
A Precise Approach for the Analysis of the
UML Models Consistency�

Francisco Javier Lucas Mart́ınez and Ambrosio Toval Álvarez

Software Engineering Research Group,
Department of Informatics and Systems,

University of Murcia (Spain)
{fjlucas, atoval}@um.es

Abstract. The UML notation is a well-know standard notation to de-
scribe OO systems. But the UML specification has certain imprecisions
and ambiguities that, along with possible errors made by the modellers,
may cause inconsistency problems in the models of the system. This
paper presents a rigorous approach to improve the consistency analysis
between UML diagrams.

This proposal is based on a previous formalization of the UML meta-
model diagrams, [1–4], in Maude. The framework given by the specifica-
tions created helps to guarantee the consistency of models because all the
specifications are integrated within the same formalism. This work fo-
cuses on the analysis of the inter-diagram consistency. Several examples
of properties are shown that help to guarantee the consistency between
UML Communication and Class Diagrams.

1 Introduction

UML [5] is a modelling language which was created as union of varied nota-
tions, and promoted by OMG. But UML specification has certain imprecisions
and ambiguities that, along with possible errors made by the modellers, cause
inconsistency problems in the models of the system. Within the UML-based
development process, the main sources of inconsistency are, [6]:

1. The existence of multiple software artifacts or diagrams to describe the same
system, which can cause inconsistencies in the information that appears in
these diagrams.

2. The imprecise semantics of the UML, which means that a UML model may
have multiple interpretations.

This paper presents a rigorous approach to analyze and improve the consis-
tency between UML diagrams. This proposal is based on a previous formalization
of the UML metamodel diagrams, [1–4], in Maude [7]. The framework given by
the specifications created helps to guarantee the consistency of models, because
� Financed by the Spanish Ministry of Science and Technology, project DYNAM-

ICA/PRESSURE TIC 2003-07804-C05-05.

J. Akoka et al. (Eds.): ER Workshops 2005, LNCS 3770, pp. 74–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Precise Approach for the Analysis of the UML Models Consistency 75

all the specifications are integrated within the same formal technique (algebraic
specifications). Furthermore, the semantic of each one of these specifications has
a precise and no ambiguous interpretation due to its formalization in a formal
language.

The language chosen for the realization of the formalization is Maude. This
is a formal specification language that is based on equational logic and rewrit-
ing logic. Furthermore, Maude is a language that allows the execution of the
specifications created, which allows one to animate models and create system
prototypes to check the behavior of the system.

This work is based on the formalization carried out in previous work, in
which the formalization of the following UML metamodel diagrams are treated:
Class Diagram [1], Collaboration Diagram [2] (named Communication Diagram
in UML 2.0), Statechart Diagram [3], and Sequence Diagram [4]. All theses
formalizations have been updated to UML 2.0.

Thus, the integration of this formalization and the work produced that have
been performed about them, such as: animating models, making transformation
between models and verifying of properties can be used to improve the quality
of a system.

Furthermore, all the applications of this formalization can be used in MDA,
since UML language is usually used as the modelling language in MDA. We can
use it to guarantee the consistency of the PIM (Platform Independent Model)
models, before transforming them to PSM (Platform Specific Model) models.
This formalization can also give support to the transformations that are made
within the MDA (PIM→PSM, PSM→PSM, PIM→PIM).

This work focuses on the analysis of the inter-diagram consistency, and sev-
eral properties are shown that help to guarantee the consistency between UML
Class and Communication diagrams. This algebraic approach can be applied to
any diagram which is formalized, see section 2.

After this introduction, in section 2, a general description of the algebraic
formalizations of the UML diagrams used in this work is given. Section 3 shows
the analysis of the consistency made for the UML Class and Communication
Diagram. Section 4 identifies some related work. Finally, in section 5 conclusions
and further work are given.

2 Algebraic Formalization of the UML Diagrams

As a previous step to the rigorous analysis of the consistency between the differ-
ent UML diagrams of a system, it is necessary to have a rigorous representation
of these models. We decided to make an algebraic formalization of part of the
UML metamodel. Figure 1 presents the necessary algebraic modules to carry
out an analysis of the consistency. The Integration module uses the available
specifications of the UML diagrams and implements the equations that check
the inter-diagrams consistency.

This paper focuses on the Class and Communication Diagrams. This method
is generalizable to any combination of two or more diagrams, because we have

76 F.J. Lucas Mart́ınez and A. Toval Álvarez

Fig. 1. Algebraic modules used in the analysis of the consistency

the corresponding formalization and integration with the rest of the diagrams,
for example the UML Statechart Diagram [3].

The next sections give a description of the formalization of each diagram
needed to understand the rest of the paper. For the sake of brevity, the descrip-
tion of the specification offers a very simplified view of the algebraic formaliza-
tion. For more details, see [1, 2].

2.1 UML Class Diagram

The first diagram that will be commented is the UML Class Diagram. This
diagram describes the static structure of a system and is made up of a set of
elements such as classes, interfaces, and others; and relationships among these
elements, such as associations and aggregations. The module that contains the
formalization of the diagram is shown in Figure 2. For the sake of brevity, this
is a very reduced part of the formalization (see [1] for more details).

(fmod CLASSDIAGRAM is sort ClassDiagram .
...
op classDiagram : ClassList ObjectList

AssocList LinkList -> ClassDiagram .
op getCDClasses : ClassDiagram -> ClassList .
...
var CLASSES : ClassList . var OBJECTS : ObjectList .
var ASSOCIATIONS : AssocList . var LINKS : LinkList .
eq getCDClasses(

classDiagram(CLASSES, OBJECTS, ASSOCIATIONS, LINKS)) = CLASSES .
...

endfm)

Fig. 2. Module that formalizes the UML Class Diagram

This specification along with the one shown in the next section will be used to
show the application of the formalization of the metamodel of the UML diagrams
to guarantee the consistency between models.

In Figure 3, we can see an example of a Class Diagram despicted with a CASE
tool. This diagram represents a reservation system and will be the example used
in the paper to check the inter-diagrams consistency (section 3).

A Precise Approach for the Analysis of the UML Models Consistency 77

Fig. 3. Example of a UML Class Diagram

2.2 UML Communication Diagram

The next specification need is the one corresponding to the UML Communication
Diagram. This type of diagram shows an interaction between objects. One of
the most important aspects that is shown in this diagram is the context of the
interaction. In Figure 4 appears part of this diagram formalization, the complete
formalization used in this diagram is shown with more detail in [2].

(fmod COMMUNICATIONDIAG is sort CommunicationDiag .
...
*** Constructor
op communicationDiag : LifeLineList MessageList -> CommunicationDiag .
...

op getCDLifeLines : CommunicationDiag -> LifeLineList .
op getCDMessages : CommunicationDiag -> MessageList .

var LIFELINES : LifeLineList . var MESSAGES : MessageList .
eq getCDLifeLines(communicationDiag(LIFELINES, MESSAGES)) = LIFELINES .
eq getCDMessages(communicationDiag(LIFELINES, MESSAGES)) = MESSAGES .
...

endfm)

Fig. 4. Module that formalizes the UML Communication Diagram

78 F.J. Lucas Mart́ınez and A. Toval Álvarez

3 Consistency Between UML Diagrams

Guaranteeing the inter-models consistency or the verification of inter-models
properties is one of the most interesting applications of the formalization of the
metamodel of UML diagram and this is what we shall see in this section.

As an application of the formalization performed, several properties have
been already implemented. In this work, two of them are shown to illustrate the
process of consistency verification. Other properties and operations implemented
can be found in [8] such as class consistency, correct order of method invocation
in a Communication Diagram,. . .

In the following subsections, the example of Class Diagram shown in Figure
3 will be used in the analysis of the consistency. This consistency verification
has been realized between this Class Diagram and the Communication Diagrams
which are shown in the Figures 6 and 9.

Although the first property verified, 3.1, is just syntactic, the second property,
3.2, also verifies richer features of the consistency between both diagrams, such
as type checks of the parameter in the calls of methods.

3.1 Verification of the Consistency Regarding Associations

In this section we verify the following property:
“For each association that is defined in the Communication Diagram there must
exist at least one association in the Class Diagram that allows the sender to send
messages to the receiver”

This property guarantees that, for each association defined in the Commu-
nication Diagram, there exist at least one association in the Class Diagram that
connects the classes that take part in the association of the interaction. In this
verification we do not take into account derived associations.

We have two different alternatives to identify an association of the Commu-
nication Diagram in the Class Diagram. These are:

1. To compare the name of the association of the Class Diagram, AssocName,
with the name that the association (Connector) of the communication dia-
gram has.

2. To search associations in the Class Diagram which connect classes of which
ClassName is the same ClassName which appears in the Connectable Ele-
ments (Connector Ends) of the association of the communication diagram.

It does not seem practical to require the same, exact, name in the associa-
tion label of the Communication Diagram and in the association of the Class
Diagram. Moreover, frequently this name does not appear, therefore we choose
the second alternative as our criterion in the search of associations.

To implement this property, we only search that an association exists in the
Class Diagram which connects the classes that are connectable elements in the
association (connector) of the communication diagram. Al least one must exist
in order to keep the property. Since we do not take into account the association

A Precise Approach for the Analysis of the UML Models Consistency 79

(fmod PROPERTY1 is ...
op testProp1 : ClassDiagram CommunicationDiag -> String .
op testProp1 : AssocList ConnectorList -> String .

var CommunD : CommunicationDiag .
var CLASSL : ClassList . var OL : ObjectList .
var AL : AssocList . var LL : LinkList .
var CL : ConnectorList . var C : Connector .

eq testProp1(classDiagram (CLASSL, OL, AL, LL), CommunD) =
testProp1(AL, getCDConnectorList(CommunD)) .

eq testProp1(AL, empty) = "" .
*** C CL = ConnectorList. C = head, CL = tail.
eq testProp1(AL, C CL) =

if assocExists(AL, getClassName(getCE1(C)),
getClassName(getCE2(C))) == nullAssoc then

"ERROR. An association in the Class Diagram "
+ "between the classes " + string(getClassName(getCE1(C)))
+ " and " + string(getClassName(getCE2(C)))
+ ", which is necessary for the association "
+ string(getLabel(C)) + ", does not exist. " + testProp1(AL, CL)

else testProp1(AL, CL) fi .
endfm)

Fig. 5. Formalization of the property regarding Associations (section 3.1)

name, an association in the Communication Diagram can be ”made” by several
associations in the Class Diagram.

Figure 5 shows the specification that formalizes the verification of this prop-
erty. Note that other semantics for the fulfilment of this property could be spec-
ified too.

In Figure 6 we see an example of Communication Diagram that does not
fulfil this property, and in Figure 7 we can see the property reduction that

Fig. 6. Example of a UML Communication Diagram that breaks the property verified
in 3.1

80 F.J. Lucas Mart́ınez and A. Toval Álvarez

reduce in RESERVE :
testProp1(classDiagEj,CDreserve)

result String :
"ERROR. An association in the Class Diagram between
the classes userStore and reserveStore, which is necessary for
the association userSt_resSt_label, does not exist. "

Fig. 7. Maude reduction of the example of the Figure 6

Maude produces. As we have already indicated, the Class Diagram used as the
example is shown in Figure 3.

Another property implemented using this formalization, which is not shown
here due to its similarity with the property of this section, is the verification of
the consistency of the classes used, in other words, it guarantees that the classes
used in the Communication Diagram are present in the Class Diagram to which
it belongs.

3.2 Verification of the Consistency Regarding Methods

In this section, we verify that the use of the methods in the Communication
Diagram is consistent with the information that appears in the Class Diagram.
The property that we want to check is the following:
“The methods used in a communication diagram must be declared in the class
diagram and their declaration, with regard to parameters and types, must be
correct.”

As we have already said, we will verify that the methods that are executed
in a ConnectableElement (Connector End) exist in the class corresponding to
their ClassName. In the case that this method exists, the property also verifies
that the method has the same number of parameters, and the same types, as
in the class. Furthermore, the overload of methods has been taken into account
in the implementation of the property. The module that verifies this property is
shown in Figure 8.

As we can see, we check that each method used by a ConnectableElement
exists in the class to which it belongs. To do this, first we look for the class
and then look for methods with the same OpName as in the message of the
Communication Diagram.

If no method is found, an error is given as output. If one is found, we check
that the number of parameters with the method invoked in the communication
diagram is the same as in its definition and that these parameters have the
same types. If the method has the same number of parameters but the types
are different, the reduction of the property also informs us. The reasons for this
error might be that the information of the types has not been included in the
communication diagram or that this information has been included incorrectly.

A Precise Approach for the Analysis of the UML Models Consistency 81

(fmod PROPERTY2 is...
op testProp2 : ClassDiagram CommunicationDiag -> String .
op testProp2 : ClassList MessageList -> String .
*** Params: operation list of a class, receiver and its message list.
op testProp2 : OpList ConnectableElement Message -> String .
*** Verify that the messsage is among the OpNames from OpList.
op testProp2 : Message OpList ConnectableElement Int -> String .
...
eq testProp2(classDiagram(CL,OL,AL, LL),

communicationDiag(LifeLineL, ML)) = testPropInter2 (CL, ML) .

eq testProp2(CL, empty) = "" .
eq testProp2(CL, M ML) =

testProp2(getOperations(getClassbyName(getClassName(
getReceiver(M)), CL)), getReceiver(M), M)

+ testProp2(CL, ML) .

eq testProp2(OpL, CE, M) =
if findOps (OpL, M) =/= nullOp then
testProp2(M, findOps(OpL, M),CE,0)

else
"ERROR. The message (" + string(getMsgNumber(M))
+ ". " + string(getMsgLabel(M)) + ") "
+" doesn’t exist in the class "+ string(getClassName(CE)) + ". "

fi .
...
eq testProp2(M, nullOp, CE, I) =

if I == 0 then "ERROR. The signature of the message ("
+ string(getMsgNumber(M)) + ". " + string(getMsgLabel(M)) + ") "
+"doesn’t concur with the method of the class " +
+string(getClassName(CE))+" neither in number of parameters nor "
+ "type of them. "

else "ERROR. The signature of the message ("+string(getMsgNumber(M))
+ ". " + string(getMsgLabel(M)) + ") "
+" doesn’t concur with the method of the class "
+ string(getClassName(CE))
+ " because the types of the parameters are not correct. "

fi .
eq testProp2(M, Op OpL, CER, I) =

if length(getOpParamList(Op)) == length(getMsgParamList(M)) then
if getTExpr(getOpParamList(Op)) == getTExpr(getMsgParamList(M))

then ""
else testProp2(M, OpL, CE, I + 1) fi

else testProp2(M, OpL, CE, I)
fi .

endfm)

Fig. 8. Formalization of the property regarding Methods (section 3.2)

82 F.J. Lucas Mart́ınez and A. Toval Álvarez

Fig. 9. Example of a UML Communication Diagram that breaks the property verified
in section 3.2

reduce in RESERVE :
testProp2(classDiagEj,CDreserve)

result String :
"ERROR. The signature of the message (\001\001. get) doesn’t concur
with the method of the class userStore neither in number of
parameters nor type of them.
ERROR. The signature of the message (\001\003. new) doesn’t concur
with the method of the class Reserve because the types of the
parameters are not correct.
ERROR. The message (\001\004. addReserve) doesn’t exist in the class
reserveStore. "

Fig. 10. Reduction in Maude of the property verified in section 3.2 on the example of
the Figure 9

Finally, in the verification of this property, we cannot take into account the
syntactic identity of the name of the parameters, since the identifiers that appear
in the method definition, which are called formal parameters, cannot be the same
as the identifiers of the parameters in the invocation, called actual parameters,
and which will replace the formal parameters in the body of the method.

Figure 9 shows an example that contains the three possible errors that this
property detects. The first error is the message 1.4 addReserve, which does not
exist in the class reserveStore. The second error is found in the message 1.1
get(idU,id), this method exists in the class userStore, but does not have the
same numbers of parameters. The last error is produced in the message 1.3
new(u,u) (the method is declared in the class Reserve) also has two parameters,
but the type of the second parameter is User instead of Product. The property
reduction are shown in the Figure 10.

4 Related Work

In [6], a general and updated view of the consistency problems within the UML
based development process are given. In this work, the use of techniques to avoid

A Precise Approach for the Analysis of the UML Models Consistency 83

problems of consistency is justified, because UML is considered as a standard in
the development of systems.

The approach of formalizing the UML metamodel to guarantee the correct
development of models has been dealt with in many papers, although the for-
malization of the UML Communication Diagram has not been deeply studied.
Most of the approaches formalize other UML diagrams such as UML Class or
Statechart diagrams.

In [9], a proposal to verify UML models using B abstract machines for
UML Class Diagram is presented. Another paper [10] tackles the formaliza-
tion of UML models and discusses the integrity consistency check between dif-
ferent models. In this approach, the formal language Object-Z is used, which
allows the authors to implement each UML element as a class. None of these
approaches offers the possibility of making a automatic translation from the
models to the formal specification. Unlike them the formal framework pre-
sented in this paper is integrated with automatic translators that obtain the
specification that represent a model from the model depicted with a
CASE-tool.

Some research [11] has been done on formalization of the UML Statechart
diagram. This approach uses the SPIN model checker to perform the verification.
The tool verifies several properties and generates a sequence diagram that shows
how to reproduce the error in the model. However, this work suffers from some
problems, such as a poor efficiency of the implementation. In the Maude design,
efficiency has been considered from its beginning, resulting in a fast execution
of the reductions and rewrites.

5 Conclusions

This work presents a formal approach to improve the inter-diagrams consistency.
The specifications created in [1, 2, 3, 4] offer a good framework to guarantee the
model consistency, because all the specifications are integrated.

Furthermore, this formal framework has been revealed as a useful instrument
to realize verification of properties, both intra-model and inter-model. Modifying
the semantics of existing property specifications and/or adding new property
specification is very easy, once the formal framework (basic sorts, operations
and equations) is available. Another possible application is the realization of
precise transformations that help to find better models.

As further work, we will continue to implement properties to improve the
diagrams’ consistency. Moreover, we are searching for real case studies to justify
the use of algebraic specification within MDA. The integration of the Commu-
nication and Statechart Diagram is another of the research lines that we are
working on, in order to verify that each object that takes part in the commu-
nication diagram has a consistent state when the interaction finishes. Another
future work is the application of this approach on tools for the development of
Web Information Systems (WIS), like MIDAS-CASE[12].

84 F.J. Lucas Mart́ınez and A. Toval Álvarez

References

1. Fernández Alemán, J.L., Toval Álvarez, A.: Improving System Reliability via Rig-
orous Software Modeling: The UML Case. Proceedings of the 2001 IEEE Aerospace
Conference (track 10: Software and Computing), Montana, USA IEEE Computer
Society (2001)

2. Lucas Mart́ınez, F.J., Toval Álvarez, A.: Formal Verification of Properties in the
UML Collaboration Diagram. ICSSEA 2004: 3rd Workshop on SYSTEM TEST-
ING AND VALIDATION. Paris (2004)

3. Fernández Alemán, J.L., Toval Álvarez, A.: Can Intuition Become Rigorous? Foun-
dations for UML Model Verification Tools. International Symposium on Software
Reliability Engineering, Published by IEEE Press (2000)

4. Whittle, J., Araújo, J., Toval Álvarez, A., Fernández Alemán, J.L.: Rigorously
Automating Transformations of UML Behavior Models. Dynamic Behaviour in
UML Models: Semantic Questions in conjunction with UML 2000 York, UK ,
ACM SIGSOFT, IEEE Computer Society (2000)

5. OMG: Object Management Group. UML Superstructure 2.0. Draft adopted Spec-
ification. Retrieved from: http://www.omg.org/uml. (2004)

6. Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.L.: Consistency Problems in
UML-based Software Development. In UML Modeling Languages and Applica-
tions. UML 2004 Satellite Activities Lisbon, Portugal, October 11-15, 2004 Revised
Selected Papers. Jardim Nunes, N. Selic, B., Silva, A. Toval, A. (Eds.) Springer
Verlag vol. 3297 of LNCS (2004)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcote,
C.: Maude 2.0 Manual. Versión 1.0, http://maude.csl.sri.com/. (2003)

8. Lucas Mart́ınez, F.J., Toval Álvarez, A.: Algebraic Specification of the UML Col-
laboration Diagram and Applications. Tech. Rep. LSI 3, Department of Informatics
and Systems. University of Murcia. (2004)

9. Truong, N.T., Souquieres, J.: An approach for the verification of UML models
using B. 11th IEEE International Conference and Workshop on the Engineering
of Computer-Based Systems (ECBS’04) (2004)

10. Kim, S.K., Carrington, D.: A Formal Object-Oriented Approach to defining Con-
sistency Constraints for UML Models. 2004 Australian Software Engineering Con-
ference (ASWEC’04) (2004)

11. Litius, J., Porres Paltor, I.: vUML: a Tool for Verifying UML Models. 14th IEEE
International Conference on Automated Software Engineering (1999)

12. Vara, J., de Castro, V., Cáceres, P., Marcos, E.: Arquitectura de MIDAS-CASE:
una herramienta para el desarrollo de SIW basada en MDA. 4a Jornadas Iberoamer-
icanas de Ingenieŕıa del Software e Ingenieŕıa del Conocimiento. Madrid (2004)

	Introduction
	Algebraic Formalization of the UML Diagrams
	UML Class Diagram
	UML Communication Diagram

	Consistency Between UML Diagrams
	Verification of the Consistency Regarding Associations
	Verification of the Consistency Regarding Methods

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

