

L. Delcambre et al. (Eds.): ER 2005, LNCS 3716, pp. 209 – 224, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Applying Modular Method Engineering to Validate
and Extend the RESCUE Requirements Process

Jolita Ralyté1, Neil Maiden2, Colette Rolland3, and Rébecca Deneckère3

1 CUI, University of Geneva, Rue de Général Dufour, 24, CH-1211 Genève 4, Switzerland
ralyte@cui.unige.ch

2 Centre for HCI Design, City University, Northampton Square, London EC1V OHB, UK
N.A.M.Maiden@city.ac.uk

3 CRI, University of Paris 1 – Sorbonne, 90 Rue de Tolbiac, 75013 Paris, France
{rolland, denecker}@univ-paris1.fr

Abstract. Configuring and applying complex requirements processes in
organisations remains a challenging problem. This paper reports the application
of the Map-driven Modular Method Re-engineering approach (MMMR) to a
research-based requirements process called RESCUE. RESCUE had evolved in
the light of research findings and client requests. The MMMR approach was
applied to model the RESCUE process, identify omissions and weaknesses, and
to reason about improvements to RESCUE that are currently being
implemented. Results have implications for both the scalability and
effectiveness of the MMMR approach and for innovative requirements
processes such as RESCUE.

1 Introduction

Establishing the requirements for software-based socio-technical systems remains a
challenge for many organisations. One reason for this is the increasing complexity of
the processes needed to establish such requirements effectively. Although some
robust processes are emerging, such as REVEAL [4], KAOS [16] and RUP [6], we
still lack tried-and-tested techniques for manipulating and adapting these requirements
processes so that they meet the needs and constraints of client organisations. This
paper reports the results of a collaboration between method engineering and
requirements engineering researchers to apply one formalism – the MAP formalism
[14] – to model and extend the RESCUE requirements process [10].

Our objectives for this work were two-fold. The RESCUE team wanted to validate
and extend the RESCUE process and improve its effectiveness in future requirements
engineering projects. The authors of the MAP formalism wanted to test the utility of
the map-driven method re-engineering (MMMR) approach [12] for verifying,
extending, customising and integrating a full-scale requirements process. RESCUE is
a complex and multi-disciplinary process that has been used to specify requirements
for several air traffic management systems [9; 10]. In spite of these successes the lack
of a formal representation of the process led to concerns about the completeness and
effectiveness of RESCUE. Therefore the MMMR approach was applied to achieve
three goals. Firstly, it was applied to verify the RESCUE process to discover gaps and
inconsistencies in the process. In the MMMR approach this was achieved by

210 J. Ralyté et al.

discovering missing and single strategies for achieving process intentions. Secondly it
was used to extend RESCUE by adding new strategies based on reported good
practice and academic research for scenario-based requirements processes. Thirdly,
the maps were used to enable local customization of RESCUE to meet client process
needs and constraints.

The remainder of this paper is in 5 parts. Section 2 describes the MMMR approach.
Section 3 describes the RESCUE process. Section 4 describes how we re-engineered
RESCUE using MMMR. Section 5 reports how RESCUE was extended using this re-
engineering work. The paper ends with a review of this work, and outlines future
work.

2 Map-Driven Modular Method Re-engineering (MMMR)

Our approach for method re-engineering uses the MAP formalism [14]. This section
briefly introduces this formalism and describes the Map-driven Modular Method Re-
engineering (MMMR) approach.

2.1 The Map Formalism

The MAP formalism provides a process representation system based on a non-
deterministic ordering of intentions and strategies. An intention Ii is a goal to be
achieved by the performance of an activity whereas a strategy Sij is an approach, a
manner to achieve an intention. Following the Map formalism, several strategies can
be provided by the process model to achieve each intention.

Another key element of a map is a triplet <Ii, Ij, Sij> named a section. A section
represents a way to achieve the target intention Ij from the source intention Ii

following the strategy Sij. Each section of the map captures the condition to achieve an
intention and the specific manner in which the task associated with the target intention
can be performed. This manner is called an Intention Achievement Guideline (IAG).

The arrangement of the sections in a map forms a labelled directed graph with
intentions as nodes and strategies as edges. The directed nature of the graph shows
which intentions can follow each other. Two types of progression guidelines,
Intention Selection Guideline (ISG) and Strategy Selection Guideline (SSG), help to
select the next intention and the next section respectively.

The process model represented in the form of a map has a modular structure; each
of its IAGs represents a more or less autonomous guideline which can be simple,
tactical or strategic with regard to its content, formality, granularity, etc. A simple
guideline may have an informal content and advise on how to proceed to handle the
situation in a narrative form. A tactical guideline is a complex guideline, which uses a
tree structure to relate its sub-guidelines. This guideline follows the NATURE process
modelling formalism [5], which proposes two different structures: the choice and the
plan. Each of its sub-guidelines belongs to one of these types of guideline. Finally, the
strategic guideline is a complex guideline using the MAP formalism. Therefore, the
map allows to represent methods in different levels of abstraction. An IAG associated
to one map section can also be represented by a map at a lower level of abstraction.

 Applying Modular Method Engineering to the RESCUE Requirements Process 211

2.2 The Process Model for Map-Driven Modular Method Re-engineering

We represent the process model of every method as a map with its associated
guidelines. As mentioned above, the map structure offers the re-engineered method a
high degree of modularity and provides means to evaluate this method, to decompose
it into method chunks, to enhance it by adding new strategies to achieve its intentions,
etc. As shown in Fig. 1, our MMMR process model is also represented as a map.

B y completeness
validation

By progression

Guided

By modification

By correction

Template-based

By decomposition

By aggregation

By elicitation
of alternatives

Start
By structural
analysis

By functional
analysis

Stop

Define a guideline

Define a section

B y completeness
validation

By progression

Guided

By modification

By correction

Template-based

By decomposition

By aggregation

By elicitation
of alternatives

Start
By structural
analysis

By functional
analysis

Stop

Define a guideline

Define a section

Fig. 1. Process Model for Map-driven Method Re-engineering

According to this map structure, re-engineering the process model of a method
requires us first to redefine it in terms of map sections and their guidelines. For this
reason, our process seeks to achieve two core intentions: Define a section and Define
a guideline and proposes a set of strategies to satisfy them. For example, there are two
strategies By structural analysis and By functional analysis to achieve the intention
Define a section. The Structural analysis strategy is recommended when the re-
engineered method does not provide the method engineer with a formally defined
process model but with a simple description of the product to construct. This strategy
uses a glossary of generic process intentions to support the discovery of method
intentions. On the other hand, the Functional analysis strategy should be used if the
method has a defined process model that is expressed in the form of steps and
recommended actions. This strategy helps to identify the method map sections from
these actions, and steps.

When a section is defined, the method engineer can either define the guidelines
associated to this section (to progress to the intention Define a guideline) or define
new sections (to repeat the intention Define a section).

The definition of the section guidelines consists of describing the IAG associated
with each section, the ISG associated to a set of sections having the same source
intention and different target intentions and the SSG associated to every set of parallel
sections. The definition of these guidelines is supported by two strategies: the
Template based strategy and the Guided strategy. The former provides a template for
every type of guideline and provides advice to experts whereas the latter helps
novices by providing more detailed recommendations.

212 J. Ralyté et al.

The definition of new sections based on the existing ones (Fig. 1) may be achieved
in four different ways, or manners: By decomposition of an existing section into
several ones, By aggregation of a set of sections into a new one, By elicitation of
alternative sections to a given one, i.e. having an alternative strategy or an alternative
source or target intention, and By progression strategy which helps to define a new
section allowing to progress in the method map from the existing one.

Modifications of the sections (decomposition, aggregation) imply the revision of
the associated guidelines if already defined. The Modification strategy guides the
method engineer to accomplish these transformations. In a similar manner, the
process of guidelines definition may imply the transformation of existing sections.
For example, the decomposition of an intention achievement guideline could lead to
decomposition of the corresponding section. Such transformations can be
accomplished following the Correction strategy.

The method re-engineering process ends with the Completeness validation
strategy. This strategy helps to verify if all of the guidelines associated to the map
sections have been defined. Due to space limitation we cannot present all of these
guidelines. However some of them will be further explained in section 4 when used to
re-engineer the RESCUE approach that we introduce in the next section.

3 Introduction to RESCUE

The RESCUE (Requirements Engineering with Scenarios for User-Centred
Engineering) process [9] supports a concurrent engineering process in which different
modelling and analysis processes take place in parallel. The concurrent processes are
structured into 4 streams shown in Fig. 2. Each stream has a unique and specific
purpose in the specification of a socio-technical system:

• Human activity modelling provides an understanding of how people work, in order
to baseline possible changes to it [17];

• System goal modelling enables the team to model the future system boundaries,
actor dependencies and most important system goals [18];

• Use case modelling and scenario-driven walkthroughs enable the team to
communicate more effectively with stakeholders and acquire complete, precise and
testable requirements from them [15];

• Requirements management enables the team to handle the outcomes of the other 3
streams effectively as well as impose quality checks on all aspects of the
requirements document [13].

Sub-processes during these 4 streams (shown in bubbles in Fig. 2) are co-ordinated
using 5 synchronisation stages that provide the project team with different
perspectives with which to analyse system boundaries, goals and scenarios. These 4
streams are supplemented with 2 additional processes. Acquiring requirements from
stakeholders is guided using ACRE [7], a framework for selecting the right
acquisition techniques in different situations.

 Applying Modular Method Engineering to the RESCUE Requirements Process 213

Fig. 2. The RESCUE process structure

Creativity workshops normally take place after the first synchronization stage, to
discover and surface requirements and design ideas that are essential for i* system
modelling and use case specification during stage 2. Stage 1 inputs to the workshops
include the system context model from the system goal modelling stream and use case
diagrams from the use case modelling stream, both shown in Fig. 2.

Scenarios walkthroughs to discover more complete requirements take place during
stage 4. Scenarios are generated and walked through using ART-SCENE, a web-
based scenario environment that was designed using one cognitive principle often
exploited during prototyping – that people recognise items, for example scenario
events generated by ART-SCENE, better than they recall them from memory [2]. For
each generated normal event and alternative course the facilitator guides stakeholders
to recognize, discover and document requirements.

Work and deliverables from RESCUE’s 4 streams are coordinated at 5 key
synchronisation points at the end of the 5 stages shown in Fig. 2, implemented as one
or more workshops with deliverables to be signed off by stakeholder representatives:

1. The boundaries point, where the team establishes first-cut system boundaries and
undertakes creative thinking to investigate these boundaries;

2. The work allocation point, where the team allocates functions between actors
according to boundaries, and describe interaction and dependencies between
these actors;

3. The generation point, where required actor goals, tasks and resources are
elaborated and modelled, and scenarios are generated;

214 J. Ralyté et al.

4. The coverage point, where stakeholders have walked through scenarios to
discover and express all requirements so that they are testable;

5. The consequences point, where stakeholders undertake walkthroughs of the
scenarios and system models to explore impacts of implementing the system as
specified on its environment.

Fig. 3. The RESCUE concept meta-model as a UML class diagram showing mappings between
constructs in the 3 model types

The synchronisation checks applied at these 5 points are designed using a
RESCUE meta-model of human activity, use case and i* modelling concepts
constructed specifically to design the synchronisation checks. It is shown in
simplified form in Fig. 3 – the darker horizontal lines define the baseline concept
mappings across the different models used in RESCUE. In simple terms, the meta-
model maps actor goals in human activity models to requirements in use case
descriptions and i* goals and soft goals. Likewise, human activities map to use cases,
and human actions to use case actions that involve human actors in use cases and
tasks undertaken by human actors in i* models. Human activity resources map to i*
resources and objects manipulated in use case actions, and actors in all 3 types of
model are mapped. The complete meta-model is more refined. Types and attributes
are applied to constrain possible mappings, for example use case descriptions and i*
models describe system actors, however only human actors in these models can be
mapped to actors in human activity models.

RESCUE was originally developed to support the scenario-driven specification of
requirements using ART-SCENE [11]. Streams such as use case modelling were
developed to provide direct inputs into ART-SCENE’s scenario generation tool, and
other streams such as activity modelling and goal modelled were added to improve
the completeness and correctness of the use case specifications. Other changes were
made in response to client requests as the process was rolled out on different projects.
At no time was RESCUE re-engineered systematically to improve its completeness,
to enable it to be customized to meet the needs of different clients or to support
effective integration with other processes with the RUP. Therefore, in the summer of
2004, a collaborative exercise to model and re-engineer RESCUE using MMMR was
undertaken.

Use case
1
m

0..1

1..2

Requirement
0..m
0..m

0..m

0..m

0..1
0..m

Goal/Soft goal
0..m
0..m

0..m

0..m

0..m
0..m

0..m
0..m

0..m

0..m

0..m

0..m
0..m

0..m

Depends on

Decomposes
into

Contributes
to

Goal

Human activity model Use case description i* system model

Action

Actor

Task

Actor

Activity

Action

Actor

Resource

Object

Resource

 Applying Modular Method Engineering to the RESCUE Requirements Process 215

4 Re-engineering RESCUE

The complexity of RESCUE meant that its process should be represented at different
levels of abstraction. The re-engineering activity started by defining the map at the
higher level of abstraction, then by detailing the IAG associated with each of its
sections as lower level maps.

4.1 Defining First Level RESCUE Map

As RESCUE is process-oriented, we apply the Functional analysis strategy (Fig. 1) to
re-engineer its process into a map. This strategy recommends to identify first the main
method intentions and the strategies proposed by the method to satisfy these
intentions, and finally, to order these intentions and strategies in the map.

Defining RESCUE map sections. The guideline associated to the Functional
analysis strategy recommends analysing the process steps to identify the key product
parts that are target products of these steps, and to couple them with some of the
generic intentions provided in our method base glossary representing the objective of
each step. Therefore, each method step is defined by one or more intentions. As
shown in Fig. 2, RESCUE is divided into five main stages. Based on these stages the
core intentions of the RESCUE map were identified as follows:

• The objective of the first RESCUE stage is to identify the boundaries of the system
under consideration and to approve them. We called this intention Agree on System
Boundaries. The RESCUE approach uses different models, such as human activity
model, context model and use case model, to achieve this objective. As a
consequence, we named the strategy that achieves this intention the Multi-
perspective modelling strategy.

• The second RESCUE stage is called work allocation. It is intended to deliver use
case specifications for each actor of the system. We called the corresponding
intention Specify Use Cases. The achievement of this stage is mainly based on
organisation of creativity workshops. Therefore we named the strategy Creativity
workshop driven.

• The third RESCUE stage results in the automatic scenario generation from the use
cases using ART-SCENE. Therefore, the name of the intention is Generate
Scenarios and the corresponding strategy is called With ART-SCENE.

• During the fourth RESCUE stage the stakeholders are invited to walk through the
generated scenarios to discover and express requirements so that they are testable.
As a result, the main intention of this stage is Specify Requirements and the
strategy is called With Scenario Walkthrough.

• Finally, the fifth RESCUE stage deals with requirement validation by analysing the
impact of scenario execution and requirements correction, and new requirements
acquisition and specification if necessary. Consequently, we could define two main
intentions: (1) Validate Requirements, which can be achieved by following the
Impact Scenario Analysis strategy and (2) Specify Requirements, which is achieved
by following the Feedback strategy.

• The RESCUE process ends by delivering the complete set of requirements
specifications. We called this strategy the Delivery strategy.

216 J. Ralyté et al.

The next step recommended by the guideline consists in ordering the identified
intentions and strategies in a process map. For every intention and one associated
strategy we have to identify the pre-conditions that should be satisfied in order to
reach the intention following this strategy. That is, we need to identify the product
necessary to achieve this intention (the required input product) and then to identify
which intention produces this product. For example, the achievement of the intention
Specify Use Cases using the Creativity workshop driven strategy requires as input
products the models that are obtained during the first process stage, that is by
achieving the intention Agree on System Boundaries. The intention Specify
Requirements requires as input product scenarios that are obtained by achieving the
intention Generate Scenarios. Furthermore, the intention Specify Requirements was
identified twice (in stages four and five), but it is evident that we put this intention in
the map only once. In a similar manner we arranged the identified intentions and
strategies in the map and we obtained the first version of the RESCUE map shown in
Fig. 4.

Start

Agree on System
Boundaries

Multi-perspective
modelling

Specify
Use Cases

Creativity workshop driven

Specify
Requirements

Validate
Requirements

Stop

With scenario
walkthrough

By delivery
strategy

Impact scenario analysis

Feedback
strategy

Generate
Scenarios

With
ART-ACENE

Start

Agree on System
Boundaries

Multi-perspective
modelling

Specify
Use Cases

Creativity workshop driven

Specify
Requirements

Validate
Requirements

Stop

With scenario
walkthrough

By delivery
strategy

Impact scenario analysis

Feedback
strategy

Generate
Scenarios

With
ART-ACENE

Fig. 4. First version of the RESCUE map

Following Fig. 1, the next step is to refine the obtained map sections by applying
different strategies or to define different guidelines associated to this map. Let us
refine the map first.

Refining the RESCUE map. Each intention in the RESCUE map should be
modelled at the same level of abstraction. The intentions described in the first level
RESCUE map represent the main products that are obtained by applying RESCUE.
However, the scenarios produced by achieving the intention Generate Scenarios are
only used as a means to specify requirements in a specification that is the main
achievement from RESCUE. Therefore, we merged the sections <Specify Use Cases,
Generate Scenarios, With ART-SCENE> and <Generate Scenarios, Specify
Requirements, With scenario walkthrough> by applying the Aggregation strategy
(Fig. 1) to obtain a new section <Specify Use Cases, Specify Complete Requirements,
With generated scenario walkthrough>.

 Applying Modular Method Engineering to the RESCUE Requirements Process 217

Start

Agree on System
Boundaries

Multi-perspective modelling

Specify
Use Cases

Creativity workshop
driven

Specify Complete
Requirements

Validate
Requirements

Stop
With generated
scenario walkthrough

By delivery
strategy

Impact scenario
analysis

Feedback
strategy

By delivery strategy

With synchronisation
workshop

With synchronisation
workshop

With
synchronisation
workshop

Start

Agree on System
Boundaries

Multi-perspective modelling

Specify
Use Cases

Creativity workshop
driven

Specify Complete
Requirements

Validate
Requirements

Stop
With generated
scenario walkthrough

By delivery
strategy

Impact scenario
analysis

Feedback
strategy

By delivery strategy

With synchronisation
workshop

With synchronisation
workshop

With
synchronisation
workshop

Fig. 5. The RESCUE map

The Progression strategy (Fig. 1) allowed us to add new sections to the RESCUE
map. Each RESCUE stage ends by synchronising the results of that stage. To describe
these synchronisations we added three new sections to the RESCUE map: (1) <Agree
on System Boundaries, Agree on System Boundaries, With synchronisation
workshop>, (2) <Specify Use Cases, Specify Use Cases, With synchronisation
workshop> and (3) < Specify Complete Requirements, Specify Complete
Requirements, With synchronisation workshop>.

In a similar manner we added a new section <Specify Complete Requirements,
Stop, By delivery strategy > that ends the RESCUE process after achieving the
intention Specify Complete Requirements. Fig. 5 depicts the obtained first-level
RESCUE map.

4.2 Defining Second Level Maps

Each IAG associated to the RESCUE map can also be defined as a map. Therefore,
we re-applied the map definition process as defined in our MMMR (Fig. 1). Because
of the lack of space, we do not describe how all of the second level maps were
developed. Fig. 6 illustrates the map representing the IAG associated to the section
<Start, Agree on System Boundaries, Multi-perspective modelling strategy> of the
RESCUE map (Fig. 5). According to this map, the requirements engineer has to work
with four artefacts – the human activity, context and use case models, and the system
requirements documentation, to define system boundaries. The RESCUE approach
provides several different ways to achieve the four corresponding intentions. For
example, there are two strategies, With light weight ethnography techniques and With
DFD techniques, to Model Human Activity. The Cross checking strategies allow to
validate the correctness and coherence of the obtained models.

Fig. 7 shows another example of the second level map, the IAG associated to the
RESCUE map section <Specify Use Cases, Specify Complete Requirements, With
generated scenario walkthrough>. The RESCUE team generates scenarios and
walking through them using ART-SCENE to discover requirements by using different
walkthrough techniques. Requirements are documented using the VOLERE shell.

218 J. Ralyté et al.

 Start

Model Human
Activity

With high weight
ethnography
techniques

Build
Context Model

By actor
identificationWith DFD

techniques

Build Use Case
Diagram

Actor-driven

Event-
driven

Cross checking Cross checking

Document
System Level
Requirements

With VOLERE shell

Through
acquisition
techniques

Cross checking

By propagation

Stop
With structured
documentation

With stage
report

With stage
report

By layering

Start

Model Human
Activity

With high weight
ethnography
techniques

Build
Context Model

By actor
identificationWith DFD

techniques

Build Use Case
Diagram

Actor-driven

Event-
driven

Cross checking Cross checking

Document
System Level
Requirements

With VOLERE shell

Through
acquisition
techniques

Cross checking

By propagation

Stop
With structured
documentation

With stage
report

With stage
report

By layering

Fig. 6. Second level RESCUE map: the IAG associated to the section <Start, Agree on System
Boundaries, Multi-perspective modelling strategy>

Whilst the first level map represents a more or less linear process, the second level
maps are richer and often provide several strategies to achieve each intention. The
progression guidelines are important in the second level maps. Given that, each map
describes multiple manners, or ways, to achieve an intention, it needs to provide as
much guidance as possible for selecting the right intention for each situation in
RESCUE. An SSG provides this guidance for each set of parallel sections, whilst an
ISG has to help the selection of the next intention to attain.

The definition of selection arguments plays an important role in strategies
selection. In order to better define strategy selection arguments we propose a set of
predefined attributes such as time, amount of resources, required domain knowledge,
user involvement, difficulty of management, etc., that are specialised according to the
nature of the strategies to compare. These attributes allow us to evaluate different
aspects of the corresponding strategies and to compare them. Table 1 illustrates the
comparison of four strategies allowing to attain the intention Discover Requirements
from the intention Produce Agreed Scenario (Fig. 7).

Table 1. Comparison of four strategies to achieve the intention Discover Requirements from
the intention Produce Agreed Scenario

Strategy selection attributes Distributed
workshop

Individual
walkthrough

Facilitated
workshop

Mobile
walkthrough

Elapsed time to discover requirements/per scenario 5 0.5 0.5 0.3
Amount of analyst resource needed 0 0 2 1
Level of domain knowledge required High High Low Medium
Level of user involvement needed High High High Low
Level of management commitment needed Low Medium High Low
Capability to handle complex systems Medium Low High Medium
Capability to handle innovative systems Medium Low High Low
Capability to handle unstable requirements High High High High
Requirements discovery rate/hour <8 <8 8-10 8-10
Number of VOLERE attributes discovered 5 5 5 5

 Applying Modular Method Engineering to the RESCUE Requirements Process 219

 Start

Produce Agreed
Scenario

Text generation with
ART-SCENE

By
validation

By agreement Discover
Requirements

By distributed
workshop

By individual
walkthrough

By facilitated
workshopBy mobile

walkthrough in
the work place

Post
workshop

Document
Requirements

With VOLERE shell

VOLERE Quality GATE keeper

Stop

Delivery

Refinement

Merging

Aggregation

Start

Produce Agreed
Scenario

Text generation with
ART-SCENE

By
validation

By agreement Discover
Requirements

By distributed
workshop

By individual
walkthrough

By facilitated
workshopBy mobile

walkthrough in
the work place

Post
workshop

Document
Requirements

With VOLERE shell

VOLERE Quality GATE keeper

Stop

Delivery

Refinement

Merging

Aggregation

Fig. 7. IAG associated to the section <Specify Use Cases, Specify Complete Requirements, With
generated scenario walkthrough>

5 Validation and Extension of RESCUE

In order to validate and extend the RESCUE process we explored all its second level
maps, including some not shown in this paper. In particular we sought to overcome
the weakness of single strategy intentions of RESCUE map and create and develop
new strategies to achieve intentions that only have one strategy in the current version

Text generation with
ART-SCENE

By validation

By agreement

By distributed
workshop

By individual
walkthrough

By facilitated
workshop

By mobile walkthrough
in the work place

Post
workshop

With VOLERE shell

VOLERE Quality
GATE keeper

Stop

Delivery

Refinement

Merging

Aggregation

Video Generation
with ART-SCENE

By hazard analysis
By pattern-based
generation

Discover
Requirements

Document
Requirements

By video walkthrough

By prototyping
the scenarios

Start

Explain
System

Produce Agreed
Scenario

Delivery

By explanatory
walkthrough

With manual
SOPHIST rulesWith automated

SOPHIST rules

Text generation with
ART-SCENE

By validation

By agreement

By distributed
workshop

By individual
walkthrough

By facilitated
workshop

By mobile walkthrough
in the work place

Post
workshop

With VOLERE shell

VOLERE Quality
GATE keeper

Stop

Delivery

Refinement

Merging

Aggregation

Video Generation
with ART-SCENE

By hazard analysis
By pattern-based
generation

Discover
Requirements

Document
Requirements

By video walkthrough

By prototyping
the scenarios

Start

Explain
System

Produce Agreed
Scenario

Delivery

By explanatory
walkthrough

With manual
SOPHIST rulesWith automated

SOPHIST rules

Fig. 8. The guideline IAG <(Use case specifications), Specify Complete Requirements with
generated scenario walkthrough > enhanced with new sections

220 J. Ralyté et al.

of RESCUE. For example, we considered possible new strategies to enhance the
complete requirements specification process captured in the map of Fig. 7.

Fig. 8 shows the new process map for requirements specification with new sections
and strategies shown in dashed edges. By systematically reviewing and walking
through the process map, we were able to consider each intention in turn, and
brainstorm new strategies for each intention. As a consequence, 9 new strategies and
one new intention were identified and modelled. The new intention, Explain System,
was generated and added to the map in response to questions about how the process
ended. Not all instances of the process result in documented requirements. Scenarios
can also be used as effective communication and explanation devices for a new
system, independent of their use to discover requirements. Hence the new intention
and an associated new strategy, By explanatory walkthrough, added to the process
map. An explanatory walkthrough exploits the narrative structure of a scenario to
describe and explain the future system’s behaviour, and other types of requirement
linked to that behaviour. It is an important component of a requirements review or
read through activity.

The remainder of this section is two parts. The first outlines new strategies added
to the Complete Requirements Specification map as a result of the process modelling
exercise. The second describes strategy selection arguments in tabular form to
demonstrate how to select between these new strategies.

5.1 New Strategies for Specifying Complete Requirements

Two new strategies, Video Generation with ART-SCENE and Discover Requirements,
by Video Walkthrough were designed to produce the agreed scenario and discover
requirements. Currently ART-SCENE scenarios are text-based. A text-based use case
specification is input to ART-SCENE to generate an interactive and structured
scenario that describes normal and alternative course events in text form. However,
recent extensions to ART-SCENE to support multi-media representation of scenarios
[19] have revealed new opportunities for video-based scenario walkthroughs. Initial
trials reveal that multi-media scenario representations provide more cues from which
stakeholders can discover and document requirements [19]. Therefore, the use case
specification will be extended with a video sequence that describes the normal
behaviour of actors to achieve their goals, and use case normal course events are
linked to episodes, such as an air traffic controller communicating with a pilot, in the
digital video. The ART-SCENE algorithm will still be used to generate alternative
courses for each normal course event that are now linked directly to one or more
digital video episodes, thus producing an agreed scenario in a video form. To discover
requirements, an enhanced version of ART-SCENE will enable stakeholders to
control and play a digital video of the normal course behaviour. Then, during the
playing of the video, stakeholders are prompted with alternative course questions in
text form, such as what if the pilot misunderstands the air traffic controller, in
response to which they can document new requirements using existing ART-SCENE
functions. We hypothesise that richer scenario representations will lead to more
complete requirements discovery.

The brainstorming session also surfaced 3 other strategies for discovering
requirements. One strategy, By pattern-based generation, recalled earlier research

 Applying Modular Method Engineering to the RESCUE Requirements Process 221

undertaken by the RESCUE team that is not currently implemented in ART-SCENE.
Alexander's original ideas of a pattern [1] focus on the interactions between the
physical form of the built environment and how this form inhibits or facilitates various
sorts of individual and social behaviour in it. The emphasis is on the characteristics of
the environment that might facilitate or inhibit action. A pattern captures the essentials
of a 'good design' that maximises characteristics that facilitate desirable actions over
those that inhibit these actions. Applied to socio-technical system design with ART-
SCENE, a pattern must capture the essential elements of the software system
(expressed as functional and non-functional requirements), and how the form of this
system facilitates and inhibits desirable individual or social behaviour (expressed
using the scenario). It captures good designs that have been shown to facilitate
desirable behaviour expressed in the scenario [8].

Based on the discovery of this strategy, we will extend ART-SCENE with 2 types
of pattern that guide the discovery and documentation of system requirements. Firstly,
we will develop and implement patterns that describe classes of solutions, expressed
as generic requirement statements, to classes of abnormal behaviour and state in the
environment, expressed as alternative courses that instantiate these classes.
Implementation of these patterns in ART-SCENE is tractable because scenario
alternative courses are generated automatically using classes of abnormal behaviour
and state. During a scenario walkthrough, the pattern is applied to recommend generic
requirements statements that describe what a system shall do avoid or mitigate against
the effects of a selected alternative course [15]. For example, an expected event not
occurring can be handled by the system in different manners – by re-requesting the
event, by undertaking some default action, or by assuming that the event has taken
place.

Secondly, we will develop and implement socio-technical system design patterns
that link sequences of events and actions that describe desirable future system use in
the environment, expressed as scenario normal courses, to system requirements
facilitate the desirable and inhibit undesirable behaviour. Consider the collect-first-
objective-last pattern reported in [8]. A person who interacts with a system using a
personal item should not leave the personal item behind. One design to achieve this is
to make the user reclaim the item before achieving their goal. This design can be
found in ATMs, metro barriers and secure access systems, and can be specified
computationally as a pattern to match in a scenario normal course. Again, we
hypothesise that implementing these 2 strategies for By pattern-based generation will
lead to the discovery of more complete and correct requirements.

Another discovered strategy for discovering requirements from an agreed scenario
was By hazard analysis. In simple terms, hazard analysis applies simple techniques,
such as checklists, to discover hazards associated with a new system. ART-SCENE’s
automatic generation of scenario alternative courses can also identify potential hazards
associated with a specified system. To implement a full hazard analysis strategy
within ART-SCENE we will extend its model of abnormal behaviour and state to
include a more complete set of hazard classes, then introduce generation settings that
will allow a requirements engineer to generate scenarios that are tailored for more
rigorous hazard analysis.

Finally, we introduced two new strategies based on techniques from the SOPHIST
group with which to document requirements. Goetz & Rupp [3] report 25 authoring

222 J. Ralyté et al.

rules from psychotherapy that assist in the analysis and quality assurance of
requirements expressed in text form. Examples of these rules include (6) Clarify the
modal operators of imperative (e.g. the use of should, shall, must etc) and (12)
Question nouns without references (e.g. reference to all users, or just certain user
groups or individuals). In RESCUE we can supplement its use of the VOLERE
requirements shell [13] with manual and automatic application of these 25 rules. The
manual strategy is now implemented through engineer training and guidelines in
ART-SCENE that advice on how to describe textual requirements. The automatic
strategy will be implemented using a new tool that will parse and invite re-writes of
the entered requirements specification to check each requirement against each of the
25 requirements authoring rules. Again, we hypothesise that these 2 strategies will
result in more correct and consistent documentation of requirements.

5.2 Strategy Selection

Adding new strategies enriches RESCUE but also makes it more difficult to
implement. Additional selection guidelines are needed to combine and/or select
between strategies to achieve one intention. To guide selection we have developed
new strategy comparison tables that define the predicted cost and benefit of adopting
one strategy over another according to strategy selection attributes. Table 2 compares
3 of the defined strategies for achieving the intention Discover Requirements from the
intention Product Agreed Scenario.

Table 2. Comparison of three new strategies to achieve the intention Discover Requirements
from the intention Produce Agreed Scenario

Strategy selection attributes Pattern-based
generation

Hazard
analysis

Video
walkthrough

Elapsed time to discover requirements/per scenario 0 0.5 0.5
Amount of analyst resource needed 0 (min) 2 0
Level of domain knowledge required Low High Medium
Level of user involvement needed None Low High
Level of management commitment needed Low Medium High
Capability to handle complex systems Low Medium Medium
Capability to handle innovative systems Low Low Low
Capability to handle dependencies on other system (or
inter-system dependencies)

Low Low N/A

Capability to handle unstable requirements Low N/A High
Requirements discovery rate/hour Unknown N/A <12
Number of VOLERE attributes discovered/requirement 2 N/A 5
Use case action specification rate/hour High Low

6 Conclusion

This paper reports a research-driven investigation of the MMMR approach to re-
engineer the RESCUE requirements process. Findings were relevant for RESCUE and
MMMR. Development of the process models revealed important omissions and single
strategy intentions in RESCUE that we resolved by adding new intentions and
strategies to the process models. This led us to re-investigate existing literature about

 Applying Modular Method Engineering to the RESCUE Requirements Process 223

scenario-driven requirements processes, and to undertake cost-benefit analyses of
RESCUE strategies that we will investigate through future RESCUE rollouts.

Existing process representations of RESCUE did not afford such analysis. The
MMMR process maps also gave the authors confidence that changes to RESCUE
were consistent with the existing process. The result was an agenda of improvements
to RESCUE and its software tools that we are currently implementing.

The paper also demonstrates the effectiveness of MMMR for modelling large-scale
requirements processes. Modelling intentions and strategies, rather than processes and
artefacts was tractable and cost-effective whilst still allowing the discovery of missing
or weak elements of the process. Moreover, thanks to the MAP formalism the
RESCUE process was transformed into a modular method: each RESCUE map
section represents a more or less autonomous process module. These modules can be
combined in different manners and reused in the construction of situation-specific
requirements engineering processes in order to meet the needs of client organisations.

The next stage of our collaboration will model RUP’s requirement processes [6] as
a basis for integrating RESCUE into RUP. Once RUP process maps have been
developed, we will merge intentions shared by RUP and RESCUE, add RESCUE
intentions to RUP process maps, and introduce RESCUE strategies for achieving
these shared intentions.

References

1. Alexander, C. (1979), ‘The Timeless Way of Building’, New York: Oxford University
Press.

2. Baddeley, A.D. (1990), ‘Human memory: Theory and practice’, Lawrence Erlbaum
Associates, Hove.

3. Goetz, R. & Rupp, C. (2003), ‘Psychotherapy for Systems Requirements’, Proceedings 2nd
IEEE International Conference on Cognitive Informatics, IEEE CS Press, p. 75-80.

4. Hammond, J., Rawlings, R. & Hall, A. (2001), ‘Will It Work?’, Proceedings 5th IEEE
International Symposium Requirements Engineering, IEEE CS Press, p. 102-109.

5. Jarke, M., Rolland, C., Sutcliffe, A. & Domges, R. (1999), ‘The NATURE requirements
Engineering’, Shaker Verlag, Aachen.

6. Leffingwell, D. & Widrig, D. (2000), ‘Managing Software Requirements: A Unified
Approach’, Addison-Wesley-Longman.

7. Maiden, N.A.M. & Rugg, G. (1996), ‘ACRE: Selecting Methods For Requirements
Acquisition’, Software Engineering Journal 11(3), p. 183-192.

8. Maiden, N.A.M., Cisse, M., Perez, H. & Manuel, D. (1998), ‘CREWS Validation Frames:
Patterns for Validating System Requirements’', Proceedings REFSQ98 Workshop.

9. Maiden, N.A.M., Jones, S.V. & Flynn M. (2003), ‘'Innovative Requirements Engineering
Applied to ATM’, Proceedings ATM (Air Traffic Management), Budapest, June 23-27.

10. Maiden, N.A.M., Jones, S.V., Manning, S., Greenwood, J. & Renou, L. (2004), ‘Model-
Driven Requirements Engineering: Synchronising Models in an Air Traffic Management
Case Study’, Proceedings CAISE’04, Springer-Verlag LNCS 3084, p. 368-383.

11. Mavin, A. & Maiden, N.A.M. (2003), ‘Determining Socio-Technical Systems
Requirements: Experiences with Generating and Walking Through Scenarios’',
Proceedings 11th International Conference on Requirements Engineering, IEEE CS Press,
p. 213-222.

224 J. Ralyté et al.

12. Ralyté, J. & Rolland, C. (2001), ‘An Approach for Method Re-engineering’. Proceedings
of the 20th International Conference on Conceptual Modeling (ER2001), LNCS 2224,
Springer, p. 471-484.

13. Robertson, S. & Robertson, J. (1999), ‘Mastering the Requirements Process’, Addison-
Wesley-Longman.

14. Rolland, C., Prakash, N. & Benjamen, A. (1999), ‘A multi-model view of process
modelling’. Requirements Engineering Journal, p. 169-187.

15. Sutcliffe, A.G., Maiden, N.A.M., Minocha, S. & Manuel, D. (1998), ‘Supporting Scenario-
Based Requirements Engineering’, IEEE Transactions on Software Engineering, 24(12), p.
1072-1088.

16. van Lamsweerde, A. (2004), ‘Goal-Oriented Requirements Engineering: A Roundtrip
from Research to Practice’, Proceedings 12th IEEE International Conference on
Requirements Engineering, IEEE CS Press, p. 4-7.

17. Vicente, K. (1999), ‘Cognitive work analysis’, Lawrence Erlbaum Associates.
18. Yu, E. & Mylopoulos, J.M. (1994), ‘Understanding “Why” in Software Process

Modelling, Analysis and Design’, Proceedings, 16th International Conference on Software
Engineering, IEEE CS Press, p. 159-168.

19. Zachos, K. & Maiden, N.A.M. (2004), ‘ART-SCENE: Enhancing Scenario Walkthroughs
with Multi-Media Scenarios’, Proceedings 12th IEEE International Conference on
Requirements Engineering, IEEE CS Press, p. 360-361.

	Introduction
	Map-Driven Modular Method Re-engineering (MMMR)
	The Map Formalism
	The Process Model for Map-Driven Modular Method Re-engineering

	Introduction to RESCUE
	Re-engineering RESCUE
	Defining First Level RESCUE Map
	Defining Second Level Maps

	Validation and Extension of RESCUE
	New Strategies for Specifying Complete Requirements
	Strategy Selection

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

