feature at the
time according to the outcome of a criterion function. The backward selection
starts with the features found by the sequential forward selection and iteratively
excludes the least significant feature according to the criterion function. All fea-
tures are examined in every iteration, which means that the same feature can
be selected several times.

For the two-class classifier we forward propagate until there are 60 features in
the feature set and we back propagate until there are 39 features left in the set.
As criterion function for the two-class classifiers we use the area under the ROC
curve (AUC). The ROC curve is determined by varying the threshold for the
classifier and plot the ratio of false positives against the ratio of true positives. A
perfect classifier has an AUC = 1 and a random performance yields AUC = 0.5.
In the two-class classification case, the AUC is a well established criterion func-
tion. However, this criterion function is not easily extendable to N-class clas-
sification tasks where N > 2. Mossman [15] has developed ROC analysis for
multi-class classification by varying the class sensitivities as decision thresholds
to form 3D surfaces. For three-class classification there are 6 such surfaces, and
the volumes under the surfaces (VUS) are the performance metrics, similar to
the AUC in 2D. A perfect classifier has V US = 1 and chance performance yields
V US = 0.17. However the sensitivities does not provide a complete description
of the operator performance because it ignores the N2 − N misclassification
probabilities. Edwards et al. [16] has generalized ROC analysis for multi-class
classification tasks into what they call the hypervolume under the ROC hyper-
surface, a performance metric that take all misclassification probabilities into
account. However they conclude that the hypervolume may not be a useful per-
formance metric when N > 2. For the three-class classifier, we take the average
of the six Mossman’s VUS’s as the criterion function. We forward propagate un-
til there are 75 features in the set, and then back propagate until there remains
54 features. The direct three-class classifier has less features than two binary
classifiers together, but we do not include more features because as described
in section 2.2 the computational complexity increases exponentially with the
dimensionality.

We use 25 scans for the training of the classifier, the same 25 scans are used
in the feature selection, threshold selection and for the training data set for the
final classifier.

2.5 Selected Features

We train one tibial cartilage (ωtm) vs. rest, one femoral cartilage (ωfm) vs.
rest and one background (ωb) vs. rest classifier. In addition we train a classifier
that directly separates the three classes. The selected features for the different
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Table 1. The features selected for the different classifiers. The number corresponds to
the significance with 1 as the most significant feature. ST (σout, σ) and H(σ) stands for
the eigenvalues if nothing else is stated.

Feature/classifier ωtm ωfm ωb Direct 3-class
Ix, Iy, Iz σ = 0.65 5 9 9
Ix, Iy, Iz σ = 1.1 7 3 13 14
Ix, Iy, Iz σ = 2.5 4 4 4 1
Position 1 1 1 2
Intensity 4
Intensity smoothed 2 5 2 5
H(0.65mm) 8
H(1.1mm) 8 10,11 6 13, 14, 15
H(2.5mm) 10 9,13 5 8
ST (1.1mm, 0.65mm) 2∗ 16∗

ST (2.5mm, 0.65mm) 11, 12, 13 12 10, 11, 12
ST (2.5mm, 1.1mm) 7
Ixxx all scales 6
Izzz all scales 6 6
Ixxz all scales 11
Ixx all scales 3
Iyy all scales 9 7 17,18
Izz all scales 3 7 3
Ixy all scales 8 12
Iyz all scales 10
∗ eigenvector corresponding to largest eigenvalue

classifiers are presented in Table 1. The position, the intensity smoothed on the
three scales and the first order derivatives on σ = 2.5mm are highly ranked by
all classifiers. The structure tensor and the Hessian are repeatedly selected by
all classifiers, but the direct three-class classifier has selected features from the
3-jet more frequently than the others.

2.6 Setting a Threshold for the Classifier

The outcome of an ωi vs. rest classifier can be seen as the posterior probabilities
that, for all the voxels in the image, a voxel j with feature vector ui,j belongs to
class ωi. We denote it P (ωi|ui,j) or Pi,j for short. In one-versus-all classification,
which is commonly used for multi-class classification [17], one builds ωi vs. rest
classifiers for i = 1, . . . N and perform a winner-takes-all vote between them,
assigning j to the class ωi with the highest posterior probability. In the scans,
roughly 0.2% of the voxels belong to tibial cartilage and 0.5% to the femoral
cartilage, making the background the by far largest class. Our approach is similar
to one-versus all, but due to the dominance of the background class we replace
the background vs. rest classifier by a rejection threshold, which states that a
the posterior probability should be higher than a threshold T before it can be
assigned to a cartilage class. The decision rule is:
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j ∈

ωtm, Ptm,j > Pfm,j and Ptm,j > T ;
ωfm, Pfm,j > Ptm,j and Pfm,j > T ;
ωb otherwise.

Using the features found from feature selection, the 25 training scans are
leave-one-out evaluated. The results of varying the threshold for the tibial carti-
lage vs. rest and femoral cartilage vs. rest classifiers are seen in Figure 2. The Dice
similarity coefficient (DSC) is considered a useful statistical measure for study-
ing accuracy in image segmentation [18]. It measures the spatial volume overlap
between two segmentations A and B and is defined as DSC(A, B) = 2×|A∩B|

|A|+|B| .
The rejection threshold is set to 0.98, because as demonstrated in Figure 2, the
maximum DSC occurs then.
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Fig. 2. The results of varying the threshold in leave-one-out evaluation of the training
set. The tibial vs. rest classifier performance is demonstrated to the left, and the femoral
vs. rest classifier to the right.

3 Results

We classify the scans according to the decision rule in section 2.6, and the largest
connected component is selected as the segmentation. The sensitivity, specificity
and DSC are calculated using manual segmentations by a radiologist as gold
standard. The results are displayed in Table 2 and are visualized in Figures 1
and 3. The results of our method is distinctly higher than those of the fully
automatic method of Pakin et al [8]. The sensitivity and DSC of our method is
not as high as that of Grau et al. [7], but we have evaluated our method on far
more scans, including osteoarthritic knees, and without manual interaction.

In Table 2 we also compare the results of our segmentation method to the
results we obtained using a hierarchical approach [11], where the the voxels are
first roughly partitioned into cartilage/non-cartilage using a two-class classifier,
then a three-class classifier partitions the voxels that are classified as cartilage
in the first round into tibial cartilage, femoral cartilage and background. The
classifiers are trained similar to what is described in this paper. The threshold is
not optimized for maximal DSC, however the average DSC does not exceed 0.802
for any threshold. The test set in [11] contains 2% osteoarthritic knees compared
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Table 2. The results of our combined binary classifier method (denoted ’This work’)
compared to two state-of-the-art methods, the hierarchical method in [11] and a direct
three-class classifier, evaluated with comparisons to manual segmentations.

Method This work Pakin Grau Hierarchical Direct 3-class
Sensitivity 84.17% 66.22% 90.03% 90.01 81.25%
Specificity 99.89% 99.56% 99.87% 99.80% 99.85%
DSC 0.811 Unavailable 0.895 0.795 0.768
Test set 86 1 7 46 86
Manual labor 0 0 5-10 min 0 0

Fig. 3. The segmentation of an osteoarthritic knee, diagnosed as having KL index 3,
in a slice where the cartilage is degraded. To the left is a gold standard segmentation
and to the right our automatic segmentation. The sensitivity, specificity and DSC of
the automatic segmentation are 86.12%.

to 8% in this work. The direct three-class classifier performs distinctly worse than
the hierarchical classifier and our combined binary classifier method.

The radiologist re-segmented the tibial medial cartilage in 31 scans in order
to determine intra-rater variability for the gold standard segmentations. The
average DSC between the two manual segmentations is 0.857, which explains
the fairly low values of the DSC in our evaluation since we cannot expect our
method to resemble the expert better than the expert itself. The corresponding
DSC of the automatic segmentation versus expert for the tibial cartilage of the
31 scans is 0.823. Ideally, several trained experts should segment every scan
several times and a more robust gold standard could then be determined using
STAPLE [19], but with our large amount of data it is too labor intensive.

We believe that the ωb vs. rest classifier could add little more information to
our final class decisions. Still, we examine its effect by temporarily including it
in the decision rules, making them:

j ∈

ωtm, Ptm,j > Pfm,j and Ptm,j > Pb,j and Ptm,j > T ;
ωfm, Pfm,j > Ptm,j and Pfm,j > Pb,j and Pfm,j > T ;
ωb otherwise.
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The average sensitivity, specificity and DSC using this rule remained exactly
the same as for the two binary classifiers with rejection threshold. Using a pure
one-versus-all approach without the threshold T yielded a large number of false
positives for the cartilage classes an has an average sensitivity, specificity and
DSC of 98.5%, 98.9% and 0.48.

4 Discussion

Our segmentation method combines two binary kNN classifiers trained to dis-
tinguish tibial cartilage respectively femoral cartilage from the rest of the image
and incorporates a rejection threshold for allowing a voxel to be classified as
cartilage. The threshold is optimized for maximizing DSC. We have shown that
this classifier can replace a one-versus-all classifier without degrading the per-
formance. This means that the background vs. rest classification is unnecessary,
which saves approximately one third of the computational time compared to a
one-versus-all approach.

In the feature selection, the criterion function determines what features that
will be included in the classifier, and thus has a major impact on the classifier
performance. The kNN classifier is inherently a multi-class classifier, but still
the combination of binary classifiers yields better results than the hierarchical
approach even though the former has somewhat less features than the latter. We
believe this to be related to the fact that a good generalization to multi-class
classification of the AUC in the two-class case is yet to be discovered.

We have demonstrated a cartilage segmentation algorithm that compared to
state-of-the-art methods outperforms the to our knowledge only fully automatic
method, and has a performance comparable to a semi-automatic method.
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Abstract.  Uterine cervical cancer is the second most common cancer among 
women worldwide. Physicians visually inspect the cervix for certain distinctly 
abnormal morphologic features that indicate precursor lesions and invasive can-
cer. We introduce our vision of a Computer-Aided-Diagnosis (CAD) system for 
cervical cancer screening and diagnosis and provide the details of our system 
design and development process. The proposed CAD system is a complex 
multi-sensor, multi-data and multi-feature image analysis system. The feature 
set used in our CAD systems includes the same visual features used by physi-
cian and could be extended to new features introduced by new instrument tech-
nologies, like fluorescence spectroscopy. Preliminary results of our research on 
detecting the three most important features: blood vessel structures, acetowhite 
regions and lesion margins are shown. 

1   Introduction 

Uterine cervical cancer is the second most common cancer in women worldwide, with 
nearly 500,000 new cases and over 270,000 deaths annually. Invasive disease is pre-
ceded by pre-malignant Cervical Intraepithelial Neoplasia (CIN). If it can be detected 
early and treated adequately, cervical cancer can be prevented [1].  

Colposcopy is the primary diagnostic method used in the US to diagnose CIN and 
cancer, following an abnormal cytological screening (Papanicolaou smear). The pur-
pose of a colposcopic examination is to identify and rank the severity of lesions, so 
that biopsies representing the highest-grade abnormality can be taken, if necessary. A 
colposcopic examination involves a systematic visual evaluation of the lower genital 
tract (cervix, vulva and vagina), with special emphasis on the subjective appearance 
of metaplastic epithelium comprising the transformation zone on the cervix (Fig.1(a)). 
For this purpose a colposcope (Fig.1 (b)) is used. A colposcope is a low powered 
binocular microscope with a built in white light source and objective lens attached to 
a support mechanism. During the exam, a 3-5% acetic acid solution is applied to the 
cervix, causing abnormal and metaplastic epithelia to turn white. Cervical cancer 
precursor lesions and invasive cancer exhibit certain distinctly abnormal morphologic 
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features that can be identified by colposcopic examination. Lesion characteristics such 
as margin shape, color or opacity, blood vessel caliber, intercapillary spacing and 
distribution, and contour are considered by physicians (colposcopists) to derive a 
clinical diagnosis. These colposcopic signs, when considered aggregately, determine 
the severity of the neoplasia and discriminate abnormal findings from similarly ap-
pearing, anatomically normal variants. Various colposcopic indices, based on grading 
lesion characteristics, provide clinicians structured approaches to predicting histologic 
findings. However, due to the subjective nature of the examination, the accuracy of 
colposcopy is highly dependent upon colposcopist experience and expertise. 
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}Transformation Zone

New SCJ
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squamous
epithelium

Immature
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Columnar
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(a) (b)  

Fig. 1. (a) A schematic presentation of a cervix, (b) A colposcope 

Digital imaging is revolutionizing the medical imaging field and enabling sophisti-
cated computer programs to assist the physicians with Computer-Aided-Diagnosis 
(CAD). Clinicians and academia have suggested and shown proof of concept to use 
automated image analysis of cervical imagery for cervical cancer screening and diag-
nosis. A computer system was readily able to discriminate CIN3 from normal epithe-
lium and immature metaplasia [2]. Since intercapillary distances increase proportion-
ally with disease severity, these tiny distances can be automatically measured by com-
puter to predict the specific level of cervical neoplasia [3]. 

Various image processing algorithms have been developed to detect different col-
poscopic features. Van Raad used active contour models at multiple scales to detect 
the transformation zone [4]. Yang et al. applied deterministic annealing technique to 
detect the acetowhite epithelium regions [5]. Gordon and his coworkers, applied 
Gaussian Mixture model to segment three tissue types (original squamous, columnar, 
and acetowhite epithelium) using color and texture information [6]. Ji et al [7] pre-
sented a generalized texture analysis algorithm for classifying the vascular patterns 
from colposcopic images. Balas [8] and Orfanoudaki  et al. [9] analyzed the temporal 
decay of the acetic acid whitening effect by measuring the intensity profile over time. 
Furthermore, several approaches for tissue classification have been developed: a sim-
ple colposcopic lesion contour classification method by artificial neural network [10], 
a rule-based medical decision support system for detecting different stages of cervical 
cancer using the signs and symptoms from physical examination [11], the classifica-
tion of cervical tissue based on spectral data using multi-layered perceptrons and 
Radial Basis Function (RBF) networks [12]. These various examples support the 
feasibility of automated image analysis to detect cervical neoplasia. 
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Based on experience gained in developing Hyperspectral Diagnostic Imaging 
(HSDITM), fluorescence and reflectance spectroscopy imaging technology for cervical 
cancer, we transformed our strategy for cervical cancer detection to include a versatile 
CAD system, capable of incorporating many features (including spectroscopy). The 
system is called ColpoCADTM. The heart of ColpoCADTM is a complex multi-sensor, 
multi-data and multi-feature image analysis system. A functional description of the 
envisioned ColpoCADTM system with the system design and development process of 
the image analysis system is discussed in this paper. We also include preliminary 
results of our research for detecting and extracting the three most important cervical 
neoplasia pathological features: blood vessel structure, acetowhite and lesion margin. 
As this is a new and complex field in medical image processing, various computer 
vision and image processing techniques are involved. This paper establishes the 
framework and the foundation for collaboration and discussion between industry, 
academia, and medical practitioners. 

2   Computer-Aided Diagnosis(CAD) 

ColpoCADTM includes all functions that are related to colposcopy and that can be 
provided by a computer, from automation of the clinical workflow to automated pa-
tient diagnosis and treatment recommendation. It is a software program that may run 
on various processing platforms such as computers, DSP/FPGA processing boards, 
embedded systems, etc., and that interfaces to a cervical data acquisition system such 
as a digital/video/optical Colposcope with digital/film-based camera. We start with a 
functional description of the envisioned CAD system for colposcopy. Next, the core 
of the CAD system, a modular and open system design for the image analysis system 
is presented. We also introduce the development process that effectively manages the 
complexity of developing such a system. 

Table 1. Functional Description of ColpoCADTM System 
High-resolution still images from the examination are displayed on a high-resolution moni-
tor. 
Live video of the examination can be viewed and replayed. 
Images and video can be enhanced by glint removal, green filter, etc. 
Diagnostic features, such as acetowhite regions, vessel structure, lesion margins, acetowhite 
decay, and contour can be automatically displayed.  
Feature measurements can be provided to the physician on demand. 
Automated lesion detection and tissue diagnosis can be shown to the physician. 
Suggested biopsy sites can be indicated. 
Reference images of similar lesions and their characteristics can be brought up from a 
reference database and shown to the physician for comparison. 

2.1   Functional Description  

The capabilities of ColpoCADTM originate from a technology-driven vision which 
captures all feasible CAD system functionality. A system description of a “technol-
ogy-based” CAD system for colposcopy is summarized in Table 1. The CAD system 
architecture is flexible, so that a range of products (screening device, colposcopy 
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adjunct, etc.) can be based on this framework. We note that the current ColpoCAD 
system design provides automated image analysis for the examination of the ectocer-
vix only, and currently excluding the examination of the vulva, vagina, and endocer-
vical canal. These aspects of the colposcopic examination will need to be provided by 
Colposcopy, until addressed by ColpoCAD.  The envisioned functions of the CAD 
system are comprised of the following components: (1) Image enhancement, (2) Fea-
ture extraction, (3) Reference database, and (4) Diagnosis and directed biopsies. 

Image Enhancement 
A “digital colposcope” can provide numerous image enhancements, including: 

• Green filter to accentuate vasculature. 
• Mapping the color-space of one colposcope to that of another can provide the 

same image appearance, to normalize differences due to receiver and light source 
variation. 

• General image enhancements, like contrast, brightness, zoom, sharpening, etc.  
• Glare removal to provide information in the image regions that are normally 

destroyed by glare. Since colposcopists use glare patterns to assess the contour of 
the lesions (3D topology), glare-free images should only be provided in addition 
to images with glare. Glare can be removed by designing the acquisition system 
with cross-polarization or by software.  

• 3D topology-based illumination normalization to lighten dark regions on the 
periphery of the cervix. 3D reconstruction of the cervix can compensate for the 
differences in illumination due to the 3D topology of the cervix. 

Feature Extraction 
A colposcopist uses various features to assess the cervix. Those features can be auto-
matically extracted from the cervical data and shown to the colposcopist to help the 
assessment. A core feature set includes the visual features used by colposcopists dur-
ing a colposcopic examination. This feature set can be extended to include new fea-
tures introduced by novel instrument technologies, like fluorescence and impedance, 
and any other plausible feature that can be extracted from the cervical data. Colpo-
scopic features include (1) Anatomic, (2) Epithelial acetowhitening, (3) Blood vessel 
structure, (4) Lesion margin sharpness and shape (5) Contour, (6) Lugol’s iodine 
staining.  

Image enhancement can be provided to emphasize specific features in the imagery, 
in particular colposcopic features. These individual features can be classified in terms 
of their significance to the tissue diagnosis: normal, low-grade, high-grade and can-
cer. The extracted and classified features can be presented to the colposcopist indi-
vidually or combined as an overlay on an image of the cervix (preferable a universal 
reference image - typically a color image after acetic acid application), similar to the 
colposcopic impression annotation.  

Reference Database 
A colposcopic diagnosis can be assisted by providing matching examples of reference 
lesions/cervixes including their diagnosis. The key is to be able to characterize all 
lesions by their feature parameters (i.e. a quantitative expression of qualitative charac-
teristics, such as the “straightness” of a border, or “whiteness” of an acetowhite le-
sion). A reference database can be built from cervical data sets for which the diagno-
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sis and the feature parameters of all lesions are available. The ground truth for the 
diagnosis can be determined by expert colposcopists and pathologists. The feature 
parameters can be determined by expert colposcopists and pathologists as well or 
automatically calculated by feature extraction algorithms. The search keys of the 
reference database are the feature parameters.  

Diagnosis and Directed Biopsies 
ColpoCAD-based Tissue diagnosis provides the colposcopist with the automated 
detection, localization and classification (in terms of severity: normal, low-grade, 
high-grade or cancer) of all lesions on the cervix. Note that not one feature alone can 
provide reliable tissue diagnosis. All available features, starting with the obvious 
visual ones used by colposcopists, and adding those from new instrument technolo-
gies should be integrated into one system to optimize performance. Automated as-
sessment of the adequacy of the examination (visualization of the entire transforma-
tion zone) should also be provided, as this affects patient management options. One 
important goal of colposcopy is to direct where biopsies should be taken. Based on 
the feature extraction and tissue diagnosis, the CAD system determines the minimum 
number of biopsies needed, identifies where these sites are located and displays their 
locations. Ultimately, the final goal is that the patient diagnosis can be derived di-
rectly from the computer’s analysis, once clinical studies demonstrate equivalent or 
better performance compared to standard colposcopy and pathology. 

2.2   ColpoCADTM System Design 

The image analysis system design is driven by the following objectives: 

• To build the core system on visual features used by colposcopists; 
• To fuse all available data in order to optimize performance; 
• To provide the flexibility to work on data sets from different instruments; 
• To provide architecture that enables systematic evolution of CAD system for 

colposcopy. 

The system takes color calibrated data of the cervical examination as input and pro-
vides as output the detected features and their classification, the tissue diagnosis for 
all locations on the cervix and an assessment of the examination adequacy. Calibra-
tion parameters, demographic parameters, patient history and a system sensitivity 
parameter are used as the parameters of the system. The system architecture is open, 
modular, and feature-based. The architecture identifies three basic processing layers: 
(1) data registration, (2) feature extraction and (3) classification. In the data registra-
tion layer, all calibrated exam data is spatially registered to a selected reference im-
age, such that all extracted features can be fused in the classification layer and data 
can be exchanged among feature extraction modules. The feature extraction layer is 
divided into distinct modules by evaluating distinct anatomical and physiological 
phenomena for each module. Each feature extraction module can use any of the regis-
tered data sources for processing. The classification layer consists of the tissue diag-
nosis module that provides the classification of each individual feature and combines  
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Fig. 2. System design 

the outputs of all feature extraction modules in order to determine the tissue diagnosis 
for all locations on the cervix, and the determination of the adequacy of the exam. 
Theexam adequacy determination is based on its own specific feature extraction mod-
ules and/or the feature parameters from other feature extraction modules.  

Fig. 2 illustrates our proposed system configuration. The core system (highlighted 
in gray) consists of the extraction of the anatomic features and the three most impor-
tant colposcopic features: acetowhite, vessel structure, and lesion margins; the deter-
mination of the adequacy of the exam, and the tissue diagnosis. It uses only one RGB 
image as input, therefore, by definition, this should be the reference image and no 
data registration is required. The reference image should be taken at the moment in 
time after application of 5% acetic acid when the acetowhite effect is still visible and 
the blood vessels can be seen again (blood vessels may be difficult to observe imme-
diately after the application of acetic acid). This is a compromise for the acetowhite 
and vessel structure feature extraction modules. When more images are available after 
application of acetic acid, the acetowhite and vessel structure feature extraction mod-
ules should use the most appropriate image as their input to optimize the performance. 
The temporal decay of acetowhitening requires a series of images after application of 
acetic acid to be assessed. A colposcopist uses the glare pattern associated with sur-
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face relief, stereoscopic view and the movement of the colposcope to assess the 3D 
contour feature. For the digital colposcopy system, we use 3D reconstruction of the 
cervix for its assessment. The 3D topology of the cervix can also be used for precise 
measurements of lesions to follow their progression over multiple exams. The Lugol’s 
iodine feature is also considered an extension of the core system when images using 
Lugol’s iodine as contrast agent are acquired.  

When multiple images are used as input, all images need to be registered to the 
reference image. When images are acquired at different times, the registration algo-
rithms need to account for the soft-tissue movement as well as patient and instrument 
movement. The algorithms must also accommodate common “contaminants” such as 
blood, mucus and debris. Multiple intra-examination data registration of an ace-
towhite decay sequence seems to be the fundamental registration problem, as the 
reference image is one of the images in the sequence, and the acetowhite effect only 
changes slightly from image to image. However, it is a more challenging task to regis-
ter not only intra-exam data, but also inter-exam data, to the pixel level when images 
are taken several months apart to detect lesion changes over time. In this case, the 
appearance of the cervix can change considerably over such a long time frame. One 
approach is to register inter-exam data at a higher processing level, such as at the 
level of the diagnosed lesions. The image registration with different contrast agents 
against the reference image is also a difficult task. Due to the physician’s manipula-
tion and instrument movement, the images after application of contrast agents, like 
Lugol’s iodine, look very different from the images taken with no contrast agent.  The 
multi-sensor data registration task can be simplified by acquiring the data from differ-
ent sensors close to the moment when the reference image is taken. We previously 
described a means to embed (and register) a reflectance image in fluorescence hyper-
spectral data, when the acquisition of the reflectance and fluorescence data cannot be 
interleaved [13]. 

2.3   ColpoCADTM Algorithm Development Process 

The performance of image processing algorithms depends highly on the quality of the 
available data sets. Unfortunately, existing cervical image databases share many 
shortcomings, including: glare, no camera calibration, no color calibration, only one 
image in a patient data set, limited or no pathology ground truth for the entire cervix 
including all different tissue classes, and no ground truth for feature annotations. For 
the development of a multi-data, multi-contrast agents, multi-sensors fusion system, 
complete data sets per patient are required. Data sets from patients receiving Loop 
Electrosurgical Excision Procedure (LEEP) provide a rich distribution and variety of 
all tissue classes and different colposcopic findings, which are suitable for the devel-
opment process. One reason for the paucity of high quality standardized imaging data, 
and an impediment to develop CAD systems for colposcopy is that standard colpo-
scopic examinations involve visual inspection of the cervix using an optical colpo-
scope, and images of the cervix are not routinely taken. Furthermore, digital colpo-
scopy, a technology that could eventually ameliorate this problem is still in its in-
fancy.  

Another critical component of the CAD system development is the definition of the 
feature parameters. The variation in feature parameters is related to disease severity. 
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In the case of colposcopic features, the parameters need to be defined and refined in 
collaboration with expert colposcopists. A systematic, iterative approach for defining 
and refining the feature parameters is made possible by defining the feature parame-
ters at a level where it is meaningful to the colposcopist and by providing ground truth 
annotations for those defined feature parameters. The definition of the feature pa-
rameters is a difficult exercise because colposcopists typically define colposcopic 
findings in qualitative terms, rather than quantitative terms that a computer can under-
stand. Colposcopic indices or assessment systems, such as those published by Reid 
[14] and Rubin and Barbo [15], have been defined by colposcopists in an attempt to 
formalize colposcopy. These assessment systems use qualitative terms to describe the 
observable phenomena of the colposcopic features and classify them by their implied 
severity. For our purposes, equivalent quantitative feature parameters need to be  
defined.  
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Fig. 3. Algorithm development process 

We have defined a set of parameters for the colposcopic features that are assessed 
by colposcopists. We have also acquired extensive multi-data, multi-contrast-agent 
and multi-sensor high-quality calibrated data set.  This extensive data resource will 
facilitate the development of the CAD system. We have also developed an Algorithm 
Integration System (AIS) and an automated Performance Evaluation Engine (PEE). 
An illustration of our algorithm development process using the AIS and PEE is shown 
in Fig. 3. The AIS allows outputting of all intermediate data calculated by every algo-
rithm in the system. The PEE controls the AIS and evaluates each algorithm against 
its “ground truth” annotations and determines the overall performance of the system 
by providing a Receiver Operator Characteristic (ROC) curve. The AIS also provides 
data selection, algorithm selection and parameters variation to evaluate different sys-
tem configurations. This platform enables the CAD system development effort to 
focus on developing and refining the image processing algorithms.  
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3   Preliminary Results 

We have prototyped a few image processing algorithms for glare removal, anatomical 
feature detection, acetowhite region detection, and blood vessel mosaic and puncta-
tion structure detection for the technology using a RGB image data set from 111 hu-
man subjects participating in a clinical study of our HSDITM instrument [16].  

     
                                 (a)                                       (b)                                        (c) 

 

   
                            (d)                                          (e)                                        (f) 

Fig. 4. Preliminary results. (a) Original Image, (b) Glint Removal, (c) Segmentation Results for 
Cervix Region (black contour), Acetowhite (Blue), Columnar Region(Green contour), and Os 
(Green Region), (d) Multi-level acetowhite Regions and its irregular contour  (e) Mosaic ves-
sels, (f) Punctation vessels 

Glare in the cervical images need to be removed when using an instrument that 
does not provide cross-polarized imagery. An example of our glare removal algorithm 
[17] is shown in Fig. 4 (b). Colposcopists assess the color of the acetowhite regions. 
Because the ealier HSDI data set was not color calibrated, we prototyped the detec-
tion of multi-level acetowhite regions on the basis of different intensity levels, rather 
than color information [18]. The resulting defined acetowhite regions also serve as an 
input for lesion margin analysis. The detection of acetowhite regions requires the 
knowledge of cervical anatomic features, like the cervix, columnar region and the os, 
to guide and adapt the processing. Examples of the anatomic feature detection and 
acetowhite region detection algorithms are shown in Fig. 4 (c) and (d). One lesion 
margin characteristic assessed by colposcopists is the smoothness of the lesion mar-
gin. We developed an algorithm prototype to classify every location of a lesion mar-
gin to be either smooth or irregular as show in Fig. 4(d). We have also developed 
algorithm prototypes to detect mosaic and punctation vessel patterns. Examples are 
shown as Fig. 4 (e) and (f).  
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4   Future Work 

ColpoCADTM is a new system in medical imaging that presents great opportunities to 
apply existing state-of-the-art technologies to a new application. It is based on the 
development of a complex image analysis system, that in order to achieve the highest 
possible performance,  require the collaboration of experts in a wide variety of disci-
plines, like image registration, mathematic morphology, machine learning, 3D recon-
struction, human factors, and databases, etc.. Recognizing the complexity and the 
importance of such a system, we have introduced a novel concept for the research and 
development of this image processing system, by extending our in-house research and 
development to an “industry guided open academic research collaboration”.  Our goal 
is to improve women’s health care by providing cost-effective CAD-based systems 
for cervical cancer screening and diagnosis. A CAD system for colposcopy, a “ma-
chine colposcopist expert”, has the potential to revolutionize cervical cancer screening 
and diagnosis worldwide.  
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Abstract. We propose a Bayesian formulation for coupled surface evo-
lutions and apply it to the segmentation of the prostate and the bladder
in CT images. This is of great interest to the radiotherapy treatment
process, where an accurate contouring of the prostate and its neighbor-
ing organs is needed. A purely data based approach fails, because the
prostate boundary is only partially visible. To resolve this issue, we de-
fine a Bayesian framework to impose a shape constraint on the prostate,
while coupling its extraction with that of the bladder. Constraining the
segmentation process makes the extraction of both organs’ shapes more
stable and more accurate. We present some qualitative and quantitative
results on a few data sets, validating the performance of the approach.

1 Introduction

Accurate contouring of the gross target volume GTV and critical organs is a
fundamental prerequisite for successful treatment of cancer by radiotherapy. In
adaptive radiotherapy, the treatment plan is further optimized according to the
location and the shape of anatomical structure during the treatment sessions.
Successful implementation of adaptive radiotherapy calls for development of a
fast, accurate and robust method for automatic contouring of GTV and critical
organs. This task is specifically more challenging in the case of the prostate
cancer. The main reason is first, there is almost no intensity gradient at the
bladder-prostate interface. Second, the bladder and rectum fillings change from
one treatment session to another and that causes variation in both shape and
appearance. Third, the shape of the prostate changes mainly due to boundary
conditions, which are set (due to pressure) from bladder and rectum fillings.

The introduction of prior shape knowledge is often vital in medical image seg-
mentation due to the problems outlined above [2,7,6,11,3,10,5]. In [6], authors
use both shape and appearance models for prostate and rectum. In [5] authors
propose a shape representation and modeling scheme that is used during both
the learning and the segmentation stage. The proposed approach in this paper is
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focused on segmenting the bladder and prostate only. We have pursued another
method for the rectum segmentation and the details of that is not the focus of
this paper. The main differentiator of this approach from the other ones is the
fact that we do not try to enforce the shape constraints on the bladder. The
main reason is to increase the versatility and applicability of the method on
larger number of datasets. The argument here is that the bladder filling dictates
the shape of the bladder; therefore the shape is not statistically coherent to be
used for building shape models and the consequent model based segmentation.
However, the shape of the prostates across large patient population show statis-
tical coherency. Therefore, we present a coupled segmentation framework with a
non-overlapping constraint, where the shape prior, depending on the availability,
can be applied on any of the shapes. Related works proposed to couple two level
set propagations [9,11]. However, in the proposed approach, we formulate the
coupling in a Bayesian inference framework. This drives to the coupled surface
evolutions, where no overlap is possible.

The rest of the paper is organized as follows. In Section 2, we introduce the
main contribution of the paper: a Bayesian inference to couple the extraction
of two structures. Section 3 presents a probabilistic integration of prior shape
knowledge. Then, these two formulations are combined for the special case of
joint prostate and bladder segmentation in Section 4. In 5th and last section, we
present qualitative and quantitative validations.

2 A Bayesian Inference for Coupled Level Set
Segmentations

The level set representation [8] permits to describe and deform a surface without
introducing any specific parameterization and/or a topological prior. Let Ω ∈ R

3

be the image domain, it represents a surface S ∈ Ω by the zero crossing of an
higher dimensional function φ, usually defined as a signed distance function:

φ(x) =


0, if x ∈ S,

+D(x,S), if x is inside S,

−D(x,S), if x is outside S.

(1)

where D(x,S) is minimum Euclidean distance between the location x and the
surface. This representation permits to express geometric properties of the sur-
face like its curvature and normal vector at given location, area, volume, etc...
It is then possible to formulate segmentation criteria and advance the evolutions
in the level set framework.

In our particular problem, we need to extract several structures from a sin-
gle image. Rather than segmenting each one separately, we propose a Bayesian
framework where the most probable segmentation of all objects is jointly esti-
mated. We consider the extraction of two structures represented by two level set
functions φ1 and φ2. The optimal segmentations of a given image I is obtained



Constrained Surface Evolutions for Prostate 253

by maximizing the joint posterior distribution p (φ1, φ2|I). Using the Bayesian
theorem we have:

p (φ1, φ2|I) ∝ p (I|φ1, φ2) p (φ1, φ2) (2)

The first term is the conditional probability of an image I and will be de-
fined later using intensity properties of each structure. The second term is the
joint probability of the two surfaces. We use the latter term to impose a non-
overlapping constraint between the surfaces. Posteriori probability is often op-
timized by minimizing its negative logarithm. This gives the following energy
functional for minimization process:

E(φ1, φ2) = − log p (I|φ1, φ2)︸ ︷︷ ︸
Edata

− log p (φ1, φ2)︸ ︷︷ ︸
Ecoupling

(3)

A gradient descent approach with respect to each level set is employed for the
minimization. The gradients of each level set can be computed as follows:

∂φ1

∂t
= −∂Edata

∂φ1
− ∂Ecoupling

∂φ1

∂φ2

∂t
= −∂Edata

∂φ2
− ∂Ecoupling

∂φ2

(4)

2.1 Non-overlapping Constraint

In this section, we define the joint probability p(φ1, φ2) which serves as the cou-
pling constraint between the surfaces. For this purpose, we make the assumptions
that the level set values are spatially independent and that φ1,x (the value of φ1

at the position x) and φ2,y are independent for x �= y. These two assumptions
give:

p (φ1, φ2) =
∏
x∈Ω

∏
y∈Ω

p (φ1,x, φ2,y) ∝
∏
x∈Ω

p (φ1,x, φ2,x) (5)

Let Hε be a regularized version of the Heaviside function defined as:

Hε(φ) =


1, φ > ε

0, φ < −ε

1
2

(
1 +

φ

ε
+

1
π

sin
(

πφ

ε

))
, |φ| < ε.

The non-overlapping constraint can then be introduced by adding a penalty,
when the voxels are inside both structures, i.e. when Hε(φ1) and Hε(φ2) are
equal to one:

p (φ1,x, φ2,x) ∝ exp
(
−αHε(φ1,x)Hε(φ2,x)

)
(6)

where α is a weight controlling the importance of this term. We will see later, in
the application section, that it can be set once for all. The corresponding term
in the energy is:

Ecoupling(φ1, φ2) = α

∫
Ω

Hε(φ1,x)Hε(φ2,x) dx (7)
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2.2 Image Term

Following recent works [1,9], we define the image term using region-based inten-
sity models. Given the overlapping constraint, the level set functions φ1 and φ2

define three sub-regions of the image domain: Ω1 = {x, φ1(x) > 0 and φ2(x) <
0}} and Ω2 = {x, φ2(x) > 0 and φ1(x) < 0}}, the parts inside each structure
and Ωb = {x, φ1(x) > 0 and φ2(x) > 0}, the remaining part of the image. As-
suming intensity values to be independent, the data term is defined from the
prior intensity distributions {p1, p2, pb} for each region {Ω1, Ω2, Ωb}:

p (I|φ1, φ2) =
∏

x∈Ω1

p1 (I(x))
∏

x∈Ω2

p2 (I(x))
∏

x∈Ωb

pb (I(x)) (8)

If a training set is available, these probability density functions can be learned
with a Parzen density estimate on the histogram of the corresponding regions.
In section 4, we will use an alternative approach, which considers user inputs.
We can write the corresponding data term, which depends only on the level set
functions:

Edata(φ1, φ2) = −
∫

Ω

Hε(φ1,x)(1 − Hε(φ2,x)) log p1(I(x)) dx

−
∫

Ω

Hε(φ2,x)(1 − Hε(φ1,x)) log p2(I(x)) dx

−
∫

Ω

(1 − Hε(φ2,x))(1 − Hε(φ1,x)) log pb(I(x)) dx

(9)

2.3 Energy Minimization

The calculus of the variations of the global energy (3) with respect to φ1 and φ2

drives a coupled evolution of the level sets:
∂φ1

∂t
= δ(φ1)

(
(1 − Hε(φ2)) log

pb(I(x))
p1(I(x))

− αHε(φ2)
)

∂φ2

∂t
= δ(φ2)

(
(1 − Hε(φ1)) log

pb(I(x))
p2(I(x))

− αHε(φ1)
) (10)

One can see that the data speed becomes null as soon as the surfaces overlap each
other and therefore, the non-overlapping constraint will be the only one to act.

3 Shape Constrained Segmentation

As mentioned in the introduction, the image data may not be sufficient to extract
the structure of interest; therefore prior knowledge has to be introduced. When
the structure’s shape remain similar from one image to another, a shape model
can be built from training samples. Several types of shape models have been
proposed in the literature [2,7,6,11,3,10,5]. Such models can be used to constrain
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the extraction of similar structures in other images. A straightforward approach
is to estimate the instance from the modeled family that fits the best to the
observed image [11,5,4]. This assumes the shape model to be generic enough to
describe accurately the new structure. To add more flexibility, one can impose
the segmentation not to belong to the shape model but to in limited range
defined by a given distance [10,3]. This allows to capture small image-specific
details that can not be captured in a global model. In the following, we present
a general Bayesian formulation of this shape constrained segmentation.

For the sake of simplicity, we consider the segmentation of a single object
represented by φ. Assuming a set of training shapes {φ1, . . . , φN} available, the
optimal segmentation is obtained by maximizing:

p (φ|I, {φ1, . . . , φN}) ∝ p (I, {φ1, . . . , φN}|φ)p (φ)

∝ p (I|φ)p(φ)p ({φ1, . . . , φN}|φ)p (φ)

∝ p (I|φ)p(φ)p (φ|{φ1, . . . , φN})p ({φ1, . . . , φN})
∝ p (I|φ)p(φ)p (φ|{φ1, . . . , φN})

(11)

The independence between I and {φ1, . . . , φN} is used to obtain the second line,
and p ({φ1, . . . , φN}) = 1 gives the final expression. The corresponding maximum
a posteriori can be obtained by minimizing the following energy function:

E(φ) = − log p (I|φ)︸ ︷︷ ︸
Edata

− log p (φ)︸ ︷︷ ︸
Eregul

− log p (φ|{φ1, . . . , φN})︸ ︷︷ ︸
Eshape

(12)

The first term integrates image data and can be defined according to section 2.2.
The second one can be used to introduce a priori regularity of the segmentation.
The last one introduces the shape constraint learned from the training samples.
Following [7,11,10], this last term is built from a principal component analysis of
the aligned training level sets. An example of such modeling on the prostate is
shown in Figure 1. The most important modes of variation are selected to form
a subspace of all possible shapes. The evolving level set can then be constrained
inside this subspace [11,4] or it can be attracted to it [7,10] by defining the
probability of a new instance as:

p (φ|{φ1, . . . , φN} ∝ exp
(
−d2(φ, ProjM(φ))

)
(13)

where d2(, ) is the squared distance between two level set functions and
ProjM(φ) is the projection of φ into the modeled shape subspace M. More
details can be found in [7,11,10].

In the next section, we combine this shape constrained formulation with the
coupled level set Bayesian inference presented in section 2 for the joint segmen-
tation of the prostate and the bladder.
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1st mode 2nd mode

Fig. 1. Prostate shape model- Top: shape variations in 2D views, Bottom:
generated shapes

4 Application to the Joint Segmentation of the Prostate
and the Bladder

The main difficulty in segmenting the prostate and bladder is the prostate-
bladder interface and the lack of reliability on the data on the lower part of the
prostate (see Figure 2). There seems to be a notable intensity gradient around
the bladder except from the side that is neighboring prostate. Besides, there
seems to be a good statistically coherency among the shapes of the prostates
from a patient population. However, the statistical coherency does not hold for
the bladder shape, since the shape is dictated by the filling that can be unpre-
dictable. Based on these arguments, we consider a model-based approach for
the extraction of the prostate only. A coupled segmentation approach with a
non-overlapping constraint resolves the ambiguity on the interface. To summa-
rize, we design an approach that jointly segment the prostate and the bladder
by including a coupling between the organs and a shape model of the prostate.
The framework developed in the last two sections allows us to express this in
a probabilistic way. Let φ1 be the level set representing the prostate boundary
and φ2, the bladder one. Given N training shapes of the prostate {φ1

1, . . . , φ
N
2 },

the posterior density probability of these segmentations is:

p (φ1, φ2|I, {φ1
1, . . . , φ

N
2 }) =

p (I, {φ1
1, . . . , φ

N
2 }|φ1, φ2)p (φ1, φ2)

p(I, {φ1
1, . . . , φ

N
2 })

(14)

Since the image and the training contours are not correlated, we have:

p (φ1, φ2|I, {φ1
1, . . . , φ

N
2 }) ∝ p (I|φ1, φ2)p (φ1, φ2)p (φ1|{φ1

1, . . . , φ
N
2 }) (15)
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Fig. 2. Prostate and bladder segmentation without (top) and with (bottom)
coupling

Each factor of this relation have been described in Section 2 and 3. Hence, the
optimal solution of our problem should minimize the following energy:

E(φ1, φ2) = Edata(φ1, φ2) + Ecoupling(φ1, φ2) + Eshape(φ1) (16)

The first two terms have been described in equation (9) and (7). Only the shape
energy need some clarification. In our implementation, a two step approach has
been chosen. In a first time, we follow [11,4] by constraining the prostate level set
in the subspace obtained from the training shapes. Then, we add more flexibility
to the surface by considering the constraint presented in equation (13).

For initialization, the user clicks inside each organ. φ1 and φ2 are then ini-
tialized as small spheres centered on these two points. They also serve to define
the intensity models of the organs by considering a Parzen density estimate of
the histogram inside each sphere and outside voxels are used for the background.
Using the user input to define intensity distributions of the organs has proved to
be reliable. The intensity of each organ being relatively constant, its mean value
can be actually guessed with a good confidence and the approach does not show
a big sensitivity to user inputs.
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Fig. 3. Prostate and bladder segmentation - Red: bladder segmentation,
Black: prostate segmentation, White: ground truth prostate

5 Experimental Validations

5.1 Improvements with the Coupling Constraint

The main contribution of this paper is the joint segmentation of two organs,
where one incorporates a shape model and the other not. In Figure 2, we show
the results obtained with and without coupling. In both experiments, the same
shape model was considered for the prostate (with seminal vesicles). Given the
absence of strong boundary between the prostate and the bladder, in the absence
of coupling, the bladder leaks inside the prostate and the prostate is shifted
toward the bladder. Segmenting both organs at the same time with coupling
constraint solve this problem. Related works were able to obtain correct results
for the prostate without this coupling but the coupling make it a lot more robust
to the initialization and to the image quality. Moreover, imposing a shape model
to the bladder is definitely not appropriate given its large variations intra- and
inter-patient, and so, the coupling is mandatory to extract this organ.

5.2 Validation on a Large Dataset

To assess the quality of our results, we use several quantitative measures similar
to the ones introduced in [6]:

– ρd, the probability of detection, calculated as the fraction of the ground
truth volume that overlap with the estimated organ volume. This probability
should be close to 1 for a good segmentation.

– ρfd, the probability of false detection, calculated as the fraction of the esti-
mated organ that lies outside the ground truth organ. This value should be
close to 0 for a good segmentation.

– cd, the centroid distance, calculated as the norm of the vector connecting
the centroids of the ground truth and estimated organs.The centroid of each
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organ is calculated using the following formula assuming the organ is made
up of a collection of N triangular faces with vertices (ai, bi, ci) :

c =

N−1∑
i=0

AiRi

N−1∑
i=0

Ai

(17)

where Ri is the average of the vertices of the ith face and Ai is twice the
area of the ith face: Ri = (ai + bi + ci)/2 and Ai = ‖(bi − ai) ⊗ (ci − ai)‖.

– sd, the surface distance, calculated as the median distance between the sur-
faces of the ground truth and estimated organs. To compute the median
distance, we generated a distance function using the ground truth volume.

In Figure 4, we show the measures obtained for the prostate segmentation
on 16 images (4 patients with 4 images each) for which the manual segmenta-
tion was available. These images are 512 × 512 × 100 pixels with a spacing of
1mm×1mm×3mm. To conduct these test, we used a leave-one-out strategy, i.e.
the shape of considered image was not use in the shape model. The model was
built from all the other images and is so an inter-patient model. We obtained an
average accuracy between 4 and 5 mm, i.e., between one and two voxels. The
percentage of well-classified was around 82%. The average processing time on a
PC with the process of 2.2 GHz is about 12 seconds.

Patient ρd ρfd cd (mm) sd (mm)
1 0.93 0.20 3.5 4.1
2 0.82 0.12 5.8 4.2
3 0.88 0.16 5.2 4.0
4 0.93 0.19 4.0 3.9
5 0.84 0.20 5.5 4.0
6 0.85 0.22 5.9 3.7
7 0.89 0.20 3.4 2.9
8 0.84 0.28 3.1 4.5
9 0.80 0.35 8.7 4.9
10 0.88 0.27 8.0 4.3
11 0.67 0.19 4.8 3.7
12 0.84 0.35 8.6 6.7
13 0.73 0.20 7.7 5.4
14 0.83 0.09 2.3 3.1
15 0.84 0.19 4.0 4.0
16 0.85 0.15 3.2 3.7

Average 0.84 0.21 5.2 4.2

Fig. 4. Quantitative validation of the prostate segmentation - From left
to right: probability of detection, probability of false detection, centroid distance
and average surface distance
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6 Conclusion

We have proposed a new Bayesian framework to segment jointly several struc-
tures. We developed a probabilistic approach that integrates a coupling be-
tween the surfaces and prior shape knowledge. This general formulation has been
adapted to the important problem of prostate segmentation for radiotherapy. By
coupling the extraction of the prostate and bladder, we were able to constrain
the problem and make it well-posed. Qualitative and quantitative results were
presented to validate the performance of the proposed approach. Future works
will consist of the joint extraction of all three organs including the rectum.
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Abstract. Mammographic registration is a challenging problem due in part to 
the intrinsic complexity of mammographic images, and partly because of the 
substantial differences that exist between two mammograms that are to be 
matched. In this paper, we propose a registration algorithm for mammograms 
which incorporates junctions of Curvilinear structures (CLS) as internal 
landmarks. CLS depict connective tissue, blood vessels, and milk ducts. These 
are detected by an algorithm based on the monogenic signal and afforced by a 
CLS physical model. The junctions are extracted using a local energy (LE)-
based method, which utilises the orientation information provided by the 
monogenic signal. Results using such junctions as internal landmarks in 
registration are presented and compared with conventional approaches using 
boundary landmarks, in order to highlight the potential of anatomical based 
feature extraction in medical image analysis. We demonstrate how computer 
vision techniques such as phase congruency (PC), local energy (LE) and multi-
resolution can be applied in linear (1-D) and junction (2-D) detection as well as 
their application to medical image registration problems. 

1   Introduction 

Because mammograms are so variable anatomically, and because there is wide 
variation in image formation, radiologists often have considerable difficulty in 
detecting and diagnosing disease from a single image.  For this reason, they are 
trained to compare mammograms: two different views of the same breast, left vs right 
same view, and especially to detect significant changes in the “same” view at two 
different times.   For this reason, temporal mammogram registration has increasingly 
recognized as a key component of computer-aided detection (CAD) in 
mammography, though to date (unlike microcalcification detection) no commercial 
systems are available.  The challenge of reliably matching temporal mammogram 
pairs is the reason the word “same” above is in quotation marks: there are likely to be 
very different imaging parameters, compounded by a slightly different compression of 
the breast, so that the two images can appear quite dissimilar. Often, a striking 
dissimilarity concerns the CLS which depict connective tissue, blood vessels, and 
milk ducts, and whose appearance is quite sensitive to breast compression.  For this 
reason, several algorithms either work entirely from the breast boundary, ignoring 
internal landmarks, or attempt to remove the CLS in a preprocessing step [1-5].  van 
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Engeland et al analyzed the use of primary structures such as nipple, center of mass 
and pectoral muscle as landmarks. [4] Also, numerous studies have proposed the use 
of one-dimensional features as internal landmarks. Among them are the pseudo-linear 
structures proposed by Vujovic [5] and the nonlinear filter suggested by  
Zweiggler [6]. 

Marias [3] demonstrates that whereas aligning the boundaries of two mammograms 
provides a good basis for registration, it is necessary to augment this with landmarks 
internal to the breasts. They suggest detecting small features such as 
microcalcifications, though their presence is not guaranteed.  This paper starts from 
the observation that while the appearance of the CLS are sensitive to compression, in 
practice, the difference in compression is of the order of 0.5cm [17], and so major 
CLS structures often do appear in both images.  If a CLS junction appears in both 
images, as it often does, then it should be used as a landmark: removing all the CLS in 
a preprocessing step is overly defeatist!  Though the segmentation of the CLS has 
been presented in [7], it will be overviewed in this paper for completeness.  

 

2   CLS Physics 

Anatomically, CLS are composed of structures including blood vessels, milk ducts 
and connective stroma, and they project as ridge-like features on a mammogram. The 
dimensions of such structures range from 1800 microns to 5 microns in width. For a 
digital mammogram with a resolution of 50 microns per pixel, the detectable range 
lies between 1800 microns to 180 microns [8]. In mass and calcification 
segmentation, the CLS are considered as noise. On the other hand, as we will show, 
the CLS can be a reliable feature for registration. Thus the segmentation of the CLS is 
important both in noise removal and landmark selection. 

The CLS junctions satisfy the invariance requirement for temporal pairs of 
mammograms. A possible factor that might in principle cause changes in the CLS 
network is the angiogenesis [9] that typically accompanies cancer development. 
However, arteries and veins are less sensitive to the Vascular Endothelium Growth 

Fig. 1. Schematic of the CLS based registration framework 
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Factor (VEGF) than the microvessels or capillaries, and the latter (micron scale) are 
generally invisible in mammograms.  

3   Segmentation of CLS Junctions as Internal Landmarks 

The segmentation of the CLS is inevitably multi-resolution. This is because of the 
variation in the widths of vascular structures and the need for noise suppression. To 
implement this, the image is firstly processed by a set of Difference of Gaussian 
(DoG) band-pass filters to form the scale-space. The phase of the image can be 
obtained from three quadrature filters, by convolving these (approximately bandpass) 

scale-space images f with the Riesz Transform pair of filters 21,hh , to form the 
monogenic signal [10]: 

in which f is the DoG filtered images and the h1 and h2 are the Riesz transform, 
defined more naturally in the Fourier domain by: 

1
1 1 2 2 2

1 2

( , )
u

H u u i
u u

=
+

 and 2
2 1 2 2 2

1 2

( , )
u

H u u i
u u

=
+

. (2) 

The vector-valued filter, the monogenic signal, gives a substantially more robust 
phase estimation for two dimensional images than is provided by a set of steerable 
filters in several orientations [11]. 

Given the monogenic signal images, the problem becomes how to localize the 
ridges of the CLS in order to extract the “skeleton” (and junctions). The phase 
congruency (PC) approach is adopted detect such features [12]. PC is a measure of the 
phase similarity of the Fourier components of a point. The phase congruency of a 
point with spatial coordinate given by x can be defined as follows: 

Based on the idea of ridge detection, which rests on the support of monogenic 
signal and phase congruency, the degree of scale span of the multiresolution filters is 
determined based on tuning on a set of CLS with certain widths and cross-section 
profiles on the image. The model based tuning provides a performance enhancement 
for higher-level applications. For example, if the CLS are to be identified are then 
removed, the CLS width range should be as wide as possible. On the other hand, if 
CLS segmentation is for registration, only salient and large vessels are needed so that 
the CLS detector should be biased towards CLS at higher scales. Thus the CLS model 
can improve the specificity and selectivity of the detector for different applications. 

The model we use is adopted from Cerneaz[8], who introduced a two medium 
modelthat estimates the CLS intensity profile on a x-ray film. The CLS are assumed  
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Fig. 2. Sample outputs of the CLS and junction detector. The CLS junction selection is based 
on  neighborhood orientation information and local energy (LE). The large markers are the final 
junctions, while the smaller ones are rejected candidates (i.e. number of branches <= 2). 

 

Fig. 3. This figure shows a set of CLS junctions on a pair of temporal mammograms 
(Mediolateral Oblique (MLO) – right breast) and the final pairs of corresponding landmarks. 
Round dots denotes the final corresponding pairs, crosses being the rejected CLS junctions. The 
squares are corresponding pairs of saliency points extracted using the Kadir/Brady algorithm 
(start scale 150; end scale 120) [18]. The star near the nipple of the left mammogram is the only 
rejected saliency point. (Please refer to Part 6: Results and Discussion) 

to have an elliptic cross section when the breast is compressed during screening. 
Based on this relationship, the pixel intensity profile on a digitised image can be 
modeled.  

As CLS are typically low contrast and since poor signal-to-noise can badly affect 
the performance of the CLS detector, local energy (LE) thresholding is used [13] to 
suppress undesirable responses. LE is related to phase congruency (in discrete terms): 
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( ) ( ) n
n

LE x PC x A= , 
(4) 

where An is the amplitude of the nth bandpass filter. A typical output of our CLS 
(junction) detector is shown in Fig. 2. 

Apart from noise removal, local energy is also used to segment CLS junctions. 
First, the algorithm detects those pixels which have a local maxima of LE, based on 
the notion that the convergence, or intersection, of ridges will result in a point with 
higher LE. In the second step, these candidate points (points with local maxima) are 
then searched through a neighbourhood of radius r, where r=kLE(x) to find any CLS 
(branches) that point towards that candidate point, by comparing the orientation of the 
CLS and the vector pointing to the branch from the junction point. The orientation 
information is computed from the monogenic signal. A junction is detected if the 
number of branches is more than 2.  

With the junction extracted, the algorithm then matches up the corresponding 
junctions based on a joint measure of the LE and the Euclidean distance difference 
between the junction points. A sample output is demonstrated in Fig. 3.  

4   Boundary Landmarks Segmentation and Matching 

In addition to landmark registration, we improve both the boundary landmark 
generation and matching method relative to a previous approach in our Laboratory 
[3]. To generate boundary landmarks, the breast boundary is first segmented using a 
phase-based approach in the same multi-resolution framework as the CLS detection 
[14] and the points extracted are parameterized using a cubic spline. Thus a 
regularised curvature can be retrieved from the spline function. For the boundary 
matching process, instead of directly deducing the curvature from the spline, we 
estimate it in a multi-resolution framework: we compute the curvature (t,s), in which 
t is the spline parameter and s is the scale, that is, curvature scale-space (CSS) [15]. 
Then matching between breast boundaries can be implemented as a rigid 
registration/correlation problem between two CSS maps. The result is an output of the 
scaling and the shift of the boundary curve of the source image being warped to the 
target image.  

Compared with the approach of Marias, who use a model to find out three 
extremum (nipple, rib and axilla) of boundary curvature (which can only be feasible 
on a certain type of breasts), our approach is more reliable because it can 
accommodate almost all types of breast boundaries without enforcing a specific 
model to it. Also, in our approach, the number of boundary landmarks can be easily 
partitioned to ensure a better mapping between temporal mammograms. It also 
provides a potential way of robust registration implementation if there is a rigid 
registration pipeline available. 

An example of the boundary landmarks generated and matched between temporal 
pairs and some of the registration result is shown in Fig. 4.  
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Fig. 4. An example of temporal pair registration using Thin Plate Spline (TPS) [16]. The upper 
row shows the temporal pairs. (The crosses are the location of boundary landmarks). The 
original difference image is showed top right. The middle row is the warped moving images 
and the bottom row shows the difference measure. Just using boundary landmarks improves the 
registration near the boundary; but does not improve the structural difference within the 
parenchyma. One can observe a ‘white band’ present in every difference image after 
registration. This is the due to the intensity difference which can be traced back to the 
difference in tube voltage and the compression force of the breast between the screening. 
(which can be partly reduced by transforming the image into SMF format [17]) 
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5   Registration Method 

After the landmarks are detected and correspondences are established, the warp is  
generated using the paired landmark point sets. In this study, we use Thin Plate 
Splines (TPS) [16] as the warp function of the registration of the source to target 
image, defined as in the following equation: 

( )1 2 3
1

( , ) ( ) ( , )
n

i F
i

f x y a a x a y w U L i x y
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= + ⋅ + ⋅ + ⋅ − . (5) 

In this equation, f(x,y) is the warp function, LF(i) is the ith landmark in the fixed 
(source) image and wi is the landmark weighting coefficient. U is the biharmonic 
function U(r)=-r2 log r2. In the MATLAB Spline Toolbox implementation, the 
coefficients are optimized by a weighted measure of the position error and the 
bending energy of the warp: 
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In our implementation and all the experimental results presented in this paper, 
p=0.7. The Thin Plate Spline is a robust and commonly-used warping function used 
in non-rigid registration. It has the advantage of being efficient for local deformations. 
Inititutively speaking, the warping of thin plate spline resembles the warping of one 
x-ray film towards another. 

After generating the TPS function with the landmarks from two images, the second 
(moving) image is warped toward the fixed image by using the TPS. This is done in 
practice by inversely warping the coordinate frame of the fixed image towards that of 
the moving image. After that, the intensity of each pixel in the warped image is 
determined by regularization. In our implementation we use linear interpolation as the 
regulariser. 

6   Results and Discussion 

Demonstrations of the proposed registration framework are presented in Fig. 3-5. As 
seen in Fig. 3, the landmark matching framework has been successful in matching 
pairs of landmarks, and that there are sufficiently many internal landmarks. However, 
some pairs of junctions that are candidates to be matched are currently missed in our 
approach, which is based on the measure of LE and Euclidean distance. A better 
measure could be developed to obtain higher yield of internal landmarks. 
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One can observe the functional difference between boundary landmarks and 
internal landmarks in Fig. 4. The boundary landmarks improve the shape 
correspondence between breasts whereas the junction landmarks strengthen the 
structural correspondence of tissue. From the temporal registration example 
presented, use of the internal landmarks improves the registration by highlighting the 
contrast between different tissue (like the thickness of the upper part of the breast  
in Fig. 4).  

Another comparison is shown in Fig. 5, in which we compare the relationship 
between registration with internal (junction) landmarks and the registration without 
internal landmarks. We also investigate whether the numbers of boundary landmarks 
affect the registration performance. When performing registration without internal 
landmarks, using 8-12 boundary landmarks gives the best registration performance. 
The performance gain decreases with more boundary landmarks because of over-
fitting. When internal landmarks are incorporated in the registration, the absolute 
difference is far lower than using solely boundary landmarks. The difference measure 
also shows a lesser variation, in other words a higher confidence level. We also 
compared our algorithm with Marias’s approach of using saliency points as internal 
landmarks for registration. It is found that using saliency points, like CLS junctions, 

 

Fig. 5.  Registration using solely Boundary Landmarks (B.L.) versus Boundary Landmarks 
with Junctions or Saliency Point as internal landmarks. The temporal pair being registered is 
shown in Fig. 3. We vary the number of boundary landmarks used but the number of internal 
landmarks is constant (i.e. 6 pairs of internal landmarks for the B.L. + Junctions case and 5 
pairs for the B.L. + Saliency case.) On the Left shows the image absolute difference (A.D.) 
Ratio of the breast area, in which the image difference before registration is 1. On the right 
shows the execution speed of thin plate spline (TPS), which has a positive relationship to the 
complexity of warping.  
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can enhance the reliability of image difference measure. However, in terms of the 
image difference measure, the CLS junctions prove to be a better choice of internal 
landmarks than saliency. 

Similar results are obtained in the execution time as well. For registration with both 
boundary landmarks (B.L.) and junctions, execution time is more stable than using 
boundary landmarks solely, whereas the execution speed increases in the solely B.L. 
case and B.L with saliency as landmarks. As the execution speed implies the 
complexity of warping, the result indicates that the higher discrepancies exist between 
the position expressed by boundary and that by saliency landmarks. These results 
demonstrates the important role of CLS junctions in ensuring registration 
performance and implementation reliability.  

7   Conclusions 

A landmark-based registration framework of mammograms has been presented in this 
paper. We have demonstrated how various ideas in computer vision may be applied 
for feature detection and registration of medical images, including multi-resolution 
(scale-space) analysis, phase congruency, local energy and monogenic signal. 
Through proposing new methods in both boundary matching and landmark (control-
point) identification, we have demonstrated improvements to current methods [3]. We 
also provide further evidence on the significance of including internal landmarks in 
mammographic registration.  

Compared with previous mammographic registration approaches, our approach 
incorporates the notion of multi-resolution into both the framework of boundary and 
internal landmark detection. The advantages of multi-resolution analysis have been 
shown with higher stability and accuracy in feature detection, and this enhances the 
registration performance as a result. However, the speed of multi-resolution is the 
prominent challenge that needs to be addressed in our future work.  
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Abstract. Examination inside an intestine by an endoscope is difficult and time
consuming, because the whole image of the intestine cannot be taken at one time
due to the limited field of view. Thus, it is necessary to generate a dissection im-
age, which can be obtained by extending the image of an intestine. We acquire
an annular image sequence with an omnidirectional or wide-angle camera, and
then generate the dissection image by mosaicing the image sequence. Though
usual mosaicing techniques transform an image by perspective or affine trans-
formations, these are not suitable for our situation because the target object is a
generalized cylinder and the camera motion is unknown a priori. Therefore, we
propose a novel approach for image registration that deforms images by a two-
dimensional-polynomial function which parameters are estimated from optical
flow. We evaluated our method by registering annular image sequences and we
successfully generated dissection images, as presented in this paper.

1 Introduction

Examining a patient’s intestine using an endoscope is difficult and time consuming,
because the field of view of a camera is restricted and the doctor can only look at a
small part of the intestine at a time. It would be desirable for an easy-to-understand
view to be available for medical doctors. This is especially important when a lot of
data is involved, for example, when a doctor compares patients among those who have
similar symptom.

The most easy-to-understand way for an examination is to operate and cut open the
intestine for a view of the whole intestine, but it is impossible for many reasons. The
generation of images, which look like cut-and-expanded intestine, is required. Thus by
using this representation a doctor can examine the wide area of an intestine at a glance
without performing an operation. Videos that are taken by an endoscope can be used to
generate such images by utilizing an adapted video mosaicing technique.

A number of methods have been explored and proposed in the video mosaicing liter-
ature. S. Peleg and J. Herman [9] developed a panoramic mosaicing method using man-
ifold projection. Szeliski [13] developed an image-based video mosaicing method using
8-DOF projective image transformation parameters between pairs of input images. His
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Fig. 1. Omnidirectional and wide-angle cameras
inside an intestine

Fig. 2. The camera motion is unknown a priori
when examining inside an intestine

(a) Original image

(b) Projected image

Fig. 3. An image of intestine’s model taken by
endoscope

method can be used when a target is a plane (planar image mosaicing) or the opti-
cal centers of images are approximately fixed throughout the video capture (panorama
image mosaicing). Swaminathan and Nayar [12] developed a non-metric method for
calibrating wide-angle lenses and polycameras, seeking the distortion parameters that
would map the image curves to straight lines. But the method does not apply in our
objective because of the lack of straight lines in an intestine.

On the other hand, a number of non-rigid body registration methods have been pro-
posed in the field of medical image, for example, free-form deformation(FFD) [3], global
transformation using affine transformation and local transformation controlled by FFD
model based linear singular blending(LSB) B-spline [14], finite element
method (FEM) [6]. These methods work well only if the motion between two images
is small.

As mentioned earlier, existing methods make use of the knowledge of camera po-
sition or rigid-object shapes. However, the shape of intestine is non-rigid and an endo-
scopic image sequence contains large motions. Moreover, the trajectory of the camera
takes a meandering path as shown in Fig. 2, since the shape of the tube is not a sim-
ple cylinder. Therefore, a new image registration approach is required. In this paper, we
propose a novel method to generate a dissection image of an intestine from an image se-
quence, where the dissection image look like the image obtained by cutting the intestine
lengthwise and opening out its inside. And we also propose a novel deformable regis-
tration method for non-rigid object using the multiple variable polynomial functions
(two-dimensional-polynomial functions) which parameters are estimated from optical
flow.

The examination of an intestine by an endoscope can be considered as capturing a
sequence of images of the inside of a generalized cylinder (in this paper called a ”tube
object”) using a camera. Each image in the sequence captures a part of the tube, and
combining them will yield an image of the whole tube. We acquire an image sequence
of a tube using an omnidirectional or a wide-angle camera. These cameras have a large
field of view as shown in Fig. 1. Thus, they obtain the image of the inside wall of
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a tube object. Fig. 3(a) shows an image captured by an endoscope; from this image,
we utilize the annular area and apply an appropriate formula to obtain a stripe of a
dissection image, as shown in Fig. 3(b). After we obtain a sequence of parts of the
dissection images, we need to register and mosaic them to form a full dissection image
of the intestine. In this paper, our method accomplishes the deformable registration of
images by fitting a two-dimensional-polynomial function, which restricted by shape of
a generalized cylinder.

This paper is organized as follows. Section 2 gives an overview of our approach.
Section 3 explains our deformable registration. Section 4 presents our experimental
results. Finally section 5 summarizes our findings.

2 Generating a Dissection Image

In our approach, we take the annular images with a 360 degree view camera with no
information about the camera’s motion; however, we assume that the camera’s motion is
continuous, and the characteristic of the observed target is a smooth tube. Our approach
to mosaic the annular image sequence is a feature-based approach with steps as shown
below:

1. Detect optical flows
2. Project input image into panoramic image
3. Register the projected image
4. Mosaic the registered image

We detect the optical flows from our input image sequence, and then project the input
image into panoramic image. After that, we use the detected optical flow in our image
registration. Finally, we mosaic the transformed image into mosaicing image.

2.1 Computing Optical Flows and Estimating the Pose of the Camera

We compute optical flows by extracting and tracking feature points. Our method is
based on the KLT feature tracker [8] and the feature points are detected using [11].
Fig. 4 shows an example of the result of computing optical flows. Each feature point is
detected at the point where the texture changes steeply and the black lines depict the
vectors of optical flows.

After computing optical flows, we estimate the pose of the camera using optical
flows. The purpose is to reject the outliers of optical flows and cancel the rotation of
the camera before projecting the input image into a panoramic image coordinate. Our
method first estimates the epipolar geometry using 7 point matches [15] or 8 point
matches [7]. Next, we refine the solution by reprojecting the feature points using the
estimated parameters [10]. Since our method accomplishes a robust estimation with a
RANSAC approach [5], we can reject false optical flows as outliers.

Because the deformation of an input image, which is caused by the rotation of the
camera does not change according to the distance from the camera, an image without
deformation can be created by applying the inverse rotation to the input image. On the
other hand, the deformation by the translation of the camera cannot be easily restored
because it depends on the distance from the camera to the object viewed. We explain
the solution to this issue in section 3.
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Fig. 4. Detected optical flow (black lines)
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Fig. 5. Projection model of a hyper-omnidirec-
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2.2 Projection into Spherical Coordinates

The next step is to project an annular image into spherical coordinates. If we use cylin-
drical coordinates, the mapping function can diverge when the direction of the camera
changes. Thus, we use spherical coordinates. There are several ways to capture the
annular image, using an omnidirectional or a wide-angle camera. In this section, we
explain the method to generate a panoramic image in a spherical coordinate from the
image of a hyper-omnidirectional camera [4]. Even if we use a different type of camera,
we can generalize the image into spherical coordinate, which make the computation is
similar.

Figure 5 shows the projection model of a hyper-omnidirectional camera system.
Every ray point to the focal point of the hyperboloidal mirror through a point Sp(θ, φ)
on the spherical coordinates of the mirror. It reflects to the camera center through a point
up(x, y) in the annular image coordinates. Thus, we can project the annular image taken
by a hyper-omnidirectional camera into a unit sphere by the following computation:

β = arctan

(
−
((

b2 + c2
)
sin (φ · π/nh − π/2) − 2bc

)
− ((b2 − c2) cos (φ · π/nh − π/2))

)
r = f tan

(π

2
− β
)

x = cx + r cos
(

2θ
π

nw

)
(1)

y = cy + r sin
(

2θ
π

nw

)
where nw and nh are the width and height, respectively, of a projected image, a ,b and
c are the parameters of the hyperboloidal mirror, and (cx,cy) is the center of the annular
image. From these equations, we can project each pixel (x, y) of an annular image into
a point (θ, φ) of the spherical coordinates. A sample of a captured annular image is
shown in Fig 3(a), and Fig 3(b) shows the image after projecting.
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Registered image
n th frame Merged image

Mosaiced image
1st~(n-1) th frame

Fig. 6. Image mosaicing

2.3 Image Registration

The third step is image registration that determines the spatial transformation, which
maps points from one image to corresponding points on the second image, and trans-
forms the image from the determined map. Since our target object is a tube object, a
perspective or affine transformation is not suitable. Therefore, we propose deformable
registration by fitting a two dimensional polynomial function. The detail is described in
section 3.

2.4 Image Mosaicing

After image registration, the remaining operation is to merge the registration results
into the mosaic image. As Fig 6 shows the idea of merging a registered image from
the n-th frame on the left side of the figure into a mosaic image, which is created by
mosaicing from the first to the (n-1)-th images. We simply mosaic the registered images
by overwriting the new registered image on the mosaic image to make a new mosaic
image.

3 Deformable Image Registration by Polynomial Transformation

Most image mosaicing techniques transform images by perspective or affine transfor-
mations for registration. However, these transformations only work for images of sta-
tionary planar objects taken with a perspective camera. Since our images are annular
images taken by omnidirectionally with a wide-angle camera, and the target is a tube
object, these methods do not work. Therefore, we propose a novel approach for image
registration that deforms images by fitting two-dimensional-polynomial functions.

3.1 Model of Optical Flow

If we separate the motion vector to the components along the θ-axis and the φ-axis, we
can define the model of optical flows depending on θ and φ position of the optical flows;
because the object and the motion of the camera are constrained to a smooth tube and
continuous motion, respectively.

Motions Along θ-axis. Because the input image is an annular image sequence taken
from an omnidirectional or wide-angle camera, the motion vectors have periodicity
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Fig. 7. Detected optical flow (black lines) Fig. 8. Projection model of a hyper-
omnidirectional camera

along the θ-axis after projecting into a spherical coordinate. Because our target object
is a smooth tube, the θ-component of the motion vectors has 2 extrema as shown in
Fig 7, which shows the θ-component of motion vectors that are detected from an input
annular image sequence

When fitting this data into a polynomial function, since the data has periodicity
along θ-axis and is extracted from an annular image sequence, we use 2 cycles of the
data, as shown in Fig 8, to approximate the periodicity by a polynomial function. Thus,
the number of extrema is 4. If we use a polynomial function for fitting, the degree must
be at least 5.

If the object is a real cylinder and the camera moves minutely at the center of the
object along the θ-axis, the θ-component of the motion vectors becomes a sine function
∆θ = sin(θ), where ∆θ is the θ-component of a motion vector and θ is the position
of the optical flow. Even in other cases, for example, when the camera is not at the
center of the tube or where the tube is not a perfect cylinder, the function between θ
and ∆θ is similar to a sine function. Therefore, when we fit a polynomial function to
the data, the degree of the function is sufficient if we can fit the polynomial function to
a sine function. We empirically find that a 10-degree polynomial function is sufficient
for fitting the objects that we operate on in this paper with the function.

Motion Along φ-axis. The φ-component of the motion vectors, depend on the motion
along the φ-axis. Fig 9 shows the situation where the camera moves along the φ-axis.

If the distance between the camera origin O and the wall of tube is r and the camera
moves rC along the φ-axis, where C is an arbitrary constant, the positions of a feature
point satisfies

C = tan(φ) − tan(φ′) (2)

where φ and φ′ are the φ-positions of a feature point before and after the motion, re-
spectively. After algebraic manipulation, Eq. 2 becomes

tan(∆φ) =
2C(cos(2φ) − 1)
C sin(2φ) − 2

(3)

where ∆φ = φ′ − φ. Fig 10 shows the function of Eq.3 where −π/2 ≤ φ ≤ π/2 and
C = π/180. Since it has only an extremum, we can estimate this function by fitting a
second degree polynomial function.
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Fig. 9. Detected optical flow (black lines) Fig. 10. Projection model of a hyper-
omnidirectional camera

Fig. 11. Relation between φ position(φ) and φ-component(∆φ) of motion vectors

Fig 11 shows the φ-components of optical flows that are detected from an annular
image sequence captured by an omnidirectional camera. As described above, the func-
tion has an extremum. Thus, it can be approximated by a second degree polynomial
function. When we use a wide-angle camera, it cannot observe the lateral and back-
ward directions, in which φ is around or less than zero. Since the distribution of the
φ-components of optical flows are almost linear in such cases, we use a first degree
polynomial function for fitting.

3.2 Polynomial Transformation

From the model of optical flows described above, we approximate the distribution of
optical flows by a polynomial functions. By putting them together, we model the distri-
bution of optical flows by two-dimensional-polynomial functions as follows:

θnew =
n∑

i=0

m∑
j=0

C
[θ]
i,jθ

iφj (4)

φnew =
n∑

i=0

m∑
j=0

C
[φ]
i,j θiφj (5)

where θ and φ are the position of a feature point before the motion, θnew and φnew are
those after the motion, and C

[θ]
ij and C

[φ]
ij are the coefficients of the polynomial function.
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Fig. 12. Generated dissection image of an intestine model

By substituting the position of a feature point for θ, φ, θnew and φnew , we obtain
two linear equations of C

[θ]
ij and C

[φ]
ij . If the degree of θ and φ in Eq. (3) is N and M ,

the number of coefficients is 2NM . Thus, if we have more than NM feature points, we
can determine the coefficients. Since the system becomes linear equations that consist
of 2NM variables, we estimate the coefficients by a least square method.

If we fit the data to polynomial functions with 2NM variables; that is, we model
the shape of the object and the camera motion by the polynomial functions with 2NM
variables. Though the degree of freedom of the shape is quite reduced, we can efficiently
model a tube object to create the dissection image.

4 Experiments

To test our method, we set up an experiment using an endoscope and a model of an in-
testine. The endoscope has a wide-angle camera, with an image angle of approximately
140 degrees (diagonal). Fig 3 shows the input image and the projection into spherical
coordinates. Fig 12 shows the mosaicing result from 150 images. Though the object is
not a perfect cylinder and the motion is not straight and not at a constant speed, our
method successfully generated a mosaicing image.

Next, to evaluate the error of our proposed method, we used the annular image
sequence of a checker-pipe (shown in Fig 13) acquired by the hyper-omnidirectional
camera. The camera moved along a meandering path. The size of the input image was
640 × 480 pixels and the size of the panoramic image of spherical coordinates was
720 × 360 pixels. We computed our deformable registration on a PC with a Pentium4
3.2GHz processor. The computational time for the two images was 680 msec for fitting
750 data and 0.11 msec to transform one pixel. We compared our method with a simple
method that transform images only by translation along the θ and φ axes. Table 1 shows
the roots of mean square (RMS) errors for both methods, which are computed from
the differences of the positions of feature points after registration. We used a 5-degree
polynomial for θ, and a 2-degree polynomial for φ, that is the minimum requirement as
shown in 3.1. Our method successfully reduced the errors.

Fig 14 shows one part of the mosaicing results after registration. Fig 14(a) is regis-
tered by translation, and Fig 14(b) is the same part registered by our deformable regis-
tration. These results were generated from 250 images. Though the shape of the target
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Fig. 13. Used target object

Table 1. Comparison of root of the mean square of the size of the optical flow after transformation

registration RMS
translation 1.265132995
our approach 0.612701392

(a) Mosaic image by translation (b) Mosaic image by our approach

Fig. 14. Comparison of the Results

object is a simple cylinder, the mosaicing result was distorted because of the meander-
ing camera motion. On the other hand, the distortion in the results of the deformable
registration was reduced from that done by only translation.

5 Conclusion

This paper described a novel method to generate a dissection image of the inside of
an intestine. While examinations inside a tube object are difficult and time consuming
due to the limited field of view, our method provides an easy-to-understand view for
inspecting an intestine. Since a perspective or affine transformation is not suitable for
registration of annular images, we proposed a deformable registration by fitting a two
dimensional polynomial function. The proposed method successfully creates a dissec-
tion image of a generalized cylinder with arbitrary camera motion. Even if the object
moves and deforms during observation, it is possible for our method to mosaic images.
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As future work, since residual error exists after polynomial fitting, we will apply other
deformable registration techniques that have more degrees of freedom, for example, a
FEM-based method [1,2] to the imaging problem.
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Abstract. In this paper, a novel one-element voxel attribute, namely
distance-intensity (DI), is defined for associating spatial information with
image intensity for registration tasks. For each voxel in an image, the DI
feature encodes spatial information at a global level, and is about the
distance of the voxel to its closest object boundary, together with the
original intensity information. Without the help of image segmentations,
the computation of the DI map is carried out by applying a Poisson pro-
cess on a vector field that combines both gradient and distance-gradient.
Mutual information (MI) is adopted as a similarity measure on the DI
feature space. A multi-resolution registration method is then used for
aligning multi-modal images. Experimental results show that, as com-
pared with the conventional MI-based method, the proposed method has
longer capture ranges at different image resolutions. This leads to more
robust registrations. Randomized registration experiments on clinical 3D
CT, MR-T1 and MR-T2 datasets demonstrate that the new method gives
higher success rates than the traditional MI-based method.

1 Introduction

General promising results have shown that mutual information (MI) as a voxel
intensity-based similarity measure is well-suited for multi-modal image regis-
tration [1,2]. However, it has been suggested that the conventional MI-based
registration can result in misalignment for some cases [3,4] and then room for
improvement exists. The standard MI measure only takes intensity information
into account. Therefore, a known disadvantage is the lack of concern on any
spatial information (neither local nor global) which may be present in individual
images to be registered [5,6]. As a simple illustration, a random perturbation of
image points identically on both images results in unchanged MI value as that
of the original images.

Several researchers have proposed adaptations of the standard MI-based reg-
istration framework to incorporate spatial information. Pluim et al. [4] multiplies
the conventional MI measure with an external local gradient term to ensure the
alignment of locations of tissue transitions. The probing results indicated that
the registration function of the combined measure is smoother than that of the
standard MI measure. But this approach does not directly extend the MI based
similarity measure. Butz et al. [7] applies MI to edge measure (e.g., gradient
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magnitude) space to align object surfaces. However, MI based on edge measure
is sensitive to the sparseness of joint edge feature histograms. This may increase
the difficulty of the optimization procedure. Moreover, Rueckert et al. [6] exploits
higher-order MI for 4D joint histograms which are built on the co-occurrence of
intensity pairs of adjacent points. This method was shown to be robust to local
intensity variation. However, only one neighbor is considered at a time in this
approach and plenty of spatial information which may be present globally or
within large neighborhood system has been ignored.

In this paper, a novel one-element voxel attribute, namely distance-intensity
(DI), is defined to incorporate spatial information with intensity for registration
tasks. The DI feature encodes globally defined spatial information for each voxel.
This is about the distance of the voxel to its closest object boundary, together
with original intensity information. Without the help of image segmentations,
the computation of DI map is carried out by applying a Poisson process on a
vector field that combines both gradient and distance-gradient. Then, mutual
information is exploited as a similarity measure on the DI feature space. To
increase computational efficiency and robustness of the proposed method, the
registration procedure is a multi-resolution iterative process.

Based on the results on clinical 3D CT, MR-T1 and MR-T2 image volumes, it
is experimentally shown that the proposed method has relatively longer capture
ranges1 than the traditional MI-based method at different image resolutions.
This can obviously make the multi-resolution image registration more robust.
Moreover, the results of around 400 randomized registration experiments reveal
that our method gives higher success registration rates than the conventional
MI-based method.

2 Distance-Intensity Attribute

2.1 Definition

In our proposed registration approach, a novel one-element attribute, namely
distance-intensity (DI), is assigned to each voxel in an image. Within individual
images, the DI feature is designed for consolidating spatial information at a
global level with intensity. In other words, the DI feature depends not only on
image intensity, but also on the distance of a voxel to its closest object boundary.

Given an image I(v) over domain Ω, where v = (x, y, z) denotes voxel posi-
tion, we define a distance-intensity (DI) map, DI(v), of the image as

DI(v) = I(v) +
(
I(v) − I

(
v + d(v)

))
logD |d(v)|, (1)

where d(v) is the vector from v to the closest boundary voxel of other objects2

and D = maxv |d(v)|. Here the function logD(·) limits the influence of d(v).

1 Capture range represents the range of alignments from which a registration algorithm
can converge to the correct maximum.

2 This implies that two voxels v and v + d(v) belong to different objects.
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Following this definition, when a voxel is at or near object boundary, the DI
value approximates its original intensity value. Thus, structure transitions re-
main unchanged. On the other hand, when voxel position moves from boundaries
towards interiors of homogenous regions (either background regions or anatomi-
cal structures), the DI value smoothly and gradually varies. With this property,
the DI map of homogenous regions can provide global and detailed spatial in-
formation about the distance of a voxel to its closest object boundary, as well
as intensity information. A graphical illustration for these properties will be
presented in Section 2.3.

2.2 Computation

It is noted that there is no available object segmentation (or boundary) in our
registration process, i.e., d(v) is not derivable. However, we found that the gradi-
ent of DI map can be robustly estimated. Consequently, an accurate and smooth
solution of the DI map can be computed by applying a Poisson process on a vec-
tor field. The estimated solution approximates the gradient of DI map.

The gradient of DI map, ∇DI(v), is given as follows,

∇DI(v) = ∇I(v) +
(
I(v) − I

(
v + d(v)

)) ∇|d(v)|
|d(v)| log D

+
(
∇I(v) −∇I

(
v + d(v)

)
·
∂
(
v + d(v)

)
∂v

)
logD |d(v)|, (2)

where ∂(v+d(v))
∂v is the Jacobian matrix. Note that as compared with the first two

terms in Eq. 2, the third term provides little influence: If v is inside homogenous
regions, ∇I(v) and ∇I(v + d(v)) tend to zero; otherwise, when v is at or close
to boundary, logD |d(v)| is tiny and inclines to zero. Therefore, we have

∇DI(v) ≈ ∇I(v) +
(
I(v) − I

(
v + d(v)

)) ∇|d(v)|
|d(v)| log D

. (3)

This represents a weighted combination of gradient and distance-gradient.

Distance-Gradient: The distance-gradient operator (∇d) on two different vox-
els (v1 and v2) is defined as

∇dI(v1,v2) =
(
I(v1) − I(v2)

) v1 − v2

|v1 − v2|2
. (4)

With this definition, the second term in Eq. 3 becomes 1
log D∇dI

(
v,v + d(v)

)
by the fact that ∇|d(v)| = d(v)

|d(v)| almost everywhere. Moveover, we make the
following hypothesis, which is often satisfied in practice,

|∇dI
(
v,v + d(v)

)
| = max

v′∈Ω
|∇dI(v,v′)|. (5)
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Consequently, Eq. 3 becomes

∇DI(v) ≈ F(v) = ∇I(v) +
1

log D
∇dI(v, v̂),

with v̂ = arg max
v′∈Ω

|∇dI(v,v′)|. (6)

Poisson Process: Following Eq. 6, the vector field F(v) approximates ∇DI(v).
In order to compute the DI map, one may use a direct integral approach on F(v).
However, we have observed that it is unstable for real applications due to the
insufficient capability of handling noise. The noise is cumulated and may result in
a quite noticeable error. Therefore, we propose to minimize the following energy
functional to derive an optimal solution of DI map, D̂I(v),∫∫∫

v∈Ω

|∇D̂I(v(x, y, z)) − F(v(x, y, z))|2dxdydz. (7)

D̂I(v) can be obtained by solving a Poisson equation [8], ∇2D̂I = ∇ ·F, where
∇2 = ( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ) and ∇· are Laplacian and divergence operators re-
spectively. Obtaining the unique solution of Poisson equation is a well studied
problem. In our work, Neumann boundary conditions are exploited. Then, the
gradient descent flow minimizing the total energy is given by

D̂It(v(x, y, z)) = ∇2D̂I(v(x, y, z)) −∇ · F(v(x, y, z)). (8)

2.3 Graphical Illustration

As a detailed description, we computed the DI map of a clinical CT image vol-
ume obtained from the Retrospective Image Registration Evaluation (RIRE)
project3. A slice from the volume is shown in Fig. 1a, while Fig. 1c presents the
corresponding slice from the DI map. (Note that values from individual images
are re-scaled to [0, 1] for a fair comparison.) It is observed that, for those voxels at
or near object boundaries, their DI values approximate the original intensity val-
ues. This implies that structure transitions remain unchanged. Meanwhile, when
voxel position moves from boundaries towards interiors of homogenous regions
(either background regions or anatomical structures), the DI value smoothly and
gradually varies. However, due to the limitation of image quality, such smooth
changes may not be clearly displayed in Fig. 1c.

Furthermore, Figs. 1b and 1d respectively present the value profiles of the
same line (marked as red dashed lines) in Figs. 1a and 1c. As suggested by Fig.
1d, the value variation from boundaries towards homogenous regions is smooth
and gradual. It is worth noting that, although there is little intensity change at
3 The images and the standard transformation(s) were provided as part of the project,

Retrospective Image Registration Evaluation, National Institutes of Health, Project
Number 8R01EB002124-03, Principal Investigator, J. Michael Fitzpatrick, Vander-
bilt University, Nashville, TN.
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(a) A CT slice (c) DI map
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(d) Value profile

Fig. 1. (a) and (c) are slices respectively selected from a clinical CT image volume and
its corresponding DI map. (b) and (d) are value profiles of lines in (a) and (c), which
are marked as red dashed lines.

the middle of the line in Fig. 1b, a small and smooth saddle can be found in Fig.
1d located at the corresponding position. The raised white boundary slightly
below the line cause this saddle. It is because, as discussed above, the DI feature
encodes spatial information at a global level.

3 Mutual Information (MI) Based Image Registration

As we have discussed above, the DI feature encodes spatial information at a
global level together with original intensity information. We adopt it as voxel
attribute for registration tasks. Mutual information (MI) [9] is then exploited
as a similarity measure to measure the degree of dependence of the DI feature
space. Given a geometric transformation, the 2D joint DI distribution can be ap-
proximated by either Parzen windowing or histogramming [10]. Histogramming
is employed in this paper because the approach is computationally efficient. The
trilinear partial volume distribution interpolation [1] is exploited to update the
joint histogram for non-grid alignment.

To accelerate the registration process and ensure the robustness of the pro-
posed method, we exploit a multi-resolution approach based on the Gaussian
Pyramid representation [2]. Rough estimates can be found using downsampled
images and treated as starting values for optimization at higher resolutions. Then
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the fine-tuning of the solution can be derived at the original image resolution.
In this paper, the MI value at each resolution is maximized via the Powell’s
direction set method in multidimensions [11].

4 Experimental Results and Discussions

To evaluate the MI similarity measure on the novel distance-intensity attribute
(hereafter referred to as MI-DI) and the proposed multi-resolution registra-
tion method, we have performed experiments on different image modalities: CT,
rectified MR-T1 (T1-rec), and rectified MR-T2 (T2-rec). The traditional MI sim-
ilarity measure on intensity (hereafter referred to as MI-I) [1,2] has also been
applied for comparison.

4.1 Comparisons on Capture Range

CT – T1 (3D – 3D) Registration. Three pairs of clinical CT (around
512×512×30 voxels and 0.65×0.65×4 mm3) and T1-rec (256×256×26 voxels
and around 1.26×1.26×4.1 mm3) image volumes – datasets #1, #2 and #3 –
were obtained from RIRE. Note that all image pairs used in our experiments (CT,
T1-rec and T2-rec) were first registered by the conventional multi-resolution MI
based registration method and were then examined by an experienced consultant
radiologist to ensure that the final alignments are correct and acceptable. This
procedure was employed for a better presentation of the probing results and also
for further facilitating the experiments that will be described in Section 4.2.

Figs. 2a and 2d respectively plot the translational probes for registering the
low resolution (Level 3) testing image pairs from three datasets for MI-I and
MI-DI. At the original image resolution (Level 0), Figs. 2b and 2e plot the
translational probes and Figs. 2c and 2f plot the rotational probes based on MI-
I and MI-DI respectively. As observed in Figs. 2a and 2b, for the translational
probes of MI-I at different image resolutions, it would occur obvious local max-
ima when the misalignment of two images is relatively large. On the contrary,
Figs. 2d and 2e suggest that the shape of the probing curves based on MI-DI
is improved and the capture ranges of MI-DI can be relative longer than those
of MI-I. This is because, with the proposed distance-intensity attribute, regions
with homogenous intensities (including anatomical structures and background
regions) can provide varying information related to the distance of a voxel to its
closest object boundary. Therefore, when the misalignment increases, the MI-DI
values would keep decreasing. With this finding, it would be expected that the
optimization procedure for registration will be benefited and the registration
robustness can be increased. On the other hand, for the rotational probes, the
capture ranges of MI-I and MI-DI are comparable (see Figs. 2c and 2f).

T1 – T2 (3D – 3D) Registration. Three pairs of clinical T1-rec and T2-rec
image volumes – datasets #4, #5 and #6 – obtained from RIRE were used for
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Fig. 2. Probing curves for 3D – 3D registration on three CT and T1-rec datasets (#1,
#2 and #3). Translational probes for registering the low resolution (Level 3) image
pairs: (a) MI-I and (d) MI-DI. Translational probes for registering the original resolu-
tion (Level 0) image pairs: (b) MI-I and (e) MI-DI. Rotational probes for registering
the original resolution image pairs: (c) MI-I and (f) MI-DI.

the experiments. The results of translational probes are shown in Figs. 3a (MI-
I) and 3d (MI-DI) for the low resolution (Level 3) registration and in Figs. 3b
(MI-I) and 3e (MI-DI) for the original resolution (Level 0) registration. Figs. 3c
and 3f respectively plot the rotational probes based on MI-I and MI-DI for the
original resolution (Level 0). Similar results of the capture ranges are obtained
as compared with CT – T1 registrations.

4.2 Performance Comparisons on Registration Robustness

A series of randomized experiments have been designed to study the registration
robustness of the proposed MI-DI based method and the conventional MI-I based
method. The testing image pairs were datasets #1 (CT – T1) and #6 (T1 – T2).
The experiments took 100 tests on each testing image pair for either method.
At each trial, the pre-obtained ground truth registration (see Section 4.1) was
perturbed by 6 uniformly distributed random offsets for all translational and
rotational axes. The perturbed registration was then treated as the starting
alignment. The random offsets for X and Y axes were drawn between [-150,
150]mm, while those for Z axis and each rotational axis were respectively drawn
between [-70, 70]mm and [-20, 20] degrees. (Note that for either testing dataset
the same set of randomized starting alignments was used for both methods for
a fair comparison.)
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Fig. 3. Probing curves for 3D – 3D registration on 3 T1-rec and T2-rec datasets (#4, #5
and #6). Translational probes for registering the low resolution (Level 3) image pairs:
(a) MI-I and (d) MI-DI. Translational probes for registering the original resolution
(Level 0) image pairs: (b) MI-I and (e) MI-DI. Rotational probes for registering the
original resolution image pairs: (c) MI-I and (f) MI-DI.

To evaluate each derived registration with respect to the ground truth regis-
tration, the translational error (which was the root-sum-square of the differences
for three translational axes) and the rotational error (which was the real part
of a quaternion) were computed. In our experiments, the threshold vector for
assessing registration success was set to (2mm, 2◦), because registration errors
below 2mm and 2◦ are generally acceptable by experienced clinicians [12,13].

The success rates of the MI-I based method and the MI-DI based method for
datasets #1 and #6 are listed in Table 1. It is suggested that the MI-DI based
method (Column MI-DI) has higher success rates as compared with the MI-I
based method (Column MI-I) for both datasets. Based on these experiments,
we also observed that the majority of failed cases for the MI-DI based method
had about 180◦ misalignment for one rotational axis, while registration errors
for other axes were quite small. (It is meant that, after registration, the brain in

Table 1. The success rates with the MI-I based method and the MI-DI based method
for datasets #1(CT – T1) and #6 (T1 – T2)

Testing Success rate
dataset MI-I MI-DI

#1 (CT – T1) 66% 80%
#6 (T1 – T2) 68% 85%
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the floating image was inverted along a rotational axis.) Oppositely, for the MI-
I based method, most of the failed cases had large translational and rotational
misalignments simultaneously. This observation somehow implies that, along the
translational axes, the capture ranges of MI-DI are longer than those of MI-I.

5 Conclusion

To conclude, this paper has designed a new one-element voxel attribute, namely
distance-intensity (DI), for registration tasks. In an image at a global level, for
each voxel, the DI feature encodes spatial information about the distance of the
voxel to its closest object boundary, as well as the original intensity information.

The DI map of an image can be computed without image segmentations. To
compute the DI map, we have demonstrated how to apply a Poisson process
on a vector field combining both gradient and distance-gradient. Then, mutual
information (MI) has been adopted as a similarity measure on the DI attribute
space and a multi-resolution registration method has been proposed for aligning
multi-modal images.

The experimental results on clinical 3D CT, MR-T1 and MR-T2 datasets
have indicated that the proposed method has relatively longer capture ranges
than the conventional MI-based method at different image resolutions. Moreover,
a series of randomized experiments on precisely registered clinical image pairs
have demonstrated that the success rates of our method are higher than those
of the conventional MI-based method.
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Abstract. We present a population registration framework that acts
on large collections or populations of data volumes. The data alignment
procedure runs in a simultaneous fashion, with every member of the pop-
ulation approaching the central tendency of the collection at the same
time. Such a mechanism eliminates the need for selecting a particular ref-
erence frame a priori, resulting in a non-biased estimate of a digital atlas.
Our algorithm adopts an affine congealing framework with an informa-
tion theoretic objective function and is optimized via a gradient-based
stochastic approximation process embedded in a multi-resolution setting.
We present experimental results on both synthetic and real images.

1 Introduction and Motivation

The registration of two data sets is the problem of identifying a geometric trans-
formation which maps the coordinate system of one to that of another or, more
generally, establishing a homology among the input images when the number
of input images to be aligned is more than two. In this scenario, it is not one,
but a group of transformations that needs to be identified in order to put all
the inputs into correspondence. We are particularly motivated by the population
registration problem, which includes the registration of collections of images or
volumes, where the number of inputs is greater than twenty or potentially much
greater.

Depending on the nature of the images to be processed, we distinguish be-
tween mono- and multi-modal registration tasks. In the former, the inputs are
acquired by the same, and in the latter case by different, types of imaging de-
vices. A registration problem that lies between these two categories is the so-
called template-to-subject registration which involves the alignment of an image
or a set of images with a template constructed independently from the current
alignment. (The template, as explained below, can be one member of the input
image set or a probabilistic representation of prior knowledge about the imaged
object.) In computer vision, template-registration tasks are common when there
is some prior information about the standard characteristics of the input and
/ or when one wishes to compare a current sample of a group to previously
processed ones. The results can then be further studied to carry out statistical
inference on shape, population characteristics or on abnormal variability. They
could also be used as a pre-processing step for segmentation studies.

Y. Liu, T. Jiang, and C. Zhang (Eds.): 2005, LNCS 3765, pp. 291–301, 2005.
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In the medical domain the same task has become increasingly important and
is referred to as atlas-to-subject registration. Its prevalence can be explained by
the accessibility of rapidly growing image databases and faster computers that
allow for population studies and various data mining tasks. We were initially
inspired by the availability of such data volumes; thus our examples are all
from the medical domain. Note, however, that the algorithm formulation is very
general and it is not restricted to only medical input data sets.

In this work, we demonstrate a new unbiased and computationally efficient
framework for aligning populations of 3D medical images for the purpose of
digital (anatomical) atlas construction. We believe that defining a robust inter-
subject registration technology that enables the comparison of large numbers of
images will allow us to build better structural atlases, and to further analyze
inter-subject differences.

2 Background and Previous Work

Several approaches exist that propose the alignment of multiple data sets into the
same coordinate frame. Besides the details of the registration algorithm applied,
there is a significant difference in how each method interprets the common coor-
dinate frame (or template). For some specific applications, the desired template
is already established. The input volumes then do not need to be managed as a
set, they can be aligned with the reference frame individually. This approach is
advantageous when single input volumes need to be compared to the template.
If, however, the input volumes are to be treated (simultaneously) as a group,
other mechanisms are required.

For the rest of the applications, the digital template is not available, so that
too has to be generated along with the aligning transformations. In the medical
community, recently, there have been several approaches proposed [3,6,12,11,14].
One group of algorithms selects a standard coordinate frame (for example, based
upon certain anatomical structures) and requires the algorithm to position all
the inputs into that frame. The mean of the so-aligned images is then computed.
Such methods have been performed, for instance, with the usage of the Talairach
anatomical coordinate system [1,13]. A major disadvantage of these methods is
that the images need to be pre-processed in order to have the matching land-
marks reliably identified in them. That is a time-consuming and potentially
error-prone procedure.

Other approaches select one of the current data volumes to be the common
reference frame [3]. After all the other volumes are aligned to this, their mean
is computed. The problem here is the introduction of bias into the procedure by
claiming that one sample volume can represent the standard reference. Even if
the procedure is re-run several times or the selection of the particular reference
frame is carried out in a more careful manner, we cannot always ensure a non-
biased implementation of this process. In the case of anomalies present in the
input, the registration results could be significantly distorted.



Efficient Population Registration of 3D Data 293

Instead, there is growing interest in generating mean models as a by-product
of a larger-scale registration process. That formulation eliminates the introduc-
tion of a bias into the registration framework by simultaneously evolving the
data sets towards a common reference. According to one approach, the “mean”
is initially defined and the images are aligned to that reference image [14]. The
process is iterated until the optimal alignment is found. Another approach fol-
lows that same scheme, but it performs non-rigid alignment of 2D scans using
a minimum description length criterion [12]. Because of memory limitations,
these algorithms can currently handle only a limited number (< 10) of input
volumes. We note that algorithms in this subgroup are closely related to a max-
imum likelihood framework where each voxel distribution is represented by a
Gaussian with a mean equal to the voxel mean and a fixed variance. When us-
ing our framework - congealing - though, each voxel has a separate, individually
optimized non-parametric distribution. Since the distribution of tissues at a par-
ticular voxel is usually highly non-Gaussian, it would seem that our framework
is more appropriate.

Another approach within this same category defines the image set registration
problem by the generalization of a one-to-one alignment framework [10]. The
authors estimate the joint density function of all the inputs and construct a
maximum likelihood-type similarity metric. For computational ease the input
images are pre-segmented into a handful of anatomical classes. A drawback of
this approach is that that it requires the construction of a joint density function
whose size grows exponentially with the number of input images. While the
amount of data available only grows linearly, the number of samples required for
a good density estimation grows exponentially.

3 Our Method

We are interested in formulating the problem as an analogy to an inter-subject
image set alignment task. We use a technique called congealing as a basis of our
framework. This approach was first introduced in the machine learning and com-
puter vision literature, offering a solution to the hand-written digit recognition
problem [8,9]. There, a model of the central tendency of binary input images was
recovered and used for classification purposes.

The objective function proposed in the congealing framework is the total
voxel-wise entropy of the input image volumes. The entropies are computed at
each coordinate location and then these quantities are added together. This for-
mulation thus models distributions of each voxel conditioned on spatial location
rather than treating each position as equivalent. This is in contrast with the
popular mutual information or joint entropy methods for alignment where en-
tropy is measured within an image and the voxel distribution is assumed to be
i.i.d.([7,10,15]). The sum of voxel-wise entropies is approximately equivalent to
finding the maximum likelihood latent image in the population [8], and using it
as an alignment criterion results in a low total entropy joint image. This outcome
represents the underlying shape of the imaged objects and its residual variation.
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Warfield et al. have already applied a preliminary version of the congealing
approach to the problem of fusing MRI scans of 22 pre-term infants and pro-
ducing an atlas of the developing white matter [14]. In that implementation, the
intra-cranial cavity (ICC) of all the input volumes was pre-segmented to allow
for binary congealing, and one member of the population was also set to be
stationary (resulting in a biased result). A nine parameter affine transformation
was identified for all the inputs. (A model created by this method on adult brain
scans is referred to as control model in Section 5 and is shown in Fig. 4 (b).)

Our contribution to the congealing framework lies in its adaptation to a
population of grayscale-valued 3D data volumes without introducing any bias
and a computationally efficient implementation via a stochastic gradient-based
optimization procedure in a multi-resolution framework.

3.1 The Objective Function

As mentioned already, our congealing framework adopts the sum of voxel-wise
entropies as a joint alignment criterion. The main intuition behind using such
an objective function is that, when in proper alignment, intensity values at cor-
responding coordinate locations from all the inputs form a low entropy distribu-
tion. That statement holds even if the intensity values are not identical. Hence
noise or bias fields, and what is more, corresponding multi-modal inputs can
also be accommodated. An entropy-based objective function is also appropri-
ate to handle data sets whose intensities form multi-modal distributions. That
property is of great benefit when the population consists of (sufficient number
of representatives of) data volumes with widely varying intensity profiles. For
example, the tissue intensities at a particular voxel location in the cortex would
likely include some white matter voxels, some gray matter voxels, and a small
percentage of other tissue types. The distribution of brightness values in such a
distribution is frequently multi-modal.

If we denote the collection of m input volumes as I := {I1, I2, ..., Im}, then
our goal is to identify the set of m transformations, T := {T1, T2, ..., Tm} (one
transformation associated with each volume), such that the objective function
f of total voxel-wise entropies is minimized. The objective function is then:

f(I, T ) = f(T1(I1), ..., Tm(Im)) =
N∑

i=1

H(I(T (xi))),

where xi ∈ R3 indicates a particular coordinate location in the data coordinate
system, H is the Shannon entropy and N is the total number of voxel locations
in the data coordinate system. This measure actually forms an upper bound on
the true entropy of the image distribution. By minimizing this upper bound, we
approximate the minimum of the true entropy [8].

In the current implementation we use 12-parameter affine transformations.
Our convention orders the transformation components as the rotation, scaling
and shearing followed by the displacement. Accordingly, ∀j Tj(xi) = (Dj +
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ShjSj(Rj(xi))), where Dj is the displacement, Rj is the rotation, Sj is the
anisotropic scaling and Shj is the shearing component of transformation Tj.

As both the size and number of our expected image volumes are large,
memory allocation and computational speed are both of serious concern. Con-
sequently, we apply a stochastic sampling framework and the EMMA1-style en-
tropy estimator in our framework [15]. Instead of considering all the locations in
the data coordinate space, we propose a random selection of them. Then an ap-
proximation of the total sum of voxel-wise entropies is computed for a particular
alignment configuration. We write the modified objective function (approximat-
ing expectation with sample average) as:

f(I, T ) = − 1
m

M∑
i=1

m∑
j=1

log p(Ij(Tj(xi))),

where M now indicates the number of randomly selected sample points. Note,
that the samples in this reduced set of coordinate locations are not fixed but
re-generated at each iteration of the algorithm. As the experiments show, this
modification enabled us to significantly reduce the overall number of voxel loca-
tions considered in our computations.

3.2 The Optimization

In the original framework of the congealing algorithm, a coordinate descent op-
timization was used to guide the minimization of the objective function. As this
technique is not computationally efficient for our purposes, we have implemented
an iterated stochastic gradient-based update mechanism (similar to that of [15])
that significantly reduces the processing time.

3.3 Transformation Normalization

We have a normalization step included at the end of each iteration, where we
compose each transformation estimate by the inverse of the mean transformation
matrices. This update is necessary as it ensures that the average movement of
points at corresponding coordinate locations is zero, thus preventing the images
from drifting out of the field of view.2

3.4 The Multi-resolution Framework

It is widely known in the registration literature that optimization functions can
easily become trapped in local minima. Although congealing already mitigates

1 The name EMMA refers to “Empirical entropy manipulation and analysis”
2 This normalization criterion is different from the one presented in [8], where the

normalization aimed to maintain a zero mean displacement estimate and a mean
transformation matrix of determinant 1.
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some problems of local minima [8], we also constructed a multi-resolution reg-
istration framework. This implementation starts the processing of the data sets
at a down-sampled and smoothed level and then refines the results during the
higher resolution iterations. Not only does this framework improve the optimiza-
tion, it also boosts computation speed and memory usage efficiency. The number
of hierarchy levels is mostly dependent on the quality and the original size of
the input images. For the experiments presented in this work, it was sufficient
to use a maximum of three levels of hierarchy.

4 Medical MRI Experiments

We ran experiments on three different populations of MRI acquisitions. The
first set consisted of 22 baby brain volumes. Each brain volume was 176 by 186
by 110 voxels, with each voxel measuring 1.0 by 1.0 by 2.0 millimeters in size.
The second and third data sets consisted of 28 and 127 adult brain volumes.
These volumes were 256 by 256 by 124 voxels, with each voxel measuring 0.9375
by 0.9375 by 1.5 millimeters. Due to page limitations, we will demonstrate the
results only on the third set of the images. We believe that this is the first report
of simultaneous registration run on such a large collection of input volumes.

(a) Data set of 127 MRI volumes (b) Synthetic data set of 40 MRI volumes

Fig. 1. Orthogonal slices of the mean volume of the samples before and after alignment:
(a)adult brain data set of 127 MRI volumes (b) synthetic data set of 40 MRI volumes.

The experiments on the 127 medical scans were executed on three different
resolution levels (where the volumes were (32 by 32 by 31), (64 by 64 by 62)
and (128 by 128 by 124) voxels). The largest offset was obtained on the lowest
level and then refinement was computed on the higher hierarchy levels. In our
experiments we only had to select between 800 - 1500 samples, which constitutes
just .05-2.5% of the total voxels, and no more than 250 iterations were necessary.
The total running time for the experiment was approximately six hours.

The results of the experiments are displayed in Fig. 1 (a). This figure por-
trays three orthogonal slices of the mean volumes computed before and after
the experiments. As a qualitative measure, we can establish that following the
population alignment, the data volumes properly line up and the mean volumes
have clean and sharp boundaries.
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5 Validation

Validating our results and verifying our alignment is a complex task. In this
section we provide both qualitative and preliminary quantitative results.

Visually we can confirm that the mean volumes computed after the congeal-
ing process have much sharper boundaries than prior to alignment (see Fig. 1
and Fig. 4 (c)). This is an indirect indicator of how good an agreement has been
achieved. Looking at the central slices extracted from all the input volumes after
the congealing process (see Fig. 2 (b) and 3 (b)) also suggests that the algorithm
has managed to find a good quality alignment.

We also provide a quantitative analysis obtained from running our algorithm
both on a synthetic image population and from comparing one of our adult brain
models to an already existing one.

5.1 Synthetic Example

As a control study, we selected one particular medical MRI volume from a group
of adult brain acquisitions and created a database of transformed volumes by

(a) Before alignment (b) After alignment

Fig. 2. Synthetic data set of 40 MRI volumes. Central slices of the input images
(a) before and (b) after the population alignment.

(a) Before alignment (b) After alignment

Fig. 3. The adult brain data set of 22 MRI volumes used to make our atlas. Central
slices of the input images (a) before and (b) after the population alignment.
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(a) Before alignment (b) Control model (c) Our atlas

Fig. 4. 3D views of the mean volume created from the adult brain data population of
22 images: (a) before population alignment (b) the control model and (c) the model
estimate of our algorithm

applying affine transformations to it. The magnitude of these transformations
varied between +/− 10 degrees for rotation, +/ − 10 mm for displacement, be-
tween [.85, 1.15] factors for scaling and between +/ − .1 factors of shearing. At
the onset of the algorithm, 40 volumes were randomly generated as inputs. All
the input volumes were 124 by 256 by 256 voxels, with each voxel measuring
.9375 by .9375 by 1.5 mm. The twelve parameters of the affine transformations
were recovered after running our algorithm on two levels of the hierarchy. The
number of samples used was .05% of the total number of voxels and fewer than
400 iterations were necessary to achieve convergence. The total running time
was 2964 seconds. The results of these experiments can be seen in Fig. 1 (b)
and 2 (b). The former illustrates the mean volumes computed before and after
the congealing process, while the latter displays the central slices of each of the
input volumes before and after the alignment. For the initially selected adult
brain scan, we had access to the segmentation of two sub-cortical structures, the
left and right thalamus (LT and RT). After the congealing alignment was exe-
cuted, we applied the resulting transformations to these segmentations and then
computed an overlap measure on the so-aligned binary images. The measure of
our choice was foverlap(A1, A2) = |A1

⋂
A2|

min(|A1|,|A2|) (Ai indicating binary variables),
which can be easily generalized to higher number of inputs.

The overlap scores indicate great improvement, they increased from 0 to
.745 and to .75 in the case of LT and RT, respectively. These numbers might
seem a bit low, but as the overlap metric we use is quite conservative, we fur-
ther interpret these results. For the left thalamus, .745 means that all 40 in-
put segmentations agreed 74.5% of the time and 34 inputs are sufficient to
reach an 89% score. Similarly, for the right thalamus, .75 means that all 40
inputs agreed 75% of the time, and 35 inputs are sufficient to reach a 90%
score.

Several factors may influence the magnitude in a decrease of this score. First,
when computing the intersection, even single misaligned voxels can significantly
reduce the metric value. Second, transforming the binary structures introduces
quite a high variation in the size of these relatively small anatomical structures:
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the standard deviation of the structure sizes (after the transformations have
been applied with nearest neighbor interpolation) was 149 voxels.3

We also analyzed the transformations resulting from the congealing process.
Computing exact error measurements (even when knowing the ground truth
offsetting transformations) is difficult as the transformations recovered by our
alignment process are able to recover the inverse of the offsetting transforma-
tions only up to a common term. Therefore, we recovered both a dispersion and
a bias term of the resulting errors across all the input volumes via an analysis
similar to the consistency measures introduced in [4]. Our dispersion scores (in-
dicating accuracy) were in the range [0.05, 0.15] and the bias terms (indicating
the magnitude of the common term) in the [0, 2] voxel range.

5.2 Atlas Comparison

As an additional experiment, we also compared one of our resulting atlases to
a previously generated template. More specifically, we ran our algorithm on 22
adult brain volumes (with the same parameters as indicated in Section 5.1) and
compared that to a control model whose generation is explained in details [14].
Qualitatively, we first assess the success of the congealing algorithm (Fig.3) and
then we compare the atlases in Fig.4 (b) and (c) and establish that they are
highly similar. (Note the 3D view of the mean volume in the original setup is
demonstrated in Fig. 4 (a)).

For a quantitative analysis, we used the same segmentation-overlap study as
in the case of the synthetic experiments. In the case of LT, our overlap measure
was .474027 vs .428483 of the control model and in the case of RT we obtained
.439664 vs .496284. Our performance thus is comparable to that of the atlas.

These overlap measures are even lower than in Section 5.1. That is because in
this experiment we process inter-subject scans and the normal variability in their
differences can only be explained to a certain extent by affine transformations.
Currently we are implementing a viscous fluid-based non-rigid warp [2] to add
to our multi-resolution framework. Such a dense deformation model should be
able to eliminate some of the remaining local disagreements in our alignment
results.

6 Summary and Conclusions

In this paper, we introduced a new population registration framework. Without
any pre-processing step, we used a congealing-type alignment method to effi-
ciently put a large collection of data volumes into correspondence. The algorithm
builds on an information theoretic objective function and currently uses fully
parameterized affine transformations. We introduced an approximate stochastic
sampling framework which allowed us to process only a small number of samples
3 We indeed experimented with other interpolation methods, which resulted in lower

standard deviations, but as the minimum component size was also increased in this
manner, the end result did not change significantly from the one that we report here.
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from the inputs. The optimization is implemented in a stochastic gradient-based
optimization framework that enables a substantial increase in speed.
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Abstract. Craniosynostosis is a serious and common pediatric disease
caused by the premature fusion of the sutures of the skull. Early fu-
sion results in severe deformities in skull shape due to the restriction
of bone growth perpendicular to the fused suture and compensatory
growth in unfused skull plates. Calvarial (skull) abnormalities are fre-
quently associated with severe impaired central nervous system func-
tions due to brain abnormalities, increased intra-cranial pressure and
abnormal build-up of cerebrospinal fluid. In this work, we develop a
novel approach to efficiently classify skull deformities caused by metopic
and sagittal synostoses using our newly introduced symbolic shape de-
scriptors. We demonstrate the efficacy of our methodology in a series of
large-scale classification experiments that compare the performance of
our symbolic-signature-based approach to those of traditional numeric
descriptors that are frequently used in clinical research. We also demon-
strate an application of our symbolic descriptors in shape-based retrieval
of skull morphologies.

1 Introduction

Craniosynostosis, the premature fusion of the fibrous skull joints or sutures, is
a common condition of childhood, affecting 1 in 2500 individuals. As an infant’s
brain grows, open sutures allow the skull to develop normally. The early closure
of one or more sutures results in abnormal head shapes due to the restriction
of osseous growth perpendicular to the closed sutures and compensative growth
of unaffected calvarial plates. Sagittal synostosis is the most common form of
isolated suture synostosis with an incidence of approximately 1 in 5000 [8]. Early
closure of the sagittal suture results in scaphocephaly, denoting a long narrow
skull often associated with prominent ridges along the prematurely ossified sagit-
tal suture (Fig. 1b). Metopic synostosis is less common than sagittal synostosis,
affecting 1 in 15,000 individuals [8]. The premature fusion of the metopic suture
produces trigonocephaly, denoting a triangular shaped head (Fig. 1c).

The diagnosis of craniosynostosis is typically made on the basis of clinical
judgments, with CT imaging to confirm the clinician’s impression. Although
quantitative measures of head shape are not often used for clinical diagnosis,
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research has been conducted to compare the timing [12] and outcomes of serious
surgical procedures that involve the complete reconstruction of the skull (Fig.
1b and c), sometimes in combination with cranial molding techniques [4] [5] [12].

Recent advances in multi-detector computed tomography (CT) technology
enable unprecedented accuracy in the detection of fused skull sutures. However,
image interpretation remains largely confined to subjective description. Most
imaging studies in patients with craniosynostosis emphasize qualitative shape
features and relegate quantitative assessments to the measurement of a ratio or
an angle between anthropometric landmarks, therefore disregarding the broad
range of shape variations that are of fundamental interest in understanding the
pathogenesis and clinical course of affected patients.

Fig. 1. Frontal and top views of a) a normal skull, b) a patient affected with sagittal
synotosis, and c) a patient affected with metopic synostosis. Post-surgical reconstruc-
tions are also shown.

Attempts to classify craniosynostosis malformations by combining morpho-
metric techniques [2][9] and likelihood-based or dissimilarity-based classification
methods have been published in [9], with high cross-validation error rates (32-
40% average for sagittal synostosis and 18-27% average for metopic synostosis),
likely due to the limited sampling of skull anatomy. More recently, alternative
numeric shape descriptors have been proposed to predict sagittal synostosis with
high true positive (TP) and true negative (TN) classification rates [15] [16] [17].

In this paper, we develop a novel methodology to accurately and efficiently
predict sagittal and metopic synostosis diagnosis using off-the-shelf support vec-
tor machines and our newly introduced symbolic shape descriptors [10]. Our
approach utilizes a folding technique proposed in [7] to significantly reduce the
computational complexity at classification time as compared to that of the algo-
rithm described in [10]. Furthermore, we utilize bootstrap [3] and cross-validation
techniques for model selection [19] to show that our efficient algorithm does not
compromise classification accuracy, and outperforms numeric descriptors that
are traditionally used in clinical settings. Finally, we suggest that our proposed
technique to quantify synostotic phenotypes will be important for future studies
to determine correlations with surgical planning, long term outcome measure-
ments, deficits in neurocognition and potential genetic and environmental causes.

The task we want to approach can be formally described as follows. We
are given a random sample of M skull shapes labeled as sagittal (1), metopic
(2) and normal (3), respectively. Using the skull shape information, we wish to
construct a set of symbolic shape descriptors and a classification function in
order to accurately and efficiently predict the label of a new skull shape.



304 H.J. Lin et al.

Fig. 2. The scaphocephaly severity indices SSI-A, SSI-F and SSI-M are computed as
the head width to head length ratio β/α as measured on CT bone slices that are defined
by internal anatomical landmarks on cerebral ventricles

2 Source of Images

Our shape descriptors are extracted from CT image slices from skull imaging. In
order to standardize our computations, we use a calibrated lateral view of a 3-D
reconstruction of the skull to select three CT slice planes defined by internal brain
landmarks. These planes are parallel to the skull base plane, which is determined
by using the frontal nasal suture anteriorly and the opisthion posteriorly. The A,
F and M planes are shown in Figure 2. The A-plane is at the top of the lateral
ventricle, the F-plane is at the Foramina of Munro, and the M-plane is at the
level of the maximal dimension of the fourth ventricle. Using standard image
segmentation and spline interpolation techniques [6], it is possible to extract the
oriented outline from a CT bone image at the level of any of the planes defined
above (Fig. 3a). The points of an oriented outline (such as point P in Fig. 3b)
have a direction defined by their corresponding tangent vectors.
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Fig. 3. a) Bone CT slice at the level of the A-plane. b) Oriented outline counter with
clockwise direction; c) same outline represented in polar coordinates (ρ, θ); and d) 21
components of the corresponding cranial spectrum. Key: α (maximum outline length),
T (tangent vector), N (normal vector), and (CM) center of mass.

3 Numeric Shape Descriptors

Numeric shape descriptors can range from a single number per planar slice to
a large matrix of numbers. In our previous work, we proposed three descriptors
of increasing complexity. The scaphocephaly severity indices (SSIs) [17] describe
skulls with numbers representing ratios. These ratios are the head width to
length, β/α, computed at the three planes defined above and are denoted by
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SSI-A, SSI-F, and SSI-M, respectively (Fig. 2). Note that the ratio β/α mea-
sures the deviation of a skull outline shape from a perfect circle (β/α = 1).
The cranial spectrum (CS) [16] describes a skull shape with the magnitude of
the Fourier series coefficients of a periodic function. This function is derived
from a normalized oriented outline by using polar coordinates with origin at the
center of mass of the outline (Fig. 3b). This representation encompasses shape
information that cannot be captured by the SSI ratios, and is closely related to
traditional DFT-based descriptors [13]. We use the first R = 50 coefficients of
the spectrum in our experiments.

1

0.5

0

a b c

Fig. 4. a) Oriented contour represented as a sequence of N evenly spaced points.
b) Cranial image. c) Top view of cranial image with normalized distance scale.

The Cranial Image (CI) [15] descriptor is a matrix representation of pairwise
normalized square distances computed for all the vertices of an oriented outline
that has been discretized into N evenly spaced vertices. Let D be a symmetric
matrix with elements Dij = dij/α, for i, j = 1 · · · , N , where dij is the Euclidean
distance between vertices i and j, α is the maximum length of the contour
(Fig. 4a ), and N is a number between 100 and 500. Since the outline is oriented,
the vertices can be sequentially ordered up to the selection of the first vertex.
As a consequence, the matrix D is defined up to a periodic shift along the
main diagonal. The CI of an oriented outline is defined as an equivalence class
of distance matrices parametrized by a set of operators Θn that permutes the
rows and columns of D to produce the aforementioned shift; more precisely,
CI= D(Θn), n = 1, · · · , N . The definition of CI can be extended to incorporate
an arbitrary number of oriented outlines by computing inter and intra-oriented
outline distances for each of the vertices of all of the outlines representing a

Fig. 5. Cranial images for a patient diagnosed with a) sagittal synostosis, b) metopic
synostosis, and c) normal head shape. Cranial images were constructed using three
consecutive oriented outlines at the levels of the A-plane, F-plane and M-plane
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skull. For example, the vertices of outlines at the A, F, and M planes could be
arranged from 1 to N , from N + 1 to 2N , and from 2N + 1 to 3N , respectively
(Fig. 5).

4 Symbolic Shape Descriptors

Symbolic shape descriptors (SSDs) were developed in [10] to overcome the com-
putational complexity of cranial image descriptors. More specifically, the worst
case complexity of a ν-SVM classification function that uses cranial images is
O(ML3N3), where M is the number of skulls in the training set, L is the number
of oriented outlines used to represent a skull, and N is the number of vertices
per outline. Such complexity limits the practical use of CIs in applications where
several outlines are required to represent a 3-D skull shape.

The goal of symbolic shape descriptors is to encode global geometric proper-
ties that differentiate our shape classes (sagittal, metopic and normal) by proba-
bilistic modeling of their local geometric properties. This paradigm can produce
a compact representation of 3-D shape that improves the classification perfor-
mance of numeric descriptors and reduces the computational complexity of the
classification function to O(MP ) with P � L3N3. However, the standard SSD
algorithm in [10] requires the computation of (M +1)V +(M +1)P +P param-
eters for every test skull shape, where V is the vocabulary in the training set(to
be defined below) and where the typical values of M , V and P are 100, 5× 103,
and 20, respectively. To overcome this issue, we adapt the folding technique de-
scribed in [7], which only requires the computation of P parameters for every
new skull shape. The training and testing steps of our efficient SSD algorithm
are described below.

Fig. 6. Symbolic labels are assigned to the vertices of the oriented outlines by applying
k-means clustering to their numeric attributes. Oriented outlines of a) sagittal, b)
metopic and c) normal head shapes, respectively, taken at the level of the A-plane.

Training Algorithm. The input of the efficient SSD learning algorithm is a
set of skull shapes S = {S1, · · · , SM}. Each shape is represented by L oriented
outlines, and each outline is discretized into N evenly spaced vertices. For the
sake of simplicity, we assume that L = 1. The training algorithm is as follows:



Efficient Symbolic Signatures for Classifying Craniosynostosis 307

1. For each shape Sj in S and each vertex vi of Sj , compute the vector of
distances from all other vertices of Sj to vi. This vector is the same as the
i-th row of the CI matrix descriptor (Fig. 5).

2. Cluster these vectors by k-means clustering with user-selected k and assign
each cluster a symbolic label. Each vertex receives the label of its cluster.

3. Compute a bag of words (BOW) representation of the skull outlines in
S. More specifically, the symbols associated with the vertices of an ori-
ented outline are used to construct strings of symbols or words. The word
size is fixed at some integer 1 ≤ W ≤ N . For instance, when W = 3,
each word contains three symbols. A BOW representation for the outline
in Figure 7a is the unordered set s={′CAA′,′AAB′,′ABB′,′BBC′,′BCD′,
′CDB′,′DBC′,′BCA′}.

4. Compute a M×V co-occurrence matrix of counts [n(si, wj)]ij for the training
set where n(si, wj) denotes the number of times the word wj occurs in the
BOW si associated with the skull outline Si.

5. Apply probabilistic latent semantic analysis (PLSA) to the co-occurrence
matrix of the training set [7]. PLSA is a latent variable model which asso-
ciates an unobserved class variable zk ∈ z1, . . . , zP with each observation,
and an observation being the occurrence of a word in a particular BOW.
The PLSA (also called aspect model) is formally defined as P (si, wj) =
P (si)

∑P
k=1 P (wj |zk)P (zk|si), where P (si, wj) denotes the probability that

a word occurrence will be observed in a particular BOW si, P (wj |zk) denotes
the class-conditional probability of observing the word wj given the aspect
zk, and P (zk|si) denotes a BOW-specific probability distribution over the
latent variable space. The equation above can be conveniently parametrized
as P (si, wj) =

∑P
k=1 P (zk)P (wj |zk)P (si|zk), which is symmetric in both

entities, BOW and words, and where P (si|zk) denotes the class-conditional
probability of a specified BOW conditioned on the unobservable class vari-
able zk.

6. Use the class-conditional probabilities P (s|z) estimated in the previous step
to construct the symbolic shape descriptors for the outlines in S. More specif-
ically, for each outline Si in the training set, form its corresponding symbolic
shape descriptor as the P -dimensional vector [P (si|z1), · · · , P (si|zP )].

7. Use cross-validation on the training set of symbolic shape descriptors com-
puted in the previous step for selecting the model of a ν-SVM classification
function.

The outputs of the training algorithm are the k-means cluster centers, the set
of words in the training set (vocabulary), the P (w|z) parameters of the PLSA
model, and a ν-SVM classification function for the symbolic shape descriptors.

An intuitive interpretation for the aspect model can be obtained by observing
that the conditional distributions P (wj |si) are convex combinations of the P
class conditionals or aspects P (wj |zk). Loosely speaking, the modeling goal is
to identify conditional probability mass functions P (wj |zk) such that the BOW-
specific word distributions are as faithfully as possible approximated by convex
combinations of the aspects [7]. In our context, words encode local geometric



308 H.J. Lin et al.

properties of the outline shapes; therefore, the global geometric properties of
the outlines in S are modeled as convex combinations of local geometric aspects.
This means that BOWs that have similar co-occurrence word distributions can
be represented by similar geometric aspects. In fact, the PLSA model tends to
cluster BOW-word pairs [7]. The parameters of the PLSA model can be estimated
using the standard Expectation Maximization algorithm [1]. For the sake of
space, the reader is invited to consult [7] for a comprehensive description of the
PLSA model and its implementation details.

Testing Algorithm. The inputs are a new skull shape Snew, the k-means cluster
centers, the vocabulary of the training set, the P (w|z) parameters of the PLSA
model, and a ν-SVM classification function.

1. Use the k-means cluster centers and a nearest neighbor rule to assign sym-
bolic labels to the vertices of the test skull outline Snew.

2. Compute the occurrence vector corresponding to the test skull Snew using
the vocabulary of the training set.

3. Use the class-conditional probabilities P (w|z) estimated from the training set
to compute P (snew|z) for the test skull Snew, and form the symbolic shape
descriptor [P (snew |z1), · · · , P (snew |zP )]. Note that the P (w|z) parameters
are kept fixed (not updated at each M-step) for estimation of P (snew |z). In
doing so, P (snew|z) maximizes the likelihood of the skull shape Snew with
respect to the previously trained P (w|z) parameters.

4. Use the classification function and the symbolic shape descriptor computed
in the previous step to predict the label of Snew.

The output of the efficient SSD algorithm is the label of Snew.

4.1 ν-SVMs and Model Selection

We use ν-SVMs with a Gaussian kernel k(x, x′) = exp(−d(x, x′)2/σ2) to mea-
sure similarities between shape descriptors (SSIs, cranial spectrum, and symbolic
shape descriptors), where the function d is the Euclidean distance, and σ is the
width parameter of the kernel. The worst case computational complexity for this
kernel is O(Mr), where r is the dimension of the x vectors. We use the kernel
kΘ(D, D′) = maxn k(D(Θn), D′) to measure the similarity between cranial
images. We select the width σ of the kernel (and the k, W and P parameters of
the symbolic shape descriptors) by minimizing the leave-one-out error (LOOE)
estimate of the expected classification error [18]. We bound the variance of our
statistical estimators (LOOE and confusion matrices) by computing bootstrap
confidence intervals [3].

5 Experimental Results

Our sample population consists of 60 CT head scans from children with sagittal
synostosis, 13 head scans diagnosed with metopic synostosis and 41 scans of
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Fig. 7. Co-occurrence matrix of word counts (displayed as a color image) corresponding
to the skull shapes in our sample population. Each skull shape is represented using three
outline shapes (L = 3) at the level of the A, F and M planes. Key: Sagittal (S), Normal
(N) and Metopic (M).

age-matched controls with normal head shapes. Computed tomography data are
acquired with a multi-detector system that produces isotropic 3-D images with
0.5 mm resolution. Three-dimensional reconstructions of each patient’s skull are
generated with a high performance workstation (Figs. 1 and 2).

5.1 BOW Representation

We compute co-occurrence matrices of counts for the BOW representation of the
skull outlines in our population sample. Our data reveal that this symbolic repre-
sentation encodes distinctive shape information that can be used to differentiate
sagittal, metopic and normal skull shapes. This can be seen in Fig. 7, which
shows as a color image of a co-occurrence matrix for skull shapes represented by
three oriented outlines at the A, F and M levels (L = 3, k = 150 and W = 5). It
is clear from the figure that the distributions of word frequencies for each of the
classes differ significantly. Our data also show that for both W > 5 and k > 250
the co-occurrence matrix becomes too sparse and word count estimates become
unreliable. Values k < 30 do not allow us to discriminate between skull shape
classes.

5.2 Classification Results

Table 1 shows the classification performance for the SSI, CS, CI and standard
SSD descriptors computed separately for the three oriented outlines (N=200,
R=50, L=1, k=150 and W=3). Standard SSD descriptors computed from single
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Table 1. Classification confusion matrices for SSIs, CS, CI and standard SSD de-
scriptors computed for individual oriented outlines OA, OF and OM. Outlines were
generated at the A, F and M planes, respectively. Key: Sagittal (S), Metopic (M) and
Normal (N).

SSI CS CI SSD
S M N S M N S M N S M N

S 0.98 0.00 0.05 0.98 0.00 0.04 1.00 0.00 0.05 1.00 0.00 0.07
OA M 0.00 0.85 0.54 0.00 0.62 0.07 0.00 0.31 0.00 0.00 0.77 0.12

N 0.02 0.15 0.41 0.02 0.38 0.88 0.00 0.69 0.95 0.23 0.80 0.88
S 0.93 0.00 0.00 0.98 0.00 0.00 0.95 0.00 0.05 1.00 0.00 0.07

OF M 0.00 0.85 0.51 0.00 0.93 0.07 0.00 0.92 0.05 0.00 0.92 0.05
N 0.07 0.15 0.49 0.02 0.07 0.93 0.05 0.08 0.90 0.00 0.08 0.88
S 0.88 0.00 0.20 0.90 0.00 0.10 0.91 0.08 0.12 0.97 0.00 0.10

OM M 0.00 0.76 0.51 0.00 0.85 0.00 0.02 0.85 0.02 0.00 0.85 0.00
N 0.12 0.23 0.29 0.10 0.15 0.90 0.07 0.07 0.85 0.03 0.15 0.90

Table 2. Classification confusion matrix and p = 0.05 confidence intervals for standard
SSD computed using all three oriented outlines associated with the A-plane, F-plane
and M-plane levels. Key: Symbolic shape descriptors (SSD), Saggital (S), Metopic (M)
and Normal (N).

Standard SSD Algorithm
S M N

S 1.00 [0.99,1.00] 0.00[0.00, 0.01] 0.07 [0.05, 0.09]
M 0.00 [0.00 0.01] 1.00 [0.98, 1.00] 0.00 [0.00, 0.02]
N 0.00 [0.00 0.01] 0.00 [0.00 0.08] 0.93 [0.90 0.96]

Table 3. Classification confusion matrix and p = 0.05 confidence intervals for efficient
SSD computed using all three oriented outlines associated with the A-plane, F-plane
and M-plane levels. Key: Symbolic shape descriptors (SSD), Saggital (S), Metopic (M)
and Normal (N).

Efficient SSD Algorithm
S M N

S 1.00 [0.99,1.00] 0.00[0.00, 0.01] 0.07 [0.05, 0.09]
M 0.00 [0.00 0.01] 1.00 [0.94, 1.00] 0.00 [0.00, 0.02]
N 0.00 [0.00 0.01] 0.00 [0.00 0.06] 0.93 [0.89 0.97]

outlines perform better than SSIs and have comparable performance to those of
CS and CI descriptors.

Table 2 shows the results for standard SSDs computed from all three out-
lines (L=3). Table 3 shows the related results for efficient SSDs. These results
are superior than those on single slices alone. Although the performance of effi-
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Fig. 8. Skull shapes are ranked based on the computed P (s|z). Shapes in aspect z1

belong to metopic, in aspect z4 belong to normal, and aspect z12 and z14 belong to
sagittal. Aspect z13 includes a mix of metopic and normal skull shapes.

cient SSDs and standard SSDs are comparable, the standard SSDs requires the
computation of (M +1)V +(M +1)P +P parameters (∼ 105), while the efficient
SSDs only requires the calculation of P parameters (M=113, V =5 × 103 and
P=15).

5.3 Shape-Based Skull Ranking

The five skull shapes with the highest P (si|zk) for z = 1, 4, 12, 13, 14 are shown
in Fig. 8. Note that the top ranked shapes for aspects z12 and z14 represent
shape features only evident in sagittal synostosis, while aspect z1 encodes fea-
tures only observed in the metopic class. Aspect z4 encodes features that are
only evident in the class of normal shapes. Also note that the sagittal skulls
in column z12 have flatter and wider tops in contrast to the sagittal skulls in
column z14. These observations suggest that SSD descriptors could be used to
stratify skull shapes in different subcategories. This kind of aspect-based shape
ranking can be potentially used to develop automatic retrieval applications of
skull morphologies.

6 Conclusions

This paper presents an improved and efficient approach to the symbolic shape
descriptors proposed in [10]. This method is compared with our previous work on
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numeric shape descriptors and standard SSDs for accurate prediction of sagittal
and metopic diagnoses. We show that the symbolic shape descriptors computed
from three oriented outlines outperform all of the numeric shape descriptors. We
also show that efficient SSDs have equal classification performance to standard
SSDs. Because the computational complexity of the efficient SSD approach is
further reduced from that of the standard SSD method, efficient SSD is the
preferred algorithm that can be potentially used to represent 3-D skull shape
of large data sets without significant increase in the complexity at classification
time.
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Abstract. In this paper, we propose a new framework for active contour
and surface models. Based on the concepts of the elastic interaction be-
tween line defects in solids, this framework defines an image-based speed
field for contour evolution. Different from other level set based frame-
works, the speed field is global and defined everywhere in the whole
space. It can offer a long-range attractive interaction between object
boundary and evolving contour. The new framework is general because
it can be easily extended to higher dimension. Using the Fast Fourier
Transforms, we also introduce an efficient algorithm for finding the val-
ues of the image-based speed field. Some experiments on synthetic and
clinical images are shown to indicate the properties of our model.

1 Introduction

Extracting a surface from medical data is clinically an important step because the
extracted boundary surface can provide essential ssvisual and quantitative infor-
mation about the shape and size of the biological objects, e.g. brains and vessels.

Active contour models have widely been used for image segmentation and sur-
face extraction. The classical snakes approach evolves and finds object boundary
based on forces derived from the internal energy of the contour and local image
gradient [4].

If the moving contour is not close enough to the target object, the capture
range of the contour can be limited. Then, an additional constant balloon force
was introduced along the contour normal direction to accelerate the contour
motion and increase the capture range [1].

To offer more flexibility in handling multiple objects and their topological
changes, the level set framework [6,5] was used to model the moving contour.
The dynamic equation is given as

∂φ

∂t
= g(∇I)

(
∇ ·
(

∇φ

|∇φ|

)
+ ν

)
|∇φ|, (1)

where φ(x, y) is the level set function whose zero level set represents the contour.
All terms before |∇φ| gives the speed of the embedded contour along its normal
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direction. The first term ∇ ·
(

∇φ
|∇φ|

)
smooths and shortens the contour based on

contour curvature. The second term ν is the constant balloon force making the
contour expand or shrink depending on its sign. The gradient function g(∇I)
gives very small value at the boundary and makes the speed of the moving
contour small. As such, the evolving contour will stop on the object boundary.
However, without the constant balloon force, the capture range can be short and
the contour cannot reach the narrow concave regions of the object boundary.
This is because the effect of ∇I, defined by g(∇I) in Eq. 1, is localized near the
boundary. While with the balloon force, there is a limitation that the balloon
force cannot make some parts of contour shrink while other parts of the contour
expand. Therefore, the initial contour must be placed entirely outside or inside
the object to be detected.

In this paper, inspired by the elastic interaction between line defects in solids,
we propose an active contour method offering a long-range attractive interac-
tion between two contours (object boundary and evolving contour). We shall
define a long-range attraction generated by the object boundary and acting on
the evolving contour for solving the segmentation problem. The speed field due
to this interaction is calculated efficiently using the Fast Fourier Transforms,
and is defined everywhere in the space. No force extension is needed, as it is
commonly needed in the conventional level set based active contour methods.
We also use the level set framework to handle the topological changes during
the contour evolution. This framework is general and can be applied to the N-
dimensional segmentation problems. It is experimentally shown that the method
can be effective in detecting elongated and tubular structures, e.g. brain vessels.

2 Method

2.1 2D Segmentation Based on Elastic Interaction

The main goal of this section is to define a speed field v for encouraging attractive
interaction between object boundary and moving contour during the contour
evolution. The level set framework is employed to represent the moving contours
in 2D and surfaces in 3D [6]. Let φ be the level set function. The evolution
equation is given as ∂φ

∂t = v|∇φ|, where v represents a speed field, in which the
values of speed are well defined in the whole space.

We now define the speed field v of a two dimensional moving contour. As shown
in Fig. 1, the (blue) contour γ(s) represents the object boundary and another (red)
contour represents the moving contour. At any point P on the moving contour, the
speed is derived based on the elastic interaction between line defects in solids [2]
and our previous work [10]. The speed field v is defined as

v = −
∫

γ(s)

r · n
r3

ds, (2)

where r is a vector between point P and a point on γ(s), r = |r| denotes the
Euclidean distance between these two points, and n represents the normal di-
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Fig. 1. Elastic interaction between object boundary (blue) and moving contour (red)

rection. Under this definition, the speed inside the object boundary and outside
the object boundary are different in sign.

We describe how the speed function defined above can be used for image seg-
mentation problem. Let an image be I(x, y) located in the z = 0 plane, where
(x, y) ∈ Ω and Ω denotes the image domain. The speed field is set to depend on
the intensity values in the image by replacing the normal direction n in Eq. 2
by the image gradient ∇I. However, the image-based speed function is singular
on the contour γ(s). The singularities can then be smeared out if the normal
direction n is replaced with the gradient of the smoothed image ∇(Gσ ∗I), where
Gσ represents a Gaussian smoothing filter with standard deviation σ. Therefore,
the image-based speed field v is given as

v = −
∫

Ω

r · ∇(Gσ ∗ I)
r3

dxdy, (3)

where Ω denotes the image domain and (x, y) ∈ Ω.
Another important property of the speed field v is that it is a long range

speed field generated by the object boundary, and there is no need to place the
initial contour entirely inside or outside the object. Thus the moving contour can
“see” the far away boundary by the interaction between object boundary and
evolving contour boundary. Also, the sign of the speed depends on the direction
of the contour and the object boundary, so that the contour is not necessarily
to be placed entirely inside or near the object boundary. The direction of the
object boundary t is defined as

t =
1

|∇(Gσ ∗ I)|

(
∂(Gσ ∗ I)

∂y
,−∂(Gσ ∗ I)

∂x
, 0
)

. (4)

For instance, if an object has a stronger intensity than the background, the
direction of the object boundary is counterclockwise; and is clockwise vice versa.
The direction of the moving contour, i.e. the zero level contour of the level set
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function φ(x, y), can also be defined similarly, with Gσ ∗ I replaced by φ in Eq.
4. The level set function is chosen such that the moving contour has an opposite
direction with respect to the object boundary. As a result, the moving contour
is attracted to the object boundary under the speed field v.

In the above definition of speed function, the image noise also generates
a speed field for the moving curve, resulting in spurious contours. The speed
generated by the noise is relatively small as compared with that by the object
boundary. We remove this contribution of the noise by adding the interaction
within the moving contour, so that the relative weak interaction between the
noise and the moving contour can be overcome. The speed field v is now defined
as

v = −
∫

Ω

r · ∇(Gσ ∗ I + wH(φ))
r3

dxdy, (5)

where w is an adjustable coefficient and H is the Heaviside function, which is
defined as

H(φ) =


0 if φ ≤ −ε,
1
2 (sin(πφ

2ε ) + 1) if − ε < φ < ε,
1 if φ ≥ ε,

(6)

where ε is a small constant.
The values of the speed field v can be solved efficiently using the Fast Fourier

Transform (FFT) algorithm. It is well known that in three dimensional space,
−1/4πr is the solution of the Poisson equation,

−� 1
4πr

= δ, (7)

where δ is the three dimensional Dirac delta function. Performing the Fourier
transformations on both sides of the above equation, we can get

1̂
r

=
1

m2 + n2 + l2
· 1
2π2

, (8)

where m, n, and l are frequencies in the Fourier space. Thus

∇̂1
r

=
(im, in, il)

m2 + n2 + l2
· 1
2π2

. (9)

In order to perform the FFT algorithm to get the values of speed (Eq. 5),
we have to change our formulation from two dimensional space to three di-
mensional space. To achieve this goal, we multiply a factor δ(z), where δ(z) is
one-dimensional Dirac delta-function. Therefore, Eq. 5 can be re-written as

v = −
∫

z

∫
Ω

r
r3

· (∇(Gσ ∗ I(x, y) + wH(φ)(x, y)), 0)δ(z)dxdydz. (10)

Let the Fourier coefficients of the function Gσ ∗ I + wH(φ) be {dmn}. The
Fourier coefficients of the function (∇(Gσ ∗ I(x, y) + wH(φ)(x, y)), 0) are then
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{(imdmn, indmn, 0)}. Performing the Fourier transformation on both sides of Eq.
10, based on Eq. 9, we get

v̂ =
(im, in, il)

m2 + n2 + l2
· 1
2π2

· (imdmn, indmn, 0) · 1
2π

· (2π)2,

= − 1
π
· m2 + n2

m2 + n2 + l2
dmn.

(11)

Finally, we have

v(x, y) = −
∫ ∞

−∞

∑
m,n

1
π

m2 + n2

m2 + n2 + l2
dmneimxeinydl, (12)

= −
∑
m,n

√
m2 + n2

2
· dmneimxeiny . (13)

To obtain a smooth moving contour, we can introduce a small curvature term
associated with a small weight µ. Now, the evolution equation is given as

∂φ

∂t
=
(

µ∇ ·
(

∇φ

|∇φ|

)
+ v

)
|∇φ|. (14)

2.2 Extension to 3D Segmentation Problem

Similarly, we define our three dimensional speed field v as

v = −
∫

S

r · n
r4

dA, (15)

where S represents the object boundary in 3D. By replacing the normal direc-
tion n by the gradient of the smoothed image ∇(Gσ ∗ I), the value of speed v is
now relying on the image intensity values in an image volume I(x, y, z), where
(x, y, z) ∈ Ω and Ω denotes the image domain. In order to perform FFT algo-
rithm to solve the image-based speed function, we have to change the formulation
to 4D space. The speed function is re-written as

v = −
∫

w

∫
Ω

r
r4

· (∇(Gσ ∗ I(x, y, z) + wH(φ)(x, y, z)), 0)δ(w)dxdydzdw, (16)

where δ(w) is the one-dimensional Dirac delta-function. Let the Fourier coef-
ficients of the function Gσ ∗ I + wH(φ) be {dmnl}. Similarly to 2D problem
described in the previous section, performing FFT on both sides of Eq. 16 and
following by taking the inverse FFT, we get

v(x, y, z) = −
∑

m,n,l

√
m2 + n2 + l2

8
· dmnle

imxeinyeilz, (17)

where m, n, and l are frequencies in the Fourier space.
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2.3 Numerical Implementation

For the numerical implementation of Eq.(14), we use central difference for the
curvature term, Godunov’s scheme [7] combined with fifth order WENO deriva-
tive [3] for the term v|∇φ|, and the forward Euler method in time. Re-initializa-
tion for φ is used to reduce the numerical errors [9]. The initial zero level contour
of φ is set to be the zero crossing of the speed field generated by the image only,
i.e. φ = v/|v|, where v is calculated using w = 0. This gives an initial contour
very close to the object boundary, so that the object boundary can then be found
and the noise be removed efficiently after short-time evolution.

3 Results

The proposed method has been applied to synthetic images and four sets of 3D
Rotational Angiographic (RA) images. We have also implemented the gradient
vector flow (GVF) method [12,11,8]. Since the results using these GVF meth-
ods [12,11,8] are similar in the comparisons, all results are obtained using the
modified GVF method with the balloon force [8].

3.1 Synthetic Images

In this section, all results were obtained using a numerical mesh with the size of
128 × 128 pixels. The width and length were equal to 2 units. The pixel width
was dx = dy = 2/128.

Fig. 2 shows the results on an image with multiple objects, which have dif-
ferent intensity and topology, but without noise. Given that the intensity values
range between 0(white) and 1(black), the intensity values of the four objects
were 3/9, 4/9, 5/9 and 6/9 (see Fig. 2(a)). As shown in the figure, the image has
thin features such as convex (bottom left) and concave (top right) regions. The
parameters of our method were set as follows: σ = 0.8 (Eq. 5), w = 0.35 (Eq. 5),
ε = dx (Eq. 6)and µ = 0.002 (Eq. 14). Our method found the object boundaries
accurately (see Fig. 2(b)). In fact, for this image without noise, the zero level
contour of the speed field v gives the object boundary directly. In this case, no
evolution is needed. Fig. 2(c) shows that the speed field is globally defined and
can have long influence on the moving contour.

The bottom row of Fig. 2 shows the results obtained using the GVF method
with adaptive bidirectional balloon force. Unlike our method, this method needs
extension of force (velocity) field based on the diffusion of gradient information.
The parameters were set as follows: µ = 0.02, σE = 2dx, β = 0.002 and ε = 0.1
(see [8] for definitions of the parameters). We set a circle as the initial contour
(see Fig. 2(d)). As shown in Fig. 2(e), not all parts of the contour were attracted
to the correct boundaries of the objects (see the bottom left object in Fig. 2(e)).
Fig. 2(f) shows the corresponding force field of the GVF method. From the figure,
it is observed that, at the middle between two adjacent objects, the contour
cannot move further. This is because the extended velocity is perpendicular to
the normal direction of the zero level set.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) An input image with multiple objects, (b) results obtained using our
method, (c) speed field v of our method (Note that log2(|v| + 1) is shown for bet-
ter visualization.), (d) initial contour for GVF method, (e) results obtained using the
GVF method and (f) GVF force field

Our method has been applied to the same image (see Fig. 2(a)) but with dif-
ferent levels of noise. The SD of the background noise σB = 0.0621 was obtained
from the real 3D-RA images, which will be described in the next section.

(a) (b) (c)

Fig. 3. Synthetic images with different levels of noise: (a) 0.5σB , (b) σB and (c) 2σB .
Intensity values range between 0(white) and 1(black) in the images.
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(a) (b)

(c) (d)

(g) (h)

(e) (f)

Fig. 4. Image slices from 3DRA image volumes. Original slices for patients 1 (Fig.a),
2 (Fig.c) and 3 (Fig.e). Results obtained using our method for patients 1 (Fig.b), 2
(Fig.d) and 3 (Fig.f). Fig.g and Fig.h show the MIP image and the corresponding 3D
view of the result obtained using our method.
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(a) (b)
) ( )

Fig. 5. (Fig.a) DSA vascular image. (Fig.b) The corresponding segmentation result.

The errors of segmentation were 0%, 0.06% and 0.63% for Figs. 3(a), 3(b)
and 3(c) respectively. It shows that the proposed method can give reasonable
segmentation results when noise level increases.

3.2 Real Images

We have applied our 3D segmentation method on four 3D-RA clinical datasets
acquired by a Philips Integris Imager medical system at the Department of Diag-
nostic Radiology and Organ Imaging, Prince of Wales Hospital, Hong Kong. The
data volume was around 100×100×100 voxels with a voxel size of 0.75×0.75×
0.75mm3. Figs. 4(a), 4(c) and 4(e) show three selected image slices. Contours
obtained using our method are shown in Figs. 4(b), 4(d) and 4(f) respectively
(note that the contours are lying inside the vascular regions). The initial con-
tours were obtained directly using the speed field, and then evolved using the
level set method and FFT for speed field calculation. Given that the vasculature
has convex and concave structures, the results of segmentation are satisfactory.
Fig. 5 shows a DSA vascular image with thin and elongated structures, and the
intensity values are low (weak linkage) in the upper half of the image. As shown
in the figure (Fig. 5b), our method can help capture weak edges connected along
the strong edges. A 3D surface of one of the segmented image volumes and the
corresponding MIP are shown in Figs. 4(g) and 4(h).

4 Conclusion

We have proposed the use of elastic interaction for active contour and surface
models. Our method has been applied to the synthetic and real image volumes
for image segmentation. The experimental results show that, for images without
noise (e.g. synthetic images), the zero level set of the speed function can give
contour very near to the target object boundary. For images with noise (e.g.
real images), the initial contour can be efficiently computed and then object
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details can be detected via contour evolution using the Fast Fourier Transform
(FFT) algorithm. It is experimentally shown that our method can be effective in
detecting elongated and tubular structures, e.g. brain vessels in 3DRA or DSA.
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Abstract. We propose a new technique to extract a pulmonary nodule
from helical thoracic CT scans and estimate its diameter. The technique
is based on a novel segmentation, or label-assignment, framework called
competition-diffusion (CD), combined with robust ellipsoid fitting (EF).
The competition force defined by replicator equations draws one domi-
nant label at each voxel, and the diffusion force encourages spatial coher-
ence in the segmentation map. CD is used to reliably extract foreground
structures, and nodule like objects are further separated from attached
structures using EF. Using ground-truth measured manually over 1300
nodules taken from more than 240 CT volumes, the performance of the
proposed approach is evaluated in comparison with two other techniques:
Local Density Maximum algorithm and the original EF. The results show
that our approach provides the most accurate size estimates.

1 Introduction

Measuring the size of pulmonary nodules from X-ray computed tomography
(CT) data is an important practice for diagnosis and progression analysis of
lung cancer. The nodule size often plays an important role in choosing a proper
patient care, and is also an effective feature to separate true nodules from nodule-
like spurious findings. Typically, the size is represented by the diameter of the
nodule. In clinical practice, it is conventional to use the 2D diameter-based
estimation because the manual reading can be done readily by scanning through
a CT volume slice by slice. Automating this task for computer-aided diagnosis
(CAD) is, however, a difficult problem due to intensity variations, partial volume
effects, attachment to other structures, and noise [1,2,3,4,5,6]. Although a truly
3D based volume estimate may give more accurate information for diagnosis
and prognosis, we anticipate the trend of the 2D approach will continue for
foreseeable future.

A CT-based screening protocol specified by the International Early Lung
Cancer Action Program (I-ELCAP) details how the diameter of pulmonary nod-
ules should be measured and how the measurements should be used for determin-
ing the patient management. According to the protocol, the result of an initial
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CT screening of lung is considered positive if at least one solid or part-solid nod-
ule with 5.0mm or more in diameter or at least one non-solid nodule with 8.0mm
or more in diameter is found [7]. Although these 5mm and 8mm thresholds are
likely to become smaller as more accurate screening becomes possible with high
resolution multi-detector helical CT (MDCT), the importance of nodule size in
cancer diagnosis will stay unchanged.

Despite an existing large body of works, nodule segmentation is still an active
open problem. More accurate and efficient algorithms will be extremely useful
for detection and diagnosis of lung cancer. We consider the segmentation prob-
lem in a semi-automated setting where a rough location of a potential nodule
is known. There are many candidate detection algorithms that can be used to
fully automate our system, in particular as a part of a CAD system. Therefore,
our semi-automated treatment does not lessen the importance of the problem
and the usefulness of our algorithm.

Recently, a semi-automated size estimation algorithm using a robust Gaus-
sian ellipsoid fitting (EF) was proposed by [8]. Given a marker positioned near
a nodule, the algorithm computes the location, orientation and radii of an el-
lipsoid by fitting a Gaussian-based model to the intensity variation nearby the
marker. It employs scale-space mean-shift and a robust scale estimator to find
the solution. The volume and diameter of the nodule can be estimated from
the ellipsoid. Their work verified the estimation accuracy using a large clin-
ical database [8]. However, the technique tends to be inaccurate in the di-
ameter measurement for small nodules due mainly to the small sample size
problem.

The main contribution of this work is a new diameter estimation technique
that improves the accuracy and the speed of the original EF. The proposed
technique is based on a combination of EF and a technique using competition-
diffusion segmentation (CD) [9]. The competition-diffusion is a class of reaction-
diffusion systems that employ a competitive learning mechanism ([10,11]) as the
system’s reaction term. To our knowledge, this work is the first attempt to apply
CD to medical image segmentation problems. It also differs fundamentally from
other well-known reaction-diffusion-based segmentation solutions [12,13]. Our
experimental results indicate that CD is highly effective and fast in segmenting
solitary nodules, but is not applicable to non-solitary ones. On the other hand,
EF is stable and applicable to both solitary and non-solitary nodules, but inac-
curate for small solitary ones. Thus, our idea is to apply CD to solitary nodules
and EF to non-solitary ones. We use the CD segmentation to determine if the
nodule is solitary or non-solitary.

The paper is organized as follows. In Section 2, three segmentation algo-
rithms, CD, EF and Local Density Maximum (LDM) [14], are described. They
are compared against the proposed hybrid approach in our experiments. Sec-
tion 3 describes a diameter estimation technique using the segmentation results.
Section 4 introduces the proposed hybrid method (HB). Section 5 shows our
experimental results. Section 6 gives summary and concluding remarks.
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2 Segmentation

2.1 Competition-Diffusion System

Formulation. The goal of the present system is to assign to each location a
class label from a set of n classes. We first assign each location a state vector
x ∈ Sn, where Sn = {(x1, x2, ..., xn)|xi ≥ 0,

∑
i xi = 1} is called n simplex. Each

component in the state vector gives a normalized fitness of the particular class.
The closer the state value is to 1, the more fitting the location is to the class.
Initially, the class assignment is ambiguous and contaminated with noise in the
observation. We then use the competition-diffusion system to filter out the noise
and bring one dominant value in the state vector representation at each location.
The final segmentation is obtained by assigning the dominant class to each lo-
cation. The diffusion process brings good spatial coherence to the segmentation
map, and the competition process selects the most fitted label and prevents the
diffusion process from oversmoothing the state vector representation.

Associated with x is a spatial coordinate vector r ∈ Γ where Γ is some
manifold in 3-dimension. Let Φ be the space of functions, Γ → Sn, and we
consider the following initial value problem.

ẋ(r, t) =


ẋ1(r, t)
ẋ2(r, t)

...
ẋn(r, t)

 =


g1(x(r, t))
g2(x(r, t))

...
gn(x(r, t))

+ µ


H(x(r, t))
H(x(r, t))

...
H(x(r, t))

 (1)

x(r, 0) = x0 ∈ Φ (2)

where ẋ is the time derivative of x, the first term in the right hand side is a
competition term, the second term is a diffusion term, and µ is a positive num-
ber that balances the competition term and the diffusion term. We call gi a
component-wise inhibition operator (gi : Sn → [0, 1]) and g = [g1, g2, ..., gn]T a
competition operator (G : Sn → Sn). H is a general form of a linear diffusion
operator. Our motivation is to encourage spatial homogeneity in the segmenta-
tion with the diffusion term and to bring a dominant class at each pixel with
the competition term.

We consider a component wise inhibition operator of the following form:

gi(x) = xi

(
fi(x) − f̄(x)

)
(3)

where fi is a fitness function of the ith class, and

f̄(x) =
∑

i

xifi(x) (4)

is the average fitness. Equation (3) is often called a replicator equation and
has been used to model ecological progression among multiple species. With a
suitable choice of the fitness functions, the population of the species reaches
an equilibrium state where the multiple species coexist. On the other hand, by
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choosing another set of fitness functions, we can derive a state where only one
species survives or dominates. In our state space representation, it corresponds
to the state where xi = 1 and xj = 0, ∀j �= i. We call this a mutually exclusive
state. We call the state internal when xi > 0 ∀i. For our segmentation problem,
we want to derive a state vector representation at each location with one dom-
inant component. We call the state dominant when there exists a class whose
state value is strictly the largest. The dominant state may not necessarily be a
mutually exclusive one as the diffusion force prevents it from reaching the state
at the boundary between different classes.

Let us first list properties of the above initial value problem. Their proof can
be found in [15].

– If x(0) ∈ Φ, then x(t) ∈ Φ, ∀t > 0.
– If fi is Lipschitz continuous, then the initial value problem of (1) has a unique

solution.
– A mutually exclusive state is a stable fixed point if at the fixed point fi >

fj 	=i and fi > 0 where i is the dominant class.
– An internal fixed point is unstable when the fitness function is linear, sym-

metric and positive definite.

When we use linear fitness function, then the Lipschitz condition is satisfied.
The condition of the third item is satisfied if the diagonal elements of the fitness
matrix are positive and larger than any of the off-diagonal elements in their
respective columns. Thus, to draw a unique solution with a dominant class at
every location, we use a linear fitness function with a fitness matrix of M that
is symmetric, positive, and Mii > Mij ∀i. The fitness function is

fi(x) = (Mx)i (5)

with (v)i being the ith component of a vector v. The solution gives a dominant
class at each location except in degenerate cases when x(r) reaches a configura-
tion that is constant everywhere and is also a fixed point at every r.

Nodule Segmentation. We use CD to extract nodules, vessels, and other
bright foreground structures. For solitary nodules, this step extracts them reli-
ably. For non-solitary nodules, we further apply the robust Gaussian ellipsoid fit
to separate nodules from the attached structures.

For nodule segmentation, we provide two classes: background (class 1) and
foreground (class 2) that includes nodules, vessels, and other pulmonary struc-
tures. Hence n = 2. An important design issue for applying CD to a particular
segmentation task is the initialization of x (x0 in (1)). we choose the following
formula for segmenting pulmonary nodules.

x2(r) = e−2(1−min(1,I(r)/1000))2 (6)
x1(r) = 1 − x1(r) (7)

where I(r) denotes the CT value of the input volume at r, and 1000 is near the
upper CT value of non-calcified pulmonary nodules. Hence for voxels with I ≥
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1000, x2 = 1 and x0 = 0. For voxels with I < 1000, x2 decreases monotonically
as I deviates from 1000 while x1 increases. x2 takes the minimum value of e−2

when I = 0. Another design issue is the fitness matrix. We use a 2 by 2 identity
matrix which satisfies the above condition for assuring dominant states.

It is convenient to have different time steps for the competition term and the
diffusion term in (1). This is equivalent to having spatially variant µ in (1). We
use 0.5f̄ for the time step of the competition term and 0.5 for the diffusion term.
Using a linear isotropic diffusion, (1) can be discretized as

xi(r, n + 1) = 0.5
xi(r, n)fi(x(r, n))

f̄(x(r, n))
+ 0.5x̄i(r, n) (8)

where x̄ is the average value of the six-neighbors. For our experiments, we repeat
the iteration for four times, with which one class emerges as a dominant one over
the other at each voxel.

2.2 Robust Gaussian Ellipsoid Fit

This technique robustly fits a 3D anisotropic Gaussian function to the nodule’s
intensity distribution in a multiscale fashion, given a marker positioned near a
target nodule. An ellipsoid that approximates the nodule’s boundary is derived
as a specific iso-level or equal-probability contour of the fitted Gaussian. Various
nodule size features (e.g., maximum diameter, volume, sphericity) are computed
analytically from radii of the ellipsoid. The multiscale analysis is given by i)
performing a robust mean shift-based Gaussian model fitting for each of Gaussian
scale space images constructed over a set of discrete analysis scales, and ii) find
the most stable estimate among the multiscale model estimates by minimizing
a form of Jensen Shannon divergence used as a stability criterion. The solution
is efficient because the mean shift formulation removes the explicit construction
of the Gaussian scale space that are computationally expensive.

At each scale, the nodule center location as Gaussian mean is estimated by
the convergence of the scale space mean shift procedures. In the neighborhood
of this estimated mean, local data analysis is performed by the mean shift pro-
cedures initialized at a set of neighboring points. The anisotropic tumor spread
as Gaussian covariance is estimated by a constrained least-squares solution of
a linear system constructed with the convergent mean shift vectors. Using in-
formation only from the convergent vectors facilitates the robustness, removing
outlier samples from the above estimation framework. Due to this, the solution
is effective for segmenting wall- or vessel-attached cases. In our experiment, we
followed the parameter settings recommended in [8]. The scale space is con-
ceived with 18 analysis scales with 0.25 interval (0.52, .., 4.752). And 35% 3D
confidence ellipsoid is used for deriving an equal-probability contour from the
fitted Gaussian. This confidence threshold was determined experimentally.

2.3 Local Distribution Maximum

The technique applies thresholding at multiple levels followed by connected com-
ponent analysis on each thresholded volume. It then searches for objects and
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their plateaus in the multiple thresholded volumes. The search starts from the
volume with the highest threshold value and moves to ones with lower threshold
values sequentially. A new object is found when a connected component has no
overlaps to components in the previous volume. An object becomes a plateau
when the ratio between the volume of the object and the volume of its bounding
box suddenly decreases by more than some fraction (say η) or the object merges
with another plateau. Important parameters of the method are the threshold
values and η. In our experiment, we set η = 1/30 following the recommendation
in [14] and set 12 threshold levels between 0 and 1100 with an increment of 100.

3 Diameter Estimation

According to the I-ELCAP protocol [7], ”the diameter of a nodule is estimated as
the average length and width where length is measured on a single CT image that
shows the maximum length; and width is defined as the longest perpendicular
to the length.” Typically, the CT image is selected along the axial direction,
due mainly to high-resolution and isotropic nature of the axial view. We follow
closely with the protocol to estimate the diameter from the segmentation.

For LDM and CD, the diameter of a nodule is estimated as follows. After the
segmentation and connected component analysis, the component that is closest
to the marker is selected as the target nodule. In most cases, the marker is
contained within the component, but in some cases, it lies on the background
due to inaccurate marker positioning. Next, the component is analyzed slice by
slice in the axial view. For each axial slice, 2-dimensional connected component
analysis is performed, an ellipse is fitted to each component, and the geometrical
mean of the axes is recorded for each ellipse. Among all 2-dimensional connected
components, we select the one with the maximum geometrical mean for diameter
measurement. The diameter is then estimated as the average width and height
of the bounding box enclosing the selected component. Use of the geometrical
mean instead of an arithmetic mean gives a slightly better agreement with the
ground-truth.

For EF, the diameter is estimated as follows. First, an ellipsoid directly de-
rived from the estimated covariance is projected on the axial plane, and then
the radii of the ellipse on the projection plane is computed. The diameter is es-
timated as the arithmetic mean of the radii times the scaling constant of 1.6416,
corresponding to the 35% confidence limit.

4 Hybrid Method

When a nodule is attached to another structure, CD will segment both of them
together and result in a large over-estimated volume. This segmented volume
usually stretches out to the boundary of the bounding volume (21x21x21 in our
experiments). This observation leads to a simple test for the nodule type. If
the segmentation volume touches one of six boundaries of the bounding volume,
it is considered non-solitary. Otherwise, it is considered solitary. We can also
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compute the ratio between the segmentation volume and the volume of the
bounding box enclosing the segmentation to check if the segmentation has a
reasonably spherical shape. In our experiments, we only used the boundary check
to determine if the nodule is solitary.

By using this solitary/non-solitary check of a nodule with CD segmentation,
we implement a hybrid approach to the diameter estimation problem. For each
given marker, a sub-volume of 21x21x21 voxels is extracted. CD segmentation
is then applied to the volume, followed by the boundary check. If the boundary
check indicates the nodule to be solitary, we apply the diameter estimation by
the CD segmentation. Otherwise, we apply EF on the sub-volume and estimate
the diameter. This hybrid approach is denoted by HB in the rest of the paper.

5 Experiments

In this section, we evaluate the performance of HB in comparison to EF, LDM
and CD. We use 1349 nodules taken from over 240 CT volumes for the evaluation.
Certified radiologists placed markers by eye-appraisal, resulting in at least one
marker for each nodule. A 21x21x21 bounding volume is used as an input. The
ground-truth diameter for each nodule is measured by human experts (both
radiologists and scientists in the medical imaging field) following the IELCAP
protocol.

First, we qualitatively evaluate the segmentation results of EF, LDM and
CD. Figures 5(a)-(l) show some illustrative examples of segmentation results
and their diameter estimates. In each figure, the left, middle and right images
are the result’s axial slices for EF, LDM and CD, respectively. The location
of the slice is at the center of the ellipsoid computed by EF. The EF results
are displayed by an ellipse (conic) on the cutting plane with the original data
superimposed. The first number at the top-left corner is the ground-truth and
the second number is the EF’s estimate. The numbers in the LDM and CD
results are the respective estimates.

As stated in Section 1, EF has difficulties in processing small nodules. This
is observed in Figures 5(g)-(h). EF can also segment a part of the surrounding
background as a nodule, leading to an over-estimation of the diameter as shown
in Figure 5(h). A problem associated with LDM is its sensitivity to the pre-
determined threshold levels, which are typically set by a fixed increment. The
segmentation of an object becomes inaccurate when the intensity distribution
of the object has an overlap with the distribution of its plateau. This can be
observed in Figures 5(i)-(j). The degree and the frequency of the problem can be
reduced by increasing the number of threshold levels, but at the cost of increasing
the computational load. CD is effective in estimating the diameter of solitary
nodules. However, the technique is not applicable to nodules attached to other
structures such as the lung wall as seen in Figures 5(k)-(l).

Next, the estimation accuracy is quantitatively evaluated with the ground-
truth. According to the CD-based boundary test, there are 614 solitary and 735
non-solitary nodules in the data set. We first evaluate the performance of EF,
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LDM and CD separately for the two types of nodules. The squared difference
between the estimates and the corresponding ground-truth is used as error met-
ric. Figures 2-3 show the results for solitary and non-solitary cases, respectively.

(l)

(a)

3.382 2.730 4.621 3.301

(b)

3.069 3.667 3.801 3.258

(d)

2.973 3.141 2.578 2.900

(c)

2.626 3.515 2.879 2.617

(e)

5.050 5.407 6.188 5.156

(f)

1.328 2.761 1.980 1.650

(h)

2.877 2.188 2.867 2.867

(g)

3.582 5.528 1.629 5.158

(j)

4.030 5.335 2.578 4.512

(i)

2.195 3.517 1.969 11.813

(k)

2.512 2.891 1.688 8.719

3.577 4.302 3.924 3.644

Fig. 1. Results of segmentation algorithms
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Fig. 2. Estimation performance of EF, LDM and CD for solitary nodules



332 T. Kubota and K. Okada

2 4 6

10
1

Center Diameter (mm)

Me
an

−S
qu

are
 D

iffe
ren

ce
 (m

m2 )

LDM
EF
CD

2 4 6
0

10

20

30

40

50

60

Center Diameter (mm)

ST
D 

De
via

tio
n

LDM
EF
CD

Fig. 3. Estimation performance of EF, LDM and CD for non-solitary nodules
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Fig. 4. Performance of EF, LDM and HB for both solitary and non-solitary nodules

Table 1. Comparison of Computation Time (seconds)

Method EF LDM CD HB
mean 1.26 0.269 0.0510 0.651
std 0.25 0.18 0.014 0.7

The mean is shown in log scale to improve the visibility of the plots while the
deviation is shown in linear scale. The error statistics are computed as a func-
tion of the diameter sampled discretely between 1 and 7 with a 0.5mm interval.
The mean and standard deviation are computed in a ±0.5 range for each of the
center diameter.

For solitary nodules, the error tends to positively correlate with the diameter.
Thus the squared difference error can be normalized by the corresponding center
diameter for better interpretation. CD is more accurate than EF and LDM across
all sizes except at 3mm where LDM with 0.2913 normalized-error is slightly
better than CD with 0.2972 normalized-error. For non-solitary nodules, CD is
the least accurate and EF is the most accurate one. For EF and CD, the error
tends to negatively correlate with the diameter while it stays around 2.5mm2

for LDM. The large error by CD is due to the over-segmentation problem.
Next, the performance of HB is evaluated using both nodule types together.

Figure 4 shows the mean and the standard deviation of the squared difference
errors in linear scale for EF, LDM and HB using the same diameter ranges as
in Figures 2-3. HB constantly gives a smaller error than other methods in all
sizes. This is not a surprising result; HB analyzes the solitary and non-solitary
nodules by CD and EF whose accuracy in their respective categories has been
verified above. Table 1 summarizes the computational efficiency of each estima-
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tion technique computed as the mean and standard deviation over 1349 nodules.
The results indicate that CD is computationally most efficient while EF is most
expensive. HB is about 50% faster than EF.

6 Conclusion

We introduced a new pulmonary nodule size/diameter estimation technique that
combined robust Gaussian ellipsoid fit (EF) and competition-diffusion segmen-
tation (CD). The technique first uses CD to separate foreground structures from
the background, and applies EF if necessary to separate a nodule from attach-
ment. If the nodule is solitary, the CD step alone is sufficient. A simple test on
the CD segmentation accurately separates solitary and non-solitary cases.

Our experiments show that this hybrid method outperforms EF, CD and
Local Density Maximum. For solitary nodules (see Figure 2), the mean-square
difference error between the estimates and the ground-truth is 1.19 mm2 with
EF and 0.73 mm2 with CD: a 35% reduction. The hybrid method is also twice
as fast as EF.
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Abstract. Important attributes of 3D brain segmentation algorithms
include robustness, accuracy, computational efficiency, and facilitation
of user interaction, yet few algorithms incorporate all of these traits.
Manual segmentation is highly accurate but tedious and laborious. Most
automatic techniques, while less demanding on the user, are much less
accurate. It would be useful to employ a fast automatic segmentation
procedure to do most of the work but still allow an expert user to inter-
actively guide the segmentation to ensure an accurate final result.

We propose a novel 3D brain cortex segmentation procedure utiliz-
ing dual-front active contours, which minimize image-based energies in a
manner that yields more global minimizers compared to standard active
contours. The resulting scheme is not only more robust but much faster
and allows the user to guide the final segmentation through simple mouse
clicks which add extra seed points. Due to the global nature of the evo-
lution model, single mouse clicks yield corrections to the segmentation
that extend far beyond their initial locations, thus minimizing the user
effort. Results on 15 simulated and 20 real 3D brain images demonstrate
the robustness, accuracy, and speed of our scheme compared with other
methods.

1 Introduction

Three dimensional image segmentation is an important problem in medical image
analysis. Determining the location of the cortical surface of the human brain from
MRI imagery is often the first step in brain visualization and analysis. Due to the
geometric complexity of the brain cortex, manual slice by slice segmentation is
quite difficult and time consuming. Thus, many automatic segmentation methods
have been proposed which eliminate or nearly eliminate user interaction.

The active contour model has been widely applied in medical imaging, which
was introduced in [1] as the “snakes” and is an energy minimization method.
Malladi and Sethian [2] showed the initial contributions on 3D segmentation of
medical images, after that, numerous contributions [3,4,5,6,7,8] have been made
on the segmentation of complex brain cortical surfaces.

These methods used the active contour model as the final step for the cor-
tex segmentation, applied geometric and anatomical constraints and/or utilized

Y. Liu, T. Jiang, and C. Zhang (Eds.): 2005, LNCS 3765, pp. 335–345, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CV IB A



336 H. Li, A. Yezzi, and L.D. Cohen

significant pre-processing of the data to obtain desirable final segmentations.
Furthermore, curve evolution process in these methods are very time-consuming.

Some other methods were also proposed for brain segmentation, such as
fuzzy set methods [9,10], Bayesian Methods [11], Markov random field methods
[12,13,14], expectation-maximization (EM) algorithm [15] and so on. These
methods were aimed at segmenting the brain tissues automatically, and limiting
the user interaction to choosing the parameters of the automatic process, setting
initial surfaces for surface evolution, or restricting regions to be processed. It is
usually impossible or very difficult and unintuitive for experts to guide the seg-
mentation process with their professional knowledge for improving the accuracy
of the final result. In our opinion, methods that allow simple and intuitive user
interaction (while minimizing the need for such interaction as much as possible)
are more useful than totally automatic methods given the importance of high
accuracy and detail in cortical segmentation.

In this paper, we propose a novel 3D brain cortex segmentation scheme based
on dual-front active contours which are faster and yield more global image-
based energy minimizers compared to other active contours models. This scheme
also adapts easily to user interaction, making it very convenient for experts to
guide the segmentation process by adding useful seed points with simple mouse
clicks. This scheme is very fast and the total computation time is less than
20 seconds. Experimental results on 15 simulated and 20 real 3D brain images
demonstrate the robustness of the result, the high reconstruction accuracy, and
the low computational cost compared with other methods.

2 Cortex Segmentation by Dual-Front Active Contours

2.1 3D Brain Cortex Segmentation with Flexible User-Interaction

The basic idea of dual-front active contour model is proposed by the authors
in [16] for detecting the object boundaries. Using this model, the segmentation
objective is achieved by iteratively dilating the initial curve to form a narrow
region and then finding the new closest potential weighted minimal partition
curve inside by dual front evolution.

Due to the complex and convoluted nature of the cortex and the partial
volume effects of MRI imaging, the segmentation of cortex must be considered
in three dimensions. Here we propose the 3D brain cortex segmentation scheme
based on the dual-front active contours. This scheme is simple, fast, and accurate
with flexible user-interaction. In Fig 1, we show an overall diagram of this scheme.
And we will give the details about choosing the active region and the potentials
in the following subsection.

2.2 Active Region and Potentials Decision By Histogram Analysis

The original dual front active contours use morphological dilation to form the
narrow active region from an initial curve. In fact, this is just one way to obtain
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Fig. 1. Overall diagram of 3D brain cortex segmentation process

the active region, we may use some other methods to define the active regions
for a given segmentation, or class of images. And for the 3D brain tissue seg-
mentation, the morphological dilatation is not a good solution because of the
complex and convoluted structure of cortex. It is possible that the labels of some
tiny and convoluted parts may be changed during dilation, and this will affect
the result’s accuracy.

In this subsection, we give a simple way to decide the active region by an-
alyzing the histogram of the MRI normal brain image. The Fig. 2 shows the
histogram analysis of the three tissues in brain: CSF, GM, and WM. Panel (a)
is the histogram of a sample 3D MRI elderly brain image. There are three peaks
and two bottoms in the histogram. These three peaks approximate to the av-
erage mean value of the three tissues. In fact, the neighborhoods of these two
bottoms correspond to the voxels located around the boundary of different tis-
sues. Because of the partial volume effect, it is hard to separate these voxels
just by simple thresholding. We treat these voxels as unlabeled voxels, and use
dual-front evolution to separate them.

As shown in the Panel (b) of Fig. 2, by setting different thresholds, the whole
3D image may be divided into GM seeds, WM seeds, CSF seeds, background
points, and unlabeled voxels which are the voxels within the two regions R1 and
R2 around these two bottoms. Background points are ignored for the computa-
tion. For the image with high noise level, we will smooth it first, then calculate
the histogram and divide it.

Now, for the potentials for different labeled curves, we use region-based in-
formation for guiding the fronts’ evolution. We calculate the mean values uCSF ,
uGM and uWM , the variance values σ2

CSF , σ2
GM and σ2

WM , of the three different
kind of voxels with different labels lCSF , lGM and lWM . Then the propagation
potentials for the labeled points (x, y) are decided by

P̃l(x, y) = w1 · exp(−|I(x, y) − ul|2
2σ2

l

) + w2 ifL(x, y) = l(lCSF , lGM , lWM ), (1)

where I(x, y) is the average value of the image intensity in a window of size 3×3
centered at the examined point.
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(b)
Fig. 2. The active region location is decided by the histogram analysis and thresholding
of the 3D MRI brain image. (a): the histogram of a sample 3D MRI brain image; (b):
the center of R1 is the bottom between the peaks of CSF and WM, the center of R2 is
the bottom between the peaks of CSF and WM. h1 and h2 decide the size of R1 and
R2.

3 Experimental Results

In this section, we show validations of our approach on various 3D simulated
and real MRI brain image data sets. We use T 1-weighted images for our test
because they provide the best gray/white contrast and are commonly used for
neuroanatomical analysis. All the experimental results shown in this section are
obtained from 3D volume process directly.

To evaluate the efficiency of our method for every tissue type T (GM, WM,
and CSF), four probability measures are defined by equation

TP =
NB ∩ NR

NR
, FN =

NR − NB ∩ NR

NR
, FP =

NB − NB ∩ NR

NR
, OM =

TP

1 + FP
, (2)

where NR is the number of reference ground truth voxels of tissue T . NB is the
number of voxels detected by our algorithm as the voxels of tissue T .

3.1 Validation on Simulated MR Brain Data

In Fig. 3, we present the results of the segmented WM tissues for five different
slices of one 3D simulated brain image provided by BrainWeb [17]. We use the
potentials defined by Eq. 1 with ω1 = 1 and ω2 = 0.1. The size of R1, h1, is
equal to 20, the size of R2, h2, is equal to 10 (see the Fig. 2).

In Table 1, we also give the comparison of the GM segmentation results on the
same 3D simulated image of our scheme and other three methods, the fuzzy C-
means method [18] implemented by ourselves, the Hidden Markov Method [12]
provided by the website of FMRIB Software Library(http://www.fmrib.ox.
ac.uk/fsl/), and the coupled surface algorithm reported in [7].

In Fig. 4, the 3D models of segmented GM and WM surfaces from our
method, and the ground truth data are also shown. From these segmentation
results and comparison results, we can see that our scheme performs better than
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(a) (b) (c) (d) (e)

Fig. 3. Comparison of the segmentation results from our method with the ground truth
data of five slices of one 3D simulated brain image provided by BrainWeb [17], which
is T1 modality, 1mm slice thickness, 3% noise level, 20% INU. And the image size is
181 × 217 × 181.
The top row presents the segmentation results obtained from our method; the middle
row shows the ground truth data provided by BrainWeb database; the bottom row
shows the difference between the segmentation results from our method and the ground
truth data. These five columns correspond to five slices of the test 3D image.

Table 1. Comparison of the gray matter segmentation results of our method with
some other methods on one 3D simulated brain image, which is the same one as that
in Fig. 3

Rate Fuzzy C-means Hidden Markov Coupled Surface Dual-Front
Method Method Algorithm Active Contours

TP (%) 87.3 92.3 92.8 93.3
FN (%) 12.7 7.7 7.2 6.7
FP (%) 23.2 5.7 6.0 5.6

Overlap Metric 0.708 0.873 0.875 0.883
Time (s) 373 500 3600 15

the other three methods in the accuracy of result and the computational effi-
ciency.

We also test our method on 15 3D simulated brain images provided by Brain-
Web [17,19], which are T 1 modality, 1mm slice thickness, different noise levels
1%, 3%, 5%, 7%, and 9%, and different INU settings 0%, 20%, and 40%. All
images are the same size of 181 × 217 × 181. We still use the potentials defined
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by Eq. 1 with ω1 = 1 and ω2 = 0.1. The size of R1, h1, is 20, the size of R2,
h2 is 10. For the image with high noise levels 5%, 7%, and 9%, we first use the
isotropic nonlinear diffusion proposed by Perona and Malik [20] for denoising
images. For the segmentation results, the overlap metrics of three tissues for
these 15 images are from 0.747 to 0.944. The measurement results show that
our scheme performs well in segmenting the cortex even for the image with high
noise level and INU setting.

3.2 Validation on Real MR Brain Data

To further evaluate our segmentation method under a wide range of imaging
conditions, we also test the proposed algorithm on 20 real MRI brain images
and compare the segmentation results with the manual segmentation by ex-
perts and some other segmentation methods. The 20 normal MR brain data
sets and their manual segmentations were provided by the Center for Morpho-
metric Analysis at Massachusetts General Hospital and are available at ISBR
website http://www.cma.mgh.harvard.edu/ibsr/.

(a) (b) (c) (d)

Fig. 4. Comparison of the 3D models of the GM and WM surfaces from our method
and from the ground truth data. The test image is the same one as that in Fig. 3. (a)
and (b) are the 3D models of the GM and WM surfaces obtained from our method;
(c) and (d) are the 3D models of the GM and WM surfaces from the ground truth.

Fig. 5 shows the overlap metric, the average overlap metric of the CSF,
GM and WM segmentation results on 20 normal brains, from the manual
method, various automatic segmentation results provided by ISBR, the hid-
den Markov method [12] provided by the website of FMRIB Software Library
(http://www.fmrib.ox.ac.uk/fsl/), and our proposed scheme. For the segmen-
tation of these real brain images, we still use the potentials defined by Eq. 1
with ω1 = 1 and ω2 = 0.1. The size of R1, h1, is 20, the size of R2, h2, is 10.
For these 20 brain images, the histograms are not as that shown in Fig. 2, we
need to choose the two bottoms manually. So how to decide the two bottoms
automatically need further research.

In this comparison with other segmentation methods, except for the meth-
ods provided by ISBR [21], we also compare our method with the other three
recently proposed methods, the Bayesian method proposed in [11] (MPM-MAP);
the couple-surface algorithm [7] (ZENG), and the hidden Markov method [12]
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Fig. 5. The overlap metric of the CSF, GM, and WM segmentation results on 20
normal real brain images from various segmentation methods. The results of some
automatic segmentation methods provided by ISBR. AMAP: adaptive MAP; BMAP:
biased MAP; FUZZY: fuzzy c-means; MAP: Maximum Aposteriori Probability; MLC:
Maximum-Likelihood; TSKMEANS: tree-structure k-means; FAST: Hidden Markov
method [12]; MPM-MAP: the Bayesian method proposed in [11]; ZENG: the couple-
surface algorithm [7]; DFM: our scheme.

(FAST). But with the rapid development of the medical image processing tech-
nology, it is impossible to compare all the related methods and test our methods
on all the real brain images. This study is just the initial step of our research
work on brain image analysis. We will still work on it, and improve the model’s
robustness and the segmentation’s accuracy.

3.3 Simple and Useful User Interaction

The above two subsections show the segmentation result of our scheme with
automatic thresholding only. Furthermore, our scheme is very convenient for
users to add simple seed points just by mouse clicks to improve the segmentation
accuracy dramatically. Fig. 6 gives an example of this nice property.

In Fig. 6, the first row shows one slice of the test 3D image (Panel (a)) which
is the same as that in Fig. 3, the ground truth data of the WM tissue (Panel (b))
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k) (l)

Fig. 6. The simple user interaction can improve the segmentation accuracy dramati-
cally. The blue line in figure (l) is the zoom-in of the user added seed points in figure(h).
The difference of the segmentation result from the automatic thresholding (fig.(g)), the
automatic thresholding with manual correction (fig.(k)), and the ground truth (fig.(c))
are shown in the red circles of figure (c), (g), and (k).

in this slice, and the corresponding 3D model of the WM tissue (Panel (c)). The
second row shows the segmentation result based on one automatic threshold-
ing. When setting the active region according to the Fig. 2, if the region R2 is
shifted to high intensity region, and the size of R2 is large, we get the differ-
ent active region between WM and GM tissue. The black voxels in Panel (d)
present the unlabeled voxels after setting this threshold, and the different la-
beled voxels (shown in the figures with different colors) present different tissues’
seed points. After segmentation, the WM tissue is shown in Panel (e), the 3D
model of segmented WM is shown in Panel (g). Here we can see, if automatic
thresholding cannot provide enough WM seed points, the segmented WM tissue
is incorrect. In this case, the third row shows the segmentation result after user
interaction. As shown in Panel (h), the user interaction is just several mouse
clicks within seconds to add some new seed points manually only on one slice,
then we run the dual-front evolution again to segment GM and WM. The seg-
mented boundary of GM/WM is shown in Panel (i), the extracted WM tissue
and the corresponding 3D model are shown in Panel (j) and Panel (k). The fig-
ures show that the accuracy of the result after user interaction is much better
than that just based on automatic thresholding. This sample shows that our



Fast 3D Brain Segmentation Using Dual-Front Active Contours 343

method allow the simple user-interaction, we will still research on the efficiency
of the user-interaction.

3.4 Computational Time

Another nice property of our methods is the high computational efficiency. We
test our method on 15 simulated 3D MR brain images and 20 real normal 3D
MR brain images. The average total computation time is around 20 seconds, in
which the average computational time for the histogram analysis is around 5
seconds and the average computational time for dual front evolution is around
15 seconds, on the 2.5 GHz Pentium4 PC processor.

We downloaded the software of the Hidden Markovian method from the web-
site of FMRIB Software Library (http://www.fmrib.ox.ac.uk/fsl/), and im-
plemented the fuzzy C-means method [18] for the comparison with our method.
On the same computer, the average computational time of Hidden Markovian
method for the same test images used in our method is around 550 seconds, the
average computational time of the fuzzy C-means method for the same images
is around 450 seconds. The comparison shows that our method is much faster
then these two methods. The average overlap metric for gray matter and white
matter segmentation of these two methods are 0.473 and 0.567 from fuzzy C-
means methods, 0.556 and 0.648 from Hidden Markov method, which are lower
than that of 0.739 and 0.670 from our method.

Although the average overlap metric for white matter segmentation of the
Bayesian method proposed in [11] on the same 20 real brain data sets is 0.683
(shown in Fig. 5), a little higher than that of 0.670 from our method, they
reported that the computational time is around 280 seconds which is much slower
than our methods.

Because many active contour model based methods always combined with
some pre-processing methods such as fuzzy C-means, Bayesian segmentation,
and etc. The active contour model is just implemented as the final step to yield
the final cortical surface, it is hard for us to give an exact comparison. Here, we
give the brief discussion about the computational time of some active contour
model based methods.

Xu’s method [6] combined the adaptive fuzzy C-means algorithm [9], they
reported that the computational time for the final deformable surface algorithm
is about 3 hours. As for the coupled surface method proposed by Zeng [7], it
was reported that for a 3D image of the whole brain with the voxel size of
1.2 × 1.2 × 1.2mm3, their algorithm runs in about 1h on a SGI Inigo2 machine
with a 195MHz R10000 processor for the implementation of skull stripping,
cortex segmentation and measurement simultaneously. They also reported that
the average overlap metric for gray matter segmentation on the same 20 normal
brain images provided by ISBR is 0.657, which is lower than that of our method,
0.739. Goldenberg [8] also adopted the coupled surfaces principle and used the
fast geodesic active contour approach to improve the computational time for
cortex segmentation. They reported that the computational time of their method
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is about 2.5 mins for a 192×250×170 MR image of the whole brain on a Pentium3
PC. But they did not give the quantitative analysis of the segmentation results.

4 Conclusions and Future Work

In this paper, we propose a novel scheme for 3D brain cortex segmentation based
on dual-front active contours. The cortex segmentation results from the synthetic
and real MR brain images, and the computation time compared with other
methods demonstrate the high reconstruction accuracy, the low computational
cost and the minimum user interaction of this scheme. In the future, our research
work will focus on the following aspects.

First, our dual-front active contour model is very fast, and easy to be im-
plemented, it is flexible to combine with other methods as the post-processing
method and improve the segmentation accuracy further. We will work on the
combination of the current model with some powerful INU bias compensation
methods and smooth methods to improve the model’s robustness.

Second, in this paper, we just use the region-based information to guide
the curve evolution because the interfaces among difference tissues is not clear
(because of the partial volume effect). We are also working on proposing some
better local operators, and combine them with the region-based information in
the potentials to improve the accuracy of the segmentation result further.

Third, our model can be generalized to multi-spectral data, which is very
common in MR imaging. In this case, the voxel intensities are assume to be
vectors instead of scalars, and how to design the potentials, and the thresholds
need further investigation.

Fourth, we are working on finding the better methods to choose active region
automatically for improving the method’s generality.

This dual front active contour model provides a novel, simple idea for 3D
brain tissue segmentation, and also has strong potential applications in other
medical image analysis domains, where a volumetric layer is the study of interest.
Examples include the left ventricular (LV) myocardium of the heart and the
boundary of the liver.
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Abstract. An extension of previously-described Motion-Corrected Independent 
Component Analysis (MCICA) for improved correction of significant patient 
head motion in fMRI data is proposed. For fMRI time-points corrupted with 
relatively large motion, i.e. on the order of half a voxel, only partial images sub-
ject to minimal interpolation artifact are initially used in MCICA, allowing for 
an accurate estimation of the activation weights of the underlying ICA compo-
nents. The remaining voxels that are irretrievably corrupted with gross motion 
in the motion-corrupted time-points are treated as missing data, so the final 
component maps of the ICA components are estimated from an optimally mo-
tionless reference ensemble. Interpolation artifact therefore is minimized in the 
final registered image, which can be mathematically expressed as a weighted 
combination of the extended reference ensemble. Experiments demonstrate that 
the proposed method was robust to the presence of simulated activation and the 
number of reference images used. While the previous version of MCICA al-
ready achieved noticeably decreased registration error than SPM and AIR, the 
proposed method further reduced the error by thirty percent when correcting 
simulated gross movements applied on real fMRI time-points. With a real fMRI 
time-series acquired during a motor-task, further increased mutual information 
and more clustered activation in the primary and supplementary motor areas 
were observed. 

1   Introduction 

A typical fMRI experimental session requires subjects to lay motionless during tens 
of minutes. Even cooperative subjects with head constraints may show both slow and 
unpredictable abrupt displacements of a millimeter or more. For very young, old, or 
ill subjects, the displacement could be significantly larger, i.e. several millimeters. 
Head motion can result in large signal changes that can be difficult to differentiate 
from changes due to true brain activation. When motion corresponds to the underlying 
task, misinterpretation of what signal changes are due to motion and what are due to 
changes in brain activation is a serious challenge [1].  

We have recently proposed a novel method, named Motion-Corrected Independent 
Component Analysis (MCICA), for retrospective motion correction of fMRI time-
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series [2]. In contrast with the conventional registration approaches, MCICA has the 
advantage of incorporating multiple reference images in a practical manner for align-
ment purpose, which allows for brain activations present in an fMRI time-series to be 
implicitly modeled and hence will not interfere with motion estimation. Experiments 
demonstrated that compared to the LS-based similarity metric implemented in SPM 
and AIR, two widely-used registration packages [3] [4], MCICA was more robust to 
the addition of simulated activation and did not lead to detection of false activations 
after correction of simulated task-correlated motion. With actual fMRI data the time 
course of the derived continually task-related ICA component became more corre-
lated with the underlying behavioral task after preprocessing with MCICA, and the 
associated activation map was more clustered in the expected area without spurious 
activation at the brain edge [6]. 

In MCICA, the final registered image is achieved by taking data-adaptive linear 
combinations of basis images, instead of using a non-adaptive general-purpose re-
sampling kernel, which minimizes interpolation artifacts and provides potentially 
nonrigid-body motion correction [2]. To generate the basis images, a dense search in 
the limited range of the possible translation/rotation needed is performed. Although 
interpolation error is present in each basis image, it can be compensated to some de-
gree by an optimal linear operator, i.e. the data-adaptive filter estimated by MCICA. It 
was demonstrated that for real fMRI data corrupted with artificial motion, the final 
registered image obtained by MCICA achieved higher fidelity to the original image, 
compared to the images obtained by SPM, AIR, or Cubic interpolation even with the 
perfectly known motion-compensation parameters (i.e. the inverse of the artificially 
applied rigid-body motion) [2].  

Nevertheless, for images corrupted with relatively large motion, i.e., on the order 
of half a voxel, it has been observed that the interpolation artifact at the brain edge in 
the rotated/shifted basis images is too large to be sufficiently compensated by a linear 
combination of the basis images. Fig. 1 compares the errors in the intensity values 
caused by cubic interpolation with the known motion-compensation parameters (Fig. 
1.a) and that produced by the Least-Mean-Square (LMS) combination of the ro-
tated/shifted basis images (Fig. 1.b), for a real fMRI volume that was corrupted by an 
artificial 3D movement of mean discrepancy of 0.65 voxels when integrated over the 
brain. The registration error for each voxel is represented by the brightness (intensity) 
in the image. It can be seen that the error at the brain edge for the LMS solution using 
the rotated/shifted basis images is relatively high, although it becomes smaller (dim-
mer) than that caused by cubic interpolation. 

In this paper, we suggest an extension of MCICA algorithm for improved compen-
sation of relatively large motion effect in fMRI data. Specifically, for a time-point 
containing grossly corrupted data, some severely motion-affected voxels may be 
treated as missing data. Time courses of the underlying ICA components are esti-
mated using only suitable subsets of voxels that are likely to be helpful for motion 
estimation, and corresponding component maps are estimated using extended opti-
mally motionless reference ensemble. In essence, the final registered image is recon-
structed as a weighted summation of the extended reference ensemble, instead of a 
weighted summation of the rotated/shifted basis images. Fig. 1.c displays the errors 
obtained by the LMS combination of the extended reference ensemble, which is 
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clearly lower than that achieved for the LMS solution using the rotate/shifted basis 
images (Fig. 1.b). The summation of the extended reference ensemble using the 
weights estimated by the proposed method achieves comparable result (Fig. 1.d).  

(d)  Extended MCICA Motion Correction(c) LMS using Extended Reference Ensemble

(b) LMS using Rotated/Shifted Basis Images(a) Cubic Interpolation

 
 

Fig. 1. Comparison of errors of cubic interpolation (a), LMS linear combination of rotated/shifted 
basis images (b), LMS linear combination of extended reference ensemble (c) and extended 
MCICA for large motion correction (d), for an image corrupted with motion of mean discrepancy 
of 0.65 voxels when integrated over the whole brain 

2   Extended Motion-Corrected Independent Component Analysis 

When ICA model ASX =  is applied to fMRI data analysis, the data matrix X  (time-
by-voxel) is formed by concatenating all voxel values in a volume acquired at a single 
time-point as a row vector, and then concatenating all such row vectors for the whole 
time-series along the column direction. It is assumed that the observed fMRI data are 
the linear sum of the contributions from several spatially independent processes. The 
component maps of the independent processes are collected as rows in the component 
map matrix S  (component-by-voxel), and the corresponding activation courses are 
collected as columns in the time course matrix A  (time-by-component). The objec-
tive of ICA is to determine the unmixing matrix W , to achieve the time course esti-

mation 1~ −= WA , and the component map estimation WXS =~
. With the Infomax 

algorithm [5], W is estimated by maximizing ][YH  where ][⋅H  denotes the Shannon 

(joint) entropy of a random vector of which each row of Y is viewed as an 
independent realization, and Y  is a nonlinear transformation of  X : 

( ) ( )WXSY gg == ~
 (1) 
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For fMRI signals with super-Gaussian distributions, the nonlinear transfer function is 

typically chosen to be the logistic function ( )
se

sg ~

1

1~
−+

= . It can be shown that, 

{ }JEHH log][][ += XY  (2) 

where {}⋅E  denotes statistical expectation and J  is the absolute value of the deter-

minant of the Jacobian matrix of the transformation from X  to  Y. 
The core idea of the MCICA algorithm is based on the observation that motion ef-

fects within fMRI data will result in an increase in ][XH  and a decrease in ][YH  in 

Eq.(2) [2]. The entropy difference, { }JE log , therefore can be used as the objective 

function to be maximized for motion mitigation of fMRI data. For an fMRI time-
series, an appropriate number of optimally motionless time-points are selected as the 
reference ensemble (typically consisting of ten time-points in our applications). Each 
time-point in the time-series is then brought into alignment with the reference ensem-
ble one by one. Specifically, in order to align one time-point denoted by the column-
vector 1x  (transpose of a given row in the data matrix X ), the proposed objective 

function, { }JE log , is maximized for the following matrix with respect to the data-

adaptive filter p : 

[ ]Tq

Tr xxpRX L2=  (3) 

Here the column-vector ix ( qi ,,2 L= ) represents the time-points that act as the 

‘reference ensemble’, and R  is the basis image matrix whose rows collect different 
translations and/or rotations of the time-point to be registered, 1x , after gross align-

ment using the principal axes of activation method. Therefore in the previously-
described MCICA algorithm in [2], the final registered image for the time-point 1x  is 

obtained as pR T , which is a linear sum of the rotated/shifted basis images weighted 

by the estimated data-adaptive filter p .   

In this paper we propose an extension of MCICA algorithm by exploiting the prop-
erty that under the ICA model each voxel in the image is assumed to be independent. 
In particular, we can choose voxels that are likely to be helpful for motion estimation 
and discard other less suitable voxels. For images corrupted with large motion, we 
propose choosing voxels in a ring torus configuration as voxels near the center of 
mass will be largely unaffected by pure rotations, and the voxels at the brain edge 
may be affected by significant interpolation errors in the rotated/shifted basis images. 
This submatrix, r

ICA
X , that contains the voxels in the ring torus region, is used in 

MCICA for an accurate estimation of the data-adaptive filter p , the time course ma-

trix 1−= WA , and the partial component maps for the ring torus region rr

ICAICA
WXS = . 

We notice that it is not appropriate to apply the estimated data-adaptive filter p  to 

all voxels in the volume to calculate the complete registered image because, as shown 
in Fig. 1.b, a linear summation of the rotated/shifted basis images is not sufficient to 
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recover the voxels at the brain edge. Nevertheless, the time course matrix A  obtained 
from the voxels in the ring torus region is common to all voxels. In another words, we 
have obtained the enhancement/suppression weights for the ICA components contrib-
uting to the time-point to be registered. We can thereby obtain the complete registered 
image as the linear combination of the complete component map rS  weighted by the 
estimated enhancement/suppression weights contained in A . The only problem left is 
to calculate the complete component map matrix rS .  

The complete component map matrix rS  can be estimated by running Infomax 

ICA directly on a motionless data matrix X̂ , named ‘extended reference ensemble’, 
which is formed by replacing the time-point to be registered (the first time point in 
our simplified example in this paper) in the data matrix rX  with an extra image free 
of motion. However, in order to directly apply the previously estimated enhance-
ment/suppression weights, that is, to calculate the complete registered image as the 
corresponding row of the matrix product rAS , the calculated component map rS  

should have proper order and variance, or in another words, should contain r

ICA
S  as a 

submatrix.  Unfortunately, there is indeterminacy inherent in the ICA model in the 
variance and the order of the estimated components. Moreover, ICA is not a determi-
nistic algorithm, which means it generates a little bit different outputs for different 

runs. Therefore, in our experiment, we directly estimate the unmixing matrix Ŵ  for 

X̂  by minimizing r

ICAICA SXW −ˆˆ  with the solution: 

1)ˆˆ(ˆˆ −= T

ICAICA

T

ICA

r

ICA XXXSW  (4) 

where ICAX̂ is the submatrix containing the same indexes of columns (the voxels in the 

ring torus region) from X̂  as r

ICA
X  from rX . The complete component map rS  is then 

obtained as: 

XWS ˆˆ=r  (5) 

whose corresponding submatrix optimally approximates r

ICA
S  in the sense of least 

mean square error.  Since the estimated ICA components are a linear transformation 
of the extended reference ensemble, the final registered image, which is obtained as 
the corresponding row (the first row in our simplified example in this paper) of the 

matrix product XWAAS ˆˆ=r , is essentially a linear combination of the images in the 

extended reference ensemble X̂ , with the weights as the corresponding row in the 

matrix product WA ˆ . 

3   Experiments 

The performance of the extended MCICA algorithm was quantitatively evaluated on 
both surrogate data and real fMRI time-series, and was compared with that of SPM 
and AIR. 
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a) MCICA: To generate the basis images in R , we first estimated any large motion 
by aligning the centroid and principal axes of activation of the image to be registered 
to that of the mean image of the reference ensemble. The preprocessed image was 
then rotated about its centroid using all combinations of the rotation angles of [-2, -1, 
0, 1, 2] degrees in three dimensions. Two translated versions were then generated for 
each of the rotated images by random three-dimensional translations within [-0.25 
0.25] voxels. Voxels within two voxels’ distance of the automatically detected brain 
edge using thresholding and/or within five voxels’ distance of the center of mass were 
excluded when estimating the data-adaptive filter p  in MCICA. 
b) LS-SPM: The standard realignment algorithm in SPM2 was used. The default op-
tion of 4th-degree B-spline interpolation was used for resampling. 
c) LS-AIR: A second implementation of the least-square approach in AIR 5.05 was 
used. The recommended option of Chirp-Z interpolation was chosen for resampling 
and the recommended six-parameter rigid-body model for intra-subject image regis-
tration was used. 

In the first experiment, the robustness of the proposed extended MCICA algorithm 
to the number of reference images used was explored. A simulated data set X  was 
formed by left-multiplying a component map matrix S mimicking n=9 brain activa-
tions, with a time course matrix A consisting of sinusoids corrupted with noise. A 
simulated brain image with high contrast at the artificial ‘brain’ edge was then added 
to each row of X  to mimic the global variance of real fMRI brain images. The first 
row of X  was moved by a random 3D motion to produce a mean discrepancy of 0.65 
voxels when integrated over the whole brain. Different numbers of observations (se-
lected from the 2nd row to the 11th row) in X  were then used as the reference ensem-
ble to register the artificially-moved image in extended MCICA. In SPM and AIR, the 
original motionless image was used as the reference image to register its artificially-
moved version. Fig. 2 demonstrates the mean absolute registration error (MAE, de-
fined as the mean of the absolute intensity differences of voxels in the brain area be-
tween the registered image and the known correct image free of motion) versus the 
number of reference images used. It is clear that the registration error obtained by the 
extended MCICA algorithm was significantly and consistently lower than that ob-
tained by SPM, AIR, and cubic interpolation with perfectly correct rigid-body trans-
formation. Note that the registration result of the proposed method closely followed 
the LMS solution using the corresponding extended reference ensemble, suggesting 
that the weights for the reference ensemble estimated by the extended MCICA algo-
rithm were near-optimal.  

The second experiment investigates the influence of activation level (strength) on 
registration accuracy. We tested five different levels of mean signal increase: 0.64%, 
1.28%, 2.56%, 5.12% and 10.25%, which were generated by superimposing the first 
row in X  with one component map selected from S multiplied by different levels of 
activation weights. These images were then again corrupted by a random 3D motion 
of a mean discrepancy of 0.65 voxels and were registered using the extended refer-
ence ensemble consisting of 10 observations in X  (i.e. from the 2nd row to the 11th 

row). To eliminate simulated motion specificities as a potential confound, ten differ-
ent motion parameters (with fixed translation and rotation amplitudes about the cen-
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troid resulting in an average of 0.65 voxels of mean discrepancy across the brain) 
were generated randomly for each set of experiments, and the results were averaged 
+over the ten realizations. Fig. 3 demonstrates the mean absolute error (MAE) versus 
activation level introduced into the image to be registered. It can be seen that the 
errors for SPM and AIR increased monotonically with increasing activation strength. 
In contrast, the performance of MCICA was relatively invariant to the increase of 
activation level. 
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Fig. 4 plots the MAE as a function of the amplitude of the artificial movement (in 
the unit of mean discrepancy over the brain) applied to real fMRI data. Specifically, 
for a real fMRI time-series, an optimal sub-series consisting of eleven time-points 
with minimized discrepancy between their centroids and principal axes of activation 
was selected. One time-point among the selected sub-series was then artificially 
moved by random 3D motions of different amplitudes. In MCICA, the other ten time-
points in the sub-series were used as the extended reference ensemble to register the 
artificially-moved time-point. In SPM and AIR, the perfect reference image, that is, 
the original image without the artificial motion applied, was used for registration. The 
original image was then used as the gold standard to evaluate the registration accu-
racy. Both the previous version of MCICA (dotted line) and the proposed extended 
MCICA algorithm (circle line) were used to register the images corrupted by motions 
of mean discrepancies from 0.02 voxles to 0.7 voxels. The solid line represents the 
performance of the hybrid MCICA algorithm in which the proposed extended algo-
rithm was utilized for correcting motions with discrepancies larger than 0.32 voxels. 
Experiments were finally performed on a real fMRI times-series made up of 65 3D 
images acquired during a simple motor task of both-hand movement. Six time-points 
in the times-series that were corrupted with relatively large motion (i.e. movement of 
mean discrepancy large than 0.32 voxels) were motion corrected using the proposed 
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Fig. 2. Registration results of extended 
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Fig. 6. Comparison of activated areas detected by simple correlation for the original data and 
the four time-series registered by SPM, AIR, MCICA and extended MCICA 

extended MCICA algorithm and are marked by circles in Fig. 5, where the mutual 
information between the first time-point and all subsequent time-points are plotted. It 
is obvious that in comparison with SPM, AIR and the previous version of MCICA, 
the extended algorithm further improved the mutual information between the first-
time point and the six time-points corrupted with relatively large motion. In addition, 
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the correlation between the time course of each voxel in the brain and the task-rest 
behavioral paradigm was calculated, and the voxels with correlations higher than 0.5 
were regarded as ‘activated’ and are highlighted in Fig. 6. It can be seen that more 
‘activated’ voxels clustered in the primary motor area and the supplementary motor 
area were detected after preprocessing the time-points corrupted with gross motion 
using the extended MCICA algorithm.  

4   Discussion and Conclusions 

It has been demonstrated that by designing a data-adaptive linear operator MCICA 
minimized the spurious artifact introduced by interpolation to the final registered 
image, and achieved moderate between-slice motion correction [2]. Nevertheless, 
when patient head motion becomes relatively large, i.e. a significant fraction of a 
voxel, it is observed that linear combination of the rotated/shifted basis images is not 
sufficient to compensate for the significant interpolation artifact present at the brain 
edge in the basis images. Discarding the time-points corrupted with motions on the 
order of half a voxel, however, may result in an excessive amount of data that must be 
discarded in aged and patient populations.  

In this paper improved compensation of relatively large motion effects in fMRI 
data using only partial optimal voxels in images for motion estimation is presented. 
Accurate complete component maps are estimated from the extended ‘motionless’ 
reference ensemble, and the final registered image can be mathematically expressed 
as a weighted combination of the extended reference ensemble. Degradation in the 
final image due to the interpolation process hence is avoided, which is evidenced by 
the low registration error in the intensity values at the brain edge, where accurate 
interpolation is most difficult for any interpolation scheme acting as a low-pass filter 
due to the sharp intensity variation. In addition, using a smaller number of voxels for 
motion estimation in the extended algorithm also helps to speed up the registration 
process by a factor of 2, compared to that in the previous version of MCICA in which 
all voxels in the brain area were used for motion estimation. 

Experiments show that in contrast with SPM and AIR, the proposed method was 
relatively robust to the level of activation present in the image to be registered.  For 
real fMRI time-point corrupted with relatively large motion (i.e. around half a voxel), 
the registration error of MCICA in terms of MAE, which was already much smaller 
than that obtained by SPM and AIR, was further reduced by 30% by the proposed 
extension. When different numbers of reference images were used to register the 
artificially-moved image, the performance of the extended algorithm closely followed 
the LMS curve, which is the optimal solution in terms of least-mean-square error 
when approximating the original motionless image using a linear summation of the 
extended reference ensemble. This suggests that the extended MCICA algorithm 
consistently and reliably converged to the correct solution in the optimization space. 
Initial promising results, i.e. increased mutual information and more clustered activa-
tion maps, were observed for real fMRI time-series of which those time-points cor-
rupted with relatively large motion were registered using the proposed extension.   

The proposed method requires that the underlying independent components are 
sufficiently represented in the regions used for motion estimation so that the compre-
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hensive time course matrix A can be estimated. This may be problematic for very 
focal activations where the activation region is largely treated as missing data. It is 
further required that the significant underlying components present in the time-point 
to be registered should be adequately covered in the extended reference ensemble, 
allowing for an accurate estimation of the complete component maps in rS . For mo-
tion correction of real fMRI time-series, selection of the optimal reference ensemble 
and the most effective regions for motion estimation may vary among data sets and 
need further investigation. In addition, automatic method for selecting optimal thresh-
old of motion amplitude above which the proposed extended method is used for regis-
tration needs to be devised.  
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Abstract. Most variational active contour models are designed to find
the “desirable” local minima of data-dependent energy functionals with
the hope of avoiding undesirable configurations due to noise or com-
plex image structure. As such, there has been much research into the
design of complex region-based energy functionals that are less likely to
yield undesirable local minima. Unfortunately, most of these more “ro-
bust” region-based energy functionals are applicable to a much narrower
class of imagery due to stronger assumptions about the underlying image
data. Devising new implementation algorithms for active contours that
attempt to capture more global minimizers of already proposed image-
based energies would allow us to choose an energy that makes sense for
a particular class of energy without concern over its sensitivity to local
minima. However, sometimes the completely-global minimum is just as
undesirable as a minimum that is too local.

In this paper, we propose a novel, fast and flexible dual front imple-
mentation of active contours, motivated by minimal path techniques and
utilizing fast sweeping algorithms, which is easily manipulated to yield
minima with variable “degrees” of localness and globalness. The ability
to gracefully move from capturing minima that are more local (according
to the initial placement of the active contour/surface) to minima that
are more global makes it much easier to obtain “desirable” minimizers
(which often are neither the most local nor the most global). As the ex-
amples, we illustrate the 2D and 3D implementations of this dual-front
active contour for image segmentation from MRI imagery.

1 Introduction

Since the introduction of snakes [1], active contours have become particularly
popular for segmentation applications. Most variational active contour mod-
els [2,3,4,5] are designed to find local minima of data-dependent energy func-
tionals with the hope that reasonable initial placement of the active contour
will drive it towards a “desirable” local minimum rather than an undesirable
configuration that can occur due to the noise or complex image structure.

As such, there has been much research [6,7,8,9,10,11,12] into the design
of complex region-based energy functionals that are less likely to yield unde-
sirable local minima when compared to simpler edge-based energy function-
als whose sensitivity to noise and texture is significantly worse. Unfortunately,
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most of these more “robust” region-based energy functionals are applicable to a
much narrower class of imagery compared to typical edge-based energies due to
stronger assumptions about the underlying image data.

Devising new implementation algorithms for active contours that attempt to
capture more global minimizers of already proposed image-based energies would
allow us to choose an energy that makes sense for a particular class of energy
without concern over its sensitivity to local minima. The minimal path technique
proposed by Cohen et al. [13,14] is one such implementation. It attempts to
capture the global minimum of an active contour model’s energy between two
points. However, for this minimal path technique, the initial points should be
located exactly on the boundary to be extracted. Also, a topology-based saddle
search routine is needed when they extended this technique to closed curve
extraction. And it is not easy to expand to general 3D case [15].

Although many researchers keep their efforts on the design of robust active
contour models to find the global minima and avoid the local minma, sometimes
the completely global minimum is just as undesirable as a minimum that is too
local. In this paper, we propose a novel, fast and flexible dual front implementa-
tion of active contours, motivated by minimal path technique and utilizing fast
sweeping algorithms. In this model, the segmentation objective is achieved by
iteratively dilating the initial curve to form a narrow region and then finding the
new closest potential weighted minimal partition curve inside.

This dual-front active contour is easily manipulated to yield minima with
variable “degrees” of localness and globalness. The degree of global or local min-
ima can be controlled in a graceful manner by adjusting the width of the dilated
narrow region. This ability to gracefully move from capturing minima that are
more local (according to the initial placement of the active contour/surface) to
minima that are more global makes it much easier to obtain “desirable” mini-
mizers (which often are neither the most local nor the most global). This model
guarantees the continuity and smoothness of the evolving curve with the capa-
bility to handle topology changes. In addition, it is easy to extend to the 3D
case.

2 Dual-Front Active Contours

2.1 Background – The Minimal Path Technique

Given a potential P > 0 that takes lower values near desired boundaries, for
example, P = 1/(1 + ||∇I||2), the objective of the minimal path method [13,14]
is to look for a path (connect the pre-defined two points) along which the integral
of P̃ = P +w (w is the constant) is minimal. First, the minimal action map U0(p)
is defined as the minimal energy integrated along a path between the starting
point p0 and any point p, which is

U0(p) = inf
Ap0,p

{E(C)} = inf
Ap0,p

{
∫

Ω

P̃ (C(s))ds}, (1)
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where Ap0,p is defined as the set of all paths between p0 and p. Then, if given
the minimal action maps U0 to p0 and U1 to p1, the minimal path between p0

and p1 is exactly the set of points pg which satisfy

U0(pg) + U1(pg) = inf
p
{U0(p) + U1(p)}, (2)

and this minimal path between p0 and p1 is determined by calculating U0 and
U1 and then sliding back from the saddle point p′, which is the first point that
two action maps U0 and U1 meet each other, on the action map U0 to p0 and on
the action map U1 to p1 according to the gradient descent.

Because the action map U0 has only one minimum value at the starting point
p0 and increases from the starting point outwards, it can be easily determined by
solving the Eikonal Eq. (3) using fast marching algorithm introduced by Sethian
et al. [16]. The detailed explanation is shown in [13].

||∇U0|| = P̃ with U0(p0) = 0 (3)

2.2 Principle of Dual-Front Active Contours

Now we suppose that the image has two regions R0 and R1, and we choose one
point p0 inside the region R0 and another point p1 inside the region R1. We
still define two minimal action maps U0(p) and U1(p) according to the same
definition as that in minimal path theory. The potential is also decided by the
image features, for example, the potential takes lower values on the boundary of
R0 and R1.

In the minimal path theory, the points satisfying the Eq. 2 are considered.
Contrary to that, we consider the points satisfying the equation U0(p) = U1(p).
At these points, the level sets of the minimal action map U0 meets the level sets
of the minimal action map U1. These meeting points form the Voronoi diagram
of the image, decompose the whole image into two regions containing the point
p0 and the point p1 respectively. One region containing the point p0 is called as
region R′

0, and the other region containing the point p1 is called as region R′
1.

All the points in the region R′
0 is closer to p0 than p1 in terms of the action map.

All the points in the region R′
1 is closer to p1 than p0 in terms of the action map.

Because the action maps are defined as the potential weighted distance maps,
the boundary of regions R′

0 and R′
1 is called as the potential weighted minimal

region partition related to the two points p0 and p1.
Actually the level sets of the action map U give the evolution of the front.

The velocity of the evolving front is decided by the potential. When the evolving
front arrives the boundary, the velocity is much lower, and the evolving front
almost stops at the boundary. The same situation are for the action maps U0 and
U1. When choosing the appropriate potentials for calculating the two minimal
action maps, it is possible that these two action maps will meet each other at
the actual boundary of two regions R0 and R1. In other words, we can search
the two regions’ boundary by calculating the minimal region partition related
to the two points inside the two regions respectively.
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Without loss of generality, we suppose X be a set of points (for example, a 2D
curve or a 3D surface) in the image, UX is the minimal action with potential P̃X

and starting points {p, p ∈ X}. Clearly, UX = minp∈XUp. Then considering two
sets UXi = minp∈XiUp and UXj = minp∈Xj Up, all points satisfying UXi(p) =
UXj (p) form the boundary of the two regions related to the two point sets Xi

and Xj. Because the two action maps are the potential weighted distance maps,
this formed boundary is also the potential weighted minimal partition of the
regions related to the two point sets Xi and Xj .

Dilation Evolution

( c )( b )( a )

Rout

Rin

Rn

C C
Cin

Cout
Cnew

Replace C with Cnew for next iteration

Fig. 1. Iteration process of dual front evolution and dilation. (a): an original contour C

separating the region R to regions Rin and Rout; (b): the curve C is dilated to form the
narrow active region Rn; (c): the inner and outer boundaries Cin and Cout propagate
to form the new minimal partition curve Cnew separating the region R to two regions,
and then the curve C is replaced by the curve Cnew for processing the next iteration.

Therefore, we propose the dual front evolution based on the above analysis
to find the potential weighted minimum partition for a defined active region.
The evolution principle is shown in Fig. 1. The narrow active region Rn, which
is formed by expending the initial curve C, has the inner boundary Cin and the
outer boundary Cout. Then the minimal action maps Uin and Uout are calculated
with different potentials P̃in and P̃out respectively. When these two action maps
meet each other, both evolutions of the level sets of the action maps stop auto-
matically and a minimal partition boundary is formed in region Rn. All points
pg on this minimal partition boundary satisfy the following Eq. (4):

|∇Uin| = P̃in with Uin(Cin) = 0
|∇Uout| = P̃out with Uout(Cout) = 0
Uin(pg) = Uout(pg)

(4)

The dual front evolution is implemented by labeling the initial curves with dif-
ferent labels, than evolving the labeled curve with different potentials to the
unlabeled region until all the points are assigned an unique label. Dual front
evolution provides us a method to find the minimal partition curve within a nar-
row active region. Here this minimal partition is the potential weighted global
minima partition only inside the narrow active region, not in the whole image.
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Clearly, the degree of this globalness may be changed flexibly according to the
size of the narrow active region.

In the dual front evolution, the region-based information and the edge-based
information may be unified in the potentials for guiding the curve evolution. The
mean values uin, uout, the variance values σ2

in, σ2
out, of the inside region (Rin −

Rin ∩ Rn) and outside region (Rout − Rout ∩ Rn) are calculated. The evolution
speeds (or potentials) for the labeled points (x, y) are decided by Eq. (5).

P̃in(x, y) = wr
in × f(|I(x, y) − µin|, σ2

in) + wb
in × g(∇I(x, y)) + win

P̃out(x, y) = wr
out × f(|I(x, y) − µout|, σ2

out) + wb
out × g(∇I(x, y)) + wout (5)

where I(x, y) is the value of the image intensity at the examined point. g(∇I(x, y))
is a function of the image gradient. By choosing different functions f and g, and
the different weight for each component of the potentials, this model can be used
for different segmentation objectives.

Based on this dual front evolution, we propose the dual-front active contour
model. It is an iterative process including dual front evolution and morphological
dilation. First, we choose an initial curve, dilate it to form the narrow active
region, and use dual-front evolution to find the minimal partition within this
active region. Then, we expend the obtained minimal partition curve to form
a new narrow active region, and the new potentials for the boundaries of the
new active region are also calculated. We repeat this process until the difference
between the consecutive obtained minimal partition curves less than the pre-
defined threshold.

So, in dual-front active contours, the segmentation objective to find the min-
ima with variable “degrees” globalness in defined region is transferred to find the
global minimum partition curve within a narrow active region expanded from
the initial contour, and then iteratively replace the current contour with the
obtained global minimum partition curve until the final segmentation objective
is achieved.

3 The Properties of Dual-Front Active Contours

3.1 Flexible Local or Global Minima

In dual-front active contours, the degree of global or local minima can be con-
trolled in a graceful manner by adjusting the width of the narrow active region
for the dual fronts’ evolution. This ability to gracefully move from capturing
minima that are more local (according to the initial placement of the active
contour/surface) to minima that are more global makes this model much easier
to obtain “desirable” minimizers (which often are neither the most local nor the
most global).

The result of the dual front evolution is the global minimal partition curve
inside the active region. So the size and the shape of the narrow active region
will affect the final segmentation result. If the size of the active region is small, it
possible leads to the problem of local minima because of the local noise. But if the



Local or Global Minima: Flexible Dual-Front Active Contours 361

(a) (b) (c) (d) (e)

Fig. 2. Comparison of the different segmentation results of the interface of white mat-
ter/gray matter from different active contour models with different degrees of local
minima and global minima. The gradient information used by panel (a),(b), and (e)
is shown in Fig. 3. The top row shows the original image and the initialization for
the curve evolution, and the bottom row shows the corresponding edge segmentation
results from geodesic active contours (a), the minimal path technique (b), Chan-vese’s
method (c), Mumford-Shah’s method (d) and dual-front active contours (e).

size of the active region is too large, the actual object boundary will be missed.
The size of the active region should be selected based on the shape and the size
of the detected object, the image quality and the background information, and
so on.

In dual-front active contours, we provide very flexible method to define the
active region. In fact, the active region is a kind of restricted searching space.
The restricted space can be formed by choosing the automatic thresholding,
calculating the distance map, using the length of the initial contour’s normal,
performing the morphological dilation and so on. All these methods can be used
for defining the active region. Normally, we use the morphological dilation to
obtain the narrow active region because the size of the active region can be
controlled easily by adjusting the size of the structure element and the dilation
times for the requirement from a given segmentation, or class of images.

The size of active region also can be changed during the evolution process.
For example, when the initial curve is far from the object, we may first use the
wider active region to expend the searching scale for one iteration, speed up the
computation time and avoid the effect of the noise. When the curve, which is
obtained after a number of iterations, near the object boundary, we may use
the narrow active region for refining the accurate boundary. By the way, if the
detected object is bigger, we may use wider active region, otherwise, we should
use narrower active region.

In Fig. 2, we compare the different edge detection results by two of the edge-
based methods, geodesic active contours [2] and the minimal path technique [13],



362 H. Li and A. Yezzi

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. By choosing the different size of the narrow active region, the dual-front active
contour model achieves different minima.
(a): the original image with the initialization; (b): the corresponding gradient informa-
tion; (c)-(g): the segmentation result using 5 × 5, 7 × 7, 11 × 11, 15 × 15, 23 × 23 pixels
circle structuring elements for morphological dilation after 15 iterations.

two of the region-based methods, Chan-Vese’s method [8] and Mumford-Shah
methods [17], and the dual-front active contours proposed in this paper. This
figure is the part of one 2D human brain MRI image, and the segmentation objec-
tive is to find the interface of the gray matter and the white matter. We use the
above five methods to process this image and obtain the different segmentation
result. We can see that, geodesic active contours suffer from undesirable local
minima, and the “global minima” found by the minimal path technique is also
not exactly what we want, which is effected by the location of the pre-defined
two points. Chan-Vese’s method and Mumford-Shah’s method also found the
incorrect global minima. As this figure indicates, our dual-front active contours
can control the degree of global or local minima in active contour model, find
the correct boundary, and perform better than other methods which find the
local minima or global minima.

In Fig. 3, we give another example to demonstrate that, by choosing different
narrow active regions with different sizes, the dual-front active contour model
achieves different degree’s global minima in the whole image. The potential for
each point is P̃ (x, y) = 1/(|I(x, y) − Imean| + (1 + ∇I)2/10) + 0.1.

3.2 Other Nice Properties

First, the dual front evolution provides the automatic stop criterion in each iter-
ation. The dual front evolution also guarantees the continuity and smoothness of
the curve with the capability to handle topology changes. Second, the dual-front
active contour model provides automatic stop criterion by comparing the result
from consecutive iterations. Third, the dual-front evolution combines the advan-
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tages of level-set methods and fast marching methods, avoids the disadvantages
of them, and transfers the point-to-point evolution to noncontinuous band-to-
band evolution. In this manner, the computational cost is reduced significantly.
The detailed information of these properties was shown in [18].

4 Experimental Results

In Fig. 4, we give two other examples to compare the different edge detection
results by Chan and Vese’s method [8], the Mumford shah algorithm [17], and
dual-front active contours. Because Chan’s method and Mumford’s method are
all designed for finding the global minima in the whole image, sometimes, they
cannot receive the correct boundary. But for dual-front active contour, the degree
of the global minima can be controlled by the size of narrow active region, the
model can achieve flexible global degree’s minima. In these two examples, the
potential for each point is P̃ (x, y) = 1/(|I(x, y) − Imean|) + 0.1.

In Fig. 5, we show that our model can be used for extract the object without
clearly gradient information. The panel (a) is a noisy mammogram showing a
cyst in the breast, the panel (b) is the corresponding gradient image, the panel
(c) shows the middle step of the segmentation process, the panel (d) shows
the final segmentation result. In this example, the potential for each point is
P̃ (x, y) = 1/(|I(x, y)−Imean|)+0.1. The structuring element is 5×5 pixels circle
for morphological dilation. It is clear from the results that the segmentation of
the cyst is refined even with high noise level.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Comparison of different region-based active contours related to the degree of
global minima.
(a) and (e): two 2D medical images with the initializations; (b) and (f): the results
from Chan-Vese’s model suffer from undesirable global minima; (c) and (g): the results
from Mumford-Shah model also suffer from the smoothing constraints; (d) and (h):
the correct edge extractions from dual-front active contours using 7 × 7 pixels circle
structuring element for morphological dilation.
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(a) (b) (c) (d)

Fig. 5. The segmentation result on 2D cyst image without gradient informations. The
size of the dilation structure element is 5×5 pixels. Panel (a) shows the original image
with the initialization. Panel (b) shows the gradient image. Panel (c) shows the middle
step of the segmentation process after 5 iterations. Panel (d) shows the segmentation
result after 15 iterations.

We also test the dual-front active contours on the simulated MRI 3D brain
image data set and extract the interface of gray matter/white matter, as well as
applications to specific cortical studies.

Because of the properties of dual-front active contours, the whole segmenta-
tion process is considered as a hierarchical decomposition. We assume that the
normal brain includes three tissues: GM (gray matter), WM (white matter), and
CSF (cerebral spinal fluid). After skull stripping and non-brain tissue removing,
we separate the brain region and the background first. Then, we just consider
the brain region and use dual-front active contours to segment the brain into
CSF and WM+GM two regions. The third step is to restrict the WM+GM re-
gion and use dual-front active contours again to separate the WM region and
GM region.

(a) (b) (c) (d)

Fig. 6. The segmented outer and inner cortical surfaces from the MRI brain image
with our method

In Fig. 6, we present the segmented outer (CSF-GM interface) and inner
(GM-WM interface) cortical surfaces in one slice of the 3D simulated brain im-
age, and a zoom-in of extracted boundaries for this slice. We also show the
3D models of the cortical surfaces. The test image is available from the Brain-
Web [19], which is generated from the MS Lesion brain database using the T 1
modality, 1mm slice thickness, 3% noise level and 20% intensity nonuniformity
settings. The image size is 181×217×217. The initialization for the hierarchical
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segmentation is a sphere centered at (100, 100, 95), and the size is 75× 75× 150.
The potential for different point is P̃ (x, y) = 1/(|I(x, y)− Imean|)+ 0.1, and the
size of the dilation structure element is 5 × 5 × 5 pixels.

For a 3D brain image (181×217×217 voxels in total), Normally, our method
requires only 10-20 iterations for segmenting one tissue type (CSF, GM or WM).
For each iteration, the computation procedure includes one curve dilation and
one dual-front evolution, one iteration last around 15 seconds.

5 Conclusions and Future Work

In this paper, we propose a novel, fast and flexible dual front implementation
of active contours, which is easily manipulated to yield minima with variable
“degrees” of localness and globalness. This ability to gracefully move from cap-
turing minima that are more local (according to the initial placement of the
active contour/surface) to minima that are more global makes it much easier to
obtain “desirable” minimizers (which often are neither the most local nor the
most global). As the examples, we illustrate the 2D and 3D implementations of
this model for object extraction from MRI imagery.

While the underlying principle of the dual front evolution algorithm presented
here is based on the authors’ earlier work in [18], there are several novelties in the
present work which do not appear in the earlier work. Other than the extension
to the three dimensions, we have made the very important observation that the
dual-front approach may be customed tailored to capture minimizers that are
flexible in their degrees of localness and globalness.

As such, we have constructed around this basic building block and algorithm
that may be controlled and adapted in ways that other active contour models
cannot. This key point, which is not addressed at all in the earlier work [18]
greatly extends the usefulness of their model to many important applications in
computer vision, especially medical imaging, where user control and interaction
is highly desirable.

Furthermore, the 3D algorithm presented in this paper is also quite novel
in that is not a mere extension of the 2D algorithm presented in [18]. In fact,
the hierarchical decomposition procedure used in our 3D algorithm could also
be incorporated to improve even the original 2D algorithm. We believe that this
analysis and interpretation of the original algorithm will be of great service to
the computer vision community.
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Abstract. In non-rigid image registration problems, it can be difficult to
construct a single cost function that adequately captures concepts of sim-
ilarity for multiple structures, for example when one structure changes
in density while another structure does not. We propose a method that
locally switches between cost functions at each iteration of the registra-
tion process. This allows more specific similarity criteria to be embed-
ded in the registration process and prevents costs from being applied to
structures for which they are inappropriate. We tested our method by
registering chest computed tomography (CT) scans containing a healthy
lung to scans of the same lung afflicted with acute respiratory distress
syndrome (ARDS). We evaluated our method both visually and with the
use of landmarks and show improvement over existing methodology.

1 Introduction

Registration methods are increasingly in demand by medical practitioners to
accurately model the transformations they observe in their image data [1]-[4].
The problem of registering lung images has recently gained notice [5]-[9] largely
due to an interest in supporting lung cancer diagnosis. Accurate registration of
lung anatomy, however, remains an open problem, especially in the presence of
pervasive pathology where normal structures have changed drastically in appear-
ance as when the lung is afflicted with emphysema or acute respiratory distress
syndrome (ARDS). In this work, we present a method for registering a chest
CT containing a healthy lung to a chest CT of the same lung afflicted with
ARDS and present a general framework to solve non-rigid registration problems
in which the intensity values of corresponding structures do not change in the
same way for all structures in the images.

ARDS is a disease that involves severe flooding and collapse of the lung,
thereby making it difficult to breathe and maintain adequate gas exchange.
ARDS has a high mortality rate (32% – 45%) [10]. Mechanical ventilation is
often a required therapy in order to maintain the necessary O2 and CO2 levels
of the body. Mechanical ventilation can impose non-physiological forces on the
lung that can exacerbate lung injury. Characterizing the heterogeneous nature
of the disease and how it is impacted by mechanical ventilation is important for
basic survival of these patients [11]. On CT images ARDS is characterized by

Y. Liu, T. Jiang, and C. Zhang (Eds.): 2005, LNCS 3765, pp. 367–377, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CV IB A



368 W. Mullally et al.

Before Case 1 Case 2 Case 3

After

Fig. 1. Axial view of three sheep chests before and after a saline wash of their lungs
induced ARDS. A saline wash affected the entire lung of case 1, but did not uniformly
affect the lungs of cases 2 and 3 as can be seen from the dark air-filled patches at the
top of case 2’s lungs and throughout case 3’s lungs.

regions within the lung that can be as dense as the tissue surrounding the lung
(Fig. 1). Measures on the mechanics of ARDS have been limited to the order
of quadrants within the lung [11] rather than the order of the finer anatomical
structures visible even in low resolution CT. Non-rigid registration of healthy
lung scans to scans of lungs with ARDS can help researchers understand the
syndrome and may lead to better treatment options than currently exist. To
the best of our knowledge, automatic non-rigid registration approaches have not
been applied to this problem.

There are two principle branches of image registration techniques: those guided
by image similarity cost functions and those guided by feature detectors. This pa-
per presents a modification to non-rigid registration methods using image-based
cost functions. Specifically, we modify the method proposed by Rueckert et al. [12]
in which images are aligned by minimizing the “cost” of correspondence between
the images by comparing intensity values. In registration problems like this, a sim-
ilarity function that might be adequate for capturing the spatial deformations of
temporally constant density tissue, for example the bony anatomy, might not be
sufficient to capture both spatial deformations of structures and temporal changes
in tissues density, as in an ARDS inflicted lung. We do not attempt to solve the cor-
respondence problem of lung anatomy imaged before and after the onset of ARDS.
Instead, we propose a method to non-rigidly register the tissues surrounding the



Locally Switching Between Cost Functions 369

Fig. 2. Axial view of a healthy lung (left) and an ARDS inflicted lung before (mid-
dle) and after (right) non-rigid registration using correlation as the only cost to guide
registration. The transformation grid is overlaid in the right image. The voxels of the
bronchi (indicated by arrows in their original form in the middle image) are inappropri-
ately warped to fill the lung (dark regions in right image). In the iterative registration
process, the correlation gradient leads away from correct correspondence within the
lung. Correspondence outside the lung is somewhat better.

lung without adversely affecting the topology of the lung. No segmentation is used
in our approach. Our approach adaptively changes the character of the cost func-
tion at each iteration of the registrationprocess.These changes allow cost functions
to be applied only on appropriate anatomy.

2 Methods

We follow the framework proposed by Rueckert et al. [12] in which a multi-level
non-rigid registration algorithm is built upon a hierarchical grid of b-splines.
Multi-level approaches progress from coarse to fine image resolutions during the
process of registration to avoid local minima problems and reduce computation
time. A hierarchical b-spline grid controls the transformation T of the source im-
age I1 into the coordinate system of the target image I2. The similarity between
the two images is evaluated with a cost function of the form:

Cost(θ) = CImageSimilarity(T (θ, I1), I2) + CRegularization(T (θ)),

where θ designates the positions of the grid points controlling the b-spline. The
gradient of this cost function is followed in steps of size µ to find the optimal
registration between the two images. The registration process iteratively checks
the gradient and modifies the transformation parameters.

The above approach will not work when the cost function does not appropri-
ately embody all the changes that occur between image acquisitions. In Figure 2,
for example, correlation was used as the only cost to guide the registration be-
tween healthy and ARDS inflicted lungs. The correlation gradient, in effect,
pushed the transformation in an anatomically inappropriate direction.

We would like to construct a framework for using cost functions only on the
anatomy for which a particular cost function is most appropriate. We can do this
by associating each knot θi of the b-spline grid for i = 0, ...,N, where N is the
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number of grid control points, with a particular cost function. For k = 1, ...,K
cost functions, this takes the form:

Cost(θi) =


Cost1(θ) if f1(θi, T (θ, I1), I2) > τ1

Cost2(θ) if f2(θi, T (θ, I1), I2) > τ2

...
CostK(θ) otherwise

(1)

where fk are K − 1 functions used to decide which cost function to apply by
comparing each of them to a threshold τk. The cost function association of
each control point is decided at each iteration. The algorithm, a modification of
Rueckert et al.’s framework that includes our method of cost function selection,
is detailed below.

Non-rigid Multi-scale Registration Algorithm with Local Cost Switching
Input: Two 3D scans
1 calculate an initial rigid registration
2 initialize the control points θ(l) and down sample the images to the coarsest

resolution, l = 1,
3 repeat
4 determine the cost function Cost(θi) = Costk(θ) to associate with

each control point θi (Eq. 1)

5 calculate ∇C = ∂Cost(θ
(l)
i )

∂θ
(l)
i

6 for µ = max. step size until µ = min. step size
7 while ‖∇C‖ > threshold ε or iteration count < max. iterations do
8 recalculate the control points θ = θ + µ ∇C

‖∇C‖
9 determine the cost function Costk(θ) to use at each control point θi

10 recalculate the gradient vector ∇C
11 decrease step size µ
12 increase the control point resolution and image resolution l
13 until finest level of resolution, l = L, is reached
Output: θ

We adapted the local cost switching algorithm to the specific application
of registering healthy lungs to lungs inflicted with ARDS. We needed to con-
struct cost functions that could appropriately express tissue transformations in
this problem. First, we incorporated transformation costs that discourage dra-
matic bending of the transformation grid and extreme volume changes across
the entire image. Secondly, the correspondence of anatomy outside of the lung
can be captured by an image-intensity similarity term. We constructed a single
cost function incorporating these terms and weighted their contributions to the
overall cost using α, β, and γ as follows:

Cost() = α CImageSimilarity(T (θ, I1), I2) + β CBendingEnergy(T (θ))
+ γ CV olumePreservation(T (θ)) (2)

Specifically, we define CImageSimilarity() to be the correlation coefficient
Covariance(I1,I2)

Std.Deviation(I1)∗Std.Deviation(I2) , CBendingEnergy(T (θ)) to be the bending energy
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∫ Z

0 [(∂2T
∂x2 )2+(∂2T

∂y2 )2+(∂2T
∂z2 )2+2(∂2T

∂xy )2+2(∂2T
∂xz )2+2(∂2T

∂yz )2]dxdydz of a
thin metal plate [12], where X, Y , and Z are the dimensions and V is the volume
of the scan, and CV olumePreservation(T (θ)) =

∫
V | log(det(Jacobian(T (θ))))| dθ

[13].
For the single cost in Eq. 2 to be successful if applied by itself, it must not

only relate the anatomy outside the lung which has undergone minimal intensity
changes but also the anatomy within the lung which has drastically changed be-
cause of the infliction of ARDS. In general, CImageSimilarity(T (θ, I1), I2) is used
to capture such a relationship, but as already shown in Fig. 2, correct anatomic
alignment cannot be achieved using the correlation coefficient as the image simi-
larity cost. Moreover, it may not be possible to construct such an image-intensity
similarity function that can capture the entire range of anatomical changes seen
in comparing scans of healthy lungs to scans of diseased lungs. In such cases
where image similarity costs guide registration toward inappropriate solutions,
our cost switching framework can be used to allow regions with strong image
correlation to non-rigidly align themselves while still correctly deforming regions
with weak image similarity. To formulate this, we specify Eq. 1 for two cost func-
tions, Cost1 with an image similarity term and Cost2 without:

Cost1() = α CImageSimilarity(T (θ, I1), I2) + β CBendingEnergy(T (θ))
+ γ CV olumePreservation(T (θ))

Cost2() = β CBendingEnergy(T (θ)) + γ CV olumePreservation(T (θ)),
(3)

Because Eq. 1 is applied for K = 2, we had to specify one decision function f1

for Eq. 3. We defined f1 to be the normalized correlation coefficient with thresh-
old τ1 = 0.5. This function controls how to switch between the two cost functions
at each grid point and differentiates between correlated and uncorrelated image
regions. A fixed size patch around the location of each knot point was used as
the correlation template. An initial alignment is achieved by performing a rigid
registration on high density bony anatomy. The two costs defined in Eq. 3 are
assigned in lines 4 and 9 of our cost switching registration algorithm.

It should be noted that with the costs in Eq. 3, we do not expect the anatomy
within the injured portions of the lung to achieve perfect alignment. There is
no mechanism to draw these regions into correct correspondence except for the
bending and volume preservation costs responding to the deformations of sur-
rounding tissues. Tissue outside of these injured regions should achieve good
alignment.

3 Experiments

To evaluate our cost switching approach, we used CT scans taken from six sheep
(Fig. 1). CT scans were taken both before and after ARDS was induced by
treating their lungs with a saline wash. The sheep were placed on ventilators to
control the pressure level of air in their lungs. The CT images had resolution
0.71 × 0.71 × 10 mm3 and captured the entire area of the lung.
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Fig. 3. Absolute difference in intensity values between unregistered scans (left), rigidly
registered scans (middle left), single cost non-rigid registration (middle right), and cost
switching non-rigid registration (right). The lungs are visible as a result of the density
shift induced by the saline wash. Outside of the lungs, the non-rigid approaches improve
upon the results of the rigid registration and in this case, our cost switching approach
more accurately registered the ribs.

Table 1. Root Mean Squared Error Between Registered Landmarks in the Lung (mm).
Rigid and cost switching non-rigid registration driven by non-lung structures result in
similar error in lung landmark alignment.

Sheep Unregistered Rigid Single Cost Cost Switching
1 38.5 15.4 11.9 14.2
2 10.2 7.9 12.1 8.1
3 7.9 6.7 13.3 5.7
4 20.3 8.1 7.2 7.8
5 13.2 9.9 16.8 11.1
6 27.5 9.8 24.2 14.5

Average 19.6 9.6 14.3 10.2

We tested our method by registering images of the same animal imaged at the
same pressure level before and after the infliction of ARDS. We validated our regis-
tration results both visually and by comparison to ground truth correspondence of
landmarks. Figure 3 shows that non-rigid registration approaches reduced the in-
tensity difference between scans for the anatomy outside the lung. As the anatomy
outside the lung has not changed in density between imaging, a reduction in the
intensity difference reflects a more accurate alignment of anatomy.

Within the lung, since significant density changes have occurred between
data acquisitions, density differences are not a useful measure of misalignment.
We can, however, evaluate changes in landmark location. The landmarks used
consist of branching points of the bronchi and blood vessels within the lung.
We used 18-22 landmarks per case. We show the root mean squared error in
millimeters between corresponding landmarks in Table 1. We report an average
improvement in landmark alignment of 28% by the cost switching approach in
comparison to the single cost approach. We report an average degradation in
landmark alignment of 6% for the cost switching approach in comparison to the
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Fi 4 R lt f i l t i id i t ti (A B) d t it hi

Fig. 4. Results from single cost non-rigid registration (A,B) and cost switching non-
rigid registration (C,D) in sheep 1. We show the registered images with an overlay of
the local deformation quantities (A,C). Notice the difference in the shape of the trachea
(indicated with an arrow). The single cost approach greatly increased the size of the
trachea. Our approach stayed closer to physically viable transformation.

Fig. 5. Axial view of sheep 2 (top) and 3 (middle and bottom). Images are shown with
(middle left) and without (left) ARDS before registration. Also shown are the single
cost solution (middle right) and our cost switching solution (right) with an overlay of
the deformation grid. Notice that the single cost solution expands the dark region at the
top of the lung, in the process moving vessel structures away from their corresponding
structures. Our approach maintains the character of the rigid transformation within
the lung.

rigid approach, where as the single cost approach degraded 49% in comparison to
the rigid approach. In all but one case, the cost switching approach maintained
the error between landmarks obtained by rigidly registering the scans. In two
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cases (the most homogeneous of the ARDS scans), the single cost non-rigid
approach also maintained the same level of error but in four cases it significantly
increased the error, separating the landmarks even more than if the scans had
not been registered in three of those cases.

Visual evaluation shows that our cost switching method more accurately reg-
isters the ribs than the single cost non-rigid approach (Fig. 3). More significant,
however, are the apparent anatomical changes of the trachea, esophagus, and
lungs. In Fig. 4 the principal difference between the methods is in the apparent
shape of the trachea. The single cost approach greatly increased the size of the
trachea. As the only large air filled region in that portion of the body, the tra-
chea was expanded to maximize the correlation with the air filled healthy lungs.
Our cost switching approach thus stayed closer to a physically viable transfor-
mation. Note that some large deformations were needed to capture changes to
the anatomy external to the lung. The single cost approach expanded air filled
regions, most notably at the top of the lungs (Fig. 5). Our approach maintained
an anatomically appropriate transformations.

Instead of cross-correlation as the image similarity function to guide our reg-
istration, other formulations are possible, most notably mutual information. We
did test our approach using mutual information and while we do not present in
depth results, we note that mutual information drew the anatomy within the
lung away from correct correspondence. This performance may indicate that no
general purpose similarity function can be defined to represent the density trans-
formation that occurs between a healthy lung and a lung inflicted with ARDS.

4 Discussion and Conclusion

Assigning cost functions at each iteration allows the registration process itself to
influence what cost function is used at a particular location. This is similar to
several approaches [14,15] for adaptively deciding the impact a particular image
point will have in an image registration process. Shen et al. [14] use a hierar-
chical ordering of “driving voxels” to register images. They propose a similarity
measure in a high dimensional space incorporating tissue classification, image
intensity, and geometric moment invariants. Using all the voxels in the image,
they then find clusters in this space that represent each tissue type. They allow
voxels close to the cluster centers to drive registration early in the registration
process. They gradually relax the distance they use for determining the driv-
ing voxels until all voxel in the image are used. This approach, however, is not
appropriate for the application of registering injured lung images in large part
because the approach is built upon good segmentation, which has not been reli-
ably demonstrated for injured lungs. Furthermore, Shen et al. eventually apply
a single similarity function for all voxels in the images. In the application of
injured lung registration, correlation draws some image regions away from cor-
rect correspondence, therefore we explicitly deny regions with low correlation
from driving the registration process. Moreover, our framework allows for the
use of multiple similarity functions, tailored to the requirements of a particular
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Fig. 6. Typical examples of gradient descent during the registration process at one
grid point θi for healthy tissue (A), at boundary of healthy and ARDS inflicted tissue
(B), within ARDS inflicted tissue (C), and averaged across all transformation grid
locations θ (D). Changes in resolution level l occurred at iteration 22 and 50 and are
indicated with vertical lines. (A) Outside the lung and within healthy regions of the
lung, correlation is strong so Cost1 is used. (B) At the boundary between healthy
tissue and injured tissue, correlation can dominate the cost during the low resolution
stages of the registration. At the highest resolution, however, strong correlation no
longer exists so the registration process automatically switches to Cost2 which does not
include correlation costs. (C) Within injured regions of the lung, correlation is weak so
Cost2 is used throughout the registration. As the regularizing costs are affected by the
movement of neighboring points on the transformation grid, the cost initially increases
as other image patches move in response to the gradient of Cost1. The cost begins to
decrease once Cost1 no longer drives large movements in other regions of the image.
(D) On average, the cost always moves in the direction of a minimum except when the
resolution level changes.

application, that can simultaneously drive the registration process on many dif-
ferent image regions of arbitrarily complex description.

Guest et al. [15] propose a reliability measure that can be used on any simi-
larity measure and in any method for computing a registration transformation.
The “reliability” of a measure at a particular image point is high if the point
matches well to a single point or line in the corresponding image and is low if it
matches well to a large region. Our framework can incorporate this measure or
any other measure of reliability that is appropriate to a particular application.

We show typical examples of how the cost changed during the registration
process in Figure 6. Parameters were set to α = −1, β = .001, and γ = .001 in
Eq. 3. Dues to the low weight given to them, the bending and volume preser-
vation terms did not noticeably impact the solution until the later half of the
registration process when the correlation gradient is small. Notice that our al-
gorithm minimizes cost with respect to the transformation parameters and not
with respect to the cost function used. The algorithm is not allowed to choose a
cost function because it has the lowest value, otherwise, transitions from Cost1
to Cost2 would not occur as seen in Fig. 6 B at iteration 50.
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We were limited to using six data sets for a proof of concept test of our
approach for registering healthy lungs to diseased lungs. The images came from
biomedical study into ARDS where animals were deliberately injured [11]. It
is not feasible to obtain a large collection of such images. Our approach may
have application to the study of other diseases and injuries to the lung as in
pneumonia, asthma, or the effects of near drowning.

Ultimately, to solve the problem of registering CT scans containing healthy
lungs to CT scans containing injured lungs, it may be necessary to fuse a feature
based approach, perhaps using vessel branching points, to an image similarity
approach. Segmentation of these structures, however, is still challenging, espe-
cially in the presence of an injury or disease like ARDS. Also, the cost functions
used for in our current approach are not directly drawn from biomechanics. The
elasticity properties of bones, ligaments, and other tissues should replace the
bending energy of thin metal plates and volume preservation costs used here. In
addition to formalizing such properties as costs, work remains to apply them to
the appropriate anatomy within the registration framework.

In summary, we have presented a novel method for incorporating multiple
cost functions into a single registration process. This allows for greater specificity
and variation in the definitions of anatomical correspondence used in non-rigid
registration problems. We have tested our approach on the difficult problem of
registering chest CT scans before and after the infliction of ARDS. By providing
a method to register healthy and ARDS inflicted lung scans, we hope to help
researchers better understand the syndrome and find new treatment options.
Our results demonstrate that being able to selectively apply cost functions on
appropriate anatomy does increase the accuracy of the resulting registration.
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Abstract. This paper presents a novel measure of image similarity, called quan-
titative-qualitative measure of mutual information (Q-MI), for multi-modal im-
age registration. Conventional information measure, i.e., Shannon’s entropy, is 
a quantitative measure of information, since it only considers probabilities, not 
utilities of events. Actually, each event has its own utility to the fulfillment of 
the underlying goal, which can be independent of its probability of occurrence. 
Therefore, it is important to consider both quantitative and qualitative (i.e., util-
ity) information simultaneously for image registration. To achieve this, salient 
voxels such as white matter (WM) voxels near to brain cortex will be assigned 
higher utilities than the WM voxels inside the large WM regions, according to 
the regional saliency values calculated from scale-space map of brain image. 
Thus, voxels with higher utilities will contribute more in measuring the mutual 
information of two images under registration. We use this novel measure of mu-
tual information (Q-MI) for registration of multi-modality brain images, and 
find that the successful rate of our registration method is much higher than that 
of conventional mutual information registration method.  

1   Introduction 

Multi-modality image registration is important to accumulate information from differ-
ent modality images for diagnosis of diseases, and to align preoperative images with 
intraoperative images for surgical planning. Mutual information has been suceessfully 
used as a measure of image similarity for both mono- and multi-modality image 
registration [1-3]. However, mutual information measurement only considers the 
matching of intensities, and ignores spatial information in the images. It should be 
noted that intensity matching not necessarily means anatomical matching. Therefore, 
it is important to design the registration methods that ensure the anatomical matching.  

Spatial information, i.e., relationship of intensities between neighboring voxels, has 
been widely studied and incorporated into the mutual inforomation based registration 
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procedure. In particular, many methods have been developed to include the image 
gradients into the registration [4,5]. In [5], the image registration is completed by 
maximizing both mutual information and matching of gradient maps between two 
images. Recently, distance map, calculated from grantient map, is proposed for multi-
modality image registration [6], in order to make the registration method have larger 
capture ranges, since gradients are locally defined. On the other hand, the second-
order information measures, i.e., the probabilities of co-occurence of intensity pairs 
within a certain size of image neighbourhood, were introduced into the mutual 
information based image registration [7]. Also, in order to employ multi-level spatial 
information simultaneously for image registration, Holden et al [8] firstly extracted 
features such as the luminance, the first and the second order derivatives of the scale 
space expansion of the image, and then registered two images by maximizing the 
multi-dimensional mutual information of the corresponding features.   

It is important to note that most mutual information based registration methods 
treat each voxel equally during the registration procedure, regardless of whether some 
voxels are more useful than others in registration. Actually, different voxels even 
having same intensity should be treated differently in the registration procedure [9], 
according to their regional saliency values calculated from the scale-space map 
[10,11]. For example, WM voxels near to cortex should contribute more than WM 
voxels inside the large WM regions in measuring the mutual information between two 
images under registration. In this way, the registration algorithm can focus more on 
the registration of salient regions.  

In this paper, we define a novel measure of image similarity, i.e., quantitative-
qualitative measure of mutual information (Q-MI), for robust multimodality image 
registration. This new measure not only considers the probability of each image inten-
sity, but also considers the utility of each image intensity, during the registration proc-
ess. Here, we use the saliency value [10] as the utility for voxels in the image. By 
integrating both probability and utility into the definition of similarity of two images, 
our method has a much higher successful rate, compared to the conventional mutual 
information based registration methods, on the images obtained from the BrainWeb 
[12], indicating the robustness of our method to transformations.  

2   Quantitative-Qualitative Measure of Mutual Information  
(Q-MI) 

Before defining quantitative-qualitative measure of mutual information (Q-MI), we 
will briefly describe the basic concepts of information measure (2.1) and mutual in-
formation (2.2). Based on these definitions, we will give our definitions for quantita-
tive-qualitative measure of information (2.3), and for quantitative-qualitative measure 
of mutual information (2.4).  

2.1   Measure of Information 

Information measure is a number related to the uncertainty or probability of occur-
rence of an event or outcome that conveys information [13]. Given a single event Ei 
with probability of occurrence pi, the self-information of this event is defined as 
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The choice of a logarithmic base corresponds to the choice of a unit for measuring 
information. If the base 2 is used, the resulting units may be called binary digits, or 
more briefly bits [14]. The average information of a set of n events E=(E1, E2, …, En), 
each with probability of occurrence pi, is defined as 
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The above is also called Shannon’s entropy [14]. It weights the information per 
outcome by the probability of that outcome occurring. The Shannon’s entropy is a 
measure of the amount of information required on the average to describe a set of 
events.  

Let P=(p1, p2, …, pn) be a finite discrete probability distribution of a set of n events 
E=(E1, E2, …, En) on the basis of an experiment whose predicted probability distribu-
tion is Q=(q1, q2 ,…, qn). Then, a measure of directed divergence, which is called 
relative information or Kullback-Leibler distance [13], is defined as 
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2.2   Measure of Mutual Information 

Mutual information is an important concept in information theory and is defined ac-
cording to relative entropy. Suppose we have two sets of events, E=(E1, E2, …, En) 
with probability distribution P=(p1, p2, …, pn), and F=(F1, F2, …, Fm) with probability 
distribution Q=(q1, q2, …, qm). Mutual information is a measure of the amount of 
information that the set of events E contains about the set of events F. Thus, mutual 
information is defined as the relative entropy between the joint distribution and the 
product distribution as follows, 
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2.3   Quantitative-Qualitative Measure of Information 

Shannon’s entropy is a quantitative measure of information, since it considers all the 
events as random abstract events and neglects the particular aspects of those events. 
From the view of cybernetic system, Belis and Guiasu [15] presented a quantitative-
qualitative measure of information in 1968. They thought that the occurrence of an 
event removes a double uncertainty, i.e., the quantitative one related to its probability 
of occurrence, and the qualitative one related to its utility for the fulfillment of the 
goal. The utility of an event is a subjective notion, and it is directly connected to the 
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goal to achieve. Here, we emphasized that the utility of an event is independent of its 
objective probability of occurrence. For instance, an event of a small probability can 
have great utility, while an event of a great probability can have small utility.  

Let E=(E1, E2, …, En)
 be a finite set of events representing the possible realizations 

of some experiments. Let P=(p1, p2, …, pn) be the probabilities of occurrence of those 
events, and U=(u1, u2, …, un) be the utilities of those events. The quantitative-
qualitative measure of information is  
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If all utilities are same, equation (5) becomes equation (2), which is Shannon’s  
entropy.  

Based on the work of Belis and Guiasu [15], Taneja [16] presented a quantitative-
qualitative measure of relative information as follows, 
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The quantity ii pu log  is usually referred as useful self-information conveyed by an 
event with probability of occurrence ip  and utility iu . Thus, the term 

( ) iiiiiii qupuqpu logloglog −=  can be regarded as useful information gain in pre-
dicting the event Ei. When utilities in equation (6) are ignored, equation (6) becomes 
equation (3). 

2.4   Quantitative-Qualitative Measure of Mutual Information (Q-MI) 

As we mentioned above, Shannon’s entropy-based mutual information only pays 
attention to the occurrence of events, and does not consider the particular aspects of 
events with respect to the goal. In order to consider the particular aspects of events, 
we define the quantitative-qualitative measure of mutual information (Q-MI) as fol-
lows, according to the quantitative-qualitative measure of relative information in 
equation (6), 
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Like definitions given in equations (5) and (6), Q-MI focuses on the useful infor-
mation that one set of events tells about another set of events. When utilities are the 
same, equation (7) becomes the definition of conventional mutual information.  

3   Implementation 

This section first describes the method of computing saliency values for each image 
location and using it as utility for that location. Then, the method of estimating utility 
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for each intensity pair of two images is provided. Finally, the optimization method 
used in our registration algorithm is briefly described. 

3.1   Saliency Measure  

Each voxel in the image is unique, and it has its own roles. The only difference be-
tween those roles is the amount of significance. For example, the voxels that lie in the 
region of interest or at the boundary of region of interest are more significant for im-
age analysis and understanding task, compared to the voxels that lie in the back-
ground. However, how to characterize each voxel still remains a hot topic in computer 
vision and pattern recognition fields.  

Gradient operator is a simple image detector, able to identify the location of inten-
sity changes. As we indicated in introduction, gradient map has been widely incorpo-
rated into the mutual information based registration methods. However, gradient is a 
local feature, and it is sensitive to noise. On the contrary, saliency measure [10], de-
fined from scale-space map for each voxel in the image, is robust to noise and consid-
ers regional information. Accordingly, the saliency definition is adopted here for 
representing the significance of each voxel, and also the utility of this voxel in image 
registration.  

Saliency measure is defined for each voxel in an image, and it is determined by 
analyzing entropy in the local regions of different size. For each voxel x, we first 
calculate the probability distribution of intensity i, pi(s,x), in a spherical region of 
radius s, centered at x. Then, we calculate the local entropy L(s,x) from pi(s,x), as 
defined below, 
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The best scale sx for the region centered at voxel x is selected as the one that maxi-
mizes local entropy L(s,x). Since large scale and high local image difference are pre-
ferred, the saliency value of voxel x, A(sx,x), is defined by that maximal local entropy 
value, weighted by both the best scale sx and a differential self-similarity measure in 
the scale space,  
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By measuring saliency over the whole image, each voxel has a saliency value to rep-
resent its significance in the image and also utility in image registration. 

3.2   Calculating the Utility of Each Intensity Pair of Two Images 

Once the saliency/utility has been defined for each voxel in the two images under 
registration, we are ready to define the utility for each intensity pair in the two im-
ages. Let IR(x) be the intensity of reference image R at location x, and IF(y) be the 
intensity of floating image F at location y. Similarly, let AR(x) and AF(y) be the sali-
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ency values of voxel x in R and voxel y in F, respectively. Then, the utility of an in-
tensity pair (i,j)  can be defined as, 
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where is the overlap region of images R and F. In this paper, we use a multiplica-
tion operation to combine the saliency values from images R and F. Other combina-
tions of utilities will be tested extensively in future.  

3.3   Optimization 

The registration problem based on Q-MI can be formulated as an optimization prob-
lem. Given a transformation T that maps a floating image F to match with a reference 
image R, we need to find an optimal transformation T*, 

));(,(maxarg* UFTRQMIT
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such that our defined Q-MI, i.e., QMI in equation (11), is maximized. 
Powell’s multidimensional set method [17] is used to iteratively search for the 

maximum value of Q-MI, along each parameter via Brents’s method [17]. To increase 
the robustness and also save the computation time, a multi-resolution framework of 
registration is performed.  

4   Results 

A number of experiments have been performed to demonstrate the performance of the 
proposed Q-MI in multi-modality image registration. The first set of experiments is 
used to test the performance of our method with respect to noise. The second set of 
experiments is used to evaluate the robustness of our proposed method. All experi-
ments are performed on PD and T1 MR brain images obtained from Brain Web [12], 
and 2D slice images are used.  

4.1   Visual Demonstration of the Robustness of Our Method to Noises 

In this experiment, we evaluate our registration method on 2-dimensional PD and T1 
MR brain images. The size of 2D image is 217x181, and the noise level is 1%, 5% 
and 9%, respectively. PD MR brain image is used as reference image, as displayed in 
Fig 1a, and T1 MR brain image is used as floating image, as displayed in Fig 1b. Figs 
1c and 1d show the color-coded saliency measures for PD and T1 MR brain images, 
respectively. Since these are the simulation images, the different modality images 
have been aligned. To visually evaluate the performance of our registration algorithm 
with respect to different levels of noise, we plot the changes of Q-MI with respect to 
rotations around z-axis, horizontal shifting and vertical shifting, respectively. Here, 
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parameters Rz, Tx, and Ty denote rotation around z-axis, horizontal shifting, and verti-
cal shifting, respectively.  

Figs 2a, 2b and 2c show the results of our Q-MI. It can be clearly observed that the 
curves of our Q-MI are smooth even in the case of large noise level, indicating the 
robustness of our method to noise.  

4.2   Comparison on Robustness of Registration Methods 

For validating the robustness and accuracy of the proposed method, we designed a 
series of controlled experiments on a pair of brain images with known transformations 
and noise levels. Similar to the experiments in 4.1, the PD MR brain image is used as 
the reference image, and the T1 MR brain image is used as the floating image. The 
floating image is transformed similarly in each of three datasets described below, but 
additive noises in both reference and floating images are different in the three data-
sets.  

(1) Test dataset 1: 1% Gaussian noises were added in both reference and floating 
images. The floating image is simultaneously rotated and shifted, by a rotation 
angle uniformly sampled from the range of [-20, 20] degree and the horizontal 
and vertical shiftings (Tx and Ty) both uniformly sampled from the range of  
[-40mm, +40mm]; 

(2) Test dataset 2: 5% Gaussian noises were added in both reference and floating 
images. The floating image is similarly transformed as Test dataset 1; 

(3) Test dataset 3: 9% Gaussian noises were added in both reference and floating 
images. The floating image is similarly transformed as Test dataset 1. 

The test datasets 1~3 each generate 1000 randomly transformed images, therefore 
there are totally 3000 transformed floating images. We applied the registration algo-
rithms, respectively based on conventional mutual information and our Q-MI, to in-
dependently register the reference image with each transformed floating image. In 
order to compare their performances fairly, we used the same optimization technique 
to perform registrations. 

The registration result is regarded as successful if the differences between esti-
mated transformations and ground-truth transformations are less than pre-defined 
thresholds, i.e., 2 degree for rotation and 2mm for shifting, which is similarly used in 
[18]. The successful rates of registration based on those two measures are listed in 
Table 1. Also, for those successful cases of registration, means and standard devia-
tions of rotation errors and shifting errors are calculated, respectively, and listed in 
Table 2. 

Based on Table 1, we can conclude that Q-MI based registration method has a 
higher success rate than conventional mutual information based method for each test 
dataset. That is, Q-MI based registration method is more robust, since utility has been 
incorporated into the mutual information definition. Based on Table 2 that compares 
registration accuracy for the successful cases, we can observe that the accuracy of Q-
MI based registration is comparable to that of conventional mutual information based 
method. 
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(a)                                (b)                               (c)                                 (d)  

Fig. 1. The testing MR brain images. (a) PD MR brain image, (b) T1 MR brain image, (c,d) 
their color-coded saliency measures. 

(a) (b) (c)
 

Fig. 2. Changes of Q-MI, with respective to rotations around z-axis Rz (a), horizontal shifting Tx 
(b), and vertical shifting Ty (c). 

Table 1. Successful rates of two registration methods, based on Q-MI and conventional mutual 
information, respectively, in three datasets 

Successful rate Test Dataset 
Mutual Information Q-MI 

Dataset 1 60.4% 84.9% 
Dataset 2 54.6% 82.4% 
Dataset 3 51.0% 76.5% 

Table 2. Means and standard deviations of registration errors for the successful cases in three 
datasets, respectively 

Mean and standard deviation 
Mutual information Q-MI 

Test 
dataset 

               Tx             Ty                Tx               Ty 
Dataset 1 0.03±0.04  0.35±0.53  0.41±0.62 0.13±0.11  0.41±0.59  0.51±0.73 
Dataset 2 0.16±0.15  0.39±0.58  0.48±0.67 0.08±0.10  0.47±0.67  0.56±0.78 
Dataset 3 0.24±0.24  0.42±0.61  0.50±0.70 0.15±0.17  0.55±0.75  0.58±0.79 
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5   Conclusion 

We have presented a novel measure of image similarity, called quantitative-
qualitative measure of mutual information (Q-MI), for registration of multi-modality 
images. This new measure integrates not only information obtained from the probabil-
ity of intensity distribution, but also information obtained from the utility of each 
voxel, defined as value of saliency. This is different from other mutual information 
registration methods that use spatial information, since spatial information was not 
used as guidance for the calculation of mutual information. Our experiments on multi-
modality MR brain images shows that the successful rate of our method is much 
higher than that of conventional mutual information based registration method, indi-
cating the robustness of our method. In future, we will test our method extensively on 
other modality images of brains or other organs. We will also test on 3D images.  
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Multi-scale Vessel Boundary Detection
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Abstract. In this paper, we present a robust and accurate method
for the segmentation of cross-sectional boundaries of vessels found in
contrast-enhanced images. The proposed algorithm first detects the edges
along 1D rays in multiple scales by using mean-shift analysis. Second,
edges from different scales are accurately and efficiently combined by
using the properties of mean-shift clustering. Third, boundaries of ves-
sel cross-sections are obtained by using local and global perceptual edge
grouping and elliptical shape verification. The proposed algorithm is sta-
ble to (i) the case where the vessel is surrounded by other vessels or other
high contrast structures, (iii) contrast variations in vessel boundary, and
(iii) variations in the vessel size and shape. The accuracy of the algo-
rithm is shown on several examples.

1 Introduction

The main goal of the majority of contrast-enhanced (CE) magnetic resonance
angiography (MRA) and computed tomography angiography (CTA) is diagnosis
and qualitative or quantitative assessment of pathology in the circulatory system.
Once the location of the pathology is determined, quantitative measurements can
be made on the original 2D slice data or, more commonly, on 2D multi planar
reformat (MPR) images produced at user-selected positions and orientations in
the volume. In the quantification of stenosis, it is desirable to produce a cross-
sectional area/radius profile of a vessel so that one can compare pathological
regions to patent (healthy) regions of the same vessel.

Accurate and robust detection of vessel boundaries is often challenging task,
Figure 1. Specifically, (i) the presence of significant noise levels in CT and MR
images often forms strong edges inside vessels. (ii) Size of vessels can change
drastically along them. (iii) The intensity profile of a vessel boundary can be
diffused at one side while it can be very shallow on the other sides due to the
presence of other vessels or high contrast structures. (iv) The presence of vascu-
lar pathologies, e.g., calcified plaques, makes the shape of vessel cross-sectional
boundary locally deviate from a circular shape. In this paper, we propose a
method for detecting vessel boundaries accurately and robustly in the presence
of such difficulties.

Previously, Hernandez-Hoyos et. al. [7] presented a snake model for segment-
ing vessel boundaries in the planes orthogonal to the vessel centerline. Wink et
al. [18] proposed a ray propagation method based on the intensity gradients for
the segmentation of vessels and detection of their centerline. Similarly, Tek et.
al. [16] proposed a segmentation method for the cross-sectional vessel boundaries

Y. Liu, T. Jiang, and C. Zhang (Eds.): 2005, LNCS 3765, pp. 388–398, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CV IB A



Multi-scale Vessel Boundary Detection 389

(a) (b) (c)

Fig. 1. Detection of vessel boundaries is often a difficult task due to: (a) significant
contrast changes along a vessel in MRA. (b) Local deviation from a circular shape. (c)
shallow gap edges and diffused edges can be present in the boundary of a vessel.

based on explicit front propagation via ray propagation. However, it is often very
difficult to estimate the internal and smoothness parameters to obtain accurate
results robustly.

In this paper, we propose a new segmentation technique based on multi-scale
edge detection, clustering, edge grouping and elliptical shape matching. Specif-
ically, first, edges along a ray are computed in several scales by using mean
shift analysis [4]. Second, incorrect edges obtained from multiple scale are elimi-
nated by the mean-shift based clustering algorithm. Third, prominent edges are
obtained by selecting edges based on their strengths, and the assumption that
vessels are not nested structures. Fourth, smooth and long curve segments are
constructed from prominent edges by a local grouping algorithm. Finally, the
curve segments that best describes the vessel boundary are determined from the
elliptic shape priors. This new algorithm is capable of segmenting vessel bound-
aries in great detail even in the extreme conditions illustrated in Figure 1. In ad-
dition, we propose that 2D cross-sectional vessel boundaries can be successfully
used to model 3D vessels very accurately by a centerline tracking algorithm simi-
lar to one in [2]. The accuracy and robustness of the 2D cross-sectional boundary
detection algorithm is shown on several CTA and MRA data.

1.1 Previous Work

Previously, Tek et. al. [16] proposed an approach that is based on explicit front
propagation via normal vectors, which then combines smoothness constraints
with the mean-shift filtering. Specifically, they considered the curve evolution
equation ∂C(s, t)/∂t = S(x, y)

→
N for the segmentation of vessel boundaries where

C(s, t) is a contour, S(x, y) is the speed of evolving contour and
→
N is the vector

normal to C(s, t). In this proposed approach, the contour C(s, t) is sampled and
the evolution of each sample is followed in time by rewriting the curve evolution
equation in vector form [16]. The speed of rays, S(x, y) depends on image infor-
mation and shape priors. They proposed to use S(x, y) = S0(x, y) + βS1(x, y)
where S0(x, y) measures image discontinuities, S1(x, y) represents shape priors,
and β balances these two terms. In this approach, image discontinuities are de-
tected via mean-shift analysis [4] along the rays. Comaniciu and Meer [4] showed



390 H. Tek, A. Ayvacı, and D. Comaniciu

that mean-shift analysis, which operates in the joint spatial-range domain where
the space of the 2-dimensional lattice represents the spatial domain and the
space of intensity values constitutes the range domain, is a powerful method for
robustly detecting object boundaries in images.

This algorithm [16] works well in certain applications especially when vessel
boundaries are well isolated. However, it is difficult to estimate parameters i.e.,
spatial, range kernel filter sizes, the amount of smoothness constraints for the
robust segmentation of vessels. Specifically, the use of single spatial scale and
curvature based smoothness constraints are not enough for accurate results when
vessels are not isolated very well. In this paper, we present an approach that
robustly handles these difficulties.

2 Multi-scale Edge Detection By Mean Shift Clustering

In this paper, we propose to use the displacement vectors of mean-shift analysis
for detecting edges in multiple scales. Unfortunately, the robustness and accuracy
of segmentation results heavily depend on the selection of spatial (σx) and range
(σI) scale parameters of mean-shift analysis because vessel boundaries are often
in many spatial and range scales. Previously, Comaniciu [3] proposed a statistical
technique for the estimation of these parameters directly from images. In this
paper, we develop a geometry-based algorithm, which operates solely on the
edges of intensity data.

The divergence of displacement vectors corresponds to the edges of struc-
tures, Figure 2. In many medical imaging applications, it is often assumed that
boundary can be represented by high contrast step edges. However, in reality,
diffuse edges, low contrast edges and gap edges occur frequently even in a single
cross-sectional vessel boundary, Figure 1. The robust and accurate detection of
boundaries in such cases requires edge detection in many scales. However, inte-
gration of edge responses from different scales is not an easy task. In this paper,
we propose a boundary extraction method which correctly combines the edges
obtained from different spatial scales of mean-shift filtering along a ray, illus-
trated step-by-step in Figure 6. It is also possible to apply the filtering in several
range scales. However, optimal range kernel size can be obtained directly from
the intensity data. Specifically, we experimentally determined that the mean in-
tensity difference between the right and left side of the spatial filters corresponds
to the optimal range scales, which is verified in our experiments. In addition, it
is assumed that the size of largest diffuse edge is known a priori to set the range
of spatial kernels.

There are two main difficulties with obtaining the correct edge from multi-
scale edges: First, multiple erroneous edges often present in the vicinity of the
correct edge due to presence of noise in the intensity data. These edges do not
corresponds to semantically correct structures, e.g. vessel boundary, thus, they
should be deleted. Second, there are often several edges along a ray corresponding
to the structures of the boundaries. The edge corresponding to the boundary of
a vessel can be determined from the geometric properties of the vessels and
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Fig. 2. This figure illustrates the mean-
shift filtering of a typical edge. Left: orig-
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Fig. 3. Mean-shift based edge detec-
tion is depicted on a gap edge. (left)
When the correct size mean-shift is
applied the correct edge location is ob-
tained. (right) However, larger scale
mean-shift moves the edge location to
left and lowers the edge strength, Es.

perceptual edge organization, which is explained in the section. In this section,
we describe how to remove incorrect edges along a ray based on edge confidence
and edge strength.

Consider a typical intensity data containing a single edge, Figure 2. While
the divergence of displacement vectors defines the location of the edge, the con-
vergence of displacement vectors corresponds to the local mode of intensity, i.e.
clustering of intensity data. The intensity data can be locally clustered around
the edge by mean-shift, if the proper scale, (σx) is chosen. We use this fact, i.e.,
local clustering, to define the edge confidence which measures the validity of an
edge by checking the presence of local clustering, Figure 2. Specifically, the edge

confidence for scale (σxk) at location i is given by Eci(σxk) =
∑M

j=1

|I∗
j
−Ii|

|Ic−Ii|
M where

M is the size of the filter, I∗j is a smoothed intensity at j, Ic corresponds to the
intensity value of the convergence point, i.e., local intensity mode. Observe that
this measure is close to one if a local clustering forms around the edge, other-
wise, it is close to zero. In this paper, we delete the edges with small confidence
(< 0.4) which, for example, forms from applying small-scale mean-shift filtering
on diffused edges. While the removal of low confidence edges is important, it
cannot solely eliminate all incorrect edges. In fact, several high confidence edges
form in the vicinity of a correct edge. To eliminate these incorrect edges, we
define edge strength as the intensity difference between at edge location and the
convergence location. Specifically, the edge strength of an edge location i is given
by Es(i) = 2|Ii − Ic| where Ic is the intensity value of the convergence point.
Observe that there are two convergence locations for each divergence location. In
ideal conditions, i.e., well isolated step edges, the edge strength does not change
based on selection of Ic. However, in real applications, this assumption does not
hold and the correct one must be selected. We specifically illustrate this on a
gap edge:

Consider a gap edge, where the presence of nearby structure alters the in-
tensity profile significantly, Figure 3. The detail analysis of mean-shift filtering
points out that the edge location and the edge strength can be accurately com-
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puted from one side of the filter, Figure 3. Thus, in this paper, we propose the
edge strength should be measured from the one side. The correct side is deter-
mined from the edge confidences of the sides. Specifically, the side that gives
higher edge confidence must be selected for the edge strength. The following ob-
servation is then used to eliminate incorrect edges based on their strength and
local mode: An edge is a correct edge if it is not located under the local mode of
another edge. If it falls inside the local mode of another edge, it must have higher
edge strength. The local mode of an edge corresponds to the interval between its
convergence points. Figure 6a,b illustrates an example.

3 Vessel Boundary Extraction from Multi-scale Edges

In this section, we present an algorithm for selecting the edges that correspond
to the cross-sectional boundary of vessels. Specifically, a three-stage algorithm
is proposed: prominent edge selection, curve segments from local edge grouping,
and curve grouping based on ellipse fitting. The different stages of the proposed
algorithm are depicted in detail in Figure 6a-h.

Prominent Edge Selection: In this paper, we propose to use the fact that
vessels found CE-MRA/CTA are not embedded inside other bright structures.
In other words, they are locally surrounded by darker background, i.e., partial
nearby bright structures are allowed. This is called no nested structures assump-
tion. However, this assumption may not be valid if vessels are fully surrounded
by darker appearing plaques, which we have not observed in any data yet. The

Fig. 4. This figure illustrates the results of prominent edge selection and local edge
grouping on two different example. (left) multi-scale edges, (middle) prominent edges,
and (right) curve segments after grouping.
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prominent edges from multi-scale edges are determined by our no nested struc-
tures assumption. Geometrically, the first significant edge (strength) encountered
during a propagation along the rays from the seed point towards outside often
corresponds to the vessel boundary, if there is no significant noise inside the
vessels. In other words, an edge is deleted from edge map if there is a much
more significant edge present on the right side (outward). Mathematically, the
edge Ei is deleted if Esi < k1Esj where j > i ≥ 0 or if k1Esi < Esj where
i > j ≥ 0. k1 is a parameter which specifies relative strength of edges. In real
images, it is not easy to estimate k1 value that would select edges corresponding
to vessel boundaries. Thus, we propose to apply a range of k1 values to select
the prominent edges from multi-scales. In our experiments, all prominent edges
are obtained by setting k1 to 0.1, 0.2, 0.3, 0.5, 0.7, 0.9 respectively and marking
all these prominent edges in a single image. Figure 4 illustrate the proposed al-
gorithm on two real examples. Observe that this algorithm reduces the number
of edges significantly while preserving all the important edges.

Curve Segments From Local Edge Grouping: After removing edge el-
ements which are not part of the vessel boundary, the problem of detecting
the vessel boundary becomes relatively easy. In this stage, our goal is to or-
ganize edge elements into “long smooth curves” via perceptual edge grouping
algorithms. Previously, Gestalt psychologists proposed that the human visual
system selects those that depict regularities such as good continuation, proxim-
ity, symmetry, closure, etc. for the organization of visual data, e.g., [12] These
ideas have motivated approaches in computational vision where sets of edge
elements which form long smooth curves with few interruptions are grouped
together [14,11,6].

The goal of obtaining smooth curve segments in our problem is relatively easy
compared to the general edge grouping problem because (1) edge elements are
implicitly ordered by rays, (2) very few gaps are present, (3) spurious edges are
almost non-existent. Our proposal for grouping edges to obtain curve segments
exploits the angle θi, and distance (length) Li between edge elements, Figure 5a.
Specifically, edge grouping starts from three edge elements, which forms a smooth
curve segment, i.e., small angle θi. It then expands in two directions by adding
more edge elements based on the neighboring angles which force the curve remain
smooth, and the length of neighboring edges which also forces the proximity.
When multiple edge elements are “good” candidates for smoothness during the
expansion of a curve segment, a branch point forms and new curve segments are
initialized from this branch point. This iterative edge grouping terminates when
all edge elements are considered for local grouping. This grouping algorithm
converts edges to a set of curve segments C = {C1, ..., CN}. Figure 4 illustrates
the results of this local edge grouping algorithm on two examples.

Vessel Boundary From Elliptical Shape Descriptors: After obtaining a
set of smooth curve segments from prominent edges, our goal is to select a subset
of k curve segments which corresponds to the cross-sectional boundary of ves-
sels. This can be efficiently accomplished by considering all geometrically possible
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(a) (b) (c)

Fig. 5. (a) This figure illustrates the main idea of local grouping. (b) Presence of nearby
vessels often remove some of the edges from vessel boundary resulting gaps. The gap
between curve segments (black segments) are completed by cubic splines (white curve).
(c) Elliptical Fourier Descriptors (white curve) are used for measuring the similarity of
curve segments (black) to ellipse with local deformations.

subsets of curve segments and selecting a subset that is most similar to an el-
lipse. Geometrically possible curve segments correspond to the segments, which
form smooth and longer curve segments when they are joined together with-
out breaking them into pieces. Sometimes disjoint curve segments form smooth
curves, which then results in gaps between them. In fact, gaps occur often when
some parts of vessel boundary do not contain any edge due to the presence of
nearby bright structures. For example, when arteries touch veins in MS-325 con-
trast enhanced MRA, there is no boundary between them, Figure 5b. Similarly,
in CTA no boundary between bone and touching vessel may be present due
to intensity similarities. In addition, gaps also form in edge grouping stage due
to the noise in the vessel boundaries. Thus, we propose that such gaps should
be bridged by the best “completion curves” to obtain a closed curve. These
completion curves for gaps between curve segments or edge elements are often
constructed from circular arcs [17], elastica [10], or Euler-Spiral [8]. In this work,
we propose to use cubic splines for computational efficiency. Figure 5b illustrates
a smooth completion curve obtained from the cubic spline for a gap between two
curve segment.

The curve segments that best represent the cross-sectional boundary of vessel
is determined by an elliptical fit measure. Specifically, while the global shapes
of vessel resembles an ellipse, it often exhibits local variations from an ellipse
due to the presence of nearby vessels. In fact, such local deformations should
be preserved for an accurate boundary representation. For this task, we propose
to use elliptical Fourier descriptors [15] to obtain the best curve from all the
possible sets. Specifically, from given set C, an elliptical fit measure is computed
for each geometrically possible subsets of curve segments by elliptical Fourier
descriptors. Among them, a subset of curve segments that best fits to an el-
lipse is selected as the boundary of vessels. Figure 5c illustrates a closed curve
constructed from the elliptical Fourier descriptors of a set of curve segments. In
our experiment, we used 7 Fourier coefficients since low number of coefficients
(< 5) does not capture local deformations of boundary and high number of coef-
ficients (> 10) allows too much local deformation. We experimentally observed
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. This figure illustrates the boundary extraction algorithm step by step on a
CE-MRA data. White color describes the event taking place at that stage. (a) Multi-
scale edges are detected along 1D rays, (b) Incorrect edges (white) are eliminated, (c)
Correct edges after deletion of incorrect edges, (d) Prominent edge selection by setting
k1 to 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, (e) Curve segments obtained from local edge grouping
algorithm, (f) Gap completion via cubic spline (white) between curve segments, (g)
Elliptic Fourier representation (white) of a curve set, (h) Vessel boundary obtained
from an elliptical fit.

that these elliptical descriptors are very accurate in capturing vessel boundaries
in great accuracy and robustness.

4 Results and Validations

Figure 6a-h describes the proposed algorithm step by step. The proposed algo-
rithm is applied on several CTA and MRA data sets. Figure 7 illustrates several
examples on both CTA and MRA. In all examples, all parameters are constant.
Thus, no change in the parameters is needed to obtain accurate results robustly.
In addition, the results do not depend on the location of the seed point. The
current implementation of our algorithm for a single slice takes 0.15 seconds on
Penthium IV 1.8 GHz PC.

The accuracy of results are validated by comparing them against “ground-
truth” results created by an expert on 4 patient data sets. Specifically, the 2D
cross-sectional vessel boundaries were detected via the proposed algorithm at
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Fig. 7. This figure illustrates the extraction of vessel cross-sectional boundary by the
proposed algorithm on several MRA and CTA data

Table 1. This table illustrates the distance differences between computed and expert-
constructed vessel cross-sectional boundaries in percentage (%) for 8 different locations.
The (x ± y); z representation describes: x (the average distance difference), y (the
standard deviation of this difference) and z (the maximum distance difference between
two contours in percentage).

Patient-1 Patient-2 Patient-3 Patient-4
Contour-1 (2.98 ± 1.77);6.93 (3.95 ± 3.02);13.12 (7.45 ± 5.28);21.83 (9.82 ± 5.44);21.71
Contour-2 (2.02 ± 1.28);5.37 (3.60 ± 2.23);11.19 (1.69 ± 0.96);5.01 (11.35 ± 4.00);19.42
Contour-3 (2.40 ± 2.07);9.54 (4.29 ± 3.62);14.82 (1.87 ± 1.37);5.96 (13.07 ± 3.75);19.76
Contour-4 (3.36 ± 2.54);8.78 (2.24 ± 1.40);5.63 (2.78 ± 1.68);6.04 (16.72 ± 5.13);24.76
Contour-5 (4.64 ± 5.03);19.05 (3.48 ± 3.90);13.75 (3.73 ± 3.17);12.69 (14.51 ± 4.85);21.69
Contour-6 (3.46 ± 3.32);15.53 (2.58 ± 2.27);7.07 (3.19 ± 3.03);12.61 (13.22 ± 6.34);25.31
Contour-7 (3.19 ± 4.40);17.99 (4.90 ± 3.40);10.69 (3.89 ± 4.17);14.22 (13.25 ± 3.74);21.49
Contour-8 (3.00 ± 2.56);12.04 (4.35 ± 2.44);10.23 (5.80 ± 4.49);15.58 (13.27 ± 5.45);23.87

the user selected locations. These results were then compared to the expert
generated results in Table 1. We present average error, standard deviation and
maximum error between each contour in percentage. Each contour is described
by 48 contour points. Let Ci represent a point on the expert-created contour.
Similarly, let its corresponding point on the computed contour be represented
by Ĉi . Since each contour differs in size, percentage errors are used in our
validation instead of actual distance in mm. In order to find the percentage
difference between two points, we performed a radial comparison using the ratio
of the diameter of the user constructed contour to the difference, |Ci − Ĉi|. The
proposed algorithm performs very well on many data sets. Especially, observe
that for the first three data sets mean distance and standard deviations are very
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(a) (b)

Fig. 8. The modeling of vessel is obtained by a simple tracking algorithm which op-
erates on the 2D cross-sectional boundaries of vessels. (a) partial modeling of carotid
artery in a CTA is visualized by volume rendering. (b) modeling vessels in the vicinity
of a cerebral aneurysm in 3D rotational X-ray angiography.

low. For the Patient-4 the difference is between computed and ground-truth data
is relatively high compared to the other data sets. However, the expert is satisfied
with the accuracy of the results on Patient-4 because maximum diameter of
vessel in that data set was 5 pixels. Thus, maximum error was often less than
one pixel.

5 Tracking Vessels

Accurate detection and modeling of vessels is an important task in medical im-
age applications [1,5,19]. Modeling vessels directly from images by the eigenvalue
analysis of Hessian matrix has been very popular in vascular image analysis. In
these approaches, images are often filtered based on the eigenvalue analysis of
Hessian matrix to highlight 3D tubular structures in images. Specifically, a “ves-
selness measure” is then defined based on the eigenvalue analysis, e.g., [13,9,5].
While the main goal of this paper is the accurate and robust detection of ves-
sel cross-sectional boundary, the 2D cross-sectional vessel boundaries can be
successfully used in vessel modeling algorithms. Specifically, we implemented a
vessel tracking algorithm that is similar to the one described in [2]. Specifically,
direction of vessels are detected by the eigenvalues of Hessian matrix and ves-
sels are tracked by using centerlines and cross-sectional boundaries detected by
the current algorithm. Figure 8 illustrates the initial results obtained from this
tracking algorithm. It must be observed that while this tracking algorithm can-
not segment multiple branches from a single seed, it can be successfully used
modeling stenosis and aneurysm very accurately.

6 Conclusion

In this paper, we proposed a method for detecting vessel boundaries accurately
and robustly. The proposed algorithm is accurate and stable even where the
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vessels are surrounded by other vessels or other high contrast structures, contrast
variations are present along vessels, and variations in the vessel size and shape
are common.

References

1. S. Aylward and E. B. E. Initialization, noise, singularities, and scale in height-
ridge traversal for tubular object centerline extraction. IEEE Trans. on Medical
Imaging, 21(2):61–75, 2002.

2. T. Behrens, K. Rohr, and H. Stiehl. Robust segmentation of tubular structures in 3-
d medical images by parametric object detection and tracking. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 33(4):554–561, 2003.

3. D. Comaniciu. An algorithm for data-driven bandwidth selection. IEEE Trans.
Pattern Analysis Machine Intell., 25(2):281–288, 2003.

4. D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space
analysis. IEEE Trans. PAMI, 24(5):603–619, 2002.

5. M. Descoteaux, L. Collins, and K. Siddiqi. Geometric flows for segmenting vascu-
lature in MRI: Theory and validation. In MICCAI, 2004.

6. G. Guy and G. Medioni. Inferring global perceptual contours from local features.
IJCV, 20(1):113–133, 1996.

7. M. Hernandez-Hoyos, A. Anwander, M. Orkisz, J. P. Roux, and I. E. M. P. Doueck.
A deformable vessel model with single point initialization for segmentation, quan-
tification and visualization of blood vessesl in 3D MRA. In MICCAI’00, 2000.

8. B. B. Kimia, I. Frankel, and A.-M. Popescu. Euler spiral for shape completion.
Int. J. Comput. Vision, 54(1-3):157–180, 2003.

9. K. Krissian, G. Malandain, N. Ayache, R. Vaillant, and Y. Trousset. Model based
multiscale detection of 3d vessels. In IEEE Conf. CVPR, pages 722–727, 1998.

10. D. Mumford. Elastica and computer vision. Algebraic Geometry and Its Applica-
tions, pages 491–506, 1994.

11. P. Parent and S. W. Zucker. Trace inference, curvature consistency and curve
detection. PAMI, 11(8):823–839, 1989.

12. S. Sarkar and K. Boyer. Perceptual organization using Bayesian networks. In
CVPR, pages 251–256, 1992.

13. Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig,
and R. Kikinis. Three-dimensional multi-scale line filter for segmentation and
visualisation of curvilinear structures in medical images. Med. Image Analysis,
2(2):143–168, 1998.

14. A. Sha’ashua and S. Ullman. Structural saliency: The detection of globally salient
structures using a locally connected network. In ICCV, 1988.

15. L. H. Staib and J. S. Duncan. Boundary finding with parametrically deformable
models. PAMI, 14(2):1061–1075, 1992.

16. H. Tek, D. Comaniciu, and J. Williams. Vessel detection by mean shift based ray
propagation. In Work. on Math. Models in Biomedical Image Analysis, 2001.

17. S. Ullman. Filling-in the gaps: The shape of subjective contours and a model for
their generation. Biological Cybernetics, 25:1–6, 1976.

18. O. Wink, W. Niessen, and M. A. Viergever. Fast delination and visualization of
vessels in 3-D angiographic images. IEEE Trans. on Medical Imaging, 19:337–345,
2000.

19. O. Wink, W. J. Niessen, and M. A. Viergever. Multiscale vessel tracking. IEEE
Trans. on Medical Imaging, 23(1):130–133, 2004.



Non-rigid Registration for Colorectal Cancer
MR Images

Sarah L. Bond and J. Michael Brady
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University of Oxford, Parks Road, Oxford, OX1 3PJ, UK

Abstract. We are developing a system for patient management in col-
orectal cancer, in which the need for segmentation and non-rigid regis-
tration of pre- and post-therapy images arises. Several methods for non-
rigid registration have been proposed, all of which embody a ’generic’
algorithm to solve registration, largely irrespective both of the kinds of
images and of the application. We have evaluated several of these al-
gorithms for this application and find their performance unsuitable for
aligning pre- and post- therapy colorectal images. This leads us to iden-
tify some of the implicit assumptions and fundamental limitations of
these algorithms. None of the currently available algorithms take into
account the issue of scale salience and more importantly, none of the
algorithms ”know” enough about colorectal MRI to focus their attention
for registration on those parts of the image that are clinically important.
Based on this analysis, we propose a way in which we can perform reg-
istration by mobilizing the knowledge of the particular application, for
example the prior shape knowledge that we have within the colorectal
images as well as knowledge of the large scale non-rigid changes due to
therapy.

1 Introduction

The assessment of computer vision registration techniques presented in this pa-
per arose from our continuing work to develop a system to support patient
management decisions in colorectal cancer. We begin by recalling some of the
salient facts about colorectal cancer and the ways in which its progression is
imaged. Following clinical practice at our site, our work to date has been based
entirely on T2 weighted Magnetic Resonance (MR) images. Then we sketch the
patient management decision we have worked on, evaluating the response to
neo-adjuvant chemo/radiotherapy, which requires the application of image seg-
mentation and registration. To summarize: we established the need for non-rigid
registration, then evaluated a number of prominent research and commercial
methods. We contend that the fundamental problem is that, in their generic
form, the algorithms are not able to mobilize knowledge, whether of anatomy or
of the extensive but (at least qualitatively) predictable physiological responses
following neo-adjuvant chemo/radiotherapy. We show how mobilizing even basic
anatomical knowledge can greatly improve the results of registration.
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Colorectal cancer is the second most common form of cancer in the western
world and kills over 400,000 people each year worldwide. Early and accurate
diagnosis is critical in order to assess the risks and determine the best treat-
ment. Increasingly, the results of image analysis are used to determine patient
management decisions, for example: whether or not to administer neo-adjuvant
chemo/radiotherapy prior to surgery, whether or not there is nodal involvement,
and the response of a tumor to such chemo/radiotherapy. We are interested in the
local tumor, as seen in the MR data, as this materially affects patient manage-
ment decisions. More detail about colorectal anatomy and chemo/radiotherapy
prior to surgery are presented in Sect. 2.

T2 weighted MR scans are taken before and after the patient has under-
gone a course of neo-adjuvant chemotherapy or radiotherapy prior to surgery.
This enables the consultants to evaluate the effect that the prior treatment has
had, and identify the positions of the primary tumor, and any metastatic lymph
nodes, that are still present. The tumor and lymph nodes can change dramati-
cally in size and shape as a result of therapy, so their effective comparison pre
and post-therapy requires alignment of the images. The best understood, most
well-conditioned and predictable registrations assume either a rigid or affine
transformation between the pre- and post-therapy images. We have found (Sect.
3.1) that affine registration can align the image positions well based on the rigid
features such as the hips and the base of the spine. However, affine does not
provide adequate pre- and post-therapy image alignment, largely because of the
often substantial, relatively localized changes wrought by therapy.

Recognizing the need for non-rigid registration, we applied a number of well-
known research and commercial algorithms. Typical results are presented in
Sect. 3.2, and we discuss the poor performance in Sect. 4, asking whether there
is something particular about the registration challenge we face or whether there
is a more generic issue. We conclude the latter and discuss in Sect. 5 some of the
ways in which knowledge of anatomy and physiology might be mobilized to make
the performance of these algorithms more reliable, predictable, and accurate.

2 Colorectal Anatomy

We present a very brief introduction to colorectal anatomy in order to enable us
to explain the effects of treatment and to frame our discussion of where the non-
rigid registration algorithms fail. The main features of interest can be seen in Fig.
1(a). The hips and coccyx are rigid bone structures. The colorectum is where the
primary tumor is usually located. The metastatic spread of this tumor into other
areas is the key issue in determining patient management. The mesorectum is
a layer of fat surrounding the colorectum and contains both lymph nodes and
blood vessels. Lymph nodes often contain traces of the tumor as it metastasizes
and these structures are therefore also important.

Cancerous tumors cause swelling, primarily in the colorectum and mesorec-
tum. Chemotherapy and radiotherapy are designed primarily to kill cancerous
cells in the tumor and in any infected lymph nodes, and to reduce the risk of
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Fig. 1. (a) Anatomy of the region, (b) T2 axial colorectal MR images pre-therapy and
(c) post-therapy

metastasis prior to, and during, surgery. Also, they often reduce substantially
the swelling in response to the tumor (up to 25%), and this changes both the
shape and size of the colorectum and mesorectum.

Neo-adjuvant chemo/radiotherapy is successful, at least to a certain extent,
in 50% of cases. Successful (albeit partially successful) response causes the T2-
weighted MR signal to reduce in intensity. Any involved lymph nodes are also
reduced in size. There is a predictable density change that occurs in the mesorec-
tal fat: it becomes much ’streakier’ in appearance in the post-therapy image. The
volume of mesorectal fat also decreases, though to varying degrees. The wall of
the colorectum often thickens and becomes adematous despite the overall reduc-
tion in size. Images corresponding to an equivalent slice from the two pre- and
post-therapy data-sets of one of the patients is shown in Fig. 1(b) and (c).

Finally, we note that even in the absence of cancer this area of the body
is particularly prone to localized displacement, not least because of bowel and
bladder movement. For all of these reasons, the differences between the images
pre and post-therapy are most often substantial, to the point where even skilled
clinicians have difficulty evaluating patient response to therapy. This motivates
the need for image registration to align the anatomy and tumor in the pre- and
post-therapy images. The expected changes are substantial, and the descriptions
are qualitative, however they do refer to anatomical structures which can be
identified [1].

3 Data and Generic Registration Techniques

The pre- and post-therapy images are T2 weighted (TE = 90ms, TR = 3500-
5000ms, α = 90 deg, slice thickness = 3mm), axial small field of view, MR images
taken at the Radiology Department of the Churchill Hospital, Oxford. The data-
sets are 3-D, each consisting of 512 x 512 x 25 voxels of size 0.4mm x 0.4mm
x 3mm. Currently, approximately 50 patients per year are treated for colorectal
cancer at our site. In the experiments reported in this section, we repeated the
application of each of the registration algorithms for a randomly chosen sample
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comprising nine patients. For each data-set the bias field (an MRI artifact) was
removed using a method by Styner et al. [2].

3.1 Affine Registration

For the reasons given in the Introduction, we first implemented affine registration
to align the two data-sets. As expected, this gave very poor results, due to the
fact that the differences are essentially non-rigid, and due to movement, changes
in density, and changes in tumor size. The mean error for manually located
points of interest, such as lymph nodes, can be up to 21mm. Even when we
placed a larger number of landmarks (17) on the rigid bone structures, and then
applied RANSAC [6], a good registration was not achieved, in the sense that the
anatomy was not aligned sufficiently for it to be useful to the clinicians. However,
affine registration does provide a reasonable global alignment, which can then
be used as the first step in non-rigid registration algorithms. This is assumed by
several of the non-rigid registration algorithms we experimented with.

3.2 Non-rigid Registration

We have experimented with a representative set of ’generic’ research and com-
mercial registration algorithms (and acknowledge gratefully the substantial help
that the authors of those algorithms have given us).

Rueckert et al. [3] proposed a registration method using B-splines and mutual
information across a uniform grid of control points. This grid is then refined and
the procedure is repeated using finer grids until the optimum registration is
achieved. The results of a typical application of this algorithm can be seen in
Fig.2(a) which shows the warped image computed by the algorithm. Park and
Meyer suggested using a mis-match measure [4] in order to determine those
areas of the image which seem to be maximally misaligned. They then refine the
current grid of control points just in such misaligned areas. Either B-splines or
Thin Plate Splines (TPS) can then be placed at these control points in order to
perform the registration. A typical set of such control points can be seen in Fig.
2(b). Crum et al. [5] proposed a fluid non-rigid registration algorithm. This was
run using normalized mutual information and the difference between the target
and the registered source image can be seen in Fig. 2(c). In difference images the
mis-registered areas are identified by bright and dark areas, so that a perfectly
aligned image would everywhere have the same gray-scale value.

RevealMVSTM, provided to our Laboratory by Mirada Solutions Ltd., as well
as ITK (Insight Toolkit www.itk.org) registration methods, were also run on the
data. Though its exact form is not made explicit, RevealMVSTM appears to use
an algorithm similar to block-matching, whereas ITK uses local affine registra-
tion. Typical results of running these algorithms can be seen in the difference
images in Fig. 2(d) and (e).

From the results in Fig. 2 it can be seen that the algorithms do not perform
well for this application, with small features such as lymph nodes misaligned
by up to 30mm in some cases. This is also the case for all the data-sets we
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Fig. 2. (a) Result of registration using Rueckert’s method. (b) Positions of Control
Points found using Park and Meyer’s method. Result of registration (difference image)
using (c) Crum’s method (d) RevealMVSTM, and (e) ITK. (f) Illustration of salience
across scale and space.

tested. It seems that the key issue is that the algorithms analyze entropy at a
single scale and equate signal complexity with ’interesting features’ that drive the
registration. However, the area that is of most clinical interest (the mesorectum
and colorectum) are the image regions that are the least varying, most bland.
The algorithms appear to find, at a coarse scale, points that are locally complex
(high entropy) but which are of no clinical interest. These erroneous matches are
then largely preserved as the scale of the registration is refined.

4 Need for Scale Saliency

None of the diverse non-rigid registration methods performed well enough to be
clinically useful on our pre- and post-therapy data. We contend that there are
two main reasons for the observed performance, and that they are quite generic.

The first concerns the saliency, or ’feature-ness’, of the images. All of the
registration algorithms align the images where there are sufficiently many fea-
tures, at a certain scale. That is, prior to regularization that propagates local
matches, they preferentially align areas of high feature complexity, which is gen-
erally equated with high entropy, at the scale of interest. However, Kadir and
Brady [7] have demonstrated that scale and saliency are implicitly related, both
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to each other and to image complexity. That is, features are associated with a
particular scale within the image. They show this by considering the entropy of
local image regions over a range of scales. They suggest that areas that have
a consistently high entropy, that is, if they exist as features over a sufficiently
wide range of scales, then they should not in fact be judged salient, since they
can not be considered rare, which is the essence of salience. However, if there is
a peak at a single scale (or spread over a small range of scales) in the entropies
over a particular area then this implies that there is a feature at that position
localized to that scale. Kadir and Brady demonstrate that saliency has to be
analyzed in terms of scale as well as space. However, all of the non-rigid reg-
istration algorithms we experimented with treat the entropy independently at
each scale.

Does this matter in practice? To investigate this question, we applied a recent
refinement of the algorithm proposed by Kadir and Brady [7] to the colorectal
cancer images. We set the algorithm to find the 85 most salient regions across
both scale and space (empirically this number produces good results and is
insensitive to changes ±5%). A typical result can be seen in Fig. 2(f), where the
size of a circle indicates the scale of the feature that has been found. The first
thing to note is that the algorithm detects mostly sensible features but that the
associated circles are of substantially varying sizes, indicating that it is unlikely
that all of the features sought can be detected at a single scale. It should also
be noted that the more complex areas of the images, for example the muscle
regions in the bottom left and bottom right hand corners of the image, do not
yield any salient points. This is because the entropy in these areas is high across
the entire range of scales, hence they are not considered salient.

Colorectal images exhibit structure (and complexity) over a wide range of
spatial scales, but also have regions that have a high entropy across a range
of scales that are, in fact, not salient. Of course, a scale-saliency analysis such
as that of Kadir and Brady [7] could be incorporated into non-rigid registration
algorithms, though the proper integration of registration of images across a stack
of spatial scales is not entirely straightforward.

5 Mobilizing Application-Specific Knowledge in
Non-rigid Registration

However, incorporating scale-saliency, though necessary (at least for this task), is
not sufficient. We also need the mobilization of appropriate application-specific
knowledge that constrains and guides the registration process. In this section,
we describe some initial steps toward mobilizing knowledge, hence incorporating
segmentation into the registration process. Chen et al. [8] have shown that in-
corporating segmentation into registration algorithms gives a robust registration
and we set out a way in which we can include knowledge of both the anatomy
and expected large scale changes into the registration of the pre- and post-
therapy data.
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Fig. 3. (a) Segmented colorectum in 3-D, and (b)the constrained region of interest

5.1 Segmentation of the Anatomy

We limit attention to the colorectal and mesorectal regions as this is the area
of most clinical interest. The system we have built constructs a local coordinate
frame in which the mesorectal region can be reliably and accurately located.
We do this by first finding the rigid bone structures (hips and coccyx) which
is straightforward given their expected positions, similar sizes, and intensities.
We can then use these to locate the colorectum which can be segmented using
a Kalman snake, Fig.3(a). From this we can build up a coordinate frame of
reference, centered on the colorectum, and defined by the coccyx and hips, which
then enables us to ”cage” the colorectum, Fig. 3(b). That is, it defines the
initial search position of, the scales and size of, the mesorectum, whose boundary
is then relatively straightforward to determine. [1] gives more details of the
segmentation processes and methods. This anatomical ’map’, determining the
position of the colorectum and mesorectum, has been shown to accurately locate
the anatomical features on all our 9 test data-sets described previously [1]. This
’map’ can potentially be extended further to include all the bone regions of
the pelvis (not just the hips and coccyx), the bladder and the muscle and fat
sections. It has been shown by Christensen et al. [9] that an anatomical atlas
can greatly aid registration results in this region of the body due to the large
scale deformation that can occur. We are extending this method to combine
an automatic fitting of an atlas to the anatomy as both a starting point and
constraint for the registration.

5.2 Finding the Deformation Field

We now turn to the issue that therapy causes reduction in tumor size and swelling
in the region of the tumor in the colorectum and mesorectum. The warp field
for the manually registered pre- and post-therapy images (using landmarks) can
be seen in Fig. 4(a). It can be seen that the greatest changes (red) occur in
the mesorectal region due to compression. The next stage is to characterize this
warp field based on differential invariants, in the manner of Thirion and Calmon
[10] and later Rey et al. [11]. Since we can predict the general shape of the
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deformation field, we can characterize it using the Jacobian of the warp field,
and then use this as a regularizer as we seek to match up points of interest. The
Jacobian gives a scalar representation of a vector field by characterizing whether
a region is shrinking or growing. The actual Jacobian of the warp field, calculated
from a manual registration, where the landmarks were known and placed by
hand, can be seen in Fig. 4(b). An estimate of this Jacobian found by registering
the segmented colorectum, mesorectum and rigid features as described above,
can be seen in Fig. 4(c). It can be clearly seen that the general ’shape’ of these
two Jacobians are similar, and this was the case for all our data-sets, with the
minimum cross correlation between the two Jacobians being 0.57.

Fig. 4. (a) A visualization of the deformation field, (b) the Jacobian of this deformation
field, and (c) the estimated Jacobian using the initial automatic segmentation from the
frame of reference. (d)Points of interest on the pre-therapy image, and (e) on the post-
therapy image, and (f) the registered post-therapy image.

Points of interest, additional to the automatically segmented rigid bone struc-
tures, colorectum and mesorectum, can be placed in and around the colorectal
and mesorectal region, as this is where the warping is most likely to occur. These
points will mostly include features such such as nodes, vessels etc that are unique
to each patient and hence cannot be found using the anatomical ’map’. These
features will vary in number between patients, and although they may be few, it
is important for the clinical application that they are aligned. The points can be
found using the scale salience region detector described previously, constraining
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the points of interest to within the mesorectum. Points of interest, or features,
are found in each image, pre- and post therapy and then corresponding points
can then be matched up by minimizing a cost function. This cost function is
given by C = −Cs − λCr.

Cs is the cost associated with the similarity based on normalized mutual
information between two regions surrounding the points of interest. The size of
the surrounding region of interest is taken as the largest scale of the two points
being tested, and the area is equivalent to the area of the circles seen in Fig.
2(f). The normalized mutual information is then based on the entropies of these
local areas and is given by (H(A) + H(B))/H(A, B) where H(A) and H(B) are
the marginal entropies of the two regions A and B for each point, and H(A, B)
is the joint entropy of these two regions [12]. Cr is the cost associated with the
Jacobian regularizer based on the predicted changes in the data. It is found
using the correlation coefficient between the regularizing Jacobian (calculated
previously from the registration of the segmented rigid points, colorectum and
mesorectum), and the new Jacobian (calculated by incorporating the two pos-
sibly corresponding feature points into the warp field). λ is then chosen so as
to prevent gross, unlikely warps occurring within the mesorectum. Although the
changes can be great, they do occur in a predictable way which is constrained
by the initial segmentation of the two images.

Some corresponding points of interest, found from both the initial automatic
segmentation and the matching scale-salient regions within the colorectum and
mesorectum, can be seen in Figs. 4(d) and 4(e), and the warped image using
these landmarks is seen in Fig. 4(f). It can be seen that the colorectum and
mesorectum have warped so as to be aligned, without introducing large errors or
incorrect matching of regions as occurred using the generic non-rigid algorithms.
As well as aligning the large scale anatomical features such as the colorectum,
the scale-salient points allow the smaller scale features, that are usually unique
to each patient, to also be aligned, providing accurate alignment (within 1mm)
of the lymph nodes and vessels in the region of interest. This is a clinically useful
result.

6 Conclusions

We have shown that there are fundamental limitations and assumptions im-
posed on current, generic non-rigid registration algorithms that do not hold for
the application of aligning pre- and post-therapy images of colorectal cancer pa-
tients. We have then set out a way in which we can mobilize shape knowledge to
overcome these limitations and start to develop a robust non-rigid registration
framework that makes use of this prior knowledge to perform clinically useful
and accurate registrations on colorectal images pre and post-therapy where gross
changes have occurred between the two data-sets.
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Abstract. In this paper we seek to improve the standard method of assessing
the degree of calcification in the lumbar aorta visualized on lateral 2-D X-rays.
The semiquantitative method does not take density of calcification within the
individual plaques into account and is unable to measure subtle changes in the
severity of calcification over time. Both of these parameters would be desirable
to access, since they are the keys to assessing important information on the impact
of risk factors and candidate drugs aiming at the prevention of atherosclerosis.

Herein we propose to estimate the background of a calcification using inpaint-
ing, a technique used in image restoration as well as postprocessing of film, and
measure the plaque density as the difference between the background estimation
and the original image. Furthermore, we compare total variation inpainting with
harmonic inpainting and discuss the potential implications of inpainting for char-
acterizing aortic calcification.

1 Introduction

1.1 What Are We Trying to Achieve?

The ultimate goal is the development of a mass-screening tool, suitable for quanti-
fying the extent of calcification and density of calcific deposits in the lumbar aorta.
Although several simple methods have been proposed for the manual semi-quantitative
grading of aortic calcification[1,2,3], these methods have limitations especially in terms
of capturing small changes in the progression of atherosclerosis. Furthermore, the eval-
uation may partly depend on the investigator / technician involved, and does not take the
changes of the intraluminal expansion or the calcium density of the individual plaques
into account.

A mass-screening tool has to deliver reliable and easily reproducible data. Electron-
beam computed tomography (EBCT) allows precise quantification of calcium content in
the vascular wall and thereby the severity of atherosclerosis [4]. However, this technique
is more suitable for clinical research rather than for mass screening purposes, first of all
due to high expenses.

A simpler and more easily accessible method is provided by the semi-quantitative
grading of aorta calcification visualized by lateral 2-D X-rays of the lumbar section[5,6].
A regrettable limitation of common X-rays though, is that soft tissue, and thus a healthy
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aorta, is not visible. Accordingly, inference of the calcification index and its longitudi-
nal changes has to rely solely on the visible calcific deposits in the aorta. To the best
of our knowledge there has been no attempt so far as to establishing a computer-based
system for quantifying the severity of aorta calcification in an automated fashion.

Essential elements of establishing an automated mass-screening tool are the auto-
mated localzation of the lumbar aorta [7], the automated recognition of calcified de-
posits, and a new method for quantifying the severity of calcification in the plaques.
In the present study, we adopted different inpainting methods (total variation and har-
monic) - techniques used in image restoration as well as postprocessing of films - to es-
timate the background of a calcified area. Taking the difference between the estimated
background and the actual calcification is expected to provide a measurement of plaque
density. These inpainting methods were compared to a simple averaging scheme.

1.2 Semi-quantitative Assessment of Calcified Deposits Using Radiography

The current clinical practice is to assess the calcification index on lateral 2-D x-rays as
follows: The calcifications are measured lengthwise for the posterior as well as anterior
walls at each vertebral segment of the L1 - L4 region, using the midpoint of the inter-
vertebral space above and below the vertbrae as boundaries. The lesions are graded as
follows [1] :

0 : No aortic calcific deposits
1 : Small scattered calcific deposits less than 1/3 of the longitudinal wall of the aorta
2 : 1/3 or more, but less than 2/3 of the longitudinal wall are calcified
3 : 2/3 or more of the longitudinal wall are calcified

Individual level-specific severity scores are summarized to yield three different com-
posite scores for aortic calcifications:

(0 - 4) : Affected segments score
number of individual aortic segments which show calcification are calculated

(0 - 8) : Anterior and posterior affected score
number of individual aortic segments ( both anterior and posterior ) which
show aortic calcification are summed

(0 - 24) : Anterior - posterior severity score
the scores of individual aortic segments both for the posterior as well as for the
anterior wall are summed

Fig. 1 visualizes this indexing system. The 24-score (or anterior - posterior severity
score) is the most expressive score and is used as the comparative measure in this paper.

2 Method

2.1 Overview

The dataset contains 80 hand-annotated x-rays of the lumbar region with pixel inten-
sities ranging from 0 - 2048; 77 of them display various degrees of calcification and 3
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Fig. 1. Semi-quantitative grading

images are not calcified. The idea behind our approach is to simulate how a calcified
image would have looked like non-calcified, by inpainting all the calcified areas. The
difference between the calcified and the non-calcified image then yields the new cal-
cification index. This way, not only the longitudinal extend but also the density of the
calcifications can be expressed.

2.2 Inpainting

Inpainting is from a mathematical point of view, an interpolation problem:
Given a rectangular image u0 known outside a hole Ω, we want to find an image u - an
inpainting of u0 - that matches u0 outside the hole and which has “meaningful” content
inside the hole Ω. From the many different inpainting algorithms TV inpainting [8,9]
and Harmonic inpainting [9] were choosen for this work. TV inpainting was chosen for
its ability to preserve structures (edges) to some extent, whereas Harmonic inpainting
was chosen due to the fact that it provides much smoother solutions. The general Bayes’
formulation of inpainting can be expressed as:

p(u|u0) =
p(u0|u)p(u)

p(u0)
∝ p(u0|u)p(u) since u0 is known. (1)

The model term p(u0|u) models the data formation process. Here we assume that
the observed image u0 is obtained from a clean image u corrupted by additive zero-
mean Gaussian noise spatially uncorrelated and stationary, with standard deviation σ
outside the hole Ω, and that the data inside Ω has been totally lost. Therefore the model
of acquisition-degradation is given by

p(u0|u) = c1e
−
∑

x∈R\Ω
(u(x)−u0(x))2

2σ2

where c1 is a normalizing constant. The prior term p(u) is usually more difficult to find,
since it models the probability that a given array of pixel values represents a meaningful
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image. In absence of texture, we assume some form of smoothness for images - i.e. the
variations of pixel values around a given pixel location should be small. We can, for that
purpose, introduce a discrete Gradient operator, ∇u(x) encoding the local variations of
the image around a given pixel location.

TV Inpainting: In order to enforce a reasonable smoothness, we assume a Laplace
distribution on these values [10] and we obtain the following prior:

p(u) = c2e
−
∑

x∈R
|∇u(x)|

µ

where c2 is a normalizing constant and µ
√

2 the standard deviation. The resulting en-
ergy expression can be written as

E(u) =
∫

R

χ(u − u0)2dx + λ

∫
R

|∇u|dx, (2)

where χ denotes the function χ(x) = 0 if x ∈ Ω, χ(x) = 1 otherwise, and λ = σ2

µ .

Harmonic Inpainting: For Harmonic inpainting we assume a Gaussian distribution
for the prior probability

p(u) = c2e
−
∑

x∈R
|∇u(x)|2

2µ2 (3)

where c2 again is a normalizing constant and µ is the standard deviation. The energy
term can then be expressed as

E(u) =
∫

R

χ(u − u0)2dx + λ

∫
R

|∇u|2dx, (4)

where χ denotes the function χ(x) = 0 if x ∈ Ω, χ(x) = 1 otherwise, and λ = σ2

µ2 .

Details regarding the solutions of the respective energy models can be found in the
lecture notes of François Lauze [9]

Average Inpainting: This constitutes the simplest form of inpainting, where Ω is filled
homogeneously with the value S resulting from averaging over the immediate boundary
of Ω according to

S =
1
n

n∑
i=1

ti, (5)

where n is the number of boundary pixels and t the respective pixel value.

2.3 Estimating the Noise Level

In order to estimate how well the individual inpainting techniques perfom on the x-
ray images, 3000 templates of calcification shape were chosen at random from manual
annotations (see Fig. 2). Algorithm 1 describes how each template is placed at a ran-
domly chosen, non-calcified region of a randomly chosen aorta, and how the standard
deviations of the pixelwise differences between the inpainted and original areas are cal-
culated. Figure 3 shows regression lines through the calculated standard deviations. The
regression lines express the standard deviations in the total pixelwise intensity differ-
ence for the three inpainting methods as a function of areasize.
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Fig. 2. Background estimation. The 3000 randomly chosen templates used for the respective
inpainting schemes.

Algorithm 1. Background estimation
1. let A = number of pixels in an area circumscribed by a template
2. For i = 1 . . . 3000 do

– randomly choose an area template
– randomly choose an image [1:80]
– randomly choose a non-calcified aorta segment ([1:7],

4 lumbar segments and 3 intervertebral spaces)
large enough to center the area template in

– For c = 1 . . . 3 do
• inpaint the area circumscribed by the area template

([1:3], TV, Harmonic, and Average inpainting)
• calculate the pixelwise differences between inpainted and original area
• take the standard deviation of the pixelwise differences and multiply

by
√

A
3. calculate the regression curves through the sorted standard deviations

2.4 Pixelwise Expansion of the Individual Calcifications

Visual inspection of our initial experiments [11] with inpainting of calcified areas made
it clear that the inpainting procedures were biased by minute calcific deposits just out-
side the annotated areas. These calcific rests were missed by the physician and became
only apparent when zooming in to pixel-level. Since the inpainting methods rely en-
tirely on boundary information, we had to expand the annotated areas in order to avoid
faulty results as much as possible. Thus, the next step was to iterate the inpainting pro-
cess for each calcified area of an image, so that each area was expanded in order to yield
the maximum signal-to-noise ratio (SNR), which was calculated for each pixel along
the immediate boundary of the calcified area according to

SNR =
Iinp − Iorig

std × area
, (6)

where Iinp denotes the inpainted image, Iorig the original image, std the standard de-
viation of the estimated noise level, and area the number of pixels in Ω. The idea be-
hind the expansion scheme is that all pixels that increase the SNR get included in Ω.
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Algorithm 2 illustrates the mechanism in detail and figure 4 shows the results on a test
image.

3 Results

Using the iteration scheme described for the noise level estimation, we obtained the
results listed in table 1 and visualized in Fig. 3. TV inpainting produces the least er-
ror per pixel and Harmonic inpainting follows closely. Average inpainting performs
worst. Paired t-tests performed on the background data showed significant performance
differences for TV vs. Average inpainting (p < 0.0001) and Average vs. Harmonic in-
painting (p < 0.0001). There seems to be, however, no significant difference for TV vs.
Harmonic inpainting (p = 0.3506).

Having computed a function for the error in background estimation with respect
to the area, we tested the mechanics of algorithm 2 on a test image. Figure 4 shows
how algorithm 2 detects the majority of the boundary pixels that should be included
in the inpainting area of the test image and thus removes the bias from the inpainting
procedure.

Having seen that algorithm 2 performs satisfactorily on a test image, we subjected
the 77 calcified x-ray images to the algorithm, where in each image all the calcified
areas were expanded and finally inpainted using the different inpainting techniques.
For each image we summed over the pixelwise differences between the original and
inpainted image, which constitutes our new calcium score. In order to assess the quality
of our method, we plotted our score against the 24-score of the standard procedure
(Fig. 5). From the plots in Figure 5 it is apparent that our method offers more possibilty
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Fig. 3. Background estimation. Regression lines for the 3 different inpainting schemes.
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Algorithm 2. Pixelwise expansion scheme
1. let N = number of calcified areas in image
2. let B = number of pixels in an isocurve
3. let p denote a pixel

4. For i = 1 . . . N do
– inpaint Ω
– calculate SNR
– while SNR not max do

• calculate outer distance map
• find next isocurve
• For j = 1 . . . B do

∗ expand Ω by pj

∗ inpaint and calculate SNR
∗ if SNR is increased, include pj

– inpaint new Ω
– calculate SNR

5. output SNR

Table 1. The top part of the table displays the p-values resulting from the paired t-tests. The
bottom row shows the standard deviations of the pixelwise error for the three inpainting methods.

TV Harmonic Average

TV 1 0.3506 <0.0001

Harmonic 0.3506 1 <0.0001

Average <0.0001 <0.0001 1

std 0.54 0.58 0.89
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Fig. 4. Algorithm 2 run on a testimage. Left: The original input image with faulty annotation.
Second-to-left: The inpainting resulting from the original input image. Middle: The algorithm has
detected most of the left-out pixels. Second-to-right: The inpainting resulting from the revised
input image. Right: The boundary difference between the original and revised input image.
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Fig. 5. The scores for the respective inpainting procedures versus the gold standard. Left: The
24-score versus the total differences resulting from TV inpainting. Middle: The 24-score versus
the total differences resulting from Harmonic inpainting. Right: The 24-score versus the total
differences resulting from Average inpainting.

Fig. 6. Outlier. The image sequence illustrates the workflow from left to right. The input image
at the start of the sequence contains two calcified areas. The two output images at the end of the
sequence, one or each calcified area, contain the differences between the original areas and the
inpainted areas.

for discerning the different stages of plaque development than the standard procedure.
In many cases where the standard yields the same score for a number of images, our
methods find a considerable difference (Fig. 5). The correlation coefficients between
the respective inpainting methods and the official 24-score (table 2) show a reasonable
correlation, but the new score is able to discern subtle differences, whereas the standard
score is not.

The attention gets drawn towards the outliers, that, in spite of a fair general corre-
lation, produce different numbers than expected. In Figure 6, the most extreme outlier
of our data set is shown. This particular outlier scores a total of 2978536 (TV) on our
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Table 2. The top row of the table shows the correlation coefficients between the inpainting
schemes and the 24-score. The bottom row contains the p-values of the respective correlation
coefficients.

TV Harmonic Average

cor. coef 0.8284 0.8246 0.8329

p-value <0.0001 <0.0001 <0.0001

calcification scale even though only two areas of normal size are detected. Looking
at the differences between the original and the inpainted subimages however, leads to
the conclusion that only plaque density can be the cause of this unexpectedly high score.

4 Conclusions and Discussion

In the present report, we described inpainting-based methods to quantify the degree of
atherosclerosis. The findings suggest that this approach could offer better possibilities
for the characterization of plaque densisty than the discrete scoring systems that are
currently used in epidemiological settings. The statistical tests have shown that TV and
Harmonic inpainting are both superior to Average inpainting in terms of their abilities
for background estimation. There was however no statistical evidence that points to-
wards preferring TV to Harmonic inpainting, and it remains to be medically evaluated
whether or not the considerable extra computational effort involved in TV inpainting
as opposed to Harmonic inpainting is justifiable. The preservence of structure, that is
characteristic for TV inpainting [9] could prove to be a vital factor, since a consider-
able amount of structures is introduced by age, variation in body fat distribution, and
lifestyle factors of the patient.

Future studies are planned to assess the sensitivity of this method for monitoring
changes in aorta calcification compared with currently used semi-quantitative methods
and the relation of these measures to the risk profile of the patients. The ability of
the method to provide a continuous (not categorical) measure of aorta calcification is
expected to provide useful assistance for both epidemiological and pharmacological
studies in which monitoring of subtle changes over a period of time is a critical study
parameter.
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Abstract. In this paper, we present a novel deformable model for soft tissue 
simulation in a real-time manner. The innovative model consists of two sub-
models: the surface one and the internal one, which are based on Mass-Spring 
system and Medial Representation respectively. This proposed model is more 
accurate and efficient than the pure surface Mass-Spring one by taking advan-
tages of Medial Representation to reflect inner attributes of soft tissue. We also 
optimize the Mass-Spring system in order to refine the appearance of soft tissue 
movement and reduce its complexity. A real clinical model using a segmented 
left-kidney is presented as an example in our case study. 

1   Introduction 

For years, real-time modeling of deformable objects has become increasingly signifi-
cant in biomedical domain. More and more novices and students practice surgical 
operations on the virtual objects instead of living animals and cadavers. 

Many authors proposed various models in the past decades. Finite Element Method 
(FEM) [1] and Mass-Spring [2] are considered the most popular methods among 
them. Meanwhile, M-Rep [3], a sort of model basing on Medial Representation [3], 
was proposed to represent the global deformation of the objects. However, an ideal 
soft tissue deforming simulation is still a challenging task due to the complex internal 
structure and surface appearance of the deformable objects. FEM is the most accurate 
method for simulating, but it hardly satisfies the real-time requirement because of its 
high complexity and large numbers of parameter definitions. Surface Mass-Spring 
System could have acceptable response-time if we limit the number of mass points of 
the model. Nevertheless, this model contains few internal features of soft tissue [4], 
which results in low accuracy when to simulate the global deformation. M-rep is 
applied to simulate the deformation based on medial structure implying the internal 
information of soft tissue. However, it is limited in the rough appearance of surface 
and poor efficiency. The novel approach proposed in this paper addresses the prob-
lems mentioned above by introducing a hybrid model integrating the advantages of 
Mass-Spring and Medial Representation. 

In order to implement the context mentioned above, the hybrid model is designed 
as follow. From the medical image data of soft tissue, two types of models are  
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generated which represent the surface Mass-spring system and the internal model 
respectively. After that, we will establish a relationship between the two separate 
models to transfer forces from outside to inside. The strategy is attractive because it 
reserves both surface information and internal structure. Contrasting to the standard 
techniques, it can not only simulate the local deformation appropriately, but also re-
flect the global deformation reasonably. 

The paper is organized as follows. In section 2, we provide the methods to obtain 
the surface Mass-Spring model and the internal model, and then we introduce the 
hybrid model consisting of them. Some results of the hybrid model are shown in sec-
tion 3. Finally, we will discuss future work and come to our conclusion in section 4. 

2   Soft Tissue Modeling 

The complete methodology of soft tissue modeling consists of two core modules: 
Image Data Processing and Mathematical Modeling, each of which contains two sub-
modules. The former includes Balloon Segmentation and Skeleton Extracting, while 
the latter consists of Surface Modeling and Internal Modeling (Fig. 1). 

The whole procedure of the modeling is described here: firstly, Balloon Segmenta-
tion is employed to extract the specific soft tissue from medical image dataset; sec-
ondly, it establishes the surface model of soft tissue using Mass-Spring System; 
thirdly, the skeleton of soft tissue is calculated; fourthly, the medial atoms [3] on the 
skeleton shoot out many spokes implying the boundary information, after which the 
internal model composed with skeleton and spokes is created; finally, the hybrid 
model of soft tissue is generated by composing the surface Mass-Spring model and 
the skeleton structure according to specialized relations. The detail of these steps will 
be illuminated in the following sections, especially the surface modeling, the internal 
modeling and the hybrid modeling (Fig. 1). 

 

Fig. 1. The flow chart of the whole procedure to model the soft tissue 

2.1   Balloon Segmentation for Surface Mesh  

Balloon Segmentation is a volumetric Segmentation algorithm based on dynamic 
deformable meshes [5]. This algorithm is preferred because the data structure of the 
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segmentation’s result is appropriate to establish the surface Mass-Spring model as 
well as its connection with the internal model. 

The basis idea of balloon algorithm is to add image-force [5] on an initial mesh ob-
ject, which could make the object expand or shrink towards the surface of soft tissue. 
The mesh object will adjust its shape to meet with the boundary of soft tissue as 
closely as possible after iterating the calculation for specified times, just like a balloon 
inflated or deflated. Fig. 2 shows the effect while the algorithm is applied on the 
medical image of a left kidney.  

 

Fig. 2. Balloon Segmentation applied on the medical image of a left kidney. (A) The initial 
mesh. (B) Iterate for 50 times. (C) Iterate for 100 times. (D) Iterate for 150 times. 

2.2   Surface Mass-Spring Modeling 

The Mass-Spring system is widely used in simulating the deformation of non-rigid 
object. The system models an object as a set of masses connected by corresponding 
springs. The springs’ topology used here is based on Balloon Segmentation, which 
means that each mass connects with its six neighboring points through corresponding 
springs (Fig. 3(A)). 

Spring is a fundamental unit in Mass-Spring model. Fig. 3(B) presents two essen-
tial parts of the unit: the elastic equipment and the damper [2]. The former generates 
elasticity force proportional to the alteration of the springs’ length, and the latter en-
genders damping force proportional to the velocity of mass-points. 

 

Fig. 3. (A) The springs’ layout of the surface model. (B) The basic unit of the spring in the 3D 
coordinate-system. The triangular module is the damper. 

Mass-Spring employs a differential equation to simulate the process of  
deformation: 
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Where xi, mi and ci is the displacement, mass and damping factor of the ith point re-
spectively; (i) represents the neighboring points of the ith point; ki,j is the elastic 
coefficient of the spring ij; l∆ donates the difference between original length and 
current length of spring ij. 

During the implementation, we improve the structure of traditional Mass-Spring 
system in order to refine the effect of simulation. Firstly, we add a curvature force. 
Curvature force controls the degree of bending and twisting of soft tissue. We imitate 
the force by bringing in an assistant spring: angular spring [2]. As shown in Fig. 4(A), 
P1, P2 and P3 are the surface points of soft tissue. The angular spring links point A 
with the mid point of P2P3. Secondly, we induct a concept of fixed position [6] in 
order to prevent soft tissue from escaping from the original location. Here, we pre-
sume that each point has a corresponding fixed spot located in the original position of 
the point, and the point connects with the spot through springs named return-springs. 
As a result, soft tissue always has a tendency to go back to the original position. For 
example, P1P1’, P2P2’, P3P3’ and P4P4’ are the return-springs whose initial length is 
zero in Fig. 4(B). 

 

Fig. 4. (A) The angular-spring between P1 and mid point. (B) The return-spring between the 
original position (P1, P2, P3, P4) and the current position (P1’, P2’, P3’, P4’). 

2.3   Internal Skeleton Modeling 

Stephen M. Pizer [3] introduced the “M-Rep” concept, a type of Medial Representa-
tion, based on Blum’s medial axes. This model uses medial atoms and a particular 
tuple ( }),,(,,{ θnbFrx

vv
) [7] [8] to imply the positions of boundary (Fig. 5(A)). Here 

medial atom represents an interior section of a figure [7]. As a result, M-rep is a 
sound approach to reflect the internal structure. 

In order to establish the internal model, Distance Mapping Method [9] is employed 
to calculate the skeleton, along which media atoms are selected evenly. Then we sim-
plify M-Rep with the purpose of reducing the model’s complexity. We reset the to-
pology of medial atom and implied boundary just like hub and spokes (Fig. 5(B)). 
Each medial atom (or hub) on the skeleton shoots out several spokes evenly, and the 
angle between each single spoke and skeleton is a constant value . The correspond-
ing tuple is altered to }),,(,,{ θABVFrx , where x is the coordinate of the medial atom 

B; r is the length of the spoke; F is the plane determined by V and AB ; V is the Orien-
tation-Vector of boundary C which links media atom A to boundary C;  is the angle 
between skeleton BA and spoke BC. 
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Fig. 5. (A) M-rep in 2D. (B) Simplified Medial Representations in 3D. 

The simplified Medial Representations (Fig. 5(B)) are different from M-rep in sev-
eral ways. Firstly, each tuple in M-rep corresponds with a medial atom, while the one 
of the simplified corresponds with a spoke. Secondly, the r in M-rep is the radius of 
corresponding medial atom and the r belonging to the same medial atom should be 
identical to each other, whereas the one in the simplified model is the length of the 
relevant spoke and they could be unequal to each other. According to the data of the 
tuple, we can calculate the position of implied boundary C: 

||/)(
,

ABrABRxC
BCABV

∗+= θ                                       (2) 

Where )(
,

θ
ABv

R  denotes an operator rotating its operand ( AB ) by the argument angle 

in the plane spanned by v and AB ; || AB is the length of the vector AB . 

Other spokes connecting with media atom B are calculated by rotating spoke BC 
around axis BA and scaling BC to the length of corresponding spoke. All implied 
boundaries could be obtained by iterating the approach described above. 

2.4   The Hybrid Model 

The boundaries implied by spokes might not just the points on the surface Mass-
Spring model, so the application will relate spokes with surface points by repeating 
the following step: calculating the coordinate of an implied boundary by formula (2) 
and finding out its closest point on the surface model. Then, a new spoke, which links 
the closest surface point and the corresponding medial atom, is established and re-
places the old one. The new spoke will be removed if the closest surface point has 
already related to another spoke. Fig. 6 displays an instance of each model. 

The hybrid model is established after the above processes. Then the skeleton and 
spokes are considered to be springs. Finally, we should set the parameters of the 
model appropriately in order to simulate soft tissue effectively and efficiently. An 
automatically recursive approach is employed to set these parameters. Firstly, we 
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Fig. 6. An example of ellipsoid represented by the three models. (A) Surface Mass-Spring 
model (B) Internal model with skeleton and spokes (C) The hybrid model. 

initialize such parameters as the damping factor (c), the mass (m) of the points and the 
elastic coefficient (k) of springs on the surface as well as at the inside manually. Here 
the values of the internal parameters are set much larger than the ones of the surface 
parameters because the interior of soft tissue is more difficult to deform than the sur-
face. Secondly, a specified force is applied on a surface point. If the displacement of 
the surface point excesses the maximum threshold determined previously, all of these 
parameter values on the surface would increase 0.5 times. These values would de-
crease 0.5 times if the displacement were less than the minimum threshold. The same 
criterion is also applicable for the internal parameters. After iterating for several 
times, the program terminates with suitable values for these parameters. By compar-
ing numerous generated parameter values engendered from different initial values and 
observing the deformation effect using these values, we choose one group of the most 
appropriate values as the optimum parameters. 

3   Experiment Results 

The hybrid model application is performed on the computer with an Intel Pentium IV-
2.60 GHz CPU and 1.0GMbyte of memory. Visual C++ 7.0 is used as the integrated 
development environment. There are 458 points on the surface and 24 points on the 
skeleton. Each atom shoots out 18 spokes (  = 90 degrees). 

The stable state of the left kidney model is showed in Fig. 7(A). The model 
achieves a reasonable result when deforming on global level (Fig. 7(B)), while the 
surface Mass-Spring model corrupts under the same large-scale force. The model also 
gets a refined appearance on local-region deformation (Fig. 7(C) and Fig. 7(D)).  

In order to meet the real-time requirement, the deformation should be determined 
at rates of 15-20 times per second. In our application simulating the left kidney 
employing the hybrid model, the update rate is 25-40 times per second, which 
means that the hybrid model satisfies the real-time requirement. Moreover, the 
surface Mass-Spring model with the same surface structure as the hybrid one is 
updated at rates of 28-45 times per second, so the hybrid model does not markedly 
increase its complexity when introducing the internal structure and achieving sound 
global deformation effect. 
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Fig. 7. (A) The left-kidney (B) Global deformation caused by applying large-scale force. (C) 
Nip the kidney. (D) Release the forceps. 

4   Conclusion 

In this paper, we present a hybrid model ensuring a sound effect without increasing 
the computation-time when deformation is applied on either the global level or the 
local region. We also briefly introduce the Balloon Segmentation appropriate to ob-
tain the mesh structure of soft tissue. Using Balloon algorithm could generate mesh 
arrangement automatically as well as conveniently. However, it also results in the 
uneven distribution of springs and points. The density of springs and points near the 
two acmes is much higher than are others (Fig. 2(D)), which influence the accuracy of 
simulation. In addition, the method employed to exact the skeleton has some flaws 
[9]. It could not obtain a precise result when the structure of soft tissue contains some 
branches. 

In future, we endeavor to model a more complex soft tissue, such as heart. We also 
attempt to improve the accuracy of the current model and reduce the response-time, 
which is significant in virtual surgery. Moreover, we need to ameliorate the pro-
gram for generating the mesh structure as well as the algorithm for exacting the 
skeleton. The recent task is programming on the force feedback mouse, which could 
make users feel actual about soft tissue. 
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Abstract. Digital subtraction angiography (DSA) reconstructions and 3D Mag-
netic Resonance Angiography (MRA) are the modalities of choice for diagno-
sis of vascular diseases. However, when it comes to treatment through an en-
dovascular intervention, only two dimensional lower resolution information such
as angiograms or fluoroscopic images are usually available. Overlaying the pre-
operative information from high resoluion acquisition onto the images acquired
during intervention greatly helps physician in performing the operation. We pro-
pose to register pre-operative DSA or MRS with intra-operative images to bring
the two data sets into a single coordinate frame. The method uses the vascu-
lar structure, which is present and visible from most of DSA, MRA and x-ray
angiogram and fluoroscopic images, to determine the registration parameters. A
robust multiple hypothesis framework is built to minimize a fitness measure be-
tween the 3D volume and the 2D projection. The measure is based on the dis-
tance map computed from the vascular segmentation. Particle Filters are used
to resample the hypothesis, and direct them toward the feature space’s zones of
maximum likelihood. Promising experimental results demonstrate the potentials
of the method.

1 Introduction

Digital subtraction angiography (DSA), which is based on conventional X-ray, and
Magnetic Resonance Angiography (MRA) are the modalities of choice for many diag-
nostic vascular imaging procedures, as well as for performing and monitoring endovas-
cular interventions. The main advantage is that the DSA and/or MRA data are usually
of high resolution and since they are three dimensional in nature, they provide much
needed information with regard to the topology of the vessel tree. The drawback is that
these acquisitions can not be performed, while the intervention is underway. Mainly
because the fact that DSA takes a long time to acquire and requires certain spatial clear-
ance around the patient and MRA scanner are not usually available in the interventional
rooms. What is available, and is fast to acquire, is two dimensional conventional projec-
tion x-ray images. In order to take advantage of high resolution, three dimensional info
from either DSA or MRA, it is desirable to have a registration method, which brings
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in the two data sets (i.e., x-ray and 3D DSA or MRA) into a single coordinate frame.
The problem at hand is 2D-3D registration problem, which has been investigated in the
literature for various applications [4][16][13][25]. Image registration [15] methods can
be categorized in two distinct groups: intensity-based and features-based techniques.

Feature-based methods [1,3] are quite popular and rely on a pre-processing often
pre-segmentation step where local structures of particular interest like points are deter-
mined. Once such structures have been recovered in both images, and correspondence
between them have been established registration is obtained through a parametric trans-
formation that aligns the retained local structures. Such methods exhibit low registration
complexity once features have been recovered, an important strength. On the other hand
their performance heavily depends on the feature extraction that can be viewed as an
important limitation.

Global and local similarity measures between the Digitally Reconstructed Radio-
graphs (DRR) and the 2D images are the base of intensity-based methods. Simple cri-
teria like linear correlation [5,12] or correlation ratio [19] were considered to address
such a problem. More advanced methods [14,17,22] require the generation of DRRs in
an iterative optimization loop. In order to decrease complexity induced by the computa-
tion of DRRs in [26] partial DRR were considered, or DRRs have been pre-computated
for different starting positions/orientations [20]. The similarity measure is critical for
any registration algorithm performance [20]. Mutual information [23] is a prominent
approach that was also considered in therapy [18]. Gradient descend methods are the
most common approach to recover the registration parameters once the problem has
been expressed with an energetic formulation. Nevertheless one can claim that these
methods are subject to local minima and have a limited capture range.

To circumvent this limitation, in [21] a technique was proposed that starting from
low-order estimates - valid in a limited region - does perform a progressive refinement
where the region associated with it is expanded. This method can be qualified as hy-
brid between a gradient descent and simulated annealing, and showed good results for
retinal images. Nevertheless, besides the limitation of having an initial model such a
method presents certain limitations: (i) the initial model needs to be close enough to the
minimum solution, (ii) the algorithm could not converge when the image features are
dispatched into different geometrical clusters. One can address this limitation through a
multiple hypothesis assumption that can overcome the case of converging to local min-
ima. Such an approach could be implemented in an efficient fashion if a limited number
of features is retained and use similarity measures that exhibit robust scoring of patient
position proposals.

To this end, instead of registering the whole volume, we propose to register the
vascular structures. To explore different hypothesis without prior models suggests the
use of stochastic processes. Recent improvements in computer capabilities dramatically
increased the popularity of Monte-Carlo methods, in particular Particle Filters for track-
ing problem. We propose here to use the Condensation form of sequential Monte Carlo
sampling to estimate a cost function gradient, and find the global minimum.

The reminder of this paper is organized as follows: first, the 2D-3D registration
problem is presented, along with a function that measures the fitness of any patient
position/orientation proposal. Then, the Condensation framework is presented to direct
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the multiple hypothesis toward the most probable projection hypothesis. Finally, results
are presented and compared with standard Nonlinear Least Squares Fitting methods [2].

2 2D-3D Registration

2.1 Problem

2D-3D registration consists in finding the limited number of parameters that define
the perspective projection from a given 3D volume to a 2D image (see [FIG. (1)]). A
perspective projection from a 3D homogeneous point P to a 2D homogeneous point p
is defined with matrix as

p = PCTP, (1)

where T is a 4 × 4 matrix of the pose relating the pre-operative coordinate frame to
the iso-centric coordinate frame of intra-operative imaging device. C is a 4 × 4 matrix
defining the transformation between the iso-centric coordinate frame and the coordinate
frame centered at the x-ray imaging source, which also depends on gantry angles. P is
a 3 × 4 projection matrix defining the projection cone related to the source-detector
geometry. We assume P and C are known from a calibration step. T is the unknown
pose that encodes the three translation and three rotation parameters. The problem thus
consists of formulating different hypothesis for T, measuring the fitness of each pose
hypothesis, and optimizing the best ones.

2.2 Pose Fitness Measure

Intensity based registration approaches require DRR generation, which is then com-
pared with the x-ray or fluoro images at each step of the process. The main bottleneck
for intensity based approaches is the speed. In [26], the authors mentioned several min-
utes for registering the whole intensity volume, most of the time spent on generating
the DRR. For this application, we use the vascular structures as features for registra-
tion. Vascular structures are easy to segment in most of cases, sparse enough for the

Fig. 1. Contrast enhanced X-ray image of right hemisphere vessels
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Fig. 2. The projected vascular structure and the distance map associated with it

registration to be faster than intensity-based methods, but yet generally well distributed
throughout the organs to capture potential misalignments. One obstacle here is to de-
fine a fast and robust measure that characterizes the fitness of the pose. The proposed
method uses a prior segmentation of the vessels in the 3D volume of interest and the
2D image. From the 2D segmentation result, a distance map[8] is computed (see [FIG.
(2)]). For a given pose matrix T, the measure of fitness is the sum of distances (i.e. D)
to the 2D structure for each projected 3D point from the segmented vessel tree:

F (T) =
∫

P∈vessel

D(PCTP ). (2)

3 Bayesian Process and Condensation

3.1 Bayesian Process

The Bayesian problem can be simply formulated as the computation of the present state
xt pdf of a system, based on observations from time 1 to time t z1:t: p(xt|z1:t). Assum-
ing that one has access to the prior pdf p(xt−1|z1:t−1), the posterior pdf p(xt|z1:t) is
computed according to the Bayes rule:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
.

where the prior pdf is computed via the Chapman-Kolmogorov equation

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1,

and

p(zt|z1:t−1) =
∫

p(zt|xt)p(xt|z1:t−1)dxt

The recursive computation of the prior and the posterior pdf leads to the exact computa-
tion of the posterior density. Nevertheless, in practical cases, it is impossible to compute
exactly the posterior pdf p(xt|z1:t), which must be approximated. This approximation
is performed using Condensation [SEC. (3.2)].
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Fig. 3. The resampling process: a random selection chooses the samples with the highest weights
where a local perturbation is applied

3.2 Sequential Monte Carlo and Condensation

Condensation [6,11] (Conditional Density Propagation) is a sequential Monte-Carlo
technique that is used to estimate the Bayesian posterior probability density function
(pdf) with a set of samples [9,24]. A prior set of particles (hypothesis) is used to estimate
the probability of different situations (posterior pdf), given the current observation. In
terms of a mathematical formulation, such a method approximates the posterior pdf
by M random measures {xm

t , m = 1..M} associated to M weights {wm
t , m = 1..M},

such that

p(xt|z1:t) ≈
M∑

m=1

wm
t δ(xt − xm

t ).

where each weight wm
t reflects the importance of the sample xm

t in the pdf, as shown
in [FIG. (3)].

The samples xm
t are drawn using the principle of Importance Density [10], of pdf

q(xt|xm
1:t, zt), and it is shown that their weights wm

t are updated according to

wm
t ∝ wm

t−1

p(zt|xm
t )p(xm

t |xm
t−1)

q(xm
t |xm

t−1, zt)
. (3)

Once a set of samples has been drawn, p(xm
t |zt) can be computed out of the observation

zt for each sample, and the estimation of the posteriori pdf can be sequentially updated.
Such a process will remove most of the particles and only the ones that express

the data will present significant weights. Consequently the model will lose its ability
to track significant changes on the pdf; therefore a resampling procedure has to be
executed on a regular basis. Such a process will preserve as many samples as possible
with respectful weights. One can find in the literature several resampling techniques. We
chose the most prominent one, Sampling Importance Resampling [9], for its simplicity
to implement, and because it allows more hypothesis with low probability to survive,
compared to more selective techniques such as Stratified Resampling [7].
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3.3 Sampling Importance Resampling

The Sampling Importance Resampling (SIR) algorithm [9] consists of choosing the
prior density p(xt|xt−1) as importance density q(xt|xm

1:t, zt). This leads to the follow-
ing condition, from [EQ. (3)]

wm
t ∝ wm

t−1p(zt|xm
t ). (4)

The samples are updated by selecting xm
t ∝ p(xt|xm

t−1), and perturbed according to a
random noise vector.

The SIR algorithm is the most widely used resampling method because of its sim-
plicity from the implementation point of view. Nevertheless, the SIR uses mostly the
prior knowledge p(xt|xt−1), and does not take into account the most recent observa-
tions zt. Such a strategy could lead to an overestimation of outliers. On the other hand,
because SIR resampling is performed at each step, fewer samples are required, and thus
the computational cost may be reduced with respect to other resampling algorithms.

Since the resampling is based on the prior p(xt|xt−1), and not p(xt|xt−1, zt), it
does not take into account the most recent observation ; the resampling is suboptimal.
Nevertheless, one can notice the process is stationary (the statistics of xt do not vary
with time). Therefore, p(xt|xt−1) can be considered optimal. Further research will in-
vestigate the use of Nonlinear Gradient Descent during the resampling step to drive the
particles toward the region of interest.

It is important to note that the statistics of xt (the projection parameters) do not
change in time ; the process is stationary. Therefore, if the posterior pdf estimation
is put aside, such a Particle Filter is nearly equivalent to some kind of Genetic Algo-
rithm1. Nevertheless, if the observation zt changes in time (e.g. registration of a 3D
pre-operative volume with a sequence of fluoro images) and if the registration at one
time-step constitutes a prior for the next time step (in other words, if registration for
one portal image helps registering the next image), Condensation is exploited to its full
extent. This will be explored in further studies.

4 Results and Discussion

4.1 Condensation Performs Better Than Random Search

First, experiments were conducted to compare the method presented in this paper with
a purely random search, and the results proved that Condensation used with x particles
during z time steps reach a better registration than x × z random trials (in the experi-
ments, x=64 and z=100).

4.2 Condensation Performs Better Than Levenberg-Marquardt Gradient
Descent

Second, experiments were conducted to compare Condensation performance (with re-
spect to the measure presented in [SEC. (2.2)]) with classic nonlinear least square

1 Although Genetic Algorithm cannot be used in this case, since the parameters are dependent.
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Fig. 4. Comparison of Condensation (blue) and Levenberg-Marquardt (red) performances when
gaussian noise is introduced in the portal image

methods to find the minimum of a nonlinear function: Levenberg-Marquardt[2] and
Gauss-Newton algorithms. Both Levenberg-Marquardt and Gauss-Newton are highly
dependent on initialization, and never led to better results than Condensation (over 100
experiments were made with synthetic portal images from real pre-operative volumes,
and random patient poses).

The perspective projection may not be perfect, and for optimal parameters, the sub-
traction of the two registered images may not be exactly null in real cases. For that
matter, white noise has been added to the portal image to test the sensibility of the two
algorithms, Condensation and Gradient Descent. The results are presented in [FIG. (4)]
and [FIG. (7].

Tests have been performed about the method sensitivity to segmentation error, and
the conclusions are presented in [FIG. (5)]. Whereas the Gradient Descent performances
decrease as the segmentation error increases (in Hounsfield units), the Condensation re-
sults do not vary. As the error level increases, the global minimum’s basin of attraction
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Fig. 5. Comparison of Condensation (blue) and Levenberg-Marquardt (red) performances when
segmentation error is introduced
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Fig. 6. Condensation converges toward global minimum with missing features

Fig. 7. (L) Comparison between Condensation and Levenberg-Marquardt method performance.
(R) Registered vascular structure with 2D projection simulated from original CT data.

(for Gradient Descent) diminishes; consequently, the probability for the Gradient De-
scent to be correctly initialized diminishes. Since the particles are uniformly initialized
in any case, the results are independent of the segmentation error.

For a similar reason, Condensation is independent of the capture range, while any
Gauss-Newton / Gradient Descent method inherently depends on the global minimum’s
basin of attraction width. Furthermore, when features are missing, local minima are
created, which are likely to attract the Gradient Descent method. Particle Filters still
converge toward the global minimum (see [FIG. (6)]).

4.3 Further Investigation

Condensation can be combined with Gradient Descent, for a more efficient resampling.
During the resampling stage, the particles with the most significant weights are selected,
and moved along the steepest direction.
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Further investigations will also focus on observations that change in time, issues
that are naturally handled by Bayesian processes. For a sequence of X-ray images, the
Condensation can estimate the parameters pdf at a given time, and use this estimation
to actualize the pdf at at the next time step. This application is particularly relevant for
features that may or may not be present at time t. Several local minimas can be detected
using Particle Filter at time t, and observation at time t+1 may solve the ambiguity.

Last but not least, biplanar acquisition can be exploited to resolve ambiguities and
local minimas.

In conclusion, the solution presented in this paper is both computationally light
compared to intensity-based methods, and more robust than gradient descent algorithm
applied on the same feature-based framework. With a limited number of particles (64
in our experiments), the computational cost (of the order of one minute, using non
optimized Matlab code) gives reasonable hopes for real-time applications in the future.

References

1. R. Bansal, L. H. Staib, Z. Chen, A. Rangarajan, J. Knisely, R. Nath, and J. S. Duncan.
Entropy-based, multiple -portal-to-3dct registration for prostate radiotherapy using itera-
tively estimated segmentation. In MICCAI, pages 567–578, 1999.

2. D. M. Bates and D. G. Watts. Nonlinear regression and its applications. New York, Wiley,
1988.

3. J. Bijhold, M. van Herk, R. Vijlbrief, and J. V. Lebesque. Fast evaluation of patient set-up
during radiotherapy by aligning features in portal and simulator images. Physics in Medicine
and Biology, 36(12):1665–1679, 1991.

4. JV. Byrne, C. Colominas, J. Hipwell, T. Cox, JA. Noble, GP. Penney, and DJ. Hawkes. As-
sessment of a technique for 2d-3d registration of cerebral intra-arterial angiography. British
Journal of Radiology, 77:123–128, 2004.

5. L. Dong and A.L. Boyer. An image correlation procedure for digitally reconstructed radio-
graphs and electronic portal images. International Journal of Radiation Oncology Biology
Physics, 33(5):1053–60, 1995.

6. A. Doucet, J. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice.
Springer-Verlag, New York, 2001.

7. P. Fearnhead and P. Clifford. Online inference for well-log data. Journal of the Royal Statis-
tical Society, 65:887–899, 2003.

8. A. Fitzgibbon. Robust registration of 2d and 3d point sets. In British Machine Vision Con-
ference, volume II, pages 411–420, September 2001.

9. N. Gordon. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation. IEE
Proceedings, 140:107–113, 1993.

10. N. Gordon. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering. Statistics
and Computing, 10:197–208, 2000.

11. N. Gordon. A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian
Tracking. IEEE Transactions on Signal Processing, 50:174–188, 2002.

12. D.H. Hristov and B.G. Fallone. A grey-level image alignment algorithm for registration of
portal images and digitally reconstructed radiographs. Medical physics, 23(1):75–84, 1996.

13. Y. Kita, D. Wilson, and J.A. Noble. Real-time registration of 3d cerebral vessels to x-ray
angiograms. In Proc. Medical Imaging Computing and Computer Assisted Interventions
(MICCAI), pages 1125–1133, 1998.



436 C. Florin et al.

14. D. LaRose. Iterative X-ray/CT Registration Using Accelerated Volume Rendering. PhD
thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, May 2001.

15. J. Maintz and M. Viergever. A Survey for Medical Image Registration. Medical Image
Analysis, 2:1–36, 1998.

16. R. A. McLauglin, J. Hipwell, G.P. Penney, K. Rhode, A. Chung, J.A. Noble, and D.J.
Hawkes. Intensity-based registration versus feature-based registration for neurointerven-
tions. In Proc. Medical Image Understanding and Analysis (MIUA), pages 69–72, 2001.

17. G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes. A compar-
ison of similarity measures for use in 2d-3d medical image registration. IEEE Trans. Med.
Imaging, 17(4):586–595, 1998.

18. D. Plattard, G. Champleboux, P. Vassal, J. Troccaz, and M. Bolla. Epid for patient positioning
in radiotherapy: calibration and image matching in the entropid system. In H. Lemke, editor,
Cars, pages 265–9, 1999.

19. A. Roche, G. Malandain, X. Pennec, and N. Ayache. The correlation ratio as a new similarity
measure for multimodal image registration. Lecture Notes in Computer Science, 1496, 1998.

20. T. Rohlfing, D. B. Russakoff, M. J. Murphy, and C. R. Maurer, Jr. Intensity-based registra-
tion algorithm for probabilistic images and its application for 2-D to 3-D image registration.
In Milan Sonka and J. Michael Fitzpatrick, editors, Medical Imaging: Image Processing,
volume 4684 of Proceedings of the SPIE, pages 581–591, February 2002.

21. C. V. Stewart, C-L. Tsai, and B. Roysam. The dual bootstrap iterative closest point algorithm
with application to retinal image registration. IEEE Trans. Med. Imaging, 22(11):1379–1394,
2003.

22. D. Tomazevic, B. Likar, T. Slivnik, and F. Pernus. 3-d/2-d registration of ct and mr to x-ray
images. IEEE Trans. Med. Imaging, 22(11):1407–1416, 2003.

23. P. Viola and W. Wells. Aligment by Maximization of Mutual Information. In ICCV, pages
16–23, 1995.

24. W. West. Modelling with mixtures. In J. Bernardo, J. Berger, A. Dawid, and A. Smith,
editors, Bayesian Statistics. Clarendon Press, 1993.

25. D.L. Wilson, D.D. Royston, J. A. Noble, and J.V. Byrne. Automatic determination of optimal
x-ray projections for use during endovascular treatments of intracranial aneurysms. IEEE
Transactions on Medical Imaging, 18(10):973–980, October 1999.

26. L. Zöllei, W. E. L. Grimson, A. Norbash, and W. M. III Wells. 2d-3d rigid registration of
x-ray fluoroscopy and ct images using mutual information and sparsely sampled histogram
estimators. In CVPR (2), pages 696–703, 2001.



Registration of PET and MR Hand Volumes
Using Bayesian Networks

Derek Magee1, Steven Tanner1, Michael Waller2, Dennis McGonagle2,
and Alan P. Jeavons1

1 School of Computing/Academic Unit of Medical Physics, University of Leeds, UK
2 Leeds Teaching Hospitals NHS Trust, Leeds, UK

drm@comp.leeds.ac.uk

Abstract. A method for the non-rigid, multi-modal, registration of vol-
umetric scans of human hands is presented. PET and MR scans are
aligned by optimising the configuration of a tube based model using a
set of Bayesian networks. Efficient optimisation is performed by posing
the problem as a multi-scale, local, discrete (quantised) search, and us-
ing dynamic programming. The method is to be used within a project to
study the use of high-resolution HIDAC PET imagery in investigating
bone growth and erosion in arthritis.

1 Introduction

In this paper we present a novel method for the non-rigid registration of high-
resolution HIDAC Positron Emission Tomography (PET) and Magnetic Reso-
nance1 (MR) scan volumes of human hands. To our knowledge we are the first
to tackle this particular multi-modal registration problem. This work is part of a
wider project to investigate the use of high-resolution list-mode QuadHIDACTM

PET imagery (∼ 0.5mm3 voxel size, Fluorine-18 tracer) for the study of the loca-
tion of bone growth and erosion in the hands of patients suffering from arthritis.
Our method involves fitting a pair of models, based on a set of cylindrical tubes,
to the two data sets to be registered and calculating a rigid and a non-rigid
(piecewise rigid) transform. The models are fitted by the optimisation of a set
of Bayesian networks with respect to annotated volumes. The method is made
computationally tractable by posing it as a multi-scale local search problem.
Quantisation of the search spaces allows the efficient use of dynamic program-
ming to obtain a globally optimal solution in these spaces.

Lower resolution PET imaging (∼ 5mm3 voxel size) is widely used in brain
imaging to extract functional information. However, PET imaging provides little
anatomical information. Therefore, it is routinely used in conjunction with MR
imaging, which can provide this anatomical information. As PET and MR scans
are rarely co-located, data sets must be registered. To quote Myers [1]; “[this has]
become a matter of routine in the analysis of brain PET studies”. The most pop-
ular and successful methods of non-fiducial (physical marker) based registration
1 T2-weighted, fat suppressed, spin-echo coronal images (voxel size ∼ 0.5×0.5×2mm).

Y. Liu, T. Jiang, and C. Zhang (Eds.): 2005, LNCS 3765, pp. 437–448, 2005.
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are based around the maximisation of mutual information, or voxel similarity,
over a rigid transform (e.g. [2,3,4], see [5] for an overview and evaluation of a
number of such techniques). Clearly such rigid transforms are unsuitable in our
application domain (figure 5). PET has also been applied to cardiac imaging.
Here PET provides metabolism information, which must again be augmented
with anatomical information from MR imaging. Akin to our work, Makela et
al. [6] use a model based technique to perform multi-modal registration. This is
based on the fact that the thorax and lung surfaces are clearly visible in both
imaging modalities. A deformable template model is fitted to each data set, and
the results used to calculate a rigid transformation. Farahani et al. [7] describe
a prototype system for the spatio-temporally co-located acquisition of PET and
MR for brain imaging. There remain some large technical hurdles to be overcome
with this approach. If this were widely used (unlikely any time soon due to cost
and technical constraints) this will eliminate the need for volume registration.
However, multi-modal volume registration is likely to be required for some time
to come, especially for high-resolution PET scans (where few uni-modal scanners
exist, let alone multi-modal scanners). In our application PET imaging provides
information about bone growth and/or erosion. As with previous applications of
PET, MR imaging is required to provide anatomical information such as blood
vessel and tendon location.

Our approach to the registration problem is partly inspired by the 3D geo-
metric models used in visual tracking. Perhaps the first example of such a model
is the WALKER model of Hogg [8] where the body and limbs of a human are
modelled as a collection of cylinders. This model is fitted to 2D visual data using
edge information. Rehg and Kanade [9] use a similar approach to track the hu-
man hand. A simplified 28 D.O.F. cylinder based model is fitted to stereo data
using a local optimisation method (Levenburg-Marquart). Stenger et. al [10] use
a similar model based on a number of 3D quadratics, rather than cylinders, for
added realism. Visual tracking has the advantage over medical image analysis
applications of having state estimate(s) from previous timesteps to work from.
As such, local optimisation over such a large configuration space is possible (al-
though a good initialisation method is required). Felzenswalb and Huttenlocher
[11] describe how the effective dimensionality of such optimisation problems
may be reduced for certain classes of model using quantisation and dynamic
programming. This work is our starting point, and it is described more fully in
the following section.

2 Model Fitting as Bayesian Network Optimisation Using
Dynamic Programming

Felzenswalb and Huttenlocher [11] pose the problem of fitting a model to sensor
data (in the visual tracking domain) as the optimisation of the parameters of a
directed graph structured network (a type of Bayesian network). Probabilistic
dependencies exist between the data and individual model graph nodes, and be-
tween parent and child nodes joined by the directed vertices. In general, finding
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a globally optimal solution over such a network is an N-P complete problem
(and in practice costly approximate methods are often used). However, if the
model graph is tree-structured (i.e. there are no loops), and the space of solu-
tions is quantised, a globally optimal solution may be obtained in linear time
(w.r.t. the number of nodes in the graph) using dynamic programming (see [11]
for full details). The solution in fact has complexity O(q2n) (where n is the
number of nodes, and q is the number of quantisations of each node parame-
terisation). Furthermore, the method is made up of two parts; individual node
evaluation (complexity O(qn)), and belief propagation over the network (com-
plexity O(q2n)). If the majority of the complexity of the network dependencies
is in the former, the solution is approximately linear in both the number of
nodes, and the number of quantisations of the individual node parameterisa-
tions. The phalanges (rigid finger sections) of a human hand in our PET/MR
registration problem may be modelled as tree-structured networks, as illustrated
in figure 1.

Influence from
Associated Data

Influence from
“other” Data Set

Phalange
Configuration

Root node

Fig. 1. Hand (four fingers) PET/MR Bayesian Networks Formulation

In our scenario there are two models to be fitted to two data sets (PET and
MR). The data sets are linked in that they relate to the same individual. As such,
phalange lengths should be similar. The phalanges are parameterised as a tube
with 7 parameters (3D start/end and radius). We choose not to constrain the
motion of the fingers to a plane (as in [9]), as this is not a useful approximation
for our data. However, even with a small number of quantisations per dimension
this produces an excessively large number of configurations of each phalange
(individual node evaluation has complexity O(qd

nd), where qd is the number
of quantisations in each dimension, and nd is the number of dimensions). The
following sections describe an approach that uses two networks per data set, and
local quantisation to overcome this computational hurdle.
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3 Efficient Model Networks and Their Optimisation

The raw data used in this paper is volumetric and comes from PET and MR
scans. Typically volume dimensions are 256 × 256 × 16 for the MR data and
256 × 256 × 440 for the PET data. With this volume of data it is desirable to
pre-process the data before evaluating possible model configurations for compu-
tational reasons. Another reason for data pre-processing is to identify volumet-
ric areas relating to physical features to assist the model matching/registration
process. As there is essentially no common information in the PET and MR
scans, other than that an area is within the hand (or not), this is what is
used. One common method of identifying regions is volume segmentation. In
this process each voxel is labelled as belonging (or not belonging) to a physical
structure. For our data this is problematic, as there is much uncertainty over
many voxels (especially in the PET data). This task is therefore hard for a skilled
human expert, let alone an automated system. This approach also performs lit-
tle data reduction. We propose a simpler alternative approach to segmentation;
point annotation. The principle behind this is that a relatively sparse set of

a) b)

c)

PET Data

MRI Data

Fig. 2. Examples of Hand Annotation of Data in 2D: a) MR ‘hand’, b) PET ‘not hand’,
3D Visualisation of ‘hand’ PET & MR point clouds
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points that are definitely “hand” or “not hand” are identified. This is currently
performed in 2D by hand (taking <15 minutes per data set), and is illustrated in
figure 2. We believe annotation to be a much simpler process to automate (using
region based classifiers) than segmentation for this data, as uncertain points may
simply be excluded from the labelling process. It is also a much faster process
to carry out by hand. Automation of this process is planned for the near future.
The 2D point annotation of multiple volumetric slices is used to form 3D “point
clouds” using the slice number to form the third dimension. This is illustrated
in figure 2.c. These point clouds allow the definition of probabilistic metrics
over the model configuration parameters (see later), and allow quite effective
visualisation of the quality of final model configurations.

3.1 Model Initialisation and Local Search

Our approach to reducing the computational complexity of the Bayesian network
optimisation is to pose the optimisation as a local search problem. Initial model
configurations are specified by hand, and the set of possible configurations in-
vestigated are local offsets from this configuration. This allows a rather smaller
number of quantisations of each dimension than quantising the complete 7D
space of solutions for each phalange. Hand specification of the initial configura-
tion is done by clicking on the approximate start/end points of each phalange in
a 2D slice view (as in the annotation in the previous section). The end of a parent
phalange and the start a connected child phalange are deemed to be coincident,
thus only 16 clicks are required for four fingers (the thumb is ignored only as it
is absent in the majority of the data sets used). The radius of each phalange is
estimated as K× phalange length (where K is typically 0.25, which is usually a
slight underestimate). Figures 3.a and 3.d show examples of the variable quality
of this initial configuration. In particular, the length (and thus radius) of the
finger tip phalanges in the MR data is incorrect as they lie partially outside the
scan volume. The location of PET data phalanges, especially at the base of the
fingers, is up to 10mm from the correct location. Estimated radii in all cases are
very approximate, even when the length is near correct.

Two methods are applied to the initial configurations before Bayesian Net-
work optimisation is performed. Firstly a check is made on whether the ends of
a phalange lie very close to the edge of the scan volume (i.e. within 5% of the
complete range of any dimension from the edge). We term this “phalange valid-
ity”. If it is the case that one phalange is valid and the other is not the length
of the invalid phalange is set to be equal to the valid one. This is done using the
valid end of the invalid phalange and its direction vector, as in equation 1.

Endnew = Startorig + Dirorig × Lenother (1)

The results of this process are illustrated in figures 3.b and 3.e (which are
data sets imaged from the same individual, and only the MR data has invalid
phalanges). Once the lengths are corrected, a “greedy” algorithm is used to
obtain a better initial estimate of the radius. This works by assigning annotated
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a) b) c)

d) e) f)

Fig. 3. Example of model Initialisation (MR Data): a) Initial guess, b) Corrected Tube
lengths, c) Output of ‘Greedy’ algorithm, (PET Data): d) Initial guess, e) Corrected
Tube lengths, f) Output of ‘Greedy’ algorithm

hand points to phalanges that contain them2. The radii of each tube is increased
by increasing factors (typically 1:1.5 in 0.01 steps). The minimum radii that
contains a larger number of unassigned annotated hand points than the initial
estimate, without containing points assigned to another phalange, is selected. If
increasing the radius by one step increases the number of “not hand” annotated
points contained within the phalange tube, without increasing the number of
“hand” annotated points, expansion of that phalange is halted. This process is
repeated until convergence. The results of this process are illustrated in figures
3.c and 3.f.

3.2 Model Fitting Using Multi-scale Optimisation of Two Networks

If each dimension of the 7D configuration space of each phalange tube is divided
into 9 evenly spaced quantisations3 (centred around the initial configuration)
the total number of quantisations (q) of each tube is 97 = 4, 782, 969. As the
complexity of the belief propagation is O(q2n) evaluation of such a network takes
of the order of an hour or more on current standard hardware (PIV 3GHz).
As we wish to perform this optimisation at multiple scales this would make
the registration process rather time consuming. As a computationally efficient
alternative, we divide the model into two networks; one relating to the start/end
point configuration of the phalange tubes (6D) and one relating to the Radius
(1D). Optimisation of a pair of the former is performed in around 30 seconds,
and the later is optimised in interactive time. Tables 1-4 describe the various
probabilistic factors that are used to form the model networks. These fall into two
categories; i) Simple probabilities, calculated as a data proportion (or similar),
and ii) Normalised Gaussian probabilities, calculated from some distance d, as in
2 If a point is inside two tubes it is assigned to the tube it is furthest inside.
3 This is approaching the minimum sensible before solutions are lost between steps.
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Table 1. Probabilistic influence factors on individual tube configurations (posi-
tion/length)

Variable Description Form Notes
Pcgl start, Distance of start/end from ‘curve Norm. Gaussian S.D. = 0.5×length
Pcgl end gradient line’ start/end [1 if ‘invalid’]
Passign Proportion of ‘assigned’ data enclosed Simple prob. If <0.95 set to 0.01
Pn unassign Proportion of nearby (within search Simple prob. Clipped at 0.9

range) ‘unassigned’ data enclosed and scaled [0,1]
Plen p Difference of length from mean Norm. Gaussian S.D. = 0.5×length,

of PET & MR original lengths =PET/MR orig if
of this tube the other ‘invalid’,

1 if both ‘invalid’
Plen sim Difference in length from same Norm. Gaussian S.D. = 0.25×length

tube in other data set (current guess)
N.B. Where length is specified in the notes, this is the initial estimate for that data set

equation 2. Normalised Gaussians are used as P = 1 for d = 0 (i.e. no influence
is had).

P = e
−d2

2σ2 (2)

The Curve gradient line (CGL), used to calculate Pcgl start in table 1), is
calculated for each phalange from the mean of the points initially associated
with that phalange. For each finger (trio of phalanges), a quadratic is fitted to
the points in the 2D plane defined by these points. The gradient (direction) of
this quadratic at each mean point defines the CGL (a straight line which passes
through the mean). The extent (start/end) of these lines are found by projecting
each of the associated points onto the line and calculating the maximum distance
in each direction from the mean point. Validity of these lines is calculated in
exactly the same way as described in section 3.1. Independence of each factor is
assumed, and individual phalange tube configuration influences are combined as
a product (equation 3).

Ptuben = Pcgl startn×Pcgl endn×Passignn×Pn unassignn×Plen pn×Plen simn (3)

Independence of topological factors is also assumed, and configuration influ-
ences are combined as a product (equation 4).

Ptopoln,m = Pnearn,m × Pstraightn,m (4)

Table 2. Probabilistic influence topological factors between parent/child configura-
tions (position/length)

Variable Description Form Notes
Pnear Distance between parent end Norm. Gaussian S.D. = 0.025×parent length

and child start
Pstraight Dot product of unit direction Simple prob. Enforces finger straightness

vectors of parent/child
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Table 3. Probabilistic influence factors on individual tube configurations (radius)

Variable Description Form Notes
Passign Proportion of ‘assigned’ data enclosed Simple prob. If <0.95 set to 0.01
Punassign Proportion of ‘unassigned’ Simple prob. Clipped at 0.9

data enclosed and scaled [0,1]
Pnot 1 - (No. ‘not hand’ points / Simple prob. Lower clip at 0.01

No. ‘associated’ hand points)

Penc other

If no. assigned to another tube en-
closed > no. assigned to this tube ×
0.05, Penc other=0.01, else 1

Simple Prob.

Pradmatch
Difference between radius and initial
other model radius

Norm. Gaussian S.D. = 0.25 ×
tube radius

Table 4. Probabilistic influence topological factors between parent/child configura-
tions (radius)

Variable Description Form Notes
Pdradius Difference in radius between parent Norm. Gaussian S.D. = 0.25 × parent

and child radius

Radius model network influences are combined as a product in exactly the
same way as the start/end model. Belief propagation through each finger (trio
of phalange tubes) of the network also assumes independence of factors and is
performed separately for each finger (equation 5).

Pfinger = Proot × Ptube1 × Ptopol1,2 × Ptube2 × Ptopol2,3 × Ptube3 (5)

The globally optimal (maximum) value of Pfinger for each finger (within the
quantised space) is found using dynamic programming. Efficiency savings may
be made in this process by bearing in mind all probabilities in equation 5 are
< 1 by design. Thus a partial solution that has lower probability than the best
solution so far need not be evaluated further in the forward part of the algorithm
(in practice saving many evaluations of Ptopoln,m).

Proot relates to the probabilistic influence from the root node (figure 1). This
is calculated as a normalised Gaussian (equation 2) based on the distance (in
the 2D plane defined by the root node, and tube directions) of the start of the
base phalange from its “root node projection” (σ is 0.5 × the tube radius). The
root node configuration is defined as a straight line in 3D space. This line is
calculated by calculating a least squares rigid registration (translation and ro-
tation) between the corresponding start and end points of the PET and MR
models (pre-optimisation), using the method of Horn [12]. A straight line is fit-
ted to the 8 registered base phalange start points, again using a least squares
error minimisation approach. The pairs of start points (one for each data set)
are projected onto this line, and the mean taken as the “root node projection”
for that finger. These points are projected back into the original space for the
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transformed data set (choice of which set to transform makes little difference to
the root node projections calculated). It should be noted that the root node con-
figuration is pre-calculated from the initial configuration rather than optimised
within the dynamic programming stage as it is the same for both PET and MR
networks (which are currently optimised separately). This gives consistency of
the starting points of the phalange tubes, which would be expected for data
taken from the same patient. The networks are optimised at increasingly finer
quantisations / smaller search ranges using the previous optimal as a starting
point, as illustrated in figure 4.

Optimise Radius

Bayesian Networks

Optimise Start/End

Bayesian Networks
Align Tube Ends

Decrease Search Range

Optimise Radius

Bayesian Networks

Fig. 4. Multi-scale Network optimisation flowchart

Parent/child end/start points are aligned after each application of the Start-
End network optimiser. The iteration detailed in figure 4 is performed 4 times
(with the start/end search range halved at each iteration). The total model
fitting process (including initialisation) takes just a few minutes to fit models to
both data sets.

3.3 Non-rigid Transform Calculation

Once the tube based model has been fitted to corresponding PET and MR
datasets, it is a reasonably simple process to calculate a non-rigid (piecewise
rigid) transform between the two data sets. This transform may be used to warp
one of the data sets (we warp the PET data) into correspondence with the other.
First, a global rigid (translation and rotation) transform is calculated from the
corresponding start and end points of the phalange tubes in the two models.
The closed form least-squares error minimisation method of Horn is used [12].
Calculating local rigid transformations for each (globally aligned) tube pair is
performed using the same method. However, at least three points are required
for this method, and only two are available (the start & end of the tube). A third
point is generated by using principal components analysis (PCA) to calculate
the eigenvector of the globally aligned annotated hand points (both sets) with
the smallest eigenvalue. This ‘minor axis vector’ (Vma) defines a plane with the
tube direction (Tdir) in which the third point lies. This third point is calculated
as in equation 6.

P3 = Tstart + Tlength × D3 (6)

Where D3 is the vector in the plane defined by Vma and Tdir perpendicular to
Tdir, where the dot product of D3 and Vma is positive. Transformation of any
point or voxel within a single tube is simply a matter of performing the global
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transform, followed by the appropriate tube transform (or the inverse operations
in the opposite order for the reverse transform). Points outside the tubes may
simply be transformed using the global transform only. In fact we interpolate
the transform near the edges and when a point is in more than one tube. Details
are omitted for brevity. Figure 5 shows some results of these transforms applied
to annotated point and voxel data.

a) b)

c) d)

Fig. 5. Registration results; a)&b) Global (Rigid) and Local (Non-rigid) registration
applied to annotated hand points, c) Warped PET slice, d) Corresponding MR slice

4 Evaluation

Our method was evaluated by application to a number of data sets. The princi-
pal behind the evaluation is that the closest annotated point in the ‘other’ data
set to a registered/transformed ‘hand’ point should be a hand point. Our chosen
evaluation metric is to count the proportion of these ‘correct points’ for the trans-
forms in either direction. It should be noted that the absolute values presented
are fairly meaningless as PET and MR data sets don’t image exactly the same
part of the hand (parts may be missing in one set or another). However, relative
values for a data set demonstrate improvement in registration quality. Results
are presented in table 5. Results show a statistically significant improvement
(at 5% confidence) in the local and global registrations (especially local) over all
data sets after application of our method. Also, local registration always outper-
forms global registration. Our chosen metric says nothing about the magnitude
of registration errors, although by inspection maximum error appears well under
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Table 5. Nearest Neighbour Correct Evaluation Results

Data Set PET→MR Nearest Correct Prop. MR→PET Nearest Correct Prop.
A [0.844/0.866]→[0.920/0.970] (0.026) [0.774/0.821]→[0.816/0.919] (0.325)
B [0.834/0.887]→[0.829/0.910] (0.018) [0.766/0.835]→[0.769/0.909] (0.302)
C [0.525/0.714]→[0.586/0.906] (0.132) ) [0.552/0.762]→[0.651/0.931] (0.374)
D [0.930/0.931]→[0.951/0.953] (0) [0.712/0.732]→[0.757/0.841] (0)
E [0.518/0.520]→[0.704/0.764] (0.054) [0.689/0.680]→[0.908/0.941] (0.306)
F [0.880/0.892]→[0.956/0.977] (0.553) [0.758/0.788]→[0.890/0.914] (0.119)

Mean inc. [0.069/0.111] [0.090/0.139]
Results show initial [Global Trans./Local Trans.] → final [Global Trans./Local Trans.] (Raw, for reference)

italics imply registration fit decrease (for data set GJ PET→MR Global registration only)

5mm. Ground truth would be required to verify this. We plan experiments with
imaging phantoms and pseudo-synthetic data to do this verification.

5 Discussion, Future Work and Acknowledgements

We have posed a problem of non-rigid multi-modal volume registration as one
of model fitting by optimisation of a set of Bayesian networks. Quantisation,
and local search, allow the efficient use of dynamic programming to find a glob-
ally optimal solution (within a locally quantised space). Applying this approach
iteratively at multiple, decreasing, scales gives robust model fits within a few
minutes. We have applied this approach to the registration of PET and MR
volumes of hands, for the study of bone growth/erosion in arthritis. The net-
works we have proposed include no learned (or measured) prior terms. Such
terms could easily be included if sufficiently accurate (and useful) models were
available. However, it is debatable whether such models would add anything for
the application presented as patients with arthritis often have rather unusual
hand poses. In the near future we intend to automate the process of hand/not
hand point annotation of volumetric data sets. We intend to further evaluate the
exact accuracy of registrations using imaging phantoms with easily identifiable
localisation points. Evaluation using pseudo-synthetic data is also planned.

D. McGonagle has been funded by the UK Medical Research Council to carry
out the high-resolution imaging studies of arthritis used in this paper.
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Abstract. This paper presents three different tasks: segmentation of
medical images, volume representation and non-rigid registration. The
first task is a necessary step before volume representation ant it is done
with a simple but effective strategy using tomographic images, combining
texture and boundary information in a region growing strategy, obtaining
good results. For the second task, we present a new approach to model
2D surfaces and 3D volumetric data based on marching cubes idea using
however spheres (modeling the surface of an object using spheres allows
us to reduce the number of primitives representing it and to benefit -from
such reduction- the registration process of two objects). We compare our
approach based on marching cubes idea with other one using Delau-
nay tetrahedrization, and the results show that our proposed approach
reduces considerably the number of spheres. Finally, we show how to
do non-rigid registration of two volumetric data represented as sets of
spheres using 5-dimensional vectors in conformal geometric algebra.

1 Introduction

Image segmentation is a common task in image processing applications and
it has a great importance in medical applications. When dealing with tumor
segmentation in brain images, one way to solve the problem is by using Magnetic
Resonance (MR) images because in such images we have different types of them
(for example T1, T2, T1-weighted, T2-weighted, etc); some of them highlight
tumor and other structures. Thus, by combining and differentiating them, the
task become more easy and an automatic approach for segmentation become
possible (see [1]). Other methods use a probabilistic digital brain atlas to search
abnormalities (outliers) between the patient data and the atlas (see [2,3]). The
use of Computer Tomographic (CT) images is less used because they have not
such modalities and the development of an automatic algorithm for segmentation
is more complicated; however semi-automatic approaches have been proposed
(see [4,5]) using seed points (defined by user) as initialization and growing the
region by some method. In this work we use a simple but effective algorithm to
segment the tumor: a set of 5 texture descriptors is used to characterize each
pixel of the image by means of 5 × 1 template or a 5D-vector; then each vector
is compared with the typical vector describing a tumor in order to establish an
initialization of the tumor in the image (seed points for tumor tissue). Finally, a
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region growing strategy is used, combined with boundary information to obtain
the final shape of the tumor (this method is explained in Sect. 2).

On the other hand, representation of volumetric objects using primitives like
points, lines or planes is a common task. The Union of Spheres proposed in [6]
is another possible representation for volumetric data, but the representation
is obtained using the Delaunay tetrahedrization and its complexity is O(n2) in
both, time and number of primitives, while our highest number of spheres using
our proposed method based on marching cubes is less than 2n in the worst case,
and some times it is less. We use computer tomography (CT) images to do the
experiments, and one of the the surfaces to be modeled is the segmented tumor;
n is the number of boundary points in a total of m CT images (slides).

In surgical procedures we have a big problem when surgeon opens the head
because of the loss of cerebrospinal liquid, which causes (non-linear) deforma-
tion of the internal structures. In this work (see Sect. 4.2) we present a new
approach which uses models based on spheres for using such spheres as the enti-
ties to be aligned. This is embedded in the Conformal Geometric Algebra (CGA)
framework using the TPS-RPM algorithm but in a 5-dimensional space.

2 Segmentation

According to [8,9] segmentation techniques can be categorized in three classes:
a) thresholding, b) region-based and c) boundary-based. Due to the advantages
and disadvantages of each technique, many segmentation methods are based
on the integration of information obtained by two techniques: the region and
boundary information. Some of them embed the integration in the region detec-
tion (integration through definition of new parameters or decision criterion for
the segmentation), while others integrate the information after both processes
are completed (integration is performed after both techniques -boundary and
region based- have been used to process the image). Within each category for
integration of the information, we have a great variety of methods; some of them
works better in some cases, some need user initialization, some are more sensi-
tive to noise, etc. This fact make not feasible to determine the best approach to
segmentation that integrates boundary and region information because we have
not a generally accepted and clear methodology for evaluating the algorithms;
additionally, the properties and objectives that the algorithms try to satisfy and
the image domain in which they work are different. Interested reader can con-
sult a detailed review of different approaches in [8]. Due to the fact that we are
dealing with medical images, we need also to take into account an important
characteristic: the texture. Textural properties of the image can be extracted
using texture descriptors which describe the texture in an area of the image.
So, if we use a texture descriptor over the whole image, we obtain a new “tex-
ture feature image”. In most cases, a single operator does not provide enough
information about texture, and a set of operators need to be used. This results
in a set of “texture feature images” that jointly describe the texture around
each pixel. Main methods for texture segmentation are Laws’s texture energy
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filters, Co-occurrence matrices, Random fields, frequency domain methods and
Perceptive texture features (see [10] for more details).

When segmenting tomographic images, simple segmentation techniques such
as region growing, split and merge or boundary segmentation can not be used
alone because such images contain textures of different tissues, similar gray-levels
between healthy and non-healthy tissues, and sometimes the boundaries are not
well defined. For this reason, we decide to combine not only boundary and region
information (as typically it is done), but also to integrate information obtained
from texture descriptors and embed that in a region growing strategy. A block
diagram of our proposed approach is shown in figure 1.a.

Input
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Output

image
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Region
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Seed

placement
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-1 -2 0 2 1

2 4 0 -4 -2

0 0 0 0 0

0 0 0 0 0

-1 -2 0 2 1

a) b)

Fig. 1. a) Block diagram of the approach to segment tumors in CT images (region
growing strategy combining texture and boundary information); b) Texture descriptors
used to obtain the texture information (4 Laws energy masks)

The first step is to characterize each pixel on images, so we use the texture in-
formation provided by some of the Laws’s masks to characterize them with a five-
dimensional vector (named texture vector, Vij , for pixel in coordinates (i, j)). Then,
to place automatically the seed points for the region growing strategy, we choose
only the pixels having a texture vector for the tissue of interest (in this case we are
interested in tumor) and use them as initialization (or seeds) for the region growing
strategy; boundary information is used to stop the growing of the region. The con-
struction of Vij is explained as follows: the first element, Vij [0], is only to identify
if the pixels corresponds to the background (Vij [0] = 0) or to the patient’s head
(Vij [0] = 1) - patient’s head could be skin, bone, brain, etc.; in order to obtain
the texture information, we use a set of four masks of the so called Laws Masks
(L5E5,R5R5,L5S5,E5S5-figure 1.b); then we fix the value in a position of Vij with
1’s or 0’s, depending on if the value is greater than zero or zero, respectively. As a
result, each structure (tissue, bone, skin, background) on the medical images used,
has the same vector Vij in a high number of its belonging pixels, but not in all of
them because of variations in values of neighboring pixels. So we can use the pixels
having the texture vector of the object we want to extract to establish them as seed
points in a region-growing scheme.

Region growing criterions we use are as follows: we compute the mean µseeds

and standard deviation σseeds of the pixels fixed as seeds; then, for each neigh-
boring pixel being examined to determine if added or not to the region:
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If I(x, y) = ±2σseeds and Vxy �= Vseed at most in 1 element,then I(x, y) ∈ Rt;

where Rt is the region of the tumor. The stopping criterion takes into account
the boundaries of the object. Such boundaries are found processing the image
with the Canny filter (having in this form, one more image of information for
the processing). So, the growing of the region is in all directions, but when a
boundary pixel is found in the canny image, the growing in such direction is
stopped.

Figure 2 shows results of the process explained before: figure 2.a shows one
original CT-image; figure 2.b shows the seed points fixed, which have the texture
vector of the tumor; figure 2.c shows the final result after the overall process has
ended (the tumor extracted). The overall process takes only few seconds per
image and it could be used to segment any of the objects; but in our case, we
focus our attention on the extraction of the tumor. After that, the next step is

a) c)
b)

Fig. 2. Results for the segmentation. a) One of the original CT-images; b) Seed points
fixed; c) Result for the image of (a) after the whole process (the tumor extracted).

to model the volumetric data by some method. Due to the fact that tumor can
be deformed because of the lost of cefalic liquid once the head of the patient is
opened, we need a 3D representation of the tumor which allows us to update the
shape of the tumor. Next sections present how the spheres are represented in
conformal geometric algebra (CGA); then we will show how to build 3D models
and register two of them using such entities with TPS-RPM method.

3 Representation of Spheres in CGA

Due to that our objective is not to provide a detailed description of the geometric
algebra (GA) and its advantages, we only give a brief introduction and explain
how to represent spheres in conformal geometric algebra (CGA) as points in a
space of 5 dimensions (because such representation will be used in the non-rigid
registration process).

Geometric algebra is a coordinate-free approach to geometry based on the
algebras of Grassmann and Clifford. The algebra is defined on a space whose
elements are called multivectors; a multivector is a linear combination of objects
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of different grade, e.g. scalars, vectors and k-vectors. It has an associative and
fully invertible product called the geometric or Clifford product, represented as
ab for two vectors a and b, and defined as:

ab = a · b + a ∧ b . (1)

where a · b represents the dot or inner product and a ∧ b represents the wedge
or exterior product. The geometric algebra Gp,q,r is a linear space of dimension
2n, where n = p + q + r and p, q, r indicate the number of basis vectors which
squares to 1,−1, 0, respectively. This algebra is constructed by the application
of geometric product between each two basis vectors ei , ej from the base of
the vector space �p,q,r. Thus Gp,q,r has elements of grade 0 (scalars), grade
1 (vectors), grade 2 (bivectors), and so on. The CGA G4,1,0 is adequate for
representing entities like spheres because there is no direct way to describe them
as compact entities in G3,0,0 (the geometric algebra of the 3D space); the only
possibility to define them is given by formulating a constraint equation. However,
in CGA the spheres are the basis entities from which the other entities are
derived. These basic entities, the spheres s with center p and radius ρ are defined
by

s = p +
1
2
(
p2 − ρ2

)
e + e0 . (2)

where p ∈ �3, ρ is a scalar and e, e0 are defined as in eq. 3 (they are called null
vectors), and they are formed with two basis vectors e−, e+ additional to the
three basis vectors of the 3D-Euclidean space (which have the properties that
e2
− = −1; e2

+ = +1; e− · e+ = 0).

e = e− + e+; e0 =
1
2
(e− − e+) (3)

In fact, we can think in a conformal point x as a degenerate sphere of ra-
dius ρ = 0. More details on GA and the construction of other entities in
CGA can be consulted in [12,13]. We can see eq. 2 as a linear combination:
s = αe1 +βe2 + γe3 + δe+ + εe−, or represent it as a 5D-vector s = [α β γ δ ε]T .
Note that such representation in CGA encodes the center of s in α, β, γ, and
the radius in encoded in δ, ε. Thus, the sphere in CGA is represented with a
5-dimensional vector, which is an adequate representation to make two sets of
5-vectors, one representing the object and the other the deformed object. These
sets are obtained by the method explained in next section. Once we have these
sets, we will be able to apply the TPS-RPM algorithm in order to do the regis-
tration process (see Sect. 4.2).

4 Volume Representation and Non-rigid Registration

In medical image analysis, the availability of 3D-models is of great interest to
medicians because it allows them to have a better understanding of the situation,
and such models are relatively easy to build. However, in special situations (as
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surgical procedures), some structures (as brain or tumor) suffer a (non-rigid)
transformation and the initial model must be corrected to reflect the actual
shape of the object. For this reason, it is important to have a representation
suitable to be deformed, with the minor quantity of primitives involved in such
representation as possible to make faster the process. In literature we can find
the Union of Spheres algorithm (see [6]), which uses the spheres to build 3D-
models of objects and to align or transform it over time. Nevertheless, we use
the marching cubes algorithm’s ideas to develop an alternative method to build
3D models by using spheres, which has the advantage of reducing the number
of primitives needed. For space reasons we do not provide an explanation of
the Union of Spheres nor the Marching Cubes algorithms, but it can be found
in [6,11].

4.1 3D Models Using Spheres

To build a 3D model of the object of interest using spheres, we are based in the
marching cubes algorithm (MCA). The principle of our proposal is the same as
in MCA: given a set of m slides (CT images), divide the space in logical cubes
(each cube contains eight vertexes, four of slide k and four of slide k + 1) and
determine which vertexes of each cube are inside (or on) and outside the surface.
Then define the number of spheres of each cube according to figure 3 and eq.
4 (where i is the ith sphere of the case indicated by j), taking the indexes of
the cube’s corners as the first cube of such figure indicates. Note that we use
the same 15 basic cases of the marching cubes algorithm because the total of
256 cases can be obtained from this basis. Also note that instead of triangles
we define spheres and that our goal is not to have a good render algorithm
(as intended for Marching cubes algorithm), but have a representation of the
volumetric data based on spheres which, as we said before, could be useful in
the process of object registration.

sj
pi

= cpi +
1
2
(c2

pi
− ρ2

pi
)e + e0

sj
mi

= cmi +
1
2
(c2

mi
− ρ2

mi
)e + e0

sj
gi

= cgi +
1
2
(c2

gi
− ρ2

gi
)e + e0 (4)

Figure 4.a-d shows the results obtained for a set of 36 images of a real patient
with a tumor visible in 16 of them (see in figure 4.d the 3D model of the tumor
of the real patient). Table 1 is a comparison between the results of the Union
of Spheres and our approach for the case of a brain model. The first row shows
the worst case with both approaches; second row shows the number of spheres
with improvements in both algorithms (reduction of spheres in DT is done by
grouping spheres in a single one which contents the others, while such reduction
is done using a bigger displacement, d = 3, in our approach). The number of
boundary points was n = 3370 in both cases. It is obvious the reduction in
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Fig. 3. The basic 15 cases of surface intersecting cubes (defining a different number of
spheres with different centers and radius)

a) c)

a) b)
c) d)

Fig. 4. Real patient: a) Original of one CT slide; b) Segmented object (the tumor);
c) Zoom of the approximation by circles according the steps described in section; d)
Approximation by spheres of the tumor extracted

the number of primitives obtained with our approach, while maintaining clear
enough the representation (even in the worst case).

4.2 Registration of Two Models

Registration problem is frequently founded in computer vision and medical image
processing. Suppose you have two points sets and one of them results from the
transformation of the other but you do not know the transformation nor the
correspondences between the points. In such situation you need an algorithm that
find these two unknowns the best as possible. If in addition the transformation
is non rigid, the complexity increases enormously. In the variety of registration
algorithms existing today, we find some that assume the knowledge of one of this
unknowns and solve for the other one; but there are two examples of algorithms
that solve for both: Iterated Closest Point (ICP) and Thin plate spline-Robust
Point Matching (TPS-RPM). Details of each one of this algorithms can be found
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Table 1. Comparison between number of spheres using approach based on Delaunay
tetrahedrization and our approach based on marching cubes algorithm; n is the number
of boundary points; d is the distance in pixels between vertexes in logical cubes of second
approach

n/d
Num of spheres with each approach
DT approach Our approach

3370 / 1 13480 11866
3370 / 3 8642 2602

in [7]; here we assume, for space reasons, the reader knows them. In a past work
we presented a comparison between these algorithms for non-rigid registration
and we concluded TPS-RPM gives better results. However, we had used only
sets of 2D and 3D points. Now we have spheres as points in a 5D-space modeling
the object, and these spheres have not only different centers, but also different
radius.

Let be UI = {sI
j}, j = 1, 2, ..., k, the initial spheres set; UF = {sF

i }, i =
1, 2, ..., n, the final spheres set. For the non-rigid registration we follow the simu-
lated annealing process of TPS-RPM explained in [7]. To update the matrix M
of correspondence for spheres sI

j y sF
i , modify mji as

mji =
1
T

e−
(sF

i
−f(sI

j
))�(sF

i
−f(sI

j
))

T . (5)

for outlier entries j = k + 1 and i = 1, 2, ..., n :

mk+1,i =
1
T0

e
−

(sF
i

−f(sI
k+1))�(sF

i
−f(sI

k+1))

T0 . (6)

and for outliers entries j = 1, 2, ..., k and i = n + 1 :

mj,n+1 =
1
T0

e−
(sF

n+1−f(sI
j
))�(sF

n+1−f(sI
j
))

T0 . (7)

where T is the parameter of temperature which is reduced in each stage of the
optimization process beginning at a value T0 (remember that TPS-RPM use the
simulated annealing process). Then, to update transformation we use the QR-
decomposition of M to solve eq. 8 (following the same process explained in [7]
and omitted here for space reasons).

Etps(d, w) = ‖Y − V d − Φw‖2 + λ1(wT Φw) + λ2[d − I]T [d − I] . (8)

Figure 5.a shows the 3D models as sets of spheres representing the object (the
tumor mentioned in figure 4) -one is the initial set (or representation at time
t1); the other is the deformed or expected set (or representation at time t2)-
which must be registered. Figure 5.b shows the results of registration process
using TPS-RPM algorithm with the spheres as 5D-vectors in CGA (it shows the
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Tumor at time

(initial set)

t1

Tumor at time

(expected set)

t2

a) Before registration

Tumor at time

(initial set)

t1

Result of the

algorithm (initial

set transformed)

b) registrationAfter

Shape expected of

the tumor

( the one of time t2)

Fig. 5. a) Initial and expected sets (the expected set is obtained by a non-rigid trans-
formation of the initial one); b) Initial and result of applying TPS-RPM to align the
sets of spheres, represented as 5D-vectors in CGA. Note that the resulting set has been
aligned an looks like the initial one.

shape of the expected set for visual comparison). Note that usually, researchers
use TPS-RPM with 2D or 3D vectors because they can not go beyond such di-
mension; in contrast, using CGA we have an homogeneous representation which
preserves isometries and uses the sphere as the basic entity. A right comparison
must use an algorithm which deals with non-rigid registration without a priori
information about correspondences nor transformation as the ICP mentioned
above; but in past work we have shown that TPS-RPM solve the problem better
than ICP, so we suppress it here for this reason. It is important to highlight
that the algorithm adjusted the radius as expected because the CGA 5-vector
representing the sphere s encodes the information about its center and radius, so
both are adjusted at each iteration step of the TPS-RPM algorithm by updating
the values of α, β, γ, δ, ε.

5 Conclusions

We have shown three different but related tasks: 1) A simple but effective ap-
proach for image segmentation which combines texture and boundary informa-
tion and embed it into a region-growing scheme, having the advantage of inte-
grating all the information in a simple process. The algorithm showed be useful
despite the limitations of the CT images used (limitations compared with the
facilities given by MRI images, commonly used in similar works) and is not the
contribution of this work, but a necessary step before the others two tasks. 2)
We show how to obtain a representation of volumetric data using spheres. Our
approach is based on the ideas exposed in marching cubes algorithm but it is
not intended for rendering purposes or displaying in real time, but for reduce
the number of primitives modeling the volumetric data and with this saving,



458 J.Rivera-Rovelo and E. Bayro-Corrochano

make a better registration process; better in the sense of using less primitives
in the process. 3) We show how to represent these primitives as spheres in the
CGA by means of 5-dimensional vectors which encode the information about the
center and radius of the spheres, and using them naturally with the principles
of TPS-RPM. Experimental results seem to be promising.
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Abstract. Segmentation of medical images is an important first step
in the analysis of medical images. A lot of research has been performed
on the segmentation of complex CT/MR images using the atlas-based
approach. Most existing methods use 3D atlases which are more complex
and difficult to control than 2D atlases. They have been applied mostly
for the segmentation of brain images. This paper presents a method that
can segment multiple slices of an abdominal CT volume using a single 2D
atlas. Segmentation of human body images is considerably more difficult
and challenging than brain image segmentation. Test results show that
our method can handle large variations in shape and intensity between
the atlas and the target CT images.

1 Introduction

Segmentation of medical images is an important first step in the analysis of
medical images. For example, in liver transplant, CT images of the donor are
taken. Then, the image regions corresponding to the liver are segmented to
compute the liver’s volume. Moreover, 3D model of the liver and the blood
vessels are reconstructed to help the surgeons plan the surgical procedure.

A lot of research has been performed on the segmentation of CT and MR
images. In particular, the atlas-based approach is most suited to segmenting com-
plex medical images because it can make use of spatial and structured knowledge
in the segmentation process. Typically, 3D atlases are used to segment the sur-
faces of the anatomical structures in 3D CT/MR images [1,2,3,4,5,6,7]. However,
3D atlases are more complex and difficult to construct than 2D atlases. There are
much more parameters to control in 3D atlases. Thus, 3D atlas-based algorithms
tend to be developed for segmenting specific anatomical structures. It is not easy
to adapt the algorithms to the segmentation of other anatomical structures by
simply changing the atlas.

An alternative is to use multiple 2D atlases to segment a CT/MR volume. In
this case, it is necessary to understand how many 2D atlases will be needed to
� This research is supported by NUS ARF R-252-000-210-112.
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c© Springer-Verlag Berlin Heidelberg 2005

CV IB A



460 F. Ding, W.K. Leow, and S.-C. Wang

segment all the slices in a volume. The worst case scenario of one atlas per image
would defeat the idea of using 2D atlases because the stack of 2D atlases would
contain the same amount of complexity as a 3D atlas. It also makes practical
application difficult because there are many slices in a typical CT/MR volume.
For example, in the case of liver transplant, more than 200 abdominal CT images
are taken.

Interestingly, most work on atlas-based segmentation has been focused on
brain MR images [1,2,3,8,6] or heart MR images [4,7]. Less work is done on the
segmentation of abdominal CT images [5], which is considerably more difficult
and challenging than segmentation of brain images.

This paper describes an atlas-based method for segmenting multiple anatom-
ical structures in multiple slices of an abdominal CT volume using a single 2D
atlas. The research objective is to investigate how well can a single 2D atlas per-
form on segmenting various slices in a CT volume of a particular patient. This
research can lead to an understanding of the number and types of atlas required
to segment various CT images encountered in normal clinical practices.

Test results show that our algorithm can successfully and accurately segment
34 abdominal CT slices of 1mm thickness using a single 2D atlas. Since the
2D atlas differs significantly in shape and intensity from the test CT images,
successful test results suggest that the algorithm should work well in segmenting
CT images of other patients. Our research work thus contributes to solving the
difficult and challenging problem of segmenting human body CT/MR images.

2 Related Work

Atlas-based segmentation is performed using atlas-based registration technique.
The registered atlas contours (2D case) and surfaces (3D case) are taken as the
boundaries of the segmented anatomical structures. Fully automatic atlas-based
segmentation problems map to atlas-based registration problems with unknown
correspondence. Solutions to these problems have to solve both the registration
and the correspondence problems at the same time. These problems are therefore
much more difficult to solve than semi-automatic registration and segmentation,
which require some user inputs such as landmark points [9].

An atlas-based segmentation algorithm typically comprises two complemen-
tary stages: (1) global transformation of the atlas to roughly align it to the
target image, and (2) local transformation or deformation of the atlas to ac-
curately register it to the corresponding image features. Global transformation
often serves to provide a good initialization for local deformation. Without a
good initialization, local deformation may deform the atlas out of control and
extract wrong object boundaries (see Section 3.3 for an example).

In the global transformation stage, spatial information (i.e., relative posi-
tions) of various parts of an atlas is used to determine how the atlas should
be transformed. Both similarity [2,3,5] and affine [4,6,7] transformations have
been used. An iterative optimization algorithm is applied to compute the opti-
mal transformation parameters. In each iteration, the possible correspondence
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between the atlas and the target is usually determined based on the closest point
criterion in the same way as the Iterative Closest Point algorithm [10].

In the local deformation stage, several main approaches have been adopted.
The method in [11] applies iterative optimization to determine optimal local
affine or 2nd-order polynomial transformations that deform the various parts of
the atlas to best match the target. The methods in [4,5] also apply optimization
techniques but they represent the 3D atlas surface using B-splines and thin-plate
spline constraint. These methods ensure that the extracted surfaces are smooth
but they require a large number of parameters to represent complex convoluted
surfaces of the brain.

A popular method is to apply the so-called demons algorithm [2,3,6,12]. It
regards the atlas and the target as images at consecutive time steps, and applies
the optical flow algorithm to determine the correspondence between them. As
for any optical flow algorithm, it suffers from the so-called aperture problem and
may not be able to handle large displacements between corresponding points. It
is also easily affected by noise and extraneous image features.

Among the existing methods discussed in this section, [5,7] use probabilis-
tic atlases whereas the other methods use non-probabilistic atlases. Although
probabilistic atlas contains more information about the variations, it requires
sufficient training samples to accurately model the probability distributions.

In addition to applying atlas-based registration technique, [5,7] included a
final classification stage that classifies each pixel to a most likely anatomical
category. This stage is required because the registration algorithms are not pre-
cise enough in aligning the atlas boundaries to the object boundaries in tar-
get images. Classification approach can improve the accuracy of the segmen-
tation result. However, it may not be able to handle segmentation of regions
which are nonuniform in intensity and texture. For example, the air pocket in
the stomach appears to have the same intensity as the background (Section 4,
Fig. 3a, 5). Classification algorithms will be easily confused by such nonuniform
regions.

Some existing papers have presented quantitative performance measures of
their methods. In particular, [2,3] measure similarity index that is proportional to
the area of intersection between segmented regions and the ground truth, [12,5]
measure the amounts of false positives and false negatives, and [6] measures the
mean squared error of corresponding points between the extracted boundaries
and ground truth.

3 Automatic Atlas-Based Segmentation

Our method uses a 2D deformable atlas to segment the major components in
abdominal CT images. The atlas consists of a set of closed contours of the entire
human body, liver, stomach, and spleen, which are manually segmented from
a reference CT image given in [13]. As shown in Fig. 1, the reference image is
significantly different from the target image in terms of shapes and intensities of
the body parts. Such differences are common in practical applications.
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(a) (b)

Fig. 1. (a) Atlas contours (white curves) superimposed on the reference CT image
taken from [13]. (b) Atlas registered onto an target image after global transformation.

Our fully automatic segmentation algorithm consists of three stages:

1. Global transformation of the entire atlas.
2. Iterative local transformation of individual parts in the atlas.
3. Atlas contour refinement using active contour algorithm.

3.1 Global Transformation

This stage performs registration of the atlas to the target input image with un-
known correspondence. First, the outer body contour of the target image (target
contour) is extracted by straightforward contour tracing. Next, the outer body
contour of the atlas (reference contour) is registered under affine transformation
to the target contour using Iterative Closest Point algorithm [10]. After regis-
tration, the correspondence between the reference and target contour points is
known. Then, the affine transformation matrix between the reference and target
contours is easily computed from the known correspondence by solving a system
of over-constrained linear equations. This transformation matrix is then applied
to the atlas to map the contours of the inner body parts to the target image.

After global transformation, the centers of the reference contours fall within
the corresponding body parts in the target image (Fig. 1b). The reference con-
tours need to be refined to move to the correct boundaries of the body parts.

3.2 Iterative Local Transformation

This stage iteratively applies local transformations to the individual body parts
to bring their reference contours closer to the target contours. The idea is to
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search the local neighborhoods of reference contour points to find possible cor-
responding target contour points. To achieve this goal, it is necessary to use
features that are invariant to image intensity because the reference and target
images can have different intensities (as shown in Fig. 1).

Let N(p) denote the normal to the reference contour at point p, and L(p)
denote an ordered list of points {pi}, i = −n, . . . , 0, . . . , n, lying on N(p), with
p0 = p. Let I(pi) denote the intensity of point pi. Then, the ordered list D(p) =
{I(pi)−I(pi+1)}, i = −n, . . . , n−1, is the intensity difference distribution (IDD)
at p along N(p). IDD depends only on the local intensity difference, which does
not differ as much as intensity across images. Thus, IDD is better than intensity
for determining corresponding points between the images. In the same way, we
can compute the IDD D′(p′) of an image point p′ along a normal N(p) of the
reference contour and with respect to the target image intensities I ′(p′i). In the
current implementation, n = 5, i.e., the length of IDD is 10.

The local search for possible corresponding points is performed as follows, af-
ter coarse registration of the atlas and the reference image to the target image by
global transformation. For each reference contour point p, a search is performed
within a small neighborhood U(p) centered at p and along the normal N(p) for
a target image point p′ whose IDD D′(p′) is most similar to D(p). The differ-
ence between D(p) and D′(p′) is measured in terms of the Euclidean distance
between them. The neighborhood U(p) decreases quadratically over time so that
the search process will converge. In the current implementation, the width of the
search neighborhood is 100 at the first iteration.

After finding the best matching target image point p′ of a reference contour
point p, a verification procedure is performed. Shoot a ray from the centroid
of the closed reference contour of p to p′. If the number of number of “white”
pixels or “black” pixels along the ray in the target image exceeds a predefined
threshold, then the point p′ is discarded because the intensity of the desired
body parts are gray. Otherwise, p′ is regarded as a corresponding point of p.

Given the reference contour points pi whose corresponding points p′i are
found, compute the affine transformation matrix M that maps pi to p′i. Then,
the matrix M is applied to all reference contour points, including those whose
corresponding points are not found.

The above local transformation is repeated iteratively for each closed contour
of the body parts individually until the reference contours converge. Therefore,
the reference contours of different body parts can be mapped to the correspond-
ing target image contours through different affine transformation matrices that
are appropriate for them.

The iterative local transformation algorithm described above is analogous to
the Iterative Closest Point (ICP) algorithm [10] in that it iteratively determines
the possible correspondence between the reference and the target, and computes
the transformation that maps the reference to the target. However, it differs from
ICP in that possible correspondence is determined based on most similar IDD,
which is a local image feature, instead of nearest position as in ICP. Therefore,it
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(a) (b)

Fig. 2. Iterative local transformation. (a) The white reference contours are iteratively
transformed. (b) The result of iterative local transformation after convergence.

can determine the correct correspondence more accurately than ICP. This al-
gorithm can thus be called an Iterative Corresponding Point algorithm. Sample
results of iterative local transformation are shown in Fig. 2.

3.3 Atlas Contour Refinement

The last stage performs refinement of the atlas contour using active contour, i.e.,
snake algorithm [14] with Gradient Vector Flow (GVF) [15]. The original snake
algorithm has the shortcoming of not being able to move into concave parts of
the objects to be segmented. This is because there is no image forces outside
the concave parts to attract the snake. GVF diffuses the gradient vectors of the
edges outward, and uses the gradient vectors as the image forces to attract the
snake into concave parts.

Figure 3(a) illustrates the result of applying snake with GVF on the atlas to
refine the contours obtained from iterative local transformation. The final atlas
contours now coincide accurately with the actual boundaries of the body parts
in the target image.

Note that after global transformation, the discrepancies between the reference
contours and the target contours are still quite large (Fig. 1b). If the snake
algorithm is applied immediately after global transformation without iterative
local transformation, the reference contour is easily attracted to the boundary
edges of other body parts (Fig. 3b). This shows that generic deformable models
such as active contour (i.e., snake), active shape, and level set can be easily
attracted to incorrect boundary edges. Our method resolves this problem by
using iterative local transformation to bring the atlas contours closer to the
desired object boundaries before applying the snake algorithm.
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(a) (b)

Fig. 3. Results after contour refinement by snake algorithm. (a) With iterative local
transformation (slice 72). (b) Without iterative local transformation.

3.4 Comparisons with Existing Work

Most existing atlas-based approaches adopt a two-stage approach consisting of
global transformation followed by local deformation. On the other hand, our
method consists of three stages, namely (1) global affine transformation, (2)
iterative local affine transformation, and (3) snake deformation. The first two
stages are similar to those in [1], but the method in [1] is developed for registering
an atlas to a brain surface that is already segmented.

[5] also presented a method for segmenting abdominal CT images. However,
their atlas registration algorithm is not accurate enough, and a final classification
stage is applied to classify the image pixels into various anatomical categories. In
contrast, by adopting a three-stage approach, our atlas registration algorithm is
accurately enough to segment the various anatomical parts. Compare to the test
results reported in [5,8], our method can handle much more variations between
the atlas and the target images.

4 Experiments and Discussion

40 abdominal CT images (from slice 41 to 80) of 1mm thickness of a patient
were used in the test. The accuracy of the segmentation result was measured
in terms of the area of intersection between the target body part (that was ob-
tained manually) and the segmented regions. This performance measure, called
similarity index S, was proposed by Zijdenbos et al. [16]:

S = 2
|A ∩ B|
|A| + |B| (1)
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Fig. 4. Test results. (a) Similarity indices of liver, spleen, and stomach. (b) Average
similarity index.

(a) (b)

Fig. 5. Results with high similarity indices. (a) Segmentation results of slice 48. (b)
Segmentation results of slice 60.

where A is the set of pixels of the body part in the target image and B that
of the segmented region. When the segmented region coincide exactly with the
target body part, S = 1.

Detailed segmentation performance of the algorithm is shown in Fig. 4. The
liver is well segmented and the algorithm’s performance on liver is very stable
(Fig. 4a). The similarity indices are greater than 0.95 for slices 41 to 76 (Fig. 3a,
5). From slice 77 onward, the liver is split into two lobes, which is greatly different
from that in the atlas image (Fig. 6b).

The algorithm’s performance on segmenting the spleen shows a bit variation
(Fig. 4a). But the similarity indices are still higher than 0.9 for slices 43 to 80



Segmentation of 3D CT Volume Images Using a Single 2D Atlas 467

(a) (b)

Fig. 6. Results with relatively low similarity indices. (a) Segmentation results of slice
42. (b) Segmentation results of slice 77.

(Fig. 3a, 5). For slice 42, the spleen becomes so small that it differs significantly
from that in the atlas (Fig. 6a). Thus, the algorithm is not expected to perform
well for this case.

The stomach is less well segmented, with the similarity index ranging from 0.8
to 0.95. It is due to the existence of air pocket, which appears as a black region
with a very thin wall (Fig. 3a, 5b). When the air pocket is correctly included
in the segmentation result (Fig. 3a), or when there is no air pocket (Fig. 5a),
then the similarity index is high. The shape of stomach is quite complex. So,
sometimes the snake algorithm is attracted to nearby edges that actually belong
to the liver and the spleen.

Figure 4(b) illustrates the average performance of the algorithm on segment-
ing the liver, spleen, and stomach. The similarity index is above 0.9 for slices 43
to 76 (Fig. 3a, 5). That is, with a single 2D atlas, the algorithm can successfully
and accurately segment 34 slices of the abdominal CT volume.

5 Conclusions

This paper presented an atlas-based method for segmenting abdominal CT im-
ages. It applies three complementary stages, namely global transformation, iter-
ative local transformation, and snake algorithm, to iteratively deform the atlas
to register with the target image. Experimental tests show that the algorithm
can successfully and accurately segment 34 slices of a CT volume of 1mm thick-
ness using a single 2D atlas. As the reference image that is used to derive the
atlas differs significantly in shape and intensity from the target CT images,
the successful test results suggest that the algorithm should work well on seg-
menting CT images of different patients. This research work thus contributes



468 F. Ding, W.K. Leow, and S.-C. Wang

to solving the difficult and challenging problem of segmenting human body
images.
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Abstract. Markov Random Fields (MRFs) are a popular and well-
motivated model for many medical image processing tasks such as
segmentation. Discriminative Random Fields (DRFs), a discriminative
alternative to the traditionally generative MRFs, allow tractable com-
putation with less restrictive simplifying assumptions, and achieve better
performance in many tasks. In this paper, we investigate the tumor seg-
mentation performance of a recent variant of DRF models that takes
advantage of the powerful Support Vector Machine (SVM) classification
method. Combined with a powerful Magnetic Resonance (MR) prepro-
cessing pipeline and a set of ‘alignment-based’ features, we evaluate the
use of SVMs, MRFs, and two types of DRFs as classifiers for three seg-
mentation tasks related to radiation therapy target planning for brain
tumors, two of which do not rely on ‘contrast agent’ enhancement. Our
results indicate that the SVM-based DRFs offer a significant advantage
over the other approaches.

1 Introduction

Support Vector Machines (SVMs) are a popular tool for classification tasks due
to their appealing generalization properties; this has led several groups to pro-
pose using SVMs for brain tumor segmentation [1,2,3]. However, SVMs assume
that data (here, individual voxels) is independently and identically distributed
(iid), which is not appropriate for tasks such as segmenting medical images.
In particular, SVMs can not consider dependencies in the labels of adjacent
pixels/voxels. Markov Random Fields (MRFs), a popular classification tech-
nique that models such dependencies, have been used in many medical image
segmentation tasks [4,5,6], and have also been used in systems for brain tu-
mor segmentation [5,6,7]. However, generative MRFs often do not have the
discriminative power of discriminative techniques such as SVMs. Conditional
Random Fields (CRFs [8]) and their multi-dimensional extension, Discriminative
Random Fields (DRFs), are discriminative alternatives to MRFs, which have
outperformed MRFs for several tasks [9,10]. In the remainder of this section, we

Y. Liu, T. Jiang, and C. Zhang (Eds.): 2005, LNCS 3765, pp. 469–478, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CV IB A



470 C.-H. Lee et al.

review MRFs (Sect. 1.1), CRFs and DRFs (Section 1.2), and SVMs (Section 1.3).
Section 2 then describes our recently proposed Support Vector Random Field
(SVRF) model, which combines the advantages of both SVMs and CRFs [11].
Section 3 presents an evaluation of these techniques within a system for brain
tumor segmentation that uses an extensive MR preprocessing pipeline and a set
of multi-scale image-based and ‘alignment-based’ features.

1.1 Markov Random Fields (MRFs)

Markov Random Fields (MRFs) are widely used in medical image processing
applications [4,5,6]. They are ideal for many tasks, and are particularly relevant
to segmentation tasks as they allow the classification of one element to depend
on the labels of neighboring elements of the observation (image, volume, or se-
quence). By contrast, traditional classification techniques assume the data is iid,
and therefore do not model dependencies in the labels of neighboring elements.
MRFs typically use a generative approach, modeling the joint probability of the
features of the set of voxels x = {x1, . . . , xn} and their corresponding labels y:
p(x,y) = p(x|y) p(y). However, these systems often make simplifying assump-
tions to make the calculation of the joint probability tractable. This usually
involves assuming that the likelihoods have a simple factorized form, such as
p(x|y) =

∏
i p(xi|yi), which involves restrictive independence assumptions, and

does not allow the modeling of complex dependencies between the features and
the labels. For the MRF in our experiments, we used a Gaussian assumption
to factor p(x|y) (as opposed to a non-parametric alternative such as Parzen
Windowing [4]), and used the Hammersley-Clifford method [12] to factor p(y),
producing the following model for the posterior, given a set of labeled training
data S = {〈xi, yi〉}i.

p(y|x) =
1
Z

exp

[∑
i∈S

log(p(xi|yi)) +
∑
c∈C

Vc(yc)

]
(1)

where C is a set of cliques in the neighborhood (here defined as the set of 8
planar neighbors), Vc(y) is a clique potential function of labels for the clique
c ∈ C, and Z normalizes over all possible labelings. The Gaussian assumption
allows us to use Maximum Likelihood (ML) parameter estimation.

1.2 Conditional and Discriminative Random Fields (CRF, DRF)

Conditional Random Fields (CRFs) are a discriminative alternative to the tra-
ditionally generative MRFs [8]. Rather than modelling the joint likelihood of the
features and labels p(x,y), discriminative models directly model the posterior
probability of the labels given the features p(y|x). This subtle difference allevi-
ates the need to model the distribution over the observations. This is important
in medical imaging applications, since anatomic structures can have complex
shapes that are not easy to model and may not be appropriately modelled by a
factorized form of p(x|y). Since CRFs directly model the posterior, they can re-
lax many of the major simplifying assumptions often made in MRFs. This allows
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the (tractable) modelling of complex dependencies (a) between the features of an
element and its label, (b) between the labels of adjacent elements, and (c) between
the labels of adjacent elements and their features, or even other features of the
observation.

Discriminative Random Fields (DRFs) are a multi-dimensional extension of
1-dimensional CRFs for lattice-structured data [9]. This extension, combined
with the popularity of MRFs in medical imaging applications and the major
advantages that CRFs can have in certain situations over MRFs, suggests that
DRFs could have a major impact on a number of medical imaging tasks. In our
experiments, we used the following DRF model:

p(y|x) =
1
Z

exp

∑
i∈S

Ai(yi,x) +
∑
i∈S

∑
j∈Ni

Iij(yi, yj,x)

 (2)

where Ai is the ‘Association’ (Observation-Matching) potential for modelling
dependencies between the i-th class label yi and the set of all observations x.
The DRF method uses a Generalized Linear Model (GLM) based on Logistic
Regression for this potential [9]. The ‘Interaction’ (Local-Consistency) potential
for modelling dependencies between the labels of neighboring elements, Ii, is
also a GLM. Non-linear models for both potentials can be induced through
a change of basis. Simultaneously determining the optimal parameters of the
Association potential and the Interaction potential can be done numerically as a
convex optimization problem. The performance of the GLM in DRFs compared
to the probability distribution in the first term of MRFs will depend on the
application. However, note the important difference between the clique potentials
in MRFs and the Interaction potential in DRFs. MRFs indiscriminately smooth
over neighboring cliques while DRFs consider the features when taking into
account interactions in the labels

∑
i∈S

∑
j∈Ni

Iij(yi, yj ,x). This is a subtle but
important point, since it means a DRF can learn how to optimally use image
(and image gradient) information when modeling label dependencies.

DRFs are a powerful method for modeling dependencies in spatial data.
There are, however, several problems associated with this method: it is hard to
find a good initial labeling during inference, and due to the simultaneous learn-
ing of parameters, it tends to overestimate the Interaction potential parameters
which can degrade edges during inference (unless regularization is used very care-
fully). Furthermore, the GLM may not estimate appropriate parameters in data
with a high-dimensional feature space or where features may be correlated (as
with textural features or multi-modality data) [13]. Because of these factors, in
some tasks DRFs will not be advantageous compared to models such as Support
Vector Machines.

1.3 Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are a popular tool for classification of data
that is independent and identically distributed. SVMs are less sensitive to class
imbalance than GLMs, and due to the properties of error bounds, SVMs tend
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to outperform GLMs, especially in cases where the classes overlap (often the
case in medical imaging applications) [14]. SVMs try to maximize the margin
between classes (here using the simple linear feature space xi ·xj), by finding the
optimal αi values in the following Quadratic Programming problem (represented
in dual Lagrangian form where C is a constant that bounds the misclassification
error) [14]:

max
N∑

i=1

αi − 1
2

N∑
i=1

N∑
j=1

αi αj yi yj (xi · xj)

subject to

0 ≤ αi ≤ C and
N∑

i=1

αiyi = 0

(3)

Unlabelled instances are classified using the learned parameters αi and bias
b, by taking the sign of the following decision function [14]:

f(x) =
N∑

i=1

αiyi(x · xi) + b

2 Support Vector Random Fields (SVRFs)

An SVM is an iid classifier, which does not consider interactions in the labels of
adjacent data points. Conversely, DRFs and MRFs consider these interactions,
but do not have the same appealing generalization properties as SVMs. This
section will review our Support Vector Random Field (SVRF) model, an exten-
sion of SVMs that uses a DRF framework to model interactions in the labels of
adjacent data points [11]:

p(y|x) =
1
Z

exp

∑
i∈S

log(O(yi, Υi(x))) +
∑
i∈S

∑
j∈Ni

V (yi, yj,x)

 (4)

where Υi(x) computes features from the observations x for location i, O(yi, Υi(x))
is an SVM-based Observation-Matching potential, and V (yi, yj ,x) is the Local-
Consistency potential over a pair-wise neighborhood structure, where Ni are the
8 neighbors around location i.

2.1 Observation-Matching

The Observation-Matching function maps from the observations (features) to
class labels. We would like to use SVMs for this potential. However, the decision
function in SVMs produces a distance value, not a posterior probability suitable
for the DRFs’ framework. To convert the output of the decision function to a
posterior probability, we used a modified version of the method in [15]. This
efficient method minimizes the risk of overfitting and is formulated as follows:

O(yi = 1, Υi(x)) =
1

1 + exp(A × f(Υi(x)) + B)
(5)
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The parameters A and B are estimated from training data represented as
pairs 〈f(Υi(x)), ti〉, where f(Υi(x)) is the real-valued SVM response (here, dis-
tance to the separator), and ti denotes a related probability that yi = 1, rep-
resented as the relaxed probabilities: ti = N++1

N++2 if yi = 1, and ti = 1
N−+2 if

yi = −1, where N+ and N− are the number of positive and negative class in-
stances. Using these training instances, we can solve the following optimization
problem to estimate parameters A and B:

min−
l∑

i=1

[ti log O(ti, Υi(x)) + (1 − ti) log(1 − O(ti, Υi(x)))] (6)

Platt [15] used a Levenberg-Marquardt approach that tried to set B to guar-
antee that the Hessian approximation was invertible. However, dealing with the
constant directly can cause problems, especially for unconstrained optimization
problems [13]. Hence, we employed Newton’s method with backtracking line
search for simple and robust estimation. To avoid overflows and underflows of
exp and log, we reformulated (6) as

min
l∑

i=1

[ti(A × f(Υi(x)) + B) + log(1 + exp(−A × f(Υi(x)) − B))] (7)

2.2 Local-Consistency

We use a DRF model for Local-Consistency, since we do not want to make the
(traditional MRF) assumption that the label interactions are independent of the
features. We adopted the following pairwise Local-Consistency potential:

V (yi, yj ,x) = yiyj (ν · Φij(x)) (8)

where ν is the vector of Local-Consistency parameters to be learned, while Φij(x)
calculates features for sites i and j. DRFs use a Φij that penalizes for high abso-
lute differences in the features. As we are additionally interested in encouraging
label continuity, we used the following function that encourages continuity while
discouraging discontinuity: (max(Υ (x)) denotes the vector of max values of the
features):

Φij(x) =
max(Υ (x)) − | Υi(x) − Υj(x) |

max(Υ (x))
(9)

Observe that this function is large when neighboring elements have very
similar features, and small when there is a wide gap between their values.

2.3 Learning: Parameter Estimation

SVRFs use a sequential learning approach to parameter estimation. This involves
first solving the SVM Quadratic Programming problem (3). The resulting deci-
sion function is then converted to a posterior probability using the training data
and estimated relaxed probabilities. The Local-Consistency parameters are then
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estimated from the m training pixels from each of the K training images using
pseudolikelihood [12]:

ν̂ = arg max
ν

K∏
k=1

m∏
i=1

p(yk
i |yk

Ni
,xk, ν) (10)

We ensure that the log-likelihood is convex by assuming a Gaussian prior
over ν: that is, p(ν|τ) is a Gaussain distribution with 0 means and τ2I variance
(see [9]). Thus, the local-consistency parameters are estimated using its log
likelihood:

ν̂ = arg max
ν

K∑
k=1

m∑
i=1

On
i +

∑
j∈Ni

V (yk
i , yk

j ,xk) − log(zk
i )

 − 1
2τ

νT ν (11)

where zk
i is a partition function for each site i in image k, and τ is a regularizing

constant that ensures the Hessian is not singular. Keeping the Observation-
Matching (Ok

i = O(yi, Υi(x))) constant, the optimal Local-Consistency parame-
ters can be found by gradient descent.

We close by noting that the M3N [10] framework resembles SVRFs, as it
also incorporates label dependencies and uses a max-margin approach. However,
the M3N approach uses a margin that magnifies the difference between the
target labels and the best runner-up, while we use the ‘traditional’ 2-class SVM
approach of maximizing the distance from the classes to a separating hyperplane.
An efficient approach for training and inference in a special case of M3Ns was
presented in [16]. However, the simultaneous learning and the inference strategy
used still make computations with this model expensive compared to SVRFs.

3 Brain Tumor Segmentation

Segmenting brain tumors is an important medical imaging problem, currently
done manually by expert radiation oncologists for radiation therapy target plan-
ning. Markov Random Fields [5,6,7] and SVMs [1,2,3,17] have been used in
systems to perform this task. We have recently evaluated DRFs and SVRFs for
the relatively easy case of segmenting “enhancing tumor areas” [11]. We extend
this by providing improved results for this easy case (due to using better pre-
processing and features), and results for two much harder segmentation cases.
This section will present (i) our experimental data and design, (ii) a summary of
the MR preprocessing pipeline and the multi-scale image-based and ‘alignment-
based’ features that afford a significant improvement over those previous results
and allow us to address more challenging tasks, and (iii) experimental results
comparing SVMs, MRFs, DRFs, and SVRFs within this context for three dif-
ferent segmentation tasks.

Our experimental data set consisted of T1, T1c (T1 after injecting contrast
agent), and T2 images (each 258 by 258 pixels) from 7 patients (Fig. 1), each
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Fig. 1. Left to right: T1 image, T1 image with contrast agent, T2 image, enhancing
area label, edema label, gross tumor label, full brain segmentation

having either a grade 2 astrocytoma, an anaplastic astrocytoma, or a glioblas-
toma multiforme. The data was preprocessed with an extensive MR preprocess-
ing pipeline (described in [3], and making use of [18,19]) to reduce the effects
of noise, inter-slice intensity variations, and intensity inhomogeneity. In addi-
tion, this pipeline robustly aligns the different modalities with each other, and
with a template image in a standard coordinate system (allowing the use of
alignment-based features, mentioned below).

We used the most effective feature set from the comparative study in [17].
This multi-scale feature set contains traditional image-based features in addi-
tion to three types of ‘alignment-based’ features: spatial probabilities for the 3
normal tissue types (white matter, gray matter and cerebrospinal fluid), spatial
expected intensity maps, and a characterization of left-to-right symmetry (all
measured at multiple scales). As with many of the related works on brain tu-
mor segmentation (such as [1,2,6,20]), we employed a patient-specific training
scenario, where training data for the classifier is obtained from the patient to
be segmented. In order to be fair, all classifiers received the same training and
testing pixels, and the testing pixels came from a different area of the volume
than the training pixels — here, distant MR slices (this prevents the Random
Field models from achieving high scores due to over-fitting.)

In our experiment, we applied 6 classifiers — a Maximum Likelihood classifier
(degenerate MRF), a Logistic Regression model (degenerate DRF), an SVM
(degenerate SVRF), an MRF, a DRF, and an SVRF — to 13 different volumes,
based on various time points from 7 patients.

For each of the Random Field methods, we initialized inference with the cor-
responding degenerate classifier (ie. Maximum Likelihood, Logistic Regression,
or SVM), and used the computationally efficient Iterated Conditional Modes
(ICM) algorithm to find a locally optimal label configuration [12].

The 6 classifiers were evaluated over the 13 time points for the following 3
tasks, where the ground truth was defined by an expert radiologist. The first
task was the relatively easy task of segmenting the ‘enhancing’ tumor area —
ie. the region that appears hyper-intense after injecting the contrast agent (and
including the non-enhancing or necrotic areas contained within the enhancing
contour). The second task was the segmentation of the entire edema area asso-
ciated with the tumor, which is significantly more challenging due to the high
degree of similarity between the intensities of edema areas and normal cere-
brospinal fluid. The final task was segmenting the Gross Tumor area as defined
by the radiologist. This can be a subset of the edema but a superset of the
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Table 1. Jaccard Percentage Scores for Enhancing tumor, Edema areas, and Gross
Tumor areas (high scores in bold). ML denotes Maximum likelihood and LR denotes
Logistic regression.

Enhancing Tumor Area Edema Area
Study ML MRF LR DRF SVM SVRF ML MRF LR DRF SVM SVRF

1-1 23.1 24.6 44.4 46.1 49.7 52.8 21.9 21.6 35.7 36.7 57.0 58.2
2-1 0 0 61.3 61.5 86.4 87.7 33.3 34.2 59.2 61.4 88.4 89.2
3-1 69.2 69.7 61.8 61.8 82.0 84.8 34.4 34.4 75.5 77.1 80.7 82.2
3-2 40.1 40.3 84.8 84.6 84.7 87.8 47.6 48.1 73.6 74.1 79.3 83.1
4-1 26.9 27.3 49.1 50.4 77.8 81.7 28.3 29.1 38.6 41.2 53.0 55.4
4-2 58.9 59.7 68.3 70.2 75.7 77.9 43.2 46.8 45.3 46.7 53.7 57.7
4-3 49.2 50.7 71.3 71.6 87.2 88.1 35.4 35.4 69.9 70.7 68.2 69.1
4-4 65.6 68.2 87.5 87.1 86.0 89.1 44.1 43.7 78.6 79.0 76.7 79.3
5-1 67.0 67.5 52.2 51.4 81.8 84.3 47.8 48.6 63.6 65.7 73.8 76.9
6-1 37.4 37.6 76.4 76.2 78.2 80.4 40.3 40.1 79.3 79.7 81.2 83.7
7-1 63.2 63.0 75.5 76.7 80.0 81.4 74.9 77.7 91.2 92.4 93.8 94.9
7-2 37.7 39.3 75.9 75.8 85.5 87.3 39.2 40.4 80.9 82.7 82.1 82.8
7-3 45.3 45.6 81.8 81.5 87.7 89.6 54.1 53.9 79.3 80.7 84.6 86.5
Ave: 44.9 45.7 68.6 68.8 80.2 82.5 41.9 42.6 67.0 68.3 74.8 76.9

Gross Tumor Area
ML MRF LR DRF SVM SVRF

19.3 19.5 39.4 40.9 40.7 40.5
35.4 35.7 65.1 66.1 78.2 76.9
44.5 46.1 72.9 73.4 77.9 78.7
51.2 51.3 76.3 76.2 78.1 80.8
37.4 38.7 39.4 40.1 41.4 41.2
38.0 40.2 39.7 39.4 62.1 64.9
66.0 68.5 73.3 73.5 64.4 64.5
46.7 45.8 83.8 83.5 86.0 89.0
50.1 50.9 65.3 68.3 82.8 84.8
46.6 47.6 79.6 79.4 87.6 88.2
66.4 66.3 71.9 73.2 74.6 74.1
49.6 52.4 68.3 67.9 72.7 72.9
43.4 43.7 73.5 72.7 81.6 83.2
5.7 46.7 65.3 65.7 71.4 72.3

Fig. 2. Classification results for 4 different test slices, where each row shows a different
test slice. Top to bottom: 2-1 Enhancing tumor, 7-2 Enhancing tumor, 7-1 Edema, and
4-4 Gross Tumor. Left column to right: Expert Segmentation, ML, MRF, LR, DRF,
SVM, SVRF.

enhancing area, and is inherently a very challenging task, even for human ex-
perts, given the modalities examined. We used the Jaccard similarity measure
to assess the classifications in terms of true positives (tp), false positives (fp),
and false negatives (fn): J = tp

tp+fp+fn .
Table 1 presents the classification results for the three tasks (example test

slice results are shown in Fig 2). For each of the three tasks, SVRFs showed
the best performance on average, while SVMs were the second most effective
method. The differences in the average scores between all methods across the
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three tasks were significant at the p < 0.05 level based on a paired example t-test.
Note that SVRFs were the best in all 13 enhancing tumor cases, 12 of the 13
edema cases, and in the challenging Gross Tumor cases, SVRFs were best 8 times,
SVMs best 4 times, and DRFs 1 time. The results from the second patient “2-1”,
produced an interesting observation: significant overlap between Gaussians in the
high dimensional feature space leads ML and subsequently MRFs to misclassify
all areas as non-tumors. This example shows that inappropriate modeling of
p(x|y) can generates poor performance (see the first row of Fig 2). Although
the segmentation tasks for edema and gross tumor areas are very hard, the
discriminative approaches, and in particular SVRFs, still produce segmentations
that are highly similar to the manual segmentations on average for all 3 tasks.

4 Conclusion

We are currently focusing on methods to allow inter-patient testing scenarios
with SVRFs. This necessitates intensity standardization methods as in [17,5],
and developing more computationally efficient parameter estimation models.
Note that the SVRF results could be improved through the use of non-linear
kernels (as in [1,2]), and through more effective inference methods. We are also
interested in exploring applications of CRFs in other medical imaging tasks.

This work introduces SVRFs, a method that combines the random field re-
laxation properties of DRFs (to associate labels of neighboring voxels) with the
discriminative properties of SVMs. We then presented experimental results on 3
challenging tasks related to brain tumor segmentation, and found that SVRFs
offer a significant performance advantage over 5 other plausible classifiers, in-
cluding both SVMs and other random field models.
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Abstract. Cardiopulmonary imaging is a key tool in modern diagnostic
and interventional medicine. Automated analysis of MRI or ultrasound
video is complicated by limitations on the image quality and complicated
deformations of the chest cavity created by patient breathing and heart
beating. When these are the primary causes of image variation, the video
sequence samples a two-dimensional, nonlinear manifold of images. Non-
parametric representations of this image manifold can be created using
recently developed manifold learning algorithms. For automated analysis
tasks that require segmenting many images, this manifold structure pro-
vides strong new cues on the shape and deformation of particular regions
of interest. This paper develops the theory and algorithms to incorpo-
rate these manifold constraints within a level set based segmentation
algorithm. We apply our algorithm, based on manifold constraints to
the problem of segmenting the left ventricle, and show the improvement
that arises from using the manifold constraints.

1 Introduction

Images of the chest cavity of a particular patient vary due to the imaging ge-
ometry, the permeation of contrast agents through different tissues, noise and
deformation caused by the patient’s breathing and heartbeat. Accounting for the
deformation is vital to many image analysis tasks – this is underscored by the
many diagnostic protocols that use gated MR-imaging to minimize motion of the
heart, and/or held-breath protocols which ask patients to minimize breathing
motions.

When many images are taken with the same imaging geometry of the same
patient, these images are samples of a manifold with two degrees of freedom in
principle: the phase of the heartbeat and the phase of the breathing cycle. When
sufficiently many images are available, manifold learning algorithms, (typified by
Isomap [1], Locally Linear Embedding (LLE) [2], and Semidefinite Embedding
(SDE) [3]), create nonparametric representations of low-dimensional nonlinear
manifolds.

The contribution of this paper is to develop an approach that first learns the
manifold structure of the images of a particular patient, then exploits this struc-
ture to improve segmentation. For segmentation of the left ventricle, for example,
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Fig. 1. A cartoon of the manifold structure of a cardiopulmonary video. Manifold learn-
ing techniques can automatically parameterize a video sequence by the position of each
image on this cardiopulmonary manifold. This manifold structure provides additional
cues for segmenting multiple images — for example, motion along the breathing axis
simply translates the heart image, while motion along the heartbeat axis deforms the
heart shape (with minimal global translational motion). These constraints are more
specific and therefore stronger than temporal smoothness constraints. This paper de-
velops methods to enforce these manifold based constraints.

the manifold structure gives strong cues about the shape changes between mani-
fold neighbors. Figure 1 depicts the constraints in the cardiopulmonary manifold.
In particular, variations in the breathing phase lead to an approximately uniform
translation of the heart, corresponding to a rigid translation of the (2D) shape
segments. Alternatively, changes in the heartbeat phase lead to variations in the
shape of the heart, but, largely, not its position. These more specific constraints
provide stronger cues than those available from just the temporal order of the
original video, in which consecutive images often exhibit both a translation and
a non-rigid deformation.

For segmentation of MR-imagery, several representation tools allow the de-
scription of shapes within an image, and support algorithms that automatically
fit these shapes to image data. One such tool is level sets [4,5], which represents
2D shapes as the zero-crossing of a surface. The standard evolution equations
which drive the adaptation of the surface to the image data have very natural
modifications which allow the level set to enforce manifold based-constraints. In
preliminary experimental results, we find that these additional constraints that
the manifold imposes on the level set evolution allows segmentation of the left
ventricle in images that are too low contrast to support single image segmenta-
tion.

The following section gives a very brief background in manifold learning and
highlights previous work specializing these algorithms for biomedical applica-
tions. This is followed by a description of the standard Level Set framework for
object segmentation. Section 3 describes a derivation of new level set evolution
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equations that enforce the manifold-based constraints on shape changes between
images. We conclude with experiments on a low-contrast cine-MRI sequences.

2 Background and Previous Work

This work integrates ideas from level set segmentation and manifold learning.
To our knowledge, it is novel to combine these approaches. In order to ground
our later presentation, we first introduce, very briefly, some recent research in
the use of level sets in biomedical image analysis and an overview of manifold
learning.

2.1 Manifold Learning

Image data can be naturally represented as points in a high dimensional data
space (one dimension for each pixel). When the set of images has lower intrinsic
dimensionality, the data set can be mapped onto a lower dimensional space.
Principle Component Analysis (PCA) [6] and Independent Component Analysis
(ICA) [7] are two algorithms that represent data as linear combinations of basis
vectors — the coefficients that specify each image define a linear low-dimensional
embedding of the data set.

However, often the number of basis images required to a linearly reconstruct
a data set is much larger than the degrees of freedom in the process that gener-
ates the images. This has led to a number of methods seeking to parameterize
low-dimensional, nonlinear manifolds. These methods measure local distances
or approximate geodesic distances between points in the original data set, and
seek low-dimensional embeddings that preserve these properties. Isomap [1] ex-
tends classic multidimensional scaling (MDS) by substituting an estimate of
the geodesic distance along the image manifold for the inter-image Euclidean
distance. LLE [2] attempts to represent the image manifold locally by recon-
structing each image as weighted combination of its neighbors. SDE [3] applies
semidefinite programming to learn kernel matrices which can be used to cre-
ate isometric embeddings. These algorithms, and others [8,9,10] have been used
in various applications, including classification, recognition, tracking, and to a
limited extent, biomedical image analysis [11].

2.2 Isomap Embedding of Cardiopulmonary Manifolds

The Isomap procedure for dimensionality reduction starts by computing the dis-
tance between all pairs of images (using some distance function such as SSD
pixel intensities). Then, a graph is defined with each image as a node and undi-
rected edges connecting each image to its k-closest neighbors (usually choosing
k between 5 and 10). A complete pair-wise distance matrix is calculated by solv-
ing for the all-pairs shortest paths in this sparse graph. Finally, this complete
distance matrix is embedded into some low dimension by solving an Eigenvalue
problem (Multidimensional Scaling (MDS) [12]). The dimensionality embedding
can be chosen as desired, but ideally is the number of degrees of freedom in
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Fig. 2. (left) four images from a 200 image cardiopulmonary cine-MRI sequence of the
heart. Note the variation both in the shape of the left ventricle (the white blob roughly
centered in the image) and the position of the heart (shifting vertically). (right) A 2D
manifold was defined with Isomap, using a Gabor filter-based image distance function.
The 2D embedding is interpolated to give a regular sampling of the image manifold, and
Section 3 modifies the level set approach to segment images over the entire manifold
simultaneously.

the image set, in our case 2 (the two intrinsic dimensions of variability are the
heartbeat and breathing).

Previous work that applies manifold learning to biomedical image analysis
suggests modifying Isomap to use image distance functions other than pixel
intensity differences [13,14]. For data sets with deformable motion, the suggested
distance function is computed as the phase difference of local complex Gabor
filters:

||I1−I2||motion =
∑
x,y

Ψ(G(ω,V,σ)⊗I1, G(ω,V,σ)⊗I2)+Ψ(G(ω,H,σ)⊗I1, G(ω,H,σ)⊗I2)

where G(ω,{V |H},σ) is defined to be the 2D complex Gabor filter with frequency ω,
oriented either vertically or horizontally, with σ as the variance of the modulating
Gaussian, and Ψ returns the phase difference of the pair of complex Gabor
responses above some threshold τ ; we choose τ to be the 50-th percentile filter
magnitude. Figure 2 gives 4 example images of the heart, illustrating both the
non-rigid and the rigid deformations. The Isomap embedding computes a 2D
coordinate for each original image.

An even sampling of this manifold simplifies the numerical implementation
of the level set segmentation in the subsequent sections. However, the given
image sequence may not be evenly distributed in the manifold space. Ideally,
it is desirable to have a continuous image function f to describe all possible
cardiopulmonary images. One may interpolate the image function f locally by
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fitting thin-plate smoothing spline to the given images {Ii | i = 1 · · ·n} and
their associated manifold position {(ui, vi) | i = 1 · · ·n}, such that f(x, y, u, v)
minimizes the following weighted sum:

(1 − p)
n∑

i=1

|Ii(x, y) − f(x, y, ui, vi)|2 . . .

+ p

∫ ∣∣∣∣∂2f(x, y)
∂u2

∣∣∣∣2 + 2
∣∣∣∣∂2f(x, y)

∂u∂v

∣∣∣∣2 +
∣∣∣∣∂2f(x, y)

∂v2

∣∣∣∣2 dudv, (1)

where p is a the smoothing parameter. We use the Matlab toolbox function tpaps,
which chooses this smoothing parameter “in an ad hoc fashion in dependence
on the [data]” [15].

In the next section, we consider how to exploit this manifold structure, in
order to assist a level set function to track the left ventricle of a beating heart.

3 Level Set Segmentation

This section refines a standard framework for level set segmentation. The presen-
tation includes background material through Equation 5, after which we extend
the approach to segment all images in the data set simultaneously, and enforce
additional constraints from the manifold structure.

In n-dimension space Ω, we define the evolving hypersurface C as the bound-
ary ∂Ω of regions of interest. We call Ω− the inside of C and Ω+ the outside of
C. For the cases of image segmentation, on approach is to define the contour as
an energy minimization problem (the following presentations follows [16]):

E(c1, c2, C) = µ · Length(C) + ν · Area(Ω−)

+ λ1

∫
Ω−

|f(x, y) − c1|2dx dy

+ λ2

∫
Ω+

|f(x, y) − c2|2dx dy, (2)

where c1 and c2 are constants depending on C and are usually the average of
image intensity f(x, y) in the region Ω− and the outside Ω+, respectively. All
parameter settings, such as λ1, used in our experiments are listed in Section 4.

In problems of curve evolution, the level set method has been used exten-
sively. Using the level set formulation, the boundary C is represented by the zero
level set of a Lipschitz function φ : Ω → R, such that:

C = ∂Ω = {(x, y) ∈ Ω : φ(x, y) = 0}
Ω− = {(x, y) ∈ Ω : φ(x, y) < 0}
Ω+ = {(x, y) ∈ Ω : φ(x, y) > 0}

Using the Heaviside and Dirac delta functions with a smoothed approximation
of finite width ε:

Hε(φ) =
1
2

[
1 +

2
π

arctan
(

φ

ε

)]
, δε(φ) =

d

dφ
Hε(φ) (3)
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the energy functional (2) can be written to evaluate the level set function φ on
the domain Ω:

E(c1, c2, φ) = µ

∫
Ω

δε(φ(x, y))|∇φ(x, y)|dx dy + ν

∫
Ω

Hε(φ(x, y))dx dy

+ λ1

∫
Ω

|f(x, y) − c1|2(1 − Hε(φ(x, y)))dx dy

+ λ1

∫
Ω

|f(x, y) − c2|2Hε(φ(x, y))dx dy (4)

Using the calculus of variations, one can recover the following evolution equa-
tion which incorporates an artificial time parameter t and converges to minimize
E(c1, c2, φ):

∂φ

∂t
= δε(φ)

[
µ∇ ·

(
∇φ

|∇φ|

)
− ν + λ1(f − c1)2 − λ2(f − c2)2

]
(5)

To complete the definition of this evolution, we need to additional define the
starting condition, φ0(x, y). Section 4 describes the starting conditions used in
our experiments. The next section illustrates how to incorporate manifold con-
straints on the level set solution, including the additions to the energy function
E and the solution for the corresponding evolution equation.

3.1 Level Set Segmentation on Image Manifolds

For cardiopulmonary image sequences, the images vary in principle depending on
their cardiac phase u and pulmonary phase v — the two degrees of freedom that
parameterize the manifold shown in Figure 2. As described in Section 2.2, we use
Isomap to automatically parameterize all images, and interpolate the result to
generate evenly spaced samples of the image manifold f(x, y, u, v). Accordingly,
the contour C that we seek is also a function of u and v, and our goal is to
describe C implicitly by the level set function φ in 4-dimension space Ω. Thus,
a given cardiopulmonary image sequence specifies this contour by extending the
energy functional (2) to 4-dimension space:

inf
c1,c2,φ

E1(c1, c2, φ), where φ : R
4 → R (6)

But the manifold dimensions also correspond to specific kinds of deforma-
tion. The breathing of the patient results, approximately, in a translation of the
heart. Therefore, we expect the variation of φ in the v direction to be a uniform
translation. That is, the energy functional change ∂φ

dv should be consistent with
a uniform translation. This induces a level set corollary to the classic optic flow
constraint equation [17]:

∂φ

∂x
ωx +

∂φ

∂y
ωy +

∂φ

∂v
= 0 (7)

where (ωx, ωy)� is the velocity vector that is constant over any given image,
but may vary for different values of u and v.
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On the other hand, varying images along the other axis of the image manifold,
deformations due to the cardiac cycle lead to image variation with minimal
overall translation. For the special case of deformation caused by (non-uniform)
heart expansion and contraction, we can express the constraint as:

∂φ

∂u
= ωu (8)

where ωu is constant over the region of the heart for any given u and v. This
constraint enforces the condition that moving along the “heartbeat” axis simply
adds or subtracts a constant value of the Level Set function φ, and therefore
enforces that the shape either expands or shrinks.

Enforcing these constraints is natural within the level set framework; both
lead naturally to new terms in the evolution of the φ function. Computationally,
at each time step of the temporal evolution φ, we compute three parameters for
each sample manifold image (u, v). First, we compute the least-squares estimates
of the vector (ωx, ωy)� that corresponds to global motion as we move from
one image to another in the u direction on the image manifold. Second, we
compute the constant ωu that defines the change to φ the best corresponds to
the expansion or contraction of the shape as we move from one image to another
on the manifold along the v direction.

That is, for a particular u, v value, we compute first ωx(u, v), ωy(u, v) by
calculating ∂φ

∂x , ∂φ
∂y , and∂φ

∂u over the entire image, and solving the resulting linear
system (from Equation (7)). Second, we compute ωu(u, v) at a particular point
u, v as the mean value (over all x, y) of ∂φ

∂u .
Once we have computed ωx(u, v), ωy(u, v), and ωu(u, v), we can write the

motion constraints as an energy functional:

E2(φ) = η1

∫
Ω

(
∂φ

∂x
ωx +

∂φ

∂y
ωy +

∂φ

∂v

)2

dΩ

+ η2

∫
Ω

(
∂φ

∂u
− ωu

)2

dΩ (9)

where η1 and η2 are blending parameters. The first term enforces rigid changes in
shape by penalizing regions of φ where the x, y, v derivatives are not consistent
with the translation motion, and the second term penalizes the overall mean
translational motion of the heart, which is minimal when motion is caused only
by the heartbeat.

Solving for the evolution equation such that φ minimizes E2(φ) gives:

∂φ

∂t
= 2η1

(
∂2φ

∂x2
ω2

x +
∂2φ

∂y2
ω2

y +
∂2φ

∂v2

+2
∂2φ

∂x∂y
ωxωy + 2

∂2φ

∂x∂v
ωx + 2

∂2φ

∂y∂v
ωy

)
+ 2η2

(
∂2φ

∂u2
− ∂ωu

∂u

)
. (10)

One can integrate this motion constraint module (9) into the previously de-
fined energy term (6):

E(c1, c2, Ψ, φ) = E1(c1, c2, φ) + E2(Ψ, φ). (11)
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Given an initial level set function φ0, we minimize the above functional (11)
by iterating two steps, first using the current estimate of φ to estimate c1, c2 and
solving for ωx(u, v), ωy(u, v), and ωu(u, v), and then evolving φ by Equations (5)
and (10).

4 Example Application

In cardiovascular imagery, an important application is to measure the dynamic
behavior of the human heart, especially the left ventricle [18]. Here we define all

Fig. 3. Segmentation examples of cine-MRI images (from the same data set as shown
in Figure 2)

Fig. 4. A comparison of single image based segmentation (top) and the simultaneous
solution for all image using the manifold constraints. In the left two images, the single
image solution fails because of low contrast, on the right manifold based solution differs
and draws a perceptually more reasonable boundary.
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the parameters of the algorithm described in the last section and show prelim-
inary results for segmenting a 200 frame cine-MRI sequence (the same data set
as shown in Figure 2), using the manifold based constraints.

Our version of the level set algorithm has several parameters. The standard
level set parameters λ1 and λ2 determine the importance of matching the inten-
sity estimate for the inside and outside of the contour, and are set to λ1 = λ2 = 1.
The parameter µ penalizes long contour curve lengths, and is set to µ = 0.075.
We set the area penalty parameter ν = −0.1, which tends to make the shape
grow. We use ε = 1 for approximating the Heaviside function Hε and Dirac
function δε (in Equation (3)).

There are also parameters specific to our modification of the level set func-
tion. Our experimental data set has 200 images, and we constructed the image
function f(x, y, u, v) of size 40 × 40 × 10 × 10 to regularly sample the manifold.
The blending parameters η1 and η2 determine the importance of manifold con-
straints, and are set to η1 = η2 = 0.1. The initial level set φ0(x, y, u, v), for
each image, is defined by the signed distance function to the circle of radius
6 centered at the image center, with points inside the circle having a negative
value. Figure 3 show examples of the segmentation solution for eight consecutive
frames using these parameters.

The manifold constraints are most important for images that are especially
low contrast or noisy. Figure 4, gives examples of images where the manifold
based solution differs significantly from the single image solution. In the first two
cases, the manifold constraints show a significant improvement — the single im-
age solutions are wrong because of insufficient contrast. The last two cases show
segmented shape boundaries that are different than the single image segmenta-
tion, and which may reflect more accurately the correct boundary, although it
is difficult to quantify the improvement.

5 Summary and Discussion

This work presents preliminary efforts towards incorporating manifold learning
as a tool to provide additional constraints for segmenting cardioplumonary im-
ages. This approach can be applied to any application domain for which there
is a known manifold structure to the data, and may be extended also to other
computational shape representation tools (such as snakes). Furthermore, we be-
lieve that many algorithms may be improved through better understanding and
exploitation of non-linear image manifold learning algorithms, and tight integra-
tion of these with classical analysis tools.
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Abstract. Standard image based segmentation approaches perform poorly when
there is little or no contrast along boundaries of different regions. In such cases,
segmentation is largely performed manually using prior knowledge of the shape
and relative location of the underlying structures combined with partially dis-
cernible boundaries. We present an automated approach guided by covariant
shape deformations of neighboring structures, which is an additional source of
prior information. Captured by a shape atlas, these deformations are transformed
into a statistical model using the logistic function. Structure boundaries, anatom-
ical labels, and image inhomogeneities are estimated simultaneously within an
Expectation-Maximization formulation of the maximum a posteriori probability
estimation problem. We demonstrate the approach on 20 brain magnetic reso-
nance images showing superior performance, particularly in cases where purely
image based methods fail.

1 Introduction

To better understand brain diseases, many neuroscientists analyze medical images for
cortical and subcortical structures that seem to be influenced by the disease [1]. The
analysis is based on segmentations of the structures of interests, often performed by
human experts. However, this manual process is not only expensive, but in addition, it
increases risks related to inter- and intra-observer reliability [2]. In this paper, we de-
scribe an automatic method, which accurately segments these structures by considering
anatomical shape constraints and image artifacts of Magnetic Resonance (MR) images.

The detection of substructures is difficult as many of them are defined by partially
discernible boundaries, such as in the case of the boundary between thalamus and white
matter [3]. However, the ventricles, the structure above the thalamus, is more easily
identified. In order for the ventricles to guide the boundary detection between the thala-
mus and the white matter, automatic segmentation algorithms use spatial priors [4,5,6].
These spatial priors capture the spatial relationship between structures such as the fact
that the ventricles are above the thalamus. This is one example in which neighboring
structures are of great utility for segmentation purposes.
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These types of priors are often characterized by soft boundaries representing the
large spatial variability of a structure within a population. Deformable models offer
an alternative as they capture the shape and permissible modes of variation within a
population. In contrast to spatial priors on tissue labels, segmentation methods based
on deformable models are guided by structure specific boundary conditions such as the
length of the boundary in relation to others.

The work of this paper is motived by the class of deformable model-based ap-
proaches called active contour methods [7,8,9], in which the shape of an anatomical
structure is represented as a level set function in a higher dimensional space. Similarly,
our method defines anatomical shape constraints using signed distance maps in com-
bination with the modes of variations of a Principle Component Analysis (PCA) [13].
While active contour methods were originally motivated by physical models [10], many
methods are based on a Bayesian framework [11,14,12], which we chose for our algo-
rithm. A Bayesian framework allows us to explicitly model the image inhomogeneities
of MR images in order to segment large data sets without manual intervention.

The optimal solution within our framework is defined by a Maximum A posteriori
Probability (MAP) estimation problem with incomplete data. From the MAP estimation
problem we derive an instance of the Expectation Maximization algorithm (EM). The
main contribution of the current work is that while we represent the shape variations
through an implicit low-dimensional PCA, we additionally derive from this an explicit
space-conditioned probability model by way of the logistic function. When combined
with image-coupling and other terms in our Bayesian framework, the mechanism is able
to identify shapes that are not restricted to the low-dimensional PCA space.

In contrast to other EM implementations [11,14,15], our method explicitly models
the boundary via the shape model. Consequently, we achieve smooth segmentations
without underestimating fine structures; a common problem in EM implementations
[15]. To demonstrate the capabilities of our approach, we outline 20 sets of MR images
into the major tissue classes as well as subcortical structures. The reliability of our
approach is determined by the correspondence of the automatic segmentations to expert
manual ones.

2 Deriving a Unified Framework for Image Inhomogeneity
Correction, Shape Modeling, and Segmentation

The accuracy of outlining structures with indistinct boundaries in MR images signifi-
cantly depends on properly modeling the boundary of the structure as well as estimating
the inhomogeneities in the image. In this section, we develop a unified framework that
performs segmentation, shape detection, and inhomogeneity correction simultaneously.

Without additional assumptions, it is difficult to extract the inhomogeneities B and
the shape parameters S from the MR images I due to their complex dependencies. How-
ever, this problem is greatly simplified when formulated as an incomplete data problem
via EM. Within this framework, we define the following MAP estimation problem:

(B̂ , Ŝ) = argmaxB,S logP(B ,S |I ). (1)
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In general, this results in a system of equations for which there is no analytical
solution. We introduce the labelmap T , which assigns each voxel in the image to an
anatomical structure. If T is known it eases the estimation of B and S based on I .
In our problem, the labelmap T is unknown so that the instance of the EM algorithm
iteratively determines the solution of [16]. At each iteration, the method improves the
estimates (B ′,S ′) of (B̂ , Ŝ) through

(B ′,S ′) ← argmaxB,S ET |I ,B ′,S ′ (logP(B ,S ,T |I )) . (2)

The expected value is defined as EA|B( f (C)) � ∑A P(A|B) f (C).
In our case, Equation (2) is a less complicated MAP problem than Equation (1).

However, we would like to further simplify this update rule as it depends on both shape
S and inhomogeneities B . To split Equation (2) into two separate MAP problems, we
first rephrase Equation (2) by simply applying Bayes’ rule and dropping terms that do
not depend on (B ,S):

(B ′,S ′) ← argmaxB,S ET |I ,B ′,S ′(logP(B ,S |T ,I )+ logP(T |I ))

= argmaxB,S ET |I ,B ′,S ′ (logP(I |T ,B ,S)+ logP(B ,S |T )− logP(I |T ))

= argmaxB,S ET |I ,B ′,S ′ (logP(I |T ,B ,S)+ logP(S |T ,B)+ logP(B |T ))

(3)

The optimization procedure decomposes nicely as a consequence of the following in-
dependence assumptions: First, we assume independence of I with respect to S con-
ditioned on T and B because our model characterizes each anatomical structure by a
stationary intensity distribution [11,14]. Next, we assume independence of S with re-
spect to B conditioned on T , as the image inhomogeneities do not influence the shape
of a structure. Finally, we assume independence of B with respect to T and that the
two conditional probabilities P(I |T ,B) and P(S |T ) are defined by the product of the
corresponding conditional probabilities over all the voxels in the image space. Thus,
Equation (3) simplifies to

(B ′,S ′) ← argmaxB,S ET |I ,B ′,S ′(logP(I |T ,B)+ logP(S |T )+ logP(B))

= argmaxB,S ∑xETx|I ,B ′,S ′ [logP(I |Tx,B)+logP(S |Tx)]+ logP(B)
(4)

The labelmap T = (T1, . . . ,TM) is composed of the indicator random vector
Tx ∈ {e1, . . . ,eN}, where x represents a voxel on the image grid. The vector ea is zero
at every position but a, where its value is one. For example, if Tx = ea then voxel x is
assigned to the structure a. We now define the E-Step of our EM implementation as

Wx(a) � ETx|I ,B ′
x,S ′(Tx(a)) = 1 ·P(Tx = ea|Ix,B ′

x,S
′)+ 0 ·P(Tx(a) �= ea|Ix,B ′

x,S
′).

If we assume that S is independent of B then

Wx(a) = P(Ix|Tx(a)=ea,B ′
x,S ′)·P(Tx(a)=ea|B ′

x,S ′)
P(Ix|B ′

x,S ′) = P(Ix|Tx(a)=1,B ′
x)·P(Tx(a)=1|S ′)

P(Ix|B ′
x,S ′) (5)

and Equation (4) reduces to

(B ′,S ′)← argmaxB,S∑x∑aWx(a)[logP(I |Tx = ea,B)+ logP(S |Tx = ea)]+ logP(B).



492 K. M. Pohl et al.

Now, the M-Step solves the following two separate MAP problems

S ′ ← argmaxS∑x∑a
Wx(a) logP(Tx = ea|S)+ logP(S) (6)

B ′ ← argmaxB∑x∑aWx(a) · logP(I |Tx = ea,B)+ logP(B) (7)

A variety of closed-form solutions for Equation (7) have been proposed in the literature
such as by [14] and [11]. The remainder of this paper therefore focuses on Equation (6).

In summary, we find a local maxima to the difficult MAP estimation problem of
Equation (1) by solving the simpler Equation (2), derived from an EM formulation.
Based on independence assumptions, our instance of the EM algorithm iterates between
the E-Step, which calculates W via Equation (5), and the M-Step, which solves the
MAP problems of Equation (6) and Equation (7).

3 Logistic Maps for Shape Probabilities

The solution of Equation (6) greatly depends on the shape representation that defines
the space of S and the probabilities that define the relationship of the attributes within
our model. This section gives an example for a derivation of this equation. Before we
do so, we briefly review the shape representation defined by the signed distance map.

Note, while we adopt a PCA representation of shape information, the final estimate
is not restricted to the PCA parameterization of shape. This is facilitated by the use of
the logistic function as described in Section 3.2. Consequently, our model captures a
broader class of shapes than those methods that are restricted to the PCA model.

3.1 Shape Representation

As mentioned, the results of level set methods [7,8,17] using a PCA model on signed
distance maps inspired us to introduce shape constraints in an EM framework. We fol-
low the suggestion by Tsai [7], who applies PCA to all structures simultaneously to
capture the covariation between structures. We initially model the shapes of all struc-
tures of interest by the distance map D. D(x) is a vector of dimension equal to the
number of structures of interests. It defines the distance of voxel x to the boundary of
each structure. Positive values are assigned to voxels within the boundary of the object,
while negative values indicate voxels outside the object.

We first turn a set of manual segmentations into signed distance maps and then apply
PCA to the maps in order to determine the modes of variations of each structure. The
resulting shape model is represented by the eigenvector or modes of variation matrix U,

eigenvalue matrix Λ, and D := (DT
1 , · · · ,DT

N)T , where Da is the mean distance map of
the anatomical structure a. To reduce the computational complexity for the EM imple-
mentation, U and Λ are only defined by the first K eigenvectors. In our case K represents
99 % of the eigenvalues’ energy, which corresponds to the first five eigenvectors.

The shapes in a specific image are described by the expansion coefficients of the
eigenvector representation, which are the shape parameters S = (S1, · · · ,SK). S relates
to the distance maps by DS = D +U · S , where DS captures the distance maps of all
structures of interest. We refer to the distance map of a specific structure a defined
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by shape S as DS ,a = Da +Ua · S , where Ua are the entries in U corresponding to
structure a. This type of shape representation is only appropriate for defining local shape
deformations as the space defined by signed distance maps is not a linear vector space.
Thus, DS ,a is a local approximation to the manifold of distance maps.

We end this brief description of the shape model by defining the prior over the shape
parameters as

p(S) =
1√

(2π)K |Λ|
exp

(
−1

2
S T Λ−1S

)
, (8)

which is based on the hidden Gaussian assumption in PCA.

3.2 Estimating the Shape

In this section, we define the relationship of the unknown labelmap T and the shape
parameter S captured by the conditional probability P(Tx = ea|S) of Equation (6). The
task is not straight-forward because unlike active contour methods, we also model the
unknown labelmap T and the image inhomogeneities B explicitly. The shape S cap-
tures global characteristics of structures, while T and B characterize local properties.
Motivated by the need to combine global and local information, we describe the use of
the logistic function of the distance transform. The logistic function provides an implicit
representation of the shape and an explicit space-conditioned probability model.

As mentioned previously, our model captures the relationship between the shape
parameters S (which corresponds to a signed distance map) and the labelmap T through
the conditional probability P(Tx = ea|S). Since the random variable Tx is discrete, we
define the conditional probability in terms of a generic shape function A(·, ·) as

P(Tx = ea|S) ≡ A(a,DS ,a(x))
∑a′ A(a,DS ′,a(x))

.

Given the motivation above, a natural choice for this formulation is the logistic function

A(a,v) ≡ 1
1 + e−cav ,

which maps the distance map to the range [0,1]. For example, if DS ,a(x) is positive,
then the voxel is inside the object and A(a,DS ,a(x)) ∈ (0.5,1]. The variations within
A(a,DS ,a(·)) depend on ca, which captures the certainty of the method with respect to
the shape model. Uncertainty about the shape model is represented by relative small
ca. This results in a wide slope of the spatial distribution (see Figure 1), which allows
greater mobility of the boundary. Large ca define spatial priors with steep slopes, which
tend to position the boundary of a structure.

The probability of the segmentation conditioned on the shape is now defined as

P(Tx = ea|S) =
((

1 + e−caDS ,a(x)
)
·
(

∑a′
1

1 + e−ca′DS ,a′ (x)

))−1

, (9)

so that the MAP estimation problem of Equation (6) transforms to
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Segmentation Distance Map A(a, ·) with ca < 1 A(a, ·) with ca > 1

Fig. 1. The image to the left is a labelmap of a circle whose corresponding distance map is shown
to its right. Based on the distance map, two different logistic functions are plotted. The first
logistic function is defined by a large slope (ca < 1) and the second plot represents a logistic
function with a steep slope (ca > 1).

S ′←argmaxS−∑x∑aWx(a)
(
log
(
1+e−caDS ,a(x)

)
+log

(
∑a′

1

1+e−ca′DS ,a′ (x)

))
+logP(S)

=argminS∑x

[
∑aWx(a) log

(
1+e−ca′DS ,a′ (x)

)
+log

(
∑a′

1

1 + e−ca′DS ,a′ (x)

)]
+

1
2

S tΛS
(10)

Determining a closed form solution to this estimation problem is generally very difficult
so that we approximate its solution using Powell’s method [18].

In summary, the parameters S are seen within the context of a shape atlas created
by PCA on signed distance maps. We relate the shape model to the EM algorithm of the
previous section by defining P(Tx = ea|S) of Equation (6) as a composition of logistic
functions on distance maps. The E-Step of the EM algorithm calculates the W based
on the shape parameters S ′, intensity I , image inhomogeneities B ′, and voxel x.

Wx(a) =
(

∑a′
P(Ix|Tx = ea′ ,B ′

x)

1 + e−ca′DS ′ ,a′ (x)

)−1

· P(Ix|Tx = ea,B ′
x)

1 + e−caDS ′ ,a(x)

The distribution of P(Ix|Tx = ea,B ′
x) depends on the underlying image inhomogeneity

model, which is an ongoing discussion [11,14]. We choose the model by Wells et al.
[11] that defines P(Ix|Tx = ea,B ′

x) by the Gaussian distribution N (B ′
x +µa,ϒa). (µa,ϒa)

capture the mean and variance of the intensity distribution of the structure a.
The M-Step updates the estimates of the inhomogeneities B ′ and shape S ′ based

on the weights Wx. The update rule of B ′ (Equation (7)) reduces to a system of lin-
ear equations and is solved in closed form [11]. The shape S ′ is updated according to
Equation (10) for which a solution is found via Powell’s method [18].

4 Validation

This section compares the accuracy of our new method with (EM-Shape) and without
shape modeling (EM-NoShape). Both methods segment 22 test cases into the three
brain tissue classes - white matter, grey matter and corticospinal fluid. As in Figure 2,
the right (light grey) and left ventricle (light grey) are extracted from the corticospinal
fluid, and the grey matter is further parcellated into right (grey) and left (grey) thalamus,
and right (black) and left caudate (black). We determine the accuracy of the approaches
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Fig. 2. Different views of a 3D model of the thalamus (grey), the caudate (black), and the ven-
tricles (light grey). The model is based on a segmentation generated by EM-Shape. The graph to
the right summarizes the validation results. For both structures EM-Shape performs clearly better
than EM-NoShape.

by comparing the automatic segmentations of the thalamus and the caudate to manual
ones, which we view as ground-truth.

With respect to EM-Shape, the atlas of Section 3.1 represents the shape of the tha-
lamus, caudate, and the ventricles. The three brain tissue classes are excluded from the
dynamic shape model as their spatial distributions are defined by the spatial atlas of [15]
and not Equation (9). The model of EM-NoShape represents all anatomical structures
by the spatial atlas.

We focus on the thalamus and caudate as they are challenging structures to segment.
Purely intensity based segmentation methods, such as EM without spatial priors, cannot
outline these structures because part of the boundary is invisible on MR images. Conse-
quently, EM relies heavily on the prior information. In addition, the two structures are
characterized by very different shapes (see Figure 2). While the right and left thalamus
are shaped like an oval with a hook attached to it, the caudate is defined by long, thin
horns wrapped around the ventricles. The segmentation methods also segment the ven-
tricles because they are clearly visible on MR images. This structure further constrains
the space of possible solutions for EM-Shape as all structures of interest have to be in
proper proportion to each other.

To measure the quality of the automatic generated results, we compare them to
the manual segmentations using the volume overlap measure DICE [19]. The graph in
Figure 2 shows the average DICE measures and standard error for the two methods with
respect to the thalamus and caudate. For the thalamus, EM-Shape achieves a higher
average score (88.4 ±1.0%; mean DICE score ± standard error ) than EM-NoShape
(87.3 ±1.2%). The impact of the shape model on the segmentation results is even more
apparent in the case of the caudate, where EM-Shape (84.9 ±0.8%) is significantly
better than EM-NoShape (82.7±1.2%). The greater accuracy of EM-Shape is attributed
to the shape atlas, which better captures the subject specific bending of the horn shaped
caudate than the spatial atlas.

The initial DICE score of EM-Shape is generally lower than that of EM-NoShape
because the shape model misrepresents the patient specific structures. For example,
Figure 3 shows the outcome of EM-Shape after every fifth iteration. Initially, the seg-
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Initial Segmentation After 5 Iterations After 10 Iterations After 20 Iterations

Fig. 3. The 3D models are based on the segmentations generated by our new method through 20
iterations. The method is initialized with the mean shape of each structure. The very noisy initial
segmentation is an indication of the disagreement between the mean and the patient specific
shape. As the algorithm proceeds the shape of the caudate and thalamus adjusts to the patient
specific situation. After about 20 iterations the algorithm converges to a smoother segmentation.

Thalamus Caudate Caudate’s Tip

MR Image

EM-Shape

EM-NoShape

Fig. 4. The figure is a collection of differentsubcortical regions. The black lines in the automatic
segmentations are the thalamus or caudate outlined by the human expert. The left column shows
a MR image with corresponding segmentations of the oval shaped body of the thalamus with
attached hook. The middle column shows part of the caudate which is adjacent to the putamen,
another subcortical structure with identical intensity distribution. The right column shows the top
of the caudate which is generally is underestimated by EM-NoShape. In all three examples, EM-
NoShape performs worse than EM-Shape because the discriminatory power of spatial prior and
intensity pattern is too low to determine the boundary of the structure.

mentation is noisy, which indicates discrepancy between the initial shape model defined
by the mean shape and the patient specific shape. With each iteration, the arch of the
caudate widens and the segmentations get smoother. After 20 iterations the method
converges to a solution that generally outperforms EM-NoShape.
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As mentioned, it is difficult to determine the exact shape of a structure with weakly
visible boundaries. From the MR images, the size of the oval and the position of the
hook of the thalamus are often not clearly defined. The top-left image of Figure 4 shows
an example of such a scenario. The segmentations are the results of the two automatic
segmentation methods where black indicates the outline of the human expert. In this
example, EM-NoShape underestimates the hook of the thalamus, which we found to
be true throughout this experiment. EM-Shape can better cope with this problem as the
shape model adds global constraints to the local analysis of the intensities. An example
of a global constraint is the explicit definition of shape dependencies across anatomical
structures. This causes the shape of the thalamus to be proportional to one of the easily
segmentable ventricles. This impacts the accuracy of EM-Shape as it further constrains
the space of possible segmentations.

The other structure of interest in this experiment is the caudate. The structure is
adjacent to the putamen, another subcortical structure with an identical intensity dis-
tribution. In the MR image of the middle column of Figure 4, the putamen is located
on the outside of image. Neither the intensity pattern nor the spatial prior can properly
separate these two structures, as indicated by the noisy segmentations of EM-NoShape.
The outliers visible in EM-NoShape violate the shape constraints of EM-Shape as the
boundary has to satisfy the conditions set by the ventricles and the thalamus.

For both structures, EM-NoShape did not adequately segment the ends of the struc-
ture. In the right column of Figure 4, EM-NoShape underestimates the tip of the cau-
date. The opposite is true for the thalamus where EM-NoShape overestimates the ends.
Again, spatial and intensity distributions do not allow discrimination between anatom-
ical structures in this area. In summary, on the 20 test cases our shape based method
EM-Shape was performing much better than EM-NoShape, which uses a spatial atlas
instead of a shape atlas.

5 Summary and Conclusions

We presented a statistical framework for the segmentation of anatomical structures in
MR images. The framework is guided but not restricted to the low-dimensional PCA
shape model as the shape representation is turned into space-conditioned probability
model using the logistic function. The approach is especially well suited for struc-
tures with weakly visible boundaries as it simultaneously estimates the image inho-
mogeneities, explicitly models the boundaries through a deformable shape model, and
segments the MR images into anatomical structures. Our approach was validated by
automatically segmenting 20 test cases and comparing the results to a similar EM im-
plementation without shape priors. In general, our new method performs much better.
The improvement is primarily due to explicit modelling of the shape constraints along
the boundary of anatomical structures.
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Abstract. Accurate and robust estimation of the three-dimensional left
ventricular geometry and deformation has important clinical implications
for better diagnosis and understanding of ischemic heart diseases. So far,
most image analysis efforts have performed the shape recovery and the
motion tracking tasks in separate steps, typically in sequential fashion. In
this paper, we present a continuum biomechanics model based framework
that performs simultaneous segmentation and motion analysis of the
left ventricle from 3D image sequences, achieved through the tracking
of the spatiotemporal evolution of a 3D active region model driven by
imaging data, statistical priors of the left ventricular boundaries, and
cyclic motion models of the myocardial tissue elements. Experiments on
3D canine and human MR image sequences have shown the superiority
of the strategy.

1 Introduction

With the rapid development of medical imaging technology, 3D images of the
moving heart have become increasingly available from several different imaging
modalities such as MR tagging, phase contrast MRI, and cine CT. These images
provide the spatiotemporal tomographic insights of the cardiac states of health,
and the computer assisted analysis of these images offers quantitative tools for
the diagnosis of ischemic cardiomyopathy, the leading fatal disease in the world.

Since ischemic heart diseases often manifest as abnormalities of ventricular
geometry, wall kinematics, and myocardial mechanics, there have been many
image analysis efforts over the last twenty years devoted to the shape and motion
recovery of the heart [1,2,3]. While it has been argued that there are advantages
to treat the spatial boundary finding and the spatiotemporal motion tracking
as a coherent and unified process to reduce the possibility of error propagation
from one step to another, most of the existing efforts do not attempt to tackle
the segmentation and motion problems simultaneously, but rather sequentially.

In this paper, we put forward a method of simultaneous segmentation and
motion recovery of the left ventricle from 3D image sequences. This variational
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Fig. 1. From left to right: the constructed endocardial and epicardial surface meshes,
the dense and coarse volumetric mesh representations of the left ventricle. We use the
coarse model here to save computational time.

strategy extends the active region model (ARM) [7] to 3D, where each ARM
node spatiotemporally evolves under the influences of the internal and external
forces towards apparent boundary and structures in the image. Based upon the
finite element representation, we adopt the physically meaningful continuum
biomechanical model of the myocardium to regularize the intrinsic behavior of
the ARM, while node-dependent imaging data, the temporal consistency models
of the tissue geometry and kinematics, and the statistical priors of the myocardial
tissue distributions are used as driving forces. Experiments on canine and human
MR images are used to demonstrate the usefulness of the method.

2 Methodology

The simultaneous segmentation and motion recovery framework is built upon the
3D active region model, which consists of three integral components: a volumetric
representation of the left ventricle, a material constitutive law which constrains
the intrinsic behavior of the myocardium, and the data- and model-driven ex-
ternal forces which move and deform the left ventricle towards image-defined
equilibrium of simultaneous boundary recovery and motion correspondence.

2.1 Finite Element Representation

The left ventricle is represented by a finite element mesh of sampling nodal
points, bounded by the endo- and epi-cardial boundaries. To ensure desired
computation stability and accuracy, it is very important to have the same reso-
lution in x−, y−, and z− directions. Thus, for certain images which have coarser
inter-plane resolution, the shape based interpolation method is used to create
additional between-slice boundary contours from contours of the original slices,
rather than interpolating image slices directly [5].1 After segmentation of the
first image frame, we create the Delaunay triangular surface meshes of the endo-
and epicardium first, and then construct the volumetric tetrahedra mesh of the
left ventricle. Such meshes, as shown in Fig. 1, are reconstructed from canine
MR images with original image resolution of 1.64× 1.64× 5.00 mm/pixel. After
1 However, when using phase contrast velocity MR images, we do need to interpolate

the images for consequent calculations of image forces.
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Fig. 2. Segmentation result of the 3D canine MR image sequences at frame #8, left:
slice #6, right: slice #10

contour interpolation, the meshes has 1.64mm in-plane resolution and 1.66mm
inter-plane resolution (the left volumetric model in Fig. 1), then we got 9540
points and 43200 tetrahedrons, which may spend more than 10 hours to get the
motion result using our method. To save computational cost, we have re-sampled
the mesh to 4.92mm in-plane and 5.00mm inter-plane resolution (the right vol-
umetric model in Fig. 1), thus we got 1800 points and 7850 tetrahedrons, which
only need about 4000s to run.

2.2 3D Active Region Model

For the 3D active region model, we aim to minimize the energy function, mea-
suring the segmentation and motion tracking costs, over the entire LV:

Etotal(u) =
∫

Ω

Einternal(u) + Eexternal(u)dΩ (1)

where u is the displacement field defined over the region of interest Ω, such
that certain measure on the final configuration of the LV shape and movement
reaches steady state of minimum energy. Einternal here composes of the internal
energy of the LV volume itself, i.e. the elastic energy of the myocardium, while
Eexternal consists of data and prior model driven energies discussed later.

Using the finite element method as the numerical framework, we arrive at
the following system dynamics equation:

KU = F (2)

where K is the stiffness matrix, U is the nodal displacement vector, and F is
the generalized external force vector. This equation can be interpreted as that
the LV spatiotemporally evolves towards equilibrium state, under the internal
spatial constraint of K which provides the relationship between sampling nodes,
and the space-time dependent external forces F which enforce segmentation and
motion tracking.

By applying the principles from Lagrangian mechanics, we can update the
displacement vector with time step τ :

(I + τK)U t = (U t−1 + τF t−1) (3)

where I is an identity matrix and U t is the displacement at time t. The iteration
stops when ‖U t − U t−1‖ is below certain threshold.
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Fig. 3. Segmentation of the 3D canine MR image sequences (mesh intersections with
a middle ventricle slice for illustration): frames #1, #3, #5, #7 and #9 (out of 16
frames)

2.3 Continuum Biomechanical Models

We use continuum biomechanical model of the myocardium, instead of the geo-
metrical deformable models, to construct the stiffness matrix K. For computa-
tional feasibility, we use linear isotropic material model where the stress (σ) and
strain (ε) tensors obey the constitutive law:

[σ] = [C][ε] (4)

with:

[ε] =



∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x


 u

v
w

 = [B
′
]u (5)

and the material matrix [C]:

[C] =
E

(1 + ν)(1 − 2ν)

 1−ν ν ν 0 0 0
ν 1−ν ν 0 0
ν ν 1−ν 0 0 0
0 0 0 1−2ν 0 0
0 0 0 0 1−2ν 0
0 0 0 0 0 1−2ν

 (6)

where E and ν are material dependent parameters. The internal energy of the
linear isotropic ARM model thus can be expressed as:

Einternal =
1
2

∫∫∫
Ω

[ε]T [σ]dV

=
1
2

∫∫∫
Ω

uT [B
′
]T [C][B

′
]udV

(7)

which is a function of strain and stress tensors, and the stiffness matrix is K =∫∫∫
Ω

[B
′
]T [C][B

′
] dV .
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Fig. 4. Estimated strain maps with respect to end-diastole (canine MR images, frames
#3, #6, #9 (left to right)): radial strains (top), circumferential strains (middle), and
radial-circumferential shear strains (bottom)

2.4 Image/Model Driven External Forces

The external driving force F incorporates both imaging data information and
prior modeling constraints that are needed for the simultaneous recovery of the
LV shape and motion. It has four primary components: Fedge which drags the
LV surfaces towards the boundary locations, Fshape which preserves the salient
feature coherence between image frames, Fprior which provides the statistical
prior distributions of the myocardial tissue locations, and the spatiotemporal
constraints on the myocardial behavior Ftemporal(x). If x denotes the nodal
position, then the overall external force on a boundary point is the form of:

Fboundary(x) = Fedge(x) [α(x)Fprior(x) + β(x)Ftemporal(x) + γ(x)Fshape(x)] (8)

Here, the algorithm favors locations which are likely edge points while main-
tains the balance between the prior positional information, the temporal filter-
ing/prediction results, and the salient shape coherence measures between frames.

For all non-boundary nodes, there are no constraints on them being edge
points or preserving shape coherence between image frames. Hence, the force
term is simplified to:

Finternal(x) = α(x)Fprior(x) + β(x)Ftemporal(x) (9)
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Fig. 5. Segmentation of the 3D human MR image sequences (mesh intersections with
a middle ventricle slice for illustration): frames #1, #3, #5, #7 and #9 (out of 20
frames)

All the force componentsabove,Fedge(x),Fshape(x),Fprior(x)andFtemporal(x),
are normalized to the range of [0, 1], and the weighting constants α(x), β(x) and
γ(x) are selected to reflect the varying data and model conditions at different parts
of the heart.

Edginess Measures. For noisy grey level images, it is not appropriate to only
use image gradient as the external force since gradient has limited capture range
and poor convergence to true boundary concavities. Hence, we have also used
the Gradient Vector Flow (GVF) of the image [8], which reaches minimum value
at boundary, to construct Fedge:

Fedge(x) =
|GV F (x)|

1 + |Grad(x)| (10)

where |Grad| is image gradient and |GV F | is the GVF magnitude.

Prior Measures. In medical image analysis, prior information such as general
shape, location, and orientation are often incorporated into the deformable model
formulations in order to achieve more robust estimates during shape recovery. In
the same spirit, we have used 3D Gaussian distributions N(x(k−1), σ1, σ2, σ3) as
the spatial prior range for any nodes movement between frames, where x(k− 1)
is the node’s position at the last frame, σ1, σ2 and σ3 are the variances. Then
the construction of Fprior becomes:

Fprior(x) = 1 − N(x(k − 1), σ1, σ2, σ3) (11)

In other words, we favor positions which are not far away from the nodal positions
at the previous frame.

Shape Coherence Measures. It has been shown in earlier works that shape
coherence is a valid criterion in motion recovery of the left ventricular bound-
ary [6]. Thus, we enforce geometrical consistency to establish point correspon-
dence between image frames. Under iso-intensity assumption, we can compute
the Gaussian curvature of 3D point directly from image (one frame in the 4D
image) [4]:

κx =
1(

f2
x + f2

y + f2
z

)3�2
det

fxx fxy fxz

fxy fyy fyz

fxz fyz fzz

 (12)
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Fig. 6. Estimated strain maps with respect to end-diastole (frame #1) (human MR
images, frames #3, #6, #9 (end-systole) (left to right)): radial strains (top), circum-
ferential strains (middle), and longitudinal strains (bottom)

where fx, fy, and fz are the first derivatives of the 3D image intensity, and fxx,
fxy, fxz, fyy, fyz, and fzz are the second derivatives. Since the construction of
Fshape is based on shape coherence, the resulting point should has close curvature
to the corresponding point at last frame:

Fshape = |κ(x+δx)(k+1) − κx(k)| (13)

where (x + δx) indicates local search window.

Temporal Measures. Temporal constraints can be put into the model since
the heart motion is periodic. A standard Kalman predictor is used to estimate
the state vector at frame k+1 through: ẑ(k+1|k) = Cẑ(k|k), where z = [x̄,x, ẋ]
is the state vector (position, displacement and velocity), ẑ(k+1|k)and ẑ(k|k) are
the estimated state vectors for frame k + 1 and k respectively, the construction
of C is based on the trajectory functions followed by each node, and x̄ should be
updated during each estimation. In our experiments, the velocity information
adopts the motion fields from the MR phase contrast velocity images or the
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spatio-temporal intensity flow between images. The phase velocity data should
be regularized first to get rid of the noises.

The estimated possible node position x̂ is used to construct a rotated 3D
Gaussian distribution N(x̂, σi, σj , σk, θ(x̂), φ(x̂)), where σi, σj and σk are the
variances in the rotated major directions, and θ, φ are the angles of the line
formed by x(k − 1)and x̂(k) with respect to the cartesian coordinate. Then we
can get the temporal force as follow:

Ftemporal(x) = 1 − N(x̂, σi, σj , σk, θ(x̂), φ(x̂)) (14)

3 Experiments and Conclusions

We have implemented the algorithm and performed initial experiments on normal
canine and human cardiac MRI data sets. For both human and canine cases, my-
ocardium is modeled as an isotropic linear elastic material with Young’s modulus
75,000 Pascal and Poisson ratio 0.47 [9]. The left ventricle is represented by linear
finite element mesh constructed from the Delaunay triangulation of the sampled
points, Fig. 1 shows the final model constructed from the normal canine data.

For the normal canine data, the in-plane and inter-plane image resolutions
are 1.64 mm/pixel and 5 mm/pixel respectively, with temporal resolution 40
msec/frame. Visually robust and sensible volumetric segmentation of the endo-
and epi-cardial boundaries are presented in Fig. 2 and Fig. 3. The recovered
cardiac-specific radial (R), circumferential (C), and R-C shear strain maps of
selected frames are depicted in Fig. 4, all with respect to the end-diastolic state.

The normal Human MRI data sets are acquired using breath-hold technique.
The image parameters of the normal human volunteer (36 year old male) shown
here LV were as following: TR 3.786ms, TE 1.584ms, flip angle 45, 256 × 256
matrix, 8mm slice thickness, pixel spacing 1.5625mm×1.5625mm. The resulting
3D image set consists of 11 2D image slices per temporal frame, and 20 tem-
poral 3D frames per cardiac cycle. Once again, visually appropriate volumetric
segmentation results for this normal human MR data are shown in Fig. 5 for
selected frames. The top views of the cardiac-specific strain maps at frames #3,
#6, and #9 (end-systole) are shown in Fig. 6, all with respect to end-diastole.
As expected for normal heart, the magnitudes of the radial, circumferential, and
longitudinal strains increase during the cardiac deformation from ED to ES. The
longitudinal strains are relatively small compared with other strains. These in-
dicate that the myocardium is primarily thickened in the radial direction and
shortened in the circumferential direction.

These preliminary results demonstrate that the proposed algorithm can be
used to perform 3D segmentation and motion field tracking simultaneously. With
further experiments and validations, we expect that 3D active region model will
find a valuable role for myocardial segmentation and motion analysis.
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Abstract. In this paper a novel temporal-spatial analysis procedure for optical 
imaging (OI) data of single trail is proposed which exploits the continuous 
wavelet transform (CWT) to detect the activated voxels of cortex and exploits 
temporal independent component analysis (tICA) to extract the underlying 
independent sources whose number is determined by Bayesian information 
criterion. The neural response signals and the V-signals are picked out by 
investigating the temporal architecture of the independent sources given by 
tICA. Simulated data is generated to test the validity of the procedure and then 
the procedure was applied to two sets of OI data of single trail collected from 
the rats’ HP area. The neural response signals together with the pulse-induced 
and the 0.1Hz fluctuation signals are extracted from data successfully. The 
procedure we proposed is a valuable technique for researchers to investigate the 
temporal and spatial architectures of cortical functional mapping. 

1   Introduction 

Intrinsic Optical imaging (OI) is relatively a new functional brain imaging technique. 
It first appeared in 1980’s[1] and has been growing rapidly since then. Functional 
physiological changes, such as increases in the blood volume, hemoglobin oxymetry 
changes, and light scattering changes, result in intrinsic tissue reflectance changes that 
are exploited in OI to map functional activities. The technique has high spatial as well 
as high temporal resolution, and relatively noninvasive. So it is capable to image 
development and plasticity of neurons in a long duration[1,2]. Assistant with the 
signal processing methods, OI technique can be exploits to reveal changes of 
underlying functional chromophores (such as Hb, HbO2 etc.). These advantages make 
OI ideal for studying the fine functional organizations of the sensory cortices as well 
as the physiology of neurovascular couplings at the level of the arterioles, venules, 
and even capillaries.  

One of the leading difficulties of OI technique is how to analyze the signals. The 
OI data has a poorer signal to noise ratio (0.1%-0.4%) than that of fMRI and EEG. 

 CVBIA
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The noises come from illumination, CCD etc., but mainly from physiological factors. 
The general analysis method of OI data is the first-frame technique which has several 
serious shortcomings: (1) The different spatial and temporal architectures of neural 
response signals in different trails can not be revealed. (2) It is difficult to keep the 
physiological condition of animals homogeneous in a relatively long duration (for 
example several minutes containing a series of trials) and this may lead to functional 
pseudo-mapping. (3) Repeating the same stimulus uninterruptedly will make the 
cortices less sensitive and will finally lead to drift of strength. An improved method is 
to stimulate the cortices by several different stimuli alternatively which will make the 
experiment duration too long to keep the physiological condition homogeneous 
however. (4) The method can not be used to investigate the temporal patterns of 
functional perfusion and neurovascular physiology. Some researchers have begun to 
exploit multivariable statistical methods[3] such as PCA and ICA to process the OI 
data. The neighborhood information is synthesized to obtain the spatial architecture of 
activated area as well as dynamic response. PCA assumes that the data are made up of 
a linear sum of signals, which can be decorrelated based on their differences in 
variance. Functional mapping comes from some one or several principal components 
which often violates the real situation[3]. The ICA can be classified into sICA and 
tICA by different assumptions[4,5,6]. It is found in our simulation that the sICA can’t 
get the correct result when the ratio of activated area to total area is larger than about 
0.2. The reason may be that the spatial independent assumption doesn’t hold [6] in the 
optical imaging. Usually the tICA is unfeasible because the spatial dimension (which 
is equal to the number of pixels) of OI data is much higher than temporal 
dimension[6]. What is more, due to the small magnitude of detectable signals, CCD-
induced noises and intrinsic biological heterogeneity, OI data typically has a poor 
SNR which also make the results of tICA unstable. 

In this paper, the continuous wavelet transform (CWT) is exploited to detect the 
activated voxels in some appropriate resolution levels (subspace) in wavelet 
coefficients domain. The tICA is then exploited to extract the neural response signal, 
pulse-induced and 0.1Hz fluctuation signals from OI data of single trial. Because 
pixels have been per-selected to reduce the spatial dimension and improve SNR, tICA 
can be successfully applied now.  

2   The Introduction of Data Processing Procedure  

If a pixel belongs to activated area, its time series will has a sharp variance 
corresponding to onset of the stimulus. This sharp variance can be detected by 
wavelet transform and thus detecting the activated voxels is posed as a singularity 
detection problem[7,8,9]. 

The physiological factors such as V-signals dominate the noises of OI data and the 
pulse- and respiration-induced signals are two of the most serious noises. The main 
difference between the stimulus-induced sharp variance and pulse/respiration-induced 
signals is not their amplitudes but their durations. In general, if the duration of a 
stimulus is 2 seconds, the sharp variance needs about 4 seconds to arrive at climax 
from stimulus onset and about 8-12 seconds to return to baseline. The sharp variance 
has the comparable amplitude with pulse-induced fluctuation, but has much longer 
duration than one pulse cycle. In other words, the sharp variance and the 
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pulse/respiration-induced fluctuation have different temporal scales and so can be 
discerned by wavelet transform. Wavelet transform isolates a deterministic signal into 
a few large coefficients while the background noises spread across most, if not all, of 
the wavelet coefficients.  

The CWT is applied to decompose the temporal information of each voxel into 
coefficients associated with both time and scale. The continuous wavelet transform of 
a function f  is defined as 
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where the function f is first filtered by )( sts •−= θθ  and then derivated n times. In 
general, the basis function is intentionally chosen as Gaussian function, that is, f will 
first be smoothed by a Gaussian function ),( usψ  and then derivated to generate 
coefficients of wavelet transform. As is known, the first derivation of a function is 
called as slope indicating how fast the function varies at some point. If the sharp 
variance of activation signals survived the smoothness of Gaussian function sθ , the 
CTW will generate large coefficient values at the location of sharp variance and its 
neighborhood. The existence of activation signal can be easily detected by a threshold 
of coefficient values under some appropriate resolution levels (subspace) in wavelet 
coefficients domain [7,8]. 

In this paper, the resolution of images is denoted as NM ×  and the time series of 

the pixel at the location ),( nm in the image is denoted as )}({ , tx nm  whose length is 

denoted as L  and coefficients of wavelet transform are denoted as 
SsLusuWx nm LL 2,1,2,1),(, ==  where S  is the maximum of scales. An 

indicator function is proposed as formulation (3) to indicate the existence of 
activation signals.  
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where 0t and 1t denote the beginning time point and climax point of the sharp 

variance separately and 10 , ss ( 10 ss < ) denote boundary of the scale subspace. In 
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some step of the procedure, the priori knowledge about the trends in the OI signal and 
the neural activity is used to select the most appropriate resolution levels (subspace) 
in wavelet coefficients domain.  

The procedure is described in the following by an example of simulated data 
processing. Firstly conservative initial values are chosen for parameter set 

{ 1010 ,,, sstt } (for example, ,401 += tt  25,21 10 == ss ). Although these initial 

values are not the best choices, it is almost always able to detect several activated 
voxels with them. With a proper scale s  under which physiological noises can be 
efficiently eliminated by sθ  while the singular features of sharp variance survived.  

The pixel ),( nmx whose corresponding ),( nmJ  is bigger than some properly set 

threshold can be considered activated. The average stimulus-induced signal response 
)}({ tx ,1=t LL,2  is obtained by adding up the time series of the pixels picked out. 

The parameter set },,,{ 1010 sstt  is finally confirmed by investigating the temporal 

architecture of )}({ tx . 

The time series of the pixel whose corresponding ),( nmJ  over the threshold is 

denoted as lx . A matrix activeX with the dimension LP ×  can be formed by lx used 

as rows. Except for the neural response signal, the activated area is also influenced by 
some other factors such as pulse- and respiration-induced fluctuations, 0.1Hz signal 
and scanner-induced noises which are usually supposed to be independent to each 

other. So the matrix activeX can be considered as the mixing signal matrix [4,5] and 

the tICA can be exploited on it to extract the neural response signal together with 
other independent sources in the temporal domain.  

The tICA procedure is based on maximizing the nonentropy when the function 
YYG αα coslog1)( = ( 1=α ) is chosen as the nonlinearity[4,5,6]. The number of 

the underlying independent components is determined by the Bayesian information 
criterion (BIC). The stimulus-induced and some other physiological signal responses 
can be picked out by investigating the temporal architectures of the independent 
components.  

3   Simulation 

Simulated data is generated to test the validity of the proposed procedure. A 450-
frames image sequence is captured at 15 Hz from the cortex of a SD rat in the 
absence of any stimulation. A 60×60 child window is further applied to the data set 
to pick out hindpaw (HP) area. The function  
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with parameters ( 5,2 == µδ ) was exploited to stimulate the neural response 

signal. Because this function has a sharp ascendant trend and a relatively slow 
descendant trend alike the stimulus-induced intrinsic OI signal response. This 
simulated neural response signal is added to the white area as shown in Fig.2-a. All 
the parameters are evaluated according to the intrinsic optical signals. 

 

 

Fig. 1. The true and the false positive rates under different SNR 

 
                  a                                         b                                       c  

Fig. 2. The Fig. 2-a is the simulated activity map and the Fig.2-b and 2-c are the activation map 
given by first frame analysis and our procedure separately  

The parameter set { 1010 ,,, sstt } is evaluated to be {200, 350, 10, 15} by the 

presented method. In this paper, the SNR is defined as the ratio between standard 
deviation of the neural response signal to the pixels’ mean standard deviation. The 
SNR varies from 1.0 to 1.6 with a step length of 0.1. Z-score statistics is used to map 
the )},({ nmJ  and the threshold is denoted as 4. The true and false positive rates 

under different SNR are shown in Fig.1. As can be seen, the procedure we proposed 
has improved true positive rate significantly without raising the false positive rate. 
The )},({ nmJ  whose corresponding SNR is 1.0 is given as an example in Fig.2-c. 

The simulated activated area is remarkably distinct from the background. The 
activation map given by the first-frame analysis under the same SNR is shown in 
Fig.2-b. The underlying independent sources given by tICA are shown in Fig.3. The 
first one is the simulated neural response signal, the second and the third one is the 
0.1Hz and pulse-induced signal separately. 
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                            a                                                 b                                       c 

Fig. 3. The underlying independent sources given by tICA: the first one is the simulated neural 
response signal. The second one and the third one is the 0.1Hz signal and the pulse-induced 
signal respectively.  

4   Intrinsic OI Data Processing 

4.1   Animal Preparation and Data Collection 

A dental drill is used to thin the skull over the interested cortical area uniformly until 
the arterioles and veins could be visualized in the field of the view of the detector. 
Silicon oil is applied to the skull in order to increase the translucency of the skull in 
the duration of the imaging period. Optical imaging series are collected by a slow-
scan digital CCD working at 15Hz scanning frequency. The CCD has a 12-bit analog-
to-digital converter. The duration of one trail is 30 seconds and altogether 450 frames 
of images are collected. Five LCDs with narrow range of wavelength 560 ± 10nm 
powered by a high-quality regulated voltage-stabilized power supply is used for 
illumination. The stimulus appeared at the 5th and 15th second respectively in the two 
trails. The durations of the stimulus are all 2 seconds. 

4.2   Spatial and Temporal Architectures of Neural Response Signal  

The proposed procedure is applied to two OI data sets and the results are illuminated 
in Fig. 4. The activation map obtained from the first data set is shown in Fig. 4-a. The 
average time course of pixels in the red areas (the pixels whose ),( nmJ is larger 
than 3) is shown in Fig.4-b. As can be seen, the response reaches the maximum in the 
5th second from the onset of the stimulus and returns to the baseline in the following 
2 seconds. The red area is highly task-related and its signal response extracted by 
tICA is shown in Fig.4-c. The activation map obtained from the second data set is 
shown in Fig.4-d and the corresponding stimulus-induced signal response of the red 
area is shown in Fig.4-e. In this trial, the response reaches the maximum in about 2.5 
seconds (which is as half as that of first data set) from the onset of the stimulus and 
returns to the baseline in the following 10 seconds (which is as four times as that of 
first data set). As can be seen, the neural response signals have different temporal and 
spatial architectures in different trials even if the data sets are collected from the same 
animal and so the pseudo-mapping would unavoidably pollute the result if the same 
model assumptions and parameter set were used for different data sets. The procedure 
we proposed needs not model assumptions and the parameter set is evaluated by 
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investigating temporal architectures of signal responses in different data set.. So the 
results are more robust and reliable and the procedure is an ideal technique for 
investigating the spatial and temporal patterns of signal responses in details.  

4.3   V-Signals 

Except for neural response signals, V-signals have also been extracted from two data 
sets (as is shown in Fig.4-f and 4-h) by tICA. The spectrums of the V-signal are 
shown in Fig.4-g and 4-i and it can be seen that V-signals from the two trials all 
contain two periodic components at the frequency of about 0.1Hz and 1.7Hz. Because 
the 1.7Hz V-signal has about the same frequency as the respiration, it is assumed that 
this V-signal was induced by respiration. It should be pointed that the same V-signals 
can also been extracted from the time series of pixels in the blue area.    

  
                                a                                            b                                  c 

 
                   d                                             e                                  f 

       
                   g                                             h                                    i    

Fig.4. The activation map of the first and second data sets are illuminated in Fig.4-a and 4-d 
respectively. The neural response signals extracted by tICA from time series of pixels in the red 
areas shown in Fig.4-a and 4-d are illuminated in Fig.4-c and 4-e. The average time series of 
pixels in the red area in Fig.4-a is illuminated in Fig.4-b. The V-signals extracted from the first 
and the second data set are illuminated in Fig.4-f and 4-h and the Fourier spectrums of the V-
signals are illuminated in Fig.4-g and 4-i. 
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The 0.1Hz V-signal was first found in the intrinsic OI signal from rodent 
somatosensory cortex in 1996 by Mayhew and Askew [10] and was intensively 
investigated in 1998 by Mayhew and Hu [11]. At the same year the two-photon laser 
scanning microscopy was applied by Kleinfeld[12] to image the motion of the red 
blood cells in the individual capillaries that lie as far as 600um below the pia mater of 
primary somatosensory cortex in the rat, this depth encompassed the cortical layers 
with the highest density of neurons and capillaries. Some other researchers have also 
found the 0.1Hz V-signal in fMRI data from the human’s visual cortex[13,14]. The 
0.1Hz V-signal is considered to be related with some inherent metabolism 
mechanism, that is, regional cerebral blood flow vibrates round some baseline to keep 

the dynamic balance of HbO 2 and Hb in the cortex tissue. 

The 0.1Hz V-signal, as a physiological noise source, limits the sensitivity of 
optical and MRI techniques and so many researchers have tried to remove it from the 
signals. Mayhew and Hu[11] have applied the general linear model technique to 
extract this kind of V-signal by simulating the V-signal by sine wave with different 
frequency and phase. Actually one can not precisely forecast the frequency and phase 
of V-signal which may drift from baseline during the data collection. These 
weaknesses limit the application of the general linear model. TICA is a data-driven 
technique which needs not model the signal response, frequency and phase 
beforehand and hence is a valuable method to investigate the V-signals. 

5   Conclusion  

The procedure proposed in the paper can be exploited to investigate the spatial and 
temporal architectures of neural response signals as well as the V-signals of intrinsic 
OI signals. It can help the researchers to synthesize spatial and temporal information 
of the data to research the information processing mechanism of cortex. The 
procedure can also be applied to fMRI and EEG data.  
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Abstract. 3-D visualization of optic disk surface is very useful in diag-
nosis and observation of some eye diseases. It helps physicians in under-
standing and interpreting the stereo disc photographs(SDPs) which is
widely used in clinical situations. This paper proposed a segment-based
stereo matching algorithm, which represents the fundus structure as a
Bayesian network and applies belief propagation(BP) to solve the max-
imum a posterior(MAX) estimation. Only ground control pixels(GCPs)
of the BP results are retrieved and the dense disparity map is obtained
by cubic interpolation and Gaussian blurring to ensure smoothness. The
resulted 3-D retinal surface shows our approach is promising.

1 Introduction

Retinal diseases such as diabetic retinopathy and glaucoma can damage the optic
nerve, resulting in visual loss and blindness. Because the loss of vision is irre-
vocable, timely diagnosis and treatment are particularly significant. Now stereo
disc photograph(SDP) is one of widely used techniques in clinical situations to
record the objective status of the optic nerve head (ONH). However, the di-
agnostic information and the interpretation of those images are dependent on
the expertise of the clinician. In such cases the 3-D visualization of the retina
is especially useful. Subtle details such as size, shape, and color of pathological
features can be easily detected and evaluated in the 3-D graphics, which makes
diagnosis more easier.

However, relatively less work has been done on the computer generated 3-D
visualization of retinal surface. E. Corona et al. [1] introduced power cepstrum
and cross correlation techniques for image correspondence and surface recon-
struction. The disparity map obtained was on pixel level and large window cubic
B-spline operation was used for smoothing, which made the final 3-D surface less
accurate. K. Deguchi et al. [2] assumed the fundus formed part of sphere and
created a sphere equation. This method is not practical because the recovered
shape of the fundus was fixed to a sphere which would not allow some abnormal
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features to be accurately displayed. Xu et al. [3] and Kong et al. [4] generated 3-
D surface of the retina by two stereo optic images using feature-based matching
methods. As far as we known, due to the need for dense depth maps for a variety
of applications and also due to improvements in efficient and robust intensity-
based matching methods, interest in feature-based methods has declined in the
last decade.

On the other hand there exists a considerable body of work on the dense
stereo correspondence problem in computer vision field, and computational stereo
for extraction of 3-D scene structure has been an intense area of research for
decades. [5,6] have provided an exhaustive comparison of dense stereo correspon-
dence algorithms. Graph cut [7] and belief propagation [8,9] have been shown to
be among the best performers. Segment-based stereo algorithms arise recently
[7,10], which are based on the assumption that there are no large disparity discon-
tinuities inside homogeneous color segments. Usually the segmentation technique
is integrated within other frameworks and achieves strong performance.

We take advantages of both the color segmentation technique and the Bayesian
belief propagation method, and propose a new intensity-based matching algo-
rithm. Image segmentation representation is used to reduce the high solution
space and enforce disparity smoothness in homogeneous color regions. Bayesian
method models the fundus structure as a Bayesian network, encapsulates data
cost and smooth cost into the message transfer mechanism, and applies the
belief propagation to solve the maximum a posterior(MAP) estimation. When
belief propagation finished for both images the pixels satisfying the consistency
constraint are termed as ground control points(GCPs) [5,10]. Smooth dense dis-
parity map was obtained using cubic interpolation and Gaussian blurring based
on the recognized GCPs. While the depth is inversely proportional to the dis-
parity between two matching points, 3-D reconstruction is trivial if we assume
the internal and external parameters of the stereo cameras are all known.

The rest of the paper is organized as follows: The proposed algorithm is pre-
sented in detail mainly focus on how to define cost function and how to apply
belief propagation to obtain disparity map in section 2. Then we provide exper-
imental results in section 3 to demonstrate the algorithm’s strong performance.
Finally, we make conclusions in Section 4.

2 Stereo Matching and 3-D Reconstruction

The algorithm proposed in this paper consists of various steps mainly including
image segmentation, stereo matching and 3-D reconstruction. One of the most
challenging step is to detect corresponding pixels between two images, and we
discuss this issue in detail from 2.3 to 2.5. Fig. 1 gives out the block diagram of
proposed algorithm.

2.1 Definitions

Here we introduce some denotations. We use a pair of horizontally rectified
stereo images to ease the description of the algorithm through out the paper.
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Fig. 1. The flowchart of our proposed stereo matching and 3-D reconstruction algo-
rithm

Let IL denote the left image and IR denote the right image. Let IL(p) denote
the intensity of the left image pixel p and IR(q) the intensity of the right image
pixel q. Let D(p) denote the disparity of pixel p. A pair (p,D(p)) is termed as
a match, which could be considered as a 3-D point. S and T are used to denote
image segment, and D(S), D(T ) are their disparities respectively.

2.2 Image Segmentation

Our approach is built upon the assumption that large disparity discontinuities
only occur on the boundaries of homogeneous color segments. Therefore any
image segmentation algorithm that decomposes an image into homogeneous im-
age segments will work for us. In our current implementation, mean-shift image
segmentation algorithm [11] is used. We assume that pixels inside the same seg-
ment have the same disparity and our algorithm actually assigns each segment
a disparity. This assumption makes our method very simple and efficient. Also
we noticed the fundus is a smooth surface and there is no occlusion in it, so
over-segmentation technique is adopted for more accurate approximation.

2.3 Cost Function

There are two kinds of cost functions. Smooth cost function enforces smoothness
by penalizing discontinuities, i.e., imposing penalties if different disparities are
assigned to neighboring segments. The smooth cost is easy calculated in proposed
algorithm:

Costsmooth(S, T,D(S), D(T )) = ε × Peri(S, T )
Peri(S) + Peri(T )

× Λ(S, T ) (1)

where S and T are neighboring segments, Peri(S) and Peri(T ) are the border
length of S and T , Peri(S, T ) is the common border length between segment S
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and T , and ε is a user-defined const to adjust the cost value. Λ(S, T ) has value 0
if S and T ’s disparity difference is less than or equal to one, otherwise 1. Λ(S, T )
is inspired by the fact that the fundus is a smooth surface so the neighboring
segments’ disparity difference should be no more than one.

Data cost function is pixel intensity based. The data cost function of the
proposed algorithm contains two levels: pixel matching cost which eliminates
sampling errors and segment matching cost which measures the disagreement of
segments.

The simplest pixel cost function is as the absolute difference of intensity
between the two pixels. Given a pixel p in the left image and a possible match
(p,D(p)):

CostβData(p,D(p)) = |IL(p) − IR(p − D(p))| (2)

However, this measure is inadequate for discrete images, because image sam-
pling can cause this difference to be large wherever the disparity is not an integral
number of pixels and in this case every 3-D point’s intensity is distributed over
several pixels. Typically, the sampling problem is alleviated by using some lin-
early interpolated intensity functions in a method that are insensitive to sampling
(Birchfield and Tomasi, [12]).

In practice, we found Birchfield and Tomasi’s method just alleviated sam-
pling error on one side, but failed when sampling error occurred on both sides
especially in textureless regions. We improved their method and achieved bet-
ter effects. Consider three pixels ql, q, qr in right image: ql = p − (D(p) + 1),
q = p−D(p), qr = p− (D(p)− 1). We believe that sampling error occurs if and
only if the dissimilarity between p and ql, q, qr is not greater than a predefined
threshold λ:

CostData(p,D(p)) =
1

|{qi}|
∑

qi∈{qi}
CostβData(p, p − qi) (3)

where {qi} = {qi|qi ∈ {p− (D(p)+1), p−D(p), p− (D(p)−1)}∧CostβData(p, p−
qi) ≤ λ}, and |{qi}| denotes the element count of {qi}.

Segment cost is defined as an average of all pixels’ cost. Consider segment S
and let |S| denote the pixel count in S, so we can write:

CostData(S,D(S)) =
1
|S|
∑
p∈S

CostData(p,D(S)) (4)

Just as window-based cost functions, (4) is also a kind of local constraint.
However, window-based measurements usually make large errors in the dispar-
ity discontinuous boundaries because of intensity break [5,6]. On the contrary
in image segment since pixel intensities are all similar, the disparity break is
prohibited, and as mentioned in section 2.2, there are no occlusion in fundus
image, so (4) is accurate and is much more robust than previous window-based
cost functions.
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2.4 Loopy Belief Propagation

In the literature of probabilistic graph models [8,9], a Bayesian network is an
undirected graph as shown in Fig. 2. Nodes {ui} are hidden variables and nodes
{vi} are observed variables. The posterior P ({ui}|{vi}) can be factorized as:

P ({ui}|{vi}) ∝
∏

us∈{ui}
Φ(us, vs)

∏
us∈{ui}

∏
ut∈N(us)

Ψ(us, ut) (5)

Where Φ(us, vs) is called the local evidence for node us, Ψ(us, ut) is called the
compatibility matrix between nodes us and ut, and N(us) is the neighbors of
us. If the number of discrete states of us is C, Ψ(us, ut) is an C ×C matrix and
Φ(us, vs) is a vector with C elements.

Fig. 2. A regular Bayesian network and message passing flow. Red nodes are hidden
variables and blue nodes are observable variables. The message passing through us to
ut is denoted as mst. The message sent from node u5 to u8 is updated as: m58 =
βmaxu5Ψ(u5, u8)Φ(u5, v5)m25m45m65. The belief at node u5 is computed as: b5 =
βΦ(u5, v5)m25m45m65m85.

In the stereo correspondence case, we use the left image as reference view,
denote the segments in the left image and corresponding pixel set in the right
image as hidden and observed nodes respectively, and link neighboring segments
by edges, then we get an irregular Bayesian network. Assuming that the segments
in reference image follow an independent identical distribution, we can define the
function Φ(us, vs) and Ψ(us, ut) as:

Φ(us, vs) = exp(−CostData(us, D(us))) (6)

Ψ(us, ut) = exp(−CostSmooth(us, ut, D(us), D(ut))) (7)

It is obviously that the MAP estimation of P ({ui}|{vi}) in (5) is equal to
the scene disparity map, i.e., the maximum probability is corresponding to the
minimum cost. For the Bayesian network, exact inference is usually intractable
due to the large state space of nodes [8,9]. Among several approximation methods
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loopy belief propagation [13] is promising, which has a linear time complexity
proportional to the number of hidden nodes and has been applied successfully to
stereo vision problems [9]. Belief propagation is an iterative inference algorithm
that propagates messages in the network. Let mst be the message that node us

sends to ut, and bs be the belief at node us. Note that mst and bs are both
vectors with C elements. Usually the belief propagation using a ”max-product”
message update rule. For example, in Fig. 2, the message sent from node u5 to
u8 is updated as: m58 = βmaxu5Ψ(u5, u8)Φ(u5, v5)m25m45m65. The belief at
node u5 is computed as: b5 = βΦ(u5, v5)m25m45m65m85. β is the normalization
constant, which can be ignored safely. The belief propagation algorithm we used
is given in Algorithm.1, and the disparities of nodes us and ut in (6) and (7) are
those values which achieve the maximum belief currently.

Algorithm 1. Belief propagation algorithm
Input: A Baysian network
Output: The maximum a posterior estimation

Initialize Ψ(us, ut), Φ(us, vs) and all messages mst1

Using ”max-product” update rule:2

mk+1
st = maxusΨ(us, ut)Φ(us, vs)

∏
ur∈N(us)/ut

mk
rs (8)

where k is iterative step, and N(us)/ut are the neighboring nodes of us except
ut

Compute beliefs:3

bs = Φ(us, vs)
∏

ur∈N(us)

mrs, u
MAP
s = argmax(bs) (9)

2.5 Dense Disparity Map Retrieval

To get more smooth disparity map of fundus, we use the output of belief propa-
gation algorithm just for the retrieval of GCPs. Here we define GCP as the pixel
which satisfying the consistency constraint, i.e., pixel p in the left image is GCP
if and only if D(p) = D(p − D(p)), where p − D(p) is a right image pixel. By
denoting left image and right image as reference view respectively, we can get
two different dense disparity maps of left image, then consistency constraint is
applied to get sparse GCP map. As done in [3] and [4], cubic interpolation and
Gaussian blurring are used to get the final smoothing dense map.

2.6 3-D Reconstruction

The 3-D reconstruction from dense disparity map is trivial if we have known the
cameras’ internal and external parameters. Refer to Fig. 3, which is a sketch map
of a typical stereo equipment. We define the baseline T of the stereo pair to be
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the line segment joining the optical centers OL and OR. Both camera coordinates
axes are aligned and the baseline is parallel to the camera x coordinate axis. The
depth of a point in space P imaged by the two cameras is defined by intersecting
the rays from the optical centers through their respective images of P , p and p′.
Given the baseline T and the focal length f of the cameras, depth at P may be
computed by similar triangles as:

Z = f
T

d
(10)

where d is the disparity of P , d = x − x′ (see Fig. 3).

Fig. 3. The geometry of stereo equipment. Depth at a space point P can be computed
by similar triangles.

Once dense disparity map is computed, the final 3-D retinal representation
can be reconstructed using (10).

3 Experimental Results

Two stereo fundus pairs and the corresponding final disparity maps are shown in
Fig. 4. The resulted 3-D retinal surfaces are rendered in OpenGL environment,
using the original images as textures. From the 3-D contour images, we can see
that the optic cups and retinal vessels clearly and intuitively, helping physicians
in understanding and interpreting the SDPs.

4 Conclusions

A novel stereo matching and 3-D reconstruction approach has been proposed in
this paper. Image segmentation technique uses the image segment as matching
unit other than individual pixel, and this make our algorithm much simple and
efficient. Two level data cost functions eliminate the image noise and sampling
error effectively. The fundus structure was modeled as a Bayesian network, and
belief propagation was applied to get the MAP estimation. The resulted 3-D
retinal surfaces are smooth and clearly typical, which show our approach is
promising.
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Fig. 4. The top row: the original two stereo fundus images. the middle row: the cor-
responding smooth dense disparity maps. The bottom row: the corresponding 3-D
surfaces rendered in OpenGL environment and observed from the same view point,
using the original left images as texture source. Experience shows that the recovered
surfaces correspond to the real 3-D surfaces of the eyes very well.
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Abstract. Image reconstruction is an active research field and plays an
important role in many applications . In this paper, we propose a new
approach. Firstly, we introduce the minimum total variation (TV) cri-
terion in the optimization process of image reconstruction; secondly, we
introduce the level set method to obtain the solution. The TV principle
has been studied intensively in the community of image processing and
computer vision. The TV constrained minimization problem is convex
and has a unique solution. The standard level set method provides the
way to get the solution. We validated the proposed model on both toy
data and real data. The experimental results show that the TV principle
has the advantages of reducing noise and artifacts and preserving edges.
The experiments also indicate that the proposed method is suitable and
applicable to practical applications.

1 Introduction

Image reconstruction has been extensively reasearched and is important in many
applications[3]. Taking the computed tomography (CT) reconstruction as an ex-
ample, the problem can be stated as following. Suppose we have collected a set
of measurements. Each measurement represents the summation or line integral
of the attenuation coefficients of an object along a particular ray path. The mea-
surements are taken from different views as shown in Fig.1. Then, how do we
reconstruct the original image of attenuation coefficients from these measure-
ments?

Many reconstruction algorithms are proposed, including two main classes
[3], filtered back projection (FBP) algorithms and iterative algorithms. FBP al-
gorithms have the advantages of fast speed and less memory needs. However,
they suffer from the noise and require complete data. Further more, the prior
knowledge about the original image is hardly incorporated in the model. Itera-
tive approaches have been important because of their superior performance in
the above context. With the rapid development of computer technology, iter-
ative algorithms receive increasingly more attention. Iterative algorithms may
be categorized according to their optimization criteria and the ways of updat-
ing an intermediate image with observed data. In fact, image reconstruction is
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Fig. 1. A sketch map of computed tomography. The real-line and dot-line denote the
different views.

an inverse problem and it is an ill-posed problem in CT due to the noise and
the incomplete data. A common remedy to such inverse problems is to apply
additional constraints. Different constraints correspond to different criterions,
such as least square error criterion, maximum smoothness criterion, maximum
entropy criterion and Bayesian criterion. Due to the huge data dimension, the
implementation is also very important. The algebraic reconstruction techniques
(ART), simultaneous iterative reconstruction techniques (SIRT) and expecta-
tion maximization (EM) algorithm are the primary implementation algorithms
widely used in the community [6].

Our proposed algorithm is an iterative algorithm. As mentioned above, it-
erative algorithms can be categorized according to their criteria and their im-
plementation. This paper contributes in these two aspects. Firstly, we introduce
the total variation (TV) criterion [5] to optimize the objective function. Then,
a numerical implementation scheme is presented in the level set formula [9].

The total variation principle is widely applied in the community of image
processing and computer vision. The total variation is based on the bounded
variation functional space [1]. It can reduce the noise level while preserving
edges [10]. Moreover, the objective function from minimizing the total variation
is convex, thus the solution to the minimization problem exists and is unique
[2], which means that, wherever we start from, it converges and arrives at a
global minimum. A time dependent partial differential equation (PDE) can be
derived from the minimization model through the calculus of variation method.
This PDE can be efficiently implemented with standard level set tools [7]. The
implementation is robust, stable, convergent and fairly fast [8,4].

The organization of this paper is as follows. After this introduction, section
2 formulates the proposed model for image reconstruction problem and some
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properties of this model are also discussed. The numerical implementation is
presented in section 3. Experimental results are shown in section 4, including a
toy illustration and a real data test. Finally, we conclude this paper in section 5.

2 Reconstruction Model

The imaging system can be modelled as,

p = Ru + n (1)

where p is the measured data, R stands for the projection matrix, n is the noise
in the measurement or the randomness inherited in the system, u is the image
to be reconstructed. In the following, without confusing, we will call n as noise.
The projection matrix R is from the imaging physics. For example, for an X-ray
CT, the matrix R is a linear operator and describes the line integral procedure.
Due to its randomness, the noise n is not known exactly. However, we can get
some knowledge of the noise such as its mean and standard deviation. In this
paper, we assume the noise is Gaussian with zero mean and its stand deviation
being δ. Then, the problem is to reconstruct the image u from the observed data
p, given the knowledge of R and some statistical knowledge of n.

Due to the existence of the noise, we can’t expect that the projection of the
true image equals to the observed data. Instead, we expect that the mean square
of their difference equals the mean square deviation of the noise.

Denote û as the estimation of the true image, we expect that∫
Ω

|p − Rû|2 = δ2 (2)

However, there are many solutions satisfying the equation 2. We need to find
a reasonable one. The total variation principle states that the solution with
the minimum total variation is the best estimation. Then, the reconstruction
problem is to solve the following constrained optimization problem

Minimize
∫

Ω |∇u|

Subject to
∫

Ω
|p − Ru|2 = δ2

(3)

This problem is naturally linked to the following unconstrained problem

Minimize/Find a critical point of
∫

Ω

|∇u| + λ

2
|p − Ru|2 (4)

for a given positive Lagrange multiplier λ. Chambolle and Lions have proved
that these two energy functionals have the same solution [2]. In the following,
when we say the optimization problem without particular notion we refer this
unconstrained case.

The space of functions with bounded variation (BV) is an ideal choice for a
total variation based optimization problem since BV provides regularity but also
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allows sharp discontinuities (edges) [10]. That is why the total variation based
model can preserve the edges. The existence and uniqueness of the solution for a
total variation based optimization problem has been established in the BV space.
For a noisy image, the TV model has larger energy, so this model tends to reduce
the noise while preserving the edges without blurring or rings. These properties
make the TV model suitable to the image reconstruction where there are sharp
discontinuities and noise needs to be reduced. In addition, the uniqueness of the
solution release the burden of finding a good initialization.

3 Numerical Implementation

Through the calculus of variation the Euler-Lagrange equation of the equation
4 can be easily obtained as

0 = −∇ ·
(

∇u

|∇u|

)
+ λRT (Ru − p) (5)

where RT denotes the transpose of the projection matrix R. The solution image
should satisfy this equation. Since the uniqueness of the solution, if we find some
u satisfying this equation, we can say that it is just the best estimation of the true
image under the total variation criterion. Finding the u satisfying the equation
5 is not an easy task. Usually a time dependent PDE can be established as

ut = ∇ ·
(

∇u

|∇u|

)
− λRT (Ru − p) (6)

When the PDE reaches its steady state, ut = 0. Then, the equation 5 is satisfied.
Direct numerical approximation to the equation 6 is unstable. So Osher etc.

[7] proposed to multiply the whole Euler-Lagrange equation 5 bywith the mag-
nitude of the gradient and the new time evolution model reads as follows

ut = |∇u| ∇ ·
(

∇u

|∇u|

)
− |∇u|λRT (Ru − p) (7)

Notice here that |∇u| ≥ 0, so the treatment doesn’t change the solution of the
equation 5.

The equation 7 is in the Hamilton-Jacobi [8] form. More exactly, it is the
mean curvature flow with external force. The standard level set method can be
applied to obtain an robust and stable numerical solution to the equation 7.
The equation 7 has both parabolic and hyperbolic terms, |∇u| ∇ ·

(
∇u
|∇u|

)
and

− |∇u|λRT (Ru − p) . These two terms should be discretized differently.
Let un

ij be the approximation to the value u(xi, yj , tn), where xi = i∆x,
yj = k∆y, and tn = n∆t, with ∆x, ∆y, ∆t being the spatial step sizes and the
time step size, respectively. We define the quantity wn

ij = λRT (Run
ij − p). Then

the numerical scheme for the equation 7 reads as the following

un+1
ij − un

ij

∆t
= sn

ij − Gn
ijw

n
ij (8)
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where

sn
ij =

gxx
ij (gy

ij
2 + ε) − 2gxy

ij gx
ijg

y
ij + gyy

ij (gx
ij

2 + ε)

gx
ij

2 + gy
ij

2 + ε
(9)

gx
ij =

un
i+1,j − un

i−1,j

2∆x
(10)

gy
ij =

un
i,j+1 − un

i,j−1

2∆y
(11)

gxx
ij =

un
i+1,j − 2un

ij + un
i−1,j

∆x2 (12)

gyy
ij =

un
i,j+1 − 2un

ij + un
i,j−1

∆x2 (13)

gxy
ij =

un
i+1,j+1 − un

i−1,j+1 − un
i+1,j−1 + un

i−1,j−1

2∆x∆y
(14)

Gn
ij =



√
max((a+)2, (b−)2) + max((c+)2, (d−)2), if wn

ij > 0√
max((a−)2, (b+)2) + max((c−)2, (d+)2), if wn

ij < 0

0, otherwise,

(15)

where a+ = max (a, 0), a− = min (a, 0), and so on,

a =
un

i,j − un
i−1,j

∆x
(16)

b =
un

i+1,j − un
i,j

∆x
(17)

c =
un

i,j − un
i,j−1

∆y
(18)

d =
un

i,j+1 − un
i,j

∆y
(19)

Here, we introduce a regularization term ε to avoid the occurrence of zero
denominator. The Courant-Friedriches-Lewy (CFL) condition for this scheme is
∆t ≤ c∆x2, where c is independent of the ∇u and depends on the maximum
absolute value of wn

ij . In general, the smaller the absolute value of wn
ij is, the

larger ∆t is.
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4 Experiments

In this section, we present two experimental results, one for synthesized toy data
and the other for real data. We will show that the total variation based recon-

Fig. 2. The noisy projection data for the toy example

(a) (b)

(c) (d)

Fig. 3. The reconstructed images for the toy data. Subfigure (a) and (b) are based on
FBP method and least square error, respectively. Notice that both these two approaches
result in noisy reconstructions. Subfigure (c) shows the reconstructed image from the
maximum smoothness method. The noise is reduced greatly. However, the edges are
blurred. Subfigure (d) is the result of our proposed method. The image is smooth while
the edges are preserved.
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Fig. 4. Profiles of reconstructions for the central row. The dash-dot, dash, dot, and solid
lines stand for the reconstructions from FBP, least square error, maximum smoothness
and total variation, respectively.

struction can reduce noise while preserving edges. This method is not sensitive to
the initialization conditions. In all experiments, we initialize randomly. The ex-
periments indicate that the algorithm is stable and convergent. To demonstrate
the advantages of our proposed algorithm, we compare to other three classical
algorithms: FBP, maximum smooth reconstruction and least square error recon-
struction. The maximum smooth reconstruction minimizes the following energy
functional

E(u) =
∫

Ω

|∇u|2 +
λ

2
|p − Ru|2 (20)

and the least square error reconstruction minimizes the energy functional

E(u) =
∫

Ω

|p − Ru|2 (21)

Fig.2 shows the case of noisy projection data for the toy example. The re-
constructed images based on the four algorithms are illustrated in Fig.3. All the
reconstructed images are of 128 × 128. Both FBP and least square error crite-
rion suffer from heavy noise. The maximum smoothness criterion reduces the
noise greatly, however, blurs the edges. The total variation criterion not only
reduces noise but also preserves the edges. The profiles at the central rows of the
reconstructions demonstrate their performance more clearly as shown in Fig.4.

The real data of a closestool with a metal nail in the hole is collected from
an X-ray CT. The projection data is shown in Fig.5. The reconstructed image is
256 × 256. The reconstructed image with FBP is demonstrated in Fig.6(a). We
can see the metal artifacts and the image is noisy. Fig.6(b) shows the result by
minimizing total variation. The TV based reconstruction gets a fairly smooth
image with sharp edges and suppresses the metal artifacts greatly. These prop-
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Fig. 5. The projection data for the case of real data

(a) (b)

Fig. 6. The reconstructed images from the real data. Subfigure (a) is with FBP. The
image is corrupted by noise and metal artifacts. Subfigure (b) is the result from our
proposed method. The noise and the artifacts are suppressed greatly while the edges
are preserved.

erties can enhance the human perception and simplify the post processing such
as segmentation and object recognition.

5 Conclusion

In this paper, we proposed a novel iterative reconstruction approach based on the
total variation principle, which tends to reduce noises and preserve edges. The
reconstruction is modelled as a constrained optimization problem and the energy
functional is stated. Through the calculus of variation, the necessary condition
of the minimum is obtained. We construct a time dependent PDE from this
condition. When the PDE arrives at its steady state, we say the condition is
met. Since the proposed energy functional is convex, the PDE’s steady state
is the solution of the minimization problem. To numerically approximated the
PDE, we adopt the level set method. The numerical scheme is presented. Our
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adopted scheme is stable and robust. The numerical and practical experiments
confirm this point.

We demonstrated two experiments, one on the toy data and the other on the
real data. Both these two experiments show the advantages of the proposed ap-
proach. Notice that the reconstructed images are not of small size. The proposed
approach can be applied in real applications.

There is also something requiring further investigation. One is that the space
resolution is lost to some extent although the proposed method can get smooth
results with edges preserving. Another is the speed. Since the propose energy
is convex, some numerical schemes with faster speed may exist. Both are our
further research interests.
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Abstract. We present a method for finding the boundaries between adjacent re-
gions in an image, where “seed” areas have already been identified in the indi-
vidual regions to be segmented. This method was motivated by the problem of
finding the borders of cells in microscopy images, given a labelling of the nuclei
in the images. The method finds the Voronoi region of each seed on a manifold
with a metric controlled by local image properties. We discuss similarities to
other methods based on image-controlled metrics, such as Geodesic Active Con-
tours, and give a fast algorithm for computing the Voronoi regions. We validate
our method against hand-traced boundaries for cell images.

1 Introduction

Image cytometry, the measurement of cell properties from microscopy images, has be-
come an important tool for biological research. In particular, high-throughput experi-
ments rely on automatic processing of images to deal with the large amount of data
they produce [3]. A fundamental operation in cell-image analysis is identifying indi-
vidual cell boundaries. This is often difficult because there are many different staining
protocols, leading to dramatically different appearances for cells. Moreover, the dif-
ference between cell interior and cell border may not be very pronounced (see Fig-
ures 1 and 2). Identification of individual cells allows much more powerful analysis
of the resulting data than methods that provide only mean measurements for cell pop-
ulations. For example, expression data from a protein interaction chip cannot differ-
entiate a bimodal population and a unimodal population if they have the same mean
expression levels. Measurements of individual cells prevents conflation of
subpopulations.

It is almost always the case that the nuclei of cells are more easily identifiable,
because they have a more uniform appearance and shape, are brighter relative to the
background when stained, and do not abut one another, as cells do. They are also usu-
ally interior to the cells. This leads us to phrase the problem of segmenting cells as
one of identifying boundaries between regions given “seeds” in individual regions from
which to start the segmentation. Current methods for identifying cells for image cytom-
etry sometimes use a fixed offset around the nuclei. However, this fixed offset requires
tuning to different cell types, and does not provide information about phenotypes that
cause changes in cell size or shape [2].
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Fig. 1. Typical results from our algorithm. Internal shapes are seed regions, taken from manual
segmentation of nuclei, and are the same in both rows. Bold lines show cell/cell boundaries that
are compared. Top row: Cell images, with nuclei outlined. Middle row: Automatic segmentation
with our method. Bottom row: Manual segmentation.

Fig. 2. Five worst outliers from evaluation set, as measured by distance between manual and
automatic segmentation boundaries. Internal shapes are seed regions, taken from manual seg-
mentation of nuclei, and are the same in both rows. Bold lines show cell/cell boundaries that are
compared. Top row: Cell images, with nuclei outlined. Middle row: Automatic segmentation with
our method. Bottom row: Manual segmentation.
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Another common approach is to use watershed segmentation to identify cell bound-
aries [1,8], however, this is often fragile. Watershed segmentation treats the image as a
height field, and segments pixels according to which minimum a drop of water would
flow to if placed on that pixel in the height field. Morphological operations are used
to impose a limited set of minima, equivalent to our seed regions. Watershed is quite
unstable, because a single noisy pixel can allow large groups of pixels to change seg-
mentation, by creating a gap leading to a different minimum. We avoid this fragility
in two ways: first, by comparing neighborhoods of pixels rather than individual pixels,
and second, by including a regularization factor to provide reasonable behavior when
the image data does not contain a strong enough edge between two seed regions. In
the limit, our regularization approaches a 2D Voronoi segmentation, i.e., pixels are as-
signed to the nearest seed region measured in the image plane, without reference to
image features.

Our approach is to define a metric in the image plane and to calculate distances from
seed regions according to this metric. Pixels are then assigned to cells according to their
distance from the corresponding nucleus under that metric. The metric uses information
about image edges, both their strength and their orientation, as well as a regularization
term corresponding to inter-pixel distance within the image.

2 Method

Our method operates by computing a discretized approximation of the Voronoi regions
of each seed on a manifold with a metric controlled by local image features. The metric
defines the incremental distance in a particular direction in the image/manifold. Its be-
havior is such that adjacent pixels with similar surrounds are close to one another, while
pixels whose surrounds differ are treated as farther apart.

We introduce a Riemannian metric defined in terms of the image I and a regular-
ization parameter λ, as

G =
∇g(I)∇gT (I) + λI

1 + λ
, (1)

where I is the 2 × 2 identity matrix. The function g maps images to images, and in
our application is generally a small-radius blur. The effect of this blur is to combine
a weighted neighborhood in the gradient computation, to avoid relying too much on
single (noisy) pixel values. Infinitesimal distances under G are measured by

||dx||2G ≡ dxT Gdx =
(dxT∇g(I))2 + λ(dxT dx)2

λ + 1
. (2)

The first term in the numerator of (2), ||dxT∇g(I)||2, increases distances measured
parallel to large gradients in g(I). The regularization effect of λ can be seen by

lim
λ→∞

||dx||2G = dxT dx = ||dx||22, (3)

i.e., G becomes more Euclidean as λ increases.
Given (2), we can compute the distance between any two points in an image as the

shortest path between those points. We use a discretized approximation, i.e., a chamfer
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distance, applied to an 8-connected neighborhood. This approximation to the distance
is generally no worse than 10% of the correct value [7], which for our application is
generally not more than a single pixel.

Pixels overlapping seed regions are initialized to be distance 0 from their seed, and
the distances of the remaining pixels are computed by Dijkstra’s algorithm [6]. Each
pixel is labelled with the seed it is closest to, i.e., the Voronoi region of that seed in
the manifold defined by (2). Computing the seed-to-pixel distances in this manner also
makes it trivial to limit the segmentation to a predetermined foreground region (for
example, the result from a global thresholding step).

The computation of Voronoi regions places the boundary between two adjacent re-
gions at pixels that are equidistant from each seed, as measured on the manifold from
(2). The inter-pixel distance is larger where the image is changing more according to
∇g(I), so boundaries tend to align with image differences. The regularizing parameter
λ allows the user to make the manifold more “flat” according to prior knowledge about
region shapes, and the choice of g (e.g., the radius of smoothing) controls how sensi-
tive distances are to small features. In this work, we use a narrow (3- or 5-pixel radius)
Gaussian blur for g.

2.1 Connection to Geodesic Active Contours

Our algorithm is related to Geodesic Active Contours [5]. The full details of that work
are not given here, but we discuss the connection briefly.

Active contours can be seen as finding a shortest path in a Riemannian space, where
distances between pixels are defined by an edge stopping function g : R

+ → R
+.1

Examining equation (8) from Caselles et al. [5] helps establish the similarity:

Min
∫ 1

0

g(|∇I(C(q)|)|C′(q)|dq (4)

where I is the image, C(q) is the curve on image that we are minimizing over, and q
is the parameter along the curve. The edge stopping function g is strictly decreasing
and positive, with g(∞) = 0. The effect of g’s interaction with ∇I is such that the
minimum curve follows larger gradients in the image.

The minimization can also be written as (equation (12) of [5])

Min
∫ L(C)

0

g(|∇I(C(s)|)ds (5)

where s is the arclength parameter for C, and L(C) is the length of C. Therefore, active
contours can be seen as seeking a minimum length curve where the length depends on
image characteristics [5].

Our goal is different from active contours, since we hope to find boundaries between
regions corresponding to different seeds. However, we do seek shortest paths with a dis-
tance metric controlled by image characteristics. We do not wish to follow boundaries,
as in active contours, but rather to avoid them (equivalent to making boundaries “far”

1 In this subsection, g is an edge stopping function, not the same as g in the previous subsection.
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from the seed regions in our formulation). However, just as Voronoi regions can be de-
fined in terms of shortest paths, our segmentation algorithm can be defined in terms
of shortest paths defined by equation (1) and image properties. The metrics in the two
approaches differ, specifically in their treatment of edges in the image: edges in the
active contour setting have a metric that makes points along the edge closer, while our
metric makes the points across the edge more separated. Moreover, active contours use
a directionally uniform metric, while ours is not, since it is larger across edges rather
than along them. However, the goal is the same: allow the computation of inter-pixel
distances that simplify the problem at hand and map it to a simpler framework. In both
cases, the problem reduces to that of finding shortest paths (though this is simply a
jumping-off point for active contours to more powerful and efficient methods such as
level-sets).

3 Experiments and Evaluation

In order to provide insight into the behavior of the metric defined in (1), we experi-
ment with synthetic data and adjust λ, trading off the effect of image features on the
region segmentation versus the Euclidean distance from the seed. As can be seen in
Figures 3 and 4, the segmentation approaches the Voronoi diagram of the seed regions
(i.e., ignoring image features) as λ increases. Also, note that in the noisy example less
regularization (i.e., a lower value for λ) is needed to achieve similar segmentations be-
cause the noise makes the edges in the image less pronounced than in the noise-free
example. In effect, increasing noise provides a form of regularization.

Our algorithm is currently part of an automatic image cytometry program [4], and
has been used in a variety of experiments with several cell types of varying morpholo-
gies. To evaluate our algorithm on real world data, we compare it to the manual seg-
mentation of cell images. Sixteen images taken from Drosophila cells stained for DNA
(to label nuclei) and Actin (a cytoskeletal protein, to show the cell body) were out-
lined. First, nuclei were outlined by hand. The nuclear outlines were overlaid on the
cell images, and one cell per nucleus was outlined. Our algorithm was then applied to
the same cell images and nuclear-outlines data, and the results compared by comput-
ing the signed distance between boundary pixels. It effectively computes the distance
for each pixel in the automatic segmentation boundary to the corresponding manual
segmentation boundary. Hand-outlined nuclei were used, rather than automatically seg-
mented nuclei, since our algorithm does not address nuclei segmentation, and we want
the comparison to be as meaningful as possible. In general, automatic segmentation of
nuclei is fairly simple (See section 1.)

Our algorithm does not compute a foreground/background separation, but instead
relies on a such a label for each pixel to be given as input. For comparing our algo-
rithm to the manual segmentation, we compute the foreground pixels as the union of
cells identified in the manual segmentation. Methods exist for automatically choosing
a foreground/background labelling, but distinguishing foreground from background is
not part of our algorithm.

For the purposes of this comparison, we also use seed regions from hand-outlined
nuclei. In general, nuclei are more compact, separated, and brightly stained than cells,
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Fig. 3. Synthetic example. The input image is in the upper left, with seed sites marked with dots.
From left to right across the two rows, the resulting distances calculated with our metric are
shown, with the resulting segmentation overlaid white lines, for λ equal to 0.2, 0.3, 0.4, 0.5, 0.6,
0.8, and 3.0. The segmentation lines follow the ridges in the distances function. As can be seen,
as λ increases, the segmentation approaches the Voronoi diagram of the seed regions.

Fig. 4. Synthetic example with noise. The same input as in Figure 3 is used, with zero-mean
Gaussian noise with standard deviation 0.5 added to each pixel. Edges were 1.0 and background
was 0.0 before noise was added. The layout is the same as in Figure 3, but with λ equal to 0.025,
0.05, 0.075, 0.1, 0.125, 0.2, and 0.75.
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Fig. 5. Combined histogram for the signed distances and cumulative distribution of absolute dis-
tances from automatic segmentation to manual segmentation for the sixteen images in our test
set

and so are usually easily segmented by simple thresholding. We chose to use the nuclei
from manual segmentation in order to keep the conditions for manual segmentation and
our algorithm as similar as possible.

Under these conditions, our algorithm is only responsible for computing cell-cell
boundaries, rather than cell-background boundaries, which are fixed. We therefore only
consider the distance between boundary pixels in the two images that have a common
cell-label on either border. When evaluating the algorithm, we use the one-sided signed
distance (negative inside cells) from the automatic segmentation to the manual segmen-
tation. We set λ in (1) to 0.05 times the distance between the average foreground and
background pixel intensities on a per-image basis. This value for λ was found to be close
to optimal in our experiments, with fairly stable behavior for a reasonably large range
(within a factor of two). Our test set includes a wide variety of cell types, with different
sizes and morphologies. In general, most applications would have more homogeneous
data, to which λ should be tuned.

Sixteen images made up the test set. Each image was roughly 512x512 pixels on
a side, with cells roughly 25 pixels in diameter, and 80 cells per image on average.
Across the entire set, there were 21.6k pixels on a cell-cell boundary in the automatic
segmentation. A histogram of their signed distances with respect to the manual seg-
mentation is shown in Figure 5. Sixty-four percent (14.0k) of the boundary pixels in the
automatic segmentation are within 2 pixels in distance from the corresponding manual
boundary. Ninety-two percent (19.8k) of the pixels are within 5 pixels. The accuracy of
the hand-labelling is around 3 pixels, based on the width of the marker used to outline
the cells.

Typical results on the test set are shown in Figure 1. We show the top 5 worst outliers
from the data set, based on maximum boundary distance, in Figure 2. In some cases,
the automatic method has “chosen” a different edge in the image to use as the cell-cell
boundary. In others, the close proximity of the nucleus to a cell boundary has caused the
automatic segmentation to move past the boundary chosen in the manual segmentation,
causing large deviations between the two.
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4 Discussion

In some segmentation tasks seed regions for segmentation are easily identified. Nuclei
act as such seed regions in our application, the segmentation of cells in microscopy
images. The more difficult task is finding the boundaries between cells that share a
common border. Cell appearance in the images is not uniform, varying depending on
the type of cells and the protocol used to stain them, and simplistic approaches are not
sufficiently accurate or robust.

We have demonstrated an algorithm for segmentation of image regions based on
seed areas that respects image boundaries as defined by a difference operator. The al-
gorithm computes an approximation of the Voronoi region of a seed on a manifold,
implicitly defined by a difference operator that operates on image neighborhoods. The
only assumption that the algorithm relies on is that images change more near the bor-
ders of regions. This is similar to the behavior of Geodesic Active Contours, with an
inversion in the behavior of the metrics near edges. We approximate distances using a
chamfer-like difference operator, and use Dijkstra’s algorithm for computing individual
regions quickly.

Our algorithm is currently implemented in an automatic image cytometry package
[4], and has been used successfully in several experiments with a variety of cell types
and morphologies. We have compared our algorithm to manual segmentation by an ex-
pert of microscopy cell images. Our algorithm performs well. There are a few failure
cases, perhaps due to the fairly simple prior on cell shape and size that our metric im-
plies. A more complex prior could incorporate measures of, e.g., cell roundness or cell
area. Although our method is more accurate for segmenting cells than others, such as
using fixed offsets from nuclei or the watershed transform, the true test of its useful-
ness is in whether it produces more accurate measurements of cellular phenotypes. In
order to understand how segmentation accuracy affects measurement accuracy, we plan
to validate against data from flow cytometry or another method not based on image
processing.

In the future, we would like to explore other choices for g in (1). It might also be
possible to use the distance defined by our metric to compute foreground/background
labellings and to detect poorly-segmented cells.
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Abstract. In this paper, we presented an indirect approach which automatically 
separates the splenium of corpus callosum on mid-sagittal slice of diffusion ten-
sor image (DTI). The callosal fibers were first extracted to decide the corre-
sponding location in the 2D splenium. Using some specific features determined 
from their geometric properties, the fibers crossing the splenium were clustered 
into three bundles, which interconnect bilateral temporal, parietal and occipital 
lobes, respectively. The sub-regions of the splenium were then demarcated by 
mapping the clusters to the splenium. Similar distribution pattern of these three 
sub-regions were obtained by applying our method to two real data sets, which 
indicated the potential applicability of this approach for the further studies of 
the splenium. 

1   Introduction 

For years, large numbers of neuroimaging studies concerned with the corpus callosum 
were carried out, in which some rigid partition schemes were employed to partition 
the callosum into several sub-regions directly on the mid-sagittal slice [1,2]. The 
splenium was accordingly defined as the posterior fifth part of the corpus callosum 
along its anterior–posterior dimension [2]. Pathological effects on the splenium have 
been reported in a range of neurological disorders such as Alzheimer's Disease [3]. 
However, the splenium does not carry homogeneous fibers connecting single func-
tional cortical area, but contains several fiber groups connecting the bilateral temporal, 
parietal and occipital lobes, respectively [1]. The sub-regions of the splenium in terms 
of the cortical connectivity may provide more specific information of splenium, and 
these sub-regions can be used as ROI definition and further taken as separated factors 
in related studies, which would help to understand the underlying meaning of their 
changes. 

The geometric characteristics of fiber groups connecting distinct cortical areas 
were supposed to be different, which can be used to distinguish different fiber groups. 
Previous anatomical studies employed some tracers to separate different fiber groups, 
but these methods were time-consuming and limited to the animal and postmortem 
study. Recently, the advent of diffusion tensor imaging (DTI) made it possible to 
study different white matter tracts in human brain, non-invasively [4]. 
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As a relatively new MRI technique, diffusion tensor imaging can provide informa-
tion about the diffusion of water molecules in the brain tissue [4], and it has become 
the preferred modality for the white matter studies. Tracking algorithms based on DTI 
have been widely developed to reconstruct the white matter tracts, called tractography 
[5,6,7]. Very recently, some research works have been dedicated to further application 
of the traced fiber from DTI tractography. For example, some investigations cluster-
ing the traced fibers to bundles are emerging [8,9,10]. On the other hand, the property 
analysis of white matter tracts has also been extensively studied in the assessment of a 
wide variety of degenerative, neurological, psychiatric and developmental disorders 
using DTI [11]. These existing researches were mainly based on the manual ROI-
drawing. In contrast, some groups have proposed some fiber-based methods analyzing 
the white matter property along the traced fiber [12,13].  

In this paper, we attempt to use the information of 3D tract from DTI to parcellate 
intra-splenium structures. The fibers crossing the splenium are first reconstructed 
from tractography. Then some relative simple features are determined from the traced 
fiber, which are the positions of start-point, end-point and centroid point. Based on 
these specific features, k-means clustering is employed to ascertain the clusters of 
fibers. The clusters are then mapped to the 2D mid-sagittal slice to obtain the sub-
regions of the splenium. 

2   Materials and Method 

In our experiment, 3D diffusion-weighted data was acquired with single-shot echo 
planar imaging (EPI) sequence from a 1.5-Tesla MR scanner (GE signa 1.5T Twin-
speed). The diffusion sensitizing gradients were applied along 13 non-collinear direc-
tions with b-value=1000 s/mm2, together with an acquisition without diffusion 
weighting (b-value = 0). The acquisition parameters were as follows: Time of Repeti-
tion (TR)=10s; Time of Echo (TE)=85ms; matrix=128×128; FOV=22×22cm; Number 
of excitation (NEX)=4; slice thickness=3mm without gap. The data was interpolated 
to 1×1×1 mm for further process. 

2.1   Reconstruction of Fiber Crossing Splenium from Tractography 

The diffusion tensor field was calculated from the diffusion-weighted image accord-
ing to the Stejskal and Tanner Equation [14]. The eigenvector corresponding to the 
largest eigenvalue was assumed to represent the orientation of local white matter tract 
(i.e. principal direction). Here, the tracking algorithm proposed by Lazar et al. [15] 
was applied to reconstruct the fibers crossing splenium. It can be briefly summarized 
as follows: First, corpus callosum was drawn out manually on the color-map [16] of 
the mid-sagittal slice from DTI dataset. Then splenium was determined. And seed 
points distributed regularly were defined in each pixel of the splenium. The tracking 
algorithm moved a fixed distance (in this case 0.2mm) along the principal direction 
from each seed point. With diffusion tensor deflection, new diffusion orientation was 
estimated from the continuous tensor field at this new position, the algorithm then 
moved the distance towards the new orientation. The movement continued until the 
FA was below some threshold (in this case, 0.2). The algorithm parameters were: 
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deflection operator 2n = , 1 2 31, 0.5α α α= = =  (Eq.(3)of the Lazar et al.); 0.5f = , 

0.5g =  (Eq.(4) of the Lazar et al.). A traced fiber if  was represented by a set of 

ordered 3D points i
kp  with total number iN  and intuitively parameterized by arc-

length, the fiber set Ω  crossing splenium for each subject was as follows: 

{ } { }; 1, , ; 1, ,i
i i k if i M where f p k NΩ = = = =L L   

2.2   Determining the Features Specific to the Traced Fiber Crossing Splenium 

Although most of callosal fibers interconnect homologous hemispheric cortical areas, 
there exist a substantial number of heterotopic connections, ending in asymmetrical 
cortical areas [17]. Therefore, only unilateral splenium fibers were extracted to deter-
mine the features. Here, we chose the traced fibers traveling in the right hemisphere.  

Feature 1: Start-Point of the Fiber 
The start-point (i.e. seed point) position and end-point position were important prop-
erties for a traced fiber. The start-point indicates the location of one fiber on the mid-
sagittal slice of splenium. Naturally, the start-points are supposed to be close to each 
other in the splenium when the fibers connect homologous cortical area and are as-
signed to the same cluster. The Euclidean distance sD  between the start-points of a 

pair of fibers ( if , jf ) was hereby defined to measure the location closeness of these 

fibers in the 2D splenium: 

1 1
( , ) i j

s i jD f f p p= − , ⋅  is the Euclidean norm  

Feature 2: End-Point of the Fiber 
The end-point is the direct indicator of the cortical areas connected by this fiber, 
which is the essential information of connectivity for the fiber clusters. The Euclidean 
distance eD  between end-points was consequently assigned to measure the homoge-

neousness of cortical areas connected by a pair of fibers ( if , jf ). Actually, the cal-

losal fibers travel coherently near the mid-sagittal slice, and become increasingly 
dispersed when the fibers extend toward to the cortex. Therefore, significant differ-
ence between the different fiber bundles would be diminished when using the end-
point near the cortex. For this reason, the segment beyond a fixed length (in this case 
60mm, i.e. 300 steps with length of 0.2mm) of the traced fibers was removed to obtain 
the resulted end-point. The remained part of each fiber would keep the significant 
difference between different fiber bundles if using its end-point position. 

( , )
i j

i j
e i j N ND f f p p= −      with   300 300

300
i

i
i i

N
N

N N

≥
=

<
  

Feature 3: Centroid of the Fiber 
Apart from the features above, the shape of the traced fiber should also be considered. 
However, the shape description for a 3D curve is a very difficult issue. Here, a crude 
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measure for the shape description, the position of centroid for a 3D curve, was 
adopted. The shape distance cD  was defined as the Euclidean distance of the paired 

centroids between a pair of fiber ( if , jf ). Actually, the reconstructed fibers were 

variable in length. In this case, the Euclidean distance of centroids between two fibers 
was absolutely increased by the difference of the fibers length. To overcome this 
problem, the corresponding segment of the longer fiber was determined by searching 
the equal length to the shorter fiber. Then Euclidean distance of centroids between the 
shorter fiber and corresponding segment of the longer fiber was calculated as the 
shape difference of the two fibers: 

( , ) i j
c i jD f f C C= −  

with     

{ }

{ }

( ) ; 1, ,

( )

( )

( ) ; 1, ,

i i
i i k j

i jj
j

i
i

i jj j
j j k i

C mean f with f p k N
when N N

C mean f

C mean f
when N N

C mean f with f p k N

′ ′= = =
≥

=

=
≥

′ ′= = =

L

L

 

 

Distance Between a Pair of Fibers Crossing Splenium 
Two fibers were defined to be similar if they had similar geometric shape and their 
start-points (and end-points as well) were located very close. Based on the above 
selected feature, the distance D  of two fibers was defined as the sum of those dis-
tances with a weighted factor respectively: 

s s e e c cD D D Dα α α= ∗ + ∗ + ∗   

2.3   Clustering the Traced Fiber 

Based on the distance defined above, the classical K-means method was used to clus-
ter the fibers [18]. The splenium anatomically carries the fibers connecting three dif-
ferent (i.e. parietal, occipital and temporal) lobes; the number of clusters was hence 
 

      
             

 (a)                                                                  (b) 

Fig. 1. (a): the FA-map of mid-sagittal slice from DTI dataset. (b) The illustration for the initial 
fiber location: Three white landmarks denoted the three initial fibers while the splenium was 
marked by black. 
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defined as three. Another problem in the K-means method is the determination of the 
initial centers whose location would affect the results. In this study, we chose the 
three initial fibers distributed uniformly along the superior-inferior and anterior-
posterior dimension of splenium (Fig.1.b). The clusters of the fibers were then 
mapped to the 2D splenium in terms of their seed-points. 

3   Results 

The method was tested on two DTI data sets acquired from two subjects. All algo-
rithms were implemented in Matlab. The results, including sub-regions and their. 
corresponding unilateral fibers, were demonstrated in Fig. 2 Three clusters, corre-
sponding to parietal, occipital and temporal lobe, were illustrated by black, white and 
gray, respectively. 

     
 

(a)                                                                (b)       

     
       

                      (c)                                                                 (d)                                             

Fig. 2. (a): Top (i.e. (a) and (b)) and Bottom (i.e. (c) and (d)) demonstrated the results of subject 
1 and subject 2, respectively. Left (i.e. (a) and (c)): the reconstructed fibers crossing the sple-
nium using tracking algorithm, and the fibers were illustrated with 2 different viewing angles 
(up and down) for each subject. The fibers in the same cluster were displayed with the same 
intensity. Right (i.e. (b) and (d)): the sub-regions of splenium. The sub-regions were also 
marked with the same intensity corresponding to their fibers. 
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4   Discussions and Conclusion 

This study proposed an indirect framework parcellating the intra-splenium based on 
the hypothesis that fiber groups crossing the splenium connecting distinct cortical 
areas can be distinguished with their geometric and spatial information. Under con-
sideration of the special structure of unilateral fibers initiated from the 2D splenium, 
the start-point, end-point and centroid were chosen as the features when searching the 
distance between fibers. The fibers were assigned to the same cluster when these 
features were close to each other. The clusters were then mapped to the splenium and 
sub-regions were extracted.  

Previous anatomical study demonstrated that the splenium carries fibers connecting 
temporal, parietal and occipital lobes, which help to determine the fiber cluster num-
ber clearly. In fact, the parcellating framework in this paper can be directly extrapo-
lated to the subdivision of the total corpus callosum. However, the issue has not been 
carried out here because determining the sub-regions number of the total corpus callo-
sum is another crucial research task and beyond the scope of this research. 

The real DTI data sets of two subjects were tested with our approach. The results 
demonstrated similar distribution pattern of the three sub-regions in the two datasets, 
which would validate our method to some extent. The sub-region associated with 
parietal, occipital and temporal lobe (marked by black, white and gray, respectively in 
Fig.2) was located in the dorsal, posterior-ventral and anterior-ventral splenium, re-
spectively. The fibers connecting bilateral parietal lobes travel like a forceps with 
superior-posterior orientation, while the fibers connecting bilateral occipital lobe 
orient posteriorly. The fibers connecting bilateral temporal lobe are called tapetum 
anatomically, which travel along the inferior orientation and form the roof of part of 
the lateral ventricle of the brain. 

The results also showed that there were some outliers for each cluster, which might 
attribute to noise (i.e. false fiber reconstructed by the tracking algorithm). Noted that 
our method was highly dependent on the tracking algorithm, whose validation is still 
a challenge in the DTI field. Moreover, since the existing tracking algorithm cannot 
settle down the bifurcation problem [6], bifurcation of fibers near the boundary of 
different sub-regions of splenium would produce errors. The errors might be the fac-
tor resulting in the ratio difference of three sub-regions observed between the two 
subjects. Improvement of tracking algorithm and image quality would improve the 
robustness of our method. 

In conclusion, the novel framework was presented to parcellate the intra-structure of 
spenium and our preliminary experiment demonstrated the validity of this method. The 
extracted sub-regions would provide more detailed information of the splenium and can 
be further applied to explore the functions of distinct parts of splenium. Furthermore, 
analysis based on different fiber groups crossing splenium can be performed.  

Acknowledgements 

The authors would like to thank Xiaobo Li for her carefully proof-read the final ver-
sion of the manuscript and to Yong He, Chaozhe Zhu and Fang Qian for their com-
ments and support for this work.  This work was partially supported by the Natural 



550 G. Gong et al. 

 

Science Foundation of China, Grant Nos. 30425004 and 60121302, and the National 
Key Basic Research and Development Program (973), Grant No. 2004CB318107. 

References 

1. Thompson PM, Narr KL, Blanton RE, Toga AW: Mapping structural alterations of the 
corpus callosum during brain development and degeneration. In: Zaidel E, Iacoboni M, 
editors. The parallel brain: the cognitive neuroscience of the corpus callosum. Cambridge, 
MA: MIT Press. 93–130 (2002) 

2. Witelson SF: Hand and sex differences in the isthmus and genu of the human corpus callo-
sum. A postmortem morphological study. Brain 112 (1989) 799–835 

3. Lyoo IK, Satlin A, Lee CK, Renshaw PF: Regional atrophy of the corpus callosum in sub-
jects with Alzheimer's disease and multi-infarct dementia. Psychiatry Res 74 (1997) 63–72 

4. Basser P and Pierpaoli C: Microstructural and physiological features of tissues elucidated 
by quantitative-diffusion-tensor MRI. J Magn Reson, B 111 (1996) 209–219 

5. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, Mckinstry RC, Bur-
ton H and Raichle ME: Tracking neuronal fiber pathways in the living human brain. Proc 
Natl Acad Sci USA, 96 (1999) 10422–7 

6. Mori S, Fiber tracking: principles and strategies – a technical review. NMR in Biomedi-
cine 15 (2002) 468–480 

7. Xu D, Mori S, Solaiyappan M, van Zijl PCM, and Davatzikos C: An framework for cal-
losal fiber distribution analysis. Neuroimage 17 (2002) 1131–1143 

8. Ding Z, Gore JC, and Anderson AW: Classification and quantification of neuronal fiber 
pathways using diffusion tensor MRI. Mag Reson Med. 49 (2003) 716–721 

9. Brun A, Knutsson H, Park HJ, Shenton ME, Westin CF: Clustering Fiber Traces Using 
Normalized Cuts. In: Medical Image Computing and Computer-Assisted Inter-vention 
(MICCAI 2004) 368–375 

10. Corouge I, Gouttard S, Gerig G: A Statistical Shape Model of Individual Fiber Tracts Ex-
tracted from Diffusion Tensor MRI. In: Medical Image Computing and Computer-Assisted 
Inter-vention (MICCAI 2004) 671–679 

11. Kubicki M, Westin CF, Maier SE, Mamata H, Frumin M, Ersner-Hershfield H, Kikinis R, 
Jolesz FA, McCarley R and Shenton ME: Diffusion Tensor Imaging and Its Application to 
Neuropsychiatric Disorders. Harvard Rev Psychiatry November/December (2002) 324–
336 

12. Fillard P, Gilmore J, Piven J, Lin WL and Gerig G (2003): Quantitative Analysis of White 
Matter Fiber Properties along Geodesic Paths. In: Medical Image Computing and Com-
puter-Assisted Inter-vention (MICCAI2003) 16–23 

13. Gong GL, Jiang TZ, Zhu CZ, Zang YF, Wang F, Xie S, JX Xiao and XM Guo: Asymme-
try analysis of cingulum based on scale-invariant parameterization by diffusion tensor 
imaging. Human Brain Mapping 24 (2005) 92–98   

14. Stejskal EO, Tanner JE: Spin diffusion measurements: spin echoes in the presence of a 
time-dependent field gradient. J Chem Phys 42 (1965) 288–292 

15. Lazar M, Weinstein DM, Tsuruda JS, Hasan KM, Arfanakis K, Meyerand ME, Badie B, 
Rowley HA, Haughton V, Field A, Alexander AL: White Matter Tractography Using Dif-
fusion Tensor Deflection. Human Brain Mapping 18 (2003) 306 –321 

16. Pajevic S, Pierpaoli C: Color schemes to represent the orientation of anisotropic tissues 
from diffusion tensor data: application to white matter. Magn Reson Med 42(1999) 526–
540 

17. Nolte J: The human Brain: An introduction to its Functional Anatomy, Mosby (1999) 
18. Duda RO, Hart PE, Stork DG: Pattern classification. 2nd Edition, John Wiley & Sons 

(2000) 



Motion Compensation and Plane Tracking for
Kinematic MR-Imaging

Daniel Bystrov, Vladimir Pekar, Kirsten Meetz, Heinrich Schulz,
and Thomas Netsch
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Abstract. The acquisition of time series of 3D MR images is becoming
feasible nowadays, which enables the assessment of bone and soft tissue in
normal and abnormal joint motion. Fast two-dimensional (2D) scanning
of moving joints may also provide high temporal resolution but is limited
to a single, predefined slice. Acquiring 3D time series has the advantage
that after the acquisition image processing and visualization techniques
can be used to reformat the images to any orientation and to reduce
the through-plane motion and undesired gross motion superimposed on
the relevant joint movement. In this publication, we first review such
post-processing techniques for retrospective tracking of viewing planes
according to a single moving rigid body (e.g. bone). Then, we present
new numerical schemes for optimally tracking viewing planes according
to the movement of multiple structures to compensate for their through-
as well as in-plane motion. These structures can be specified in an inter-
active viewing program, and the motion compensated movies can be up-
dated and displayed in real-time. The post-processing algorithms require
a 4D motion-field estimation which also can be utilized to interpolate
intermediate images to present the final movies in smooth cine-loops
and to significantly improve the visual perceptibility of complex joint
movement.

1 Introduction

Starting in the late eighties, MRI has been used for imaging of moving joints
[11,16]. Most approaches were based on fast 2D imaging, which limited the stud-
ies to a single predefined view of a few anatomical structures. In addition, in
order to keep the anatomy of interest stable within the imaging plane, devices
are needed to restrain a part of the joint [7], thereby limiting the freedom of
movements. As a result, pathological behaviour in the kinematics of the in-
vestigatated structures may be reduced or completely suppressed. For better
diagnostic value of kinematic MR studies, unrestricted patient motion inside the
scanner is preferable.

In contrast to relatively tight cylindrical scanners, the new generation of open
MRI-systems facilitate kinematic orthopedic studies, since the motion of a pa-
tient is much less limited by the design of the magnet. Also the aquisition and re-
construction time is constantly improving; currently the time for aquiring a high
resolution 3D volume (e.g. 2562×100) is between 10 and 60 seconds. For the acqui-
sition of real-time joint motions active markers can be used, which can be located
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inside the aquisition loop of the MRI-system, see e.g. [1,4]. Because such markers
are attached from outside to the patient’s skin, this results in fat and skin slid-
ing artifacts, see [6,10]. Therefore, the markers only give an orientation for the
exact position of the inspected joint and small in- and through plane motion oc-
cur. Thus, in either case a post-processing of kinematic 3D datasets is essential for
the acceptance and benefit of kinematic time series of moving joints in the clinical
routine. Simply presenting the original slice data in a cine-loop will still be com-
promised by through-plane displacements of the anatomy and “jerks” between
frames, both of which hamper the visual analysis of the movement.

In this publication, the retrospective tracking of a viewing plane and selec-
tion of the coordinate system inside the viewing plane in order to compensate
the in- and though plane motion of one or more anatomical structures through
time-series of 3D MR datasets is presented. The method does not require the
segmentation of these anatomical structures but is based on an estimation of a
continous motion field obtained by elastic image registration of the sequence of
volumes. The result of this registration can also be utilized for the interpolation
of intermediate frames in order to present the motion compensated movies in
smooth cine-loops. The registration of a sequence of volumes is a computation-
ally expensive task and should be done in a separate, offline step. After that,
the motion compensation algorithms and also the frame interpolation technique
can be computed in real-time while presenting the result in a viewing interface.
The user can then interactively specify the anatomical structures whose motion
should be compensated; see [9,15].

For the development and presentation of the viewing and motion compen-
sation functionality, time series of 3D-volumes were used, which were simulated
by acquiring sequences of stepwise moved resting joints. Surely, for the clinical
applications of the presented functionalities the real-time acquisition of active
joints is required, see e.g. [3].

The paper is organized as follows: in section 2, the post-processing algorithms
for kinematic 4D MRI data sets are described. First, elastic image registration
is used for the estimation of the motion. Afterwards, the resulting motion fields
are used for the smooth interpolation of intermediate frames and for the com-
pensation of motion for a single rigid body. Then the motion field is utilized to
separately compensate through- and in-plane motion in the presence of multiple
non-rigidly moving structures (e.g. multiple bones). In section 3, the quality of
the motion estimation is analyzed as well as the motion compensation using sev-
eral kinematic datasets. Finally, the integration of the presented algorithms in a
prototype for an interactive viewing software for kinematic 4D data is described.

2 Post-processing of 4D Time Series

2.1 Motion Field Estimation with Image Registration

The registration of two images is defined as finding a correspondence mapping
for each point of a reference image on an anatomically corresponding point in a
target image. The registration task for sequences of kinematic images of joints
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and soft tissue is motivated by the conservation of intensity: It is assumed, that
a grey value of a particle is constant along its trajectory.

For a sequence of time steps t0 < t1 < . . . < tN and gray scale images
Ii := I(ti) : Ω �→ R of a field of view Ω ⊂ R3, we are looking for spatial
transformations Ti := T (ti) : Ω �→ R3, which minimize the distance between
Ii and Ii+1. A suitable distance function for subsequent images of a kinematic
study is the sum of squared differences:

distSSD(Ω, I, J) :=
1
|Ω|

∫
p∈Ω

|I(p) − J(p)|2dp. (1)

Then, for a given transformation space T the minimizing transformation yields
the required correspondence mapping

Ti := argmin
T∈T

distSSD(Ω, Ii ◦ T, Ii+1). (2)

Since the field of view Ω is a bounded domain, parts of the anatomy can leave
or enter it. In such cases boundary conditions in (1) are very important for
the global registration result. One possibility to compensate for missing image
information at the boundaries could be a model of the anatomy or the image
beyond the boundary: e.g. the extent of the image Ii with a black surrounding.
Another solution for the boundary value problem is, to exclude the boundary
from the computation in (1):

Ti := argmin
T∈T

distSSD(T (Ω) ∩ Ω, Ii ◦ T, Ii+1). (3)

The range of the transformation space T needs to be limited, in order to prevent
that the domain T (Ω) ∩ Ω gets too small. This is equivalent to a limit of the
maximal expected velocity of the observed objects.

For the motion estimation in kinematic studies, two different types of trans-
formation spaces were tested: Firstly, a B-spline registration approach as de-
scribed in [8,14]. The algorithm uses a dual multiscale method: the image is
downsampled in a hierarchy of images and also the B-spline transformation space
is organized hierarchically. Secondly, elastic deformation fields were used, which
model the transformations as the effect from a set of localized Gaussian forces
with adaptable location, strength and elastic properties applied to an infinite
elastic medium [12].

The numerical minimization of (3) can be done efficiently with a local op-
timization technique, which is applicable, if the images are sufficiently “close”
and the motion between two frames is limited. For the examples shown here, the
Levenberg-Marquard optimization [13] was used.

2.2 Generating Additional Frames Using Motion Interpolation

For the improvement of the visual quality of the motion, the registration field as
described in the previous section can be used to interpolate intermediate frames
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Fig. 1. Sequence of moving knee (femur, patella, tibia) 1) Landmarks are placed in the
first frame (femur). 2) Motion of landmarks is estimated. 3) Viewing plane is adapted
to avoid motion of landmarks.

between acquired images, analogous to B-frames in MPEG-streams, which are
basically a linear interpolation of the gray values along the estimated trajectories
[5]. For two consecutive frames Ii = I(ti) and Ii+1 = I(ti+1) an intermediate
frame

I(t) := (1 − t) · Ii ◦ T ′(t) + t · Ii+1 ◦ T ′′(t) (4)

at time t ∈ [ti, ti+1[ can be estimated using two intermediate motion fields
T ′(t), T ′′(t) : Ω �→ R3 with

T ′′(t) ◦ Ti = T ′(t) := id + t · (Ti − id). (5)

The transformation T ′′(t) can be approximated linearly with a first order inver-
sion of the motion field estimation Ti of the elastic image registration

T ′′(t) ≈ id − (1 − t) · (Ti − id). (6)

Together with (4) and (5) this yields an approximation for the intermediate
frame, depending only on the acquired volumes and the estimation of the motion
field Ti between these volumes:

I(t) ≈ (1 − t) · Ii ◦ (id + t · (Ti − id))
+ t · Ii+1 ◦ (id − (1 − t) · (Ti − id)). (7)

If the motion field Ti is properly estimated, (7) will not only crossfade between
the images, but also transports edges along piecewise linear trajectories, smooth-
ing the frame transitions, which enhances the visual quality of the resulting
videos.

2.3 Homogeneous Motion Compensation for Previously Selected
Landmarks

The display of joint movements in the original acquisition slice orientation is
compromised by through- as well as in-plane motion and provides a confusing
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impression for the viewer. It is therefore desirable to automatically adjust the
viewing plane according to the motion of previously selected anatomical struc-
tures. This virtually fixes those structures in the resulting video. The structures
of interest are specified by a set of landmarks, and their motion is compensated
by tracking these landmarks using the estimated motion field as described in sec-
tion 2.1. This approach can easily be integrated in a user interface enabling the
interactive selection and variation of structures of interest whose motion should
be compensated.

The motion compensation algorithm is applied iteratively to derive coordi-
nate systems for all frames starting from an initial frame. The method is il-
lustrated for selecting a coordinate system in the second frame, starting from
the first frame. A right-handed Euclidean coordinate system (c, N) is defined
by a center c ∈ R3 and an orthogonal matrix N ∈ R3×3 with N tN = I and
det(N) = 1. Given a coordinate system (c, N), a finite set P ⊂ R3 of landmarks
in the first frame, and the location T (P ) ⊂ R3 of these landmarks in the subse-
quent frame, we are looking for an Euclidean coordinate system (c′, N ′), so that
the following expression is minimized:

argmin
(N ′,c′)

∑
p∈P

‖N ′ · (T (p) − c′) − N · (p − c)‖2
2 (8)

In [2] an explicit solution for the minimization of (8) using a singular-value
decomposition is given. Since the cost for the minimization of (8) is marginal
(for a moderate number of points), the coordinate systems can be computed
while reformatting the 3D-volumes and displaying the movie.

2.4 Separating In-Plane from Through-Plane Motion

Using the method for selecting viewing coordinate systems as descibed in the
previous section, the motion of rigid bodies can be compensated by locating
three or more points on these structures; e.g. the femur in a study of the human
knee. In more complex scenes with elastic structures or independently moving
rigid bodies, e.g. a kinematic study of the shoulder, one may want to suppress the
through-plane motion of the humerus without compensating the rotational in-
plane motion of the upper arm; see figure 4. In order to achieve this, one needs to
differently compensate the two motion components. With a small modification of
the minimization term (8), one can formulate an adequate minimization problem.
In contrast to minimizing the global motion of the landmarks P , only the motion
perpendicular to the current viewing plane is compensated. We are then looking
for a Hessian-representation of the viewing plane N ′

·,3 · p− d′z = 0, p ∈ P , of the
subsequent frame, which minimizes:∑

p∈P

(N ′
·,3 · T (p) − d′3 − N·,3 · (p − c))2. (9)

After the computation of the viewing plane (with parameters d′3 ∈ R, N ′
·,3 ∈

R3 with ‖N ′
·,3‖2 = 1) the 2D-coordinate system inside the viewing plane can be
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adjusted, so that the in-plane motion of a second finite list Q ⊂ R3 of landmarks
is compensated by minimizing:∑

q∈Q

(N ′
·,1 · T (q) − d′1 − N·,1 · (q − c))2

+ (N ′
·,2 · T (q) − d′2 − N·,2 · (q − c))2. (10)

Because of the orthogonality conditions N ′tN ′ = I, this can be solved with a
2D version of a rigid pointset-registration technique as described in [2]. Then,
the center c′ of the coordinate system is c′ = N ′ · d′.

If the points in P are colinear, the solution of (9) is not unique. Furthermore,
the direction of N ′

·,3 is not unique, if the points in P or T (P ) are coplanar. For a
small number of landmarks P and Q these singularities will lead to confusing and
“uncontrollable” flipping of the coordinate axis. It is therefore easier to combine
the optimization tasks (9) and (10) in a single minimization by a weighted sum:

argmin
(c′,N ′)

∑
p∈P

‖Dp · ((N ′ · (T (p) − c′) − N · (p − c))‖2
2. (11)

Dp are diagonal matrices Dp = diag(ωin
p , ωin

p , ωout
p ), with nonnegative weights

ωin
p , ωout

p ≥ 0, which separately penalize in-plane- and through-plane motion of
the points p ∈ P .

An explicit formula for the minimizing center c′, in dependance on the co-
ordinates N ′, can be found by setting the derivative of (11) to zero and using
I = N ′ · N ′t:

c′ = N ′t · D−1
∑
p∈P

Dt
pDp(N ′T (p)− N(p − c) with D =

∑
p∈P

D2
p. (12)

The orthognal matrix N’ can be expressed in terms of three angles and thus (11)
has three optimization parameters. The minimum of (11) can be approximated
using a gradient based optimization algorithm, e.g. the Levenberg-Marquard
method as described in [13], which converges rapidly for a moderate numbers of
points (less then 0.1 sec on a 1.8 GHz Pentium for 10 landmarks).

3 Results

The approach has been tested for different 4D kinematic MR data sets of the knee
and the shoulder (acquired with a Philips Intera 1.5T and Philips Panorama 1 T
scanner). The MR datasets were obtained using T1-weighted 3D gradient echo
sequences for seven different positions of the studied joint. The spatial resolution
of the knee images were 1.62×5 mm3 (2562×36 voxels) and the shoulder images
12 × 1.8 mm3 (2562 × 100 voxels).

3.1 Image Registration

For the image registration with B-splines the knee sequences were downsampled
into three and the shoulder sequences into four hierarchical levels. The same
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Fig. 2. Sets of reference points of A) femur, B) tibia and C) shoulder

Fig. 3. User interface of the kinematic viewing station

number of levels was used for the multiscale pyramid for the transformation
space. The highest level for the knee images consisted of 83 B-spline nodes and
163 for the shoulder images. The image registration method with localized Gaus-
sian forces was applied in both cases with 32 × 2 control points for the forces
initially starting with an equidistant grid. The qualitative results as well as the
computational costs with this transformation space are comparable with the
B-spline registration approach.

The quality of the motion field estimation has been analyzed in detail in
[9,15]. Here, two aspects of the resulting motion fields were tested: first, the se-
quence of images was registered in the positive time direction, then the sequence
was reversed and again registered. Then, several landmarks were manually
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Fig. 4. Sequence of the shoulder and upper arm. Top row: without motion compen-
sation. Middle row: with homogeneous motion compensation as described in section
2.3; the humerus leaves the plane and the chest rotates. Bottom row: Humerus stays
in plane as well as the selected acromion; the smaller points (ωin

p = 0, ωout
p = 1) specify

anatomical structures which should stay inside the viewing plane; the bigger points
(ωin

p = 1, ωout
p = 0) in the chest and at the cap of the humerus prevent the motion of

the chest within the viewing plane.

located in the first frame of the sequences as shown in figure 2. These landmarks
were transported first in positive time direction, and afterwards backwards using
the registrations of the reversed image sequence. Finally, the distances of the re-
sulting positions were compared to the original set. Using seven images for a time
sequence the mean Euclidean error for the 12 registration steps is about 0.5 mm
and the maximum error is about 1 mm per landmark per registration. Thus, the
error for the specified landmarks is in the order of the image resolution.
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The second evaluation was a test for the rigidity of the elastic registration
fields at the bones. For that purpose several sets of landmarks were located in the
first frame of the knee, as well as in the ligaments of the shoulder sequence. The
landmarks were transported with the elastic deformation field and afterwards
the rigid component of the motion was computed as explained in section 2.3.
The mean error of this correction step was about 0.5mm and for the shoulder
ligaments about 1.2mm per landmark, which was also in the order of the image
resolution.

3.2 Interactive Motion Compensated Viewing Software

As depicted in figure 3, the motion compensation and interpolation algorithms
were integrated in a program for interactively inspecting 4D kinematic data
sets. A detailed description of this software and the integration of the motion
compensation algorithm for a single rigid body (as described in section 2.3) can
be found in [9,15]. The program consists of three windows, with the common
orthoviewer functionality, allowing to navigate through a 3D volume. In a forth
window at the lower right a movie of the kinematic sequence is displayed. In the
orthoviewer windows the set P of landmarks can interactively be placed in 3D.
If the set P of landmarks is changed or the viewing parameters of the upper left
window is changed the movie is immediately updated without visible delay. The
weights for penalizing in- and through plane motion can be adjusted interactively
for each landmark separately: In- and through-plane motion for a landmark can
be ajusted in the range of ωin

p , ωout
p ∈ [0, 1] and the resulting movies change

continously and controllably with moderate changes of these weights.
The usability of the tools has been validated by clinical experts, who have

reported that the tool enables a good immobilization of all interesting anatom-
ical structures and that the interactive viewing program allows unprecedented
insights into a joint’s kinematic behaviour.

4 Conclusion

In conclusion, elastic image registration has successfully been utilized for esti-
mating a motion field in time series of 4D kinematic data sets. The motion field is
used to compensate the motion of user selected landmarks, and to dynamically
adjust the viewing plane according to the motion of the landmarks. Further-
more the motion field is employed to cross-fade between acquired volumes and
to present the final movies in smooth cine-loops. The algorithms which are based
on the motion field estimation, are computationally efficient and have been in-
tegrated in a viewing workstation that facilitates viewing of 4D kinematic data
sets. It allows to observe any user defined anatomical structure from any view
point in real-time. Unrestricted from any pre-defined view point, the clinical
expert is able to examine and to fixate any anatomical structure during the
movement of the joint.
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Rousson, Mikael 251
Ruiz-Correa, Salvador 302

Sagawa, Ryusuke 271
Sander, Jöerg 469
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