
Towards Systematic Model Assessment

Ruth Breu and Joanna Chimiak-Opoka

University of Innsbruck, Institute of Computer Science,
Techniker Str. 21a, Innsbruck, Austria

{Ruth.Breu, Joanna.Opoka}@uibk.ac.at
http://qe-informatik.uibk.ac.at/

Abstract. In this paper a novel approach for the tool–based quality
assurance of models is presented. The approach provides a meta model
framework for domain specific and tool–independent quality assessment
in heterogeneous model landscapes. In our framework we provide the
concepts of queries, checks and views defined on meta model level and
interpreted over the whole model landscape. Queries, checks and views
are described in a predicative language based on the structures of the
meta model.

1 Introduction

After years of intensive standardisation activities in the context of UML (Unified
Modelling Language) and the development of methods and tools, models have
found their way to real software development. More and more companies and
organisations use models to fill the gap between informal textual descriptions
of requirements and the realizing code. Usage scenarios of models range from
the analysis of business processes and system requirements to the documentation
of software architectures and model driven software development.

Not surprisingly the use of models in real applications reveals new require-
ments and challenges. One of these challenges is the quality assurance of the
models developed. Complex model landscapes (sets of related models) as e.g.
developed within software architecture documentation in general contain incon-
sistencies and gaps. Quality assurance of these model landscapes cannot be done
by pure manual inspection or review but requires tool assistance.

Drawing an analogy to quality assurance of code one can identify at least two
important sub–disciplines of model quality assurance: model testing and static
analysis of models.

Model testing can be applied in cases where the models are attached with
a kind of executability—like in model driven software development or model
simulation. We will not deal with this aspect in this paper and refer to [1] for
a testing approach in the context of workflow models.

In this paper we address the static analysis aspect of models. Modern
static code analysis deals with the quantitative analysis of dependencies within
the code and is intimately connected with the notion of code metrics [2]. Anal-
ogous approaches to static model analysis can be found in the context of UML

J. Akoka et al. (Eds.): ER Workshops 2005, LNCS 3770, pp. 398–409, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Systematic Model Assessment 399

diagrams [3]. However, the proposed indicators of high quality models, such
as for example general diagramming metrics (e.g. number of elements of dia-
grams, number of stereotypes of diagrams) or diagram–specific metrics (e.g. for
class/package diagrams: depth of inheritance hierarchy, number of child classes,
number of parameters), are far less accepted than indicators of high quality code.

In this paper we present a novel approach for model assessment which goes
into a different direction. Our first observation is that the quality of a model
landscape is mainly influenced by the interplay of model elements and dia-
gram types. For example, consider a requirements specification consisting of the
following set of models: use case model, scenarios referring to the use cases, class
model, state diagrams and schematic use case descriptions. All these models are
based on a set of model elements like use case, actor and business class. The
use of these model elements in different models creates complex interrela-
tionships and multiple sources of inconsistency. In the example, the initiating
actor in the use case description has to be an actor related with the use case in
the use case model. The model elements and their interrelationships cannot be
defined in a general way for all kinds of UML diagram types but depend on the
underlying method and application context.

A second observation is that in many cases the quality checks of a model
landscape cannot be done in an automatic way but the quality manager can
be supported by views that provide aggregated information about the model
landscape. For instance, a view on an enterprise model may list all information
objects and applications together with the information which information object
is related with which application in the model. This information can be generated
from the business process model and enables the quality manager to perform
cross–checks on the model landscape. In general we distinguish queries, checks
and views. Queries are functions on the current status of the model landscape
returning some value or model element, checks are queries with Boolean result.
Queries may be embedded in views that represent queries for multiple input.

The applications of our approach are many–fold contexts in which complex
model landscapes are developed. This ranges from requirements specification to
the documentation of software architectures and enterprise models. In particular,
the concepts presented in the sequel are aligned with the requirements of three
of our cooperation projects with industrial partners (MedFlow—Quality Assess-
ment of Business Processes in Health Care, ProSecO—IT Security Assessment
in Enterprises, Pro2SA—Model–Based Strategic Alignment).

An important further aspect coming out of these applications is the hetero-
geneity of the model landscape. We want to reason about model elements
which are defined in (UML–)tools, semi–formal or formal text documents or
even code. As a common syntactic framework we make therefore use of XML
(Extensible Markup Language).

The sequel of the paper is structured as follows. In section 2 we present related
work and give more information about the application context in our projects.
Section 3 introduces the basic framework and concepts and in section 4 we
introduce the concepts of queries, checks and views. Section 5 draws a conclusion.

400 R. Breu and J. Chimiak-Opoka

2 Related Work

There are several approaches, mostly in industrial contexts that deal with quality
checks of model landscapes. In the ARCUS project [4] in cooperation of the Bay-
erische Landesbank and sd&m a meta model for describing IT landscapes has been
defined. An important element of this meta model are relationships between the
model elements that define a notion of traceability. A plug–in for an UML tool sup-
ports a fixed set of queries over the model landscape. In a study at BMW [5] a set
of quality checks for model landscapes that are input to an in–house MDA (Model
Driven Architecture) tool has been developed. As further example Siemens Prince-
ton has developed a tool for checking requirements specifications [6]. For the imple-
mentation these approaches use the scripting facilities or programming interfaces
of UML tools or graphic programs such as Rational Rose, Together, Visio or Ado-
nis [7, 8]. These three examples are indicators of the practical relevance of the topic.
Our approach goes one level beyond in the respect that it provides a generic plat-
form for describing checks andviews over a given set of interrelatedmodel elements.

Concerning the syntactic and semantic frameworkweuse parts of theOCL(Ob-
ject Constraint Language, v. 2.0) for describing navigations over model elements.
Existingmethodsandtools are ratherdedicatedtohomogeneous environments.For
example the Executable UML [9] can be used to execute and test models defined
in UML. This is enabled by a formal action semantics for models (in an action lan-
guage) and specification of constraints tags (in OCL). And with the OCLE tool [10]
it is possible to check UML models against well–formedness rules, methodological,
profile or target implementation language rules expressed in OCL. It is also pos-
sible to obtain metric information about UML models. This tool also uses XML,
but only as a data tier, while we use XML also for modelling purposes. Our method
provides mechanisms to carry out checks for domain specific models defined in het-
erogeneous environment.

In the subsequent chapters we present the basic concepts of QUARC (QUAlity
Requirement Checks). Currently we work on a tool–based realisation which will
be presented in accompanying papers. QUARC is aligned with the requirements
of three of our cooperation projects: MedFlow, ProSecO, and Pro2SA. In context
of our projects the focus of QUARC is the automatic check of model consistency
and the generation of views for supporting manual checks, e.g. concerning media or
applications ruptures and appropriate tool support of the actors (MedFlow); the
generation of aggregated views in a highly linked heterogeneous model landscape
(ProSecO); information aggregation in model landscapes and evaluation of quan-
titative data associated with model elements (Pro2SA).

Although the case study presented in the subsequent sections has been taken
out of the MedFlow project, the method is not specific for clinical process and it
can be also applied to models from other domains (e.g. industrial, commercial,
enterprise). In MedFlow we develop an approach for the systematic quality check
of models describing business processes in health care. The background of this
project is the task of targeting standard hospital information systems towards the
needs of complex organisational processes in hospitals. More about this project
can be also found in [11].

Towards Systematic Model Assessment 401

3 Basic Concepts

In this section we introduce the basic concepts and model packages our approach
is based on. Because the concepts are tightly correlated, we used arrow symbols
for cross–definitions (→ definition).

Model. A model (at instance level) is a structured document that is subject of the
quality assessment. We consider any type of UML models like class diagrams
and sequence diagrams, but also text documents or code. Models at instance
level are based on → meta model elements to describe properties of systems.
Each model at instance level has an associated → model type.

Meta model. The meta model defines the universe of discourse for the quality
assessment. The meta model is a class diagram modelling the → model ele-
ments and their relationships. This class diagram is contained in the → meta
model package. A meta model may be associated with a specific method (e.g.
use–case based requirements specification), a particular application domain
(enterprise models, embedded systems) or with a particular development en-
vironment (e.g. a meta model associated with an MDA–tool).

Meta model element. A meta model element is a class in the → meta model de-
scribing a basic concept used in the → models at instance level. Examples for
meta model elements are actor, information resource, business process, action
and logical tool. Meta model elements are the basic units over which queries
and views can be formulated. Meta model elements may have attributes (e.g.
the medium of an information resource) and may be linked with other meta
model elements. These links have to be directed (in either or both directions)
indicating where the → model type package link is maintained.

Meta model package. The meta model package contains the → meta model,
the → EM–mapping, the → model type package, and the queries, checks and
views.

Model Type. A model type groups models in a category. A model type (at in-
stance level) is subject of the quality assessment. The model type characterises
the role of the model within the underlying method. For instance, we may have
model types business class diagram and technical class diagram in a context
where we assess the documentation of software architectures. The interdepen-
dencies of the model types are described in the → model type package.

Model type package. The model type package contains a class diagram
describing the interrelationships between the → model types. We call an in-
stance of this class diagram a model landscape.

EM–mapping (Meta Model Element–Model Type Mapping). The EM–
mapping maps the → meta model elements to the → model types defining in
which model type the meta model elements are defined and used. As an exam-
ple, the model element information is defined in the Information Model and
used in the Business Process Model.

In the sequel we provide an example together with more detailed information
about the basic concepts. The description of queries, checks and views is intro-
duced in section 4.

402 R. Breu and J. Chimiak-Opoka

Fig. 1. The notions on meta model level and user model

Figure 1 summarises the notions at meta model level and user model level to-
gether with their interrelationships. The two levels correspond to the M2 layer
models (Meta Model Level) and M1 layer models (User Models) defined in the
MOF (Meta–Object Facility) Metadata Architecture.

3.1 Meta Model

Example 1. Figure 2 depicts (a portion of) the meta model for the quality assess-
ment of clinical process descriptions. Processes are defined in a hierarchical way
based on the notion of sub–processes and actions. Each action is associated with
the executing actor, input and output information and logical tools supporting
the executing actor.

3.2 Model Type Package

The model type package describes the model landscape that is subject of the qual-
ity assessment. The model types are related with «uses» relationships which
means that model elements of one model type are used in the other model type.
Aggregation is used for a hierarchical structuring of model types.

Example 2. Figure 2 depicts the set of model types used in our case study.

Each model type is associated with a type which is either an UML diagram
type or XML, i.e. we assume non–UML models to be interconnected via XML
structures.

Example 3. The following models, from Example 2, are defined in UML: Business
Process Model as activity diagrams, Organisation Model and Information Model
as class diagrams, Logical Tool Model as component diagrams and finally Physi-
cal Tool Model as deployment diagrams. The other models are defined in XML:
Description of Actions and Permission Model.

Towards Systematic Model Assessment 403

Fig. 2. A meta model (on the left) and model types (on the right) for clinical process

For each model type we assume an XML–representation. We have chosen XML
because it is a standard notation and already supported in the UML–context by
XMI (XML Metadata Interchange) as a standard format for model interchange.
The most important features of XMI are its built–in nesting mechanism and the
possibility of transformation from OCL–navigation–expressions to XPath–
expressions.

In our case study the information model is an UML class diagram intercon-
nected via its XMI representation, whereas the description of actions is a text
document with an XML interface. The action description contains an informal
description and information about the executing actor, input and output infor-
mation and the logical and physical tool used in this action.

Example 4. Figure 3 depicts an action description at instance level. The XML de-
scription is based on our XML Schema for action description (due to limited space
we do not present its full syntax here), in which the following attributes of an ac-
tion are defined: name of the action, role involved in execution of it, input and
output information needed or produced by it, tool, both logical and physical,

1 <action name="check�of�patient ’s�data">
2 <role name="control �station "/>
3 <input >

4 <information name="referral ">
5 </input >

6 <tool logical ="MEDAS�(KIS)" physical ="PC-LST -1"/>
7 <tool logical ="Power�Chart�(KIS)" physical ="PC-LST -1"/>

8 <tool logical ="RIS" physical ="PC-LST -2"/>
9 </action >

Fig. 3. Sample Ation description

404 R. Breu and J. Chimiak-Opoka

Fig. 4. Mapping between abstract and concrete level

used for execution of it and some other properties. In this example we deal with
check of patient’s data action executed by control station role, which needs
referral as an input information and three tools to be completed.

3.3 EM–Mapping

The EM–mapping provides the interconnection between meta model elements and
the model types. More precisely we define for each meta model element,

– in which model type it is defined,
– in which model types it is used, and
– how attributes and outgoing associations can be retrieved.

Figure 4 illustrates the kind of information that is provided for each meta
model element. The type is either defined or used, the element attribute maps the
meta model element to some model element of the target model type. For UML
diagram types this means that the meta model elements are mapped to elements
of the UML meta model (in some cases the meta model may itself contain elements
of the UML meta model). The attributes attrAccess and linkAccess define the ac-
cess to the attributes and outgoing links of the meta model element at XML level,
an aspect that is not treated in more detail in this paper.

Example 5. Table 1 depicts a part of the mapping for the meta model elements in
our case study.

Table 1. Sample EM–Mapping (Schematic)

Meta Element Type Model Type Element
Action def Description of Actions XML::action.xsd::action
Action use Business Process Model UML::Activity Diagram::Action
Information def Information Model UML::Class Diagram::Class::Information
Information use Description of Actions XML::action.xsd::action::input::information
Information use Description of Actions XML::action.xsd::action::output::information
Logical Tool def Logical Tool Model UML::Component Diagram::Component
Logical Tool use Description of Actions XML::action.xsd::action::tool.logical
.

Towards Systematic Model Assessment 405

4 Queries, Checks and Views

Based on the structure of meta model elements in the next step a set of queries,
checks and views can be defined. These are defined by method responsibles whose
task is to assist developer teams in the systematic quality assessment of the models
developed.

Query. A query is a function overmeta model element instances returning a value
(e.g. a Boolean value or an integer) or meta model element instance(s). The result
of a query may depend on the input parameters and the network of currently exist-
ing instances of meta model elements in the model landscape. The goal of a query
is to provide the modeller with information about the model landscape.

Example 6. Examples of queries in our case study may be the following: Amount
of actors in the model landscape; The set of logical tools an actor is related with
in the business process model (via the actor–action–logical tool relationships).

Check. A check is a query with Boolean value as result. The goal of a check is
to assess a model landscape based on a given constraint. Moreover, we associate
each model landscape with a set of predefined (well–formedness) checks that are
related with the model type package and the EM–mapping. The user models have
to conform to the model structure described in the model type package. For in-
stance, each model element that is used in the model landscape should also be
defined in some model (checking the consistency of used and defined relations
in the EM–mapping).

Example 7. An example of a check is the following: There exists at least one actor
and one information class in the model landscape.
An example of a predefined check: Each action used in Business Process Model has
to have a textual description in Description of Actions.

View. A view is a query whose result is represented for all (or a restricted set
of) input elements and may be equipped with further information regarding the
quality assessment of the result. The goal of a view is to present aggregated infor-
mation over a model landscape and to support the modeller in model inspection.
The benefit of the view is to support the modeller in a cross–check of the business
process model.

Example 8. Table 2 depicts the example view InformationInLogicalTool list-
ing all information types and logical tools defined in user models and indicat-
ing if the given information is related with the given logical tool. Here Referral,
Diagnostic F indings and Image are classes in the Information Model (class di-
agram) and KIS, PACS, PaterNoster are components in Logical Tool Model
(component diagram). The result is defined by the OCL–like expression as given
in Example 9 and is true for a given information and a given logical tool, if the
information is saved in the tool.

Queries, checks and views in our approach are described by OCL based pred-
icative language expressions that are constructed over the class diagram of the

406 R. Breu and J. Chimiak-Opoka

Table 2. Sample View InformationInLogicalTool

Information Logical Tool Result
Referral KIS true
Referral PACS false
Referral PaterNoster true
Referral
Diagnostic Findings KIS true
Diagnostic Findings PACS false
Diagnostic Findings PaterNoster true
Diagnostic Findings
Image KIS false
Image PACS true
Image PaterNoster true
Image
.

Meta Model ⇒ Model Type
Package

⇒
E1 E2 . . . result
e1.1 e2.1 . . . value1.1. . .
e1.1 e2.2 . . . value1.2. . .
.

⇒
Check 1: {e1.1}

Q1: A question?
W1: A warming!

. . .

⇒
�

��
(1) definition of ele-
ments and query

(2) interpretation
(defining element
instance sets)

(3) queries result ta-
ble (value for each tu-
ple of elements)

(4) check result set
with questions and
warnings

(5) further analysis
of check results

Fig. 5. The process of defining, interpreting and executing a view

meta model. These expressions are embedded into XML structures that provide
the syntactical framework.

In Fig. 5 the process of defining, interpreting and executing a view is depicted.
In the first step the view is defined over the meta model elements. Then in the
second step the sets of instances of meta elements are collected from the corre-
sponding user models (via the model database). The result values are calculated
for each combination of elements of the given sets and in the third step the result
table is presented. In the fourth step the result table is subject of further analysis
and automatically executed checks. The result of the fourth step are sets of ele-
ments fulfilling the condition in the given check. For non–empty check sets ques-
tions and warnings may be shown to the user. The questions are used in checks,
for which additional analysis of the result is needed. The warnings could be used
in checks for well–formedness rules. In the fifth step the analysis of the questions
and warnings is made by user.

In the sequel we will present in more detail the structure of queries, checks and
views together with sample expressions.

4.1 Queries and Checks

Checks and queries are defined as functions over individual or aggregated ele-
ments. The formal definition of such a function is expressed as follows:

Q(p1 : T1, . . . ,pn : Tn) T : E (1)

where Q is a query or check name; pi is an instance of meta model element Ti;
a result is an expression E of a given type T . If type T is Boolean we call the
function Q(·) a check.

Towards Systematic Model Assessment 407

Example 9. A simple check could answer the question if a given information is
saved in a given logical tool:

InformationInLogicalTool(i:Information, lt:LogicalTool) Boolean
: i.logicaltool.select(name = lt.name).notEmpty().

4.2 Views

The views are built according to information from concrete models and formally
we define them as follows:

V(T1 [F1], . . . , Tn [Fn]) T (2)

where V is a view name; Ti is one of n types (meta elements), which could be
optionally filtered with a given filter Fi.

Let Pi denote the set of instances of the given meta element Ti occurring in
the user models. To complete the view we have to consider all tuples from the
Cartesian product P1×· · ·×Pn. For each tuple (p1 : T1, . . . ,pn : Tn) we calculate
the result (r) using a query defined in the view (Q(·) : T), thus r = Q(p1, . . . ,pn).
We extend the tuple adding the result and we therefore obtain extended tuples in
form (p1 : T1, . . . ,pn : Tn, r : T). The result of the view is a set of extended tuples.

Example 10. We define a view for informations and logical tools:

VInformationInLogicalTool(Information, LogicalT oool) Boolean.

In this view we use the query InformationInLogicalTool(·), as defined in Ex-
ample 9. The result is a set of tuples:

Tuple(i : Information, lt : LogicalTool, r : Boolean),
where r = InformationInLogicalTool(i,lt).

An example result of an evaluation of the view is shown in Table 2.

If we would like to consider only a subset of the input set of instances we have
to apply a filter. The filter Fi defines a constraint for the set Pi. A set with filter
is defined as Pi = {pi : Fi(pi)}.

Example 11. If we would like to consider only physical tools (pt) located in the
radiology ward then we use the following filter.

pt.location=’Radiology’

Complementary Checks. Additionally we support the definition of comple-
mentary checks, questions and warnings within the view. Complementary checks
are defined as queries over the set of tuples (result table). As a result of a comple-
mentary check we obtain the set of elements or tuples fulfilling the query.

408 R. Breu and J. Chimiak-Opoka

Example 12. Let’s say we would like to find unsaved information. We use the re-
sult of the view defined in Example 10 (VInformationInLogicalTool), and make a
complementary check over this result. If we denote the result by view:Set(Tuple)
then we can find all unsaved information using the following expression:

context view def:
collect (info : Information |

self.select(i = info and r = ’true’).size() = 0).

If we obtain a non–empty set as a result of complementary check, the warnings
(see Example 13) or the questions (see Example 14) are shown. Warnings and
questions are described in natural language and are not processed automatically.
Warnings could be defined for checks over well–formedness rules.

Example 13. If the result of the complementary check defined in Example 12 is
a non–empty set then the set will be listed and the warning Each Information
should have a medium! will be shown.

Example 14. Let’s say we would like to find redundant information, i.e. informa-
tion saved in many logical tools. We use the result of the view defined in Exam-
ple 10 (VInformationInLogicalTool), and make a complementary check over this re-
sult using the following expression:

context view def:
collect (info : Information |

self.select(i = info and r = ’true’).size() > 1).

If the result of the complementary check is a non–empty set then the set will
be listed and the question Is consistency of the redundant information warranted?
will be shown.

5 Conclusion

In the preceding sections we have presented a novel approach for the tool–based
quality assurance of models. A main idea of this approach is to provide a meta
model framework supporting application–specific quality assessment, tool–
independent expression of quality assessment criteria and quality assessment in
heterogeneous model landscapes both comprising (UML) models and textual
models.

In our approach we provide the concepts of queries, checks and views. Queries
are model retrievals, checks support automatic check of model constraints. Views
support the modeller with aggregated information about the model landscape and
may be associated with informal checks and heuristic quality indicators.

The approach presented is work in progress. Currently we both work on the
final definition of an OCL based predicative language to describe queries, checks
and views and on the software architecture of the related tool. Our work is driven
by practical requirements of cooperation projects with industrial partners.

Towards Systematic Model Assessment 409

References

1. Breu, R., Breu, M., Hafner, M., Nowak, A.: Web service engineering—advancing
a new software engineering discipline. In: Proc. of 5th International Conference on
Web Engineering. (2005) (accepted).

2. Fenton, N.E., Pfleeger, S.L.: Software Metrics — A Rigorous and Practical Ap-
proach. Thomson, London (1997)

3. Gronback, R.: Model validation: Applying audits and metrics to
uml models. In: Proc. of Borland Conference. (2004) (available on
http://bdn.borland.com/borcon2004/).

4. Heberling, M., Maier, C., Tensi, T.: Visual Modeling and Managing the Software
Architecture Landscape in a Large Enterprise by an Extension of the UML. In:
Second Workshop on Domain-Specific Visual Languages. An OOPSLA Workshop,
Seattle, WA (2002)

5. Jug, F.: Methods and techniques for quality assurance in software development
process in bmw group (in german). Master’s thesis, Technical University of Munich,
Dep. of Computer Science (2004)

6. Berenbach, B.: Evaluating the quality of a uml business model. In: Proc. of 11 IEEE
International Requirements Engineering Conference, Monterey, CA, USA (2003)

7. Junginger, S., Kuehn, H., Strobl, R., Karagiannis, D.: The next generation business
process management toolkit ADONIS (in German). In: Wirtschaftsinformatik. Vol-
ume 42. University of Trier (2000) 392–401

8. BOC: Adonis. http://www.boc-eu.com/advisor/adonis.html (2000) access 2005-
04-24.

9. Mellor, S.J., Balcer, M.J.: Executable UML. A Foundation for Model-Driven Ar-
chitecture. Addison-Wesley (2002)

10. LCI team: Object constraint language environment (2005) Computer Science Re-
search Laboratory, ”BABES-BOLYAI” University, Romania.

11. Saboor, S., Ammenwerth, E., Wurz, M., Chimiak-Opoka, J.: Medflow—improving
modelling and assessment of clinical processes. In: Proc. of 19th Medical Informatics
Europe, MIE 2005. (2005) (accepted for oral presentation).

	Introduction
	Related Work
	Basic Concepts
	Meta Model
	Model Type Package
	EM--Mapping

	Queries, Checks and Views
	Queries and Checks
	Views

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

